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Preface

It is our great pleasure to present the proceedings of Asiacrypt 2013 in two
volumes of Lecture Notes in Computer Science published by Springer. This was
the 19th edition of the International Conference on Theory and Application of
Cryptology and Information Security held annually in Asia by the International
Association for Cryptologic Research (IACR). The conference was organized by
IACR in cooperation with the Cryptology Research Society of India and was
held in the city of Bengaluru in India during December 1–5, 2013.

About one year prior to the conference, an international Program Committee
(PC) of 46 scientists assumed the responsibility of determining the scientific
content of the conference. The conference evoked an enthusiastic response from
researchers and scientists. A total of 269 papers were submitted for possible
presentations approximately six months before the conference. Authors of the
submitted papers are spread all over the world. PC members were allowed to
submit papers, but each PC member could submit at most two co-authored
papers or at most one single-authored paper. The PC co-chairs did not submit
any paper. All the submissions were screened by the PC and 54 papers were
finally selected for presentations at the conference. These proceedings contain
the revised versions of the papers that were selected. The revisions were not
checked and the responsibility of the papers rests with the authors and not the
PC members.

Selection of papers for presentation was made through a double-blind re-
view process. Each paper was assigned three reviewers and submissions by PC
members were assigned six reviewers. Apart from the PC members, 291 external
reviewers were involved. The total number of reviews for all the papers was more
than 900. In addition to the reviews, the selection process involved an extensive
discussion phase. This phase allowed PC members to express opinion on all the
submissions. The final selection of 54 papers was the result of this extensive and
rigorous selection procedure. One of the final papers resulted from the merging
of two submissions.

The best paper award was conferred upon the paper“Shorter Quasi-Adaptive
NIZK Proofs for Linear Subspaces”authored by Charanjit Jutla and Arnab Roy.
The decision was based on a vote among the PC members. In addition to the
best paper, the authors of two other papers, namely, “Families of Fast Elliptic
Curves from Q-Curves”authored by Benjamin Smith and“Key Recovery Attacks
on 3-Round Even-Mansour, 8-Step LED-128, and Full AES2” authored by Itai
Dinur, Orr Dunkelman, Nathan Keller and Adi Shamir, were recommended by
the Editor-in-Chief of the Journal of Cryptology to submit expanded versions to
the journal.

A highlight of the conference was the invited talks. An extensive multi-round
discussion was carried out by the PC to decide on the invited speakers. This
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resulted in very interesting talks on two different aspects of the subject. Lars
Ramkilde Knudsen spoke on “Block Ciphers — Past and Present” a topic of
classical and continuing importance, while George Danezis spoke on“Engineering
Privacy-Friendly Computations,” which is an important and a more modern
theme.

Apart from the regular presentations and the invited talks, a rump session
was organized on one of the evenings. This consisted of very short presentations
on upcoming research results, announcements of future events, and other topics
of interest to the audience.

We would like to thank the authors of all papers for submitting their research
works to the conference. Such interest over the years has ensured that the Asi-
acrypt conference series remains a cherished venue of publication by scientists.
Thanks are due to the PC members for their enthusiastic and continued partic-
ipation for over a year in different aspects of selecting the technical program.
External reviewers contributed by providing timely reviews and thanks are due
to them. A list of external reviewers is provided in these proceedings. We have
tried to ensure that the list is complete. Any omission is inadvertent and if there
is an omission, we apologize to the person concerned.

Special thanks are due to Satyanarayana V. Lokam, the general chair of
the conference. His message to the PC was to select the best possible scientific
program without any other considerations. Further, he ensured that the PC co-
chairs were insulated from the organizational work. This work was done by the
Organizing Committee and they deserve thanks from all the participants for
the wonderful experience. We thank Daniel J. Bernstein and Tanja Lange for
expertly organizing and conducting the rump session.

The reviews and discussions were entirely carried out online using a software
developed by Shai Halevi. At several times, we had to ask Shai for his help with
some feature or the other of the software. Every time, we received immediate
and helpful responses. We thank him for his support and also for developing the
software. We also thank Josh Benaloh, who was our IACR liaison, for guidance
on several issues. Springer published the volumes and made these available before
the conference. We thank Alfred Hofmann and Anna Kramer and their team for
their professional and efficient handling of the production process.

Last, but, not the least, we thank Microsoft Research; Google; Indian Statis-
tical Institute, Kolkata; and National Mathematics Initiative, Indian Institute of
Science, Bengaluru; for being generous sponsors of the conference.

December 2013 Kazue Sako
Palash Sarkar
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Michel Abdalla École Normale Supérieure, France
Colin Boyd Queensland University of Technology, Australia
Anne Canteaut Inria Paris-Rocquencourt, France
Sanjit Chatterjee Indian Institute of Science, India
Jung Hee Cheon Seoul National University, Korea
Sherman S.M. Chow Chinese University of Hong Kong, SAR China
Orr Dunkelmann University of Haifa, Israel
Pierrick Gaudry CNRS Nancy, France
Rosario Gennaro City College of New York, USA
Guang Gong University of Waterloo, Canada
Vipul Goyal Microsoft Research, India
Eike Kiltz University of Bochum, Germany
Tetsu Iwata Nagoya University, Japan
Tanja Lange Technische Universiteit Eindhoven,

The Netherlands
Dong Hoon Lee Korea University, Korea
Allison Lewko Columbia University, USA
Benoit Libert Technicolor, France
Dongdai Lin Chinese Academy of Sciences, China
Anna Lysyanskaya Brown University, USA
Subhamoy Maitra Indian Statistical Institute, India



VIII Asiacrypt 2013

Willi Meier University of Applied Sciences, Switzerland
Phong Nguyen Inria, France and Tsinghua University, China
Kaisa Nyberg Aalto University, Finland
Satoshi Obana Hosei University, Japan
Kenny Paterson Royal Holloway, University of London, UK
Krzysztof Pietrzak Institute of Science and Technology, Austria
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Block Ciphers – Past and Present

Lars Ramkilde Knudsen

DTU Compute, Denmark

lrkn@dtu.dk

Abstract. In the 1980s researchers were trying to understand the de-
sign of the DES, and breaking it seemed impossible. Other block ciphers
were proposed, and cryptanalysis of block ciphers got interesting. The
area took off in the 1990s where it exploded with the appearance of dif-
ferential and linear cryptanalysis and the many variants thereof which
appeared in the time after. In the 2000s AES became a standard and
it was constructed specifically to resist the general attacks and the area
of (traditional) block cipher cryptanalysis seemed saturated.... Much of
the progress in cryptanalysis of the AES since then has come from side-
channel attacks and related-key attacks.

Still today, for most block cipher applications the AES is a good
and popular choice. However, the AES is perhaps not particularly well
suited for extremely constrained environments such as RFID tags. There-
fore, one trend in block cipher design has been to come up with ultra-
lightweight block ciphers with good security and hardware efficiency. I
was involved in the design of the ciphers Present (from CHES 2007),
PrintCipher (presented at CHES 2010) and PRINCE (from Asiacrypt
2012). Another trend in block cipher design has been try to increase the
efficiency by making certain components part of the secret key, e.g., to
be able to reduce the number of rounds of a cipher.

In this talk, I will review these results.



Engineering Privacy-Friendly Computations

George Danezis 1,2

1 University College London
2 Microsoft Research, Cambridge

Abstract. In the past few years tremendous cryptographic progress has
been made in relation to primitives for privacy friendly-computations.
These include celebrated results around fully homomorphic encryption,
faster somehow homomorphic encryption, and ways to leverage them to
support more efficient secret-sharing based secure multi-party compu-
tations. Similar break-through in verifiable computation, and succinct
arguments of knowledge, make it practical to verify complex computa-
tions, as part of privacy-preserving client side program execution. Besides
computations themselves, notions like differential privacy attempt to cap-
ture the essence of what it means for computations to leak little personal
information, and have been mapped to existing data query languages.

So, is the problem of computation on private data solved, or just about
to be solved? In this talk, I argue that the models of generic computation
supported by cryptographic primitives are complete, but rather removed
from what a typical engineer or data analyst expects. Furthermore, the
use of these cryptographic technologies impose constrains that require
fundamental changes in the engineering of computing systems. While
those challenges are not obviously cryptographic in nature, they are nev-
ertheless hard to overcome, have serious performance implications, and
errors open avenues for attack.

Throughout the talk I use examples from our own work relating to
privacy-friendly computations within smart grid and smart metering de-
ployments for private billing, privacy-friendly aggregation, statistics and
fraud detection. These experiences have guided the design of ZQL, a
cryptographic language and compiler for zero-knowledge proofs, as well
as more recent tools that compile using secret-sharing based primitives.
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Özgür Dagdelen, Marc Fischlin, and Tommaso Gagliardoni

On the Security of One-Witness Blind Signature Schemes . . . . . . . . . . . . . 82
Foteini Baldimtsi and Anna Lysyanskaya

Cryptography Based Upon Physical Assumptions

Unconditionally Secure and Universally Composable Commitments
from Physical Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Ivan Damg̊ard and Alessandra Scafuro

Functional Encryption from (Small) Hardware Tokens . . . . . . . . . . . . . . . . 120
Kai-Min Chung, Jonathan Katz, and Hong-Sheng Zhou

Bounded Tamper Resilience: How to go beyond the Algebraic Barrier . . . 140
Ivan Damg̊ard, Sebastian Faust, Pratyay Mukherjee, and
Daniele Venturi

Tamper Resilient Circuits: The Adversary at the Gates . . . . . . . . . . . . . . . 161
Aggelos Kiayias and Yiannis Tselekounis

Multi-Party Computation

Efficient General-Adversary Multi-Party Computation . . . . . . . . . . . . . . . . 181
Martin Hirt and Daniel Tschudi



XXII Table of Contents – Part II

Fair and Efficient Secure Multiparty Computation with Reputation
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Gilad Asharov, Yehuda Lindell, and Hila Zarosim

Between a Rock and a Hard Place: Interpolating between MPC and
FHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Ashish Choudhury, Jake Loftus, Emmanuela Orsini,
Arpita Patra, and Nigel P. Smart

Cryptographic Primitives

Building Lossy Trapdoor Functions from Lossy Encryption . . . . . . . . . . . . 241
Brett Hemenway and Rafail Ostrovsky

Pseudorandom Generators from Regular One-Way Functions:
New Constructions with Improved Parameters . . . . . . . . . . . . . . . . . . . . . . . 261

Yu Yu, Xiangxue Li, and Jian Weng

Constrained Pseudorandom Functions and Their Applications . . . . . . . . . 280
Dan Boneh and Brent Waters

Fully Homomorphic Message Authenticators . . . . . . . . . . . . . . . . . . . . . . . . . 301
Rosario Gennaro and Daniel Wichs

Analysis, Cryptanalysis and Passwords

Non-uniform Cracks in the Concrete: The Power of Free
Precomputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Daniel J. Bernstein and Tanja Lange

Factoring RSA Keys from Certified Smart Cards: Coppersmith in the
Wild . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Daniel J. Bernstein, Yun-An Chang, Chen-Mou Cheng,
Li-Ping Chou, Nadia Heninger, Tanja Lange, and
Nicko van Someren

Naturally Rehearsing Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Jeremiah Blocki, Manuel Blum, and Anupam Datta

Leakage-Resilient Cryptography

Leakage-Resilient Chosen-Ciphertext Secure Public-Key Encryption
from Hash Proof System and One-Time Lossy Filter . . . . . . . . . . . . . . . . . . 381

Baodong Qin and Shengli Liu

On Continual Leakage of Discrete Log Representations . . . . . . . . . . . . . . . 401
Shweta Agrawal, Yevgeniy Dodis, Vinod Vaikuntanathan, and
Daniel Wichs



Table of Contents – Part II XXIII

Two-Party Computation

Hiding the Input-Size in Secure Two-Party Computation . . . . . . . . . . . . . . 421
Yehuda Lindell, Kobbi Nissim, and Claudio Orlandi

Secure Two-Party Computation with Reusable Bit-Commitments, via
a Cut-and-Choose with Forge-and-Lose Technique . . . . . . . . . . . . . . . . . . . . 441
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Abstract. We define a novel notion of quasi-adaptive non-interactive
zero knowledge (NIZK) proofs for probability distributions on parametri-
zed languages. It is quasi-adaptive in the sense that the common reference
string (CRS) generator can generate the CRS depending on the language
parameters. However, the simulation is required to be uniform, i.e., a sin-
gle efficient simulator should work for the whole class of parametrized
languages. For distributions on languages that are linear subspaces of
vector spaces over bilinear groups, we give quasi-adaptive computation-
ally sound NIZKs that are shorter and more efficient than Groth-Sahai
NIZKs. For many cryptographic applications quasi-adaptive NIZKs suf-
fice, and our constructions can lead to significant improvements in the
standard model. Our construction can be based on any k-linear assump-
tion, and in particular under the eXternal Diffie Hellman (XDH) as-
sumption our proofs are even competitive with Random-Oracle based
Σ-protocol NIZK proofs.

We also show that our system can be extended to include integer
tags in the defining equations, where the tags are provided adaptively by
the adversary. This leads to applicability of our system to many applica-
tions that use tags, e.g. applications using Cramer-Shoup projective hash
proofs. Our techniques also lead to the shortest known (ciphertext) fully
secure identity based encryption (IBE) scheme under standard static
assumptions (SXDH). Further, we also get a short publicly-verifiable
CCA2-secure IBE scheme.

Keywords: NIZK, Groth-Sahai, bilinear pairings, signatures,
dual-system IBE, DLIN, SXDH.

1 Introduction

In [13] a remarkably efficient non-interactive zero-knowledge (NIZK) proof sys-
tem [3] was given for groups with a bilinear map, which has found many appli-
cations in design of cryptographic protocols in the standard model. All earlier
NIZK proof systems (except [12], which was not very efficient) were constructed
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by reduction to Circuit Satisfiability. Underlying this system, now commonly
known as Groth-Sahai NIZKs, is a homomorphic commitment scheme. Each
variable in the system of algebraic equations to be proven is committed to using
this scheme. Since the commitment scheme is homomorphic, group operations
in the equations are translated to corresponding operations on the commitments
and new terms are constructed involving the constants in the equations and the
randomness used in the commitments. It was shown that these new terms along
with the commitments to variables constitute a zero-knowledge proof [13].

While the Groth-Sahai system is quite efficient, it still falls short in comparison
to Schnorr-based Σ-protocols [8] turned into NIZK proofs in the Random Oracle
model [2] using the Fiat-Shamir paradigm [10]. Thus, the quest remains to obtain
even more efficient NIZK Proofs. In particular, in a linear system of rank t,
some t of the equations already serve as commitments to t variables. Thus, the
question arises if, at the very least, fresh commitments to these variables as done
in Groth-Sahai NIZKs can be avoided.

Our Contributions. In this paper, we show that for languages that are linear
subspaces of vector spaces of the bilinear groups, one can indeed obtain more ef-
ficient computationally-sound NIZK proofs in a slightly different quasi-adaptive
setting, which suffices for many cryptographic applications. In the quasi-adaptive
setting, we consider a class of parametrized languages {Lρ}, parametrized by ρ,
and we allow the CRS generator to generate the CRS based on the language
parameter ρ. However, the CRS simulator in the zero-knowledge setting is re-
quired to be a single efficient algorithm that works for the whole parametrized
class or probability distributions of languages, by taking the parameter as input.
We will refer to this property as uniform simulation.

Many hard languages that are commonly used in cryptography are distri-
butions on class of parametrized languages, e.g. the DDH language based on
the decisional Diffie-Hellman (DDH) assumption is hard only when in the tuple
〈g, f , x · g, x · f 〉, even f is chosen at random (in addition to x · g being chosen
randomly). However, applications (or trusted parties) usually set f , once and
for all, by choosing it at random, and then all parties in the application can
use multiple instances of the above language with the same fixed f . Thus, we
can consider f as a parameter for a class of languages that only specify the last
two components above. If NIZK proofs are required in the application for this
parametrized language, then the NIZK CRS can be generated by the trusted
party that chooses the language parameter f . Hence, it can base the CRS on the
language parameter1.

We remark that adaptive NIZK proofs [3] also allow the CRS to depend
on the language, but without requiring uniform simulation. Such NIZK proofs
that allow different efficient simulators for each particular language (from a
parametrized class) are unlikely to be useful in applications. Thus, most NIZK
proofs, including Groth-Sahai NIZKs, actually show that the same efficient

1 However, in the security definition, the efficient CRS simulator does not itself gen-
erate f , but is given f as input chosen randomly.
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simulator works for the whole class, i.e. they show uniform simulation. The
Groth-Sahai system achieves uniform simulation without making any distinc-
tion between different classes of parametrized languages, i.e. it shows a single
efficient CRS simulator that works for all algebraic languages without taking
any language parameters as input. Thus, there is potential to gain efficiency by
considering quasi-adaptive NIZK proofs, i.e. by allowing the (uniform) simulator
to take language parameters as input2.

Our approach to building more efficient NIZK proofs for linear subspaces is
quite different from the Groth-Sahai techniques. In fact, our system does not
require any commitments to the witnesses at all. If there are t free variables in
defining a subspace of the n-dimensional vector-space and assuming the subspace
is full-ranked (i.e. has rank t), then t components of the vector already serve as
commitment to the variables. As an example, consider the language L (over a
cyclic group G of order q, in additive notation) to be

L=
{
〈l1, l2, l3〉 ∈ G

3 | ∃x1, x2 ∈ Zq : l1 = x1 · g, l2 = x2 · f , l3 = (x1 + x2) · h
}

where g, f , h are parameters defining the language. Then, l1 and l2 are already
binding commitments to x1 and x2. Thus, we only need to show that the last
component l3 is consistent.

The main idea underlying our construction can be summarized as follows.
Suppose the CRS can be set to be a basis for the null-space L⊥

ρ of the language

Lρ. Then, just pairing a potential language candidate with L⊥
ρ and testing for

all-zero suffices to prove that the candidate is in Lρ, as the null-space of L⊥
ρ

is just Lρ. However, efficiently computing null-spaces in hard bilinear groups is
itself hard. Thus, an efficient CRS simulator cannot generate L⊥

ρ , but can give a
(hiding) commitment that is computationally indistinguishable from a binding
commitment to L⊥

ρ . To achieve this we use a homomorphic commitment just
as in the Groth-Sahai system, but we can use the simpler El-Gamal encryption
style commitment as opposed to the more involved Groth-Sahai commitments,
and this allows for a more efficient verifier3. As we will see later in Section 5,
a more efficient verifier is critical for obtaining short identity based encryption
schemes (IBE).

In fact, the idea of using the null-space of the language is reminiscent of
Waters’ dual-system IBE construction [24], and indeed our system is inspired
by that construction4, although the idea of using it for NIZK proofs, and in
particular the proof of soundness is novel. Another contribution of the paper is
in the definition of quasi-adaptive NIZK proofs.

2 It is important to specify the information about the parameter which is supplied as
input to the CRS simulator. We defer this important issue to Section 2 where we
formally define quasi-adaptive NIZK proofs.

3 Our quasi-adaptive NIZK proofs are already shorter than Groth-Sahai as they require
no commitments to variables, and have to prove lesser number of equations, as
mentioned earlier.

4 In Section 5 and in the Appendix, we show that the design of our system leads to a
shorter SXDH assumption based dual-system IBE.
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For n equations in t variables, our quasi-adaptive computationally-sound
NIZK proofs for linear subspaces require only k(n − t) group elements, under
the k-linear decisional assumption [23,5]. Thus, under the XDH assumption for
bilinear groups, our proofs require only (n− t) group elements. In contrast, the
Groth-Sahai system requires (n+ 2t) group elements. Similarly, under the deci-
sional linear assumption (DLIN), our proofs require only 2(n−t) group elements,
whereas the Groth-Sahai system requires (2n + 3t) group elements. These pa-
rameters are summarized in Table 1. While our CRS size grows proportional to
t(n− t), more importantly there is a significant comparative improvement in the
number of pairings required for verification. Specifically, under XDH we require
at most half the number of pairings, and under DLIN we require at most 2/3 the
number of pairings. The Σ-protocol NIZK proofs based on the Random Oracle
model require n group elements, t elements of Zq and 1 hash value. Although
our XDH based proofs require less number of group elements, the Σ-protocol
proofs do not require bilinear groups and have the advantage of being proofs of
knowledge (PoK). We remark that the Groth-Sahai system is also not a PoK
for witnesses that are Zq elements. A recent paper by Escala et al [9] has also
optimized proofs of linear subspaces in a language dependent CRS setting. Their
system also removes the need for commitment to witnesses but still implicitly
uses Groth Sahai proofs. In comparison, our proofs are still much shorter.

Table 1. Comparison with Groth-Sahai NIZKs for Linear Subspaces. Parameter t is
the number of unknowns or witnesses and n is the dimension of the vector space, or in
other words, the number of equations.

XDH DLIN
Proof CRS #Pairings Proof CRS #Pairings

Groth-Sahai n + 2t 4 2n(t+ 2) 2n+ 3t 9 3n(t+ 3)
This paper n − t 2t(n − t) + 2 (n− t)(t+ 2) 2n − 2t 4t(n − t) + 3 2(n− t)(t+ 2)

Thus, for the language L above, which is just a DLIN tuple used ubiqui-
tously for encryption, our system only requires two group elements under the
DLIN assumption, whereas the Groth-Sahai system requires twelve group el-
ements (note, t = 2, n = 3 in L above). For the Diffie-Hellman analogue of
this language 〈x · g, x · f〉, our system produces a single element proof under the
XDH assumption, which we demonstrate in Section 3 (whereas the Groth-Sahai
system requires (n+ 2t =) 4 elements for the proof with t = 1 and n = 2).

Our NIZK proofs also satisfy some interesting new properties. Firstly, the
proofs in our system are unique for each language member. This has interesting
applications as we will see later in a CCA2-IBE construction. Secondly, the CRS
in our system, though dependent on the language parameters, can be split into
two parts. The first part is required only by the prover, and the second part
is required only by the verifier, and the latter can be generated independent
of the language. This is surprising since our verifier does not even take the
language (parameters) as input. Only the randomization used in the verifier
CRS generation is used in the prover CRS to link the two CRSes. This is in
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sharp contrast to Groth-Sahai NIZKs, where the verifier needs the language as
input. This split-CRS property has interesting applications as we will see later.

Extension to Linear Systems with Tags. Our system does not yet extend nat-
urally to quadratic or multi-linear equations, whereas the Groth-Sahai system
does5. However, we can extend our system to include tags, and allow the defining
equations to be polynomially dependent on tags. For example, our system can
prove the following language:

L′ =

{
〈l1, l2, l3,tag〉 ∈ G3 × Zq | ∃x1, x2 ∈ Zq :

l1 = x1 · f , l2 = x2 · g, l3 = (x1 + tag · x2) · h

}
.

Note that this is a non-trivial extension since the tag is adaptively provided by
the adversary after the CRS has been set.

The extension to tags is very important, as we now discuss. Many applications
require that the NIZK proof also be simulation-sound. However, extending NIZK
proofs for bilinear groups to be unbounded simulation-sound requires handling
quadratic equations (see [5] for a generic construction). On the other hand, many
applications just require one-time simulation soundness, and as has been shown
in [14], this can be achieved for linear subspaces by projective hash proofs [7].
Projective hash proofs can be defined by linear extensions, but require use of
tags. Thus, our system can handle such equations. Many applications, such as
signatures, can also achieve implicit unbounded simulation soundness using pro-
jective hash proofs, and such applications can utilize our system (see Section 5).

Applications. While the cryptographic literature is replete with NIZK proofs,
we will demonstrate the applicability of quasi-adaptive NIZKs, and in particular
our efficient system for linear subspaces, to a few recent applications such as sig-
nature schemes [5], UC commitments [11], password-based key exchange [16,14],
key-dependent encryption [5]. For starters, based on [11], our system yields an
adaptive UC-secure commitment scheme (in the erasure model) that has only
four group elements as commitment, and another four as opening (under the
DLIN assumption; and 3 + 2 under SXDH assumption), whereas the original
scheme using Groth-Sahai NIZKs required 5 + 16 group elements.

We also obtain one of the shortest signature schemes under a static standard
assumption, i.e. SXDH, that only requires five group elements. We also show
how this signature scheme can be extended to a short fully secure (and perfectly
complete) dual-system IBE scheme, and indeed a scheme with ciphertexts that
are only four group elements plus a tag (under the SXDH assumption). This is
the shortest IBE scheme under the SXDH assumption, and is technically even
shorter than a recent and independently obtained scheme of [6] which requires
five group elements as ciphertext. Table 2 depicts numerical differences between
the parameter sizes of the two schemes. The SXDH-IBE scheme of [6] uses the
concept of dual pairing vector spaces (due to Okamoto and Takashima [19,20],

5 However, since commitments in Groth-Sahai NIZKs are linear, there is scope for
mixing the two systems to gain efficiency.
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and synthesized from Waters’ dual system IBE). However, the dual vector space
and its generalizations due to others [17] do not capture the idea of proof ver-
ification. Thus, one of our main contributions can be viewed as showing that
the dual system not only does zero-knowledge simulation but also extends to
provide a computationally sound verifier for general linear systems.

Table 2. Comparison with the SXDH-based IBE of Chen et al. [6]. The notation | · |
denotes the bit length of an element of the given group.

Public Key Secret Key Ciphertext #Pairings Anonymity

CLLWW12 [6] 8|G1| + |GT | 4|G2| 4|G1| + |GT | 4 yes
This paper 5|G1| + |GT | 5|G2| 3|G1|+ |GT | + |Zq| 3 yes

Finally, using our QA-NIZKs we show a short publicly-verifiable CCA2-secure
IBE scheme. Public verifiability is an informal but practically important notion
which implies that one can publicly verify if the decryption will yield “invalid
ciphertext”. Thus, this can allow a network gateway to act as a filter. Our scheme
only requires two additional group elements over the basic IBE scheme.

Organization of the Paper. We begin the rest of the paper with the definition
of quasi-adaptive NIZKs in Section 2. In Section 3 we develop quasi-adaptive
NIZKs for linear subspaces under the XDH assumption. In Section 4, we extend
our system to include tags, define a notion called split-CRS QA-NIZKs and
extend our system to construct split-CRS NIZKs for affine spaces. Finally, we
demonstrate applications of our system in Section 5. We defer detailed proofs
and descriptions to the full paper [15]. We also describe our system based on the
k-linear assumption in [15].

Notations. We will be dealing with witness-relations R that are binary rela-
tions on pairs (x,w), and where w is commonly referred to as the witness. Each
witness-relation defines a language L = {x| ∃w : R(x,w)}. For every witness-
relation Rρ we will use Lρ to denote the language it defines. Thus, a NIZK proof
for a witness-relation Rρ can also be seen as a NIZK proof for its language Lρ.

Vectors will always be row-vectors and will always be denoted by an arrow
over the letter, e.g. �r for (row) vector of Zq elements, and �d as (row) vector of
group elements.

2 Quasi-Adaptive NIZK Proofs

Instead of considering NIZK proofs for a (witness-) relation R, we will consider
Quasi-Adaptive NIZK proofs for a probability distribution D on a collection of
(witness-) relations R = {Rρ}. The quasi-adaptiveness allows for the common
reference string (CRS) to be set based on Rρ after the latter has been chosen
according to D. We will however require, as we will see later, that the simulator
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generating the CRS (in the simulation world) is a single probabilistic polynomial
time algorithm that works for the whole collection of relations R.

To be more precise, we will consider ensemble of distributions on witness-
relations, each distribution in the ensemble itself parametrized by a security
parameter. Thus, we will consider ensemble {Dλ} of distributions on collection of
relations Rλ, where each Dλ specifies a probability distribution onRλ = {Rλ,ρ}.
When λ is clear from context, we will just refer to a particular relation as Rρ,
and write Rλ = {Rρ}.

Since in the quasi-adaptive setting the CRS could depend on the relation, we
must specify what information about the relation is given to the CRS generator.
Thus, we will consider an associated parameter language such that a member of
this language is enough to characterize a particular relation, and this language
member is provided to the CRS generator. For example, consider the class of
parametrized relations R = {Rρ}, where parameter ρ is a tuple g, f,h of three
group elements. Suppose, Rρ (on 〈l1, l2, l3〉, 〈x1, x2〉) is defined as

R〈g,f,h〉(〈l1, l2, l3〉, 〈x1, x2〉) def
=

(
x1, x2 ∈ Zq, l1, l2, l3 ∈ G and

l1 = x1 · g, l2 = x2 · f, l3 = (x1 + x2) · h

)
.

For this class of relations, one could seek a quasi-adaptive NIZK where the CRS
generator is just given ρ as input. Thus in this case, the associated parameter
language Lpar will just be triples of group elements6. Moreover, the distribution
D can just be on the parameter language Lpar, i.e. D just specifies a ρ ∈ Lpar.
Again, Lpar is technically an ensemble.

We call (K0,K1,P,V) a QA-NIZK proof system for witness-relations Rλ =
{Rρ} with parameters sampled from a distribution D over associated parameter
language Lpar, if there exists a probabilistic polynomial time simulator (S1, S2),
such that for all non-uniform PPT adversaries A1,A2,A3 we have:

Quasi-Adaptive Completeness:

Pr[λ← K0(1
m); ρ← Dλ;ψ ← K1(λ, ρ); (x,w)← A1(λ, ψ, ρ);

π ← P(ψ, x, w) : V(ψ, x, π) = 1 if Rρ(x,w)] = 1

Quasi-Adaptive Soundness:

Pr[λ← K0(1
m); ρ← Dλ;ψ ← K1(λ, ρ);

(x, π)← A2(λ, ψ, ρ) : V(ψ, x, π) = 1 and ¬(∃w : Rρ(x,w))] ≈ 0

Quasi-Adaptive Zero-Knowledge:

Pr[λ← K0(1
m); ρ← Dλ;ψ ← K1(λ, ρ) : AP(ψ,·,·)

3 (λ, ψ, ρ) = 1] ≈

Pr[λ← K0(1
m); ρ← Dλ; (ψ, τ)← S1(λ, ρ) : AS(ψ,τ,·,·)3 (λ, ψ, ρ) = 1],

6 It is worth remarking that alternatively the parameter language could also be discrete
logarithms of these group elements (w.r.t. to some base), but a NIZK proof under
this associated language may not be very useful. Thus, it is critical to define the
proper associated parameter language.
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where S(ψ, τ, x, w) = S2(ψ, τ, x) for (x,w) ∈ Rρ and both oracles (i.e. P and
S) output failure if (x,w) �∈ Rρ.

Note that ψ is the CRS in the above definitions.

3 QA-NIZK for Linear Subspaces under the XDH
Assumption

Setup. Let G1,G2 and GT be cyclic groups of prime order q with a bilinear
map e : G1 × G2 → GT chosen by a group generation algorithm. Let g1 and
g2 be generators of the group G1 and G2 respectively. Let 01, 02 and 0T be
the identity elements in the three groups G1,G2 and GT respectively. We use
additive notation for the group operations in all the groups.

The bilinear pairing e naturally extends to Zq-vector spaces of G1 and G2

of the same dimension n as follows: e(�a, �b
�
) =

∑n
i=1 e(ai,bi). Thus, if �a =

�x · g1 and �b = �y · g2, where �x and �y are now vectors over Zq, then e(�a, �b
�
) =

(�x · �y�) · e(g1,g2). The operator “�” indicates taking the transpose.

Linear Subspace Languages. To start off with an example, a set of equations
l1 = x1 · g, l2 = x2 · f, l3 = (x1 + x2) · h will be expressed in the form �l = �x · A
as follows:

�l =
[
l1 l2 l3

]
=

[
x1 x2

]
·
[
g 01 h
01 f h

]
where �x is a vector of unknowns and A is a matrix specifying the group constants
g, f,h.

The scalars in this system of equations are from the field Zq. In general, we
consider languages that are linear subspaces of vectors of G1 elements. These
are just Zq-modules, and since Zq is a field, they are vector spaces. In other
words, the languages we are interested in can be characterized as languages
parameterized by A as below:

LA = {�x · A ∈ Gn
1 | �x ∈ Zt

q}, where A is a t× n matrix of G1 elements.

Here A is an element of the associated parameter language Lpar, which is all
t × n matrices of G1 elements. The parameter language Lpar also has a corre-
sponding witness relation Rpar, where the witness is a matrix of Zq elements :
Rpar(A,A) iff A = A · g1.

Robust and Efficiently Witness-Samplable Distributions. Let the t × n dimen-
sional matrix A be chosen according to a distribution D on Lpar. We will call
the distribution D robust if with probability close to one the left-most t columns
of A are full-ranked. We will call a distribution D on Lpar efficiently witness-
samplable if there is a probabilistic polynomial time algorithm such that it out-
puts a pair of matrices (A,A) that satisfy the relation Rpar (i.e., Rpar(A,A)
holds), and further the resulting distribution of the output A is same as D. For
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example, the uniform distribution on Lpar is efficiently witness-samplable, by
first picking A at random, and then computing A. As an example of a robust dis-

tribution, consider a distribution D on (2× 3)-dimensional matrices

[
g 01 h
01 f h

]
with g, f and h chosen randomly from G1. It is easy to see that the first two
columns are full-ranked if g �= 01 and f �= 01, which holds with probability
(1− 1/q)2.

QA-NIZK Construction. We now describe a computationally sound quasi-adap-
tive NIZK (K0,K1,P,V) for linear subspace languages {LA} with parameters
sampled from a robust and efficiently witness-samplable distribution D over the
associated parameter language Lpar.
Algorithm K0. K0 is same as the group generation algorithm for which the XDH

assumption holds. λ
def
= (q,G1,G2,GT , e,g1,g2)← K0(1

m), with (q,G1,G2,GT ,
e,g1,g2) as described above.

We will assume that the size t×n of the matrix A is either fixed or determined
by the security parameter m. In general, t and n could also be part of the
parameter language, and hence t, n could be given as part of the input to CRS
generator K1.
Algorithm K1. The algorithm K1 generates the CRS as follows. Let At×n be

the parameter supplied to K1. Let s
def
= n − t: this is the number of equations

in excess of the unknowns. It generates a matrix Dt×s with all elements chosen
randomly from Zq and a single element b chosen randomly from Zq. The common
reference string (CRS) has two parts CRSp and CRSv which are to be used by
the prover and the verifier respectively.

CRSt×s
p := A ·

[
Dt×s

b−1 · Is×s

]
CRS(n+s)×s

v :=

⎡⎣ b · D
Is×s

−b · Is×s

⎤⎦ · g2

Here, I denotes the identity matrix. Note that CRSv is independent of the pa-
rameter.
Prover P. Given candidate �l = �x ·A with witness vector �x, the prover generates
the following proof consisting of s elements in G1:

�p := �x · CRSp

Verifier V. Given candidate �l , and a proof �p, the verifier checks the following:

e
([

�l �p
]
,CRSv

)
?
= 01×s

T

The security of the above system depends on the DDH assumption in group
G2. Since G2 is a bilinear group, this assumption is known as the XDH assump-
tion. These assumptions are standard and are formally described in [15].

Theorem 1. The above algorithms (K0,K1,P,V) constitute a computationally
sound quasi-adaptive NIZK proof system for linear subspace languages {LA} with
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parameters A sampled from a robust and efficiently witness-samplable distribu-
tion D over the associated parameter language Lpar, given any group generation
algorithm for which the DDH assumption holds for group G2.

Remark. For language members, the proofs are unique as the bottom s rows of
CRSv are invertible.

Proof Intuition. A detailed proof of the theorem can be found in [15]. Here we
give the main idea behind the working of the above quasi-adaptive NIZK, and
in particular the soundness requirement which is the difficult part here. We first
observe that completeness follows by straightforward bilinear manipulation. Zero
Knowledge also follows easily: the simulator generates the same CRS as above
but retains D and b as trapdoors. Now, given a language candidate �l , the proof

is simply �p := �l ·
[

D
b−1 · Is×s

]
. If �l is in the language, i.e., it is �x ·A for some �x,

then the distribution of the simulated proof is identical to the real world proof.
We now focus on the soundness proof which we establish by transforming the

system over two games. Let GameG0 be the original system. Since D is efficiently
witness samplable, in Game G1 the challenger generates both A and A = A · g1.

Then it computes a rank s matrix

[
Wt×s

Is×s

]
of dimension (t+s)×s whose columns

form a complete basis for the null-space of A, which means A ·
[
Wt×s

Is×s

]
= 0t×s.

Now statistically, the CRS in Game G0 is indistinguishable from the one where
we substitute D′+b−1 ·W for D, where D′ itself is an independent random matrix.
With this substitution, the CRSp and CRSv can be represented as

CRSt×s
p = A ·

[
D′

0s×s

]
, CRS(n+s)×s

v =

⎡⎣ b ·
[

D′

0s×s

]
+

[
W
Is×s

]
−b · Is×s

⎤⎦ · g2

Now we show that if an efficient adversary can produce a “proof” �p for which
the above pairing test holds and yet the candidate �l is not in LA, then it implies
an efficient adversary that can break DDH in groupG2. So consider a DDH game,
where a challenger either provides a real DDH-tuple 〈g2, b ·g2, r ·g2,χ = br ·g2〉
or a fake DDH tuple 〈g2, b ·g2, r ·g2,χ = br′ ·g2〉. Let us partition the Zq matrix

A as
[
At×t
0 At×s

1

]
and the candidate vector �l as

[
�l

1×t

0
�l

1×s

1

]
. Note that, since

A0 has rank t, the elements of �l0 are ‘free’ elements and �l0 can be extended to
a unique n element vector �l ′, which is a member of LA. This member vector �l ′

can be computed as �l ′ :=
[
�l0 −�l0 ·W

]
, nothing W = −A−1

0 A1. The proof of

�l ′ is computed as �p′ := �l0 ·D′. Since both (�l , �p) and (�l ′, �p′) pass the verification

equation, we obtain: �l
′
1 − �l1 = b(�p′ − �p), where �l

′
1 = −�l0 · W. In particular

there exists i ∈ [1, s], such that, l ′1i − l1i = b(p′
i − pi) �= 01. This gives us a

straightforward test for the DDH challenge: e(l ′1i − l1i, r · g2)
?
= e(p′

i − pi,χ).
This leads to a proof of soundness of the QA-NIZK.
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Remark. Observe from the proof above that the soundness can be based on
the following computational assumption which is implied by XDH, which is a
decisional assumption:

Definition 1. Consider a generation algorithm G taking the security parameter
as input, that outputs a tuple (q,G1,G2,GT , e,g1,g2), where G1,G2 and GT

are groups of prime order q with generators g1,g2 and e(g1,g2) respectively and
which allow an efficiently computable Zq-bilinear pairing map e : G1×G2 → GT .

The assumption asserts that the following problem is hard: Given f, fb
$←− G2,

output h,h′ ∈ G1, such that h′ = hb �= 01.

Example: QA-NIZK for a DH tuple. In this example, we instantiate our general
system to provide a NIZK for a DH tuple, that is a tuple of the form (x ·g, x · f)
for an a priori fixed base (g, f) ∈ G

2
1. We assume DDH for the group G2.

As in the setup described before, we have A =
[
g f

]
. The language is: L =

{[x] · A | x ∈ Zq}.
Now proceeding with the framework, we generate D as [d] and the element b

where d and b are random elements of Zq. With this setting, the NIZK CRS is:

CRSp :=A·
[

D
b−1 · I1×1

]
=
[
d · g+ b−1 · f

]
, CRSv :=

⎡⎣ b · D
I1×1

−b · I1×1

⎤⎦·g2=

⎡⎣ bd · g2

g2

−b · g2

⎤⎦
The proof of a tuple (r, r̂) with witness r, is just the single element r · (d ·g+

b−1 · f). In the proof of zero knowledge, the simulator trapdoor is (d, b) and the
simulated proof of (r, r̂) is just (d · r+ b−1 · r̂).

4 Extensions

In this section we consider some useful extensions of the concepts and construc-
tions of QA-NIZK systems. We show how the previous system can be extended
to include tags. The tags are elements of Zq, are included as part of the proof and
are used as part of the defining equations of the language. We define a notion
called split-CRS QA-NIZK system, where the prover and verifier use distinct
parts of a CRS and we construct a split-CRS system for affine systems.

Tags. While our system works for any number of components in the tuple (ex-
cept the first t) being dependent on any number of tags, to simplify the pre-
sentation we will focus on only one dependent element and only one tag. Also
for simplicity, we will assume that this element is an affine function of the tag
(the function being defined by parameters). We can handle arbitrary polynomial
functions of the tags as well, but we will focus on affine functions here as most
applications seem to need just affine functions. Then, the languages we handle
can be characterized as

LA,�a1,�a2
=

{〈
�x ·

[
A (�a�

1 + tag · �a�
2 )

]
,tag

〉
| �x ∈ Zt

q,tag ∈ Zq

}
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where At×(n−1), �a1×t
1 and �a1×t

2 are parameters of the language. A distribution is
still called robust (as in Section 3) if with overwhelming probability the first t

columns of A are full-ranked. Write A as [At×t
l | At×(n−1−t)

r ], where without loss
of generality, Al is non-singular. While the first n− 1 − t components in excess
of the unknowns, corresponding to Ar, can be verified just as in Section 3, for
the last component we proceed as follows.
Algorithm K1. The CRS is generated as:

CRSt×1
p,0 :=

[
Al �a�

1

]
·
[
D1

b−1

]
CRSt×1

p,1 :=
[
Al �a�2

]
·
[
D2

b−1

]
CRS

(t+2)×1
v,0 :=

⎡⎣ b · D1

1
−b

⎤⎦ · g2 CRS
(t+2)×1
v,1 :=

⎡⎣ b · D2

0
0

⎤⎦ · g2

where D1 and D2 are random matrices of order t× 1 independent of the matrix
D chosen for proving the other components. The Zq element b can be re-used
from the other components.

Prover. Let�l ′
def
= �x ·

[
Al (�a�

1 + tag · �a�2 )
]
. The prover generates the following

proof for the last component:

�p := �x · (CRSp,0 + tag · CRSp,1)

Verifier. Given a proof �p for candidate �l ′ the verifier checks the following:

e
([

�l ′ �p
]
,CRSv,0 + tag · CRSv,1

)
?
= 0T

The size of the proof is 1 element in the group G1. The proof of completeness,
soundness and zero-knowledge for this quasi-adaptive system is similar to proof
in Section 3 and a proof sketch can be found in [15].

Split-CRS QA-NIZK Proofs. We note that the QA-NIZK described in Section 3
has an interesting split-CRS property. In a split-CRS QA-NIZK for a distri-
bution of relations, the CRS generator K1 generates two CRS-es ψp and ψv, such
that the prover P only needs ψp, and the verifier V only needs ψv. In addition,
the CRS ψv is independent of the particular relation Rρ. In other words the CRS
generator K1 can be split into two PPTs K11 and K12, such that K11 generates
ψv using just λ, and K12 generates ψp using ρ and a state output by K11. The
key generation simulator S1 is also split similarly. The formal definition is given
in [15].

In many applications, split-CRS QA-NIZKs can lead to simpler constructions
(and their proofs) and possibly shorter proofs.

Split-CRS QA-NIZK for Affine Spaces. Consider languages that are affine spaces

LA,�a = {(�x ·A+ �a) ∈ Gn
1 | �x ∈ Zt

q}

The parameter language Lpar just specifies A and �a. A distribution over Lpar is
called robust if with overwhelming probability the left most t×t sub-matrix of A
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is non-singular (full-ranked). If �a is given as part of the verifier CRS, then a QA-
NIZK for distributions over this class follows directly from the construction in
Section 3. However, that would make the QA-NIZK non split-CRS. We now show
that the techniques of Section 3 can be extended to give a split-CRS QA-NIZK
for (robust and witness-samplable) distributions over affine spaces.

The common reference string (CRS) has two parts ψp and ψv which are to
be used by the prover and the verifier respectively. The split-CRS generator K11

and K12 work as follows. Let s
def
= n− t: this is the number of equations in excess

of the unknowns.
Algorithm K11. The verifier CRS generator first generates a matrix Dt×s with
all elements chosen randomly from Zq and a single element b chosen randomly

from Zq. It also generates a row vector �d
1×s

at random from Zq. Next, it com-
putes

CRS(n+s)×s
v :=

⎡⎣ b · D
Is×s

−b · Is×s

⎤⎦ · g2
�f
1×s

:= e(g1, b · �d · g2)

The verifier CRS ψv is the matrix CRSv and �f.
Algorithm K12. The prover CRS generator K12 generates

CRSt×s
p =

[
At×n

�a1×n

]
·
[

D
b−1 · Is×s

]
−

[
0t×s

�d
1×s

]
· g1

The (prover) CRS ψp is just the matrix CRSp.
Prover. Given candidate (�x ·A+�a) with witness vector �x, the prover generates
the following proof:

�p :=
[
�x 1

]
· CRSp

Verifier. Given a proof �p of candidate �l , the verifier checks the following:

e
([

�l �p
]
,CRSv

)
?
=�f

We provide a proof sketch in [15]. The split-CRS QA-NIZK for affine spaces
also naturally extends to include tags as described before in this section.

5 Applications

In this section we mention several important applications of quasi-adaptive NIZK
proofs. Before we go into the details of these applications, we discuss the general
applicability of quasi-adaptive NIZKs. Recall in quasi-adaptive NIZKs, the CRS
is set based on the language for which proofs are required. In many applications
the language is set by a trusted party, and the most obvious example of this is
the trusted party that sets the CRS in some UC applications, many of which
have UC realizations only with a CRS. Another obvious example is the (H)IBE
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trusted party that issues secret keys to various identities. In many public key
applications, the party issuing the public key is also considered trusted, i.e.
incorruptible, as security is defined with respect to the public key issuing party
(acting as challenger). Thus, in all these settings if the language for which proofs
are required is determined by a incorruptible party, then that party can also
issue the QA-NIZK CRS based on that language. It stands to reason that most
languages for which proofs are required are ultimately set by an incorruptible
party (at least as far as the security definitions are concerned), although they may
not be linear subspaces, and can indeed be multi-linear or even quadratic. For
example, suppose a potentially corruptible party P wants to (NIZK) prove that
x ∈ Lρ, where Lρ is a language that it generated. However, this proof is unlikely
to be of any use unless it also proves something about Lρ, e.g., that ρ itself is in
another language, say L′. In some applications, potentially corruptible parties
generate new linear languages using random tags. However, the underlying basis
for these languages is set by a trusted party, and hence the NIZK CRS for the
whole range of tag based languages can be generated by that trusted party based
on the original basis for these languages.

Adaptive UC Commitments in the Erasure Model. The SXDH-based commit-
ment scheme from [11] requires the following quasi-adaptive NIZK proof (see [15]
for details)

{〈R,S, T 〉 | ∃r : R = r · g, S = r · h, T = r · (d1 + tag · e1)}

with parameters h,d1, e1 (chosen randomly), which leads to a UC commitment
scheme with commitment consisting of 3 G1 elements, and a proof consisting of
two G2 elements. Under DLIN, a similar scheme leads to a commitment consist-
ing of 4 elements and an opening of another 4 elements, whereas [11] stated a
scheme using Groth-Sahai NIZK proofs requiring (5+16) elements. More details
can be found in [15].

One-time (Relatively) Simulation-Sound NIZK for DDH and Others. In [14]
it was shown that for linear subspace languages, such as the DDH or DLIN
language, or the language showing that two El-Gamal encryptions are of the
same message [18,22], the NIZK proof can be made one-time simulation sound
using a projective hash proof [7] and proving in addition that the hash proof is
correct. For the DLIN language, this one-time simulation sound proof (in Groth-
Sahai system) required 15 group elements, whereas the quasi-adaptive proof in
this paper leads to a proof of size only 5 group elements.

Signatures. We will now show a generic construction of existentially unforgeable
signature scheme (against adaptive adversaries) from labeled CCA2-encryption
schemes and split-CRS QA-NIZK proof system (as defined in Section 4) for
a related language distribution. This construction is a generalization of a sig-
nature scheme from [5] which used (fully) adaptive NIZK proofs and required
constructions based on groups in which the CDH assumption holds.
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Let E = (KeyGen,Enc,Dec) be a labeled CCA-encryption scheme on messages.
Let Xm be any subset of the message space of E such that 1/|Xm| is negligi-
ble in the security parameter m. Consider the following class of (parametrized)
languages {Lρ}:

Lρ = {(c,M) | ∃r : c = Encpk(u; r;M)}

with parameter ρ = (u, pk). The notation Encpk(u; r;M) means that u is en-

crypted under public key pk with randomness r and label M . Consider the
following distribution D on the parameters: u is chosen uniformly at random
from Xm and pk is generated using the probabilistic algorithm KeyGen of E on
1m (the secret key is discarded). Note we have an ensemble of distributions, one
for each value of the security parameter, but we will suppress these details.

Let Q = (K0, 〈K11,K12〉,P,V) be a split-CRS QA-NIZK for distribution D on
{Lρ}. Note that the associated parameter language Lpar is just the set of pairs
(u, pk), and D specifies a distribution on Lpar.

Now, consider the following signature scheme S.
Key Generation. On input a security parameter m, run K0(1

m) to get λ. Let
E .pk be generated using KeyGen of E on 1m (the secret key sk is discarded).
Choose u at random from Xm. Let ρ = (u, E .pk). Generate ψv by running K11

on λ (it also generates a state s). Generate ψp by running K12 on (λ, ρ) and state
s. The public key S.pk of the signature scheme is then ψv. The secret key S.sk
consists of (u, E .pk, ψp).
Sign. The signature onM just consists of a pair 〈c, π〉, where c is an E-encryption
of u with label M (using public key E .pk and randomness r), and π is the QA-
NIZK proof generated using prover P of Q on input (ψp, (c,M), r). Recall r is
the witness to the language member (c,M) of Lρ (and ρ = (u, E .pk)).
Verify. Given the public key S.pk (= ψv), and a signature 〈c, π〉 on message M ,
the verifier uses the verifier V of Q and outputs V(ψv, (c,M), π).

Theorem 2. If E is a labeled CCA2-encryption scheme and Q is a split-CRS
quasi-adaptive NIZK system for distribution D on class of languages {Lρ} de-
scribed above, then the signature scheme described above is existentially unforge-
able under adaptive chosen message attacks.

The theorem is proved in [15]. It is worth remarking here that the reason
one can use a quasi-adaptive NIZK here is because the language Lρ for which
(multiple) NIZK proof(s) is required is set (or chosen) by the (signature scheme)
key generator, and hence the key generator can generate the CRS for the NIZK
after it sets the language. The proof of the above theorem can be understood
in terms of simulation-soundness. Suppose the above split-CRS QA-NIZK was
also unbounded simulation-sound. Then, one can replace the CCA2 encryption
scheme with just a CPA-encryption scheme, and still get a secure signature
scheme. A proof sketch of this is as follows: an Adversary B is only given ψv

(which is independent of parameters, including u). Further, the simulator for the
QA-NIZK can replace all proofs by simulated proofs (that do not use witness r
used for encryption). Next, one can employ CPA-security to replace encryptions
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of u by encryptions of 1. By unbounded simulation soundness of the QA-NIZK
it follows that if B produces a verifying signature then it must have produced
an encryption of u. However, the view of B is independent of u, and hence its
probability of forging a signature is negligible.

However, the best known technique for obtaining efficient unbounded simula-
tion soundness itself requires CCA2 encryption (see [5]), and in addition NIZK
proofs for quadratic equations. On the other hand, if we instantiate the above
theorem with Cramer-Shoup encryption scheme, we get remarkably short sig-
natures (in fact the shortest signatures under any static and standard assump-
tion). The Cramer-Shoup encryption scheme PK consists of g, f ,k,d, e chosen
randomly from G1, along with a target collision-resistant hash function H (with
a public random key). The set X from which u is chosen is just the whole group
G1. Then an encryption of u is obtained by picking r at random, and obtaining
the tuple

〈R = r · g, S = r · f , T = u+ r · k, H = r · (d + tag · e)〉

where tag = H(R,S, T,M). It can be shown that it suffices to hide u with the
hash proof H (although one has to go into the internals of the hash-proof based
CCA2 encryption; see Appendix in [14]). Thus, we just need a (split-CRS) QA-
NIZK for the tag-based affine system (it is affine because of the additive constant
u). There is one variable r, and three equations (four if we consider the original
CCA-2 encryption) Thus, we just need (3−1)∗1(= 2) proof elements, leading to
a total signature size of 5 elements (i.e. R,S,u+H , and the two proof elements)
under the SXDH assumption.

Dual-System Fully Secure IBE. It is well-known that Identity Based Encryption
(IBE) implies signature schemes (due to Naor), but the question arises whether
the above signature scheme using Cramer-Shoup CCA2-encryption and the re-
lated QA-NIZK can be converted into an IBE scheme. To achieve this, we take
a hint from Naor’s IBE to Signature Scheme conversion, and let the signatures
(on identities) be private keys of the various identities. The verification of the

QA-NIZK from Section 3 works by checking e
([

�l �p
]
,CRSv

)
?
= 01×s

T (or more

precisely, e
([

�l �p
]
,CRSv

)
?
=�f for the affine language). However, there are two

issues: (1) CRSv needs to be randomized, (2) there are two equations to be veri-
fied (which correspond to the alternate decryption of Cramer-Shoup encryption,
providing implicit simulation-soundness). Both these problems are resolved by
first scaling CRSv by a random value s, and then taking a linear combination
of the two equations using a public random tag. The right hand side s ·�f can
then serve as secret one-time pad for encryption. Rather than being a provable
generic construction, this is more a hint to get to a really short IBE. We give
the construction in Appendix A and a complete proof in [15]. It shows an IBE
scheme under the SXDH assumption where the ciphertext has only four group
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(G1) elements plus a Zq-tag, which is the shortest IBE known under standard
static assumptions7.

Publicly-Verifiable CCA2 Fully-Secure IBE. We can also extend our IBE scheme
above to be publicly-verifiable CCA2-secure [21,1]. Public verifiability is an in-
formal but practical notion: most CCA2-secure schemes have a test of well-
formedness of ciphertext, and on passing the test a CPA-secure scheme style
decryption suffices. However, if this test can be performed publicly, i.e. without
access to the secret key, then we call the scheme publicly-verifiable. While there
is a well known reduction from hierarchical IBE to make an IBE scheme CCA2-
secure [4], that reduction does not make the scheme publicly-verifiable CCA2
in a useful manner. In the IBE setting, publicly-verifiable also requires that it
be verifiable if the ciphertext is valid for the claimed identity. This can have
interesting applications where the network can act as a filter. We show that our
scheme above can be extended to be publicly-verifiable CCA2-fully-secure IBE
with only two additional group elements in the ciphertext (and two additional
group elements in the keys). We give the construction in Appendix B and a com-
plete proof in [15]. The IBE scheme above has four group elements (and a tag),
where one group element serves as one-time pad for encrypting the plaintext.
The remaining three group elements form a linear subspace with one variable
as witness and three integer tags corresponding to: (a) the identity, (b) the tag
needed in the IBE scheme, and (c) a 1-1 (or universal one-way) hash of some
of the elements. We show that if these three group elements can be QA-NIZK
proven to be consistent, and given the unique proof property of our QA-NIZKs,
then the above IBE scheme can be made CCA2-secure - the dual-system already
has implicit simulation-soundness as explained in the signature scheme above,
and we show that this QA-NIZK need not be simulation-sound. Since, there are
three components, and one variable (see the appendix for details), the QA-NIZK
requires only two group elements under SXDH.
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A Dual System IBE under SXDH Assumption

For ease of reading, we switch to multiplicative group notation in the following.
Setup: The authority uses a group generation algorithm for which the SXDH
assumption holds to generate a bilinear group (G1,G2,GT ) with g1 and g2 as
generators of G1 and G2 respectively. Assume that G1 and G2 are of order q, and
let e be a bilinear pairing on G1 × G2. Then it picks c at random from Zq, and
sets f = gc2. It further picks Δ1, Δ2, Δ3, Δ4, b, d, e, u from Zq, and publishes
the following public key PK:
g1, g

b
1, v1 = g−Δ1·b+d

1 , v2 = g−Δ2·b+e
1 , v3 = g−Δ3·b+c

1 , and k = e(g1,g2)
−Δ4·b+u.

The authority retains the following master secret key MSK: g2, f = (gc2), and
Δ1, Δ2, Δ3, Δ4, d, e, u.

Encrypt(PK, i , M). The encryption algorithm chooses s and tag at random
from Zq. It then blinds M as C0 = M · ks, and also creates

C1 = gs1, C2 = gbs1 , C3 = vs1 · vi ·s2 · vtag·s
3

and the ciphertext is C = 〈C0, C1, C2, C3,tag〉.

KeyGen(MSK, i). The authority chooses r at random from Zq and creates

R = gr2, S = gr·c2 , T = g
u+r·(d+i ·e)
2 , W1 = g

−Δ4−r·(Δ1+i ·Δ2)
2 ,W2 = g−r·Δ3

2

as the secret key Ki for identity i .

Decrypt(Ki , C). Let tag be the tag in C. Obtain

κ =
e(C1, S

tag · T ) · e(C2,W1 ·W tag

2 )

e(C3, R)

and output C0/κ.

Theorem 3. Under the SXDH Assumption, the above scheme is a fully-secure
IBE scheme.

http://eprint.iacr.org/
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B Publicly Verifiable CCA2-IBE under SXDH
Assumption

Setup. The authority uses a group generation algorithm for which the SXDH
assumption holds to generate a bilinear group (G1,G2,GT ) with g2 and g1 as
generators of G1 and G2 respectively. Assume that G1 and G2 are of order q,
and let e be a bilinear pairing on G1 × G2. Then it picks c at random from Zq,
and sets f = gc2. It further picks Δ1, Δ2, Δ3, Δ4, Δ5, b, d, e, u, z from Zq, and
publishes the following public key PK:
g1, g

b
1, v1 = g−Δ1·b+d

1 , v2 = g−Δ2·b+e
1 , v3 = g−Δ3·b+c

1 , v4 = g−Δ4·b+z
1 , and k =

e(g1,g2)
−Δ5·b+u.

Consider the language:

L = {〈C1, C2, C3, i,tag, h〉 | ∃s : C1 = gs1, C2 = gbs1 , C3 = vs1 ·vi ·s2 ·vtag·s
3 ·vh·s4 }

It also publishes the QA-NIZK CRS for the language L (which uses tags i,tag
and h). It also publishes a 1-1, or Universal One-Way Hash function (UOWHF)
H. The authority retains the following master secret key MSK: g2, f (= gc2),
and Δ1, Δ2, Δ3, Δ4, Δ5, d, e, u, z.

Encrypt(PK, i , M). The encryption algorithm chooses s and tag at random
from Zq. It then blinds M as C0 = M · ks, and also creates

C1 = gs1, C2 = gb·s1 , C3 = vs1 · vi ·s2 · vtag·s
3 · vh·s4 ,

where h = H(C0, C1, C2,tag, i). The ciphertext is then C = 〈C0, C1, C2, C3,
tag, p1,p2〉, where 〈p1,p2〉 is a QA-NIZK proof that 〈C0, C1, C2, C3, i,tag, h〉 ∈
L.

KeyGen(MSK, i). The authority chooses r at random from Zq and creates

R = gr2, S1 = gr·c2 , S2 = gr·z2 , T = g
u+r·(d+i ·e)
2 ,

W1 = g
−Δ5−r·(Δ1+i ·Δ2)
2 ,W2 = g−r·Δ3

2 ,W3 = g−r·Δ4
2

as the secret key Ki for identity i .

Decrypt(Ki , C). Let tag be the tag in C. Let h = H(C0, C1, C2,tag, i). First
(publicly) verify that the ciphertext satisfies the QA-NIZK for the language
above. Then, obtain

κ =
e(C1, S

tag

1 · Sh
2 · T ) · e(C2,W1 ·W tag

2 ·Wh
3 )

e(C3, R)

and output C0/κ. If the QA-NIZK does not verify, output ⊥.
This public-verifiability of the consistency test is informally called the publicly-

verifiable CCA2 security.

Theorem 4. Under the SXDH Assumption, the above scheme is a CCA2 fully-
secure IBE scheme.
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Abstract. In [18] Goyal et al. introduced the bounded player model for
secure computation. In the bounded player model, there are an a pri-
ori bounded number of players in the system, however, each player may
execute any unbounded (polynomial) number of sessions. They showed
that even though the model consists of a relatively mild relaxation of
the standard model, it allows for round-efficient concurrent zero knowl-
edge. Their protocol requires a super-constant number of rounds. In this
work we show, constructively, that there exists a constant-round concur-
rent zero-knowledge argument in the bounded player model. Our result
relies on a new technique where the simulator obtains a trapdoor corre-
sponding to a player identity by putting together information obtained
in multiple sessions. Our protocol is only based on the existence of a
collision-resistance hash-function family and comes with a “straight-line”
simulator.

We note that this constitutes the strongest result known on constant-
round concurrent zero knowledge in the plain model (under well accepted
relaxations) and subsumes Barak’s constant-round bounded concurrent
zero-knowledge result. We view this as a positive step towards getting
constant round fully concurrent zero-knowledge in the plain model, with-
out relaxations.

Keywords: concurrent zero knowledge, straight-line simulation,
bounded player model.

1 Introduction

The notion of a zero-knowledge proof [17] is central in cryptography, both for
its conceptual importance and for its wide ranging applications to the design of
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secure cryptography protocols. Initial results for zero-knowledge were in the so
called stand-alone setting where there is a single protocol execution happening
in isolation.

The fact that on the Internet an adversary can control several players mo-
tivated the notion of concurrent zero knowledge [15] (cZK). Here the prover is
simultaneously involved in several sessions and the scheduling of the messages is
coordinated by the adversary who also keeps control of all verifiers. Concurrent
zero knowledge is much harder to achieve than zero knowledge. Indeed, while we
know how to achieve zero-knowledge in 4 rounds, a sequence of results [21,33,6]
increased the lower bound on the round complexity of concurrent zero-knowledge
with black-box simulation to almost logarithmic in the security parameter. In
the meanwhile, the upper bound has been improved and now almost matches
the logarithmic lower bound [31,20,30]. After almost a decade of research on
this topic, the super-logarithmic round concurrent zero-knowledge protocol of
Prabhakaran et al. [30] remains the best known in terms of round complexity.

Some hope for a better round complexity started from the breakthrough result
of Barak [1] where non-black-box simulation under standard assumptions was
proposed. His results showed how to obtain bounded-concurrent zero knowl-
edge in constant rounds. This refers to the setting where there is an a priori
fixed bound on the total number of concurrent executions (and the protocol
may become completely insecure if the actual number of sessions exceed this
bound). Unfortunately, since then, the question of achieving sub-logarithmic
round complexity with unbounded concurrency using non-black-box techniques
has remained open, and represents one of the most challenging open questions
in the study of zero-knowledge protocols.1

Bounded player model. Recently, Goyal, Jain, Ostrovsky, Richelson and Visconti
[18] introduced the so called bounded player model. In this model, it is only
assumed that there is an a-priori (polynomial) upper-bound on the total number
of players that may ever participate in protocol executions. There is no setup
stage, or, trusted party, and the simulation must be performed in polynomial
time. While there is a bound on the number of players, any player may join in
at any time and may be subsequently involved in any unbounded (polynomial)
number of concurrent sessions. Since there is no a priori bound on the number of
sessions, it is a strengthening of the bounded-concurrency model used in Barak’s
result. The bounded player model also has some superficial similarities to the
bare-public-key model of [5] which is discussed later in this section.

As an example, if we consider even a restriction to a single verifier that runs
an unbounded number of sessions, the simulation strategy of [1] breaks down
completely. Goyal et al. [18] gave a ω(1)-round concurrent zero knowledge pro-
tocol in the bounded player model. The technique they proposed relies on the

1 In this paper, we limit our discussion to results which are based on standard
complexity-theoretic and number-theoretic assumptions. We note that constant
round concurrent zero-knowledge is known to exist under non-standard assump-
tions such as a variation of the (non-falsifiable) knowledge of exponent assumption
[19] or the existence of P-certificates [8].
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fact that the simulator has several choices in every sessions on where to spend
computation trying to extract a trapdoor, and, its running time is guaranteed
to be polynomial as long as the number of such choices is super-constant. Their
technique fails inherently if constant round-complexity is desired.

We believe the eventual goal of achieving round efficient concurrent zero-
knowledge (under accepted assumptions) is an ambitious one. Progress towards
this goal would not only impact how efficiently one can implement zero-knowledge
(in the network setting), but also, will improve various secure computation pro-
tocol constructions in this setting (as several secure computation protocols use,
e.g., PRS preamble [30] for concurrent input extraction). Bounded player model
is somewhere between the standard model (where the best known protocols re-
quire super-logarithmic number of rounds), and, the bounded concurrency model
(where constant round protocols are known). We believe the study of round com-
plexity of concurrent zero-knowledge in the bounded player model might shed
light on how to construct such protocols in the standard model as well.

Our Results. In this work, we give a constant-round protocol in the bounded
player (BP) model. Our constructions inherently relies on non-black-box simu-
lation. The simulator for our protocol does not rely on rewinding techniques and
instead works in a “straight-line” manner (as in Barak [1]). Our construction is
only based on the existence of a collision-resistant hash-function family.

Theorem 1. Assuming the existence of a collision-resistance hash-function fam-
ily, there exists a constant round concurrent zero-knowledge argument system
with concurrent soundness in the bounded player model.

We note that this constitutes the strongest result known on constant-round zero-
knowledge in the concurrent setting (in the plain model). It subsumes Barak’s
result: now the total number of sessions no longer needs to be bounded; only
the number of new players starting the interaction with the prover is bounded.
A player might join in at anytime and may subsequently be involved in any
unbounded (polynomial) number of sessions.

We further note that, as proved by Goyal et al. [18], unlike previously studied
relaxations of the standard model (e.g., bounded number of sessions, timing
assumptions, super- polynomial simulation), concurrent-secure computation is
still impossible to achieve in the bounded player model. This gives evidence
that the BP model is “closer” to the standard model than previously studied
models, and study of this model might shed light on constructing constant-round
concurrent zero-knowledge in the standard model as well. Moreover, despite
the impossibility of concurrent-secure computation, techniques developed in the
concurrent zero-knowledge literature have found applications in other areas in
cryptography, including resettable security [5], non-malleability [14], and even
in proving black-box lower bounds [27].

1.1 Technical Overview

In this section, first, we recall some observations by Goyal et al [18] regarding why
simple approaches to extend the construction of Barak [1] to the bounded player
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model are bound to fail. We also recall the basic idea behind the protocol of [18].
Armed with this background, we then proceed to discuss the key technical ideas
behind our constant round cZK protocol in the bounded player model. Initial
parts of this section are borrowed verbatim from [18].

Why natural approaches fail. Recall that in the bounded player model, the only
assumption is that the total number of players that will ever be present in the
system is a priori bounded. Then, as observed by Goyal et al [18], the black-box
lower-bound of Canetti et al. [6] is applicable to the bounded player model as
well. Thus, it is clear that we must resort to non-black-box techniques. Now, a
natural approach to leverage the bound on the number of players is to associate
with each verifier Vi a public key pki and then design an FLS-style protocol [16]
that allows the ZK simulator to extract, in a non-black-box manner, the secret
key ski of the verifier and then use it as a “trapdoor” for “easy” simulation.
The key intuition is that once the simulator extracts the secret key ski of a
verifier Vi, it can perform easy simulation of all the sessions associated with Vi.
Then, since the total number of verifiers is bounded, the simulator will need
to perform non-black-box extraction only an a priori bounded number of times
(once for each verifier), which can be handled in a manner similar to the setting
of bounded-concurrency [1].

Unfortunately, as observed by Goyal et al. [18], the above intuition is mis-
leading. In order to understand the problem with the above approach, let us
first consider a candidate protocol more concretely. In fact, it suffices to focus
on a preamble phase that enables non-black-box extraction (by the simulator)
of a verifier’s secret key since the remainder of the protocol can be constructed
in a straightforward manner following the FLS approach. Now, consider the fol-
lowing candidate preamble phase (using the non-black-box extraction technique
of [3]): first, the prover and verifier engage in a coin-tossing protocol where the
prover proves “honest behavior” using a Barak-style non-black-box ZK protocol
[1]. Then, the verifier sends an encryption of its secret key under the public key
that is determined from the output of the coin-tossing protocol [18].

In order to analyze this protocol, we will restrict our discussion to the simpli-
fied case where only one verifier is present in the system (but the total number of
concurrent sessions are unbounded). At this point, one may immediately object
that in the case of a single verifier identity, the problem is not interesting since
the bounded player model is identical to the bare-public key model, where one
can construct four-round cZK protocols using rewinding based techniques. How-
ever, simulation techniques involving rewinding do not “scale” well to the case of
polynomially many identities (unless we use a large number of rounds) and fail.
In contrast, our simulation approach is “straight-line” for an unbounded number
of sessions and scales well to a large bounded number of identities. Therefore, in
the forthcoming discussion, we will restrict our discussion to straight-line simu-
lation. In this case, we find it instructive to focus on the case of a single identity
to explain the key issues and our ideas to resolve them.

We now turn to analyze the candidate protocol. Now, following the intuition
described earlier, one may think that the simulator can simply cheat in the
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coin-tossing protocol in the “inner-most” session in order to extract the secret
key, following which all the sessions can be simulated in a straight-line manner,
without performing any additional non-black-box simulation. Consider, however,
the following adversarial verifier strategy: the verifier schedules an unbounded
number of sessions in such a manner that the coin-tossing protocols in all of these
sessions are executed in a “nested” manner. Furthermore, the verifier sends the
ciphertext (containing its secret key) in each session only after all the coin-tossing
protocols across all sessions are completed. Note that in such a scenario, the
simulator would be forced to perform non-black-box simulation in an unbounded
number of sessions. Unfortunately, this is a non-trivial problem that we do not
know how to solve.

The approach of Goyal et al. [18]. In an effort to bypass the above problem,
Goyal et al. use multiple (ω(1), to be precise) preamble phases (instead of only
one), such that the simulator is required to “cheat” in only one of these pream-
bles. This, however, immediately raises a question: in which of the ω(1) pream-
bles should the simulator cheat? This is a delicate question since if, for example,
we let the simulator pick one of preambles uniformly at random, then with
non-negligible probability, the simulator will end up choosing the first preamble
phase. In this case, the adversary can simply perform the same attack as it did
earlier playing only the first preamble phase, but for many different sessions so
that the simulator will still have to cheat in many of them. Indeed, it would seem
that any randomized oblivious simulation strategy can be attacked in a similar
manner by simply identifying the first preamble phase where the simulator would
cheat with a non-negligible probability.

The main idea in [18] is to use a specific probability distribution such that
the simulator cheats in the first preamble phase with only negligible probabil-
ity, while the probability of cheating in the later preambles increases gradually
such that the “overall” probability of cheating is 1 (as required). Further, the
distribution is such that the probability of cheating in the ith preamble is less
than a fixed polynomial factor of the total probability of cheating in one of the
previous i − 1 blocks. This allows them (by a careful choice of parameters) to
ensure that the probability of the simulator failing in more than a given poly-
nomially bounded number of sessions w.r.t. any given verifier is negligible (and
then rely on the techniques from the bounded-concurrency model [1] to handle
the bounded number of non-black-box simulations).

Our Construction. The techniques used in our work are quite different and un-
related to the techniques in the work of Goyal et al. [18]. As illustrated in the
discussion above, the key issue is the following. Say that a slot of the protocol
completes. Then, the simulator starts the non-black-box simulation and com-
putes the first “heavy” universal argument message, and, sends it across. How-
ever, before the simulator can finish this simulation successfully (and somehow
learn a trapdoor from the verifier which can then be used to complete other ses-
sions without non-black-box simulation), the verifier switches to another session.
Then, in order to proceed, the simulator would have to perform non-black-box
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simulation and the heavy computation again (resulting in the number of ses-
sions where non-black-box simulation is performed becoming unbounded). So
overall, the problem is the “delay” between the heavy computation, and, the
point at which the simulator extracts the verifier trapdoor (which can then be
used to quickly pass through other sessions with this particular verifier without
any heavy computation or non-black-box simulation).

Our basic approach is to “construct the trapdoor slowly as we go along”: have
any heavy computation done in any session (with this verifier) contribute to the
construction of a trapdoor which can then be used to quickly pass through other
sessions. To illustrate our idea, we shall focus on the case of a single verifier as
before. The description below is slightly oversimplified for the sake of readability.

To start with, in the very first session, the verifier is supposed to choose a key
pair of a signature scheme (this key pair remains the same across all sessions
involving this verifier). As in Barak’s protocol [1], we will just have a single slot
followed by a universal argument (UA). However, now once a slot is complete,
the verifier is required to immediately send a signature2 on the transcript of
the slot (i.e., on the prover commitment, and, the verifier random string) to the
prover. This slot now constitutes a “hard statement” certified by the verifier:
it could be used by the prover in any session (with this verifier). If the prover
could prove that he has a signed slot such that the machine committed to in
this slot could output the verifier random string in this slot, the verifier would
be instructed to accept. Thus, the simulator would now simply take the first
slot that completes (across all sessions), and, would prove the resulting “hard
statement” in the universal arguments of all the sessions. This would allow him
to presumably compute the required PCP only once and use it across all sessions.
Are we done? Turns out that the answer is no.

Even if the prover is executing the UA corresponding to the same slot (on
which he has obtained a signature) in every session, because of the interactive
nature of UAs, the (heavy) computation the prover does in a session cannot
be entirely used in another session. This is because the challenge of the verifier
would be different in different sessions. To solve this problem and continue the
construction of a single trapdoor (useful across all sessions), we apply our ba-
sic idea one more time. The prover computes and sends the first UA message.
The verifier is required to respond with a random challenge and a signature on
the UA transcript so far. The prover can compute the final UA message, and, the
construction of the trapdoor is complete: the trapdoor constitutes of a signed
slot, an accepting UA transcript (proving that the machine committed to in the
slot indeed outputs the random string in that slot), and, a signature on the first
two UA messages (proving that the challenge was indeed generated by the veri-
fier after getting the first UA message). To summarize, the simulator would use
the following two sessions for the construction of the trapdoor: the first session

2 Signatures of committed messages computed by a verifier where previously used
in [12] to allow the simulator to get through rewindings one more signature in order
to cheat in the main thread. Here instead we insist with straight-line simulation.
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where a slot completes, and, the first session where the verifier sends the UA
random challenge.

The above idea indeed is oversimplified and ignores several problems. Firstly,
since an honest prover executes each concurrent session oblivious of others, any
correlations in the prover messages across different sessions (in particular, send-
ing the same UA first message) would lead to the simulated transcript being
distinguishable from the real one. Furthermore, the prover could be proving a
different overall statement to the verifier in every session (and hence even a UA
first message cannot be reused across different sessions). The detailed description
of our construction is given in Section 3.

1.2 Related Work

Bare public key and other related models. The bare public key model was pro-
posed in [5] where, before any interaction starts, every player is required to
declare a public key and store it in a public file (which never changes once
the sessions start). In this model it is known how to obtain constant-round
concurrent zero knowledge with concurrent soundness under standard assump-
tions [13,35,36,34]. This model has also been used for constant-round concurrent
non-malleable zero knowledge [25] and various constant-round resettable and
simultaneously resettable protocols [22,39,11,9,10,38,37,7].

As discussed in [18], the crucial restriction of the BPK model is that all players
who wish to ever participate in protocol executions must be fixed during the pre-
processing phase, and new players cannot be added “on-the-fly” during the proof
phase. We do not make such a restriction in our work and, despite superficial
resemblance, the techniques useful in constructing secure protocols in the BPK
model have limited relevance in our setting. In particular, constant round cZK is
known to exist in the BPK model using only black-box simulation, while in our
setting, non-black-box techniques are necessary to achieve sublogarithmic-round
cZK.

In light of the above discussion, since the very premise of the BPK model
(that all players are fixed ahead of time and declare a key) does not hold in the
bounded player model, we believe that the bounded player model is much closer
in spirit (as well as technically) to the bounded concurrency model of Barak.
The bounded player model is a strict generalization of the bounded concurrency
model. Thus, our constant-round construction is the first strict improvement
to Barak’s bounded concurrent ZK protocol. We stress that we improve the
achieved security under concurrent composition, still under standard assump-
tions and without introducing any setup/weakness. Summing up, ours is a con-
struction which is the closest known to achieving constant-round concurrent zero
knowledge in the plain model.

Round efficient concurrent zero-knowledge is known in a number of other
models as well (which do not seem to be directly relevant to our setting) such
as the common-reference string model, the super-polynomial simulation model,
etc. We refer the reader to [18] for a more detailed discussion.
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2 Preliminaries and Definitions

Notation. We will use the symbol “||” to denote the concatenation of two strings
appearing respectively before and after the symbol.

2.1 Bounded Player Model

We first recall the bounded player model for concurrent security, as introduced
in [18]. In the bounded player model, there is an a-priori (polynomial) upper
bound on the total number of player that will ever be present in the system.
Specifically, let n denote the security parameter. Then, we consider an upper
bound N = poly(n) on the total number of players that can engage in concurrent
executions of a protocol at any time. We assume that each player Pi (i ∈ N) has
an associated unique identity idi, and that there is an established mechanism to
enforce that party Pi uses the same identity idi in each protocol execution that it
participates in. Note, however, that such identities do not have to be established
in advance. In particular, new players can join the system with their own (new)
identities, as long as the number of players does not exceed N . We stress that
there is not bound on the number of protocol executions that can be started by
each party.

The bounded player model is formalized by means of a functionality FN
bp

that registers the identities of the player in the system. Specifically, a player
Pi that wishes to participate in protocol executions can, at any time, register
an identity idi with the functionality FN

bp . The registration functionality does
not perform any checks on the identities that are registered, except that each
party Pi can register at most one identity idi, and that the total number of
identity registrations are bounded by N . In other words, FN

bp refuses to register
any new identities once N number of identities have already been registered.
The functionality FN

bp is formally defined in Figure 1.

Functionality FN
bp

FN
bp initializes a variable count to 0 and proceeds as follows.

– Register commands: Upon receiving a message (register, sid, idi) from some
party Pi, the functionality checks that no pair (Pi, id

′
i) is already recorded and

that count < N . If this is the case, it records the pair (Pi, idi) and sets count =
count+ 1. Otherwise, it ignores the received message.

– Retrieve commands: Upon receiving a message (retrieve, sid, Pi) from some
party Pj or the adversary A, the functionality checks if some pair (Pi, idi) is
recorded. If this the case, it sends (sid, Pi, idi) to Pj (or A). Otherwise, it returns
(sid, Pi,⊥).

Fig. 1. The Bounded Player Functionality FN
bp
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In our constructions we will explicitly work in the setting where the identity
of each party is a tuple (h, vk), where h← Hn is a hash function chosen from a
family Hn of collision resistant hash functions, and vk is a verification key for a
signature scheme.

2.2 Concurrent Zero Knowledge in Bounded Player Model

In this section, we formally define concurrent zero knowledge in the bounded
player model. The definition given below, is an adaptation of the one of [30] to
the bounded player model, by also considering non-black-box simulation. Some
of the text below is taken verbatim from [30].

Let ppt denote probabilistic-polynomial time. Let 〈P, V 〉 be an interactive
argument for a language L. Consider a concurrent adversarial verifier V ∗ that,
given input x ∈ L, interacts with an unbounded number of independent copies
of P (all on the same common input x and moreover equipped with a proper
witness w), without any restriction over the scheduling of the messages in the
different interactions with P . In particular, V ∗ has control over the scheduling
of the messages in these interactions. Further, we say that V ∗ is an N -bounded
concurrent adversary if it assumes at most N verifier identities during its (un-
bounded) interactions with P .3

The transcript of a concurrent interaction consists of the common input x,
followed by the sequence of prover and verifier messages exchanged during the
interaction. We denote by viewP

V ∗(x, z,N) the random variable describing the
content of the random tape of the N -bounded concurrent adversary V ∗ with
auxiliary input z and the transcript of the concurrent interaction between P
and V ∗ on common input x.

Definition 1 (Concurrent Zero Knowledge in Bounded Player Model).
Let 〈P, V 〉 be an interactive argument system for a language L. We say that
〈P, V 〉 is concurrent zero-knowledge in the bounded player model if for every
N -bounded concurrent non-uniform ppt adversary V ∗, there exists a ppt algo-
rithm S, such that the following ensembles are computationally indistinguishable,
{viewP

V ∗(x, z,N)}x∈L,z∈{0,1}∗ and {S(x, z,N)}x∈L,z∈{0,1}∗.

As a final note, we remark that following previous work in the BPK model and
in the BP model, we will consider the notion of concurrent soundness where the
malicious prover is allowed to play any concurrent number of sessions with the
same verifier. Indeed, this is notion is strictly stronger than sequential soundness.

2.3 Building Blocks

In this section, we discuss the main building blocks that we will use in our cZK
construction.

3 Thus, V ∗ can open multiple sessions with P for every unique verifier identity.
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Statistically binding commitment schemes. In our constructions, we will make
use of a statistically binding string commitment scheme, denoted Com. For sim-
plicity of exposition, we will make the simplifying assumption that Com is a
non-interactive perfectly binding commitment scheme. In reality, Com would
be taken to be a standard 2-round commitment scheme, e.g. [24]. Unless stated
otherwise, we will simply use the notation Com(x) to denote a commitment
to a string x, and assume that the randomness (used to create the commit-
ment) is implicit. We will denote by Com(x; r) a commitment to a string x with
randomness r.

Witness indistinguishable arguments of knowledge. We will also make use of a
witness-indistinguishable proof of knowledge (WIPOK) for all of NP in our con-
struction. Such a scheme can be constructed, for example, by parallel repetition
of the 3-round Blum’s protocol for Graph Hamiltonicity [4]. We will denote such
an argument system by 〈PWI, VWI〉.

The universal argument of [2]. In our construction, we will use the 4-round
universal argument system (UA), denoted pUA presented in [2] and based on
the existence of collision-resistant hash functions. We will assume without loss
of generality that the initial commitment of the PCP sent by the prover in
the second round also contains a commitment of the statement. We notice that
such an argument system is still sound when the prover is required to open the
commitment of the statement in the very last round.

Signature schemes. We will use a signature scheme (KeyGen,Sign,Verify)
that is unforgeable against chosen message attacks. Note that such signatures
schemes are known based on one way functions [32].

3 A Constant-Round Protocol

In this section, we describe our constant-round concurrent zero-knowledge pro-
tocol in the bounded player model.

Relation Rsim. We first recall a slight variant of Barak’s [1] NTIME(T (n))
relation Rsim, as used previously in [28]. Let T : N → N be a “nice” function
that satisfies T (n) = nω(1). Let {Hn}n be a family of collision-resistant hash
functions where a function h ∈ Hn maps {0, 1}∗ to {0, 1}n, and let Com be
a perfectly binding commitment scheme for strings of length n, where for any
α ∈ {0, 1}n, the length of Com(α) is upper bounded by 2n. The relation Rsim

is described in Figure 2.

Remark 1. The relation presented in Figure 2 is slightly oversimplified and
will make Barak’s protocol work only when {Hn}n is collision-resistant against
“slightly” super-polynomial sized circuits. For simplicity of exposition, in this
manuscript, we will work with this assumption. We stress, however, that as dis-
cussed in prior works [2,26,29,28,18], this assumption can be relaxed by using
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Instance: A triplet 〈h, c, r〉 ∈ Hn × {0, 1}n × {0, 1}poly(n).

Witness: A program Π ∈ {0, 1}∗, a string y ∈ {0, 1}∗ and a string s ∈ {0, 1}poly(n).
Relation: Rsim(〈h, c, r〉, 〈Π,y, s〉) = 1 if and only if:

1. |y| ≤ |r| − n.
2. c = Com(h(Π); s).
3. Π(y) = r within T (n) steps.

Fig. 2. Rsim - A variant of Barak’s relation [28]

a “good” error-correcting code ECC (with constant distance and polynomial-
time encoding and decoding procedures), and replacing the condition c =
Com(h(Π); s) with c = Com(ECC(h(Π)); s).

Our protocol. We are now ready to present our concurrent zero knowledge proto-
col, denoted 〈P, V 〉. Let P and V denote the prover and verifier respectively. Let
N denote the bound on the number of verifiers in the system. In our construction,
the identity of a verifier Vi corresponds to a verification key vki of a secure signa-
ture scheme and a hash function hi ∈ Hn from a family Hn of collision-resistant
hash functions. Let (KeyGen,Sign,Verify) be a secure signature scheme. Let
〈PWI, VWI〉 be a witness-indistinguishable argument of knowledge system. Let
pUA be the universal argument (UARG) system of [2] that we discussed pre-
viously; the transcript is composed by four messages (h, β, γ, δ) where h is a
collision-resistant hash function.

The protocol 〈P, V 〉 is described in Figure 3. For our purposes, we set the
length parameter �(N) = N ·P (n)+n, where P (n) is a polynomial upper bound
on the total length of the prover messages in the UARG pUA plus the output
length of a hash function h ∈ Hn. For simplicity we omit some standard checks
(e.g., the prover needs to check that vk and h are recorded, the prover needs to
check that the signatures is valid).

The completeness property of 〈P, V 〉 follows immediately from the construc-
tion. Next, in Section 3.2, we prove concurrent soundness of 〈P, V 〉, i.e., we
show that a computationally-bounded adversarial prover who engages in multi-
ple concurrent executions of 〈P, V 〉 (where the scheduling across the sessions is
controlled by the adversary) can not prove a false statement in any of the ex-
ecutions, except with negligible probability. As observed in [18], “stand-alone”
soundness does not imply concurrent soundness in the bounded player model.
Informally speaking, this is because the standard approach of reducing concur-
rent soundness to stand-alone soundness by “internally” emulating all but one
verifier does not work since the verifier’s keys are private.4

4 Indeed, Micali and Reyzin [23] gave concrete counter-examples to show that stand-
alone soundness does not imply concurrent soundness in the bare public key model.
It is not difficult to see that their results immediately extend to the bounded player
model.
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Parameters: Security parameter n, number of players N = N(n), length parameter
�(N).

Common Input: x ∈ {0, 1}poly(n).
Private Input to P : A witness w s.t. RL(x,w) = 1.

Private Input to V : A key pair (sk, vk)
R← KeyGen(1n), and a hash function

h
R← Hn.

Stage 1 (Preamble Phase):
V → P : Send vk, h.
P → V : Send c = Com(0n).

V → P : Send r
R← {0, 1}�(N), and σ = Signsk(c‖r).

P → V : Send c′ = Com(0n).

V → P : Send γ
R← {0, 1}n, and σ′ = Signsk(c

′‖γ).
Stage 2 (Proof Phase):

P ↔ V : An execution of WIPOK 〈PWI, VWI〉 to prove the OR of the following
statements:
1. ∃w ∈ {0, 1}poly(|x|) s.t. RL(x,w) = 1.
2. ∃〈c, r, σ〉, and 〈β, γ, δ, c′, t, σ′〉 s.t.

– Verifyvk(c‖r;σ) = 1, and
– c′ = Com(β; t), and Verifyvk(c

′‖γ; σ′) = 1, and
– (h, β, γ, δ) is an accepting transcript for a UARG pUA proving the

following statement: ∃〈Π,y, s〉 s.t. Rsim(〈h, c, r〉, 〈Π,y, s〉) = 1.

Fig. 3. Protocol 〈P, V 〉

We now turn to prove that protocol 〈P, V 〉 is concurrent zero-knowledge in
the bounded player model.

3.1 Proof of Concurrent Zero Knowledge

In this section, we prove that the protocol 〈P, V 〉 described in Section 3 is con-
current zero-knowledge in the bounded player model. Towards this end, we will
construct a non-black-box (polynomial-time) simulator and then prove that the
concurrent adversary’s view output by the simulator is indistinguishable from
the real view. We start by giving an overview of the proof and then proceed to
give details.

Overview. Recall that unlike the bounded concurrency model, the main chal-
lenge in the bounded player model is that the total number of sessions that a
concurrent verifier may schedule is not a priori bounded. Thus, one can not di-
rectly employ Barak’s simulation strategy of committing to a machine that takes
only a bounded-length input y (smaller than the challenge string r) and outputs
the next message of the verifier. Towards this end, the crucial observation in [18]
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is that in the bounded player model, once the simulator is able to “solve” the
identity of a specific verifier, then it does not need to be perform any more
“expensive” (Barak-style) non-black-box simulation for that identity. Then, the
main challenge remaining is to ensure that the expensive non-black-box sim-
ulations that need to be performed before the simulator can solve a particular
identity, can be a-priori bounded, regardless of the number of concurrent sessions
opened by the verifier. Indeed, [18] use a randomized simulation strategy (that
crucially relies on a super-constant number of rounds) to achieve this effect.

In our case, we also build on the same set of observations. However, we cru-
cially follow a different strategy to a-priori bound the number of expensive non-
black-box simulations that need to performed in order to solve a given identity.
In particular, unlike [18], where the “trapdoor” for a given verifier simply corre-
sponds to its secret key, in our case, the trapdoor consists of a signed statement
and a corresponding universal argument proof transcript (where the signature
is computed by the verifier using the signing key corresponding to its identity).
Further, and more crucially, unlike [18], where the simulator makes a “disjoint”
effort in each session corresponding to a verifier to extract the trapdoor, in our
case, the simulator gradually builds the trapdoor by making “joint” effort across
the sessions. In fact, our simulator only performs one expensive non-black-box
simulation per identity; as such, the a-priori bound on the number of identities
immediately yields us the desired effect. Indeed, this is why we can perform
concurrent simulation in only a constant number of rounds.

The Simulator. We now proceed to describe our simulator S. Let N denote the
a priori bound on the number of verifiers in the system. Then, the simulator S
interacts with an adversary V ∗ = (V ∗

1 , . . . , V ∗
N ) who controls verifiers V1, . . . , VN .

V ∗ interacts with S in m sessions, and controls the scheduling of the messages.
S is given non-black-box access to V ∗.

The simulator S consists of two main subroutines, namely, Seasy and Sheavy. As
the name suggests, the job of Sheavy is to perform the “expensive” non-black-box
simulation operations, namely, constructing the transcripts of universal argu-
ments, which yield a trapdoor for every verifier Vi. On the other hand, Seasy
computes the actual (simulated) prover messages in both the preamble phase
and the proof phase, by using the trapdoors. We now give more details.

Simulator S. Throughout the simulation, S maintains the following three data
structures, each of which is initialized to ⊥:

1. a list π = (π1, . . . , πN ), where each πi is either ⊥ or is computed to be
hi(Π). Here, hi is the hash function corresponding to Vi and Π is the aug-
mented machine code that is used for non-black-box simulation. We defer
the description of Π to below.

2. a list trapheavy = (trapheavy1 , . . . , trapheavyN ), where each trapheavyi corresponds to
a tuple 〈hi, c, r,Π, y, s〉 s.t. Rsim(〈hi, c, r〉, 〈Π, y, s〉) = 1.



34 V. Goyal et al.

3. a list trapeasy = (trapeasy1 , . . . , trapeasyN ), where each trapeasyi corresponds to a
tuple 〈c, r, σ, β, γ, δ, c′, t, σ′〉 s.t.
– Verifyvki

(c‖r;σ) = 1, and
– c′ = Com(β; t), and Verifyvki

(c′‖γ;σ′) = 1, and
– (hi, β, γ, δ) is an accepting transcript for a UARG pUA proving the fol-

lowing statement: ∃〈Π, y, s〉 s.t. Rsim(〈hi, c, r〉, 〈Π, y, s〉) = 1.

Augmented machine Π . The augmented machine code Π simply consists of the
code of the adversarial verifier V ∗ and the code of the subroutine Seasy (with a
sufficiently long random tape hardwired, to compute the prover messages in each
session) , i.e., Π = (V ∗,Seasy). The input y to the machine Π consists of the lists
π and trapeasy, i.e., y = (π, trapeasy). Note that it follows from the description
that |y| ≤ �(N)− n.

We now describe the subroutines Seasy and Sheavy, and then proceed to give a
formal description of S. For simplicity of exposition, in the discussion below, we
assume that the verifier sends the first message in the WIPOK 〈PWI, VWI〉.
Algorithm Seasy(i,msgVj ,π, trapeasy; z). The algorithm Seasy prepares the (simu-
lated) messages of the prover P in the protocol. More specifically, when executed
with input (i,msgVj ,π, trapeasy; z), Seasy does the following:

1. IfmsgVj is the first verifier message of the preamble phase from Vi in a session,
then Seasy parses π as π1, . . . , πN . It computes and outputs c = Com(πi; z).

2. If msgVj is the second verifier message of the preamble phase from Vi in a
session, then Seasy computes and outputs c = Com(β; z), where β is the
corresponding (i.e., fourth) entry in trapeasyi ∈ trapeasy.

3. If msgVj is a verifier message of the WIPOK from Vi in the proof phase of
a session, then if trapeasyi = ⊥, then Seasy aborts and outputs ⊥, otherwise
Seasy simply runs the code of the honest PWI to compute the response using
randomness z and the trapdoor witness trapeasyi .

Algorithm Sheavy(i, j, γ, trapheavy). The algorithm Sheavy simply prepares one
UARG transcript for every verifier Vi, which in turn is used as a trapdoor by
the algorithm Seasy. More concretely, when executed with input (i, j, γ, trapheavy),
Sheavy does the following:

1. If j = 1, then Sheavy parses the ith entry trapheavyi in trapheavy as (hi, c, r,Π, y, s).
It runs the honest prover algorithm PUA and computes the first message β of
a UARG for the statement: ∃〈Π, y, s〉 s.t. Rsim(〈hi, c, r〉, 〈Π, y, s〉) = 1. Sheavy
saves its internal state as statei and outputs β.5

2. If j = 2, then Sheavy uses statei and γ to honestly compute the final prover
message δ for the UARG with prefix (hi, β, γ). It outputs δ.

Algorithm S. Given the above subroutines, the simulator S works as follows.
We assume that every time S updates the lists π and trapeasy, it also auto-
matically updates the entry corresponding to y (i.e., the fifth entry) in each

5 For simplicity of exposition, we describe Sheavy as a stateful algorithm.
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trapheavyi ∈ trapheavy. For simplicity of exposition, we do not explicitly mention
this below.

Preamble phase:

1. On receiving the first message msgV1 = (vki, hi) from V ∗ on behalf of Vi in
the preamble phase of a session, S first checks whether πi = ⊥ (where πi is
the ith entry in the list π); if the check succeeds, then S updates πi = hi(Π).
Next, S samples fresh randomness s from its random tape and runs Seasy on
input (i,msgV1 ,π, trapeasy; s). S sends the output string c from Seasy to V ∗.

Further, S adds (hi, c, ·, Π, y, s) to trapheavyi and (c, ·, ·, ·, ·, ·, ·, ·, ·) to trapeasyi .
2. On receiving the second message message msgV2 = (r, σ) from V ∗ on behalf

of Vi in the preamble phase of a session, S first verifies the validity of the
signature σ w.r.t. vki. If the check fails, S considers this session aborted (as
the prover would do) and ignores any additional message for this session.
Otherwise, S checks whether the entries corresponding to r and σ (i.e., 2nd
and 3rd entries) in trapeasyi are ⊥. If the check succeeds, then:

– S sets r as 3rd entry of trapheavyi and r, σ as second and third entries of
trapeasyi .

– Further, S runs Sheavy on input6 (i, 1,⊥, trapheavy) to compute the message
β of aUARG for the statement: ∃〈Π, y, s〉 s.t.Rsim(〈hi, c, r〉, 〈Π, y, s〉) = 1.

Here hi, c, r,Π, y, s are such that trapheavyi = 〈hi, c, r,Π, y, s〉.
– On receiving the output message β, S sets to β the fourth slot of trapeasyi .

Next, S samples fresh randomness t and runs Seasy on input
(i,msgV2 ,π, trapeasy; t). On receiving the output string c′ from Seasy, S for-
wards it to V ∗. Further, S sets to (c′, t) the 7th and 8th slot of trapeasyi .

3. Finally, on receiving the last message msgVfin = (γ, σ′) from V ∗ on behalf
of Vi in the preamble phase of a session, S first verifies the validity of the
signature σ′ w.r.t. vki. If the check fails, S considers this session aborted
(as the prover would do) and ignores any additional message for this session.
Otherwise, S checks whether the entries corresponding to γ and σ′ in trapeasyi

are ⊥. If the check succeeds, then:
– S sets to γ and σ′ the 5th and 9th slot of trapeasyi .
– Further, S runs Sheavy on input (i, 2, γ, trapheavy) to compute the final

prover message δ of the UARG with prefix (hi, β, γ), where (β, γ) are
the corresponding entries in trapeasyi .

– On receiving the output message δ, S sets to δ the 6th slot of trapeasyi .

Proof phase: On receiving any message msgVj from V ∗ on behalf of Vi, S runs

Seasy on input (i,msgVj ,π, trapeasy) and fresh randomness. S forwards the output
message of Seasy to V ∗.

This completes the description of S and the subroutines Seasy, Sheavy. It follows
immediately from the above description that S runs in polynomial time and
outputs ⊥ with probability negligibly close to an honest prover.

6 For simplicity of exposition, we assume that randomness is hardwired in Sheavy and do
not mention it explicitly.
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We now show through a series of hybrid experiments the simulator’s output is
computationally indistinguishable from the output of the adversary when inter-
acting with honest provers. Our hybrid experiments will be Hi for i = 0, . . . , 3.
We write Hi ≈ Hj if no V ∗ can distinguish (except with negligible probability)
between its interaction with Hi and Hj .

Hybrid H0. Experiment H0 corresponds to the honest prover. That is, in every
session j ∈ [m], H0 sends c and c′ as commitments to the all zeros string in
the preamble phase. We provide H0 with a witness that x ∈ L which it uses to
complete the both executions of the WIPOK 〈PWI, VWI〉 played in each session.

Hybrid H1. Experiment H1 is similar to H0, except the following. For every
i ∈ [N ], for every session corresponding to verifier Vi, the commitment c in the
preamble phase is prepared as a commitment to πi = hi(Π), where hi is the
hash function in the identity of Vi and Π is the augmented machine code as
described above.

The computational hiding property of Com ensures that H1 ≈ H0.

Hybrid H2. Experiment H2 is similar to H1, except the following. For every
i ∈ [N ], for every session corresponding to verifier Vi, the commitment c′ in the
preamble phase is prepared as a commitment to the string β with randomness
t, where β is the first prover message of a UARG computed by Sheavy, in the
manner as described above.

The computational hiding property of Com ensures that H2 ≈ H1.

Hybrid H3. Experiment H3 is similar to H2, except the following. For every
i ∈ [N ], for every session corresponding to verifier Vi, the WIPOK 〈PWI, VWI〉 in
the proof phase is executed using the trapdoor witness trapeasyi , in the manner
as described above. Note that this is our simulator S.

The witness indistinguishability property of 〈PWI, VWI〉 ensures that H3 ≈ H2.

3.2 Proof of Concurrent Soundness

Consider the interaction between a cheating P ∗ and an honest V . Suppose that
P ∗ fools V into accepting a false proof in some session with non-negligible prob-
ability. We show how to reduce P ∗ to an adversary that breaks the security of
one of the used ingredients. We will first consider P ∗ as a sequential malicious
prover. We will discuss the issues deriving from a concurrent attack later.

First of all, notice that by the proof of knowledge property of the second
WIPOK, we have that with non-negligible probability, an efficient adversary E
can simply run as a honest verifier and extract a witness from that WIPOK of ses-
sion l where the false statement is proved. Since the statement is false, the witness
extracted will therefore be (c, r, σ, β, γ, δ, c′, t, σ′) such that Verifyvk(c‖r;σ) = 1,
c′ = Com(β; t), Verifyvk(c

′‖γ;σ′) = 1, and (h, β, γ, δ) is an accepting transcript
for a UARG pUA proving the statement ∃〈Π, y, s〉 s.t. Rsim(〈h, c, r〉, 〈Π, y, s〉) =
1, and h is the hash function corresponding to the verifier run by E in session l.
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By the security of the signature scheme, it must be the case that signatures
σ and σ′ were generated and sent by E during the experiment (the reduction is
standard and omitted).

Therefore we have that with non-negligible probability there is a session i
where h and γ were played honestly by E, (h, β, γ, δ) is an accepting transcript
for the UARG for Rsim(〈h, c, r〉, 〈Π, y, s〉) = 1, and a commitment to β was given
before γ was sent. Moreover, there is a session j where c and r were played as
commitment and challenge. Remember that the session l is the one where the
false statement is proved.

We can now complete the proof by relying almost verbatim on the same
analysis of [1,2]. Indeed, by rewinding the prover and changing the challenge r
in session j, with another random string, we would have an execution identically
distributed with respect to the previous one. Therefore it will happen with non-
negligible probability that the prover succeeds in session l, still relying on the
information obtained in sessions i and j. The analysis of [1,2] by relying on
the weak proof of knowledge property of the UA, shows that this event can be
reduced to finding a collision that contradicts the collision resistance of h.

We finally discuss the case of a concurrent adversarial prover. Such an at-
tack is played by a prover aiming at obtaining from concurrent sessions some
information to be used in the target session where the false theorem must be
proved. In previous work in the BPK model and in the BP model this was a
major problem because the verifier used to give a proof of knowledge of its se-
cret key, and the malleability of such a proof of knowledge could be exploited
by the malicious prover. Our protocol however bypasses this attack because our
verifier does not give a proof of knowledge of the secret key of the signature
scheme, but only gives signatures of specific messages. Indeed the only point in
which the above proof of soundness needs to be upgraded is the claim that by
the security of the signature scheme, it must be the case that signatures σ and
σ′ where generated and sent by E during the experiment. In case of sequential
attack, this is true because running the extractor of the WIPOK in session l
does not impact on other sessions since they were played in full either before
or after session l. Instead, in case of a concurrent attack, while rewinding the
adversarial prover, new sessions could be started and more signatures could be
needed. As a result, it could happen that in such new sessions the prover would
ask precisely the same signatures that are then extracted from the target session.
We can conclude that this does not impact on the proof for the following two
reasons. First, in the proof of soundness it does not matter if those signatures
appear in the transcript of the attack, or just in the transcript of a rewinded
execution. Second, the reduction on the security of the signature scheme works
for any polynomial number of signatures asked to the oracle, therefore still holds
in case of a concurrent attack. Indeed, the work of E is performed in polynomial
time even when rewinding a concurrent malicious prover, therefore playing in
total (i.e., summing sessions in the view of the prover and sessions played during
rewinds) a polynomial number of sessions, and therefore asking a polynomial
number of signatures only to the signature oracle.
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Further details on the proof of soundness. Given a transcript (h, UA1, UA2, UA3)
for the universal argument of [2], we stress that soundness still works when the
prover sends the statement to the verifier only at the 4th round, opening a com-
mitment played in the second round. The proof of concurrent soundness of our
protocol goes through a reduction to the soundness of the universal argument of
[2] and goes as follows.

Let P ∗
ua be the adversarial prover that we construct against the universal

argument of [2], by making use of the adversary P ∗ of our protocol. Let Vua be
the honest verifier of the universal argument of [2]. P ∗

ua gets “h” from Vua and
plays it in a random session s of the experiment (it could therefore be played in
a rewinding thread) with P ∗. Later on, since by contradiction P ∗ is successful,
UA messages (UA1, UA2, UA3) are extracted and with noticeable probability
they correspond to session s. Therefore P ∗

ua sends UA1 to Vua and gets back
UA2′. Then P ∗

ua rewinds P* to the precise point where UA2 was played. Now
P ∗
ua plays UA2′. Again, later on, since by contradiction P ∗ is successful, P ∗

ua will
again extract from P ∗ and with noticeable probability (still because the number
of sessions played in the experiment is polynomial), it will get an accepting
transcript (UA1, UA2′, UA3∗) for the same statement (this is guaranteed by the
security of the signature scheme and the binding of the commitment). Then P ∗

ua

can send UA3∗ to Vua therefore proving a false statement.
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Succinct Non-Interactive Zero Knowledge

Arguments from Span Programs and Linear
Error-Correcting Codes

Helger Lipmaa

Institute of Computer Science, University of Tartu, Estonia

Abstract. Gennaro, Gentry, Parno and Raykova proposed an efficient
NIZK argument for Circuit-SAT, based on non-standard tools like con-
scientious and quadratic span programs. We propose a new linear PCP
for the Circuit-SAT, based on a combination of standard span pro-
grams (that verify the correctness of every individual gate) and high-
distance linear error-correcting codes (that check the consistency of wire
assignments). This allows us to simplify all steps of the argument, which
results in significantly improved efficiency. We then construct an NIZK
Circuit-SAT argument based on existing techniques.

Keywords: Circuit-SAT, linear error-correcting codes, linear PCP, non-
interactive zero knowledge, polynomial algebra, quadratic span program,
span program, verifiable computation.

1 Introduction

By using non-interactive zero knowledge (NIZK, [3]), the prover can create a
proof π, s.t. any verifier can later, given access to a common reference string,
the statement, and π, verify the truth of the intended statement without learning
any side information. Since a single proof might get transferred and verified many
times, one often requires sublinear communication and verifier’s computation.
(Unless stated explicitly, we measure the communication in group elements, and
the computation in group operations.) While succinct NIZK proofs are impor-
tant in many cryptographic applications, there are only a few different generic
methodologies to construct them efficiently.

Groth [16] proposed the first sublinear-communication NIZK argument
(computationally-sound proof, [4]) for an NP-complete language. His construc-
tion was improved by Lipmaa [19]. Their Circuit-SAT argument consists of
efficient arguments for more primitive tasks like Hadamard sum, Hadamard
product and permutation. The Circuit-SAT arguments of [16,19] have con-
stant communication, quadratic prover’s computation, and linear verifier’s com-
putation in s (the circuit size). In [16], the CRS length is Θ(s2), and in [19], it is

Θ(r−1
3 (s)) = o(s22

√
2 log2 s), where r3(N) = Ω(N log1/4 N/22

√
2 log2 N ) [9] is the

cardinality of the largest progression-free subset of [N ]. Because of the quadratic
prover’s computation, the arguments of Groth and Lipmaa are not applicable in

K. Sako and P. Sarkar (Eds.) ASIACRYPT 2013 Part I, LNCS 8269, pp. 41–60, 2013.
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practice, unless s is really small. Very recently, Fauzi, Lipmaa and Zhang [10] con-
structed arguments for NP-complete languages Set Partition, Subset Sum and
Decision Knapsack with the CRS length Θ(r−1

3 (s)) and prover’s computation
Θ(r−1

3 (s) log s). They did not propose a similar argument for the Circuit-SAT.
Gennaro, Gentry, Parno and Raykova [15] constructed a Circuit-SAT NIZK

argument based on efficient (quadratic) span programs. Their argument con-
sists of two steps. The first step is an information-theoretic reduction from the
Circuit-SAT to QSP-SAT [2], the satisfaction problem of quadratic span pro-
grams (QSPs, [15]). The second step consists of cryptographic tools that allow
one to succinctly verify the satisfiability of a QSP.

Intuitively, a span program consists of vectors ui for i > 0, a target vector u0,
and a labelling of every vector ui by a literal xι = x1

ι or x̄ι = x0
ι or by ⊥. A span

program accepts an input w iff u0 belongs to the span of the vectors ui that
are labelled by literals xwι

ι (or by ⊥) that are consistent with the assignment
w = (wι) to the input x = (xι). I.e., u0 =

∑
i>0 aiui, where ai �= 0 if the

labelling of ui is not consistent with w. (See Sect. 3 for more background.)
Briefly, the first step constructs span programs (which satisfy a non-standard

conscientiousness property) that verify the correct evaluation of every individual
gate. Conscientiousness means that the span program accepts only if all inputs
to the span program were actually used (in the case of Circuit-SAT, this means
that the prover has set some value to every input and output wire of the gate,
and that exactly the same value can be uniquely extracted from the argument).
The gate checkers are aggregated to obtain a single large conscientious span
program that verifies the operation of every individual gate in parallel. They then
construct a weak wire checker that verifies consistency, i.e., that all individual
gate checkers work on an unequivocally defined set of wire values. The weak wire
checker of [15] guarantees consistency only if all gate checkers are conscientious.
They define quadratic span programs (QSPs, see [15]) and construct a QSP that
implements both the aggregate gate checker and the weak wire checker.

In the second step, Gennaro et al. construct a non-adaptively sound NIZK
argument that verifies the QSP, with a linear CRS length, Θ(s log2 s) prover’s
computation, and linear-in-input size verifier’s computation. It can be made
adaptively sound by using universal circuits [25], see [15] for more information.

The construction of [15] is quite monolithic and while containing many new
ideas, they are not sufficiently clarified in [15]. Bitansky et al [2] simplified the
second step of the construction from [15], by first constructing a linear PCP [2],
then a linear interactive proof, and finally a NIZK argument for Circuit-SAT.
Their more modular approach makes the ideas behind the second step more
accessible. Unfortunately, [2] is slightly less efficient than [15], and uses a (pre-
sumably) stronger security assumption.

We improve the construction of [15] in several aspects. Some improvements are
conceptual (e.g., we provide cleaner definitions, that allow us to offer more ef-
ficient constructions) and some of the improvements are technical (with special
emphasis on concrete efficiency). More precisely, we modularize — thus making
its ideas more clear and accessible — the first step of [15] to construct a succinct
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non-adaptive 3-query linear PCP [2] for Circuit-SAT. Then we use the tech-
niques of [2], together with several new techniques, to modularize the second step
of [15]. Importantly and contrarily to [2], by doing so we both improve on the effi-
ciency of both steps and relax the security assumptions. We outline our construc-
tion below, and sketch the differences compared to [15].

The main body of the current work consists of a cleaner and more efficient
reduction from Circuit-SAT to QSP-SAT (another NP-complete language,
defined later). Given a circuit C, we construct an efficient circuit checker, a QSP
that is satisfiable iff C is satisfiable.

To verify whether circuit C accepts an input, we use a small standard (i.e.,
not necessarily conscientious) span program to verify an individual gate. For
example, a NAND checker is a span program that accepts if the gate implements
NAND correctly. We construct efficient span programs for gate checkers, needed
for the Circuit-SAT argument. E.g., we construct a size 6 and dimension 3
NAND checker; this can be compared to size 12 and dimension 9 conscientious
NAND checker from [15]. By using the AND composition of span programs, we
construct a single large span program that verifies every gate in parallel.

Unfortunately, simple AND composition of the gate checkers is not secure,
because it allows “double-assignments”. More precisely, some vectors of several
adjacent gate checkers are labelled by the variable corresponding to the same
wire. While every individual checker might be locally correct, one checker could
work with value 0 while another checker could work with value 1 assigned to the
same wire. Clearly, such bad cases should be detected. More precisely, it must
be possible to verify efficiently that the coefficients ai that were used in the gate
checkers adjacent to some wire are consistent with a unique wire value.

We solve this issue as follows. Let Code be an efficient high-distance linear
[N,K,D] error-correcting code with D > N/2. For any wire η, consider all
vectors from adjacent gate checkers that correspond to the claimed value xη
of this wire. Some of those vectors (say ui) are labelled by the positive literal
xη and some (say vi) by the negative literal x̄η. The individual gate checker’s
acceptance “fixes” certain coefficients ai (that are used with ui) and bi (that are
used with vi) for all adjacent gate checkers. Roughly stating, for consistency of
wire η one requires that either all ai are zero (then unequivocally xη = 0), or
all bi are zero (then unequivocally xη = 1). We verify that this is the case by
applying Code separately to the vectors a and b. The high-distance property of
Code guarantees that if a and b are not consistent, then there exists a coefficient
i, s.t. Code(a)i · Code(b)i �= 0.

Motivated by this construction, we redefine QSPs [15] as follows. Let ◦ denote
the pointwise product of two vectors. A QSP (that consists of two target vectors
u0 = (u0j) ∈ Fd and v0 = (v0j) ∈ Fd and two m × d matrices U = (uij) and
V = (vij) for i ∈ [m] and j ∈ [d]) over some field F accepts an input iff for some
vectors a and b, consistent with this input,

(a� · U − u0) ◦ (b� · V − v0) = 0 . (1)

Clearly, Eq. (1) is equivalent to the requirement that for all j ∈ [d],
(
∑m

i=1 aiuij − u0j) · (
∑m

i=1 bivij − v0j) = 0. Since F is an integral domain, the
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latter holds iff for all j ∈ [d], either
∑m

i=1 aiuij = u0j or
∑m

i=1 bivij = v0j ,
which can be seen as an element-wise OR of two span programs. This can be
compared to the element-wise AND of two span programs that accepts iff for
all j ∈ [d], both

∑m
i=1 aiuij = u0j and

∑m
i=1 bivij = v0j iff two span programs

accept simultaneously, i.e.,
∑

aiui = u0 and
∑

bivi = v0. On the other hand,
it is not known how to implement an element-wise OR composition of two span
programs as a small span program. QSPs add an element-wise OR to an element-
wise AND, and thus it is not surprising that they increase the expressiveness of
span programs significantly.

The above linear error-correcting code based construction implements a QSP
(a wire checker), with U and V being related to the generating matrices of the
code. (See Def. 2.) Basically, the wire checker verifies the consistency of vectors
a and b with the input.

We use the systematic Reed-Solomon code, since it is a maximum distance
separable code with optimal support (i.e., it has the minimal possible number
of non-zero elements in its generating matrix). It also results in the smallest
degree of certain polynomials in the full NIZK argument. While no connection
to error-correcting codes was made in [15], their wire checker can be seen as
a suboptimal (overdefined) variant of the systematic Reed-Solomon code. Due
to the better theoretical foundation, the new wire checker is more efficient, and
optimal in its size and support. Moreover, one can use any efficient high-distance
(D > N/2) linear error-correcting code, e.g., a near-MDS code [7]. Whether this
would result in any improvement in the computational complexity of the final
NIZK argument is an interesting open question.

Moreover, the wire checker of [15] is consistent (and thus their NIZK argument
is sound) only if the gate checkers are conscientious. The new wire checker does
not have this requirement. This not only enables one to use more efficient gate
checkers but also potentially enables one to use known techniques (combinatorial
characterization of span program size [11], semidefinite programming [24]) to
construct more efficient checkers for larger unit computations.

We construct an aggregate wire checker by applying an AND composition
to wire checkers, and then construct a single QSP (the circuit checker) that
implements both the aggregate gate checker and the aggregate wire checker. At
this point, the approach of the current paper pays off also conceptually: one can
compare the description of the circuit checker (called a canonical QSP) in [15,
Sect. 2.4], that takes about 3/4 of a page, with the description from the current
paper (Def. 3) that takes only a couple of lines.

We prove that the circuit checker (the QSP) is satisfiable iff the original circuit
is satisfiable. Since the efficiency of the new circuit checker depends on the fan-
out of the circuit, we use the classical result from [17] about constructing low fan-
out circuits that allows us to optimize the worst case size and other parameters,
especially support, of the circuit checker.

To summarize, the new circuit checker consists of two elements. First, an ag-
gregate gate checker (a span program) that verifies that every individual gate
is executed correctly on their local variables. Second, an aggregate wire checker
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(a QSP, based on a high-distance linear error-correcting code) that verifies that
individual gates are executed on the consistent assignments to the variables. Im-
portantly (for the computational complexity of the NIZK argument), the circuit
checker is a composition of small (quadratic) span programs, and has only a
constant number of non-zero elements per vector.

This finishes the description of the Circuit-SAT to QSP-SAT reduction.
To construct an efficient NIZK argument for Circuit-SAT, we need several ex-
tra steps. Based on the new circuit checker, we first construct a non-adaptive
2-query linear PCP([2], see Sect. 8 for a definition) for Circuit-SAT with linear
communication. This seems to be the first known non-trivial 2-query linear PCP.
Moreover, we use a more elaborate extraction technique which, differently from
the one from [15], also works with non-conscientious gate checkers. This improves
the efficiency of the linear PCP. In particular, the computation of the decision
functionality of the linear PCP is dominated by a small constant number of field
operations. The same functionality required Θ(n) operations in [15,2]. Interest-
ingly, this construction by itself is purely linear-algebraic, by using concepts like
span programs, linear error-correcting codes, and linear PCPs.

To improve the communication of the linear PCP, as in [15], we define poly-
nomial span programs and polynomial QSPs. Differently from [15] (that only
gave the polynomial definition), our main definition of QSPs — as sketched
above — is linear-algebraic, and we then use a transformation to get a QSP to a
“polynomial” form. We feel the linear-algebraic definition is much more natural,
and describes the essence of QSPs better. Based on the polynomial redefinition
of QSPs and the Schwartz-Zippel lemma, we construct a succinct non-adaptive
3-query linear PCP for Circuit-SAT. The prover’s computation in this linear
PCP is Θ(s log s), where s is the size of the circuit, and the verifier’s computation
is again Θ(1). In [15], the corresponding parameters were Θ(s log2 s) and Θ(n).
Thus, the new 3-query linear PCP is more efficient and conceptually simpler
than the previously known 3-query linear PCPs [2].

By using techniques of [2], we convert the linear PCP to a succinct non-
adaptive linear interactive proof, and then to a succinct non-adaptive NIZK
argument. (See the full version, [20].) As in the case of the argument from [15],
the latter can be made adaptive by using universal circuits [25].

Since the reduction from linear PCP to NIZK from [2] loses some efficiency
and relies on a stronger security assumption than stated in [15], we also describe
a direct NIZK argument with a (relatively complex) soundness proof that fol-
lows the outline of the soundness proof from [15]. The main difference in the
proof is that we rephrase certain proof techniques from [15] in the language of
multilinear universal hash functions. This might be an interesting contribution
by itself. Apart from a more clear proof, this results in a slightly weaker security
assumption. (See the full version [20] of this paper.)

The new non-adaptiveCircuit-SAT argument has CRS lengthΘ(s), prover’s
computation Θ(s log s), verifier’s computation Θ(1), and communication Θ(1).
In all cases, the efficiency has been improved as compared to the (QSP-based)
argument from [15]. Moreover, all additional optimization techniques applicable



46 H. Lipmaa

to the argument from [15] (e.g., the use of collision-resistant hash functions) are
also applicable to the new argument.

We hope that by using our techniques, one can construct efficient NIZK argu-
ments for other languages, like the techniques of [19] were used in [5] to construct
an efficient range argument, and in [21] to construct an efficient shuffle. QSPs
have more applications than just in the NIZK construction. We only mention
that one can construct a related zap [8], and a related (public or designated-
verifier) succinct non-interactive argument of knowledge (SNARK, see [22,6]) by
using the techniques of [1,14].

It is also natural to apply our techniques to verifiable computation [13]: in-
stead of gates, one can talk about small (but possibly much larger) compu-
tational units, and instead of wires, about the values transferred between the
computational units. Since here one potentially deals with much larger span
programs than in the case of the Circuit-SAT argument, the use of standard
(non-conscientious) span programs is especially beneficial. Since in the case of
verifiable computation, the computed function F (and thus also the circuit C) is
known while generating the CRS, one can use the non-adaptively sound version
of the new argument [23].

Gennaro et al. [15] also proposed a NIZK argument that is based on quadratic
arithmetic programs (QAP-s), a novel computational model for arithmetic cir-
cuits. QAP-based arguments are often significantly more efficient thanQSP-based
arguments, see [15,23]. We can use our techniques to improve on QAP-based argu-
ments, but here the improvements are less significant and thus we have omitted full
discussion. (See the full version.) Briefly, differently from [15], we give an (again,
more clean) linear-algebraic definition of QAP-s. This enables us to present a short
alternative proof of the result from [15] that any arithmetic circuit with n inputs
and s multiplication gates can be computed by a QAP of size n+s and dimension
s. We remark that the QAP-based construction results in a 4-query linear PCP,
while the QSP-based construction from the current paper results in a 3-query
linear PCP.

Due to the lack of space, many proofs are given only in the full version [20].

2 Preliminaries: Circuits and Circuit-SAT

For a fixed circuit C, let s = |C| be its size (the number of gates), se its number
of wires, and n be its input size. Every gate ι computes some unary or binary
function fι : {0, 1}≤2 → {0, 1}. We denote the set of gates of C by [s] and the set
of wires of C by [se]. Assume that the first n wires, η ∈ [n], start from n input
gates ι ∈ [n]. Every wire η ∈ [se] corresponds to a formal variable xη in a natural
way. This variable obtains an assignment wη, η ∈ [se], computed by C from the
input assignment (wi)

n
i=1. Denote w := (wη)

se
η=1. We write C(w) := C((wi)

n
i=1).

For a gate ι of C, let deg+(ι) be its fan-out, and let deg−(ι) be its fan-in. Let
deg(ι) = deg−(ι) + deg+(ι).

Let poly(x) := xO(1). Let R = {(C,w)} be an efficiently computable binary
relation with |w| = poly(|C|) and s := |C| = poly(|w|). Here, C is a statement,
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and w is a witness. Let L = {C : ∃w, (C,w) ∈ R} be the related NP-language.
For fixed s, we have a relation Rs and a language Ls.

The language Circuit-SAT consists of all (strings representing) circuits that
produce a single bit of output and that have a satisfying assignment. That is,
a string representing a circuit C is in Circuit-SAT if there exists w ∈ {0, 1}se
such that C(w) = 1.

As before, we assume that s = |C| is the number of gates, not the bitlength
needed to represent C. Thus, Ls = {C : |C| = s ∧ (∃w ∈ {0, 1}se, C(w) = 1)}
and Rs = {(C,w) : |C| = s ∧w ∈ {0, 1}se ∧ C(w) = 1}.

Let G = (V,E) be the hypergraph of the circuit C. The vertices of G corre-
spond to the gates of C. A hyperedge η connects the input gate of some wire
to (potentially many) output gates of the same wire. In C, an edge η (except
input edges, that have φ adjacent vertices) has φ+ 1 adjacent vertices, where φ
is the fan-out of η’s designated input gate. Every vertex of G can only be the
starting gate of one hyperedge and the final gate of two hyperedges (since we
only consider unary and binary gate operations). Thus, |E(G)| ≤ 2(|V (G)|−n).

3 Preliminaries: Span Programs

Let F = Zq be a finite field of size q � 2, where q is a prime. However, most
of the results can be generalized to arbitrary fields. By default, vectors like u
denote row vectors. For matrix U , let ui be its ith row vector. For an m × d
matrix U over F, let span(U) := {

∑m
i=1 aiui : a ∈ Fm}. Let xι, ι ∈ [n], be formal

variables. Denote the positive literals xι by x1
ι and the negative literals x̄ι by x0

ι .
A span program [18] P = (u0, U, �) over a field F is a linear-algebraic compu-

tation model. It consists of a non-zero target vector u0 ∈ Fd, an m × d matrix
U over F, and a labelling � : [m] → {xι, x̄ι : ι ∈ [n]} ∪ {⊥} of U ’s rows by
one of 2n literals or by ⊥. Let Uw be the submatrix of U consisting of those
rows whose labels are satisfied by the assignment w ∈ {0, 1}n, that is, belong
to {xwι

ι : ι ∈ [n]} ∪ {⊥}. P computes a function f , if for all w ∈ {0, 1}n:
u0 ∈ span(Uw) if and only if f(w) = 1.

Let �−1
w = {i ∈ [m] : �(i) ∈ {xwι

ι : ι ∈ [n]} ∪ {⊥}} be the set of rows
whose labels are satisfied by the assignment w. The size, size(P ), of P is m. The
dimension, sdim(P ), is equal to d. P has support supp(P ), if all vectors u ∈ U
have altogether supp(P ) non-zero elements. Clearly, u0 can be replaced by an
arbitrary non-zero vector; one obtains the corresponding new span program (of
the same size and dimension, but possibly different support) by applying a basis
change matrix. Let D(xι) := maxj∈{0,1} |�−1(xjι )|, for each ι ∈ [n] and j ∈ {0, 1},
be the maximum number of vectors that have the same label (ι, j); this parameter
is needed when we construct wire checkers.

Complex span programs are constructed by using simple span programs and
their composition rules. The Boolean function NAND ∧̄ is defined as ∧̄(x, y) =
x∧̄y = ¬(x ∧ y). Span programs for AND, NAND, OR, XOR, and equality
of two variables x and y are as in Fig. 1. Given span programs P0 = SP (f0)
an P1 = SP (f1) for functions f0 and f1, one uses well-known AND and OR
compositions to construct span programs for f0 ∧ f1 and f0 ∨ f1.
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⎛
⎝ 1 1

x 1 0
y 0 1

⎞
⎠

⎛
⎝ 1

x̄ 1
ȳ 1

⎞
⎠

⎛
⎝ 1

x 1
y 1

⎞
⎠

⎛
⎜⎜⎜⎜⎝

0 1

x 1 1
y 1 1
x̄ −1 0
ȳ −1 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0 1

x 1 1
y −1 0
x̄ −1 0
ȳ 1 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1

x 1 0 0
y 0 1 0
z 1 1 0
x̄ 0 0 1
ȳ 0 0 1
z̄ 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1

x 0 1 0
y1 0 0 1
y2 1 0 0
x̄ 1 0 0
ȳ1 0 1 0
ȳ2 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1. From left to right: standard span programs SP (∧), SP (∧̄), SP (∨), SP (⊕),
SP (=) and new span programs SP (c∧̄) and SP (cY)

A span program (u0, U, �) is conscientious [15] if a linear combination associ-
ated to a satisfying assignment must use at least one vector associated to either
xι or x̄ι for every ι ∈ [n]. Clearly, SP (∧), SP (⊕) and SP (=) are conscientious,
while SP (∨) is not.

4 Efficient Gate Checkers

A gate checker for a gate that implements f : {0, 1}n → {0, 1} is a function
cf : {0, 1}n+1 → {0, 1}, s.t. cf (x, y) = 1 iff f(x) = y. The NAND-checker
c∧̄ : {0, 1}3 → {0, 1} outputs 1 iff z = x∧̄y.

Lemma 1. SP (c∧̄) on Fig. 1 is a span program for c∧̄. It has size 6, dimension
3, and support 7.

As seen from the proof , given an accepting assignment (x, y, z), one can
efficiently find small values ai ∈ [−2, 1] such that

∑
i≥1 aiui = u0. How-

ever, a satisfying input to SP (c∧̄) does not fix the values ai unequivocally: if
(x, y, z) = (0, 0, 1) (that is, a1 = a2 = a6 = 0), then one can choose an arbitrary
a4 and set a5 ← 1− a4. Since one can set a4 = 0, SP (c∧̄) is not conscientious.

Given SP (c∧̄), one can construct a size 6 and dimension 3 span program for
the AND-checker c∧(x, y, z) := (x ∧ y)⊕ z̄ by interchanging in SP (c∧̄) the rows
labelled by z and z̄. Similarly, one can construct a size 6 and dimension 3 span
program for the OR-checker c∨(x, y, z) := (x̄∧ ȳ)⊕z by interchanging in SP (c∧̄)
the rows labelled by x and x̄, and the rows labelled by y and ȳ. NOT-checker
[x �= y] = x ⊕ y is just the XOR function, and thus one can construct a size 4
and dimension 2 span program for the NOT-checker function.

We need the dummy gates y ← x, and corresponding dummy checkers
c=(x, y) = [x = y]. Clearly, the dummy checker function is just to the equal-
ity test, and thus has a conscientious span program of size 4 and dimension 2.
Moreover, if x = y ∈ {0, 1}, then a1 = a2 = x, while a3 = a4 = 1− x.

We need the fork-checker cY(x, y1, y2) for the fork gate that computes y1 ← x,
y2 ← x. In the CNF form, cY(x, y1, y2) = (x̄∨y2)∧(x∨ ȳ1)∧(y1∨ ȳ2). Since every
literal is mentioned once in the CNF, we can use AND and OR compositions to
derive the span program on Fig. 1. It has size 6, dimension 3, and support 6.
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We also need a 1-to-φ fork-checker that has 1 input x and φ outputs yι, with
yι ← x. The φ-fork checker is cφY(x,y) = (x ∧ y1 ∧ · · · ∧ yφ) ∨ (x̄ ∧ ȳ1 ∧ · · · ∧ ȳφ).

Clearly, cφY has CNF cφY(x,y) = (x∨ ȳ1)∧ (y1 ∨ ȳ2)∧ · · · ∧ (yφ−1 ∨ ȳφ)∧ (yφ ∨ x̄).
From this we construct a span program exactly as in the case φ = 2, with size
2(φ + 1) and dimension φ + 1. It has only one vector labelled with every xι/y
or its negation, thus D(x) = D(yι) = 1 for all ι. To compute the support, note

that SP ∗(cφY) has two 1-entries in every column, and one in every row. Thus,

supp(SP (cφY)) =
∑φ+1

i=1 2 = 2φ+ 2.

5 Aggregate Gate Checker

Given a circuit that consists of NAND, AND, OR, XOR, and NOT gates, we
combine the individual gate checkers by using the AND composition rule. In
addition, for the wire checker of Sect. 6.2 (and thus also the final NIZK argument)
to be more efficient, all gates of the circuit C need to have a small fan-out. In [15],
the authors designed a circuit of size 3 · |C| that implements the functionality
of C but only has fan-out 2 except for a specially introduced dummy input.
Their aggregate gate checker (AGC) has size 36 · |C| and dimension 27 · |C|.
By using the techniques of [17] (that replaces every high fan-out gate with an
inverse binary tree of fork gates, and then gives a more precise upper bound of
the resulting circuit size), we prove a more precise result. We do not introduce
the dummy input but we still add a dummy gate for every input. We then say
that we deal with a circuit with dummy gates.

Since we are interested in circuit satisfiability, the X-checker (where say X =
NAND) of the circuit’s output gate simplifies to the X gate (e.g., NAND checker
simplifies to NAND). Since X has a more efficient span program than X checker,
then for the sake of simplicity, we will not mention this any more.

Let C be a circuit. The AGC function agc of a circuit C is a function agc :

{0, 1}
∑|C|

ι=1 deg(ι) → {0, 1}|C|. I If cι is the gate checker of the ιth gate and xι has
dimension deg(ι), then agc(x1, . . . ,x|C|) = (c1(x1), . . . , c|C|(x|C|)).

As in [15], we construct the AGC by AND-composition of the gate checkers of
the individual gate checkers. Since for an individual gate checker and a satisfying
assignment, one can compute the corresponding coefficient vector a in constant
time, the aggregate coefficient vector a can be computed from w in time Θ(s).
Let a← c2q(w) be the corresponding algorithm.

Theorem 1. Let f : {0, 1}n → {0, 1} be the function computed by a fan-in ≤ 2
circuit C with s = |C| NAND, AND, OR, XOR, and NOT gates. There exists
a fan-in ≤ 2 and fan-out ≤ φ circuit with dummy gates Cbnd for f , that has
the same s gates as C, n additional dummy gates, and up to (s − 2n)/(φ − 1)
additional φ-fork gates. Let φ∗ := 1/(φ − 1). The AGC agc(Cbnd) has a span
program P with size(P ) ≤ (8 + 4φ∗) s − (6 + 8φ∗)n, sdim(P ) ≤ (4 + 2φ∗) s −
(3 + 4φ∗)n, and supp(P ) ≤ (9 + 4φ∗) s − (5 + 8φ∗)n. If φ = 3, then size(P ) ≤
10s− 10n, sdim(P ) ≤ 5s− 5n, and supp(P ) ≤ 11s− 9n.
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The upper bounds of this theorem are worst-case, and often imprecise. The
optimal choice of φ depends on the parameter that we are going to optimize.
The AGC has optimal size, dimension and support if φ is large (preferably even
if the fan-out bounding procedure of Thm. 1 is not applied at all). The support
of the aggregate wire checker (see Sect. 6.3) is minimized if φ = 2. To balance
the parameters, we concentrate on the case φ = 3.

6 Quadratic Span Programs and Wire Checker

6.1 Quadratic Span Programs

An intuitive definition of quadratic span programs (QSPs) was given in the in-
troduction and will not be repeated here. We now give a formal (linear-algebraic)
definition of QSPs. In Sect. 9, we will provide an equivalent polynomial redefi-
nition of QSPs that is the same as the definition given in [15].

Definition 1. A quadratic span program (QSP) Q = (u0,v0, U, V, �) over a
field F consists of two target vectors u0,v0 ∈ Fd, two m× d matrices U and V ,
and a common labelling � : [m]→ {xι, x̄ι : ι ∈ [n]}∪{⊥} of the rows of U and V .
Q accepts an input w ∈ {0, 1}n iff there exist (a, b) ∈ Fm×Fm, with ai = 0 = bi
for all i �∈ �−1

w , such that (a� · V −u0) ◦ (b� ·W − v0) = 0, where x ◦ y denotes
the pointwise (Hadamard) product of x and y. Q computes a function f if for
all w ∈ {0, 1}n: f(w) = 1 iff Q accepts w.

We remark that one can have u0 = v0 = 0. (See Def. 2, for example.)
The size, size(Q), of Q is m. The dimension, sdim(Q), of Q is d. The support,

supp(Q), of Q is equal to the sum of the supports (that is, the number of non-
zero elements) of all vectors ui and vi. Clearly, one can compose QSPs by using
the AND and OR composition rules of span programs, though one has to take
care to apply the same transformation to both U and V simultaneously.

The language QSP-SAT consists of all (strings representing) QSPs that pro-
duce a single bit of output and that have a satisfying assignment. I.e., a string
representing an n-input QSP Q is in QSP-SAT if there exists w ∈ {0, 1}n, such
that Q(w) = 1. The witness of this fact is (a, b), and we write Q(a, b) = Q(w).

6.2 Wire Checker

Gate checkers verify that every individual gate is followed correctly, i.e., that its
output wire obtains a value which is consistent with its input wires. One also
requires inter-gate (wire) consistency that ensures that adjacent gate checkers do
not make double assignments to any of the wires. Here, we consider hyperwires
that have one input gate and potentially many output gates. Following [15], for
this purpose we construct a wire checker. We first construct a wire checker for
every single wire (that verifies that the variables involved in the span programs
of the vertices that are adjacent to this concrete wire do not get inconsistent
assignments), and then aggregate them by using an AND composition.
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For a (hyper)wire η, let N(η) be the set of η’s adjacent gates. For gate ι ∈
N(η), let Pι = (u

(ι)
0 , U (ι), �(ι)) be its gate checker. For every ι ∈ N(η), one of the

input or output variables of Pι (that we denote by xι:η) corresponds to xη. Recall
that for a local variable y of a span program Pι, D(y) = max(|�−1(y)|, |�−1(ȳ)|).
We assume |�−1(y)| = |�−1(y)|, by adding zero vectors to the span programs if
necessary. Let D(η) :=

∑
ι∈N(η) D(xι:η) be the number of the times the rows of

adjacent gate checkers have been labelled by a local copy of x1
η.

We define the ηth wire checker between the rows of adjacent gates i ∈ N(η)
in the AGC that are labelled either by the local variable xi:η or its negation x̄i:η,
i.e., between 2D(η) rows {i : ∃k ∈ N(η) s.t. �(k)(i) = xk:η ∨ �(k)(i) = x̄k:η}. Let
ψ be the natural labelling of the wire checkers, with ψ(i) = xjη iff �(k)(i) = xjk:η
for some k ∈ N(η).

Example 1. Consider a (hyper)wire η that has one input gate ι1 and two output
gates ι2 and ι3. Assume that all three gates implement NAND, and thus they
have gate checkers SP (c∧̄) from Fig. 1. Assume that xη = zι1 = xι2 = yι3 . Thus,
the ηth wire checker is defined between the rows 3 and 6 of the checker for ι1,
rows 1 and 4 of the checker for ι2, and rows 2 and 5 of the checker for ι3. Thus,
D(η) = D(zι1) +D(xι2) +D(yι3) = 6. ��
We first define the wire checker for a wire η and thus for one variable xη. In
Sect. 6.3, we will give a definition and a construction in the aggregate case.

For y = (y1, . . . , y2D)
�, let y(1) := (y1, . . . , yD)

� and y(2) :=
(yD+1, . . . , y2D)

�. Fix a wire η. Assume that D = D(η). Let Q =
(u0,v0, U, V, ψ), with m× d matrices U and V , be a QSP. Q is a wire checker,
if for any a, b ∈ F2D, Eq. (1) holds iff a and b are consistent bit assignments in
the following sense: for both k ∈ {1, 2}, either a(k) = 0 or b(k) = 0.

We propose a new wire checker that is based on the properties of high-distance
linear error-correcting codes, see the introduction for some intuition. To obtain
optimal efficiency, we choose particular codes (namely, systematic Reed-Solomon
codes).

Definition 2. Let D∗ := 2D − 1. Let RSD be the D × D∗ generator matrix
of the [D∗, D,D]q systematic Reed-Solomon code. Let m = 2D and d = 2D∗.

Let U = UD =

(
RSD 0D×D∗

0D×D∗ RSD

)
and V = VD =

(
0D×D∗ RSD
RSD 0D×D∗

)
. Let Qwc :=

(0,0, U, V, ψ), where ψ−1(x̄η) = [1, D] and ψ−1(xη) = [D + 1, 2D].

We informally define the degree sdeg(Q) of a (quadratic) span program Q as
the degree of the interpolating polynomial that obtains the value uij at point j.
See Sect. 9 for a formal definition.

Lemma 2. Qwc is a wire checker of size 2D, degree D+D∗ = 3D−1, dimension
2D∗ = 4D − 2, and support 4D2.

Proof. The claim about the parameters follows straightforwardly from the prop-
erties of the code. It is easy to see that if a and b are consistent bit as-
signments, then Qwc accepts. For example, if a(1) = b(2) = 0, then clearly
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(a� · U)j =
∑m

i=1 aiuij = 0 for j ∈ [1, D∗] and (b� · V )j =
∑m

i=1 bivij = 0 for
j ∈ [D∗ + 1, 2D∗]. Thus, (a� · U)j · (b� · V )j = 0 for j ∈ [1, 2D∗], and thus
(a� · U − 0) ◦ (b� · V − 0) = 0.

Now, assume that a and b are inconsistent bit assignments, i.e., a(k) �= 0 and
b(k) �= 0 for k ∈ {1, 2}. W.l.o.g., let k = 1. Since RSD is the generator ma-
trix of the systematic Reed-Solomon code, the vectors a� · RSD and b� · RSD
have at least D > D∗/2 non-zero coefficients among its first D∗ coefficients.
Thus, both

∑m
i=1 aiuij and

∑m
i=1 bivij are non-zero for more than D∗/2 dif-

ferent values j ∈ [D∗]. Hence, there exists a coefficient j ∈ [D∗], such that
(
∑m

i=1 aiuij)(
∑m

i=1 bivij) �= 0. Thus, Qwc does not accept. ��
We chose a Reed-Solomon code since it is a maximum distance separable (MDS)
code and thus minimizes the number of columns in RSD. It also naturally mini-
mizes the degree of the wire checker. Moreover, RSD has D2 non-zero elements.
Clearly (and this is the reason we use a systematic code), D2 is also the smallest
support a generator matrix G of an [n = 2D − 1, k = D, d = D]q code can
have, since every row of G is a codeword and thus must have at least d non-zero
entries. Thus, G must have at least dD ≥ D2 non-zero entries, where the last
inequality is due to the singleton bound.

The (weak) wire checker of [15], while described by using a completely different
terminology, can be seen as implementing an overdefined version (with D∗ =
3D− 2) of the construction from Def. 2. The linear-algebraic reinterpretation of
QSPs together with the introducing of coding-theoretic terminology allowed us
to better exposit the essence of wire checkers. It also allowed us to improve on
the efficiency, and prove the optimality of the new construction.

A wire checker with U = V = RSD satisfies the even stronger security re-
quirement that Eq. (1) holds iff either a = 0 or b = 0. One may hope to pair
up literals corresponding to xη in the U part and literals corresponding to x̄η in
the V part. This is impossible in our application: when we aggregate the wire
checkers, we must use vectors labelled with both negative and positive literals in
the same part, U or V , and we cannot pair up columns from U and V that have
different indices. (See Def. 3.) The construction of Def. 2 allows one to do it,
though one has to use V that is a dual of U according to the following definition.

For a labelling ψ, we define the dual labelling ψdual, such that ψdual(i) = xjη iff

ψ(i) = x1−j
η . Let V = Udual be the same matrix as U , except that it has rows from

ψ−1(x̄η) and ψ−1(xη) switched, for every η. To simplify the notation, we will not
mention the dual labelling ψdual unless absolutely necessary, and we will assume
implicitly that (as it was in Def. 2) always V = Udual. Now, [15] constructed a
weak wire checker that guarantees consistency if all individual gate checkers are
conscientious. The new wire checker is both more efficient and more secure.

6.3 Aggregate Wire Checker

Let Q = (0,0, U, V, ψ), with two m×d matrices U and V = Udual, be a QSP. Q is
an aggregate wire checker (AWC) for circuit C, if Eq. (1) holds iff a, b ∈ Fm are
consistent bit assignments in the following sense: for each η ∈ [se] and k ∈ {0, 1},
either ai = 0 for all i ∈ ψ−1(xkη) or bi = 0 for all i ∈ ψ−1(xkη).



Succinct NIZK Arguments from Span Programs and Linear ECCs 53

We construct the AWC by AND-composing wire checkers for the individual
wires. The AWC first resets all vectors ui and vi to 0, and precomputes RSDη

for all relevant values Dη ≤ 2(φ + 1). After that, for every wire η, it sets the
entries in rows, labelled by either xη or x̄η, and columns corresponding to wire
η, according to the ηth wire checker.

We recall from Sect. 6.2 that for the wire checker of some wire to work, the
vectors in U and V of this wire checker must have dual orderings. To keep
notation simple, we will not mention this in what follows.

Theorem 2. Let φ ≥ 2. Assume that Cbnd is the circuit, obtained by the
transformation described in Thm. 1 (including the added dummy gates). For
η ∈ E(Cbnd), denote D∗

η = 2Dη − 1. Let d ←
∑

D∗
η. We obtain the AWC Qawc

by merging wire checkers for the individual wires η ∈ E(Cbnd) as described above.

Proof. Let m be the size of the AWC (see Thm. 3). If a, b are consistent assign-
ments, then their restrictions to ψ−1(x̄η) ∪ ψ−1(xη) are consistent assignments
of the ηth wire. For every η ∈ E(Cbnd), the ηth wire checker guarantees that
(
∑m

i=1 aiuij)(
∑m

i=1 bivij) = 0, for columns j corresponding to this wire, iff the bit
assignments of the ηth wire are consistent. Thus, (

∑m
i=1 aiuij)(

∑m
i=1 bivij) = 0

for j ∈ [1, d] iff the bit assignments of all wires are consistent. ��
Theorem 3. Let φ∗ := 1/(φ − 1). Assume C implements f : {0, 1}n → {0, 1},
and s = |C|. Then size(Qawc) ≤ (6 + 4φ∗)s − (2 + 8φ∗)n − 4, sdim(Qawc) ≤
(12 + 8φ∗)s − (6 + 16φ∗)n − 8, sdeg(Qawc) ≤ (9 + 6φ∗)s − (4 + 12φ∗)n − 6,
supp(Qawc) ≤ 4(φ+ 1)2((1 + φ∗)s+ (4− 2φ∗)n− 1). If φ = 3, then size(Qawc) ≤
8s − 6n − 4, sdim(Qawc) ≤ 16s − 14n − 8, sdeg(Qawc) ≤ 12s − 10n − 6, and
supp(Qawc) ≤ 72s− 68n− 36.

Clearly, other parameters but support are minimized when φ is large. If support
is not important, then one can dismiss the bounding fan-out step, and get size
2s, dimension 12s, and degree 9s.

Like in the case of wire checkers, [15] constructed a weak AWC that guaran-
tees the required “no double assignments” property only if the individual gate
checkers are conscientious. The new AWC does not have this restriction. The
size of the weak AWC from [15] is 24s and the degree of it is 76s.

7 Circuit Checker

Next, we combine the aggregate gate and wire checkers into a circuit checker, that
can be seen as a reduction fromCircuit-SAT toQSP-SAT. Circuit checker was
called a canonical quadratic span program in [15]. Since [18] introduced canonical
span programs in a completely different context, we changed the terminology.

Let C be a circuit, and let Pw = (0,0, Uw, V w, ψ) be an AWC for Cbnd.
Let P g = (u0, U

g, �) be an AGC for Cbnd. Let P g
dual = (u0, V

g, �dual) be the
corresponding dual span program. As before, V g = U g

dual and V w = Uw
dual, and

� and ψ are related as in Sect. 6.3. Let mg = size(Pw) = size(P g) = size(P g
dual).

Assume that Uw = {uw
1 , . . . ,u

w
mg
} and U g = {ug

1, . . . ,u
g
mg
} (and similarly,

V w = {vw
1 , . . . ,v

w
mg
} and V g) are ordered consistently (see Sect. 6.3).
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Definition 3. For mg = size(P g), dg = sdim(P g) and dw = sdim(Pw), define
the circuit checker to be the QSP cΛ(C) = (u0,v0, U, V, �), where⎛⎜⎜⎝

u0

U
v0

V

⎞⎟⎟⎠ =

⎛⎜⎜⎝
u0 1dg 0dw

U g 0mg×dg Uw

1dg u0 0dw

0mg×dg V g V w

⎞⎟⎟⎠ . (2)

Here, U = (u1, . . . ,um)�, V = Udual = (v1, . . . ,vm)�.

Recall that we denoted by c2q that computed the witness a of the AGC from
w. We also denote (a, b)← c2q(w), given that b is the dual of a.

Theorem 4. Let w ∈ {0, 1}se. C(w) = 1 iff cΛ(C)(c2q(w)) = 1.

Proof. Clearly, cΛ(C)(a, b) = 1 iff P g, P g
dual and Pw all accept with the same

witness (a, b): (i) (
∑m

i=1 aiu
g
ij − u0j)(0− 1) = 0 for j ∈ [dg] iff

∑m
i=1 aiu

g
ij = u0j

for j ∈ [dg] iff
∑m

i=1 aiu
g
i = u0, (ii) (0 − 1)(

∑m
i=1 biv

g
ij − u0j) = 0 for j ∈

[dg] iff
∑m

i=1 biv
g
ij = u0j for j ∈ [dg] iff

∑m
i=1 biv

g
i = u0, (iii) (

∑m
i=1 aiu

w
ij) ·

(
∑m

i=1 biv
w
ij) = 0 for j ∈ [dw].

Assume C(w) = 1. By the construction of P g, there exists a ∈ Fm, with
ai = 0 for i �∈ ψ−1

w , s.t. a� · U g = u0. Let b← a, then also b� · V g = u0. Since
a and b are consistent bit assignments in the evaluation of C(w), Pw accepts.

Second, assume that there exist (a, b), s.t. cΛ(C)(a, b) = 1. Since Pw accepts,
there are no double assignments. That means, that for each η, for some (possibly
non-unique) bit wη ∈ {0, 1} and all i ∈ ψ−1(x

w̄η
η ), ai = 0. Dually, bi = 0 for all

i ∈ ψ−1
dual(x

w̄η
η ) (wη clearly has to be the same in both cases). Since this holds for

every wire, there exists an assignment w of input values, s.t. for all i �∈ ψ−1
w and

j �∈ (ψ−1
dual)w, ai = bj = 0. Moreover, C(w) = 1. ��

We will explain in the full version how the parameters of Q := cΛ(C) influence
the efficiency of the Circuit-SAT NIZK argument. For example, the support of
Q affects the prover’s computation, while its degree d affects the CRS length but
also the prover’s computation and the security assumption. More precisely, the
prover’s computation of the non-adaptive NIZK argument isΘ(supp(Q)+d·log d)
non-cryptographic operations and Θ(d) cryptographic operations. One should
choose φ such that the prover’s computation will be minimal. This value depends
on the constants in Θ. For simplicity, we will consider the case φ = 3.

Theorem 5. Let s = |C| and Q := cΛ(Cbnd). Let φ be the fanout of Cbnd,
and φ∗ = 1/(φ − 1). Then sdeg(Q) ≤ (17 + 10φ∗)s − (6 + 20φ∗)n − 6,
supp(Q) ≤ (50+ 8φ(3 +φ) + 40φ∗)s+2(−13+ 8φ(3 + 2φ)− 40φ∗)n− 8(1+φ)2,
and size(Q) ≤ size(Pw)+ size(P g) ≤ 2(7+4φ∗)s− (8+16φ∗)n−4. If φ = 3, then
sdeg(Q) ≤ 22s−16n−6, size(Q) ≤ 18s−16n−4, and supp(Q) ≤ 214s+366n−128.

The degree of the circuit checker from [15] is 130s and its size is 36s. Thus, even
when φ = 3, we have improved on their construction about 6 times degree-wise
and 2 times size-wise. The QSP-SAT witness (a, b) can be computed in linear
time Θ(s) by using the algorithm c2q.
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8 Two-Query Linear PCP for Circuit-SAT

In Thm. 4, we presented a reduction from Circuit-SAT to QSP-SAT. That
is, we showed that if for some w, C(w) = 1, then one can efficiently construct a
witness (a, b) = c2q(w) such that cΛ(C)(a, b) = 1. In this section, we construct
a two-query non-adaptive linear PCP [2] for Circuit-SAT. In the rest of the
paper, we modify this to succinct three-query non-adaptive linear PCP, to a non-
adaptive linear interactive proof and finally to a non-adaptive non-interactive
zero knowledge argument. Here, non-adaptivity means that the query algorithm
(in the linear PCP and linear interactive proof) or the CRS generation algorithm
(in the NIZK argument) may depend on the statement C.

Let R = {(C,w)} be a binary relation, F be a finite field, Plpcp be a determin-
istic prover algorithm and Vlpcp = (Qlpcp,Dlpcp), where Qlpcp is a probabilistic
query algorithm and Dlpcp is an oracle deterministic decision algorithm. The pair
(Plpcp,Vlpcp) is a non-adaptive k-query linear PCP [2] for R over F with query
length m if it satisfies the following conditions.
Syntax: on any input C and oracle π, the verifier Vlpcp works as follows.
Qlpcp(C) generates k queries q1, . . . , qk ∈ Fm to π, and a state informa-
tion st. Given k oracle answers z1 ← 〈π, q1〉, . . . , zk ← 〈π, qk〉, such that
z = (z1, . . . , zk), Dπ

lpcp(st;w) = Dlpcp(st, z;w) accepts or rejects.
Completeness: for every (C,w) ∈ R, the output of Plpcp(C,w) is a descrip-

tion of a linear function π : Fm → F such that Dπ
lpcp(st;w) accepts with

probability 1.
Knowledge: there exists a knowledge extractor Xlpcp, such that for every linear

function π∗ : Fm → F: if the probability that Vπ∗
lpcp(C) accepts is at least ε,

then Xπ∗
lpcp(C) outputs w such that (C,w) ∈ R.

(Plpcp,Vlpcp) has degree (dQ, dD), if Qlpcp (resp., Dlpcp) can be computed by an
arithmetic circuit of degree dQ (resp., dD).

We remark that in the following non-adaptive linear PCP, Dlpcp does not
depend on w.

Theorem 6. Let F be a field, and let C be a circuit with dummy gates. Let P(2)
lpcp

and V(2)
lpcp = (Q(2)

lpcp,D
(2)
lpcp) be as follows:

Q(2)
lpcp(C): Q ← cΛ(C); m ← size(Q); qu ← (ui,0m)mi=1; qv ← (0m,vi)

m
i=1;

q ← (qu, qv); st← (u0,v0); return (q, st);

P(2)
lpcp(C,w): Q← cΛ(C); (πu,πv) = (a, b)← c2q(w); return π = (πu,πv);

D(2)
lpcp(st, (zu, zv);w): if (zu − u0) ◦ (zv − v0) = 0 then return 1 else return 0;

(P(2)
lpcp,V

(2)
lpcp) is a non-adaptive 2-query linear PCP for Circuit-SAT with query

length 2md and knowledge error 0.

Proof. Completeness: Clearly, zu ← 〈π, qu〉 =
∑m

i=1 aiui, zv ← 〈π, qv〉 =∑m
i=1 bivi. Thus, zu − u0 = a� · U − u0 and zv − v0 = b� · V − v0, and the

circuit checker accepts.

Knowledge property: Due to the construction of Q(2)
lpcp, zu =

∑m
i=1 aiui,

and zv =
∑m

i=1 bivi. If D(2)
lpcp accepts, then by Thm. 4, the wire checker implies
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that no wire η gets a double assignment. However, it may be the case that some
wire has no assignment. Nevertheless, on input (st, C) and access to the oracle
π∗, we will now extract a Circuit-SAT witness w = (wη)

se
i=η (i.e., the vector

of wire values) such that C(w) = 1.
First, the extractor obtains the whole linear function π∗ = (a, b), by querying

the oracle π∗ up to 2m times. We deduce w from π∗ as follows.
Let η be any wire of the circuit C. Since the wire checker accepts, the gate

checkers of its neighbouring gates do not assign multiple values to the wire η.
There are two different cases.

If η is an input wire to the circuit, then its output gate ι is a conscientious
dummy gate. Therefore, the value wη can be extracted from the local values of
ai corresponding to the gate ι.

Assume that η is an internal wire. Since all gates implement functions with
well-defined outputs, the gate checker of the input gate of η assigns some value
wη to this wire. Moreover, every output gate ι of η either assigns the same value
wη or does not assign any value. In the latter case, the output value of ι does not
depend on wη, and thus assigning wη to η is consistent with the output value
of ι. Therefore, also here the value wη can be extracted, but this time from the
local values of ai and bi corresponding to the input gate of η. ��

A simple corollary of this theorem is that the algorithm c2q is efficiently invert-
ible. Thus, the constructed NP-reduction from Circuit-SAT to QSP-SAT

preserves knowledge (i.e., it is a Levin reduction).
Note that the communication and computation can be optimized by defining

qu ← (ui)
m
i=1, qv ← (vi)

m
i=1, and computing say zu ← 〈πu, qu〉.

9 Succinct 3-Query Linear PCP from Polynomial QSPs

Since we are interested in succinct arguments, we need to be able to compress the
witness vectors a and b. As in [15], we will do it by using polynomial interpolation
to define polynomial QSPs. We employ the Schwartz-Zippel lemma to show that
the resulting succinct 3-query linear PCP has the knowledge property.

9.1 Polynomial Span Programs and QSPs

Instead of considering the target and row vectors of a span program or a QSP as
being members of the vector space Fd, interpret them as degree-(d− 1) polyno-
mials in F[X ]. The map u→ û(X) is implemented by choosing d different field
elements (that are the same for all vectors u) rj ← F, and then defining a degree-
(≤ d− 1) polynomial û(X) via polynomial interpolation, so that û(rj) = uj for
all j ∈ [d]. This maps the vectors ui of the original span program P to poly-
nomials ûi(X), and the target vector u0 to the polynomial û0(X). Finally, let

Z(X) :=
∏d

j=1(X − rj); this polynomial can be thought of as a mapping of the
all-zero vector 0 = (0, . . . , 0).

The choice of rj influences efficiency. If rj are arbitrary, then multipoint eval-
uation and polynomial interpolation take time O(d log2 d) [12]. If d is a power of
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2 and rj = ωj
d, where ωd is the dth primitive root of unity, then both operations

can be done in time O(d log d) by using Fast Fourier Transform [12]. In what
follows, d and rj are chosen as in the current paragraph.

Clearly, u0 is in the span of the vectors that belong to �−1
w iff u0 =∑

i∈
−1
w

aiui for some ai ∈ F. The latter is equivalent to the requirement
that Z(X) divides û(X) :=

∑
i∈
−1

w
aiûi(X) − û0(X). Really, u0 is the vec-

tor of evaluations of û0(X), and ui is the vector of evaluations of ûi(X). Thus,∑
aiui − u0 = 0 iff

∑
aiûi(X) − û0(X) evaluates to 0 at all rj , and hence is

divisible by Z(X).
A polynomial span program P = (û0, U, �) over a field F consists of a target

polynomial û0(X) ∈ F[X ], a tuple U = (ûi(X))mi=1 of polynomials from F[X ],
and a labelling � : [m]→ {xι, x̄ι : ι ∈ [n]} ∪ {⊥} of the polynomials from U . Let
Uw be the subset of U consisting of those polynomials whose labels are satisfied
by the assignment w ∈ {0, 1}n, that is, by {xwι

ι : ι ∈ [n]} ∪ {⊥}. The span
program P computes a function f , if for all w ∈ {0, 1}n: there exists a ∈ Fm

such that Z(X) | (û0(X) +
∑

u∈Uw
aiû(X)) (P accepts) iff f(w) = 1.

Alternatively, P accepts w ∈ {0, 1}n iff there exists a vector a ∈ Fm, with
ai = 0 for all i �∈ �−1

w , s.t. Z(X) |
∑m

i=1 aiûi(X)− û0(X). The size of P is m and
the degree of P is degZ(X).

Definition 4. A polynomial QSP Q = (û0, v̂0, U, V, �) over a field F con-
sists of target polynomials û0(X) ∈ F[X ] and v̂0(X) ∈ F[X ], two tuples
U = (ûi(X))mi=1 and V = (v̂i(X))mi=1 of polynomials from F[X ], and a la-
belling � : [m] → {xι, x̄ι : ι ∈ [n]} ∪ {⊥}. Q accepts an input w ∈ {0, 1}n
iff there exist two vectors a and b from Fm, with ai = 0 = bi for all i �∈ �−1

w ,
s.t. Z(X) | (

∑m
i=1 aiûi(X)− û0(X)) (

∑m
i=1 biv̂i(X)− v̂0(X)). Q computes a

Boolean function f : {0, 1}n → {0, 1} if Q accepts w iff f(w) = 1.

The size of Q is m and the degree of Q is degZ(X). Keeping in mind the
reinterpretation of span programs, Def. 4 is clearly equivalent to Def. 1. (Also
here, V = Udual, with the dual operation defined appropriately.)

To get from the linear-algebraic interpretation to polynomial interpretation,
one has to do the following. Assume that the dimension of the QSP is d and that
the size is m. Let rj ← ωj

d, j ∈ [d]. For i ∈ [m], interpolate the polynomial ûi(X)
(resp., v̂i(X)) from the values ûi(rj) = uij (resp., v̂i(rj) = vij) for j ∈ [d]. Set

Z(X) :=
∏d

j=1(X − rj). The labelling ψ is left unchanged. It is clear that the
resulting polynomial QSP (û0, v̂0, U, V, ψ) computes the same Boolean function
as the original QSP.

The polynomial circuit checker cpolyΛ (C) = (û0, v̂0, U, V, ψ), with U =
(û0, . . . , ûm) and V = (v̂0, . . . , v̂m), is the polynomial version of cΛ(C).

Theorem 7. Let w ∈ {0, 1}n. C(w) = 1 iff cpolyΛ (C)(c2q(w)) = 1.

Proof. Follows from Thm. 4 and the construction of polynomial QSPs. ��
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9.2 Succinct Three-Query Linear PCP

To achieve better efficiency, following [2], we define a 3-query linear PCP with
|z| = Θ(1) that is based on the polynomial QSPs. For a set P of polynomials, let
span(P) be their span (i.e., the set of F-linear combinations). Then, u is in the
span of vectors ui, u =

∑m
i=1 aiui, iff the corresponding interpolated polynomial

û(X) is in the span of polynomials ûi(X), i.e., û(X) =
∑m

i=1 aiûi(X).
Let F be any field. We recall that according to the Schwartz-Zippel lemma,

for any nonzero polynomial f : Fm → F of total degree d and any finite subset
S of F, Prx←Sm [f(x) = 0] ≤ d/|S|.

Theorem 8. Let F be a field, and C a circuit with dummy gates. Let P(3)
lpcp and

V(3)
lpcp = (Q(3)

lpcp,D
(3)
lpcp) be as follows. Here, PolyInt is polynomial interpolation.

Q(3)
lpcp(C): Q← cΛ(C); m← size(Q); d← sdeg(Q); For i← 1 to d do: ri ← ωi

d;

σ ←r F; Compute (σi)d−1
i=0 ; Z(σ) ←

∏d
j=1(σ − rj); Compute (ûi(σ))

m
i=0,

(v̂i(σ))
m
i=0; st ← (Z(σ), û0(σ), v̂0(σ)); qu ← (((ûi(σ))

m
i=1,0m,0d); qv ←

(0m, (v̂i(σ))
m
i=1,0d) qh ← (0m,0m, (σi)d−1

i=0 ); q ← (qu, qv, qh); return
(q, st);

P(3)
lpcp(C,w): Compute (Q,m, (ri)

d
i=1) as in Q(3)

lpcp(C); (a, b) ← c2q(w); u† ←
u0 +

∑m
i=1 aiui; û†(X) ← PolyInt((ri, u

†
i )
d
i=1); v† ← v0 +

∑m
i=1 aivi;

v̂†(X)← PolyInt((ri, v
†
i )

d
i=1); Z(X)←

∏d
i=1(X− ri); ĥ(X) =

∑d−1
i=0 hiX

i ←
û†(X)v̂†(X)/Z(X) ∈ Fd−2; return π = (πu,πv,πh)← (a, b, ĥ) ∈ F2m+d;

D(3)
lpcp(st, (zu, zv, zh);w): if (zu − û0(σ)) · (zv − v̂0(σ)) = Z(σ) · zh then return 1
else return 0;

(P(3)
lpcp,V

(3)
lpcp) is a non-adaptive 3-query linear PCP over F for Circuit-SAT with

query length 2m+ d and knowledge error 2d/|F|.
Proof. Completeness: again straightforward, since zu = ûw(σ) ← 〈π, qu〉 =∑m

i=1 aiûi(σ), zv = v̂(σ)← 〈π, qv〉 =
∑m

i=1 biv̂i(σ), and zh = ĥ(σ)← 〈π, qh〉 =∑d−1
i=0 ĥiσ

i. Knowledge: assume that the verifier accepts with probability
ε ≥ 2d/|F|. That is, Prσ←F[(

∑m
i=1 aiûi(σ) − û0(σ))(

∑m
i=1 aiv̂i(σ) − v̂0(σ)) =

Z(σ) · (
∑d−1

i=0 hiσ
i)] = ε. Due to the Schwartz-Zippel lemma, since ε ≥ 2d/|F|,

(
∑m

i=1 aiûi(X)− û0(X))(
∑m

i=1 aiv̂i(X)− v̂0(X)) = Z(X) ·(
∑d−1

i=0 hiX
i), and due

to the equivalence between QSPs and polynomial QSPs, Eq. (1) holds. The claim
now follows from Thm. 6. ��
Theorem 9. Assume d is a power of 2. P(3)

lpcp runs in time Θ(d log d), Q(3)
lpcp runs

in time Θ(d log d), and the time of D(3)
lpcp is dominated by 2 F-additions and by 2

F-multiplications. V(3)
lpcp has degree (d, 2).

A similar result was proven in [15] (though without using the terminology of
linear PCPs) in the case of conscientious gate checkers. We only require the
dummy gates to be conscientious.

In [15], it was only shown that ĥ(X) can be computed by using multipoint
evaluation and polynomial interpolation in time Θ(d log2 d). Moreover, the com-
putation of D was Θ(n) due to a different extraction technique.



Succinct NIZK Arguments from Span Programs and Linear ECCs 59

10 From Non-Adaptive Linear PCP to Adaptive NIZK

Given the 3-query linear PCP of Thm. 8, one can use the transformation [2] to
construct first a non-adaptive NIZK argument for Circuit-SAT. See the full
version. The The non-adaptive NIZK argument can be made adaptive by using
universal circuits [25], see [15] for details.

We will provide more details in the full version [20]. There, we will also provide
a direct construction of the non-adaptive NIZK argument. The latter has a (quite
complex) soundness proof related to the soundness proof from [15] that results
in the use of a weaker security assumption. Here, we state only the following
straightforward corollary of Thm. 9 and the transformations from [2].

Theorem 10. Assume d is a power of 2. There exists a non-adaptive NIZK
Circuit-SAT argument, s.t. the prover and the CRS generation take Θ(d log d)
cryptographic operations, the verification time is dominated by Θ(1) pairings,
and the communication is a Θ(1) group elements.
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Abstract. We construct new families of elliptic curves over Fp2 with
efficiently computable endomorphisms, which can be used to accelerate
elliptic curve-based cryptosystems in the same way as Gallant–Lambert–
Vanstone (GLV) and Galbraith–Lin–Scott (GLS) endomorphisms. Our
construction is based on reducing quadratic Q-curves (curves defined
over quadratic number fields, without complex multiplication, but with
isogenies to their Galois conjugates) modulo inert primes. As a first ap-
plication of the general theory we construct, for every prime p > 3, two
one-parameter families of elliptic curves over Fp2 equipped with endo-
morphisms that are faster than doubling. Like GLS (which appears as a
degenerate case of our construction), we offer the advantage over GLV
of selecting from a much wider range of curves, and thus finding secure
group orders when p is fixed. Unlike GLS, we also offer the possibility of
constructing twist-secure curves. Among our examples are prime-order
curves over Fp2 , equipped with fast endomorphisms, and with almost-
prime-order twists, for the particularly efficient primes p = 2127 − 1 and
p = 2255 − 19.

Keywords: Elliptic curve cryptography, endomorphisms, GLV, GLS,
exponentiation, scalar multiplication, Q-curves.

1 Introduction

Let E be an elliptic curve over a finite field Fq, and let G ⊂ E(Fq) be a cyclic
subgroup of prime order N . When implementing cryptographic protocols in G,
the fundamental operation is scalar multiplication (or exponentiation):

Given P in G and m in Z, compute [m]P := P ⊕ · · · ⊕ P︸ ︷︷ ︸
m times

.

The literature on general scalar multiplication algorithms is vast, and we
will not explore it in detail here (see [10, §2.8,§11.2] and [5, Chapter 9] for
introductions to exponentiation and multiexponentiation algorithms). For our
purposes, it suffices to note that the dominant factor in scalar multiplication
time using conventional algorithms is the bitlength of m. As a basic example,
if G is a generic cyclic abelian group, then we may compute [m]P using a variant

K. Sako and P. Sarkar (Eds.) ASIACRYPT 2013 Part I, LNCS 8269, pp. 61–78, 2013.
c© International Association for Cryptologic Research 2013
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of the binary method, which requires at most �log2 m� doublings and (in the
worst case) about as many addings in G.

But elliptic curves are not generic groups: they have a rich and concrete ge-
ometric structure, which should be exploited for fun and profit. For example,
endomorphisms of elliptic curves may be used to accelerate generic scalar mul-
tiplication algorithms, and thus to accelerate basic operations in curve-based
cryptosystems.

Suppose E is equipped with an efficient endomorphism ψ, defined over Fq. By
efficient, we mean that we can compute the image ψ(P ) of any point P in E(Fq)
for the cost of O(1) operations in Fq. In practice, we want this to cost no more
than a few doublings in E(Fq).

Assume ψ(G) ⊆ G, or equivalently, that ψ restricts to an endomorphism of G.1
Now G is a finite cyclic group, isomorphic to Z/NZ; and every endomorphism
of Z/NZ is just an integer multiplication modulo N . Hence, ψ acts on G as
multiplication by some integer eigenvalue λψ : that is,

ψ|G = [λψ ]G .

The eigenvalue λψ is a root of the characteristic polynomial of ψ in Z/NZ.
Returning to the problem of scalar multiplication: we want to compute [m]P .

Rewriting m as
m = a+ bλψ (mod N)

for some a and b, we can compute [m]P using the relation

[m]P = [a]P + [bλψ]P = [a]P + [b]ψ(P )

and a two-dimensional multiexponentation such as Straus’s algorithm [28], which
has a loop length of log2 ‖(a, b)‖∞ (ie, log2 ‖(a, b)‖∞ doubles and as many adds;
recall that ‖(a, b)‖∞ = max(|a|, |b|)). If λψ is not too small, then we can easily
find (a, b) such that log2 ‖(a, b)‖∞ is roughly half of log2 N . (We remove the “If”
and the “roughly” for our ψ in §4.) The endomorphism lets us replace conven-
tional log2 N -bit scalar multiplications with 1

2 log2 N -bit multiexponentiations.
In terms of basic binary methods, we are halving the loop length, cutting the
number of doublings in half.

Of course, in practice we are not halving the execution time. The precise
speedup ratio depends on a variety of factors, including the choice of exponenti-
ation and multiexponentiation algorithms, the cost of computing ψ, the shortness
of a and b on the average, and the cost of doublings and addings in terms of
bit operations—to say nothing of the cryptographic protocol, which may pro-
hibit some other conventional speedups. For example: in [11], Galbraith, Lin,

1 This assumption is satisfied almost by default in the context of classical discrete log-
based cryptosystems. If ψ(G) �⊆ G, then E [N ](Fq) = G + ψ(G) ∼= (Z/NZ)2, so N2 |
#E(Fq) and N | q − 1; such E are cryptographically inefficient, and discrete logs in
G are vulnerable to the Menezes–Okamoto–Vanstone reduction [21]. However, these
G do arise naturally in pairing-based cryptography; in that context the assumption
should be verified carefully.
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and Scott report experiments where cryptographic operations on GLS curves re-
quired between 70% and 83% of the time required for the previous best practice
curves—with the variation depending on the architecture, the underyling point
arithmetic, and the protocol.

To put this technique into practice, we need a source of cryptographic elliptic
curves equipped with efficient endomorphisms. To date, in the large character-
istic case2, there have been essentially only two constructions:

1. The classic Gallant–Lambert–Vanstone (GLV) construction [12]. Here, ellip-
tic curves over number fields with explicit complex multiplication (CM) by
CM-orders with small discriminants are reduced modulo suitable primes p;
an explicit endomorphism on the CM curve reduces to an efficient endomor-
phism over the finite field.

2. The more recent Galbraith–Lin–Scott (GLS) construction [11]. Here, curves
over Fp are viewed over Fp2 ; the p-power sub-Frobenius induces an extremely
efficient endomorphism on the quadratic twist (which can have prime order).

These constructions have since been combined to give 3- and 4-dimensional vari-
ants [18,32], and extended to hyperelliptic curves in a variety of ways [3,17,26,29].
However, basic GLV and GLS remain the archetypal constructions.

Our contribution: new families of endomorphisms. In this work, we propose a
new source of elliptic curves over Fp2 with efficient endomorphisms: quadratic
Q-curves.

Definition 1. A quadratic Q-curve of degree d is an elliptic curve E without
CM, defined over a quadratic number field K, such that there exists an isogeny
of degree d from E to its Galois conjugate σE , where 〈σ〉 = Gal(K/Q).3

Q-curves are well-established objects of interest in number theory, where they
formed a natural setting for generalizations of the Modularity Theorem. Ellen-
berg’s survey [8] gives an excellent introduction to this beautiful theory.

Our application of quadraticQ-curves is rather more prosaic: given a d-isogeny
Ẽ → σẼ over a quadratic field, we reduce modulo an inert prime p to obtain an
isogeny E → σE over Fp2 . We then exploit the fact that the p-power Frobenius
isogeny maps σE back onto E ; composing with the reduced d-isogeny, we obtain
an endomorphism of E of degree dp. For efficiency reasons, d must be small; it
turns out that for small values of d, we can write down one-parameter fami-
lies of Q-curves (our approach below was inspired by the explicit techniques of
Hasegawa [15]). We thus obtain one-parameter families of elliptic curves over Fp2
equipped with efficient non-integer endomorphisms. For these endomorphisms we
can give convenient explicit formulæ for short scalar decompositions (see §4).

For concrete examples, we concentrate on the cases d = 2 and 3 (in §5 and §6,
respectively), where the endomorphism is more efficient than a single doubling

2 We are primarily interested in the large characteristic case, where q = p or p2, so we
will not discuss τ -adic/Frobenius expansion-style techniques here.

3 The Galois conjugate σE is the curve formed by applying σ to all of the coefficients
of the defining equation of E ; see §2.
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(we briefly discuss higher degrees in §11). For maximum generality and flexibility,
we define our curves in short Weierstrass form; but we include transformations
to Montgomery, twisted Edwards, and Doche–Icart–Kohel models where appro-
priate in §8.
Comparison with GLV. Like GLV, our method involves reducing curves defined
over number fields to obtain curves over finite fields with explicit CM. However,
we emphasise a profound difference: in our method, the curves over number fields
generally do not have CM themselves.

GLV curves are necessarily isolated examples—and the really useful examples
are extremely limited in number (see [18, App. A] for a list of curves). The
scarcity of GLV curves4 is their Achilles’ heel: as noted in [11], if p is fixed
then there is no guarantee that there will exist a GLV curve with prime (or
almost-prime) order over Fp. Consider the situation discussed in [11, §1]: the
most efficient GLV curves have CM discriminants −3 and −4. If we are working
at a 128-bit security level, then the choice p = 2255 − 19 allows particularly fast
arithmetic in Fp. But the largest prime factor of the order of a curve over Fp
with CM discriminant −4 (resp. −3) has 239 (resp. 230) bits: using these curves
wastes 9 (resp. 13) potential bits of security. In fact, we are lucky with D = −3
and −4: for all of the other discriminants offering endomorphisms of degree at
most 3, we can do no better than a 95-bit prime factor, which represents a
catastrophic 80-bit loss of relative security.

In contrast, our construction yields true families of curves, covering ∼ p iso-
morphism classes over Fp2 . This gives us a vastly higher probability of finding
prime (or almost-prime)-order curves over practically important fields.

Comparison with GLS. Like GLS, we construct curves over Fp2 equipped with
an inseparable endomorphism. While these curves are not defined over the prime
field, the fact that the extension degree is only 2 means that Weil descent attacks
offer no advantage when solving DLP instances (see [11, §9]). And like GLS, our
families offer around p distinct isomorphism classes of curves, making it easy to
find secure group orders when p is fixed.

But unlike GLS, our curves have j-invariants in Fp2 : they are not isomorphic to
or twists of subfield curves. This allows us to find twist-secure curves, which are
resistant to the Fouque–Lercier–Réal–Valette fault attack [9]. As we will see in
§9, our construction reduces to GLS in the degenerate case d = 1 (that is, where

4 The scarcity of useful GLV curves is easily explained: efficient separable endomor-
phisms have extremely small degree (so that the dense defining polynomials can be
evaluated quickly). But the degree of the endomorphism is the norm of the corre-
sponding element of the CM-order; and to have non-integers of very small norm,
the CM-order must have a tiny discriminant. Up to twists, the number of elliptic
curves with CM discriminant D is the Kronecker class number h(D), which is in
O(

√
D). Of course, for the tiny values of D in question, the asymptotics of h(D)

are irrelevant; for the six D corresponding to endomorphisms of degree at most 3,
we have h(D) = 1, so there is only one j-invariant. For D = −4 (corresponding to
j = 1728) there are two or four twists over Fp; for D = −3 (corresponding to j = 0)
we have two or six, and otherwise we have only two. In particular, there are at most
18 distinct curves over Fp with a non-integer endomorphism of degree at most 3.
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φ̃ is an isomorphism). Our construction is therefore a sort of generalized GLS—
though it is not the higher-degree generalization anticipated by Galbraith, Lin,
and Scott themselves, which composes the sub-Frobenius with a non-rational
separable isogeny and its dual isogeny (cf. [11, Theorem 1]).

In §4, we prove that we can immediately obtain scalar decompositions of the
same bitlength as GLS for curves over the same fields: the decompositions pro-
duced by Proposition 2 are identical to the GLS decompositions of [11, Lemma 2]
when d = 1, up to sign. For this reason, we do not provide extensive imple-
mentation details in this paper: while our endomorphisms cost a few more Fq-
operations to evaluate than the GLS endomorphism, this evaluation is typically
carried out only once per scalar multiplication. This evaluation is the only dif-
ference between a GLS scalar multiplication and one of ours: the subsequent
multiexponentiations have exactly the same length as in GLS, and the underly-
ing curve and field arithmetic is the same, too.

2 Notation and Conventions

Throughout, we work over fields of characteristic not 2 or 3. Let

E : y2 = x3 + a4x+ a6

be an elliptic curve over such a field K.

Galois conjugates. For every automorphism σ of K, we define the conjugate
curve

σE : y2 = x3 + σa4x+ σa6.

If φ : E → E1 is an isogeny, then we obtain a conjugate isogeny σφ : σE → σE1
by applying σ to the defining equations of φ, E , and E1.
Quadratic twists. For every λ �= 0 in K, we define a twisting isomorphism

δ(λ) : E −→ Eλ : y2 = x3 + λ4a4x+ λ6a6

by
δ(λ) : (x, y) �−→ (λ2x, λ3y) .

The twist Eλ is defined over K(λ2), and δ(λ) is defined over K(λ).5

For every K-endomorphism ψ of E , there is a twisted K(λ2)-endomorphism

ψλ := δ(λ)ψδ(λ−1)

of Eλ. Observe that δ(λ1)δ(λ2) = δ(λ1λ2) for any λ1, λ2 in K, and δ(−1) = [−1].
Also, σ(Eλ) = (σE)σλ for all automorphisms σ of K.

If μ is a nonsquare in K, then E
√
μ is a quadratic twist of E . If K = Fq,

then E
√
μ1 and E

√
μ2 are Fq-isomorphic for all nonsquares μ1, μ2 in Fq (the

isomorphism δ(
√

μ1/μ2) is defined over Fq because μ1/μ2 must be a square).

5 Throughout, conjugates are marked by left-superscripts, twists by right-superscripts.
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When the choice of nonsquare is not important, E ′ denotes the quadratic twist.
Similarly, if ψ is an Fq-endomorphism of E , then ψ′ denotes the corresponding
twisted Fq-endomorphism of E ′.
The trace. If K = Fq, then πE denotes the q-power Frobenius endomorphism
of E . Recall that the characteristic polynomial of πE has the form

χE(T ) = T 2 − tr(E)T + q, with |tr(E)| ≤ 2
√
q .

The trace tr(E) of E satisfies #E(Fq) = q + 1− tr(E) and tr(E ′) = −tr(E).
p-th powering. We write (p) for the p-th powering automorphism of Fp. Note

that (p) is almost trivial to compute on Fp2 = Fp(
√
Δ), because (p)(a+ b

√
Δ) =

a− b
√
Δ for all a and b in Fp.

3 Quadratic Q-curves and Their Reductions

Suppose Ẽ/Q(
√
Δ) is a quadratic Q-curve of prime degree d (as in Definition 1),

where Δ is a discriminant prime to d, and let φ̃ : Ẽ → σẼ be the corresponding
d-isogeny. In general, φ̃ is only defined over a quadratic extension Q(

√
Δ, γ) of

Q(
√
Δ). We can compute γ from Δ and ker φ̃ using [13, Proposition 3.1], but

after a suitable twist we can always reduce to the case where γ =
√
±d (see [13,

remark after Lemma 3.2]). The families of explicit Q-curves of degree d that
we treat below have their isogenies defined over Q(

√
Δ,
√
−d); so to simplify

matters, from now on we will

Assume φ̃ is defined over Q(
√
Δ,
√
−d).

Let p be a prime of good reduction for Ẽ that is inert in Q(
√
Δ) and prime to

d. If OΔ is the ring of integers of Q(
√
Δ), then

Fp2 = OΔ/(p) = Fp(
√
Δ) .

Looking at the Galois groups of our fields, we have a series of injections

〈(p)〉 = Gal(Fp(
√
Δ)/Fp) ↪→ Gal(Q(

√
Δ)/Q) ↪→ Gal(Q(

√
Δ,
√
−d)/Q) .

The image of (p) in Gal(Q(
√
Δ)/Q) is σ, because p is inert in Q(

√
Δ). When

extending σ to an automorphism of Q(
√
Δ,
√
−d), we extend it to be the image

of (p): that is,

σ
(
α+ β

√
Δ+ γ

√
−d+ δ

√
−dΔ

)
= α−β

√
Δ+

(
−d

/
p
) (

γ
√
−d− δ

√
−dΔ

)
(1)

for all α, β, γ, and δ ∈ Q. (Recall that the Legendre symbol
(
n
/
p
)
is 1 if n is a

square mod p, −1 if n is not a square mod p, and 0 if p divides n.)

Now let E/Fp2 be the reduction modulo p of Ẽ . The curve σẼ reduces to (p)E ,
while the d-isogeny φ̃ : Ẽ → σẼ reduces to a d-isogeny φ : E → (p)E over Fp2 .
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Applying σ to φ̃, we obtain a second d-isogeny σφ̃ : σẼ → Ẽ travelling in the
opposite direction, which reduces mod p to a conjugate isogeny (p)φ : (p)E → E
over Fp2 . Composing σφ̃ with φ̃ yields endomorphisms σφ̃ ◦ φ̃ of Ẽ and φ̃ ◦ σφ̃
of σẼ , each of degree d2. But (by definition) Ẽ and σẼ do not have CM, so all
of their endomorphisms are integer multiplications; and since the only integer
multiplications of degree d2 are [d] and [−d], we conclude that

σφ̃ ◦ φ̃ = [εpd]Ẽ and φ̃ ◦ σφ̃ = [εpd]σẼ , where εp ∈ {±1} .

Technically, σφ̃ and (p)φ are—up to sign—the dual isogenies of φ̃ and φ, respec-
tively. The sign εp depends on p (as well as on φ̃): if τ is the extension of σ

to Q(
√
Δ,
√
−d) that is not the image of (p), then τ φ̃ ◦ φ̃ = [−εpd]Ẽ . Reducing

modulo p, we see that

(p)φ ◦ φ = [εpd]E and φ ◦ (p)φ = [εpd](p)E .

The map (x, y) �→ (xp, yp) defines p-isogenies

π0 : (p)E −→ E and (p)π0 : E −→ (p)E .

Clearly, (p)π0 ◦π0 (resp. π0 ◦ (p)π0) is the p2-power Frobenius endomorphism of E
(resp. (p)E). Composing π0 with φ yields a degree-pd endomorphism

ψ := π0 ◦ φ ∈ End(E) .

If d is very small—say, less than 10—then ψ is efficient because φ is defined by
polynomials of degree about d, and π0 acts as a simple conjugation on coordinates
in Fp2 , as in Eq. (1). (The efficiency of ψ depends primarily on its separable
degree, d, and not on the inseparable part p.)

We also obtain an endomorphism ψ′ on the quadratic twist E ′ of E . Indeed,
if E ′ = E

√
μ, then ψ′ = ψ

√
μ, and ψ′ is defined over Fp2 .

Proposition 1. With the notation above:

ψ2 = [εpd]πE and (ψ′)2 = [−εpd]πE′ .

There exists an integer r satisfying dr2 = 2p+ εptr(E) such that

ψ = 1
r (πE + εpp) and ψ′ = −1

r (πE′ − εpp) .

The characteristic polynomial of both ψ and ψ′ is

Pψ(T ) = Pψ′(T ) = T 2 − εprdT + dp .

Proof. Clearly π0 ◦ φ = (p)φ ◦ (p)π0, so

ψ2 = π0φπ0φ = π0φ
(p)φ(p)π0 = π0[εpd]

(p)π0 = [εpd]π0
(p)π0 = [εpd]πE .
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Choosing a nonsquare μ in Fp2 , so E ′ = E
√
μ and ψ′ = ψ

√
μ, we find

(ψ′)2 = δ(μ
1
2 )ψ2δ(μ− 1

2 ) = δ(μ
1
2 )[εpd]πEδ(μ

− 1
2 )

= δ(μ
1
2 (1−p2))[εpd]πE′ = δ(−1)[εpd]πE′ = [−εpd]πE′ .

Using π2
E − tr(E)πE + p2 = 0 and π2

E′ + tr(E)πE′ + p2 = 0, we verify that the
expressions for ψ and ψ′ give the two square roots of εpdπE inQ(πE), and−εpdπE′

in Q(π′
E), and that the claimed characteristic polynomial is satisfied. ��

Now we just need a source of quadratic Q-curves of small degree. Elkies [7] shows
that all Q-curves correspond to rational points on certain modular curves: Let
X∗(d) be the quotient of the modular curve X0(d) by all of its Atkin–Lehner
involutions, let K be a quadratic field, and let σ be the involution of K over Q.
If e is a point in X∗(d)(Q) and E is a preimage of e in X0(d)(K) \ X0(d)(Q),

then E parametrizes (up to Q-isomorphism) a d-isogeny φ̃ : Ẽ → σẼ over K.
Luckily enough, for very small d, the curves X0(d) and X∗(d) have genus

zero—so not only do we get plenty of rational points on X∗(d), we get a whole
one-parameter family of Q-curves of degree d. Hasegawa gives explicit universal
curves for d = 2, 3, and 7 in [15, Theorem 2.2]: for each squarefree integer Δ �= 1,
every Q-curve of degree d = 2, 3, 7 over Q(

√
Δ) is Q-isomorphic to a rational

specialization of one of these families. Hasegawa’s curves for d = 2 and 3 (Ẽ2,Δ,s

in §5 and Ẽ3,Δ,s in §6) suffice not only to illustrate our ideas, but also to give
useful practical examples.

4 Short Scalar Decompositions

Before moving on to concrete constructions, we will show that the endomor-
phisms developed in §3 yield short scalar decompositions. Proposition 2 below
gives explicit formulæ for producing decompositions of at most �log2 p� bits.

Suppose G is a cyclic subgroup of E(Fp2) such that ψ(G) = G; let N = #G.
Proposition 1 shows that ψ acts as a square root of εpd on G: its eigenvalue is

λψ ≡ (1 + εpp)/r (mod N) . (2)

We want to compute a decomposition

m = a+ bλψ (mod N)

so as to efficiently compute

[m]P = [a]P + [bλψ]P = [a]P + [b]ψ(P ) .

The decomposition of m is not unique: far from it. The set of all decomposi-
tions (a, b) of m is the coset (m, 0) + L, where

L := 〈(N, 0), (−λψ , 1)〉 ⊂ Z2
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is the lattice of decompositions of 0 (that is, of (a, b) such that a + bλψ ≡ 0
(mod N)).

We want to find a decomposition where a and b have minimal bitlength: that
is, where �log2 ‖(a, b)‖∞� is as small as possible. The standard technique is to
(pre)-compute a short basis of L, then use Babai rounding [1] to transform each
scalar m into a short decomposition (a, b). The following lemma outlines this
process; for further detail and analysis, see [12, §4] and [10, §18.2].

Lemma 1. Let e1, e2 be linearly independent vectors in L. Let m be an integer,
and set

(a, b) := (m, 0)− �α�e1 − �β�e2 ,

where (α, β) is the (unique) solution in Q2 to the linear system (m, 0) = αe1 +
βe2. Then

m ≡ a+ λψb (mod N) and ‖(a, b)‖∞ ≤ max (‖e1‖∞, ‖e2‖∞) .

Proof. This is just [12, Lemma 2] (under the infinity norm). ��

We see that better decompositions of m correspond to shorter bases for L. If |λψ |
is not unusually small, then we can compute a basis for L of size O(

√
N) using

the Gauss reduction or Euclidean algorithms (cf. [12, §4] and [10, §17.1.1]).6 The
basis depends only on N and λψ , so it can be precomputed.

In our case, lattice reduction is unnecessary: we can immediately write down
two linearly independent vectors in L that are “short enough”, and thus give
explicit formulae for (a, b) in terms of m. These decompositions have length
�log2 p�, which is near-optimal in cryptographic contexts: if N ∼ #E(Fp2 ) ∼ p2,
then log2 p ∼ 1

2 log2 N .

Proposition 2. With the notation above: given an integer m, let

a = m−
⌊
m(1 + εpp)/#E(Fp2)

⌉
(1 + εpp) +

⌊
mr/#E(Fp2)

⌉
εpdr and

b =
⌊
m(1 + εpp)/#E(Fp2)

⌉
r −

⌊
mr/#E(Fp2)

⌉
(1 + εpp) .

Then, assuming d p and m �≡ 0 (mod N), we have

m ≡ a+ bλψ (mod N) and �log2 ‖(a, b)‖∞� ≤ �log2 p� .

Proof. Eq. (2) yields rλψ ≡ 1+ εpp (mod N) and rεpd ≡ (1+ εpp)λψ (mod N),
so e1 = (1+εpp,−r) and e2 = (−εpdr, 1+εpp) are in L (they generate a sublattice
of determinant #E(Fp2)). Applying Lemma 1 with α = m(1+ εpp)/#E(Fp2) and
β = mr/#E(Fp2 ), we see that m ≡ a + bλψ (mod N) and ‖(a, b)‖∞ ≤ ‖e2‖∞.
But d|r| ≤ 2

√
dp (since |tr(E)| ≤ 2p) and d p, so ‖e2‖∞ = p+ εp. The result

follows on taking logs, and noting that �log2(p± 1)� ≤ �log2 p� (since p > 3). ��
6 General bounds on the constant hidden by the O(·) are derived in [26], but they are
suboptimal for our endomorphisms in cryptographic contexts, where Proposition 2
gives better results.
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5 Endomorphisms from Quadratic Q-curves of Degree 2

LetΔ be a squarefree integer. Hasegawa defines a one-parameter family of elliptic
curves over Q(

√
Δ) by

Ẽ2,Δ,s : y
2 = x3 − 6(5− 3s

√
Δ)x+ 8(7− 9s

√
Δ) , (3)

where s is a free parameter taking values in Q [15, Theorem 2.2]. The discrimi-

nant of Ẽ2,Δ,s is 2
9 ·36(1− s2Δ)(1+ s

√
Δ), so Ẽ2,Δ,s has good reduction at every

p > 3 with
(
Δ
/
p
)
= −1, for every s in Q.

The curve Ẽ2,Δ,s has a rational 2-torsion point (4, 0), which generates the

kernel of a 2-isogeny φ̃2,Δ,s : Ẽ2,Δ,s → σẼ2,Δ,s defined over Q(
√
Δ,
√
−2). We

construct φ̃2,Δ,s explicitly: Vélu’s formulae [30] define the (normalized) quotient

Ẽ2,Δ,s → Ẽ2,Δ,s/〈(4, 0)〉, and then the isomorphism Ẽ2,Δ,s/〈(4, 0)〉 → σẼ2,Δ,s

is the quadratic twist δ(1/
√
−2). Composing, we obtain an expression for the

isogeny as a rational map:

φ̃2,Δ,t : (x, y) �−→
(
−x
2
− 9(1 + s

√
Δ)

x− 4
,

y√
−2

(
−1
2

+
9(1 + s

√
Δ)

(x− 4)2

))
.

Conjugating and composing, we see that σφ̃2,Δ,tφ̃2,Δ,t = [2] if σ(
√
−2) = −

√
−2,

and [−2] if σ(
√
−2) =

√
−2: that is, the sign function for φ̃2,Δ,t is

εp = −
(
−2

/
p
)
=

{
+1 if p ≡ 5, 7 (mod 8) ,

−1 if p ≡ 1, 3 (mod 8) .
(4)

Theorem 1. Let p > 3 be a prime, and define εp as in Eq. (4). Let Δ be a

nonsquare7 in Fp, so Fp2 = Fp(
√
Δ). For each s in Fp, let

C2,Δ(s) := 9(1 + s
√
Δ)

and let E2,Δ,s be the elliptic curve over Fp2 defined by

E2,Δ,s : y
2 = x3 + 2(C2,Δ(s)− 24)x− 8(C2,Δ(s)− 16) .

Then E2,Δ,s has an efficient Fp2-endomorphism of degree 2p defined by

ψ2,Δ,s : (x, y) �−→
(
−xp
2
− C2,Δ(s)

p

xp − 4
,

yp√
−2

(
−1
2

+
C2,Δ(s)

p

(xp − 4)2

))
,

and there exists an integer r satisfying 2r2 = 2p+ εptr(E2,Δ,s) such that

ψ2,Δ,s =
1

r

(
πE2,Δ,s + εpp

)
and ψ2

2,Δ,s = [εp2]πE2,Δ,s .

7 The choice of Δ is (theoretically) irrelevant, since all quadratic extensions of Fp are
isomorphic. If Δ and Δ′ are two nonsquares in Fp, then Δ/Δ′ = a2 for some a in Fp,
so E2,Δ,t and E2,Δ′,at are identical. We are therefore free to choose any practically
convenient value for Δ, such as one permitting faster arithmetic in Fp(

√
Δ).
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The twisted endomorphism ψ′
2,Δ,s on E ′2,Δ,s satisfies ψ′

2,Δ,s = −1
r (πE′

2,Δ,s
− εpp)

and (ψ′
2,Δ,s)

2 = [−εp2]πE′
2,Δ,s

. The characteristic polynomial of ψ2,Δ,s and ψ′
2,Δ,s

is P2,Δ,s(T ) = T 2 − εprT + 2p.

Proof. Reduce Ẽ2,Δ,s and φ̃2,Δ,s mod p and compose with π0 as in §3, then apply
Proposition 1 using Eq. (4). ��

If G ⊂ E2,Δ,s(Fp2) is a cyclic subgroup of order N such that ψ2,Δ,s(G) = G,
then the eigenvalue of ψ2,Δ,s on G is

λ2,Δ,s =
1

r
(1 + εpp) ≡ ±

√
εp2 (mod N) .

Applying Proposition 2, we can decompose scalar multiplications in G as [m]P =
[a]P + [b]ψ2,Δ,s(P ) where a and b have at most �log2 p� bits.
Proposition 3. Theorem 1 yields at least p−3 non-isomorphic curves over Fp2
(and at least 2p− 6 non-Fp2-isomorphic curves, if we count the quadratic twists)
equipped with efficient endomorphisms.

Proof. It suffices to show that the j-invariant j
(
E2,Δ,s

)
= 26(5−3s

√
Δ)3

(1−s2Δ)(1+s
√
Δ)

takes

at least p− 3 distinct values in Fp2 as s ranges over Fp. If j(E2,Δ,s1) = j(E2,Δ,s2)

with s1 �= s2, then s1 and s2 satisfy F0(s1, s2) − 2
√
ΔF1(s1, s2) = 0, where

F1(s1, s2) = (s1 + s2)(63Δs1s2 − 65) and F0(s1, s2) = (Δs1s2 + 1)(81Δs1s2 −
175)+49Δ(s1+s2)

2 are polynomials over Fp. If s1 and s2 are in Fp, then we must
have F0(s1, s2) = F1(s1, s2) = 0. Solving the simultaneous equations, discarding
the solutions that can never be in Fp, and dividing by two (since (s1, s2) and
(s2, s1) represent the same collision) yields at most 3 collisions j(E2,Δ,s1) =
j(E2,Δ,s2) with s1 �= s2 in Fp. ��

We observe that σẼ2,Δ,s = Ẽ2,Δ,−s, so we do not gain any more isomorphism
classes in Proposition 3 by including the codomain curves.

6 Endomorphisms from Quadratic Q-curves of Degree 3

Let Δ be a squarefree discriminant; Hasegawa defines a one-parameter family of
elliptic curves over Q(

√
Δ) by

Ẽ3,Δ,s : y
2 = x3 − 3

(
5 + 4s

√
Δ
)
x+ 2

(
2s2Δ+ 14s

√
Δ+ 11

)
, (5)

where s is a free parameter taking values in Q. As for the curves in §5, the curve
Ẽ3,Δ,s has good reduction at every inert p > 3 for every s in Q.

The curve Ẽ3,Δ,s has a subgroup of order 3 defined by the polynomial x− 3,

consisting of 0 and (3,±2(1− s
√
Δ)). Exactly as in §5, taking the Vélu quotient

and twisting by 1/
√
−3 yields an explicit 3-isogeny φ̃3,Δ,s : Ẽ3,Δ,s → σẼ3,Δ,s; its

sign function is

εp = −
(
−3

/
p
)
=

{
+1 if p ≡ 2 (mod 3) ,

−1 if p ≡ 1 (mod 3) .
(6)
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Theorem 2. Let p > 3 be a prime, and define εp as in Eq. (6). Let Δ be a

nonsquare8 in Fp, so Fp2 = Fp(
√
Δ). For each s in Fp, let

C3,Δ(s) := 2(1 + s
√
Δ)

and let E3,Δ,s be the elliptic curve over Fp2 defined by

E3,Δ,s : y
2 = x3 − 3

(
2C3,Δ(s) + 1

)
x+

(
C3,Δ(s)

2 + 10C3,Δ(s)− 2
)
.

Then E3,Δ,s has an efficient Fp2-endomorphism ψ3,Δ,s of degree 3p, mapping
(x, y) to(
−xp

3
− 4C3,Δ(s)

p

xp − 3
− 4C3,Δ(s)

2p

3(xp − 3)2
,

yp√
−3

(
−1
3

+
4C3,Δ(s)

p

(xp − 3)2
+

8C3,Δ(s)
2p

3(xp − 3)3

))
,

and there exists an integer r satisfying 3r2 = 2p+ εptr(E3,Δ,s) such that

ψ2
3,Δ,s = [εp3]πE3,Δ,s and ψ3,Δ,s =

1

r
(π + εpp) .

The twisted endomorphism ψ′
3,Δ,s on E ′3,Δ,s satisfies (ψ′

3,Δ,s)
2 = [−εp3]πE′

3,Δ,s

and ψ′
3,Δ,s = (−πE′

3,Δ,s
+ εpp)/r. Both ψ3,Δ,s and ψ′

3,Δ,s have characteristic

polynomial P3,Δ,s(T ) = T 2 − εprT + 3p.

Proof. Reduce Ẽ3,Δ,s and φ̃3,Δ,s mod p, compose with π0 as in §3, and apply
Proposition 1 using Eq. (6). ��

Proposition 4. Theorem 2 yields at least p−8 non-isomorphic curves over Fp2
(and counting quadratic twists, at least 2p − 16 non-Fp2-isomorphic curves)
equipped with efficient endomorphisms.

Proof. The proof is exactly as for Proposition 3. ��

7 Cryptographic-Sized Curves

We will now exhibit some curves with cryptographic parameter sizes, and se-
cure and twist-secure group orders. We computed the curve orders below using
Magma’s implementation of the Schoof–Elkies–Atkin algorithm [25,19,4].

First consider the degree-2 curves of §5. By definition, E2,Δ,s and its quadratic
twist E ′2,Δ,s have points of order 2 over Fp2 : they generate the kernels of our

endomorphisms. If p ≡ 2 (mod 3), then 2r2 = 2p + εptr(E) implies tr(E) �≡
0 (mod 3), so when p ≡ 2 (mod 3) either p2 − tr(E) + 1 = #E2,Δ,s(Fp2) or
p2+tr(E)+1 = #E ′2,Δ,s(Fp2) is divisible by 3. However, when p ≡ 1 (mod 3) we
can hope to find curves of order twice a prime whose twist also has order twice
a prime.

8 As in Theorem 1, the particular value of Δ is theoretically irrelevant.
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Example 1. Let p = 280 − 93 and Δ = 2. For s = 4556, we find a twist-secure
curve: #E2,2,4556(Fp2) = 2N and #E ′2,2,4556(Fp2) = 2N ′ where

N = 730750818665451459101729015265709251634505119843 and

N ′ = 730750818665451459101730957248125446994932083047

are 159-bit primes. Proposition 2 lets us replace 160-bit scalar multiplications in
E2,2,4556(Fp2) and E ′2,2,4556(Fp2) with 80-bit multiexponentiations.

Now consider the degree-3 curves of §6. The order of E3,Δ,s(Fp2) is always
divisible by 3: the kernel of ψ3,Δ,s is generated by the rational point (3, C3,Δ(s)).
However, on the quadratic twist, the nontrivial points in the kernel of ψ′

3,Δ,s are
not defined over Fp2 (they are conjugates), so E ′3,Δ,s(Fp2) can have prime order.

Example 2. Let p = 2127− 1; then Δ = −1 is a nonsquare in Fp. The parameter
value s = 122912611041315220011572494331480107107 yields

#E3,−1,s(Fp2) = 3 ·N and #E ′3,−1,s(Fp2) = N ′ ,

where N is a 253-bit prime and N ′ is a 254-bit prime. Using Proposition 2,
any scalar multiplication in E3,−1,s(Fp2) or E ′3,−1,s(Fp2) can be computed via a
127-bit multiexponentiation.

Example 3. Let p = 2255 − 19; then Δ = −2 is a nonsquare in Fp. Taking

s = 52960937784593362700485649923279446947410945689208862015782690291692803003486

yields #E3,−2,s(Fp2) = 3 ·N and #E3,−2,s(Fp2) = N ′, where N and N ′ are 509-
and 510-bit primes, respectively. Proposition 2 transforms any 510-bit scalar
multiplication in E3,−2,s(Fp2) or E ′2,−2,s(Fp2) into a 255-bit multiexponentiation.

8 Alternative Models: Montgomery, Twisted Edwards,
and Doche–Icart–Kohel

Montgomery models. The curve E2,Δ,s has a Montgomery model over Fp2 if and
only if 2C2,Δ(s) is a square in Fp2 (by [22, Proposition 1]): in that case, setting

B2,Δ(s) :=
√
2C2,Δ(s) and A2,Δ(s) = 12/B2,Δ(s) ,

the birational mapping (x, y) �→ (X/Z, Y/Z) =
(
(x− 4)/B2,Δ(s), y/B2,Δ(s)

2
)

takes us from E2,Δ,s to the projective Montgomery model

EM2,Δ,s : B2,Δ(s)Y
2Z = X

(
X2 +A2,Δ(s)XZ + Z2

)
. (7)

(If 2C2,Δ(s) is not a square, then EM2,Δ,s is Fp2 -isomorphic to the quadratic twist
E ′2,Δ,s.) These models offer a particularly efficient arithmetic, where we use only
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the X and Z coordinates [20]. The endomorphism is defined (on the X and Z
coordinates) by

ψ2,Δ,s : (X : Z) �−→ (X2p +A2,Δ(s)
pXpZp + Z2p : −2B2,Δ(s)

1−pXpZp) .

Twisted Edwards models. Every Montgomery model corresponds to a twisted
Edwards model (and vice versa) [2,16]. Let

a2(s) = (A2,Δ(s) + 2)/B2,Δ(s) and d2(s) = (A2,Δ(s)− 2)/B2,Δ(s) ;

then with u = X/Z and v = Y/Z, the birational maps

(u, v) �→ (x1, x2) =

(
u

v
,
u− 1

u+ 1

)
, (x1, x2) �→ (u, v) =

(
1 + x2

1− x2
,

1 + x2

x1(1 − x2)

)
take us between the Montgomery model of Eq. (7) and the twisted Edwards
model

ETE
2,Δ,s : a2(s)x

2
1 + x2

2 = 1 + d2(s)x
2
1x

2
2 .

Doche–Icart–Kohel models. Doubling-oriented Doche–Icart–Kohel models of el-
liptic curves are defined by equations of the form

y2 = x(x2 +Dx+ 16D) .

These curves have a rational 2-isogeny φ with kernel 〈(0, 0)〉, and φ and its dual
isogeny φ† are both in a special form that allows us to double more quickly by
using the decomposition [2] = φ†φ (see [6, §3.1] for details).

Our curves E2,Δ,s come equipped with a rational 2-isogeny, so it is natural to
try putting them in Doche–Icart–Kohel form. The isomorphism

α : (x, y) �−→ (u, v) =
(
μ2(x+ 4), μ3y

)
with μ = 4

√
6/C2,Δ(s)

takes us from E2,Δ,s into a doubling-oriented Doche–Icart–Kohel model

EDIK
2,Δ,s : v

2 = u
(
u2 +D2,Δ(s)u+ 16D2,Δ(s)

)
,

whereD2,Δ(s) = 27/(1+s
√
Δ). While EDIK

2,Δ,s is defined over Fp2 , the isomorphism

is only defined over Fp2(
√

1 + s
√
Δ); so if 1 + s

√
Δ is not a square in Fp2 then

EDIK
2,Δ,s is Fp2 -isomorphic to E ′2,Δ,s. The endomorphism ψDIK

2,Δ,s := αψ2,Δ,sα
−1 is

Fp-isomorphic to the Doche–Icart–Kohel isogeny (they have the same kernel).
Similarly, we can exploit the rational 3-isogeny on E3,Δ,s for Doche–Icart–

Kohel tripling (see [6, §3.2]). Let a3,Δ(s) = 9/C3,Δ(s) and b3,Δ(s) = a3,Δ(s)
−1/2;

then the isomorphism (x, y) �→ (u, v) =
(
a3,Δ(s)(x/3 − 1), b3,Δ(s)

3y
)
takes us

from E3,Δ,s to the tripling-oriented Doche–Icart-Kohel model

EDIK
3,Δ,s : v

2 = u3 + 3a3,Δ(s)(u + 1)2 .
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9 Degree One: GLS as a Degenerate Case

Returning to the framework of §3, suppose Ẽ is a curve defined over Q and
base-extended to Q(

√
D): then Ẽ = σẼ , and we can apply the construction of §3

taking φ̃ : Ẽ → σẼ to be the identity map. Reducing modulo an inert prime p,
the endomorphism ψ is nothing but π0 (which is an endomorphism, since E is
a subfield curve). We have ψ2 = π2

0 = πE , so the eigenvalue of ψ is ±1 on
cryptographic subgroups of E(Fp2). Clearly, this endomorphism is of no use to
us for scalar decompositions.

However, looking at the quadratic twist E ′, the twisted endomorphism ψ′

satisfies (ψ′)2 = −πE′ ; the eigenvalue of ψ′ on cryptographic subgroups is a
square root of −1. We have recovered the Galbraith–Lin–Scott endomorphism
(cf. [11, Theorem 2]).

More generally, suppose φ̃ : Ẽ → σẼ is a Q-isomorphism: that is, an isogeny
of degree 1. If Ẽ does not have CM, then σφ̃ = εpφ̃

−1, so ψ2 = [εp]πE with

εp = ±1. This situation is isomorphic to GLS. In fact, Ẽ ∼= σẼ implies j(Ẽ) =

j(σẼ) = σj(Ẽ); so j(Ẽ) is in Q, and Ẽ is isomorphic to (or a quadratic twist of)
a curve defined over Q. We note that in the case d = 1, we have r = ±t0 in
Proposition 1 where t0 is the trace of π0, and the basis constructed in the proof
of Proposition 2 is (up to sign) the same as the basis of [11, Lemma 3].

While E ′(Fp2) may have prime order, E(Fp2) cannot: the points fixed by π0

form a subgroup of order p+1−t0, where t20−2p = tr(E) (the complementary sub-
group, where π0 has eigenvalue −1, has order p+1+ t0). We see that the largest
prime divisor of #E(Fp2) can be no larger than O(p). If we are in a position to
apply the Fouque–Lercier–Réal–Valette fault attack [9]—for example, if Mont-
gomery ladders are used for scalar multiplication and multiexponentiation—then
we can solve DLP instances in E ′(Fp2) in O(p1/2) group operations (in the worst

case!). While O(p1/2) is still exponentially difficult, it falls far short of the ideal
O(p) for general curves over Fp2 . GLS curves should therefore be avoided where
the fault attack can be put into practice.

10 CM Specializations

By definition, Q-curves do not have CM. However, some exceptional fibres of
the families Ẽ2,Δ,s and Ẽ3,Δ,s do have CM. There are only finitely many such

curves over any given Q(
√
Δ); following Quer ([23, §5] and [24, §6]), we give

an exhaustive list of the corresponding parameter values in Tables 1 and 2. In
each table, if Δ is a squarefree discriminant and there exists s in Q such that
1/(s2Δ− 1) takes the first value in a column, then the curve Ẽd,Δ,s/Q(

√
Δ) has

CM by the quadratic order of discriminant D specified by the second value.
Suppose we have chosen d, Δ, and s such that Ẽd,Δ,s is a CM-curve. If the dis-

criminant of the associated CM order is small, then we can compute an explicit
endomorphism of Ẽd,Δ,s of small degree, which then yields an efficient endomor-
phism ρ (say) on the reduction Ed,Δ,s modulo p (as in the GLV construction). If
p is inert, then we also have the degree-dp endomorphism ψ constructed above.
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Table 1. CM specializations of Ẽ2,Δ,s (cf. Quer [23, §5])

1/(s2Δ− 1) 4 −9 48 −81 324 −2401 −9801 25920 777924 −96059601

D −20 −24 −36 −40 −52 −72 −88 −100 −148 −232

Table 2. CM specializations of Ẽ3,Δ,s (cf. Quer [24, §6])

1/(s2Δ− 1) 1/4 −2 −27/2 16 −125/4 80 1024 3024 250000

D −15 −24 −48 −51 −60 −75 −123 −147 −267

Combinations of ρ and ψ may be used for four-dimensional scalar decomposi-
tions; for example, the endomorphisms [1], ρ, ψ, ρψ can be used as a basis for the
4-dimensional decomposition techniques elaborated by Longa and Sica in [18].

In fact, reducing these CM fibres modulo a well-chosen p turns out to form a
simple alternative construction for some of the curves investigated by Guillevic

and Ionica in [14]: the twisted curve E
√
3

2,Δ,s coincides with the curve E1,c of [14,

§2] when c = s
√
Δ, while E3,Δ,s is the curve E2,c of [14, §2] when c = −2s

√
Δ.

The almost-prime-order 254-bit curve of [14, Example 1] corresponds to the
reduction modulo p of a twist of one of the curves in the column of Table 1
with 1/(s2Δ − 1) = 4. This curve has an efficient CM endomorphism (a square
root of [−5]) as well as an endomorphism of degree 2p; these endomorphisms are
combined to compute short 4-dimensional scalar decompositions.

From the point of view of scalar multiplication, using CM fibres of these
families allows us to pass from 2-dimensional to 4-dimensional scalar decompo-
sitions, with a consequent speedup. However, in restricting to CM fibres we also
re-impose the chief drawback of GLV on ourselves: that is, as explained in the
introduction, we cannot hope to find secure (and twist-secure) curves over Fp2

when p is fixed. In practice, this means that the 4-dimensional scalar decom-
position speedup comes at the cost of suboptimal field arithmetic; we pay for
shorter loop lengths with comparatively slower group operations.

We must therefore make a choice between 4-dimensional decompositions and
fast underlying field arithmetic. In this article we have chosen the latter option,
so we will not treat CM curves in depth here (we refer the reader to [14] instead).

11 Higher Degrees

We conclude with some brief remarks on Q-curves of other degrees. Hasegawa
provides a universal curve for d = 7 (and any Δ) in [15, Theorem 2.2], and our
results for d = 2 and d = 3 carry over to d = 7 in an identical fashion, though
the endomorphism is slightly less efficient in this case (its defining polynomials
are sextic).
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For d = 5, Hasegawa notes that it is impossible to give a universal Q-curve for
every discriminant Δ: there exists a quadratic Q-curve of degree 5 over Q(

√
Δ)

if and only if
(
5
/
pi
)
= 1 for every prime pi �= 5 dividing Δ [15, Proposition

2.3]. But this is no problem when reducing modulo p, if we are prepared to give
up total freedom in choosing Δ: we can take Δ = −11 for p ≡ 1 (mod 4) and
Δ = −1 for p ≡ 3 (mod 4), and then use the curves defined in [15, Table 6]. The
generic curves here do not have rational torsion points; it is therefore possible
for the reductions and their twists to have prime order.

Composite degree Q-curves (such as d = 6 and 10) promise more interesting
results. Degrees greater than 10 yield less efficient endomorphisms, and so are
less interesting from a practical point of view.
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9. Fouque, P.-A., Lercier, R., Réal, D., Valette, F.: Fault attack on elliptic curve with
Montgomery ladder. In: FDTC 2008, pp. 92–98. IEEE-CS (2008)

10. Galbraith, S.D.: Mathematics of public key cryptography. Cambridge University
Press (2012)

11. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. J. Crypt. 24(3), 446–469 (2011)



78 B. Smith

12. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Heidelberg (2001)
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Abstract. The Gallant-Lambert-Vanstone (GLV) algorithm uses effi-
ciently computable endomorphisms to accelerate the computation of
scalar multiplication of points on an abelian variety. Freeman and Satoh
proposed for cryptographic use two families of genus 2 curves defined over
Fp which have the property that the corresponding Jacobians are (2, 2)-
isogenous over an extension field to a product of elliptic curves defined
over Fp2 . We exploit the relationship between the endomorphism rings
of isogenous abelian varieties to exhibit efficiently computable endomor-
phisms on both the genus 2 Jacobian and the elliptic curve. This leads
to a four-dimensional GLV method on Freeman and Satoh’s Jacobians
and on two new families of elliptic curves defined over Fp2 .

Keywords: GLV method, elliptic curves, genus 2 curves, isogenies.

1 Introduction

The scalar multiplication of a point on a small dimension abelian variety is one of
the most important operations used in curve-based cryptography. Various tech-
niques were introduced to speed-up the scalar multiplication. Firstly there exist
exponent-recoding techniques such as sliding window and Non-Adjacent-Form
representation [7]. These techniques are valid for generic groups and improved
for elliptic curves as the inversion (or negation in additive notation) is free.

Secondly, in 2001, Gallant, Lambert and Vanstone [11] introduced a method
which uses endomorphisms on the elliptic curve to decompose the scalar multi-
plication in a 2-dimensional multi-multiplication. Given an elliptic curve E over
a finite field Fp with a fast endomorphism φ and a point P of large prime order
r such that φ(P ) = [λ]P , the computation of [k]P is decomposed as

[k]P = [k1]P + [k2]φ(P ),

with k = k1 + λk2 (mod r) such that |k1|, |k2| !
√
r. Gallant et al. provided

examples of curves whose endomorphism φ is given by complex-multiplication

by
√
−1 (j-invariant j = 1728), −1+

√
−3

2 (j = 0),
√
−2 (j = 8000) and 1+

√
−7

2
(j = −3375). In 2009 Galbraith, Lin and Scott [10] presented a method to con-
struct an efficient endomorphism on elliptic curves E defined over Fp2 which are

K. Sako and P. Sarkar (Eds.) ASIACRYPT 2013 Part I, LNCS 8269, pp. 79–96, 2013.
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quadratic twists of elliptic curves defined over Fp. In this case, a fast endomor-
phism ψ is obtained by carefully exploiting the Frobenius endomorphism. This
endomorphism verifies the equation ψ2+1 = 0 when restricted to points defined
over Fp2 . In 2012, Longa and Sica improved the GLS construction, by showing
that a 4-dimensional decomposition of scalar multiplication is possible, on GLS
curves allowing efficient complex multiplication φ. Let λ, μ denote the eigenval-
ues of the two endomorphisms φ, ψ. Then we can decompose the scalar k into
k = k0 + k1λ+ k2μ+ k3λμ and compute

[k]P = [k0]P + [k1]φ(P ) + [k2]ψ(P ) + [k3]φ ◦ ψ(P ).

Moreover, Longa and Sica provided an efficient algorithm to compute decompo-
sitions of k such that |ki| < Cr1/4, i = 1, . . . , 4. Note that most curves presented
in the literature have particular j-invariants. GLV curves have j-invariant 0,
1728, 8000, or −3375, while GLS curves have j-invariant in Fp, even though they
are defined over Fp2 .

In 2013, Bos, Costello, Hisil and Lauter proposed in [3] a 4-dimensional GLV
technique to speed-up scalar multiplication in genus 2. They considered the
Buhler-Koblitz genus 2 curves y2 = x5+b and the Furukawa-Kawazoe-Takahashi
curves y2 = x5 + ax. These two curves have a very efficient dimension-4 GLV
technique available.

In this paper we study GLV decompositions on two types of abelian varieties:

– Elliptic curves defined over Fp2 , with j-invariant defined over Fp2 .
– Jacobians of genus 2 curves defined over Fp, which are isogenous over an

extension field to a product of elliptic curves defined over Fp2 .

First, we study a family of elliptic curves whose equation is of the form
E1,c(Fp2) : y2 = x3 + 27(10 − 3c)x + 14 − 9c with c ∈ Fp2 \ Fp, c2 ∈ Fp. These
curves have an endomorphism Φ satisfying Φ2 ± 2 = 0 for points defined over
Fp2 . Nevertheless, the complex multiplication discriminant of the curve is not

2, but of the form −D = −2D′
. The second family is given by elliptic curves

with equation of the form E2,c(Fp2) : y
2 = x3 + 3(2c− 5)x+ c2 + 14c+ 22 with

c ∈ Fp2 \ Fp, c2 ∈ Fp. We show that these curves have an endomorphism Φ such
that Φ2 +3 = 0 for points defined over Fp2 . The complex multiplication discrim-

inant of the curve E2,c is of the form −D = −3D′
. Our construction is a simple

and efficient way to exploit the existence of a p-power Frobenius endomorphism
on the Weil restriction of these curves. If the discriminant D is small, we propose
a 4-dimensional GLV algorithm for the E1,c and E2,c families of curves. We use
Velu’s formulas to compute explicitly the endomorphisms on E1,c and E2,c.

At last, we study genus 2 curves whose equations are C1 : Y 2 = X5+aX3+bX
and C2 : Y 2 = X6 + aX3 + b, with a, b ∈ Fp. The Jacobians of these curves split
over an extension field in two isogenous elliptic curves. More precisely, the Ja-
cobian of C1 is isogenous to E1,c × E1,c and the Jacobian of C2 is isogenous to
E2,c × E2,−c. These two Jacobians were proposed for use in cryptography by
Satoh [18] and Freeman and Satoh [9], who showed that they are isogenous over
Fp to the Weil restriction of a curve of the form E1,c or E2,c. This property is
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exploited to derive fast point counting algorithms and pairing-friendly construc-
tions. We investigate efficient scalar multiplication via the GLV technique on
Satoh and Freeman’s Jacobians. We give explicit formulae for the (2, 2)-isogeny
between the product of elliptic curves and the Jacobian of the genus 2 curve.
As a consequence, we derive a method to efficiently compute endomorphisms on
the Jacobians of C1 and C2.

This paper is organized as follows. In Section 2 we review the construction of
(2, 2)-isogenies between Jacobians of C1 and C2 and products of elliptic curves. In
Section 3 and 4 we give our construction of efficient endomorphisms on E1,c and
E2,c and derive a four-dimensional GLV algorithm on these curves. Section 5
explains how to obtain a four-dimensional GLV method on the Jacobians of
C1 and C2. Finally, in Section 6, our operation count at the 128 bit security
level is proof that both elliptic curves defined over Fp2 and Satoh and Freeman’s
Jacobians yield scalar multiplication algorithms competitive with those of Longa
and Sica and Bos et al.

2 Elliptic Curves with a Genus 2 Cover

In this paper we will work with two examples of genus 2 curves whose Jacobians
allow over an extension field a (2, 2)-isogeny to a product of elliptic curves. We
first study the genus 2 curve

C1(Fp) : Y 2 = X5 + aX3 + bX, with a, b �= 0 ∈ Fp . (1)

It was shown [15,18,9, §2, §3, §4.1] that the Jacobian of C1 is isogenous to E1,c×
E1,c, where

E1,c(Fp[
√
b]) : y2 = (c+ 2)x3 − (3c− 10)x2 + (3c− 10)x− (c+ 2) (2)

with c = a/
√
b. We recall the formulae for the cover maps from C1 to E1,c. The

reader is referred to the proof of Prop. 4.1 in [9] for details of the computations.

ϕ1 : C1(Fp)→ E1,c(Fp[
8
√
b]) ϕ2 : C1(Fq)→ E1,c(Fp[

8
√
b])

(x, y) �→
((

x+
4√
b

x− 4√b

)2

, 8y
8√
b

(x− 4√b)3

)
(x, y) �→

((
x− 4√

b

x+ 4√b

)2

, 8iy
8√
b

(x+ 4√b)3

)
,

(3)
where i =

√
−1 ∈ Fp or Fp2 . The (2, 2)-isogeny is given by

I : JC1 → E1,c × E1,c

P +Q− 2P∞ �→ (ϕ1∗(P ) + ϕ1∗(Q), ϕ2∗(P ) + ϕ2∗(Q))
(4)

and its dual is

Î : E1,c × E1,c → JC1

(S1, S2) �→ ϕ∗
1(S1) + ϕ∗

2(S2)− 4P∞
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with ϕ∗
1(S1) =

(√
x1+1√
x1−1

4
√
b, y1

8√
b
5

(
√
x1−1)3

)
+

(
−√

x1+1
−√

x1−1
4
√
b, y1

8√
b
5

(−√
x1−1)3

)
and ϕ∗

2(S2) =
(

1+
√
x2

1−√
x2

4
√
b, −iy2

8√
b
5

(1−√
x2)3

)
+

(
1−√

x2

1+
√
x2

4
√
b, −iy2

8√
b
5

(1+
√
x2)3

)
.

Note that I and its dual are defined over an extension field of Fp of degree

1, 2, 4 or 8. One may easily check that I ◦ Î = [2] and Î ◦ I = [2]. Since I
splits multiplication by 2, an argument similar to [14, Prop. 21] implies that
2End(JC1) ⊆ End(E1,c × E1,c) and 2End(E1,c × E1,c) ⊆ End(JC1). We will use
these inclusions to exhibit efficiently computable endomorphisms on both JC1

and E1,c.
Secondly, we consider an analogous family of degree 6 curves. These curves

were studied by Duursma and Kiyavash [8] and by Gaudry and Schost [12].

C2(Fp) : Y 2 = X6 + aX3 + b with a, b �= 0 ∈ Fp . (5)

The Jacobian of the curve denoted JC2 is isogenous to the product of elliptic
curves E2,c × E2,−c, where

E2,c(Fp[
√
b]) : y2 = (c+ 2)x3 + (−3c+ 30)x2 + (3c+ 30)x+ (−c+ 2) (6)

E2,−c(Fp[
√
b]) : y2 = (−c+ 2)x3 + (3c+ 30)x2 + (−3c+ 30)x+ (c+ 2), (7)

with c = a/
√
b. The construction of the isogeny is similar to the one for I. We

recall the formulae for cover maps from C2 to E2,c and to E2,−c. For detailed
computations, the reader is referred to Freeman and Satoh [9, Prop. 4].

ϕ2 : C2(Fp)→ E2,c × E2,−c(Fp[
6
√
b])

(X,Y ) �→
{((

X+
6√
b

X− 6√
b

)2

, 8Y

(X− 6√
b)3

)
,

((
X− 6√

b

X+
6√
b

)2

, 8Y

(X+
6√
b)3

)}
(8)

Note that the isogeny constructed using these cover maps is defined over an
extension field of degree 1,2,3 or 6.

3 Four-Dimensional GLV on E1,c

In this section, we construct two endomorphisms which may be used to compute
scalar multiplication on E1,c using a 4-dimensional GLV algorithm. We assume
that c ∈ Fp2 \ Fp and c2 ∈ Fp.

3.1 First Endomorphism on E1,c with Vélu’s Formulas

We aim to compute a 2-isogeny on E1,c(Fp2). First we reduce the equation (2)
of E1,c to

E1,c(Fp2) : y
2 = x3 + 27(3c− 10)x− 108(9c− 14) (9)

through the change of variables (x, y) �→ (3(c+ 2)x− (3c− 10), (c+ 2)y). Note
that we can write

E1,c(Fp2) : y
2 = (x− 12)(x2 + 12x+ 81c− 126). (10)
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Hence there always exists a 2-torsion point P2 = (12, 0) on E1,c(Fp2). We apply
Velu’s formulas [20,6,14] to compute the isogeny whose kernel is generated by
P2. We obtain an isogeny from E1,c into Eb : y2 = x3 + b4x + b6 with b4 =
−22 · 27(3c+ 10), b6 = −22 · 108(14 + 9c). We observe that Eb is isomorphic to
the curve whose equation is

E1,−c(Fp2) : y
2 = x3 + 27(−3c− 10)x+ 108(14 + 9c) (11)

through (xb, yb) �→ (xb/(−2), yb/(−2
√
−2)). Note that

√
−2 ∈ Fp2 and thus this

isomorphism is defined over Fp2 . We define the isogeny

I2 : E1,c(Fp2)→ E1,−c(Fp2)

(x, y) �→
(

−x
2 + 162+81c

−2(x−12) ,
−y

2
√
−2

(
1− 162+81c

(x−12)2

))
.

(12)

We show that we can use this isogeny to get an efficiently computable endo-
morphism on E1,c. Observe that since c ∈ Fp2 \ Fp and c2 ∈ Fp, we have that

πp(c) = cp = −c, πp(j(E1,c)) = j(E1,−c) (13)

hence the curves E1,c and E1,−c are isogenous over Fp2 via the Frobenius map
πp. They are not isomorphic, because they do not have the same j-invariant.

To sum up, by composing πp ◦ I2, we obtain an efficiently computable endo-
morphism Φ2 as follows:

Φ2 : E1,c(Fp2)→ E1,c(Fp2)

(x, y) �→
(
−xp
2
− 162− 81c

2(xp − 12)
,
−yp

2
√
−2p

(
1− 162− 81c

(xp − 12)2

))

=

(
x2p − 12xp + 162− 81c

−2(xp − 12)
, yp

x2p − 24xp − 18 + 81c

−2
√
−2p(xp − 12)2

)
.

If we compute formally1 Φ2
2 then we obtain exactly the formulas to compute

πp2 ◦ [−2] on E1,c(Fp2) if
√
−2 ∈ Fp or πp2 ◦ [2] if

√
−2 �∈ Fp. This difference

occurs because a term
√
−2
√
−2p appears in the formula. If p ≡ 1, 3 mod 8,√

−2p =
√
−2 and if p ≡ 5, 7 mod 8,

√
−2p = −

√
−2. Hence Φ2 restricted to

points defined over Fp2 verifies the equation

Φ2
2 ± 2 = 0. (14)

We note that the above construction does not come as a surprise. Since
2End(JC1) ⊆ End(E1,c × E1,c) and since the Jacobian JC1 is equipped with
a p-power Frobenius endomorphism, we deduce that there are endomorphisms
with inseparability degree p on the elliptic curve E1,c. Our construction is simply
an explicit method to compute such an endomorphism.

1 E.g. Verification code with Maple can be found at the address
http://www.di.ens.fr/~ionica/VerificationMaple-Isogeny-2p-E1.maple

http://www.di.ens.fr/~ionica/VerificationMaple-Isogeny-2p-E1.maple
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Two-Dimensional GLV. By using Id and Φ2, we get a two-dimensional GLV
algorithm on the curve E1,c. Smith [19] constructs families of 2-dimensional
GLV curves by reducing mod p Q-curves defined over quadratic number fields.
Q-curves are curves without complex multiplication with isogenies towards all
their Galois conjugates. Since we are interested into designing a fast higher
dimensional algorithm, we will study curves with small complex multiplication
discriminant. In this purpose, our curves are constructed using the complex
multiplication method. For a discussion on the advantages of using dimension 2
curves, see [19].

3.2 Efficient Complex Multiplication on E1,c(Fp2)

We suppose that the complex multiplication discriminant D of the curve E1,c

is small. A natural way to obtain an efficiently computable endomorphism is
to take ΦD the generator for the endomorphism ring (i.e.

√
−D). Guillevic and

Vergnaud [13, proof of Th. 1 (4.) §2.2] showed that D = 2D′, for some integer
D′. Let tp2 be the trace of E1,c(Fp2). The equation of the complex multiplication
is then

(tp2)
2 − 4p2 = −2D′γ2, (15)

for some γ ∈ Z. We prove that there is an endomorphism on E1,c whose degree of
separability is D′. In order to do that, we will need to compute first the general
equation of Φ2.

Lemma 1. There are integers m and n such that if p ≡ 1, 3 (mod 8), then

tp2 + 2p = D
′
m2 and tp2 − 2p = −2n2. (16)

and if p ≡ 5, 7 (mod 8), then

tp2 + 2p = 2n2 and tp2 − 2p = −D′
m2. (17)

Moreover, the characteristic equation of Φ2 is

Φ2
2 − 2nΦ2 + 2pId = 0 . (18)

Proof. We have that Tr(Φ2
2)−Tr2(Φ2)+2 deg(Φ2) = 0. We know that deg(Φ2) =

2p because Φ2 = πp ◦I2 and deg(πp) = p, deg(I2) = 2, so Tr2(Φ2) = Tr(Φ2
2)+4p.

Now, if p ≡ 1, 3 mod 8, Tr(Φ2
2) = Tr(πp2 ◦ [−2]) = −2tp2 and we get Tr2(Φ2) =

−2tp2 +4p = −2(tp2 − 2p). We may thus write tp2 − 2p = −2n2, for some integer

n. If p ≡ 5, 7 mod 8, Tr(Φ2
2) = Tr(πp2 ◦ [2]) = 2tp2 and we get Tr2(φ2) = 2tp2 +

4p = 2(tp2 + 2p). Hence tp2 + 2p = 2n2 again. Using the complex multiplication
equation (15), we have that there is an integer m such that tp2 + 2p = D′m2,
if p ≡ 1, 3 (mod 8) and t2p2 − 2p = −D′m2, if p ≡ 5, 7 (mod 8). Using these
notations, the characteristic equation of Φ2 is

Φ2
2 − 2n Φ2 + 2p Id = 0 .
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Theorem 1. Let E1,c be an elliptic curve given by equation (10), defined over
Fp2 . Let −D be the complex multiplication discriminant and consider D′ such
that D = 2D′. There is an endomorphism ΦD′ of E1,c with degree of separability
D′. The characteristic equation of this endomorphism is

Φ2
D′ −D

′
m ΦD′ +D

′
p Id = 0 . (19)

Proof. SinceD = 2D′, we have that ΦD is the composition of a horizontal isogeny
of degree 2 with a horizontal2 isogeny of degree D′. We denote by I2 : E1,c →
E1,−c the isogeny given by equation (12). Note that I2 is a horizontal isogeny
of degree 2. Indeed, since πp : E1,−c → E1,c, it follows that (End(E1,c))2 !
(End(E1,−c))2. Since 2|D, there is a unique horizontal isogeny of degree 2 starting
from E1,c. Hence the complex multiplication endomorphism on E1,c is ΦD =
ID′ ◦ I2, with ID′ : E1,−c → E1,c a horizontal isogeny of degree D′. We define
ΦD′ = ID′◦π′

p, with π′
p : E1,c → E1,−c. To compute the characteristic polynomial

of ΦD′ , we observe that

ΦD′ ◦ Φ2 = ΦD ◦ πp2 .

Hence, by using equation (18), we obtain that ΦD′ seen as algebraic integer in

Z[
√
−D] is −D′m±n

√
−2D′

2 . Hence we have Φ2
D′ −D

′
m ΦD′ +D

′
p Id = 0.

The endomorphism ΦD′ constructed in Theorem 1 is thus computed as the
composition of a horizontal isogeny with the p-power of the Frobenius. Since
computing the p-power Frobenius for extension fields of degree 2 costs one nega-
tion, we conclude that ΦD′ may be computed with Vélu’s formulae with half the
operations needed to compute ΦD over Fp2 .

Four-Dimensional GLV Algorithm. Assume that E1,c is such that #E1,c(Fp2)
is divisible by a large prime of cryptographic size. Let Ψ = ΦD′ and Φ = Φ2.
We observe Φ and Ψ viewed as algebraic integers generate disjoint quadratic
extensions of Q. Consequently, one may use 1, Φ, Ψ, ΦΨ to compute the scalar
multiple [k]P of a point P ∈ E1,c(Fp2) using a four-dimensional GLV algorithm.
We do not give here the details of the algorithm which computes decompositions

k = k1 + k2λ+ k3μ+ k4λμ,

with λ and μ the eigenvalues of Φ and Ψ and |ki| < Cr1/4. Such an algorithm is
obtained by working over Z[Φ, Ψ ], using a similar analysis to the one proposed
by Longa and Sica [16].

Eigenvalue Computation. From equation (14), we deduce that the eigenvalue
of Φ2 is p

√
−2 if p ≡ 1.3 mod 8 and p

√
2 if p ≡ 5, 7 mod 8. We explain how to

compute this eigenvalue mod #E1,c(Fp2). We will use the formulas (16) and (1).

2 An isogeny I : E → E′ of degree � is called horizontal if (End(E))� � (End(E′))�.
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If p ≡ 1, 3 mod 8, we obtain

#E1,c(Fp2) = (p+ 1)2 −D
′
m2 →

√
D′ ≡ (p+ 1)/m

= (p− 1)2 + 2n2 →
√
−2 ≡ (p− 1)/n,

= (1− tp2/2)
2 + 2D

′
(nm/2)2 →

√
−2D′ ≡ (2− tp2)/(nm) .

If p ≡ 5, 7 mod 8, we obtain

#E1,c(Fp2) = (p− 1)2 +D
′
m2 →

√
−D′ ≡ (p− 1)/m

= (p+ 1)2 − 2n2 →
√
2 ≡ (p+ 1)/n,

= (1− tp2/2)
2 + 2D

′
(nm/2)2 →

√
−2D′ ≡ (2− tp2)/(nm) .

The eigenvalue of Φ2 on E1,c(Fp2) is p
√
−2 ≡ p(p − 1)/n mod #E1,c(Fp2) if

p ≡ 1, 3 mod 8 or p
√
2 ≡ p(p+ 1)/n mod #E1,c(Fp2) if p ≡ 5, 7 mod 8.

The eigenvalue of ΦD′ on E1,c(Fp2) is p
√
D′ ≡ p(p+1)/m mod #E1,c(Fp2) if

p ≡ 1, 3 mod 8 or p
√
−D′ ≡ p(p− 1)/m mod #E1,c(Fp2) if p ≡ 5, 7 mod 8.

3.3 Curve Construction and Examples

We construct curves E1,c with good cryptographic properties (i.e. a large prime
divides the number of points of E1,c over Fp2) by using the complex multiplication
algorithm. More precisely, we look for prime numbers p such that the complex
multiplication equation

4p = 2n2 +D′m2

is verified. Once p is found, we compute the roots of the Hilbert polynomial in
Fp2 to get the j-invariant of the curve j(E1,c). We finally get the value of c by

solving j(E1,c) = 26 (3c−10)3

(c−2)(c+2)2 in Fp2 and choosing a solution satisfying c2 ∈ Fp.

We note that for a bunch of discriminants (such as−20,−24,−36 etc.), Hilbert
polynomial precomputation may be avoided by using parameterizations com-
puted by Quer [17]:

Ct : y
2 = x3 − 6(5 + 3

√
t)x+ 8(7 + 9

√
t), (20)

for some t ∈ Q. For instance t = 5
4 for D = −20, t = 8

9 for D = −24 etc. Once p
is found, one may directly reduce mod p the curve given by equation 20. Curves
given by equation (20) are Q-curves and for these discriminants, we obtain the
same curves as in [19].

Complex multiplication algorithms may not be avoided in certain crypto-
graphic frames, such as pairing-friendly constructions. One advantage of the
construction is that one has the liberty to choose the value r of the large prime
number dividing the curve group order. This helps in preventing certain attacks,
such as Cheon’s attack [4] on the q-DH assumption. On the negative side, we
cannot construct curves with fixed p (such as the attractive 2127 − 1).

Using Magma, we computed an example with p ≡ 5 mod 8, D = 40, D
′
= 20.
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Example 1. We first search 63-bit numbers n,m such that p = (2n2 + 20m2)/4
is prime and #E1,c(Fp2) is almost prime. We can expect an order of the form 4r,
with r prime. In a few seconds, we find the following parameters.
n = 0x55d23edfa6a1f7e4
m = 0x549906b3eca27851
tp2 = - 0xfaca844b264dfaa353355300f9ce9d3a
p = 0x9a2a8c914e2d05c3f2616cade9b911ad
r = 0x1735ce0c4fbac46c2245c3ce9d8da0244f9059ae9ae4784d6b2f65b29c444309
c2 = 0x40b634aec52905949ea0fe36099cb21a
with r, p prime and #E1,c(Fp2) = 4r.

We use Vélu’s formulas to compute a degree-5 isogeny from E1,c into Eb,5. We
find a 5-torsion point P5(X5, Y5) on E1,c(Fp8). The function IsogenyFromKernel

in Magma evaluated at (E1,c(Fp8), (X −XP5)(X −X2P5)) outputs a curve Eb,5 :
y2b = x3

b − 25 · 27(3c + 10)xb + 125 · 108(9c + 14). The curve Eb is isomorphic
to E1,−c over Fp2 through i√5 : (xb, yb) �→ (xb/5, yb/(5

√
5)). The above function

outputs also the desired isogeny with coefficients in Fp2 :

I5 :
E1,c(Fp2)→ Eb,5(Fp2)

(x, y) �→
(
x+

2·33( 3
5 (13c+40)x+4(27c+28))
x2+ 27

2 cx− 81
10 c+162

+
−23·34((9c+16)x2+ 2

511(27c+64)x+ 2
53

3(53c+80)

(x2+ 27
2 cx− 81

10 c+162)2
,

y

(
1 +

−24·34((9c+16)x3+ 3
511(27c+64)x2+ 2

5 3
4(53c+80)x+ 2

52
32(4419c+13360))

(x2+ 27
2 cx− 81

10 c+162)3

+
2·33( 3

5 (13c+40)x2+23(27c+28)x+2 3
5 (369c+1768))

(x2+ 27
2 cx− 81

10 c+162)2

))
(21)

We finally obtain a second computable endomorphism on E1,c in this example
by composing πp ◦ i√5 ◦ I5.

4 Four-Dimensional GLV on E2,c(Fp2)

The construction of two efficiently computable endomorphisms on E2,c, with
degree of inseparability p, is similar to the one we gave for E1,c.

We consider the elliptic curve given by eq. (6) in the reduced form:

E2,c(Fp2) : y
2 = x3 + 3(2c− 5)x+ c2 − 14c+ 22 . (22)

We assume that c ∈ Fp2 \ Fp, c2 ∈ Fp, c is not a cube in Fp2 . In this case the
isogeny (8) between JC2 and E2,c × E2,−c is defined over Fp6 . The 3-torsion
subgroup E2,c(Fp2)[3] contains the order 3 subgroup {O, (3, c+ 2), (3,−c− 2)}.
We compute an isogeny whose kernel is this 3-torsion subgroup. With Vélu’s
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formulas we obtain the curve Eb : y
2 = x3− 27(2c+5)x− 27(c2+14c+22). The

curve Eb is isomorphic to E2,−c : (Fp2) : y
2 = x3 − 3(2c + 5)x + c2 + 14c + 22,

via the isomorphism (x, y) �→
(
x/(−3), y/(−3

√
−3)

)
. We define the isogeny

I3 : E2,c → E2,−c

(x, y) �→
(

−1
3

(
x+ 12(c+2)

x−3 + 4(c+2)2

(x−3)2

)
, −y
3
√
−3

(
1− 12(c+2)

(x−3)2 −
8(c+2)2

(x−3)3

))
.

Finally, we observe that πp(c) = −c and πp(j(E2,c)) = j(E2,−c). This implies
that E2,c and E2,−c are isogenous through the Frobenius map πp. We obtain the
isogeny Φ3 = I3 ◦ πp which is given by the following formula

Φ3 :
E2,c(Fp2)→ E2,c(Fp2)

(x, y) �→
(

−1
3

(
xp + 12(2−c)

xp−3 + 4(2−c)2

(xp−3)2

)
, yp

−3
√
−3

p

(
1− 12(2−c)

(xp−3)2 −
8(2−c)2

(xp−3)3

))
.

We compute formally Φ2
3 and obtain Φ2

3 = πp2◦[±3]. There is a term
√
−3
√
−3p

in the y-side of Φ2
3. We observe that if p ≡ 1 mod 3, then

(
−3
p

)
=1,
√
−3
√
−3p =

−3 and Φ2
3 = πp2 ◦ [−3]. Similarly, if p ≡ 2 mod 3, then Φ2

3 = πp2 ◦ [3]. We con-
clude that for points defined over Fp2 , we have

Φ2
3 ± 3 = 0 .

Guillevic and Vergnaud [13, Theorem 2] showed that the complex multiplica-
tion discriminant is of the form 3D′. With the same arguments as for E1,c, we
deduce that there are integers m and n such that if p ≡ 1 (mod 3), then

tp2 + 2p = D
′
m2 and tp2 − 2p = −2n2.

and if p ≡ 2 (mod 3), then

tp2 + 2p = 2n2 and tp2 − 2p = −D
′
m2.

As a consequence, we have the following theorem, whose proof is similar to the
proof of 1.

Theorem 2. Let E2,c be an elliptic curve given by equation (22), defined over
Fp2 . Let −D be the complex multiplication discriminant and consider D′ such
that D = 3D′. There is an endomorphism ΦD′ of E2,c with degree of separability
D′. The characteristic equation of this endomorphism is

Φ2
D′ −D

′
m ΦD′ +D

′
p Id = 0 . (23)

We have thus proven that Φ = Φ3 and Ψ = ΦD′ , viewed as algebraic integers,
generate different quadratic extensions of Q. As a consequence, we obtain a
four-dimensional GLV algorithm on E2,c.
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5 Four-Dimensional GLV on JC1 and JC2

The first endomorphism Ψ on JC1 is induced by the curve automorphism (x, y)→
(−x, iy), with i a square root of -1. The characteristic polynomial is X2+1 = 1.
On JC2 we consider Ψ the endomorphism induced by the curve automorphism
(x, y) → (ζ3x, y). Its characteristic equation is X2 + X + 1. The second endo-
morphism is constructed as Φ = Î(ΦD′ , ΦD′)I, where ΦD′ is the elliptic curve
endomorphism constructed in Theorem 1. In order to compute the character-
istic equation for Φ, we follow the lines of the proof of Theorem 1 in [10]. We
reproduce the computation for the Jacobian of C1.

Theorem 3. Let C1 : y2 = x5 + ax3 + b be a hyperelliptic curve defined over
Fp with ordinary Jacobian and let r a prime number such that r||JC1(Fp). Let
I : JC1 → E1,c × E1,c the (2, 2)-isogeny defined by equation (4) and assume I is

defined over an extension field of degree k > 1. We define Φ = Î(ΦD′ × ΦD′)I.
where ΦD′ is the endomorphism defined in Theorem 1. Then

1. For P ∈ JC1 [r](Fp), we have Φ(P ) = [λ]P , with λ ∈ Z.

2. The characteristic equation of Φ is Φ2 − 2D
′
m Φ+ 4D

′
p Id = 0.

Proof. 1. Note that End(JC1) is commutative, and Φ is defined over Fp (see [2,
Prop. III.1.3]). Hence, for D ∈ JC1(Fp), we have that π(Φ(D)) = Φ(π(D)) =
Φ(D). Since there is only one subgroup of order r in JC1(Fp), we obtain that
Φ(D) = λD.

2. Since ÎI = [2] then

Φ2 = Î(ΦD′ × ΦD′)IÎ(ΦD′ × ΦD′)I = 2Î(Φ2
D′ , Φ2

D′)I. (24)

Since ΦD′ verifies the equation

Φ2
D′ −D

′
m ΦD′ +D

′
p Id = 0, (25)

we have

[2]Î((Φ2
D′ , Φ2

D′)−D
′
m (ΦD′ , ΦD′ ) +D

′
p (Id, Id))I = OJC1

Using equation (24), we conclude that Φ2 − 2D
′
m Φ+ 4D

′
p Id = 0.

5.1 Computing I on JC1(Fp)

We show first how to compute stately the (2, 2)-isogeny on JC1(Fp) with only a
small number of operations over extension fields of Fp.

Let D be a divisor in JC1(Fp) given by its Mumford coordinates

D = [U, V ] = [T 2 + u1T + u0, v1T + v0], u0, u1, v0, v1 ∈ Fp .

It corresponds to two points P1(X1, Y1), P2(X2, Y2) ∈ C1(Fp) or C1(Fp2). We have

u1 = −(X1 +X2), u0 = X1X2, v1 =
Y2 − Y1

X2 −X1
, v0 =

X1Y2 −X2Y1

X1 −X2
.
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Explicit formula to compute ϕ1∗(P1) + ϕ1∗(P2). Let ϕ1∗(P1) = (x1,1, y1,1) and
ϕ1∗(P2) = (x2,1, y2,1) In the following we give the formulas to compute
S1(x3,1, y3,1) = ϕ1∗(P1) + ϕ1∗(P2).

x3,1 =
λ2
1

c+2 − (x1,1 + x2,1) +
3c−10
c+2 with

λ1 = 2
8√
b

[
(v0u1−v1u0)u1−v0u0

]
+
[
3(v0u1−v1u0)

]
4√b+

[
3v0

]√
b+

[
v1

]
4√b

3[
u2
0−b

]
+
[
u0u1

]
4√
b+

[
−u1

]√
b

.

We denote λ1 = Λ1/
8
√
b. The computation of the numerator of Λ1 costs 4Mp and

the denominator costs Sp + Mp. We will use the Jacobian coordinates for S1:
x3,1 = X3,1/Z

2
3,1, y3,1 = Y3,1/Z

3
3,1 to avoid inversion in Fp4 . We continue with

x1,1 + x2,1 = 2

([
u2
0+b

]
+
[
u2
1−6u0

]√
b
)([

u2
0+b]+

[
−2u0

]√
b
)([

u2
0−b

]
+
[
u0u1

]
4√
b+

[
−u1

]√
b
)2

As u2
0 was already computed in Λ1, this costs one square (u

2
1) and a multiplication

in Fp2 , hence Sp + Mp2 . The denominator is the same as the one of Λ2
1, that is,

Z2
3 .
Then

x3,1 =
Λ2

1
4√
b(c+2)

− (x1,1 + x2,1) +
3c−10
c+2

=
4√
bΛ2

1

(a+2
√
b)
− (x1,1 + x2,1) +

3a−10
√
b

a+2
√
b

.

To avoid tedious computations, it is preferable to precompute both 1/(a+2
√
b)

and (3a− 10
√
b)/(a+ 2

√
b) with one inversion in Fp2 and one multiplication in

Fp2 .

Computing 4
√
bΛ2

1 is done by shifting to the right coefficients and costs one
multiplication by b (as Λ2

1 ∈ Fp4). Then
4
√
bΛ2

1 · (a+ 2
√
b)−1 costs 2Mp2 . Finally

we need to compute 3a−10
√
b

a+2
√
b
·Z2

3 which costs Sp4 +2Mp2. The total cost of X3,1,

Z3,1 and Z2
3,1 is 6Mp + 2Sp + 5Mp2 + Sp4 .

Computing y3,1 is quite complicated because we deal with divisors so we do
not have directly the coefficients of the two points. We use this trick:

y3,1 = λ1(x1,1 − x3,1)− y1,1
y3,1 = λ1(x2,1 − x3,1)− y2,1

2y3,1 = λ1(x1,1 + x2,1 − 2x3,1)− (y1,1 + y2,1)

Since x1,1 + x2,1 was already computed for x3,1, getting (x1,1 + x2,1 − 2x3,1)
costs only additions. We multiply the numerators of λ1 and (x1,1 + x2,1− 2x3,1)
which costs 1Mp4 . The denominator is Z3

3,1 and as Z2
3,1 is already computed,

this costs 1Mp4 . The numerator of (y1,1+y2,1) contains products of u0, u1, v0, v1
previously computed and its denominator is simply Z3

3 . The total cost of y3,1 is
then 2Mp4 . Finally, computing (x3,1, y3,1) costs

6Mp + 2Sp + 5Mp2 + Sp4 + 2Mp4 .
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Now we show that computing S2(x3,2, y3,2) is free of cost. We notice that

ϕ1(Xj , Yj) = ϕ2(−Xj , iYj)

with i such that i2 = −1 and j ∈ {1, 2}. Rewriting this equation in terms of
divisors, we derive that

S2(x3,2, y3,2) = ϕ1∗([−u1, u0,−iv1, iv0]) .

We can simply compute S2 with ϕ1∗:

x3,2 = x3,1([−u1, u0,−iv1, iv0]) with
λ2 = λ1([−u1, u0,−iv1, iv0])

= 2i
8√
b

(v0u1−v1u0)(u1−3
4√
b)−v0u0+3

√
bv0− 4√

b
3
v1

(u0−
√
b)(u0− 4√

bu1+
√
b)

= πp2 (λ1)

and

(x1,1 + x2,1)([−u1, u0,−iv1, iv0]) = 2
u2
0+

√
bu2

1−6
√
bu0+b

(u0− 4√
bu1+

√
b)2

= πp2(x1,1 + x2,1) .

We deduce that x3,2 = πp2(x3,1), y3,2 = πp2(y3,1) and

ϕ2∗(D) = ϕ2∗(P1) + ϕ2∗(P2) = πp2(ϕ1∗(P1) + ϕ1∗(P2)) .

Computing (x3,2, y3,2) costs two Frobenius πp2 which are performed with four
negations on Fp2 .

5.2 Computing Endomorphisms on E1,c

Here we apply the endomorphism ΦD′ on S1(x3,1, y3,1). As ΦD′ is defined over
Fp2 , it commutes with πp2 hence ΦD′ (x3,2) = πp2(ΦD′ (x3,1)) is free. Unfortu-
nately S1 has coefficients in Fp4 hence we need to perform some multiplications

in Fp4 . More precisely, y3,1 is of the form 8
√
by′3,1 with y′3,1 ∈ Fp4 . As the endo-

morphism is of the form ΦD′ (x, y) = (ΦD′ ,x(x), yΦD′ ,y(x)) the 8
√
by′3,1 term is

not involved in the endomorphism computation.

5.3 Computing Î on JC1(Fp).

Then we go back to JC1 . We compute the divisor of these two points (with
±√x3,1) on JC1 and get

ϕ∗
1(x3,1, y3,1) = T 2 − 2

4
√
b
x3,1+1
x3,1−1T +

√
b,

√
by3,1

2(x3,1−1)

(
x3,1+3
x3,1−1T −

4
√
b
)

.

If (x3,1, y3,1) is in Jacobian coordinates (X3,1, Y3,1, Z3,1) thenwe compute
x3,1+1
x3,1−1 =

X3,1+Z2
3,1

X3,1−Z2
3,1

.
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A similar computation gives

ϕ∗
2(x3,2, y3,2) = T 2+2

4
√
b
x3,2+1
x3,2−1T +

√
b,

√
by3,2

2(x3,2−1)

(
x3,2+3
x3,2−1T+

4
√
b
)

.

Since x3,2 = πp2(x3,1) and y3,2 = πp2(y3,1), we have

ϕ∗
2(x3,2, y3,2) = T 2+2 4

√
b
πp2(x3,1)+1

πp2(x3,1)−1T +
√
b,

√
bπp2(y3,1)

2(πp2(x3,1)−1)

(
πp2(x3,1)+3

πp2 (x3,1)−1T+ 4
√
b
)

.

Hence ϕ∗
2(x3,2, y3,2) = πp2(ϕ

∗
1(x3,1, y3,1)).

Finally, we have

ϕ∗
2(ϕ2∗(P1) + ϕ2∗(P2)) = πp2(ϕ

∗
1((ϕ1∗(P1) + ϕ1∗(P2)))) .

and, with similar arguments,

ϕ∗
2(ΦD′ (ϕ2∗(P1) + ϕ2∗(P2))) = πp2(ϕ

∗
1(ΦD′ ((ϕ1∗(P1) + ϕ1∗(P2))))) .

The computation of the sum ϕ∗
1(ΦD′ (ϕ1∗(D))) + πp2 ◦ ϕ∗

1(ΦD′ (ϕ1∗(D))) in-
volves terms in Fp4 but thanks to its special form, we need to perform the opera-
tions in Fp2 only. We give the table of computations in Appendix A and show that
most multiplications are performed over Fp2 . We have followed computations for
a multiplication in Mumford coordinates provided in [5].

We conclude that applying ϕ1∗(P1) + ϕ1∗(P2) costs roughly as much as an
addition on JC1 over Fp, ϕ2∗(P1)+ϕ2∗(P2) is cost free. Computing ΦD′ depends
on the size of D′ and costs few multiplications over Fp4 . Finally adding ϕ∗

1 + ϕ∗
2

costs roughly an addition of divisors over Fp2 .

6 Complexity Analysis and Comparison to GLS-GLV
Curves

We explain that our construction is valid for GLS curves with discriminants
-3 and -4. These curves are particularly interesting for cryptography, because
their simple equation forms result into simple and efficient point additions. A
four-dimensional GLV algorithm on these curves was proposed by Longa and
Sica [16]. Although the endomorphisms we construct do not allow to derive
a higher dimension algorithm, they offer an alternative to Longa and Sica’s
construction.

The Case D = −4. We consider a curve with CM discriminant D = −4,
defined over Fp2 , with p ≡ 1 mod 8. Assume that the curve is of the form
Eα(Fp2) : y

2 = x3 + αx with α ∈ Fp2 . A 2-torsion point is P2(0, 0). Using Vélu’s
formulas, we get the isogeny with kernel generated by P2, whose equation is

(x, y) �→
(
x+

α

x
, y − y

α

x2

)
.
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This isogeny sends points on Eα on the curve Eb : y2 = x3 − 4αx. We use the
same trick as previously. If α ∈ Fp2 is such that πp(α) = αp = −α (this is the
case for example if α =

√
a with a ∈ Fp a non-square) then by composing with

(xb, yb) �→
(
xpb/(−2), y

p
b/(−2

√
−2)

)
, we get an endomorphism Φ2. Note that

√
−1 ∈ Fp since p ≡ 1 mod 8. We obtain

Φ2 : Eα(Fp2)→ Eα(Fp2)

(x, y) �→
{
O if (x, y) = (0, 0),(

(xp)2+α
2xp , yp

2
√
2

(
1− α

(xp)2

))
otherwise.

We obtained an endomorphism Φ2 such that Φ2
2 − 2 = 0, when restricted to

points defined over Fp2 . The complex multiplication endomorphism Φ on Eα is
(x, y) → (−x, iy) and verifies the equation Φ2 + 1 = 0. The 4-dimensional GLV
algorithm of Longa and Sica on this curve uses an endomorphism Ψ such that
Ψ4 + 1 = 0. With our method we obtain two distinct endomorphisms, but the
three ones Ψ, Φ2, Φ are not “independent” on the subgroup E(Fp2)\E[2]. Indeed,
we have Φ2 + ΦΦ2 = 2Ψ .

Note that in this case the corresponding Jacobian splits into two isogenous
elliptic curves over Fp, namely the two quartic twists defined over Fp of E1,c.

The Case D = −3. We consider the curve Eβ whose Weierstrass equation is

y2 = x3 + β, (26)

where β2 ∈ Fp. Our construction yields the following efficiently computable en-
domorphism

Φ3(x, y) =

(
1

3

(
xp +

4βp

x2p

)
,
yp√
3

(
1 +

8βp

x3p

))
.

When restricted to points defined over Fp2 , this endomorphism verifies the equa-
tion Φ2

3 − 3 = 0, while the complex multiplication endomorphism Φ has charac-
teristic equation Φ2 + Φ + 1 = 0. Longa and Sica’s algorithm uses the complex
multiplication Φ and an endomorphism Ψ verifying Ψ2+1 = 0 for points defined
over Fp2 . We observe that 2Φ3Ψ − 1 = 2Φ.

We give in Table 6 the operation count of a computation of one scalar multi-
plication using two-dimensional and four-dimensional GLV on E and Eβ given by
equation (26).We denote bym, s and byM,S the cost of multiplication and squar-
ing over Fp and over Fp2 , respectively. We denote by c the cost of multiplication by
a constant in Fp2 . In order to give global estimates, we will assume thatm ∼ s and
thatM ∼ 3m and S ∼ 3s. Additions in Fp are not completely negligible compared
to multiplications, but we do not count additions here. We counted operations by
using formulæ from Bernstein and Lange’s database [1] for addition and doubling
in projective coordinates. On the curve E1,c addition costs 12M + 2S, while dou-
bling costs 5S + 6M + 1c. For Eβ , addition costs 12M + 2S, while doubling is
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3M+5S+1c. Note that byusingMontgomery’s simultaneous inversionmethod,we
could also obtain all points in the look-up table in affine coordinates and use mixed
additions for the addition step of the scalar multiplication algorithm. This variant
adds one inversion and 3(n−1)multiplications, wheren is the length of the look-up
table. We believe this is interesting for implementations of cryptographic applica-
tions which need to perform several scalar multiplications. For genus 2 arithmetic
on curves of the form y2 = x5 + ax3 + bx, we used formulæ given by Costello and
Lauter [5] in projective coordinates. An addition costs 43M + 4S and a doubling
costs 30M + 9S.

Table 1. Total cost of scalar multiplication at a 128-bit security level

Curve Method Operation count Global estimation

E1,c 4-GLV, 16 pts. 1168M + 440S 4797m

Eβ 4-GLV, 16 pts. 976M + 440S 4248m

E1,c 2-GLV, 4 pts. 2048M + 832S 8640m

Eβ 2-GLV, 4 pts. 1664M + 832S 7488m

JC1 4-GLV, 16 pts. 4500m + 816s 5316m

JC1 2-GLV, 4 pts. 7968m + 1536s 9504m

FKT [3] 4-GLV, 16 pts. 4500m + 816s 5316m

Kummer [3] – 3328m + 2304s 5632m

The practical gain of the 4-dimensional GLV on E1,c, when compared to the
2-dimensional GLV method, is of 44%. Curves with discriminant -3, defined over
Fp2 , which belong both to the family of curves we propose and to the one proposed
by Longa and Sica, offer a 12% speed-up, thanks to their efficient arithmetic.

7 Conclusion

We have studied two families of elliptic curves defined over Fp2 which have the
property that the Weil restriction is isogenous over Fp to the Jacobian of a
genus 2 curve. We have proposed a four dimensional GLV algorithm on these
families of elliptic curves and on the corresponding Jacobians of genus 2 curves.
Our complexity estimates show that these abelian varieties offer efficient scalar
multiplication, competitive to GLV algorithms on other families in the literature,
having two efficiently computable and “independent” endomorphisms.
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many helpful discussions on the GLV algorithm and lattice reduction. We thank
the anonymous reviewers of the Asiacrypt conference for their remarks. This
work was supported in part by the French ANR-09-VERS-016 BEST Project.



Four-Dimensional GLV via the Weil Restriction 95

References

1. Bernstein, D., Lange, T.: Explicit-Formulas Database,
http://www.hyperelliptic.org/EFD/

2. Bisson, G.: Endomorphism rings in cryptography. PhD thesis, Institut National
Polytechnique de Lorraine (2011)

3. Bos, J.W., Costello, C., Hisil, H., Lauter, K.: Fast cryptography in genus 2.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
194–210. Springer, Heidelberg (2013)

4. Cheon, J.H.: Security analysis of the strong diffie-hellman problem. In: Vaudenay, S.
(ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006)

5. Costello, C., Lauter, K.: Group Law Computations on Jacobians of Hyperelliptic
Curves. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 92–117.
Springer, Heidelberg (2012)

6. Dewaghe, L.: Un corollaire aux formules de Vélu. Draft (1995)
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A Appendix 1

Following [5], we explain here the step addition of two divisors in the isogeny
computation in Section 5.3. We denote by mn and sn the cost of multiplication
and squaring, respectively, in an extension field Fpn .

σ1 = u1 + πp2 (u1), Δ0 = v0 − πp2(v0), Δ1 = v1 − πp2(v1), U1 = u2
1 (1m4)

M1 = u2
1 − πp2(u

2
1) ,M2 =

√
b(πp2(u1)− u1), M3 = u1 − πp2(u1);

l2 = 2(M2 ·Δ1 +Δ0 ·M1); l3 = Δ0 ·M3; d = −2M2 ·M3; (4m2)
A = 1/(d · l3); B = d ·A; C = d ·B; D = l2 · B; (3m2+1m4)
E = l23 ·A; CC = C2; u′′

1 = 2 ·D − CC − σ1 (1m2+2s2)
u′′
0 = D2 + C · (v1 + πp2(v1))− ((u′′

1 − CC) · σ1 + (U1 + πp2 (U1)))/2 (2m2+1s4)

U ′′
0 = πp2(u1) · u′′

0 ; v
′′
1 = D · (u1 − u′′

1) + u2′′
1 − u′′

0 − U1; (2m4+1s1)
v′′0 = D · (u0 − u′′

0) + U ′′
0 ;v′′1 = −(E · v′′1 + v1); v

′′
0 = −(E · v′′0 + v0); (3m4)

http://eprint.iacr.org/2013/312
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Abstract. The classic Leftover Hash Lemma (LHL) is often used to
argue that certain distributions arising from modular subset-sums are
close to uniform over their finite domain. Though very powerful, the
applicability of the leftover hash lemma to lattice based cryptography is
limited for two reasons. First, typically the distributions we care about in
lattice-based cryptography are discrete Gaussians, not uniform. Second,
the elements chosen from these discrete Gaussian distributions lie in an
infinite domain: a lattice rather than a finite field.

In this work we prove a “lattice world” analog of LHL over infinite
domains, proving that certain “generalized subset sum” distributions
are statistically close to well behaved discrete Gaussian distributions,
even without any modular reduction. Specifically, given many vectors
{xi}mi=1 from some lattice L ⊂ Rn, we analyze the probability distribu-
tion

∑m
i=1 zixi where the integer vector z ∈ Zm is chosen from a discrete

Gaussian distribution. We show that when the xi’s are “random enough”
and the Gaussian from which the z’s are chosen is “wide enough”, then
the resulting distribution is statistically close to a near-spherical dis-
crete Gaussian over the lattice L. Beyond being interesting in its own
right, this “lattice-world” analog of LHL has applications for the new
construction of multilinear maps [5], where it is used to sample Discrete
Gaussians obliviously. Specifically, given encoding of the xi’s, it is used
to produce an encoding of a near-spherical Gaussian distribution over
the lattice. We believe that our new lemma will have other applications,
and sketch some plausible ones in this work.

1 Introduction

The Leftover Hash Lemma (LHL) is a central tool in computer science, stating
that universal hash functions are good randomness extractors. In a characteristic
application, the universal hash function may often be instantiated by a simple
inner product function, where it is used to argue that a random linear combina-
tion of some elements (that are chosen at random and then fixed “once and for
all”) is statistically close to the uniform distribution over some finite domain.
Though extremely useful and powerful in general, the applicability of the left-
over hash lemma to lattice based cryptography is limited for two reasons. First,
typically the distributions we care about in lattice-based cryptography are dis-
crete Gaussians, not uniform. Second, the elements chosen from these discrete

K. Sako and P. Sarkar (Eds.) ASIACRYPT 2013 Part I, LNCS 8269, pp. 97–116, 2013.
c© International Association for Cryptologic Research 2013
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Gaussian distributions lie in an infinite domain: a lattice rather than a finite
field.

The study of discrete Gaussian distributions underlies much of the advances in
lattice-based cryptography over the last decade. A discrete Gaussian distribution
is a distribution over some fixed lattice, in which every lattice point is sampledwith
probability proportional to its probability mass under a standard (n-dimensional)
Gaussian distribution. Micciancio and Regev have shown in [10] that these distri-
butions share many of the nice properties of their continuous counterparts, and
demonstrated their usefulness for lattice-based cryptography. Since then, discrete
Gaussian distributions have been used extensively in all aspects of lattice-based
cryptography (most notably in the famous “Learning with Errors” problem and
its variants [14]). Despite their utility, we still do not understand discrete Gaussian
distributions as well as we do their continuous counterparts.

A Gaussian Leftover Hash Lemma for Lattices?
The LHL has been applied often in lattice-based cryptography, but sometimes
awkwardly. As an example, in the integer-based fully homomorphic encryption
scheme of van Dijk et al. [18], ciphertexts live in the lattice Z. Roughly speaking,
the public key of that scheme contains many encryptions of zero, and encryption
is done by adding the plaintext value to a subset-sum of these encryptions of
zero. To prove security of this encryption method, van Dijk et al. apply the
left-over hash lemma in this setting, but with the cost of complicating their
encryption procedure by reducing the subset-sum of ciphertexts modulo a single
large ciphertext, so as to bring the scheme back in to the realm of finite rings
where the leftover hash lemma is naturally applied.1 It is natural to ask whether
that scheme remains secure also without this artificial modular reduction, and
more generally whether there is a more direct way to apply the LHL in settings
with infinite rings.

As another example, in the recent construction of multilinear maps [5], Garg
et. al. require a procedure to randomize “encodings” to break simple algebraic
relations that exist between them. One natural way to achieve this randomization
is by adding many random encodings of zero to the public parameters, and
adding a random linear combination of these to re-randomize a given encoding
(without changing the encoded value). However, in their setting, there is no
way to “reduce” the encodings so that the LHL can be applied. Can they argue
that the new randomized encoding yields an element from some well behaved
distribution?

In this work we prove an analog of the leftover hash lemma over lattices,
yielding a positive answers to the questions above. We use discrete Gaussian
distributions as our notion of “well behaved” distributions. Then, for m vectors
{xi}i∈[m] chosen “once and for all” from an n dimensional lattice L ⊂ Rn,
and a coefficient vector z chosen from a discrete Gaussian distribution over the

1 Once in the realms of finite rings, one can alternatively use the generic proof of
Rothblum [15], which also uses the LHL.
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integers, we give sufficient conditions under which the distribution
∑m

i=1 zixi is
“well behaved.”

Oblivious Gaussian Sampler
Another application of our work is in the construction of an extremely simple
discrete Gaussian sampler [6,13]. Such samplers, that sample from a spherical
discrete Gaussian distribution over a lattice have been constructed by [6] (using
an algorithm by Klein [7]) as well as Peikert [13]. Here we consider a much sim-
pler discrete Gaussian sampler (albeit a somewhat imperfect one). Specifically,
consider the following sampler. In an offline phase, for m > n, the sampler sam-
ples a set of short vectors x1,x2, . . . ,xm from L – e.g., using GPV or Peikert’s
algorithm. Then, in the online phase, the sampler generates z ∈ Zm according to
a discrete Gaussian and simply outputs

∑m
i=1 zixi. But does this simpler sam-

pler work – i.e., can we say anything about its output distribution? Also, how
small can we make the dimension m of z and how small can we make the entries
of z? Ideally m would be not much larger than the dimension of the lattice and
the entries of z have small variance – e.g., Õ(

√
n).

A very useful property of such a sampler is that it can be made oblivious to
an explicit representation of the underlying lattice, which makes it applicable
easily within an additively homomorphic scheme. Namely, if you are given lattice
points encrypted under an additively homomorphic encryption scheme, you can
use them to generate an encrypted well behaved Gaussian on the underlying
lattice. Previous samplers [6,13] are too complicated to use within an additively
homomorphic encryption scheme 2.

Our Results
In this work, we obtain a discrete Gaussian version of the LHL over infinite
rings. Formally, consider an n dimensional lattice L and (column) vectors X =
[x1|x2| . . . |xm] ∈ L. We choose xi according to a discrete Gaussian distribution

DL,S, where DL,S is defined as DL,S,c(x) = ρS,c(x)
ρS,c(L) with ρS,c(x)

def
= exp(−π‖x−

c‖2/s2) and ρS,c(A) for set A denotes
∑

x∈A ρS,c(x).
Let z ← DZm,s′ , we analyze the conditions under which the vector X · z is

statistically close to a “near-spherical” discrete Gaussian. Formally, consider:

EX,s′
def
= {X · z : z ← DZm,s′}

Then, we prove that EX,s′ is close to a discrete Gaussian over L of moder-
ate “width”. Specifically, we show that for large enough s′, with overwhelming
probability over the choice of X :

1. EX,s′ is statistically close to the ellipsoid Gaussian DL,s′X� , over L.
2. The singular values of the matrix X are of size roughly s

√
m, hence the

shape of DL,s′X� is “roughly spherical”. Moreover, the “width” of DL,s′X�

is roughly s′s
√
m = poly(n).

2 As noted by Peikert [13], one can generate an ellipsoidal Gaussian distribution over
the lattice given a basis B by just outputting y ← B · z where z is a discrete
Gaussian, but this ellipsoidal Gaussian distribution would typically be very skewed.
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We emphasize that it is straightforward to show that the covariance matrix
of EX,s′ is exactly s′

2
XX�. However, the technical challenge lies in showing

that EX,s′ is close to a discrete Gaussian for a non-square X . Also note that
for a square X , the shape of the covariance matrix XX� will typically be very
“skewed” (i.e., the least singular value of X� is typically much smaller than the
largest singular value). We note that the “approximately spherical” nature of the
output distribution is important for performance reasons in applications such as
GGH: These applications must choose parameters so that the least singular value
of X “drowns out” vectors of a certain size, and the resulting vectors that they
draw from EX,s′ grow in size with the largest singular value of X , hence it is
important that these two values be as close as possible.

Our Techniques
Our main result can be argued along the following broad outline. Our first theo-
rem (Theorem 2) says that the distribution of X ·z ← EX,s′ is indeed statistically
close to a discrete Gaussian over L, as long as s′ exceeds the smoothing param-
eter of a certain “orthogonal lattice” related to X (denoted A). Next, Theorem
3 clarifies that A will have a small smoothing parameter as long as X� is “reg-
ularly shaped” in a certain sense. Finally, we argue in Lemma 8 that when the
columns of X are chosen from a discrete Gaussian, xi ← DL,S, then X� is
“regularly shaped,” i.e. has singular values all close to σn(S)

√
m.

The analysis of the smoothing parameter of the “orthogonal lattice” A is
particularly challenging and requires careful analysis of a certain “dual lattice”
related to A. Specifically, we proceed by first embedding A into a full rank lattice
Aq and then move to study Mq – the (scaled) dual of Aq. Here we obtain a lower
bound on λn+1(Mq), i.e. the n + 1th minima of Mq. Next, we use a theorem
by Banasczcyk to convert the lower bound on λn+1(Mq) to an upper bound
on λm−n(Aq), obtaining m − n linearly independent, bounded vectors in Aq.
We argue that these vectors belong to A, thus obtaining an upper bound on
λm−n(A). Relating λm−n(A) to ηε(A) using a lemma by Micciancio and Regev
completes the analysis. (We note that probabilistic bounds on the minima and
smoothing parameter Aq,Mq are well known in the case when the entries of
matrix X are uniformly random mod q (e.g. [6]), but here we obtain bounds in
the case when X has Gaussian entries significantly smaller than q.)

To argue that X� is regularly shaped, we begin with the literature of random
matrices which establishes that for a matrix H ∈ Rm×n, where each entry of H
is distributed as N (0, s2) and m is sufficiently greater than n, the singular values
of H are all of size roughly s

√
m. We extend this result to discrete Gaussians –

showing that as long as each vector xi ← DL,S where S is “not too small” and
“not too skewed”, then with high probability the singular values of X� are all
of size roughly s

√
m.

Related Work
Properties of linear combinations of discrete Gaussians have been studied before
in some cases by Peikert [13] as well as more recently by Boneh and Freeman [3].
Peikert’s “convolution lemma” (Theorem 3.1 in [13]) analyzes certain cases in
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which a linear combination of discrete Gaussians yields a discrete Gaussian, in
the one dimensional case. More recently, Boneh and Freeman [3] observed that
under certain conditions, a linear combination of discrete Gaussians over a lattice
is also a discrete Gaussian. However, the deviation of the Gaussian needed to
achieve this are quite large. Related questions were considered by Lyubashevsky
[9] where he computes the expectation of the inner product of discrete Gaussians.

Discrete Gaussian samplers have been studied by [6] (who use an algorithm
by [7]) and [13]. These works describe a discrete Gaussian sampling algorithm
that takes as input a ‘high quality’ basis B for an n dimensional lattice L and
output a sample from DL,s,c. In [6], s ≥ ‖B̃‖ · ω(

√
logn), and B̃ = maxi ‖b̃i‖

is the Gram Schmidt orthogonalization of B. In contrast, the algorithm of [13]
requires s ≥ σ1(B), i.e. the largest singular value of B, but is fully parallelizable.
Both these samplers take as input an explicit description of a “high quality basis”
of the relevant lattice, and the quality of their output distribution is related to
the quality of the input basis.

Peikert’s sampler [13] is elegant and its complexity is difficult to beat: the only
online computation is to compute c−B1�B−1

1 (c−x2)�, where c is the center of
the Gaussian, B1 is the sampler’s basis for its lattice L, and x2 is a vector that
is generated in an offline phase (freshly for each sampling) in a way designed
to “cancel” the covariance of B1 so as to induce a purely spherical Gaussian.
However, since our sampler just directly takes an integer linear combination of
lattice vectors, and does not require extra precision for handling the inverse B−1

1 ,
it might outperform Peikert’s in some situations, at least when c = 0.

2 Preliminaries

We say that a function f : R+ → R+ is negligible (and write f(λ) < negl(λ)) if
for every d we have f(λ) < 1/λd for sufficiently large λ. For two distributions
D1 and D2 over some set Ω the statistical distance SD(D1,D2) is

SD(D1,D2)
def
=

1

2

∑
x∈Ω

∣∣Pr
D1

[x]− Pr
D2

[x]
∣∣

Two distribution ensembles D1(λ) and D2(λ) are statistically close or statisti-
cally indistinguishable if SD

(
D1(λ),D2(λ)

)
is a negligible function of λ.

2.1 Gaussian Distributions

For any real s > 0 and vector c ∈ Rn, define the (spherical) Gaussian func-
tion on Rn centered at c with parameter s as ρs,c(x) = exp(−π‖x − c‖2/s2)
for all x ∈ Rn. The normal distribution with mean μ and deviation σ, de-
noted N (μ, σ2), assigns to each real number x ∈ R the probability density
f(x) = 1

σ
√
2π
· ρσ√2π,μ(x). The n-dimensional (spherical) continuous Gaussian

distribution with center c and uniform deviation σ2, denoted Nn(c, σ2), just
chooses each entry of a dimension-n vector independently from N (ci, σ

2).
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The n-dimensional spherical Gaussian function generalizes naturally to el-
lipsoid Gaussians, where the different coordinates are jointly Gaussian but are
neither identical nor independent. In this case we replace the single variance
parameter s2 ∈ R by the covariance matrix Σ ∈ Rn×n (which must be positive-
definite and symmetric). To maintain consistency of notations between the spher-
ical and ellipsoid cases, below we let S be a matrix such that S�×S = Σ. Such
a matrix S always exists for a symmetric Σ, but it is not unique. (In fact there
exist such S’es that are not even n-by-n matrices, below we often work with such
rectangular S’es.)

For a rank-n matrix S ∈ Rm×n and a vector c ∈ Rn, the ellipsoid Gaussian
function on Rn centered at c with parameter S is defined by

ρS,c(x) = exp
(
− π(x− c)�(S�S)−1(x− c)

)
∀x ∈ Rn.

Obviously this function only depends on Σ = S�S and not on the particular
choice of S. It is also clear that the spherical case can be obtained by setting
S = sIn, with In the n-by-n identity matrix. Below we use the shorthand ρs(·)
(or ρS(·)) when the center of the distribution is 0.

2.2 Matrices and Singular Values

In this note we often use properties of rectangular (non-square) matrices. For
m ≥ n and a rank-n matrix3 X ′ ∈ Rm×n, the pseudoinverse of X ′ is the (unique)

m-by-n matrix Y ′ such that X ′�Y ′ = Y ′�X ′ = In and the columns of Y ′ span
the same linear space as those of X ′. It is easy to see that Y ′ can be expressed
as Y ′ = X ′(X ′�X ′)−1 (note that X ′�X ′ is invertible since X ′ has rank n).

For a rank-n matrix X ′ ∈ Rm×n, denote UX′ = {‖X ′u‖ : u ∈ Rn, ‖u‖ = 1}.
The least singular value of X ′ is then defined as σn(X

′) = inf(U ′
X) and similarly

the largest singular value of X ′ is σ1(X
′) = sup(U ′

X). Some properties of singular
values that we use later in the text are stated in Fact 1.

Fact 1. For rank-n matrices X ′, Y ′ ∈ Rm×n with m ≥ n, the following holds:

1. If X ′�X ′ = Y ′�Y ′ then X ′, Y ′ have the same singular values.
2. If Y ′ is the (pseudo)inverse of X ′ then the singular values of X ′, Y ′ are

reciprocals.
3. If X ′ is a square matrix (i.e., m = n) then X ′, X ′� have the same singular

values.
4. If σ1(Y

′) ≤ δσn(X
′) for some constant δ < 1, then σ1(X

′ + Y ′) ∈ [1− δ, 1+
δ]σ1(X

′) and σn(X
′ + Y ′) ∈ [1− δ, 1 + δ]σn(X

′). ��

It is well known that when m is sufficiently larger than n, then the singular values
of a “random matrix” X ′ ∈ Rm×n are all of size roughly

√
m. For example,

Lemma 1 below is a special case of [8, Thm 3.1], and Lemma 2 can be proved
along the same lines of (but much simpler than) the proof of [17, Corollary 2.3.5].

3 We use the notation X ′ instead of X to avoid confusion later in the text where we
will instantiate X ′ = X�.
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Lemma 1. There exists a universal constant C > 1 such that for any m >
2n, if the entries of X ′ ∈ Rm×n are drawn independently from N (0, 1) then
Pr[σn(X

′) <
√
m/C] < exp(−O(m)). ��

Lemma 2. There exists a universal constant C > 1 such that for any m >
2n, if the entries of X ′ ∈ Rm×n are drawn independently from N (0, 1) then
Pr[σ1(X

′) > C
√
m] < exp(−O(m)). ��

Corollary 1. There exists a universal constant C > 1 such that for any m > 2n
and s > 0, if the entries of X ′ ∈ Rm×n are drawn independently from N (0, s2)
then

Pr
[
s
√
m/C < σn(X

′) ≤ σ1(X
′) < sC

√
m
]
> 1− exp(−O(m)). ��

Remark. The literature on random matrices is mostly focused on analyzing the
“hard cases” of more general distributions and m which is very close to n (e.g.,
m = (1 + o(1))n or even m = n). For our purposes, however, we only need the
“easy case” where all the distributions are Gaussian and m� n (e.g., m = n2),
in which case all the proofs are much easier (and the universal constant from
Corollary 1 gets closer to one).

2.3 Lattices and Their Dual

A lattice L ⊂ Rn is an additive discrete sub-group of Rn. We denote by span(L)
the linear subspace of Rn, spanned by the points in L. The rank of L ⊂ Rn is
the dimension of span(L), and we say that L has full rank if its rank is n. In
this work we often consider lattices of less than full rank.

Every (nontrivial) lattice has bases: a basis for a rank-k lattice L is a set of k

linearly independent points b1, . . . , bk ∈ L such that L = {
∑k

i=1 zibi : zi ∈ Z ∀i}.
If we arrange the vectors bi as the columns of a matrix B ∈ Rn×k then we can
write L = {Bz : z ∈ Zk}. If B is a basis for L then we say that B spans L.

Definition 1 (Dual of a Lattice). For a lattice L ⊂ Rn, its dual lattice
consists of all the points in span(L) that are orthogonal to L modulo one, namely:

L∗ = {y ∈ span(L) : ∀x ∈ L, 〈x,y〉 ∈ Z}

Clearly, if L is spanned by the columns of some rank-k matrix X ∈ Rn×k then
L∗ is spanned by the columns of the pseudoinverse of X . It follows from the
definition that for two lattices L ⊆M we have M∗ ∩ span(L) ⊆ L∗.

Banasczcyk provided strong transference theorems that relate the size of short
vectors in L to the size of short vectors in L∗. Recall that λi(L) denotes the i-th
minimum of L (i.e., the smallest s such that L contains i linearly independent
vectors of size at most s).

Theorem 1 (Banasczcyk [2]). For any rank-n lattice L ⊂ Rm, and for all
i ∈ [n],

1 ≤ λi(L) · λn−i+1(L
∗) ≤ n.
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2.4 Gaussian Distributions over Lattices

The ellipsoid discrete Gaussian distribution over lattice L with parameter S,
centered around c, is

∀ x ∈ L,DL,S,c(x) =
ρS,c(x)

ρS,c(L)
,

where ρS,c(A) for set A denotes
∑

x∈A ρS,c(x). In other words, the probability
DL,S,c(x) is simply proportional to ρS,c(x), the denominator being a normaliza-
tion factor. The same definitions apply to the spherical case, which is denoted by
DL,s,c(·) (with lowercase s). As before, when c = 0 we use the shorthand DL,S
(or DL,s). The following useful fact that follows directly from the definition,
relates the ellipsoid Gaussian distributions over different lattices:

Fact 2. Let L ⊂ Rn be a full-rank lattice, c ∈ Rn a vector, and S ∈ Rm×n,
B ∈ Rn×n two rank-n matrices, and denote L′ = {B−1v : v ∈ L}, c′ = B−1c,
and S′ = S×(B�)−1. Then the distribution DL,S,c is identical to the distribution
induced by drawing a vector v ← DL′,S′,c′ and outputting u = Bv. ��

A useful special case of Fact 2 is when L′ is the integer lattice, L′ = Zn, in which
case L is just the lattice spanned by the basis B. In other words, the ellipsoid
Gaussian distribution on L(B), v ← DL(B),S,c, is induced by drawing an integer

vector according to z ← DZn,S′,c′ and outputting v = Bz, where S′ = S(B−1)�

and c′ = B−1c.
Another useful special case is where S = sB�, so S is a square matrix and

S′ = sIn. In this case the ellipsoid Gaussian distribution v ← DL,S,c is induced
by drawing a vector according to the spherical Gaussian u← DL′,s,c′ and out-

putting v = 1
sS

�u, where c′ = s(S�)−1c and L′ = {s(S�)−1v : v ∈ L}.

Smoothing parameter. As in [10], for lattice L and real ε > 0, the smoothing
parameter of L, denoted ηε(L), is defined as the smallest s such that ρ1/s(L

∗ \
{0}) ≤ ε. Intuitively, for a small enough ε, the number ηε(L) is sufficiently larger
than L’s fundamental parallelepiped so that sampling from the corresponding
Gaussian “wipes out the internal structure” of L. Thus, the sparser the lattice,
the larger its smoothing parameter.

It is well known that for a spherical Gaussian with parameter s > ηε(L), the
size of vectors drawn from DL,s is bounded by s

√
n whp (cf. [10, Lemma 4.4],

[12, Corollary 5.3]). The following lemma (that follows easily from the spherical
case and Fact 2) is a generalization to ellipsoid Gaussians.

Lemma 3. For a rank-n lattice L, vector c ∈ Rn, constant 0 < ε < 1 and
matrix S s.t. σn(S) ≥ ηε(L), we have that for v ← DL,S,c,

Pr
v←DL,S,c

(
‖v − c‖ ≥ σ1(S)

√
n
)
≤ 1 + ε

1− ε
· 2−n.
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Moreover, for every z ∈ Rn r > 0 it holds that

Pr
v←DL,S,c

(
|〈v − c, z〉| ≥ rσ1(S)‖z‖

)
≤ 2en · exp(−πr2).

The proof can be found in the long version [1].
The next lemma says that the Gaussian distribution with parameter s ≥ ηε(L)

is so smooth and “spread out” that it covers the approximately the same number
of L-points regardless of where the Gaussian is centered. This is again well known
for spherical distributions (cf. [6, Lemma 2.7]) and the generalization to ellipsoid
distributions is immediate using Fact 2.

Lemma 4. For any rank-n lattice L, real ε ∈ (0, 1), vector c ∈ Rn, and rank-n
matrix S ∈ Rm×n such that σn(S) ≥ ηε(L), we have ρS,c(L) ∈ [ 1−ε

1+ε , 1] · ρS(L).
��

Regev also proved that drawing a point from L according to a spherical discrete
Gaussian and adding to it a spherical continuous Gaussian, yields a probability
distribution close to a continuous Gaussian (independent of the lattice), provided
that both distributions have parameters sufficiently larger than the smoothing
parameter of L.

Lemma 5 (Claim 3.9 of [14]). Fix any n-dimensional lattice L ⊂ Rn, real ε ∈
(0, 1/2), and two reals s, r such that rs√

r2+s2
≥ ηε(L), and denote t =

√
r2 + s2.

Let RL,r,s be a distribution induced by choosing x← DL,s from the spherical
discrete Gaussian on L and y ← Nn(0, r2/2π) from a continuous Gaussian,
and outputting z = x + y. Then for any point u ∈ Rn, the probability den-
sity RL,r,s(u) is close to the probability density under the spherical continuous
Gaussian Nn(0, t2/2π) upto a factor of 1−ε

1+ε :

1−ε
1+εN

n(0, t2/2π)(u) ≤ RL,r,s(u) ≤ 1+ε
1−εN

n(0, t2/2π)(u)

In particular, the statistical distance betweenRL,r,s andNn(0, t2/2π) is at most 4ε.

More broadly, Lemma 5 implies that for any event E(u), we have

Pr
u←N (0,t2/2π)

[E(u)] · 1−ε
1+ε ≤ Pr

u←RL,r,s

[E(u)] ≤ Pr
u←N (0,t2/2π)

[E(u)] · 1+ε
1−ε

Another useful property of “wide” discrete Gaussian distributions is that they
do not change much by short shifts. Specifically, if we have an arbitrary subset of
the lattice, T ⊆ L, and an arbitrary short vector v ∈ L, then the probability mass
of T is not very different than the probability mass of T − v = {u− v : u ∈ T }.
Below let erf(·) denote the Gauss error function.

Lemma 6. Fix a lattice L ⊂ Rn, a positive real ε > 0, and two parameters
s, c such that c > 2 and s ≥ (1 + c)ηε(L). Then for any subset T ⊂ L and any

additional vector v ∈ L, it holds that DL,s(T )−DL,s(T−v) ≤ erf(q(1+4/c)/2)
erf(2q) · 1+ε

1−ε ,

where q = ‖v‖
√
π/s.
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We provide the proof in A.1.
One useful special case of Lemma 6 is when c = 100 (say) and ‖v‖ ≈ s, where

we get a bound DL,s(T ) − DL,s(T − v) ≤ erf(0.52
√
π)

erf(2
√
π)
· 1+ε
1−ε ≈ 0.81. We note

that when ‖v‖
s → 0, the bound from Lemma 6 tends to (just over) 1/4, but we

note that we can make it tend to zero with a different choice of parameters in
the proof (namely making H ′

v and H ′′
v thicker, e.g. H ′′

v = Hv and H ′
v = 2Hv).

Lemma 6 extends easily also to the ellipsoid Gaussian case, using Fact 2:

Corollary 2. Fix a lattice L ⊂ Rn, a positive real ε > 0, a parameter c > 2 and

a rank-n matrix S such that s
def
= σn(S) ≥ (1 + c)ηε(L). Then for any subset

T ⊂ L and any additional vector v ∈ L, it holds that DL,S(T ) − DL,S(T −
v) ≤ erf(q(1+4/c)/2)

erf(2q) · 1+ε
1−ε , where q = ‖v‖

√
π/s.

Micciancio and Regev give the following bound on the smoothing parameter in
terms of the primal lattice.

Lemma 7. [Lemma 3.3 of [10]] For any n-dimensional lattice L and positive
real ε > 0,

ηε(L) ≤ λn(L) ·
√

ln(2n(1 + 1/ε))

π
.

In particular, for any superlogarithmic function ω(logn), there exists a negligible
function ε(n) such that ηε(L) ≤

√
ω(logn) · λn(L).

3 Our Discrete Gaussian LHL

Consider a full rank lattice L ⊆ Zn, some negligible ε = ε(n), the corresponding
smoothing parameter η = ηε(L) and parameters s > Ω(η), m > Ω(n logn), and
s′ > Ω(poly(n) log(1/ε)). The process that we analyze begins by choosing “once
and for all” m points in L, drawn independently from a discrete Gaussian with
parameter s, xi ← DL,s.4

Once the xi’s are fixed, we arrange them as the columns of an n-by-m matrix
X = (x1|x2| . . . |xm), and consider the distribution EX,s′ , induced by choosing
an integer vector v from a discrete spherical Gaussian with parameter s′ and
outputting y = X · v:

EX,s′
def
= {X · v : v ← DZm,s′}. (1)

Our goal is to prove that EX,s′ is close to the ellipsoid Gaussian DL,s′X� ,
over L. We begin by proving that the singular values of X� are all roughly of
the size s

√
m5.

4 More generally, we can consider drawing the vectors xi from an ellipsoid discrete
Gaussian, xi ← DL,S, so long as the least singular value of S is at least s.

5 Since we eventually apply the following lemmas to X�, we will use X� in the
statement of the lemmas for consistency at the risk of notational clumsiness.
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Lemma 8. There exists a universal constant K > 1 such that for all m ≥ 2n,
ε > 0 and every n-dimensional real lattice L ⊂ Rn, the following holds: choosing
the rows of an m-by-n matrix X� independently at random from a spherical
discrete Gaussian on L with parameter s > 2Kηε(L), X

� ← (DL,s)m, we have

Pr
[
s
√
2πm/K<σn(X

�) ≤ σ1(X
�) < sK

√
2πm

]
> 1−(4mε+O(exp(−m/K))).

The proof can be found in the long version [1].

3.1 The Distribution EX,s′ Over Zn

We next move to show that with high probability over the choice of X , the
distribution EX,s′ is statistically close to the ellipsoid discrete Gaussian DL,s′X� .
We first prove this for the special case of the integer lattice, L = Zn, and then
use that special case to prove the same statement for general lattices. In either
case, we analyze the setting where the columns of X are chosen from an ellipsoid
Gaussian which is “not too small” and “not too skewed.”

Parameters. Below n is the security parameters and ε = negligible(n). Let S
be an n-by-n matrix such that σn(S) ≥ 2Kηε(Z

n), and denote s1 = σ1(S),
sn = σn(S), and w = s1/sn. (We consider w to be a measure for the “skewness”
of S.) Also letm, q, s′ be parameters satisfyingm ≥ 10n log q, q > 8m5/2n1/2s1w,
and s′ ≥ 4wm3/2n1/2 ln(1/ε). An example setting of parameters to keep in mind
is m = n2, sn =

√
n (which implies ε ≈ 2−

√
n), s1 = n (so w =

√
n), q = 8n7,

and s′ = n5.

Theorem 2. For ε negligible in n, let S ∈ Rn×n be a matrix such that sn =
σn(S) ≥ 18Kηε(Z

n), and denote s1 = σ1(S) and w = s1/sn. Also let m, s′ be
parameters such that m ≥ 10n log(8m5/2n1/2s1w) and s′ ≥ 4wm3/2n1/2 ln(1/ε).

Then, when choosing the columns of an n-by-m matrix X from the ellipsoid
Gaussian over Zn, X ← (DZn,S)

m, we have with all but probability 2−O(m)

over the choice of X, that the statistical distance between EX,s′ and the ellipsoid
Gaussian DZn,s′X� is bounded by 2ε.

The rest of this subsection is devoted to proving Theorem 2. We begin by showing
that with overwhelming probability, the columns of X span all of Zn, which
means also that the support of EX,s′ includes all of Z

n.

Lemma 9. With parameters as above, when drawing the columns of an n-by-m
matrix X independently at random from DZn,S we get X · Zm = Zn with all but
probability 2−O(m).

The proof can be found in the long version [1].
From now on we assume that the columns of X indeed span all of Zn. Now

let A = A(X) be the (m − n)-dimensional lattice in Zm orthogonal to all the
rows of X , and for any z ∈ Zn we denote by Az = Az(X) the z coset of A:

A = A(X)
def
= {v ∈ Zm : X ·v = 0} and Az = Az(X)

def
= {v ∈ Zm : X ·v = z}.
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Since the columns of X span all of Zn then Az is nonempty for every z ∈ Zn,
and we have Az = vz +A for any arbitrary point vz ∈ Az.

Below we prove that the smoothing parameter of A is small (whp), and use
that to bound the distance between EX,s′ and DZn,s′X� . First we show that if
the smoothing parameter of A is indeed small (i.e., smaller than the parameter
s′ used to sample the coefficient vector v), then EX,s′ and DZn,s′X� must be
close.

Lemma 10. Fix X and A = A(X) as above. If s′ ≥ ηε(A), then for any point
z ∈ Zn, the probability mass assigned to z by EX,s′ differs from that assigned by
DZn,s′X� by at most a factor of (1− ε)/(1 + ε), namely

EX,s′(z) ∈
[
1−ε
1+ε , 1

]
· DZn,s′X�(z).

In particular, if ε < 1/3 then the statistical distance between EX,s′ and DZn,s′X
is at most 2ε.

The proof can be found in Appendix A.2.

The Smoothing Parameter of A. We now turn our attention to proving
that A is “smooth enough”. Specifically, for the parameters above we prove that
with high probability over the choice of X , the smoothing parameter ηε(A) is
bounded below s′ = 4wm3/2n1/2 ln(1/ε).

Recall again that A = A(X) is the rank-(m − n) lattice containing all the
integer vectors in Zm orthogonal to the rows of X . We extend A to a full-
rank lattice as follows: First we extend the rows space of X , by throwing in
also the scaled standard unit vectors qei for the integer parameter q mentioned
above (q ≥ 8m5/2n1/2s1w). That is, we let Mq = Mq(X) be the full-rank m-
dimensional lattice spanned by the rows of X and the vectors qei,

Mq = {X�z+qy : z ∈ Z
n,y ∈ Z

m} = {u ∈ Z
m : ∃z ∈ Z

n
q s.t. u ≡ X�z (mod q)}

(where we identity Zq above with the set [−q/2, q/2)∩ Z). Next, let Aq be the
dual of Mq, scaled up by a factor of q, i.e.,

Aq = qM∗
q = {v ∈ Rm : ∀u ∈Mq, 〈v,u〉 ∈ qZ}
= {v ∈ Rm : ∀z ∈ Zn

q ,y ∈ Zm, z�X · v + q 〈v,y〉 ∈ qZ}

It is easy to see that A ⊂ Aq, since any v ∈ A is an integer vector (so q 〈v,y〉 ∈ qZ
for all y ∈ Zm) and orthogonal to the rows of X (so z�X ·v = 0 for all z ∈ Zn

q ).
Obviously all the rows of X belong to Mq, and whp they are linearly inde-

pendent and relatively short (i.e., of size roughly s1
√
m). In Lemma 11 below

we show, however, that whp over the choice of X ’s, these are essentially the only
short vectors in Mq.

Lemma 11. Recall that we chooseX asX ← (DZn,S)
m, and letw = σ1(S)/σn(S)

be a measure of the “skewness” of S. The n + 1’st minima of the lattice Mq =
Mq(X) is at least q/(4w

√
mn), except with negligible probability over the choice of

X. Namely, PrX←(DZn,S)m [λn+1(Mq) < q/(4w
√
mn)] < 2−O(m).
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Proof. We prove that with high probability over the choice of X , every vector
in Mq which is not in the linear span of the rows of X is of size at least q/4nw.

Recall that every vector in Mq is of the form X�z + qy for some z ∈ Zn
q and

y ∈ Zm. Let us denote by [v]q the modular reduction of all the entries in v into
the interval [−q/2, q/2), then clearly for every z ∈ Zn

q

‖[X�z]q‖ = inf{‖X�z + qy‖ : y ∈ Zm}.

Moreover, for every z ∈ Zn
q ,y ∈ Zm, if X�z + qy �= [X�z]q then ‖Xz + qy‖ ≥

q/2. Thus it suffices to show that every vector of the form [X�z]q which is not
in the linear span of the rows of X has size at least q/4nw (whp over the choice
of X).

Fix a particular vectorz ∈ Zn
q (i.e. an integer vectorwith entries in [−q/2, q/2)).

For this fixed vector z, let imax be the index of the largest entry in z (in absolute
value), and let zmax be the value of that entry. Considering the vector v = [X�z]q
for a randommatrixX whose columns are drawn independently from the distribu-
tionDZn,S, each entry of v is the inner product of the fixed vector z with a random
vector xi ← DZn,S , reduced modulo q into the interval [−q/2,+q/2).

Denoting s1 = σ1(S) and sn = σn(S), we now have two cases, either z
is “small”, i.e., |zmax| < q/(2s1

√
mn) or it is “large”, |zmax| ≥ q/(2s1

√
mn).

By the “moreover” part in Lemma 3 (with r =
√
m), for each xi we have

|〈xi, z〉‖ ≤ s1
√
m‖z‖ except with probability bounded below 2−m. If z is “small”

then ‖z‖ ≤ q/(2s1
√
m) and so we get

| 〈xi, z〉 | ≤ ‖z‖ · s1
√
m < q/2

except with probability < 2−m. Hence except with probability m2−m all the
entries of X�z are smaller than q/2 in magnitude, which means that [X�z]q =
X�z, and so [X�z]q belongs to the row space of X . Using the union bound
again, we get that with all but probability qn ·m2−m < m2−9m/10, the vectors
[X�z]q for all the “small” z’s belong to the row space of X .

We next turn to analyzing “large” z’s. Fix one “large” vector z, and for
that vector define the set of “bad” vectors x ∈ Zn, i.e. the ones for which
|[〈z,x〉]q| < q/4nw (and the other vectors x ∈ Zn are “good”). Observe that if
x is “bad”, then we can get a “good” vector by adding to it the imax’th standard
unit vector, scaled up by a factor of μ = min

(
�sn� , �q/|2zmax|$

)
, since

|[〈z,x+ μeimax〉]q| = |[〈z,x〉+ μzmax]q| ≥ μ|zmax| − |[〈z,x〉]q| ≥ q/4nw.

(The last two inequalities follow from q/2nw < μ|zmax| ≤ q/2 and |[〈z,x〉]q| <
q/(4w

√
mn).) Hence the injunction x �→ x+ μeimax maps “bad” x’es to “good”

x’es. Moreover, since the x’es are chosen according to the wide ellipsoid Gaus-
sian DZn,S with σn(S) = sn ≥ ηε(Z

n), and since the scaled standard unit
vectors are short, μ < sn + 1, then by Lemma 6 the total probability mass
of the “bad” vectors x differs from the total mass of the “good” vectors x +
μeimax by at most 0.81. It follows that when choosing x ← DZn,S , we have
Prx [|[〈z,x〉]q| < q/(4w

√
mn)] ≤ (1 + 0.81)/2 < 0.91. Thus the probability that
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all the entries of [X�z]q are smaller than q/(4w
√
nm) in magnitude is bounded

by (0.91)m = 2−0.14m. Since m > 10n log q, we can use the union bound to
conclude that the probability that there exists some “large” vector for which
‖[X�z]q‖ < q/(4w

√
mn) is no more than qn · 2−0.14m < 2−O(m).

Summing up the two cases, with all but probability 2−O(m)) over the choice
of X , there does not exist any vector z ∈ Zn

q for which [X�z]q is linearly

independent of the rows of X and yet |[X�z]q| < q/(4w
√
mn).

Corollary 3. With the parameters as above, the smoothing parameter of A =
A(X) satisfies ηε(A) ≤ s′ = 4wm3/2n1/2 ln(1/ε), except with probability 2−O(m).

The proof can be found in the long version [1].
Putting together Lemma 10 and Corollary 3 completes the proof of Theorem 2.

��

3.2 The Distribution EX,s′ over General Lattices

Armed with Theorem 2, we turn to prove the same theorem also for general
lattices.

Theorem 3. Let L be a full-rank lattice L ⊂ Rn and B a matrix whose columns
form a basis of L. Also let M ∈ Rn×n be a full rank matrix, and denote S =
M(B�)−1, s1 = σ1(S), sn = σn(S), and w = s1/sn. Finally let ε be negligible
in n and m, s′ be parameters such that m ≥ 10n log(8m5/2n1/2s1w) and s′ ≥
4wm3/2n1/2 ln(1/ε).

If sn ≥ ηε(Z
n), then, when choosing the columns of an n-by-m matrix X from

the ellipsoid Gaussian over L, X ← (DL,M )m, we have with all but probability
2−O(m) over the choice of X, that the statistical distance between EX,s′ and the
ellipsoid Gaussian DL,s′X� is bounded by 2ε.

This theorem is an immediate corollary of Theorem 2 and Fact 2. The proof
can be found in the long version [1].

4 Applications

In this section, we discuss the application of our discrete Gaussian LHL in the
construction of multilinear maps from lattices [5]. This construction is illustrative
of a “canonical setting” where our lemma should be useful.

Brief overview of the GGH Construction. To begin, we provide a very high level
overview of the GGH construction, skipping most details. We refer the reader to
[5] for a complete description. In [5], the mapping a→ ga from bilinear maps is
viewed as a form of “encoding” a �→ Enc(a) that satisfies some properties:

1. Encoding is easy to compute in the forward direction and hard to invert.
2. Encoding is additively homomorphic and also one-time multiplicatively ho-

momorphic (via the pairing).
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3. Given Enc(a), Enc(b) it is easy to test whether a = b.
4. Given encodings, it is hard to test more complicated relations between the

underlying scalars. For example, BDDH roughly means that given Enc(a),
Enc(b), Enc(c), Enc(d) it is hard to test if d = abc.

In [5], the authors construct encodings from ideal lattices that approximately sat-
isfy (and generalize) the above properties. Skipping most of the details, [5] roughly
used a specific (NTRU-like) lattice-based homomorphic encryption scheme, where
Enc(a) is just an encryption of a. The ability to add andmultiply then just follows
from the homomorphismof the underlying cryptosystem, andGGHdescribed how
to add to this cryptosystem a “broken secret key” that cannot be used for decryp-
tion but is good enough for testing if two ciphertexts encrypt the same element. (In
the terminology from [5], this broken key is called the zero-test parameter.)

In the specific cryptosystem used in the GGH construction, ciphertexts are
elements in some polynomial ring (represented as vectors in Zn), and addi-
tive/multiplicative homomorphism is implemented simply by addition and mul-
tiplication in the ring. A natural way to enable encoding is to publish a sin-
gle ciphertext that encrypts/encodes 1, y1 = Enc(1). To encode any other
plaintext element a, we can use the multiplicative homomorphism by setting
Enc(a) = a · y1 in the ring. However this simple encoding is certainly not hard
to decode: just dividing by y1 in the ring suffices! For the same reason, it is also
not hard to determine “complex relations” between encoding.

Randomizing the encodings. To break these simple algebraic relations, the au-
thors include in the public parameters also “randomizers” xi (i = 1, . . . ,m),
which are just random encryptions/encodings of zero, namely xi ← Enc(0).
Then to re-randomize the encoding ua = a · y1, they add to it a “random lin-
ear combination” of the xi’s, and (by additive homomorphism) this is another
encoding of the same element. This approach seems to be thwart the simple
algebraic decoding from above, but what can be said about the resulting encod-
ings? Here is where GGH use our results to analyze the probability distribution
of these re-randomized encodings.

In a little more detail, an instance of the GGH encoding includes an ideal
lattice L and a secret ring element z, and an encoding of an element a has the
form ea/z where ea is a short element that belongs to the same coset of L as the
“plaintext” a. The xi’s are therefore ring elements of the form bi/z where the
bi’s are short vectors in L. Denoting by X the matrix with the xi as columns
and by B the matrix with the numerators bi as columns, i.e., X = (x1| . . . |xm)
and B = (b1| . . . |bm). Re-randomizing the encoding ua = ea/z is obtained by
choosing a random coefficient vector r ← DZm,σ∗ (for large enough σ∗), and
setting

u′ := ua +Xr =
ea +Br

z
.

Since all the bi’s are in the lattice L, then obviously ea+Br is in the same coset
of L as ea itself. Moreover since the bi’s are short and so are the coefficients
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of r, then also so is ea+Br. Hence u′ is a valid encoding of the same plaintext a
that was encoded in ua.

Finally, using our Theorem 3 from this work, GGH can claim that the distri-
bution of u is nearly independent of the original ua (conditioned on its coset). If
the bi’s are chosen from a wide enough spherical distribution, then our Gaussian
LHL allows them to conclude that Br is close to a wide ellipsoid Gaussian. With
appropriate choice of σ∗ the “width” of that distribution is much larger than
the original ea, hence the distribution of ea + Br is nearly independent of ea,
conditioned on the coset it belongs to.

5 Discussion

Unlike the classic LHL, our lattice version of LHL is less than perfect – instead
of yielding a perfectly spherical Gaussian, it only gives us an approximately
spherical one, i.e. DL,s′X� . Here approximately spherical means that all the
singular values of the matrix X� are within a small, constant sized interval. It
is therefore natural to ask: 1) Can we do better and obtain a perfectly spherical
Gaussian? 2) Is an approximately spherical Gaussian sufficient for cryptographic
applications?

First let us consider whether we can make the Gaussian perfectly spherical.
Indeed, as the number of lattice vectors m grows larger, we expect the greatest
and least singular value of the discrete Gaussian matrix X to converge – this
would imply that as m → ∞, the linear combination

∑m
i=1 zixi does indeed

behave like a spherical Gaussian. While we do not prove this, we refer the reader
to [16] for intuitive evidence. However, the focus of this work is small m (e.g.,
m = Õ(n)) suitable for applications, in which case we do not know how to prove
the same.

This leads to the second question: is approximately spherical good enough?
This depends on the application. We have already seen that it is sufficient for
GGH encodings [5], where a canonical, wide-enough, but non-spherical Gaussian
is used to “drown out” an initial encoding, and send it to a canonical distribu-
tion of encodings that encode the same value. Our LHL shows that one can
sample from such a canonical approximate Gaussian distribution without using
the initial Gaussian samples “wastefully”.

On the other hand, we caution the reader that if the application requires the
basis vectors x1, . . . ,xm to be kept secret (such as when the basis is a trapdoor),
then one must carefully consider whether our Gaussian sampler can be used
safely. This is because, as demonstrated by [11] and [4], lattice applications
where the basis is desired to be secret can be broken completely even if partial
information about the basis is leaked. In an application where the trapdoor is
available explicitly and oblivious sampling is not needed, it is safer to use the
samplers of [6] or [13] to sample a perfectly spherical Gaussian that is statistically
independent of the trapdoor.
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A More Proofs

A.1 Proof of Lemma 6

Proof. Clearly for any fixed v, the set that maximizes DL,s(T ) − DL,s(T − v)
is the set of all vectors u ∈ L for which DL,s(u) > DL,s(u − v), which we

denote by Tv
def
= {u ∈ L : DL,s(u) > DL,s(u − v)}. Observe that for any u ∈ L

we have DL,s(u) > DL,s(u − v) iff ρs(u) > ρs(u − v), which is equivalent to
‖u‖ < ‖u − v‖. That is, u must lie in the half-space whose projection on v is
less than half of v, namely 〈u,v〉 < ‖v‖2/2. In other words we have

Tv = {u ∈ L : 〈u,v〉 < ‖v‖2/2},

which also means that Tv − v = {u ∈ L : 〈u,v〉 < −‖v‖2/2} ⊆ Tv. We can
therefore express the difference in probability mass as DL,s(Tv)−DL,s(Tv−v) =
DL,s(Tv \ (Tv − v)). Below we denote this set-difference by

Hv
def
= Tv \ (Tv − v) =

{
u ∈ L : 〈u,v〉 ∈ (− ‖v‖2

2 , ‖v‖2

2 ]
}
.

That is, Hv is the “slice” in space of width ‖v‖ in the direction of v, which is
symmetric around the origin. The arguments above imply that for any set T we
haveDL,s(T )−DL,s(T−v) ≤ DL,s(Hv). The rest of the proof is devoted to upper-
bounding the probability mass of that slice, i.e., DL,s(Hv) = Pru←DL,s [u ∈ Hv ].

To this end we consider the slightly thicker slice, say H ′
v = (1+ 4

c )Hv, and the
random variable w, which is obtained by drawing u← DL,s and adding to it a
continuous Gaussian variable of “width” s/c. We argue thatw is somewhat likely
to fall outside of the thick slice H ′

v, but conditioning on u ∈ Hv we have that
w is very unlikely to fall outside of H ′

v. Putting these two arguments together,
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we get that u must have significant probability of falling outside Hv, thereby
getting our upper bound.

In more detail, denoting r = s/c we consider drawing u ← DL,s and z ←
Nn(0, r2/2π), and setting w = u + z. Denoting t =

√
r2 + s2, we have that

s ≤ t ≤ s(1 + 1
c ) and rs/t ≥ s/(c+1) ≥ ηε(L). Thus the conditions of Lemma 5

are met, and we get that w is distributed close to a normal random variable
Nn(0, t2/2π), upto a factor of at most 1+ε

1−ε .
Since the continuous Gaussian distribution is spherical, we can consider ex-

pressing it in an orthonormal basis with one vector in the direction of v. When
expressed in this basis, we get the event z ∈ H ′

v exactly when the coefficient
in the direction of v (which is distributed close to the 1-dimensional Gaussian
N (0, t2/2π)) exceeds ‖v(1 + 4

c )/2‖ in magnitude. Hence we have

Pr[w ∈ H ′
v ] ≤ Pr

α←N (0,t2/2π)
[|α| ≤ ‖v‖] · 1 + ε

1− ε

= erf

(‖v‖√π(1 + 4
c )

2t

)
· 1 + ε

1− ε
≤ erf

(‖v‖√π(1 + 4
c )

2s

)
· 1 + ε

1− ε

On the other hand, consider the conditional probability Pr[w ∈ H ′
v|u ∈ Hv ]:

Let H ′′
v = 4

cHv , then if u ∈ Hv and z ∈ H ′′
v , then it must be the case that

w = u + z ∈ H ′
v. As before, we can consider the continuous Gaussian on z in

an orthonormal basis with one vector in the direction of v, and we get

Pr[w ∈ H ′
v|u ∈ Hv] ≥ Pr[z ∈ H ′′

v |u ∈ Hv]=Pr[z ∈ H ′′
v ]

= Pr
β←N (0,r2/2π)

[|β| ≤ 2‖v‖/c]=erf(‖v‖2
√
π/cr) = erf(2‖v‖

√
π/s)

Putting the last two bounds together, we get

erf

(‖v‖√π(1 + 4
c )

2s

)
· 1 + ε

1− ε
≥Pr[w ∈ H ′

v] ≥ Pr[u ∈ Hv ] · Pr[w /∈ H ′
v|u ∈ Hv]

≥ Pr[u ∈ Hv] · erf
(
‖v‖2

√
π

s

)

from which we conclude that Pr[u ∈ Hv] ≤
erf(‖v‖

√
π(1+4/c)/2s)

erf(‖v‖2
√
π/s)

· 1+ε
1−ε , as needed.

A.2 Proof of Lemma 10

Proof. Fix some z ∈ Zn. The probability mass assigned to z by EX,s′ is the
probability of drawing a random vector according to the discrete GaussianDZm,s′

and hitting some v ∈ Zm for which X ·v = z. In other words, this is exactly the
probability mass assigned by DZm,s′ to the coset Az . Below let T = T (X) ⊆ Rm

be the linear subspace containing the lattice A, and Tz = Tz(X) ⊆ Rm be the
affine subspace containing the coset Az:

T = T (X) = {v ∈ Rm : X · v = 0}, and Tz = Tz(X) = {v ∈ Rm : X · v = z}.
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Let Y be the pseudoinverse of X (i.e. XY � = In and the rows of Y span the
same linear sub-space as the rows of X). Let uz = Y �z, and we note that uz

is the point in the affine space Tz closest to the origin: To see this, note that
uz ∈ Tz since X ·uz = X × Y �z = z. In addition, uz belongs to the row space
of Y , so also to the row space of X , and hence it is orthogonal to T .

Since uz is the point in the affine space Tz closest to the origin, it follows
that for every point in the coset v ∈ Az we have ‖v‖2 = ‖uz‖2 + ‖v − uz‖2,
and therefore

ρs′(v) = e−π(‖v‖/s′)2 = e−π(‖uz‖/s′)2 ·e−π(‖v−uz‖/s′)2 = ρs′(uz) ·ρs′ (v−uz).

This, in turn, implies that the total mass assigned to Az by ρs′ is

ρs′
(
Az

)
=

∑
v∈Az

ρs′(v) = ρs′(uz) ·
∑
v∈Az

ρs′(v − uz) = ρs′(uz) · ρs′
(
Az − uz

)
.(2)

Fix one arbitrary point wz ∈ Az , and let δz be the distance from uz to that
point, δz = uz−wz. Since Az = wz+A, we get Az−uz = A−δz, and together
with the equation above we have:

ρs′
(
Az

)
= ρs′(uz) · ρs′

(
Az − uz

)
= ρs′(uz) · ρs′

(
A− δz

)
= ρs′(uz) · ρs′,δz

(
A
) Lemma 4

= ρs′(uz) · ρs′
(
A
)
·
[
1−ε
1+ε , 1

]
. (3)

As a last step, recall that uz = Y �z where Y Y � = (XX�)−1. Thus ρs′(uz) =

ρs′(Y
�z) = exp(−π|z�Y Y �z|/s′2) = exp

(
−π

∣∣z�(
(s′X)(s′X)�

)−1
z
∣∣) = ρ(s′X)�(z).

Putting everything together we get

EX,s′(z) = DZm,s′
(
Az

)
=

ρs′
(
Az

)
ρs′(Zm)

∈ ρ(s′X�)(z) ·
ρs′

(
A
)

ρs′(Zm)
·
[
1−ε
1+ε , 1

]
The term ρs′(A)

ρs′ (Zm) is a normalization factor independent of z, hence the proba-

bility mass EX,s′(z) is proportional to ρ(s′X�)(z), upto some “deviation factor”

in [ 1−ε
1+ε , 1].
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Abstract. This paper investigates the mathematical structure of the
“Isomorphism of Polynomial with One Secret” problem (IP1S). Our pur-
pose is to understand why for practical parameter values of IP1S most
random instances are easily solvable (as first observed by Bouillaguet et
al.). We show that the structure of the equations is directly linked to a
matrix derived from the polar form of the polynomials. We prove that
in the likely case where this matrix is cyclic, the problem can be solved
in polynomial time – using an algorithm that unlike previous solving
techniques is not based upon Gröbner basis computation.

1 Introduction

Multivariate cryptography is a sub area of cryptography the development of
which was initiated in the late 80’s [13] and was motivated by the search for
alternatives to asymmetric cryptosystems based on algebraic number theory.
RSA and more generally most existing asymmetric schemes based on algebraic
number theory use the difficulty of solving one univariate equation over a large
group (e.g. xe = y where e and y are known). Multivariate cryptography as for
it, aims at using the difficulty of solving systems of multivariate equations over
a small field.

A limited number of multivariate problems have emerged that can be reason-
ably conjectured to possess intractable instances of relatively small size. Two
classes of multivariate problems are underlying most multivariate cryptosystems
proposed so far, the MQ problem of solving a multivariate system of m quadratic
equations in n variables over a finite field Fq - that was shown to be NP-complete
even over F2 for m ≈ n [10]- and the broad family of the so-called isomorphism
of polynomials (IP) problems.

Isomorphism of Polynomial problems can be roughly described as the equiv-
alence of multivariate polynomial systems of equations up to linear (or affine)
bijective changes of variables. Two separate subfamilies of IP problems can be
distinguished: isomorphism of polynomials with two secrets (IP2S for short) and
isomorphism of polynomials with one secret (IP1S for short). A little more in
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detail, given two m-tuples a = (a1, . . . , am) and b = (b1, . . . , bm) of polyno-
mials in n variables over K = Fq, IP2S consists of finding two linear bijective
transformations S of Kn and T of Km, such that b = T ◦a◦S. Respectively, (com-
putational) IP1S consists of finding one linear bijective transformations S of Kn,
such that b = a ◦ S. Many variants of both problems can be defined depending
on the value of the triplet (n,m, q), the degree d of the polynomial equations of a
and b, whether these polynomials are homogeneous or not, whether S and T are
affine or linear, etc. It turns out that there are considerable security and simplic-
ity advantages in restricting oneself, for cryptographic applications, to instances
involving only homogeneous polynomials of degree d and linear transformations
S and T . For performance reasons, the quadratic case d = 2 is most frequently
encountered in cryptography. Due to the existence of an efficient canonical re-
duction algorithm for quadratic forms, instances such that m ≥ 2 must then be
considered. The cubic case d = 3 is also sometimes considered, then instances
such that m = 1 are generally encountered.

Many asymmetric cryptosystems whose security is related to the hardness of
special trapdoor instances of IP2S were proposed in which all or part of the
m-tuple of polynomials b plays the role of the public key and is related by secret
linear bijections S and T to a specially crafted, easy to invert multivariate poly-
nomial mapping a. Most of these systems, e.g. Matsumoto and Imai’s seminal
multivariate scheme C* [13], but also reinforced variants such as SFLASH and
HFE [18,16] were shown to be weak because the use of trapdoor instances of
IP2S with specific algebraic properties considerably weakens the general IP2S
problem. A survey of the status of the IP2S problems and improved techniques
for solving homogeneous instances are presented in [1] and [4].

The IP1S problem was introduced in [16] by Patarin, who proposed in the
same paper a zero-knowledge asymmetric authentication scheme named the IP
identification scheme with one secret (IP1S scheme for short). This authenti-
cation scheme is inspired by the well known zero-knowledge proof for Graph
Isomorphism by Goldreich et al. [11]. It can be converted into a (less practical)
asymmetric signature scheme using the Fiat-Shamir transformation. The IP1S
problem and the related identification scheme were believed to possess several
attractive features:

– The conjecture that the IP1S problem is not solvable in polynomial time was
supported by the proof in [17] that the quadratic version of IP1S (QIP1S for
short) is at least as hard as the Graph Isomorphism problem (GI) 1 , one of
the most extensively studied problems in complexity theory. While the GI
problem is not believed to be NP-complete since it is NP and co-NP and
hard instances of GI are difficult to construct for small parameter values, GI
is generally believed not to be solvable in polynomial time.

– unlike the encryption or signature schemes based on IP2S mentioned above,
the IP1S scheme does not use special trapdoor instances of the IP1S problem

1 However as mentioned in the conclusion of this paper, if the flaw recently discovered
by the authors in the corresponding proof in [17] is confirmed, this casts some doubts
on the fact that Quadratic IP1S is indeed as hard as GI.
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and therefore its security is directly related to the intractability of general
IP1S instances.

The IP1S problem also has some loose connections with the multivariate signa-
ture scheme UOV [12], that has until now remarkably well survived all advances
in the cryptanalysis of multivariate schemes. While in UOV the public quadratic
function b is related to the secret quadratic function by the equation b = a ◦ S,
both a and S are unknown whereas only S is unknown in the IP1S problem.

Former Results. Initial assessments of the security of practical instances of
the IP1S problem suggested that relatively small public key and secret sizes -
typically about 256 bits - could suffice to ensure a security level of more than 264.
The IP1S scheme therefore appeared to favorably compare with many other zero-
knowledge authentication schemes, e.g [21,22,20]. Moreover, despite advances in
solving some particular instances of the IP1S problem, in particular Perret’s
Jacobian algorithm2 [19], the four challenge parameter values proposed in 1996
[16] (with q = 2 or 216, d = 2 and m = 2, or d = 3 and m = 1) remained
unbroken until 2011.

Significant advances on solving IP1S instances that are practically relevant for
cryptography were made quite recently [2,1]. Dubois in [7] and the authors of [2]
were the first to notice that the IP1S problem induces numerous linear equations
in the coefficients of the matrix of S and of the inverse mapping T = S−1.
When m ≥ 3, the number mn2 of obtained linear equations is substantially
larger than the number 2n2 of variables. While the system cannot have full
rank since the dimension of the vector space of solutions is at least 1, it can
heuristically be expected to have a very small vector space of solutions that can
be tried exhaustively. The authors of [2] even state that they “empirically find
one solution (when the polynomials are randomly chosen)”.

Therefore the most interesting remaining case appears to be m = 2. It is
shown in [2] that the vector space of solutions of the linear equations is then
isomorphic to the commutant of a non-singular n × n matrix M and that its
dimension r is lower bounded by n in odd characteristic and 2n in even charac-
teristic. The reported computer experiments indicate that r is extremely likely
to be close to these lower bounds in practice. While for typical values of qn the
vector space of solutions is too large to be exhaustively searched, one can try
to solve the equation b = a ◦ S over this vector space. This provides a system
of quadratic equations in a restricted variable set of r ≈ n (resp. r ≈ 2n) coor-
dinates. The approach followed in [2] in order to solve this system consisted of
applying Gröbner basis algorithms such as Faugère’s F4 [8] and related computer
algebra tools such as FGLM [9]. This method turned out to be quite successful:
all the IP1S challenges proposed by Patarin were eventually broken in comput-
ing times ranging from less than 1 s to 1 month. This led the authors of [2] to
conclude that “[the] IP1S-Based identification scheme is no longer competitive

2 This algorithm recovers mn linear equations in the coefficients of S and is therefore
suited for solving IP1S instances such that m ≈ n.
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with respect to other combinatorial-based identification schemes”. However, the
heuristic explanation suggested in [2], namely that the obtained system was so
massively over defined that a random system with the same number of random
quadratic equations would be efficiently solvable in time O(n9) with overwhelm-
ing probability, was later on shown to be false by one of the authors of [2], due
to an overestimate of the number of linearly independent quadratic equations.

This is addressed in Bouillaguet’s PhD dissertation [1] where the results of
[2] are revisited. The main discrepancy with the findings of [2] is the observa-
tion that in all the reported experiments in odd and even characteristic, the
number of linearly independent quadratic equations, that was supposed in [2]
to be close to n2, is actually bounded over by a small multiple of n and only
marginally larger than r. The author writes “This means that we cannot argue
that solving these equations is doable in polynomial time. An explanation of this
phenomenon has eluded us so far.” Despite of the surprisingly small number of
linearly independent quadratic equations, nearly all instances are confirmed to
be efficiently solvable for all practical values of n when the size q of the field
is sufficiently small (q=2 or 3) and still solvable efficiently up to values of n of
about 20. The author writes “For instance, when q = 2 and n = 128 we are
solving a system of 256 quadratic equations in 256 variables over F2. When the
equations are random this is completely infeasible. In our case, it just takes 3
minutes ! We have no clear explanation of this phenomenon.”

Our Contribution. The lack of explanation for the success of the attack – more
precisely the puzzling fact that the number of linearly independent quadratic
equations is close to n in odd characteristic and to 2n in even characteristic and
the even more puzzling fact that nearly all instances are nevertheless solvable –
motivated our research on IP1S. We revisited the former analysis and eventually
found an algebraic explanation of why most random instances of the quadratic
IP1S problem are efficiently solvable that leads to a new method (not based
on Gröbner basis computations) to directly solve these instances. Our analysis
shows in particular that in the likely cases where the characteristic is odd and
the matrix M is cyclic or the characteristic is even and M is similar to a block-
wise diagonal matrix with two equal cyclic n

2 ×
n
2 diagonal blocks, the quadratic

equations split up in an appropriate base in small triangular quadratic systems
that can be solved efficiently in polynomial time. The highlighted structure of
the quadratic equations seems to be the essential reason why Gröbner basis
computations behave so well on most instances.

The rest of this paper is organized as follows. In Section 2, we present the
problem IP1S, its background and some major mathematical results used in
the following sections. We then discuss in Section 3 and 4 the resolution of the
problem over finite fieds of odd, resp. even characteristic.
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2 The Isomorphism of Polynomial Problem with One
Secret

2.1 Notations and First Definitions

Let K be a field; for practical considerations, we shall assume that K is the finite
field Fq with q elements, although most of the discussion is true in the general
case.

A (homogeneous) quadratic form in n variables over K is a homogeneous
polynomial of degree two, of the form q =

∑
i,j=1...n αi,jxixj , where the coef-

ficients αi,j belong to K. For simplicity, we write x = (xi) for the vector with
coordinates xi. The quadratic form q can be described by the matrix with general
term αi,j . Note that the matrix representation of a quadratic form is not unique:
two matrices represent the same linear form if, and only if, their difference is
skew-symmetric.

The polar form associated to a quadratic form q is the bilinear form b = P(q)
defined by b(x, y) = q(x + y) − q(x) − q(y). This is a symmetric bilinear form.
This can be used to give an intrinsic definition of bilinear forms (which is useful
to abstract changes of bases from some proofs below): given a vector space V , a
quadratic form over V is a function q : V → K such that

(i) for all x ∈ V and λ ∈ K, q(λx) = λ2q(x);
(ii) the polar form P(q) is bilinear.

For any matrix A, let tA be the transpose matrix of A and P(A) be the
symmetric matrix tA+A. Then if q is a quadratic form with matrix A, its polar
form has matrix P(A). The quadratic form q is regular if its polar form is not
singular, i.e. if it defines a bijection from V to its dual. In general, we define the
kernel of a quadratic form to be the kernel of its polar form.

From the definition of b = P(q) we derive the polarity identity

2q(x) = b(x, x). (1)

This identity obviously behaves very differently when 2 is a unit in K and
when 2 = 0 in K. This forces us to use some quite different methods in both
cases.

If 2 is invertible in K then the polarity identity (1) allows recovery of a
quadratic form from its polar bilinear form. In other words, quadratic forms
in n variables correspond to symmetric matrices.

Conversely, if 2 = 0, then the polarity identity reads as b(x, x) = 0; in other
words, the polar form is an alternating bilinear form. In this case, equality of
polar forms does not imply equality of quadratic forms. Define Δ(A) as the
matrix of diagonal entries of the matrix A. Then quadratic forms A and B are
equal if, and only if, P(A) = P(B) and Δ(A) = Δ(B).

2.2 The Quadratic IP1S Problem

We now state the quadratic IP1S problem and give an account of its current
status after the recent work of [2] and [1].
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Problem 1 (Quadratic IP1S). Given two m-tuples a = (a1, . . . , am) and b =
(b1, . . . , bm) of quadratic homogeneous forms in n variables over K = Fq, find
a non-singular linear mapping S ∈ GLn(K) (if any) such that b = a ◦ S, i.e.
bi = ai ◦ S for i = 1, . . . ,m.

Remark 1. In order not to unnecessarily complicate the presentation, our def-
inition of the IP1S problem slightly differs3 from the initial statement of the
problem introduced in [16]. Though the name “quadratic homogeneous IP1S”
might be more accurate to refer to the exact class of instances we consider, we
will name it quadratic IP1S or IP1S in the sequel.

If we denote by Ai, resp. Bi any n× n matrices representing the ai, resp. the bi
and denote by X the matrix representation of S, the conditions for the equality
of two quadratic forms given in Section 2.1. allow to immediately translate the
quadratic IP1S problem into equivalent matrix equations.

– If the characteristic of K is odd: the problem is equivalent to finding an
invertible matrix X that satisfies the m polar equations: P(Bi) =

tXP(Ai)X

– If the characteristic of K is even: the problem is equivalent to finding an
invertible matrix X that satisfies the polar and the diagonal equations:
P(Bi) =

tXP(Ai)X ; Δ(Bi) = Δ(tXAiX).

In the following sections we will consider IP1S instances such that m = 2, that
are believed to represent the most “interesting” instances of IP1S as reminded
above. Matrix pencils, that can be viewed as n × n matrices whose coefficients
are polynomials of degree 1 of K[λ] represent a convenient way to capture the
above equations in a more compact way. If we denote by A and B the matrix
pencils λA0+A1 and λB0+B1, and by extension P(A) and P(B) the symmetric
matrix pencils λP(A0) + P(A1) and λP(B0) + P(B1), the two polar equations
can be written in one equation: P(B) = tXP(A)X. However, as detailed in the
next section, the theory of pencils is far more powerful than just a convenient
notation for pairs of matrices. See for instance [3].

2.3 Mathematical Background

In this Section we briefly outline a few known definitions and results related to
the classification of matrices and matrix pencils and known methods for solving
matrix equations that are relevant for the investigation the IP1S problem.

3 While in [16] the isomorphism of two m-tuples quadratic polynomials comprising also
linear and constant terms through a non-singular affine transformation was consid-
ered, we consider here the isomorphism of two m-tuples of quadratic forms through
a non-singular linear transformation. This replacement of the original definition by
a simplified definition is justified by the fact that all instances of the initial prob-
lem can be shown to be either easily solvable due to the lower degree homogeneous
equations they induce or efficiently reducible to an homogeneous quadratic instance.
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Basic Facts about Matrices. Two matrices A and B are similar if there
exists an invertible matrix P such that P−1AP = B and congruent if there
exists an invertible P such that tPAP = B.

The matrix A is called cyclic if its minimal and characteristic polynomials are
equal.

For any matrix A, the commutant of A is the algebra CA of all matrices
commuting with A. It contains the algebra K[A], and this inclusion is an equality
if, and only if, A is cyclic.

For any matrix A, let
∏

peii be the prime factorization of its minimal polyno-
mial. Then K[A] is the direct product of the algebras K[x]/pi(x)

ei ; each of these
factors is a local algebra with residual field equal to the extension field K[x]/pi.

Pencils of Bilinear and Quadratic Forms. Let V be a K-vector space and
Q(V ) be the vector space of all quadratic forms on V . A projective pencil of
quadratic forms on V is a projective line in PQ(V ), i.e. a two-dimensional sub-
space of Q(V ). As a projective pencil is the image of the projective line P1

in Q(V ), it is determined by the images of the points ∞ and 0 in P1, which we
write A0 and A∞.

An affine pencil of quadratic forms is an affine line in Q(V ), or equivalently
a pair of elements of Q(V ). The affine pencil with basis (A∞, A0) may also be
written as a polynomial matrix Aλ = A0 + λA∞. Given a projective pencil A
of Q(V ), the choice of any basis (A∞, A0) of A determines an affine pencil.

A projective pencil is regular if it contains at least one regular quadratic
form. An affine pencil (A∞, A0) is regular if A∞ is regular; it is degenerate if the
intersection of the kernels of the quadratic forms Aλ is nontrivial.

If an affine pencil is non-degenerate, then the polynomial detAλ is non-zero;
choosing any λ which is not a root of this polynomial proves that the associated
projective pencil is regular (overK itself if it is infinite, and over a finite extension
of K if it is finite). This gives a basis of the projective pencil which turns the
affine pencil into a regular one. We shall therefore assume all affine pencils to be
regular.

Two pencils A,B of quadratic forms are congruent if there exists an invertible
matrix X such that tXAλX = Bλ. The case m = 2 of the quadratic IP1S prob-
lem reduces to the Pencil congruence problem: given two affine pencils A and B,
known to be congruent, exhibit a suitable congruence matrix X .

We first note that the IP1S problem easily reduces to the case where both
pencils are regular. Namely, if one (and therefore both) is degenerate, then we
may quotient out both spaces by the (isomorphic) kernels of the pencils; this
defines non-degenerate affine pencils on the quotient vector spaces, which are
still congruent. Since the associated projective pencils are regular, a change of
basis in the pencils (and maybe an extension of scalars) brings us to the case of
two regular affine pencils.

We define pencils of bilinear forms in the same way as pencils of quadratic
forms. The pencil bλ = b0 + λb∞ regular if b∞ is; in this case, the characteristic
endomorphism of the pencil is the endomorphism f = b−1

∞ ◦ b0.
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The following lemma allows to decompose pencils as direct sums, with each
factor having a power of an irreducible polynomial as its characteristic endomor-
phism.

Lemma 1. Let b be a regular pencil of symmetric bilinear forms. Then all pri-
mary subspaces of the characteristic endomorphism f are orthogonal with respect
to all forms of b.

Proof. We have to prove the following: given any two mutually prime factors p, q
of f and any x, y ∈ V such that p(f)(x) = 0 and q(f)(y) = 0, then for all λ, we
have bλ(x, y) = 0. For this it is enough to show that b∞(x, y) = 0.

Since p, q are mutually prime, there exist u, v such that up + vq = 1. Note
that, for all x, y ∈ V , we have b∞(x, fy) = b0(x, y) = b0(y, x) = b∞(fx, y);
therefore, all elements of K[f ] are self-adjoint with respect to b∞. From this we
derive the following:

b∞(x, y) = b∞(x, u(f)p(f)y + v(f)q(f)y)

= b∞(u(f)p(f)x, y) + b∞(x, v(f)q(f)y)

= 0.

(2)

��

Explicit Similarity of a Matrix and Its Transposed. The next result is
intensively used in the sequel to deal with symmetric pencils. Although this
result is classic [23], we are interested with the explicit form given below.

Theorem 1. For any matrix M , there exists a non-singular symmetric matrix
T such that tMT = TM .

Proof. Using primary decomposition for M , we may assume that it is of the
form

M =

⎛⎜⎜⎝
M0 1 0

. . .
. . .
. . . 1

0 M0

⎞⎟⎟⎠ , (3)

where M0 is the companion matrix of a polynomial p(λ) = λn +
∑n−1

i=0 piλ
i. We

then define matrices T0 and T by

T0 =

⎛⎜⎜⎜⎜⎝
p1 · · · pn−1 1
... . .

.
. .
.

pn−1 . .
.

1 0

⎞⎟⎟⎟⎟⎠ , T =

⎛⎜⎝ 0 T0

. .
.

T0 0

⎞⎟⎠ . (4)

One can easily verify that T0 is invertible, symmetric and tM0T0 = T0M0, and
that the same is true for T and M . ��
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3 IP1S in Characteristic Different from Two

Let K be a field of characteristic different from two4. In this case, the polarity
identity (1) identifies quadratic forms with symmetric bilinear forms, or again
with symmetric matrices with entries in K. We shall therefore write a quadratic
pencil A as Aλ = A0 + λA∞, where A0 and A∞ are symmetric matrices.

Proposition 1. Let Aλ = A0 + λA∞, Bλ = B0 + λB∞ be two regular affine
pencils.

(i) If Aλ is congruent to Bλ, then the characteristic matrices

MA = A−1
∞ A0 and MB = B−1

∞ B0

are similar.
(ii) Assume that MA and MB are similar and choose P such that P−1MAP =

MB. Then
tPAλP = tPA∞P (λ+MB).

(iii) Assume that Aλ = A∞(λ + M) and Bλ = B∞(λ + M). Then the solutions
of the pencil congruence problem are exactly the invertible X such that

XM = MX and tXA∞X = B∞. (5)

Proof. (i). Since Aλ is regular, A∞ is invertible and we may write Aλ = A∞(λ+
A−1

∞ A0); likewise, Bλ = B∞(λ + B−1
∞ B0). Choose P such that tPAλP = Bλ,

then
B∞(λ+MB) = tPAλP = tPA∞P (λ+ P−1MAP ), (6)

which implies P−1MAP = MB as required. The same computations prove (ii).
The equations (5) follows directly from the equality tXA∞(λ + M)X =

tXA∞X(λ+X−1MX). ��

We now restrict ourselves to the case where the characteristic endomorphism
is cyclic.

Proposition 2. Let Aλ = A∞(λ + M) and Bλ = B∞(λ + M) be two regular
symmetric pencils such that the matrix M is cyclic, that is, its minimal and
characteristic polynomials are equal.

Then the solutions X of the pencil congruence problem are the square roots
of A−1

∞ B∞ in the algebra K[M ].

Proof. Since M is cyclic, its commutant is reduced to the algebra K[M ]; there-
fore, all solutions of the congruence problem are polynomials in M .

Since Aλ is symmetric, both matrices A∞ and A0 = A∞M are symmetric;
therefore, tMA∞ = A∞M . Since X is a polynomial in M , we deduce that
also tXA∞ = A∞X .

The relation tXA∞X = B∞ may therefore be rewritten as A∞X2 = B∞,
or X2 = A−1

∞ B∞. ��
4 Although this is not used in cryptography, we mention that this section also applies
verbatim to the case of characteristic zero.
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Theorem 2. Let K be a finite field of odd characteristic and Aλ, Bλ be two
regular pencils of quadrics over Kn, congruent to each other, such that at least
one is cyclic (and therefore both are). Then the pencil congruence problem may

be solved using no more than Õ(n3) operations in the field K.

Proof. The first step is to reduce to the case of primary components of the
characteristic endomorphism. This may be done, using for example Frobenius
reduction of both matrices A−1

∞ A0 and B−1
∞ B0, with a complexity of Õ(n3)

operations. This also provides the change of basis making the characteristic
endomorphism of both pencils to have the same matrix.

There remains to compute a square root of C = A−1
∞ B∞ in K[M ], where

now the minimal polynomial of M is pe, with p irreducible. For this we first
write C as a polynomial g(M); this again requires Õ(n3) operations. To solve
the equation y2 = g(M) in the ring K[M ] = K[x]/p(x)e, we first solve it in the

(finite) residual field K[x]/p(x), with complexity Õ(n3) again; lifting the solution

to the ring K[M ] requires only Õ(n2) with Hensel lifting. ��

Solutions of the IP1S problem are square roots of an element C of the alge-
bra K[M ]; therefore, the number of solutions is 2s, where s is the number of
connected components of K[M ], that is, the number of prime divisors of the
minimal polynomial of M .

Summary and Computer Experiments. The case where all the elementary
divisors of P(A) are pairwise co-prime – or equivalently where M is cyclic – rep-
resents in practice a quite large fraction of random cases (see for instance [15]).
In this case, as shown above, the number of solutions is exactly 2s where s is
the numbers of elementary divisors and solutions can be efficiently computed
(in polynomial time Õ(n3)) by our method. The highlighted structure of the
equations also provides some likely explanations of why Gröbner basis computa-
tion methods such as those presented in [2] were successful in this case. We give
in next table results (timings) of our MAGMA script SOLVECYCLICODDPC, t is the
mean execution time when solving 100 random cyclic IP1S instances, τ is the
observed fraction in percent of such “cyclic” instances over random instances.

q n t τ

3 80 5.s. 87.
3 128 34.s. 88.
310 32 15.s. 100.

q n t τ

5 20 0.07s. 95.
5 32 0.28s. 95.
5 80 7.s. 95.
57 32 8.s. 100.

q n t τ

76 32 11.s. 100.
65537 8 0.04s. 100.
65537 20 1.s. 100.

4 IP1S in Characteristic Two

Let K be a perfect field of characteristic two. In this case, the polarity iden-
tity (1) shows that the polar form b = P(q) attached to a quadratic form q is an
alternating bilinear form.
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4.1 Pencils of Alternating Bilinear Forms

This paragraph is a reminder of classical results. We refer the reader to [14] for
the proofs.

If b is alternating and nondegenerate, then the vector space V has a symplectic
basis, i.e. a basis (e1, . . . , en, f1, . . . , fn) such that b(ei, fi) = 1 and all other
pairings are zero. In particular, the dimension of V is even. The vector E space
generated by the ei is equal to its orthogonal space E⊥; such a space is called a
Lagrangian space for b.

We recall that two matrices A and B define the same quadratic form if and
only if P(A) = P(B) and Δ(A) = Δ(B).

Although quadratic forms only produce alternating bilinear forms in charac-
teristic two, the following lemma about alternating forms is true in all charac-
teristics. It proves that there exists a basis of V in which the pencil has the
block-matrix decomposition

A∞ =
(
0 1
1 0

)
, A0 =

(
0 tF
F 0

)
; A−1

∞ A0 =
(
F 0
0 tF

)
. (7)

The matrix F is called the Pfaffian endomorphism of A.

Lemma 2. Let b = (b∞, b0) be a regular pencil of alternating bilinear forms
on V . Then there exists a symplectic basis for b∞ whose Lagrangian is stable by
the characteristic endomorphism of b.

Proof. Let f be the characteristic endomorphism of b. By Lemma 1, we may
replace V by one of the primary components of f and therefore assume that
the minimal polynomial of f is pn where p is a prime polynomial. By extending
scalars to K[λ]/p(λ) and replacing b0 by λb∞ + b0 we may assume that p(t) = t.
We now prove the lemma by induction on dimV .

Since tn is the minimal polynomial of f and b∞ is non-degenerate, there
exists x, y ∈ V such that b∞(x, fn−1y) = 1. Let W = K[f ]x ⊕ K[f ]y. Then we
may write V = W ⊕W⊥ where both W and its b∞-orthogonal W⊥ are stable
by f ; since W⊥ satisfies the lemma by the induction hypothesis, we only need
to prove it for W .

Let a(t) = 1+ a1t+ · · ·+ an−1t
n−1 be a polynomial and x′ = a(f)x. Then we

still have b∞(x′, fn−1y) = 1, and moreover we can choose a so that b∞(x′, f iy) =
0 for all i = 0, . . . , n− 2. In other words, (x′, fx′, . . . , fn−1x′, fn−1y, fn−2y, . . . ,
fy, y) is a symplectic basis for b∞ onW . By construction, its Lagrangian isK[f ]x,
which is obviously stable by the characteristic endomorphism f . ��

Proposition 3. Let K be a binary field. Any regular pencil of alternating bilin-
ear forms is congruent to a pencil of the form

A∞ =
(
0 T
T 0

)
, A0 =

(
0 TM

TM 0

)
, (8)

where M is in rational (Frobenius) normal form and T is the symmetric matrix
defined in Theorem 1.
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Proof. From the equation 7, choose a matrix P such that M = P−1FP is
in rational normal form and define T as in Theorem 1. Then the coordinate
change

(
P 0
0 tP−1 T

)
produces the required form. ��

Let A be a pencil as in (8). The automorphism group O(A) of A is the set of

matrices X =
(
X1 X2
X3 X4

)
such that tXAX = A, that is all Xi commute with M

and tX1TX4 +
tX3TX2 = T .

From now, we suppose that M is cyclic and for the sake of simplicity that its
primary decomposition has only one component.

Since M is cyclic, all Xi belong to K[M ]. The group O(A) is generated by the
elementary transformations

G1(X) =
(
1 X
0 1

)
, G2(X) =

(
1 0
X 1

)
, G3(X) =

(
X 0
0 X−1

)
, G4 =

(
0 1
1 0

)
, (9)

where X ∈ K[M ], X invertible for G3(X). The first three transformations gen-
erate the subgroup of positive automorphisms of A. This is a subgroup of order
two of the orthogonal group [6].

4.2 Pencils of Quadratic Forms

The following proposition deals with the diagonal terms of a quadratic form in
the cyclic case. We recall that, using the notations of Theorem 1, K[M0] is an
extension field of K, and K[M ] is the (local) K[M0]-algebra generated by

H =

⎛⎜⎜⎝
0 1 0
. . .

. . .

. . . 1
0 0

⎞⎟⎟⎠ . (10)

We write ϕ(X) = X2 for the Frobenius map of K[M0]. Since this is a finite field,
the Frobenius map is bijective. It extends to K[M ] as ϕ(

∑
xiH

i) =
∑

x2
iH

i.

Proposition 4. Define matrices M of size n, M0, T0 of size e = n/d as in
Theorem 1.

(i) The K-linear map K[M0] �→ Ke, X �→ Δ(T0X) is an isomorphism.
(ii) For any diagonal matrix D of size e, there exists a (unique) matrix C =

ψ0(D) ∈ K[M0] such that, for all X ∈ K[M0]:

Δ(tXDX) = Δ(T0CX2). (11)

(iii) Let D be a diagonal matrix of size n, written as blocks D0, . . . , Dd−1, and
write X ∈ K[M ] as X =

∑
xiH

i with xi ∈ K[M0]. Also define ψ(D) =∑
ψ0(Di)H

i ∈ K[M ]. Then we have the relation in K[M ]

ψ(Δ(tXDX)) = ϕ(X) · ψ(D). (12)
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Proof. (i) Since 2 = 0 in K, for any symmetric matrix A and any X , we have

Δ(tXΔ(A)X) = Δ(tXAX). (13)

Since the space K[M0] has dimension e over K, we only have to check injectivity.
Assume Δ(T0X) = 0 with X �= 0; since K[M0] is a field, X is invertible. Let Y =
ϕ−1(X−1). We then have

Δ(T0) = Δ(T0XY 2) = Δ(tY (T0X)Y ) = Δ(tY Δ(T0X)Y ) = 0. (14)

Let p(x) = p0+· · ·+pe−1x
e−1+xe be the minimal polynomial of M0. FromΔ(T0)

= 0 we deduce that pe−1 = pe−3 = · · · = 0, which contradicts the irreducibility
of p.

(ii) Let C ∈ K[M0] such that Δ(C) = D; applying (13) to the symmetric
matrix T0C and using the symmetry of T0M0 yields

Δ(T0CX2) = Δ(tXT0CX) = Δ(tXΔ(T0C)X) = Δ(tXDX). (15)

(iii) From direct computation we find that the diagonal blocks of tXDX are
Bm =

∑
i+j=m

tXiDjXi; hence Δ(Bm) =
∑

Δ(T0ψ0(Dj)X
2
i ) and ψ0(Bm) =∑

ψ0(Dj)ϕ(Xi). ��

For any binary field K, we write ℘(K) for the set of elements x2+x ∈ K. This
is an additive subgroup of K, and the characteristic-two analogue of the set of
squares. For any element α of K[M ], we call valuation of regularity of α that we
simply note val(α) the smallest integer m such that there exists an invertible α′

of K[M ] such that α = Hmα′.

Proposition 5. Any regular pencil of quadratic forms is congruent to a pencil
of the form

A∞ =
(
D1 T
0 D2

)
, A0 =

(
D3 TM
0 D4

)
, (16)

where M , T are as in Prop. 3 and Di are diagonal matrices whose values αi =
ψ(Di) satisfy either one or the other of the following two kinds of canonical
forms:

(i) α1 = Hm, val(α1 + α3) > m, α2 = 0 or α2 = δHd−1−m, val(α4) ≥ m, for
some m ∈ {0, . . . , d}, and some fixed δ ∈ K[M0]� ℘(K[M0]);

(ii) α1 = Hm or α3 = Hm, val(α1 + α3) = m, α2 = α4, val(α2) > m for some
m ∈ {0, . . . , d}, and some fixed δ ∈ K[M0]� ℘(K[M0]).

Proof. By Prop. 3, we may compute bases in which the pencils of polar forms
have the form (8). In the same bases the pencils have the form (16) with M , T ,
M0, T0 as in Theorem 1 and Di are some diagonal matrices. We now perform
elementary transformations of the orthogonal group of P(A) to simplify the
diagonal part of the quadratic pencil. We use the transformationsGi(X) from (9)
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for a matrix X = x0 + · · · + xd−1H
d−1 ∈ K[M ]. The effects of the elementary

transformations Gi(X) on the coefficients αi are:

G1(X) : α1 ← α1 + ϕ(X)α2 + ψ(Δ(TX)),

α3 ← α3 + ϕ(X)α4 + ψ(Δ(TX)),

α2 ← α2, α4 ← α4;

G2(X) : α2 ← α2 + ϕ(X)α1 + ψ(Δ(TX)),

α4 ← α4 + ϕ(X)α3 + ψ(Δ(TX)),

α1 ← α1, α3 ← α3;

G3(X) : α1 ← ϕ(X)α1, α2 ← ϕ(X−1)α2,

α3 ← ϕ(X)α3, α4 ← ϕ(X−1)α4;

G4 : α1 ↔ α2, α3 ↔ α4.

A direct computation gives

ψ(Δ(TMX)) =
∑

i≥ d−1
2

x2i−(d−1)H
i.

As in Prop. 4, we write Di as d blocks Di,j and define αi,j = ψ0Di,j . From
what we get above we explicit the effects of the elementary transformationG1(X)
on the coefficients αi,j :

G1(X) : α1,m ← α1,m +
∑

i+j=m

α2,ix
2
j form <

d− 1

2
,

α1,m ← α1,m +
∑

i+j=m

α2,ix
2
j + x2m−(d−1) form ≥ d− 1

2
;

If all αi = 0, we are done: the pencil is canonical. If not, we search the value
αi with smallest valuation. Using G4, we may assume it is α1 or α3. We first
suppose that we have val(α1+α3) > m, that is α1 and α3 have the same trailing
term. We call this the case (i). Using G3, we may assume α1 = Hm, and therefore
α3 = Hm+α, with val(α) > m. We look then forX such thatG2(X)(α2) = 0. We
note that the corresponding system is triangular and all equations can be solved
except maybe for this one: α2,d−1−m = x2

d−1−2m + xd−1−2m. Therefore we may

assume that α2 = 0 or α2 = δHd−1−m for some fixed δ ∈ K[M0]�℘(K[M0]). We
note also that G2(X) does not decrease the valuation of α4. We have therefore
by hypothesis val(α4) ≥ m.

We now examine the case (ii) where val(α1 + α3) = m. Using again G3, we
may assume that α1 = Hm or α3 = Hm. Let’s note α1 + α3 = Hmα where
α is invertible. We are looking for X such that G2(X)(α2) = G2(X)(α4). By
hypothesis on the valuation, we can write α2 + α4 = Hmα′ for some α′. We
naturally choose X = ϕ−1(α′α−1). At this stage, we can consider that α2 = α4.
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However, the condition on the valuation may not hold. If by chance val(α2) > m,
then we are done. If on the contrary val(α2) ≤ m, then by using G4, we search
instead for a canonical form of the kind (i). ��

Theorem 3. Let K be a finite field with characteristic two. The cyclic case of
the IP1S problem is solvable using Õ(n3) operations in the field K. Moreover,
in the generic case, the IP1S problem has exactly 2s solutions, where s is the
number of components within the primary decomposition of M .

Proof. To solve the IP1S problem for two pencils A and B, we may reduce them
to the same canonical form using Prop. 5, using first the primary decomposition.
Following along the proof of the proposition, we see that it is constructive and
that all linear algebra algorithms used require at most Õ(n3) field operations.

Solutions of the IP1S problem correspond bijectively to automorphisms of the
canonical pencil. In the generic case, the ideal generated by the values (α1, α2)
is the full algebra K[M ]; the canonical pencil is then such that that α1 = 1
and α2 ∈

{
0, δHd−1

}
.

For both values of α2, since the equation x2
d−1 + xd−1 = 0 has only the

solutions 0 and 1 in each component K[M0], the IP1S problem has in this case
exactly 2s solutions. ��

IP1S Problem for a and b: Summary and Computer Experiments.
Next table gives timings of our MAGMA script SOLVECYCLICEVENIP1S, with the
same convention as for the odd case : τ represents the observed fraction of cyclic
cases and t the average computing time over these cases.

q n t τ

2 32 0.07s. 96.
2 128 2.s. 95.
2 256 33.s. 94.
24 32 0.3s. 100.
27 32 0.5s. 100.

q n t τ

28 20 0.2s. 100.
28 32 0.6s. 100.
28 80 20.s. 100.
28 128 133.s 100.

5 Conclusion and Future Work

We have shown that special instances of the quadratic homogeneous IP1S prob-
lem with m = 2 equations can be solved in polynomial time. These instances are
those where the characteristic endomorphism of the pencil (or its Pfaffian when
the characteristic of the field is 2) is cyclic, and represent in practice a large
fraction of generic instances. In a subsequent work, we studied the case where
the characteristic endomorphism is no longer cyclic and found similar results to
be published – at least for odd characteristic fields. In a work still in progress,
we try to extend these results to QIP1S problem with more than 2 equations,
and therefore expect to confirm that QIP1S is not as hard as GI.
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Abstract. The security of public-key encryption (PKE), a widely-used
cryptographic primitive, has received much attention in the cryptology
literature. Many security notions for PKE have been proposed, includ-
ing several versions of CPA-security, CCA-security, and non-malleability.
These security notions are usually defined via a game that no efficient
adversary can win with non-negligible probability or advantage.

If a PKE scheme is used in a larger protocol, then the security of this
protocol is proved by showing a reduction of breaking a certain security
property of the PKE scheme to breaking the security of the protocol. A
major problem is that each protocol requires in principle its own tailor-
made security reduction. Moreover, which security notion of the PKE
scheme should be used in a given context is a priori not evident; the
employed games model the use of the scheme abstractly through oracle
access to its algorithms, and the sufficiency for specific applications is
neither explicitly stated nor proven.

In this paper we propose a new approach to investigating the applica-
tion of PKE, based on the constructive cryptography framework [24,25].
The basic use of PKE is to enable confidential communication from a
sender A to a receiver B, assuming A is in possession of B’s public key.
One can distinguish two relevant cases: The (non-confidential) communi-
cation channel from A to B can be authenticated (e.g., because messages
are signed) or non-authenticated. The application of PKE is shown to
provide the construction of a secure channel from A to B from two (as-
sumed) authenticated channels, one in each direction, or, alternatively,
if the channel from A to B is completely insecure, the construction of a
confidential channel without authenticity. Composition then means that
the assumed channels can either be physically realized or can themselves
be constructed cryptographically, and also that the resulting channels
can directly be used in any applications that require such a channel. The
composition theorem of constructive cryptography guarantees the sound-
ness of this approach, which eliminates the need for separate reduction
proofs.

We also revisit several popular game-based security notions (and vari-
ants thereof) and give them a constructive semantics by demonstrating
which type of construction is achieved by a PKE scheme satisfying which
notion. In particular, the necessary and sufficient security notions for the
above two constructions to work are CPA-security and a variant of CCA-
security, respectively.
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1 Introduction

Public-key encryption (PKE) is a cryptographic primitive devised to achieve con-
fidential communication in a context where only authenticated (but not confiden-
tial) communication channels are available [11,34]. The cryptographic security of
PKE is traditionally defined in terms of a certain distinguishing game in which
no efficient adversary is supposed to achieve a non-negligible advantage. There
exists quite a wide spectrum of security notions and variants thereof. These no-
tions are motivated by clearly captured attacks (e.g., a chosen-ciphertext attack)
that should be prevented, but in some cases they seem to have been proposed
mainly because they are stronger than previous notions or can be shown to be
incomparable.

This raises the question of which security notion for PKE is suitable or neces-
sary for a certain higher-level protocol (using PKE) to be secure. The traditional
answer to this question is that for each protocol one (actually, a cryptography
expert) needs to identify the right security notion and provide a reduction proof
to show that a PKE satisfying this notion yields a secure protocol.1

An alternative approach is to capture the semantics of a security notion by
characterizing directly what it achieves, making explicit in which applications
it can be used securely. The constructive cryptography paradigm [24,25] was
proposed with this general goal in mind. Resources such as different types of
communication channels are modeled explicitly, and the goal of a cryptographic
protocol or scheme π is to construct a stronger or more useful resource S from

an assumed resource R, denoted as R
π

==⇒ S. Two such construction steps can
then be composed, i.e., if we additionally consider a protocol ψ that assumes the
resource S and constructs a resource T , the composition theorem states that

R
π

==⇒ S ∧ S
ψ

==⇒ T =⇒ R
ψ◦π
==⇒ T,

where ψ ◦ π denotes the composed protocol.
Following the constructive paradigm, a protocol is built in a modular fashion

from isolated construction steps. A security proof guarantees the soundness of
one such step, and each proof is independent of the remaining steps. The compo-
sition theorem then guarantees that several such steps can be composed. While
the general approach to protocol design based on reduction proofs is in principle
sound, it is substantially more complex, more error-prone, and not suitable for
re-use. This is part of the reason why it is generally not applied to the design of
real-world protocols (e.g., TLS), which in turn is the main reason for the large
number of protocol flaws discovered in the past. A major goal in cryptography
must be to break the cycle of flaw discovery and fixes by providing solid proofs.
Modularity appears to be the key in achieving this goal.

1 Note that this work is orthogonal to the foundational problem of designing practical
PKE schemes provably satisfying certain security notions, based on realistic hardness
assumptions. The seminal CCA-secure PKE scheme based on the DDH-assumption
by Cramer and Shoup [9,10] falls into this category, as do, e.g., [13,32,19,21,35].
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In this spirit, we treat the use of PKE as such a construction step. The
contributions of this paper are two-fold. First, we show how one can construct,
using PKE, confidential channels from authenticated and insecure channels (cf.
Section 1.1 and Section 3). Second, we revisit several known game-based security
notions (and variants thereof) and give them a constructive semantics, providing
an explicit understanding of the application contexts for which a given notion is
suitable (cf. Section 1.2 and Section 4). In Section 1.3 we describe how our results,
although stated in a simpler setting, capture settings with multiple senders and
the notion of corruption that exists in other frameworks, and in Section 1.4 we
contrast the constructive paradigm with the approach of idealizing the properties
of cryptographic schemes. Related work is discussed in Section 1.5.

1.1 Constructing Confidential Channels Using PKE

From the perspective of constructive cryptography [24,25], the purpose of a
public-key encryption scheme is to construct a confidential channel from non-
confidential channels. Here, a channel is a resource (or functionality) that in-
volves a sender, a receiver, and—to model channels with different levels of
security—an attacker. A channel generally allows the sender to transmit a mes-
sage to the receiver; the security properties of a particular channel are captured
by the capabilities available to the attacker, which might, e.g., include reading
or modifying the messages in transmission.

The parties access the channel through interfaces that the channel provides
and that are specific for each party. For example, the sender’s interface allows
to input messages, and the receiver’s interface allows to receive them. We refer
to the interfaces by labels A, B, and E, where A and B are the sender’s and
the receiver’s interfaces, respectively, and E is the adversary’s interface. In this
work, we consider the following four types of channels (from A to B; channels in
the opposite direction are defined analogously), using the notation from [27]:2

– An insecure channel, denoted − →→ , allows the adversary to read, deliver,
and to delete all messages input at A, as well as to inject its own messages.

– An authenticated channel, denoted •−(→→ , still allows to read all messages,
but the adversary is limited to forwarding or deleting messages input at A.

– A confidential channel, denoted −(→→•, only leaks the length of the messages
but does not necessarily prevent injections.

– A secure channel, denoted •−(→→•, also only leaks the message length, and
only allows the adversary to forward or delete messages input at A.

To use public-key encryption, the receiver initially generates a key pair and
transmits the public key to the sender. The sender needs to obtain the correct
public key, which corresponds to assuming that the channel from B to A is

2 The “•” in the notation signifies that the capabilities at the marked interface, i.e.,
sending or receiving, are exclusive to the respective party. If the “•” is missing, the
adversary also has these capabilities. The �-symbol is explained in Section 2.4.
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authenticated (←−•3). To transmit a message confidentially, the sender then
encrypts the message under the received public key and sends the ciphertext to
the receiver over a channel that could be authenticated or completely insecure.

The exact type of channel that is constructed depends on the type of assumed
channel used to transmit the ciphertext to the receiver: We show that if the
assumed channel is authenticated (•−(→→ ) and the PKE scheme is ind-cpa-secure,
the constructed channel is a secure channel (•−(→→•). If the assumed channel is
insecure (− →→ ) and the PKE scheme is ind-cca-secure, the constructed channel is
only confidential (−(→→•). Using the above notation, for protocols π and π′ based
on ind-cpa and ind-cca encryption schemes, respectively, these constructions can
be written as

[←−•, •−(→→ ]
π

==⇒ •−(→→• and [←−•,− →→ ]
π′

==⇒ −(→→•,
where the bracket notationmeans that both resources in the brackets are available.

The notion of constructing the confidential (or secure) channel from the two
assumed non-confidential ones is made precise in a simulation-based sense [25,24],
where the simulator can be interpreted as translating all attacks on the protocol
into attacks on the constructed (ideal) channel. As the constructed channel is
secure by definition, there are no attacks on the protocol.

The composability of the construction notion then means that the constructed
channel can again be used as an assumed resource (possibly along with additional
assumed or constructed resources) in other protocols. For instance, if a higher-
level protocol uses the confidential channel to transmit a message together with a
shared secret value in order to achieve an additionally authenticated (and hence
fully secure) transmission of themessage, then the proof of this protocol is based on
the “idealized” confidential channel and does not (need to) include a reduction to
the security of the encryption scheme. In the same spirit, the authenticated chan-
nel from B to A could be a physically authenticated channel, but it could also be
constructed by using, for instance, a digital signature scheme to authenticate the
transmission of the public key (which is done by certificates in practice).

1.2 Constructive Semantics of Game-Based Security Notions

Security properties for PKE are often formalized via a game between a hypo-
thetical challenger and an attacker. We assign constructive semantics to several
existing game-based definitions by first characterizing the appropriate assumed
and constructed resources and then showing that the “standard use” of a PKE
scheme over those channels (as illustrated in Section 1.1) achieves the construc-
tion if (and sometimes only if) it has the considered property.4

In particular, we show that ind-cpa-security is not only sufficient but also nec-
essary for constructing a secure channel from two authenticated channels. For

3 The simple arrow indicates that ←−• is a single-use channel, i.e., only one message
can be transmitted.

4 We point out that our negative results do not rule out the existence of other protocols
that are derived from the scheme in some possibly more complicated way; those could
still achieve the respective construction.
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the construction of a confidential channel from an authenticated and an inse-
cure channel, it turns out that ind-cca-security, while sufficient, is unnecessarily
strong. The transformation only requires the weaker notion of ind-rcca-security,
which was introduced by Canetti et al. [8] to avoid the artificial strictness of
ind-cca. We continue the analysis of ind-cca-security and follow up on work by
Bellare et al. [4], where several non-equivalent definitional variants are consid-
ered. We show that only the stricter notions they consider are sufficient for the
channel construction, leaving the exact semantics of the weaker notions unclear.

We also consider non-adaptive CCA-security (ind-cca1) and non-malleability
(nm-cpa). We show that both notions correspond to transformations between
somewhat artificial channels, but might still be useful for specific applications.

1.3 Capturing Settings with Potentially Corrupted Senders

Although our security definitions for public-key encryption are phrased in a set-
ting where there is only one legitimate sender (at the A-interface), our treatment
can be “lifted” to a setting with multiple senders generically, cf. [29]. In a sce-
nario with multiple senders, it is important to formulate the guarantees that are
maintained if one or more of the senders deviate from the protocol because their
machines are controlled by some attacker (or virus). This is captured in most
security frameworks by considering an external adversary that has the capability
of corrupting some of the parties. In the context of PKE and secure communi-
cation, the goal is to still provide confidentiality guarantees to non-corrupted
senders. (If the receiver is corrupted, then no security can be guaranteed.)

The ability of an attacker to act on behalf of corrupted senders means that it
can directly send (bogus) ciphertexts to the receiver, even if the communication
to the receiver is authenticated. This capability corresponds exactly to the case
of assuming only an unauthenticated channel, where the messages are injected
via the E-interface. Hence, our treatment extends to the case of (static) sender
corruption by considering the lifting that relates the interfaces of the parties
in the multi-party scenario to the A-interface in the three-party setting, and
provides all capabilities of the statically corrupted parties also at the E-interface.

In summary, the security of public-key encryption in the presence of poten-
tially (statically) corrupted senders corresponds exactly to the construction of
a confidential channel −(→→• from one insecure channel − →→ and one authen-
ticated channel ←−• in the opposite direction, as discussed in Section 1.1. This
implies that in the presence of (static) corruption, ind-rcca security is required
and sufficient both in the case where the channel from the sender to the receiver
is authenticated, and also where it is not authenticated.

1.4 Idealizing Properties vs. Constructing Resources

The security guarantees that one requires from a cryptographic scheme can be
modeled in fundamentally different ways, even within a single formal security
framework. One approach, which underlies the PKE functionality Fpke in [8],
is to idealize the properties of the algorithms that comprise the scheme. Such a
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functionality corresponds to a cryptographic scheme, and its interfaces closely
resemble the interfaces of the algorithms (although, e.g., the private key is never
output by Fpke). In such a treatment, elements that are essential for using the
scheme, such as the ciphertext or the public key, will still appear in the func-
tionality, but they are idealized in that, e.g., the ciphertext is independent of
the corresponding plaintext; the idealized scheme is unbreakable by definition.

Another—fundamentally different—approach is to explicitly model resources
that are available to one or more parties. The communication channels we
describe in Section 1.1 can be considered network resources ; there are also func-
tionalities in the UC framework, such as Fauth or Fsc in [7], that can be inter-
preted in this way. More generally, one can also think of randomness, memory, or
even computation as resources of this type. Following the constructive paradigm,
the guarantees of a cryptographic scheme are not a resource, but modeled as
the guarantee that the scheme transforms one (assumed) resource into another
(constructed) resource.5 Compared to ideal functionalities of the above type,
the description of resources tends to be simpler and easier to understand. For
example, in the case of public-key encryption, the confidential channel does not
need to specify implementation artifacts such as ciphertexts or public keys.

While both approaches allow to divide the security proof of a composite pro-
tocol into several steps that can be proven independently, only the second ap-
proach enables a fully modular protocol design. Each sub-protocol achieves a
well-defined construction step transforming a resourceR into a resource S, which
abstracts from how S is achieved. A higher-level protocol can thus use such a
resource S independently of how it is obtained, and the construction of S can
be replaced with a different one without affecting the design or proof of the
higher-level protocol. Concretely, a protocol using the resource −(→→• does not
depend on whether or not the channel is constructed by a PKE scheme, whereas
a protocol using the functionality Fpke will always be specific to this step.

1.5 Related Work

We provide here an abridged comparison with related work. A more comprehen-
sive comparison can be found in the full version of this work.

Game-based security. The study of PKE security was initiated by Goldwasser
and Micali [17], who introduced the notions of indistinguishability and seman-
tic security. Yao’s [36] definition, based on computational entropy, was shown
equivalent to variants of [17] by Micali et al. [30]. Goldreich [14,15] made impor-
tant modifications and also dealt with uniform adversaries. Today’s widely-used

5 By contrast, a typical UC security statement is that a cryptographic scheme imple-
ments some functionality. While statements about hybrid protocols in UC appear
similar to constructive statements, they are less expressive since, e.g., the UC frame-
work technically does not allow to make statements about assuming only bounded
resources, as protocols that use hybrid functionalities can always instantiate arbi-
trarily many functionalities of a given type.
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variant, indistinguishability under chosen-plaintext attack or ind-cpa, has been
strengthened by considering more powerful attackers that can additionally ob-
tain decryptions of arbitrary ciphertexts. This lead to the notions of ind-cca1 and
ind-cca2 (e.g., [31,37]). Different variants of ind-cca2-security were compared by
Bellare et al. [4]. Canetti et al. [8] introduced the weaker notion ind-rcca that
suffices for many applications. A second important security property is non-
malleability, introduced by Dolev et al. [12]. Informally, it requires that an ad-
versary cannot change a ciphertext into one that decrypts to a related message.
Variations of this notion have been considered in subsequent work [3,5].

Real-world/ideal-world security. The idea of defining protocol security with re-
spect to an ideal execution was first proposed by Goldreich et al. [16]; the concept
of a simulator can be traced back to the seminal work by Goldwasser et al. [18] on
zero-knowledge proofs. General security frameworks that allow the formalization
of arbitrary functionalities to be realized by cryptographic protocols have been
introduced by Canetti [6] as universal composability (UC) as well as by Backes
et al. [33,1] as reactive simulatability (RSIM). Treatments of PKE exist in both
frameworks. The treatment in UC is with respect to an “ideal PKE” functional-
ity; realizing this functionality is equivalent to ind-cca2-security [8]. Canetti and
Krawczyk [7] formulate UC functionalities that model different types of commu-
nication channels and can be interpreted as network resources; they do not treat
public-key encryption from this perspective. The formalization of the functional-
ities in [33] is closer to our approach, but less modular and hence formally more
complex. In particular, the treatment is restricted to the case where the authen-
ticated transmission of the ciphertexts is achieved by digital signatures instead
of using a generic composition statement. More generally, both frameworks [6]
and [33] are designed from a bottom-up perspective (starting from a selected
machine model), whereas we follow the top-down approach of [25], which leads
to simpler, more abstract definitions and statements.

Maurer et al. [26] described symmetric encryption following the constructive
cryptography paradigm as the construction of confidential channels from non-
confidential channels and shared keys, and compared the security definitions
they obtained with game-based definitions. The goal of this work is to provide a
comparable treatment for the case of PKE. In the same spirit, specific anonymity-
related properties of PKE have been discussed by Kohlweiss et al. [22].

2 Preliminaries

2.1 Systems: Resources, Converters, Distinguishers, and Reductions

At the highest level of abstraction (following the hierarchy in [25]), systems are
objects with interfaces by which they connect to (interfaces of) other systems;
each interface is labeled with an element of a label set and connects to only a
single other interface. This concept of abstract systems captures the topological
structures that result when multiple systems are connected in this manner.
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The abstract systems concept, however, does not model the behavior of sys-
tems, i.e., how the systems interact via their interfaces. Consequently, statements
about cryptographic protocols are statements at the next (lower) abstraction
level. In this work, we describe all systems in terms of (probabilistic) discrete
systems, which we explain in Section 2.2.

Resources and converters. Resources in this work are systems with three inter-
faces labeled by A, B, and E. A protocol is modeled as a pair of two so-called
converters (one for each honest party), which are directed in that they have an
inside and an outside interface, denoted by in and out, respectively. As a nota-
tional convention, we generally use upper-case, bold-face letters (e.g., R, S) or
channel symbols (e.g., •−(→→ ) to denote resources and lower-case Greek letters
(e.g., α, β) or sans-serif fonts (e.g., enc, dec) for converters. We denote by Φ the
set of all resources and by Σ the set of all converters.

The topology of a composite system is described using a term algebra, where
each expression starts from one (or more) resources on the right-hand side and is
subsequently extended with further terms on the left-hand side. An expression
is interpreted in the way that all interfaces of the system it describes can be
connected to interfaces of systems which are appended on the left. For instance,
for a single resource R ∈ Φ, all its interfaces A, B, and E are accessible.

For I ∈ {A,B,E}, a resource R ∈ Φ, and a converter α ∈ Σ, the expression
αIR denotes the composite system obtained by connecting the inside interface
of α to interface I of R; the outside interface of α becomes the I-interface of the
composite system. The system αIR is again a resource (cf. Figure 1 on page 147).

For two resources R and S, [R,S] denotes the parallel composition of R and
S. For each I ∈ {A,B,E}, the I-interfaces of R and S are merged and become
the sub-interfaces of the I-interface of [R,S], which we denote by I.1 and I.2.
A converter α that connects to the I-interface of [R,S] has two inside sub-
interfaces, denoted by in.1 and in.2, where the first one connects to I.1 of R
and the second one connects to I.2 of S.

Any two converters α and β can be composed sequentially by connecting the
inside interface of β to the outside interface of α, written β ◦ α, with the effect
that (β ◦ α)IR = βIαIR. Moreover, converters can also be taken in parallel,
denoted by [α, β], with the effect that [α, β]I [R,S] = [αIR, βIS].

We assume the existence of an identity converter id ∈ Σ with idIR = R for all
resources R ∈ Φ and interfaces I ∈ {A,B,E} and of a special converter ⊥ ∈ Σ
with an inactive outside interface.

Distinguishers. A distinguisher is a special type of system D that connects to all
interfaces of a resource U and outputs a single bit at the end of its interaction
with U. In the term algebra, this appears as the expression DU, which defines
a binary random variable. The distinguishing advantage of a distinguisher D on
two systems U and V is defined as

ΔD(U,V) := |P[DU = 1]− P[DV = 1]|

and as ΔD(U,V) := supD∈D ΔD(U,V) for a distinguisher class D.
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The distinguishing advantage measures how much the output distribution of
D differs when it is connected to either U or V. There is an equivalence notion
on systems (which is defined on the discrete systems level), denoted by U ≡ V,
which implies that ΔD(U,V) = 0 for all distinguishers D. The distinguish-
ing advantage satisfies the triangle inequality, i.e., ΔD(U,W) ≤ ΔD(U,V) +
ΔD(V,W) for all resources U, V, and W and distinguishers D.

Games. We capture games defining security properties as distinguishing prob-
lems in which an adversary A tries to distinguish between two game systems G0

and G1. Game systems (or simply games) are single-interface systems, which
appear, similarly to resources, on the right-hand side of the expressions in the
term algebra. The adversary is a distinguisher that connects to a game (instead
of a resource). We denote by A the class of all adversaries for games.

Reductions. When relating two distinguishing problems, it is convenient to use a
special type of system C that translates one setting into the other. Formally, C
is a converter that has an inside and an outside interface. When it is connected
to a system S, which is denoted by CS, the inside interface of C connects to the
(merged) interface(s) of S and the outside interface of C is the interface of the
composed system. C is called a reduction system (or simply reduction).

To reduce distinguishing two systems S,T to distinguishing two systemsU,V,
one exhibits a reduction C such that CS ≡ U and CT ≡ V.6 Then, for all
distinguishers D, we have ΔD(U,V) = ΔD(CS,CT) = ΔDC(S,T). The last
equality follows from the fact that C can also be thought of as being part of the
distinguisher.

2.2 Discrete Systems

Protocols that communicate by passing messages and the respective resources are
described as (probabilistic) discrete systems. Their behavior can be formalized by
random systems as in [23], i.e., as families of conditional probability distributions
of the outputs (as random variables) given all previous inputs and outputs of the
system. For systems with multiple interfaces, the interface to which an input or
output is associated is specified as part of the input or output. For the restricted
(but here sufficient) class of systems that for each input provide (at most) one
output, an execution of a collection of systems is defined as the consecutive
evaluation of the respective random systems (similarly to the models in [6,20]).

2.3 The Notion of Construction

Recall that we consider resources with interfaces A, B, and E, where A and
B are interfaces of honest parties and E is the interface of the adversary. We

6 For instance, we consider reductions from distinguishing game systems to distinguish-
ing resources. Then, C connects to a game on the inside and provides interfaces A,
B, and E on the outside.
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formalize the security of protocols via the following notion of construction, which
was introduced in [24] (and is a special case of the abstraction notion from [25]):

Definition 1. Let Φ and Σ be as in Section 2.1. A protocol π = (π1, π2) ∈ Σ2

constructs resource S ∈ Φ from resource R ∈ Φ within ε and with respect to
distinguisher class D, denoted

R
(π,ε)
==⇒ S,

if {
ΔD(πA1 πB2 ⊥ER,⊥ES) ≤ ε (availability)

∃σ ∈ Σ : ΔD(πA1 πB2 R, σES) ≤ ε (security).

The availability condition captures that a protocol must correctly implement
the functionality of the constructed resource in the absence of the adversary. The
security condition models the requirement that everything the adversary can
achieve in the real-world system (i.e., the assumed resource with the protocol)
he can also accomplish in the ideal-world system (i.e., the constructed resource
with the simulator).

An important property of Definition 1 is its composability. Intuitively, if a
resource S is used in the construction of a larger system, then the composability
implies that S can be replaced by a construction πA1 πB2 R without affecting the
security of the composed system. Security and availability are preserved under
composition. More formally, if for some resources R, S, and T and protocols π

and φ, R
(π,ε)
==⇒ S and S

(φ,ε′)
==⇒ T, then

R
(φ◦π,ε+ε′)
==⇒ T,

as well as

[R,U]
([π,id],ε)
==⇒ [S,U] and [U,R]

([id,π],ε)
==⇒ [U,S]

for any resource U. More details can be found in [24].

2.4 Channels

Channel Name Symbol �(m) inj
Insecure Channel − →→ m �

Confidential Channel −(→→• |m| �
Authenticated Channel •−(→→ m ×

Secure Channel •−(→→• |m| ×

We consider the types of channels
shown on the right. Each channel
initially expects a special cheat-
ing bit b ∈ {0, 1} at interface E,
indicating whether the adversary
is present and intends to interfere
with the transmission of the messages. The special converter ⊥ (cf. Section 2.1)
always sets b = 0. For simplicity, we will assume that whenever ⊥ is not present,
all cheating bits are set to 1.
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A channel from A to B with leakage � and message space M ⊆ {0, 1}∗ is
a resource with interfaces A, B, and E and behaves as follows:7 When the ith

message m ∈ M is input at interface A, it is recorded as (i,m) and (i, �(m))
is output at interface E. When (dlv, i′) is input at interface E, if (i′,m′) has
been recorded, m′ is delivered at interface B. If injections are permissible, when
(inj,m′) is input at interface E, m′ is output at interface B.8

The security statements in this work are parameterized by the number of
messages that are transmitted over the channels. More precisely, for each of the
above channels and each n ∈ N, we define the n-bounded channel as the one
that processes (only) the first n queries at the A-interface and the first n queries
at the E-interface (as described above) and ignores all further queries at these
interfaces. We then require from a protocol that it constructs, for all n ∈ N,
the n-bounded “ideal” channel from the n-bounded assumed channel. Wherever
the number n is significant, such as in the theorem statements, we denote the
n-bounded versions of channels by writing the n on top of the channel symbol

(e.g.,
n

−(→→•); we omit it in places that are of less formal nature.
Finally, a simple-arrow symbol (e.g., •−→) denotes a single-use channel. That

is, only one message may be transmitted.

2.5 Public-Key Encryption Schemes

A public-key encryption (PKE) scheme with message space M ⊆ {0, 1}∗ and
ciphertext space C is defined as three algorithms Π = (K,E,D), where the key-
generation algorithmK outputs a key pair (pk, sk), the (probabilistic) encryption
algorithm E takes a message m ∈ M and a public key pk and outputs a cipher-
text c ← Epk(m), and the decryption algorithm takes a ciphertext c ∈ C and a
secret key sk and outputs a plaintext m← Dsk(c). The output of the decryption
algorithm can be the special symbol (, indicating an invalid ciphertext.

A PKE scheme is correct if m = Dsk(Epk(m)) (with probability 1 over the
randomness in the encryption algorithm) for all messages m and all key pairs
(pk, sk) generated by K.

It will be more convenient to phrase bit-guessing games used in definitions of
PKE security properties as a distinguishing problem between two game systems
(cf. Section 2.1). We consider the following games, which correspond to the
(standard) notions of ind-cpa (cpa for short), ind-cca2 (cca), ind-cca1 (cca1),
ind-rcca (rcca), and nm-cpa (nm).9 Informally, a scheme is secure in the sense of
a notion if efficient adversaries have negligible advantage in distinguishing the
two corresponding game systems.

7 If the cheating bit is set to b = 0, all messages input at the sender interface A are
immediately delivered to B.

8 Note that none of the channels prevents the adversary from reordering or replaying
messages sent over the channel. The �-symbol suggests the “internal buffer” in which
the channel stores messages input at A.

9 We consider the so-called real-or-random versions of these games, which are equiv-
alent to the more popular left-or-right formulations (as shown in [2] for symmetric
encryption). For non-malleability, we use an indistinguishability-based version by [5].
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CPA game. Consider the systems Gcpa
0 and Gcpa

1 defined as follows: For a PKE
scheme Π , both initially run the key-generation algorithm to obtain (pk, sk)
and output pk. Upon (the first) query (chall,m), Gcpa

0 outputs an encryption
c ← Epk(m) of m and Gcpa

1 an encryption c ← Epk(m̄), called the challenge, of
a randomly chosen message m̄ of length |m|.

CCA games. For b ∈ {0, 1}, system Gcca1
b proceeds as Gcpa

b but additionally
answers decryption queries (dec, c′) before the challenge is output by returning
m′ ← Dsk(c

′). Gcca
b answers decryption queries at any time unless c′ equals the

challenge c (if defined), in which case the answer is test.

RCCA game. Consider the systems Grcca
0 and Grcca

1 defined as follows: Initially,
both run the key-generation algorithm to obtain (pk, sk) and output pk. Upon
(the first) query (chall,m), both choose a random message m̄ of length |m|.
Grcca

0 outputs c← Epk(m) and Grcca
1 outputs c← Epk(m̄). Both systems answer

decryption queries (dec, c′), but if Dsk(c
′) ∈ {m, m̄} (if m and m̄ are defined),

the answer is test.
For more details about RCCA-security, see Section 4.2 or consult [8], where

the notion was introduced.

NM game. Consider the systems Gnm
0 and Gnm

1 defined as follows: Both initially
run the key-generation algorithm to obtain (pk, sk) and output pk. Upon (the
first) query (chall,m), Gnm

0 outputs an encryption c ← Epk(m) of m and Gnm
1

an encryption c ← Epk(m̄) of a randomly chosen message m̄ of length |m|.
When a query (dec, c1, . . . , c�) is input, both systems decrypt c1, . . . , c�, return
the resulting plaintexts (if any of the ciphertexts equal c, the corresponding
plaintexts are replaced by test), and terminate the interaction.

2.6 Asymptotics

To allow for asymptotic security definitions, cryptographic protocols are often
equipped with a so-called security parameter. We formulate all statements in this
paper in a non-asymptotic fashion, but asymptotic statements can be obtained
by treating systems S as asymptotic families {Sκ}κ∈N and letting the distin-
guishing advantage be a real-valued function of κ. Then, for a given notion of
efficiency, one can consider security w.r.t. classes of efficient distinguishers and a
suitable negligibility notion. All reductions in this work are efficient with respect
to the standard polynomial-time notions.

3 Constructing Confidential Channels with PKE

The main purpose of public-key encryption (PKE) is to achieve confidential com-
munication. As a constructive statement, this means that we view a PKE scheme
Π as a protocol, a pair of converters (enc, dec), whose goal is to construct a con-
fidential channel from non-confidential channels. Differentiating between the two
cases where the communication from the sender to the receiver is authenticated
and unauthenticated, this is written as
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[←−•, •−(→→ ]
(enc,dec)
==⇒ •−(→→• (1) and [←−•,− →→ ]

(enc,dec)
==⇒ −(→→•, (2)

respectively.
In both cases, the single-use channel←−• captures the ability of the sender to

obtain the receiver’s public key in an authenticated fashion. In construction (1),
the communication from the sender A to the receiver B is authenticated, which
is modeled by the channel •−(→→ . The goal is to achieve a secure channel •−(→→•,
which only leaks the length of the messages sent at interface A. In construc-
tion (2), the communication from A to B is completely insecure, which is cap-
tured by the insecure channel − →→ . Here, the goal is to achieve a confidential
channel −(→→•, which still hides messages input at the A-interface but also allows
to inject arbitrary messages at E.

In the following, we first show how a PKE schemeΠ can be seen as a converter
pair (enc, dec). We then prove that (enc, dec) achieves construction (1) if the un-
derlying PKE scheme is cpa-secure, and construction (2) if the underlying PKE
scheme is cca-secure. We also briefly discuss the usefulness of the constructed
channels.

3.1 PKE Schemes as Protocols

Let Π = (K,E,D) be a PKE scheme. Based on Π , we define a pair of protocol
converters (enc, dec) for constructions (1) and (2). Both converters have two sub-
interfaces in.1 and in.2 on the inside, as we connect them to a resource that is
a parallel composition of two other resources (cf. Section 2.1).

Converter enc works as follows: It initially expects a public key pk at in.1.
When a message m is input at the outside interface out, enc outputs c← Epk(m)
at in.2. Converter dec initially generates a key pair (pk, sk) using key-generation
algorithm K and outputs pk at in.1. When dec receives c′ at in.2, it computes
m′ ← Dsk(c

′) and, if m′ �= (, outputs m′ at the outside interface out.

3.2 Constructing a Secure from Two Authenticated Channels

Towards proving that the protocol (enc, dec) indeed achieves construction (1),
note first that the correctness of Π implies that the availability condition of
Definition 1 is satisfied. To prove security, we need to exhibit a simulator σ
such that the assumed resource [←−•, •−(→→ ] with the protocol converters is
indistinguishable from the constructed resource •−(→→• with the simulator (cf.
Figure 1).

Theorem 1 implies that (enc, dec) realizes (1) if the underlying PKE scheme
is cpa-secure.

Theorem 1. There exists a simulator σ and for any n ∈ N there exists a (effi-
cient) reduction C such that for every D,

ΔD(encAdecB[←−•,
n

•−(→→ ], σE
n

•−(→→•) ≤ n ·ΔDC(Gcpa
0 ,Gcpa

1 ).
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A B

E.1 E.2

←−•

•−�→→

enc dec A B

E.1 E.2

•−�→→•

σ

Fig. 1. Left: The assumed resource (two authenticated channels) with protocol con-
verters enc and dec attached to interfaces A and B, denoted encAdecB [←−•, •−�→→ ].
Right: The constructed resource (a secure channel) with simulator σ attached to the
E-interface, denoted σE•−�→→•. In particular, σ must simulate the E-interfaces of the
two authenticated channels. The protocol is secure if the two systems are indistinguish-
able.

Proof. First, consider the following simulator σ for interface E of •−(→→•, which
has two sub-interfaces, denoted by out.1 and out.2, on the outside (since the
real-world system has two sub-interfaces at E): Initially, σ generates a key pair
(pk, sk) and outputs (1, pk) at out.1. When it receives (i, l) at the inside interface
in, σ generates an encryption c ← Epk(m̄) of a randomly chosen message m̄ of
length l and outputs (i, c) at out.2. When (dlv, i′) is input at out.2, σ simply
outputs (dlv, i′) at in.

Consider the two systems U := encAdecB[←−•,
1

•−(→→ ] and V := σE
1

•−(→→•.
Distinguishing Gcpa

0 from Gcpa
1 can be reduced to distinguishing these two sys-

tems via the following reduction system C′, which connects to a game on the
inside and provides interfaces A, B, and E on the outside (cf. Section 2.1 for
details on reduction systems): Initially, C′ takes a value pk from the game (on
the inside) and outputs (1, pk) at the (outside) E.1-interface. When a message
m is input at the A-interface of C′, it is passed as (chall,m) to the game. The
resulting challenge c is output as (1, c) at the E.2-interface. When (dlv, 1) is
input at the E.2-interface, C′ outputs m at interface B.

We have C′Gcpa
0 ≡ U and C′Gcpa

1 ≡ V, and thus

ΔD(encAdecB[←−•,
n

•−(→→ ], σE
n

•−(→→•) ≤ n ·ΔDC′′
(U,V)

= n ·ΔDC′′
(C′Gcpa

0 ,C′Gcpa
1 )

= n ·ΔDC(Gcpa
0 ,Gcpa

1 ),

where C := C′′C′ and the first inequality follows from a standard hybrid argu-
ment for a reduction system C′′ (deferred to the full version). ��

3.3 Confidential Channels from Authenticated and Insecure Ones

To prove that the protocol (enc, dec) achieves construction (2), we need to again
exhibit a simulator σ such that the assumed resource [←−•,− →→ ] with the pro-
tocol converters is indistinguishable from the constructed resource −(→→• with
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the simulator, as done in Theorem 2, which implies that (enc, dec) realizes (2) if
the underlying PKE scheme is cca-secure. We defer the proof to the full version.

Theorem 2. There exists a simulator σ and for any n ∈ N there exists a (effi-
cient) reduction C such that for every D,

ΔD(encAdecB[←−•,
n
− →→ ], σE

n
−(→→•) ≤ n ·ΔDC(Gcca

0 ,Gcca
1 ).

The confidential channel −(→→• is the best channel one can construct from
the two assumed channels. As the E-interface has the same capabilities as the
A-interface at both the authenticated (from B to A) and the insecure channels,
it will necessarily also be possible to inject messages to the receiver via the
E-interface by simply applying the sender’s protocol converter.

3.4 Applicability of the Constructed Channels

The plain use of PKE yields constructions (1) and (2), i.e., one obtains the
resources •−(→→• and −(→→•. Both channels allow the adversary to reorder or
replace the messages sent by A. In practice, where PKE is often used to en-
capsulate symmetric keys, it is important, however, that keys used in various
protocols by different users are independent. Thus, it is more useful to obtain
independent single-use channels [•−→•, . . . , •−→•] and [−→•, . . . ,−→•] instead of
•−(→→• and −(→→•, respectively.

In the authenticated setting, given independent authenticated channels, pro-
tocol (enc, dec) (with only formal modifications) achieves the construction

[←−•, •−→, . . . , •−→]
(enc,dec)
==⇒ [•−→•, . . . , •−→•].

In the unauthenticated setting, however, the analogous construction

[←−•,−→, . . . ,−→]
(enc,dec)
==⇒ [−→•, . . . ,−→•]

is not achieved by (enc, dec) since, due to the absence of authenticity, the ad-
versary can freely take a ciphertext it observes on one of the insecure channels
−→ and insert it into another one. Thus, the ideal resource cannot consist of
independent channels. This issue can be taken care of by (explicitly) introducing
session identifiers (SIDs). A systematic treatment of handling multiple sessions
and senders can be found in [29].

4 Constructive Semantics of Game-Based Notions

We analyze several game-based security notions from a constructive viewpoint.
We complete the analysis of cpa-security from Section 3.2 by showing that it is
also necessary to achieve construction (1). Moreover, we explain why the notion
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of cca is unnecessarily strict for construction (2) and that the construction in
fact only requires the weaker notion of rcca introduced in [8].

Then, we follow up on work by Bellare et al. [4], who compared several variants
of defining cca-security, and showed that only the stricter notions they consider
are sufficient for construction (2). We also provide constructive semantics for
non-adaptive chosen-ciphertext security and non-malleability.

4.1 CPA Security Is Necessary for Construction (1)

We prove in Section 3.2 that indistinguishability under chosen-plaintext attacks,
cpa-security, suffices to construct a secure channel from two authenticated chan-
nels. Here, we show that it is also necessary. That is, if protocol (enc, dec), based
on a PKE scheme Π as shown in Section 3.1, achieves the construction, then Π
must be cpa-secure.

In the following, let

U := encAdecB[←−•, •−(→→ ] and V := σE•−(→→•,

where σ is an arbitrary simulator.

Theorem 3. There exist (efficient) reductions C0 and C1 such that for all ad-
versaries A,

ΔA(Gcpa
0 ,Gcpa

1 ) ≤ ΔAC0(U,V) +ΔAC1(U,V).

Proof. Consider the following reduction systems C0 and C1, both connecting to
an {A,B,E}-resource on the inside and providing a single interface on the out-
side (for the adversary): Initially, both obtain (1, pk) at the inside E.1-interface
and output pk at the outside interface. When (chall,m) is received on the out-
side, C0 outputs m at the inside A-interface and C1 a randomly chosen message
m̄ of length |m|. Subsequently, (1, c) is received at the inside E.2-interface, and
c is output (as the challenge) on the outside by both systems. We have

C0U ≡Gcpa
0 and C1U ≡ Gcpa

1 and C0V ≡ C1V,

where the last equivalence follows from the fact that, in V, the input from
•−(→→• to σ is the same in both systems (the length of the message input at the
A-interface of •−(→→•), and therefore they behave identically. Hence,

ΔA(Gcpa
0 ,Gcpa

1 ) = ΔA(C0U,C1U)

≤ ΔA(C0U,C0V) +ΔA(C0V,C1V) +ΔA(C1V,C1U)

= ΔAC0(U,V) +ΔAC1(U,V).

��
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4.2 RCCA Security Is Necessary for Construction (2)

Indistinguishability under chosen-ciphertext attacks, cca-security, suffices to con-
struct a confidential channel from an authenticated and an insecure one (cf. Sec-
tion 3.3). It is, however, unnecessarily strict, as can be seen from the following
example, adapted from [8]: Let Π be a PKE scheme and assume it is cca-secure.
Consider a modified scheme Π ′ that works exactly as Π , except that a 0-bit is
appended to every encryption, which is ignored during decryption. It is easily
seen that Π ′ is not cca-secure, since the adversary can obtain a decryption of
the challenge ciphertext by flipping its last bit and submitting the result to the
decryption oracle. PKE scheme Π ′ can, however, still be used to achieve con-
struction (2) using a simulator that issues the dlv-instruction to −(→→• whenever
a recorded ciphertext is received at the outside interface or one where flipping
the last bit results in a recorded ciphertext (cf. full version for more details).

Canetti et al. [8] introduced the notion of replayable chosen ciphertext security,
rcca, which is more permissive in that it allows the adversary to transform a
ciphertext into one that decrypts to the same message. In the full version of
this paper, we show that if protocol (enc, dec), based on a PKE scheme Π (cf.
Section 3.1), achieves (2), then Π must be rcca-secure, and that rcca is also
sufficient for the construction if the message space of Π is sufficiently large.

4.3 Variants of Chosen-Ciphertext Security

Bellare et al. [4] analyze several ways of enforcing the condition that the adver-
sary must not query the challenge ciphertext c to the decryption oracle. They
consider modifications along two axes: First, the condition can be enforced dur-
ing the entire game (b for both phases) or only in the second phase (s for second
phase), i.e., after the c has been given to the adversary. Second, one can ei-
ther exclude adversaries with a non-zero probability of violating the condition
from consideration (e for exclusion) or penalize an adversary (by declaring the
game lost) whenever he asks the challenge c (p for penalty). The combination of
these choices yields four non-equivalent notions ind-cca-sp, ind-cca-se, ind-cca-bp,
ind-cca-be. The s-notions are equivalent to each other and to our formulation of
cca-security (cf. Section 2.5). The e-notions are strictly weaker and do in fact
not even imply cca1-security [4]. Since cca1-security is weaker than rcca-security
and rcca is needed for construction (2), they are not sufficient for (2).

4.4 Non-malleability

Informally, a non-malleable PKE scheme is such that the adversary cannot trans-
form a ciphertext into one that decrypts to a related message. We consider the
notion of non-malleability under chosen-plaintext attacks, nm-cpa, and show that
from a PKE scheme with this property we can build a protocol (enc′′, dec′′) that
achieves the construction

[←−•,− →→�]
(enc′′,dec′′)
==⇒ −(→→�•, (3)
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where − →→� works like − →→ but halts when halt is input at B and where the
channel −(→→�• is defined as follows: It internally keeps an initially empty list L
of messages. When the ith message m is input at interface A, it is recorded as
(i,m) and (i, |m|) is output at interface E. When (dlv, i′) is input at interface E
and if (i′,m′) has been recorded, m′ is appended to L. When (inj,m′) is input
at interface E, m′ is appended to L. When dlv-all is input at B, all messages in
L are output at B, and the channel halts.

The protocol converters (enc′′, dec′′) are built as (enc, dec) in Section 3.1,
except that dec′′ only outputs the messages it received once dlv-all is input at
the outside interface, at which time it also outputs halt at its inside interface
and halts. In the full version of this paper, we prove that (enc′′, dec′′) achieves
construction (3) if Π is nm-cpa-secure.

The assumed channel − →→� could itself be constructed in a setting where A
and B have synchronized clocks and B buffers all messages until an agreed point
in time, when A also stops sending. By the composition theorem, the channel
that is constructed in this manner can then serve as the assumed channel in
construction (3) to construct the channel −(→→�• using PKE. This channel may
then for instance be useful for running a protocol implementing a blind auction.

4.5 Non-adaptive Chosen-Ciphertext Security

ind-cca1-security, is defined via a gameGcca1, which works asGcca except that no
decryption queries are answered once the adversary has been given the challenge
ciphertext. The most natural way to translate this into a constructive statement
is to consider the construction of a (type of) confidential channel ◦−(→→• where
the adversary can inject messages at interface E only as long as no message has
been input at A from an insecure channel ◦− →→ with the same property.

In the full version of this paper, we show that protocol (enc, dec) built from a
cca1-secure PKE scheme Π as in Section 3.1 achieves

[←−•, ◦− →→ ]
(enc′′,dec′′)
==⇒ ◦−(→→•. (4)

Although this construction seems artificial, as with construction (3), it can be
used in any setting where the assumed channel is an appropriate modeling of an
available physical channel (or can itself be constructed from such a channel).

5 Conclusions

The purpose of this paper is to present the basic ways of applying PKE (within a
larger protocol) as constructive steps, to be used for the modular design of com-
plex protocols, thus taming the complexity of security-protocol design. To be
ultimately applicable to full-fledged real-world protocols, other relevant crypto-
graphic primitives also need to be modeled in the same way. While for symmetric
encryption and MACs this was explained in [28,26], and for commitments in [25],
treating digital signatures and other cryptographic schemes and security mecha-
nisms (sequence numbers, session identifiers, etc.) in constructive cryptography
is left for future work (cf. [29]).
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Abstract. The equivalence of the random-oracle model and the ideal-
cipher model has been studied in a long series of results. Holenstein,
Künzler, and Tessaro (STOC, 2011) have recently completed the pic-
ture positively, assuming that, roughly speaking, equivalence is indiffer-
entiability from each other. However, under the stronger notion of reset
indifferentiability this picture changes significantly, as Demay et al. (EU-
ROCRYPT, 2013) and Luykx et al. (ePrint, 2012) demonstrate.

We complement these latter works in several ways. First, we show
that any simulator satisfying the reset indifferentiability notion must be
stateless and pseudo deterministic. Using this characterization we show
that, with respect to reset indifferentiability, two ideal models are either
equivalent or incomparable, that is, a model cannot be strictly stronger
than the other model. In the case of the random-oracle model and the
ideal-cipher model, this implies that the two are incomparable. Finally,
we examine weaker notions of reset indifferentiability that, while not
being able to allow composition in general, allow composition for a large
class of multi-stage games. Here we show that the seemingly much weaker
notion of 1-reset indifferentiability proposed by Luykx et al. is equivalent
to reset indifferentiability. Hence, the impossibility of coming up with a
reset-indifferentiable construction transfers to the setting where only one
reset is permitted, thereby re-opening the quest for an achievable and
meaningful notion in between the two variants.

1 Introduction

Idealized Models. The standard approach to cryptographic security is to reduce
the security of a scheme to a (hopefully) well-studied algebraic or combinatorial
complexity assumption. Unfortunately, a large number of cryptographic schemes
does not admit a security reduction in the standard model. In these cases, the
community often resorts to an idealized model, where we can sometimes obtain
a proof of security. It is, of course, highly controversial whether or not proofs
in idealized models are acceptable, but there is a tendency to prefer an analysis
in an idealized model over the utter absence of any proof at all—in particular,
when one is concerned with schemes that are widely deployed in practice [5,6,9].

Arguably the most popular model of this kind is the random-oracle model
(ROM) where all parties have oracle access to a public, randomly chosen func-
tion [4]. Somewhat related is the ideal-cipher model (ICM) which gives all parties
oracle access to a public, randomly chosen (keyed) blockcipher [21]. Knowing
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that there is a close relation between pseudorandom functions and pseudoran-
dom permutations—namely existential equivalence—one could suspect that the
random-oracle model and the ideal-cipher model are equivalent, too. However,
formalizing the notion of equivalence is delicate and so are the proofs.

Equivalence of the ROM and ICM under Indifferentiability. Maurer, Renner and
Holenstein [19] introduced the concept of indifferentiability, which since then has
been regarded as the prevalent and actually only notion of equivalence between
ideal primitives. A construction Gπ with access to some primitive π is called
indifferentiable from another ideal primitive Π , if there is a simulator S such
that the construction Gπ implements an oracle that is indistinguishable from
Π , even if the distinguisher D additionally gets access to π. Now, demanding
the distinguisher D to distinguish (Gπ , π) from Π is of little sense. Additionally
to the oracle Π , the distinguisher gets access to the simulator S which tries
to emulate π’s behavior consistently with Π . Thus, the distinguisher tries to
distinguish the pair of oracles (Gπ, π) from the pair of oracles (Π,SΠ).

In the case of the ideal-cipher model and the random-oracle model, consider-
able effort has led to a proof of equivalence [11,12,17] under indifferentiability.
The reason why indifferentiability was considered a suitable notion of equiva-
lence is the appealing composition theorem established by Maurer et al. [19].
Namely, they transform any reductionist argument in the presence of the ideal
primitive Π into a proof that relies on the existence of π only. Their theorem,
thus, transforms a reduction R into a reduction R′, where the latter locally im-
plements a single copy of the simulator S. Jumping ahead, it will turn out that
in this step, they rely on an implicit assumption.

Multi-Stage Adversaries. Ristenpart et al. [20] were the first to point out sce-
narios where indifferentiability of Gπ from Π was not sufficient to replace Π
by Gπ . Their counterexamples involve adversaries that run in multiple stages,
i.e., an adversary A consists of two or more sub-adversaries, say A = (A1,A2),
that do not share state (or at least not arbitrary state). Now, a reduction R
that reduces to such a multi-stage game also needs to be split into two parts
(R1,R2) where the same restriction upon the sharing of state applies. Hence,
for the composition theorem by Maurer et al., each part of the reduction R1 and
R2 needs to implement its own, independent copy of the simulator S. However,
in this case, the two copies of the simulator will not necessarily behave in the
same way as opposed to the “real” primitive π which is, roughly, what makes
the composition theorem collapse in the setting of multi-stage games.

Curiously, their composition holds in the presence of strong, colluding adver-
saries, while it does not in the setting of weaker, non-colluding ones. Usually in
cryptography, a conservative approach corresponds to considering the strongest
possible adversary, as a primitive that is secure against a strong adversary is also
secure against a weaker adversary. However, the indifferentiability composition
theorem is not, by itself, a security model or a proof of security. Instead, it is
a tool to transform any proof in a security model in the presence of one ideal
primitive into a security proof in the same security model in the presence of
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another ideal primitive. Hence, one tries to cover any type of security model,
which, in particular, includes security models where stage-sharing adversaries
can mount trivial attacks. And thus, a conservative approach in the setting of
indifferentiability demands including also weaker, namely non-colluding state-
sharing adversaries. Technically, the composition theorem is harder to prove for
weaker adversaries, because it transforms an adversary of one type into another
adversary of the same type. Considering a stronger adversary corresponds to a
stronger assumption in the theorem, but also to a harder statement to prove,
and vice versa for weaker adversaries.

One might hope that the distinction is of technical interest only. Unfortu-
nately, as we argue, in basically all real-life scenarios, we need to consider multi-
stage adversaries. Ristenpart et al. give several examples of multi-stage games
for notions such as deterministic encryption [1,2], key-dependent message secu-
rity [8], related-key attacks [3], and non-malleable hash functions [10]. On the
other hand, many classical notions of security seem inherently single stage: IND-
CPA or IND-CCA security for encryption, or signature schemes which are ex-
istentially unforgeable under (adaptive) chosen message attacks. However, any
classical definition of security becomes multi staged if it is augmented with a
leakage oracle. The reason is that, in the random oracle model, every party
should have access to the random oracle. In particular, this includes the leakage
oracle and the adversarially specified leakage function, resulting in an implicit
second stage [14]. Hence, whenever side-channel attacks are reflected in a model,
adversaries act at least in two stages—and for real-life applications, we cannot
discard side-channel attacks.

In order to cope with the new challenge of multi-stage adversaries, Ristenpart
et al. put forward a strengthened notion called reset indifferentiability. Roughly
speaking, in this game, the distinguisher may reset the simulator’s internal state
between any two queries. Returning to ROM/ICM equivalence, an inspection of
the simulators defined in [11] and [17] (as well as [12], for that matter) reveals
that their behavior varies substantially with their state and, thus, they are not
reset indifferentiable.

Equivalence of the ROM and ICM under Reset Indifferentiability. As plain in-
differentiability is not sufficient to argue that two primitives are equivalent, the
question regarding the ideal cipher model and the random oracle model is, thus,
again open. Building on first negative results from [20], the authors of [13,18]
have recently shown that reset-indifferentiable constructions cannot be built via
domain extension, thereby ruling out constructions from ideal ciphers that are
reset indifferentiable from a random oracle; note that random oracles are usually
perceived as having an infinite domain while ideal ciphers have a finite domain.
With this result at hand, we thus know that ideal ciphers cannot be used to
obtain random oracles via a reset-indifferentiable construction, but it might still
be possible to construct an ideal cipher from a random oracle, i.e., either the
two models are entirely incomparable, or the random-oracle model is strictly
stronger.
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We rule out such a possibility. Our so-called duality lemma establishes that if
there is no construction Gπ

1 that is reset indifferentiable from primitive Π , then
also vice versa, there is no construction GΠ

2 that is reset indifferentiable from
primitive π. Hence, our theorem complements the results by Demay et al. and
Luykx et al. [13,18] showing that there can also not be a domain-shrinking
construction.

Proving that according to plain indifferentiability, the ICM and ROM are
equivalent had been a serious challenge and finally involved a Feistel network
with many rounds. A Feistel network is a domain-doubling construction, and
is thus ruled out by the previous impossibility results. The few leverages that
remain to bypass the current impossibility results possibly require quite new
techniques. Firstly, it might still be possible to build a construction that is
neither domain shrinking, nor domain extending. However, as we will see later,
that means settling either direction (RO from IC and vice versa) simultaneously,
and this might be quite challenging. The second leverage is a distinction that has
been irrelevant in most works in the area of indifferentiability so far and that we
would like to point out. Namely, strong indifferentiability requires the simulator
S to work for any distinguisher D, while weak indifferentiability only demands
that for every D, there exists a good simulator S. Known constructions are
usually strongly indifferentiable, while most existing impossibility results rule out
even weakly indifferentiable constructions. In contrast, we do not rule out weakly
indifferentiable constructions. It would be interesting to see techniques that make
non-black-box use of the distinguisher D and establish a reset-indifferentiable
construction that is domain shrinking.

Notions between indifferentiability and reset indifferentiability. From the cur-
rent state-of-the-art, there are two ways to proceed: firstly, we can develop new
techniques to exploit the few remaining leverages left to bypass the existing
impossibility results. Secondly, we might weaken the notion of reset indifferen-
tiability as introduced by Ristenpart et al., to a notion that is achievable by
constructions and which is sufficient for a subclass of multi-stage games.

Demay et al. [13] introduce resource-restricted indifferentiability where adver-
saries may share a limited amount of state. If a certain amount s of shared state
is allowed, then their impossibility result shows that a reset-indifferentiable con-
struction cannot extend the domain by more than s+ �log(s)� bits. Maybe the
additional bits allow to bypass the impossibility results more easily, as proving
domain extension by a few bits might be easier than requiring equality of the
domain sizes—however, in this setting, the composition results accounts for a
certain class of games only.

Another approach that has been put forward by Luykx et al. [18] is to reduce
the number of resets. Indeed, allowing for a polynomial number of resets/stages
seems to be an overkill, as some games such as the security model for determin-
istic encryption [1,2] and also certain forms of leakage require a constant number
of adversarial stages only. To this end, Luykx et al. propose the notion of single-
reset indifferentiability where a distinguisher can make a single reset call only;
naturally, a construction that is single reset indifferentiable would be sufficient
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in any security game consisting of exactly two distinct adversarial stages such as
deterministic encryption. Analogously, one can define n-reset indifferentiability
for n+ 1 adversarial stages.

However, as we prove, single-reset indifferentiability is already equivalent to
full-reset indifferentiability and so are all notions of n-reset indifferentiability.
Hence, reducing the number of allowed reset queries does not help us to es-
tablish composition results for a restricted class of games. Thus, if a general
indifferentiability result is indeed impossible, then it is a curious open question
how to cope with the uncomfortable situation. It might be possible to establish
indifferentiability results and composition theorems for a class of games that is
restricted in another way than by the number of queries. Indeed, it would be in-
teresting to see how such a class could look like and whether there are games for
which, in general, finding a suitable, indifferentiable construction is impossible.

Summary of our Contributions. We first introduce the notion of pseudo-determi-
nistic algorithms, which captures, that a probabilistic algorithm almost always
returns the same answer on the same queries and thus shares many properties
with deterministic algorithms. Essentially, a probabilistic (and possibly state-
ful) algorithm A is called pseudo deterministic, if no efficient distinguisher with
black-box access to A can make A return two different answers on the same in-
put. This notion of pseudo determinism can be seen as an average-case version of
the pseudo-deterministic algorithms that were recently introduced by Goldreich,
Goldwasser, and Ron [16]. While they require probabilism to be hard to detect
on any input, we only require indistinguishability for efficiently generatable in-
puts, on the average. As stressed by Goldreich et al. [16], pseudo-deterministic
algorithms are practically as useful as deterministic algorithms, but they are also
easier to construct—which we indeed exploit in our paper.

We will show in Section 3 that simulators for reset indifferentiability need to
be stateless and pseudo deterministic. Simplifying pseudo determinism to de-
terminism for the moment, this allows us to establish what we call the duality
lemma. Perhaps surprisingly, it states that, with respect to reset indifferentiabil-
ity, two idealized models are either equivalent or incomparable. The reason is that
a deterministic and stateless simulator can act as a construction and vice versa.
Consequently, in order to prove equivalence in terms of reset indifferentiability,
this lemma makes it sufficient to prove the “easier” direction, whichever this
might be. In turn, for impossibility results, one might use this as a tool to prove
impossibility more easily. In fact, we use the duality lemma to establish that not
only domain-extending constructions are impossible, but also domain-shrinking
constructions (Section 4) thereby complementing the results of [13]. Note that
the duality lemma covers strong indifferentiability, leaving non-black-box use of
the distinguisher as a potential leverage to bypass this impossibility.

The recently proposed [18] notion of single-reset indifferentiability intends to
define a notion of indifferentiability that is easier to achieve and simultaneously
covers an interesting class of multi-stage games that has two adversary stages
only. Interestingly, as we establish, restricting the number of resets does not
yield a weaker notion of equivalence. We prove that single- (and n-) reset
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indifferentiability is equivalent to reset indifferentiability (Section 5). Maybe sur-
prisingly, our proof does not rely on a hybrid argument; instead, we establish a
tight reduction thatmerely reduces the distinguisher’s advantage by a factor of 2.

2 Preliminaries

For a natural number n ∈ N we denote by {0, 1}n the set of all bit strings of
length n. By {0, 1}∗ we denote the set of all bit strings of finite length. As usual
|M| denotes the cardinality of a setM and logarithms are to base 2. For some
probabilistic algorithm A and input x we denote by A(x;R) the output of A on
x using randomness R. Throughout this paper we assume that λ is a security
parameter (if not explicitly given then implicitly assumed) and that algorithms
(resp., Turing machines) run in polynomial time with respect to λ.

In this paper we consider random oracles and ideal ciphers (defined below)
which we will collectively refer to as ideal primitives. Although we present most
of the results directly for ideal ciphers and random oracles, the following more
general notion of ideal primitives allows us to generalize some of our results:

Definition 1. An ideal primitive Πλ is a distribution on functions indexed by
the security parameter λ. For some algorithm A, security parameter λ and ideal
primitive Πλ we say that A has access to Π if A has oracle access to a function
f chosen from the distribution Πλ.

We simply write Π , i.e., omit the security parameter, if it is clear from the
context.

Remark 1. We will usually encounter only single instances of an ideal primitive
Π at a time. Unless stated otherwise, if multiple parties have access to Π , then
we implicitly assume that the corresponding function f was chosen from the
distribution Π using the same randomness for all parties, i.e., all parties have
oracle access to the same function f .

Random Oracles and Ideal Ciphers. A random oracle (R�,m)λ is the uniform
distribution on all functions mapping {0, 1}� to {0, 1}m with � := �(λ) and
m := m(λ). An ideal cipher (Ek,n)λ is the uniform distribution on all keyed
permutations of the form {0, 1}k × {0, 1}n → {0, 1}n with k := k(λ) and n :=
n(λ). That is, for a cipher in the support of (Ek,n)λ each key κ ∈ {0, 1}k describes
a random (independent) permutation Ek,n(κ, ·) : {0, 1}n → {0, 1}n. By abuse of
notation, the term random oracle (resp., ideal cipher) also refers to a specific
instance chosen from the respective distribution.

Keyed vs. unkeyed ciphers. The ideal-cipher model has either been considered as
a public unkeyed permutation or as a public keyed permutation. We present our
results in the keyed setting since we feel that the ideal cipher-model is usually
perceived in this way. However, we want to point out that the results are equally
valid for the unkeyed setting because our proofs do not rely on the presence of
a key.
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Independently of this, one might be tempted to argue that the settings are in-
terchangeable since we know, for example, constructions of a keyed permutation
from an ideal public permutation (Even and Mansour, [15]). Note though, that
in order to make this argument work, one needs to show that these constructions
are reset indifferentiable. However, the construction by Even and Mansour is a
domain extender where the key size is twice the message size and we rule out
reset indifferentiability for such extending constructions in Section 4. We note
that it is an interesting open problem whether or not such (reset-) indifferentiable
non-extending transformations exist.

2.1 Indifferentiability

Let us now recall the indifferentiability notion of Maurer et al. [19] in the ver-
sion by Coron et al. [11] who replace random systems by oracle Turing machines
(resp., ideal primitives). Since we are concerned with different types of indifferen-
tiability, we will sometimes use the term plain indifferentiability when referring
to this original notion of indifferentiability.

Definition 2. A Turing machine G with black-box access to an ideal primitive π
is strongly indifferentiable from an ideal primitive Π if there exists a simulator
SΠ , such that for any distinguisher D there exists negligible function negl, such
that: ∣∣∣Pr[DGπ,π(1λ) = 1

]
− Pr

[
DΠ,SΠ

(1λ) = 1
]∣∣∣ ≤ negl(λ) (1)

We say that the construction is weakly indifferentiable if for any D there
exists a simulator S such that (1) holds.

We will use the term real world to denote that the distinguisher D talks to the
constructionGπ and the primitive π, whereas in the ideal world, the distinguisher
D talks to the “target” primitive Π and simulator SΠ . The goal of the distin-
guisher is to determine which of the two pairs of oracles he is talking to. Towards
this goal, the distinguisher D queries its two oracles, of which one is called the
honest interface h which is either Gπ (in the real world) or Π (in the ideal world).
The other oracle is called the adversarial interface a and corresponds to either
π (real world) or SΠ (ideal world). Thus, (h, a) := (Gπ, π) if distinguisher D is
in the real world and (h, a) := (Π,SΠ) if it is in the ideal world. The names h
(honest) and a (adversarial) are in the style of [20] and suggestive: an honest
party uses a construction as the designer intended; an adversary could, however,
use the underlying building blocks to gain an advantage.

Reset Indifferentiability. Ristenpart et al. show [20] that, in general, we cannot
securely replace a primitive Π by a construction Gπ from primitive π, if the
construction is indifferentiable only. Instead, Gπ needs to be (weakly) reset in-
differentiable from Π which extends the original indifferentiability definition by
giving the distinguisher the power to reset the simulator at arbitrary times:
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Definition 3. Let the setup be as in Definition 2. An oracle Turing machine
Gπ is called strongly (resp. weakly) reset indifferentiable from ideal primitive
Π if the distinguisher D can reset the simulator S to its initial state arbitrarily
many times during the respective experiment.

For reset indifferentiability the adversarial interface a in the real world simply ig-
nores reset queries. Reset indifferentiability now allows composition in arbitrary
games and not only in single-stage games, as does the original indifferentiability
notion [20,19].

3 Pseudo-deterministic Stateless Simulators for
Indifferentiability

Recall that the composition theorem by Maurer et al. [19] for plain indifferentia-
bility holds for single-stage adversaries only. Their theorem says that if (i) the
construction Gπ is indifferentiable from the ideal primitive Π and if (ii) there
is a reduction R that transforms a successful adversary A against some notion
of security into an adversary RA against a single-stage game in the presence of
the ideal primitive Π , then also in the presence of the construction Gπ there is
a reduction R′ that transforms a successful adversary A into an adversary R′A

against the single-stage game.
Inorder toprove a general composition theorem,Ristenpart et al. [20] strengthen

the notion of indifferentiability to account for the different stages of the adversary.
They introduce the notion of (weak) reset indifferentiability and prove that the
aforementioned theorem works for arbitrary games, if the constructionGπ is reset
indifferentiable from the ideal primitiveΠ . In contrast to plain indifferentiability,
here, the distinguisher gets extra powers, namely to reset the simulator at arbitrary
times. Ristenpart et al. [20] and Demay et al. [13] remark that reset indifferentia-
bility is equivalent to plain indifferentiability with stateless simulators. Intuitively,
this follows from the observation that the distinguisher in the reset indifferentiabil-
ity game can simply reset the simulator after each query it asks.We believe that, al-
beit equivalent, stateless simulators are often easier to handle than reset-resistant
simulators and thus explicitly introduce indifferentiability with stateless simula-
tors as multi-stage indifferentiability and then prove that it is equivalent to reset
indifferentiability.

In Subsection 3.2, we prove that strong multi-stage indifferentiability implies
that the simulators are also pseudo deterministic, a notion that we put forward
in this section. Relative to a random oracle or an ideal cipher, we show how
to derandomize pseudo-deterministic simulators, if the simulators are allowed to
depend on the number of queries made by the distinguisher.

3.1 Multi-stage Indifferentiability

A stateless interactive algorithm is an algorithm whose behavior is statistically
independent from the call/answer history of the algorithm.We now prove that in-
differentiability with stateless simulators is equivalent to reset indifferentiability.
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Definition 4. A construction G with black-box access to primitive π is strongly
multi stage indifferentiable from primitive Π if there exists a stateless probabilis-
tic polynomial-time simulator S (with access to Π), such that for any probabilis-
tic polynomial-time distinguisher D there exists negligible function negl such that:∣∣∣Pr[DGπ,π(1λ) = 1

]
− Pr

[
DΠ,SΠ

(1λ) = 1
]∣∣∣ ≤ negl(λ) (2)

We say that a construction Gπ is weakly multi stage indifferentiable from Π
if for any probabilistic polynomial-time distinguisher D there exists a stateless
probabilistic polynomial-time simulator S such that (2) holds.

Lemma 1. A construction G with black-box access to primitive π is weakly
(resp., strongly) multi stage indifferentiable from primitive Π if and only if G is
weakly (resp., strongly) reset indifferentiable from primitive Π.

Proof. First note that any stateless simulator is, naturally, indifferent to resets
and thus multi-stage indifferentiability implies reset indifferentiability. Moreover,
strong reset indifferentiability implies strong multi-stage indifferentiability since
the simulator for reset indifferentiability must work for any distinguisher, in
particular for those which reset after each query. Hence this stateful simulator
can be simply initialized and run by a stateless simulator (the stateless simulator
does this for each query it receives).

We now prove the remaining relation, i.e., that weak reset indifferentiability
implies weak multi-stage indifferentiability. Assume that reset indifferentiability
holds and consider an arbitrary distinguisher D in the multi-stage indifferentia-
bility game. From this we construct a distinguisher D′ for the reset indifferentia-
bility game which runs D and sends a reset query to its adversarial a-interface
after every a-query issued by D. Let S ′ be the simulator for D′ guaranteed to
exist by reset indifferentiability. We construct a stateless simulator S for multi-
stage indifferentiability which simply runs (the stateful) S ′ and resets its own
state after each query. Now the following equations hold for b ∈ {0, 1}:

Pr
[
D′Π,S′

(1λ) = b
]
= Pr

[
D′Π,S(1λ) = b

]
= Pr

[
DΠ,S(1λ) = b

]
.

Thus, if equation (2) holds for (D′,S ′), then it holds equally for (D,S).

3.2 Pseudo-deterministic Algorithms

Our notion of pseudo-deterministic algorithms intuitively captures that no dis-
tinguisher can query the algorithm on an input such that it returns something
different from the most likely output. That is, the adversary wins if in its set
of input/output pairs to the algorithm there is a query for which the algorithm
did not return the most likely response. We also introduce a weak notion of this
property, where we call A pseudo deterministic for a specific distinguisher if the
probability of the distinguisher winning in the above experiment is negligible.

Our notion of pseudo determinism can be seen as an average-case version
of the pseudo-deterministic algorithms as recently introduced by Goldreich et
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al. [16]. While they require probabilism to be hard to detect on any input, we
only require indistinguishability for efficiently generatable inputs, on average.

Definition 5. Let λ be a security parameter and AO a stateless probabilis-
tic polynomial-time oracle Turing machine with access to some oracle O. Let
L[D,A,O] denote the induced set of input/output pairs (x, y) of AO when queried
arbitrarily many times by the distinguisher D, where A uses fresh coins in each
run. We say that AO is pseudo deterministic if for all probabilistic polynomial-
time distinguishers D there exists a negligible function negl, such that

PrD,A,O
[
∀(x, y) ∈ L[D,A,O] y = yx,AO

]
≥ 1− negl(λ). (3)

The notation yx,AO denotes the most likely output of A on input x over the
randomness of A, i.e., conditioned on a fixed oracle O. If there are two equally
likely answers on input x, we choose yx,AO to be the lexicographically smaller
one.

We say algorithm AO is pseudo deterministic for distinguisher DAO(1λ,·)(1λ),
if there exists negligible function negl, such that equation (3) holds for D.

Note that the definition of A being pseudo deterministic for distinguisher D
does not imply that it is hard to distinguish whether A is probabilistic or
deterministic—it is only hard for a particular algorithm D. Although this might
sound like a weak and somewhat useless property, it will be sufficient to show
that if a simulator is pseudo deterministic for a distinguisher, then the simulator
can be entirely derandomized via random oracles/ideal ciphers.

We now show that strong multi-stage indifferentiability implies that the sim-
ulators are not only stateless but also pseudo deterministic. This is captured by
the following lemma.

Lemma 2. Let Gπ be a construction with black-box access to primitive π which
is strongly multi stage indifferentiable from primitive Π. Then there is a stateless
pseudo-deterministic probabilistic polynomial-time simulator S such that for all
probabilistic polynomial-time distinguishers D equation (2) holds in the strong
case.

Proof. Let us assume there exists stateless simulator S such that for all distin-
guishers D equation (2) holds and such that S is not pseudo deterministic. The
latter implies that there exists distinguisher Dpd against the pseudo determinism
of simulator S, i.e., there is a non-negligible probability that Dpd asks a query to
S, where S has a non-negligible probability of returning a different value than the
most likely one. We now construct distinguisher D′ against strong multi-stage
indifferentiability. Distinguisher D′ runs Dpd on the adversarial a-interface. Let
q1, . . . , qt be the queries asked by Dpd. Distinguisher D′ then sends the same
queries once more to its a-interface and returns 1 if at least one response does
not match and 0 otherwise. If D′ is in the real world, talking to Gπ and π algo-
rithm D′ will always output 0 as π is a function. If on the other hand, D′ is in
the ideal world, then Dpd will succeed with noticeable probability and hence D′

will distinguish both worlds with noticeable probability, a contradiction.
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Deterministic Simulators. Bennett and Gill prove in [7] that relative to a random
oracle the complexity classes BPP and P are equivalent. Let us quickly sketch
their idea. Given a probabilistic polynomial time oracle Turing machine MR

which has access to random oracle R and which decides a language L in BPP
we can prove the existence of a deterministic polynomial time Turing machine
DR which also decides L. Let us by p(|x|) denote the runtime of machineMR for
inputs of length |x|. AsMR runs in polynomial time there exists a polynomial
upper bound p(|x|) on the length of queriesMR can pose to the random oracle.
To derandomize MR we construct a deterministic machine DR which works
analogously toMR with the single exception that whenMR requests a random
coin then DR generates this coin deterministically by querying the random oracle
on the next smallest input that cannot have been queried by MR due to its
runtime restriction. As the random oracle produces perfect randomness, the
machines decide the same language with probability 1 over the choice of random
oracle.

Using the techniques developed by Bennet and Gill [7] we now show that in the
multi-stage indifferentiability setting, if a simulator is pseudo deterministic for a
distinguisher D, then it can be derandomized, in case the constructed primitive
Π is a random oracle or an ideal cipher. When applied to a simulator S that is
universal for all distinguishers (strong indifferentiability), these derandomization
techniques yield a family of simulators that depends only on the number of
queries made by the distinguisher (weak indifferentiability).

Lemma 3. Let AΠ be a stateless probabilistic polynomial-time algorithm with
oracle access to a random oracle R�,m or an ideal cipher Ek,n for � ∈ ω (logλ)
(resp., (k + n) ∈ ω (logλ)). Let s be polynomial in λ. From AΠ , we construct
a deterministic algorithm BΠ such that the following holds: for all efficient dis-
tinguisher D that make less than s queries to their oracle, it holds that if AΠ is
pseudo deterministic for D, then∣∣∣PrR,Π [

DΠ,AΠ (R,·)(1λ) = 1
]
− PrΠ

[
DΠ,BΠ (·)(1λ) = 1

]∣∣∣
is negligible, where the probability is over the choice of oracle Π and algorithm
A’s and distinguisher D’s internal coin tosses for the first case and over the
choice of oracle Π and distinguisher D’s internal coin tosses in the second.

Proof. Let AΠ be a stateless algorithm with access to ideal primitive Π where
Π is either a random oracle R�,m or an ideal cipher Ek,n.

Let D be an efficient distinguisher for which AΠ is pseudo deterministic. As
distinguisher D is efficient, there exists an upper bound p(|λ|) on the number of
queries to the Π-interface by D. We construct a deterministic algorithm B which
works as A with the only exception that B deterministically generates “random”
bits by querying its random oracle, whenever A makes use of a random bit. For
the jth requested random bit, algorithm B calls the Π-oracle (either random
oracleR or ideal cipher E where it uses the encryption interface of E) on p(|λ|)+j
distinct values xor-ing the result and choosing a bit from this result. Note that
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as � ∈ ω (logλ) (resp., n + k ∈ ω (logλ)) there exist sufficiently many distinct
values.

Remember that we denote by yq,AO the most likely output of algorithm A on
input q conditioned on fixed oracle O. We want to prove that∣∣∣PrΠ,D,A

[
DΠ,AΠ

(1λ) = 1
]
− PrΠ,D

[
DΠ,BΠ

(1λ) = 1
]∣∣∣

is negligible in λ. We prove a stronger statement, namely, that the outputs
of A and B are likely to be identical. We define event C capturing that “the
outputs of A and B agree on all inputs.” Towards this goal we define event A as
“algorithm A returns yqi,AΠ for all queries qi” where yqi,AΠ is the most likely
answer of AΠ on input qi, i.e., we set yqi,AΠ := argmaxy

{
PrR

[
AΠ(qi;R) = y

]}
(cf. Definition 5). Likewise, we define event B as “algorithm B returns yqi,AΠ for
all queries qi.” We will show that

PrΠ,D,A [A ] ≥ 1− negl (4)

and

PrΠ,D [B ] ≥ 1− negl. (5)

Clearly, the probability that A and B produce the same answers for all qi is
lower bounded by the probability that A and B both output yqi,AΠ for all qi.
Thus,

PrΠ,D,A [C ] ≥ PrΠ,D,A [A ∧ B ]

= 1− PrΠ,D,A [¬A ∨ ¬B ]

≥ 1− (PrΠ,D,A [¬A ] + PrΠ,D [¬B ])

≥ 1− negl− negl.

Let us now make these statements formal as well as prove inequalities (4) and
(5). We denote with qi the queries to A by D and by Ri the randomness used
by A on query qi. We say that event A occurs (over Π,D, R1, ..., Rn), if

∀i AΠ(qi;Ri) = yqi,AΠ .

Note that the pseudo-determinism of A for D directly implies that

PrΠ,D,R1,...,Rn

[
∀i AΠ(qi;Ri) = yqi,AΠ

]
≥ 1− negl, (6)

which establishes inequality (4). We say that event B occurs (over Π,D), if

∀i BΠ(qi) = yqi,AΠ ,

where qi now denotes the queries by D to algorithm B. Inequality (5) we derive
from inequality (4) via an averaging argument. Note that in inequality (6) we
consider fresh randomness Ri for every query qi. If for all queries qi a random
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choice of randomness is good with overwhelming probability, then a random
choice of randomness is good for all qi with overwhelming probability:

PrΠ,D,R

[
∀i AΠ(qi;R) = yqi,AΠ

]
≥ 1− negl. (7)

Moreover, when considering the random oracle via lazy sampling, one can observe
that the randomness generated by B from Π is independent from the part of Π
that is used in the experiment, which yields that

PrΠ,D
[
∀i;BΠ(qi) = yqi,AΠ

]
= PrΠ,D,R

[
∀i;AΠ(qi;R) = yqi,AΠ

]
≥ 1− negl

as desired.

4 The Random Oracle and Ideal Cipher Model Are
Incomparable

In this section we prove that the random oracle-model and the ideal cipher-model
are incomparable with respect to strong multi-stage indifferentiability. We start
by giving an alternative, simpler proof of the fact that multi-stage indifferentiable
constructions cannot be built via domain extension [13,18] (Lemma 4). [13] rule
out domain extension even for a single bit of extension. In turn, we obtain an
easier proof in the setting where the extension factor is super logarithmic. In
Section 4.1 we then present our duality lemma for multi-stage indifferentiability
which allows us to conclude that the ROM and the ICM are incomparable with
respect to strong multi-stage indifferentiability.

Lemma 4. Let R be a random oracle with domain {0, 1}� (resp., E be an ideal
cipher with domain {0, 1}k × {0, 1}n) and π be any ideal primitive with domain
size 2v. For � − v ∈ ω(log(λ)) (resp., k + n − v ∈ ω(log(λ))) there exists no
construction Gπ that is weakly multi-stage indifferentiable from R (resp., E).

We prove Lemma 4 for the random oracle case; the proof for ideal ciphers works
analogously. Note that we prove the statement for weak multi-stage indifferentia-
bility, thereby essentially ruling out any (possibly non-black-box) construction.

In the following proof we consider a particular distinguisher that tests for the
ideal world by forcing the simulator to query its oracle on a particular value
M . We show that no simulator is able to do this with more than negligible
probability since M is drawn from a very large set while the simulator, being
stateless, is only able to make queries from a negligible fraction of this large set;
it thus fails to pass the test.

Proof (Proof of Lemma 4). Assume towards contradiction that there exists con-
struction Gπ that is weakly multi stage indifferentiable from random oracle R
and, hence, for every distinguisher D there exists a stateless simulator S such
that D cannot distinguish between the real and ideal world.



Reset Indifferentiability and Its Consequences 167

We consider a distinguisher Dh,a with access to honest and adversarial inter-
faces (h, a) which implement the random oracle R and simulator S in the ideal
world and construction Gπ and ideal primitive π in the real world. The distin-
guisher D chooses a message M ∈ {0, 1}� uniformly at random and executes
construction G via an internal simulation using its adversarial interface a, i.e., it
computes Ga(M). Then, the distinguisher asks its honest interface on message
M to compute h(M) and returns 1 if the two results agree and 0 otherwise. Note
that in the real world distinguisher D will always output 1. Thus, the simulator

S has to ensure that GSR
(M) is equal to R(M) with overwhelming probabil-

ity over the choice of the random oracle R. We now prove that, in the ideal
world, the two values match only with negligible probability over the choice of
the message M and the two settings can thus be distinguished by D.

Let us assume the ideal world and denote the query/response pairs to the a-
interface with (qi, ri)1≤i≤t. We analyze the simulator’s behavior when it is asked
these queries q1,...,qt. If for none of the qi the simulator S asks the random oracle

on M , then the answer of GSR
(M) is independent of R(M) and thus different

with overwhelming probability. By a simple counting argument, we now prove
that, with high probability over the choice of M , on no query (not even one
outside of the set (qi, ri)1≤i≤t), the simulator S asks R on M . For this, note
that the queries which simulator S receives are of length v. Hence there are at
most 2v distinct possible queries to S. Denote by c the upper bound on the
number of queries that S asks to its random oracle over all possible queries
that S itself receives. As the simulator S runs in polynomial time c exists and is
polynomial. Noting that S is stateless, we conclude that S asks at most c2v  2�

queries. Hence the probability that the distinguisher’s M is in the set{
M : ∃q SR asks M on input q

}
is negligible. The probability that the distinguisher D returns 1 in the ideal world
where it is given access to simulator S and a random oracle R is therefore also
negligible. Thus, the distinguisher D has a distinguishing advantage of almost 1
which concludes the proof.

4.1 The Duality Lemma for Multi-stage Indifferentiability

We now prove the inverse direction, that is an ideal cipher cannot be build
from a random oracle with larger domain. In contrast to the previous section
we here give an impossibility result for strong multi-stage indifferentiability. Our
result is, however, more general and of independent interest. Strong multi-stage
indifferentiability guarantees the existence of a simulator that is stateless and
deterministic. Constructions of ideal primitives often need to be stateless and
deterministic as well. If for example, the construction, implements a publicly
accessible function such as a hash function, it has to be stateless. Note that this
is the case both for random oracles and ideal ciphers.

Now, if we assume that constructions are deterministic and stateless, then
we show that, in the case of multi-stage indifferentiability, we can exchange the
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role of the construction and the role of the simulator, if the simulator is also
deterministic and stateless. Our Duality Lemma establishes that in this case, an
impossibility result (resp. feasibility result) in one direction translates into an
impossibility result (resp. feasibility result) in the other direction. However, if
the simulator is not deterministic, but only pseudo deterministic, then we need
to slightly adapt our notion of constructions to also allow pseudo-deterministic
constructions. For this note that pseudo deterministic constructions are as useful
as deterministic ones since inconsistencies due to the pseudo determinism can
only be detected with negligible probability. Formally, however, they are not
known to be equivalent, in particular, because P �= BPP implies that pseudo-
deterministic polynomial-time algorithms are more powerful than deterministic
polynomial-time algorithms.

We prove the Duality Lemma in the case of strong multi-stage indifferentia-
bility.

Lemma 5 (Duality Lemma for Multi-stage Indifferentiability). Let π
and π′ by two ideal primitives. Assuming constructions are stateless and pseudo
deterministic, then one of two following statements holds:

1. The two primitives are computationally equivalent, i.e., there exist construc-
tions G1, G2 such that Gπ

1 is strongly multi stage indifferentiable from π′ and
Gπ′

2 is strongly multi stage indifferentiable from π, or
2. π and π′ are incomparable with respect to strong multi-stage indifferentiabil-

ity.

In essence this means that a positive or negative result in either direction gives
us a result for the other direction. As we have already seen a negative result for
domain extenders this gives us the result for the other directions, i.e., going from
a large random oracle R to a small ideal cipher E , or from a large ideal cipher
E to a small random oracle R.

Proof (Proof of Lemma 5). Assume construction Gπ with black-box access to
ideal primitive π is strongly multi stage indifferentiable from π′. Then by defini-
tion there exists a (pseudo-)deterministic, stateless simulator S such that no dis-
tinguisher D can tell apart the ideal world (π′,Sπ′

) from the real world (Gπ, π).
Likewise, by definition, G is stateless and (pseudo-)deterministic. We now ex-
change the roles of construction G and simulator S, thereby getting a new “con-
struction” Sπ′

implementing primitive π. It remains to show that Sπ′
is strongly

multi-stage indifferentiable from π.
Let us assume the contrary. Then there exists distinguisher D that can distin-

guish between the settings (π′,Sπ′
) and the setting (Gπ , π). This, however, con-

tradicts the assumption that Gπ is strongly multi stage indifferentiable from π′.

An immediate consequence of the duality lemma and Lemma 4 is captured by
the following corollary:

Corollary 1. The ideal cipher model and the random oracle model are incom-
parable with respect to strong multi-stage indifferentiability.
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Remark 2. One interesting consequence of the duality lemma is best seen by
an example: Can a random oracle with smaller domain be constructed from
a random oracle with a larger domain? Intuitively, it feels natural to assume
that this works. However, Lemma 4 tells us, that the inverse is not possible
and, thus, by the duality lemma we can directly conclude that any construction
using a large random oracle cannot be strongly multi stage indifferentiable from
a small random oracle. So far, we have failed to either prove impossibility for
weak multi-stage indifferentiability or to come up with a construction. We leave
this for future work.

5 Single versus Multi-reset

Luykx et al. [18] introduce the presumably weaker notion of n-reset indifferen-
tiability, where the distinguisher is allowed to reset the simulator only n times.
Naturally, for a construction that is n-reset indifferentiable the composition the-
orem holds for games that have n + 1 or less stages. In the following we show
that, however, already the extreme single-reset notion implies full reset indiffer-
entiability for simulators that do not depend on the distinguisher (i.e., the strong
case). This yields that also for n-reset indifferentiability all our separations hold
in a black-box fashion.

What we prove is that the advantage of an n-reset distinguisher is bound by
the advantage of an (n− 1)-reset distinguisher and that of a single-reset distin-
guisher where the advantage of a distinguisher D in the n-reset indifferentiability
game is defined as

Advn-resetS,D :=
∣∣∣Pr[DR,SR

(1λ) = 1
]
− Pr

[
DGπ,π(1λ) = 1

]∣∣∣ .

Assuming that a construction is strongly single reset indifferentiable (and thus
the advantage for any single-reset distinguisher is negligible) yields the above
claim. We use

Lemma 6. Let Gπ be a construction with black-box access to primitive π. Then
there exists simulator S such that for all n > 1 and all distinguishers Dn that
make at most n reset queries there exists a distinguisher Dn−1 that makes at
most n− 1 reset queries and a distinguisher D1 that makes a single reset query
and

Advn-resetS,Dn
(1λ) ≤ Adv

(n−1)-reset
S,Dn−1

(1λ) + Adv1-resetS,D1
(1λ)

is negligible in λ.

The proof idea is simple. Given a distinguisher which makes n resets we con-
struct one that ignores the first reset. Now, either this changes the input/output
behavior of the simulator noticeably, which yields a distinguisher that only needs
a single reset, or it does not in which case the distinguisher with n− 1 resets is
as good as the n-reset distinguisher.
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Proof. Let Dn be a distinguisher that makes at most n reset queries. We con-
struct a distinguisher Dn−1 as follows. The distinguisher Dn−1 runs exactly as
Dn but does not perform the first reset query of Dn.

In the real world, where the distinguisher is connected to the construction Gπ

and π, reset queries have no effect and thus we immediately have that

PrrD

[
DGπ,π
n (1λ; rD) = 1

]
= PrrD

[
DGπ ,π
n−1 (1λ; rD) = 1

]
(8)

where the probability is over the random coins rD of the distinguisher.
Let in the ideal world L2[Dn,S,R, rD , rS ] denote the ordered list of query-

answer pairs of queries by distinguisher Dn to simulator S up to the second
reset query by Dn when Dn runs with randomness rD and simulator S runs with
randomness rS and R is the random oracle. Note that after each reset query
simulator S takes a fresh set of random coins. Thus, technically we have that
rS := r1S‖r2S‖ . . . where r1S denotes the simulator’s coins up to the first reset and
r2S its coins after the first and up to the second reset. All further random coins
are irrelevant for the definition of L2 since we only consider queries up to the
second reset query.

Similarly, we define L1[Dn−1,S,R, rD , rS ] to be the list of query-answer pairs
by distinguisher Dn−1 to simulator S up to the first reset query. Note that again
rS := r1S‖r2S‖ . . . but this time already the second part (r2S) is irrelevant since
we only consider queries up to the first reset query.

Define predicate E(R, rD , rS) to hold, iff

L2[Dn,S,R, rD, rS ] = L1[Dn−1,S,R, rD, rS ]

for a random oracle R and randomnesses rD and rS . Note that in case of event
E(R, rD, rS) it holds that

PrR,rD,rS

[
DR,SR
n (1λ) = 1 |E(R, rD, rS)

]
=PrR,rD,rS

[
DR,SR
n−1 (1λ) = 1 |E(R, rD, rS)

]
. (9)

In the following we simplify notation and do not make the probability space
explicit. That is, the probabilities in the ideal world are always over the random
oracle R the random coins of the distinguisher rD and the various random coins
of the simulator rS . Also, we simply write E instead of E(R, rD, rS).

Let D1 denote a distinguisher which makes only a single reset query and which
works as follows: D1 runs Dn up to the second reset query, passing on queries
to its own oracles but not passing on the two reset queries. Let q1 denote the
queries to the simulator up to the first (ignored) reset query and q2 the queries
to the simulator after the first (ignored) reset and up to the second (ignored)
reset. Now, after the second ignored reset, distinguisher D1 makes its single reset
query and once more sends the sequence q2 to the simulator. It outputs 0 in case
the simulator’s answers are consistent with the previous q2 sequence and else it
outputs 1. See Figure 1 for a pictorial representation of this operation.
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Dn−1(rD)

Dn(rD)

q1 q2

Fig. 1. Illustration of Dn and Dn−1’s operation; circles denote queries and rectangles
denote resets. The dashed part resembles the resulting single-reset distinguisher D1

that asks the queries q2 twice (separated by a reset). Whether or not the answer to
these two query sequences are identical is captured by the event E.

In the real world, distinguisher D1 will always output 0 since the answers will
always match. Thus, we observe that

Adv1-resetS,D1
(1λ) =Pr

[
DR,SR

1 (1λ) = 1
]
− Pr

[
DGπ,π

1 (1λ) = 1
]

=Pr
[
DR,SR

1 (1λ) = 1
]

≥Pr
[
E
]
· Pr

[
DR,SR

1 (1λ) = 1
∣∣∣E ]

=Pr
[
E
]
. (10)

For the last equality, note that if E occurs then there is at least one query answer
that differs in both runs. This difference must be during q2 since, up to Dn’s
first reset, both algorithms are identical and operate on the same coins with the
same oracles. Hence D1 always detects this difference and outputs 1. Thus, we
have

Advn-resetS,Dn
(1λ) =Pr

[
DR,SR
n (1λ) = 1

]
− Pr

[
DGπ ,π
n (1λ) = 1

]
=Pr[E ] · Pr

[
DR,SR
n (1λ) = 1

∣∣∣E ]
+ Pr

[
E
]
· Pr

[
DR,SR
n (1λ) = 1

∣∣∣E ]
− Pr

[
DGπ ,π
n (1λ) = 1

]
≤Pr

[
DR,SR
n (1λ) = 1

∣∣∣E ]
+ Pr

[
E
]
− Pr

[
DGπ ,π
n (1λ) = 1

]
.

Using equations (8) and (9) we can exchange distinguisher Dn for distinguisher
Dn−1 and after reordering we get that

=Pr
[
DR,SR
n−1 (1λ) = 1

∣∣∣E ]
− Pr

[
DGπ,π
n−1 (1λ) = 1

]
+ Pr

[
E
]
.
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Using equation (10)

≤Pr
[
DR,SR
n−1 (1λ) = 1

∣∣∣E ]
− Pr

[
DGπ,π
n−1 (1λ) = 1

]
+ Adv1-resetS,D1

(1λ)

≤Adv(n−1)-reset
S,Dn−1

(1λ) + Adv1-resetS,D1
(1λ)

which yields the desired statement.
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Abstract. Fuzzy extractors derive strong keys from noisy sources. Their
security is defined information-theoretically, which limits the length of
the derived key, sometimes making it too short to be useful. We ask
whether it is possible to obtain longer keys by considering computational
security, and show the following.

– Negative Result: Noise tolerance in fuzzy extractors is usually
achieved using an information reconciliation component called a “se-
cure sketch.” The security of this component, which directly affects
the length of the resulting key, is subject to lower bounds from
coding theory. We show that, even when defined computationally,
secure sketches are still subject to lower bounds from coding the-
ory. Specifically, we consider two computational relaxations of the
information-theoretic security requirement of secure sketches, using
conditional HILL entropy and unpredictability entropy. For both
cases we show that computational secure sketches cannot outper-
form the best information-theoretic secure sketches in the case of
high-entropy Hamming metric sources.

– Positive Result: We show that the negative result can be overcome
by analyzing computational fuzzy extractors directly. Namely, we
show how to build a computational fuzzy extractor whose output
key length equals the entropy of the source (this is impossible in
the information-theoretic setting). Our construction is based on the
hardness of the Learning with Errors (LWE) problem, and is secure
when the noisy source is uniform or symbol-fixing (that is, each
dimension is either uniform or fixed). As part of the security proof,
we show a result of independent interest, namely that the decision
version of LWE is secure even when a small number of dimensions
has no error.

Keywords: Fuzzy extractors, secure sketches, key derivation, Learning
with Errors, error-correcting codes, computational entropy, randomness
extractors.

1 Introduction

Authentication generally requires a secret drawn from some high-entropy source.
One of the primary building blocks for authentication is reliable key derivation.
Unfortunately, many sources that contain sufficient entropy to derive a key are

K. Sako and P. Sarkar (Eds.) ASIACRYPT 2013 Part I, LNCS 8269, pp. 174–193, 2013.
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noisy, and provide similar, but not identical secret values at each reading (ex-
amples of such sources include biometrics [14], human memory [37], pictorial
passwords [9], measurements of capacitance [35], timing [34], motion [10], quan-
tum information [5] etc.).

Fuzzy extractors [15] achieve reliable key derivation from noisy sources (see
[7,16,11] for applications of fuzzy extractors). The setting consists of two algo-
rithms: Generate (used once) and Reproduce (used subsequently). The Generate
(Gen) algorithm takes an input w and produces a key r and a public value p.
This information allows the Reproduce (Rep) algorithm to reproduce r given p
and some value w′ that is close to w (according to some predefined metric, such
as Hamming distance). Crucially for security, knowledge of p should not reveal
r; that is, r should be uniformly distributed conditioned on p. This feature is
needed because p is not secret: for example, in a single-user setting (where the
user wants to reproduce the key r from a subsequent reading w′), it would be
stored in the clear; and in a key agreement application [7] (where two parties
have w and w′, respectively), it would be transmitted between the parties.

Fuzzy extractors use ideas from information-reconciliation [5] and are defined
(traditionally) as information-theoretic objects. The entropy loss of a fuzzy ex-
tractor is the difference between the entropy of w and the length of the derived
key r. In the information-theoretic setting, some entropy loss is necessary as the
value p contains enough information to reproduce r from any close value w′. A
goal of fuzzy extractor constructions is to minimize the entropy loss, increasing
the security of the resulting application. Indeed, if the entropy loss is too high,
the resulting secret key may be too short to be useful.

We ask whether it is possible to obtain longer keys by considering computa-
tional, rather than information theoretic, security.

Our Negative Results. We first study (in Section 3) whether it could be fruitful
to relax the definition of the main building block of a fuzzy extractor, called a
secure sketch. A secure sketch is a one-round information reconciliation protocol:
it produces a public value s that allows recovery of w from any close value w′.
The traditional secrecy requirement of a secure sketch is that w has high min-
entropy conditioned on s. This allows the fuzzy extractor of [15] to form the key
r by applying a randomness extractor [28] to w, because randomness extractors
produce random strings from strings with conditional min-entropy. We call this
the sketch-and-extract construction.

The most natural relaxation of the min-entropy requirement of the secure
sketch is to require HILL entropy [21] (namely, that the distribution of w con-
ditioned on s be indistinguishable from a high-min-entropy distribution). Under
this definition, we could still use a randomness extractor to obtain r from w, be-
cause it would yield a pseudorandom key. Unfortunately, it is unlikely that such
a relaxation will yield fruitful results: we prove in Theorem 1 that the entropy
loss of such secure sketches is subject to the same coding bounds as the ones
that constrain information-theoretic secure sketches.

Another possible relaxation is to require that the value w is unpredictable con-
ditioned on s. This definition would also allow the use of a randomness extractor
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to get a pseudorandom key, although it would have to be a special extractor—
one that has a reconstruction procedure (see [22, Lemma 6]). Unfortunately, this
relaxation is also unlikely to be fruitful: we prove in Theorem 2 that the unpre-
dictability is at most log the size of the metric space minus log the volume of
the ball of radius t. For high-entropy sources of w over the Hamming metric,
this bound matches the best information-theoretic security sketches.

Our Positive Results. Both of the above negative results arise because a secure
sketch functions like a decoder of an error-correcting code. To avoid them, we
give up on building computational secure sketches and focus directly on the
entropy loss in fuzzy extractors. Our goal is to decrease the entropy loss in a
fuzzy extractor by allowing the key r to be pseudorandom conditioned on p.

By considering this computational secrecy requirement, we construct the first
lossless computational fuzzy extractors (Construction 1), where the derived key
r is as long as the entropy of the source w. Our construction is for the Hamming
metric and uses the code-offset construction [23],[15, Section 5] used in prior
work, but with two crucial differences. First, the key r is not extracted from w
like in the sketch-and-extract approach; rather w “encrypts” r in a way that is
decryptable with the knowledge of some close w′ (this idea is similar to the way
the code-offset construction is presented in [23] as a “fuzzy commitment”). Our
construction uses private randomness, which is allowed in the fuzzy extractor
setting but not in noiseless randomness extraction. Second, the code used is a
random linear code, which allows us to use the Learning with Errors (LWE)
assumption due to Regev [30,31] and derive a longer key r.

Specifically, we use the recent result of Döttling and Müller-Quade [17], which
shows the hardness of decoding random linear codes when the error vector comes
from the uniform distribution, with each coordinate ranging over a small interval.
This allows us to use w as the error vector, assuming it is uniform. We also use
a result of Akavia, Goldwasser, and Vaikuntanathan [1], which says that LWE
has many hardcore bits, to hide r.

Because we use a random linear code, our decoding is limited to reconciling
a logarithmic number of differences. Unfortunately, we cannot utilize the results
that improve the decoding radius through the use of trapdoors (such as [30]),
because in a fuzzy extractor, there is no secret storage place for the trapdoor.
If improved decoding algorithms are obtained for random linear codes, they
will improve error-tolerance of our construction. Given the hardness of decoding
random linear codes [6], we do not expect significant improvement in the error-
tolerance of our construction.

In Section 5, we are able to relax the assumption that w comes from the uni-
form distribution, and instead allow w to come from a symbol-fixing source [24]
(each dimension is either uniform or fixed). This relaxation follows from our re-
sults about the hardness of LWE when samples have a fixed (and adversarially
known) error vector, which may be of independent interest (Theorem 4).

An Alternative Approach. Computational extractors [26,3,13] have the same goal
of obtaining a pseudorandom key r from a source w in the setting without errors.
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They can be constructed, for example, by applying a pseudorandom generator to
the output of an information-theoretic extractor. One way to build a computa-
tional fuzzy extractor is by using a computational extractor instead of the
information-theoretic extractor in the sketch-and-extract construction of [15].
However, this approach is possible only if conditionalmin-entropyofw conditioned
on the sketch s is high enough. Furthermore, this approachdoes not allow the use of
private randomness; private randomness is a crucial ingredient in our construction.
We compare the two approaches in Section 4.4.

2 Preliminaries

For a random variable X = X1||...||Xn where each Xi is over some alphabet
Z, we denote by X1,...,k = X1||...||Xk. The min-entropy of X is H∞(X) =
− log(maxx Pr[X = x]), and the average (conditional) min-entropy of X given
Y is H̃∞(X |Y ) = − log(Ey∈Y maxx Pr[X = x|Y = y]) [15, Section 2.4]. The
statistical distance between random variables X and Y with the same domain
is Δ(X,Y ) = 1

2

∑
x |Pr[X = x] − Pr[Y = x]|. For a distinguisher D (or a class

of distinguishers D) we write the computational distance between X and Y as
δD(X,Y ) = |E[D(X)]− E[D(Y )]|. We denote by Dssec the class of randomized
circuits which output a single bit and have size at most ssec. For a metric space
(M, dis), the (closed) ball of radius t around x is the set of all points within
radius t, that is, Bt(x) = {y|dis(x, y) ≤ t}. If the size of a ball in a metric
space does not depend on x, we denote by |Bt(·)| the size of a ball of radius t.
For the Hamming metric over Zn, |Bt(·)| =

∑t
i=0

(
n
t

)
(|Z| − 1)i. Un denotes the

uniformly distributed random variable on {0, 1}n. Usually, we use bold letters
for vectors or matrices, capitalized letters for random variables, and lowercase
letters for elements in a vector or samples from a random variable.

2.1 Fuzzy Extractors and Secure Sketches

We now recall definitions and lemmas from the work of Dodis et. al. [15, Sections
2.5–4.1], adapted to allow for a small probability of error, as discussed in [15,
Sections 8]. LetM be a metric space with distance function dis.

Definition 1. An (M,m, �, t, ε)-fuzzy extractor with error δ is a pair of ran-
domized procedures, “generate” (Gen) and “reproduce” (Rep), with the following
properties:

1. The generate procedure Gen on input w ∈ M outputs an extracted string
r ∈ {0, 1}� and a helper string p ∈ {0, 1}∗.

2. The reproduction procedure Rep takes an element w′ ∈ M and a bit string
p ∈ {0, 1}∗ as inputs. The correctness property of fuzzy extractors guarantees
that for w and w′ such that dis(w,w′) ≤ t, if R,P were generated by (R,P )←
Gen(w), then Rep(w′, P ) = R with probability (over the coins of Gen,Rep) at
least 1− δ. If dis(w,w′) > t, then no guarantee is provided about the output
of Rep.
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3. The security property guarantees that for any distribution W onM of min-
entropy m, the string R is nearly uniform even for those who observe P : if
(R,P )← Gen(W ), then SD((R,P ), (U�, P )) ≤ ε.

A fuzzy extractor is efficient if Gen and Rep run in expected polynomial time.

Secure sketches are the main technical tool in the construction of fuzzy ex-
tractors. Secure sketches produce a string s that does not decrease the entropy
of w too much, while allowing recovery of w from a close w′:

Definition 2. An (M,m, m̃, t)-secure sketch with error δ is a pair of random-
ized procedures, “sketch” (SS) and “recover” (Rec), with the following properties:

1. The sketching procedure SS on input w ∈ M returns a bit string s ∈ {0, 1}∗.
2. The recovery procedure Rec takes an element w′ ∈ M and a bit string

s ∈ {0, 1}∗. The correctness property of secure sketches guarantees that if
dis(w,w′) ≤ t, then Pr[Rec(w′, SS(w)) = w] ≥ 1− δ where the probability is
taken over the coins of SS and Rec. If dis(w,w′) > t, then no guarantee is
provided about the output of Rec.

3. The security property guarantees that for any distribution W over M with
min-entropy m, the value of W can be recovered by the adversary who ob-
serves w with probability no greater than 2−m̃. That is, H̃∞(W |SS(W )) ≥ m̃.

A secure sketch is efficient if SS and Rec run in expected polynomial time.

Note that in the above definition of secure sketches (resp., fuzzy extractors),
the errors are chosen before s (resp., P ) is known: if the error pattern between
w and w′ depends on the output of SS (resp., Gen), then there is no guarantee
about the probability of correctness.

A fuzzy extractor can be produced from a secure sketch and an average-case
randomness extractor. An average-case extractor is a generalization of a strong
randomness extractor [28, Definition 2]) (in particular, Vadhan [36, Problem 6.8]
showed that all strong extractors are average-case extractors with a slight loss
of parameters):

Definition 3. Let χ1, χ2 be finite sets. A function ext : χ1×{0, 1}d→ {0, 1}� a
(m, ε)-average-case extractor if for all pairs of random variables X,Y over χ1, χ2

such that H̃∞(X |Y ) ≥ m, we have Δ((ext(X,Ud), Ud, Y ), U� × Ud × Y ) ≤ ε.

Lemma 1. Assume (SS,Rec) is an (M,m, m̃, t)-secure sketch with error δ, and
let ext : M× {0, 1}d → {0, 1}� be a (m̃, ε)-average-case extractor. Then the
following (Gen,Rep) is an (M,m, �, t, ε)-fuzzy extractor with error δ:

– Gen(w) : generate x← {0, 1}d, set p = (SS(w), x), r = ext(w;x), and output
(r, p).

– Rep(w′, (s, x)) : recover w = Rec(w′, s) and output r = ext(w;x).

The main parameter we will be concerned with is the entropy loss of the con-
struction. In this paper, we ask whether a smaller entropy loss can be achieved
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by considering a fuzzy extractor with a computational security requirement. We
therefore relax the security requirement of Definition 1 to require a pseudoran-
dom output instead of a truly random output. Also, for notational convenience,
we modify the definition so that we can specify a general class of sources for
which the fuzzy extractor is designed to work, rather than limiting ourselves
to the class of sources that consists of all sources of a given min-entropy m, as
in definitions above (of course, this modification can also be applied to prior
definitions of information-theoretic secure sketches and fuzzy extractors).

Definition 4 (Computational Fuzzy Extractor). Let W be a family of
probability distributions over M. A pair of randomized procedures “generate”
(Gen) and “reproduce” (Rep) is a (M,W , �, t)-computational fuzzy extractor
that is (ε, ssec)-hard with error δ if Gen and Rep satisfy the following properties:

– The generate procedure Gen on input w ∈ M outputs an extracted string
R ∈ {0, 1}� and a helper string P ∈ {0, 1}∗.

– The reproduction procedure Rep takes an element w′ ∈ M and a bit string
P ∈ {0, 1}∗ as inputs. The correctness property guarantees that for all w,w′

where dis(w,w′) ≤ t, if (R,P ) ← Gen(w) then Pr[Rep(w′, P ) = R] ≥ 1 − δ
where the probability is over the randomness of (Gen,Rep). If dis(w,w′) > t,
then no guarantee is provided about the output of Rep.

– The security property guarantees that for any distribution W ∈ W, the string
R is pseudorandom conditioned on P , that is δDssec ((R,P ), (U�, P )) ≤ ε.

Any efficient fuzzy extractor is also a computational fuzzy extractor with the
same parameters.

Remark. Fuzzy extractor definitionsmake no guarantee aboutRepbehaviorwhen
the distance betweenw andw′ is larger than t. In the information-theoretic setting
this seemed inherent as the “correct” R should be information-theoretically un-
known conditioned on P . However, in the computationally setting this is not true.
Looking ahead, in our constructionR is information-theoretically determined con-
ditioned onP (with high probability over the coins ofGen). OurRep algorithmwill
never output an incorrect key (with high probability over the coins ofGen) butmay
not terminate. However, it is not clear this is the desired behavior. For this reason,
we leave the behavior of Rep ambiguous when dis(w,w′) > t.

3 Impossibility of Computational Secure Sketches

In this section, we consider whether it is possible in build a secure sketch that
retains significantly more computational than information-theoretic entropy. We
consider two different notions for computational entropy, and for both of them
show that corresponding secure sketches are subject to the same upper bounds
as those for information-theoretic secure sketches. Thus, it seems that relaxing
security of sketches from information-theoretic to computational does not help.

In particular, for the case of the Hamming metric and inputs that have full
entropy, our results are as follows. In Section 3.1 we show that a sketch that
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retains HILL entropy implies a sketch that retains nearly the same amount of
min-entropy. In Section 3.2, we show that the computational unpredictability
of a sketch is at most log |M| − log |Bt(·)|. Dodis et al. [15, Section 8.2] con-
struct sketches with essentially the same information-theoretic security1 . In
Section 3.3, we discuss mechanisms for avoiding these bounds.

3.1 Bounds on Secure Sketches Using HILL Entropy

HILL entropy is a commonly used computational notion of entropy [21]. It was
extended to the conditional case by Hsiao, Lu, Reyzin [22]. Here we recall a
weaker definition due to Gentry and Wichs [19] (the term relaxed HILL en-
tropy was introduced in [32]); since we show impossibility even for this weaker
definition, impossibility for the stronger definition follows immediately.

Definition 5. Let (W,S) be a pair of random variables. W has relaxed HILL en-
tropy at least k conditioned on S, denotedHHILL-rlx

ε,ssec (W |S) ≥ k if there exists a joint

distribution (X,Y ), such that H̃∞(X |Y ) ≥ k and δDssec ((W,S), (X,Y )) ≤ ε.

Intuitively, HILL entropy is as good as average min-entropy for all computa-
tionally bounded observers. Thus, redefining secure sketches using HILL en-
tropy is a natural relaxation of the original information-theoretic definition; in
particular, the sketch-and-extract construction in Lemma 1 would yield pseudo-
random outputs if the secure sketch ensured high HILL entropy. We will con-
sider secure sketches that retain relaxed HILL entropy: that is, we say that
(SS,Rec) is a HILL-entropy (M,m, m̃, t) secure sketch that is (ε, ssec)-hard with
error δ if it satisfies Definition 2, with the security requirement replaced by
HHILL-rlx
ε,ssec (W |SS(W )) ≥ m̃.
Unfortunately, we will show below that such a secure sketch implies an er-

ror correcting code with approximately 2m̃ points that can correct t random
errors (see [15, Lemma C.1] for a similar bound on information-theoretic secure
sketches). For the Hamming metric, our result essentially matches the bound on
information-theoretic secure sketches of [15, Proposition 8.2]. In fact, we show
that, for the Hamming metric, HILL-entropy secure sketches imply information-
theoretic ones with similar parameters, and, therefore, the HILL relaxation gives
no advantage.

The intuition for building error-correcting codes from HILL-entropy secure
sketches is as follows. In order to have HHILL-rlx

ε,ssec (W |SS(W )) ≥ m̃, there must

be a distribution X,Y such that H̃∞(X |Y ) ≥ m̃ and (X,Y ) is computationally
indistinguishable from (W, SS(W )). Sample a sketch s← SS(W ). We know that
SS followed by Rec likely succeeds on W |s (i.e., Rec(w′, s) = w with high prob-
ability for w ← W |s and w′ ← Bt(w)). Consider the following experiment: 1)
sample y ← Y , 2) draw x ← X |y and 3) x′ ← Bt(x). By indistinguishability,

1 The security in [15, Section 8.2] is expressed in terms of entropy of the error rate;
recall that logBt(·) ≈ Hq(t/n), where n is the number of symbols, q is the alphabet
size, and Hq is the q-ary entropy function.
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Rec(x′, y) = x with high probability. This means we can construct a large set
C from the support of X |y. C will be an error correcting code and Rec an effi-
cient decoder. We can then use standard arguments to turn this code into an
information theoretic sketch.

To make this intuition precise, we need an additional technical condition:
sampling a random neighbor of a point is efficient.

Definition 6. We say a metric space (M, dis) is (sneigh, t)-neighborhood sam-
plable if there exists a randomized circuit Neigh of size sneigh that for all t′ ≤ t,
Neigh(w, t′) outputs a random point at distance t′ of w.

We review the definition of a Shannon code [33]:

Definition 7. Let C be a set over spaceM. We say that C is an (t, ε)-Shannon
code if there exists an efficient procedure Rec such that for all t′ ≤ t and for
all c ∈ C, Pr[Rec(Neigh(c, t′)) �= c] ≤ ε. To distinguish it from the average-error
Shannon code defined below, we will sometimes call it a maximal-error Shannon
code.

This is a slightly stronger formulation than usual, in that for every size t′ < t
we require the code to correct t′ random errors2. Shannon codes work for all
codewords. We can also consider a formulation that works for an “average”
codeword.

Definition 8. Let C be a distribution over spaceM. We say that C is an (t, ε)-
average error Shannon code if there exists an efficient procedure Rec such that
for all t′ ≤ t Prc←C [Rec(Neigh(c, t

′)) �= c] ≤ ε.

An average error Shannon code is one whose average probability of error is
bounded by ε. See [12, Pages 192-194] for definitions of average and maximal
error probability. An average-error Shannon code is convertible to a maximal-
error Shannon code with a small loss. We use the following pruning argument
from [12, Pages 202-204] (we provide a proof in the full version [18]):

Lemma 2. Let C be a (t, ε)-average error Shannon code with recovery procedure
Rec such that H∞(C) ≥ k. There is a set C′ with |C′| ≥ 2k−1 that is a (t, 2ε)-
(maximal error) Shannon code with recovery procedure Rec.

We can now formalize the intuition above and show that a sketch that retains
m̃-bits of relaxed HILL entropy implies a good error correcting code with nearly
2m̃ points (proof in the full version of this work [18]).

Theorem 1. Let (M, dis) be a (sneigh, t)-neighborhood samplable metric space.
Let (SS,Rec) be a HILL-entropy (M,m, m̃, t)-secure sketch that is (ε, ssec)-secure

2 In the standard formulation, the code must correct a random error of size up to t,
which may not imply that it can correct a random error of a much smaller size t′,
because the volume of the ball of size t′ may be negligible compared to the volume
of the ball of size t. For codes that are monotone (if decoding succeeds on a set of
errors, it succeeds on all subsets), these formulations are equivalent. However, we
work with an arbitrary recover functionality that is not necessarily monotone.
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with error δ. Let srec denote the size of the circuit that computes Rec. If ssec ≥
(t(sneigh + srec)), then there exists a value s and a set C with |C| ≥ 2m̃−2 that is
a (t, 4(ε+ tδ))-Shannon code with recovery procedure Rec(·, s).
For the Hamming metric, any Shannon code (as defined in Definition 7) can be
converted into an information-theoretic secure sketch (as described in [15, Sec-
tion 8.2] and references therein). The idea is to use the code offset construction,
and convert worst-case errors to random errors by randomizing the order of the
symbols of w first, via a randomly chosen permutation π (which becomes part of
the sketch and is applied to w′ during Rec). The formal statement of this result
can be expressed in the following Lemma (which is implicit in [15, Section 8.2]).

Lemma 3. For an alphabet Z, let C over Zn be a (t, δ) Shannon code. Then
there exists a (Zn,m,m − (n log |Z| − log |C|), t) secure sketch with error δ for
the Hamming metric over Zn.

Putting together Theorem 1 and Lemma 3 gives us the negative result for the
Hamming metric: a HILL-entropy secure sketch (for the uniform distribution)
implies an information-theoretic one with similar parameters:

Corollary 1. Let Z be an alphabet. Let (SS′,Rec′) be an (ε, ssec)-HILL-entropy
(Zn, n log |Z|, m̃, t)-secure sketch with error δ for the Hamming metric over Zn,
with Rec′ of circuit size srec. If ssec ≥ t(srec + n log |Z|), then there exists a
(Zn, n log |Z|, m̃−2, t) (information-theoretic) secure sketch with error 4(ε+ tδ).

Note. In Corollary 1 we make no claim about the efficiency of the resulting
(SS,Rec), because the proof of Theorem 1 is not constructive.

Corollary 1 extends to non-uniform distributions: if there exists a distribution
whose HILL sketch retains m̃ bits of entropy, then for all distributions W , there
is an information theoretic sketch that retains H∞(W )− (n log |Z|− m̃)− 2 bits
of entropy.

3.2 Bounds on Secure Sketches Using Unpredictability Entropy

In the previous section, we showed that any sketch that retained HILL entropy
could be transformed into an information theoretic sketch. However, HILL en-
tropy is a strong notion. In this section, we therefore ask whether it is useful to
consider a sketch that satisfies a minimal requirement: the value of the input is
computationally hard to guess given the sketch. We begin by recalling the defi-
nition of conditional unpredictability entropy [22, Definition 7], which captures
the notion of “hard to guess” (we relax the definition slightly, similarly to the
relaxation of HILL entropy described in the previous section).

Definition 9. Let (W,S) be a pair of random variables. W has relaxed unpre-
dictability entropy at least k conditioned on S, denoted by Hunp-rlx

ε,ssec (W |S) ≥ k,
if there exists a pair of distributions (X,Y ) such that δDssec ((W,S), (X,Y )) ≤ ε,
and for all circuits I of size ssec,

Pr[I(Y ) = X ] ≤ 2−k.
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A pair of procedures (SS,Rec) is a unpredictability-entropy (M,m, m̃, t) secure
sketch that is (ε, ssec)-hard with error δ if it satisfies Definition 2, with the secu-
rity requirement replaced by H

unp-rlx
ε,ssec (W |SS(W )) ≥ m̃. Note this notion is quite

natural: combining such a secure sketch in a sketch-and-extract construction
of Lemma 1 with a particular type of extractor (called a reconstructive extrac-
tor [4]), would yield a computational fuzzy extractor (per [22, Lemma 6]).

Unfortunately, the conditional unpredictability entropy m̃ must decrease as t
increases, as the following theorem states. (The proof of the theorem, generalized
to more metric spaces, is in the full version [18].)

Theorem 2. Let Z be an alphabet. Let (SS,Rec) be an unpredictability-entropy
(Zn,m, m̃, t)-secure sketch that is (ε, ssec)-secure with error δ, if ssec ≥ t(|Rec|+
n log |Z|), then m̃ ≤ n log |Z| − log |Bt(·)|+ log(1− ε− tδ).

In particular, if the input is uniform, the entropy loss is about log |Bt(·)|. As
mentioned at the beginning of Section 3, essentially the same entropy loss can
be achieved with information-theoretic secure sketches, by using the randomized
code-offset construction. However, it is conceivable that unpredictability entropy
secure sketches could achieve lower entropy loss with greater efficiency for some
parameter settings.

3.3 Avoiding Sketch Entropy Upper Bounds

The lower bounds of Corollary 1 and Theorem 2 are strongest for high entropy
sources. This is necessary, if a source contains only codewords (of an error cor-
recting code), no sketch is needed, and thus there is no (computational) entropy
loss. This same situation occurs when considering lower bounds for information-
theoretic sketches [15, Appendix C] .

Both of lower bounds arise because Rec must function as an error-correcting
code for many points of any indistinguishable distribution. It may be possible
to avoid these bounds if Rec outputs a fresh random variable3. Such an algo-
rithm is called a computational fuzzy conductor. See [25] for the definition of a
fuzzy conductor. To the best of our knowledge, a computational fuzzy conductor
has not been defined in the literature, the natural definition is to replace the
pseudorandomness condition in Definition 4 with a HILL entropy requirement.

Our construction (in Section 4) has pseudorandom output and immediately
satisfies definition of a computational fuzzy extractor (Definition 4). It may be
possible to achieve significantly better parameters with a construction that is a
computational fuzzy conductor (but not a computational fuzzy extractor) and
then applying an extractor. We leave this as an open problem.

3 If some efficient algorithm can take the output of Rec and efficiently transform it back
to the source W , the bounds of Corollary 1 and Theorem 2 both apply. This means
that we need to consider constructions that are hard to invert (either information-
theoretically or computationally).
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4 Computational Fuzzy Extractor Based on LWE

In this section we describe our main construction. Security of our construction
depends on the source W . We first consider a uniform source W ; we consider
other distributions in Section 5. Our construction uses the code-offset construc-
tion [23], [15, Section 5] instantiated with a random linear code over a finite field
Fq. Let Decodet be an algorithm that decodes a random linear code with at most
t errors (we will present such an algorithm later, in Section 4.2).

Construction 1. Let n be a security parameter and let m ≥ n. Let q be a prime.
Define Gen,Rep as follows:

Gen

1. Input: w ← W (where W is some
distribution over Fmq ).

2. Sample A ∈ Fm×n
q ,x ∈ Fnq uni-

formly.
3. Compute p = (A,Ax+ w),

r = x1,...,n/2.
4. Output (r, p).

Rep

1. Input: (w′, p) (where the Hamming
distance between w′ and w is at
most t).

2. Parse p as (A, c); let b = c− w′.
3. Let x = Decodet(A,b)

4. Output r = x1,...,n/2.

Intuitively, security comes from the computational hardness of decoding ran-
dom linear codes with a high number of errors (introduced by w). In fact, we
know that decoding a random linear code is NP-hard [6]; however, this statement
is not sufficient for our security goal, which is to show

δDssec ((X1,...,n/2, P ), (Un/2 log q, P )) ≤ ε.

Furthermore, this construction is only useful if Decodet can be efficiently imple-
mented.

The rest of this section is devoted to making these intuitive statements precise.
We describe the LWE problem and the security of our construction in Section 4.1.
We describe one possible polynomial-time Decodet (which corrects more errors
than is possible by exhaustive search) in Section 4.2. In Section 4.3, we describe
parameter settings that allow us to extract as many bits as the input entropy,
resulting in a lossless construction. In Section 4.4, we compare Construction 1
to using a sketch-and-extract approach (Lemma 1) instantiated with a compu-
tational extractor.

4.1 Security of Construction 1

The LWE problem was introduced by Regev [30,31] as a generalization of “learn-
ing parity with noise.” For a complete description of the LWE problem and
related lattices problems (which we do not define here) see [30]. We now recall
the decisional version of the problem.
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Definition 10 (Decisional LWE). Let n be a security parameter. Let m =
m(n) = poly(n) be an integer and q = q(n) = poly(n) be a prime4. Let A be
the uniform distribution over Fm×n

q , X be the uniform distribution over Fnq and
χ be an arbitrary distribution on Fmq . The decisional version of the LWE problem,
denoted dist-LWEn,m,q,χ, is to distinguish the distribution (A,AX +χ) from the
uniform distribution over (Fm×n

q ,Fmq ).
We say that dist-LWEn,m,q,χ is (ε, ssec)-secure if no (probabilistic) distin-

guisher of size ssec can distinguish the LWE instances from uniform except with
probability ε. If for any ssec = poly(n), there exists ε = ngl(n) such that
dist-LWEn,m,q,χ is (ε, ssec)-secure, then we say it is secure.

Regev [30] and Peikert [29] show that dist-LWEn,m,q,χ is secure when the distri-
bution χ of errors is Gaussian, as follows. Let Ψ̄ρ be the discretized Gaussian
distribution with variance (ρq)2/2π, where ρ ∈ (0, 1) with ρq > 2

√
n. If GAPSVP

and SIVP are hard to approximate (on lattices of dimension n) within polyno-
mial factors for quantum algorithms, then dist-LWEn,m,q,Ψ̄m

ρ
is secure. (A recent

result of Brakerski et al. [8] shows security of LWE based on hardness of approx-
imating lattices problems for classical algorithms. We have not considered how
this result can be integrated into our analysis.)

The above formulation of LWE requires the error term to come from the dis-
cretized Gaussian distribution, which makes it difficult to use it for constructing
fuzzy extractors (because using w and w′ to sample Gaussian distributions will
increase the distance between the error terms and/or reduce their entropy). For-
tunately, recent work Döttling and Müller-Quade [17] shows the security of LWE,
under the same assumptions, when errors come from the uniform distribution
over a small interval5. This allows us to directly encode w as the error term in an
LWE problem by splitting it into m blocks. The size of these blocks is dictated
by the following result of Döttling and Müller-Quade:

Lemma 4. [17, Corollary 1] Let n be a security parameter. Let q = q(n) =
poly(n) be a prime and m = m(n) = poly(n) be an integer with m ≥ 3n. Let
σ ∈ (0, 1) be an arbitrarily small constant and let ρ = ρ(n) ∈ (0, 1/10) be such
that ρq ≥ 2n1/2+σm. If the approximate decision-version of the shortest vector
problem (GAPSVP) and the shortest independent vectors problem (SIVP) are
hard within a factor of Õ(n1+σm/ρ) for quantum algorithms in the worst case,
then, for χ the uniform distribution over [−ρq, ρq]m, dist-LWEn,m,q,χ is secure.

To extract pseudorandom bits, we use a result of Akavia, Goldwasser, and
Vaikuntanathan [1] to show that X has simultaneously many hardcore bits. The
result says that if dist-LWE(n−k,m,q,χ) is secure then any k variables of X in a
dist-LWE(n,m,q,χ) instance are hardcore. We state their result for a general error
distribution (noting that their proof does not depend on the error distribution):

4 Unlike in common formulations of LWE, where q can be any integer, we need q to
be prime for decoding.

5 Micciancio and Peikert provide a similar formulation in [27]. The result Döttling and
Müller-Quade provides better parameters for our setting.
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Lemma 5. [1, Lemma 2] If dist-LWE(n−k,m,q,χ) is (ε, ssec) secure, then

δDs
sec′ ((X1,...,k,A,AX + χ), (U,A,AX + χ)) ≤ ε ,

where U denotes the uniform distribution over Fkq , A denotes the uniform distri-
bution over Fm×n

q , X denotes the uniform distribution over Fnq , X1,...,k denote
the first k coordinates of x, and s′sec ≈ ssec − n3.

The security of Construction 1 follows from Lemmas 4 and 5 when parameters
are set appropriately (see Theorem 3), because we use the hardcore bits of X as
our key.

4.2 Efficiency of Construction 1

Construction 1 is useful only if Decodet can be efficiently implemented. We need
a decoding algorithm for a random linear code with t errors that runs in poly-
nomial time. We present a simple Decodet that runs in polynomial time and can
correct correcting O(log n) errors (note that this corresponds to a superpolyno-
mial number of possible error patterns). This algorithm is a proof of concept,
and neither the algorithm nor its analysis have been optimized for constants. An
improved decoding algorithm can replace our algorithm, which will increase our
correcting capability and improve Construction 1.

Construction 2. We consider a setting of (n,m, q, χ) where m ≥ 3n. We de-
scribe Decodet:

1. Input A,b = Ax+ w − w′

2. Randomly select rows without replacement i1, ..., i2n ← [1,m].

3. Restrict A,b to rows i1, ..., i2n; denote these Ai1,...,i2n ,bi1,...,i2n.
4. Find n rows of Ai1,...,i2n that are linearly independent. If no such rows exist,

output ⊥ and stop.

5. Denote by A′,b′ the restriction of Ai1,...,i2n ,bi1,...,i2n (respectively) to these
rows. Compute x′ = (A′)−1b′.

6. If b−Ax′ has more than t nonzero coordinates, go to step (2).

7. Output x′.

Each step is computable in time O(n3). For Decodet to be efficient, we need t
to be small enough so that with probability at least 1

poly(n) , none of the 2n rows

selected in step 2 have errors (i.e., so that w and w′ agree on those rows). If this
happens, and Ai1,...,i2n has rank n (which is highly likely), then x′ = x, and the
algorithm terminates. However, we also need to ensure correctness: we need to
make sure that if x′ �= x, we detect it in step 6. This detection will happen if
b−Ax′ = A(x−x′)+ (w−w′) has more than t nonzero coordinates. It suffices
to ensure that A(x − x′) has at least 2t + 1 nonzero coordinates (because at
most t of those can be zeroed out by w−w′), which happens whenever the code
generated by A has distance 2t+ 1.
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Setting t = O(mn logn) is sufficient to ensure efficiency. Random linear codes

have distance at least O(mn logn) with probability 1 − e−Ω(n) (the exact state-
ment is in Corollary 2), so this also ensures correctness. The formal statement
is below (proof in the full version of this work [18]):

Lemma 6 (Efficiency of Decodet when t ≤ d(m/n − 2) logn). Let d be a
positive constant and assume that dis(W,W ′) ≤ t where t ≤ d(mn − 2) logn.
Then Decodet runs in expected time O(n4d+3) operations in Fq (this expectation
is over the choice of random coins of Decodet, regardless of the input, as long as
dis(w,w′) ≤ t). It outputs X with probability 1− e−Ω(n) (this probability is over
the choice of the random matrix A and random choices made by Decodet).

4.3 Lossless Computational Fuzzy Extractor

We now state a setting of parameters that yields a lossless construction. The
intuition is as follows. We are splitting our source into m blocks each of size
log ρq (from Lemma 4) for a total input entropy of m log ρq. Our key is derived
from hardcore bits of X : X1,...,k and is of size k log q (from Lemma 5). Thus,
to achieve a lossless construction we need k log q = m log ρq. In other words,
in order to decode a meaningful number of errors, the vector w is of higher
dimension than the vector X , but each coordinate of w is sampled using fewer
bits than each coordinate of X . Thus, by increasing the size of q (while keeping
ρq fixed) we can set k log q = m log ρq, yielding a key of the same size as our
source. The formal statement is below.

Theorem 3. Let n be a security parameter and let the number of errors t =
c logn for some positive constant c. Let d be a positive constant (giving us a
tradeoff between running time of Rep and |w|). Consider the Hamming metric
over the alphabet Z = [−2b−1, 2b−1], where b = log 2(c/d + 2)n2 = O(log n).
Let W be uniform over M = Zm, where m = (c/d+ 2)n = O(n). If GAPSVP
and SIVP are hard to approximate within polynomial factors using quantum
algorithms, then there is a setting of q = poly(n) such that for any polyno-
mial ssec = poly(n) there exists ε = ngl(n) such that the following holds:
Construction 1 is a (M,W,m log |Z|, t)-computational fuzzy extractor that is
(ε, ssec)-hard with error δ = e−Ω(n). The generate procedure Gen takes O(n2) op-
erations over Fq, and the reproduce procedure Rep takes expected time O(n4d+3)
operations over Fq.

Proof. Security follows by combining Lemmas 4 and 5; efficiency follows by
Lemma 6. For a detailed explanation of the various parameters and constraints
see the full version of this work [18].

Theorem 3 shows that a computational fuzzy extractor can be built without
incurring any entropy loss. We can essentially think of AX+W as an encryption
of X that where decryption works from any close W ′.
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4.4 Comparison with Computational-Extractor-Based
Constructions

As mentioned in the introduction, an alternative approach to building a computa-
tional fuzzy extractor is to use a computational extractor (e.g., [26,3,13]) in place of
the information-theoretic extractor in the sketch-and-extract construction.Wewill
call this approach sketch-and-comp-extract. (A simple example of a computational
extractor is a pseudorandom generator applied to the output of an information-
theoretic extractor; note that LWE-based pseudorandom generators exist [2].)

This approach (specifically, its analysis via Lemma 1) works as long as the
amount of entropy m̃ of w conditioned on the sketch s remains high enough to
run a computational extractor. However, as discussed in Section 3, m̃ decreases
with the error parameter t due to coding bounds, and it is conceivable that, if
W has barely enough entropy to begin with, it will have too little entropy left
to run a computational extractor once s is known.

In contrast, our approach does not require the entropy of w conditioned on
p = (A,AX +w) to be high enough for a computational extractor. Instead, we
require that w is not computationally recoverable given p. This requirement is
weaker—in particular, in our construction, w may have no information-theoretic
entropy conditioned on p. The key difference in our approach is that instead of
extracting from w, we hide secret randomness using w. Computational extractors
are not allowed to have private randomness [26, Definition 3].

The main advantage of our analysis (instead of sketch-and-comp-extract) is
that security need not depend on the error-tolerance t. In our construction,
the error-tolerance depends only on the best available decoding algorithm for
random linear codes, because decoding algorithms will not reach the information-
theoretic decoding radius.

Unfortunately, LWE parameter sizes require relatively long w. Therefore, in
practice, sketch-then-comp-extract will beat our construction if the computa-
tional extractor is instantiated efficiently based on assumptions other than LWE
(for example, a cryptographic hash function for an extractor and a block cipher
for a PRG). However, we believe that our conceptual framework can lead to
better constructions. Of particular interest are other codes that are easy to de-
code up to t errors but become computationally hard as the number of errors
increases.

To summarize, the advantage of Construction 1 is that the security of our
construction does not depend on the decoding radius t. The disadvantages of
Construction 1 are that it supports a limited number of errors and only a uni-
formly distributed source. We begin to address this second problem in the next
section.

5 Computational Fuzzy Extractor for Nonuniform
Sources

While showing the security of Construction 1 for arbitrary high-min-entropy
distributions is an open problem, in this section we show it for a particular class
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of distributions called symbol-fixing. First we recall the notion of a symbol fixing
source (from [24, Definition 2.3]):

Definition 11. Let W = (W1, ...,Wm+α) be a distribution where each Wi takes
values over an alphabet Z. We say that it is a (m + α,m, |Z|) symbol fixing
source if for α indices i1, . . . , iα, the symbols Wiα are fixed, and the remaining
m symbols are chosen uniformly at random. Note that H∞(W ) = m log |Z|.

Symbol-fixing sources are a very structured class of distributions. However, ex-
tending Construction 1 to such a class is not obvious. Although symbol-fixing
sources are deterministically extractible [24], we cannot first run a deterministic
extractor before using Construction 1. This is because we need to preserve dis-
tance between w and w′ and an extractor must not preserve distance between
input points. We present an alternative approach, showing security of LWE di-
rectly with symbol-fixing sources.

The following theorem states the main technical result of this section, which
is of potential interest outside our specific setting. The result is that dist-LWE
with symbol-fixing sources is implied by standard dist-LWE (but for n and m
reduced by the amount of fixed symbols).

Theorem 4. Let n be a security parameter, m,α be polynomial in n, and q =
poly(n) be a prime and β ∈ Z+ be such that q−β = ngl(n). Let U denote the
uniform distribution over Zm for an alphabet Z ⊂ Fq, and let W denote an
(m + α,m, |Z|) symbol fixing source over Zm+α. If dist-LWEn,m,q,U is secure,
then dist-LWEn+α+β,m+α,q,W is also secure.

Theorem 4 also holds for an arbitrary error distribution (not just uniform error)
in the following sense. Let χ′ be an arbitrary error distribution. Define χ as the
distribution where m dimensions are sampled according to χ′ and the remaining
dimensions have some fixed error. Then, security of dist-LWEn,m,q,χ′ implies se-
curity of dist-LWEn+α+β,m+α,q,χ. We prove this stronger version of the theorem
in the full version of this work [18].

The intuition for this result is as follows. Providing a single sample with
no error “fixes” at most a single variable. Thus, if there are significantly more
variables than samples with no error, search LWE should still be hard. We are
able to show a stronger result that dist-LWE is still hard. The nontrivial part of
the reduction is using the additional α+β variables to “explain” a random value
for the last α samples, without knowing the other variables. The β parameter is
the slack needed to ensure that the “free” variables have influence on the last α
samples. A similar theorem for the case of a single fixed dimension was shown
in concurrent work by Brakerski et al. [8, Lemma 4.3]. The proof techniques of
Brakerski et al. can be extended to our setting with multiple fixed dimensions,
improving the parameters of Theorem 4 (specifically, removing the need for β).

Theorem 4 allows us to construct a lossless computational fuzzy extractor
from block-fixing sources:

Theorem 5. Let n be a security parameter and let t = c logn for some positive
constant c. Let d ≤ c be a positive constant and consider the Hamming metric
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over the alphabet Z = [−2b−1, 2b−1], where b ≈ log 2(c/d + 2)n2 = O(log n).
Let M = Zm+α where m = (c/d + 2)n = O(n) and α ≤ n/3. Let W be
the class of all (m + α,m, |Z|)-symbol fixing sources. If GAPSVP and SIVP
are hard to approximate within polynomial factors using quantum algorithms,
then there is a setting of q = poly(n) such that for any polynomial ssec =
poly(n) there exists ε = ngl(n) such that the following holds: Construction 1
is a (M,W ,m log |Z|, t)-computational fuzzy extractor that is (ε, ssec)-hard with
error δ = e−Ω(n). The generate procedure Gen takes O(n2) operations over Fq,
and the reproduce procedure Rep takes expected time O(n4d+3 log n) operations
over Fq.

Proof. Security follows by Lemmas 4 and 5 and Theorem 4 . Efficiency follows
by Lemma 6. For a more detailed explanation of parameters see the full version
of this work [18].
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A Properties of Random Linear Codes

For efficient decoding of Construction 1, we need the LWE instance to have high
distance with overwhelming probability. We will use the q-ary entropy function,
denoted Hq(x) and defined as Hq(x) = x logq(q−1)−x logq x−(1−x) logq(1−x).

Note that H2(x) = −x log x− (1−x) log(1−x). In the region [0, 1
2 ] for any value

q′ ≥ q, Hq′(x) ≤ Hq(x). The following theorem is standard in coding theory:

Theorem 6. [20, Theorem 8] For prime q, δ ∈ [0, 1− 1/q), 0 < ε < 1 −Hq(δ)
and sufficiently large m, the following holds for n = �(1 − Hq(δ) − ε)m� . If
A ∈ Fm×n

q is drawn uniformly at random, then the linear code with A as a
generator matrix has rate at least (1 −Hq(δ) − ε) and relative distance at least
δ with probability at least 1− e−Ω(m).
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Our setting is the case where m = poly(n) ≥ 2n and δ = O(log n/n). This
setting of parameters satisfies Theorem 6:

Corollary 2. Let n be a parameter and let m = poly(n) ≥ 2n. Let q be a prime
and τ = O(mn logn). For large enough values of n, when A ∈ Fm×n

q is drawn
uniformly, the code generated by A has distance at least τ with probability at
least 1− e−Ω(m) ≥ 1− e−Ω(n).

Proof. Let c be some constant. Let δ = τ/m = c logn
n . We show the corollary

for the case when m = 2n (increasing the size of m only increases the relative
distance). It suffices to show that for sufficiently large n, there exists ε > 0 where
1 − Hq(

c logn
n ) − ε = 1/2 or equivalently that Hq(

c logn
m ) < 1/2 as then setting

ε = 1/2−Hq(
c logn
n ) satisfies Theorem 6. For sufficiently large n:

– c logn
n < 1/2, so we can work with the binary entropy function H2.

– c logn
n < .1 < 1/2 and thus Hq(

c log n
n ) < Hq(.1).

Putting these statements together, for large enough n, Hq(
c logn
n ) < Hq(.1) <

H2(.1) < 1/2 as desired. This completes the proof.
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Abstract. We introduce explicit schemes based on the polarization phe-
nomenon for the task of secret-key agreement from common information
and one-way public communication as well as for the task of private chan-
nel coding. Our protocols are distinct from previously known schemes in
that they combine two practically relevant properties: they achieve the
ultimate rate—defined with respect to a strong secrecy condition—and
their complexity is essentially linear in the blocklength. However, we are
not able to give an efficient algorithm for code construction.

Keywords: One-way secret-key agreement, private channel coding,
one-way secret-key rate, secrecy capacity, wiretap channel scenario, more
capable, less noisy, degraded, polarization phenomenon, polar codes,
practically efficient, strongly secure.

1 Introduction

Consider two parties, Alice and Bob, connected by an authentic but otherwise
fully insecure communication channel. It has been shown that without having
access to additional resources, it is impossible for them to communicate privately,
with respect to an information-theoretic privacy condition [1,2]. In particular
they are unable to generate an unconditionally secure key with which to encrypt
messages transmitted over the public channel. However, if Alice and Bob have
access to correlated randomness about which an adversary (Eve) has only partial
knowledge, the situation changes completely: information-theoretically secure
secret-key agreement and private communication become possible. Alternatively,
if Alice and Bob are connected by a noisy discrete memoryless channel (DMC)
to which Eve has only limited access—the so-called wiretap channel scenario of
Wyner [3], Csiszár and Körner [4], and Maurer [2]—private communication is
again possible.

In this paper, we present explicit schemes for efficient one-way secret-key
agreement from common randomness and for private channel coding in the wire-
tap channel scenario. As discussed in Section 2.5, we improve previous work that
requires extra assumptions about the structure of the wiretap channel or/and
do not achieve strong secrecy. Our schemes are based on polar codes, a family of
capacity-achieving linear codes, introduced by Arıkan [5], that can be encoded
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and decoded efficiently. Previous work in a quantum setup [6] already implies
that practically efficient one-way secret-key agreement and private channel cod-
ing in a classical setup is possible, where a practically efficient scheme is one
whose computational complexity is essentially linear in the blocklength. The
aim of this paper is to explain the schemes in detail and give a purely classi-
cal proof that the schemes are reliable, secure, practically efficient and achieve
optimal rates.

This paper is structured as follows. Section 2 introduces the problems of per-
forming one-way secret-key agreement and private channel coding. We summa-
rize known and new results about the optimal rates for these two problems for
different wiretap channel scenarios. In Section 3, we explain how to obtain one-
way secret-key agreement that is practically efficient, strongly secure, reliable,
and achieves the one-way secret-key rate. However, we are not able to give an
efficient algorithm for code construction, as discussed in Section 3.3. Section 4
introduces a similar scheme that can be used for strongly secure private chan-
nel coding at the secrecy capacity. Finally we conclude in Section 5 and state
an open problem that is of interest in the setup of this paper as well as in the
quantum mechanical scenario introduced in [6].

2 Background and Contributions

2.1 Notation and Definitions

Let �k� � �1, . . . , k� for k � Z�. For x � Zk
2 and I � �k� we have x�I� � �xi :

i � I�, xi � �x1, . . . , xi� and xij � �xj , . . . , xi� for j � i. The set Ac denotes
the complement of the set A. The uniform distribution on an arbitrary random
variable X is denoted by PX . For distributions P and Q over the same alpha-
bet X , the variational distance is defined by δ	P,Q
 :� 1

2

�
x�X �P 	x
 �Q	x
�.

Let X and Y be two (possibly correlated) random variables. We use standard
information theoretic notation, such as H	X
 for the (Shannon) entropy of X,
H	X,Y 
 for the joint entropy of 	X,Y 
, H	X �Y 
 for the conditional entropy of
X given Y , and I	X ;Y 
 for the mutual information between X and Y .1 The
notation X���Y ���Z means that the random variables X,Y, Z form a Markov
chain in the given order.

In this setup we consider a discrete memoryless wiretap channel (DM-WTC)
W : X 
 Y �Z, which is characterized by its transition probability distribution
PY,Z�X .2 We assume that the variable X belongs to Alice, Y to Bob and Z to
Eve.

According to Körner and Marton [8], a DM-WTC W : X 
 Y �Z is termed
more capable if I	X ;Y 
 � I	X ;Z
 for every possible distribution on X . The

1 These quantities are properly defined in [7].
2 Recall that a discrete channel is defined as a system consisting of an input alphabet
(here X ), an output alphabet (here Y �Z) and a transition probability distribution
(here PY,Z�X ) between the input and the output. A channel is said to be memoryless
if the probability distribution of the output depends only on the input at that time
and is conditionally independent of previous channel inputs or outputs.
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channel W is termed less noisy if I	U ;Y 
 � I	U ;Z
 for every possible distribu-
tion on 	U,X
 where U has finite support and U���X���	Y, Z
 form a Markov
chain. If X���Y ���Z form a Markov chain, W is called degraded.3 It has been
shown [8] that being more capable is a strictly weaker condition than being less
noisy, which is a strictly weaker condition than being degraded. Hence, having a
DM-WTC W which is degraded implies that W is less noisy, which again implies
that W is also more capable.

2.2 Polarization Phenomenon

Let XN be a vector whose entries are i.i.d. Bernoulli(p) distributed for p � �0, 1�
and N � 2n where n � Z�. Then define UN � GNXN , where GN denotes the
polarization (or polar) transform which can be represented by the matrix

GN :�
�
1 1
0 1

�� logN

, (1)

where A�k denotes the kth Kronecker power of an arbitrary matrix A. Note that
it turns out that GN is its own inverse. Furthermore, let Y N � WNXN , where
WN denotes N independent uses of a DMC W : X 
 Y. For ε � 	0, 1
 we may
define the two sets

RN
ε 	X �Y 
 :�

�
i � �N � : H�Ui

��U i�1, Y N
� � 1� ε

�
and (2)

DN
ε 	X �Y 
 :�

�
i � �N � : H�Ui

��U i�1, Y N
� � ε

�
. (3)

The former consists of outputs Uj which are essentially uniformly random, even
given all previous outputs U j�1 as well as Y N , while the latter set consists
of the essentially deterministic outputs. The polarization phenomenon is that
essentially all outputs are in one of these two subsets, and their sizes are given
by the conditional entropy of the input X given Y .

Theorem 1 (Polarization Phenomenon [5,9]). For any ε � 	0, 1
��RN
ε 	X �Y 


�� � NH	X �Y 
 � o	N
 and (4)��DN
ε 	X �Y 


�� � N 	1�H	X �Y 

 � o	N
. (5)

Based on this theorem it is possible to construct a family of linear error cor-
recting codes, called polar codes. The logical bits are encoded into the Ui for
i � DN

ε 	X �Y 
, whereas the inputs to Ui for i � DN
ε 	X �Y 
c are fixed.4 It has

been shown that polar codes have several desirable attributes [5,10,11,12]: they
provably achieve the capacity of any DMC; they have an encoding and decoding

3 To call a DM-WTC W : X � Y �Z more capable is an abbreviation meaning that
the main channel W1 : X � Y is more capable than the eavesdropping channel
W2 : X � Z. The same convention is used for less noisy and degraded DM-WTCs.

4 These are the so-called frozen bits.
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complexity that is essentially linear in the blocklength N ; the error probability
decays exponentially in the square root of the blocklength.

Non-binary random variables can be represented by a sequence of correlated
binary random variables, which are then encoded separately. Correlated se-
quences of binary random variables may be polarized using a multilevel construc-
tion, as shown in [10].5 Given M i.i.d. instances of a sequence X � 	X�1�, X�2�,
. . . , X�K�
 and possibly a correlated random variable Y , the basic idea is to first

polarize XM
�1� relative to Y M , then treat XM

�1�Y
M as side information in polariz-

ing XM
�2�, and so on. More precisely, defining UM

�j� � GMXM
�j� for j � 1, . . . ,K,

we may define the random and deterministic sets for each j as

RM
ε,�j�	X�j��X�j�1�, � � � , X�1�, Y 


� �i � �M � : H
	
U�j�,i

���U i�1
�j� , XM

�j�1�, � � � , XM
�1�, Y

M


� 1� ε�, and (6)

DM
ε,�j�	X�j��X�j�1�, � � � , X�1�, Y 


� �i � �M � : H
	
U�j�,i

���U i�1
�j� , XM

�j�1�, � � � , XM
�1�, Y

M


� ε�. (7)

In principle we could choose different ε parameters for each j, but this will not
be necessary here. Now, Theorem 1 applies to the random and deterministic
sets for every j. The sets RM

ε 	X �Y 
 � �RM
ε,�j�	X�j��X�j�1�, . . . , X�1�, Y 
�Kj�1 and

DM
ε 	X �Y 
 � �DM

ε,�j�	X�j��X�j�1�, . . . , X�1�, Y 
�Kj�1 have sizes given by

�RM
ε 	X �Y 
� �

K�
j�1

���RM
ε,�j�	X�j��X�j�1�, . . . , X�1�, Y 


��� (8)

�
K�
j�1

MH
�
X�j�

��X�1�, . . . , X�j�1�, Y
�� o	M
 (9)

� MH	X �Y 
 � o	KM
, (10)

and

�DM
ε 	X �Y 
� �

K�
j�1

���DM
ε,�j�	X�j��X�j�1�, . . . , X�1�, Y 


��� (11)

�
K�
j�1

M
�
1�H

�
X�j�

��X�1�, . . . , X�j�1�, Y
��� o	M
 (12)

� M 	K �H	X �Y 

 � o	KM
. (13)

In the following we will make use of both the polarization phenomenon in its
original form, Theorem 1, and the multilevel extension. To simplify the presen-
tation, we denote by �GK

M the K parallel applications of GM to the K random
variables XM

�j�.

5 An alternative approach is given in [13,14], where the polarization phenomenon has
been generalized for arbitrary finite fields. We will however focus on the multilevel
construction in this paper.
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2.3 One-Way Secret-Key Agreement

At the start of the one-way secret-key agreement protocol, Alice, Bob, and Eve
share N � 2n, n � Z� i.i.d. copies 	XN , Y N , ZN 
 of a triple of correlated
random variables 	X,Y, Z
 which take values in discrete but otherwise arbitrary
alphabets X , Y, Z.6

Alice starts the protocol by performing an operation τA : XN 
 	SJ , C

on XN which outputs both her secret key SJ

A � SJ and an additional random
variable C � C which she transmits to Bob over an public but noiseless public
channel. Bob then performs an operation τB : 	YN , C
 
 SJ on Y N and the
information C he received from Alice to obtain a vector SJ

B � SJ ; his secret key.
The secret-key thus produced should be reliable, i.e., satisfy the

reliability condition: lim
N	


Pr


SJ
A � SJ

B

� � 0, (14)

and secure, i.e., satisfy the

(strong) secrecy condition: lim
N	


∥∥∥PSJ
A,Z

N ,C � PSJ
A
� PZN ,C

∥∥∥
1
� 0, (15)

where PSJ
A
denotes the uniform distribution on random variable SJ

A.

Historically, secrecy was first characterized by a (weak) secrecy condition of
the form

lim
N	


1

N
I
�
SJ
A;Z

N , C
� � 0. (16)

Maurer and Wolf showed that (16) is not a sufficient secrecy criterion [15,16]
and introduced the strong secrecy condition

lim
N	


I
�
SJ
A;Z

N , C
� � 0, (17)

where in addition it is required that the key is uniformly distributed, i.e.,

lim
N	


δ
	
PSJ

A
, PSJ

A



� 0. (18)

In recent years, the strong secrecy condition (17), (18) has often been replaced by
(15), since (half) the L1 distance directly bounds the probability of distinguishing
the actual key produced by the protocol with an ideal key. This operational
interpretation is particularly helpful in the finite blocklength regime. In the limit
N 
 �, the two secrecy conditions (15) and (17) are equivalent, which can be
shown using Pinskser’s and Fano’s inequalities.

Since having weak secrecy is not sufficient, we will only consider strong se-
crecy in this paper. It has been proven that each secret-key agreement protocol
which achieves weak secrecy can be transformed into a strongly secure protocol
[16]. However, it is not clear whether the resulting protocol is guaranteed to be
practically efficient.

6 The correlation of the random variables �X,Y, Z� is described by their joint proba-
bility distribution PX,Y,Z .
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For one-way communication, Csiszár and Körner [4] and later Ahlswede and
Csiszár [17] showed that the optimal rate R :� limN	


J
N of generating a secret

key satisfying (14) and (17), called the secret-key rate S		X ;Y �Z 
, is charac-
terized by a closed single-letter formula.

Theorem 2 (One-Way Secret-Key Rate [4,17]). For triples 	X,Y, Z
 de-
scribed by PX,Y,Z as explained above,

S		X ;Y �Z 
 �

���
��

max
PU,V

H	U �Z, V 
 �H	U �Y, V 

s.t. V ���U���X���	Y, Z
,

�V� � �X �, �U � � �X �2.
(19)

The expression for the one-way secret-key rate given in Theorem 2 can be
simplified if one makes additional assumptions about PX,Y,Z .

Corollary 3. For PX,Y,Z such that the induced DM-WTC W described by PY,Z�X

is more capable,

S		X ;Y �Z 
 �

���
��

max
PV

H	X �Z, V 
 �H	X �Y, V 

s.t. V ���X���	Y, Z
,

�V� � �X �.
(20)

Proof. In terms of the mutual information, we have

H	U �Z, V 
 �H	U �Y, V 

� I	U ;Y �V 
 � I	U ;Z�V 
 (21)

� I	X,U ;Y �V 
 � I	X,U ;Z�V 
 � 	I	X ;Y �U, V 
 � I	X ;Z�U, V 

 (22)

� I	X,U ;Y �V 
 � I	X,U ;Z�V 
 (23)

� I	X ;Y �V 
 � I	X ;Z�V 
 , (24)

using the chain rule, the more capable condition, and the Markov chain prop-
erties, respectively. Thus, the maximum in S		X ;Y �Z
 can be achieved when
omitting U . ��
Corollary 4. For PX,Y,Z such that the induced DM-WTC W described by PY,Z�X

is less noisy,
S		X ;Y �Z 
 � H	X �Z 
 �H	X �Y 
 . (25)

Proof. Since W being less noisy implies W being more capable, we know that
the one-way secret key rate is given by (20). Using the chain rule we obtain

H	X �Z, V 
 �H	X �Y, V 

� I	X ;Y �V 
 � I	X ;Z�V 
 (26)

� I	X,V ;Y 
 � I	X,V ;Z
 � I	V ;Y 
 � I	V ;Z
 (27)

� I	X ;Y 
 � I	X ;Z
 � 	I	V ;Y 
 � I	V ;Z

 (28)

� I	X ;Y 
 � I	X ;Z
 . (29)

Equation (28) follows from the chain rule and the Markov chain condition. The
inequality uses the assumption of being less noisy. ��
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Note that (25) is also equal to the one-way secret-key rate for the case where
W is degraded, as this implies W being less noisy. The proof of Theorem 2 does
not imply that there exists an efficient one-way secret-key agreement protocol.
A computationally efficient scheme was constructed in [18], but is not known to
be practically efficient.7

For key agreement with two-way communication, no formula comparable to
(19) for the optimal rate is known. However, it has been shown that the two-
way secret-key rate is strictly larger than the one-way secret-key rate. It is also
known that the intrinsic information I	X ;Y �Z
 :� minPZ��Z

I	X ;Y �Z � 
 is an

upper bound on S	X ;Y �Z
, but is not tight [17,19,20].

2.4 Private Channel Coding

Private channel coding over a wiretap channel is closely related to the task of one-
way secret-key agreement from common randomness (cf. Section 2.5). Here Alice
would like to transmit a message MJ �MJ privately to Bob. The messages can
be distributed according to some arbitrary distribution PMJ . To do so, she first
encodes the message by computing XN � enc	MJ
 for some encoding function
enc : MJ 
 XN and then sends XN over the wiretap channel to Bob (and
to Eve), which is represented by 	Y N , ZN
 � WNXN . Bob next decodes the
received message to obtain a guess for Alice’s message M̂J � dec	Y N 
 for some
decoding function dec : YN 
 MJ . As in secret-key agreement, the private
channel coding scheme should be reliable, i.e., satisfy the

reliability condition: lim
J	


Pr
�
MJ � M̂J

�
� 0, for all MJ �MJ (30)

and (strongly) secure, i.e., satisfy the

(strong) secrecy condition: lim
J	


∥∥PMJ ,ZN ,C � PMJ � PZN ,C

∥∥
1
� 0. (31)

The variable C denotes any additional information made public by the protocol.
As mentioned in Section 2.3, in the limit J 
� this strong secrecy condition

is equivalent to the historically older (strong) secrecy condition

lim
J	


I
�
MJ ;ZN , C

� � 0. (32)

The highest achievable rate R :� limN	

J
N fulfilling (30) and (31) is called the

secrecy capacity.
Csiszár and Körner showed [4, Corollary 2] that there exists a single-letter

formula for the secrecy capacity.8

7 As defined in Section 1, we call a scheme practically efficient if its computational
complexity is essentially linear in the blocklength.

8 Maurer and Wolf showed that the single-letter formula remains valid considering
strong secrecy [16].
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Theorem 5 (Secrecy Capacity [4]). For an arbitrary DM WTC W as intro-
duced above,

Cs �

���
��

max
PV,X

H	V �Z 
 �H	V �Y 

s.t. V ���X���	Y, Z
,

�V� � �X �.
(33)

This expression can be simplified using additional assumptions about W.

Corollary 6 ([8]). If W is more capable,

Cs � max
PX

H	X �Z 
 �H	X �Y 
 . (34)

Proof. A proof can be found in [8] or [21, Section 22.1]. ��

2.5 Previous Work and Our Contributions

In Section 3, we present a one-way secret-key agreement scheme based on polar
codes that achieves the secret-key rate, is strongly secure, reliable and whose
implementation is practically efficient, with complexity O	N logN
 for block-
length N . Our protocol improves previous efficient secret-key constructions [22],
where only weak secrecy could be proven and where the eavesdropper has no
prior knowledge and/or degradability assumptions are required. Our protocol
also improves a very recent efficient secret-key construction [23], which requires
to have a small amount of shared key between Alice and Bob and only works for
binary degraded (symmetric) discrete memoryless sources. However, we note that
a possible drawback of our scheme compared to [23] is that its code construction
may be more difficult.

In Section 4, we introduce a coding scheme based on polar codes that prov-
ably achieves the secrecy capacity for arbitrary discrete memoryless wiretap
channels. We show that the complexity of the encoding and decoding opera-
tions is O	N logN
 for blocklength N . Our scheme improves previous work on
practically efficient private channel coding at the optimal rate [24], where only
weak secrecy could be proven under the additional assumption that the channel
W is degraded.9 Recently, Bellare et al. introduced a polynomial-time coding
scheme that is strongly secure and achieves the secrecy capacity for binary sym-
metric wiretap channels [25].10 Several other constructions of private channel
coding schemes have been reported [26,27,28], but all achieve only weak secrecy.
Very recently, Şaşoğlu and Vardy introduced a new polar coding scheme that

9 Note that Mahdavifar and Vardy showed that their scheme achieves strong secrecy
if the channel to Eve (induced from W) is noiseless. Otherwise their scheme is not
provably reliable [24].

10 They claim that their scheme works for a large class of wiretap channels. However,
this class has not been characterized precisely so far. It is therefore not clear whether
their scheme requires for example degradability assumptions. Note that to obtain
strong secrecy for an arbitrarily distributed message, it is required that the wiretap
channel is symmetric [25, Lemma 14].
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can be used for private channel coding being strongly secure [29]. However, it
still requires the assumption of having a degraded wiretap channel which we
do not need for our scheme. In [30], an explicit construction that achieves the
secrecy capacity for wiretap channel coding is introduced, but efficiency is not
considered.

The tasks of one-way secret-key agreement and private channel coding ex-
plained in the previous two subsections are closely related. Maurer showed how
a one-way secret-key agreement can be derived from a private channel coding
scenario [2]. More precisely, he showed how to obtain the common randomness
needed for one-way secret-key agreement by constructing a “virtual” degraded
wiretap channel from Alice to Bob. This approach can be used to obtain the
one-way secret-key rate from the secrecy capacity result in the wiretap channel
scenario [21, Section 22.4.3]. One of the main advantages of the two schemes in-
troduced in this paper is that they are both practically efficient. However, even
given a practically efficient private coding scheme, it is not known that Maurer’s
construction will yield a practically efficient scheme for secret key agreement. For
this reason, as well as simplicity of presentation, we treat the one-way secret-key
agreement and the private channel coding problem separately in the two sections
to follow.

3 One-Way Secret-Key Agreement Scheme

Our key agreement protocol is a concatenation of two subprotocols, an inner
and an outer layer, as depicted in Figure 1. The protocol operates on blocks
of N i.i.d. triples 	X,Y, Z
, which are divided into M sub-blocks of size L for
input to the inner layer. At the outer layer, we use the multi-level construction
introduced in Section 2.2. In the following we assume X � �0, 1�, which however
is only for convenience; the techniques of [10] and [31] can be used to generalize
the schemes to arbitrary alphabets X .

The task of the inner layer is to perform information reconciliation and that
of the outer layer is to perform privacy amplification. Information reconciliation
refers to the process of carrying out error correction to ensure that Alice and
Bob obtain a shared bit string, and here we only allow communication from
Alice to Bob for this purpose. On the other hand, privacy amplification refers to
the process of distilling from Alice’s and Bob’s shared bit string a smaller set of
bits whose correlation with the information available to Eve is below a desired
threshold.

Each subprotocol in our scheme is based on the polarization phenomenon.
For information reconciliation of Alice’s random variable XL relative to Bob’s
information Y L, Alice applies a polar transformation to XL and forwards the
bits of the complement of the deterministic set DL

ε1	X �Y 
 to Bob over a public
channel, which enables him to recover XL using the standard polar decoder [5].
Her remaining information is then fed into a multilevel polar transformation and
the bits of the random set are kept as the secret key.
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Let us now define the protocol more precisely. For L � 2�, � � Z�, let V L �
GLX

L where GL is as defined in (1). For ε1 � 0, we define

EK :� DL
ε1	X �Y 
, (35)

with K :� �DL
ε1	X �Y 
�. Then, let T�j� � V L�EK�j for j � 1, . . . ,K and C�j� �

V L�EcK�j for j � 1, . . . , L �K so that T � 	T�1�, . . . , T�K�
 and C � 	C�1�, . . . ,

C�L�K�
. For ε2 � 0 and UM
�j� � GMTM

�j� for j � 1, . . .K (or, more briefly,

UM � �GK
MTM ), we define

FJ :� RM
ε2 	T �CZL
, (36)

with J :� �RM
ε2 	T �CZL
�.

Protocol 1: One-way secret-key agreement

Given: Index sets EK and FJ (code construction)
Notation: Alice’s input: xN � ZN

2 (a realization of XN )
Bob’s / Eve’s input: �yN , zN � (realizations of Y N and ZN )
Alice’s output: sJA
Bob’s output: sJB

Step 1: Alice computes vi�L
i�1 � GLx

i�L
i�1 for all i � 	0, L, 2L, . . . , �M � 1�L
.

Step 2: Alice computes ti � vi�L
i�1 �EK� for all i � 	0, L, 2L, . . . , �M � 1�L
.

Step 3: Alice sends ci � vi�L
i�1 �E c

K � for all i � 	0, L, 2L, . . . , �M � 1�L
 over a pub-
lic channel to Bob.

Step 4: Alice computes uM � �GK
M tM and obtains sJA � uM �FJ �.

11

Step 5: Bob applies the standard polar decoder [5,12] to �ci, y
i�L
i�1 � to obtain v̂i�L

i�1

and t̂i � v̂i�L
i�1 �EK �, for i � 	0, L, 2L, . . . , �M � 1�L
.

Step 6: Bob computes ûM � G̃K
M tM and obtains sJB � ûM �FJ �.

3.1 Rate, Reliability, Secrecy, and Efficiency

Theorem 7. Protocol 1 allows Alice and Bob to generate a secret key SJ
A re-

specitvely SJ
B using public one-way communication CM such that for any β � 1

2 :

Reliability: Pr


SJ
A � SJ

B

� � O
	
M2�L

β



(37)

Secrecy:
∥∥∥PSJ

A,Z
N ,C � PSJ

A
� PZN ,C

∥∥∥
1
� O

	�
N2�

Nβ

2



(38)

Rate: R :� J

N
� H	X �Z 
 � 1

L
H
�
V L�EcK�

��ZL
�� o	N


N
. (39)

All operations by both parties can be performed in O	N logN
 steps.
11 The expression uM �FJ � is an abuse of notation, as FJ is not a subset of [M]. The

expression should be understood to be the union of the random bits of uM
�j�, for all

j � 1, . . . ,K, as in the definition of RM
ε2 �T 
CZL�.
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Fig. 1. The secret-key agreement scheme for the setup N � 8, L � 4, M � 2, K � 2,
and J � 2. We consider a source that produces N i.i.d. copies �XN , Y N , ZN � of a
triple of correlated random variables �X,Y, Z�. Alice performs the operation τA, sends
�V L�E c

K ��
M over a public channel to Bob and obtains SJ

A, her secret key. Bob then
performs the operation τB which results in his secret key SJ

B .

Proof. The reliability of Alice’s and Bob’s key follows from the standard polar
decoder error probability and the union bound. Each instance of the decoding

algorithm employed by Bob has an error probability which scales as O	2�Lβ 
 for
any β � 1

2 [9]; application of the union bound gives the prefactor M . Since GL

as defined in (1) is its own inverse, �GK
M is its own inverse as well.

The rate of the scheme is

R � �FJ �
N

(40)

� 1

L
H
�
V L�EK�

��V L�EcK�, ZL
�� o	N


N
(41)

� 1

L

�
H
�
V L

��ZL
��H

�
V L�EcK�

��ZL
��� o	N


N
(42)

� H	X �Z 
 � 1

L
H
�
V L�EcK�

��ZL
�� o	N


N
, (43)

where (41) uses the polarization phenomenon stated in Theorem 1.
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To prove the secrecy statement requires more effort. Using Pinsker’s inequality
we obtain

δ
	
PSJ

A,Z
N ,CM , PSJ

A
� PZN ,CM



�
�

ln 2
2 D

	
PSJ

A,Z
N ,CM

������PSJ
A
� PZN ,CM



(44)

�
�

ln 2
2

�
J �H

�
SJ
A�ZN , CM

��
, (45)

where the last step uses the chain rule for relative entropies and that PSJ
A
denotes

the uniform distribution. We can simplify the conditional entropy expression
using the chain rule

H
�
SJ
A

��ZN , CM
�

� H
�
UM �FJ �

��ZN , 	V L�EcK�
M
�

(46)

�
K�
j�1

H
	
UM
�j��F�j��

���UM
�1��F�1��, . . . , UM

�j�1��F�j�1��, ZN , 	V L�EcK�
M



(47)

�
K�
j�1

�F�i���
i�1

H

�
UM
�j��F�j��i

����UM
�j��F�j��i�1,

�
UM
�l� �F�l��

�j�1

l�1
, ZN, 	V L�EcK�
M

�
(48)

�
K�
j�1

�
i�Fj

H
	
U�j�i

���U i�1
�j� , UM

�1��F�1��, . . . , UM
�j�1��F�j�1
�, ZN , 	V L�EcK�
M



(49)

� J 	1� ε2
 , (50)

where the first inequality uses the fact that that conditioning cannot increase
the entropy and the second inequality follows by the definition of FJ . Recall
that we are using the notation introduced in Section 2.2. For FJ as defined in

(36), we have FJ �
�
F�j�

�K
j�1

where F�j� � RM
ε2

�
T�j�

��T�j�1�, . . . , T�1�, C, ZL
�
.

The polarization phenomenon, Theorem 1, implies J � O	N
, which together

with (45) proves the secrecy statement of Theorem 7, since ε2 � O	2�Nβ 
 for
any β � 1

2 .
It remains to show that the computational complexity of the scheme is

O	N logN
. Alice performs the operation GL in the first layer M times, each
requiring O	L logL
 steps [5]. In the second layer she performs G̃K

M , or K paral-
lel instances of GM , requiring O	KM logM
 total steps. From the polarization
phenomenon, we have K � O	L
, and thus the complexity of Alice’s operations
is not worse than O	N logN
. Bob runs M standard polar decoders which can be
done in O	ML logL
 complexity [5,12]. Bob next performs the polar transform�GK
M , whose complexity is not worse than O	N logN
 as justified above. Thus,

the complexity of Bob’s operations is also not worse than O	N logN
. ��
In principle, the two parameters L and M can be chosen freely. However, to
maintain the reliability of the scheme (cf.(37)), M may not grow exponentially
fast in L. A reasonable choice would be to have both parameters scale compa-
rably fast, i.e., M

L � O	1
.
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Corollary 8. The rate of Protocol 1 given in Theorem 7 can be bounded as

R � max

�
0, H	X �Z 
 �H	X �Y 
 � o	N


N

�
. (51)

Proof. According to (43) the rate of Protocol 1 is

R � H	X �Z 
 � 1

L
H
�
V L�EcK�

��ZL
�� o	N


N
(52)

� max

�
0, H	X �Z 
 � �EcK �

L
� o	N


N

�
(53)

� max

�
0, H	X �Z 
 �H	X �Y 
 � o	N


N

�
, (54)

where (54) uses the polarization phenomenon stated in Theorem 1. ��

3.2 Achieving the Secret-Key Rate of a Given Distribution

Theorem 7 together with Corollaries 4 and 8 immediately imply that Protocol 1
achieves the secret-key rate S		X ;Y �Z 
 if PX,Y,Z is such that the induced DM
WTP W described by PY,Z�X is less noisy. If we can solve the optimization
problem (19), i.e., find the optimal auxiliary random variables V and U , our
one-way secret-key agreement scheme can achieve S		X ;Y �Z 
 for a general
setup. We then make V public, replace X by U and run Protocol 1. Note that
finding the optimal random variables V and U might be difficult. It has been
shown that for certain distributions the optimal random variables V and U can
be found analytically [18].

An open problem discussed in Section 5 addresses the question if Protocol 1
can achieve a rate that is strictly larger than max �0, H	X �Z 
 �H	X �Y 
� if
nothing about the optimal auxiliary random variables V and U is known, i.e., if
we run the protocol directly for X without making V public.

3.3 Code Construction

To construct the code the index sets EK and FJ need to be determined. The set
EK can be computed approximately with a linear-time algorithm introduced in
[32], given the distributions PX and PY �X . Alternatively, Tal and Vardy’s older
algorithm [33] and its adaption to the asymmetric setup [12] can be used.

To approximately compute the outer index set FJ requires more effort. In
principle, we can again use the above algorithms, which require a description
of the “super-source” seen by the outer layer, i.e., the source which outputs
the triple of random variables 	V L�EK�, 	Y L, V L�EcK�
, 	ZL, V L�EcK�

. However,
its alphabet size is exponential in L, and thus such a direct approach will not
be efficient in the overall blocklength N . Nonetheless, due to the structure of
the inner layer, it is perhaps possible that the method of approximation by
limiting the alphabet size [33,32] can be extended to this case. In particular,
a recursive construction motivated by the decoding operation introduced in [6]
could potentially lead to an efficient computation of the index set FJ .
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4 Private Channel Coding Scheme

Our private channel coding scheme is a simple modification of the secret key
agreement protocol of the previous section. Again it consists of two layers, an
inner layer which ensures transmitted messages can be reliably decoded by the
intended receiver, and an outer layer which guarantees privacy from the unin-
tended receiver. The basic idea is to simply run the key agreement scheme in
reverse, inputting messages to the protocol where secret key bits would be out-
put in key agreement. The immediate problem in doing so is that key agreement
also produces outputs besides the secret key, so the procedure is not immediately
reversible. To overcome this problem, the encoding operations here simulate the
random variables output in the key agreement protocol, and then perform the
polar transformations �GK

M and GL in reverse.12

The scheme is visualized in Figure 2 and described in detail in Protocol 2.
Not explicitly shown is the simulation of the bits UM �F c

J� at the outer layer
and the bits V L�EcK� at the inner layer. The outer layer, whose simulated bits
are nearly deterministic, makes use of the method described in [34, Definition
1], while the inner layer, whose bits are nearly uniformly-distributed, follows
[12, Section 4]. Both proceed by successively sampling from the individual bit
distributions given all previous values in the particular block, i.e., constructing
Vj by sampling from PVj �V j�1 . These distributions can be efficiently constructed,
as described in Section 4.3.

Note that a public channel is used to communicate the information reconcili-
ation information to Bob, enabling reliable decoding. However, it is possible to
dispense with the public channel and still achieve the same rate and efficiency
properties, as will be discussed in Section 4.3.

In the following we assume that the message MJ to be transmitted is uni-
formly distributed over the message set M � �0, 1�J . As mentioned in Sec-
tion 2.4, it may be desirable to have a private coding scheme that works for an
arbitrarily distributed message. This can be achieved by assuming that the wire-
tap channel W is symmetric—more precisely, by assuming that the two channels
W1 : X 
 Y and W2 : X 
 Z induced by W are symmetric. We can de-
fine a super-channel W� : T 
 YL�ZL� C which consists of an inner encoding
block and L basic channels W. The super-channel W� again induces two channels
W�

1 : T 
 YL�C and W�
2 : T 
 ZL�C. Arıkan showed that W1 respectively W2

being symmetric implies that W�
1 respectively W�

2 is symmetric [5, Proposition
13]. It has been shown in [24, Proposition 3] that for symmetric channels polar
codes remain reliable for an arbitrary distribution of the message bits. We thus
conclude that if W1 is assumed to be symmetric, our coding scheme remains reli-
able for arbitrarily distributed messages. Assuming having a symmetric channel
W2 implies that W�

2 is symmetric which proves that our scheme is strongly secure
for arbitrarily distributed messages.13

12 As it happens, GL is its own inverse.
13 This can be seen easily by the strong secrecy condition given in (31) using that W�

2

is symmetric.
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Protocol 2: Private channel coding

Given: Index sets EK and FJ (code construction)14

Notation: Message to be transmitted: mJ

Outer enc.: Let uM �FJ � � mJ15 and uM �Fc
J � � rKM�J where rKM�J is (ran-

domly) generated as explained in [34, Definition 1]. Let tM � �GK
MuM .

Inner enc.: For all i � 	0, L, . . . , L�M � 1�
, Alice does the following: let v̄i�L
i�1 �EK �

� t�i�L��1 and v̄i�L
i�1 �E c

K � � si�L�K
i�1 where si�L�K

i�1 is (randomly) gen-

erated as explained in [12, Section 4]. Send C�i�K��1 :� si�L�K
i�1 over

a public channel to Bob. Finally, compute xi�L
i�1 � GLv̄

i�L
i�1 .

Transmis.: �yN , zN � � WNxN

Inner dec.: Bob uses the standard decoder [5,12] with inputs C�i�L��1 and yi�L
i�1

to obtain v̂i�L
i�1 , and hence t̂�i�L��1 � v̂i�L

i�1 �EK �, for each
i � 	0, L, . . . , L�M � 1�
.

Outer dec.: Bob computes ûM � �GK
M t̂M and outputs a guess for the sent message

m̂J � ûM �FJ �.

4.1 Rate, Reliability, Secrecy, and Efficiency

Corollary 9. For any β � 1
2 , Protocol 2 satisfies

Reliability: Pr
�
MJ � M̂J

�
� O

	
M2�L

β



(55)

Secrecy:
∥∥PMJ ,ZN ,C � PMJ � PZN ,C

∥∥
1
� O

	�
N2�

Nβ

2



(56)

Rate: R � H	X �Z 
 � 1

L
H
�
V L�EcK�

��ZL
�� o	N


N
(57)

and its computational complexity is O	N logN
.

Proof. Recall that the idea of the private channel coding scheme is to run Proto-
col 1 backwards. Since Protocol 2 simulates the nearly deterministic bits UM �FJ�
at the outer encoder as described in [34, Definition 1] and the almost random
bits V L�EcK� at the inner encoder as explained in [12, Section 4], it follows that
for large values of L and M the private channel coding scheme approximates
the one-way secret-key scheme setup,16 i.e., limN	
 δ

�
PTM , P�V L�EK
�M

� � 0

and limL	
 δ
�
PXL , PX̂L

� � 0, where PXL denotes the distribution of the vector
XL which is sent over the wiretap channel W and PX̂L denotes the distribution

of Alice’s random variable X̂L in the one-way secret-key agreement setup. We

14 By the code construction the channel input distribution PX is defined. PX should
be chosen such that it maximizes the scheme’s rate.

15 Again an abuse of notation. See the Footnote 11 of Protocol 1.
16 This approximation can be made arbitrarily precise for sufficiently large values of L

and M .
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Fig. 2. The private channel coding scheme for the setup N � 8, L � 4, M � 2,
K � 2, and J � 2. The message MJ is first sent through an outer encoder which
adds some bits (simulated as explained in [12, Section 4]) and applies the polarization

transform �GK
M . The output TM � �T�1�, . . . , T�K��

M is then encoded a second time
by M independent identical blocks. Note that each block again adds redundancy (as
explained in [34, Definition 1]) before applying the polarization transform GL. Each
inner encoding block sends the frozen bits over a public channel to Bob. Note that
this extra public communication can be avoided as justified in Section 4.3. The output
XN is then sent over N copies of the wiretap channel W to Bob. Bob then applies a
decoding operation as in the key agreement scheme, Section 3.

thus can use the decoder introduced in [9] to decode the inner layer. Since we
are using M identical independent inner decoding blocks, by the union bound
we obtain the desired reliability condition. The secrecy and rate statement are
immediate consequences from Theorem 7. ��

As mentioned after Theorem 7, to ensure reliability of the protocol, M may
not grow exponentially fast in L.

Corollary 10. The rate of Protocol 2 given in Corollary 9 can be bounded as

R � max

�
0, H	X �Z 
 �H	X �Y 
 � o	N


N

�
. (58)

Proof. The proof is identical to the proof of Corollary 8. ��

4.2 Achieving the Secrecy Capacity of a Wiretap Channel

Corollaries 6 and 10 immediately imply that our private channel coding scheme
achieves the secrecy capacity for the setup where W is more capable. If we can
find the optimal auxiliary random variable V in (33), Protocol 2 can achieve
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the secrecy capacity for a general wiretap channel scenario. We define a super-
channel W : V 
 Y �Z which includes the random variable X and the wiretap
channel W. The super-channel W is characterized by its transition probability
distribution PY,Z�V where V is the optimal random variable solving (33). The
private channel coding scheme is then applied to the super-channel, achieving
the secrecy capacity. Note that finding the optimal random variable V might be
difficult.

In Section 5, we discuss the question if it is possible that Protocol 2 achieves a
rate that is strictly larger than max �0,maxPX H	X �Z 
 �H	X �Y 
�, if nothing
about the optimal auxiliary random variable V is known.

4.3 Code Construction and Public Channel Communication

To construct the code the index sets EK and FJ as defined in (35) and (36) need
to be computed. This can be done as explained in Section 3.3. One first chooses
a distribution PX that maximizes the scheme’s rate given in (57), before looking
for a code that defines this distribution PX .

We next explain how the communication CM � CM from Alice to Bob can be
reduced such that it does not affect the rate, i.e., we show that we can choose
�C� � o	L
. Recall that we defined the index set EK :� DL

ε1	X �Y 
 in (35). Let G :�
RL

ε1	X �Y 
 using the noation introduced in (2) and I :� �L��	EK � G
 � EcK�G.
As explained in Section 2.2, G consists of the outputs Vj which are essentially
uniformly random, even given all previous outputs V j�1 as well as Y L, where
V L � GLX

L. The index set I consists of the outputs Vj which are neither
essentially uniformly random nor essentially deterministic given V j�1 and Y L.
The polarization phenomenon stated in Theorem 1 ensures that this set is small,
i.e., that �I� � o	L
. Since the bits of G are almost uniformly distributed, we can
fix these bits independently of the message—as part of the code construction—
without affecting the reliability of the scheme for large blocklengths.17 We thus
only need to communicate the bits belonging to the index set I.

We can send the bits belonging to I over a seperate public noiseless channel.
Alternatively, we could send them over the wiretap channel W that we are using
for private channel coding. However since W is assumed to be noisy and it is
essential that the bits in I are recieved by Bob without any errors, we need to
protect them using an error correcting code. To not destroy the essentially linear
computational complexity of our scheme, the code needs to have an encoder and
decoder that are practically efficient. Since �I� � o	L
, we can use any error
correcting code that has a non-vanishing rate. For symmetric binary DMCs,
polar coding can be used to transmit reliably an arbitrarily distributed message
[24, Proposition 3]. We can therefore symmetrize our wiretap channel W and use
polar codes to transmit the bits in I.18

17 Recall that we choose ε1 � O
�
2�Lβ

�
for any β � 1

2
, such that for L �� the index

set G contains only uniformly distributed bits.
18 Note that the symmetrization of the channel will reduce its rate which however does

not matter as we need a non-vanishing rate only.
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As the reliability of the scheme is the average over the possible assignments of
the random bits belonging to I (or even EcK), at least one choice must be as good
as the average, meaning a reliable, efficient, and deterministic scheme must exist.
However, it might be computationally hard to find this choice. This means that
there exists a scheme for private channel coding (having the properties given in
Corollary 9) that does not require any extra communication from Alice to Bob,
i.e., C � �, however its code construction might be computationally inefficient.

5 Conclusion and Open Problems

We have constructed practically efficient protocols (with complexity essentially
linear in the blocklength) for one-way secret-key agreement from correlated
randomness and for private channel coding over discrete memoryless wiretap
channels. Each protocol achieves the corresponding optimal rate. Compared to
previous methods, we do not require any degradability assumptions and achieve
strong (rather than weak) secrecy. Our scheme is formulated for arbitrary dis-
crete memoryless wiretap channels. Using ideas of Şaşoğlu et al. [10] the two
protocols presented in this paper can also be used for wiretap channels with
continuous input alphabets.

Finally, we want to describe an open problem which addresses the question of
whether rates beyond max �0, H	X �Z 
 �H	X �Y 
� can be achieved by our key
agreement scheme, even if the optimal auxiliary random variables V and U are
not given, i.e., if we run Protocol 1 directly for X (instead of U) without making
V public. The question could also be formulated in the private coding scenario,
whether rates beyond max �0,maxPX H	X �Z 
 �H	X �Y 
� are possible, but as
a positive answer in the former context implies a positive answer in the latter,
we shall restrict attention to the key agreement scenario for simplicity.

Question 1 Does for some distributions PX,Y,Z the rate of Protocol 1 satisfy

R � max �0, H	X �Z 
 �H	X �Y 
� , for N 
�? (59)

An equivalent formulation of this question is whether inequality (53) is always
tight for large enough N , i.e.,

Question 1’ Is it possible that

lim
L	


1

L
H
�
V L�EcK�

��ZL
� � lim

L	


1

L
�EcK � , for R � 0? (60)

From the polarization phenomenon stated in Theorem 1 we obtain limL	

1
L �EcK �� H	X �Y 
, which together with (60) would imply that R � max �0, H	X �Z 
�

H	X �Y 
� for N 
� is possible. Relation (60) can only be satisfied if the high-
entropy set with respect to Bob’s side information, i.e., the set EcK , is not always
a high-entropy set with respect to Eve’s side information. Thus, the question of
rates in the key agreement protocol is closely related to fundamental structural
properties of the polarization phenomenon.

A positive answer to Question 1 implies that we can send quantum information
reliable over a quantum channel at a rate that is beyond the coherent information
using the scheme introduced in [6].
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Abstract. In 2009, Abdalla et al. proposed a reasonably practical pass-
word-authenticated key exchange (PAKE) secure against adaptive adver-
saries in the universal composability (UC) framework. It exploited the
Canetti-Fischlin methodology for commitments and the Cramer-Shoup
smooth projective hash functions (SPHFs), following the Gennaro-Lindell
approach for PAKE. In this paper, we revisit the notion of non-interactive
commitments, with a new formalism that implies UC security. In ad-
dition, we provide a quite efficient instantiation. We then extend our
formalism to SPHF-friendly commitments. We thereafter show that it
allows a blackbox application to one-round PAKE and oblivious trans-
fer (OT), still secure in the UC framework against adaptive adversaries,
assuming reliable erasures and a single global common reference string,
even for multiple sessions. Our instantiations are more efficient than the
Abdalla et al. PAKE in Crypto 2009 and the recent OT protocol proposed
by Choi et al. in PKC 2013. Furthermore, the new PAKE instantiation
is the first one-round scheme achieving UC security against adaptive ad-
versaries.

1 Introduction

Commitment schemes are one of the most fundamental primitives in cryp-
tography, serving as a building block for many cryptographic applications such
as zero-knowledge proofs [22] and secure multi-party computation [21]. In a typ-
ical commitment scheme, there are two main phases. In a commit phase, the
committer computes a commitment C for some message x and sends it to the
receiver. Then, in an opening phase, the committer releases some information δ
to the receiver which allows the latter to verify that C was indeed a commitment
of x. To be useful in practice, a commitment scheme should satisfy two basic
security properties. The first one is hiding, which informally guarantees that no
information about x is leaked through the commitment C. The second one is
binding, which guarantees that the committer cannot generate a commitment C
that can be successfully opened to two different messages.

Smooth Projective Hash Functions (SPHFs) were introduced by Cramer
and Shoup [17] as a means to design chosen-ciphertext-secure public-key en-
cryption schemes. In addition to providing a more intuitive abstraction for their

K. Sako and P. Sarkar (Eds.) ASIACRYPT 2013 Part I, LNCS 8269, pp. 214–234, 2013.
c© International Association for Cryptologic Research 2013
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original public-key encryption scheme in [16], the notion of SPHF also enabled
new efficient instantiations of their scheme under different complexity assump-
tions, such as quadratic residuosity. Due to its usefulness, the notion of SPHF
was later extended to several other contexts, such as password-authenticated key
exchange (PAKE) [20], oblivious transfer (OT) [27,15], and blind signatures [7,6].

Password-Authenticated Key Exchange (PAKE) protocols were proposed
in 1992 by Bellovin and Merritt [5] where authentication is done using a sim-
ple password, possibly drawn from a small space subject to exhaustive search.
Since then, many schemes have been proposed and studied. SPHFs have been
extensively used, starting with the work of Gennaro and Lindell [20] which gen-
eralized an earlier construction by Katz, Ostrovsky, and Yung (KOY) [29], and
followed by several other works [11,2]. More recently, a variant of SPHFs pro-
posed by Katz and Vaikuntanathan even allowed the construction of one-round
PAKE schemes [30,6].

The first ideal functionality for PAKE protocols in the UC framework [8,12]
was proposed by Canetti et al. [11], who showed how a simple variant of the
Gennaro-Lindell methodology [20] could lead to a secure protocol. Though quite
efficient, their protocol was not known to be secure against adaptive adversaries,
that are capable of corrupting players at any time, and learn their internal states.
The first ones to propose an adaptively secure PAKE in the UC framework were
Barak et al. [3] using general techniques from multi-party computation (MPC).
Though conceptually simple, their solution results in quite inefficient schemes.

The first reasonably practical adaptively secure PAKE was proposed by Ab-
dalla et al. [2], following the Gennaro-Lindell methodology with the Canetti-
Fischlin commitment [10]. They had to build a complex SPHF to handle the
verification of such a commitment. Thus, the communication complexity was
high and the protocol required four rounds. No better adaptively secure scheme
has been proposed so far.

Oblivious Transfer (OT) was introduced in 1981 by Rabin [34] as a way to
allow a receiver to get exactly one out of k messages sent by another party, the
sender. In these schemes, the receiver should be oblivious to the other values,
and the sender should be oblivious to which value was received. Since then,
several instantiations and optimizations of such protocols have appeared in the
literature, including proposals in the UC framework [31,13].

More recently, new instantiations have been proposed, trying to reach round-
optimality [26], or low communication costs [33]. The 1-out-of-2 OT scheme by
Choi et al. [15] based on the DDH assumption seems to be the most efficient
one among those that are secure against adaptive corruptions in the CRS model
with erasures. But it does not scale to 1-out-of-k OT, for k > 2.

1.1 Properties of Commitment Schemes

Basic Properties. In addition to the binding and hiding properties, certain
applications may require additional properties from a commitment scheme. One
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such property is equivocability [4], which guarantees that a commitment C can
be opened in more than a single way when in possession of a certain trapdoor
information. Another one is extractability, which allows the computation of the
message x committed in C when in possession of a certain trapdoor information.
Yet another property that may also be useful for cryptographic applications is
non-malleability [18], which ensures that the receiver of a unopened commit-
ment C for a message x cannot generate a commitment for a message that is
related to x.

Though commitment schemes satisfying stronger properties such as
non-malleability, equivocability, and extractability may be useful for solving spe-
cific problems, they usually stop short of guaranteeing security when composed
with arbitrary protocols. To address this problem, Canetti and Fischlin [10] pro-
posed an ideal functionality for commitment schemes in the universal compos-
ability (UC) framework [8] which guarantees all these properties simultaneously
and remain secure even under concurrent compositions with arbitrary protocols.
Unfortunately, they also showed that such commitment schemes can only be
realized if one makes additional setup assumptions, such as the existence of a
common reference string (CRS) [10], random oracles [25], or secure hardware
tokens [28].

Equivocable and Extractable Commitments. As the work of Canetti and
Fischlin [10], this work also aims to build non-interactive commitment schemes
which can simultaneously guarantee non-malleability, equivocability, and extract-
ability properties. To this end, we first define a new notion of commitment
scheme, called E2-commitments, for which there exists an alternative setup algo-
rithm, whose output is computationally indistinguishable from that of a normal
setup algorithm and which outputs a common trapdoor that allows for both
equivocability and extractability: this trapdoor not only allows for the extraction
of a committed message, but it can also be used to create simulated commitments
which can be opened to any message.

To define the security of E2-schemes, we first extend the security notions
of standard equivocable commitments and extractable commitments to the E2-
commitment setting: Since the use of a common trapdoor for equivocability and
extractability could potentially be exploited by an adversary to break the ex-
tractability or equivocability properties of an E2-commitment scheme, we define
stronger versions of these notions, which account for the fact that the same
trapdoor is used for both extractability or equivocability. In particular, in these
stronger notions, the adversary is given oracle access to the simulated commit-
ment and extractor algorithms.

Finally, after defining the security of E2-schemes, we further show that these
schemes remain secure even under arbitrary composition with other crypto-
graphic protocols. More precisely, we show that any E2–commitment scheme
which meets the strong versions of the equivocability or extraction notions is
a non-interactive UC-secure (multiple) commitment scheme in the presence of
adaptive adversaries, assuming reliable erasures and a single global CRS.



SPHF-Friendly Non-interactive Commitments 217

SPHF-Friendly Commitments. In this work, we are interested in building
non-interactive E2-commitments, to which smooth projective hash functions can
be efficiently associated. Unfortunately, achieving this goal is not so easy due to
the equivocability property of E2-commitments. To understand why, let X be
the domain of an SPHF function and let L be some underlying NP language such
that it is computationally hard to distinguish a random element in L from a ran-
dom element in X \L. A key property of these SPHF functions that makes them
so useful for applications such as PAKE and OT is that, for words C in L, their
values can be computed using either a secret hashing key hk or a public projected
key hp together a witness w to the fact that C is indeed in L. A typical example
of a language in which we are interested is the language Lx corresponding to
the set of elements {C} such that C is a valid commitment of x. Unfortunately,
when commitments are equivocable, the language Lx containing the set of valid
commitments of x may not be well defined since a commitment C could poten-
tially be opened to any x. To get around this problem and be able to use SPHFs
with E2-commitments, we show that it suffices for an E2-commitment scheme to
satisfy two properties. The first one is the stronger version of the equivocability
notion, which guarantees that equivocable commitments are computationally in-
distinguishable from normal commitments, even when given oracle access to the
simulated commitment and extractor algorithms. The second one, which is called
robustness, is new and guarantees that commitments generated by polynomially-
bounded adversaries are perfectly binding. Finally, we say that a commitment
scheme is SPHF-friendly if it satisfies both properties and if it admits an SPHF
on the languages Lx.

1.2 Contributions

A New SPHF-friendly E2-commitment Construction. First, we define the
notion of SPHF-friendly E2-commitment together with an instantiation. The new
construction, which is called E2C and described in Section 4, is inspired by the
commitment schemes in [10,13,2]. Like the construction in [2], it combines a
variant of the Cramer-Shoup encryption scheme (as an extractable commitment
scheme) and an equivocable commitment scheme to be able to simultaneously
achieve both equivocability and extractability. However, unlike the construction
in [2], we rely on Haralambiev’s perfectly hiding commitment [24, Section 4.1.4],
instead of the Pedersen commitment [32].

Since the opening value of Haralambiev’s scheme is a group element that
can be encrypted in one ElGamal-like ciphertext to allow extractability, this
globally leads to a better communication and computational complexity for the
commitment. The former is linear in m · K, where m is the bit-length of the
committed value and K, the security parameter. This is significantly better than
the extractable commitment construction in [2] which was linear in m · K2, but
asymptotically worse than the two proposals in [19] that are linear in K, and
thus independent of m. However, we point out the latter proposals in [19] are
not SPHF-friendly since they are not robust.
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We then show in Theorem 4 that a labeled E2-commitment satisfying stronger
notions of equivocability and extractability is a non-interactive UC-secure com-
mitment scheme in the presence of adaptive adversaries, assuming reliable era-
sures and a single global CRS, and we apply this result to our new construction.
One-Round Adaptively Secure PAKE. Second, we provide a generic con-
struction of a one-round UC-secure PAKE from any SPHF-friendly commitment.
The UC-security holds against adaptive adversaries, assuming reliable erasures
and a single global CRS, as shown in Section 6. In addition to being the first
one-round adaptively secure PAKE, our new scheme also enjoys a much better
communication complexity than previous adaptively secure PAKE schemes. For
instance, in comparison to the PAKE in [2], which is currently the most efficient
adaptively secure PAKE, the new scheme gains a factor of K in the overall com-
munication complexity, where K is the security parameter. However, unlike their
scheme, our new construction requires pairing-friendly groups.
Three-round Adaptively Secure 1-out-of-k OT. Third, we provide a generic
construction of a three-round UC-secure 1-out-of-k OT from any SPHF-friendly
commitment. The UC-security holds against adaptive adversaries, assuming reli-
able erasures and a single global CRS, as shown in Section 7. Besides decreasing
the total number of rounds with respect to existing OT schemes with similar
security levels, our resulting protocol also has a better communication complex-
ity than the best known solution so far [15]. Moreover, our construction is more
general and provides a solution for 1-out-of-k OT schemes while the solution in
[15] only works for k = 2.

Due to space restrictions, complete proofs and some details were postponed
to the full version [1].

2 Basic Notions for Commitments

We first review the basic definitions of non-interactive commitments, with some
examples. Then, we consider the classical additional notions of equivocability
and extractability. In this paper, the qualities of adversaries will be measured by
their successes and advantages in certain experiments Expsec or Expsec-b (between
the cases b = 0 and b = 1), denoted Succsec(A,K) and Advsec(A,K) respectively,
while the security of a primitive will be measured by the maximal successes or
advantages of any adversary running within a time bounded by some t in the
appropriate experiments, denoted Succsec(t) and Advsec(t) respectively. Adver-
saries can keep state during the different phases. We denote $← the outcome of
a probabilistic algorithm or the sampling from a uniform distribution.

2.1 Non-interactive Labeled Commitments

A non-interactive labeled commitment scheme C is defined by three algorithms:

– SetupCom(1K) takes as input the security parameter K and outputs the global
parameters, passed through the CRS ρ to all other algorithms;
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Exphid-bA (K)

ρ
$← SetupCom(1K)

(�, x0, x1, state)
$← A(ρ)

(C, δ)
$← Com�(xb)

return A(state, C)

ExpbindA (K)

ρ
$← SetupCom(1K)

(C, �, x0, δ0, x1, δ1)
$← A(ρ)

if ¬VerCom�(C, x0, δ0) then return 0

if ¬VerCom�(C, x1, δ1) then return 0
return x0 �= x1

Fig. 1. Hiding and Binding Properties

– Com�(x) takes as input a label � and a message x, and outputs a pair (C, δ),
where C is the commitment of x for the label �, and δ is the correspond-
ing opening data (a.k.a. decommitment information). This is a probabilistic
algorithm;

– VerCom�(C, x, δ) takes as input a commitment C, a label �, a message x, and
the opening data δ and outputs 1 (true) if δ is a valid opening data for C, x
and �. It always outputs 0 (false) on x = ⊥.

Using the experiments ExphidA (K) and ExpbindA (K) defined in Figure 1, one can
state the basic properties:

– Correctness : for all correctly generated CRS ρ, all commitments and opening
data honestly generated pass the verification VerCom test: for all �, x, if
(C, δ)

$← Com�(x), then VerCom�(C, x, δ) = 1;
– Hiding Property: the commitment does not leak any information about the

committed value. C is said (t, ε)-hiding if AdvhidC (t) ≤ ε.
– Binding Property: no adversary can open a commitment in two different

ways. C is said (t, ε)-binding if SuccbindC (t) ≤ ε.

Correctness is always perfectly required, and one can also require either the
binding or the hiding property to be perfect.

The reader can remark that labels are actually useless in the hiding and
the binding properties. But they will become useful in E2-commitment schemes
introduced in the next section. This is somehow similar to encryption scheme:
labels are useless with encryption schemes which are just IND-CPA, but are very
useful with IND-CCA encryption schemes.

2.2 Perfectly Binding Commitments: Public-Key Encryption

To get perfectly binding commitments, classical instantiations are public-key
encryption schemes, which additionally provide extractability (see below). The
encryption algorithm is indeed the commitment algorithm, and the random coins
become the opening data that allow to check the correct procedure of the commit
phase. The hiding property relies on the indistinguishability (IND-CPA), which is
computationally achieved, whereas the binding property relies on the correctness
of the encryption scheme and is perfect.
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Let us define the ElGamal-based commitment scheme:

– SetupCom(1K) chooses a cyclic group G of prime order p, g a generator for
this group and a random scalar z

$← Zp. It sets the CRS ρ = (G, g, h = gz);
– Com(M), for M ∈ G, chooses a random element r

$← Zp and outputs the
pair (C = (u = gr, e = hr ·M), δ = r);

– VerCom(C = (u, e),M, δ = r) checks whether C = (u = gr, e = hr ·M).

This commitment scheme is hiding under the DDH assumption and perfectly
binding. It is even extractable using the decryption key z: M = e/uz. However,
it is not labeled. The Cramer-Shoup encryption scheme [16] admits labels and
is extractable and non-malleable, thanks to the IND-CCA security level.

2.3 Perfectly Hiding Commitments

The Pedersen scheme [32] is the most famous perfectly hiding commitment:
Com(m) = gmhr for a random scalar r

$← Zp and a fixed basis h ∈ G. The
binding property relies on the DL assumption. Unfortunately, the opening value
is the scalar r, which makes it hard to encrypt/decrypt efficiently, as required
in our construction below. Haralambiev [24, Section 4.1.4] recently proposed a
new commitment scheme, called TC4 (without label), with a group element as
opening value:

– SetupCom(1K) chooses an asymmetric pairing-friendly setting (G1, g1,G2, g2,
GT , p, e), with an additional independent generator T ∈ G2. It sets the CRS
ρ = (G1, g1,G2, g2, T,GT , p, e);

– Com(x), for x ∈ Zp, chooses a random element r
$← Zp and outputs the pair

(C = gr2T
x, δ = gr1);

– VerCom(C, x, δ) checks whether e(g1, C/T x) = e(δ, g2).

This commitment scheme is clearly perfectly hiding, since the groups are cyclic,
and for any C ∈ G2, x ∈ Zp, there exists δ ∈ G1 that satisfies e(g1, C/T x) =
e(δ, g2). More precisely, if C = gu2 and T = gt2, then δ = gu−tx

1 opens C to any x.
The binding property holds under the DDH assumption in G2, as proven in [24,
Section 4.1.4].

2.4 Equivocable Commitments

An equivocable commitment scheme C extends on the previous definition, with
SetupCom, Com, VerCom, and a second setup SetupComT(1K) that additionally
outputs a trapdoor τ , and

– SimCom�(τ) that takes as input the trapdoor τ and a label � and outputs a
pair (C, eqk), where C is a commitment and eqk an equivocation key;

– OpenCom�(eqk, C, x) that takes as input a commitment C, a label �, a mes-
sage x, and an equivocation key eqk for this commitment, and outputs an
opening data δ for C and � on x.
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Expsim-ind-bA (K)

(ρ, τ )
$← SetupComT(1K)

(�, x, state)
$← ASCom·(τ,·)(ρ)

if b = 0 then (C, δ)
$← Com�(x)

else (C, δ)
$← SCom�(τ, x)

return ASCom·(τ,·)(state, C, δ)

Expbind-extA (K)

(ρ, τ )
$← SetupComT(1K)

(C, �, x, δ)
$← AExtCom·(τ,·)(ρ)

x′ ← ExtCom�(τ, C)
if x′ = x then return 0
else return VerCom�(C, x, δ)

Fig. 2. Simulation Indistinguishability and Binding Extractability

Let us denote SCom the algorithm that takes as input the trapdoor τ , a la-
bel � and a message x and which outputs (C, δ)

$← SCom�(τ, x), computed as
(C, eqk)

$← SimCom�(τ) and δ ← OpenCom�(eqk, C, x). Three additional prop-
erties are then associated: a correctness property, and two indistinguishability
properties, which all together imply the hiding property.

– Trapdoor Correctness : all simulated commitments can be opened on any
message: for all �, x, if (C, eqk)

$← SimCom�(τ) and δ ← OpenCom�(eqk, C, x),
then VerCom�(C, x, δ) = 1;

– Setup Indistinguishability: one cannot distinguish the CRS ρ generated by
SetupCom from the one generated by SetupComT. C is said (t, ε)-setup-
indistinguishable if the two distributions for ρ are (t, ε)-computationally
indistinguishable. We denote Advsetup-indC (t) the distance between the two
distributions.

– Simulation Indistinguishability: one cannot distinguish a real commitment
(generated by Com) from a fake commitment (generated by SCom), even with
oracle access to fake commitments. C is said (t, ε)-simulation-indistinguish-
able if Advsim-indC (t) ≤ ε (see the experiments Expsim-ind-bA (K) in Figure 2).

More precisely, when the trapdoor correctness is satisfied, since commitments
generated by SimCom are perfectly hiding (they can be opened in any way using
OpenCom), AdvhidC (t) ≤ Advsetup-indC (t) + Advsim-indC (t).

Definition 1 (Equivocable Commitment). A commitment scheme C is said
(t, ε)-equivocable if, first, the basic commitment scheme satisfies the correctness
property and is both (t, ε)-binding and (t, ε)-hiding, and, secondly, the addi-
tional algorithms guarantee the trapdoor correctness and make it both (t, ε)-setup-
indistinguishable and (t, ε)-simulation-indistinguishable.

2.5 Extractable Commitments

An extractable commitment scheme C also extends on the initial definition, with
SetupCom, Com, VerCom, as well as the second setup SetupComT(1K) that ad-
ditionally outputs a trapdoor τ , and

– ExtCom�(τ, C) which takes as input the trapdoor τ , a commitment C, and
a label �, and outputs the committed message x, or ⊥ if the commitment is
invalid.
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As above, three additional properties are then associated: a correctness prop-
erty, and the setup indistinguishability, but also an extractability property, which
implies, together with the setup indistinguishability, the binding property:

– Trapdoor Correctness : all commitments honestly generated can be correctly
extracted: for all �, x, if (C, δ)

$← Com�(x) then ExtCom�(C, τ) = x;
– Setup Indistinguishability: as above;
– Binding Extractability: one cannot fool the extractor, i.e., produce a com-

mitment and a valid opening data to an input x while the commitment does
not extract to x. C is said (t, ε)-binding-extractable if Succbind-extC (t) ≤ ε (see
the experiment Expbind-extA (K) in Figure 2).

More precisely, when one breaks the binding property with (C, �, x0, δ0, x1, δ1),
if the extraction oracle outputs x′ = x0, then one can output (C, �, x1, δ1),
otherwise one can output (C, �, x0, δ0). In both cases, this breaks the binding-
extractability: AdvbindC (t) ≤ Advsetup-indC (t) + Succbind-extC (t).

Definition 2 (Extractable Commitment). A commitment scheme C is said
(t, ε)-extractable if, first, the basic commitment scheme satisfies the correctness
property and is both (t, ε)-binding and (t, ε)-hiding, and, secondly, the addi-
tional algorithms guarantee the trapdoor correctness and make it both (t, ε)-setup-
indistinguishable and (t, ε)-binding-extractable.

3 Equivocable and Extractable Commitments

3.1 E2-Commitments: Equivocable and Extractable

Public-key encryption schemes are perfectly binding commitments that are addi-
tionally extractable. The Pedersen and Haralambiev commitments are perfectly
hiding commitments that are additionally equivocable. But none of them have
the two properties at the same time. This is now our goal.

Definition 3 (E2-Commitment). A commitment scheme C is said (t, ε)-E2
(equivocable and extractable) if the indistinguishable setup algorithm outputs a
common trapdoor that allows both equivocability and extractability. If one denotes
Adve

2

C (t) the maximum of Advsetup-indC (t), Advsim-indC (t), and Succbind-extC (t), then
it should be upper-bounded by ε.

But with such a common trapdoor, the adversary could exploit the equivocation
queries to break extractability and extraction queries to break equivocability.
Stronger notions can thus be defined, using the experiments Exps-sim-ind-bA (K)
and Exps-bind-extA (K) in Figure 3, in which SCom is supposed to store each
query/answer (�, x, C) in a list Λ and ExtCom-queries on such an SCom-output
(�, C) are answered by x (as it would be when using Com instead of SCom).

– Strong Simulation Indistinguishability: one cannot distinguish a real com-
mitment (generated by Com) from a fake commitment (generated by SCom),
even with oracle access to the extraction oracle (ExtCom) and to fake com-
mitments (using SCom). C is said (t, ε)-strongly-simulation-indistinguishable
if Advs-sim-indC (t) ≤ ε;
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Exps-sim-ind-bA (K)

(ρ, τ )
$← SetupComT(1K);

(�, x, state)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ)

if b = 0 then (C, δ)
$← Com�(x)

else (C, δ)
$← SCom�(τ, x)

return ASCom·(τ,·),ExtCom·(τ,·)(state, C, δ)

Exps-bind-extA (K)

(ρ, τ )
$← SetupComT(1K)

(C, �, x, δ)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ)

x′ ← ExtCom�(τ, C)
if (�, x′, C) ∈ Λ then return 0

if x′ = x then return 0
else return VerCom�(C, x, δ)

Fig. 3. Strong Simulation Indistinguishability and Strong Binding Extractability

– Strong Binding Extractability (informally introduced in [13] as “simulation
extractability”): one cannot fool the extractor, i.e., produce a commitment
and a valid opening data (not given by SCom) to an input x while the
commitment does not extract to x, even with oracle access to the extraction
oracle (ExtCom) and to fake commitments (using SCom). C is said (t, ε)-
strongly-binding-extractable if Succs-bind-extC (t) ≤ ε.

They both imply the respective weaker notions since they just differ by giving
access to the ExtCom-oracle in the former game, and to the SCom oracle in
the latter. We insist that ExtCom-queries on SCom-outputs are answered by the
related SCom-inputs. Otherwise, the former game would be void. In addition,
VerCom always rejects inputs with x = ⊥, which is useful in the latter game.

3.2 UC-Secure Commitments

The security definition for commitment schemes in the UC framework was pre-
sented by Canetti and Fischlin [10], refined by Canetti [9]. The ideal functionality
is presented in Figure 4, where a public delayed output is an output first sent to the
adversaryS that eventually decides if and when the message is actually delivered to
the recipient. In case of corruption of the committer, if this is before the Receipt-
message for the receiver, the adversary chooses the committed value, otherwise it
is provided by the ideal functionality, according to the Commit-message. Note this
is actually the multiple-commitment functionality that allows multiple executions
of the commitment protocol (multiple ssid’s) for the same functionality instance
(one sid). This avoids the use of joint-state UC [14].

Theorem 4. A labeled E2-commitment scheme C, that is in addition strongly-
simulation-indistinguishable or strongly-binding-extractable, is a non-interactive
UC-secure commitment scheme in the presence of adaptive adversaries, assuming
reliable erasures and authenticated channels.

4 A Construction of Labeled E2-Commitment Scheme

4.1 Labeled Cramer-Shoup Encryption on Vectors

For our construction we use a variant of the Cramer-Shoup encryption scheme
for vectors of messages. Let G be a cyclic group of order p, with two independent
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The functionality Fcom is parametrized by a security parameter k. It interacts with
an adversary S and a set of parties P1,. . . ,Pn via the following queries:
Commit phase: Upon receiving a query (Commit, sid, ssid, Pi, Pj , x) from
party Pi: record the tuple (sid, ssid, Pi, Pj , x) and generate a public delayed output
(Receipt, sid, ssid, Pi, Pj) to Pj . Ignore further Commit-message with the same ssid
from Pi.
Decommit phase. Upon receiving a query (Reveal, sid, ssid, Pi, Pj) from
party Pi: ignore the message if (sid, ssid, Pi, Pj , x) is not recorded; otherwise
mark the record (sid, ssid, Pi, Pj) as revealed and generate a public delayed out-
put (Revealed, sid, ssid, Pi, Pj , x) to Pj . Ignore further Reveal-message with the
same ssid from Pi.

Fig. 4. Ideal Functionality for Commitment Scheme Fcom

generators g and h. The secret decryption key is a random vector
sk = (x1, x2, y1, y2, z)

$← Z5
p and the public encryption key is pk = (g, h, c =

gx1hx2 , d = gy1hy2 , f = gz, H), where H is randomly chosen in a collision-
resistant hash function family H (actually, second-preimage resistance is
enough). For a message-vector M = (Mi)i=1,...,m ∈ Gm, the multi-Cramer-
Shoup encryption is defined as m-MCS�pk(M ; (ri)i) = (CS�pk(Mi, θ; ri) = (ui =

gri , vi = hri , ei = f ri ·Mi, wi = (cdθ)ri))i, where θ = H(�, (ui, vi, ei)i) is the same
for all the wi’s to ensure non-malleability contrary to what we would have if we
had just concatenated Cramer-Shoup ciphertexts of the Mi’s. Such a ciphertext
C = (ui, vi, ei, wi)i is decrypted by Mi = ei/u

z
i , after having checked the valid-

ity of the ciphertext, wi
?= ux1+θy1

i vx2+θy2
i , for i = 1, . . . ,m. This multi-Cramer-

Shoup encryption scheme, denoted MCS, is IND-CCA under the DDH assumption.
It even verifies a stronger property VIND-PO-CCA (for Vector-Indistinguishability
with Partial Opening under Chosen-Ciphertext Attacks), useful for the security
proof of our commitment E2C.

4.2 Construction

In this section, we provide a concrete construction E2C, inspired from [10,13,2],
with the above multi-Cramer-Shoup encryption (as an extractable commitment
scheme) and the TC4 Haralambiev’s equivocable commitment scheme [24, Sec-
tion 4.1.4]. The latter will allow equivocability while the former will provide
extractability:

– SetupComT(1K) generates a pairing-friendly setting (G1, g1,G2, g2,GT , p, e),
with another independent generator h1 of G1. It then generates the param-
eters of a Cramer-Shoup-based commitment in G1: x1, x2, y1, y2, z

$← Zp

and H
$← H, and sets pk = (g1, h1, c = gx1

1 hx2

1 , d = gy11 hy21 , f1 = gz1 , H).
It then chooses a random scalar t

$← Zp, and sets T = gt2. The CRS ρ
is set as (pk, T ) and the trapdoor τ is the decryption key (x1, x2, y1, y2, z)
(a.k.a. extraction trapdoor) together with t (a.k.a. equivocation trapdoor).
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For SetupCom(1K), the CRS is generated the same way, but forgetting the
scalars, and thus without any trapdoor;

– Com�(M ), for M = (Mi)i ∈ {0, 1}m and a label �, works as follows:
• For i = 1, . . . ,m, it chooses a random scalar ri,Mi

$← Zp, sets ri,1−Mi = 0,
and commits to Mi, using the TC4 commitment scheme with ri,Mi as ran-
domness: ai = g

ri,Mi
2 TMi , and sets di,j = g

ri,j
1 for j = 0, 1, which makes

di,Mi the opening value for ai to Mi; Let us also write a = (a1, . . . , am),
the tuple of commitments.
• For i = 1, . . . ,m and j = 0, 1, it gets b = (bi,j)i,j = 2m-MCS�

′
pk(d; s),

that is (ui,j , vi,j , ei,j , wi,j)i,j , where d = (di,j)i,j computed above, s =

(si,j)i,j
$← Z2m

p , and �′ = (�,a).
The commitment is C = (a, b), and the opening information is the m-tuple
δ = (s1,M1 , . . . , sm,Mm).

– VerCom�(C,M , δ) checks the validity of the ciphertexts bi,Mi with si,Mi and
θ computed on the full ciphertext C, extracts di,Mi from bi,Mi and si,Mi , and
checks whether e(g1, ai/T

Mi) = e(di,Mi , g2), for i = 1, . . . ,m.
– SimCom�(τ) takes as input the equivocation trapdoor, namely t, and outputs

C = (a, b) and eqk = s, where
• For i = 1, . . . ,m, it chooses a random scalar ri,0

$← Zp, sets ri,1 = ri,0−t,
and commits to both 0 and 1, using the TC4 commitment scheme with
ri,0 and ri,1 as respective randomness: ai = g

ri,0
2 = g

ri,1
2 T , and di,j = g

ri,j
1

for j = 0, 1, which makes di,j the opening value for ai to the value
j ∈ {0, 1}. This leads to a;
• b is built as above: b = (bi,j)i,j = 2m-MCS�

′
pk(d; s), with random scalars

(si,j)i,j .
– OpenCom�(eqk, C,M ) simply extracts the useful values from eqk = s to

make the opening value δ = (s1,M1 , . . . , sm,Mm) in order to open to M =
(Mi)i.

– ExtCom�(τ, C) takes as input the extraction trapdoor, namely the Cramer-
Shoup decryption key. Given b, it can decrypt all the bi,j into di,j and check
whether e(g1, ai/T

j) = e(di,j , g2) or not. If, for each i, exactly one j = Mi

satisfies the equality, then the extraction algorithm outputs (Mi)i, otherwise
(no correct decryption or ambiguity with several possibilities) it outputs ⊥.

4.3 Security Properties

The above commitment scheme E2C is a labeled E2-commitment, with both
strong-simulation-indistinguishability and strong-binding-extractability, under
the DDH assumptions in both G1 and G2. It is thus a UC-secure commitment
scheme. The stronger VIND-PO-CCA security notion for the encryption scheme is
required because the SCom/Com oracle does not only output the commitment
(and thus the ciphertexts) but also the opening values which include the ran-
dom coins of the encryption, but just for the plaintext components that are the
same in the two vectors, since the two vectors only differ for unnecessary data
(namely the di,1−Mi ’s) in the security proof. More details can be found in the
full version [1].
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5 SPHF-Friendly Commitments

5.1 Smooth Projective Hash Functions

Projective hash function families were first introduced by Cramer and Shoup [17],
but we here use the definitions of Gennaro and Lindell [20], provided to build
secure password-based authenticated key exchange protocols, together with non-
malleable commitments.

Let X be the domain of these functions and let L be a certain subset of this
domain (a language). A key property of these functions is that, for words C in
L, their values can be computed by using either a secret hashing key hk or a
public projection key hp but with a witness w of the fact that C is indeed in L:

– HashKG(L) generates a hashing key hk for the language L;
– ProjKG(hk, L, C) derives the projection key hp, possibly depending on the

word C;
– Hash(hk, L, C) outputs the hash value from the hashing key, on any word

C ∈ X ;
– ProjHash(hp, L, C,w) outputs the hash value from the projection key hp, and

the witness w, for C ∈ L.

The correctness of the SPHF assures that if C ∈ L with w a witness of this fact,
then Hash(hk, L, C) = ProjHash(hp, L, C,w). On the other hand, the security is
defined through the smoothness, which guarantees that, if C �∈ L, Hash(hk, L, C)
is statistically indistinguishable from a random element, even knowing hp.

Note that HashKG and ProjKG can just depend partially on L (a superset L′)
and not at all on C: we then note HashKG(L′) and ProjKG(hk, L′,⊥) (see [6] for
more details on GL-SPHF and KV-SPHF and language definitions).

5.2 Robust Commitments

For a long time, SPHFs have been used to implicitly check some statements, on
language membership, such as “C indeed encrypts x”. This easily extends to per-
fectly binding commitments with labels: Lx = {(�, C)| ∃δ, VerCom�(C, x, δ) = 1}.
But when commitments are equivocable, this intuitively means that a commit-
ment C with the label � contains any x and is thus in all the languages Lx.
In order to be able to use SPHFs with E2-commitments, we want the commit-
ments generated by polynomially-bounded adversaries to be perfectly binding,
and thus to belong to at most one language Lx. We thus need a robust verification
property for such E2-commitments.

Definition 5 (Robustness). One cannot produce a commitment and a label
that extracts to x′ (possibly x′ = ⊥) such that there exists a valid opening data to
a different input x, even with oracle access to the extraction oracle (ExtCom) and
to fake commitments (using SCom). C is said (t, ε)-robust if SuccrobustC (t) ≤ ε,
according to the experiment ExprobustA (K) in Figure 5.

It is important to note that the latter experiment ExprobustA (K) may not be run
in polynomial time. Robustness implies strong-binding-extractability.
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ExprobustA (K)

(ρ, τ )
$← SetupComT(1K)

(C, �)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ)

x′ ← ExtCom�(τ, C)
if (�, x′, C) ∈ Λ then return 0

if ∃x �= x′, ∃δ, VerCom�(C, x, δ) then return 1
else return 0

Fig. 5. Robustness

5.3 Properties of SPHF-Friendly Commitments

We are now ready to define SPHF-friendly commitments, which admit an SPHF
on the languages Lx = {(�, C)| ∃δ, VerCom�(C, x, δ) = 1}, and to discuss about
them:

Definition 6 (SPHF-Friendly Commitments). An SPHF-friendly commit-
ment is an E2-commitment that admits an SPHF on the languages Lx, and that
is both strongly-simulation-indistinguishable and robust.

Let us consider such a family F of SPHFs on languages Lx for x ∈ X , with X a
non trivial set (with at least two elements), with hash values in the set G. From
the smoothness of the SPHF on Lx, one can derive the two following properties
on SPHF-friendly commitments, modeled by the experiments in Figure 6. The
first notion of smoothness deals with adversary-generated commitments, that are
likely perfectly binding from the robustness, while the second notion of pseudo-
randomness deals with simulated commitments, that are perfectly hiding. They
are inspired by the security games from [20].

In both security games, note that when hk and hp do not depend on x nor
on C, and when the smoothness holds even if the adversary can choose C after
having seen hp (i.e., the SPHF is actually a KV-SPHF [6]), they can be generated
from the beginning of the games, with hp given to the adversary much earlier.

Smoothness of SPHF-Friendly Commitments. If the adversary A, with access to
the oracles SCom and ExtCom, outputs a fresh commitment (�, C) that extracts
to x′ ← ExtCom�(τ, C), then the robustness guarantees that for any x �= x′,
(�, C) �∈ Lx (excepted with small probability), and thus the distribution of the
hash value is statistically indistinguishable from the random distribution, even
when knowing hp. In the experiment Expc-smoothA (K), we let the adversary choose
x, and we have: Advc-smoothC,F (t) ≤ SuccrobustC (t) + AdvsmoothF .

Pseudo-Randomness of SPHF on Robust Commitments. If the adversary A is
given a commitment C by SCom on x′ with label �, both adversary-chosen,
even with access to the oracles SCom and ExtCom, then for any x, it cannot
distinguish the hash value of (�, C) on language Lx from a random value, even
being given hp, since C could have been generated as Com�(x′′) for some x′′ �= x,
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Expc-smooth-bA (K)

(ρ, τ )
$← SetupComT(1K)

(C, �, x, state)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ); x′ ← ExtCom�(τ, C)

if (�, x′, C) ∈ Λ then return 0

hk
$← HashKG(Lx); hp ← ProjKG(hk, Lx, (�, C))

if b = 0 ∨ x′ = x then H ← Hash(hk, Lx, (�, C)) else H
$← G

return ASCom·(τ,·),ExtCom·(τ,·)(state, hp,H)

Expc-ps-rand-bA (K)

(ρ, τ )
$← SetupComT(1K)

(�, x, x′, state) $← ASCom·(τ,·),ExtCom·(τ,·)(ρ); (C, δ) $← SCom�(τ, x′)
hk

$← HashKG(Lx); hp ← ProjKG(hk, Lx, (�, C))

if b = 0 then H ← Hash(hk, Lx, (�, C)) else H
$← G

return ASCom·(τ,·),ExtCom·(τ,·)(state, C, hp,H)

Fig. 6. Smoothness and Pseudo-Randomness

which excludes it to belong to Lx, under the robustness. In the experiment
Expc-ps-randA (K), we let the adversary choose (�, x), and we have: Advc-ps-randC,F (t) ≤
Advs-sim-indC (t) + SuccrobustC (t) + AdvsmoothF .

5.4 Our Commitment Scheme E2C is SPHF-Friendly

In order to be SPHF-friendly, the commitment first needs to be strongly-simula-
tion-indistinguishable and robust. We have already shown the former property,
and the latter is also proven in the full version [1]. One additionally needs an
SPHF able to check the verification equation: using the notations from Sec-
tion 4.2, C = (a, b) is a commitment of M = (Mi)i, if there exist δ = (s1,M1 , . . . ,
sm,Mm) and (d1,M1 , . . . , dm,Mm) such that bi,Mi = (ui,Mi , vi,Mi , ei,Mi , wi,Mi) =

CS�
′
pk(di,Mi , θ; si,Mi) (with a particular θ) and e(g1, ai/T

Mi) = e(di,Mi , g2), for
i = 1, . . . ,m. Since e is non-degenerated, we can eliminate the need of di,Mi , by
lifting everything in GT , and checking that, first, the ciphertexts are all valid:

e(ui,Mi , g2) = e(g
si,Mi
1 , g2) e(vi,Mi , g2) = e(h

si,Mi
1 , g2)

e(wi,Mi , g2) = e((cdθ)si,Mi , g2)

and, second, the plaintexts satisfy the appropriate relations:

e(ei,Mi , g2) = e(f
si,Mi

1 , g2) · e(g1, ai/TMi).

From these expressions we derive several constructions of such SPHFs in the
full version [1], and focus here on the most interesting ones for the following
applications:
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– First, when C is sent in advance (known when generating hp), as in the
OT protocol described in Section 7, for hk = (η, α, β, μ, ε)

$← Z5
p, and hp =

(ε, hp1 = gη1h
α
1 f

β
1 (cd

θ)μ) ∈ Zp ×G1:

H = Hash(hk,M , C)

def=
∏

i

(
e(uηi,Mi

· vαi,Mi
, g2) · (e(ei,Mi , g2)/e(g1, ai/T

Mi))β · e(wμ
i,Mi

, g2)
)εi−1

= e(
∏

i hp
si,Mi

εi−1

1 , g2)
def= ProjHash(hp,M , C, δ) = H ′.

– Then, when C is not necessarily known for computing hp, as in the one-
round PAKE, described in Section 6, for hk = (ηi,1, ηi,2, αi, βi, μi)i

$← Z5m
p ,

and hp = (hpi,1 = g
ηi,1
1 hαi

1 fβi

1 cμi , hpi,2 = g
ηi,2
1 dμi)i ∈ G2m

1 :

H = Hash(hk,M , C)
def=

∏
i

(
e(u

(ηi,1+θηi,2)
i,Mi

· vαi

i,Mi
, g2) · (e(ei,Mi , g2)/e(g1, ai/T

Mi))βi · e(wμi

i,Mi
, g2)

)
= e(

∏
i(hpi,1hp

θ
i,2)

si,Mi , g2)
def= ProjHash(hp,M , C, δ) = H ′.

5.5 Complexity and Comparisons

As summarized in Table 1, the communication complexity is linear in m·K (where
m is the bit-length of the committed value and K is the security parameter),
which is much better than [2] that was linear in m ·K2, but asymptotically worse
than the two proposals in [19] that are linear in K, and thus independent of m
(as long as m = O(K)).

Basically, the first scheme in [19] consists of a Cramer-Shoup-like encryption
C of the message x, and a perfectly-sound Groth-Sahai [23] NIZK π that C
contains x. The actual commitment is C and the opening value on x is δ = π.
The trapdoor-setup provides the Cramer-Shoup decryption key and changes the
Groth-Sahai setup to the perfectly-hiding setting. The indistinguishable setups of
the Groth-Sahai mixed commitments ensure the setup-indistinguishability. The
extraction algorithm uses the Cramer-Shoup decryption algorithm, while the
equivocation uses the simulator of the NIZK. The IND-CCA security notion for
C and the computational soundness of π make it strongly-binding-extractable,
the IND-CCA security notion and the zero-knowledge property of the NIZK pro-
vide the strong-simulation-indistinguishability. It is thus UC-secure. However,
the verification is not robust: because of the perfectly-hiding setting of Groth-
Sahai proofs, for any ciphertext C and for any message x, there exists a proof π
that makes the verification of C on x. As a consequence, it is not SPHF-friendly.
The second construction is in the same vein: they cannot be used in the following
applications.

6 Password-Authenticated Key Exchange

6.1 A Generic Construction

The ideal functionality of a Password-Authenticated Key Exchange (PAKE)
has been proposed in [11]. In Figure 7, we describe a one-round PAKE that
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Table 1. Comparison with existing non-interactive UC-secure commitments with a
single global CRS (m = bit-length of the committed value, K = security parameter)

SPHF-Friendly Commitment C Decommitment δ Assumption

[2]a yes (m+ 16mK)×G 2mK × Zp DDH
[19], 1 no 5×G 16×G DLIN
[19], 2 no 37×G 3×G DLIN
this paper yes 8m×G1 + m×G2 m× Zp SXDH
a slight variant without one-time signature but using labels for the IND-CCA security of the

multi-Cramer-Shoup ciphertexts, as in our new scheme, and supposing that an element in the
cyclic group G has size 2K, to withstand generic attacks.

is UC-secure against adaptive adversaries, assuming erasures. It can be built
from any SPHF-friendly commitment scheme (that is E2, strongly-simulation-
indistinguishable, and robust as described in Section 5), if the SPHF is actually
a KV-SPHF [6] and the algorithms HashKG and ProjKG do not need to know the
committed value π (nor the word (�, C) itself). We thus denote Lπ the language
of the pairs (�, C), where C is a commitment that opens to π under the label �,
and L the union of all the Lπ (L does not depend on π).

Theorem 7. The Password-Authenticated Key-Exchange described on Figure 7
is UC-secure in the presence of adaptive adversaries, assuming erasures, as soon
as the commitment scheme is SPHF-friendly with a KV-SPHF.

6.2 Concrete Instantiation

Using our commitment E2C introduced Section 4 together with the second SPHF
described Section 5 (which satisfies the above requirements for HashKG and
ProjKG), one gets a quite efficient protocol, described in the full version [1].
More precisely, for m-bit passwords, each player has to send hp ∈ G2m

1 and

CRS: ρ $← SetupCom(1K).
Protocol execution by Pi with πi:
1. Pi generates hki

$← HashKG(L), hpi ← ProjKG(hki, L,⊥)
and erases any random coins used for the generation

2. Pi computes (Ci, δi)
$← Com�i(πi) with �i = (sid, Pi, Pj , hpi)

3. Pi stores δi, completely erases random coins used by Com
and sends hpi, Ci to Pj

Key computation: Upon receiving hpj , Cj from Pj

1. Pi computes H ′
i ← ProjHash(hpj , Lπi , (�i, Ci), δi)

and Hj ← Hash(hki, Lπi , (�j , Cj)) with �j = (sid, Pj , Pi, hpj)
2. Pi computes ski = H ′

i ·Hj .

Fig. 7. UC-Secure PAKE from an SPHF-Friendly Commitment
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Table 2. Comparison with existing UC-secure PAKE schemes

Adaptive One-round Communication complexity Assumption

[2]a yes no 2× (2m+ 22mK) ×G + OTSb DDH
[30] no yes ≈ 2× 70×G DLIN
[6] no yes 2× 6×G1 + 2× 5×G2 SXDH
this paper yes yes 2× 10m×G1 + 2×m×G2 SXDH
a with the commitment variant of note “a” of Table 1.
b OTS: one-time signature (public key size and signature size) to link the flows in the PAKE

protocol.

C ∈ G8m
1 ×Gm

2 , which means 10m elements from G1 and m elements from G2.
In Table 2, we compare our new scheme with some previous UC-secure PAKE.

7 Oblivious Transfer

7.1 A Generic Construction

The ideal functionality of an Oblivious Transfer (OT) protocol is depicted in the
full version [1]. It is inspired from [15]. In Figure 8, we describe a 3-round OT
that is UC-secure against adaptive adversaries, and a 2-round variant which is
UC-secure against static adversaries. They can be built from any SPHF-friendly
commitment scheme, where Lt is the language of the commitments that open
to t under the associated label �, and from any IND-CPA encryption scheme
E = (Setup,KeyGen,Encrypt,Decrypt) with plaintext size at least K, and from
any Pseudo-Random Generator (PRG) F with input size equal to plaintext size,
and output size equal to the size of the messages in the database. Details on
encryption schemes and PRGs can be found in the full version [1]. Notice the
adaptive version can be seen as a variant of the static version where the last flow
is sent over a somewhat secure channel, as in [15]; and the preflow and pk and c
are used to create this somewhat secure channel.

Theorem 8. The two Oblivous Transfer schemes described in Figure 8 are UC-
secure in the presence of adaptive adversaries and static adversaries respectively,
assuming reliable erasures and authenticated channels, as soon as the commit-
ment scheme is SPHF-friendly.

7.2 Concrete Instantiation and Comparison

Using our commitment E2C introduced Section 4 together with the first SPHF
described Section 5, one gets the protocol described in the full version [1], where
the number of bits of the commited value is m = �log k�. For the statically secure
version, the communication cost is, in addition to the database m that is sent
in M in a masked way, 1 element of Zp and k elements of G1 (for hp, by using
the same scalar ε for all hpt’s) for the sender, while the receiver sends �log k�
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CRS: ρ $← SetupCom(1K), param $← Setup(1K).
Pre-flow (for adaptive security only):
1. Pi generates a key pair (pk, sk)

$← KeyGen(param) for E
2. Pi stores sk, completely erase random coins used by KeyGen, and sends pk to Pi

Index query on s:
1. Pj chooses a random value S, computes R ← F (S) and encrypts S under pk:

c
$← Encrypt(pk, S) (for adaptive security only; for static security: c =⊥, R = 0)

2. Pj computes (C, δ)
$← Com�(s) with � = (sid, ssid, Pi, Pj)

3. Pj stores δ and completely erase R, S and random coins used by Com and Encrypt
and sends C and c to Pi

Database input (m1, . . . ,mk):
1. Pi decrypts S ← Decrypt(sk, c) and gets R ← F (S) (for static security: R = 0)
2. Pi computes hkt

$← HashKG(Lt), hpt ← ProjKG(hkt, Lt, (�, C)),
Kt ← Hash(hkt, Lt, (�, C)), and Mt ← R ⊕Kt ⊕mt, for t = 1, . . . , k

3. Pi erases everything except (hpt,Mt)t=1,...,k and sends them over a secure channel

Data recovery:
Upon receiving (hpt,Mt)t=1,...,k, Pj computes Ks ← ProjHash(hps, Ls, (�, C), δ)
and gets ms ← R⊕Ks ⊕Ms.

Fig. 8. UC-Secure 1-out-of-k OT from an SPHF-Friendly Commitment (for Adaptive
and Static Security)

elements of G2 (for a) and �8 log k� elements of G1 (for b), in only two rounds. In
the particular case of k = 2, the scalar can be avoided since the message consists
of 1 bit, so our construction just requires: 2 elements from G1 for the sender, and
1 from G2 and 8 from G1 for the receiver, in two rounds. For the same security
level (static corruptions in the CRS, with erasures), the best known solution
from [15] required to send at least 23 group elements and 7 scalars, in 4 rounds.
If adaptive security is required, our construction requires 3 additional elements
in G1 and 1 additional round, which gives a total of 13 elements in G1, in 3
rounds. This is also more efficient then the best known solution from [15], which
requires 26 group elements and 7 scalars, in 4 rounds.
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Abstract. Revocation and key evolving paradigms are central issues in cryptog-
raphy, and in PKI in particular. A novel concern related to these areas was raised
in the recent work of Sahai, Seyalioglu, and Waters (Crypto 2012) who noticed
that revoking past keys should at times (e.g., the scenario of cloud storage) be ac-
companied by revocation of past ciphertexts (to prevent unread ciphertexts from
being read by revoked users). They introduced revocable-storage attribute-based
encryption (RS-ABE) as a good access control mechanism for cloud storage. RS-
ABE protects against the revoked users not only the future data by supporting
key-revocation but also the past data by supporting ciphertext-update, through
which a ciphertext at time T can be updated to a new ciphertext at time T + 1
using only the public key. Motivated by this pioneering work, we ask whether
it is possible to have a modular approach, which includes a primitive for time
managed ciphertext update as a primitive. We call encryption which supports
this primitive a “self-updatable encryption” (SUE). We then suggest a modular
cryptosystems design methodology based on three sub-components: a primary
encryption scheme, a key-revocation mechanism, and a time-evolution mecha-
nism which controls the ciphertext self-updating via an SUE method, coordinated
with the revocation (when needed). Our goal in this is to allow the self-updating
ciphertext component to take part in the design of new and improved cryptosys-
tems and protocols in a flexible fashion. Specifically, we achieve the following
results:

– We first introduce a new cryptographic primitive called self-updatable en-
cryption (SUE), realizing a time-evolution mechanism. We also construct an
SUE scheme and prove its full security under static assumptions.

– Following our modular approach, we present a new RS-ABE scheme with
shorter ciphertexts than that of Sahai et al. and prove its security. The length
efficiency is mainly due to our SUE scheme and the underlying modularity.

– We apply our approach to predicate encryption (PE) supporting attribute-
hiding property, and obtain a revocable-storage PE (RS-PE) scheme that is
selectively-secure.

– We further demonstrate that SUE is of independent interest, by showing it
can be used for timed-release encryption (and its applications), and for aug-
menting key-insulated encryption with forward-secure storage.

Keywords: Public-key encryption, Attribute-based encryption, Predicate encryp-
tion, Self-updatable encryption, Revocation, Key evolving systems, Cloud storage.
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1 Introduction

Cloud data storage has many advantages: A virtually unlimited amount of space can be
flexibly allocated with very low costs, and storage management, including back-up and
recovery, has never been easier. More importantly, it provides great accessibility: users
in any geographic location can access their data through the Internet. However, when
an organization is to store privacy-sensitive data, existing cloud services do not seem
to provide a good security guarantee yet (since the area is in its infancy). In particular,
access control is one of the greatest concerns, that is, the sensitive data items have to be
protected from any illegal access, whether it comes from outsiders or even from insiders
without proper access rights.

One possible approach for this problem is to use attribute-based encryption (ABE)
that provides cryptographically enhanced access control functionality in encrypted data
[14, 18, 30]. In ABE, each user in the system is issued a private key from an authority
that reflects their attributes (or credentials), and each ciphertext specifies access to itself
as a boolean formula over a set of attributes. A user will be able to decrypt a ciphertext
if the attributes associated with their private key satisfy the boolean formula associated
with the ciphertext. To deal with the change of user’s credentials that takes place over
time, revocable ABE (R-ABE) [3] has been suggested, in which a user’s private key can
be revoked. In R-ABE, a key generation authority uses broadcast encryption to allow
legitimate users to update their keys. Therefore, a revoked user cannot learn any partial
information about the messages encrypted when the ciphertext is created after the time
of revocation (or after the user’s credential has expired).

As pointed out by Sahai, Seyalioglu, and Waters [29], R-ABE alone does not suffice
in managing dynamic credentials for cloud storage. In fact, R-ABE cannot prevent a
revoked user from accessing ciphertexts that were created before the revocation, since
the old private key of the revoked user is enough to decrypt these ciphertexts. To over-
come this, they introduced a novel revocable-storage ABE (RS-ABE) which solves this
issue by supporting not only the revocation functionality but also the ciphertext update
functionality such that a ciphertext at any arbitrary time T can be updated to a new ci-
phertext at time T + 1 by any party just using the public key (in particular, by the cloud
servers).

Key-revocation and key evolution are general sub-area in cryptosystems design, and
ciphertext-update is a new concern which may be useful elsewhere. So, in this paper,
we ask natural questions:

Can we achieve key-revocation and ciphertext-update in other encryption schemes?
Can we use ciphertext-update as an underlying primitive by itself?

We note that, in contrast to our questions, the methodology that Sahai et al. [29] used
to achieve ciphertext-update is customized to the context of ABE. In particular, they
first added ciphertext-delegation to ABE, and then, they represented time as a set of
attributes, and by doing so they reduced ciphertext-update to ciphertext-delegation.
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1.1 Our Results

We address the questions by taking a modular approach, that is, by actually constructing
a cryptographic component realizing each of the two functionalities: key revocation and
ciphertext update. In particular, our design approach is as follows:

– The overall system has three components: a primary encryption scheme (i.e., ABE or
some other encryption scheme), a key-revocation mechanism, and a time-evolution
mechanism.

– We combine the components by putting the key-revocation mechanism in the center
and connecting it with the other two. This is because the revoked users need to be
taken into account both in the decryption of the primary scheme and in the time-
evolution of ciphertexts.

There are a few potential benefits to this approach. First, we may be able to achieve key-
revocation and time-evolution mechanisms, independently of the primary encryption
scheme. Secondly, each mechanism may be of independent interest and be used in other
interesting scenarios. Thirdly, looking at each mechanism alone may open the door to
various optimizations and flexibilities of implementations.

Time-Evolution Mechanism: Self-Updatable Encryption. We first formulate a new
cryptographic primitive called self-updatable encryption (SUE), realizing a time-
evolution mechanism. In SUE, a ciphertext and a private key are associated with time
Tc and Tk respectively. A user who has a private key with time Tk can decrypt the ci-
phertext with time Tc if Tc ≤ Tk. Additionally, anyone can update the ciphertext with
time Tc to a new ciphertext with new time T ′c such that Tc < T ′c . We construct an SUE
scheme in composite order bilinear groups. In our SUE scheme, a ciphertext consists
of O(logTmax) group elements, and a private key consists of O(logTmax) group ele-
ments, where Tmax is the maximum time period in the system. Our SUE scheme is
fully secure under static assumptions by using the dual system encryption technique of
Waters [19, 31].

RS-ABE with Shorter Ciphertexts. Following the general approach above, we con-
struct a new RS-ABE scheme and prove that it is fully secure under static assumptions.
In particular, we take the ciphertext-policy ABE (CP-ABE) scheme of Lewko et al. [18]
as the primary encryption scheme, and combine it with our SUE scheme and a revoca-
tion mechanism. The revocation mechanism follows the design principle of Boldyreva,
Goyal, and Kumar [3] that uses the complete subtree method to securely update the keys
of the non-revoked users. Compared with the scheme of Sahai et al. [29], our scheme
has a shorter ciphertext length consisting of O(l + logTmax) groups elements where l
is the size of row in the ABE access structure; a ciphertext in their scheme consists of
O(l logTmax + log2 Tmax) group elements (reflecting the fact that time is dealt with in a
less modular fashion there, while we employ the more separated SUE component which
is length efficient).

Revocable-Storage Predicate Encryption. We apply our approach to predicate en-
cryption (PE) and give the first RS-PE scheme. In particular, taking the PE scheme of
Park [26] as the primary encryption scheme, we combine it with the same revocation
functionality and (a variant of) our SUE scheme. The scheme is in prime-order groups
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and is shown to be selectively secure (a previously used weaker notion than (full) secu-
rity, where the adversary selects the target of attack at the start). Obviously, compared
with the RS-ABE scheme, the RS-PE scheme is a PE system and, thus, additionally sup-
ports the attribute-hiding property: even a decryptor cannot obtain information about the
attributes x of a ciphertext except f (x), where f is the predicate of its private key.

Other Systems. These are discussed below in this section.

1.2 Our Technique

To devise our SUE scheme, we use a full binary tree structure to represent time. The
idea of using the full binary tree for time was already used by Canetti et al. [8] to
construct a forward-secure public-key encryption (FSE) scheme. However, our scheme
greatly differs on a technical level from their approach; in our scheme, a ciphertext is
updated from time Ti to time Tj > Ti, whereas in their scheme a private key is updated
from time Ti to time Tj > Ti. We start from the HIBE scheme of Boneh and Boyen [4],
and then construct a ciphertext delegatable encryption (CDE) scheme, by switching
the structure of private keys with that of ciphertexts; our goal is to support ciphertext
delegation instead of private key delegation. In CDE, each ciphertext is associated with
a tree node, so is each private key. A ciphertext at a tree node vc can be decrypted by
any keys with a tree node vk where vk is a descendant (or self) of vc. We note that
the CDE scheme may be of independent interest. The ciphertext delegation property of
CDE allows us to construct an SUE scheme. An SUE ciphertext at time Ti consists of
multiple CDE ciphertexts in order to support ciphertext-update for every Tj such that
Tj > Ti. We were able to reduce the number of group elements in the SUE ciphertext by
carefully reusing the randomness of CDE ciphertexts.

Our key-revocation mechanism, as mentioned above, uses a symmetric-key broad-
cast encryption scheme to periodically broadcast update keys to non-revoked users.
A set of non-revoked users is represented as a node (more exactly the leaves of the
subtree rooted at the node) in a tree, following the complete subset (CS) scheme of
Naor et al. [22]. So, we use two different trees in this paper, i.e., one for representing
time in the ciphertext domain, and the other for managing non-revoked users in the key
domain.

In the RS-ABE/RS-PE setting, a user u who has a private key with attributes x and an
update key with a revoked set R at time T ′ can decrypt a ciphertext with a policy f and
time T if the attribute satisfies the policy ( f (x) = 1) and the user is not revoked (u /∈ R),
and T ≤ T ′. The main challenge in combining all the components is protecting the
overall scheme against a collusion attack, e.g., a non-revoked user with a few attributes
should not decrypt more ciphertexts than he is allowed to, given the help of a revoked
user with many attributes. To achieve this, we use a secret sharing scheme as suggested
in [3]. Roughly speaking, the overall scheme is associated with a secret key α . For each
node vi in the revocation tree, this secret key α is split into γi for ABE/PE, and α−γi for
SUE, where γi is random. Initially, each user will have some tree nodes vis according
to the revocation mechanism, and get ABE/PE private keys subject to his attributes at
each of vis (associated with the ABE/PE master secret γi). In key-update at time T , only
non-revoked users receive SUE private keys with time T at a tree node v j representing
a set of non-revoked users (associated with the SUE master secret α− γ j).
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1.3 Other Applications

Timed-Release Encryption. One application of SUE is timed-release encryption (TRE)
and its variants [27, 28]. TRE is a specific type of PKE such that a ciphertext specified
with time T can only be decrypted after time T . In TRE, a semi-trusted time server pe-
riodically broadcasts a time instant key (TIK) with time T ′ to all users. A sender creates
a ciphertext by specifying time T , and a receiver can decrypt the ciphertext if he has a
TIK with time T ′ such that T ′ ≥ T . TRE can be used for electronic auctions, key escrow,
on-line gaming, and press releases. TRE and its variants can be realizable by using IBE,
certificateless encryption, or forward-secure PKE (FSE) [10, 27]. An SUE scheme can
be used for a TRE scheme with augmented properties, since a ciphertext with time T
can be decrypted by a private key with time T ′ ≥ T from using the ciphertext update
functionality, and, in addition, we have flexibility of having a public ciphertext server
which can tune the ciphertext time forward before final public release. In this scheme,
a ciphertext consists of O(logTmax) and a TIK consists of O(logTmax). TRE, in turn,
can help in designing synchronized protocols, like fair exchanges in some mediated but
protocol-oblivious server model.

Key-Insulated Encryption with Ciphertext Forward Security. SUE can be used to
enhance the security of key-insulated encryption (KIE) [12]. KIE is a type of PKE that
additionally provides tolerance against key exposures. For a component of KIE, a mas-
ter secret key MK is stored on a physically secure device, and a temporal key SKT for
time T is stored on an insecure device. At a time period T , a sender encrypts a mes-
sage with the time T and the public key PK, and then a receiver who obtains SKT by
interacting with the physically secure device can decrypt the ciphertext. KIE provides
the security of all time periods except those in which the compromise of temporal keys
occurred. KIE can be obtained from IBE. Though KIE provides strong level of secu-
rity, it does not provide security of ciphertexts available in compromised time periods,
even if these ciphertexts are to be read in a future time period. To enhance the security
and prevent this premature disclosure, we can build a KIE scheme with forward-secure
storage by combining KIE and SUE schemes. Having cryptosystems with key-insulated
key and forward-secure storage is different from intrusion-resilient cryptosystems [11].

1.4 Related Work

Attribute-Based Encryption. As mentioned, ABE extends IBE, such that a ciphertext
is associated with an attribute x and a private key is associated with an access structure
f . When a user has a private key with f , only then he can decrypt a ciphertext with x
that satisfies f (x) = 1. Sahai and Waters [30] introduced fuzzy IBE (F-IBE) that is a
special type of ABE. Goyal et al. [14] proposed a key-policy ABE (KP-ABE) scheme
that supports flexible access structures in private keys. Bethencourt et al. [2] proposed
a ciphertext-policy ABE (CP-ABE) scheme such that a ciphertext is associated with
an access structure f and a private key is associated with an attribute x. After that,
numerous ABE schemes with various properties were proposed [9, 18, 20, 25, 32].

Predicate Encryption. PE is also an extension of IBE that additionally provides an
attribute-hiding property in ciphertexts: A ciphertext is associated with an attribute x
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and a private key is associated with a predicate f . Boneh and Waters [7] introduced
the concept of PE and proposed a hidden vector encryption (HVE) scheme that sup-
ports conjunctive queries on encrypted data. Katz et al. [15] proposed a PE scheme
that supports inner-product queries on encrypted data. After that, many PE schemes
with different properties were proposed [17, 23, 24, 26]. Boneh, Sahai, and Waters [6]
formalized the concept of functional encryption (FE) by generalizing ABE and PE.

Revocation. Boneh and Franklin [5] proposed a revocation method for IBE that period-
ically re-issues the private key of users. That is, the identity ID of a user contains time
information, and a user cannot obtain a valid private key for new time from a key gen-
eration center if he is revoked. However, this method requires for all users to establish
secure channels to the server and prove their identities every time. To solve this prob-
lem, Boldyreva et al. [3] proposed an R-IBE scheme by combining an F-IBE scheme
and a full binary tree structure. Libert and Vergnaud [21] proposed a fully secure R-IBE
scheme.

2 Preliminaries

2.1 Notation

We let λ be a security parameter. Let [n] denote the set {1, . . . ,n} for n ∈N. For a string
L ∈ {0,1}n, let L[i] be the ith bit of L, and L|i be the prefix of L with i-bit length. For
example, if L = 010, then L[1] = 0,L[2] = 1,L[3] = 0, and L|1 = 0,L|2 = 01,L|3 = 010.
Concatenation of two strings L and L′ is denoted by L||L′.

2.2 Full Binary Tree

A full binary tree BT is a tree data structure where each node except the leaf nodes has
two child nodes. Let N be the number of leaf nodes in BT . The number of all nodes
in BT is 2N− 1. For any index 0 ≤ i < 2N− 1, we denote by vi a node in BT . We
assign the index 0 to the root node and assign other indices to other nodes by using
breadth-first search. The depth of a node vi is the length of the path from the root node
to the node. The root node is at depth zero. Siblings are nodes that share the same parent
node.

For any node vi ∈ BT , L is defined as a label that is a fixed and unique string. The
label of each node in the tree is assigned as follows: Each edge in the tree is assigned
with 0 or 1 depending on whether the edge is connected to its left or right child node.
The label L of a node vi is defined as the bitstring obtained by reading all the labels of
edges in the path from the root node to the node vi. Note that we assign a special empty
string to the root node as a label.

2.3 Subset Cover Framework

The subset cover (SC) framework introduced by Naor, Naor, and Lotspiech [22] is
a general methodology for the construction of efficient revocation systems. The SC
framework consists of the subset-assigning part and key-assigning part for the subset.
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We define the SC scheme by including only the subset-assigning part. The formal defi-
nition of SC is given in the full version of this paper [16].

We use the complete subset (CS) scheme proposed by Naor et al. [22] as a building
block for our schemes. The CS scheme uses a full binary tree BT to define the subsets
Si. For any node vi ∈ BT , Ti is defined as a subtree that is rooted at vi and Si is defined
as the set of leaf nodes in Ti. For the tree BT and a subset R of leaf nodes, ST (BT ,R) is
defined as the Steiner Tree induced by the set R and the root node, that is, the minimal
subtree of BT that connects all the leaf nodes in R and the root node. we simply denote
ST (BT ,R) by ST (R). The CS scheme is described as follows:

CS.Setup(Nmax): This algorithm takes as input the maximum number of users Nmax.
Let Nmax = 2d for simplicity. It first sets a full binary tree BT of depth d. Each user
is assigned to a different leaf node in BT . The collection S of CS is {Si : vi ∈ BT }.
Recall that Si is the set of all the leaves in the subtree Ti. It outputs the full binary
tree BT .

CS.Assign(BT ,u): This algorithm takes as input the tree BT and a user u ∈ N . Let
vu be the leaf node of BT that is assigned to the user u. Let (v j0 ,v j1 , . . . ,v jd )
be the path from the root node v j0 = v0 to the leaf node v jn = vu. It sets PVu =
{S j0 , . . . ,S jd}, and outputs the private set PVu.

CS.Cover(BT ,R): This algorithm takes as input the tree BT and a revoked set R of
users. It first computes the Steiner tree ST(R). Let Ti1 , . . .Tim be all the subtrees
of BT that hang off ST (R), that is all subtrees whose roots vi1 , . . .vim are not in
ST (R) but adjacent to nodes of outdegree 1 in ST (R). It outputs a covering set
CVR = {Si1 , . . . ,Sim}.

CS.Match(CVR,PVu): This algorithm takes input as a covering set CVR = {Si1 , . . . ,Sim}
and a private set PVu = {S j0 , . . . ,S jd}. It finds a subset Sk such that Sk ∈ CVR and
Sk ∈ PVu. If there is such a subset, it outputs (Sk,Sk). Otherwise, it outputs⊥.

Lemma 1 ( [22]). Let Nmax be the number of leaf nodes in a full binary tree and r be
the size of a revoked set. In the CS scheme, the size of a private set is O(logNmax) and
the size of a covering set is at most r log(Nmax/r).

3 Self-Updatable Encryption

3.1 Definitions

Ciphertext Delegatable Encryption (CDE). Before introducing self-updatable encryp-
tion, we first introduce ciphertext delegatable encryption. Ciphertext delegatable en-
cryption (CDE) is a special type of public-key encryption (PKE) with the ciphertext
delegation property such that a ciphertext can be easily converted to a new ciphertext
under a more restricted label string by using public values. The following is the syntax
of CDE.

Definition 1 (Ciphertext Delegatable Encryption). A ciphertext delegatable encryp-
tion (CDE) scheme for the set L of labels consists of seven PPT algorithms Init, Setup,
GenKey, Encrypt, DelegateCT, RandCT, and Decrypt, which are defined as follows:



242 K. Lee et al.

Init(1λ ). The initialization algorithm takes as input a security parameter 1λ , and it
outputs a group description string GDS.

Setup(GDS,dmax). The setup algorithm takes as input a group description string GDS
and the maximum length dmax of the label strings, and it outputs public parameters
PP and a master secret key MK.

GenKey(L,MK,PP). The key generation algorithm takes as input a label string L ∈
{0,1}k with k ≤ dmax, the master secret key MK, and the public parameters PP,
and it outputs a private key SKL.

Encrypt(L,s,s,PP). The encryption algorithm takes as input a label string L ∈ {0,1}d

with d ≤ dmax, a random exponent s, an exponent vector s, and the public parame-
ters PP, and it outputs a ciphertext header CHL and a session key EK.

DelegateCT(CHL,c,PP). The ciphertext delegation algorithm takes as input a cipher-
text header CHL for a label string L ∈ {0,1}d with d < dmax, a bit value c ∈ {0,1},
and the public parameters PP, and it outputs a delegated ciphertext header CHL′

for the label string L′ = L||c.
RandCT(CHL,s′,s,PP). The ciphertext randomization algorithm takes as input a ci-

phertext header CHL for a label string L ∈ {0,1}d with d < dmax, a new random
exponent s′, a new vector s, and the public parameters PP, and it outputs a re-
randomized ciphertext header CH ′L and a partial session key EK′.

Decrypt(CHL,SKL′ ,PP). The decryption algorithm takes as input a ciphertext header
CHL, a private key SKL′ , and the public parameters PP, and it outputs a session key
EK or the distinguished symbol ⊥.

The correctness property of CDE is defined as follows: For all PP,MK generated by
Setup, all L,L′, any SKL′ generated by GenKey, any CHL and EK generated by Encrypt
or DelegateCT, it is required that:

– If L is a prefix of L′, then Decrypt(CHL,SKL′ ,PP) = EK.
– If L is not a prefix of L′, then Decrypt(CHL,SKL′ ,PP) =⊥ with all but negligible

probability.

Additionally, it requires that the ciphertext distribution of RandCT is statistically equal
to that of Encrypt.

Remark 1. The syntax of CDE is different with the usual syntax of encryption since
the encryption algorithm additionally takes input random values instead of selecting its
own randomness. Because of this difference, we cannot show the security of SUE under
the security of CDE, but this syntax difference is essential for the ciphertext efficiency
of SUE.

Self-Updatable Encryption (SUE). Self-updatable encryption (SUE) is a new type of
PKE with the ciphertext updating property such that a time is associated with private
keys and ciphertexts and a ciphertext with a time can be easily updatable to a new
ciphertext with a future time. In SUE, the private key of a user is associated with a time
T ′ and a ciphertext is also associated with a time T . If T ≤ T ′, then a user who has a
private key with a time T ′ can decrypt a ciphertext with a time T . That is, a user who has
a private key for a time T ′ can decrypt any ciphertexts attached a past time T such that
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T ≤ T ′, but he cannot decrypt a ciphertext attached a future time T such that T ′ < T .
Additionally, the SUE scheme has the ciphertext update algorithm that updates the time
T of a ciphertext to a new time T + 1 by using public parameters. The following is the
syntax of SUE.

Definition 2 (Self-Updatable Encryption). A self-updatable encryption (SUE) scheme
consists of seven PPT algorithms Init, Setup, GenKey, Encrypt, UpdateCT, RandCT,
and Decrypt, which are defined as follows:

Init(1λ ). The initialization algorithm takes as input a security parameter 1λ , and it
outputs a group description string GDS.

Setup(GDS,Tmax). The setup algorithm takes as input a group description string GDS
and the maximum time Tmax, and it outputs public parameters PP and a master
secret key MK.

GenKey(T,MK,PP). The key generation algorithm takes as input a time T , the master
secret key MK, and the public parameters PP, and it outputs a private key SKT .

Encrypt(T,s,PP). The encryption algorithm takes as input a time T , a random value
s, and the public parameters PP, and it outputs a ciphertext header CHT and a
session key EK.

UpdateCT(CHT ,T + 1,PP). The ciphertext update algorithm takes as input a cipher-
text header CHT for a time T , a next time T +1, and the public parameters PP, and
it outputs an updated ciphertext header CHT+1.

RandCT(CHT ,s′,PP). The ciphertext randomization algorithm takes as input a ci-
phertext header CHT for a time T , a new random exponent s′, and the public pa-
rameters PP, and it outputs an re-randomized ciphertext header CH ′T and a partial
session key EK′.

Decrypt(CHT ,SKT ′ ,PP). The decryption algorithm takes as input a ciphertext header
CHT , a private key SKT ′ , and the public parameters PP, and it outputs a session
key EK or the distinguished symbol ⊥.

The correctness property of SUE is defined as follows: For all PP,MK generated by
Setup, all T,T ′, any SKT ′ generated by GenKey, and any CHT and EK generated by
Encrypt or UpdateCT, it is required that:

– If T ≤ T ′, then Decrypt(CHT ,SKT ′ ,PP) = EK.
– If T > T ′, then Decrypt(CHT ,SKT ′ ,PP) =⊥ with all but negligible probability.

Additionally, it requires that the ciphertext distribution of RandCT is statistically equal
to that of Encrypt.

Remark 2. For the definition of SUE, we follow the syntax of key encapsulation mech-
anisms instead of following that of standard encryption schemes since the session key
of SUE serves as the partial share of a real session key in other schemes.

Definition 3 (Security). The security property for SUE schemes is defined in terms of
the indistinguishability under a chosen plaintext attack (IND-CPA). The security game
for this property is defined as the following game between a challenger C and a PPT
adversary A:
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1. Setup: C runs Init and Setup to generate the public parameters PP and the master
secret key MK, and it gives PP to A.

2. Query 1: A may adaptively request a polynomial number of private keys for times
T1, . . . ,Tq′ , and C gives the corresponding private keys SKT1 , . . . ,SKTq′ to A by run-
ning GenKey(Ti,MK,PP).

3. Challenge: A outputs a challenge time T ∗ subject to the following restriction: For
all times {Ti} of private key queries, it is required that Ti < T ∗. C chooses a random
bit b ∈ {0,1} and computes a ciphertext header CH∗ and a session key EK∗ by
running Encrypt(T ∗,s,PP). If b = 0, then it gives CH∗ and EK∗ to A. Otherwise,
it gives CH∗ and a random session key to A.

4. Query 2: A may continue to request private keys for additional times Tq′+1, . . . ,Tq

subject to the same restriction as before, and C gives the corresponding private keys
to A.

5. Guess: Finally A outputs a bit b′.

The advantage of A is defined as AdvSUE
A (λ ) =

∣∣Pr[b = b′]− 1
2

∣∣ where the probability
is taken over all the randomness of the game. A SUE scheme is fully secure under a
chosen plaintext attack if for all PPT adversaries A, the advantage of A in the above
game is negligible in the security parameter λ .

Remark 3. In the above security game, it is not needed to explicitly describe Upda-
teCT since the adversary can run UpdateCT to the challenge ciphertext header by just
using PP. Note that the use of UpdateCT does not violate the security game since the
adversary only can request a private key query for Ti such that Ti < T ∗.

3.2 Bilinear Groups of Composite Order

Let N = p1 p2 p3 where p1, p2, and p3 are distinct prime numbers. Let G and GT be two
multiplicative cyclic groups of same composite order n and g be a generator of G. The
bilinear map e : G×G→GT has the following properties:

1. Bilinearity: ∀u,v ∈G and ∀a,b ∈ Zn, e(ua,vb) = e(u,v)ab.
2. Non-degeneracy: ∃g such that e(g,g) has order N, that is, e(g,g) is a generator of

GT .

We say that G is a bilinear group if the group operations in G and GT as well as the bi-
linear map e are all efficiently computable. Furthermore, we assume that the description
of G and GT includes generators of G and GT respectively. We use the notation Gpi to
denote the subgroups of order pi of G respectively. Similarly, we use the notation GT,pi

to denote the subgroups of order pi of GT respectively.

3.3 Complexity Assumptions

We give three static assumptions in bilinear groups of composite order that were intro-
duced by Lewko and Waters [19]. The Assumption 1 (Subgroup Decision), the Assump-
tion 2 (General Subgroup Decision), and the Assumption 3 (Composite Diffie-Hellman)
are described in the the full version of this paper [16].
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3.4 Design Principle

We use a full binary tree to represent time in our SUE scheme by assigning time periods
to all tree nodes instead of assigning time periods to leaf nodes only. The use of binary
trees to construct key-evolving schemes dates back to the work of Bellare and Miner [1],
and the idea of using all tree nodes to represent time periods was introduced by Canetti,
Halevi, and Katz [8]. They used a full binary tree for private key update in forward-
secure PKE schemes, but we use the full binary tree for ciphertext update.

In the full binary tree BT , each node v (internal node or leaf node) is assigned a
unique time value by using the pre-order tree traversal that recursively visits the root
node, the left subtree, and the right subtree. Note that we use breadth-first search for
index assignment, but we use pre-order traversal for time assignment. Let Path(v)
be the set of path nodes from the root node to a node v, RightSibling(Path(v))1 be
the set of right sibling nodes of Path(v), and TimeNodes(v) be the set of nodes that
consists of v and RightSibling(Path(v)) excluding the parent’s path nodes. That is,
TimeNodes(v) = {v}∪RightSibling(Path(v))\Path(Parent(v)). Pre-order traversal
has the property such that if a node v is associated with time T and a node v′ is associ-
ated with time T ′, then we have

TimeNodes(v)∩Path(v′) �=∅ if and only if T ≤ T ′.

Thus if a ciphertext has the delegation property such that it’s association can be changed
from a node to its child node, then a ciphertext for the time T can be easily delegated
to a ciphertext for the time T ′ such that T ≤ T ′ by providing the ciphertexts of its own
and right sibling nodes of path nodes excluding path nodes.

For the construction of an SUE scheme that uses a full binary tree, we need a CDE
scheme that has the ciphertext delegation property in the tree such that a ciphertext
associated with a node can be converted to another ciphertext associated with its child
node. Hierarchical identity-based encryption (HIBE) has the similar delegation property
in the tree, but the private keys of HIBE can be delegated [4, 13]. To construct a CDE
scheme that supports the ciphertext delegation property, we start from the HIBE scheme
of Boneh and Boyen [4] and interchange the private key structure with the ciphertext
structure of their HIBE scheme. To use the structure of HIBE, we associate each node
with a unique label string L ∈ {0,1}∗. The ciphertext delegation property in CDE is
easily obtained from the private-key delegation property of HIBE.

To build an SUE scheme from the CDE scheme, we define a mapping function ψ that
maps time T to a label L in the tree nodes since these two scheme uses the same full
binary tree. The SUE ciphertext for time T consists of all CDE ciphertexts for all nodes
in TimeNodes(v) where time T is associated with a node v. Although the ciphertext of
SUE just consists of O(logTmax) number of CDE ciphertexts, the ciphertext of SUE can
be O(log2 Tmax) group elements since the ciphertext of a naive CDE scheme from the
HIBE scheme has O(logTmax) number of group elements. To improve the efficiency of
the ciphertext size, we use the randomness reuse technique for CDE ciphertexts. In this
case, we obtain an SUE scheme with O(logTmax) group elements in ciphertexts.

1 Note that we have RightSibling(Path(v)) = RightChild(Path(Parent(v))) where
RightChild(Path(v)) be the set of right child nodes of Path(v) and Parent(v) be the
parent node of v.
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3.5 Construction

CDE.Init(1λ ): This algorithm takes as input a security parameter 1λ . It generates a
bilinear group G of composite order N = p1 p2 p3 where p1, p2, and p3 are random
primes. It chooses a random generator g1 ∈ Gp1 and outputs a group description
string as GDS = ((N,G,GT ,e),g1, p1, p2, p3).

CDE.Setup(GDS,dmax): This algorithm takes as input the string GDS and the maxi-
mum length dmax of the label strings. Let l = dmax. It chooses random elements w,
{ui,0,ui,1}l

i=1,{hi,0,hi,1}l
i=1 ∈ Gp1 , a random exponent β ∈ ZN , and a random ele-

ment Y ∈ Gp3 . We define Fi,b(L) = uL
i,bhi,b where i ∈ [l] and b ∈ {0,1}. It outputs

the master secret key MK = (β ,Y ) and the public parameters as

PP =
(
(N,G,GT ,e),g = g1, w, {ui,0,ui,1}l

i=1, {hi,0,hi,1}l
i=1, Λ = e(g,g)β

)
.

CDE.GenKey(L,MK,PP): This algorithm takes as input a label string L ∈ {0,1}n, the
master secret key MK, and the public parameters PP. It first selects a random ex-
ponent r ∈ ZN and random elements Y0,Y1,Y2,1, . . . ,Y2,n ∈Gp3 . It outputs a private
key as

SKL =
(

K0 = gβ w−rY0, K1 = grY1, K2,1 = F1,L[1](L|1)rY2,1, . . . , K2,n = Fn,L[n](L|n)rY2,n

)
.

CDE.Encrypt(L,s,s,PP): This algorithm takes as input a label string L ∈ {0,1}d, a
random exponent s ∈ ZN , a vector s = (s1, . . . ,sd) ∈ Zd

N of random exponents, and
PP. It outputs a ciphertext header as

CHL =
(

C0 = gs, C1 = ws
d

∏
i=1

Fi,L[i](L|i)si , C2,1 = g−s1 , . . . , C2,d = g−sd

)
and a session key as EK =Λ s.

CDE.DelegateCT(CHL,c,PP): This algorithm takes as input a ciphertext header
CHL = (C0, . . . ,C2,d) for a label string L ∈ {0,1}d, a bit value c ∈ {0,1}, and PP. It
selects a random exponent sd+1 ∈ ZN and outputs a delegated ciphertext header for
the new label string L′ = L||c as

CHL′ =
(

C0, C′1 =C1 ·Fd+1,c(L
′)sd+1 , C2,1, . . . , C2,d , C′2,d+1 = g−sd+1

)
.

CDE.RandCT(CHL,s′,s′,PP): This algorithm takes as input a ciphertext header
CHL = (C0, . . . ,C2,d) for a label string L∈ {0,1}d , a new random exponent s′ ∈ZN ,
a new vector s′ = (s′1, . . . ,s

′
d) ∈ Zd

N , and PP. It outputs a re-randomized ciphertext
header as

CH ′L =
(

C′0 =C0 ·gs′ , C′1 =C1 ·ws′
d

∏
i=1

Fi,L[i](L|i)s′i , C′2,1 =C2,1 ·g−s′1 , . . . ,

C′2,d =C2,d ·g−s′d
)
.

and a partial session key EK′ =Λ s′ that will be multiplied with the session key EK
of CHL to produce a re-randomized session key.
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CDE.Decrypt(CHL,SKL′ ,PP): This algorithm takes as input a ciphertext header CHL

for a label string L∈ {0,1}d, a private key SKL′ for a label string L′ ∈ {0,1}n, and PP.
If L is a prefix of L′, then it computes CH ′L′ = (C′0, . . . ,C

′
2,n) by running DelegateCT

and outputs a session key as EK = e(C′0,K0) · e(C′1,K1) ·∏n
i=1 e(C′2,i,K2,i). Other-

wise, it outputs⊥.

Let ψ be a mapping from time T to a label L2. Our SUE scheme that uses our CDE
scheme as a building block is described as follows:

SUE.Init(1λ ): This algorithm outputs GDS by running CDE.Init(1λ ).
SUE.Setup(GDS,Tmax): This algorithm outputs MK and PP by running CDE.Setup

(GDS,dmax) where Tmax = 2dmax+1− 1.
SUE.GenKey(T,MK,PP): This algorithm outputs SKT by running CDE.GenKey

(ψ(T ),MK,PP).
SUE.Encrypt(T,s,PP): This algorithm takes as input a time T , a random exponent

s ∈ ZN , and PP. It proceeds as follows:
1. It first sets a label string L ∈ {0,1}d by computing ψ(T ). It sets an exponent

vector s = (s1, . . . ,sd) by selecting random exponents s1, . . . ,sd ∈ ZN , and ob-
tains CH(0) by running CDE.Encrypt(L,s,s,PP).

2. For 1≤ j ≤ d, it sets L( j) = L|d− j||1 and proceeds the following steps:

(a) If L( j) = L|d− j+1, then it sets CH( j) as an empty one.
(b) Otherwise, it sets a new exponent vector s′ = (s′1, . . . ,s

′
d− j+1) where

s′1, . . . s
′
d− j are copied from s and s′d− j+1 is randomly selected in ZN since

L( j) and L have the same prefix string. It obtainsCH( j) = (C′0, . . . ,C
′
2,d− j+1)

by running CDE.Encrypt(L( j),s,s′,PP). It also prunes the redundant el-
ements C′0,C

′
2,1, . . . ,C

′
2,d− j from CH( j), which are already contained in

CH(0).
3. It removes all empty CH( j) and sets CHT =

(
CH(0),CH(1), . . . ,CH(d′)

)
for

some d′ ≤ d that consists of non-empty CH( j).
4. It outputs a ciphertext header as CHT and a session key as EK = Λ s.

SUE.UpdateCT(CHT ,T + 1,PP): This algorithm takes as input a ciphertext header
CHT = (CH(0), . . . ,CH(d)) for a time T , a next time T + 1, and PP. Let L( j) be the
label of CH( j). It proceeds as follows:

1. If the length d of L(0) is less than dmax, then it first obtains CHL(0)||0 and

CHL(0)||1 by running CDE.DelegateCT(CH(0),c,PP) for all c ∈ {0,1} since
CHL(0)||0 is the ciphertext header for the next time T +1 by pre-order traversal.
It also prunes the redundant elements in CHL(0)||1. It outputs an updated ci-

phertext header as CHT+1 =
(
CH ′(0) = CHL(0)||0,CH ′(1) = CHL(0)||1,CH ′(2) =

CH(1), . . . ,CH ′(d+1) =CH(d)
)
.

2 In a full binary tree, each node is associated with a unique time T by the pre-order traversal
and a unique label L by the label assignment. Thus there exist a unique mapping function ψ
from a time T to a label L.
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2. Otherwise, it copies the common elements in CH(0) to CH(1) and simply re-
move CH(0) since CH(1) is the ciphertext header for the next time T +1 by pre-
order traversal. It outputs an updated ciphertext header as CHT+1 =

(
CH ′(0) =

CH(1), . . . ,CH ′(d−1) =CH(d)
)
.

SUE.RandCT(CHT ,s′,PP): This algorithm takes as input a ciphertext header CHT =
(CH(0), . . . ,CH(d)) for a time T , a new random exponent s′ ∈ ZN , and PP. Let L( j)

be the label of CH( j) and d( j) be the length of the label L( j). It proceeds as follows:
1. It first sets a vector s′=(s′1, . . . ,s

′
d(0)

) by selecting random exponents s′1, . . . ,s
′
d(0)

∈ ZN , and obtains CH ′(0) by running CDE.RandCT(CH(0),s′,s′,PP).
2. For 1 ≤ j ≤ d, it sets a new vector s′′ = (s′1, . . . ,s

′
d( j) ) where s′1, . . . s

′
d( j)−1

are

copied from s′ and s′
d( j) is randomly chosen in ZN , and obtains CH ′( j) by run-

ning CDE.RandCT(CH( j),s′,s′′,PP).
3. It outputs a re-randomized ciphertext header as CH ′T =

(
CH ′(0), . . . ,CH ′(d)

)
and a partial session key as EK′ = Λ s′ that will be multiplied with the session
key EK of CHT to produce a re-randomized session key.

SUE.Decrypt(CHT ,SKT ′ ,PP): This algorithm takes as input a ciphertext header CHT ,
a private key SKT ′ , and PP. If T ≤ T ′, then it finds CH( j) from CHT such that L( j) is
a prefix of L′ =ψ(T ′) and outputs EK by running CDE.Decrypt(CH( j),SKT ′ ,PP).
Otherwise, it outputs⊥.

Remark 4. The ciphertext delegation (or update) algorithm of CDE (or SUE) just out-
puts a valid ciphertext header. However, we can easily modify it to output a ciphertext
header that is identically distributed with that of the encrypt algorithm of CDE (or SUE)
by applying the ciphertext randomization algorithm.

3.6 Correctness

In CDE, if the label string L of a ciphertext is a prefix of the label string L′ of a private
key, then the ciphertext can be changed to a new ciphertext for the label string L′ by us-
ing the ciphertext delegation algorithm. Thus the correctness of CDE is easily obtained
from the following equation.

e(C0,K0) · e(C1,K1) ·
n

∏
i=1

e(C2,i,K2,i)

= e(gs,gβ w−rY0) · e(ws
n

∏
i=1

Fi,L[i](L|i)si ,grY1) ·
n

∏
i=1

e(g−si ,Fi,L[i](L|i)rY2,i)

= e(gs,gβ ) · e(gs,w−r) · e(ws,gr) = e(g,g)β s

The SUE ciphertext header of a time T consists of the CDE ciphertext headers
CH(0),CH(1), . . . ,CH(d) that are associated with the nodes in TimeNodes(v). If the
SUE private key of a time T ′ associated with a node v′ satisfies T ≤ T ′, then we can
find a unique node v′′ such that TimeNodes(v)∩Path(v′) = v′′ since the property of the
pre-order tree traversal. Let CH ′′ be the CDE ciphertext header that is associated with
the node v′′. The correctness of SUE is easily obtained from the correctness of CDE
since the label string L′′ of CH ′′ is a prefix of the label string L′ of the private key.
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In CDE, the output of CDE.DelegateCT is a valid ciphertext header since the func-
tion Fd+1,c(L′) is used with a new random exponent sd+1 for the new label string L′

with depth d + 1. The output of CDE.RandCT is statistically indistinguishable from
that of CDE.Encrypt since it has a random exponent s′′ = s+ s′ and a random vector
s′′ = (s1 + s′1, . . . ,sd + s′d) where s,s1, . . . ,sd are original values in the ciphertext header
and s′,s′1, . . . ,s

′
d are newly selected random values.

In SUE, the output of SUE.UpdateCT is a valid ciphertext header since the out-
put of CDE.DelegateCT is a valid ciphertext header and the CDE ciphertext headers
CH(0), . . .CH(d) are still associated with the nodes in TimeNodes(v) where v is a node
for the time T + 1. The output of SUE.RandCT is statistically indistinguishable from
that of the encryption algorithm since new random exponents s′,s′1, . . . ,s

′
d(0)

are chosen
and these random exponents are reused among the CDE ciphertext headers.

3.7 Security Analysis

Theorem 1. The above SUE scheme is fully secure under a chosen plaintext attack
if Assumptions 1, 2, and 3 hold. That is, for any PPT adversary A, we have that
AdvSUE

A (λ ) ≤ AdvA1
B (λ ) + 2qAdvA2

B (λ )+AdvA3
B (λ ) where q is the maximum number

of private key queries of A.

The proof of this theorem is given in the full version of this paper [16].

4 Revocable-Storage Attribute-Based Encryption

4.1 Definitions

Revocable-storage attribute-based encryption (RS-ABE) is attribute-based encryption
(ABE) that additionally supports the revocation functionality and the ciphertext update
functionality. Boldyreva, Goyal, and Kumar introduced the concept of revocable ABE
(R-ABE) that provides the revocation functionality [3], and Sahai, Seyalioglu, and Wa-
ters introduced the concept of RS-ABE that provides the ciphertext update functionality
in R-ABE [29].

Definition 4 (Revocable-Storage Attribute-Based Encryption). A revocable-storage
(ciphertext-policy) attribute-based encryption (RS-ABE) scheme consists of seven PPT
algorithms Setup, GenKey, UpdateKey, Encrypt, UpdateCT, RandCT, and Decrypt,
which are defined as follows:

Setup(1λ ,U ,Tmax,Nmax). The setup algorithm takes as input a security parameter 1λ ,
the universe of attributes U , the maximum time Tmax, and the maximum number of
users Nmax, and it outputs public parameters PP and a master secret key MK.

GenKey(S,u,MK,PP). The key generation algorithm takes as input a set of attributes
S ⊆ U , a user index u ∈ N , the master secret key MK, and the public parameters
PP, and it outputs a private key SKS,u.

UpdateKey(T,R,MK,PP). The key update algorithm takes as input a time T ≤ Tmax, a
set of revoked users R ⊆N , the master secret key MK, and the public parameters
PP, and it outputs an update key UKT,R.
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Encrypt(A,T,M,PP). The encryption algorithm takes as input an access structure A,
a time T ≤ Tmax, a message M, and the public parameters PP, and it outputs a
ciphertext CTA,T .

UpdateCT(CTA,T ,T +1,PP). The ciphertext update algorithm takes as input a cipher-
text CTA,T for an access structure A and a time T , a new time T + 1 such that
T + 1 ≤ Tmax, and the public parameters PP, and it outputs an updated ciphertext
CTA,T+1.

RandCT(CTA,T ,PP). The ciphertext randomization algorithm takes as input a cipher-
text CTA,T for an access structure A and a time T , and the public parameters PP,
and it outputs a re-randomized ciphertext CT ′A,T .

Decrypt(CTA,T ,SKS,u,UKT ′,R,PP). The decryption algorithm takes as input a cipher-
text CTA,T , a private key SKS,u, an update key UKT ′,R, and the public parameters
PP, and it outputs a message M or the distinguished symbol ⊥.

The correctness property of RS-ABE is defined as follows: For all PP,MK generated
by Setup, all S and u, any SKS,u generated by GenKey, all A, T , and M, any CTA,T

generated by Encrypt or UpdateCT, all T ′ and R, any UKT ′,R generated by UpdateKey,
it is required that:

– If (S ∈ A)∧ (u /∈ R)∧ (T ≤ T ′), then Decrypt(CTA,T ,SKS,u,UKT ′,R,PP) = M.
– If (S /∈ A)∨ (u ∈ R)∨ (T ′ < T ), then Decrypt(CTA,T ,SKS,u,UKT ′,R,PP) =⊥ with

all but negligible probability.

Additionally, it requires that the ciphertext distribution of RandCT is statistically equal
to that of Encrypt.

Definition 5 (Security). The security property for RS-ABE is defined in terms of the
indistinguishability under a chosen plaintext attack (IND-CPA). The security game for
this property is defined as the following game between a challenger C and a PPT ad-
versary A:

1. Setup: C runs Setup to generate the public parameters PP and the master secret
key MK, and it gives PP to A.

2. Query 1:Amay adaptively request a polynomial number of private keys and update
keys. C proceeds as follows:

– If this is a private key query for a set of attributes S and a user index u, then it gives
the corresponding private key SKS,u to A by running GenKey(S,u,MK,PP).
Note that the adversary is allowed to query only one private key for each user
u.

– If this is an update key query for an update time T and a set of revoked
users R, then it gives the corresponding update key UKT,R to A by running
UpdateKey(T,R,MK,PP). Note that the adversary is allowed to query only
one update key for each time T .

3. Challenge: A outputs a challenge access structure A∗, a challenge time T ∗, and
challenge messages M∗0 ,M

∗
1 ∈M of equal length subject to the following restric-

tion:
– It is required that (Si /∈ A∗)∨ (ui ∈ R j)∨ (Tj < T ∗) for all {(Si,ui)} of private

key queries and all {(Tj,R j)} of update key queries.
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C chooses a random bit b and gives the ciphertext CT ∗ toA by running Encrypt(A∗,
T ∗,M∗b ,PP).

4. Query 2: A may continue to request private keys and update keys subject to the
same restrictions as before, and C gives the corresponding private keys and update
keys to A.

5. Guess: Finally A outputs a bit b′.

The advantage ofA is defined as AdvRS-ABE
A (λ ) =

∣∣Pr[b= b′]− 1
2

∣∣ where the probability
is taken over all the randomness of the game. A RS-ABE scheme is fully secure under a
chosen plaintext attack if for all PPT adversaries A, the advantage of A in the above
game is negligible in the security parameter λ .

Remark 5. In the above security game, it is not needed to explicitly describe Upda-
teCT since the adversary can run UpdateCT to the challenge ciphertext by just using
PP. Note that the use of UpdateCT does not violate the security game because of the
restrictions in the game.

4.2 Construction

For our RS-ABE scheme, we use the (ciphertext-policy) ABE scheme of Lewko et al.
[18] as a primary encryption scheme with slight modifications. That is, we use the key
encapsulation mechanism version of CP-ABE and the encryption algorithm additionally
takes input a random exponent for a session key. The detailed description of CP-ABE is
given in the full version of this paper [16]. Our RS-ABE scheme is described as follows:

RS-ABE.Setup(1λ ,U ,Tmax,Nmax): This algorithm takes as input a security parameter
1λ , the universe of attributes U , the maximum time Tmax, and the maximum number
of users Nmax.
1. It first generates bilinear groups G,GT of composite order N = p1 p2 p3 where

p1, p2, and p3 are random primes. Let g1 be the generator of Gp1 . It sets GDS=
((N,G,GT ,e),g1, p1, p2, p3).

2. It obtains MKABE ,PPABE and MKSUE ,PPSUE by running ABE.Setup(GDS,U)
and SUE.Setup(GDS,Tmax) respectively. It also obtains BT by running
CS.Setup(Nmax) and assigns a random exponent γi ∈ ZN to each node vi in
BT .

3. It selects a random exponent α∈ZN , and then it outputs MK=(MKABE ,MKSUE ,
α,BT ) and PP =

(
PPABE,PPSUE ,g = g1,Ω = e(g,g)α).

RS-ABE.GenKey(S,u,MK,PP): This algorithm takes as input a set of attributes S, a
user index u, MK = (MKABE ,MKSUE ,α,BT ), and PP.
1. It first obtains PVu = {S j0 , . . . ,S jd} by running CS.Assign(BT ,u) and retrieves
{γ j0 , . . . ,γ jd} from BT where γi is assigned to the node vi.

2. For 0 ≤ k ≤ d, it sets MK′ABE = (γ jk ,Y ) and obtains SKABE,k by running
ABE.GenKey(S,MK′ABE ,PPABE).

3. It outputs SKS,u =
(
PVu,SKABE,0, . . . ,SKABE,d

)
.

RS-ABE.UpdateKey(T,R,MK,PP): This algorithm takes as input an update time T ,
a set of revoked users R, MK, and PP.
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1. It first obtains CVR = {Si1 , . . . ,Sim} by running CS.Cover(BT ,R) and retrieves
{γi1 , . . . ,γim} from BT .

2. For 1 ≤ k ≤ m, it sets MK′SUE = (α − γik ,Y ) and obtains SKSUE,k by running
SUE.GenKey(T,MK′SUE ,PPSUE).

3. It outputs UKT,R =
(
CVR,SKSUE,1, . . . ,SKSUE,m

)
.

RS-ABE.Encrypt(A,T,M,PP): This algorithm takes as input an LSSS access struc-
ture A, a time T , a message M, and PP. It selects a random exponent s∈ZN and ob-
tains CHABE and CHSUE by running ABE.Encrypt(A,s,PPABE) and SUE.Encrypt
(T,s,PPSUE) respectively. It outputs as CTA,T =

(
CHABE ,CHSUE ,C = Ω s ·M

)
.

RS-ABE.UpdateCT(CTA,T ,T + 1,PP): This algorithm takes as input a ciphertext
CTA,T =(CHABE ,CHSUE ,C) for an LSSS access structureA and a time T, a new time
T +1, and PP. It obtainsCH ′SUE by running SUE.UpdateCT(CHSUE ,T +1,PPSUE).
It outputs CTA,T+1 =

(
CHABE ,CH ′SUE ,C

)
.

RS-ABE.RandCT(CTA,T ,PP): This algorithm takes as input a ciphertext CTA,T =
(CHABE ,CHSUE ,C) and PP. It first selects a random exponent s′ ∈ ZN . It obtains
CH ′ABE and CH ′SUE by running ABE.RandCT(CHABE ,s′,PPABE) and SUE.RandCT
(CHSUE ,s′,PPSUE), respectively. It outputs CT ′A,T =

(
CH ′ABE ,CH ′SUE ,C

′ =C ·Ω s′
)
.

RS-ABE.Decrypt(CTA,T ,SKS,u,UKT ′,R,PP): This algorithm takes as input a cipher-
text CTA,T =(CHABE ,CHSUE ,C), a private key SKS,u =(PVu,SKABE,0, . . . ,SKABE,d),
an update key UKT ′,R = (CVR,SKSUE,1, . . . ,SKSUE,m), and PP.
1. If u /∈ R, then it obtains (Si,S j) by running CS.Match(CVR,PVu). Otherwise, it

outputs⊥.
2. If S ∈ A and T ≤ T ′, then it can obtain EKABE and EKSUE by running

ABE.Decrypt(CHABE ,SKABE, j,PPABE) and SUE.Decrypt(CHSUE ,SKSUE,i,

PPSUE) respectively and outputs M by computing C ·
(
EKABE ·EKSUE

)−1
. Oth-

erwise, it outputs ⊥.

Remark 6. The ciphertext update algorithm of our scheme just outputs a valid updated
ciphertext since a past ciphertext will be erased in most applications. However, the
definition of Sahai et al. [29] requires that the output of UpdateCT should be equally
distributed with that of Encrypt. Our scheme also can meet this strong requirement by
applying RandCT to the output of UpdateCT.

Theorem 2. The above RS-ABE scheme is fully secure under a chosen plaintext at-
tack if Assumptions 1, 2, and 3 hold. That is, for any PPT adversary A, we have that
AdvRS-ABE

A (λ )≤AdvA1
B (λ )+O(q)·AdvA2

B (λ )+AdvA3
B (λ ) where q is the maximum num-

ber of private key and update key queries of A.

The proof of this theorem is given in the full version of this paper [16].

4.3 Discussions and RS-PE Results

Efficiency. In our RS-ABE scheme, the number of group elements in a ciphertext is
2l + 3logTmax where l is the row size of an access structure. In the RS-ABE scheme
of Sahai et al. [29], the number of group elements in a ciphertext is 2 logTmax · (l +
2logTmax) since a piecewise CP-ABE scheme was used.
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Revocable-Storage Predicate Encryption. If we use the PE scheme of Park [26] as a
primary encryption scheme, then we can build an RS-PE scheme in prime order bilinear
groups that additionally supports attribute-hiding property. The definition, construction,
and proof of RS-PE are given in the full version of this paper [16].

Theorem 3. The RS-PE scheme is selectively secure under a chosen plaintext attack if
the DBDH and the DLIN assumptions hold. That is, for any PPT adversaryA, we have
that AdvRS-PE

A (λ )≤ 2AdvDLIN
B (λ )+AdvDBDH

B (λ ).
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Abstract. Boneh, Raghunathan, and Segev (CRYPTO ’13) have re-
cently put forward the notion of function privacy and applied it to
identity-based encryption, motivated by the need for providing predi-
cate privacy in public-key searchable encryption. Intuitively, their notion
asks that decryption keys reveal essentially no information on their cor-
responding identities, beyond the absolute minimum necessary. While
Boneh et al. showed how to construct function-private identity-based
encryption (which implies predicate-private encrypted keyword search),
searchable encryption typically requires a richer set of predicates.

In this paper we significantly extend the function privacy framework.
First, we consider the notion of subspace-membership encryption, a gen-
eralization of inner-product encryption, and formalize a meaningful and
realistic notion for capturing its function privacy. Then, we present a
generic construction of a function-private subspace-membership encryp-
tion scheme based on any inner-product encryption scheme. This is
the first generic construction that yields a function-private encryption
scheme based on a non-function-private one.

Finally, we present various applications of function-private subspace-
membership encryption. Among our applications, we significantly im-
prove the function privacy of the identity-based encryption schemes of
Boneh et al.: whereas their schemes are function private only for iden-
tities that are highly unpredictable (with min-entropy of at least λ +
ω(log λ) bits, where λ is the security parameter), we obtain function-
private schemes assuming only the minimal required unpredictability
(i.e., min-entropy of only ω(log λ) bits). This improvement offers a much
more realistic function privacy guarantee.

Keywords: Function privacy, functional encryption.

1 Introduction

Predicate encryption systems [13,23] are public-key schemes where a single public
encryption key has many corresponding secret keys: every secret key corresponds
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to a predicate p : Σ → {0, 1} where Σ is some pre-defined set of indices (or
attributes). Plaintext messages are pairs (x,m) where x ∈ Σ and m is in some
message space. A secret key skp for a predicate p has the following semantics: if
c is an encryption of the pair (x,m) then skp can be used to decrypt c only if the
“index” x satisfies the predicate p. More precisely, attempting to decrypt c using
skp will output m if p(x) = 1 and output ⊥ otherwise. A predicate encryption
system is secure if it provides semantic security for the pair (x,m) even if the
adversary has a few benign secret keys.

The simplest example of predicate encryption is a system supporting the set
of equality predicates, that is, predicates pid : Σ → {0, 1} defined as pid(x) = 1
iff x = id. In such a system there is a secret key skid for every id ∈ Σ and given
the encryption c of a pair (x,m) the key skid can decrypt c and recover m only
when x = id. It is easy to see that predicate encryption for the set of equality
predicates is the same thing as (anonymous) identity-based encryption [8,1].

Currently the most expressive collusion-resistant predicate encryption sys-
tems [23,3] support the family of inner product predicates: for a vector space
Σ = F�q this is the set of predicates pv : Σ → {0, 1} where v ∈ Σ and pv(x) = 1
iff x⊥v. This family of predicates includes the set of equality predicates and
others.

Searching on Encrypted Data. Predicate encryption systems provide a gen-
eral framework for searching on encrypted data. Consider a mail gateway whose
function is to route incoming user email based on characteristics of the email. For
example, emails from “boss” that are marked “urgent” are routed to the user’s
cell phone as are all emails from “spouse.” All other emails are routed to the
user’s desktop. When the emails are transmitted in the clear the gateway’s job is
straight forward. However, when the emails are encrypted with the user’s public
key the gateway cannot see data needed for the routing decision. The simplest
solution is to give the gateway the user’s secret key, but this enables the gateway
to decrypt all emails and exposes more information than the gateway needs.

A better solution is to encrypt emails using predicate encryption. The email
header functions as the index x and the the routing instructions are used as m.
The gateway is given a secret key skp corresponding to the “route to cell phone”
predicate. This secret key enables the gateway to learn the routing instructions
for messages satisfying the predicate p, but learn nothing else about emails.

Function Privacy. A limitation of many existing predicate encryption systems
is that the secret key skp reveals information about the predicate p. As a result,
the gateway, and anyone else who has access to skp, learns the predicate p. Since
in many practical settings it is important to keep the predicate p secret, our goal
is to provide function privacy: skp should reveal as little information about p as
possible.

At first glance it seems that hiding p is impossible: given skp the gateway can it-
self encryptmessages (x,m) and then apply skp to the resulting ciphertext. In doing
so the gateway learns if p(x) = 1 which reveals some information about p. Never-
theless, despite this inherent limitation, function privacy can still be achieved.
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Towards a Solution. In recent work Boneh, Raghunathan, and Segev [10]
put forward a new notion of function privacy and applied it to identity-based
encryption systems (i.e. to predicate encryption supporting equality predicates).
They observe that if the identity id is chosen from a distribution with super-
logarithmic min-entropy then the inherent limitation above is not a problem since
the attacker cannot learn id from skid by a brute force search since there are too
many potential identities to test. They define function privacy for IBE systems
by requiring that when id has sufficient min-entropy then skid is indistinguishable
from a secret key derived for an independently and uniformly distributed identity.
This enables function private keyword searching on encrypted data. They then
construct several IBE systems supporting function-private keyword searching.

While Boneh et al. [10] showed how to achieve function privacy for equality
predicates, encrypted search typically requires a richer set of searching predi-
cates, including conjunctions, disjunctions, and many others. The authors left
open the important question of achieving function privacy for a larger family of
predicates.

Our Contributions. In this paper we extend the framework and techniques of
Boneh et al. [10] for constructing function-private encryption schemes. We put
forward a generalization of inner-product predicate encryption [23,18,3], which
we denote subspace-membership encryption, and present a definitional frame-
work for capturing its function privacy. Our framework identifies the minimal
restrictions under which a strong and meaningful notion of function privacy can
be obtained for subspace-membership encryption schemes.

Then, we present a generic construction of a function-private subspace mem-
bership encryption scheme based on any underlying inner-product encryption
scheme (even when the underlying scheme is not function private). Our construc-
tion is efficient, and in addition to providing function privacy, it preserves the
security properties of the underlying scheme. This is the first generic construction
that yields a function-private encryption scheme based on a non-function-private
one. Recall that even for the simpler case of identity-based encryption, Boneh et
al. [10] were not able to provide a generic construction, and had to individually
modify various existing schemes.

Finally, we present various applications of function-private subspace mem-
bership encryption (we refer the reader to Section 1.1 for an overview of these
applications). Among our applications, we significantly improve the function
privacy of the identity-based encryption schemes of Boneh et al. [10]. Specifi-
cally, whereas their schemes guarantee function privacy only for identity distri-
butions that are highly unpredictable (with min-entropy of at least λ+ω(logλ)
bits, where λ is the security parameter), we construct schemes that guarantee
function privacy assuming only minimal unpredictability (i.e., min-entropy of
ω(logλ) bits). This improvement presents a much more realistic function pri-
vacy guarantee.
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1.1 Overview of Our Contributions

A subspace-membership encryption scheme is a predicate encryption scheme
supporting subspace-membership predicates. That is, an encryption of a message
is associated with an attribute x ∈ S�, and secret keys are derived for subspaces
defined by all vectors in S� orthogonal to a matrix W ∈ Sm×� (for integers
m, � ∈ N and an additive group S).1 Decryption recovers the message iff W ·x =
0. We refer the reader to [11, Section 2.3] for the standard definitions of the
functionality and data security of predicate encryption (following [23,3]).

Function Privacy for Subspace-Membership Encryption. Our goal is to
design subspace-membership encryption schemes in which a secret key, skW,
does not reveal any information, beyond the absolute minimum necessary, on
the matrix W. Formalizing a realistic notion of function privacy, however, is not
straightforward due to the actual functionality of subspace-membership encryp-
tion encryption. Specifically, assuming that an adversary who is given a secret
key skW has some a-priori information that the matrix W belongs to a small set
of matrices (e.g., {W0,W1}), then the adversary may be able to fully recover
W: The adversary simply needs to encrypt a (possibly random) message m for
some attribute x that is orthogonal to W0 but not to W1, and then run the
decryption algorithm on the given secret key skW and the resulting ciphertext
to identify the one that decrypts correctly. In fact, as in [10], as long as the
adversary has some a-priori information according to which the matrix W is
sampled from a distribution whose min-entropy is at most logarithmic in the
security parameter, there is a non-negligible probability for a full recovery.

In the setting of subspace-membership encryption (unlike that of identity-
based encryption [10]), however, the requirement that W is sampled from a
source of high min-entropy does not suffice for obtaining a meaningful notion
of function privacy. In Section 2 we show that even if W has nearly full min-
entropy, but two of its columns may be correlated, then a meaningful notion of
function privacy is not within reach.

In this light, our notion of function privacy for subspace-encryption schemes
focuses on secret key skW for which the columns of W form a block source. That
is, each column ofW should have a reasonable amount of min-entropy even given
all previous columns. Our notion of function privacy requires that such a secret
key skW (where W is sampled from an adversarially-chosen distribution) be
indistinguishable from a secret key for a subspace chosen uniformly at random.

A Function-Private Construction from Inner-product Encryption.
Givenanyunderlying inner-product encryption schemeweconstructiona function-
private subspace-membership encryption scheme quite naturally. We modify the
key-generation algorithm as follows: for generating a secret key for a subspace de-
scribed byW, we first sample a uniform s← Sm and use the key-generation algo-
rithm of the underlying scheme for generating a secret key for the vectorv = Wᵀs.
Observe that as long as the columns of W form a block source, then the leftover

1 Note that by setting m = 1 one obtains the notion of an inner-product encryption
scheme [23,18,3].
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hash lemma for block sources guarantees that v is statistically close to uniform. In
particular, essentially no information on W is revealed.

We also observe that extracting from the columns ofW using the same seed for
the extractor 〈s, ·〉 interacts nicely with the subspace-membership functionality.
Indeed, if W ·x = 0, it holds that vᵀx = 0 and vice-versa with high probability.
We note that the case where the attribute set is small requires some additional
refinement that we omit from this overview, and we refer the reader to Section
3 for more details.

Application 1: Function Privacy When Encrypting to Roots of Poly-
nomials.We consider predicate encryption schemes supporting polynomial eval-
uation where secret keys correspond to polynomials p ∈ S[X] and messages are
encrypted to an attribute x ∈ S. Given a secret key skp and a ciphertext with
an attribute x, decryption recovers the message iff p(x) evaluates to 0. Our work
constructs such schemes from any underlying subspace-membership scheme.

We also explore the notion of function privacy for such polynomial encryp-
tion schemes. We require that secret keys for degree-d polynomials p(x) with
coefficients (p0, p1, . . . , pd) ∈ Sd+1 coming from a sufficiently unpredictable ad-
versarially chosen (joint) distribution be indistinguishable from secret keys for
degree-d polynomials where each coefficient is sampled uniformly from the un-
derlying set. Unlike the case of subspace membership, we do not restrict our
security to those distributions whose unpredictability holds even when condi-
tioned on all previous (i.e., here we obtain security for any min-entropy source
and not only for block sources).

Our function-private construction maps attributes x to Vandermonde vectors
x = (1, x, x2, . . .) and a polynomial p(x) to a subspace W as follows. We sample
d + 1 polynomials r1(x), . . . , rd+1(x) in a particular manner (as a product of d
uniformly random linear polynomials) and construct the subspace W whose ith

row comprises the coefficients of p(x) · ri(x). In section 4.1, we elaborate on the
details and prove that our choice of randomizing polynomials allows us to show
that for polynomials whose coefficients come from an unpredictable distribution,
W’s columns have conditional unpredictability. And similarly, for polynomials
with uniformly distributed coefficients, W’s columns are uniformly distributed.
This allows us to infer the function privacy of the polynomial encryption scheme
from the function privacy of the underlying subspace-membership encryption
scheme.

Application 2: Function-Private IBE with Minimal Unpredictability.
As another interesting application of predicate encryption supporting polyno-
mial evaluation, we consider the question of constructing function-private IBE
schemes whose function privacy requires only the minimal necessary unpre-
dictability assumption. It is easy to see (and as was shown in [10]) that if
the adversary has some a-priori information according to which identities are
sampled from a distribution with only logarithmic bits of entropy, then a simple
adversary recovers id from skid with non-negligible probability by simply encrypt-
ing a messages to a guessed id and checking if decryption recovers the messages
successfully.
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Their constructions use a technique of preprocessing the id with a randomness
extractor to recover idExt that is statistically close to uniform and thus hides any
information about the underlying distribution of identities. As the extracted
identity is roughly λ bits long, the distribution of identities must have min-
entropy at least λ+ω(logλ) bits to guarantee that extraction works. The identity
space is much larger and this is still a meaningful notion of function privacy
but the question of designing schemes that require the minimal min-entropy of
ω(logλ) bits was left open.

Starting from encryption schemes supporting polynomial evaluation (for our
construction, linear polynomials suffice), this work shows how to construct
function-private IBE schemes with the only restriction on identities being that
they are unpredictable.We consider identities in a set S and consider a polynomial
pid(x) = (x− id). By first randomizing the polynomial with uniformly chosen r in
S, we observe that if id has the minimal super-logarithmic unpredictability, then
the coefficients of the polynomial r · (x− id) have sufficient unpredictability. Thus,
considering polynomial encryption schemes where secret keys correspond to such
polynomials and attributes correspond to x = id, we construct IBE schemes that
are function private against distributions that only have the minimum necessary
unpredictability.

1.2 Related Work

As discussed above, the notion of function privacy was recently put forward
by Boneh, Raghunathan, and Segev [10]. One of the main motivations of
Boneh et al. was that of designing public-key searchable encryption schemes
[8,20,1,13,28,23,5,14,2,3] that are keyword private. That is, public-key searchable
encryption schemes in which search tokens hide, as much as possible, their corre-
sponding predicates. They presented a framework for modeling function privacy,
and constructed various function-private anonymous identity-based encryption
schemes (which, in particular, imply public-key keyword-private searchable en-
cryption schemes).

More generally, the work of Boneh et al. initiated the study of function pri-
vacy in functional encryption [12,26,6,21,4,19], where a functional secret key
skf corresponding to a function f enables to compute f(m) given an encryption
c = Encpk(m). Intuitively, in this setting function privacy guarantees that a func-
tional secret key skf does not reveal information about f beyond what is already
known and what can be obtained by running the decryption algorithm on test
ciphertexts. In [10], the authors also discuss connections of function privacy to
program obfuscation.

Our notion of subspace-membership encryption generalizes that of inner-
product encryption introduced by Katz, Sahai, and Waters [23]. They defined
and constructed predicate encryption schemes for predicates corresponding to
inner products over ZN (for some large N). Informally, this class of predicates
corresponds to functions fv where fv(x) = 1 if and only if 〈v,x〉 = 0. Subse-
quently, Freeman [18] modified their construction to inner products over groups
of prime order p, and Agrawal, Freeman, and Vaikuntanathan [3] constructed an



Function-Private Subspace-Membership Encryption 261

inner-product encryption scheme over Zp for a small prime p. Other results on
inner product encryption study adaptive security [25], delegation in the context
of hierarchies [24], and generalized IBE [9].

Finally, we note that function privacy in the symmetric-key setting, where
the encryptor and decryptor have a shared secret key, was studied by Shen,
Shi, and Waters [27]. They designed a function-private inner-product encryption
scheme. As noted by Boneh et al. [10], achieving function privacy in the public-
key setting is a more subtle task due to the inherent conflict between privacy
and functionality.

1.3 Notation

For an integer n ∈ N we denote by [n] the set {1, . . . , n}, and by Un the uniform
distribution over the set {0, 1}n. For a random variable X we denote by x← X
the process of sampling a value x according to the distribution of X . Similarly,
for a finite set S we denote by x← S the process of sampling a value x according
to the uniform distribution over S. We denote by x (and sometimes x) a vector
(x1, . . . , x|x|). We denote by X = (X1, . . . , XT ) a joint distribution of T random
variables. A non-negative function f : N → R is negligible if it vanishes faster
than any inverse polynomial. A non-negative function f : N → R is super-
polynomial if it grows faster than any polynomial.

Themin-entropy of a random variableX isH∞(X) = − log(maxx Pr[X = x]).
A k-source is a random variable X with H∞(X) ≥ k. A (T, k)-block source is
a random variable X = (X1, . . . , XT ) where for every i ∈ [T ] and x1, . . . , xi−1

it holds that H∞(Xi|X1 = x1, . . . , Xi−1 = xi−1) ≥ k. The statistical distance
between two random variables X and Y over a finite domain Ω is SD(X,Y ) =
1
2

∑
ω∈Ω |Pr[X = ω] − Pr[Y = ω] |. Two random variables X and Y are δ-close

if SD(X,Y ) ≤ δ. Two distribution ensembles {Xλ}λ∈N and {Yλ}λ∈N are sta-
tistically indistinguishable if it holds that SD(Xλ, Yλ) is negligible in λ. They
are computationally indistinguishable if for every probabilistic polynomial-time
algorithm A it holds that

∣∣Pr[A(1λ, x) = 1
]
− Pr

[
A(1λ, y) = 1

]∣∣ is negligible in
λ, where x← Xλ and y ← Yλ.

1.4 Paper Organization

The remainder of this paper is organized as follows. Due to space constraints,
we refer the reader to the full version [11, Section 2] for standard definitions
and tools. In Section 2 we introduce the notions of subspace-membership en-
cryption and function privacy for subspace-membership encryption. In Section
3 we present a generic construction of a function-private subspace-membership
encryption scheme based on any inner-product encryption scheme. In Section 4
we present various applications of function-private subspace-membership encryp-
tion. In Section 5 we discuss several open problems that arise from this work.
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2 Subspace-Membership Encryption and Its Function
Privacy

In this section we formalize the notion of subspace-membership encryption and
its function privacy within the framework of Boneh, Raghunathan and Segev [10].
A subspace-membership encryption scheme is a predicate encryption scheme
[13,23] supporting the class of predicates F , over an attribute space Σ = S�,
defined as

F =
{
fW : W ∈ Sm×�

}
with fW(x) =

{
1 W · x = 0 ∈ Sm

0 otherwise

for integers m, � ∈ N, and an additive group S. Informally, in a subspace-
membership encryption, an encryption of a message is associated with an at-
tribute x ∈ S�, and secret keys are derived for subspaces defined by all vectors
in S� orthogonal to a matrix W ∈ Sm×�. Decryption recovers the message if
and only if W · x = 0. (See [11, Section 2.3] for the standard definitions of the
functionality and data security of predicate encryption.) Subspace-membership
encryption with delegation was also studied in [24,25]. Here we do not need the
delegation property.

Based on the framework introduced by Boneh, Raghunathan, and Segev [10],
our notion of function privacy for subspace-membership encryption considers
adversaries that are given the public parameters of the scheme and can interact
with a “real-or-random” function-privacy oracle RoRFP defined as follows, and
with a key-generation oracle.

Definition 2.1 (Real-or-random function-privacy oracle). The real-or-
random function-privacy oracle RoRFP takes as input triplets of the form (mode,
msk, V ), where mode ∈ {real, rand}, msk is a master secret key, and V = (V1, . . . ,
V�) ∈ Sm×� is a circuit representing a joint distribution over Sm×� (i.e., each Vi
is a distribution over Sm). If mode = real then the oracle samples W ← V and
if mode = rand then the oracle samples W ← Sm×� uniformly. It then invokes
the algorithm KeyGen(msk, ·) on W for outputting a secret key skW.

Definition 2.2 (Function-privacy adversary). An (�, k)-block-source
function-privacy adversary A is an algorithm that is given as input a pair (1λ, pp)
and oracle access to RoRFP(mode,msk, ·) for some mode ∈ {real, rand}, and to
KeyGen(msk, ·). It is required that each ofA’s queries to RoRFP be an (�, k)-block-
source.

Definition 2.3 (Function-private subspace-membership encryption). A
subspace-membership encryption scheme Π = (Setup,KeyGen,Enc,Dec) is (�, k)-
block-source function private if for any probabilistic polynomial-time (�, k)-block-
source function-privacy adversary A, there exists a negligible function ν(λ) such
that

AdvFP
Π,A(λ)

def
=

∣∣∣Pr[ExptrealFP,Π,A(λ) = 1
]
− Pr

[
ExptrandFP,Π,A(λ) = 1

]∣∣∣ ≤ ν(λ),
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where for each mode ∈ {real, rand} and λ ∈ N the experiment Exptmode
FP,Π,A(λ) is

defined as follows:

1. (pp,msk)← Setup(1λ).

2. b← ARoRFP(mode,msk,·),KeyGen(msk,·)(1λ, pp).

3. Output b.

In addition, such a scheme is statistically (�, k)-block-source function private if
the above holds for all computationally-unbounded (�, k)-block-source function-
privacy adversary making a polynomial number of queries to the RoRFP oracle.

We note here that a security model that allows the adversary to receive the
master secret key msk in place of the oracle KeyGen(msk, ·) leads to a seemingly
stronger notion of function privacy. However, such a notion is subsumed by
statistical function privacy and the schemes constructed in this paper actually
satisfy this stronger notion.

Multi-shot vs. Single-shot Adversaries. Note that Definition 2.3 considers
adversaries that query the function-privacy oracle for any polynomial number of
times. In fact, as adversaries are also given access to the key-generation oracle,
this “multi-shot” definition is polynomially equivalent to its “single-shot” variant
in which adversaries query the real-or-random function-privacy oracle RoRFP at
most once. This is proved via a straightforward hybrid argument, where the
hybrids are constructed such that only one query is forwarded to the function-
privacy oracle, and all other queries are answered using the key-generation oracle.

The Block-source Requirement on the Columns of W. Our definition of
function privacy for subspace-membership encryption requires that a secret key
skW reveals no unnecessary information about W as long as the columns of W
form a block source (i.e., each column is unpredictable even given the previous
columns). One might consider a stronger definition, in which the columns of
W may be arbitrarily correlated, as long as each column of W is sufficiently
unpredictable. Such a definition, however, is impossible to satisfy.

Specifically, consider the special case of inner-product encryption (i.e.,m = 1),
and an adversary that queries the real-or-random oracle with a distribution over
vectors w ∈ S� defined as follows: sample �− 1 independent and uniform values
u1, . . . , u�−1 ← S and output w = (u1, 2u1, u2, . . . , u�−1). Such a distribution
clearly has high min-entropy (specifically, (�−1) log |S| bits), and each coordinate
of w has min-entropy log |S| bits. However, secret keys for vectors drawn from
this distribution can be easily distinguished from secret keys for vectors drawn
from the uniform distribution over S�: encrypt a message M to the attribute
x = (−2, 1, 0, . . . , 0) ∈ S� and check to see if decryption succeeds in recovering
M. For a random vector w ∈ S� the decryption succeeds only with probability
1/|S| giving the adversary an overwhelming advantage.

Therefore, restricting function privacy adversaries to query the RoRFP oracle
only with sources whose columns form block sources is essential for achieving a
meaningful notion of function privacy.



264 D. Boneh, A. Raghunathan, and Gil Segev

On Correlated RoRFP Queries. In Definition 2.2 we consider adversaries that
receives only a single secret key skW for each query to the RoRFP oracle. Our
definition easily generalizes to include adversaries that are allowed to query
the RoRFP oracle with correlated queries. More specifically, an adversary can
receive secret keys skW1 , . . . , skWT for any parameter T that is polynomial in
the security parameter. The RoRFP oracle samples subspaces W1, . . . ,WT from

an adversarially chosen joint distribution over
(
Sm×�

)T
with the restriction that

for every 1 ≤ i ≤ T , the columns of Wi come from a (�, k)-block-source even
conditioned on any fixed values for W1, . . . ,Wi−1.

2

Function Privacy of Existing Inner-product Encryption Schemes. The
inner-product predicate encryption scheme from lattices [3] is trivially not func-
tion private as the secret key includes the corresponding function fv as part of
it (this is necessary for the decryption algorithm to work correctly). The scheme
constructed from bilinear groups with composite order [23] however presents no
such obvious attack, but we were not able to prove its function privacy based on
any standard cryptographic assumption.

3 A Generic Construction Based on Inner-Product
Encryption

In this section we present a generic construction of a function-private subspace-
membership encryption scheme starting from any inner-product encryption
scheme. Due to space constraints, we deal with a large attribute space S of
size super-polynomial in the security parameter λ here, and explain our idea of
extending our construction to the case when |S| is small (see [11, Section 4.2] for
the details).

Our Construction. Let IP = (IP.Setup, IP.KeyGen, IP.Enc, IP.Dec) be an inner-
product encryption scheme with attribute set Σ = S�. We construct a subspace-
membership encryption scheme SM = (SM.Setup, SM.KeyGen, SM.Enc, SM.Dec)
as follows.

– Setup: SM.Setup is identical to IP.Setup. On input the security parameter
it outputs public parameters pp and the master secret key msk by running
IP.Setup(1λ).

– Key generation: SM.KeyGen takes as input the master secret key msk
and a function fW where W ∈ Sm×� and proceeds as follows. It samples
uniform s← Sm and computes v = Wᵀs ∈ S�. Next, it samples a secret key

skv ← IP.KeyGen(msk,v) and outputs skW
def
= skv.

– Encryption: SM.Enc is identical to IP.Enc. On input the public parameters,
an attribute x ∈ S�, and a message M, the algorithm outputs a ciphertext
c← IP.Enc(pp,x,M).

2 Or equivalently, the columns of [ W1 | W2 | · · · | WT ] are distributed according to
a (T�, k)-block-source.
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– Decryption: SM.Dec is identical to IP.Dec. On input the public parameters
pp, a secret key skW, and a ciphertext c, it outputs M← IP.Dec(pp, skW, c).

Correctness. Correctness of the construction follows from the correctness of
the underlying inner-product encryption scheme. For everyW ∈ Sm×� and every
x ∈ S�, it suffices to show the following:

– If f(I) = 1, then it holds that W · x = 0. This implies xᵀv = xᵀ (Wᵀs) = 0
and therefore SM.Dec correctly outputs M as required.

– If f(I) = 0, then it holds that e
def
= W · x �= 0 ∈ Sm. As xᵀv = xᵀ (Wᵀs) =

eᵀs, for any e �= 0 the quantity xᵀv is zero with probability 1/|S| over choices
of s. As 1/|S| is negligible in λ whenever |S| is super-polynomial in λ, the
proof of correctness follows.

Security. We state the following theorem about the security of our construction.

Theorem 3.1. If IP is an attribute hiding (resp. weakly attribute hiding) inner-
product encryption scheme for an attribute set S of size super-polynomial in the
security parameter, then it holds that:

1. The scheme SM is an attribute hiding (resp. weakly attribute hiding) subspace-
membership encryption scheme under the same assumption as the security of
the underlying inner-product encryption scheme.

2. The scheme SM when m ≥ 2 is statistically function private for (�, k)-block-
sources for any � = poly(λ) and k ≥ log |S|+ ω(logλ).

Proof. We first prove the attribute-hiding property of the scheme, and then
prove its function privacy.

Attribute Hiding.Attribute-hiding property of SM follows from the attribute-
hiding property of IP in a rather straightforward manner. Given a challenger for
the attribute-hiding property of IP , an SM adversaryA can be simulated by al-
gorithm B as follows:A’s challenge attributes are forwarded to the IP-challenger
and the resulting public parameterers are published. Secret key queries can be
simulated by first sampling uniform s ← Sm, then computing v = Wᵀs and
forwarding v to the IP key generation oracle. Similarly, the challenge messages
from the adversary are answered by forwarding them to the challenger. In the
full version [11, Section 4.1], we elaborate on the details and show that if Q
denotes the number of secret key queries by A, it holds that

AdvIP,B(λ) ≥ AdvSM,A(λ)− 2Q/|S|, (1)

thus completing the proof of the attribute hiding property of SM.

Function Privacy. Let A be a computationally unbounded (�, k)-block-source
function-privacy adversary that makes a polynomial number Q = Q(λ) of queries
to the RoRFP oracle. We prove that the distribution of A’s view in the exper-
iment ExptrealFP,SM,A is statistically close to the distribution of A’s view in the
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experiment ExptrandFP,SM,A (we refer the reader to Definition 2.3 for the descrip-
tions of these experiments). We denote these two distributions by Viewreal and
Viewrand, respectively.

As the adversary A is computationally unbounded, we assume without loss of
generality that A does not query the KeyGen(msk, ·) oracle—such queries can be
internally simulated by A. Moreover, as discussed in Section 2, it suffices to focus
on adversaries A that query the RoRFP oracle exactly once. From this point on
we fix the public parameters pp chosen by the setup algorithm, and show that
the two distributions Viewreal and Viewrand are statistically close for any such pp.

Denote by V = (V1, . . . , V�) the random variable corresponding to the (�, k)-
source with whichA queries the RoRFP oracle. For each i ∈ [�], let (wi,1, . . . , wi,m)
denote a sample from Vi. Also, let s = (s1, . . . , sm) ∈ Sm. As A is computation-
ally unbounded, and having fixed the public parameters, we can in fact assume
that

Viewmode =

((
m∑
i=1

si · wi,1

)
, . . . ,

(
m∑
i=1

si · wi,�

))
(2)

for mode ∈ {real, rand}, where W = {wi,j}i∈[m],j∈[�] is drawn from V for mode =

real, W is uniformly distributed over Sm×� for mode = rand, and si ← S for
every i ∈ [�]. For mode ∈ {real, rand} we prove that the distribution Viewmode is
statistically close to a uniform distribution over Sm.

Note that the collection of functions {gs1,...,sm : Sm → S}s1,...,sm∈S defined
by gs1,...,sm(w1, . . . , wm) =

∑m
j=1 sj · wj is universal. This enables us to directly

apply the Leftover Hash Lemma for block-sources [16,22,29,17] implying that
for our choice of parameters m, � and k the statistical distance between Viewreal

and the uniform distribution is negligible in λ.3 The same clearly holds also for
Viewrand, as the uniform distribution over Sm×� is, in particular, a (�, k)-block-
source. This completes the proof of function privacy.

Theorem 3.1 for correlated RoRFP queries. Recollect that the definition
of function privacy for subspace membership (Definition 2.3) extends to adver-
saries that query the RoRFP oracle with secret keys for T correlated subspaces
W1, . . . ,WT for any T = poly(λ). If the columns of the jointly sampled sub-
spaces [W1 W2 · · · WT ] form a block source, we can extend the proof of func-
tion privacy to consider such correlated queries. The adversaries view comprises
T terms as in Equation (2) with randomly sampled vectrs s1, . . . , sT in place of
s. The collection of functions g remains universal and a simple variant of the
Leftover Hash Lemma implies that for our choice of parameters, the statistical
distance between Viewreal and the uniform distribution is negligible in λ (and
similarly for Viewrand).

Dealing with Small Attribute Spaces. We also consider constructing
subspace-membership encryption schemes where we do not place any restric-
tions on the size of the underlying attribute space S. In our generic construction,

3 We note here that a weaker version of the Leftover Hash Lemma will suffice as the
adversary’s view does not include (s1, . . . , sm).
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observe that correctness requires that 1/|S| be negligible in λ. If |S| is not super-
polynomial in the security parameter, then correctness fails with a non-negligible
probability. Additionally, this breaks the proof of attribute-hiding security in
Theorem 3.1: In Equation (1), if the quantity 2Q/|S| is non-negligible, then a
non-negligible advantage of an adversaryA does not translate to a non-negligible
advantage for the reduction algorithm B against the inner-product encryption
scheme.

To overcome this difficulty, we refine the construction as follows using a param-
eter τ = τ(λ) ∈ N. We split the message into τ secret shares and apply parallel
repetition of τ copies of the underlying inner-product encryption scheme, where
each copy uses independent public parameters and master secret keys. For the
proof of security, it suffices to have τ such that the quantity τ/|S|τ is negligible in
λ. Due to space constraints, a formal description of the scheme and a statement
of its security is deferred to [11, Section 4.2].

4 Applications of Function-Private Subspace-Membership
Encryption

4.1 Roots of a Polynomial Equation

We can construct a predicate encryption scheme for predicates corresponding to

polynomial evaluation. Let Φpoly
<d

def
= {fp : p ∈ S[X], deg(p) < d}, where

fp(x) =

{
1 if p(x) = 0 ∈ S

0 otherwise
for x ∈ S.

Correctness and attribute hiding properties of the predicate encryption scheme
for the class of predicates Φpoly

<d are defined as in the case of a generic predicate
encryption scheme in a natural manner (see [11, Definition 2.3]).

Function-Private Polynomial Encryption. For the class Φpoly
<d , consider a

real-or-random function privacy oracle RoRFP-Φ (along the lines of Definition 2.1)
that takes as input triplets of the form (mode,msk,P), wheremode ∈ {real, rand},
msk is a master secret key, and P = (P0, . . . , Pd−1) ∈ Sd is a circuit representing
a joint distribution over coefficients of polynomials p with deg(p) < d. If mode =
real then the oracle samples p← P and if mode = rand then the oracle samples
p← Sd uniformly. It then invokes the algorithm KeyGen(msk, ·) on p and outputs
secret key skp.

Along the lines of Definition 2.2, we consider a k-source Φpoly
<d function-privacy

adversary A. Such an adversary is given inputs (1λ, pp) and oracle access to
RoRFP-Φ and each query to the oracle is a k-source (over the coefficients of the
polynomial).
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Definition 4.1 (Φpoly
<d Function privacy). A predicate encryption scheme for

the class of predicates Φpoly
<d denoted Π = (Setup,KeyGen,Enc,Dec) is k-source

function-private if for any probabilistic polynomial-time k-source Φpoly
<d function-

privacy adversary A, there exists a negligible function ν(λ) such that

AdvFP-Φ
Π,A (λ)

def
=

∣∣∣Pr[ExptrealFP-Φ,Π,A(λ) = 1
]
− Pr

[
ExptrandFP-Φ,Π,A(λ) = 1

]∣∣∣ ≤ ν(λ),

where for each mode ∈ {real, rand} and λ ∈ N the experiment Exptmode
FP-Φ,Π,A(λ) is

defined as follows:

1. (pp,msk)← Setup(1λ).

2. b← ARoRFP-Φ(mode,msk,·),KeyGen(msk,·)(1λ, pp).

3. Output b.

In addition, such a scheme is statistically k-source function private if the above
holds for any computationally-unbounded k-source Φpoly

<d function privacy ad-

versary making a polynomial number of queries to the RoRFP-Φ oracle.

Correlated RoRFP-Φ Queries. Definition 4.1 extends to adversaries that query
the RoRFP-Φ oracle on T correlated queries. A schemeΠ is said to be (T, k)-source
(resp. (T, k)-block-source) function private if each query (P1, . . . ,PT ) of a joint
distribution over T polynomials is a (T, k)-source (resp. (T, k)-block-source).

Constructing Function-Private Predicate Encryption Schemes Sup-
porting Polynomial Evaluation. Given a subspace membership encryption
scheme (Setup,KeyGen,Enc,Dec) with parameters m = d and � = 2d− 1, we can

construct a predicate encryption scheme for Φpoly
<d as follows (for simplicity, we

consider the instructive case d = 3 and subsequently explain how our technique
generalizes):

– Setup: The Setup algorithm remains unchanged.
– Encryption: To encrypt a message M for the attribute x ∈ S, the en-

cryption algorithm sets x =
(
x4, x3, x2, x, 1

)ᵀ
and outputs the ciphertext

Enc(pp,x,M).
– Key generation: To generate a secret key corresponding to the polynomial

p = p2 · x2 + p1 · x + p0, the key-generation algorithm constructs a vector
p = (p2, p1, p0)

ᵀ ∈ S3. Next, it “blinds” the polynomial p(x) with two linear
polynomials r(x) = r1 · x + r0 and s(x) = s1 · x + s0 and computes the
coefficients of the polynomial p(x)·r(x)·s(x). The coefficients r1, r0, s1, s0 are
sampled independently and uniformly at random from S. The key generation
algorithm repeats this step with two more sets of polynomials (we refer
to them as “randomizing” polynomials) r′(x), s′(x) and r′′(x), s′′(x) whose
coefficients are also sampled uniformly at random. It constructs



Function-Private Subspace-Membership Encryption 269

W =

⎡⎣ — coefficients of p(x) · r(x) · s(x) —
— coefficients of p(x) · r′(x) · s′(x) —
— coefficients of p(x) · r′′(x) · s′′(x) —

⎤⎦ ∈ S3×5. (3)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p2r1s1
p2r1s0 + p2r0s1

+p1r1s1

p2r0s0 + p1r1s0
+p1r0s1 + p0r1s1

p1r0s0 + p0r0s1
+p0r1s0

p0r0s0

p2r
′
1s

′
1

p2r
′
1s

′
0 + p2r

′
0s

′
1

+p1r
′
1s

′
1

p2r
′
0s

′
0 + p1r

′
1s

′
0

+p1r
′
0s

′
1 + p0r

′
1s

′
1

p1r
′
0s

′
0 + p0r

′
0s

′
1

+p0r
′
1s

′
0

p0r
′
0s

′
0

p2r
′′
1 s1

p2r
′′
1 s0 + p2r

′′
0 s1

+p1r
′′
1 s1

p2r
′′
0 s0 + p1r

′′
1 s0

+p1r
′′
0 s1 + p0r

′′
1 s1

p1r
′′
0 s0 + p0r

′′
0 s1

+p0r
′′
1 s0

p0r
′′
0 s0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The algorithm then runs KeyGen(msk,W) and outputs skW.
– Decryption: The decryption algorithm remains unchanged.

Correctness and Attribute Hiding. Given a ciphertext c for attribute x and
a secret key for polynomial p, if p(x) = 0 then it follows that W · x = 0. If
W · x = 0, then x is a root of polynomials p · r · s, p · r′ · s′, and p · r′′ · s′′
which implies that x is a root of p(x) with overwhelming probability over the
choices of polynomials r, r′, r′′, s, s′, s′′ ∈ S[X].4 The attribute hiding property of
the scheme follows in a fairly straightforward manner from the attribute hiding
property of the subspace membership encryption scheme.

Function Privacy.We show that with overwhelming probability over the choices
of the randomizing polynomials: (a) if the coefficients of p, namely (p2, p1, p0)
are sampled from a k-source, then W is distributed according to a (5, k)-block
source, and (b) if the coefficients of p are sampled uniformly at random from
S3, then W is distributed uniformly over S3×5. Given the above two claims, a
straightforward reduction allows us to simulate a RoRFP-Φ oracle given access to
a RoR oracle for the subspace membership predicate with parameters m = 3 and
� = 5. Thus, we can state the following theorem.

Theorem 4.2. If SM is a subspace membership encryption scheme with param-
eters m = 3 and � = 5 that satisfies function privacy against (5, k)-block-source

adversaries, then the predicate encryption scheme for the class of predicates Φpoly
<3

constructed above is statistically function private against k-source adversaries.

Applying Theorem 3.1 for adversaries that query the RoRFP oracle with T cor-
related queries immediately gives us the following corollary.

Corollary 4.3. Given any large attribute space inner-product encryption scheme
with � = 3, there exists a predicate encryption scheme for the class of predicates
Φpoly
<3 that is statistically function-private against (T, k)-block-sources for any

T = poly(λ) and k ≥ log |S|+ ω(logλ).

4 From a simple union bound over the events where three linear polynomials share a
root, this probability works out to be ≥ 1− 8/|S|2 which is indeed overwhelming.
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Proof of Claims (a) and (b). Consider columnw1 = (p2r1s1, p2r
′
1s

′
1, p2r

′′
1 s

′′
1 )

ᵀ.
We observe that over choices of s1, s

′
1, and s′′1 , the column w1 is distributed uni-

formly over S3. The second column w2 is also distributed uniformly at random
by noting that the elements p2r1s0, p2r

′
1s

′
0, and p2r

′′
1 s

′′
0 are distributed uniformly

in S3 over choices of r1, r
′
1, and r′′1 (which are themselves information theoreti-

cally hidden in w1). An identical argument shows that over choices of r0, r
′
0, and

r′′0 , and s0, s
′
0, and s′′0 , the fourth and fifth columns, w4 and w5, are distributed

uniformly in S3. This is true even conditioned on all the other columns. It suf-
fices to show that conditioned on w1, w2, w4, and w5, column w3 has entropy
at least log |S|+ ω(logλ).

We re-write w3 as R · p where

R =

⎡⎣ r0s0 r1s0 + r0s1 r1s1
r′0s

′
0 r′1s

′
0 + r′0s

′
1 r′1s

′
1

r′′0 s
′′
0 r′′1 s

′′
0 + r′′0 s

′′
1 r′′1 s

′′
1

⎤⎦ ∈ S3×3. (4)

With overwhelming probability over random choices of all the coefficients in
the polynomials r, s, r′, s′, r′′, and s′′, the matrixR is full-rank over S. Therefore,
the distribution of w3 has a one-one correspondence with the distribution of p.
Therefore,w3 has entropy at least k even given R if p is sampled from a k-source
and w3 is uniform over S3 even given R if p is sampled uniformly from S3. This
concludes the proof of claims (a) and (b).

A General Technique for Φpoly
<d . As stated earlier, we can construct predicate

encryption for the class of predicates Φpoly
<d starting with a subspace membership

encryption scheme with parameters m = d and � = 2d − 1. The main idea
in extending beyond d = 3 is to construct d randomized “blindings” of p(x).
For i ∈ [d], the ith row of W now comprises coefficients of a polynomial p(x) ·
ri,1(x) · · · ri,d−1(x) where each of the ri,j(x)’s are random linear polynomials
sampled as r(x) and s(x) are sampled in the d = 3 construction. The details of
our construction are as follows. Due to space constraints the details about the
construction are deferred to the full version [11, Section 5.1].

Comparing Entropy Requirements. In Definition 4.1 and Corollary 4.3 it
suffices to consider function-privacy adversaries that query the “real-or-random”
oracle with polynomials whose coefficients come from a k-source. We do not re-
quire the sources have conditional min-entropy in contrast to subspace member-
ship function privacy (see Definition 2.3 and the discussion in Section 2). The

reason this weaker restriction on Φpoly
<d function-privacy adversaries suffices when

it does not suffice against subspace membership function-privacy adversaries is
that the class of predicates Φpoly

<d offers a weaker functionality than is offered by
subspace membership. In particular, if the adversary evaluates ciphertexts with
attributes corresponding to “ill-formed” non-Vandermonde vectors, i.e., vectors
not of the form (1, x, x2, . . .), correctness of decryption is not guaranteed and the
particular attack outlined in Section 2 fails. It is easy to see this in our construc-
tion as well—the randomizing polynomials ensure correctness only holds when
the subspace membership predicate is evaluated on Vandermonde vectors.
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4.2 Function-Private IBE with Minimal Unpredictability

As discussed in Section 1.1, the IBE schemes of Boneh et al. [10] are function pri-
vate only for identity distributions with min-entropy at least λ+ω(logλ). How-
ever, the only inherent restriction required for a meaningful notion of security
is that identity distributions have min-entropy ω(logλ). In this section, start-
ing with predicate encryption schemes for polynomial evaluation constructed in
Section 4.1, we construct an IBE scheme satisfying function privacy with only a
super-logarithmic min-entropy restriction on identity distributions.

Scheme. Consider a predicate encryption scheme for the class of linear predi-
cates Φpoly

<2 comprising algorithms (Setup,KeyGen,Enc,Dec). From Section 4.1,
such a predicate encryption scheme can be built from any underlying subspace
membership scheme for parameters m = 2 and � = 3. Given such a scheme, we
construct an IBE scheme IBEOPT for the space of identities S as follows.

– Setup: On input 1λ, the IBE setup algorithm runs Setup(1λ) to receive
(pp,msk) and publishes pp.

– Key generation: On input msk and an identity id ∈ S, the key generation
algorithm constructs a (randomized) polynomial pid(x) such that pid(x) = 0
if and only if x = id as follows. The algorithm samples uniform r ← S and
computes pid(x) = r(x − id). It then runs the underlying KeyGen algorithm
to output skid ← KeyGen(msk, pid).

– Encryption: On input pp, an identity id, and a message M, the encryption
algorithm computes Enc(pp, id,M).

– Decryption: On input pp, a ciphertext c, and a secret key sk, the decryption
algorithm simply computes the underlying decryption algorithm to output
M← Dec(pp, sk, c).

Correctness of the IBE scheme follows from the correctness of the under-
lying Φpoly

<2 -predicate encryption scheme. Data privacy and anonymity of the
IBE scheme (see [11, Definition 2.5]) follows directly from the attribute hiding

property of the underlying Φpoly
<2 -predicate encryption scheme. In the theorem

that follows, we prove that IBEOPT is function-private against minimally unpre-
dictable sources.

Theorem 4.4. Given any large attribute space inner-product encryption scheme
for dimension � = 3, there exists an IBE scheme function private against (T, k)-
block-sources for any T = poly(λ) and k ≥ ω(logλ).

Proof Outline. For simplicity, consider adversaries thatquery the real-or-random
oracle with k-sources (i.e., T = 1). As outlined in Section 4.1 we first construct a

predicate encryption scheme forΦpoly
<2 that is function private against k′-sources for

k′ ≥ log |S|+ω(logλ). We instantiate IBEOPT described above with this predicate
encryption scheme.

The proof proceeds by showing that RoRFP-IBE queries (see [11, Definition
2.6]) ID can be compiled to distributions over coefficients of linear polynomials
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P = (P1, P0) such that if H∞(ID) = k, then H∞(P) = k + log |S|. This allows
us to simulate a RoRFP-IBE oracle given an oracle RoRFP-Φ for linear polynomials
thus showing that IBEOPT is function-private against k-sources if the encryption
scheme for Φpoly

<2 is function-private against k′-sources. Due to space constraints,
the reader is referred to the full version for details [11, Section 5.1].

Fully-Secure Function-Private IBE. Current constructions of inner-product
encryption schemes [23,3] satisfy a selective notion of security where the chal-
lenge attributes are chosen by the adversary before seeing the public parameters.
Our transformation of inner-product encryption schemes to function-private IBE
schemes with minimal unpredictability is not limited to selective security. Start-
ing from an inner-product encryption scheme satisfying an adaptive version of
attribute hiding, we can construct fully-secure IBE schemes. We also note that
the standard complexity leveraging approach (see [7, Section 7.1]) gives a generic
transformation from selectively-secure IBE to fully-secure IBE. This approach
does not modify the key generation algorithm and therefore preserves function
privacy.

5 Conclusions and Open Problems

Our work proposes subspace-membership encryption and constructs the first
such function-private schemes from any inner-product encryption scheme. We
also show its application to constructing function-private polynomial encryption
schemes and function-private IBE schemes with minimal unpredictability. In this
section, we discuss a few extensions and open problems that arise from this work.

Function Privacy from Computational Assumptions. In this work we
construct subspace-membership schemes that are statistically function private.
Although the construction of inner-product encryption schemes from lattices [3]
presents an immediate function-privacy attack, we were unable to find such at-
tacks for the construction from composite-order groups [23] (or its prime order
variant [18]). We conjecture that suitable “min-entropy” variants of the deci-
sional Diffie-Hellman assumption [15] have a potential for yielding a proof of
computational function privacy for these schemes.

Other Predicates. A pre-cursor to the work on predicate encryption support-
ing inner-products was work on predicate encryption supporting comparison
and range queries by Boneh and Waters [13]. They achieve this by constructing
predicate encryption supporting an interesting primitive, denoted Hidden-Vector
Encryption (HVE). Briefly, in HVE, attributes correspond to vectors over an al-
phabet Σ and secret keys correspond to vectors over the augmented alphabet
Σ ∪ {%}. Decryption works if the attributes and secret key match for every co-
ordinate that is not a %.

HVE can be implemented using inner-product encryption schemes [23] but it
breaks function privacy in a rather trivial manner. Formalizing function privacy
for HVE does not immediately follow from the notion of function privacy for
inner-products because of the role played by %. The questions of formalizing
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function privacy (which in turn will imply realistic notions also for encryption
supporting range and comparison queries) and designing function-private HVE
schemes are left as open problems. It is also open to formalize security and
design function-private encryption schemes that support multivariate polynomial
evaluation.

Enhanced Function Privacy. A stronger notion of function privacy, denoted
enhanced function privacy [10], asks that an adversary learn nothing more than
the minimum necessary from a secret key even given corresponding cipher-
texts with attributes that allow successful decryption. Constructing enhanced
function-private schemes for subspace membership and inner products is an in-
teresting line of research that may require new ideas and techniques.
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Abstract. This paper initiates the study of preserving differential pri-
vacy (DP) when the data-set is sparse. We study the problem of con-
structing efficient sanitizer that preserves DP and guarantees high utility
for answering cut-queries on graphs. The main motivation for studying
sparse graphs arises from the empirical evidences that social network-
ing sites are sparse graphs. We also motivate and advocate the necessity
to include the efficiency of sanitizers, in addition to the utility guaran-
tee, if one wishes to have a practical deployment of privacy preserving
sanitizers.

We show that the technique of Blocki et al. [3] (BBDS) can be adapted
to preserve DP for answering cut-queries on sparse graphs, with an
asymptotically efficient sanitizer than BBDS. We use this as the base
technique to construct an efficient sanitizer for arbitrary graphs. In par-
ticular, we use a preconditioning step that preserves the spectral prop-
erties (and therefore, size of any cut is preserved), and then apply our
basic sanitizer. We first prove that our sanitizer preserves DP for graphs
with high conductance. We then carefully compose our basic technique
with the modified sanitizer to prove the result for arbitrary graphs. In
certain sense, our approach is complementary to the Randomized saniti-
zation for answering cut queries [17]: we use graph sparsification, while
Randomized sanitization uses graph densification.

Our sanitizers almost achieves the best of both the worlds with the
same privacy guarantee, i.e., it is almost as efficient as the most effi-
cient sanitizer and it has utility guarantee almost as strong as the utility
guarantee of the best sanitization algorithm.

We also make some progress in answering few open problems by BBDS.
We make a combinatorial observation that allows us to argue that the
sanitized graph can also answer (S, T )-cut queries with same asymptotic
efficiency, utility, and DP guarantee as our sanitization algorithm for
S, S̄-cuts. Moreover, we achieve a better utility guarantee than Gupta,
Roth, and Ullman [17]. We give further optimization by showing that fast
Johnson-Lindenstrauss transform of Ailon and Chazelle [2] also preserves
DP.
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1 Introduction

The privacy of a data is a fundamental problem in today’s age of information.
Many agencies collect enormous amount of data and store it in its database.
These data may contain sensitive informations about an individual. However,
given the benefits of analyzing these data, the problem that curators of such
a database face is to provide useful information in such a manner so that no
personal or sensitive information about an individual is leaked. A trivial way to
guarantee this is to add a lot of noise to the database; however, nothing useful
could be harnessed from such noisy database. Most of the research in this area is
geared towards providing a tight utility and privacy tradeoff and only consider
the query generator in mind. In this paper, we take a conceptual review and ask
the practical question: what would a firm, that is going to deploy these sanitizers,
demand from the group that develops these algorithms?

The question one expect to get from real firms or agencies is what extra
resources they have to invest to provide this facility. This is expected in the real-
world because a curator would prefer to deploy its resources to facilitate other
interfaces that are primary to its business if differential private sanitizer uses a
lot of resource. In general, sanitizers are polynomial time, but the exact bound
on this polynomial is never made explicit in earlier works. In fact, Exponential
sanitization [17, 19] may be intractable! We initiate the study of the question
whether it is possible to guarantee DP that has high utility guarantee with an
efficient sanitizer, emphasizing on a concrete bound on the efficiency parameter.

Motivation of Our Problem. Our motivation of studying cut queries on sparse
graphs arises from a natural problem in social networks. One of the question
that is commonly asked in social network is, given a set of individuals, how
many friends/acquaintance do a set of people have outside their circle? The
natural approach to solve this problem is to construct a friendship graph, where
each vertex is labeled by an individual and there is an edge between two vertices
if they are friends. These graphs on social networks are usually sparse, i.e., the
average degree of the graph is very small in comparison to the number of vertices.

For a concrete example, consider the friendship graph on Facebook. According
to the recent data released by Facebook, it has around one billion active users!
It is not outrageous to assume that only a small fraction of users on Facebook
have more than a thousand friends. Therefore, this graph is highly sparse. The
friendship graph is undirected; however, this might not always be the case. For
example, consider the following graph based on the networking of Twitter. It is
a directed graph with nodes labeled by an individual. A node is the tail of an
edge if the individual follows the head of the edge. The number of active users on
Twitter is few million; however, it is less likely that an individual follows more
than a few hundred fellow users. Thus, the following graph is very sparse. In
these scenarios, the difference between performing 109×2.38 and 1018 algebraic
operations is huge. Any firm, like Facebook and Twitter, which is motivated by
economics is less likely to invest in the former sanitization algorithm and may
consider investing in the latter one.
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It could be argued that if a sanitizer works for dense graphs (and therefore,
also for sparse graphs), then there is no need for a specialized sanitizer for sparse
graphs. The reason why we feel it is important to study sparse graphs exclusively
is that sanitizers for dense graphs do not use the structural properties present in
sparse graphs. In general, sparse graphs provides faster algorithms [7, 15, 28]. For
example, consider the Johnson-Lindenstrauss (JL) sanitizer [3]. The sanitization
algorithm of BBDS first overlays a complete graph on top of the input graph and
then applies JL transform to the columns of the Laplacian of the modified graph.
The step in which we overlay the complete graph destroys all the structural
properties the input graph might have.

Now consider the situation when the input graph is sparse, and a hypothetical
sanitizer that does not overlay Kn on top of it. When we perform random pro-
jection on this graph, the number of operations would depend on the number of
edges of the graph (more concretely, on the non-zero entries in the representative
matrix of the graph which could be Laplacian or adjacency matrix). Unfortu-
nately, this sanitizer is not differentially private if the graph is weakly connected
(in graph theoretic terms, has low conductance).

To see why this hypothetical sanitization does not provide DP, consider an
n-vertices graph with two connected components. If the query is to find the cut
of all the set of vertices in one component, the answer is 0 with probability 1.
However, for a graph that has an edge joining two vertices present in different
connected components, the probability with which the response to the query is
non-zero is 1. This gives an easy way to differentiate the two cases. To resolve
this particular problem, BBDS overlaid an n-vertex complete graph on top of
the input graph.

Unfortunately, if we overlay the complete graph on a sparse graph, then we
destroy the sparsity, and lose any (possible) gain in the computational time. On
the other hand, even if the graph is connected and we do not perturb the graph,
chances of privacy leakage are still present. More specifically, adding a single edge
in a sparse graph can potentially have more privacy leak than a corresponding
change in dense graphs. For example, consider a line graph or tree. They are
acyclic; however adding any edge introduces a cycle. A slight modification of the
differentiating algorithm used in the case of two component graph could be used
to break the DP.

Our Contributions. This work is motivated by practical scenarios in which a
sanitizer might be deployed. One of the objective of this paper is to advocate
that, in addition to the utility and privacy guarantee, a design methodology
for sanitizers should also give a concrete analysis of the efficiency of sanitizers.
We initiate this line of work by studying differentially private sanitizer for cut
queries on graphs.

As mentioned above, in practice, sparse graphs are more likely to occur than
dense graphs. Every sanitizer that are proposed in the literature for dense graphs
also works for sparse graphs, but they are not efficient. Moreover, there are
examples of sparse graphs that could leak more information in DP sense than
dense graphs, mainly because an addition or deletion of an edge could change
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the graph properties more dramatically in sparse graphs than in dense graphs.
Thus, the problem is non-trivial, especially when we wish to construct efficient
sanitizer.

On the fundamental level, we advocate the need of considering the efficiency
of the sanitizer in the design methodology and give an explicit bound on the
running time. The reason why we believe this is an important parameter is that,
in many practical scenarios, the data-sets are held by agencies who might not
have the privacy of an individual as their biggest priority. Therefore, unless a
sanitizer is efficient, they might not have any incentive to perform the required
sanitization. The technical contributions of this paper are as follows.

1. We show that it is possible to adapt the JL sanitizer of BBDS to answer
cut queries when the graph is sparse. Additionally, our sanitizer has to per-
form only O(n2+o(1)) algebraic operations. On the other hand, irrespective of
whether or not the graph is sparse, the sanitizer of BBDS needs O(rn2.38) op-
erations1, where r is the dimension of the subspace to which the JL transform
projects the columns of the Laplacian. This improvement is asymptotically
significant.

2. A natural question that arises next is whether our basic sanitizer is use-
ful when the graph is fairly dense. We answer this question in affirmative.
More precisely, we show that if we precondition a graph by reassigning the
weights to the edges such that the transformed graph is guaranteed to be
sparse and maintain the spectral properties of the graph, then applying the
basic sanitizer on the conditioned graph preserves DP. This can be seen as
a complementary approach to the Randomized sanitizer [17].

3. We make a simple combinatorial observation to argue that our sanitizer also
preserves (S, T )-cut queries. This answers an open problem raised by BBDS.

4. Our last contribution is directed towards the optimization of the algebraic
computations. We show that DP is maintained even if we replace the stan-
dard JL transform by the fast JL transform of Ailon and Chazelle [2]. This
partially answers another open problem of BBDS.

Remark 1. An important characteristics of our preconditioning step, in item 2
above, is that it preserves the spectral properties. Any sanitizer that answers the
queries based on spectral property of a graph could be transformed to first apply
the preconditioning step before the sanitization step to improve the efficiency.

We note that none of our sanitizer randomly projects the vector corresponding to
the column vector of the graph to a smaller dimension r. The main observation
is that the mechanism is non-interactive, and in order to preserve the privacy
for all set of queries, the dimension of the projected space has to be at least the
dimension of the input space.

Overview of our Techniques. We first give a brief overview of the sanitizer of
BBDS. In BBDS, the sanitization algorithm first reweighs the graph by overlaying

1 Assuming that the matrix multiplication is done using Coppersmith-Winograd’s
algorithm.
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a complete graph on top of the input graph, i.e., every edge, e = (a, b), with
weight we is replaced by an edge with weight w′

e := w
nwe +

(
1− w

n

)
. In other

words, the weight on the edges are redistributed such that the overlaid complete
graph has an equal weight, w

n , on all its edges. This makes the graph connected,
and from Lemma 4, the smallest non-zero eigenvalues of this modified graph
is greater than w/n. The JL transform is then applied on the columns of the
Laplacian of the modified graph.

The major challenge that we face is that sparse graphs have low conduc-
tance. When we overlay the complete graph, it increases the conductance, but
simultaneously makes it inefficient to answer the cut-queries by destroying the
structural properties. As an extreme, consider a line graph. The cut-queries are
fairly straightforward to answer; however, if we overlay a complete graph on top
of it, we destroy the structural property and need to do some extra arithmetic to
answer the same set of queries. An alternative is to overlay a sparse graph that
increases the conductance, but does not destroy the structure of the underlying
graph by much. The most natural candidate for this is an expander graph. As
we show in our analysis, this suits our purpose very well.

We modify our basic sanitization technique, as outlined above, to construct
an efficient sanitization technique for dense graphs. The key idea is to use graph
sparsification at an appropriate step. As a warm-up, we assume that the input
graph has high conductance. Our technique in this case is simple: apply the graph
sparsification algorithms followed by the JL transform. The key observation here
is that conductance helps in proving that, when the sparsification technique is
applied on two neighboring graphs, the corresponding sparse graphs differ on at
most one edge. This allows us to use the proof of BBDS for DP. On the other
hand, due to the spectral guarantee provided by the sparsification technique, we
know that all the cuts of the graph is maintained within a multiplicative factor.
The utility guarantee then follows using simple arithmetic.

In order to apply the above analysis to arbitrary graph, we need a high con-
ductance graph. This directs the order of the steps we follow for arbitrary graph,
i.e, we first overlay a complete graph (or an expander) on the input graph before
applying the sparsification algorithm. Finally, we apply the JL transform.

Related Work. Differential privacy, introduced by Dwork et al. [9], provides a ro-
bust guarantee of privacy. Informally speaking, if a curator sanitizes a data-set,
then even if an individual’s data is removed fromthedatabase, noneof the responses
to a query is more or less likely than the others. The key idea used inDwork et al. [9]
is to add noise to an output of the query according to a Laplace distribution, where
thedistribution is parameterizedby the sensitivityof thequery function.TheGaus-
sian variant of this basic sanitizer was proven to preserveDP byDwork et al. [8] in a
follow-up work. Since then, many sanitizers for preservingDP have been proposed
in the literature, including the Exponential sanitizer [4, 23, 27], the Multiplicative
Update sanitizer [16–19], theMedian sanitizer [30], the Boosting sanitizer [10], and
the Random Projection sanitizer [25]. All these sanitizers have a common theme:
theyperturb the outputbefore responding to queries.Blocki et al. [3] tooka comple-
mentary approach. They perturb the input by performing a random projection of



Random Projections, Graph Sparsification, and Differential Privacy 281

the input and show that existing algorithms preservesDP if the input is perturbed
in a reversible manner.

The first work to explicitly study DP when the underlying data-set is a graph
or a social network was by Hay et al. [20]. They presented a differentially private
sanitizer for answering the degree of a node in a graph. They were followed by
works of Nissim et al. [29] and Karwa et al. [24]. Gupta et al. [17] first studied
the question of answering (S, T )-cut queries. The literature of studying faster
computations on a sparse variant of any mathematical objects is so extensive
that we cannot hope to cover it in all details here. An extensive study of faster
methods of doing linear algebra on a sparse matrix is covered in standard text-
books [7, 15]. We refer the readers to an excellent book by Nesetril and de
Mendez [28] for the properties and algorithms on sparse graph.

Organization of the Paper. In Section 2, we cover the basic preliminaries and
definitions to the level required to understand the presentation of this paper. In
Section 3, we give our basic sanitizer for sparse graph that serves as the building
blocks for the sanitizers in Section 4. We conclude the paper by showing in
Section 5 that the fast JL transform of Ailon and Chazelle [2] also preserves DP.

2 Preliminaries, Notations, and Basic Definitions

2.1 Privacy and Utility

In this work, we deal with privacy-preserving sanitizers for answering cut queries
on graphs. The notion of differential privacy requires a definition of neighboring
data-sets. Two data-sets (graphs, respectively) are neighboring if they differ on
at most one entry (edge, respectively).

Definition 1. A randomized algorithm K, also called a sanitizer, gives ε-DP, if
for all neighboring data-setsD1 andD2, and all range S ⊂ Range(K), Pr[K(D1) ∈
S] ≤ exp(eε)Pr[K(D2) ∈ S], where the probability is over the coin tosses of the
sanitizer K.

In this paper, we study a natural relaxation of DP, called approximate DP.

Definition 2. A randomized algorithm, K also called a sanitizer, gives (ε, δ)-
DP, if for all neighboring data-sets D1 and D2, and all range S ⊂ Range(K),
Pr[K(D1) ∈ S] ≤ exp(eε)Pr[K(D2) ∈ S] + δ, where the probability is over the
coin tosses of the sanitizer K.

2.2 Linear Algebra

Let A be an n×m matrix. We let rk(A) denote the rank and Tr(A) denote the
trace norm of the matrixA. The singular value decomposition of A isA = V ΛUT ,
where U, V are unitary matrices and Λ is a diagonal matrix. The entries of Λ,
denoted by λ1(A), · · · , λrk(A)(A), are called the singular values of A. Since U, V
are unitary matrices, one can write Ai = V ΛiUT for any real value i. If A is
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not a full rank matrix, then its inverse is called Moore-Penrose inverse and is
denoted by A† and its determinant is called pseudo-determinant and is defined

as Δ̃(A) = Π
rk(A)
i=1 λi(A). We let χS ∈ {0, 1}n denote the characteristic vector for

a subset S ⊆ V .

2.3 Gaussian Distribution

Given a random variable, X , we denote by X ∼ N (μ, σ2) the fact that X is
distributed according to a Gaussian distribution with the probability density

function, PDFX(x) = 1√
2πσ

exp
(
− (x−μ)2

2σ2

)
. The Gaussian distribution is invari-

ant under affine transformation, i.e., if X ∼ N (μx, σx) and Y ∼ N (μy, σy), then
Z = aX + bY has the distribution Z ∼ N (aμx + bμy, aσ

2
x + bσ2

y).

MultivariateGaussianDistribution. Themultivariate Gaussian distribution
is a generalization of univariate Gaussian distribution. Given an m-dimensional
multivariate random variable, X ∼ N (μ,Σ) with mean μ ∈ Rm and covariance
matrix Σ = E[(X − μ)(X − μ)T ], the PDF of a multivariate Gaussian is given by
PDFX(x) := 1√

2πΔ̃(Σ)
exp

(
− 1

2x
TΣ†x

)
. It is easy to see from the description of

the PDF that, in order to define the PDF corresponding to a multivariate Gaussian
distribution, Σ has to have full rank. If Σ has a non-trivial kernel space, then the
PDF is undefined. However, in this paper, we only need to compare the probabil-
ity distribution of two randomvariables which are defined over the same subspace.
Therefore, in those scenarios, we would restrict our attention to the subspace or-
thogonal to the kernel space of Σ.

Multivariate Gaussian distribution maintains many key properties of univari-
ate Gaussian distribution. For example, any (non-empty) subset of multivariate
normals is multivariate normal. Another key property that is important in our
analysis is that linearly independent linear functions of multivariate normal ran-
dom variables are multivariate normal random variables, i.e., if Y = AX + b,
where A is an n × n non-singular matrix and b is a (column) n-vector of con-
stants, then Y ∼ N (Aμ + b, AΣAT ).

2.4 Graph Theory

We reserve the symbol G and H to denote a graph. We denote by G′ the graph
formed by adding an edge to the graph G. In the case when H is formed from
G using some transformation, we denote by H′ the graph formed by performing
the same transformation on G′. For any S ⊆ V(G), the cut of the set of vertices
S, denoted it by ΦG(S), is the weight of the edges that are present between S
and V \S.

We follow the same terminology of BBDS to define the utility guarantee.

Definition 3. We say a sanitizer K gives a (η, τ, ν)-approximation for cut
queries, if for every non-empty set S ⊆ V, it holds that

Pr[(1 − η)ΦG(S)− τ ≤ K(S,G) ≤ (1 + η)ΦG(S) + τ ] ≥ 1− ν.
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For the entire paper, we fix w = Θ
(

log(1/δ)+log(1/ν)
ε

)
.

Laplacian of a Graph. For a weighted graph G := (V , E , w), its adjacency matrix
AG is given by AG(i, j) = wij if (i, j) ∈ E . The degree matrix of a weighted
graph G is given by a diagonal matrix DG such that the diagonal entries (i, i) is∑

j AG(i, j). The signed-edge matrix, BG , is constructed in the similar fashion
as in BBDS: let O be an arbitrary orientation of edges. For an edge e = (u, v),
place

√
we at position (e, v) if the edge e has v as its head and −√we if it has v

as its tail. For the other (e, i) when i �= u, v, place 0.
The matrix for the Laplacian of a weighted graph, denoted by LG , is defined

as DG−AG . One of the most useful form of Laplacian of a graph is the following
form: LG =

∑
(a,b)∈E wabLab = BT

G BG , where Lab is the Laplacian of a graph

with a single edge (a, b). Many interesting properties of the Laplacian of a graph
follows from this representation. For example, Laplacian of a graph is positive
semi-definite, i.e., all the eigenvalues are non-negative. For a set S of vertices, its
cut-set is ΦG(S) = χTSLGχS . Moreover, for S, T ⊆ V , the sum of the weights of
the edges with one end in S and other in T is denoted by ΦG(S, T ). We explore
this in detail later in Section 4.3.

We let λi(G) denote the eigenvalues of LG for 1 ≤ i ≤ n. Next we present few
lemmata that are useful in our analysis. In our analysis, we analyze multivari-
ate Gaussian distributions that are linear combination of the Laplacian of two
graphs. In order to analyze the two distributions, the corresponding covariance
matrices must span the same subspace. The first lemma allows us to work on
the same subspace, that is, the subspace orthogonal to Span{1}.

Lemma 1. [11, 12] Let 0 = λ1(G) ≤ λ2(G) · · · ≤ λn(G) be the n eigenvalues of
LG. Then G is connected iff λ2 > 0 and the kernel space of a connected graph is
Span{1}. More generally, if a graph has k components, then the multiplicity of
eigenvalue 0 is k.

The following two lemmata are useful in giving the upper bound while proving
the DP of our sanitizer.

Lemma 2. Let G and G′ be two graphs, where G′ is obtained from G by adding
one edge joining two distinct vertices of G. Then

λ2(G) ≤ λ2(G′) ≤ λ2(G) + 2.

Lemma 3. Let G′ be formed by adding an edge (u, v) to G. For any vector
x ∈ Rn, we have Tr(LG′) ≤ Tr(LG) + 2.

The following lemma is particularly useful in arguing that the lowest non-zero
eigenvalues of all the graphs is bounded from below by a constant (which is the
second smallest eigenvalue of an expander).

Lemma 4. (Eigenvalue Interlacing). Let G and G′ be two graphs, where G′ is
obtained from G by adding one edge joining two distinct vertices of G. Then

λi(G) ≤ λi(G′) ≤ λi+1(G).
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In particular, if H be a subgraph of G, then λi(H) ≤ λi(G)∀1 ≤ i ≤ n.

We refer the readers to the excellent book by Godsil and Royle [14] for a com-
prehensive treatment of the algebraic properties of graphs.

Graph Approximation. A graph H is said to ε-approximate a graph G if H
approximates the spectral properties of G, i.e.,

(1 − ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx ∀x ∈ Rn.

We denote it by (1− ε)LG * LH * (1 + ε)LG .

Electrical Flows and Resistance. We need the concept of electrical flow in graphs
at various points for the analysis of Theorem 7. Intuitively, electrical flow of a
graph measures how easy or difficult it is to move from one vertex to the other.
If the “resistance” (as described later) between two vertices is high, then it is
more difficult to reach from one vertex to the other, and vice versa. We give a
brief exposition of the electrical flow that is required to understand this paper.
Let i be the vector of current injected at the vertices of the graph G. Then
the effective resistance between two vertices u and v is defined as the potential
difference induced between them when a unit current is injected at one vertex
and extracted from the other. For any pair of vertices u and v, the effective
resistance,

Ruv = (χu − χv)
TL†

G(χu − χv) = ‖BGL
†
G(χu − χv)

2‖22.

Conductance. At the intuitive level, the conductance of a graph is the inverse of
the resistance. For a graph, G = (V,E), let dv denote the degree of vertex v ∈ V .
Let V ol(S) =

∑
i∈S di, then the conductance of a set of vertex S, denoted by

condS(G) is defined by

condS(G) :=
|ΦG(S)|

min{V ol(S), V ol(V − S)} .

The conductance of a graph G is then given by cond(G) := minS⊂V,|S|≥1 condS(G).
The conductance of a graph has a strong relation to the smallest non-zero eigen-
value of its Laplacian and we use it implicitly or explicitly in all of our analyses.

Theorem 1. (Cheeger’s Inequality). For a graph G, cond(G)2/2 ≤ λ2(LG) ≤
2cond(G).

2.5 JL Transform

The famous JL transform [1, 2, 5, 6, 21, 22] can be seen as a random projection
of d points from a n-dimensional space to a lower dimensional space such that
the Euclidean distance between any two pairs of points is maintained.
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Theorem 2. Fix any η ∈ (0, 1/2) and M be a k × n matrix, whose entries are
chosen from N (0, 1). Then ∀x ∈ Rn, we have

PrM

[
(1 − η)‖x‖2 ≤ 1

k
‖Mx‖2 ≤ (1 + η)‖x‖2

]
≥ 1− 2 exp(−η2k/8). (1)

Fast JL Transform. Ailon and Chazelle [2] gave an elegant transform that is
asymptotically faster than the traditional JL transform. It involves precondi-
tioning the input. In this section, m denotes the number of n-dimensional points
on which the transform is applied and k denotes the target dimension. More
specifically, the fast JL transform is M = PWD, where (i) W is a n × n
normalized Walsh-Hadamard matrix, (ii) D is a n × n diagonal matrix, where
Pr[Dij = 1] = Pr[Dij = −1] = 1/2, and (iii) P is a k× n matrix whose elements
are independently distributed as follows. With probability 1 − q, set Pij = 0;
otherwise draw Pij from a normal distribution of expectation 0 and variance 1/q.

The constant q is called the sparsity constant and is set to q = Θ
(
ηp−2 logp n

n

)
,

where p is the norm we wish to preserve. Since W encodes the discrete Fourier
transform, using fast Fourier transform, Ailon and Chazelle [2] proved that the
transform satisfies equation (1), and takes time Õ(n+ qm/η2)).

3 Sanitizer for Cut Queries

In this section, we give our basic sanitizer for sparse graphs. Our key observation
is that, in the sanitizer of BBDS, the overlay of the complete graph is required to
maintain high conductance, and the result regarding the second smallest eigen-
value of the Laplacian follows immediately from the fact that a complete graph
is a subgraph of the resulting graph. Unfortunately, this perturbation, when
applied to sparse graphs, destroys the structural benefits of sparsity.

We get the same two objectives by overlaying an expander graph. An expander
graph makes the graph connected while the smallest non-zero eigenvalue has
the desired lower bound if we chose our expander graph with care. Recently,
Friedman [13] proved that a random graph is an expander graph with high
probability. In fact, he showed that such graphs are Ramanujan graphs. Marcus,
Spielman, and Srivastava [26] recently proved the existential result for bipartite
expander that matches the Ramanujan bound for every degree d.

We first derive a connection between the spectral properties of an expander
graph and a complete graph. The most useful relation for this derivation is an
alternate definition of an expander graph, i.e., a d-regular graph G is an expander
if λ2(G) ≥ (1 − ε′)d for some arbitrary constant ε′. We give our basic sanitizer
for sparse graphs in Figure 1.

Theorem 3. The basic algorithm in Figure 1 preserves (ε, δ)-DP, provides an
utility of (η, τ, ν)-approximation, where τ ≤ O((η + ε′)ws), and runs in time
O(n2+o(1)).
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Input. A n-vertex sparse graph G, and parameters ε, δ, η.
Output A Laplacian of a graph L̃.

1. Pick a d-regular expander graph E.
2. Set LH ← w

d
LE +

(
1− w

d

)
LG

3. Pick an n× n matrix M with each entries picked from N (0, 1).
4. Output L̃ = (MTLHM)/n

The sanitizer publishes L̃ and anyone with a set of vertices S as input can
compute ΦG(S) as below

ΦG(S) =
1

1− w
d

(
χT
S L̃χS − ws(n− s)

n

)
,

where |S| = s.

Fig. 1. The Basic Sanitizer

Proof. We first perform the complexity analysis of the above sanitizer. For a
sparse graph, m = O(n); therefore, using [34], it takes Õ(n) time to compute
the JL transform (since every column in the Laplacian of a sparse graph has
Õ(1) entries). Since, matrix multiplication takes Ω(n2), this is almost tight for
any sanitizer design that uses noise multiplication for answering cut queries.

The proof of DP proceeds in the similar manner as in BBDS. This is because
our change still fulfills the requirement for which BBDS introduced the complete
graph, i.e., it makes the graph connected. Using Lemma 1, the kernel space
is Span{1}. Also, by a suitable choice of the expander graph, i.e., one with
1− ε′ ≥ w/d, Lemma 4 guarantees that all the eigenvalues of H is greater that
w, which is required in the privacy analysis of BBDS.

Our proof of utility guarantee develops on a useful relation between an ex-
pander graph and a complete graph. Let E be a d-regular expander graph such
that the eigenvalues of AE are ≤ ε′d. From the expression, LE = DE − AE ,
where DE is the degree matrix of E, we have that all the non-zero eigenvalues of
LE are between (1−ε′)d and (1+ε′)d. Therefore, from Courant-Fischer formula,

(1 − ε′)dxTx ≤ xTLEx ≤ (1 + ε′)dxTx ∀x ∈ Rn. (2)

We wish to relate this to the complete graph. For the complete graph, Kn, the
eigenvalues are 0 with multiplicity 1 and n with multiplicity n− 1. Therefore,

xTLKnx = nxTx ⇒ d

n
xTLKnx = dxTx. (3)

Plugging equation (3) in equation (2), we have

(1− ε′)
d

n
xTLKnx ≤ xTLEx ≤ (1 + ε′)

d

n
xTLKnx ∀x ∈ Rn. (4)
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One way to look at equation 4 is that an expander graph is a sparsified
complete graph. Using equation 4, we have the following approximation:(

(1− ε′)
w

n
LKn +

(
1− w

d

)
LG

)
*

(w

d
LE +

(
1− w

d

)
LG

)
*

(
(1 + ε′)

w

n
LKn +

(
1− w

d

)
LG

)
. (5)

We can now calculate the utility guarantee using equation (5) and similar
arithmetic as in BBDS. More specifically, the upper bound on the utility guar-
antee can be calculated as below.

(1 + η)χTSLHχS = (1 + η)χTS

(w

d
LE +

(
1− w

d

)
LG

)
χS

≤ (1 + η)χTS

(
(1 + ε′)

w

n
LKn +

(
1− w

d

)
LG

)
χS

≤ (1 + η)(1 + ε′)
w

n
s(n− s) +

(
1− w

d

)
(1 + η)ΦG(S).

Therefore,

1

1− w
d

(
χTS L̃χS −

ws(n− s)

n

)
=

(
w(η + ε′ + ηε′)s

(1− w
d )

)(
1− s

n

)
+ (1 + η)ΦG(S)

≤ 2(η + ε′ + ηε′)ws+ (1 + η)ΦG(S).

This gives an additive approximation of O((η + ε′)ws). The proof of the lower
bound is similar.

4 Differential Privacy by Sparsification

In Section 3, we showed that a simple change to the sanitizer of BBDS gives
an efficient sanitizer for sparse graphs. In this section, we consider the case
of an arbitrary graph. In particular, we show that various graph sparsification
techniques also preserves DP. This serves as the second main contribution of this
paper. Intuitively, the result in this section follows from the observation that, for
large enough n, the sparsification techniques can be seen as a random projection.
Thus, sparsification composed with our basic scheme should preserve DP by the
composition theorem [10] and Theorem 3.

In certain sense, our approach is complementary to the approach used in Ran-
domized sanitization. The Randomized sanitization [17] constructs a weighted
graph, H = (V , E ′, w′), such that ∀u, y ∈ V , the weight of edge (u, v) in H is
distributed as per the following distribution: Pr[w′

uv = 1] = (1 + εwuv)/2 and
Pr[w′

uv = −1] = (1− εwuv)/2.

4.1 Sanitization of Graphs with High Conductance

Every randomized sparsification technique picks an edge to be included in a
sparsified graph with some specified probability distribution. At a high level,
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Input. A n-vertex graph G with high conductance, and parameters ε, δ, η.
Output A Laplacian of a graph L̃.

1. Convert G to a H using [31] or [32], such that H is an ε-sparsification of G.
2. Pick an n× n matrix M with each entries picked from N (0, 1).
3. Output L̃ = (MTLHM)/n.

The sanitizer publishes L̃ and anyone who has as input the set of vertices S can
compute ΦG(S) =

(
1− w

n

)
χT
S L̃χS.

Fig. 2. Sanitizer for Graph With High Conductance

the distribution can be defined either dependent on the local structure or on the
global structure of the graph. We give our sanitizer for both types of distribution,
picking the most efficient one for instantiation. In this section, we analyze our
sanitizer, stated in Figure 2, for graphs with high conductance.

The utility guarantee follows from the sparsification guarantee provided by the
respective sparsifiers and the JL transform. The efficiency guarantee is straight-
forward from the observation that there are Õ(1) entries in every row or column
of the Laplacian of sparse graphs, and the run time of the step 3 in the Figure 2
is governed by the number of non-zero entries in the Laplacian. More concretely,
assume that the sparsification algorithm takes Õ(m) time to output a graph with
Õ(n) edges (as we will see, both the techniques, Spielman and Teng [32] based
on local properties of the graph (Theorem 4), and Spielman and Srivastava [31]
based on global properties of the graph (Theorem 6), satisfies these two condi-
tions). Therefore, even if the graph is dense, i.e., m = O(n2), the run time for
sparsification is Õ(n2). Therefore, the time taken by the sanitizer is bounded by
Õ(n2) (since, in expectation, every column in the Laplacian of the sparse matrix
has Õ(1) entries).

The tricky part is to prove the privacy guarantee. For the privacy guarantee,
we prove that for two neighboring graphs G and G′, the respective sparse graphs
differ on at most one edge. We can then apply Lemma 3, and the rest of the
proof follows along the same line as BBDS. For both the sparsifier, we prove that
if the graph has high enough conductance, then the probability distribution on
edges with which the sparsification algorithm picks an edge does not differ by
a lot. We then analyze two types of edges: (i) the edge (a, b) that is present in
G′ but not in G and (ii) the edges that are in both G and G′. In the first case,
the probability that the edge (a, b) is present in H′ is non-zero and is identically
zero in H. We then prove that if the probability distribution on the edges does
not differ by “lot”, then with all but negligible probability, the respective sparse
graphs will differ on at most one edge, i.e., only due to the (possible) presence
of the edge (a, b) in H′. The privacy guarantee follows using the proof of BBDS.

Using Local Sparsification Techniques: Construction of Spielman and Teng [32].
Spielman and Teng [32] proved the following result for any graph.
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Theorem 4. [32] There exists an Õ(m) time algorithm which on input 0 <
ε, p < 1/2 and a graph G with n-vertices and m-edges, outputs a sparse graph H
with Õ(n/ε2) edges such that H is an ε-approximation of G.
The main construction of Spielman and Teng [32] for arbitrary graphs is lit-
tle complicated and uses techniques of graph decomposition and contraction.
In this section, we will use the construction that works for a graph with high
conductance. In this construction, every edge, e = (i, j), is picked with prob-

ability, pij := 144k2

ε2λ2(G)2 min{di,dj} , where k = max{log2(3/p), log2 n}, di denotes

the degree of the vertex i, and p is an arbitrary constant between (0, 1/2). It is
an easy exercise to check that the probability distribution on the edges that are
already present does not change by a lot when a new edge is added due to the
dependence only on the local structure of the graph (the eigenvalue changes by
at most two by Lemma 2, and degree of only the two end vertices changes).

Using the proof outline mentioned above, we have the following theorem for
the sanitizer in Figure 2 when we use the sparsifier of Spielman and Teng [32].

Theorem 5. The algorithm in Figure 2 preserves (ε, δ) DP, provides an answer
that is ((1 + η)(1 + ε), 0, ν)-approximation, and runs in time O(n2+o(1)) when
using [32] sparsifier.

Using Global Sparsification Techniques: Construction of Spielman and Srivas-
tava [31]. We first recall the spectral sparsifier of Spielman and Srivastava [31].
One alternative way to see their sparsification is that H is a random projection
of the edge matrix of G, where edges are picked according to their importance
in the original graph. The sparsifier construct a graph H by picking every edge,
e ∈ E(G), with probability pe = weRe/(n− 1) to be included in H, where Re is
the effective resistance across the edge e and we is the weight of the edge e. The
effective resistance on an edge can be computed as

Re = beL
†
Gb

T
e ⇒ R = BGL

†
GB

T
G . (6)

Using the above probability distribution, Spielman and Srivastava [31] proved
the following for any arbitrary graph.

Theorem 6. [31] There exists an Õ(m(log r)/ε2) algorithm which on input ε >
1/
√
n and an n vertex, m edges graph G, with the ratio of maximum weight to

minimum weight r, outputs a sparse graph H such that H is an ε-approximation
of G.
Consider the matrix, Π = BL+

GBT , where B is the signed edge-vertex matrix.
It is easy to see that Π is a projection matrix and has a well defined spectrum:
eigenvalue 1 with multiplicity (n−1) and 0 otherwise. Also, it has a nice relation
to the probability with which an edge is picked to be placed in H: Πe,e =

W
1/2
e,e ReW

1/2
e,e = weRe for every edge e = (a, b). Moreover, since the trace of Π

is n− 1; therefore, pe = Πe,e/(n− 1) = ‖BL†(χa−χb)‖/(n− 1), where χa is the
characteristic vector of the vertex a.

We have the following theorem for DP when using the sparsification technique
of Spielman and Srivastava [31].
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Theorem 7. If the input graph has high conductance, then the algorithm in
Figure 2 runs in time O(n2+o(1)) and preserves (ε, δ) differential privacy with
an utility of ((1 + η)(1 + ε), 0, ν) approximation when using [31] sparsifier.

Few remarks are in order regarding Theorems 5 and 7. The theorems state that
the sanitizer allows zero additive error. Therefore, if we have a graph with high
conductance, we can get an answer with only multiplicative approximation for
as low tolerance as possible. This stands in stark contrast with Theorem 3 and
Theorem 9 where there is an additive approximation that governs the tolerance
achieved by the sanitizer. The reason is that, as the underlying graph has high
conductance, the smallest non-zero eigenvalue is large. This allows us to remove
the step where we overlay an expander graph!

4.2 Sanitizer for Arbitrary Graph

Before we move to arbitrary graphs, we give an alternative for the local spar-
sification technique of Spielman and Teng [31]. They (and Trevisan [33], inde-
pendently) proved an important combinatorial property of an arbitrary graph,
which can be used, in composition to their basic technique for high conductance
graph, to prove the sparsification result for any arbitrary graph.

Theorem 8. [32, 33] Let G = (V,E) be an arbitrary graph. Then there exists a
set E ′ ⊂ E of κ|E| edges, such that removal of these edges decomposes the graph
in some components, each of which have an smallest non-zero eigenvalue at least
κ2/72 · (log |E|)2. Furthermore, these edges can be found in polynomial time.

The above theorem could be used to get sparsification algorithm for an arbi-
trary graph. Let E ′ be the set of edges found by the algorithm guaranteed in
Theorem 8. First apply the sparsification algorithm of [32] on all the compo-
nents with high conductance, neglecting the edges in the set E ′. We recursively
apply the sparsification algorithm on E ′ until we get a sparse graph, i.e, one
with |E ′| ≤ Õ(n). The recursion depth is at most O(log n) rounds, so the overall
run time of the algorithm is still under the bound guaranteed by Theorem 4.
Therefore, one could use the complete sparsification technique that decomposes
the graph in to graphs of high conductance with few bridge edges between the
components before the third step of Figure 1. The DP of the sanitizer would
follow the same idea as in the proof of Theorem 5 because the probability of
picking edges depends on local graph structure, and the utility guarantee would
follow from the partition-then-sample lemma of Spielman and Teng [32] and the
guarantee of JL transform.

The idea of constructing sparse graphs using recursion also applies to the
sparsifier of Spielman and Srivastava [31], but does not help us in proving the
DP because of a subtle reason: the probability distribution in [32] depend locally
on the graph structure, i.e., only on the degree of the end-points of the edges
(it also depends on the smallest non-zero eigenvalue of the Laplacian, but from
Lemma 3 and Lemma 4, it is easy to prove that the eigenvalue change by at
most 2). Thus, the probability distribution changes by any significant amount
only for the edge that is added.
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On the other hand, the probability distribution on an edge can change drasti-
cally for Spielman and Srivastava’s sparsifier [31]. This is because the probability
distribution depends globally on the whole graph and if an edge is added, it is
possible that the effective resistance along a different edge changes by a lot. For
example, if a unit weight edge (a, b) is added, then any edge (u, v) that is parallel
to (a, b) sees an effective drop to less than 1. If the conductance of the graph is
not large, then this drop is significant.

The key idea to work around this problem is to maintain the conductance of
the graph. We do this by using appropriate order of composition: we first overlay
a expander (or complete) graph on top of the input graph and then apply the
Spielman-Srivastava’s sparsifier [31].

The utility guarantee follows by incorporating the approximation guarantee
provided by Spielman and Teng [32] or Spielman and Srivastava [31] in the
analysis of Theorem 3.

Theorem 9. The algorithm in Figure 3 preserves (ε, δ)-DP, provides an utility
of (η, τ, ν) approximation, where τ ≤ O((η+ε)ws), and runs in time O(n2+o(1)).

Input. A n-vertex graph G, and parameters ε, δ, η.
Output A Laplacian of a graph L̃.

1. Pick a d-regular expander (or n-vertices complete) graph E.
2. Set LG ← w

d
LE +

(
1− w

d

)
LG .

3. Convert G to a H using [31] or [32], such that H is an ε-sparsification of G.
4. Pick an n× n matrix M with each entries picked from N (0, 1).
5. Output L̃ = (MTLHM)/n

The sanitizer publishes the matrix L̃. For an input S ⊂ V , one can compute
the number of vertices that crosses the cut as below

ΦS(G) =
1

1− w
n

(
χT
S L̃χS − ws(n− s)

n

)
.

Fig. 3. Sanitizer for Arbitrary Graph

Remark. Note that we can perform the complexity analysis of all the sanitizer
mentioned in Sections 3 and 4 using the optimization mentioned in Section 5.

4.3 Answering (S, T )-cut Queries

One of the open problems listed by BBDS was to construct a sanitizer that
answers (S, T )-cut queries on arbitrary graphs. Their concern for using the JL
transform based mechanism is related to the inner product problem in JL trans-
form. We get around this problem by making a simple combinatorial observation.

LetS, T ⊆ V be the set of vertices andwewish to findΦG(S, T ) =
∑

s∈S,t∈T wst.
Note that

ΦG(S) =
∑

s∈S,u∈V \S
wsu and ΦG(T ) =

∑
t∈T,v∈V \T

wst.
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Therefore, ΦG(S) + ΦG(T ) counts the weight of the edges that are crossing
the boundaries of either S or T . These edges includes two types of edges: one
that are crossing the boundaries of either S or T but do not have end vertices
in both the sets and the one that have one end in S and the other in T . Note
that we are interested in counting the weight of the edges of the latter form.
Therefore, ΦG(S) + ΦG(T ) − ΦG(S ∪ T ) is the sum of the weights of the edges
between S and T , counted twice. This observation gives us that ΦG(S, T ) =
(ΦG(S) +ΦG(T )−ΦG(S ∪ T ))/2. Therefore, anyone with a set of vertices S and
T as input and the sanitized graph from any of the mechanisms in this paper
can compute ΦG(S, T ) as below

ΦG(S, T ) =
1

2(1− w
n )

((
χTS L̃χS + χTT L̃χT − χTS∪T L̃χS∪T

))
− 1

2(1− w
n )

(
ws(n − s)

n
+

wt(n− t)

n
− w(s+ t)(n− (s+ t))

n

)
.

Since computing the (S, T )-cut is three sequential applications of our basic san-
itizer, DP follows from Theorem 3 (Theorem 5 and 7, respectively) for sparse
graphs (high conductance graphs and arbitrary graphs, respectively) and the
composition theorem of Dwork, Rothblum, and Vadhan [10, Theorem III.1].
The utility guarantee and efficiency guarantee are straightforward, giving the
following theorem.

Theorem 10. We can preserves (ε, δ) DP and provides an utility of (η, τ, ν) ap-
proximation, where τ ≤ O((η + ε)wmax{s, t}) in time O(n2+o(1)) for answering
(S, T )-cut queries.

4.4 Comparison with Other Algorithms

In Table 1, we compare our sanitizer algorithms with other sanitizers that are
proposed in the literature. It is not clear how to compare interactive and non-
interactive sanitizers; therefore, for the additive errors, we have a column when
total number of cut queries are at most k.

Table 1. Comparison Between our Sanitizers and Other Sanitizers

Method τ for any k Curator’s Run Time

Randomized Response [17] O(
√

sn log k/ε) O(n2)

Exponential Sanitizer [4, 27] O(n log n/ε) Intractable

Multiplicative Weight [17, 19] Õ(
√

|E| log k/ε) O(n2)

JL [3] O(s
√
log k/ε) O(rn2.38)

Basic Scheme O(s(η + ε′)
√
log k/ε) O(n2+o(1))

Using Sparsifier O(s(η + ε′)
√
log k/ε) O(n2+o(1))
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It is easy to see from Table 1 that our sanitizer almost matches the best
of both the worlds; it is almost as efficient as Randomized Response and the
utility guarantee is as high as JL transform for constant ε′, ε. For JL mechanism,
we assume that for publishing the matrix, the sanitizer uses the Coppersmith-
Winograd’s matrix multiplication algorithm.

5 Optimization Using Fast-JL Transform

Our last major contribution is to explore whether some other variants of JL
transform also preserve DP. We show a positive result for fast JL-transform of
Ailon and Chazelle [2]; thereby, partially answering an open problem of BBDS.

Due to lack of space, we just give an overview of our proof. Recall that the fast-
JL transform is the product PWD. The intuitive reason why fast JL transform
preserves privacy is that fast-JL transform preconditions the input by perform-
ing a random projection by matrix D. This is a random projection by the result
of Achlioptas [1]. It then applies an unitary matrix that is a FFT and then another
random projection matrix P . Thus, it can be seen as the application of two ran-
dom projections. Using Theorem III.1 of Dwork, Rothblum, and Vadhan [10] and
the main observation of BBDS, it preserves DP. This is our intuition behind the
proof.

The exact proof uses case analysis. Consider the edge (a, b) that is present
in G′ and absent in G. Let d1, · · · , dn be the diagonal entries of the matrix D.
The proof proceeds by consider two cases: when da = db and when da �= db. The
first case is almost the same as in BBDS because WD is an unitary matrix. The
upper bound when da �= db is also immediate. However, for lower bound, we
need to analyze the terms in the decomposition of matrix WDLabD

TWT , and
the eigenvalues of the projection of WDLG on the co-ordinates a, b.

6 Open Problems

Our technique of using spectral sparsification is very general. We believe it could
be used as a subroutine in many sanitization algorithms, which are designed to an-
swer queries based on the spectral properties, to improve their run time. It would
be interesting to investigate other such spectral properties. For example, one possi-
ble candidate for this improvement could be the differentially private low rank ap-
proximation algorithm of Kapralov and Talwar [23]. This is because Kapralov and
Talwar [23] assume that their private matrices are covariancematrices and publish
the low rank approximation by computing the singular vectors. Since covariance
matrices are symmetric, one could compute the spectral sparsification.

Another aspect that is still open is to investigate whether other off-the-shelf
JL transforms also preserve privacy or not. We have partially answered this
question by studying fast JL transform, but there are many other variants that
have applicability in different domains of computer science. In particular, we
believe that any positive result for sparse JL transforms will be a significant step
in improving the efficiency of our sanitizers and help in better understanding
the relation between JL transforms and DP.
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Abstract. Reductions are the common technique to prove security of
cryptographic constructions based on a primitive. They take an allegedly
successful adversary against the construction and turn it into a success-
ful adversary against the underlying primitive. To a large extent, these
reductions are black-box in the sense that they consider the primitive
and/or the adversary against the construction only via the input-output
behavior, but do not depend on internals like the code of the primitive or
of the adversary. Reingold, Trevisan, and Vadhan (TCC, 2004) provided
a widely adopted framework, called the RTV framework from hereon, to
classify and relate different notions of black-box reductions.

Having precise notions for such reductions is very important when it
comes to black-box separations, where one shows that black-box reduc-
tions cannot exist. An impossibility result, which clearly specifies the
type of reduction it rules out, enables us to identify the potential lever-
ages to bypass the separation. We acknowledge this by extending the
RTV framework in several respects using a more fine-grained approach.
First, we capture a type of reduction—frequently ruled out by so-called
meta-reductions—which escapes the RTV framework so far. Second, we
consider notions that are “almost black-box”, i.e., where the reduction
receives additional information about the adversary, such as its success
probability. Third, we distinguish explicitly between efficient and ineffi-
cient primitives and adversaries, allowing us to determine how relativiz-
ing reductions in the sense of Impagliazzo and Rudich (STOC, 1989) fit
into the picture.

1 Introduction

A fundamental question in cryptography refers to the possibility of constructing
one primitive from another one. For some important primitives like one-way
functions, pseudorandom generators, pseudorandom functions, and signature
schemes it has been shown that one can be built from the other one [24, 17, 34].
For other primitives, however, there are results separating primitives like key
agreement or collision-resistant hash functions from one-way functions [26, 36].

Separations between cryptographic primitives usually refer to a special kind
of reductions called black-box reductions. These reductions from a primitive P
to another primitive Q treat the underlying primitive Q and/or the adversary
as a black box. Reingold et al. [33] suggested a taxonomy for such reductions
which can be divided roughly into three categories:
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Fully Black-Box Reductions: A fully black-box reduction S is an efficient
algorithm that transforms any (even inefficient) adversary A, breaking any
instance Gf of primitive P , into an algorithm SA,f breaking the instance f
of Q. Here, the reduction treats both the adversary as well as the primitive
as a black box, and G is the (black-box) construction out of f .

Semi Black-Box Reductions: In a semi black-box reduction, for any instance
Gf of P , if an efficient adversary Af breaks Gf , then there is an algorithm
Sf breaking the instance f of Q. Here, Sf can be tailor-made for A and f .

Weakly Black-Box Reductions: In a weakly black-box reduction, for any
instance Gf of P , if an efficient adversary A (now without access to f)
breaks Gf , then there is an algorithm Sf breaking the instance f of Q.

Reingold et al. [33] indicate that the notion of weakly black-box reductions is
close to free reductions (with no restrictions), such that separation results for this
type of reduction are presumably hard to find. They discuss further notions like
“∀∃ versions” of the above definitions, where the construction G does not make
black-box use of f but may depend arbitrarily on f , and relativizing reductions
where security of the primitives should hold relative to any oracle. We discuss
these notions later in more detail.

1.1 Black-Box Separation Techniques

Known black-box separations usually obey the following two-oracle approach:
to separate P from Q one oracle essentially makes any instance of P insecure,
whereas the other oracle implements an instance of Q. It follows that one cannot
build (in a black-box way) P out of Q. For example, Impagliazzo and Rudich [26]
separate key agreement from one-way permutations by using a PSPACE-complete
oracle to break any key agreement, and a random permutation oracle to realize
the one-way permutation. This type of separation rules out so-called relativizing
reductions, and are in this case equivalent to semi black-box reductions via
embedding of the PSPACE-complete oracle into the black-box primitive [33].

Later, Hsiao and Reyzin [25] consider simplified separations for fully black-box
reductions. Roughly speaking, they move the breaking oracle into the adversary
such that the reduction can only access this oracle through the adversary (instead
of directly, as in [26]). Because this makes separations often much more elegant
this technique has been applied successfully for many other primitives, e.g., [11,
20, 21, 27, 5, 13, 29, 28, 3].

Interestingly, recently there has been another type of separations based on so-
called meta-reduction techniques, originally introduced by Boneh and Venkate-
nesan [6], and subsequently used in many other places [9, 30, 22, 14, 31, 15,
10, 35, 12]. Such meta-reductions take an alleged reduction from P to Q and
show how to use such a reduction to break the primitive P directly, simulat-
ing the adversary for the reduction usually via rewinding techniques. It turns
out that meta-reductions are somewhat dual to the above notions for black-box
reductions. They usually work against reductions which use the adversary only
in a black-box way, whereas the reduction often receives the description of the
primitive f . This notion then escapes the treatment in [33].
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An interesting side effect when the reduction is given the description of f is
that then the separation technique still applies to concrete problems like RSA
or discrete logarithms, and to constructions which use zero-knowledge proofs
relative to f . Such zero-knowledge proofs often rely on Karp reductions of f
to an NP-complete language and therefore on the description of f . In contrast,
for black-box use of the primitive f such constructions do not work in general,
although some of them can still be rescued by augmenting the setup through a
zero-knowledge oracle which allows to prove statements relative to f (see [7]).
We also remark that in some cases, such as Barak’s ingenious result about non-
black-box zero-knowledge and related results [2, 4], the security relies on the
code of the adversary instead, though.

1.2 Our Results

The purpose of this paper is to complement the notions of fully, semi, and weakly
black-box reductions. We also introduce a more fine-grained view on the involved
algorithms, such as the distinction between efficient and non-efficient adversaries,
or the question in how far the framework can deal with the reduction having
partial knowledge about the adversary. We also formalize meta-reductions in the
new framework and thus enable classification of this type of separation results.
We give a comprehensive picture of the relationship of all reduction types. Next
we discuss these results in more detail.

As explained above, we extend the classification of black-box reductions to
other types, like meta-reductions relying on black-box access to the adversary but
allowing to depend on the primitive’s representation. This, interestingly, also af-
fects the question of efficiency of the involved algorithms. That is, we believe that
reductions for inefficient and efficient adversaries and primitives should in gen-
eral not be resumed under a single paradigm, if efficiently computable primitives
like one-way functions are concerned. For this class, classical separations tech-
niques such as the embedding of the adversarially exploited PSPACE-complete
oracle into the primitive do not work anymore. Hence, in this case one would
need to additionally rely on a complexity assumption, such as for example in the
work by Pass et al. [32]. To testify the importance of the distinction between
efficient and inefficient adversaries in black-box reductions we show for example
that black-box use of efficient adversaries is equivalent to non-black-box use, for
constructions and reductions which are non-black-box for the primitive. Another
example where the non-black-box use of the primitive turned out to be crucial
is in the work by Mahmoody and Pass [29] where non-interactive commitments
are built from non-black-box one-way functions, whereas constructions out of
black-box one-way functions provably fail.

Another issue we address is the question in how far information about the
adversary available to the reduction may be considered as covered by black-
box notions. Technically speaking, the running time of an efficient fully black-
box reduction must not depend on the adversary’s running time, and thus for
example on the number of queries the adversary makes to the primitive. Else, one
would need to use a non-standard cost model for the reduction’s oracle queries
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to the adversary. We overcome this dilemma by allowing the reduction’s running
time (or other parameters) to depend on adversarial parameters, such as the
number of queries the adversary makes when attacking primitive P . We call this
a parameter-dependent reduction.

We can go even one step further and give the reduction the adversarial param-
eters as input. This is for example necessary to allow the reduction to depend
on the adversary’s success probability, but otherwise treating the adversary as a
black box. A well-known example of such an “almost” fully black box reduction
is the security proof of the Goldreich–Levin hardcore predicate [19], attributed
to Rackoff in [16]. This reduction depends on the adversary’s success probability
for a majority decision, but does not rely on any specifics of the adversary nor
the function to be inverted itself. We call such reductions parameter-aware.

We note that it is up to the designer of the reduction or separation to precisely
specify the parameters. Such parametrized black-box reductions potentially allow
authors to counteract the idea behind black-box reductions by placing the adver-
sary’s code in the parameters and thus making the reduction depend on the adver-
sary again (via a universal Turing machine). But we assume that such trivial cases
can be easily detected if the dependency is signalized clearly, just as in the case of a
trivial reduction of a cryptographic protocol to its own security. So far, however, lit-
erature seems to be often less explicit on which parameters the reduction is based
upon, and if the reduction should really count as black box. Stating reductions
clearly as parametrized black-box reduction should make this more prominent.

In summary, we thus provide a more comprehensive and fine-grained view on
black-box constructions and separations, allowing to identify and relate separa-
tions more clearly. In our view, two important results are that we can place rel-
ativizing reductions between non-black box constructions for inefficient and for
efficient adversaries, and that for efficient adversaries the question of the reduc-
tion having black-box access to the adversary, or allowing full dependency on the
adversary, is irrelevant. This holds as long as the construction and reduction itself
make non-black-box use of the primitive. From a technical point of view, one of
the interesting results is clearly that any reduction from the indistinguishability
of hardcore bits to one-wayness, such as in the Goldreich–Levin case [19], must de-
pend on the adversary’s success probability (and thus needs to be parametrized).

Nevertheless, we view the contributions in this paper to be primarily on the
conceptual side. Given the central role that reductions play in modern cryptog-
raphy, our impression is that a fundamental—but rather coarse—work like [33]
leaves some potential for refinement. Let us demonstrate this by the following
two examples.

The Hsiao-Reyzin separation [25] is often termed fully black-box (according
to [33]) and considered to be a rather “weak” separation. Our more fine-grained
picture shows that the separation is actually of the NNN type and thus rather
a low-level (i.e., strong) separation which cannot be bypassed through, say, any
non-black-box technique in either direction of the CAP dimensions. Hence, non-
black-box techniques cannot be used to sidestep this impossibility result; looking
at efficient adversaries/primitives may help, though.
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Similarly, according to [33], meta-reductions only rule out BBB reductions.
So, the framework does not make any distinction between the strength of meta-
reductions and some oracle separations. However, most meta-reductions today
rely on unbounded adversaries. As our paper exhibits one might circumvent such
meta-reductions by switching to the “parallel universe” of efficient adversaries,
identifying exactly what kind of black-boxness is still admissible according to
our implications (e.g., if the meta-reduction rules out NBN reductions, then one
may still manage to find an NBNa reduction).

Thus, our framework reveals that some impossibility results actually rule out
a great class of reductions and points exactly to the remaining few leverages to
give positive results.

2 Notions of Reducibility

We extend the original framework for notions of reducibility by Reingold, Tre-
visan and Vadhan [33]. Since we augment the basic notions in various directions,
we find it useful to use a different terminology for the reduction types. Instead
of referring the original terms fully, semi, weakly, and their ∀∃ variants, we use a
more descriptive three-character “CAP” notation with words from the language
{B,N}3, with the meaning that a ‘B’ in the first position (the C-position) refers
to the fact that the Construction is black-box, in the second A-position that the
Adversary is treated as a black-box by the reduction, and in the third P-position
the Primitive is treated as black-box by the reduction. Accordingly, an entry ‘N’
stands for a non-black-box use. From each combination of constraints, we then
derive the order of quantification to obtain the actual definitions.

Hence, a fully black-box reduction in the RTV framework corresponds to a
BBB-reduction in our notation, and a ∀∃ fully black-box reduction is an NBB-
reduction in our sense. The CAP notation will later turn out to be handy when
showing implications from an XYZ-reduction to an X̂ŶẐ-reduction, whenever
X̂ŶẐ is pointwise at most as large as XYZ (with N being smaller than B). It
also allows to see immediately that the RTV framework only covers a fraction
of all 8 possibilities for the CAP choices (although the NNB type is actually not
meaningful, as we discuss later), and that we fill in the missing types BBN, as
often ruled out by meta-reductions, and the dual BNB type where the primitive
but not the adversary is treated as a black-box.

Extending the RTV framework in another dimension, we differentiate further
based on the (in)efficiency of the primitives and adversaries. We append the
suffix ‘a’ to denote an efficiency requirement on the adversary, i.e., a BBBa-
reduction only works for all probabilistic polynomial-time (PPT) adversaries
A, while a BBB-reduction is a fully black-box reduction that transforms any
adversary A into an adversary against another primitive. Likewise, we use ‘p’
to indicate that we restrict primitives to those which are efficiently computable;
the suffix ‘ap’ naturally combines both restrictions.
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2.1 Overview

At the top of the RTV hierarchy there are fully black-box reductions—or, BBB-
reductions in our CAP terminology. These BBB-reductions from a primitive P
to a primitive Q is a pair (G,S) consisting of a construction G and a reduc-
tion algorithm S. Both treat the primitive in a black-box way and the reduction
treats the adversary in a black-box way. So, for all adversaries A and all instan-
tiations f of the primitive Q, we have that, if the adversary Af breaks Gf , then
the reduction SA,f with black-box access to the adversary A and f breaks the
implementation f . As a consequence, the existence of primitive Q implies the
existence of the primitive P .

fully

relativizing

semi

∀∃-semi

weakly

∀∃-weakly

free reduction

(a)

BBB

BBBa

fully≡ ∗BB
NBB

NBBaBBN

BBNa
∗BN

NBN

NBNaBNN

BNNasemi≡ ∗NN
NNN

relat. NNNawBNN

wBNNa
weakly

wNNN

wNNNa

free reduction

BNB

BNBa

(b)

Fig. 1. (a) shows the relation of notions in the RTV framework. The dashed arrows
indicate equivalence for a restricted class of reductions. In our framework (b), it is
instructive to look at the vertical planes for fully, ∗BN, semi, and weakly. The left
side corresponds to inefficient adversaries, the right side to efficient ones. The front is
the ∀∃ layer, i.e., non-black-box constructions, and the back corresponds to black-box
constructions. As NNB-reductions are not meaningful, we only need the BNB type
(in gray). The w∗NN notions are equivalent to the weakly notions of RTV. A notion
A implies notion B if there is a path of edges between both notions and notion A is
located above notion B.

The RTV framework discusses several variants and relaxations of fully black-
box reductions, called semi, weakly, and relativizing reductions. For semi black-
box reductions (aka. BNN-reductions) S can depend on both, the description
of the adversary A and of the instantiation f , and only the construction is
black-box. For weakly black-box reductions (which are also of the BNN type)
the adversary is additionally restricted to be efficient and does not get access
oracle to the primitive (but may depend on it). There is a relativizing reduction
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between the primitives P and Q, if for all oracles, the primitive P exists relative
to an oracle whenever Q exists relative to this oracle. Figure 1a illustrates the
relationships between these classes.

We augment the RTV framework by new classes which represent, among oth-
ers, reductions that are ruled out by certain meta-reductions. That is, we first
introduce the notion of BBN-reductions where S has to work for all (black-box)
adversaries, but may depend on the code of f . The other case, where S is univer-
sal for all black-box f but may depend on A, is called BNB-reduction. In both
cases the initial ‘B’ indicates that the construction still makes black-box calls to
the primitive. We remark that semi black-box and weakly black-box reductions
are of the same BNN type in our notation as they only differ in regard to the
adversary’s access to f . As pointed out in [33] weakly black-box reductions are
close to free reductions, and black-box separations are presumably only possible
at the semi level or above. In a sense, our CAP model only captures these levels
above, and other types like free or relativizing (or weakly) reductions are special.
For the sake of completeness, we symbolically denote (but do not define) weakly
reductions w∗NN and remark that they essentially correspond to the weakly
type of RTV. Note that weakly black-box reductions are called mildly black-box
in some versions of RTV.

The RTV framework also considers the type of construction (black-box vs. non-
black-box) and uses the prefix ∀∃ to indicate that construction G does not need
to be universal for all f but can, instead, depend on the description of f . In our
CAP terminology this “flips” the initial ‘B’ to an ‘N’. By this, we get 8 combina-
tions, of which 7 are reasonable. The notion of NNB-reduction is not meaningful,
because we are restricted by the following dependencies: the construction may
depend on the primitive, the reduction may depend on the adversary, and the
reduction should be universal for the primitive. Thus, there is only one way to
order the quantifiers (∀A∃S∀f∃G) which does not seem to be a reasonable no-
tion of security, because the construction can now depend on the adversary (and
if it does not, we are in the other cases).

We note that the notion of an NBB-reduction is debatable, because it relies on
a universal reduction which works for arbitrary constructions. That is, the order
of quantifiers is ∃S∀f∃G∀A. But since there may indeed be such reductions,
say, a trivial reduction from a primitive to itself, we do not exclude this type of
reduction here.

2.2 Definitions of Reductions

We next provide definitions of BBB (aka. fully black-box) reductions, BNB and
BBN reductions; the remaining definitions are delegated to the full version of
this paper [1].

A primitive Q = (FQ,RQ) is represented as a set FQ of random variables,
corresponding to the set of implementations, and a relation RQ that describes
the security of the primitive as tuples of random variables, i.e., a random vari-
able A is said to break an instantiation f ∈ FQ, if and only if (f,A) ∈ RQ.
Following [33], we say that a primitive exists if there is a polynomial-time
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CAP [33] name Remark(s)

BBB fully known meta reductions: [8, 22]
BBN
BNB known reduction: [19]
BNN semi (weakly)
NBB ∀∃-fully formally not defined in [33], only “trivial” reductions
NBN known meta reductions: [6, 22, 14, 31]
NNB not meaningful
NNN ∀∃-semi (∀∃-weakly)

Fig. 2. CAP indicates whether the construction (C), the adversary in the reduction
(A), or the primitive in the reduction (P) is treated in a black-box (B) or non-black-box
(N) way

computable instantiation f ∈ FQ such that no polynomial-time random variable
breaks the primitive. Indeed, [33] demand that primitive sets FQ are non-empty,
but do not motivate this further. We drop this requirement here as reductions
explicitly depend on primitives, such that one can enforce such non-empty sets
by investigating only such primitives if necessary. Still, we remark that all our
implications and separations would work in this case as well.

For efficient primitives or adversaries we stipulate that the random variable
is efficiently computable in the underlying machine model which, unless men-
tioned differently, is assumed to be Turing machines; the results remain valid for
other computational models like circuit families. Considering security as a gen-
eral relation allows to cover various (if not all) notions of security: games such
as CMA-UNF for unforgeability of signature schemes, simulation-based notions
such as implementing a UC commitment functionality, and even less common
notions such as distributional one-way functions. In the full version of this pa-
per [1] we define as examples the DDH assumption (cast as a primitive) and
the indistinguishability of the ElGamal encryption scheme . We also present the
reduction from the ElGamal encryption to the DDH assumption and identify its
type according to our terminology. Note that a “black-boxness” consideration in
this particular setting is indeed meaningful, because the DDH assumption can
hold in a variety of group distributions and the concrete procedures that sam-
ple from these group distributions can be abstracted away. In the full version
we discuss another example of weak one-way functions (and the construction
of strong one-way functions [37]) to highlight that the type of reduction hinges
on the exact formulation of the underlying primitive: the construction and the
reduction is then either of the NBN type or of the BBB kind.

We stress that the distinction between the mathematical object describing the
adversary as a random variable, and its implementation through, say, a Turing
machine is important here; else one can find counter examples to implications
among black-box reduction types proven in [33]. The problem is roughly that the
relation may simply be secure because it syntactically excludes all oracle Turing
machines Af . We note that Reingold et al. [33] indeed define the relations for
adversarial machines. Our discussion in [1] shows that only interpreting such
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adversaries as abstract objects sustains the implications in [33]. However, for
sake of convenience, we too often refer to Af by the machine implementing it,
even when considering the mathematical random process for relationsRQ. In this
case it is understood that we actually mean the abstract random variable instead.
The same holds for the constructions of the form Gf and the first component of
the security relations. An alternative approach, also presented in the full version
is to rely on machines, but to formally introduce semantical relations. These
relations roughly require that, for any algorithm A in RQ, any oracle machine
Af with the same output behavior is also in RQ.

We now turn to the actual definitions. Many (but not all) reductions in cryp-
tography fall into the class of so-called fully black-box reductions, a very re-
strictive notion, where the reduction algorithm is only provided with black-box
access to the primitive and the adversary. Throughout the paper, if there is a
XYZ-reduction from primitive P to a primitive Q, we notate this as (P ↪→ Q)-
XYZ-reduction. Note that the correctness is requirement is the same for all
definitions. Therefore, the shorthand notation towards the end of each definition
covers the security requirement only.

Definition 1 ((P ↪→ Q)-BBB or Fully Black-Box Reduction). There ex-
ists a fully black-box (or BBB-)reduction from a primitive P = (FP ,RP) to a
primitive Q = (FQ,RQ) if there exist probabilistic polynomial-time oracle algo-
rithms G and S such that:

Correctness. For every f ∈ FQ, it holds that Gf ∈ FP .
Security. For every implementation f ∈ FQ and every machine A, if (Gf ,Af ) ∈
RP , then (f,SA,f ) ∈ RQ, i.e.,

∃PPTG ∃PPTS ∀f ∈ FQ ∀A ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ).

Definition 2 ((P ↪→ Q)-BNB-reduction). There exists a BNB-reduction
from a primitive P = (FP ,RP) to a primitive Q = (FQ,RQ) if there exists
a probabilistic polynomial-time oracle machine G such that:

Correctness. For every f ∈ FQ, it holds that Gf ∈ FP .
Security. For every machine A, there is a probabilistic polynomial-time oracle

algorithm S such that: for every implementation f ∈ FQ, if (G
f ,Af ) ∈ RP ,

then (f,SA,f ) ∈ RQ, i.e.,

∃PPTG ∀A ∃PPTS ∀f ∈ FQ ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ).

Definition 3 ((P ↪→ Q)-BBN-reduction). There exists a BBN-reduction
from a primitive P = (FP ,RP) to a primitive Q = (FQ,RQ) if there exists
a probabilistic polynomial-time oracle machine G such that:

Correctness. For every f ∈ FQ, it holds that Gf ∈ FP .
Security. For every implementation f ∈ FQ, there is a probabilistic polynomial-

time oracle algorithm S such that for every machine A, if (Gf ,A) ∈ RP ,
then (f,SA,f ) ∈ RQ, i.e.,

∃PPTG ∀f ∈ FQ ∃PPTS ∀A ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ).
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Name Summary of definition

BBB ∃PPTG ∃PPTS ∀f ∈ FQ ∀A ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ)

BNB ∃PPTG ∀A ∃PPTS ∀f ∈ FQ ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ)

BBN ∃PPTG ∀f ∈ FQ ∃PPTS ∀A ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ)

BNN ∃PPTG ∀f ∈ FQ ∀A ∃PPTS ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ)

NBB ∃PPTS ∀f ∈ FQ ∃PPTG ∀A ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ)

NBN ∀f ∈ FQ ∃PPTG ∃PPTS ∀A ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ)

NNN ∀f ∈ FQ ∃PPTG ∀A ∃PPTS ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ)

weakly-BB ∃PPTG ∀A ∀f ∈ FQ ∃PPTS ((Gf ,A) ∈ RP ⇒ (f,SA,f ) ∈ RQ)

∀∃-weakly-BB ∀f ∈ FQ ∃PPTG ∀A ∃PPTS ((Gf ,A) ∈ RP ⇒ (f,SA,f ) ∈ RQ)

Fig. 3. Overview of notions of reducibility

Note that we always grant S black-box access to f and A, as they may not
be efficiently computable so that the probabilistic polynomial-time reduction
algorithm S cannot efficiently simulate them, even if it knows the code of f ,
respectively, of A. For a compact summary of all definitions, see Figure 3; the
full definitions omitted above appear in the full version of this paper [1].

2.3 Efficient versus Inefficient Algorithms

Reductions usually run the original adversary as a subroutine. However, in many
cases, the reduction does not use the code of the original adversary, but instead
only transforms the adversary’s inputs and outputs. Thus, one might consider
the reduction algorithm as having black-box access to the adversary only. An
efficient reduction can then also be given black-box access to an inefficient ad-
versary, and, maybe surprisingly, most reductions even work for inefficient ad-
versaries. Imagine, for example, the case that one extracts a forgery against a
signature scheme from a successful intrusion attack against an authenticated
channel. Then, the extraction usually still works for inefficient adversaries. On
the other hand, (unconditional) impossibility results often require the reduction
algorithm to be able to deal with inefficient adversaries.

When designing a fine-grained framework for notions of reducibility, one thus
needs to decide whether one considers efficient or inefficient adversaries. Rein-
gold et al. [33] defined their most restrictive notion of reductions, the fully-BB-
reductions (aka. BBB), for inefficient adversaries. In contrast, their notion of
semi-BB-reduction treats only efficient adversaries thus making it easier to find
such a reduction. Surprisingly, even for such a weak notion, they were able to
give impossibility results. The reason is that they used inefficient primitives,
which allow to embed arbitrary oracles so that they could make use of two-
oracle separation techniques. Hence, the efficiency question does not only apply
to adversaries, but also to the primitives (and, consequently, to the combination
of both). We postpone the treatment of the case of primitives for now and refer
the reader to Section 2.6.
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We now define the efficient adversary analogues of the notions of reduction
introduced in the previous section. Note that we still give the reduction S oracle
access to the adversary A in all notions, even though the latter can be dropped
for all cases where S depends on A in a non-black-box way. In these cases, a
probabilistic polynomial-time reduction S can simulate the now likewise efficient
adversarial algorithm A. For consistency, though, we keep the A oracles in the
definitions. To distinguish the two cases of efficient and unbounded adversaries,
denote by BBBa-reduction a reduction only dealing with efficient adversaries.

Definition 4 ((P ↪→ Q)-BBBa-reduction for Efficient Adversaries).
There exists a BBBa-reduction from a primitive P = (FP ,RP ) to a primi-
tive Q = (FQ,RQ) if there exist probabilistic polynomial-time oracle machines
G and S such that:

Correctness. For every f ∈ FQ, it holds that Gf ∈ FP .
Security. For every implementation f ∈ FQ and every probabilistic polynomial-

time machine A, if (Gf ,A) ∈ RP , then (f,SA,f ) ∈ RQ, i.e.,

∃PPTG ∃PPTS ∀f ∈ FQ ∀PPTA ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ).

Again, the definitions for the remaining types of reductions are presented in
the full version of this paper [1].

2.4 Relations amongst the Definitions

We first note that a number of implications among the reductions is immediately
clear by simply shifting quantifiers, that is, if we have an for-all quantifier, there is
certainly an existential version of the reduction in question. The next proposition
states this formally, we omit the proof because it is only syntactical.

Theorem 1. Let XYZ and X̂ŶẐ be two types of CAP reductions such that
X̂ŶẐ ≤ XYZ point-wise (where N ≤ B) and let P and Q be two primitives.

If there is a (P ↪→ Q)-XYZ-reduction, then there is a (P ↪→ Q)-X̂ŶẐ reduction.

Also, if there is a (P ↪→ Q)-XYZa-reduction, then there is a (P ↪→ Q)-X̂ŶẐa
reduction.

In the full version of this paper [1], we prove via means of counterexamples that
for all notions for inefficient adversaries, almost all the above implications are,
indeed, strict. These separations are split into a number of interesting observa-
tions. For example, we prove that the Goldreich–Levin hardcore bit reduction [19]
has to depend on the success probability of the adversary (Theorem D.3 of [1]).
Moreover, we show that the construction of one-way functions out of weak one-
way functions ([37, 18]) needs to depend on the weakness parameter of the weak
one-way function (Theorem D.2 of [1]). Interestingly, some of the implications
of Theorem 1 are not strict when one is concerned with reductions for effi-
cient adversaries. Maybe surprisingly, NNNa-reductions and NBNa-reductions
are, indeed, equivalent. Note that this means that knowledge of the code of the
adversary does not lend additional power to the reduction:
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Theorem 2 (Equivalence of NNNa and NBNa). For all primitives P and
Q, there is a (P ↪→ Q)-NBNa-reduction if and only if there is a (P ↪→ Q)-
NNNa-reduction.

Proof. Using straightforward logical deductions, it follows that NBNa-reductions
imply NNNa-reductions. For the converse direction, assume that we have two
primitives P and Q such that there is a (P ↪→ Q)-NNNa-reduction. We now
have to show that there also is a (P ↪→ Q)-NBNa-reduction, that is, we have to
give a reduction algorithm S that depends on f in a non-black-box-way, and yet
S depends on A only in a black-box way. We proceed by case distinction over f .

Case I: Suppose f ∈ FQ such that for all constructions G, the primitive Gf

is a secure implementation of P , i.e., for all polynomial-time adversaries A it
holds that (Gf ,Af ) /∈ RP . Then proving the existence of a reduction satisfying
the implication (Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ is trivial, as the premise of
the implication is never satisfied.

Case II: For any f ∈ FQ outside the class described in Case I, we know that
there exists a PPT construction G such that for all A there is a reduction algo-
rithm S that satisfies (Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ, and such an efficient
A with (Gf ,Af ) ∈ RP exists. For any such f , we now fix a unique adversary
Af , say, by taking the random variable Af with the shortest description accord-

ing to a particular encoding, such that it satisfies (Gf ,Af
f ) ∈ RP . For such an

Af let S be a probabilistic polynomial-time reduction making black-box use of

Af such that (f,SAf ,f ) ∈ RQ. Consider the oracle algorithm Sff that has the

same behavior as SAf ,f , but it incorporates Af and only has an f -oracle. The

algorithm Sff only depends on f , satisfies (Sff , f) ∈ RQ, and is implementable
in probabilistic polynomial time, as S and Af are both polynomial time algo-
rithms. Thus, regardless of construction G, we showed that for all f there is
an efficient reduction S such that (Sf , f) ∈ RQ, namely by choosing Sf = Sff .
Thus, we also know that for all f , there is a reduction S such that for all A, if
(A, Gf ) ∈ RP then (Sf , f) ∈ RQ. If now, we add an adversary oracle A that is
ignored1 by S, we also obtain that (Sf , f) ∈ RQ. And thus, there is a (P ↪→ Q)-
NBNa-reduction. ��

We now show that, while a reduction for inefficient adversaries always implies a
reduction for efficient adversaries of the same type, the converse is not true in
general.

Theorem 3. For eachXYZ ∈ {BBB,BNB,BBN,NBB,BNN,NBN,NNN}, there
are primitives P and Q such that there is a (P ↪→ Q)-XYZa-reduction, but no
(P ↪→ Q)-XYZ-reduction.

Proof. For the primitive P we consider a trivial primitive, namely the constant
all-zero function, denoted f0. Let L be an EXPTIME-complete problem. The pair
(f0,A) is in the relation RP if and only if the adversary A is a deterministic
function that decides L. Let FQ also consist of the set that only contains the all-
zero function f0. The relationRQ is empty. Observe that, for efficient adversaries,

1 Here, we require the relation to be machine-independent.
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the primitive P is secure because EXPTIME strictly contains the complexity class
P [23]. Thus, there is a trivial reduction since the premise of the implication

(Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ

is never satisfied for any efficient adversary A. Hence, for all XYZ �= NNB, there
is a (P ↪→ Q)-XYZa-reduction. In contrast, inefficient adversaries can break the
primitive P , while, as RQ is empty, no reduction S can break RQ, even oracle
A. Thus, for all XYZ ∈ {BBB,BNB,BBN,NBB,BNN,NBN,NNN}, there is no
(P ↪→ Q)-XYZ-reduction. ��

2.5 Relativizing Reductions

In complexity theory as in cryptography, most reductions relativize in the pres-
ence of oracles, i.e., if a (secure instantiation of the) primitive P can be built
from a (secure instantiation of the) primitiveQ, then the construction still works,
if additionally, all parties get access to a random oracle (or any other oracle).
We say that there is a relativizing reduction from P to Q, if for all oracles Π ,
the primitive P exists relative to Π , whenever Q exists relative to Π . Often,
separation results rule out such reductions.

Definition 5 (Relativizing Reduction). There exists a relativizing reduction
from a primitive P to a primitive Q, if for all oracles Π, the primitive P exists
relative to Π whenever Q exists relative to Π. A primitive P is said to exist
relative to Π if there is an f ∈ FP which has an efficient implementation when
having access to the oracle Π such that there is no probabilistic polynomial-time
algorithm A with (f,AΠ,f ) ∈ RP .

We remark that, since we define security relations over random variables and
not their implementations, it is understood that the implementation of f may
actually depend on Π , too. According to Reingold et al. [33], relativizing reduc-
tions are a relatively restrictive notion of reducibility that they place between
BBB-reductions and NNNa-reductions. Jumping ahead, we note this is due their
treatment of (in-)efficient adversaries: they require BBB-reductions to also work
for inefficient adversaries A, and so do we. In contrast, for NNNa-reductions,
Reingold et al. allow the reduction algorithm to fail for inefficient adversaries A.
As we can show, all notions of reducibility for inefficient adversaries, including
NNN-reductions, imply relativizing reductions, i.e., we can place relativizing re-
ductions between NNN- and NNNa-reductions showing that, in fact, the notion is
very liberal compared to notions of reductions that treat inefficient adversaries.
In contrast, for efficient adversaries, relativizing reductions imply NNNa- and
(the equivalent) NBNa-reductions and are incomparable to all stronger notions
that treat efficient adversaries.

We now prove that relativizing reductions are implied by NNN-reductions
for inefficient adversaries, i.e., according to Definition C.4 of [1]. The proof is
inspired by Reingold et al. [33] who show that BBB-reductions imply relativizing
reductions.
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Theorem 4. If there is a (P ↪→ Q)-NNN-reduction, then there is a relativizing
reduction from P to Q.

Proof. Assume there is an NNN-reduction between two primitives P and Q
and assume towards contradiction that there is an oracle Π such that Q exists
relative to this oracle, but P does not. Let f ∈ FQ be an instantiation of Q that
is efficiently computable by an algorithm that has oracle access to Π and such
that f is secure against all efficient oracle machines S, i.e., for all probabilistic
polynomial-time machines S, one has (f,SΠ) /∈ RQ. By assumption of a (P ↪→
Q)-NNN-reduction, there exists a PPT oracle algorithm G for f , such that for all
(possibly unbounded) adversaries A there is a PPT reduction algorithm S such
that (Gf ,Af ) ∈ RP implies (f,Sf,A) ∈ RQ. Now, G

f is efficiently computable
relative to the oracleΠ , because G is PPT and f is efficiently computable relative
to Π . Since P does not exist relative to Π , there is an efficient adversary A such
that (Gf ,AΠ) ∈ RP , i.e., by considering that the relations are defined over
random variables, setting A′ := AΠ one also has (Gf ,A′f ) ∈ RP . Thus, the
NNN-reduction gives an efficient reduction S such that (f,SA′,f ) ∈ RQ. As S is
PPT and as f and A′ are efficiently computable relative to oracleΠ , one has that
SA′,f is efficiently computable relative to Π . Thus, f is not “Q-secure” against
all efficient oracle machines with oracle access to Π , yielding a contradiction. ��

This proves that for inefficient adversaries, relativizing reductions are implied by
NNN-reductions, the most liberal notion of reductions for inefficient adversaries.
Conversely, for efficient adversaries, relativizing reductions imply NNNa and
NBNa reductions, but they are not implied by any of the stronger notions. We
adapt the proof due to Reingold et al. [33] for the following theorem.

Theorem 5. If there is a relativizing reduction from P to Q, then there is a
(P ↪→ Q)-NNNa-reduction, and a (P ↪→ Q)-NBNa-reduction.

Proof. It suffices to show that relativizing reductions imply NNNa-reductions
for efficient adversaries, as Theorem 2 proves that NBNa-reductions and NNNa-
reductions are equivalent. Assume that there is a relativizing reduction between
the primitives P and Q, and assume towards contradiction that there is an
f ∈ FQ such that for all constructions G, there is an efficient adversary A such
that for all efficient reductions algorithms S, it holds that (Gf ,Af ) ∈ RP but,
simultaneously, (f,SA,f ) /∈ RQ. Then, by definition, relative to oracle f , the
primitive Q exists, as no efficient algorithm with oracle access to f can break f .
Note that we can view Sf as an algorithm S ′A,f which does not query A but
has the same output distribution, if viewed as random variables. By assumption,
there exists a relativizing reduction between P and Q, and thus, relative to the
oracle f , not only Q exists but also the primitive P . In particular, there is a
probabilistic polynomial-time oracle machine G such that Gf implements P and
such that for all efficient oracle machines A, one has (Gf ,Af ) /∈ RP , i.e., P is
secure against all efficient adversaries that get f as an oracle, a contradiction.

��
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Theorem 6. For XYZ ∈ {BBB,NBB,BBN,BNB,BNN,NBN,NNN}, there are
primitives P and Q such that there is a (P ↪→ Q)-XYZa-reduction for efficient
adversaries, but no relativizing reduction.

Proof. We show that BBBa-reductions do not imply relativizing reductions; as
BBBa-reductions imply the “lower level” reductions, the other cases follow. We
use the same approach as for Theorem 3.

Let Q be the primitive that contains the constant 0-function f0. We define
the relation RP such that P is trivially secure against all efficient adversaries,
namely, let L be an EXPTIME-complete language, then (f0,A) is in RP if A
is a deterministic function and decides L. As the complexity class P is strictly
contained in EXPTIME, no efficient adversary can break P . Let Q also be the
primitive that contains the constant 0-function f0, but with a different relation,
namely RQ is empty. In particular, no adversary can break Q. Hence, there is a
trivial (P ↪→ Q)-BBBa-reduction, because the premise of the implication

(Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ

is never satisfied for efficient adversaries and the implication is thus trivially
true. In contrast, there is no relativizing reduction between the two primitives.
That is, assume, we add an oracle that decides the EXPTIME-complete language
L, then relative to this oracle, there are suddenly efficient adversaries that break
P . However, as RQ is still empty, there cannot be a reduction S in this oracle
world, giving us a contradiction. ��

Reingold et al. [33] note that BNNa-reductions for efficient adversaries and rel-
ativizing reductions are often equivalent. In particular, they prove that if a
primitive Q allows any oracle Π to be embedded into it, then a (P ↪→ Q)-
BNNa-reduction implies a (P ↪→ Q)-relativizing reduction. However, efficient
primitives Q such as one-way functions (as opposed to random oracles, for ex-
ample), are not known to satisfy this property. We discuss this issue in more
detail in the following section about efficient primitives.

2.6 Efficient Primitives versus Inefficient Primitives

A reduction for efficient primitives is a reduction that only works if f ∈ FQ
is efficiently implementable, i.e., in probabilistic polynomial-time. If we make
this distinction then, according to Figure 1, we unfold another dimension (anal-
ogously to the case of efficient adversaries). As we discuss below our results for
non-efficient primitives hold in this “parallel universe” of efficient primitives as
well, and between the two universes there are straightforward implications and
separations (as in the case of efficient and inefficient adversaries).

Technically, one derives the efficient primitive version XYZp of an XYZ-
reduction by replacing all universal quantifiers over primitives f in FQ by uni-
versal quantifiers that are restricted to efficiently implementable f in FQ. More
concretely, we replace ∀f ∈ FQ by the term ∀PPTf ∈ FQ. For example, the
notion of a BBBp-reduction then reads as follows:
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Definition 6 ((P ↪→ Q)-BBBp or Fully Black-Box Reduction for Ef-
ficient Primitives). There exists a fully black-box (or BBBp-)reduction for
efficient primitives from P = (FP ,RP) to Q = (FQ,RQ) if there exist proba-
bilistic polynomial-time oracle algorithms G and S such that:

Correctness. For every polynomial-time computable function f ∈ FQ, it holds
that Gf ∈ FP .

Security. For every polynomial-time computable function f ∈ FQ and every
machine A, if (Gf ,A) ∈ RP , then (f,SA,f ) ∈ RQ, i.e.,

∃PPTG ∃PPTS ∀PPTf ∈ FQ ∀A ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ).

In the same manner, for any XYZ-reduction, we can define the corresponding
XYZp-reduction. Similarly, one can transform all reduction types XYZa for
efficient adversaries into reduction types XYZap for efficient adversaries and ef-
ficient primitives. Most relations that this paper establishes for XYZ-reductions
and XYZa-reductions also hold for XYZp- and XYZap-reductions, except for
the relation to relativizing reductions, where only some of the results carry over,
see Theorem 2.15 of [1]. Building on proof ideas of Theorem 3, we also establish
in Theorem 2.14 of [1] that the implication from reductions for arbitrary prim-
itives to reductions for efficient primitives is strict. We refer the reader to the
full version of this paper [1] for formal theorem statements, proofs and further
discussion of the relations of reductions for efficient primitives.

3 Parametrized Black-Box Reductions

Many reductions in cryptography commonly classified as “black box” technically
do not fall in this class, as a black box reduction algorithm must not have any
information about the adversary beyond the input/output behavior, except for
the sole guarantee that it breaks security with non-negligible probability. Strictly
speaking, this excludes information such as running time, number of queries, or
the actual success probability of a given adversary. This prompts the question of
what the “natural” notion of a black-box reduction should be. Not surprisingly,
the answer is a matter of taste, just like the question whether fully black-box or
semi black-box is the “right” notion of a black-box reduction. As in the case of
different notions of black-box reductions, we can nonetheless give a technically
profound, and yet easy-to-use notion of parametrized black-box reductions (of
any type). In the full version [1] we motivate and formalize two different degrees
of parameterization by distinguishing between parameter-aware and parameter-
dependent reductions. The difference is essentially whether or not the reduction
algorithm receives the parameter values as input.

We note that parametrized black-box reductions and separations rely criti-
cally on the specific parameters. In particular, some of our separations consider
reductions that are required to depend on, say, the success probability of the
adversary, as in the case of the Goldreich–Levin hardcore bit. This separation
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Fig. 4. The effect of parametrization (in the case of ∗BN-reductions). Parametrized
counterparts of each type partly descend towards the corresponding ∗NN-reduction
with full dependency on the adversary.

does not carry over to the parametrized case. In contrast, separations for ef-
ficient/inefficient adversaries as well as the theorems on relativized reductions
still apply.

More pictorially, one can imagine parametrized black-box reductions in light
of our Figure 1 as descending from the ∗B∗ plane for black-box adversaries
towards the ∗N∗ plane, where the reduction can completely depend on the ad-
versary, see Figure 4. The parameters and the distinction between awareness
and dependency determines how far one descends. Analogously, parametriza-
tion for BBB-reductions means to descend from the top node BBB to BNB
(also in the case of efficient adversaries). As such, it is clear that implications
along edge paths remain valid, e.g., a parametrized NBN-reduction still implies
a NNN-reduction.

The case of NBB-reductions, however, shows that parametrization cannot
fully bridge the gap to NNB-reductions. As explained before, the latter type
with quantification ∀A∃S∀f∃G does not seem to be meaningful, because the
construction G would now depend on the adversaryA. Parametrization of NBB-
reductions (with quantification ∃S∀f∃G∀A) still makes sense, though, because
the dependency of S on the adversary is only through the running time or
the input. Put differently, the parametrization allows for the “admissible non-
black-boxness” for the NBB type of reduction. If one parametrizes the black-box
access to the primitive, either for the construction or the reduction, then this
parametrization corresponds to a (partial) shift from back plane to the front
plane resp. from the top ∗BB plane to the ∗BN plane. In the full version of this
paper [1], we establish formal relationships between parameter-awareness and
parameter-depedency.
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4 Conclusion

We provide a comprehensive framework to classify black-box reductions more
precisely. We believe that this is important to fully understand and appreciate
the implications and limitations of black-box separation results. In particular,
we point out how subtleties such as different possibilities to define a primitive,
the distinction between efficient and non-efficient adversaries and primitives,
or parameterization, affect the results. Such details have previously been often
neglected, and our work draws more attention to these issues.
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Abstract. We present a unified approach for obtaining general secure compu-
tation that achieves adaptive-Universally Composable (UC)-security. Using our
approach we essentially obtain all previous results on adaptive concurrent secure
computation, both in relaxed models (e.g., quasi-polynomial time simulation), as
well as trusted setup models (e.g., the CRS model, the imperfect CRS model).
This provides conceptual simplicity and insight into what is required for adaptive
and concurrent security, as well as yielding improvements to set-up assumptions
and/or computational assumptions in known models. Additionally, we provide the
first constructions of concurrent secure computation protocols that are adaptively
secure in the timing model, and the non-uniform simulation model. As a corollary
we also obtain the first adaptively secure multiparty computation protocol in the
plain model that is secure under bounded-concurrency.

Conceptually, our approach can be viewed as an adaptive analogue to the re-
cent work of Lin, Pass and Venkitasubramaniam [STOC ‘09], who considered
only non-adaptive adversaries. Their main insight was that the non-malleability
requirement could be decoupled from the simulation requirement to achieve UC-
security. A main conceptual contribution of this work is, quite surprisingly, that
it is still the case even when considering adaptive security.

A key element in our construction is a commitment scheme that satisfies a
strong definition of non-malleability. Our new primitive of concurrent equivocal
non-malleable commitments, intuitively, guarantees that even when a man-in-the-
middle adversary observes concurrent equivocal commitments and decommit-
ments, the binding property of the commitments continues to hold for
commitments made by the adversary. This definition is stronger than previous
ones, and may be of independent interest. Previous constructions that satisfy our
definition have been constructed in setup models, but either require existence
of stronger encryption schemes such as CCA-secure encryption or require in-
dependent “trapdoors” provided by the setup for every pair of parties to ensure
non-malleability. A main technical contribution of this work is to provide a con-
struction that eliminates these requirements and requires only a single trapdoor.
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1 Introduction

The notion of secure multi-party computation allows mutually distrustful parties to se-
curely compute a function on their inputs, such that only the (correct) output is obtained,
and no other information is leaked, even if the adversary controls an arbitrary subset of
parties. This security is formalized via the real/ideal simulation paradigm, requiring that
whatever the adversary can do in a real execution of the protocol, can be simulated by
an adversary (“simulator”) working in the ideal model, where the parties submit their
inputs to a trusted party who then computes and hands back the output. Properly for-
malizing this intuitive definition and providing protocols to realize it requires care, and
has been the subject of a long line of research starting in the 1980s.

In what is recognized as one of the major breakthroughs in cryptography, strong
feasibility results were provided, essentially showing that any function that can be ef-
ficiently computed, can be efficiently computed securely, assuming the existence of en-
hanced trapdoor permutations (eTDP) [46,27]. However, these results were originally
investigated in the stand-alone setting, where a single instance of the protocol is run
in isolation. A stronger notion is that of concurrent security, which guarantees secu-
rity even when many different protocol executions are carried out concurrently. In this
work, we focus on the strongest (and most widely used) notion of concurrent security,
namely universally-composable (UC) security [6]. This notion guarantees security even
when an unbounded number of different protocol executions are run concurrently in an
arbitrary interleaving schedule and is critical for maintaining security in an uncontrolled
environment that allows concurrent executions (e.g., the Internet). Moreover, this no-
tion also facilitates modular design and analysis of protocols, by allowing the design
and security analysis of small protocol components, which may then be composed to
obtain a secure protocol for a complex functionality.

Unfortunately, achieving these strong notions of concurrent security is far more chal-
lenging than achieving stand-alone security, and we do not have general feasibility re-
sults for concurrently secure computation of every function. In fact, there are lower
bounds showing that concurrent security (which is implied by UC security) cannot be
achieved for general functions, unless trusted setup is assumed [8,9,35]. Previous works
overcome this barrier either by using some trusted setup infrastructure [8,11,2,7,30,12],
or by relaxing the definition of security [39,45,3,10,25] (we will see examples below).

Another aspect of defining secure computation, is the power given to the adversary.
A static (or non-adaptive) adversary is one who has to decide which parties to cor-
rupt at the outset, before the execution of the protocol begins. A stronger notion is
one that allows for an adaptive adversary, who may corrupt parties at any time, based
on its current view of the protocol. It turns out that achieving security in the adaptive
setting is much more challenging than in the static one. The intuitive reason for this
is that the simulator needs to simulate messages from uncorrupted parties, but may
later need to explain the messages (i.e. produce the randomness used to generate those
messages) when that party is corrupted. Moreover, the simulator must simulate mes-
sages from uncorrupted parties without knowing their inputs, but when corrupted, must
explain the messages according to the actual input that the party holds. On the other
hand, in the real protocol execution, messages must information-theoretically determine
the actual inputs of the party, both for correctness as well as to ensure that an adver-
sary is committed to its inputs and cannot cheat. We note that although the setting of
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adaptive corruptions with erasures has been considered in the literature, in our work we
assume adaptive corruptions without erasures. Here we assume that honest parties can-
not reliably erase randomness used to generate messages of the protocol and thus when
corrupted, the adversary learns the randomness used by that party to generate previous
protocol messages. Clearly, this is the more general and challenging setting. Canetti,
Lindell, Ostrovsky and Sahai [11] provided the first constructions of UC-secure pro-
tocols with static and adaptive security in the common reference string model (CRS)1.
Subsequently, several results were obtained for both the static and adaptive case in
other trusted-setup models and relaxed-security models. The techniques for achieving
security against adaptive adversaries are generally quite different than the techniques
needed to achieve security against static adversaries, and many results for concurrent
secure computation do not readily extend to the adaptive setting. In fact, several of the
previous results allowing general concurrent secure computation (e.g., using a trusted
setup) were only proved for the static case [33,34,42,40,22,30], and extending them to
the adaptive setting has remained an open problem.

In this paper we focus on the strongest notions of security, and study their fundamen-
tal power and limitations. The main question we ask is:

Under which circumstances is adaptive concurrent security generally feasible?

In particular, we refine this question to ask:

What is the minimum setup required to achieve adaptive concurrent security?

We address these questions on both a conceptual and technical level. In particular,
we unify and generalize essentially all previous results in the generic adaptive concur-
rent setting, as well as providing completely new results (constructions with weaker
trusted setup requirements, weaker computational assumptions, or in relaxed models
of security), conceptual simplicity, and insight into what is required for adaptive and
concurrent secure computation. Our main technical tool is a new primitive of equivocal
non-malleable commitment. We describe our results in more detail below.

1.1 Our Results

We extend the general framework of [33], to obtain a composition theorem that allows
us to establish adaptive UC-security in models both with, and without, trusted set-up.
With this theorem, essentially all general UC-feasibility results for adaptive adversaries
follow as simple corollaries, often improving the set-up and/or complexity theoretic as-
sumptions; moreover, we obtain adaptive UC secure computation in new models (such
as the timing model). Additionally, our work is the first to achieve bounded-concurrent
adaptively-secure multiparty computation without setup assumptions. As such, similar
to [33], our theorem takes a step towards characterizing those models in which adaptive
UC security is realizable, and also at what cost.

Although technically quite different, as mentioned previously, our theorem can be
viewed as an adaptive analogue of the work of Lin, Pass and Venkitasubramaniam

1 In the CRS model, all parties have access to public reference string sampled from a pre-
specified distribution.
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[33], who study the static case. Their work puts forward the very general notion of
a “UC-puzzle” to capture the models (or setup assumptions) that admit general static
UC-security. More precisely, they prove that if we assume the existence of enhanced
trapdoor permutations and stand-alone non-malleable commitments, static UC-security
is achievable in any model that admits a UC-puzzle. In this work, we establish an anal-
ogous result for the more difficult case of adaptive UC-security, as we outline below.

We start by introducing the notion of an Adaptive UC-Puzzle. Next, we define the
new primitive (which may be of independent interest), equivocal non-malleable com-
mitment or EQNMCom, which is a commitment with the property that a man-in-the-
middle observing concurrent equivocal commitments and decommitments cannot break
the binding property. We then present a construction of equivocal non-malleable com-
mitment for any model that admits an adaptive UC-puzzle (thus, requiring this primitive
does not introduce an additional complexity-theoretic assumption). Finally, we rely on
a computational assumption that is known to imply adaptively secure OT (analogous to
the eTDP used by [33], which implies statically secure OT). Specifically, we use simu-
latable public key encryption [18,13]. Although a weaker assumption, trapdoor simu-
latable public key encryption is known to imply semi-honest adaptively secure OT, it is
unknown how to achieve malicious, adaptive, UC secure OT (in any setup model) from
only trapdoor simulatable public key encryption. We remark here that, more recently,
for the static case, Lin et al. show how to extend their framework and rely on the min-
imal assumptions of stand-alone semi-honest oblivious-transfer and static UC-puzzle
[41]. More concretely, we show the following:

Theorem 1 (Main Theorem (Informal)). Assume the existence of an adaptive UC-
secure puzzle Σ using some setup T , the existence of an EQNMCom primitive, and
the existence of a simulatable public-key encryption scheme. Then, for every m-ary
functionality f , there exists a protocol Π using the same set-up T that adaptively, UC-
realizes f .

As an immediate corollary of our theorem, it follows that to establish feasibility of
adaptive UC-secure computation in any set-up model, it suffices to construct an adap-
tive UC-puzzle in that model. Complementing the main theorem, we show that in many
previously studied models, adaptive UC-puzzles are easy to construct. Indeed, in many
models the straightforward puzzle constructions for the static case (cf. [33]) are suf-
ficient to obtain adaptive puzzles; some models require puzzle constructions that are
more complex (see the full version [17] for details). We highlight some results below.

Adaptive UC in the “imperfect” String Model. Canetti, Pass and shelat [12] consider
adaptive UC security where parties have access to an “imperfect” reference string–
called a “sunspot”–that is generated by an arbitrary efficient min-entropy source (ob-
tained e.g., by measurement of some physical phenomenon). The CPS-protocol requires
m communicating parties to share m reference strings, each of them generated using
fresh entropy. We show that a single reference string is sufficient for UC and adaptively-
secure MPC (regardless of the number of parties m).

Adaptive UC in the Timing Model. Dwork, Naor and Sahai [22] introduced the timing
model in the context of concurrent zero-knowledge, where all players are assumed to
have access to clocks with a certain drift. Kalai, Lindell and Prabhakaran [30] sub-
sequently presented a concurrent secure computation protocol in the timing model;
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whereas the timing model of [22] does not impose a maximal upper-bound on the clock
drift, the protocol of [30] requires the clock-drift to be “small”; furthermore, it requires
extensive use of delays (roughly nΔ, where Δ is the latency of the network). Finally,
[33] showed that UC security against static adversaries is possible also in the unre-
stricted timing model (where the clock drift can be “large”); additionally, they reduce
the use of delays to only O(Δ). To the best of our knowledge, our work is the first to
consider security against adaptive adversaries in the timing model, giving the first fea-
sibility results for UC and adaptively-secure MPC in the timing model; moreover, our
results also hold in the unrestricted timing model.

Adaptive UC with Quasi-polynomial Simulation. Pass [39] proposed a relaxation of
the standard simulation-based definition of security, allowing for super polynomial-time
or Quasi-polynomial simulation (QPS). In the static and adaptive setting, Prabhakaran
and Sahai [45] and Barak and Sahai [3] obtained general MPC protocols that are con-
currently QPS-secure without any trusted set-up, but rely on strong complexity assump-
tions. We achieve adaptive security in the QPS model under relatively weak complexity
assumptions. Moreover, we achieve a stronger notion of security, which (in analogy
with [39]) requires that indistinguishability of simulated and real executions holds for
all of quasi-polynomial time; in contrast, [3] only achieves indistinguishability w.r.t.
distinguishers with running-time smaller than that of the simulator.

Adaptive UC with Non-uniform Simulation. Lin et al. [33] introduced the non-uniform
UC model, which considers environments that are PPT machines and ideal-model ad-
versaries that are non-uniformPPT machines and prove feasibility of MPC in the same
model. Relying on the same assumptions as those introduced by [33] to construct a puzzle
in non-uniform model (along with the assumption of the existence of simulatable PKE),
we show feasibility results for secure MPC in the adaptive, non-uniform UC model.

Adaptive Bounded-Concurrent Secure Multiparty Computation. Several works
[34,42,40] consider the notion of bounded-concurrencyfor general functionalities where
a single secure protocol Π implementing a functionality f is run concurrently, and
there is an a priori bound on the number of concurrent executions. In our work, we
show how to construct an adaptive puzzle in the bounded-concurrent setting (with no
setup assumptions). Thus, we achieve the first results showing feasibility of bounded-
concurrency of general functionalities under adaptive corruptions.

In addition to these models, we obtain feasibility of adaptive UC in existing models
such as the common reference string (CRS) model [11], uniform reference string (URS)
model [11], key registration model [2], tamper-proof hardware model [31], and partially
isolated adversaries model [20] (see the full version [17] ). For relaxed security models,
we obtain UC in the quasi-polynomial time model [39,45,3].

Beyond the specific instantiations, our framework provides conceptual simplicity,
technical insight, and the potential to facilitate “translation” of results in the static set-
ting into corresponding (and much stronger) adaptive security results. For example,
in recent work of Garg et al. [24], one of the results—constructing UC protocols us-
ing multiple setups when the parties share an arbitrary belief about the setups—can be
translated to the adaptive model by replacing (static) puzzles with our notion of adap-
tive puzzles. Other results may require more work to prove, but again are facilitated by
our framework.
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1.2 Technical Approach and Comparison with Previous Work

There are two basic properties that must be satisfied in order to achieve adaptive UC
secure computation: (1) concurrent simulation and (2) concurrent non-malleability. The
former requirement amounts to providing the simulator with a trapdoor while the latter
requirement amounts to establishing independence of executions. The simulation part
is usually “easy” to achieve. Consider, for instance, the common random string (CRS)
or Uniform Reference String (URS) model where the players have access to a public
reference string that is sampled uniformly at random. A trapdoor can be easily provided
to the simulator as the inverse of the reference string under a pseudo-random generator.
Concurrent non-malleability on the other hand is significantly harder to achieve. For the
specific case of the CRS model, Canetti et al. [11] and subsequent works [23,37] show
that adaptive security can be achieved using a single trapdoor. However, more general
setup models require either strong computational assumptions, or provide the simulator
with different and independent trapdoors for different executions. For example, in the
URS model, [11] interpret the random string as a public-key for a CCA-secure encryp-
tion scheme, and need to assume dense cryptosystems, while in the imperfect random
string (sunspot) model, [12] require multiple trapdoors. Other models follow a similar
pattern, where concurrent non-malleability is difficult.

In the static case, [33] provided a framework that allowed to decouple the concur-
rent simulation requirement from the concurrent non-malleability. More precisely, they
show that providing a (single) trapdoor to achieve concurrent simulation is sufficient,
and once a trapdoor is established concurrent non-malleability can be obtained for free.
This allows them to obtain significant improvement in computational/set-up assump-
tions since no additional assumptions are required to establish non-malleability.

A fundamental question is whether the requirement of concurrent simulation and
concurrent non-malleability can be decoupled in the case of adaptive UC-security. Un-
fortunately, the techniques used in the static case are not applicable in the adaptive
case. Let us explain the intuition. [33] and subsequent works rely on stand-alone non-
malleable primitives to achieve concurrent non-malleability. An important reason this
was possible in the static case is because non-malleable primitives can be constructed
in the plain-model (i.e. assuming no trapdoor). Furthermore, these primitives inher-
ently admit black-box simulation, i.e. involve the simulator rewinding the adversary.
Unfortunately, in the adaptive case both these properties are difficult to achieve. First,
primitives cannot be constructed in the plain model since adaptive security requires the
simulator to be able to simultaneously equivocate the simulated messages for honest
parties for different inputs and demostrate their validity at any point in the execution by
revealing the random coins for the honest parties consistent with the messages. Second,
as demostrated in [26], black-box rewinding techniques cannot be employed since the
adversary can, in between messages, corrupt an arbitrary subset of the players (some
not even participating in the execution) whose inputs are not available to the simulator.

In this work, we show, somewhat surprisingly that a single trapdoor is still sufficient
to achieve concurrent non-malleability. Although we do not decouple the requirements,
this establishes that even for the case of adaptive security no additional setup, and there-
fore, no additional assumptions, are required to achieve concurrent non-malleability,
thereby yielding similar improvements to complexity and set-up assumptions to [33].
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The basic approach we take resembles closely the unified framework of [33]. By
relying on previous works [40,42,35,11,27], Lin et. al in [33] argue that to construct
a UC protocol for realizing any multi-party functionality, it suffices to construct a
zero-knowledge protocol that is concurrently simulatable and concurrently simulation-
sound2. To formalize concurrent-simulation, they introduce the notion of a UC-puzzle
that captures the property that no adversary can successfully complete the puzzle and
also obtain a trapdoor, but a simulator exists that can generate (correctly distributed)
puzzles together with trapdoors. To achieve simulation-soundness, they introduce the
notion of strong non-malleable witness indistinguishability and show how a protocol
satisfying this notion can be based on stand-alone non-malleable commitments.

A first approach for the adaptive case, would be to extend the techniques from [33],
by replacing the individual components with analogues that are adaptively secure and
rely on a similar composition theorem. While the notion of UC-puzzle can be strength-
ened to the adaptive setting, the composition theorem does not hold for stand-alone non-
malleable commitments. This is because, in the static case, it is enough to consider a
commitment scheme that is statistically-binding for which an indistinguishability-based
notion of non-malleability is sufficient; such a notion, when defined properly, is concur-
rently composable. However, when we consider adaptive security, commitments need
to be equivocable (i.e., the simulator must be capable of producing a fake commitment
transcript and inputs for honest committers that allow the transcript to be decommitted
to both 0 and 1) and such commitments cannot be statistically-binding. Therefore, we
need to consider a stronger simulation-based notion of non-malleability. Furthermore,
as mentioned before, an equivocal commitment, even in the stand-alone case, requires
the simulator to have a trapdoor, which in turn requires some sort of a trusted set-up.

Our approach here is to consider a “strong” commitment scheme, one that is both
equivocable and concurrently non-malleable at the same time, but relies on a UC-puzzle
(i.e. single trapdoor) and then establish a new composition theorem that essentially es-
tablishes feasibility of UC-secure protocol in any setup that admits a UC-puzzle. While
the core contribution of [33] was in identifying the right notion of UC-puzzle and pro-
viding a modular analysis, in this work, the main technical novelty is in identifying
the right notion of commitment that will allow feasibility with a single trapdoor. Once
this is established the results from [33] can be extended analogously by constructing
an adaptively secure UC-puzzle for each model. In fact, in most of the models consid-
ered in this work, the puzzle constructions are essentially the same as the static case
and thus we obtain similar corollaries to [33]. While the general framework for our
work resembles [33], as we explain in the next section, the commitment scheme and the
composition theorem are quite different and requires an intricate and subtle analysis.

1.3 Main Tool: Equivocal Non-malleable Commitments

We define and construct a new primitive called equivocal non-malleable commitments
or EQNMCom. Such commitments have previously been defined in the works of [15,16]
but only for the limited case of bounded concurrency and non-interactive commitments.
In our setting, we consider the more general case of unbounded concurrency as well as

2 Simulation-soundness is a stronger property that implies and is closely related to non-
malleability.
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interactive commitments. Intuitively, the property we require from these commitments
is that even when a man-in-the-middle receives concurrent equivocal commitments and
concurrent equivocal decommitments, the man-in-the-middle cannot break the binding
property of the commitment. Thus, the man-in-the-middle receives equivocal commit-
ments and decommitments, but cannot equivocate himself. Formalizing this notions
seems to be tricky and has not been considered in literature before. Previously, non-
malleability of commitments has been dealt with in two scenarios:

Non-malleability w.r.t commitment:[21,43,32] This requires that no adversary that
receives a commitment to value v be able to commit to a related value (even without
being able to later decommit to this value).

Non-malleability w.r.t decommitment (or opening):[15,43,19] This requires that no
adversary that receives a commitment and decommitment to a value v be able to
commit and decommit to a related value.

While the former is applicable only in the case the of statistically-binding commit-
ments the latter is useful even for statistically-hiding commitments. In this work, we
need a definition that ensures independence of commitments schemes that additionally
are equivocable and adaptively secure. Equivocability means that there is a way to commit
to the protocol without knowing the value being committed to and later open to any value.
Such a scheme cannot be statistically-binding. Furthermore, since we consider the setting
where the adversary receives concurrent equivocal decommitments, our definition needs
to consider non-malleability w.r.t decommitment. Unfortunately, current definitions for
non-malleability w.r.t decommitment in literature are defined only in the scenario where
the commitment phase and decommitment phases are decoupled, i.e. in a first phase, a
man-in-the-middle adversary receives commitments and sends commitments, then, in a
second phase, the adversary requests decommitments of the commitments received in the
first phase, followed by it decommitting its own commitments. For our construction, we
need to define concurrent non-malleability w.r.t decommitments and such a two phase
scenario is not applicable as the adversary can arbitrarily and adaptively decide when to
obtain decommitments. Furthermore, it is not clear how to extend the traditional defini-
tion to the general case, as at any point, only a subset of the commitments received by the
adversary could be decommitted and the adversary could selectively decommit based on
the values seen so far and hence it is hard to define a “related” value.

We instead propose a new definition, along the lines of simulation-extractability that
has been defined in the context of constructing non-malleable zero-knowledge proofs
[44]. Loosely speaking, an interactive protocol is said to be simulation extractable if for
any man-in-the-middle adversary A, there exists a probabilistic polynomial time machine
(called the simulator-extractor) that can simulate both the left and the right interaction for
A, while outputting a witness for the statement proved by the adversary in the right inter-
action. Roughly speaking, we say that a tag-based commitment scheme (i.e., commitment
scheme that takes an identifier—called the tag—as an additional input) is concurrent non-
malleable w.r.t opening if for every man-in-the-middle adversary A that participates in
several interactions with honest committers as a receiver (called left interactions) as well
as several interactions with honest receivers as a committer (called right interactions),
there exists a simulatorS that can simulate the left interactions, while extracting the com-
mitments made by the adversary in the right interactions (whose identifiers are different
from all the left identifiers) before the adversary decommits.
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A related definition in literature is that of simulation-sound trapdoor commitments
from [23,37] which considers non-interactive equivocable commitments and require that
no adversary be able to equivocate even when it has access to an oracle that provides
equivocal commitments and decommitments. This can be thought of as the CCA ana-
logue for equivocal commitments. We believe that such a scheme would suffice for our
construction, however, it is not clear how to construct such commitments from any trap-
door (i.e. any set-up) even if we relax the definition to consider interactive commitments.

It is not hard to construct equivocal commitments using trusted set-up. The idea here
is to provide the simulator with a trapdoor with which it can equivocate as wells as ex-
tract the commitments on the right. (by e.g., relying on encryption). However, to ensure
non-malleability, most constructions in literature additionally impose CCA-security or
provide independent trapdoors for every interaction. Our main technical contribution
consists of showing how to construct a concurrent non-malleable commitment scheme
in any trusted set-up by providing the simulator with just one trapdoor, i.e. we show how
to construct a concurrent non-malleable commitment scheme w.r.t opening using any
UC-puzzle. We remark here that, in the static case, a stand-alone non-malleable com-
mitment was sufficient, since the indistinguishability based notion of non-malleability
allowed for some form of concurrent composition. However, in the adaptive case, it is
not clear if our definition yields a similar composition and hence we construct a scheme
and prove non-malleability directly in the concurrent setting.

Although our main application of equivocal non-malleable commitments is achiev-
ing UC-security, these commitments may also be useful for other applications such as
concurrent non-malleable zero knowledge secure under adaptive corruptions. We be-
lieve that an interesting open question is to explore other applications of equivocal non-
malleable commitments and non-malleable commitments with respect to
decommitment.

2 Equivocal Non-malleable Commitments

In this section, we define Equivocal Non-malleable Commitments. Intuitively, these are
equivocal commitments such that even when a man-in-the-middle adversary receives
equivocal commitments and openings from a simulator, the adversary himself remains
unable to equivocate. Since we are interested in constructing equivocal commitments
from any trapdoor (i.e. setup), we will capture trapdoors, more generally, as witnesses
to NP-statements. First, we provide definitions of language-based commitments.

Language-Based Commitment Schemes: We adopt a variant of language-based com-
mitment schemes introduced by Lindell et. al [36] which in turn is a variant of [4,29].
Roughly speaking, in such commitments the sender and receiver share a common in-
put, a statement x from an NP language L. The properties of the commitment scheme
depend on the whether x is in L or not and the binding property of the scheme asserts
that any adversary violating the binding can be used to extract an NP-witness for the
statement. We present the formal definition below.

Definition 1 (Language-Based Commitment Schemes). Let L be an NP-Language
andR, the associated NP-relation. A language-based commitment scheme (LBCS) for
L is commitment scheme 〈S,R〉 such that:
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Computational hiding: For every (expected) PPT machine R∗, it holds that, the fol-
lowing ensembles are computationally indistinguishable over n ∈ N .

– {staR∗
〈S,R〉(x, v1, z)}n∈N,x∈{0,1}n,v1,v2∈{0,1}n,z∈{0,1}∗

– {staR∗
〈S,R〉(x, v2, z)}n∈N,x∈{0,1}n,v1,v2∈{0,1}n,z∈{0,1}∗

where staR
∗

〈S,R〉(x, v, z) denotes the random variable describing the output of
R∗(x, z) after receiving a commitment to v using 〈S,R〉.

Computational binding: The binding property asserts that, there exists an polynomial-
time witness-extractor algorithmExt, such that for any cheating committer S∗, that
can decommit a commitment to two different values v1, v2 on common input x ∈
{0, 1}n, outputs w such that w ∈ R(x).

We now extend the definition to include equivocability.

Definition 2 (Language-Based Equivocal Commitments). Let L be anNP-Language
and R, the associated NP-relation. A language-based commitment scheme 〈S,R〉 for
L is said to be equivocal, if there exists a tuple of algorithms (S̃,Adap) such that the
following holds:

Special-Hiding: For every (expected) PPT machine R∗, it holds that, the following
ensembles are computationally indistinguishable over n ∈ N .

– {staR∗
〈S,R〉(x, v1, z)}n∈N,x∈L∩{0,1}n,w∈R(x),v1∈{0,1}n,z∈{0,1}∗

– {staR∗

〈S̃,R〉(x,w, z)}n∈N,x∈L∩{0,1}n,w∈R(x),v1∈{0,1}n,z∈{0,1}∗

where staR
∗

〈S̃,R〉(x,w, z) denotes the random variable describing the output of

R∗(x, z) after receiving a commitment using 〈S̃, R〉.
Equivocability: Let τ be the transcript of the interaction between R and S̃ on common

input x ∈ L ∩ {0, 1}n and private input w ∈ R(x) and random tape r ∈ {0, 1}∗
for S̃. Then for any v ∈ {0, 1}n, Adap(x,w, r, τ, v) produces a random tape r′

such that (r′, v) serves as a valid decommitment for C on transcript τ .

2.1 Definition of Equivocal Non-malleable Commitments

Let 〈C,R〉 be a commitment scheme, and let n ∈ N be a security parameter. Con-
sider man-in-the-middle adversaries that are participating in left and right interactions
in which m = poly(n) commitments take place3. We compare between a man-in-the-
middle and a simulated execution. In the man-in-the-middle execution, the adversary A
is simultaneously participating in m left and right interactions. In the left interactions
the man-in-the-middle adversary A interacts with C receiving commitments to values
v1, . . . , vm, using identities id1, . . . , idm of its choice. It must be noted here that values
v1, . . . , vm are provided to committer on the left prior to the interaction. In the right in-
teraction A interacts with R attempting to commit to a sequence of related values again

3 We may also consider relaxed notions of concurrent non-malleability: one-many, many-one
and one-one secure non-malleable commitments. In a one-one (i.e., a stand-alone secure) non-
malleable commitment, we consider only adversaries A that participate in one left and one
right interaction; in one-many, A participates in one left and many right, and in many-one, A
participates in many left and one right.
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using identities of its choice ĩd1, . . . , ĩdm; ṽi is set to the value decommitted by A in the
jth right interaction. If any of the right commitments are invalid its committed value is
set to ⊥. For any i such that ĩdi = idj for some j, set ṽi = ⊥—i.e., any commitment
where the adversary uses the same identity as one of the honest committers is consid-
ered invalid. Let MIMA

〈C,R〉(v1, . . . , vm, z) denote a random variable that describes the
values ṽ1, . . . , ṽm and the view of A, in the above experiment.

In the simulated execution, a simulator S interacts only with receivers on the right as
follows:

1. Whenever the commitment phase of jth interaction with a receiver on the right is
completed, S outputs a value ṽj as the alleged committed value in a special-output
tape.

2. During the interaction, S may output a partial view for a man-in-the-middle ad-
versary whose right-interactions are identical to S’s interaction so far. If the view
contains a left interaction where the ith commitment phase is completed and the
decommitment is requested, then a value vi is provided as the decommitment.

3. Finally, S outputs a view and values ṽ1, . . . , ṽm. Let simS
〈C,R〉(1

n, v1, . . . , vm, z)
denote the random variable describing the view output by the simulation and values
ṽ1, . . . , ṽm.

Definition 3. A commitment scheme 〈C,R〉 is said to be concurrent non-malleable
w.r.t. opening if for every polynomial p(·), and every probabilistic polynomial-time
man-in-the-middle adversary A that participates in at most m = p(n) concurrent exe-
cutions, there exists a probabilistic polynomial time simulator S such that the following
ensembles are computationally indistinguishable over n ∈ N :{

MIMA
〈C,R〉(v1, . . . , vm, z)

}
n∈N,v1,...,vm∈{0,1}n,z∈{0,1}∗{

simS
〈C,R〉(1

n, v1, . . . , vm, z)
}
n∈N,v1,...,vm∈{0,1}n,z∈{0,1}∗

A slightly relaxed definition considers all the values committed to the adversary in the
left interaction to be sampled independently from an arbitrary distribution D. We show
how to construct a commitment satisfying only this weaker definition. However, this
will be sufficient to establish our results.

Definition 4. A commitment scheme 〈C,R〉 is said to be concurrent non-malleable
w.r.t. opening with independent and identically distributed (i.i.d.) commitments if for
every polynomial p(·) and polynomial time samplable distribution D, and every prob-
abilistic polynomial-time man-in-the-middle adversary A that participates in at most
m = p(n) concurrent executions, there exists a probabilistic polynomial time simu-
lator S such that the following ensembles are computationally indistinguishable over
n ∈ N :{

(v1 . . . , vm)← Dn : MIMA
〈C,R〉(v1, . . . , vm, z)

}
n∈N,z∈{0,1}∗{

(v1 . . . , vm)← Dn : simS
〈C,R〉(1

n, v1, . . . , vm, z)
}
n∈N,z∈{0,1}∗
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Remark 1. Any scheme that satisfies our definition with a straight-line simulator in
essence realizes the ideal commitment functionality with UC-security as it acheives
equivocation and straight-line extraction. If the simulator is not straight-line, then the
requirement that the left commitments are sampled from i.i.d distributions is seem-
ingly inherent. This is because our definition implies security against selective open-
ning attacks (SOA) and as proved in [38], achieving fully concurrent SOA-security
with (black-box) rewinding techniques is impossible when the distributions of the com-
mitments are not sampleable (or unknown).

Finally, we consider commitment schemes that are both non-malleable w.r.t opening
and language-based equivocal. In a setup model, the simulator will obtain a trapdoor
via the setup procedure and the witness relation will satisfy that language requirement.

Definition 5. A commitment scheme 〈C,R〉 is said to be an equivocal non-malleable
commitment scheme if it is both a language-based equivocal commitment scheme (see
Definition 2) and is concurrent non-malleable w.r.t. opening (see Definition 4).

3 Adaptive UC-Puzzles

Informally, an adaptive UC-puzzle is a protocol 〈S,R〉 between two players–a sender
S and a receiver R – and a PPT computable relation R, such that the following two
properties hold:

Soundness: No efficient receiver R∗ can successfully complete an interaction with S
and also obtain a “trapdoor” y, such thatR(TRANS, y) = 1, where TRANS is the
transcript of the interaction.

Statistical UC-simulation with adaptive corruptions: For every efficient adversary
A participating in a polynomial number of concurrent executions with receivers R
(i.e., A is acting as a puzzle sender in all these executions) and at the same time
communicating with an environment Z , there exists a simulator S that is able to
statistically simulate the view of A for Z , while at the same time outputting trap-
doors to all successfully completed puzzles. Moreover, S successfully simulates
the view even when A may adaptively corrupt the receivers.

We provide a formal definition in the full version [17]. In essence, it is the same def-
inition as in [33] with the additional requirement of adaptive security in the simulation.
We remark that our analysis will require the puzzle to be straight-line simulatable. In
fact, for almost all models considered in this work, this is indeed the case, with the ex-
ception of the timing and partially-isolated adversaries model (for which we argue the
result independently). Using the result of [26], it is possible to argue that straight-line
simulation is necessary to achieve adaptive security (except when we consider restricted
adversaries, such as the timing or partially-isolated adversaries model).

4 Achieving Adaptive UC-Security

In this section, we give a high-level overview of the construction of an EQNMCom
scheme and the proof of Theorem 1, which relies on the existence of an EQNMCom
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scheme. For the formal construction and analysis of our EQNMCom scheme, see the
full version [17]. A formal proof of Theorem 1 can be found in the full version [17].

By relying on previous results [11,18,28,14,13], the construction of an adaptive UC-
secure protocol for realizing any multiparty functionality can be reduced to the task of
constructing a UC-commitment assuming the existence of simulatable PKE. First, we
show how to construct an equivocal non-malleable commitment scheme based on any
adaptive UC-puzzle. Then combining the equivocal non-malleable commitment scheme
with a simulatable PKE scheme we show how to realize the UC-commitment.

4.1 Constructing EQNMCom Based on Adaptive UC-Puzzles

Our protocol on a very high-level is a variant of the non-malleable commitment protocol
from [32] which in turn is a variant of the protocol from [21]. While non-malleability
relies on the message-scheduling technique of [21,32] protocol, the equivocability is
obtained by relying on a variant of Feige-Shamir’s trapdoor commitment scheme4 and
adaptively secure witness-indistinguishable proof of knowledge (WIPOK) protocol (see
the full version [17]) for a formal definition and construction) of Lindell-Zarosim[36].
More precisely, our protocol proceeds in two phases: in the preamble phase, the Com-
mitter and Receiver exchange a UC-puzzle where the Receiver is the sender of the
puzzle and the Committer is the receiver of the puzzle (this phase establishes a trap-
door through which an equivocal commitment can be generated). This is followed by
the commitment phase: here the Committer first commits to its value using a language-
based (non-interactive) equivocal commitment scheme, where the NP-language is the
one corresponding to the UC-puzzle and the particular statement is the puzzle ex-
changed in the preamble (this relies on the Feige-Shamir trapdoor commitment scheme).
This is followed by several invocations of an (adaptively-secure) WIPOK where the
Committer proves the statement that either it knows the value committed to in phase
2 or possesses a solution to the puzzle from phase 1. Here we rely on the adaptively-
secure (without erasures) WIPOK of [36] where the messages are scheduled based on
the Committers id using the scheduling of [21]. This phase allows for any Committer
that possess a solution to the puzzle from the preamble phase to generate a commitment
that can be equivocated (i.e. later be opened to any value). Conversely, any adversary
that can equivocate the non-interactive commitment of the second phase can be used to
obtain a solution to the puzzle. The decommitment information is simply the value and
the random tape of an honest committer consistent with the commitment phase. More
specifically, our protocol proceeds as follows:

1. In the Preamble Phase, the Committer and Receiver exchange a UC-puzzle where
the Receiver is the sender of the puzzle and the Committer is the receiver of the
puzzle. Let x be the transcript of the interaction.

2. In the Committing Phase, the Committer sends c = EQComx(v), where EQComx

is a language-based equivocal commitment scheme as in Definition 2 with common
input x. This is followed by the Committer proving that c is a valid commitment

4 Let x be an NP-statement. The sender commits to bit b by running the honest-verifier sim-
ulator for Blum’s Hamiltonian Circuit protocol [5] on input the statement x and the verifier
message b, generating the transcript (a, b, z), and finally outputting a as its commitment. In
the decommitment phase, the sender reveals the bit b by providing both b, z.
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for v. This is proved by 4� invocations of an adaptively-secure (without erasures)
WIPOK where the messages are scheduled based on the id (as in [21,32]). More
precisely, there are � rounds, where in round i, the schedule designidi is followed by
design1−idi (See Figure 1).

design0 design1

γ2

β2

β1

α1

γ1, α2

γ2

β2

γ1

β1

α1, α2

Fig. 1. Message schedule in a round in adaptively-secure WIPOK

While the protocol is an adaptation of the [32] commitment scheme, where the in-
dividual components are replaced by adaptively-secure alternatives, proving security
requires a substantially different analysis. It is easy to see that concurrent equivocabil-
ity of our scheme follows from the UC-Puzzle simulation. However proving concurrent
non-malleability w.r.t opening with i.i.d commitments is the hard part and the core of
our contribution. Recall that, achieving this, essentially entails constructing a simulator
for any man-in-the-middle adversary, that while equivocating all commitments to the
adversary (in the left interactions), can extract all the values the value committed to by
the adversary (in the right interactions) before the decommitment phase.

Towards extracting from the right interactions, we first recall the basic idea in [32,21].
Their scheduling ensures that for every right interaction with a tag that is different from
a left interaction, there exists a point—called a safe-point—from which we can rewind
the right interaction (and extract the committed value), without violating the hiding
property of the left interaction. It now follows from the hiding property of the left inter-
action that the values committed to on the right do not depend on the value committed
to on the left. However, this technique only allows for extraction from a right interaction
without violating the hiding property of one left interaction. However, here we need to
extract without violating the hiding property of all the left interactions.

Our simulator-extractor as follows: In a main execution with the man-in-the-middle
adversary, the simulator simulates all puzzles to obtain trapdoors and equivocates the
left interactions using the solution of the puzzle and simulates the right interactions
honestly. Whenever a decommitment on the left is requested, the simulator obtains a
value externally (a value sampled independently from distribution D) which it decom-
mits to the adversary (this is achieved since the protocol is adaptively secure). After the
adversary completes the commitment phase of a right interaction in the main execution,
the simulator switches to a rewinding phase, where it tries to extract the value com-
mitted to by the adversary in that right interaction. Towards this, it chooses a random
WIPOK (instead of a safe point) from the commitment phase and rewinds the adversary
to obtain the witness used in the WIPOK (using the proof-of-knowledge extractor). In
the rewinding phase, the left interactions are now simulated using the honest committer
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strategy (as opposed to equivocating using the solution to the puzzle). More precisely,
in the rewinding phase, for every left interaction that has already been opened (i.e. de-
commitment phase has occurred in the main execution), the simulator has a value and
random tape for an honest committer and for those that have not yet been opened, using
the adaptive-security of the protocol, the simulator simply samples a random value from
distribution D (since we consider only i.i.d. values for left interactions) and generates
a random tape for an honest committer consistent with the transcript so far. This stands
in contrast of extracting only from safe-points as in [32].

The proof proceeds using a hybrid argument, where in hybrid experiment Hi all puz-
zle interactions are simulated and the first i left commitments to complete the preamble
phase is equivocated. It will follow from the soundness of the UC-puzzle and statistical
simulation that the simulation is correct H0. First, we show that in H0, the value ex-
tracted in any particular right interaction from a random WIPOK is the value decommit-
ted to by the adversary. This follows from the fact that for the adversary to equivocate,
it must know the solution to the UC-puzzle and this violates the statistical simulation
and soundness condition of the puzzle. We show the following properties for every i,
and the proof of correctness follows using a standard hybrid argument.

– If the value extracted in any particular right interaction from a random WIPOK
is the value decommitted to by the adversary in Hi−1, then the value extracted
from a random WIPOK and the safe point of that right interaction w.r.t to ith left
interaction are the same and equal to the decommitment. We show this by care-
fully considering another sequence of hybrids that yields an adversary that violates
the soundness of the UC-puzzle in an execution where the puzzles are not simu-
lated. This will rely on fact that the simulator simulates the left interactions in the
rewindings using the honest committer strategy and the pseudo-randomness of the
non-interactive commitment scheme used in the Commitment phase.

– If the value extracted from the safe point is the decommitment in Hi−1 then the
same holds in Hi. We rely on the proof technique of [32] through safe-points to
establish this. In slightly more detail, we show that for any particular right inter-
action, the value extracted from the safe-point w.r.t ith left interaction does not
change when the ith left commitment is changed from an honest commitment to
an equivocal commitment. Recall that a safe-point can be used to extract the value
committed to in the right without rewinding the particular left interaction. Since, the
non-interactive commitment scheme used has pseudo-random commitments, an ad-
versary cannot distinguish if it is receiving an honest or equivocal commitment in
the ith interaction.

– If the value extracted in the right interaction from the safe point is the value decom-
mitted to by the adversary in Hi, then the value extracted from a random WIPOK
and the safe point are the same and equal to the decommitment in Hi. This is es-
tablished exactly as the first property.

See the full version [17] for the formal construction and proof.

4.2 Adaptive UC-Secure Commitment Scheme

We now provide the construction of a UC-commitment scheme. First, we recall the
construction of the adaptive UC-secure commitment in the common reference string
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model (CRS) from [11] to motivate our construction. In the [11] construction, the CRS
contains two strings. The first string consists of a random image y = f(x) of a one-way
function f and the second string consists of a public key for a cca-secure encryption
scheme. The former allows a simulator to equivocate the commitment when it knows x
and the public key allows the simulator to extract committed values from the adversary
using its knowledge of the corresponding secret-key. The additional CCA requirement
ensures non-malleability.

Our construction follows a similar approach, with the exception that instead of hav-
ing a common reference string generated by a trusted party, we use the equivocal non-
malleable commitment to generate two common-reference strings between every pair
of parties: one for equivocation and the other for extraction. This is achieved by running
the following “non-malleable” coin-tossing protocol between an initiator and a respon-
der. Let 〈Scom,Rcom〉 be a concurrent equivocal non-malleable commitment scheme and
〈Spuz,Rpuz〉 be a UC-puzzle.

1. The initiator commits to a random string r0 using 〈Scom,Rcom〉 to the responder.
2. The responder chooses a random string r1 and sends to the Initiator.
3. The initiator opens its commitment and reveals r0.
4. The output of the coin toss is: r = r0 ⊕ r1.

The coin-tossing protocol is run between an initiator and responder and satisfies the
following two properties: (1) For all interactions where the initiator is honest, there is a
way to simulate the coin-toss. This follows directly from the equivocability of the com-
mitment scheme 〈Scom,Rcom〉. (2) For all interactions where the initiator is controlled
by the adversary, the coin-toss generated is uniformly-random. This follows from the
simulation-extractability of the commitment scheme.

Using the coin-tossing protocol we construct an adaptive UC-commitment scheme.
First, the sender and receiver interact in two coin-tossing protocols, one where the
sender is the initiator, with outcome coin1 and the other, where the receiver is the initia-
tor, with outcome coin2. Let x be the statement that coin1 is in the image of a pseudo-
random generator G. Also let, PK = oGen(coin2) be a public key for the simulatable
encryption scheme (Gen,Enc,Dec, oGen, oRndEnc, rGen, rRndEnc). To commit to a
string β, the sender sends a commitment to β using the non-interactive language-based
commitment scheme with statement x along with strings S0 and S1 where one of the
two strings (chosen at random) is an encryption of decommitment information to β and
the other string is outputted by oRndEnc. In fact, this is identical to the construction
in [11], with the exception that a simulatable encryption scheme is used instead of a
CCA-secure scheme.

Binding follows from the soundness of the adaptive UC-puzzle and hiding follows
from the hiding property of the non-interactive commitment scheme and the semantic
security of the encryption scheme. It only remains to show that the scheme is concur-
rently equivocable and extractable. To equivocate a commitment from a honest com-
mitter, the simulator manipulates coin1 (as the honest party is the initiator) so that
coin1 = G(s) for a random string s and then equivocates by equivocating the non-
interactive commitment and encrypting the decommitment information for both bits
0 and 1 in Sb and S1−b (where b is chosen at random). To extract a commitment
made by the adversary, the simulator manipulates coin2 so that coin2 = rGen(r) and
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(PK, SK) = Gen(r) for a random string r. Then it extracts the decommitment informa-
tion in the encryptions sent by the adversary using SK.

The procedure described above works only if the adversary does not encrypt the
decommitment information for both 0 and 1 even when the simulator is equivocating.
On a high-level, this follows since, if the coin-toss coin1 cannot be manipulated by
the adversary when it is the initiator, then the coin1 is not in the range of G with very
high probability and hence the adversary cannot equivocate (equivocating implies a
witness can be extracted that proves that coin1 is in the range of G). Proving this turns
out to be subtle and an intricate analysis relying on the simulation-extractability of the
〈Scom,Rcom〉-scheme is required.

We use a “non-malleable” coin-toss protocol to generate two keys, one for equivo-
cation and another for extraction. Such an idea has been pursued before, for instance,
in [19], they use a coin-toss to generate keys for extraction and equivocation. However,
they use a single coin-toss and depending on which party is corrupt, the simulation
yields an extraction or equivocation key. In recent and independent work, Garg and Sa-
hai [26], show how to achieve stand-alone adaptively-secure multiparty computation
in the plain model (assuming no-setup) using non black-box simulation. They rely on
a coin-tossing protocol using equivocal commitments to generate a common random
string and then rely on previous techniques used in the uniform reference string model
[11] to securely realize any functionality. An important difference between their ap-
proach and ours is that while our construction relies on a single trapdoor they require
the trapdoors to be non-malleable.5 See Figure 2 for a formal description of our protocol
(For further details and the proof, we refer the reader to the full version [17]).

5 Puzzle Instantiations

By Theorem 1, it suffices to present an adaptive UC puzzle in a given model to demon-
strate feasibility of adaptive and UC secure computation. We first give some brief intu-
ition on the construction of adaptive UC-puzzles in various models. Formal construc-
tions and proofs are found in the full version [17].

In the Common reference string (CRS) model, the Uniform reference string (URS)
model and the Key registration model the puzzles are identical to the ones presented
in [33] for the static case, where the puzzle interactions essentially consists of a call
to the corresponding ideal setup functionalities. Thus, in these models, the simulator is
essentially handed the trapdoor for the puzzle via its simulation of the ideal functional-
ity and the puzzles are non-interactive. In the Timing model and the Partially Isolated
Adversaries model, we rely on essentially the same puzzles as [33], however, we need
to modify the simulator to accommodate adaptive corruption by the adversary.

Constructing adaptive UC-puzzles in the Sunspots model is less straightforward and
so we give more detail here. Simulated reference strings r in the Sunspots model have
Kolmogorov complexity smaller than k. Thus, as in [33], the puzzle sender and receiver
exchange 4 strings (v1, c2, v2, c2). We then let Φ′ denote the statement that c1, c2 are
commitments to messages p1, p2 such that (v1, p1, v2, p2) is an accepting transcript of

5 In [19], they use separate keys for each party and in [26], the trapdoors admit a “simulation-
soundness” property.
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Protocol 〈S,R〉: Input: The sender S has a bit β to be committed to.
Preamble:

– An adaptive UC-Puzzle interaction 〈Spuz,Rpuz〉 on input 1n where R is the receiver and
S is the sender. Let TRANS1 be the transcript of the messages exchanged.

– An adaptive UC-Puzzle interaction 〈Spuz,Rpuz〉 on input 1n where S is the receiver and
R is the sender. Let TRANS2 be the transcript of the messages exchanged.

Commit phase:
Stage 1: S and R run a coin-tossing protocol to agree on strings PK and CRS:

Coin-toss to generate PK:
1. The parties run protocol 〈Scom,Rcom〉 with common input TRANS1. R plays the

part of sender with input a random string r0R.
2. S chooses a random string r0S and sends to R.
3. R opens its commitment and reveals r0R.
4. The output of the coin toss is: r = r0S ⊕ r0R. S and R run oGen(r) to obtain public

key PK.
Coin-toss to generate CRS:

1. The parties run protocol 〈Scom,Rcom〉 with common input TRANS2. S plays the
part of sender with input a random string r1S .

2. R chooses a random string r1R and sends to S.
3. S opens its commitment and reveals r1S .
4. The output of the coin-toss is: x = r1S ⊕ r1R.

Stage 2:
1. The parties run 〈Seq,Req〉 with common input x to generate a commitment C =

EQComx(β; r) where S plays the part of Seq with input bit β.
2. S chooses b ∈ {0, 1} at random and sends to R the strings (S0, S1) to where:

– Sb is an encryption of the decommitment information of C (to bit β) under
PK.

– S1−b is generated by running oRndEnc(PK, rEnc) where rEnc is chosen uni-
formly at random.

Reveal phase:
1. S sends β, b, and the randomness used to generate S0, S1 to R.
2. R checks that S0, S1 can be reconstructed using β, b and the randomness produced by

S.

Fig. 2. The Adaptive Commitment Protocol 〈S,R〉

a Universal argument of the statement Φ = KOL(r) ≤ k. Note that since we require
statistical and adaptive simulation of puzzles, the commitment scheme used must be
both statistically-hiding and ”obliviously samplable” (i.e. there is a way to generate
strings that are statistically indistinguishable from commitments, without ”knowing”
the committed value).

To construct an adaptive puzzle for the bounded-concurrent model we follow an
approach similar to the sunspots model combined with the bounded-concurrent non
black-box zero-knowledge protocol of Barak[1]. In fact this is inspired by the stand
alone adaptive secure multiparty computation construction of Garg, et al, [26].
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Abstract. The Even-Mansour (EM) encryption scheme received a lot
of attention in the last couple of years due to its exceptional simplicity
and tight security proofs. The original 1-round construction was natu-
rally generalized into r-round structures with one key, two alternating
keys, and completely independent keys. In this paper we describe the
first key recovery attack on the one-key 3-round version of EM which is
asymptotically faster than exhaustive search (in the sense that its run-
ning time is o(2n) rather than O(2n) for an n-bit key). We then use the
new cryptanalytic techniques in order to improve the best known attacks
on several concrete EM-like schemes. In the case of LED-128, the best
previously known attack could only be applied to 6 of its 12 steps. In this
paper we develop a new attack which increases the number of attacked
steps to 8, is slightly faster than the previous attack on 6 steps, and uses
about a thousand times less data. Finally, we describe the first attack on
the full AES2 (which uses two complete AES-128 encryptions and three
independent 128-bit keys, and looks exceptionally strong) which is about
7 times faster than a standard meet-in-the-middle attack, thus violating
its security claim.

Keywords: Cryptanalysis, key recovery attacks, iteratedEven-Mansour,
LED encryption scheme, AES2 encryption scheme.

1 Introduction

The Even-Mansour (EM) block cipher was first proposed at Asiacrypt’1991 [9].
It uses a single publicly known random permutation P on n-bit values and two
secret n-bit keys K1 and K2, and defines the encryption of the n-bit plaintext
m as E(m) = P (m ⊕ K1) ⊕ K2. The decryption of the n-bit ciphertext c is
similarly defined as D(c) = P−1(c ⊕K2) ⊕K1. It can be naturally generalized
into an r-round iterated EM encryption function (a.k.a. a key-alternating scheme
in [1, 5]), which is defined using r permutations P1, P2, . . . , Pr and r + 1 keys
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K1,K2, . . .Kr+1 as E(m) = Pr(. . . P2(P1(m⊕K1)⊕K2)⊕K3 . . .⊕Kr)⊕Kr+1,
where decryption is defined in an analogous way.

For about 20 years this scheme received very little attention in the crypto-
graphic literature, but in the last couple of years it became a very active research
area: multiple papers about this scheme appeared at Crypto, Eurocrypt, Asi-
acrypt, CHES and FSE [1, 5, 8, 12, 14–16], analyzing its theoretical properties,
generalizing it in various ways, and proposing concrete constructions of block
ciphers which are based on the EM structure.

In this paper we describe several new key recovery attacks on iterated EM
schemes, analyze their complexity, and apply them to some concrete proposals
of block ciphers which have this structure. The origin of the observations used
in our attacks goes back to the first paper which attacked EM, by Daemen [6]
in 1991. Daemen observed that in single-round one-key EM, an attacker can use
the fact that the XOR of the unknown input and output of the permutation P
is equal to the known XOR of the plaintext and the ciphertext. This observation
can be used to break 1-round EM significantly faster than exhaustive search.

At FSE’13, Nicolic et al. [16] extended the basic observation considerably.
They considered the graph of the function P ′(x) = x ⊕ P (x),1 and showed
that vertices with a large in-degree in this graph can be exploited to bypass an
additional round of EM, but at the expense of enlarging the time complexity to
slightly less than exhaustive key search.

In this paper, we develop the techniques one step further, and show that
graphs of the functions P ′

1 and P ′
3 (corresponding to the permutations P1 and P3)

can be deployed simultaneously, resulting in an attack on 3-round EM. However,
this enhancement is not sufficient by itself, since the time complexity becomes
very close to that of exhaustive key search. Nevertheless, a surprising feature of
our 3 round attack is that it has about the same time complexity as the 2-round
attack. This feature is due to a novel filtering technique based on tailor-made
linear subspaces that we develop in Section 2.2, and allows us to quickly dispose
of data which is useless for our attack. Another novel technique that we develop
in this paper allows us to adapt the differential-based attack of [15] (which was
originally applied to 2-round iterated EM with one key) to 2-round iterated EM
with completely independent keys, and thus to attack the full AES2 scheme.
While the attack of [15] makes use of plaintext pairs with a fixed difference,
we notice that in its original form it cannot improve the standard meet-in-the-
middle attack on this scheme. In our attack, we work on non-standard structures
of plaintext triplets which allow us to filter out wrong guesses for the key more
efficiently.

Throughout the paper we follow the standard conventions in the analysis of
time and memory complexities. Our basic unit of memory is an n-bit block.
Our basic unit of time is a single evaluation of the encryption or the decryption
function, i.e., the full r-round iterated EM scheme. The scheme requires the
evaluation of the r permutations Pi (which are assumed to be heavy operations)

1 In [16], the permutation P is actually the full encryption function, and thus x is a
message and P (x) is its corresponding ciphertext.
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and a small number of simple operations (such as XORs) which are assumed to
require negligible time.2 Thus, an invocation of a single permutation Pi (or its
inverse) costs 1/r time units. For the sake of convenience, we often partition the
attack into an offline preprocessing phase which analyzes the properties of the
public Pi’s, and an online attack phase which analyzes the given plaintexts and
ciphertexts. However, we always define the time complexity of the attack as the
sum of the complexities of its offline and online phases. This is different from
the model used by Hellman in his time/memory tradeoff attack, which allowed
unlimited free preprocessing and considered only the online complexity (note
that in our model, Hellman’s attack is no better than exhaustive search). To
prevent other types of “cheating”, we always add the time required to generate
the data to the final time complexity, and add the space required to hold the
data to the final space complexity.

All our attacks are only slightly better than exhaustive search, which raises the
natural question whether they should be considered as legitimate attacks. This
is a general problem in cryptanalysis, since it is difficult to decide whether an
attack such as the Biclique attack on AES-128 [4] which requires 2126 time really
“breaks” a scheme whose exhaustive search requires 2128 time. Some researchers
suggested that this issue should be decided by the nature of the attack: If an
attack on an n-bit scheme has an outer loop which tries 2n different possibilities,
but performs for each one of them an operation which is cheaper than a single
encryption, then the attack should be called an “improvement of exhaustive
search” rather than a “real attack”, and the scheme is not said to be “broken” by
it. However, this is a fragile definition since the same attack can be described in
multiple ways, and it is not always clear whether it tries 2n or fewer possibilities.

Fortunately, in cryptographic schemes such as EM which can be naturally
defined for arbitrarily large key sizes n, we can avoid this fragility by analyz-
ing the asymptotic complexity of the attack. As we show in this paper, our
attacks are about n/ log(n) times faster than exhaustive search. Since this ratio
is unbounded when n increases, our attacks are asymptotically better than any
standard or improved version of exhaustive search, and this is a robust state-
ment since it ignores all the multiplicative constants which are associated with
a particular model of computation.

Some of the concrete schemes we consider in this paper (such as LED and
AES2) pose the following problem: they use the general EM framework, but
instantiate P with a fixed-key AES-like permutation which is defined only for
a few values of n, and thus it is difficult to define their asymptotic security.
We solve this problem in two ways. First, we observe that all our attacks are
completely generic, and do not exploit any particular properties of P besides
its randomness. We can thus analyze the performance of our attacks assuming

2 This complexity gap is typically large for normal choices of n, and likely to grow
even larger as n increases: the number of 2-bit to 1-bit gates in the Boolean circuit
of Pi which are needed to thoroughly and independently mix the n input bits into n
output bits is expected to grow super-linearly with n, whereas the number of gates
in the Boolean circuit of XOR grows only linearly with n.
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that AES is replaced in these schemes by a random permutation over n-bit
values, and show that their asymptotic time complexity is o(2n). In addition, we
carefully analyze the exact complexity of our attacks for the particular values
of n recommended for these schemes, and show that they are between 7 and 20
times faster than exhaustive search, depending on which scheme we attack.

We would like to point out that some of the previously published attacks
on these schemes (such as [5]) are distinguishing attacks, and thus they are
incomparable to our key recovery attacks. In addition, our attacks may fail to
find the key or require longer than expected time for a small fraction of “bad”
permutations, since we only analyze their expected behavior when the Pi’s are
randomly chosen permutations.

The paper is organized as follows. In Section 2, we introduce our new crypt-
analytic techniques, and use them to attack the one-key, three-round version of
EM (the best previous attack could only handle the two-round version of EM).
In particular, our new attack influenced the decision of the designers of the Zorro
block cipher [11] to increase its number of steps from 3 to 6. In Section 3, we
consider the LED block cipher, which was proposed at CHES 2011 [12]. It has
two flavors: a one-key version called LED-64, and a two-key version (in which
the two keys are alternately used) called LED-128. In the case of LED-64, the
best previously published attack [13] appeared at ACISP 2012, and could only
handle 2 steps. We increase the number of steps we can attack from 2 to 3. In
the case of LED-128, the best previously published attack [16] appeared at FSE
2013, and could handle 6 steps out of the 12 steps of full LED-128. We increase
this number to 8, using smaller time and data complexities. In Section 4, we
consider the generalized version of EM in which all the keys are completely in-
dependent, and show how to attack the 2-round version of this scheme. We then
use the new techniques in order to describe the first published attack on the full
version of the block cipher AES2, which was presented at Eurocrpyt 2012 by
[5]. The scheme looks exceptionally strong, using two complete AES encryptions
and three independent 128-bit keys. In fact, the designers of AES2 conjectured
that the best attack on their scheme is a meet-in-the-middle attack, but our new
attack disproves this claim since it is about 7 times faster.

2 Attacks on Iterated Even-Mansour with One Key

We first consider iterated EM schemes with one key K and r permutations
P1, P2, . . . , Pr, as shown in Figure 1 (note that if all the permutations are also
the same, the scheme is extremely vulnerable to slide attacks [3]). Our goal is to
use properties of one of the public permutations P ∈ {P1, P2, . . . , Pr} in order to
deduce properties of the associated keyed permutation3 Q(K,x) = K⊕P (x⊕K)
(used inside the EM construction), which hold for any value of K. As Daeman
pointed out in 1991 [6], for any value of K and in any invocation of Q(K,x), the
XOR of its input and output is equal to the XOR of the input and output of the
internal P function in the same invocation, i.e., x⊕Q(K,x) = (x⊕K)⊕P (x⊕K).

3 In general, given some public permutation Pi, we denote Qi(K,x) = K⊕Pi(x⊕K).
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Another interesting observation is that when K is unknown we cannot determine
x ⊕ K, but the addition of K just renames the input vertices in the bipartite
graph of P ′(x) = x ⊕ P (x), and thus it preserves the distribution of in-degrees
of its output vertices. In particular, if some output values of P ′ are more likely
than expected (i.e., appear more than the average), then we can predict the value
Q(K,x) with a higher probability than expected even when K is unknown. More
specifically, any t-way collision on the value v in P ′, namely x1, x2, . . . , xt such
that x1 ⊕ P (x1) = x2 ⊕ P (x2) = . . . = xt ⊕ P (xt) = v for some value of v,
yields a t-way collision on the value v in the function Q′(K,x) = x⊕Q(K,x) =
x⊕K⊕P (x⊕K). Assume that indeed we manage to find during a preprocessing
phase a large t-way collision in the public P ′(x) on the output value v. Since it
also yields a t-way collision on the value v in the keyed function Q′(K,x), there
are at least t values of x for which Q′(K,x) = v, and thus Q(K,x) = x ⊕ v.
Consequently, we can guess Q(K,x) with a probability which is t times higher
than the expected 1/2n even when we know nothing about K.

m
⊕

P1

⊕
P2

⊕
Pi

⊕
Pr

⊕
c

K K K K K

Fig. 1. An iterated EM with one key

This graph theoretic property is strongly related to the one used in [16], but
we use it in a different way. Whereas we use properties of the public permutations
(which can be observed during a preprocessing phase), [16] exploits properties
of the given plaintext-ciphertext pairs: assume that mj ⊕ cj = v for multiple
plaintext-ciphertext pairs (mj , cj). Then, for all of these pairs, they know that
(mj ⊕ K) ⊕ (cj ⊕ K) = v. Thus, the attack of [16] is based on the property
that the XOR of the inputs to the first and last public permutations P1 and
P−1
r attain the value v more than the expected number of times. In particular,

in their attack it is not clear how to compute such a v during a preprocessing
phase, and they have to wait for the actual data in order to search for the best v
in it. Our attacks, on the other hand, are based on the property that the XOR of
the input and output of a single public permutation attains some value v more
than the expected number of times, and thus we can find the best v once and
for all, before any data is given for a particular key.

In order to estimate the highest expected in-degree in the bipartite graph of
P ′(x) = x ⊕ P (x), we assume that for a random choice of the permutation P ,
the function P ′ behaves as a random function. This is not completely true, since
there are some extremely expensive ways to distinguish between such cases (for
example, the XOR of all the 2n values of P ′ is zero, whereas the XOR of all the
outputs of a truly random function is unlikely to be zero). However, it is easy to
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verify with appropriate simulations that the in-degree distributions of the two
models behave almost identically, which is all we need in our attack.4

The main problem in applying this attack is that going over all the 2n possible
values of x in order to find the most popular v will make our attack slower
than exhaustive search (since we do not allow free preprocessing in our model).
Fortunately, we can find vertices v′ which are almost as popular by trying only
a small subset X ⊆ {0, 1}n of possible inputs. We denote this restricted function
by f|X , and note that it induces a subgraph in the bipartite graph associated
with f , in which the left side of the graph contains only the vertices in X . Our
goal now is to analyze the expected distribution of the in-degrees in random
subgraphs of random functions.

Random functions have been extensively analyzed in the literature (e.g., see
[10]). It is well-known that the in-degree of an element in the range of f|X is
distributed according to the Poisson distribution with an expectation λ, which
is equal to the average in-degree (i.e., λ = |X |/2n, which is the ratio between the
sizes of the domain and range of f|X). Given a parameter t, the probability that

an arbitrary element v will have an in-degree of t is thus (λte−λ)/t!. We have
2n elements in the range, implying that we expect that about (2n · λte−λ)/t!
vertices will have an in-degree of t. If we equate this number to 1 and ignore
low order terms, we can deduce that the largest expected in-degree t satisfies
t · log(t) = n, and thus t is approximately equal to n/ log(n). The crucial point
is that this highest in-degree grows in an unbounded way as n increases, and
thus any complexity of the form O(2n/t) behaves asymptotically as o(2n). If we

reduce this maximal t to t−i for a small i, we expect to find about (t/λ)
i
vertices

which have this reduced in-degree. Since t > 1 and λ < 1, this number grows
exponentially with i, and we can thus find a huge number of vertices which have
almost maximal in-degrees.

To get a sense of the concrete values implied by this distribution, consider the
recommended value of n = 64 in the LED block cipher. If we consider all the
264 possible inputs, we expect to see 2 or 3 vertices of degree 20, 55 vertices of
degree 19, and 1060 vertices of degree 18. If we reduce the number of possible
inputs to 263, we expect to see 1 vertex of degree 17, 8 vertices of degree 16,
and 260 vertices of degree 15. If we further reduce the number of possible inputs
to 260, we expect to see 4 vertices of degree 10, 695 vertices of degree 9, and
100130 ≈ 216.6 vertices of degree 8.

The attacks in this paper are described in terms of several parameters, and it is
usually possible to obtain various tradeoffs between their time, data and memory
complexities by tweaking the parameter values. However, since there is no simple
formula which describes the exact tradeoff curves, one needs to determine favor-
able tradeoff points on the curves by plugging in a few values for the parameters

4 In fact, collisions in P’(x) are slightly less likely to occur when P is a random function,
since if P (x) = P (y) (for x �= y) then P ′(x) �= P ′(y), whereas if P is random
permutation then x �= y implies P (x) �= P (y), and the probability for P ′(x) = P ′(y)
is a bit higher. As a result, our analysis slightly underestimates the highest expected
in-degree, and thus the attacks that we describe are actually (negligibly) faster.
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and calculating the resultant complexities of the algorithms. This is demonstrated
in our attacks, where we suggest concrete points on the curves which minimize the
time complexity, but stress that there are other options as well.

2.1 Attacks on 2-Round Iterated Even-Mansour with One Key

We start by describing a very basic attack, 2Round1KeyBasic. Let S and D be
parameters.

Preprocessing:

PR1. Evaluate P ′
1 on an arbitrary subset of inputs X , such that |X | = S, and

store the output values (without their associated input values) in a sorted
list.

PR2. Traverse the sorted list and find the output v1 which occurs the maximal
number of times (in t1 consecutive locations).

Online:

O1. Ask for the encryption of D arbitrary plaintexts.
O2. For each plaintext-ciphertext pair (mi, ci):

(a) Assume that Q1(K,mi) = mi ⊕ v1 � zi and calculate P2(zi).
(b) Test the suggestion for the key K ′ = P2(zi) ⊕ ci by checking whether

indeed Q1(K
′,mi) = mi ⊕ v1. If the test fails, increment i and return

to Step O2. Otherwise, return the suggested key.

The time complexity of the preprocessing phase is S evaluations of P1, and
its memory complexity is also S. Note that the output of the preprocessing
phase is only the value v1 and the corresponding number t1, and we can discard
the rest of the sorted list (In our model, we can ignore the sorting time of
the list, since sorting uses only cheap comparison operations.5). In addition,
since we can execute the online phase in streaming mode by working on each
given plaintext-ciphertext pair independently and discarding it afterwards, its
memory complexity is negligible. The expected time and data complexities of
the online phase depend on the value of t1: we know that there are at least t1
values of x such that Q1(K,x) = x⊕v1. According to the birthday paradox, after
trying about 2n/t1 arbitrary messages we expect that at least one mi will satisfy
Q1(K,mi) = mi ⊕ v1 and suggest the correct value of K. Thus, the expected
data complexity of the online algorithm is 2n/t1, and in order to compute its
time complexity, we need to sum 2n/t1 evaluations of P2 in Step O2.(b), and
2n/t1 encryptions in order to generate the data.

5 One may notice that since sorting requires O(n log(n)) basic operations, then our
algorithm actually requires about 2n basic operations. However, as mentioned before
we expect the circuit size of any reasonable choice of P1 to grow at least as n1+ε

(for some ε > 0) when n increases, and thus the real time complexity of exhaustive
search is in fact O(n1+ε · 2n) basic operations, which is asymptotically larger than
the number of basic operations performed by our algorithm when we take the sorting
time of Õ(2n/n) values into account.



344 I. Dinur et al.

Optimizing the Basic Algorithm. We now describe several useful optimiza-
tions of the 2Round1KeyBasic algorithm. The first optimization is to use the
freedom to choose the subset X during the preprocessing phase in order to im-
mediately filter out most of the wrong key suggestions that are now filtered only
in Step O2.(b) of the online algorithm, and thus avoid the Q1 evaluations in
these cases. The idea uses a technique that resembles (but is not the same as)
splice-and-cut [2]: assume that we choose the set X of size S as the subspace of
values x in which the n− log(S) LSBs are zero (or any other constant). Then the
value of these n− log(S) LSBs in all the t1 inputs x that satisfy P ′

1|X(x) = v1 is
zero. Consequently, we know that for any plaintext mi, if mi⊕K is one of these
t1 inputs, then the n− log(S) LSBs of K are equal to those of mi. Thus, before
testing the suggested key in Step O2.(b), we can check whether its n − log(S)
LSBs are equal to those of mi, and otherwise discard it without evaluating Q1.
We note that in this attack, the saving in time complexity due to this optimiza-
tion is small, however, in Section 2.2 we show that a similar idea yields a more
significant saving in our attacks on 3-round iterated EM. We alert the reader
that even though the values in X are now chosen in a specific way, the attack
remains a known plaintext attack since there is no restriction on the choice of
the mi’s.

The second optimization is to consider � > 1 outputs of P ′
1 with a high

in-degree instead of just one. This allows us to reduce the data complexity of
the attack at the expense of using more memory and slightly more time dur-
ing the online phase of the attack. Since the original online algorithm required
only negligible memory, this tradeoff seems favorable. Our optimized algorithm
2Round1KeyOpt is described below, using S, D and � as parameters.

Preprocessing:

PR1. Evaluate P ′
1 on a subset of S inputs, X , such that the n− log(S) LSBs of

each x ∈ X are zero. Store the output values in a sorted list.
PR2. Traverse the sorted list and store the outputs v1, v2, . . . , v� which have the

highest in-degrees. Denote the in-degrees of the outputs v1, v2, . . . , v� by
t1, t2, . . . , t�, respectively.

Online:

O1. Ask for the encryption of D arbitrary plaintexts.
O2. For each plaintext-ciphertext pair (mi, ci):

(a) For j ∈ {1, 2, . . . , �}:
i. Assume that Q1(K,mi) = mi ⊕ vj � zij and calculate P2(zij).
ii. Let K ′ = P2(zij) ⊕ ci. If the n − log(S) LSBs of K ′ are different

from those of ci, discard it and return to Step O2.(a) (if j = � return
to Step O2). Otherwise, test K ′ by checking whether Q1(K

′,mi) =
mi ⊕ vj . If the test succeeds, return K ′, otherwise, if j < � return
to Step O2.(a) and if j = � return to Step O2.

As in the 2Round1KeyBasic, the time complexity of the preprocessing
phase is S evaluations of P1, and its memory complexity is also S. However, in
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2Round1KeyOpt, a bigger list of size � is carried over to the online algorithm,
and thus its memory complexity is increased to �. In order to calculate the time
and data complexities, we denote by t̄ the average value of t1, t2, . . . , t�, and thus
there are t̄� values of x for which Q1(K,x) = x ⊕ vj for j ∈ {1, 2, . . . , �}. Ac-
cording to the birthday paradox, after trying about 2n/(t̄�) arbitrary messages,
we expect that at least one mi will satisfy Q1(K,mi) = mi ⊕ vj and suggest
the correct value of K. Thus, the expected data complexity of the attack is
2n/(t̄�). Since we perform � evaluations of P2 per given message, the expected
time complexity of the online algorithm is about � · D = 2n/t̄ evaluations of
P2, S/2n · 2n/t̄ = S/t̄ evaluations of P1 in Step O2.(a).ii, and 2n/(t̄�) time to
generate the data.

Concrete Parameters. For n = 64, let S = 260, which implies λ = 260/264 =
2−4. As shown before, by using the formula (2n ·λte−λ)/t! = 264 · (2−4te−1/16)/t!
with t = 10, it is easy to check that in such an evaluated subgraph of a random
function we expect to see at least � = 4 vertices with an in-degree of 10. With
these parameters, the time complexity of the preprocessing phase is 260 evalua-
tions of P1 (which is equivalent to 259 evaluations of the 2-round scheme), and
its memory complexity is 260. The memory complexity of the online algorithm
is negligible, its data complexity is 264/(10 · 4) = 258.7 known plaintexts and
its time complexity is 264/10 evaluations of P2 and 260/10 evaluations of P1,
which is equivalent to about 259.8 time units. Adding the 258.7 time required to
generate the data, we obtain a total time complexity of about 260.4, which is
about 12 times faster than exhaustive search.

We can significantly reduce the data complexity by considering all the vertices
with an in-degree of at least 8, whose number � is expected to exceed 216 . This
does not affect the time and memory complexities of the preprocessing phase.
The memory complexity of the online algorithm is now 216 (which is still quite
small), its data complexity is 264/(8 · 216) = 245 known plaintexts and its time
complexity is now 264/8 evaluations of P2 and 260/8 evaluations of P1, which
is equivalent in total to about 260.1 time units, or about 15 times faster than
exhaustive search (note that we actually gain in time complexity since we use
significantly less data).

2.2 Attacks on 3-Round Iterated Even-Mansour with One Key

In the attacks on 2-round iterated EM with one key, we use properties of P1 in
order to guess a value of Q1(K,x) with a higher probability than expected. We
then apply to this guess the public permutation P2, which immediately gives us
a suggestion for the key by XORing the obtained value with the ciphertext. In
order to attack 3-round iterated EM with one key, we start with the same idea.
However, after the evaluation of P2, we cannot immediately get a suggestion for
the key, as we still have to apply the complex operation of XOR’ing the unknown
key, applying P3, and XOR’ing the unknown key again, before we can compare
the result to the ciphertext. Nevertheless, we notice that given the value at the
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output of P2, we reduce the key recovery problem to attacking a single-round
EM scheme with one key, to which we can apply the simple attack of [8]. Thus,
we run an additional preprocessing step which evaluates and stores in a sorted
list of values of P ′

3(x) = x ⊕ P3(x) for various inputs x. The sorted list is used
in the online algorithm in order to obtain suggestions for the key, as described
in the basic algorithm 3Round1KeyBasic below, which uses S1, S3 and D as
parameters.

Preprocessing:

PR1. Evaluate P ′
1 on an arbitrary subset of inputs X1 such that |X1| = S1, and

store the output values in a sorted list.
PR2. Traverse the sorted list and find an output v1 with a maximal in-degree,

denoted by t1.
PR3. Evaluate P ′

3 on an arbitrary subset of inputs X3, such that |X3| = S3, and
store the output values P ′

3(x) in a sorted list L3 next to the corresponding
value of P3(x).

Online:

O1. Ask for the encryption of D arbitrary plaintexts.
O2. For each plaintext-ciphertext pair (mi, ci):

(a) Assume that Q1(K,mi) = mi ⊕ v1 � zi and calculate P2(zi).
(b) Look for the value of P2(zi) ⊕ ci in L3. If there is no match, return to

Step O2 and increment i.
(c) For each match of P2(zi) ⊕ ci, obtain the value of P3(x) (for which

P2(zi) ⊕ ci = P ′
3(x) = x ⊕ P3(x)), and test the key suggestion K ′ =

P3(x) ⊕ ci by checking whether Q1(K
′,mi) = mi ⊕ v1. If the test fails,

continue with the next match (if none remain, return to Step O2). Oth-
erwise, return the key.

The time complexity of the preprocessing phase is S1 evaluations of P1 and S3

evaluations of P3, and its memory complexity is max(S1, S3). Note that we do
not need to store any of the values generated in the first step of the preprocessing
after Step PR2 terminates. The memory complexity of the online algorithm is
S3. In order to calculate the expected time and data complexities of the online
algorithm, we notice that after we process D pairs (mi, ci), we expect that at
least (t1 ·D)/2n of them satisfy Q1(K,mi) = mi⊕ v1, and consequently at least
(t1 ·D · S3)/2

2n pairs will be matched and suggest the correct value for the key
in Step O2.(c). Thus, in order to obtain a correct suggestion for the key, we
require (t1 ·D · S3)/2

2n = 1, implying that the data complexity of the attack is
D = 22n/(t1 · S3). We expect a match in Step O2.(c) for a fraction of S3/2

n of
the (mi, ci) pairs. Thus, we estimate the time complexity of the online algorithm
as D = 22n/(t1 · S3) evaluations of P2, S3/2

n · 22n/(t1 · S3) = 2n/t1 evaluations
of P1, and 22n/(t1 · S3) time required to generate the data.

Optimizing the Basic Algorithm. Similarly to our 2Round1KeyOpt attack,
we would like to use the freedom to choose the subset X1 during preprocessing
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in order to reduce the time complexity of the attack. However, in this attack we
will use this freedom in a different way: we “synchronize” the sets X1 and X3

such that we can instantly rule out most pairs (mi, ci) (just by comparing bits
of mi and ci) that do not simultaneously satisfy both Q1(K,mi) = mi ⊕ v1 and
P−1
3 (ci ⊕K) ∈ X3. Thus, we can discard most pairs (mi, ci) which will suggest

a wrong key (or suggest no key at all) with negligible computation.
We now assume that |X1| = |X3| = S. Similarly to the 2Round1KeyOpt

algorithm, we choose X1 as a subspace of values x in which the n− log(S) LSBs
are zero (or any other constant). This implies that for any plaintext mi, if mi⊕K
is one of the t1 inputs that satisfy P ′

1|X1
(x) = v1, then the n− log(S) LSBs of K

are equal to those of mi. As for x ∈ X3, we store the values of P
′
3(x) = x⊕P3(x),

and set the additional condition that the n− log(S) LSBs of P3(x) are zero (or
any other constant). In fact, during preprocessing, we do not evaluate P3(x) on
x ∈ X3, but rather evaluate P−1

3 (y) for each y ∈ Y3, where Y3 contains all n-bit
vectors whose n− log(S) LSBs are zero. Thus, we know that if ci⊕K ∈ Y3, then
the n − log(S) LSBs of K are equal to those of ci. Combining the conditions
on mi and ci, we know that a pair (mi, ci) will suggest a correct key in our
algorithm only if the n− log(S) LSBs of mi and ci are equal.

Similarly to the 2Round1KeyOpt attack, the second optimization is to con-
sider � > 1 outputs of P ′

1 with a high in-degree (instead of just one), which
allows us to reduce the data complexity of the attack. Our optimized algorithm
3Round1KeyOpt is described below, and Figure 2 illustrates its online part. Let
S, D and � be parameters.

Preprocessing:

PR1. Evaluate P ′
1 on a subset of S inputs, X , such that the n− log(S) LSBs of

each x ∈ X are zero. Store the output values in a sorted list.
PR2. Traverse the sorted list and store the outputs v1, v2, . . . , v� with the highest

in-degrees. Denote the in-degrees of outputs v1, v2, . . . , v� by t1, t2, . . . , t�,
respectively.

PR3. Let Y3 be the subspace of the |S| n-bit vectors in which the n − log(S)
LSBs are zero. For each y ∈ Y3, store P−1

3 (y)⊕y = P ′
3(P

−1
3 (y)) in a sorted

list L3 next to y.

Online:

O1. Ask for the encryption of D arbitrary plaintexts.
O2. For each plaintext-ciphertext pair (mi, ci), if the n− log(S) LSBs of mi and

ci are not equal, discard it. Otherwise:

(a) For j ∈ {1, 2, . . . , �}:
i. Assume that Q1(K,mi) = mi ⊕ vj � zij and calculate P2(zij).
ii. Look for the value of P2(zij)⊕ci in L3. If there is no match: if j < �

return to Step O2.(a), otherwise (j = �) return to Step O2.
iii. For each match of P2(zij) ⊕ ci, obtain the value of y (such that

P2(zi)⊕ci = P−1
3 (y)⊕y = P ′

3(P
−1
3 (y))), and test the key suggestion

K ′ = y ⊕ ci by checking whether Q1(K,mi) = mi ⊕ vj . If the test



348 I. Dinur et al.

succeeds, return K ′, otherwise, if j < � return to Step O2.(a), and
if j = � return to Step O2.

The time complexity of the preprocessing phase is S evaluations of P1 and
P−1
3 , and its memory complexity is S+ �. The memory complexity of the online

algorithm is also S + �. We denote by t̄ the average value of t1, t2, . . . , t�, and
thus there are t̄� values of x for which Q1(K,x) = x ⊕ vj for j ∈ {1, 2, . . . , �}.
Consequently, in order to obtain a correct suggestion for the key, we require
that (t̄� · D · S)/22n = 1, implying that the data complexity of the attack is
D = 22n/(t̄� · S). We process a pair (mi, ci) (i.e., we do not discard it in step
2) with probability S/2n, and for each such pair we perform � evaluations of P2

and for a S/2n fraction of those we also evaluate Q1 (or P1). The expected time
complexity of the online algorithm is thus � · S/2n ·D = 2n/t̄ evaluations of P2,
S/t̄ evaluations of P1, and 22n/(t̄� · S) time required to generate the data.

Thus, the attack has about the same time complexity as the 2Round1KeyOpt
attack, and for � = 1 it is more efficient than the 3Round1KeyBasic attack by
a factor of about 2n/S.

Concrete Parameters. For n = 64, let S = 260, i.e., λ = 260/264 = 2−4.
Again, we use the formula (2n · λte−λ)/t! = (264 · 2−4te−1/16)/t! with t = 8,
such that we expect at least � = 216 vertices with an in-degree of 8. With these
parameters, the time complexity of the preprocessing phase is 260 evaluations of
P1 (equivalent to about 258.5 evaluations of the 3-round scheme), and its memory
complexity is 260. The memory complexity of the online algorithm is 260, its
expected data complexity is 2128/(8 · 216 · 260) = 249 known plaintexts and its
expected time complexity is 264/8 evaluations of P2 and 260/8 evaluations of P1,
whose sum is equivalent to about 259.6 time units (the time required to generate
the data is negligible). Note that it is possible to reduce the data complexity
further at the expense of increasing the time complexity by considering vertices
of a lower in-degree.6

mi

⊕
P1

⊕
P2

⊕
P3

⊕
ci

K K K K

O2: Compare n− log(S) LSBs

⊕vj zij ⊕O2.(ii):
?
∈ L3

yes
Test K ′ = y ⊕ ci

Fig. 2. The online algorithm of 3Round1KeyOpt

6 For example, we expect more than 223 vertices with an in-degree of at least 7, and
thus if we use only 2128/(8 ·223 ·260) = 242 known plaintexts for the attack, the time
complexity of the online algorithm slightly increases from 259.6 to about 259.8.
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3 Applications to Step-Reduced LED

LED is a 64-bit block cipher designed for resource-constrained environments,
proposed by Guo et al. at CHES 2011 [12]. The two main variants of LED
are LED-64 (which supports 64-bit keys) and LED-128 (which supports 128-
bit keys). The design of LED can be viewed as a special case of iterated EM
schemes: LED-64 is in fact an 8-step iterated EM scheme7 with one key and
LED-128 is a 12-step iterated EM scheme with alternating keys K1 and K2. The
inner permutations of LED are based on the AES design framework, however,
since our attacks do not exploit any properties of these permutations, we do not
specify them here and refer the reader to [12] for further details.

In the single-key model, the best attack published so far on reduced LED-64
breaks 2 steps of this cipher [13]. For LED-128, the largest number of attacked
steps was 6 (see [16]). In this paper, we use our generic attacks in order to im-
prove the data complexity of the attack on 6-step LED-128 from 259 to 245, while
keeping the time and memory complexities similar to the original attack. More
significantly, we present the first single-key attacks which are faster than exhaus-
tive search on 3-step LED-64 and on 8-step LED-128. The previous attacks on
LED (which are in the single-key rather than in the related-key model) and our
new attacks are summarized in Table 1. Note in particular that our new attack
on 8-step LED-128 actually has a slightly better time complexity and requires
about a thousand times less data than the best previous attack which could only
be applied to 6 steps of LED-128, out of the full 12.

Table 1. Single-Key Attacks of Step-Reduced LED

Reference Cipher Steps Time Data Memory

[13] LED-64 2 256 28 CP 211

This paper LED-64 3 260.2 249 KP 260

[13] LED-128 4 2112 216 CP 219

[15] LED-128 4 296 264 KP 264

[16] LED-128 4 296 232 KP 232

[16] LED-128 6 2124.4 259 KP 259

This paper LED-128 6 2124.5 245 KP 260

This paper LED-128 8 2123.8 249 KP 260

The data complexity is given in chosen plaintexts (CP), or in known plaintexts (KP).

7 In the design of LED, the term “step” is used in order to describe what we refer to
as a “round” of an iterated EM scheme. On the other hand, a “round” of LED is
used in order to describe a smaller component of its internal permutation. Thus, in
order to avoid confusion, we will use the term “step” in this section.
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3.1 An Attack on 6 Steps of LED-128

As was pointed out in [15, 16], it is easy to reduce 2r+2-steps of LED-128 (with
its alternating use of two keys) into an iterated EM scheme variant with one key
by guessing K1 and combining consecutive pairs of permutations (along with the
XOR’ed key between them) into a single known permutation. In particular, [16]
reduced 6-step LED-128 into a 2-step iterated EM, which was relatively easy
to attack. Similarly, we guess K1, and for each guess, we partially encrypt and
decrypt the given plaintext-ciphertext pairs and remain with a 2-step iterated
EM scheme with a single key (K2). Thus, we can apply our 2-step iterated EM
attack (presented in Section 2.1) for each guess of K1. However, we note that
the preprocessing phase of our 2Round1KeyOpt attack should be executed for
each guess of K1, and it is thus now a part of the online algorithm of the attack
on LED-128. Moreover, the algorithm can no longer be performed in streaming
mode, as we need to reuse each plaintext-ciphertext pair for each guess of K1.
The general framework of the algorithm is given below.

1. Ask for the encryption of D arbitrary plaintexts and store them.
2. For each value of K1:

(a) Apply the 2Round1KeyOpt attack (including the preprocessing steps)
on the resultant scheme, with plaintext-ciphertext pairs (P1(mi ⊕ K1),
P−1
6 (ci ⊕K1)). Test each returned key using another pair (mj , cj).

Using the parameters of our 2Round1KeyOpt attack (presented in Section
2.1), the expected data complexity of the attack is 245 known plaintexts and
its memory complexity is 260 (required for preprocessing, which is now part of
the online algorithm). We calculate the expected time complexity of the algo-
rithm as follows: adding the preprocessing and online time complexities, the
main procedure of the attack performed for each guess of K1 requires about
260.1+260 ≈ 261.1 evaluations of 4 out of the 6 permutations, which is equivalent
to about 260.5 evaluations of the full scheme. Compared to this complexity, the
partial encryption and decryption of each (mj , cj) pair, and the trial encryptions
using (mj , cj) (performed on average once per guess of K1) are negligible. Thus,
the expected time complexity of the attack is about 264+60.5 = 2124.5, which is
about 11 times better than exhaustive search.

3.2 An Attack on 3 Steps of LED-64

We can attack 3-step LED-64 by directly applying 3Round1KeyOpt attack with
n = 64, presented in Section 2.2. Thus, the preprocessing phase has a time
complexity of about 258.5 and memory complexity of 260. The online algorithm
has a memory complexity of 260, data complexity of 249 known plaintexts and
time complexity of 259.6. Since in this paper we consider the preprocessing time
as part of the attack (i.e., we assume that we are trying to attack the scheme for
the first time), the total time complexity of the algorithm is about 260.2, which
is about 14 times better than exhaustive search.
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3.3 An Attack on 8 Steps of LED-128

We use the same framework of our 6 step attack on LED-128 in order to attack 8
steps of LED-128 (shown in Figure 3). Namely, we guess K1, and for each guess,
we partially encrypt and decrypt the given plaintext-ciphertext pairs and remain
with a 3-step iterated EM scheme with a single key (K2). We then apply our
3Round1KeyOpt attack (presented in Section 2.2) for each guess of K1. Thus,
the memory complexity of the attack is 260 and its data complexity is 249 known
plaintexts. We calculate the expected time complexity of the algorithm as follows:
adding the preprocessing and online time complexities, the main procedure of
the algorithm performed for each guess of K1 requires about 258.5+259.6 ≈ 260.2

evaluations of 6 out of the 8 permutations, equivalent to about 259.8 evaluations
of the full scheme. Thus, the expected time complexity of the attack is about
264+59.8 = 2123.8, which is about 18 times better than exhaustive search.

m
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

P1 P2 P3 P4 P5 P6 P7 P8 c

K1 K2 K1 K2 K1 K2 K1 K2 K1

Fig. 3. 8-step LED-128

4 Attacks on 2-Round Iterated Even-Mansour with
Independent Keys

The best known generic attack on 2-Round iterated EM with independent keys
(see Figure 4) is a MITM attack. This attack is described in the full version of
this paper [7] and it requires 2n memory and has a time complexity of about
2n+1.6 full cipher evaluations.

m
⊕

P1

⊕
P2

⊕
c

K1 K2 K3

Fig. 4. A 2-round iterated EM with independent keys

In this attack, we use a property of the permutation Pi, which is shared by
the keyed permutation Qi(Ki,Ki+1, x) = Pi(x ⊕ Ki) ⊕ Ki+1 for any value of
Ki and Ki+1: these permutations have the same difference distribution table.
In order to demonstrate this, consider an entry with the value of t in the dif-
ference distribution table of Pi, and denote its input and output differences by
Δ1 and Δ2, respectively. Let us denote the t corresponding input-output pairs8

8 In this paper, we consider unordered pairs, i.e., ((x, y), (u, v)) and ((u, v), (x, y)) are
considered the same pair.
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by ((x1, y1), (x1 ⊕ Δ1, y1 ⊕ Δ2)), . . . , ((xt, yt), (xt ⊕ Δ1, yt ⊕ Δ2)). Then, the t
input-output pairs ((x1⊕K1, y1⊕K2), (x1⊕K1⊕Δ1, y1⊕K2⊕Δ2)), . . . , ((xt⊕
K1, yt ⊕ K2), (xt ⊕ K1 ⊕ Δ1, yt ⊕ K2 ⊕ Δ2)) correspond to the same entry in
the difference distribution table of Qi (i.e., the entry with input and output
differences Δ1 and Δ2, respectively).

Using the property above, if we find an entry [Δ1, Δ2] in the difference distri-
bution table of Pi with a large value, then we can use a similar attack to the one
given in [15] on 2-round iterated EM,9 in order to break the scheme. However,
our main observation is that we can find such an entry by preprocessing the
public function Pi, which does not need to admit any special property in order
to attack the scheme. Thus, our attack adds a preprocessing algorithm to the
online algorithm of the attack of [15] (which assumes that we have an entry in
the difference distribution table of Pi with a large value). In addition (as we will
see later), in the case of independent keys, the basic attack of [15] is not better
than exhaustive search, and we will need to add another non-trivial component
to this attack. The details of our unoptimized attack 2Round3KeyBasic are
given below, where S1, S2, D are parameters:

Preprocessing:

PR1. Choose an arbitrary input difference Δ1 �= 0 and evaluate P1 on S1 arbi-
trary input pairs with input difference Δ1. For each pair (x, P1(x)), (x ⊕
Δ1, P1(x⊕Δ1)), store the output difference P1(x)⊕P1(x⊕Δ1) in a sorted
list, next to x.

PR2. Traverse the sorted list and find the most common output difference Δ2

(if there are several options for Δ2, choose one arbitrarily). Keep only the
entries of the list which correspond to pairs with the output difference of
Δ2 (assume that we have t such pairs). For each such entry, recalculate
and store the full pair (x, P1(x)), (x ⊕Δ1, P1(x⊕Δ1)).

PR3. Evaluate P2 on S2 arbitrary input pairs with input difference Δ2. For each
pair (y, P2(y)), (y ⊕Δ2, P2(y ⊕Δ2)), store the output difference P2(y) ⊕
P2(y ⊕Δ2) in a sorted list L2, next to y.

Online:

O1. Ask for the encryption of D arbitrary input pairs with difference Δ1.

O2. For each pair of plaintext-ciphertext pairs ((m1
i , c

1
i ), (m

2
i = m1

i ⊕Δ1, c
2
i )):

(a) Search for the output difference c1i ⊕ c2i in L2, (if there is no match,
discard the pair and return to Step O2).

(b) For each match (y, P2(y)), (y ⊕Δ2, P2(y ⊕Δ2)), we have 2 candidates
for K3: P2(y)⊕c1i and P2(y)⊕c2i . We also have 2t candidates for K1: the
candidates x⊕m1

i and x⊕m2
i for each of the t values of x. As each pair

of values for K1 and K3 suggests a value for K2, we have 4t suggestions
of the full key to test using another plaintext-ciphertext pair.

9 Although the attack of [15] was previously applied to 2-round iterated EM with one
key, it can be adapted to work for the case of independent keys.
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Similarly to our analysis of random functions, assuming that P1 is a random
permutation, then each entry in its difference distribution table is distributed
according to the Poisson distribution [17].10 This will allow us to easily determine
the expected value of t and use it in order to analyze the expected complexity
of our algorithm.

The memory complexity of the preprocessing phase is max(S1, S2), and its
time complexity is 2 ·S1 evaluations of P1 and 2 ·S2 evaluations of P2, or S1+S2

evaluations of the full scheme. The memory complexity of the online algorithm is
S2. Using the birthday paradox, out of the D plaintext-ciphertext pairs evaluated
in the online phase, at least (D · t)/2n−1 are expected to have a difference of Δ2

after P1 (note that we have 2n−1 unordered pairs with a given difference). Using
the same argument, we expect that (D·t·S2)/2

2(n−1) of them will match the pairs
evaluated for P2 during proprocessing. Thus, we require that (D ·t·S2)/2

2(n−1) =
1, or D = 22(n−1)/(t ·S2) in order to find the key with high probability. Without
going into the details of the time complexity analysis, note that we are using
only two plaintext-ciphertext pairs to filter the key suggestions, tested in Step
O2.(b). As we have 3n bits of key and 2n bits of filtering, we need to test at
least 2n keys in Step O2.(b), and thus the attack is not faster than the simple
MITM attack on this scheme.

4.1 A Time-Optimized Attack on 2-Round Iterated Even-Mansour

In order to improve the attack, we need to add more filtering conditions, and
thus we actually work on triplets, as described in the improved algorithm
2Round3KeyOpt:

Preprocessing:

PR1. Choose an arbitrary input difference Δ1 �= 0 and evaluate P1 on S1 arbi-
trary input pairs with input difference Δ1. For each pair (x, P1(x)), (x ⊕
Δ1, P1(x⊕Δ1)), store the output difference P1(x)⊕P1(x⊕Δ1) in a sorted
list, next to x.

PR2. Traverse the sorted list and find the most common output difference Δ2

(if there are several options for Δ2, choose one arbitrarily). Keep only the
entries of the list which correspond to pairs with the output difference of
Δ2 (assume that we have t such pairs). For each such entry recalculate
and store the full pair (x, P1(x)), (x ⊕Δ1, P1(x⊕Δ1)) in a list L1.

PR3. Choose another non-zero input difference Δ′
1. For each value x stored in

L1, evaluate P1 an additional time to obtain the pair (x⊕Δ′
1, P1(x⊕Δ′

1)).
Store the (total of) additional t output differences P1(x)⊕ P1(x⊕Δ′

1) in
a separate sorted list of differences, L′

1.
PR4. Evaluate P2 on S2 arbitrary input pairs with input difference Δ2. For each

pair (y, P2(y)), (y ⊕Δ2, P2(y ⊕Δ2)), store the output difference P2(y) ⊕
P2(y ⊕Δ2) in a sorted list L2, next to y.

10 However, we note that since we consider unordered pairs, then we have only 2n−1

possible pairs of a given difference, and each pair can attain (almost) all 2n output
differences
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Online:

O1. Ask for the encryption of D arbitrary input triplets of the form m, m⊕Δ1

and m⊕Δ′
1 (for D arbitrary values of m).

O2. For each pair of plaintext-ciphertext pairs ((m1
i , c

1
i ), (m

2
i = m1

i ⊕Δ1, c
2
i )):

(a) Search for the output difference c1i ⊕ c2i in the list L2 (if there is no
match, discard the pair and return to Step O2).

(b) For each match (y, P2(y)), (y ⊕Δ2, P2(y ⊕Δ2)), compute the 2 candi-
dates for K3: K

′
3 = P2(y)⊕ c1i and K ′′

3 = P2(y)⊕ c2i .
(c) Denote the third plaintext-ciphertext pair in the triplet by (m3

i = m1
i ⊕

Δ′
1, c

3
i ). Compute y′ = P−1

2 (c3i ⊕K ′
3) and y′′ = P−1

2 (c3i ⊕K ′′
3 ).

(d) Search L′
1 for the four possibilities of the third difference obtained at

this stage: y′⊕ y, y′⊕Δ2⊕ y, y′′⊕ y, y′′⊕Δ2⊕ y (if there is no match,
discard the pair and return to Step O2).

(e) Test the 4t suggestions of the full key using (m3
i , c

3
i ). If the test succeeds,

return the key.

The time and memory complexities of the preprocessing phase are similar to
those of the 2Round3KeyBasic attack (the additional t evaluations of P1 and t
units of storage are negligible). Using the calculation done for 2Round3KeyBasic,
the online algorithm requires D = 22(n−1)/(t · S2) plaintext-ciphertext triplets.
For each processed triplet, we expect to find a match inL2 with probability S2/2

n.
For each such matched triplet, we need to compute P2(y) (in order to computeK ′

3

andK ′′
3 ) and evaluate P−1

3 twice in order to compute y′ and y′′. Once we do so, the
probability of a match in L′

1 in Step O2.(d) is proportional to t/2n. This is a neg-
ligible probability, and thus we can neglect the complexity of the trial encryptions
in Step O2.(e). Thus, the online time complexity (without counting the data) is
about 3 ·D · S2/2

n = 0.75 · 2n/t evaluations of P2, or 0.375 · 2n/t evaluations of
the full scheme.

The data complexity of the attack is D triplets, or 3D chosen plaintexts.
However, we can easily reduce it to 2D by requesting encryptions of structures
containing the messagesm, m⊕Δ1, m⊕Δ′

1 andm⊕Δ1⊕Δ′
1. Each such structure

of 4 plaintexts contains two triplets which we can exploit, implying that the data
complexity of the attack is indeed 2D. If we add the time to generate the data to
the time complexity, we get that the total time complexity of the online attack
is about 2D + 0.375 · 2n/t evaluations of the full scheme.

4.2 Applications to Full AES2

AES2 is a 128-bit block cipher presented at Eurocrpyt 2012 [5]. The cipher is a
2-round iterated EM construction, where each of the public permutations P1 and
P2 is based on an invocation of full AES-128 with a pre-fixed and publicly known
key. The designers of the scheme claim that its security is 2128. However, the best
attack known to the designers (as claimed in [5]) is the MITM attack presented
in [7], and based on our analysis, it has a slightly higher time complexity of
3 · 2128 ≈ 2129.6 and a memory complexity of 2128.
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In order to attack AES2, we use our 2Round3KeyOpt attack with S1 = 2124

and S2 = 2125.4. This implies that the memory complexities of both the pre-
processing and online phases is 2125.4. The time complexity of the preprocessing
phase is S1 + S2 = 2124 + 2125.4 ≈ 2125.9 evaluations of the full scheme. Using
the formula (2n · λt · e−λ)/t! with λ = 2124/2128 = 1/16 and t = 18, it is easy
to check that we expect to find at least 10 entries in the difference distribution
table with a value of 18 (we need only one). Plugging in these values into the
formula D = 22(n−1)/(t · S2), we obtain D ≈ 2124.4, implying that the data
complexity of the attack is 2125.4 chosen plaintexts. The time complexity of the
online attack is 2D+0.375 ·2n/t ≈ 2125.6, and adding the preprocessing time, the
total time complexity of the algorithm is about 2125.9 + 2125.6 ≈ 2126.8. This is
better than the 2129.6 time complexity of the MITM attack by a factor of about
7, and clearly violates the 128-bit security claimed for AES2 in [5]. We also note
that the memory complexity is improved from 2128 to about 2125.4, however the
data complexity is greatly increased to 2125.4.

5 Conclusions

In this paper we considered several schemes which are based on the iterated
Even-Mansour scheme, and improved their best known attacks. For the recom-
mended values of n our attacks are between 7 and 20 times faster than exhaustive
search, but they differ from other improvements of exhaustive search since their
improvement factor is about n/ log(n), which increases to infinity as n grows.
In particular, we described the first attack on the full AES2, and improved the
number of steps which can be attacked in the well known LED-128 block cipher
from 6 to 8. Even though our attacks are not likely to be practically signifi-
cant, they indicate that block ciphers based on the EM scheme with one key
should have at least 4 rounds, regardless of how strong we make the internal
permutations.
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Abstract. In this paper, we reveal a fundamental property of block
ciphers: There can exist linear approximations such that their biases ε
are deterministically invariant under key difference. This behaviour is
highly unlikely to occur in idealized ciphers but persists, for instance, in
5-round AES. Interestingly, the property of key difference invariant bias
is independent of the bias value ε itself and only depends on the form of
linear characteristics comprising the linear approximation in question as
well as on the key schedule of the cipher.

We propose a statistical distinguisher for this property and turn it
into an key recovery. As an illustration, we apply our novel cryptanalytic
technique to mount related-key attacks on two recent block ciphers —
LBlock and TWINE. In these cases, we break 2 and 3 more rounds,
respectively, than the best previous attacks.

Keywords: block ciphers, key difference invariant bias, linear crypt-
analysis, linear hull, key-alternating ciphers, LBlock, TWINE.

1 Introduction

1.1 Linear Cryptanalysis, Linear Approximations, and Bias

Linear cryptanalysis is a central and indispensable attack on block ciphers. Hav-
ing been proposed as early as in 1992 [23–25], it forms an established research
field within symmetric-key cryptology. Since then, many interesting results have
been obtained in the area, among others including correlation matrices by Dae-
men et al. [8], multiple linear cryptanalysis by Kaliski and Robshaw [15], linear
hull effect by Nyberg [29], multidimensional cryptanalysis by Hermelin et al. [13],
comprehensive bounds on linear properties by Keliher and Sui [18], as well as
success probability estimations by Selçuk [35].

The basis of linear cryptanalysis is a linear approximation of a function f .
If the linear approximation holds with probability 1/2 + ε, ε is called its bias.
A linear approximation can comprise numerous linear characteristics θ, each
contributing their linear characteristic bias εθ to the linear approximation bias ε.
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There are essentially two standard approaches to deal with the key-dependency
of these biases: they are either averaged over all keys or evaluated for a fixed
key. Both cases have been studied in great detail and these approaches have
turned out to be very fruitful: While the average behaviour of the bias is vital
to the foundations of linear cryptanalysis and the demonstration of the linear
hull effect, Murphy has demonstrated [27] that there can be keys for which the
linear distinguisher might not apply. The latter observation is more inline with
the fixed-key correlation-matrix approach, which also, among others, has lead
to zero-correlation attacks by Bogdanov et al. [3–5] and improved linear attacks
on PRESENT by Cho [6].

Apart from the average case and the fixed-key case, recently, Abdelraheem
et al. [1] have managed to compute the distribution of linear characteristic bias
for several interesting examples. Moreover, there has been quite some interest
towards deducing key information from the value of the bias [7,28,30]. Kim [19]
studies the combined related-key linear-differential attacks on block ciphers. In-
terestingly, a linear-hull version of Matsui’s Algorithm 1 by Röck and Nyberg [32]
uses the fact that, in some ciphers, the linear characteristic biases εθ are the same
for different keys.

At the same time, much less is known about the even more fundamental
question of how the bias ε of the entire linear approximation behaves under a
change of key. This is not least due to the fact that the entire linear hull is
notoriously difficult to analyze for the immense number of linear characteristics
θ comprising it. In this paper, we tackle this problem and reveal a property for
many block ciphers, namely, that the bias ε of a linear approximation can be
actually invariant under the modification of the key.

1.2 Our Contributions

The contributions of this paper are as follows.

Bias Invariant under Key Difference in Iterative Block Ciphers. We
investigate the bias of a linear approximation in key-alternating ciphers (itera-
tive SPN ciphers with XOR addition of subkeys) under a change of the key. By
looking at the composition of the fixed-key linear hull from individual character-
istics, we derive a sufficient condition on the keys and linear approximations such
that the bias remains unaffected by a change of key. The class of key-alternating
ciphers is already broad enough to include AES, most of the other SPN ciphers,
and some Feistel ciphers. After recalling some background on linear cryptanalysis
in Section 2, we describe these findings in Section 3.

An Instructive Example with AES. With our technique, the key difference
invariant bias property is easy to construct over (a part of) susceptible ciphers
since it mainly depends on the differential diffusion in the key schedule and on
the linear diffusion in the data transform of a cipher. We use AES to show how
the property can be derived. Namely, we demonstrate a key difference invariant
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bias property holding deterministically over 5 rounds of the original AES-256.
This serves as a pedagogical illustration. See Section 3.3.

Statistical Distinguisher and Generic Key Recovery. The probability to
have the key difference invariant bias property in an idealized block cipher with

block size n, is about 1√
2π

2
3−n
2 . This forms the basis for a statistical distinguisher

that can be used for key recovery. Here, we use the fact that the key difference
invariant bias property is actually truncated, i.e., there are many linear approx-
imations with key difference invariant bias in most susceptible ciphers. In our
distinguisher, for two keys, we compute the sample biases of a set of approxima-
tions with this property (using the part of the plaintext-ciphertext pairs available
to the adversary) and test their collective proximity. We demonstrate that it is
possible to efficiently distinguish this from an idealized cipher, under some basic
independency assumptions. The distinguisher can be used for hash functions and
block ciphers. In the related-key setting, we propose a key recovery procedure
for block ciphers which is similar to Matsui’s Algorithm 2. These techniques are
given in Section 4.

Applications to Block Ciphers LBlock and TWINE. As an illustration,
we apply our new cryptanalytic technique of key difference invariant bias to the
recently proposed block ciphers LBlock [39] and TWINE [37] . LBlock was de-
signed by Wu et al. and presented in ACNS 2011. Its state and key sizes are
64 and 80 bits respectively. LBlock has received the attention of many cryp-
tographers and various attacks have been published so far on some reduced
versions [16, 20–22, 26, 33, 34]. The best attack breaks 22 rounds of the cipher.
TWINE is a block cipher proposed in SAC 2012 by Suzaki et al. that is oper-
ating on a 64-bit state that is parameterized by keys of length 80 or 128 bits.
The total number of rounds is 36. The best known attack on TWINE-128, is an
impossible differential attack given in [37], that breaks 24 rounds of the cipher.

We identify key difference invariant bias properties over 16 rounds of LBlock
and 17 rounds of TWINE-128. This allows us to attack 24-round LBlock and
27-round TWINE-128 in the classical related-key model with differences in the
user-supplied master keys. Thus, our attacks improve upon the state-of-the-art
cryptanalysis for both LBlock and TWINE by breaking 2 and 3 more rounds,
respectively, than the best previous attacks. Our cryptanalysis is provided in
Sections 5 and Section 6.

2 Preliminaries

2.1 Key-Alternating Ciphers

A block cipher operating on n-bit blocks with a k-bit key can be seen as a
subset of cardinality 2k of the set of all 2n! permutations over the space of
n-bit strings. In an idealized block cipher, this subset is randomly chosen. In
all practical settings, however, one is concerned with efficiently implementable
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block ciphers. So all block ciphers used in practice contain at their core the
iterative application of r similar invertible transformations (called rounds). Key-
alternating block ciphers form a special but important subset of the modern block
ciphers (see Figure 1):

Definition 1 (Key-alternating block cipher [9]). Let each round i, 1 ≤
i ≤ r, of a block cipher have its own n-bit subkey ki. This block cipher is key-
alternating, if the key material in round i is introduced by XORing the subkey ki
to the state at the end of the round. Additionally, the subkey k0 is XORed with
the plaintext before the first round.

The r+1 round subkeys k0, k1, . . . , kr−1, kr build the expanded key K (of length
n(r+1) bits) which is derived from the user-supplied key κ using a key-schedule
algorithm ϕ. Numerous popular and widely used block ciphers belong to the
class of key-alternating block ciphers. Among others, almost all SPNs (including
AES) and some Feistel ciphers are key-alternating [11].

plaintext

x

ciphertext

y

key schedule, ϕ : κ �→ K = (k0, k1, . . . , kr)
k0 k1 k2 kr−1 kr

round 1 round 2 round r. . .

κ

Fig. 1. Key-alternating cipher

2.2 Linear Approximations and Bias

We briefly recall the concepts of linear approximations and bias. We denote the
scalar product of binary vectors by atx =

⊕n
i=1 aixi. Linear cryptanalysis is

based on linear approximations determined by input mask a and output mask
b. A linear approximation (a, b) of a vectorial function f has a bias defined by

εfa,b = Pr
x
{btf(x)⊕ atx} − 1/2

to which we also refer simply as ε if its assignment to function and linear ap-
proximation is clear from the context. We call a linear approximation trivial if
both a and b are zero. Otherwise, with both a �= 0 and b �= 0, it is non-trivial.

2.3 Linear Characteristics and Linear Hulls

A linear approximation (a, b) of an iterative block cipher (e.g. a key-alternating
block cipher of Definition 1) is called a linear hull in [29]. The linear hull con-
tains all possible sequences of the linear approximations over individual rounds,
with input mask a and output mask b. These sequences are called linear char-
acteristics which we denote by θ. Now we recall the relations between the bias
of a linear characteristic and the bias of the entire linear hull it belongs to, for
key-alternating block ciphers.
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Given a linear hull (a, b), a linear characteristic θ is the concatenation of an
input mask a = θ0 before the first round, an output mask b = θr after the last
round, and r − 1 intermediate masks θi between rounds i− 1 and i:

θ = (θ0, θ1, . . . , θr−1, θr). (1)

Thus, each linear characteristic consists of n(r + 1) bits (cf. the length of the
expanded key K). The bias εθ of the linear characteristic θ is defined as the
scaled product of the individual biases εθi−1,θi over each round:

εθ = 2r−1
r∏

i=1

εθi−1,θi .

In a key-alternating cipher, only the sign of εθ depends on the key value, while
the absolute bias value |εθ| remains exactly the same for all keys. As a reference
point, we denote by dθ ∈ {0, 1} the sign of the linear characteristic bias with
expanded key K = 0:

εθ[0] = (−1)dθ |εθ|.

Now we formulate the following central proposition that deterministically con-
nects the linear approximation bias with the individual linear characteristic bi-
ases through a fixed key value:

Proposition 1 ([9, Subsection 7.9.2]). For a key-alternating block cipher,
the bias ε of a non-trivial linear hull (a, b) is

ε =
∑

θ:θ0=a,θr=b

(−1)dθ+θtK |εθ|.

We will be relying on Proposition 1 in the next section to determine when ε is
invariant under a change of key.

3 Towards Bias Invariant under Key Difference

For a non-trivial linear hull (a, b) of a block cipher, let ε and ε′ be two biases
under two distinct keys κ and κ′, respectively. Now we consider when ε = ε′

with κ �= κ′, that is, when the bias is invariant under a change of key.

3.1 Key Difference Invariant Bias in Key-Alternating Ciphers

In a key-alternating block cipher, let K and K ′ be the expanded keys corre-
sponding to two user-supplied keys κ and κ′, K = ϕ(κ) and K ′ = ϕ(κ′) for
key schedule ϕ as in Section 2, such that K ′ = K ⊕Δ where the difference Δ
describes a connection between K and K ′. We will now derive a condition on Δ
and θ such that the value of linear approximation bias ε = ε′ is unaffected by
the key change κ �= κ′.
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In a key-alternating cipher, the bias for an expanded key can be computed
due to Proposition 1. That is:

ε =
∑

θ:θ0=a,θr=b

(−1)dθ+θtK |εθ| and ε′ =
∑

θ:θ0=a,θr=b

(−1)dθ+θtK′ |εθ|. (2)

We want to attain the equality ε = ε′, so we study when both sides of (2) are
equal: One can observe that the only part that is different are the signs of the
individual linear characteristic biases. Therefore, the equation will hold if all the
signs are equal, that is, if the following is satisfied for each θ:

dθ + θtK = dθ + θtK ′. (3)

Since dθ is the same, (3) holds if and only if θt(K ⊕K ′) = 0. Recalling that we
denote K ⊕K ′ by Δ, we have the following statement:

Theorem 1 (Key difference invariant bias for key-alternating ciphers).
Let (a, b) be a non-trivial linear hull of a key-alternating block cipher. Its biases
ε for expanded key K and ε′ for expanded key K ′ with K = K ′⊕Δ have exactly
equal values ε = ε′, if θtΔ = 0 for each linear characteristic θ of the linear hull
(a, b) with εθ �= 0.

Theorem 1 yields a sufficient condition on the relation between the masks of
linear characteristics and the expanded key difference for the key difference in-
variant bias property to hold. We will deal with this in the next subsection.

3.2 Sufficient Condition for Key Difference Invariant Bias

For a fixed pair of keys K and K ′, the difference Δ connecting them is also
constant. At the same time, the linear masks θ will be different for each linear
characteristic in the given linear hull (a, b). Thus, Δ can be seen as a linear mask
itself on θ that chooses certain positions in characteristics θ, cf. (1).

In a linear characteristic θ, we address each of the n(r + 1) bits by θ(j),
j = 1, . . . , n(r + 1). We focus on bit positions θ(j) in linear characteristics θ
such that θ(j) = 0 for all θ with εθ �= 0. We call such positions zero positions.
Otherwise, a position is called a nonzero position.

Now we are ready to formulate a more explicit sufficient condition for deter-
ministically keeping θtΔ = 0:

Condition 1 (Sufficient condition for key difference invariant bias). For
a fixed non-trivial linear approximation (a, b) of a key-alternating block cipher,
the relation between a pair of the user-supplied keys κ and κ′ is such that the
expanded key difference Δ = K ⊕K ′ chooses an arbitrary number of zero posi-
tions and no nonzero positions in the linear characteristics θ of the linear hull,
with εθ �= 0.

Once Condition 1 is fulfilled, Theorem 1 becomes applicable with θtΔ = 0 and
yields ε = ε′.

In the next subsection, for instructive and pedagogical purposes, we show one
example of key difference invariant bias property using Condition 1 with AES.
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3.3 The Instructive Example of AES

Here we provide an illustration of the key difference invariant bias property
for AES. The goal of this section is mainly pedagogical and we simply aim
to show how such a property can be derived in practice. We demonstrate a
key difference invariant bias property for reduced-round AES-256. We provide
an example where Condition 1 is satisfied, which in turn makes Theorem 1
applicable.

For AES-256, let the two user-supplied 32-byte keys be connected by

κ⊕ κ′ =

⎡
⎢⎢⎣
0 0 0 0 0 0 δ 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎦ (4)

with the first byte δ �= 0 of the 7-th column being the only non-zero byte.
Furthermore, let the (truncated) linear approximation be defined by the 16-byte
input/output masks:

a =

⎡⎢⎣a 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎦ and b =

⎡⎢⎣b 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0.

⎤⎥⎦ (5)

The masks define a linear hull for any non-zero byte values a and b. We show
that the key difference (4) and the linear hulls (5) result in the key difference
invariant bias property for 5 rounds of AES-256.

The AES data transform diffuses a single-byte input mask to the full state only
after two rounds. Analogously, a single-byte output mask applies to the full state
only after three rounds of backward computations. This fact makes Condition 1
applicable to AES. The byte positions involved into the propagation of linear
patterns over 5 rounds of AES with a and b above as input/output masks are
shown as in Figure 2. Correspondingly, byte positions not involved are depicted
as . Since AddRoundKey is addition with constant and MixColumns is an
affine operation, one can exchange their order under the suitable modification
of the subkey value. In this case, ShiftRows is followed directly by the modified
AddRoundKey (AK’) which is the case in the last round of Figure 2.

We track the propagation of the difference in the user-supplied key to the
expanded key difference which is shown as in Figure 2. κ⊕ κ′ specified above
satisfies Condition 1. In Figure 2, all non-zero bytes of Δ are only concentrated
in impossible positions of θ and do not interfere with .
Thus, ε = ε′ is fulfilled with probability 1 and the key difference invariant bias
property holds deterministically.

3.4 Key Difference Invariant Bias and Idealized Cipher

In random block ciphers, the bias ε under a fixed key is the bias for a fixed
randomly drawn permutation. Using [10, Theorem 4.7], one can demostrate that
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Fig. 2. Key difference invariant bias for 5 rounds of AES-256

the probability for the biases with two different keys to be exactly equal is

Pr{ε = ε′|κ �= κ′} ≈ 1√
2π

2
3−n
2 for block sizes n ≥ 5. Thus, the key difference

invariant property for idealized block ciphers is a rare event, which yields a
distinguisher for susceptible ciphers outlined in the next section.

4 Statistical Distinguisher and Key Recovery with Key
Difference Invariant Bias

In this section, we present the statistical distinguisher based on the key differ-
ence invariant bias for an n-bit block cipher, followed by a generic key recovery
procedure.

4.1 Distinguisher

In the distinguisher, our aim is to tell if we deal with the target cipher featur-
ing the property or an idealized cipher. The setup for the statistical test is as
follows. Suppose that we are given N plaintext-ciphertext pairs and λ linear ap-
proximations under a pair of expanded keys (K,K ′) connected by Δ in the way
described in Condition 1. Then, for each one of these linear approximations we
compute and store in counters Si and S′

i, 1 ≤ i ≤ λ, which account for the num-
ber of times these approximations are satisfied for K and K ′ with the N texts.
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The counters Si and S′
i suggest empirical biases ε̂i =

Si

N −
1
2 and ε̂′i =

S′
i

N −
1
2

respectively. We evaluate consequently the following statistic s:

s =

λ∑
i=1

[(
Si
N
− 1

2

)
−

(
S′
i

N
− 1

2

)]2
.

We expect the statistic s to be lower for the target cipher, featuring the
key difference invariant bias property, than for a random cipher. As we aim to
perform key-recovery with this test, we will derive the distribution of this statistic
for the right key guess (assuming the target structure) and for the wrong key
guess (assuming a random cipher).

Right Key Guess. The empirical bias value ε̂i for the i-th linear approximation
approximately follows the normal distribution with the exact value of bias εi as
mean and variance 1/4N with good precision (cf., e.g., [14, 35]) for sufficiently
large N :

ε̂i ∼ N (εi, 1/4N).

In this case, the following proposition holds:

Proposition 2 (Distribution of statistic s for the right key). Consider
λ nontrivial linear approximations for a block cipher under a pair of expanded
keys (K,K ′) connected by Δ conforming to Condition 1. If N is the number
of known plaintext-ciphertext pairs, Si and S′

i are the numbers of times such a
linear approximation is fulfilled for K and K ′, respectively, i ∈ {1, . . . , λ}, and
λ is high enough, then, assuming the counters Si and S′

i are all independent, the
following approximate distribution holds for sufficiently large N and n:

s ∼ N
(

λ

2N
,

λ

2N2

)
.

Proof. See the full version of this paper [2].

Wrong Key Guess. In this case, we base upon the hypothesis that for a wrong
key, we deal with a random cipher consisting of permutations drawn at random.
Then, each of the values ε̂i can be approximated by a normal distribution with
mean εi and variance 1/4N for sufficiently large N :

ε̂i ∼ N (εi, 1/4N) with εi ∼ N (0, 1/2n+2),

where εi is the exact value of the bias which is itself distributed over n-bit
random permutations for n ≥ 5 [10, 31].

Then we have then the following proposition for the distribution of the
statistic s:

Proposition 3 (Distribution of statistic s for the wrong key). Consider
λ nontrivial linear approximations for two randomly drawn permutations. If N is
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the number of known plaintext-ciphertext pairs, Si and S′
i are the numbers of times

a linear approximation is fulfilled for these two permutations, i ∈ {1, . . . , λ}, and
λ is high enough, then, assuming the independency of all Si and S′

i, the following
approximate distribution holds for sufficiently large N and n:

s ∼ N
(

λ

2N
+

λ

2n+1
,

λ

2N2
+

λ

22n+1
+

λ

N2n

)
.

Proof. See the full version of this paper [2].

Data Complexity of Distinguisher. In the two above cases, we have seen
that the statistic s will follow, depending on if we deal with the right or the wrong
key, two different normal distributions. In the first case, it follows the normal dis-
tribution with mean μ0 = λ

2N and variance σ2
0 = λ

2N2 , while in the second case

it follows the normal distribution with mean μ1 = λ
2N + λ

2n+1 and variance σ2
1 =

λ
2N2 +

λ
22n+1 +

λ
N2n . It has to be decided if the obtained statistic s is fromN (μ0, σ

2
0)

or from N (μ1, σ
2
1). To do that, we perform a test that compares the statistic s to

a threshold value τ . This test says that s belongs to N (μ0, σ
2
0) if s ≤ τ and that s

belongs to N (μ1, σ
2
1), otherwise.

As in any statistical test, one has to deal with two types of error probabilities
here. The first one – denoted by α0 – is the probability to reject the right key,
whereas the second one – denoted by α1 – is the probability to accept a wrong
key. The decision threshold used is τ = μ0 + σ0q1−α0 = μ1 − σ1q1−α1 , where
q1−α1 and q1−α0 are the quantiles of the standard normal distribution N (0, 1).
This simple test is visualized in Figure 3.

wrong guessright guess

μ0
μ1

α1 α0

τ

Fig. 3. Statistical test for key difference invariant bias in key recovery

It is well known [12] that in order for such a test to have error probabilities
of at most α0 and α1, the parameters μ0, σ

2
0 , μ1 and σ2

1 should be such that
q1−α1σ1 + q1−α0σ0 = |μ1 − μ0|.

Now, using Proposition 2 and Proposition 3, we obtain the following equation
that determines the amount of data needed by the distinguisher:

N =
2n+0.5

√
λ− q1−α1

√
2
(q1−α0 + q1−α1) . (6)
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4.2 How to Recover the Key with Key Difference Invariant Bias

Here, we describe a generic key recovery attack approach that can be applied
to block ciphers for which a key difference invariant bias property for r rounds
has been identified. This procedure is described in Algorithm 1. We will feed
this algorithm with the related key differential paths that are going to be used
for the attack. Other entries to the algorithm will be the number of rounds of
the distinguisher r, the number of rounds rtop that we are going to append at
the top of the distinguisher and the number of rounds rbot that we are going
to add at the bottom of the distinguisher. In Algorithm 1, V [x] and V ′[x′] are
the counters containing the number of times the partial state values x and x′

(values corresponding to non-zero mask of linear approximations) occur for N
plaintext-ciphertext pairs under the key pair.

Algorithm 1. Generic Attack Procedure

Require: A set of linear approximations (a, b) and master key difference δ = κ ⊕ κ′

with the key difference invariant bias property holding.
1: for all related-key differential paths with a difference δ on the master-key do
2: Collect N plaintext-ciphertext pairs (P, C) under a key κ.
3: Collect N plaintext-ciphertext pairs (P ′, C′) under κ′ = κ⊕ δ.
4: Partially encrypt rtop rounds and partially decrypt rbot rounds, obtain partial

state values x and x′ covered by the input/output masks of (a, b) and compute
V [x] and V ′[x′] (number of times these partial state values occur).

5: Allocate a counter s.
6: for all linear approximations (a, b) do
7: Allocate counters S and S′ and set them to zero.
8: for all values of x and x′ do
9: if the linear approximation holds then
10: Add V [x] and V [x′] to S and S′, respectively.
11: end if
12: end for

13: Compute s = s+
[(

S
N

− 1
2

)
−

(
S′
N

− 1
2

)]2
.

14: end for
15: if s ≤ τ then
16: The guessed subkey is a possible subkey value.
17: Check exhaustively the remaining keys against several plaintext-ciphertext

pairs.
18: end if
19: end for
20: return encryption key.

5 Attack on 24-round LBlock

LBlock is a lightweight block cipher presented at ACNS 2011 by Wu and Zhang
[39]. It uses 64-bit block and 80-bit key and is based on a modified 32-round
Feistel structure. Its description is provided in the full version of this paper [2].
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5.1 Previous Cryptanalysis

Despite its recent proposal, LBlock has already been extensively analyzed. For ex-
ample, impossible differential attacks have been mounted in the single-key model
[16, 21, 39] as well as attacks in the related-key model [26]. A related-key trun-
cated differential attack on 22-round LBlock was given in [22]. Some other results
concern integral cryptanalysis [20,33,34,39]. A zero-correlation linear attack was
equally mounted against 22 rounds of LBlock [36]. Finally, biclique attacks [17,40]
provide only a small gain against exhaustive search. So the currently best non-
exhaustive attacks against LBlock can break at most 22 rounds.

In this paper, we propose an attack on 24 rounds of LBlock. Our results are
summarized and compared to previous cryptanalysis in Table 1.

Table 1. Summary of attacks on LBlock

Model Attack #Rounds #keys Data per key Time Memory Ref.

SK Imp. Diff 20 1 263 CP 272.7 268 [39]
Imp. Diff 21 1 262.5CP 273.7 255.5 [21]
Imp. Diff 21 1 263CP 269.5 275 [16]
Imp. Diff 22 1 258CP 279.28 276 [16]
Integral 20 1 263.7CP 263.7 N/A [39]
Integral 20 1 263.6CP 239.6 235 [33]
Integral 22 1 261.6CP 271.2 N/A [20]
Integral 21 1 261.6CP 254.1 251.58 [34]
Integral 22 1 261CP 270 263 [34]

Zero-Correlation 22 1 264KP 270.54 264 [36]
Zero-Correlation 22 1 262.1KP 271.27 264 [36]
Zero-Correlation 22 1 260KP 279 264 [36]

RK Imp. Diff 22 8 247RKCP 270 N/A [26]
Differential 22 2 263.1RKCP 267 N/A [22]

Key Diff Inv Bias 24 32 262.29 RKKP 274.59 261 Here
Key Diff Inv Bias 24 32 262.95 RKKP 270.67 261 Here

5.2 Linear Approximations with Key Difference Invariant Bias for
LBlock

We start by presenting the linear approximations with key difference invariant
bias under two keys related by a difference on a single nibble of the master key.
These linear approximations depicted in Figure 4, hold for 16 rounds (from round
5 to round 20) under the related-key differential paths depicted in the full version
of this paper [2]. The input mask of the 5-th round is (0000α00000000000) and
the output mask of the 20-th round is (000000000β000000), α �= 0, β �= 0. There
are in total (24 − 1) · (24 − 1) ≈ 27.81 such linear approximations.

We can see from Figure 4 that the relations Γr ·ΔKr = 0, for 5 ≤ r ≤ 20 hold
for all the related-key differential paths listed in the full version of this paper [2].
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Fig. 4. 16-round linear approximations with key difference invariant bias for LBlock
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Therefore Condition 1 is satisfied, so the linear approximations in Figure 4 have
a key difference invariant bias under the related-key differential paths listed in
the full version of this paper [2].

The related-key differential paths that we used for our attack are presented
in the full version of this paper [2].

5.3 Key Recovery for 24-round LBlock

The 16-round linear approximations with key difference invariant bias that we
used for our attack start before round 5 and end after round 20. The initial
four rounds, round 1 to round 4, are added before the linear approximations
and the final four rounds, round 21 to round 24, are appended after the linear
approximations. The details of this stage, and the nibbles to be computed in the
initial and the final four rounds are shown in the full version of this paper [2].
For this attack, r = 16, rtop = 4 and rbot = 4. These elements will be input to
Algorithm 1.

Attack Procedure for 24-round LBlock. The attack for LBlock will follow
the attack procedure described in Algorithm 1. For this reason the Steps 2 and 3
of Algorithm 1 do not have to be executed for every path of Step 1. The Step 4
of Algorithm 1 for LBlock is composed itself of 14 consecutive steps. The details
of Step 4 are presented in the full version of this paper [2].

After proceeding from Step 5 to Step 15, we obtain the counter s containing
the χ2 statistics for the subkey guess. The right value of guessed 53-bit subkey is
likely to be among the candidates with the statistic s lower than or equal to the

threshold τ =
√
λ

N
√
2
q1−α0 +

λ
2N . All cipher keys it is compatible with are tested

exhaustively against a maximum of 2 plaintext-ciphertext pairs.

Complexity Estimation. We start by evaluating the complexity of Step 4.
From Step 4.1 to Step 4.14, the time complexity is T1 = N · 24 · 2 + 260 · 28 · 2 +
256 ·212 ·2+252 ·213 ·2+248 ·217 ·2+244 ·221 ·2+240 ·225 ·2+236 ·229 ·2+232 ·233 ·2+
228 ·237 ·2+224 ·241 ·2+220 ·245 ·2+216 ·249 ·2+212 ·253 ·2 = N ·25+2·269+11·266.

We will compute N by using Equation (6), after choosing the values of α0

and α1. Here, the number of linear approximations is λ = 27.81 and n = 64.
Different choices of α0 and α1 will provide a time-complexity trade-off. We start
by choosing some concrete values for α0 and α1 that lead to an optimized time
complexity. By setting α0 = 2−2.7 and α1 = 2−8.5, we have q1−α0 ≈ 1.02 and
q1−α1 ≈ 2.77. In this way N ≈ 262.95 (Note that the same N (P,C) pairs or
N (P ′, C′) pairs can be reused for different related-key differential paths under
the condition that Δκ14∼17 remains the same.) and the threshold value gets
τ ≈ 2−55.02. Then, T1 ≈ 270.95 times of 1

8 round encryption which is equivalent
to 263.37 times of 24-round encryptions. Note that the time complexity of the
procedure described in Steps 6∼14 is negligible. Under each related-key differen-
tial path, the value of κ14∼17 is already known, so the time complexity of Steps
16-19 is about 276 · 2−8.5 = 267.5 times of 24-round encryption. Therefore, the



Key Difference Invariant Bias in Block Ciphers 371

total complexity from Step 2 to Step 18 is about 267.58 encryptions. After pro-
ceeding from Step 2 to Step 18, if we can not succeed, this means that the value
of the right key does not belong to the values corresponding to the related-key
differential path tested. We can then use another related-key differential path
to proceed the above attack. All possible values of the master key bits κ4∼21

are covered by the related-key differential paths, so we could always find the
right key where in the worst case, all the related-key differential paths have to
be tested. So the expected time complexity of our attack on 24-round LBlock is
about 267.58 ·[1+(1− 1

16 )+· · ·+(1− 15
16 )] ≈ 270.67 24-round encryptions. The data

complexity is 262.95 known plaintexts under each master key, while 260 · 2 = 261

bytes of memory are required to store the counters.
Another possible choice of α0 and α1 can lead to a different time-data complex-

ity trade-off. For example, if we set α0 = 2−2.7 and α1 = 2−4.5, then q1−α0 ≈ 1.01
and q1−α1 ≈ 1.70, we get N ≈ 262.29. For these parameters the expected time
complexity is about 274.59 encryptions and the expected data complexity is 262.29

known plaintexts for each master key. The memory requirements are the same
as in the previous attack.

Other possible time-data trade-offs with β0 = 2−2.7 for the attack on LBlock
can be visualized in Figure 6.

6 Attack on 27-round TWINE-128

TWINE is a lightweight block cipher proposed by Suzaki, Minematsu, Morioka
and Kobayashi in [37]. Its structure is based on a modified Type-2 generalized
Feistel scheme. The cipher’s description is given in the full version of this paper.

6.1 Previous Cryptanalysis

In the original proposal of TWINE [37], the authors analyze the resistance of
TWINE against various types of attacks, such as impossible differential and
saturation attacks. The best analysis in this proposal is an impossible differential
attack against 23 rounds of TWINE-80 and against 24 rounds of TWINE-128.
Moreover, biclique attacks have been mounted in [17] for both full-round versions
of TWINE, but the time complexity of these attacks is only marginally lower
than exhaustive search.

6.2 Linear Approximations with Key Difference Invariant Bias for
TWINE-128

We present 17-round (from round 6 to round 22) linear approximations with key
difference invariant bias under related-key differential paths for TWINE-128 in
Figure 5. In our attack, the input mask of the 6-th round is 00000000000α000 and
the output mask of the 22-th round is 0000000β000000000, α, β �= 0. Thus, there
are 15 ∗ 15 ≈ 27.81 such linear approximations, exactly as in the case of LBlock.
We start by describing the related-key truncated differential path that we use
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in our attack. This differential path was found by considering only differences
in only one nibble of the master key and by searching exhaustively over all such
configurations.

This path is described in the full version of this paper [2]. More precisely,
we consider a difference equal to 1 in the 22nd nibble of the master key. This
differential path covers all the possible key values and is sufficient to recover the
right key value. From Figure 5, we can see that Γr ·ΔKr = 0, 6 ≤ r ≤ 22 (where
Kr and ΔKr denote the subkey value and the subkey difference for the round r
respectively) and thus Condition 1 is satisfied.

6.3 Key Recovery for 27-round TWINE-128

We utilize the 17-round distinguisher in Figure 5 to attack 27 rounds of TWINE-
128. The initial five rounds from round 1 to round 5 are added before the distin-
guisher and the final five rounds from round 23 to round 27 are appended after
the distinguisher, as shown in the full version of this paper. In such a way, the
first 27 rounds of TWINE-128 are covered. The attack is proceeded by following
Algorithm 1. The parameters are r = 17, rtop = 5, rbot = 5, see the full version
of this paper.

After proceeding from Step 5 to Step 15, we obtain the counter s containing
the χ2 statistics for the subkey guess. The right value of guessed 96-bit subkey is
likely to be among the candidates with the statistic s lower than or equal to the

threshold τ =
√
λ

N
√
2
q1−α0 +

λ
2N . All cipher keys it is compatible with are tested

exhaustively against a maximum of 2 plaintext-ciphertext pairs.

Complexity Estimation. We start by evaluating the complexity T1 of Steps
4.1-4.17. T1 = N ·220 ·2+N ·232 ·15·2+N ·240 ·15·2+260 ·244 ·2·15+256 ·248 ·2·15+
252 ·252 ·2·15+248·256 ·2·15+244·260 ·2·15+240·264 ·2·15+236·268 ·2·15+236·272 ·
2·15+232 ·276 ·2·15+228 ·280 ·2·15+224 ·284 ·2·15+220 ·288 ·2·15+216 ·292 ·2·15+
212 ·296 ·2 ·15 = N ·220 ·2+N ·232 ·15 ·2+N ·240 ·15 ·2+7 ·2104·2 ·15+7 ·2108·2 ·15.

To compute N , we will use Equation (6). Here, the number of linear approx-
imations is λ = 27.81 and n = 64. Therefore N will be computed after choosing
the values of α0 and α1. Different choices of these values will provide a data-time
trade-off. We start by choosing some concrete values for α0 and α1 that lead to
an optimized time complexity.

Consider for example α0 = 2−2.7 and α1 = 2−8.5. Then q1−α0 ≈ 1.02 and
q1−α1 ≈ 2.77. By replacing these values to Equation (6), we obtain N ≈ 262.95.

The threshold value gets τ =
√
λ

N
√
2
q1−α0 +

λ
2N ≈ 2−55.02. Thus T1 ≈ 2115.81 times

of 1/8 encryption, which is equivalent to 2108.05 times of 27-round encryption.
The complexity of computing the counters S and S′ is negligible. The complexity
of the last step is 2128 ·2−8.5 = 2119.5 times of 27-round encryption. Thus the total
time complexity of the attack is about 2119.5 27-round TWINE-128 encryptions.
The data complexity is N ≈ 262.95 known plaintexts per key and the memory
requirements are 261 bytes to store the counters.
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Fig. 5. 17-round linear approximations for key difference invariant bias for TWINE-128
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Fig. 7. Data-time trade-off for the at-
tack on 27-round TWINE-128

In the same way, if we want to optimize the data complexity, we choose
α0 = 2−2.7 and α1 = 2−4.5. Then q1−α0 ≈ 1.02 and q1−α1 = 1.70. Equation (6)
gives now N = 262.29 and the threshold is 2−54.38. The time complexity of the
attack is 2123.5 and the data complexity is N = 262.29 known plaintexts per key.
Figure 7 depicts different possible data-time trade-offs with β0 = 2−2.7.

7 Conclusions

In this paper, we reveal the fundamental property of key difference invariant
bias in key-alternating block ciphers. We show how to identify this property effi-
ciently. We propose a statistical distinguisher for the property and demonstrate
the property for 5 rounds of AES. As an illustration, using our novel crypt-
analytic technique, under related keys, we attack more rounds of LBlock and
TWINE than the best previous cryptanalysis.
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Abstract. ALE is a new authenticated encryption algorithm published
at FSE 2013. The authentication component of ALE is based on the
strong Pelican MAC, and the authentication security of ALE is claimed
to be 128-bit. In this paper, we propose the leaked-state-forgery attack
(LSFA) against ALE by exploiting the state information leaked from the
encryption of ALE. The LSFA is a new type of differential cryptanalysis
in which part of the state information is known and exploited to improve
the differential probability. Our attack shows that the authentication se-
curity of ALE is only 97-bit. And the results may be further improved
to around 93-bit if the whitening key layer is removed. We implemented
our attacks against a small version of ALE (using 64-bit block size in-
stead of 128-bit block size). The experimental results match well with
the theoretical results.

Keywords: authenticated encryption, forgery attack, ALE.

1 Introduction

Confidentiality and message authentication are two fundamental goals in cryp-
tography. In symmetric key cryptography, a block cipher/stream cipher is used
to protect the confidentiality of messages; and a message authentication code
(MAC) is used to authenticate messages. In the widely used Transport Layer
Security (TLS), the MAC-then-Encrypt approach is used: HMAC [27] is applied
to authenticate the TCP packets, and AES [9] in CBC mode [26] can be used to
encrypt the payload of TCP packets.

In many applications, both confidentiality and message authentication are
required. The authenticated encryption algorithm can achieve encryption and
authentication simultaneously, and its performance is much better than the
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combination of separate encryption and authentication. Authenticated encryp-
tion has received considerable research interests in recent years. A number of
block cipher based authenticated encryption modes have been proposed, e.g.,
IAPM [21], OCB [28], CCM [29], CWC [23], GCM [24], EAX [4], HBS [19],
BTM [18] and McOE [15]. The ISO/IEC 19772:2009 [17] standardized several
modes, including EAX, CCM, GCM and OCB 2.0. Besides the authenticated
encryption modes, several authenticated encryption algorithms have been pro-
posed, such as Helix [14], Phelix [30], Hummingbird-2 [13], ASC-1 [20], the 3GPP
algorithm 128-EIA3 [2] and Grain-128a [3]. The coming competition CAESAR
(Competition for Authenticated Encryption: Security, Applicability and Robust-
ness) [7] is expected to attract many new authenticated encryption algorithms.

ALE. ALE (Authenticated Lightweight Encryption) is an AES-based authen-
ticated encryption algorithm proposed by Bogdanov et al. at FSE 2013 [6]. It
is designed for the low-cost embedded systems (such as RFID tags and smart
cards) and provides single-pass authenticated encryption with associated data.
The keystream generation of ALE uses the idea of the LEX stream cipher [5],
and the tag generation uses the idea of Pelican MAC [10]. It has 256-bit internal
state and aims to have a probability of success at most 2−128 for a forgery attack.

Pelican MAC is an extremely simple MAC based on AES. In Pelican MAC,
any difference being introduced in the forgery attack passes through at least
four AES rounds. It ensures that the success rate of a forgery attack is at most
2−128. The state size of Pelican MAC is only 128 bits. The small state size means
that the number of messages being authenticated under the same key should be
less than 264. Yuan et al. delivered a state recovery attack against the Pelican
MAC by exploiting the state collision when more than 264 authentication tags
are generated from the same key [33]. The attack given in [33] cannot be applied
to ALE. In ALE, the state size is increased to 256 bits, and a new nonce is
needed for generating each authentication tag when the same key is used.

The stream cipher LEX is based on AES, and four keystream bytes are ex-
tracted from the AES state after each round. LEX suffers from two attacks.
The slide attack against LEX recovers the key with negligible complexity when
around 260 nonces are used with the same secret key [31]. Another attack recov-
ers the key with around 2100 simple operations and 240 keystream bytes [11,12].
ALE is not vulnerable to these two attacks due to its large state and the changing
AES round keys (the round keys in LEX are fixed for the same key).

The design of ALE is similar to the authenticated encryption algorithm ASC-
1. In ASC-1, a leaked byte is protected by an additional key byte before it
is extracted as keystream byte. However, the additional key byte is not used
in ALE for better hardware efficiency. Unfortunately, the lacking of additional
key bytes in ALE allows part of the AES state being leaked as keystream, and
such leaked state information can be exploited to improve the forgery attack, as
demonstrated in this paper.

In this paper, we propose a new attack – leaked-state-forgery attack (LSFA)
against ALE. The general idea of this attack is to exploit the leaked state in-
formation so as to increase the differential probability. For ALE, there exists
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four-round AES differential characteristics with probability much larger than
2−128 after taking into account the leaked state information. The forgery attack
against ALE can reach the success rate of 2−97, which is 231 higher than the
claimed probability. We show that the results may be further improved if the
whitening key layer is removed. We implemented our attack on a small version of
ALE, in which 64-bit block and 4-bit-to-4-bit S-box are used. The experimental
results match well with the theoretical results.

Very recently, Khovratovich and Rechberger independently proposed an at-
tack against ALE in SAC 2013 [22] which also exploits the weakness of the ALE
scheme. However, we notice that their attack is applied to a variant of ALE
which the four bytes are leaked after SubByte. And in this work, we optimized
the differential characteristics used in our attacks so that lower complexities can
be obtained in this paper.

This paper is organized as follows. The specification of ALE is given in Sect.
2. Section 3 describes a basic forgery attack against ALE. Section 4 optimizes
the forgery attack. Section 5 discusses the effect of removing the whitening key
layer of four-round AES. Section 6 gives the experimental results on ALE with
reduced block size. Section 7 concludes this paper.

2 The Specification of ALE

In this section, we give a brief description of the ALE. The full specifications of
ALE can be found in the original paper [6].

AES round function. AES-128 is used as an underlying primitive of ALE. A full
specification ofAES can be found in [9]. There are four operations in anAES round:
SubBytes(SB), ShiftRows(SR), MixColumns(MC) and AddRoundKey(ARK).

AESRound(State, ExpandedKey[i])
{
SubBytes(State);

ShiftRows(State);

MixColumns(State);

AddRoundKey(State,ExpandedKey[i]);
}

Fig. 1. The positions of the leaked bytes in the even and odd rounds of LEX
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LEX keystream extraction. In the stream cipher LEX, AES round functions are
repeatedly applied to a state (the subkeys are fixed). At the end of each AES
round, 4 bytes from the state are extracted as the keystream [5]. The positions
of leaked bytes are shown in Fig. 1.

Pelican MAC. In the Pelican MAC, each 128-bit message block is xored to
a secret 128-bit state, then the state passes through 4 AES rounds. In Pelican
MAC, each difference passes through at least 25 active S-boxes (following directly
from the analysis of AES), thus Pelican MAC provides strong security against
forgery attack.

Specification of ALE. The encryption/authentication of ALE is shown in Fig. 2.
The process of associated data and last partial block are omitted here. The en-
cryption component of ALE is based on LEX, and its authentication component
is based on Pelican MAC. A different nonce is used in ALE for the protection
of every message. When the verification fails, the plaintext from the decryption
should be kept secret so as to prevent state recovery attack. To encrypt/authen-

Fig. 2. Encryption and authentication of ALE

ticate a message, ALE takes a 128-bit master key κ, a message μ, associated
data α and 128-bit non-zero nonce ν as inputs. And it outputs ciphertext γ of
the same length as message and a 128-bit tag τ . The initialization of ALE is
given as follows: the nonce ν is encrypted using AES-128 under the master key
κ. The 128-bit output is used as the initial key state. A message with value 0
is encrypted using AES-128 under the master key κ to give the data state. The
128-bit output AESκ(0) is encrypted again using the initial key state as the key.
The key state is updated by applying round key schedule of AES-128 to the final
round key of last AES encryption with round constant x10 in F28 .

To process a 16-byte message block, the data state is encrypted with 4 rounds
of AES using the key state as key. 16 bytes are leaked from the data state in the
4 AES rounds in accordance with the LEX keystream extraction. According to
the code provided by the authors of ALE, five round keys are used during the 4
AES rounds, namely, an initial whitening key is used. And at each AES round,
four bytes are leaked after the AddRoundKey() function. The leak is xored to
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the current 16-byte block M for encryption. The final round subkey is updated
one more time using the AES round key schedule with byte round constant x4

in F28 to get the key state. The current message block M is xored to the data
state so that it would pass through the next 4 AES rounds for authentication
purpose (similar to that in Pelican MAC).

The decryption/verification is similar to the encryption/authentication, ex-
cept that the ciphertext block is xored to the keystream to get the message, as
shown in Fig. 3. We provide this figure here since the decryption/verification is
important in our attack.

Fig. 3. Decryption and verification of ALE

The designers of ALE claim that any forgery attack not involving key recov-
ery/internal state recovery has a success probability at most 2−128. It is stated
that each secret key is used to protect at most 248 message bits. Such restriction
on message bits does not affect the success rate of our forgery attack.

3 A Basic Leaked-State Forgery Attack on ALE

In this section, we present a basic forgery attack against ALE. The chance of
successful forgery attack is 2−106, which is 222 larger than the claimed success
rate 2−128. This attack requires 241 known plaintext blocks.

3.1 The Main Idea of the Attack

The following property of active S-box will be used in our attack:

Property 1. For an active S-box, if the values of an input and the input/output
difference are known, the output/input difference is known with probability 1.

Here the active S-box is the S-box with non-zero input difference. In the rest
of the paper, we will use a new term active leaked byte to denote a leaked byte
with difference on it.
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In the security analysis of Pelican MAC [10] and ALE [6], the probability of
four-round differential characteristic of ALE follows the analysis of AES. It has
been shown that for any four-round AES differential characteristic, the number
of active S-boxes is at least 25 [8]. For each S-box, the differential probability
is at most 2−6. Hence, there is a trivial upper bound for the four-round AES
differential probability which is 2−150. However, different from the Pelican MAC,
4 state bytes are leaked at the end of every round in ALE. Using Property 1,
it is possible to bypass some active S-boxes with probability 1 when the input
bytes to those active S-boxes are leaked. It means that the overall differential
probability could be significantly increased.

3.2 Finding a Differential Characteristic

The first step of the attack is to find a valid four-round AES differential charac-
teristic which passes through 25 (or close to 25) active S-boxes and the differences
pass through several leaked bytes in the first three rounds.

There are many differential characteristics for four AES rounds. To categorize
those differential characteristics, we use the number of active bytes before the S-
box layer in each round to represent a certain type of differential characteristics.
For example, the differential characteristic shown in Fig. 4 falls in the type “1–
4–16–4”. Note that the positions of active bytes are not unique for each type.

Fig. 4. An example of 1-4-16-4 differential characteristic. Gray squares denote leaked
bytes. Squares marked with broken line denote active bytes.

In our basic attack, we use the type of differential characteristic shown in
Fig. 4. There are 25 active S-boxes in the differential characteristic, and 8 active
leaked bytes are located in the first three rounds.

Next we need to find a differential characteristic with high probability. Note
that it is not always guaranteed that the differential probability of each active
S-box can reach the maximum value 2−6. The AES S-box has a property that for
any input difference δ1 and output difference δ2, the probability that equation
S(x)⊕S(x⊕ δ1) = δ2 has a solution is 127/256. Among the 127 solutions, there
are 126 solutions have probability 2−7 and only one solution has probability
2−6. Hence, for an active S-box, there is a unique output difference reaches the
probability 2−6 for difference propagation. It shows the conditions to set active
S-boxes with difference propagation probability 2−6 will limit the number of
choices for the possible differential characteristics.

It is thus not surprising that we found no differential characteristic such that
every active S-box (except those involving the leaked ones) has the maximum
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Fig. 5. A differential characteristic of type “1–4–16–4”. The hexadecimal numbers
indicate the difference values. The empty squares indicate no difference. The squares
of leaked bytes are marked with gray color.

differential probability 2−6 after testing all the possible positions of the type
“1–4–16–4”. In order to find a differential characteristic, we need to allow some
active S-box with differential probability 2−7. We managed to find a number
of differential characteristics. One of them is given in Fig. 5, and we will use
this differential characteristic to demonstrate our basic attack. The differential
probability of this differential characteristic is given as 2−6×16+(−7)×9 = 2−159

(differential probability 2−6 for 16 active S-boxes, 2−7 for 9 active S-boxes).
Three differences in Fig. 5 will be used in our attack: the input difference Δin,

the output difference Δout and the keystream difference Δs:

Δin = (0,0,0,0; 0,0,0,0; 0,0,0,0; 0,96,0,0);

Δout = (B1,DE,6F,6F; 0,0,0,0; B8,5C,82,55; 0,0,0,0);

Δs = (0,0,E,F3; 59,37,6E,F2; 0,81,6C,0; 0,0,0,0);

Note that the values in Δs are obtained by simply concatenating the bytes
extracted from the states. The order of those bytes has no effect on the attack,
as long as this order is fixed.

3.3 Launching the Forgery Attack

After finding a four-round AES differential characteristic, we need to determine
the values of the leaked bytes on the differential characteristic so as to improve
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the differential probability. The values of the leaked bytes are important for
locating the ciphertext bytes that will be modified in the forgery attack.

In the differential characteristic shown in Fig. 5, the differences at the positions
of leaked bytes are known before and after the S-box. Hence, we solve for the
values of the active leaked bytes. There are either two or four possible solutions
depending on the output difference. We store the possible values of leaked bytes
in a table T (Table 5 in Appendix A). Notice that we ignore the conditions on
the leaked bytes in the fourth round because that for any leaked values at the
end of Round 3, we can always derive the corresponding difference in Round 4.

If the value of a keystream block si falls into one of the possible values of
table T , we modify the previous ciphertext block ci−1 and the current ciphertext
block ci using the differences given in Fig. 5. More specifically, c′i−1 = ci−1⊕Δin;
c′i = ci ⊕Δout⊕Δs. The modified ciphertext is sent for decryption/verification.

We illustrate here how the above attack works. From the decryption, the dif-
ference Δmi−1 = (ci−1 ⊕ si−1) ⊕ (c′i−1 ⊕ s′i−1) = Δin because Δsi−1 = 0; the
difference Δmi = (ci ⊕ si)⊕ (c′i ⊕ s′i) = Δout because c′i ⊕ ci = Δout⊕Δs. Then
Δmi−1 is introduced to the data state, and after four rounds, Δmi is introduced
to cancel the difference in the state. The difference propagation follows that
in Fig. 5.

Complexity of the Attack. In the attack above, the differential probability
of the differential characteristic is 2−159 before considering the leaked bytes.
There are eight leaked bytes being involved in the differential characteristic,
with 5 of them being introduced to the active S-boxes with probability 2−7,
and another 3 of them being introduced to the active S-boxes with probability
2−6. According to Property 1, the differential probabilities of those eight active
boxes involving the leaked bytes become 1. The overall differential probability
becomes 2−159 × 27×5 × 26×3 = 2−106. The success rate of the above attack is
thus 2−106.

In this attack, eight leaked keystream bytes are considered, and the values of 6
leaked bytes (from the first two rounds) should be one of the 128 entries in Table
T (as explained above). A random keystream block satisfies the requirement
with probability 128/26×8 = 2−41. We thus need 241 known plaintext blocks in
this attack.

4 Optimizing the Leaked-State-Forgery Attack against
ALE

In this section, we optimize the LSFA against ALE. In Sect. 4.1, we improve the
success rate of the forgery attack. The optimal success rate of a forgery attack
can reach 2−97, while 256 known plaintext blocks are needed. In Sect. 4.2, the
number of known plaintext blocks can be reduced to 28.4 for achieving a success
rate 2−102. Note that the known plaintext blocks can be related to different keys
or different nonces.
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4.1 Improving the Differential Probability

From the attack presented in Sect. 3, we notice that the success rate of forgery
attack is determined by the probability of the differential characteristic after
taking into account of the leaked bytes. To evaluate the success rate of the forgery
attack against ALE, we use the term effective active S-boxes to represent the
active S-boxes which cannot be bypassed by exploiting the leaked bytes. In the
following, we will analyze different cases to find the smallest number of effective
active S-boxes.

We start with recalling some properties of the AES round function. The func-
tion MixColumns has a property that if it is active, the total number of active
bytes in the input and output will be at least five (the property of the maximum
distance separable code). By referring to the Lemma 9.4.1 from [9], we have the
following lemma.

Lemma 1. The number of active S-boxes of any two-round AES differential
characteristic is lower bounded by 5N , where N is the number of active columns
in the first round.

In the four AES rounds in ALE, there are 16 leaked bytes. But the leaked
bytes from the fourth round cannot be exploited in the attack as they do not
pass through S-boxes directly. Therefore only the leaked bytes in the first three
rounds can be exploited, and there are at most 12 active leaked bytes. We use
[l1,l2,l3] to indicate the number of active leaked bytes in the first three rounds
respectively. For instance, the number of active leaked bytes in the differential
characteristic in Fig. 4 is [2, 4, 2]. And we use nAi (i = 1, 2, 3, 4) to denote the
number of active S-boxes at each S-box layer, which will be used in later analysis.

In the following, we will analyze differential characteristics with the smallest
number of effective active S-boxes, using the techniques of solving Mixed-Integer
Linear Programming (MILP) problems [25, 32]. MILP is a useful technique for
proving security bounds against differential cryptanalysis, by evaluating the min-
imum number of active S-boxes in several rounds of encryption. Designers and
cryptanalysts only require to write out simple (in)equations that are input into
an MILP solver, then an optimal solution will be returned.

We denote by Xi the input state of round i, then we have Xi+1 = ARK ◦
MC ◦ SR ◦ SB(Xi), where i ∈ {1, 2, 3, 4}. Let Xi,j be the j-th byte of Xi,
where 0 ≤ j ≤ 15. For a further step, suppose Yi = SB(Xi), Zi = SR(Yi) and
Wi = MC(Zi). We introduce a function χ to catch whether a byte is nonzero,
that is , χ(x) = 1 if x �= 0 and χ(x) = 0 if x = 0. Here, the value of χ(x) is a
real number. Then, according to the techniques given in [25,32], the problem of
evaluating the minimum number of effective active S-boxes is translated to an
MILP problem as follows.

The Objective Function. The objective function is to minimize the value of

4�

i=1

15�

j=0

χ(ΔXi,j)−
�

k=0,2,8,10

(χ(ΔX2,k) + χ(ΔX4,k))−
�

l=4,6,12,14

χ(ΔX3,l), (1)
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since we would like to evaluate the minimum number of effective active S-boxes.
In (1), the number of effective active S-boxes is obtained by first counting the
number of active S-boxes in four consecutive rounds of AES and then minus the
number of active leaked bytes.

Constraints. According to theproperty of MixColumns ,wehave
�4k+3

j=4k(χ(ΔZi,j)

+ χ(ΔWi,j)) = 0 or ≥ 5, where 1 ≤ i ≤ 4 and 0 ≤ k ≤ 3. On the other hand,
we have χ(ΔYi,j) = χ(ΔXi,j), χ(ΔZi,j) = χ(ΔYi,5j mod 16) and χ(ΔXi+1,j) =
χ(ΔWi,j) (0 ≤ j ≤ 15). Thus, two consecutive rounds of AES provide us four
constraints:

5di,1 ≤
3�

j=0

(χ(ΔXi,5j mod 16) + χ(ΔXi+1,j)) ≤ 8di,1, (2)

5di,2 ≤
7�

j=4

(χ(ΔXi,5j mod 16) + χ(ΔXi+1,j)) ≤ 8di,2, (3)

5di,3 ≤
11�

j=8

(χ(ΔXi,5j mod 16) + χ(ΔXi+1,j)) ≤ 8di,3, (4)

5di,4 ≤
15�

j=12

(χ(ΔXi,5j mod 16) + χ(ΔXi+1,j)) ≤ 8di,4, (5)

where i ∈ {1, 2, 3} and di,j ∈ {0, 1} (1 ≤ j ≤ 4). Notice that di,j = 0 if and
only if all eight differences before and after MixColumns are zero and di,j = 1
otherwise. Here, we do not consider the case of i = 4 since linear transformations
in Round 4 does not influence the probability of a differential characteristic.

Additional Constraints. To avoid trivial solution where the minimum number
of active S-boxes is zero, the following constraint

15�

j=0

χ(ΔX1,j) ≥ 1 (6)

is added to ensure that at least one S-box is active. For a further step, the
constraint

�

k=0,2,8,10

(χ(ΔX2,k) + χ(ΔX4,k)) +
�

l=4,6,12,14

χ(ΔX3,l) = n (or ≤ n) (7)

is added to the system. That is, all differential characteristics are classified by the
number of active leaked bytes. Constraint (7) help us quickly locate the pattern
of differential characteristics with minimum effective active S-boxes.

Since a four-round differential characteristic has at least 25 active S-boxes,
the number of effective active S-boxes is at least 25− n if n active leaked bytes
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are involved. Experimental results confirm this but bring us more knowledge. We
solve 11 MILP problems by setting n to be different values, that is, n ≤ 2, 3, . . . , 8
and n = 9, 10, 11, 12. Here, we choose Maple software [1] to solve them. The
minimum number of effective active S-boxes, denoted by m, classified by the
number of active leaked bytes is given in Table 1. Each MILP problem cost few
seconds to return the optimal solution by running the code in Appendix B.

Table 1. Minimum number m of effective active S-boxes, if (≤)n active leaked bytes
are included in a differential characteristic

n ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7 ≤ 8 9 10 11 12

m 23 22 21 20 19 18 17 16 16 19 18

From Table 1, we conclude that the best probability of a differential charac-
teristic is at most 2−96, since a differential characteristic has at least 16 effective
active S-boxes. What is more, exactly 9 or 10 active leaked bytes are involved
if a differential characteristic has 16 effective active S-boxes. An interesting ob-
servation is that the minimum number of active S-boxes (i.e., n + m) may be
greater than 25 if too many active leaked bytes are included in a differential
characteristic, because it has to cover too many specific positions in these cases.

Now, we demonstrate that only 4 kinds of differential characteristics may
have exactly 16 effective active S-boxes by analyzing the distribution of 9 or 10
active leaked bytes in a four-round differential characteristic. This is done by
adding more concrete constraints to the MILP step by step. We choose the case
l1+ l2+ l3 = 10 to show the way of determining the distribution of the 10 active
leaked bytes in each round. Similar process is applied to l1 + l2 + l3 = 9. The
procedure is summarized in Table 2.

Since l1 + l2 + l3 = 10, we have l2 = 2, 3 or 4. The minimum number of
effective active S-boxes is 17, 20 and 16 if l2 = 2, 3 and 4, respectively. Thus, to
find differential characteristics with exactly 16 effective active S-boxes, we only
need to consider l2 = 4, which implies l1 + l3 = 6. For a further step, we have
l1 = 2, 3 or 4. The minimum number of effective active S-boxes is 17, 20 and
16 if [l1, l2] = [2, 4], [l1, l2] = [3, 4] and [l1, l2] = [4, 4], respectively. Therefore,
differential characteristics with exactly 10 active leaked bytes and 16 effective
active S-boxes exist only if [l1, l2, l3] = [4, 4, 2]. Combined with Lemma 1, l1 = 4
implies n1 ≥ 2 and nA1 + nA2 ≥ 10 since at least two columns are active in the
first MixColumns layer; [l1, l2] = [4, 4] implies nA2 + nA3 ≥ 20; [l2, l3] = [4, 2]
implies nA3 + nA4 ≥ 15 and nA4 ≥ 4, where nA4 ≥ 4 since two active leaked bytes
appear in round 4 and at least two active bytes will appear in two non-leaking
columns. Thus, for case [l1, l2, l3] = [4, 4, 2], only one possible type of differential
characteristic 2-8-12-4 can be appeared.

Summary of the Analysis. From the above discussion, we conclude that the
number of effective active S-boxes is at least 16 in a differential characteristic.
And there are four types of differential characteristics, “2–3–12–8”, “2–8–12–4”,
“2–8–12–3” and “4–6–9–6”, which can reach this lower bound.
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Table 2. Minimum number m of effective active S-boxes with more constraints, the
distribution of 9 or 10 active leaked bytes in these rounds, and the type of possible
differential characteristic

n additional constraints m [l1, l2, l3] Type of differential characteristic

l2 = 2 17 discard
l2 = 3 20 discard

10 l2 = 4, l1 = 2 17 discard
l2 = 4, l1 = 3 20 discard
l2 = 4, l1 = 4 16 [4,4,2] 2-8-12-4

l2 = 1 16 [4,1,4] 4-6-9-6
l2 = 2 17 discard
l2 = 3 21 discard

9 l2 = 4, l1 = 1 16 [1,4,4] 2-3-12-8
l2 = 4, l1 = 2 17 discard
l2 = 4, l1 = 3 21 discard
l2 = 4, l1 = 4 16 [4,4,1] 2-8-12-3

After testing these four types of differential characteristics, we conclude that
there is no differential characteristic in which each of the effective active S-box
reaches the maximum differential probability 2−6. The differential characteris-
tic with best probability is of the type “2–8–12–4”, and the details are given
in Fig. 6. In this differential characteristic, the probability of one effective ac-
tive S-box is 2−7. So the overall probability of the differential characteristic is
2−6×15+(−7) = 2−97. This is the best success rate of the forgery attack against
ALE. For this differential characteristic, the values of 8 leaked bytes (from the
first two rounds) should be one of the 28 values given in Table 6 in Appendix A.
And the probability of random keystream block satisfying the requirement is
28/28×8 = 2−56. If each key is restricted to protect 248 message bits (241 mes-
sage blocks), we need to observe 215 keys to find a weak keystream block to
launch the attack. The experimental results of this attack on a small version of
ALE are given in Sect. 6.1.

4.2 Reducing the Number of Known Plaintext Blocks

There are two approaches to reduce the number of known plaintext blocks re-
quired in the attack. One approach is to allow differential probability of 2−7

for some effective active S-boxes; another approach is to reduce the number of
active leaked bytes in a differential characteristic. In these two approaches, with
the reduced success rate, we are able to reduce the number of known plaintext
blocks drastically.

Relaxing Conditions on Effective Active S-boxes. When we try to find
the best probability for the differential characteristics, it is important to restrict
as many as effective active S-boxes to have probability 2−6 for the input and
output differences. However, if we are not satisfied with the large number of
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Fig. 6. Differential Path of type “2–8–12–4”. The hexadecimal numbers indicate the
difference values. The empty squares indicate no difference. The squares of leaked bytes
are marked with gray color.

plaintext blocks required to launch the attack, we can relax the condition on
some active S-boxes to have probability 2−7. For instance, the probability of
random keystream satisfying the requirements for leaked bytes in the differential
characteristic presented in Sect. 4.1 is 2−56. However, if we relax the probabilities
on two effective active S-boxes to 2−7, this probability increases to at least than
2−50 because the increased number of differential characteristics is at least 26

by our test. It can be increased further if more conditions on effective active
S-boxes are relaxed.

Reducing the Number of Active Leaked Bytes in the First Two Rounds.
Another way to reduce the number of known plaintext blocks is to reduce the
active leaked bytes in the first two rounds. The reason is that only the active
leaked bytes in first two rounds are related to the conditions on leaked bytes.
No matter what values the active leaked bytes are taken in Round 3, we can
determine the corresponding differences after the S-box layer according to the
leaked values. The only cost is an additional pre-computed look-up table. One
good choice is let the number of active leaked bytes to be [4, 0, 4], and the
type of differential characteristic is “6-4-6-9”. In this case, we only need to check
conditions on the four active leaked bytes in the first round, yet we can still have
a relatively good differential probability. There are 762408 possible differential
characteristics in the first two rounds when all the 17 effective active S-boxes are
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with probability 2−6, resulting in a success rate 2−102 for the forgery attack. The
average number of solutions for an active S-box is estimated as 2 × 126/127 +
4× 1/127 = 21.01. Therefore, the probability for a random keystream satisfying
the conditions on leaked bytes is 21.01×4 × 762408/232 = 2−8.4. The details of
one of the 762408 differential characteristics are provided in Fig. 7.

Fig. 7. Differential Path of type “6–4–6–9”. The hexadecimal numbers indicate the
difference values. The empty squares indicate no difference. The squares of leaked
bytes are marked with gray color.

5 Effect of Removing the Whitening Key Layer

In this section, we show that the results may be further improved if the whitening
key layer is removed. The success rate of a forgery attack can reach around 2−93.1,
and only one or two plaintext blocks are needed to launch the attack.

Once the whitening key layer is removed, additional four bytes before the
first S-box layer are known to an attacker, i.e., byte X1,4, X1,6, X1,12 and X1,14.
They are obtained by xoring the previous message block and the last four leaked
bytes of processing the previous message block. Thus, at most 16 leaked bytes
can be exploited. In the following discussions, we denote by l0 the number of
active leaked byte before the first S-box layer, while l1, l2 and l3 still indicate
the number of active leaked bytes in the first three rounds respectively.



LSFA against Authenticated Encryption Algorithm ALE 391

First, we analyze the smallest number of effective active S-boxes in a differ-
ential characteristic. The objective function is adjusted to minimize the value of

4�

i=1

15�

j=0

χ(ΔXi,j)−
�

k=4,6,12,14

(χ(ΔX1,k)+χ(ΔX3,k))−
�

l=0,2,8,10

(χ(ΔX2,l)+χ(ΔX4,l)),

(8)

since now additional four bytes are leaked before the first S-box layer. Similarly,
(7) is adjusted to the following constraint
�

k=4,6,12,14

(χ(ΔX1,k) + χ(ΔX3,k)) +
�

l=0,2,8,10

(χ(ΔX2,l) + χ(ΔY4,l)) = n. (9)

Notice that n = l0 + l1 + l2 + l3.

Table 3. Minimum number m of effective active S-boxes, if n active leaked bytes are
included in a differential characteristic

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

m 30 24 23 22 21 20 19 18 17 16 15 19 18 22 21 25 24

The minimum number of effective active S-boxes classified by the number of
active leaked bytes is given in Table 3. We conclude that a differential charac-
teristic involves at least 15 effective active S-boxes. Thus, the best probability
of a differential characteristic is at most 2−90. For a further step, exactly 10
active leaked bytes are included in a differential characteristic with 15 effective
active S-boxes, that is, l0 + l1 + l2 + l3 = 10. Similar to the process of Table 2,
the distribution of the 10 active leaked bytes in these four rounds is studied by
adding more and more constraints to the MILP problems. This is done by first
studying the sum of l1 + l2, which may be 2, . . . , 7 or 8, and then investigating
the values of li (0 ≤ i ≤ 3). The results are given in Table 4.

From Table 4, we conclude that a differential characteristic with 15 effective
active S-boxes exists only if the concrete distribution of the 10 active leaked
bytes satisfies

1) [l0, l1, l2, l3] = [4, 0, 2, 4], [4, 2, 0, 4], [2, 0, 4, 4], [4, 0, 4, 2], [2, 4, 0, 4] or [4, 4, 0, 2],
and

2) χ(ΔXi,4) = χ(ΔXi,14) if ni = 2 and i ∈ {1, 3}; χ(ΔXi,0) = χ(ΔXi,2) if
ni = 2 and i ∈ {2, 4}.

Then, we analyze all the 12 cases of differential characteristics with 15 effective
active S-boxes. For each of the 12 cases listed in Table 4, different types of
differential characteristics may satisfy it. In this situation, we maximize the
number of effective active S-boxes in Round 1 and Round 4, as the differential
probability of effective active S-boxes in these two rounds can always reach the
maximum value 2−6 once the differential characteristic is constructed using the
start-from-the-middle technique, which is also employed by the authors in [22].
The best differential characteristics we found are given as follows.
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Table 4. Minimum number m of effective S-boxes with more constraints, and the
distribution of 10 active leaked bytes in these rounds

l1 + l2 additional constraints m [l0, l1, l2, l3] Case number

l1 = 0, χ(ΔX3,4) + χ(ΔX3,14) = 0 15 [4,0,2,4] #1
l1 = 0, χ(ΔX3,4) + χ(ΔX3,14) = 1 20 discard
l1 = 0, χ(ΔX3,4) + χ(ΔX3,14) = 2 15 [4,0,2,4] #2

2 l1 = 1 20 discard
l1 = 2, χ(ΔX2,0) + χ(ΔX2,2) = 0 15 [4,2,0,4] #3
l1 = 2, χ(ΔX2,0) + χ(ΔX2,2) = 1 20 discard
l1 = 2, χ(ΔX2,0) + χ(ΔX2,2) = 2 15 [4,2,0,4] #4

3 20 discard

l1 = 0, l0 = 2, χ(ΔX1,4) + χ(ΔX1,14) = 0 15 [2,0,4,4] #5
l1 = 0, l0 = 2, χ(ΔX1,4) + χ(ΔX1,14) = 1 20 discard
l1 = 0, l0 = 2, χ(ΔX1,4) + χ(ΔX1,14) = 2 15 [2,0,4,4] #6
l1 = 0, l0 = 3 20 discard
l1 = 0, l0 = 4, χ(ΔX4,0) + χ(ΔX4,2) = 0 15 [4,0,4,2] #7
l1 = 0, l0 = 4, χ(ΔX4,0) + χ(ΔX4,2) = 1 20 discard
l1 = 0, l0 = 4, χ(ΔX4,0) + χ(ΔX4,2) = 2 15 [4,0,4,2] #8
l1 = 1 20 discard

4 l1 = 2 18 discard
l1 = 3 20 discard
l1 = 4, l0 = 2, χ(ΔX1,4) + χ(ΔX1,14) = 0 15 [2,4,0,4] #9
l1 = 4, l0 = 2, χ(ΔX1,4) + χ(ΔX1,14) = 1 20 discard
l1 = 4, l0 = 2, χ(ΔX1,4) + χ(ΔX1,14) = 2 15 [2,4,0,4] #10
l1 = 4, l0 = 3 20 discard
l1 = 4, l0 = 4, χ(ΔX4,0) + χ(ΔX4,2) = 0 15 [4,4,0,2] #11
l1 = 4, l0 = 4, χ(ΔX4,0) + χ(ΔX4,2) = 1 20 discard
l1 = 4, l0 = 4, χ(ΔX4,0) + χ(ΔX4,2) = 2 15 [4,4,0,2] #12

5 20 discard

6 17 discard

7 20 discard

8 16 discard

– For each of the 8 cases with l1+ l2 = 4, that is, case #5 to #12, a differential
characteristic with probability of about 2−93.1 can be construct for almost
all of the leaked information. Experimental results show that we can not
obtain a differential characteristic for 412, 443, 402 and 373 out of 232 leaked
information in case #5 and #6, case #7 and #8, case #9 and #10 and case
#11 and #12, respectively. Thus, in average, two plaintext blocks are enough
to launch a forgery attack. The differential characteristic of case #10 is given
in Appendix C.

– For each of the four cases with l1 + l2 = 2, that is, case #1 to #4, a class
of 1020 differential characteristics with average probability of 2−94.1 always
can be constructed, whatever the leaked information is. Thus, the forgery
attack can be launched for any plaintext block. Differential paths of the case
#4 are given in Appendix D.
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Summary of the Analysis. From the above discussion, the whitening key
layer is important for ALE. Once it is removed, more internal information will
be leaked to an attacker, resulting in forgery attacks with higher success rates
and less required plaintext blocks. The success rate of a forgery attack now is
about 2−93.1 to 2−94.1, and at most 2 plaintext blocks are needed.

6 Experiments on a Reduced Version of ALE

As a proof of concept, we would apply our attacks to ALE (with the whitening
key). However, it is impossible to directly attack the original ALE as the com-
plexity is too high. Instead, we choose to attack a reduced ALE construction
based on an AES-like light-weight block cipher, LED [16].

The LED block cipher has similar round function as AES except that the
operation AddConstants is used before the S-box layer in each round, and the
round keys are added every four rounds. The S-box in LED has difference prop-
agation probability at most 2−2. Unlike the AES S-box, the output difference
may not be unique to attain the best difference propagation probability. And for
input difference 14, the probability 2−2 can never be obtained. So we need to
take care of these differences in the attack.

In our experiments, we modified the LED round function so that it has the
same ordered operations: SubCells, ShiftRows, MixColumns, AddRoundKeys as
AES. Since the differential characteristic is not related to the key schedule, we use
random round keys rather than deriving them from the key schedule. In addition,
we simplified the input message to the two-block case without considering the
initialization, padding and the associated data. The initial state is randomly
generated.

6.1 The “2–8–12–4” Differential Characteristic

In the optimized forgery attacks presented in Sect. 4.1, the differential charac-
teristic of type “2–8–12–4” is one of those have the highest success rate. We will
experimentally verify the results on this type of differential characteristics.

Estimations. Using the above reduced ALE, we searched the differential char-
acteristics of type “2–8–12–4”. Like the case discussed in original ALE, we need
to relax the difference propagation probability of one effective active S-box to
find a valid differential characteristic. Fig. 10 in Appendix E illustrates one of
the differential characteristics we found.

To estimate the probability that a random keystream block is vulnerable to
the attack, we analyze the number of solutions for the values of active leaked
bytes in first two rounds. In each of the first two rounds, there are 26 possible
solutions for the values of the four active leaked bytes. Therefore, the probability
of a random keystream block satisfies the conditions on leaked bytes is estimated
as 26 × 26 × 2(−4)×8 = 2−20. The average number of plaintext blocks needed to
get a vulnerable keystream block is thus 1 + 1/2−20 = 1 + 220. Notice that we
need an extra plaintext block to introduce the initial differences.
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There are 16 effective active S-boxes in the chosen differential characteristic:
15 of the active effect S-boxes with differential probability 2−2, and one with
probability 2−3. So the estimated probability of the differential characteristic is
2(−2)×15+(−3)×1 = 2−33 which is also the success rate of the forgery attack.

Experimental Results. First, we check the probability of the vulnerable
keystream blocks. After encrypting 227.1 random plaintext blocks, we found 27

vulnerable keystram blocks. Hence, the average plaintext blocks needed to find
a vulnerable keystream block is 227.1−7 = 220.1 which matches the estimated
value.

Then, we verify the success rate of the forgery attack. For a vulnerable
keystream block, the value of final state is xored with the second message block
and stored as t1. The differences in the final state (thus the leaked bytes) in
Round 4 are determined by the values of leaked bytes in Round 3. Then we
compute two forged ciphertext blocks similar to the attack procedure in Sect. 3
(but using the difference shown in Fig. 10 in Appendix E). We decrypt the forged
ciphertext blocks and xor the second plaintext block from decryption with the
final state to get t2. If the two internal states t1 and t2 collide, we get a successful
forgery. After examining 236.36 vulnerable keystream blocks, we managed to get
10 collisions at the internal states after two blocks. So the average probability
for one successful forgery is 2−33.04. One of the successful forgeries is given in
Appendix E.

6.2 The “6–4–6–9” Differential Characteristic

In Sect. 4.2, the differential characteristics of type “6–4–6–9” (Fig. 7) are ob-
served to require a small number of known plaintext blocks yet have good success
rate. We experimentally tested this case on the reduced version of ALE.

Estimations. For this type, we found 1400 differential characteristics for the
first two rounds, resulting in 21311 different values for the leaked bytes in the
first round. Details of one of the differential characteristics are given in Fig. 11
in Appendix F. It is interesting to notice that certain leaked values may be used
in more than one differential characteristic. If we take this into consideration,
there are 28657 different leaked values related to the 1400 differential character-
istics. Since there are only four active leaked bytes in the first two rounds, the
probability that a random keystream is vulnerable is 28657/24×4 = 2−1.12. Thus,
the estimated number of plaintext blocks needed to find a vulnerable keystream
block is 1 + 1/2−1.12 = 21.7.

There are 17 effective active S-boxes in the differential characteristic. All of
them attain the maximum differential probability 2−2. So the estimated prob-
ability of the differential characteristic is 2(−2)×17 = 2−34, which is also the
success rate of the forgery attack.

Experimental Results. In our experiments, 220.7 vulnerable keystream blocks
are generated from the encryption of 221.6 random 2-block plaintexts. So the
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average number of blocks needed to find one vulnerable keystream block is 2×
221.6/220.7 = 21.9, which is close to the estimated value.

After querying 237.7 forged ciphertexts, we found 10 collisions in the inter-
nal states. So the average probability of successful forgery is around 2−34.4

which is close to the estimated 2−34. One of the successful forgeries is given in
Appendix F.

7 Conclusion

The ALE authenticated encryption algorithm is claimed with a forgery success
rate of 2−128. In this paper, we show that the success rate is significantly higher
than the claimed rate. By applying the proposed leaked-state-forgery attack, the
success rate can reach 2−97. For a success rate 2−102, every one out of 28.4 plain-
text blocks is vulnerable to the forgery attack. We also show that the whitening
key layer is important for ALE, as the complexity of forgery attack can be im-
proved with probabilities from 2−93.1 to 2−94.1, and at most two plaintext blocks
are needed if the whitening key layer is removed. Our attacks are well-supported
by the experimental results on a reduced version of ALE. Our attack confirms
again that “it is very easy to accidentally combine secure encryption schemes
with secure MACs and still get insecure authenticated encryption schemes” [23].
Hence, in the design of authenticated encryption algorithms, we should be very
cautious in analyzing the interaction between encryption and authentication.
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A Values of Leaked-Bytes

The values of leaked bytes for the differential characteristic used in the basic
LSFA in Sect. 3 are given in Table 5. The index is the byte position in the
keystream block. δin and δout are the input and output differences for the S-box.
α and β can be arbitrary values extracted from the leaked bytes in Round 3.
From the table, the total number of possible values at the active leaked bytes in
first two rounds is 2× 2× 2× 2× 4× 2 = 128.

Table 5. Possible values of leaked bytes in hexadecimal for the basic LSFA. “-” indicates
no difference. “�” indicates arbitrary values. α and β are values from the leaked bytes.

Index δin δout Value(s)

0 – 1 - - �

2 E 42 11 or 1F

3 F3 C6 F, FC

4 59 FC 23, 7A

5 37 E5 19, 2E

6 6E FC 0, 6E, 8C, E2

7 B2 E5 46, F4

8 - - �

9 81 S(α) ⊕ S(81⊕ α) α

10 6C S(β)⊕ S(6C⊕ β) β

11 – 15 - - �

The values of leaked byes for the differential characteristic used in the op-
timized LSFA in Sect. 4.2 are given in Table 6. The total number of possible
values at the active leaked bytes in first two rounds is 28.

csrc.nist.gov/encryption/modes/proposedmodes/ccm/ccm.pdf
http://eprint.iacr.org/
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Table 6. Possible values of leaked bytes in hexadecimal for the optimized LSFA in
Sect. 4.2. “-” indicates no difference. “�” indicates arbitrary values. α and β are values
from the leaked bytes.

Index δin δout Value(s)

0 49 84 1D or 54

1 CE 97 33, FD

2 87 35 44, C3

3 92 13 5E, CC

4 74 89 10, 64

5 57 73 B0, E7

6 A6 23 6D, CB

7 3A 13 08, 32

8 – 9 - - �

10 3D S(α) ⊕ S(3D ⊕ α) α

11 EE S(β)⊕ S(EE⊕ β) β

12 – 15 - - �

B Maple Program for Solving MILP Problems

We employ the function “LPSolve” included in the “Optimization” package of
Maple software to solve MILP Problems. To simplify the variables in the MILP
problems given in Sect. 4.1, we compress χ(ΔXi,j) and di,j to xij and dij here.
Then, results in Table 1 are obtained by running the following program.

with ( Optimization ) ;
%i f n<=8, the l a s t c on s t r a i n t x20+x22+.. .+x48+x410>=n w i l l be removed .
n :=9;
LPSolve ( x10+x11+x12+x13+x14+x15+x16+x17+x18+x19+x110+x111+x112+x113
+x114+x115+x21+x23+x24+x25+x26+x27+x29+x211+x212+x213+x214
+x215+x30+x31+x32+x33+x35+x37+x38+x39+x310+x311+x313+x315
+x41+x43+x44+x45+x46+x47+x49+x411+x412+x413+x414+x415 ,
{x10+x15+x110+x115+x20+x21+x22+x23>=5∗d11 ,
x10+x15+x110+x115+x20+x21+x22+x23<=8∗d11 ,
x14+x19+x114+x13+x24+x25+x26+x27>=5∗d12 ,
x14+x19+x114+x13+x24+x25+x26+x27<=8∗d12 ,
x18+x113+x12+x17+x28+x29+x210+x211>=5∗d13 ,
x18+x113+x12+x17+x28+x29+x210+x211<=8∗d13 ,
x112+x11+x16+x111+x212+x213+x214+x215>=5∗d14 ,
x112+x11+x16+x111+x212+x213+x214+x215<=8∗d14 ,
x20+x25+x210+x215+x30+x31+x32+x33>=5∗d21 ,
x20+x25+x210+x215+x30+x31+x32+x33<=8∗d21 ,
x24+x29+x214+x23+x34+x35+x36+x37>=5∗d22 ,

x24+x29+x214+x23+x34+x35+x36+x37<=8∗d22 ,
x28+x213+x22+x27+x38+x39+x310+x311>=5∗d23 ,
x28+x213+x22+x27+x38+x39+x310+x311<=8∗d23 ,
x212+x21+x26+x211+x312+x313+x314+x315>=5∗d24 ,
x212+x21+x26+x211+x312+x313+x314+x315<=8∗d24 ,
x30+x35+x310+x315+x40+x41+x42+x43>=5∗d31 ,
x30+x35+x310+x315+x40+x41+x42+x43<=8∗d31 ,
x34+x39+x314+x33+x44+x45+x46+x47>=5∗d32 ,
x34+x39+x314+x33+x44+x45+x46+x47<=8∗d32 ,
x38+x313+x32+x37+x48+x49+x410+x411>=5∗d33 ,
x38+x313+x32+x37+x48+x49+x410+x411<=8∗d33 ,
x312+x31+x36+x311+x412+x413+x414+x415>=5∗d34 ,
x312+x31+x36+x311+x412+x413+x414+x415<=8∗d34 ,
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x14+x16+x112+x114+x10+x11+x12+x13+x111+x110+x15+x17+x18+x19+x113+x115>=1,
x20+x22+x28+x210+x34+x36+x312+x314+x40+x42+x48+x410<=n ,
x20+x22+x28+x210+x34+x36+x312+x314+x40+x42+x48+x410>=n

} , assume=binary ) ;

C Case #10: [l0, l1, l2, l3] = [2, 4, 0, 4] with
χ(ΔX1,4) = χ(ΔX1,14) = 1

The type of a differential characteristic is proposed in Fig. 8. The distribution
of active S-boxes in these rounds is 9→ 6→ 4→ 6, totally 25 active S-boxes. In
Fig. 8, from ΔX1 to ΔZ4, squares marked with broken line are active, squares
marked with backslash should be chosen to satisfy some conditions, and empty
squares have no difference.

We denote by MC the matrix used in the MixColumns layer. Based on the
MDS property of matrix MC, once any four out of the eight differences before
and after the matrix MC are given, then another four differences are uniquely
determined and can be calculated efficiently.

Fig. 8. A differential characteristic with [l0, l1, l2, l3] = [2, 4, 0, 4] and χ(ΔX1,4) =
χ(ΔX1,14) = 1. Gray squares denote leaked bytes. Squares marked with broken line
are active, squares marked with backslash should be chosen to satisfy some conditions,
and empty squares have no difference.

Now, we specify the differential characteristic following the type of Fig. 8.
From ΔX1 to ΔZ4, bytes without a Greek alphabet have difference zero, and
the difference of a byte with a Greek alphabet (i.e., α, β, γ, η, μ, ν and σ) will be
determined in the subsequent discussions. Since ΔX5 = MC(ΔZ4), we obtain
the values of Λj (1 ≤ j ≤ 16) once ν′

is and σ′
is (3 ≤ i ≤ 6) are determined. The

procedure of constructing this differential characteristic is given as follows.
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1. Construct a differential characteristic from ΔX2 to ΔZ3.
1-1. We start at the MixColumns layer of round 2, and match the differ-

ences (α1, α2, . . . , α5) first (see the starting point of Fig. 8). That is, we
have to choose nonzero α1, α2, α3, α4 and α5 such that (α4, 0, α5, 0) =
(α1, α2, α3, 0) ·MCt. This is done by choosing an arbitrary difference
α1 �= 0 and computing (α2, α3, α4, α5) = (4α1, 7α1, 9α1, Bα1).

1-2. Compute β1 = S−1(α1⊕S(X2,0))⊕X2,0 and γ2 = S−1(α3⊕S(X2,10))⊕
X2,10.

1-3. Choose β2 such that one of β3, . . . , β6 is zero, where (β3, β4, β5, β6)
t =

MC−1 ·(β1, 0, β2, 0)
t. Thus, β2 ∈ {D−1Eβ1, B

−19β1, E
−1Dβ1, 9

−1Bβ1}.
Similarly, choose γ1 such that one of γ3, . . . , γ6 is zero. Thus, γ1 ∈
{E−1Dγ2, 9

−1Bγ2, D
−1Eγ2, B

−19γ2}.
1-4. Compute η1 = S(X2,8)⊕S(X2,8⊕ γ1) and η2 = S(X2,2)⊕S(X2,2⊕ β2).

Now, we have to check whether there are nonzero η3, η4 and η5 such
that (η4, 0, η5, 0) = (η1, 0, η2, η3) ·MCt. It is equivalent to check whether
η1 = 7η2 (see the checking point of Fig. 8).

1-5. If there is a (α1, β2, γ1) such that η1 = 7η2, compute (η3, η4, η5) =
(4η2, Bη2, 9η2) and go on. Else, return “construction failure” and abort.

1-6. Choose μ1, μ2 such that Pr(μ1 → α2)·Pr(μ2 → η3) �= 0 and one of μ4, μ6

is zero; Choose ν1, ν2 such that Pr(α4 → ν1) · Pr(η5 → ν2) �= 0 and one
of ν4, ν6 is zero; Choose σ1, σ2 such that Pr(η4 → σ1) ·Pr(α5 → σ2) �= 0
and one of σ4, σ6 is zero.

2. Construct the differences of outer rounds.
2-1. Compute μ′

3 = S−1(μ3⊕S(X1,4))⊕X1,4 and μ′
5 = S−1(μ5⊕S(X1,14))⊕

X1,14. Choose β′
i (3 ≤ i ≤ 6) such that Pr(β′

i → βi) = 2−6 if βi �= 0 or
β′
i = 0 if βi = 0; Choose μ′

i (i = 4, 6) such that Pr(μ′
i → μi) = 2−6 if

μi �= 0 or μ′
i = 0 if μi = 0; Choose γ′

i (3 ≤ i ≤ 6) such that Pr(γ′
i →

γi) = 2−6 if γi �= 0 or γ′
i = 0 if γi = 0.

2-2. Compute ν′
3 = S(X4,0) ⊕ S(X4,0 ⊕ ν3), ν′

5 = S(X4,2) ⊕ S(X4,2 ⊕ ν5),
σ′
3 = S(X4,8)⊕S(X4,8⊕σ3) and σ′

5 = S(X4,10)⊕S(X4,10⊕σ5). Choose
ν′
i (i = 4, 6) such that Pr(ν′

i → νi) = 2−6 if νi �= 0 or ν′
i = 0 if νi = 0;

Choose σ′
i (i = 4, 6) such that Pr(σ′

i → σi) = 2−6 if σi �= 0 or σ′
i = 0 if

σi = 0.
3. Compute ΔX5 = MC(ΔZ4).

Notice that 9 effective active S-boxes in Round 1 and 4 can always reach the
maximum differential probability 2−6. Thus, the probability of this differential
characteristic is between 2−7·6−9·6 = 2−96 and 2−15·6 = 2−90 if it exists. The
existence of this differential characteristic is only related to the existence of a
differential characteristic in Round 2 and 3. Two questions Q1 and Q2 are
experimentally verified to ensure the existence of a differential characteristic
from ΔX2 to ΔZ3:

Q1: For each X = (X2,0, X2,2, X2,8, X2,10), can we find a triple (α1, β2, γ1) in
step 1-1 and step 1-3 such that the condition η1 = 7η2 in step 1-4 is satisfied?

For each X , it’s very likely to find such a triple, because the choices of
(α1, β2, γ1) are about 212 and the probability of η1 = 7η2 is about 2−8. We
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enumerate all 232 values of X and find that the number of “construction failure”
is 402, that is, there is at least one (α1, β2, γ1) such that η1 = 7η2 for 232 − 402
out of 232 X . For each of these X , we may store a candidate of (α1, β2, γ1) in a
table, which is indexed by the value of X (A redundant triple pair (0, 0, 0) may
be included for failure cases). The size of this table is 3 × 232 bytes. The time
complexity of this step is at most 244.

Q2: For any nonzero (α2, η3) (resp. (α4, η5) and (η4, α5)), can we find a pair
of (μ1, μ2) (resp. (ν1, ν2) and (σ1, σ2)) which satisfies the conditions given in step
1-6?

Notice that (α2, η3) has 255
2 choices, μ1 and μ2 have 127 choices once (α2, η3)

is given. Thus, Q2 can be verified in time complexity of about 230. For a given
(α2, η3), more than one pair of (μ1, μ2) may be found to satisfy the condition
given in step 1-6. In this case, we choose the pair (μ1, μ2) such that Pr(μ1 → α2)·
Pr(μ2 → η3) is maximum. Experimental results show that the condition given in
step 1-6 can be satisfied for each pair of (α2, η3), and the maximum probability of
Pr(μ1 → α2) ·Pr(μ2 → η3) is 2

−14, 2−13 and 2−12 for 3825, 60690 and 510 pairs
of (α2, η3), respectively. The average probability of Pr(μ1 → α2)·Pr(μ2 → η3) is
2−13.03. Similarly, the condition given in step 1-6 can be satisfied for each pair of
(α4, η5) (resp. (η4, α5)), and the maximum probability of Pr(α4 → ν1) ·Pr(η5 →
ν2) (resp. Pr(η4 → σ1) · Pr(α5 → σ2)) is 2−14, 2−13 and 2−12 for 4312, 60203
and 510 pairs of (α4, η5) (resp. (η4, α5)), respectively. The average probability
of Pr(α4 → ν1) ·Pr(η5 → ν2) (resp. Pr(η4 → σ1) ·Pr(α5 → σ2)) is 2

−13.04. The
best choices of (μ1, μ2) and (ν1, ν2) (resp. (σ1, σ2)) can be stored in two tables.

Thus, the probability of a four-round differential characteristic proposed in
this subsection is 2−6·9−13.03−2·13.04 ≈ 2−93.1 on average. Notice that it always
exists and can be easily rebuilt by looking up several tables.

Similar process is done to case #5 to #12 except case #10. Two ques-
tions similar to Q1 and Q2 are also experimentally verified to check the ex-
istence of these differential characteristics. To answer question Q1, 232 values
of X = (X3,4, X3,6, X3,12, X3,14) are enumerated for case #5 to case #8, and
232 values of X = (X2,0, X2,2, X2,8, X2,10) are enumerated for case #9, #11 and
#12. The number of “construction failure” is 412 for case #5 and #6, 443 for
case #7 and #8, 402 for case #9, and 373 for case #11 and #12, respectively. Ex-
perimental results show that question Q2 always can be satisfied. Therefore, we
can construct these differential characteristics for almost all cases of the leaked
X . The probabilities of these 7 differential characteristics are around 2−93.1 with
a small deviation.

D Case #4: [l0, l1, l2, l3] = [4, 2, 0, 4] with
χ(ΔX2,0) = χ(ΔX2,2) = 1

The type of a differential characteristic is illustrated in Fig. 9. The distribution
of active S-boxes in these rounds is 9→ 6→ 4→ 6, totally 25 active S-boxes. In
Fig. 9, from ΔX1 to ΔZ4, squares marked with broken line are active, squares
marked with backslash should be chosen to satisfy some conditions, and empty
squares have no difference.
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From ΔX1 to ΔZ4, bytes without a Greek alphabet have difference zero, and
the difference of a byte with a Greek alphabet (i.e., α, β, γ, η, μ, ν and σ) will be
determined in the subsequent discussions. Since ΔX5 = MC(ΔZ4), we obtain
the value of Λj (1 ≤ j ≤ 16) once ν′

i and σ′
i (3 ≤ i ≤ 6) are determined. The

procedure of constructing this differential characteristic is briefly described as
follows.

Fig. 9. Differential characteristics with [l0, l1, l2, l3] = [4, 2, 0, 4] and χ(ΔX2,0) =
χ(ΔX2,2) = 1. Gray squares denote leaked bytes. Squares marked with broken line
are active, squares marked with backslash should be chosen to satisfy some conditions,
and empty squares have no difference.

1. We start at the MC step of Round 1 here, and choose nonzero β1

and β2 such that one of β3, . . . , β6 is zero, where (β3, β4, β5, β6)
t =

MC−1 · (β1, 0, β2, 0)
t. Thus, for arbitrary β1 �= 0, we can choose β2 ∈

{D−1Eβ1, B
−19β1, E

−1Dβ1, 9
−1Bβ1}. β3, . . . , β6 are obtained once β1 and

β2 are determined. Notice that we have 4 choices of β2 for each β1 �= 0.
2. Compute α1 and η2 using the pair (X2,0, β1) and (X2,2, β2), respectively.
3. Compute α2, . . . , α5 by solving (α4, 0, α5, 0) = (α1, α2, 0, α3)·MCt; Compute

η1, η3, η4 and η5 by solving (η4, 0, η5, 0) = (0, η1, η2, η3) ·MCt.
4. Choose (μ1, μ2) (resp. (γ1, γ2)) such that Pr(μ1 → α2) · Pr(μ2 → η3) �= 0

(resp. Pr(γ1 → η1) · Pr(γ2 → α3) �= 0) and one of μ4 and μ6 (resp. γ4 and
γ6) is zero. Choose (ν1, ν2) (resp. (σ1, σ2)) such that Pr(α4 → ν1) ·Pr(η5 →
ν2) �= 0 (resp. Pr(η4 → σ1) · Pr(α5 → δ2) �= 0) and one of ν4 and ν6 (resp.
δ4 and δ6) is zero.

5. Compute μ′
3, μ

′
5, γ

′
3 and γ′

5 using the pair (X1,4, μ3), (X1,14, μ5), (X1,12, γ3)
and (X1,6, γ5), respectively. Choose β′

i (3 ≤ i ≤ 6) such that Pr(β′
i →

βi) = 2−6 if βi �= 0 or β′
i = 0 if βi = 0; Choose μ′

i (i = 4, 6) such that
Pr(μ′

i → μi) = 2−6 if μi �= 0 or μ′
i = 0 if μi = 0; Choose γ′

i (i = 4, 6) such
that Pr(γ′

i → γi) = 2−6 if γi �= 0 or γ′
i = 0 if γi = 0.

6. Compute ν′
3, ν

′
5, σ

′
3 and σ′

5 using the pair (X4,0, ν3), (X4,2, ν5), (X4,8, σ3) and
(X4,10, σ5) respectively. Choose ν′

i (i = 4, 6) such that Pr(ν′
i → νi) = 2−6 if
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νi �= 0 or ν′
i = 0 if νi = 0; Choose σ′

i (i = 4, 6) such that Pr(σ′
i → σi) = 2−6

if σi �= 0 or σ′
i = 0 if σi = 0.

7. Compute ΔXr+4 = MC(ΔZ4).

The existence of these differential characteristics is only related to the existence
of pairs (μ1, μ2), (γ1, γ2), (ν1, ν2) and (σ1, σ2) in step 4. Based on the exper-
imental results given in the construction of Fig. 8, they always exist. Thus,
we have 255 × 4 = 1020 differential characteristics here because β1 has 255
choices and β2 has four choices for each β1. The average probability of them is
2−6·7−13.03·2−13.04·2 = 2−94.1.

E Details of One Forgery in the “2–8–12–4” Experiment

The initial state is: 0x7745fe4fa948da9.

Fig. 10. Differential Path of type “2–8–12–4”. The hexadecimal numbers indicate the
difference values. The empty squares indicate there is no difference. The squares of
leaked bytes are marked with gray color.

Table 7. The values of round keys

Round 1 Round 2 Round 3 Round 4

Block 1 0x27de69bc8bbc6a71 0x0eda00f69a70d28f 0xcaa2cab4fb3cf8a8 0x8034f88c57ed2766

Block 2 0xb9cacf23fb387dd8 0xe9d293e0d9550016 0x7537baeca8ed970e 0xe1c9150ac5564aad

F Details of one Forgery in the “6–4–6–9” Experiment

The initial state is: 0x92304e6d9b7c7373.

Table 8. The forgery attack on the “2–8–12–4” differential characteristic

Plaintext Ciphertext Forged Ciphertext Colliding State

Block 1 0x37dc069161450099 0x6c2b36071e45d85d 0x6cbb36071e35d85d 0xb23d4f8eeb91a13e

Block 2 0xb1469433d739a810 0x39d7ac987dd694a8 0x53ba102c0d1b4435
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Fig. 11. Differential Path of type “6–4–6–9”. The hexadecimal numbers indicate the
difference values. The empty squares indicate there is no difference. The squares of
leaked bytes are marked with gray color.

Table 9. The values of round keys

Round 1 Round 2 Round 3 Round 4

Block 1 0x60ee23ea2d7054dd 0xcf849ed86e6774c0 0x569d49934b68af00 0x64b01cb5561255c8

Block 2 0x36a5467dc8ebe9d2 0xbe9da2b83ae39382 0x724461aa61be86e2 0xa396ceccaa9d57f6

Table 10. The forgery attack on the “6–4–6–9” differential characteristic

Plaintext Ciphertext Forged Ciphertext Colliding State

Block 1 0x182841a869f5e890 0x7bb0dce1e61d0d43 0x0bc0d7e8361d0d41 0xf134343fa5b20472

Block 2 0x35bdb2a519a0818f 0xa3398abfcd7fcd1d 0x646cac5a462f92a8
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Abstract. We present the Protected-IV construction (PIV) a simple,
modular method for building variable-input-length tweakable ciphers. At
our level of abstraction, many interesting design opportunities surface.
For example, an obvious pathway to building beyond birthday-bound
secure tweakable ciphers with performance competitive with existing
birthday-bound-limited constructions. As part of our design space ex-
ploration, we give two fully instantiated PIV constructions, TCT1 and
TCT2; the latter is fast and has beyond birthday-bound security, the
former is faster and has birthday-bound security. Finally, we consider a
generic method for turning a VIL tweakable cipher (like PIV) into an
authenticated encryption scheme that admits associated data, can with-
stand nonce-misuse, and allows for multiple decryption error messages.
Thus, the method offers robustness even in the face of certain sidechan-
nels, and common implementation mistakes.

Keywords: tweakable blockciphers, beyond-birthday-bound security,
authenticated encryption, associated data, full-disk encryption.

1 Introduction

The main contribution of this paper is the Protected-IV construction (PIV), see
Figure 1. PIV offers a simple, modular method for building length-preserving,
tweakable ciphers that:

(1) may take plaintext inputs of essentially any length;

(2) provably achieves the strongest possible security property for this type of
primitive, that of being a strong, tweakable-PRP (STPRP);

(3) admit instantiations from n-bit primitives that are STPRP-secure well be-
yond the birthday-bound of 2n/2 invocations.

Moreover, by some measures of efficiency, beyond-birthday secure instantiations
of PIV are competitive with existing constructions that are only secure to the
birthday bound. (See Table 1.) We will give a concrete instantiation of PIV
that has beyond birthday-bound security and, when compared to EME [16], the
overhead is a few extra modular arithmetic operations for each n-bit block of
input.
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Fig. 1. The PIV[F̃ , Ṽ ] tweakable cipher. In-
put T is the tweak, and X = XL ‖XR is a
bit string, where |XL| = N and XR is any

length accepted by Ṽ . The filled-in box is
the tweak input.

Tweakable ciphers with beyond
birthday-bound security may have
important implications for crypto-
graphic practice. For example, in
large-scale data-at-rest settings, where
the amount of data that must be pro-
tected by a single key is typically
greater than in settings where keys
can be easily renegotiated.

At least two important applications
have already made tweakable ciphers
their tool-of-choice, namely full-disk
encryption (FDE) and format-
preserving encryption (FPE). Our
work provides interesting new results
for both FDE and FPE.

We also show that tweakable ci-
phers enable a simple mechanism
for building authenticated encryp-
tion schemes with associated data
(AEAD), via an extension of the encode-then-encipher approach of Bellare and
Rogaway [4]. This approach has some practical benefits, for example, it securely
handles the reporting of multiple types of decryption errors. It can also eliminate
ciphertext expansion by exploiting any existing nonces, randomness, or redun-
dancies appearing in either the plaintext or associated data inputs. Combined
with our other results, encode-then-encipher over PIV gives a new way to build
AEAD schemes with beyond birthday-bound security.

Background. Tweakable blockciphers (TBCs) were introduced and formalized

by Liskov, Rivest and Wagner [20]. An n-bit TBC Ẽ is a family of permutations
over {0, 1}n, each permutation named by specifying a key and a tweak. In typical
usage, the key is secret and fixed across many calls, while the tweak is not
secret, and may change from call to call; this allows variability in the behavior
of the primitive, even though the key is fixed. A tweakable cipher1 is the natural
extension of a tweakable blockcipher to the variable-input-length (VIL) setting,
forming a family of length-preserving permutations.

Since the initial work of Liskov, Rivest and Wagner, there has been substantial
work on building tweakable ciphers. Examples capable of handling long inputs
(required for FDE) include CMC [15], EME [16], HEH [30], HCH [10], and
HCTR [33]. Loosely speaking, the common approach has been to build up
the VIL primitive from an underlying n-bit blockcipher, sometimes in concert
with one or more hashing operations. The security guaranteed by each of these
constructions become vacuous after about 2n/2 bits have been enciphered. One of

1 Sometimes called a “tweakable enciphering scheme”, or even a “large-block cipher”.
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our main goals is to break through this birthday bound, i.e., to build a tweakable
cipher that remains secure long after 2n/2 bits have been enciphered.

The PIV construction. To this end, we begin by adopting a top-down, composi-
tional viewpoint on the design of tweakable ciphers, our PIV construction. It is
a type of three-round, unbalanced Feistel network, where the left “half” of the
input is of a fixed bit length N , and the right “half” has variable length. The
first and third round-functions are an N -bit tweakable blockcipher (F̃ ), where N
is a parameter of the construction, e.g. N = 128 or N = 256. The middle round-
function (Ṽ ) is itself a VIL tweakable cipher, whose tweak is the output of first
round.

It may seem as though little has been accomplished, since we need a VIL
tweakable cipher Ṽ in order to build our VIL tweakable cipher PIV[F̃ , Ṽ ]. How-

ever, we require substantially less of Ṽ than we do of PIV[F̃ , Ṽ ]. In particular,
the target security property for PIV is that of being a strong tweakable pseu-
dorandom permutation. Informally, being STPRP-secure means withstanding
chosen-ciphertext attacks in which the attacker also has full control over all
inputs. The attacker can, for example, repeat a tweak an arbitrary number of
times. Our PIV security theorem (Theorem 1) says the following: given (1) a

TBC F̃ that is STPRP-secure over a domain of N -bit strings, and (2) a tweak-

able cipher Ṽ that is secure against attacks that never repeat a tweak, then the
tweakable cipher PIV[F̃ , Ṽ ] is STPRP-secure. Thus, qualitatively, the PIV con-
struction promotes security (over a large domain) against a restricted kind of
attacker, into security against arbitrary chosen-ciphertext attacks.

Quantitatively, the PIV security bound contains an additive term q2/2N ,
where q is the number of times PIV is queried. Now, N might be the block-
size n of some underlying blockcipher; in this case the PIV composition delivers
a bound comparable to those achieved by existing constructions. But N = 2n
presents the possibility of using an n-bit primitive to instantiate F̃ and Ṽ , and
yet deliver a tweakable cipher with security well beyond beyond-birthday of 2n/2

queries.
As a small, additional benefit, the PIV proof of STPRP-security is short and

easy to verify.

Impacts of modularity on instantiations. Adopting this modular viewpoint al-
lows us to explore constructions of F̃ and Ṽ independently. This is particularly
beneficial, since building efficient and secure instantiations of VIL tweakable ci-
phers (Ṽ ) is relatively easy, when tweaks can be assumed not to repeat. The

more difficult design task, of building a tweakable blockcipher (F̃ ) that remains
secure when tweaks may be repeated, is also made easier, by restricting to plain-
text inputs of a fixed bit length N . In practice, when (say) N = 128 or 256,

inefficiencies incurred by F̃ can be offset by efficiency gains in Ṽ .
To make thing concrete, we give two fully-specified PIV tweakable ciphers,

each underlain by n-bit blockciphers. The first, TCT1, provides birthday-bound
security. It requires only one blockcipher invocation and some arithmetic, modulo



408 T. Shrimpton and R.S. Terashima

0

1

S
ec
u
ri
ty

b
ou

n
d

0 20 40 60 80 100

log2 q

TCT2
TCT1
EME

Fig. 2. Security bounds for TCT1, EME and TCT2, all using an underlying 128-bit
primitive and 4096-byte inputs, typical for FDE. The EME curve is representative of
other prior constructions.

a power of two, per n-bit block of input. In contrast, previous modes either
require two blockcipher invocations per n-bit block, or require per-block finite
field operations.

The second, TCT2, delivers security beyond the birthday-bound. When com-
pared to existing VIL tweakable ciphers with only birthday-bound security, like
EME∗ construction, TCT2 incurs only some additional, simple arithmetic op-
erations per n bit block of input. Again, this arithmetic is performed modulo
powers of two, rather than in a finite field.

In both TCT1 and TCT2, the VIL component is instantiated using counter-
mode encryption, but over a TBC instead of a blockcipher. The additional tweak
input of the TBC allows us to consider various ‘tweak-scheduling’ approaches,
e.g. fixing a single per-message tweak across all blocks, or changing the tweak
each message block.2 We will see that the latter approach of re-tweaking on a
block-by-block basis leads to a beyond birthday-bound secure PIV construction
that admits strings of any length at least N .

AEAD via encode-then-(tweakable)encipher. The ability to construct beyond
birthday-bound secure tweakable ciphers with large and flexible domains moti-
vates us to consider their use for traditional encryption. Specifically, we build
upon the “encode-then-encipher” results of Bellare and Rogaway [4]. They show
that messages endowed with randomness (or nonces) and redundancy do not
need to be processed by a authenticated encryption (AE) scheme in order to

2 There is a natural connection between changing the tweak of a TBC, and changing
the key of a blockcipher. Both can be used to boost security, but the former is cleaner
because tweaks do not need to be secret.
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enjoy privacy and authenticity guarantees; a VIL strong-PRP suffices. This is
valuable when typical messages are short, as there is no need to waste bandwidth
upon transmitting an AE scheme’s IV and a dedicated authenticity tag.

We find that the tweakable setting gives additional advantages to the encode-
then-encipher approach. An obvious one is that the tweak empowers support
for associated data. More interesting, one can explore the effects of randomness,
state or redundancy present in the message and tweak inputs. We find that
randomness and state can be shifted to from the message to the tweak without
loss of security, potentially reducing the number of bits that must be processed
cryptographically.

We also find that AEAD schemes are built this way, via encode-then-encipher
over a tweakable cipher, can accommodate multiple decryption error messages.
Multiple, descriptive error messages can be quite useful in practice, but have
often empowered damaging attacks (e.g. padding-oracle attacks [32,7,27,1,12]).
These attacks don’t work against our AEAD schemes because, loosely, changing
any bit of a ciphertext will randomize every bit of the decrypted string.

Our work in this direction suggests useful implications for FPE [3,5], and for
layered-encryption schemes, for example the onion-encryption scheme used by
Tor [23].

Due to space limitations, we refer the reader to the full version of this paper
for our results on AEAD, and a discussion of their potential impacts.

Related work. Here we give a much abbreviated discussion of other related work.
Please refer to Table 1 for a summary comparison of TCT1,TCT2 with other
constructions. A more complete discussion will appear in the full version.

Researchers have developed three general approach for constructing tweakable
ciphers from n-bit blockciphers. Each approach has yielded a series of increas-
ingly refined algorithms. The first, Encrypt-Mask-Encrypt, places a light-weight
“masking” layer between two encryption layers; examples include CMC [15] and
EME∗ [13]. The second, Hash-ECB-Hash, sandwiches ECB-mode encryption be-
tween two invertible hashes. PEP [9], TET [14], and HEH [30,31] are examples.
Finally, Hash-CTR-Hash uses non-invertible hashes with CTR-mode encryption.
Both HCH [10] and HCTR [33] use this approach. Mancillas-Lópeze et al. [22]
report on the hardware performance of most of these modes. Chakraborty et
al. [8] discuss implementations of the more recent HEH [30] construction and its
refinement [31], which halves the number of finite field multiplications.

We contribute a new, top-down approach that leads us to the first beyond-
birthday-bound secure tweakable cipher suitable for encrypting long inputs (i.e.,
longer than the blocksize of an underlying blockcipher). Table 1 and Figure 2
compare some of these algorithms with our new TCT1 and TCT2 constructions
in terms of computational cost and security, respectively. Note that the finite
field operations counted in Table 1 take hundreds of cycles in software [21,2],
whereas their cost relative to an AES blockcipher invocation is much lower in
hardware [22]. TCT1 is the first tweakable cipher to require only a single block-
cipher invocation and no extra finite field multiplications for each additional n
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Table 1. Tweakable ciphers and their computational costs for �n-bit inputs. Costs
measured in n-bit blockcipher calls [BC], finite field multiplications [F2n×], and ring
operations [Zw+] and [Z2w ], for some word size w. Typically, � = 32 for FDE, and we
anticipate n = 128, w = 64.

Cost

Cipher [BC] [F2n×] [Zw+] [Z2w ] Ref.

HCTR � 2�+ 2 – – [33]
CMC 2�+ 1 – – – [15]
EME 2�+ 1 – – – [16]
EME∗ 2�+ 3 – – – [13]
PEP �+ 5 4�− 6 – – [9]
HCH �+ 3 2�− 2 – – [10]
TET � 2� – – [14]
HEH �+ 1 �+ 2 – – [30,31]

TCT1 �+ 1 5 2�
(
n
w

)2
2�

(
n
w

)2
–

TCT2 2�+ 8 32 4�
(
n
w

)2
4�

(
n
w

)2
–

bits of input, while TCT2 is the first to provide beyond-birthday-bound security
(and still gets away with a fixed number of finite field multiplications).

We mention the LargeBlock constructions due to Minematsu and Iwata [25],
since they provide ciphers with beyond-birthday-bound security. These do not
support tweaking, but it seems plausible that they could without significant
degradation of performance or security. These constructions overcome the birth-
day bound by using 2n-bit blockciphers as primitives, which are in turn con-
structed from an n-bit TBC. To our knowledge, CLRW2 [19] is the most efficient
n-bit TBC with beyond-birthday-bound security that supports the necessary
tweakspace (Minematsu’s TBC [24] limits tweak lengths to fewer than n/2 bits).
Compared to TCT2, instantiating the LargeBlock constructions with this prim-
itive ultimately requires an extra six finite field multiplications for each n bits
of input. Thus, we suspect the LargeBlock designs would be impractical even if
adding tweak support proves feasible.

A construction due to Coron, et al. [11], which we refer to as CDMS (after the
authors), builds a 2n-bit TBC from an n-bit TBC, providing beyond-birthday-
bound security in n. Like PIV, CDMS uses three rounds of a Feistel-like structure.
However, our middle round uses a VIL tweakable cipher, and we require a weaker
security property from the round. This allows PIV to efficiently process long in-
puts. That said, CDMS provides an excellent way to implement a highly-secure
2n-bit TBC, and we will use it for this purpose inside of TCT2 to build F̃ . (Nest-
ing CDMS constructions could create (2mn)-bit tweakable blockciphers for any
m > 1, but again, this would not be practical). We note that Coron, et al. were
primarily concerned with constructions indifferentiable from an ideal cipher, a
goal quite different from ours.

The Thorp shuffle [26] and its successor, swap-or-not [17], are highly-secure
ciphers targeting very small domains (e.g., {0, 1}n for n ≤ 64). Swap-or-not
could almost certainly become a VIL tweakable cipher, without changing the
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security bounds, by using domain separation for each input length and tweak in
the underlying PRF. Essentially, one would make an input-length parameterized
family of (tweakable) swap-or-not ciphers, with independent round-keys for each
length. While still offering reasonable performance and unmatched security for
very small inputs, the result would be wildly impractical for the large domains
we are considering: swap-or-not’s PRF needs to be invoked at least 6b times to
securely encipher a b-bit input (below that, the bound becomes vacuous against
even q = 1 query), and disk sectors are often 4096 bytes. Also, to match TCT2’s
security, the PRF itself would need to be secure beyond the birthday bound
(with respect to n).

Finally, we note that Rogaway and Shrimpton [29] considered some forms of
tweakable encode-then-encipher in the context of deterministic AE (“keywrap-
ping”), and our work generalizes theirs.

2 Tweakable Primitives

Preliminary notation. Let N = {0, 1, 2, . . .} be the set of non-negative integers.
For n ∈ N, {0, 1}n denotes the set of all n-bit binary strings, and {0, 1}∗ denotes
the set of all (finite) binary strings. We write ε for the empty string. Let s, t ∈
{0, 1}∗. Then |s| is the length of s in bits, and |(s, t)| = |s ‖ t|, where s‖ t denotes
the string formed by concatenating s and t. If s ∈ {0, 1}nm for some m ∈ N,

s1s2 · · · sm n← s indicates that each si should be defined so that |si| = n and
s = s1s2 · · · sm. When n is implicit from context, it will be omitted from the
notation. If s = b1b2 · · · bn is an n-bit string (each bi ∈ {0, 1}), then s[i..j] =
bibi+1 · · · bj , s[i..] = s[i..n], and s[..j] = s[1..j]. The string s⊕ t is the bitwise
xor of s and t; if, for example, |s| < |t|, then s⊕ t is the bitwise xor of s and

t[.. |s|]. Given R ⊆ N and n ∈ N with n ≤ min(R), {0, 1}R =
⋃
i∈R {0, 1}

i
, and

by abuse of notation, {0, 1}R−n =
⋃
i∈R {0, 1}

i−n. Given a finite set X , we write
X

$←−X to indicate that the random variable X is sampled uniformly at random
from X . Throughout, the distinguished symbol ⊥ is assumed not to be part of
any set except {⊥}. Given an integer n known to be in some range, 〈n〉 denotes
some fixed-length (e.g., 64-bit) encoding of n.

Let H : K × D → R ⊆ {0, 1}∗ be a function. Writing its first argument
as a subscripted key, H is ε-almost universal (ε-AU) if for all distinct X,Y ∈
D, Pr [HK(X) = HK(Y ) ] ≤ ε (where the probability is over K

$←−K). Simi-
larly, H is ε-almost 2-XOR universal if for all distinct X,Y ∈ D and C ∈ R,
Pr [HK(X)⊕HK(Y ) = C ] ≤ ε.

An adversary is an algorithm taking zero or more oracles as inputs, which it
queries in a black-box manner before returning some output. Adversaries may
be random. The notation Af⇒ b denotes the event that an adversary A outputs
b after running with oracle f as its input.

Syntax. Let K be a non-empty set, and let T ,X ⊆ {0, 1}∗. A tweakable cipher is

a mapping Ẽ : K × T ×X → X with the property that, for all (K,T ) ∈ K × T ,
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Ẽ(K,T, ·) is a permutation on X . We typically write the first argument (the

key) as a subscript, so that ẼK(T,X) = Ẽ(K,T,X). As ẼK(T, ·) is invertible,

we let Ẽ−1
K (T, ·) denote this mapping. We refer to K as the key space, T as the

tweak space, and X as the message space. We say that a tweakable cipher Ẽ
is length preserving if |ẼK(T,X)| = |X | for all X ∈ X , T ∈ T , and K ∈ K.
All tweakable ciphers in this paper will be length preserving. Restricting the
tweak or message spaces of a tweakable cipher gives rise to other objects. When
X = {0, 1}n for some n > 0, then Ẽ is a tweakable blockcipher with blocksize n.
When |T | = 1, we make the tweak implicit, giving a cipher E : K × X → X ,
where EK(·) is a (length-preserving) permutation over X and E−1

K is its inverse.
Finally, when X = {0, 1}n and |T | = 1, we have a conventional blockcipher
E : K × {0, 1}n → {0, 1}n.

Security notions. Let Perm(X ) denote the set of all permutations on X . Simi-
larly, we define BC(K,X ) be the set of all ciphers with keyspace K and message
space X . When X ,X ′ are sets, we define Func(X ,X ′) to be the set of all functions
f : X → X ′.

Fix a tweakable cipher Ẽ : K × T × X → X . We define the strong, tweak-
able pseudorandom-permutation (STPRP) advantage measure as Advs̃prp

E (A) =

Pr
[
K

$←−K : AẼK(·,·),Ẽ−1
K (·,·) ⇒ 1

]
−Pr

[
Π

$←− BC(T ,X ) : AΠ(·,·),Π−1(·,·) ⇒ 1
]
. The

TPRP advantage measure is defined analogously, by dropping the Ẽ−1
K ora-

cle from the first probability, and the Π−1 oracle from the second. We as-
sume that A never makes pointless queries. By this we mean that for the
(S)TPRPexperiments, the adversary never repeats a query to an oracle. For
the STPRP advantage measure, this also means that if A queries (T,X) to its
leftmost oracle and receives Y in return, then it never queries (T, Y ) to its right-
most oracle, and vice versa. These assumptions are without loss of generality.

The strong, indistinguishable-from-random-bits (SRND) advtantage is de-

fined as Advs̃rnd
Ẽ

(A) = Pr
[
K

$←−K : AẼK(·,·),Ẽ−1
K

(·,·) ⇒ 1
]
− Pr

[
A$(·,·),$(·,·) ⇒ 1

]
,

where the $(·, ·) oracle always outputs a random string equal in length to its
second input: |$(T,X)| = |X | for all T and X . As before, we assume that A
never makes a pointless query. Here, these assumptions are not without loss of
generality, but instead prevent trivial wins. Adversaries for the (S)TPRP and
SRND advantages are nonce-respecting if the transcript of their oracle queries
(T1, X1), . . . , (Tq, Xq) does not include Ti = Tj for any i �= j.

For a cipher E : K × X → X , we define the strong, pseudorandom per-

mutation (SPRP) advantage as Advsprp
E (A) = Pr

[
K

$←−K : AEK(·),E−1
K

(·) ⇒ 1
]
−

Pr
[
π

$←− Perm (X ) : Aπ(·),π−1(·) ⇒ 1
]
. As above, the PRP advantage is defined

analogously, by dropping the E−1
K oracle from the first probability, and the π−1

oracle from the second. We again assume (without loss of generality) that the
adversary does not make pointless queries.

For all security notions in this paper, we track three adversarial resources: the
time complexity t, the number of oracle queries q, and the total length of these
queries μ. The time complexity of A is defined to include the complexity of its
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enveloping probability experiment (including sampling of keys, oracle computa-
tions, etc.), and we define the parameter t to be the maximum time complexity
of A, taken over both experiments in the advantage measure.3

3 The PIV Construction

We begin by introducing our high-level abstraction, PIV, shown in Figure 1.
Let T = {0, 1}t for some t ≥ 0, and let Y ⊆ {0, 1}∗ be such that if Y ∈ Y,
then {0, 1}|Y | ⊆ Y. Define T ′ = T × Y. Fix an integer N > 0. Let F̃ : K′ ×
T ′ × {0, 1}N → {0, 1}N be a tweakable blockcipher and let Ṽ : K × {0, 1}N ×
Y → Y be a tweakable cipher. From these, we produce a new tweakable cipher
PIV[F̃ , Ṽ ] : (K′ × K) × T × X → X , where X = {0, 1}N × Y. As shown in

Figure 1, the PIV composition of F̃ , Ṽ is a three-round Feistel construction,
working as follows. On input (T,X), let X = XL ‖XR where |XL| = N . First,

create an N -bit string IV = F̃K′(T ‖ XR, XL). Next, use this IV to encipher

XR, creating a string YR = ṼK(IV , XR). Now create an N -bit string YL =

F̃K′(T ‖ YR, IV ), and return YL ‖ YR as the value of PIV[F̃ , Ṽ ]K′,K(T,X). The

inverse PIV[F̃ , Ṽ ]−1
K′,K(T, Y ) is computed in the obvious manner.

At first glance, it seems that nothing interesting has been accomplished: we
took an N -bit TBC and a tweakable cipher, and produced a tweakable cipher
with a slightly larger domain. However, the following theorem statement begins
to surface what our abstraction delivers.

Theorem 1. Let sets T ,Y, T ′,X and integer N be as above. Let F̃ : K′ × T ′ ×
{0, 1}N → {0, 1}N be a tweakable blockcipher, and let Ṽ : K × {0, 1}N × Y → Y
be a tweakable cipher. Let PIV[F̃ , Ṽ ] be as just described. Let A be an adversary
making q < 2N/4 queries totaling μ bits and running in time t. Then there exist
adversaries B and C, making q and 2q queries, respectively, and both running in

O(t) time such that Advs̃prp

PIV[F̃ ,Ṽ ]
(A) ≤ Advs̃rnd

Ṽ
(B)+Advs̃prp

F̃
(C)+ 4q2

2N , where B

is nonce-respecting and whose queries total μ− qN bits in length.

The first thing to notice is that the VIL portion of the PIV composition, Ṽ , need
be SRND-secure against nonce-respecting adversaries only. As we will see in the
next section, it is easy to build efficient schemes meeting this requirement. Only
the FIL portion, F̃ , needs to be secure against STPRP adversaries that can
use arbitrary querying strategies. Thus the PIV composition promotes nonce-
respecting security over a large domain into full STPRP security over a slightly
larger domain.

The intuition for why this should work is made clear by the picture. Namely,
if F̃ is a good STPRP, then if any part of T or X is “fresh”, then the string

3 We do this simply to make our theorem statements easier to read. A more explicit
accounting of time resources in reductions, e.g. separating the running time of A
from the time to run cryptographic objects “locally”, would not significantly alter
any of our results.
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IV should be random. Hence it is unlikely that an IV value is repeated, and
so nonce-respecting security of the VIL component is enough. Likewise when
deciphering, if any part of T, Y is “fresh”.

The term 4q2/2N accounts for collisions in IV and the difference between F̃

and a random function. This is a birthday-bound term in N , the blocksize of F̃ .
Since most TBC designs employ (one or more) underlying blockciphers, we have
deliberately chosen the notation N , rather than n, to stress that the blocksize of
F̃ can be larger than that of some underlying blockcipher upon which it might be
built. Indeed, we’ll see in the next section that, given an n-bit blockcipher (and

a hash function), we can build F̃ with N = 2n. This gives us hope of building
beyond birthday-bound secure VIL STPRPs in a modular fashion; we will do
so, and with relatively efficient constructions, too.

It will come as no surprise that, if one does away with the lower F̃ invocation
and returns IV ‖ YR, the resulting composition does not generically deliver a
secure STPRP. On the other hand, it is secure as a TPRP (just not a strong
TPRP). This can be seen through a straight-forward modification of the PIV
security proof.

4 Concrete Instantiations of PIV

Instantiating a PIV composition requires two objects, a (fixed-input-length)

tweakable blockcipher F̃ with an N -bit blocksize, and a variable-input-length
tweakable cipher Ṽ . In this section we explore various ways to instantiate these
two objects, under the guidance of Theorem 1 and practical concerns.

Theorem 1 suggests setting N to be as large as possible, so that the final term
is vanishingly small for any realistic number of queries. But for this to be useful,
one must already know how to build a TBC F̃ with domain {0, 1}N for a largeN ,

and for which Advs̃prp

F̃
(C) approaches q2/2N . To our knowledge, there are no

efficient constructions that permit Advs̃prp

F̃
(C) to be smaller than O(q3/22n)

when using an n-bit blockcipher as a starting point. (A recent result by Lampe
and Seurin [18] shows how to beat this security bound, but at a substantial
performance cost.) A construction by Coron, et al., which will be discussed in
more detail shortly, does meet this bound4 while providing N = 2n.

So we restrict our attention to building TBC F̃ with small N . In particular,
we follow the common approach of building TBCs out of blockciphers. Letting n
be the blockcipher blocksize, we will consider N = n, and N = 2n. In the former
case, Theorem 1 only promises us security up to roughly q = 2n/2, which is
the birthday bound with respect to the blockcipher. With this security bound
in mind, we can use simple and efficient constructions of both F̃ and the VIL
tweakable cipher Ṽ . On the other hand, when N = 2n, Theorem 1 lets us hope
for security to roughly q = 2n queries. To realize this hope we will need a bit

4 However, nesting this construction to provide a VIL tweakable cipher is prohibitively
inefficient.



Variable-Input-Length Tweakable Ciphers 415

more from both F̃ and Ṽ , but we will still find reasonably efficient constructions
delivering beyond birthday bound security.

In what follows, we will sometimes refer to objects constructed in other works.
These are summarized for convenience in Figure 5, found in Appendix A.

An efficient VIL tweakable cipher. We will start by considering general methods
for constructing the VIL tweakable cipher, Ṽ . Recall that Ṽ need only be secure
against adversaries that never repeat a tweak. In Figure 3, we see an analogue
of conventional counter-mode encryption, but over an n-bit TBC Ẽ instead of a
blockcipher. Within a call (T,X) to TCTR, each n-bit block Xi of the input X is

procedure TCTR[Ẽ]K(T,X):

X1, X2, . . . , Xν
n←X

for i = 1 to ν

Ti ← g(T, i); Zi ← 〈i〉
Yi ← ẼK(Ti, Zi)⊕Xi

Return Y1, Y2, . . . , Yν

procedure TCTR[Ẽ]−1
K (T, Y ):

Y1, Y2 . . . , Yν
n← Y

for i = 1 to ν

Ti ← g(T, i); Zi ← 〈i〉
Xi ← Yi ⊕ ẼK(Ti, Zi)

Return X1, . . . , Xν

Fig. 3. The TCTR VIL tweakable cipher

processed using a per-block tweak Ti, this being determined by a function g : T ′×
N→ T of the input tweak T and the block index i.

Consider the behavior of TCTR when g(T, i) = T . The following result is
easily obtained using standard techniques.

Theorem 2. Let Ẽ : {0, 1}k×T ×{0, 1}n → {0, 1}n be a tweakable blockcipher,

and let TCTR[Ẽ]K and TCTR[Ẽ]−1
K be defined as above, with g(T, i) = T ∈ T .

Let A be a nonce-respecting adversary that runs in time t, and asks q queries,
each of length at most �n bits (so, μ ≤ q�n). Then for some adversary B making

at most q� queries and running in time O(t), Advs̃rnd
TCTR[Ẽ]

(A) ≤ Advp̃rp

Ẽ
(B) +

0.5q�2/2n.

We note that the bound displays birthday-type behavior when � = o(
√
q), and

is tightest when � is a small constant. An important application with small,
constant � is full-disk encryption. Here plaintexts X would typically be 4096
bytes long, so if the underlying TBC has blocksize n = 128, we get � = 256
blocks.5

Extending tweakspaces. In PIV, the TBC F̃ will need to handle long tweaks.
Fortunately, a result by Coron, et al. [11] shows that one can compress tweaks

5 Actually, slightly less than this when used in the PIV composition, since the first N
bits are enciphered by F̃ .
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Fig. 4. The TCT2 construction (top). TCT2 takes τn-bit tweaks, and the input length

is between 2n and �n bits, inclusive. Here, F̃ is implemented using the 2n-bit CDMS
construction coupled with the NH hash function (bottom left). Both Ṽ and the TBC

Ẽ used inside of CDMS are implemented using CLRW2[polyHrn, E] (bottom right),
with r = 6 and r = 2, respectively. The function Pad maps s to s ‖ 10(�+1)n−1−|s|. In
the diagram for CDMS, the strings 00T̃ , 01T̃ , and 10T̃ are padded with 0s to length
5n before being used.

using an ε-AU hash function at the cost of adding a q2ε term to the tweakable
cipher’s TPRP security bound. In particular, we will use (a slight specialization
of) the NH hash, defined by Black, et al. [6]; NH[r, s]L takes r-bit keys (|L| = r),
maps r-bit strings to s-bit strings, and is 2s/2-AU. Please see Table 5 for the
description. Given a TBC Ẽ, ẼNH denotes the resulting TBC, whose tweakspace
is now the domain of NH, rather than its range.

4.1 Targeting Efficiency at Birthday-Type Security: TCT1

Let us begin with the case of N = n. To instantiate the n-bit TBC F̃ in PIV we
refer to the pioneering TBC work of Liskov, Rivest and Wagner [20], from which
we draw the LRW2 TBC; please refer to Figure 5 for a description.

Before we give the TCT1 construction, a few notes. In Figure 5 we see that
in addition to a blockcipher E, LRW2[H,E] uses an ε-AXU2 hash function, H ,
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and so, in theory, it could natively accommodate large tweaks. But for practical
purposes, it will be more efficient to implement LRW2 with a small tweakspace,
and then extend this using a fast ε-AU hash function.6 For the ε-AXU2 hash
function itself, we use the polynomial hash polyH (also described in Table 5).

Now are ready to give our TCT1 construction, which is birthday-bound secure
for applications with small plaintext messages (e.g. FDE).

The TCT1 Construction. Fix k, n > 0, and let N = n. Let E : {0, 1}k×{0, 1}n →
{0, 1}n be a blockcipher, and let polyHmn, and NH be as defined in Table 5. Then

define TCT1 = PIV[F̃ , Ṽ ], where to obtain a τn-bit tweakspace and domain

{0, 1}{n,n+1,...,�n} we set:

1. n-bitTBC F̃ = LRW2[polyH2n, E]NH[(�+τ)n,2n], i.e. LRW2with its tweakspace

extended using NH. The keyspace for F̃ is {0, 1}k × {0, 1}2n × {0, 1}(�+τ)n
,

with key K ′ partitioning into keys for E, polyH2n, and NH[(� + τ)n, 2n].
(Since NH supports only fixed length inputs, we implicitly pad NH inputs
with a 1 and then as many 0s as are required to reach a total length of

(�+ τ)n bits.) The tweakspace for F̃ is {0, 1}{0,1,2,...,(�+τ−1)n}
.

2. VIL tweakable cipher Ṽ = TCTR [LRW2[polyHn, E]] with the TCTR func-

tion g : {0, 1}n×N→ {0, 1}n as g(T, i) = T . The keyspace for Ṽ is {0, 1}k×
{0, 1}n, with key K partitioning into keys for E and polyHn. The tweakspace

for Ṽ is {0, 1}n, and its domain is {0, 1}{0,1,...,(�−1)n}
.

Putting together Theorems 1,2, and results from previous works [6,20], we have
the following security bound.

Theorem 3 (STPRP-security of TCT1). Define TCT1 as above, and let A
be an adversary making q < 2n/4 queries and running in time t. Then there
exist adversaries B and C, both running in time O(t) and making (� − 1)q and

2q queries, respectively, such that Advs̃prp
TCT1[E](A) ≤ Advprp

E (B)+Advsprp
E (C)+

32q2

2n + 4q2(�−1)2

2n .

The proof appears in the full version. This algorithm requires 2k + (3 + τ + �)n

bits of key material, including two keys for Ẽ. As we show at the end of this
section, we can get away with a single key for E with no significant damage
to our security bound, although this improvement is motivated primarily by
performance concerns.

Thus TCT1 retains the security of previous constructions (see Figure 2 for a
visual comparison), uses arithmetic in rings with powers-of-two moduli, rather
than in a finite field. This may potentially improve performance in some archi-
tectures.

6 Indeed, one can show composing an ε-AU hash function with an ε′-AXU2 hash
function yields an (ε + ε′)-AXU2 hash function; however, we prefer to work on a
higher level of abstraction.
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4.2 Aiming for beyond Birthday-Bound Security: TCT2

Now let us consider the PIV composition with N = 2n. For the FIL component,
we can use Coron et al.’s [11] CDMS construction to get a 2n-bit TBC from an n-
bit TBC, and implement the latter using the CLRW2, a recent beyond-birthday-
bound secure construction by Landecker, Shrimpton, and Terashima [19]. Table 5
describes both constructions.7 We again extend the tweakspace using NH. (To

stay above the birthday bound, we set the range of NH to {0, 1}2n). Ultimately,

setting F̃ = CDMS[CLRW2]NH is secure against up to around 22n/3 queries.
CLRW2 also gives us a way to realize a beyond birthday-bound secure VIL

component, namely Ṽ = TCTR[CLRW2[E,H ], at least for � = o(q1/4). (We’ll
see how to avoid this restriction, if desired, in a moment.)

We are now ready to give our second fully concrete PIV composition, TCT2,
targeted at applications that would benefit from beyond birthday-bound secu-
rity. This algorithm requires us to nest four layers of other constructions, so we
provide an illustration in Figure 4. Again we emphasize that the (admittedly

significant) cost of F̃ can be amortized.

TCT2 supports τn-bit tweaks and has domain {0, 1}{2n,2n+1,...,�n}.

The TCT2 Construction. Fix k, �, n, τ > 0, and let N = 2n. Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a blockcipher, and let polyH�n, and NH be as defined in

Table 5. Then define TCT2 = PIV[F̃ , Ṽ ], where:

1. F̃ = CDMS
[
CLRW2[polyH6n, E]

]NH[(�+τ−1)n,4n]
, that is, the 2n-bit TBC

CDMS
[
CLRW2[polyH6n, E]

]
with its tweakspace extended using NH. The

keyspace for F̃ is {0, 1}2k×{0, 1}12n×{0, 1}(�+τ−1)n
, with key K ′ partition-

ing into two keys for E, two keys for polyH6n, and a key for NH[�n, 4n]. The

tweakspace for F̃ is {0, 1}τn.
2. Ṽ = TCTR

[
CLRW2[polyH2n, E]

]
, with the TCTR function g : {0, 1}n ×

N→ {0, 1}n as g(T, i) = T . The keyspace for Ṽ is {0, 1}2k×{0, 1}4n with key
K partitioning into two keys for E and two keys for polyH2n. The tweakspace

for Ṽ is {0, 1}2n, and its domain is {0, 1}{0,1,2,...,(�−2)n}
.

TCT2 requires 4k+(�+τ+15)n bits of key material. Putting together Theorems 1,
5, and results from previous works [6,11,19], we have the following security result.

Theorem 4 (STPRP-security of TCT2). Define TCT2 as above, and let A
be an adversary making q queries and running in time t, where 6q, �q < 22n/4.
Then there exist adversaries B and C, both running in O(t) time and making

(� − 1)q and 6q queries, respectively, such that Advs̃prp
TCT2

(A) ≤ 2Advprp
E (B) +

2Advsprp
E (C) + 12q2

22n + q(�−1)2

2n + 6�3q3

22n−2−�3q3 + 64q3

22n−2−63q3 .

7 We note that for CDMS[Ẽ], we enforce domain separation via Ẽ’s tweak, whereas

the authors of [11] use multiple keys for Ẽ. The proof of our construction follows
easily from that of the original.
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Again, the proof appears in the full version. Some of the constants in this bound
are rather significant. However, as Figure 2 shows, TCT2 nevertheless provides
substantially better security bounds than TCT1 and previous constructions.

4.3 Additional Practical Considerations

Several variations and optimizations on TCT1 and TCT2 are possible. We high-
light a few of them here. None of these changes significantly impact the above
security bounds, unless otherwise noted.

Reducing the number of blockcipher keys. In the case of TCT1, we can use a single
key for both LRW2 instances provided we enforce domain separation through
the tweak. This allows us to use a single key for the underlying blockcipher,
which in some situations may allow for significant implementation benefits (for
example, by allowing a single AES pipeline). One method that accomplishes this
is to replace LRW2[polyH2n, E]NH[(�+1)n,2n] with LRW2[polyH3n, E]f(ε,·) and
LRW2[polyHn, E] with LRW2[polyH3n, E]f(·,ε). Here, f is a 2−n-AU function

with keyspace {0, 1}3n × {0, 1}�n, taking inputs of the form (X, ε) (for some

X ∈ {0, 1}n) or (ε, Y ) (for some Y ∈ {0, 1}{0,1,...,�n}), and outputting a 3n-bit
string. Let fL(X, ε) = 02n ‖ X and fL(ε, Y ) = 1n ‖ NH[(� + 1)n, 2n]L(Y ). The
function f described here is a mathematical convenience to unify the signatures
of the two LRW2 instances, thereby bringing tweak-based domain separation
into scope; in practice, we imagine the two instances would be implemented
independently, save for a shared blockcipher key. We note that TCT2 can be
modified in a similar manner to require only two blockcipher keys.

Performance optimizations. If we need only a tweakable (FIL) blockcipher, we
can use NH[�n, 2n] in place of NH[(�+1)n, 2n] by adjusting our padding scheme
appropriately. We emphasize that in the TCTR portion, the polyH functions
only need to be computed once, since each LRW2 invocation uses the same
tweak. The corresponding optimizations apply to TCT2, as well.

A näıve implementation of TCT2 would make a total 72 finite field multipli-
cations during the two FIL phases (a result of evaluating polyH6n twelve times).
We can cache an intermediate value of the polyH6n hash used inside of CDMS
(four n-bit tweak blocks are constant per invocation), and this saves 32 finite field
multiplications. Precomputing the terms of the polynomial hash corresponding
to the domain-separation constants eliminates 12 more multiplications, leaving
28 in total. Four more are required during the VIL phase, giving the count of 32
reported in Table 1.

Handling large message spaces. Both TCT1 and TCT2 are designed with FDE
applications in mind. In particular, they require � to be fixed ahead of time, and
require more than �n bits of key material.

These limitations are a consequence of using the NH hash function; however,
a simple extension to NH (described by the original authors [6]) accommodates
arbitrarily long strings. Fix a positive integer r and define NH∗

L(M1M2 · · ·Mν) =
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NHL(M1) ‖ NHL(M2) ‖ · · · ‖ NHL(Mν) ‖ 〈|M | mod rn〉, where |Mi| = rn for
i < ν, |Mν | ≤ rn, and NHL abbreviates NHL[rn, 2N ]. Thus defined, NH∗ is
2−N -almost universal, has domain {0, 1}∗, and requires rn bits of key material.
This modification shifts some of the weight to the polyH hash; we now require
eight extra finite field multiplications for each additional rn bits of input. As
long as r > 4, however, we require fewer of these multiplications when compared
to previous hash-ECB-hash or hash-CTR-hash constructions.

With these modifications, the final two terms in TCT1’s security bound (The-
orem 3) would become 8q2/2n + 600q2�2/r22n + 4q2(� − 1)2/2n, where �n is
now the length of the adversary’s longest query, � > 2.5r, and the remaining
terms measure the (S)PRP security of the underlying blockcipher. We also as-
sume 2n ≥ rn, so that |M | mod rn can be encoded within a single n-bit block.
Although the constant of 600 is large, we note that setting r = 16, for exam-
ple, reduces it to a more comfortable size— in this case to less than three. The
bound for TCT2 changes in a similar manner. (Note that if 2n−2 ≥ rn, we can
use a single n-bit block for both the tweak domain-separation constants and
〈|M | mod rn〉.)

Beyond birthday-bound security for long messages. When � is not bounded to
some small or moderate value, TCT2 no longer provides beyond-birthday-bound
security. The problematic term in the security bound is q(�− 1)2/2n. To address
this, we return to TCTR (Figure 3) and consider a different per-block tweak
function.

In particular, g(T, i) = T ‖ 〈i〉. In the nonce-respecting case, the underlying

TBC Ẽ is then retweaked with a never-before-seen value on each message block.
Again, think about what happens when Ẽ is replaced by an ideal cipher Π :
in the nonce-respecting case, every block of plaintext is masked by the output
of a fresh random permutation.8 In other words, every block returned will be
uniformly random. Thus we expect a tight bound, in this case. Formalizing this
logic yields the following theorem.

Theorem 5. Let Ẽ : {0, 1}k×T ×{0, 1}n → {0, 1}n be a tweakable blockcipher,

and let TCTR[Ẽ]K and TCTR[Ẽ]−1
K be defined as above, with g : T ′×N→ T an

arbitrary injective mapping. Let A be a nonce-respecting adversary that runs in
time t, and asks q queries of total length at most μ = σn bits. Then there exists
some adversary B making at most σ queries and running in time O(t) such that

Advs̃rnd
TCTR[Ẽ]

(A) ≤ Advp̃rp

Ẽ
(B).

Consequently, using this variation of TCTR in Theorems 3 and 4 would remove
the q(� − 1)2 term from the bounds, thereby lifting message length concerns.
Note that if this change is made, g(T, i) needs to be computed up to � times per
invocation, rather than just once. This problem may be mitigated by using the
XEX [28] TBC in place of LRW2, which makes incrementing the tweak extremely
fast without significantly changing our security bound.

8 Notice that one could use (say) Zi ← 0n and the same would be true. We present it
as Zi ← 〈i〉 for expositional purposes.
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When the above change are made, TCT1 and TCT2 offer efficient tweakable
ciphers on an unbounded domain, losing security guarantees only after O(2n/2)
(resp., O(22n/3)) bits have been enciphered. Finally, we note that one can use
a conventional blockcipher mode of operation to build the VIL component. We
report on this in the full version.
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A Components for TCT1 and TCT2

LRW2 [20]: Birthday-bound TBC. Needs blockcipher E, ε-AXU2 function H .

LRW2[H,E](K,L)(T,X) = EK(X ⊕HL(T ))⊕HL(T )

CLRW2[19]: TBC with beyond-birthday-bound security. Requires blockcipher E and
ε-AXU2 function H .

CLRW2[H,E](K1,K2,L1,L2)(T,X) =

LRW2[H,E](K2,L2)(T,LRW2[H,E](K1,L1)(T,X))

polyHmn [34]: ε-AXU2 function with domain ({0, 1}n)m and ε = m/2n. All operations
in F2n .

polyHmn
L (T1T2 · · ·Tm) =

m⊕
i=1

Ti ⊗ Li,

NH(νw, 2tw) [6]: ε-AU hash function with ε = 1/2tw . Inputs are νw bits, where ν is
even and w > 0 is fixed.

NH[ν, t]K1 ‖ ··· ‖ Kν+2(t−1)
(M) =

HK1···Kν (M) ‖HK3···Kν+2(M) ‖ · · · ‖HK2t−1···Kν+2t−2(M)

where HK1 ‖ ··· ‖ Kν (X1 · · ·Xν) =
∑ν/2

i=1(K2i−1 +w X2i−1) · (K2i +w X2i) mod 22w .

CDMS [11]: Feistel-like domain extender for TBC Ẽ.

CDMS[Ẽ]K(T,L ‖R) = ẼK(10 ‖ T ‖R′, L′) ‖ R′

where R′ = ẼK(01 ‖ T ‖ L′, R) and L′ = ẼK(00 ‖ T ‖R,L).

Fig. 5. TCT1 and TCT2 use these constructions as components



Parallelizable and Authenticated Online Ciphers

Elena Andreeva1,2, Andrey Bogdanov3, Atul Luykx1,2, Bart Mennink1,2,
Elmar Tischhauser1,2, and Kan Yasuda1,4

1 Department of Electrical Engineering, ESAT/COSIC, KU Leuven, Belgium
2 iMinds, Belgium

3 Department of Mathematics, Technical University of Denmark, Denmark
4 NTT Secure Platform Laboratories, Japan

Abstract. Online ciphers encrypt an arbitrary number of plaintext
blocks and output ciphertext blocks which only depend on the preceding
plaintext blocks. All online ciphers proposed so far are essentially serial,
which significantly limits their performance on parallel architectures such
as modern general-purpose CPUs or dedicated hardware. We propose the
first parallelizable online cipher, COPE. It performs two calls to the un-
derlying block cipher per plaintext block and is fully parallelizable in
both encryption and decryption. COPE is proven secure against chosen-
plaintext attacks assuming the underlying block cipher is a strong PRP.
We then extend COPE to create COPA, the first parallelizable, online
authenticated cipher with nonce-misuse resistance. COPA only requires
two extra block cipher calls to provide integrity. The privacy and integrity
of the scheme is proven secure assuming the underlying block cipher is a
strong PRP. Our implementation with Intel AES-NI on a Sandy Bridge
CPU architecture shows that both COPE and COPA are about 5 times
faster than their closest competition: TC1, TC3, and McOE-G. This high
factor of advantage emphasizes the paramount role of parallelizability on
up-to-date computing platforms.

Keywords: Block cipher, tweakable cipher, online cipher, authenticated
encryption, nonce-misuse resistance, parallelizability, AES.

1 Introduction

Online Ciphers. A cipher which takes input of arbitrary length is said to be
an online cipher if it can output ciphertext blocks as it is receiving the plaintext
blocks. Specifically, the ith ciphertext block should only depend on the key and
the first i plaintext blocks. This desirable functionality known more generally as
online data processing is characteristic for other cryptographic primitives such
as standard encryption schemes like CTR, CBC, OFB, and CFB.

The first theoretical treatment of online ciphers was put forward by Bellare,
Boldyreva, Knudsen, and Namprempre [4]. They introduce the online ciphers
HCBC1 and HCBC2, both of which require the use of two keys, one for the un-
derlying block cipher and the other for the almost-xor-universal hash family [24].
Subsequently, Nandi [21] proposed two more efficient online ciphers MHCBC and

K. Sako and P. Sarkar (Eds.) ASIACRYPT 2013 Part I, LNCS 8269, pp. 424–443, 2013.
c© International Association for Cryptologic Research 2013
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MCBC. MHCBC improves upon HCBC2 by using a smaller hashing key with
a finite field multiplication as universal hash function, whereas MCBC does not
even require a universal hash function, thus needing only one block cipher key
and calling the block cipher twice per plaintext block. Rogaway and Zhang in [27]
recast the formalism of Bellare et al. [4] in terms of tweakable block ciphers [17]
and provide three generalizations of the previous online ciphers: TC1, TC2, and
TC3.

Authenticated Encryption from Online Ciphers. While online authenti-
cated encryption (AE) schemes are not a novelty,1 presently we are aware of only
one family of online and misuse-resistant AE schemes, McOE [11]. McOE makes
use of the online cipher TC3 [27] to build its general structure and adds two calls
to the tweakable cipher to achieve authenticity. To process messages of arbitrary
lengths, McOE applies a tag splitting method, similar to the ciphertext stealing
method [9].

Bellare et al. [4] give a few generic transformations to turn an online cipher
into a secure authenticated encryption scheme.

Problem Statement. All existing online ciphers are highly sequential and
none of them offer any possibility for parallelizing the computation between
distinct block cipher calls. The only exception can be seen in TC1, which allows
parallelization only in decryption but not in encryption. As a consequence, the
McOE AE schemes are not parallelizable either, due to the fact that they are
based on existing online ciphers.

At the same time, in the overwhelming majority of cases in practice, the
underlying cipher is AES which is very well parallelizable on many platforms.
Parallelization is a rather inherent feature of hardware implementations, both
in ASIC and FPGA. Also in general-purpose software, parallelizable encryption
algorithms have profited in terms of performance due to the bitslice approach for
a long time already [6, 14, 18]. However, with the introduction of the hardware
supported AES by Intel in general-purpose x86 CPUs as an instruction set AES-
NI in Intel Westmere, Sandy Bridge, and Ivy Bridge — followed by the AMD
adoption of AES-NI in AMD Bulldozer and Piledriver — the parallelizability
of the AES modes of operation has become of truly paramount importance.
With AES-NI, using a parallelizable mode of operation enables performance
advantages of a factor 3 and higher — see, for instance, the case of the (serial)
CBC encryption vs (parallel) CBC decryption [1].

Our Contributions. We present the first parallelizable online cipher, COPE,
and the first parallelizable online authenticated encryption scheme with nonce-
misuse resistance, COPA.

COPE: Our novel design is illustrated in Fig. 1. To process a single plaintext
block two block cipher calls are required. A secret mask (tweak) is applied

1 Examples of online AE schemes include EAX [5], GCM [19], and OCB1-3 [16,25,26].
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to the plaintext block and used as input to the first block cipher call. Then
the output of the second block cipher call is masked again to produce the
ciphertext block.

By introducing dummy masks, each block cipher call can be viewed as an
instance of the XEX construction [25], which uses the so-called “doubling”
mask generation. Our basic design only deals with message lengths that are a
multiple of the block length. In order to handle messages of arbitrary lengths
we use the technique prescribed in the XLS domain extender by Ristenpart
et al. in [23]. In contrast with previous designs, our scheme only uses a single
key and a single cryptographic primitive, namely a block cipher.

COPE is proven IND-CPA up to the birthday bound of n/2-bit security,
where n denotes the block size of the underlying block cipher.

COPA: We transform COPE to support authentication, while maintaining
parallelizability. The modifications are limited to computing an XOR sum of
the plaintext data and using two extra block cipher calls; these can be seen
in Fig. 2. The scheme also supports associated data in a way similar to how
PMAC1 [25] operates. The privacy and integrity of COPA are proven up to
the birthday bound.

To illustrate the impact of the parallelizability of our online schemes, we imple-
ment them with AES-NI on an Intel Sandy Brigde processor. We systematically
compare the performance we attain with the online ciphers TC1, TC3, and
MCBC as well as the online AE scheme McOE-G when instantiated with the
AES. When compared to these closest online competitors, which are all explic-
itly not parallelizable, our modes provide performance improvements between a
factor of 4.5 and 5, being below 2 cycles per byte on a single core. We expect
almost a linear speed-up when several cores are available.

Organization of the Paper. The remainder of the paper is organized as
follows. We recall the necessary background on block ciphers in Section 2. Section
3 provides the specification of our new parallel modes. Sections 4 and 5 deal with
the security proofs. Section 6 gives AES-NI implementations of our modes along
with a systematic comparison to the state-of-the-art schemes. We conclude in
Section 7.

2 Preliminaries

2.1 Block Ciphers

A block cipher E : K × {0, 1}n → {0, 1}n is a function that takes as input
a key k ∈ K and a plaintext M ∈ {0, 1}n, and produces a ciphertext C =
E(k,M). We sometimes write Ek(·) = E(k, ·). For a fixed key k, a block cipher
is a permutation on n bits, and we denote the inverse permutation (decryption
function) by E−1

k .

Let Perm(n) be the set of all permutations on n bits. When writing x
$← X

for some finite set X we mean that x is sampled uniformly from X . We write
Pr

[
A

∣∣ B]
to denote the probability of event A given B.



Parallelizable and Authenticated Online Ciphers 427

Definition 1. Let E be a block cipher. The prp±1 advantage of a distinguisher
D is defined as

Advprp±1
E (D) =

∣∣∣∣Prk [
DEk,E

−1
k = 1

]
− Pr

π

[
Dπ,π−1

= 1
]∣∣∣∣ .

Here, D is a distinguisher with oracle access to either (Ek, E
−1
k ) or (π, π−1).

The probabilities are taken over k
$← K, π

$← Perm(n) and random coins of D,
if any. By Advprp±1

E (t, q) we denote the maximum advantage taken over all
distinguishers that run in time t and make q queries.

We shall also write E±1
k for (Ek, E

−1
k ). Similarly, π±1 means (π, π−1), and so

on.

2.2 Binary Fields

The set {0, 1}n of bit strings can be considered as the finite field GF(2n) consist-
ing of 2n elements. To do this, we represent an element of GF(2n) as a polynomial
over the field GF(2) of degree less than n. A string an−1an−2 · · · a1a0 ∈ {0, 1}n
corresponds to the polynomial an−1x

n−1+ an−2x
n−2+ · · ·+ a1x+ a0 ∈ GF(2n).

The addition in the field is just the addition of polynomials over GF(2) (that
is, bitwise XOR, denoted by ⊕). To define multiplication in the field, we fix
an irreducible polynomial f(x) of degree n over the field GF(2). Given two
elements a(x), b(x) ∈ GF(2n), their product is defined as a(x)b(x) mod f(x)—
polynomial multiplication over the field GF(2) reduced modulo f(x). We simply
write a(x)b(x) and a(x) · b(x) to mean the product in the field GF(2n).

The set {0, 1}n can be also regarded as a set of integers ranging from 0
through 2n − 1. A string an−1an−2 · · · a1a0 ∈ {0, 1}n corresponds to the in-
teger an−12

n−1+an−22
n−2+ · · ·+a12+a0 ∈ [0, 2n−1]. We often write elements

of GF(2n) as integers, based on these conversions. So, for example, “2” means x,
“3” means x+1, and “7” means x2 + x+1. When we write multiplications such
as 2 · 3 and 72, we mean those in the field GF(2n).

2.3 XE and XEX Constructions of Tweakable Ciphers

Given a block cipher E : K × {0, 1}n → {0, 1}n and a secret mask Δ ∈ {0, 1}n,
the ciphers

E′
k,Δ(x)

def
= Ek(x⊕Δ) or E′

k,Δ(x)
def
= Ek(x ⊕Δ)⊕Δ

behave like another block cipher independent of Ek (up to some bound). In
the case of E′

k,Δ, adversaries are allowed to make only forward queries, whereas

E′
k,Δ accepts both encryption and decryption queries. Now consider a set of

secret masks {Δi}i∈T , where Δi and Δj may not be necessarily independent.
An index i ∈ T is called a tweak, which is not secret. We obtain a tweakable

cipher Ẽ : K × T × {0, 1}n → {0, 1}n by defining Ẽk,i
def
= E′

k,Δi
, and similarly

Ẽk,i. We consider Ẽk,i and Ẽk,j together, where i ∈ T0, j ∈ T1 and T0 ∩T1 = ∅.
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Definition 2. Let Ẽ, Ẽ be tweakable ciphers. The twk advantage of a distin-
guisher D is defined as

Advtwk
Ẽ,Ẽ

(D) =
∣∣∣Pr
k

[
DẼk,i,Ẽ

±1

k,j = 1
]
− Pr

πi,πj

[
Dπi,π

±1
j = 1

]∣∣∣ .
Here, D is a distinguisher with oracle access to a series of permutations. The
tweaks run over i ∈ T0 and j ∈ T1 where T0 ∩ T1 = ∅. By Advtwk

Ẽ,Ẽ
(t, q) we

denote the maximum advantage taken over all distinguishers that run in time t
and make q queries in total.

The doubling method [25] enables us to produce many different values of the

mask Δ from just one secret value L
def
= Ek(0). Namely, the masks are pro-

duced as Δ = 2α3β7γL for varying indices of α, β and γ. To do this, we need to
choose our irreducible polynomial f(x) carefully. First, f(x) needs to be primi-
tive, meaning that 2 generates the whole multiplicative group. Second, we make
sure that log2 3 and log2 7 are both “huge.” Third, we check if log2 3 and log2 7
are “apart enough” (modulo 2n− 1). We impose these conditions to ensure that
values 2α3β7γ do not collide or become equal to 1. For example, when n = 128,
the irreducible polynomial f(x) = x128 + x7 + x2 + x+ 1 satisfies these require-
ments, making values 2α3β7γ all distinct and not equal to 1 for α ∈ [−2108, 2108]
and β, γ ∈ [−27, 27] [25], except for (α, β, γ) = (0, 0, 0). So we obtain tweakable

ciphers Ẽk,αβγ and Ẽk,αβγ .

Lemma 1 (XE and XEX [25]). Let T0, T1 = {(α, β, γ)} be two sets of integer
triples such that 2α3β7γ are all distinct and not equal to 1, in particular T0∩T1 =

∅. Then the permutations {Ẽk,αβγ

}
T0
∪

{
Ẽ

±1

k,αβγ

}
T1

are indistinguishable from

independently random permutations
{
παβγ

}
T0
∪
{
π±1
αβγ

}
T1
. Specifically, for given

t, q, there exists a t′ ≈ t such that

Advtwk
Ẽ,Ẽ

(t, q) ≤ 9.5q2

2n
+Advprp±1

E (t′, 2q).

3 COPE and COPA: Design and Specification

We define COPE and COPA. COPE is an online cipher secure against chosen
plaintext attacks. COPE makes two calls to the underlying block cipher per
message block. COPA is an authenticated online cipher that builds on COPE.
The additional cost of producing a tag is kept minimal—a message checksum
and two extra block cipher calls. COPA accepts associated data input.

In this section we assume that the message length is a positive multiple of n.
The length of associated data can be fractional. In App. A we show how to handle
fractional messages with COPE and COPA. At the end of this section we give
the design rationale for our constructions, explaining our choice of operations.
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Fig. 1. Online cipher COPE. Set V
def
= 0 for COPE. Variable S will be used later by

COPA.

3.1 COPE Definition

Let E : K× {0, 1}n → {0, 1}n be an n-bit block cipher, and denote L
def
= Ek(0).

The encryption and decryption procedures of the COPE online cipher on a
messageM [1]M [2] · · ·M [d] of d n-bit blocks and on a ciphertext C[1]C[2] · · ·C[d]
are then defined as:

COPE-Encrypt E [E]:
V [0]← L,Δ0 ← 3L,Δ1 ← 2L
for i = 1, . . . , d do

V [i]← Ek

(
M [i]⊕Δ0

)
⊕ V [i− 1]

C[i]← Ek

(
V [i]

)
⊕Δ1

Δ0 ← 2Δ0, Δ1 ← 2Δ1

end for

COPE-Decrypt E−1[E]:
V [0]← L,Δ0 ← 3L,Δ1 ← 2L
for i = 1, . . . , d do

V [i]← E−1
k

(
C[i]⊕Δ1

)
M [i]← E−1

k

(
V [i]⊕ V [i− 1]

)
⊕Δ0

Δ0 ← 2Δ0, Δ1 ← 2Δ1

end for

The encryption operation is illustrated in Fig. 1.

3.2 COPA Definition

The core of the authenticated online cipher COPA is identical to COPE. The
only differences are that first, an authentication tag T is generated after the
COPE cipher invocation, and second, that associated data (if any) is processed
before the cipher iteration to produce a value V that is XOR-ed into the first
intermediate block chaining (see Fig. 1): V [0]← V ⊕L. If there is no associated

data, then we set V
def
= 0.

The tag T is computed by keeping a XOR checksum of the message blocks

Σ
def
= M [1]⊕ · · · ⊕M [d] and computing

T ← Ek

(
Ek(Σ ⊕ 2d−132L)⊕ S

)
⊕ 2d−17L,
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(a) Tag generation (b) Processing of associated data

Fig. 2. Authenticated online cipher COPA: tag generation and processing of associated
data

with S
def
= V [d] denoting the last intermediate value in COPE’s block chaining, as

in Fig. 1. The tag computation is illustrated in Fig. 2a. The value V is generated
as follows: any associated data A[1], . . . , A[a] is padded (if not a multiple of n
bits) by a one and as many zeroes as necessary to obtain a multiple of the
block size n. These blocks are then processed by a PMAC1-like [25] iteration as
illustrated in Fig. 2b. Here, the block “A[a]10∗” replaces the block “A[a]” if A[a]
itself is not n bits. Tag verification occurs by checking if

S ⊕ Ek(Σ ⊕ 2d−132L) = E−1
k (T ⊕ 2d−17L),

where the tag is rejected if the equality is not true.

3.3 COPE and COPA for Arbitrary-Length Messages

We explain how to extend our schemes to accept “fractional” messages M in
App. A. Here the length |M | is not necessarily a positive multiple of the block
size n. Note that simply using 10∗ padding to M would result in ciphertext
expansion. The methods described in App. A avoid such expansion with minimal
loss of efficiency.

3.4 Design Rationale

One could combine universal hashing with a block cipher to design an AE scheme.
Indeed, McOE-G [11] follows this approach. However, we decided to avoid the use
of universal hashing, for three reasons. First, the use of universal hashing would
result in additional implementation cost, in particular with hardware. Second,
recent study shows that there is an issue of weak keys with polynomial-based
hashing [22]. Third, on the latest Intel CPUs, one call of AES is faster than
one multiplication over the finite field GF(2128), which is an operation used for
polynomial-based hashing.
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There has been discussion of whether one should use the doubling method
or Gray code to produce tweak masks. We decided to use doubling, for three
reasons. First, doubling provides us with the framework of XE and XEX con-
structions, which makes our constructions and proofs simple and easy to ana-
lyze. Neither our constructions nor our proofs can be directly translated into a
Gray code version, as it is not immediately clear which masks we should use for
the construction to make the proof work. Second, although it was reported that
Gray code performs better than doubling on Intel CPUs [16], recent study shows
that the doubling method can be implemented equally efficiently [3]. Third, the
speedup of Gray code mask generation requires precomputation and memory,
whereas doubling does not.

4 Privacy of COPE

4.1 Security Definition of Online Ciphers

We use the security definition of online ciphers from Rogaway and Zhang [27].
Let ({0, 1}n)+ denote the set of strings whose length is a positive multiple of n
bits and is at most 2n · n bits. An online cipher E : K× ({0, 1}n)+ → ({0, 1}n)+
is a function such that it is a permutation on every block of n bits, having
the additional feature that the outputs are the same for a common prefix. In
other words, the first |M | bits of Ek

(
M‖N

)
and Ek

(
M‖N ′) are the same for any

M,N,N ′ ∈ ({0, 1}n)+. So an online cipher Ek yields a permutation of i-th blocks,
where the permutation is determined by the prefix (i.e. the first i − 1 blocks).
Let OPerm(n) be the set of all such permutations π : ({0, 1}n)+ → ({0, 1}n)+.
Definition 3. Let E be an online cipher. The IND-CPA advantage of a distin-
guisher D is defined as

Advcpa
E (D) =

∣∣∣∣Prk [
DEk = 1

]
− Pr

π

[
Dπ = 1

]∣∣∣∣ .

Here, D is a distinguisher with oracle access to either Ek or π. The probabilities

are taken over k
$← K, π

$← OPerm(n) and random coins of D, if any. By
Advcpa

E (t, q, σ, �) we denote the maximum advantage taken over all distinguishers
that run in time t and make q queries, each of length at most � blocks, and of
total length at most σ blocks.

4.2 IND-CPA Proof Sketch

This section gives a sketch of the proof showing that COPE is secure against
chosen-plaintext attacks with respect to privacy (IND-CPA). The details of the
proof can be found in the full paper [2].

Theorem 1. Let E [E] denote COPE, where E is the underlying block cipher.
We have

Advcpa
E[E](t, q, σ, �) ≤

38σ2

2n
+Advprp±1

E (t′, 4σ) +
(� + 1)(q − 1)2

2n
,

where t′ ≈ t.
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Fig. 3. IND-CPA proofs of COPE: introducing dummy masks rewriting the scheme in
terms of XEX

The proof consists of two steps. First, we rewrite COPE in terms of XEX
constructions.2 We introduce dummy masks to the state values, as shown in
Fig. 3. The block cipher calls in the upper layer are now Ẽk,α−1,1,0 and those

in the lower layer Ẽk,α,0,0. Note that the “L” initially XORed to the state now
disappears. We use Lem. 1 to replace the block cipher calls in the upper layer
with random permutations πα−1,1,0 and those in the lower layer with πα,0,0 (for
α = 1, 2, . . .). Such a replacement costs us

9.5 · (2σ)2
2n

+Advprp±1
E (t′, 2 · 2σ) = 38σ2

2n
+Advprp±1

E (t′, 4σ).

We write E [π] to denote the COPE scheme making calls to independent random
permutations παβγ rather than to a block cipher.

Second, we show that E [π] behaves exactly the same as the ideal functionality,
as long as collisions of state values do not occur. Define variables V [α] of state

values as V [α]
def
=

⊕α
i=1 πi−1,1,0

(
M [i]

)
which is also equal to π−1

α,0,0

(
C[α]

)
.

We look for collisions of these variables. Here by a “collision” roughly we mean
the same value of V [α] coming from different prefixes M [1]M [2] · · ·M [α] and
M ′[1]M ′[2] · · ·M ′[α], for some α. More precisely, we have a collision of V [α] =
V ′[α] if we have V [α− 1] �= V ′[α− 1] and V [α] = V ′[α], which implies we must
have M [α] �= M ′[α] and also M [i] �= M ′[i] for some i < α. Let C denote the
event that a collision of V [α] occurs for some α.

Claim. Unless C occurs, E [π] is indistinguishable from the ideal functionality.
Furthermore, we have Pr

[
DE[π] sets C

]
≤ (�+ 1)/2n.

2 The reason why our IND-CPA COPE is based on XEX constructions, and not
on XEs, is because our COPA, which gives decryption oracle access to adversaries,
builds upon COPE.
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5 Privacy and Integrity of COPA

5.1 Security Definition of Authenticated Online Ciphers

Also for authenticated online ciphers, we use the IND-CPA security advantage
of Def. 3, except that the ideal encryption oracle now has an additional random
function that maps {0, 1}∗×({0, 1}n)+ to {0, 1}n, corresponding to (A,M) �→ T .

We use the notion of integrity of authenticated encryption schemes from Fleis-
chmann et al. [11]. By ⊥, we denote a function that returns ⊥ on every input.

Definition 4. Let E be an online cipher. The integrity advantage of a distin-
guisher D is defined as

Advint
E (D) =

∣∣∣∣Prk [
DE±1

k = 1
]
− Pr

k

[
DEk,⊥ = 1

]∣∣∣∣ .

Here, D is a distinguisher with oracle access to either (Ek, E−1
k ) or (Ek,⊥). To

avoid a trivial win, we assume that the distinguisher does not make a query
(A,C, T ) if it has made a query (A,M) to the encryption oracle and obtained
(C, T ) from the oracle. By Advint

E (t, q, σ, �) we denote the maximum advantage
taken over all distinguishers that run in time t and make q queries, each of length
at most � blocks, and of total length at most σ blocks.

5.2 Privacy of COPA

We now give a proof sketch of the IND-CPA security of COPA. The details can
be found in the full paper [2].

Theorem 2. Let E [E] denote COPA, where E is the underlying block cipher.
We have

Advcpa
E[E](t, q, σ, �) ≤

39(σ + q)2

2n
+Advprp±1

E (t′, 4(σ + q)) +
(�+ 2)(q − 1)2

2n
,

where t′ ≈ t.

The IND-CPA security analysis of COPE carries over, with only minor modifi-
cations. First, we introduce dummy masks in a similar way (to the encryption
part), and replace all XE (in the associated-data part) and XEX constructions
by random permutations. This replacement costs us

9.5 · (2σ + 2q)2

2n
+Advprp±1

E (t′, 2·2(σ+q)) =
38(σ + q)2

2n
+Advprp±1

E (t′, 4(σ+q)).

Write E [π,π] to denote the COPA scheme calling random permutations instead
of a block cipher.

Next, we again use the collision event C, but introduce two more events. One
is A, which is the event that we have a collision of V for two different associated
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data. Recall that for A = ∅, we have V = 0. The other is T, which is the event
that we have a collision of tag values for messages of the same length (or more
precisely, a collision of input values to a random permutation that produces
tags).

Claim. Unless A∨C∨T occurs, E [π,π] is indistinguishable from the ideal func-
tionality.

Lemma 2 (PMAC1, [25]). The function H [π] : {0, 1}∗ → {0, 1}n (A �→ V ) is
indistinguishable from a random function Φ : {0, 1}∗ → {0, 1}n. Specifically, the
distinguishing advantage (defined accordingly, only forward queries) is at most
σ2/2n. Here, {0, 1}∗ denotes the set of strings whose length is at most 2n ·n bits.

So now we replace XE and XEX constructions with random permutations and
H [π] with a random function Φ. Denote the scheme by E [Φ,π]. Then we have
the following.

Claim. We have Pr
[
DE[Φ,π] sets A

]
≤ q2/2n and Pr

[
DE[Φ,π] sets C∨T

∣∣ ¬A]
≤

(�+ 2)(q − 1)2/2n.

5.3 Integrity of COPA

The integrity proof of COPA is more involved than the privacy proofs and we
include the full proof in this paper. We prove the following theorem:

Theorem 3. Let E [E] denote COPA, where E is the underlying block cipher.
We have

Advint
E[E](t, q, σ, �) ≤

39(σ + q)2

2n
+Advprp±1

E (t′, 4(σ+ q))+
(�+ 2)(q − 1)2

2n
+

2q

2n
,

where t′ ≈ t.

Let F denote the event that the decryption oracle E−1
k returns something other

than ⊥. Clearly the two games are the same as long as the event F does not
occur, so we have

Pr
[
DE±1

k = 1
]
− Pr

[
DEk,⊥ = 1

]
≤ Pr

[
DE±1

k sets F
]
.

In the rest of this section we shall bound this probability. First, as usual, we
replace block cipher calls with random permutations π,π. Then we replace the
PMAC1 part of processing associated data with a random function Φ. These all
together cost us (cf. the proof of Thm. 2)

38(σ + q)2

2n
+

σ2

2n
+Advprp±1

E (t′, 4(σ + q)).
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Removing “Privacy Part”. Define events A, C and T as we have done in
the privacy proof of Thm. 2. Note that these events are defined in terms of

variables V [α], where we also define V [0]
def
= V and V ′[α+ 1] the input value to

the block cipher that produces a tag. We define these values as being set only by
the queries to the encryption oracle E . We do not let queries to the decryption
oracle E−1 affect variables V [·], V ′[·], whether or not it returns a message or ⊥.
Set E

def
= A ∨ C ∨T.

Next we define similar events A′, C′ and T′. These are exactly the same as
the previous ones, except that now we consider only those events (i.e. collisions
of V [·] or V ′[·]) that occur prior to a forgery (that is, under the condition ¬F).
Again, set E′ def

= A′ ∨ C′ ∨ T′.
When we consider event F, we would like to assume that we are under the

condition ¬E′, meaning that the encryption oracle E has behaved ideally so far
(till forgery). To do this, we use the inequality

Pr
[
DE±1[Φ,π] sets F

]
≤ Pr

[
DE±1[Φ,π] sets F

∣∣ ¬E′]+ Pr
[
DE±1[Φ,π] sets E′].

We shall construct a distinguisher D′ that breaks the privacy of the encryption
oracle E . The distinguisher D′ uses D, and the query complexity of D′ is at
most that of D. Specifically, D′ starts running D, answering E-queries using its
E oracle, and whenever D makes a query to the decryption oracle E−1, D′ replies
with a ⊥.
Claim. We have Pr

[
DE±1[Φ,π] sets E′] ≤ q2/2n + (� + 2)(q − 1)2/2n.

Proof. Note that ifDE±1

sets E′, then till this eventD′ simulates the environment
of D correctly. Hence we get Pr

[
DE±1

sets E′] ≤ Pr
[
D′E sets E

]
, which is less

than q2/2n + (�+ 2)(q − 1)2/2n as shown in the privacy proof. ��

Passing to a Single-Query Adversary. So it remains to evaluate the prob-
ability that D sets F under the condition ¬E′. We shall construct a forger D1

from D. The forger D1 makes multiple queries to the encryption oracle E but
makes only one query to the decryption oracle E−1 at the end of its run. We
define D1 as follows: it chooses a random index i ∈ [1, q]. It then runs D, an-
swering its E-queries using the E oracle of D1 and answering the queries to the
decryption oracle E−1 with ⊥. When D makes the i-th query (A�, C�, T �) to
the decryption oracle, D1 outputs the query (A�, C�, T �) and stops (or more
precisely, makes that query to the decryption oracle E−1 and stops.)

Claim. We have Pr
[
DE±1[Φ,π] sets F

∣∣ ¬E′] ≤ q Pr
[
DE±1[Φ,π]

1 sets F
∣∣ ¬E′].

Proof. Let Fh denote the event that at the h-th query the decryption oracle E−1

returns something other than ⊥ for the first time; that is, the oracle has returned
only ⊥ so far. Clearly these are disjoint events, and we have F =

∨q
h=1 Fh. Then,

under the events ¬E′ and i = h, the forger D1 correctly simulates the game of D.
Therefore, we get Pr

[
DE±1

1 sets F
∣∣ ¬E′] ≥ Pr

[
(i = h) ∧ DE±1

sets F
∣∣ ¬E′] ≥

(1/q) Pr
[
DE±1

sets F
∣∣ ¬E′]. ��
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Evaluating Forgery Probabilities. Let (A�, C�, T �) denote the (non-trivial)
query made by D1 to the decryption oracle E−1[Φ,π]. We shall evaluate the
probability that this would make E−1 return something other than⊥. To evaluate
the probability, we shall consider the following cases.

Lemma 3 (Case 1). If A� or T � is new, or C� contains a new block, then the
probability of a forgery is at most 2/2n.

Proof. If A� is new, then it means that it triggers the random function Φ and
yields a fresh random value V ← Φ(A�). This value is XORed to the value that
is input to the block cipher to produce the tag, which must be equal to T �. All
other values XORed to the value are independent of V . Hence, regardless of the
values C�, T �, the probability of such an event is at most 1/2n.

Say that A� is not new, but that C� contains a new block. Let C�[α] be one
of the new blocks. The decryption invokes π−1

α,0,0

(
C�[α]

)
, which is sampled from

the set of at least 2n−q points. Therefore, the probability of a forgery is at most
1/(2n − q) ≤ 2/2n, assuming q ≤ 2n−1.

Say that A� is not new, C� does not contains a new block, but T � is new. This
is similar to the previous case. This would trigger a fresh point of π−1

d�−1,0,1(T
�),

where d� denotes the number of blocks in the message M�. The point is sampled
from the set of at least 2n − q points. Therefore, the probability of a forgery is
at most 1/(2n − q) ≤ 2/2n. ��

Lemma 4 (Case 2). If A� and T � are old, and C� consists of old blocks, then
the probability of a forgery is at most 2/2n.

Proof. Tohandle this case,we introduce some notation. For the query (A�, C�, T �)
in question, divide C� into blocks as C�[1]C�[2] · · ·C�[d�] ← C� and define

C�[0]
def
= A� and C�[d� + 1]

def
= T . We then focus on a pair of adjacent “blocks”(

C�[α − 1], C�[α]
)
for α = 1, 2, . . . , d� + 1. We call a pair old if it (as a pair)

has already appeared in some previous query made to the encryption oracle E
and in the corresponding value returned by the oracle. That is, if D has made
a query (A′,M ′) to the oracle and got (C′, T ′) back, then we check if the pair
in question

(
C�[α − 1], C�[α]

)
is contained in (A′, C′, T ′)—that is, we check if(

C�[α−1], C�[α]
)
=

(
C′[α−1], C′[α]

)
holds, whereC′[0] andC′[d′+1] are defined

similarly. We do this for all previous queries. We call the pair
(
C�[α − 1], C�[α]

)
new otherwise.

Note that the query (A�, C�, T �) always contains a new pair. If (A�, C�, T �)
contains no new pairs, then, given the non-triviality of the query, we must have
observed a collision, contradicting the assumption ¬E′.

We now make a distinction among new pairs
(
C�[α− 1], C�[α]

)
based on the

decrypted message block M�[α] from the two adjacent ciphertext blocks. We say
that a pair is collapsing if there exists a previous query (A′,M ′) made by D to
the encryption oracle E such that M ′[α] = M�[α].

There exists a new pair
(
C�[α − 1], C�[α]

)
that is not collapsing. This case

means that we trigger a random sampling of π−1
α,1,0 to compute M�[α]. Then,

note that the value Σ� = M�[1] ⊕ M�[2] ⊕ · · · ⊕ M�[d�] is already uniquely
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determined by the values C�[d�] and T � (via Fig. 2a). There are at least 2n − q
possible values for M�[α], and the message blocks must sum up to this particular
value Σ�, which happens with a probability at most 1/(2n − q) ≤ 2/2n.

All new pairs in (A�, C�, T �) are collapsing. This final case is quite different
from the previous ones above, as we do not have any fresh sampling of permu-
tations π±1

α,β,γ or the random function Φ in evaluating E−1[Φ,π](A�, C�, T �). To
tackle this case, we shall convert this forgery game into one where the adver-
sary D◦ tries to find multiple collisions by outputting the following set of values,
without making any query to the oracles:

1. r ∈ [1, �],
2. 1 ≤ α1 < α2 < · · · < αr ≤ �+ 1,
3. (A1,M1), (A2,M2), . . ., (Ar,Mr), and
4. (A′

1,M
′
1), (A

′
2,M

′
2), . . ., (A

′
r,M

′
r).

The adversary D◦ “wins” if the submitted values form a multi-collision in the
following sense: (Ai,Mi) and (A′

i,M
′
i) collides at the αi-th block, for all i ∈ [1, r].

The adversary D◦ runs D1, simulating the E oracle with an ideal functionality.
Note that this simulation is correct under the condition ¬E′. When D1 outputs
(A�, C�, T �), D◦ first checks for new pairs contained in it. Let 1 ≤ α1 < α2 <
· · · < αr ≤ � + 1 be the positions of new pairs. Then D◦ checks the history of
values (C, T ) that it returned. Note that under ¬E′, a block C�[α] determines a
unique prefix AM . We choose (Ai,Mi) to be the prefix determined by C�[αi].
To choose (A′

i,M
′
i), let A′

iM
′′ be the prefix determined by C�[αi − 1]. Then D◦

chooses randomly, from the previously queried values, a message block M [α] �=
Mi[α]. Set M ′

i
def
= M ′′M [α]. The adversary D◦ does this for i = 1, 2, . . . except

for the last block.

– If αr < d� + 1, then we know the message checksum Σ� = M�[1] ⊕ · · · ⊕
M�[d�], so D◦ does not have to guess the value of M ′

αr
[αr].

– If αr = d� + 1, then we simply set the last input value to be the checksum
of all previous (guessed) message blocks.

Now we observe that as long as all the guesses of the message blocks are correct,
D◦ wins if D1 succeeds in forgery of this type. It should be noted that the values
returned by E are independent of the success probabilities in question, under the
event ¬E′. Therefore, for a fixed r,

Pr
[
D◦ wins

∣∣ r] ≥ 1

q − 1
· · · · · 1

q − 1
Pr

[
D1 forges

∣∣ r] = 1

(q − 1)r−1
Pr

[
D1 forges

∣∣ r].
We then calculate Pr

[
D◦ wins

∣∣ r]. We do this by lazy sampling of the permu-
tations, and we see that, for a fixed r,

Pr
[
D◦ wins

∣∣ r] ≤ 1

2n − 1
· 1

2n − 1
· · · · · 1

2n − 1
=

1

(2n − 1)r
.

Hence by varying r we get in total

Pr
[
D1 forges

]
≤

�∑
i=1

(q − 1)i−1

(2n − 1)i
Pr[i = r] ≤ 1

(2n − 1)

�∑
i=1

Pr[i = r] =
1

(2n − 1)
.
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6 Efficient Parallel Implementation

6.1 The Setting

We compare our schemes to some prominent existing online ciphers: TC1 and
TC3 [27] being the most efficient previous schemes; and MCBC [21] as a repre-
sentative for a scheme relying only on block cipher invocations (as opposed to
tweakable block ciphers or universal hashing). The modes HCBC1 and MHCBC
are implicitly covered by TC1 and TC3, and HCBC2 has a performance inferior
to TC3.

For the case of authenticated online ciphers, we exclude modes of operation
and dedicated designs that are based on a nonce and rely on its non-reuse (e.g.,
GCM [19], OCB [16], ALE [7], and AEGIS [28]). Therefore, we compare our
COPA design to the McOE family of authenticated encryption algorithms [11],
which, to the best of our knowledge, is the only other online scheme not relying
on the non-reuse of a nonce. We focus on the McOE-G instance, since McOE-X
itself is not secure [20], featuring a key recovery with birthday complexity.

For the concrete instantiation of all schemes, we use the AES-128 [10] as
the underlying block cipher, and multiplication in GF(2128) as an almost XOR-
universal hash function [15]. As target platform for the implementations, we
chose the recent generation of Intel microprocessors (Westmere or later) which
support the AES-NI instruction set [12] and carryless multiplication [13].

6.2 Implementation Characteristics of COPE and COPA

The online modes proposed in this paper can utilize parallelized execution of
block cipher calls in two ways: for messages longer than one block, the encryp-
tions of subsequent message blocks can be carried out independently of each
other once the respective masks have been XORed. The same holds for the sec-
ond series of block cipher calls, once the chaining XORs have been executed.

This parallelism can be exploited in a single-core scenario by pipelining the
block cipher rounds for several consecutive block cipher invocations. Similarly,
these invocations can be processed independently by multiple threads, with the
recombination being the computation of the chaining. Note that both scenar-
ios can be combined when multiple cores with pipelined block cipher calls are
available, which is typically the case for Intel’s AES-NI architecture.

On the recent Sandy and Ivy Bridge platforms, the AES round function can be
computed at a latency of 8 cycles with a throughput of 1 cycle. Consequently,
to fully utilize the pipeline, our implementation issues 8 AES round function
evaluations on the next 8 consecutive blocks (independent data and same key).
The tweak masks are computed using dedicated multiplication routines for 2α,
3β and 7γ ∈ GF(2128). By contrast, the general GF(2128) multiplication needed
for TC1, TC3, and McOE-G is implemented using the PCLMULQDQ carryless mul-
tiplication instruction followed by modular reduction.
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Table 1. Software performance of (authenticated) online ciphers based on the AES on
the Intel Sandy Bridge platform (AES-NI). All numbers are given in cycles per byte
(cpb).

message length (bytes)

Algorithm 128 256 512 1024 2048 4096 8192

CTR 1.74 1.27 1.05 0.93 0.86 0.83 0.82
TC1 9.00 8.75 8.65 8.60 8.56 8.56 8.56
TC3 9.08 8.82 8.72 8.67 8.63 8.63 8.62
MCBC 11.66 11.00 10.68 10.52 10.44 10.40 10.38
COPE 2.56 2.08 1.89 1.78 1.72 1.70 1.69

McOE-G 10.85 9.73 9.14 8.90 8.74 8.69 8.66
COPA 3.78 2.85 2.31 2.06 1.94 1.88 1.85

6.3 Performance Measurements

We provide performance data for the (authenticated) encryption of messages of
length 16 · 2b bytes, with 3 ≤ b ≤ 10. The performance of AES-CTR is provided
as a reference point. All measurements were taken on a single core of an Intel
Core i5-2520M CPU at 2500 MHz, averaged over 5 · 105 repetitions, processing
one message at a time. Our findings are summarized in Table 1. All numbers are
given in cycles per byte (cpb).

One can observe that for all message lengths, the parallelizability of the pro-
posed schemes results in speed-ups of factor 4.5−5 in comparison to the existing
modes, at least for somewhat longer messages. By fully utilizing the pipeline,
our schemes are only marginally slower than two times AES-CTR, which implies
that the overhead imposed by the computation of the masks and the chaining is
kept at a minimum. The authenticated mode COPA carries the additional over-
head of two more AES calls plus field arithmetic for finalization, but this quickly
becomes insignificant as the message length increases. Note, however, that some
constant overhead in comparison to the unauthenticated mode remains even for
very long messages: this can be attributed to the fact that the computation of
the checksum does not allow overwriting the message blocks, leading to increased
register pressure. We also note that with the availability of carryless multiplica-
tion, TC1 and TC3 can be implemented more efficiently than the purely block
cipher-based MCBC which was created with the goal to improve performance
by avoiding field arithmetic.

The performance of our parallelizable schemes COPE and COPA can be fur-
ther improved by utilizing multiple cores. Our implementation of multithreaded
encryption confirms the intuition that one can expect a nearly linear speedup
when using multiple cores for computing our schemes (i.e., the cost is < 1 cpb
for two cores and so on).
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7 Conclusion

By presenting COPE, our work provides the first solution for a parallelizable
online cipher. Building on COPE, we go on to construct COPA, the first paral-
lelizable and nonce-misuse resistant online authenticated encryption scheme. Our
implementations of COPE and COPA with Intel AES-NI on a Sandy Bridge pro-
cessor architecture benefit strongly from the parallelism, which gives us speed-
ups of about factor 5 in comparison to existing (serial) online ciphers TC1, TC3,
MCBC and the online AE scheme McOE-G.

Our designs additionally employ only a single key and use only a block cipher
as a building block—as opposed to tweakable block ciphers or universal hash
functions. We prove that our cipher COPE is an IND-CPA secure online per-
mutation. The privacy result is also carried over to COPA. The integrity proof
of COPA uses a technique of converting a forgery to a set of multiple collisions.
It seems that the technique has not been used before by security proofs of par-
allelizable authenticated encryption mode or message authentication code. The
technique may be applicable to other new types of parallelizable modes of op-
eration. We leave it as an interesting open problem to construct a scheme with
less primitive calls but with comparable security guarantees.

Acknowledgments. This work has been funded in part by the IAP Program
P6/26 BCRYPT of the Belgian State (Belgian Science Policy), in part by the Eu-
ropean Commission through the ICT program under contract ICT-2007-216676
ECRYPT II, in part by the Research Council KU Leuven: GOA TENSE, and in
part by the Research Fund KU Leuven, OT/08/027. Elena Andreeva is sup-
ported by a Postdoctoral Fellowship from the Flemish Research Foundation
(FWO-Vlaanderen). Bart Mennink is supported by a Ph.D. Fellowship from
the Institute for the Promotion of Innovation through Science and Technology
in Flanders (IWT-Vlaanderen).

References

1. Akdemir, K., Dixon, M., Feghali, W., Fay, P., Gopal, V., Guilford, J., Erdinc
Ozturk, G.W., Zohar, R.: Breakthrough AES Performance with Intel AES New
Instructions. Intel white paper (January 2010)

2. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.:
Parallelizable and authenticated online ciphers. Cryptology ePrint Archive (2013),
full version of this paper

3. Aoki, K., Iwata, T., Yasuda, K.: How Fast Can a Two-Pass Mode Go? A Parallel
Deterministic Authenticated Encryption Mode for AES-NI (Extended Abstract of
Work in Progress). In: Directions in Authenticated Ciphers (DIAC) (July 2012)

4. Bellare, M., Boldyreva, A., Knudsen, L.R., Namprempre, C.: Online Ciphers and
the Hash-CBC Construction. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 292–309. Springer, Heidelberg (2001)

5. Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode of Operation. In: Roy, B.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004)



Parallelizable and Authenticated Online Ciphers 441

6. Bernstein, D.J., Schwabe, P.: New AES Software Speed Records. In: Chowdhury,
et al. [8], pp. 322–336

7. Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE: AES-
Based Lightweight Authenticated Encryption. In: FSE 2013. LNCS. Springer (to
appear, 2013)

8. Chowdhury, D.R., Rijmen, V., Das, A. (eds.): INDOCRYPT 2008. LNCS, vol. 5365.
Springer, Heidelberg (2008)

9. Daemen, J.: Hash Function and Cipher Design: Strategies Based on Linear and
Differential Cryptanalysis. Ph.D. thesis, Katholieke Universiteit Leuven, Leuven,
Belgium (1995)

10. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

11. Fleischmann, E., Forler, C., Lucks, S.: McOE: A Family of Almost Foolproof On-
Line Authenticated Encryption Schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS,
vol. 7549, pp. 196–215. Springer, Heidelberg (2012)

12. Gueron, S.: Intel Advanced Encryption Standard (AES) Instructions Set. Intel
white paper (September 2012)

13. Gueron, S., Kounavis, M.: Intel Carry-Less Multiplication Instruction and its Usage
for Computing the GCM mode. Intel white paper (September 2012)

14. Käsper, E., Schwabe, P.: Faster and Timing-Attack Resistant AES-GCM. In:
Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Hei-
delberg (2009)

15. Krawczyk, H.: LFSR-Based Hashing and Authentication. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)

16. Krovetz, T., Rogaway, P.: The Software Performance of Authenticated-Encryption
Modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011)

17. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable Block Ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

18. Matsui, M., Nakajima, J.: On the Power of Bitslice Implementation on Intel Core2
Processor. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727,
pp. 121–134. Springer, Heidelberg (2007)

19. McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter
Mode (GCM) of Operation. In: Canteaut, A., Viswanathan, K. (eds.) IN-
DOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

20. Mendel, F., Mennink, B., Rijmen, V., Tischhauser, E.: A Simple Key-Recovery
Attack on McOE-X. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS
2012. LNCS, vol. 7712, pp. 23–31. Springer, Heidelberg (2012)

21. Nandi, M.: Two New Efficient CCA-Secure Online Ciphers: MHCBC and MCBC.
In: Chowdhury, et al. [8], pp. 350–362

22. Procter, G., Cid, C.: On Weak Keys and Forgery Attacks against Polynomial-based
MAC Schemes. In: FSE 2013. LNCS. Springer (to appear, 2013)

23. Ristenpart, T., Rogaway, P.: How to Enrich the Message Space of a Cipher. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 101–118. Springer, Heidelberg
(2007)

24. Rogaway, P.: Bucket Hashing and Its Application to Fast Message Authentication.
In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 29–42. Springer,
Heidelberg (1995)

25. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)



442 E. Andreeva et al.

26. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P.
(eds.) ACM Conference on Computer and Communications Security, pp. 196–205.
ACM (2001)

27. Rogaway, P., Zhang, H.: Online Ciphers from Tweakable Blockciphers. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 237–249. Springer, Heidelberg (2011)

28. Wu, H., Preneel, B.: AEGIS: A Fast Authenticated Encryption Algorithm. Direc-
tions in Authenticated Ciphers. In: SAC 2013. LNCS. Springer (to appear, 2013)

A Handling Arbitrary-Length Messages

A.1 COPE for Arbitrary-Length Messages

Our solution relies on the XLS construction [23] of VIL tweakable ciphers. XLS
makes only three block-cipher calls and requires only simple bit operations out-
side block-cipher calls.

Let Ẽ : K×T ×{0, 1}n→ {0, 1}n be a tweakable cipher and E : K′×{0, 1}n →
{0, 1}n a block cipher. Then XLS[Ẽ, E] yields a VIL permutation on {0, 1}n+∗,
the set of string whose length is between n bits and 2n− 1 bits. Specifically, we
get XLS[Ẽ, E] : K×K′×T ×{0, 1}n+∗ → {0, 1}n+∗. Using appropriate choice of
(α, β, γ), we can realize the ciphers used in XLS by the underlying block cipher
in COPE encryption scheme E , dependent on the message length d. So we write
XLSk,d to denote the XLS invocation in COPE.

LetM be amessage of at leastn bits. Divide it into blocks asM [1]M [2] · · ·M [d−
1]M [d] ← M , and assume that we have 1 ≤

∣∣M [d]
∣∣ ≤ n − 1. Then we can define

C ← Ek(M) as

C[1]C[2] · · ·C[d− 2], S ← Ek
(
M [1]M [2] · · ·M [d− 2]

)
(let Ek output S for now)

C[d− 1]C[d]← XLSk,d
(
(M [d− 1]⊕ S)‖M [d]

)
C ← C[1]C[2] · · ·C[d].

The IND-CPA proof of COPE carries over with minor modifications. Note that
we have to “wait” the processing of M [d− 1] till receiving M [d] (or “redo” after
receiving), making the scheme less online. Yet, we make only three calls to the
block cipher to process these two blocks.

We require |M | ≥ n. As pointed out by [27], it seems a challenging problem to
handle the case |M | < n with encryption-only online ciphers in a secure manner.

A.2 COPA for Arbitrary-Length Messages

There are solutions of arbitrary-length messages for COPA also. This time we
can take the advantage of the tag to handle even the case |M | < n. The solution
for the case |M | > n also becomes more efficient owing to the presence of tags.
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Tag Splitting for |M | < n. We can do a trick similar to tag splitting [11] if
|M | < n. We first choose appropriate parameters (α, β, γ) to make it independent
of the ordinary COPA encryption algorithm E . Write it E∗k (which will be used
only for fractional one-block messages). Given M such that |M | = s < n, we can
define (C, T )← Ek(M) as

(C′, T ′)← E∗k
(
M10∗

)
C ← �C′�s (leftmost s bits)

T ← �C′$n−s�T ′�s.

One can directly verify the security of this extension. Note that the integrity
relies on the 10∗ padding as well as on the “partial” tag �T ′�s.

XLS for |M | > n. Our solution for this case is similar to that of COPE but is
more efficient, in that COPA still remains fully online. Again, let M be a message
whose length is more than n bits. Divide it into blocks as M [1]M [2] · · ·M [d −
1]M [d]←M , and assume that we have 1 ≤

∣∣M [d]
∣∣ ≤ n− 1. Then we can define

(C, T )← Ek(M) as

(C′, T ′)← Ek
(
M [1]M [2] · · ·M [d− 1]

)
C[d]T ← XLSk,d

(
M [d]T ′)

C ← C′C[d],

where XLSk,d is defined similarly to the case of COPE. Given the security of
COPA and XLS, it is straightforward to verify that this extension is also secure.



How to Construct an Ideal Cipher
from a Small Set of Public Permutations

Rodolphe Lampe1,� and Yannick Seurin2,��

1 University of Versailles, France
2 ANSSI, Paris, France

rodolphe.lampe@gmail.com, yannick.seurin@m4x.org

Abstract. We show how to construct an ideal cipher with n-bit blocks
and n-bit keys (i.e. a set of 2n public n-bit permutations) from a small
constant number of n-bit random public permutations. The construc-
tion that we consider is the single-key iterated Even-Mansour cipher,
which encrypts a plaintext x ∈ {0, 1}n under a key k ∈ {0, 1}n by al-
ternatively xoring the key k and applying independent random public
n-bit permutations P1, . . . , Pr (this construction is also named a key-
alternating cipher). We analyze this construction in the plain indiffer-
entiability framework of Maurer, Renner, and Holenstein (TCC 2004),
and show that twelve rounds are sufficient to achieve indifferentiability
from an ideal cipher. We also show that four rounds are necessary by
exhibiting attacks for three rounds or less.

Keywords: block cipher, ideal cipher, iterated Even-Mansour cipher,
key-alternating cipher, indifferentiability.

1 Introduction

Block Ciphers. Block ciphers are one of the most important classes of prim-
itives in cryptography. They are mainly used to provide confidentiality and au-
thenticity to communication channels or local data storage means, but also to
construct hash functions and in other more advanced cryptographic tasks. Syn-
tactically, a block cipher E with message space {0, 1}n and key space {0, 1}m is
a mapping from {0, 1}m × {0, 1}n to {0, 1}n such that for each key k ∈ {0, 1}m,
E(k, ·) is an (efficiently invertible) permutation. Block cipher designs (virtually
all of which rely on the iteration of some key-dependent round function) can be
roughly split into two families (with some rare exceptions such as IDEA):

1) Feistel networks [23] and their generalizations, where the round function is
given by (x, y) �→ (y, x ⊕ F (ki, y)), where x and y are the left and right
n/2 bits of the state, and ki is the round key; prominent examples include
DES, Blowfish, KASUMI, and Camellia for “classical” Feistel networks, and
CAST-256 and MARS for generalized Feistel networks;
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2) substitution-permutation networks (SPNs), where one round generally con-
sists of the composition of a round-key addition, a non-linear mixing layer,
and a linear diffusion layer; notable examples include AES, SAFER, CRYP-
TON, SERPENT, PRESENT, and LED.

At an even higher design level, SPNs can be described (by collapsing the non-
linear mixing layer and the linear diffusion layer at i-th round into a single n-bit
permutation Pi) as successive applications of round-key additions and permuta-
tions Pi. Such a structure was named a key-alternating cipher by the designers
of AES [17,18].

The traditional security notion for a block cipher is pseudorandomness, i.e.
indistinguishability from a random permutation [41]: namely, no distinguisher
with reasonable resources and having black-box access to a permutation (and
also to its inverse in a more stringent variant of the security notion) should be
able to distinguish whether it is interacting with the block cipher E(k, ·) for a
randomly chosen key k, or with a truly random permutation. In an asymptotic
and more theoretical language, a family of block ciphers indexed by a security
parameter meeting this security notion is called a pseudorandom permutation
(PRP), or a strong pseudorandom permutation (SPRP) when the distinguisher
has also access to the inverse permutation. The classical example of a construc-
tion for which we have some provable security results with respect to indis-
tinguishability is the Feistel network. Starting from the seminal Luby-Rackoff
paper [42] which showed that the Feistel construction with three rounds yields a
PRP when its round functions are pseudorandom [28], and followed by a paper
by Patarin [49] showing that four rounds yield a SPRP (which was stated in [42]
without proof), a long series of works established refined results in the same
vein, such as [43,44,59,50] to name a few.

The Ideal Cipher Model. Though there are numerous examples where the
standard pseudorandomness assumption is sufficient to prove (in a reductionist
sense) the security of a cryptographic scheme (e.g. for building a symmetric en-
cryption scheme [3] or a MAC scheme [4]), there are also some settings where
it might not be strong enough to derive a security proof. Indeed, in some situa-
tions, the adversary has more abilities than merely querying in a black-box way
an encryption/decryption oracle. For example, there are some cases where the
attacker might have access to a more powerful “related-key” oracle [9,5,1], i.e.
it can ask encryption and decryption queries for keys that are related (in some
limited and attack-dependent way) to the main key of the system.

Ideally, the ultimate security goal for a block cipher would be that it “behaves”
as a random and independent permutation for each possible key. This naturally
leads to the so-called ideal cipher model (ICM), the origin of which can be traced
back to Shannon [56]. In the ICM, a block cipher E with n-bit blocks and m-bit
keys is drawn at random from the set of (2n!)2m possible block ciphers of this
form, and made available through oracle queries (for both encryption and de-
cryption) to all parties (including the adversary). This is very similar in spirit to
the random oracle model (ROM) [24,8] used to model a perfect hash function.
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To the best of our knowledge, this model was first formally used in a security
proof by Winternitz [60] and later by Merkle [47] to show respectively the pre-
image and collision resistance of the Davies-Meyer compression function. The
ICM became increasingly popular after Black et al. [12] used it to extensively
analyze the security of the PGV block cipher-based compression functions [51].
Since then, the ICM has been used to prove the security of a variety of other
block cipher-based hash functions [30,31,58,40,46], of key length extension meth-
ods for block ciphers [35,21,7,25,26], of symmetric encryption schemes [33], and
even of some public-key protocols such as signature schemes [29], ring signature
schemes [53], public-key encryption [34], and key exchange protocols [6]. Despite
these numerous successful applications, one must not lose from sight that the
ICM only gives heuristic insurance just as the ROM [14]. In particular, Black [11]
exhibited an (arguably artificial) block cipher-based hash function which is prov-
ably collision resistant in the ICM, but becomes insecure when the ideal cipher
is instantiated with any concrete block cipher.

With the ICM at hand, the question now becomes: is it possible to argue
that a given block cipher design is as close as possible to an ideal cipher? In
the standard model, one immediately faces the problem that, unlike for pseudo-
randomness, it even seems hard to come with a satisfactory definition of what
this formally means, without running into impossibility results (similarly to [14]
and [11]) following from the fact that a concrete block cipher has a short de-
scription, whereas an ideal cipher does not. This unfortunate state of affairs
has not prevented cryptanalysts from disproving that a concrete block cipher
behaves as an ideal cipher by exhibiting some non-random behavior, i.e. some
non-trivial1 relation between inputs and outputs of the block cipher that can
be found faster than for an ideal cipher, in a setting where the key is random
and given to the attacker (known-key attacks), or when the attacker can freely
choose the key(s) (chosen-key attacks). A classical example is the complementa-
tion property of DES which, despite being often viewed as a “benign” undesirable
property, implies that DES does not behave as an ideal cipher. For AES, no such
non-random properties were known until Biryukov et al. [10] showed that so-
called q-multicollisions can be found faster for AES-256 than for an ideal cipher.
Known-key and chosen-key attacks were first put forward as an important crypt-
analysis goal by Knudsen ans Rijmen [36], and have since then become an active
area of research [48,27,54].

Indifferentiability. Though we cannot hope to formalize (not to say prove)
that a concrete block cipher behaves as an ideal cipher in any reasonable sense in
the standard model, it is possible to obtain positive results in idealized models,
i.e. by viewing some subcomponent of the block cipher as perfectly random. This
perfect subcomponent is made available to all parties as a public oracle, which
makes this setting formally distinct from classical indistinguishability. In order
to assess whether a cryptographic construction based on an ideal subcomponent

1 We stress that because of the lack of a rigorous definition, the meaning of non-trivial
here is somehow subjective.
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is secure, one has to employ the formalism of indifferentiability, introduced by
Maurer et al. [45]. A construction C (e.g. a block cipher), based on some ideal
primitive F (e.g. a random permutation), is said to be indifferentiable from
some target ideal primitive G (e.g. an ideal cipher) if there exists an efficient
simulator S (with black-box access to the primitive G) such that the two systems
(CF , F ) and (G, SG) are indistinguishable. Informally, the goal of the simulator
is to provide answers which are consistent with what a distinguisher can obtain
from G, without deviating too much from the distribution of answers of F . An
indifferentiability result can be interpreted as a way to make sure that the high-
level design of the construction C has no structural defect. More importantly, a
composition theorem [45] asserts that if CF is indifferentiable from G, then any
cryptosystem proved secure when used with G remains secure when used with
CF , therefore allowing modular proofs of security in idealized models.2

Soon after its introduction, Coron et al. [15] used the indifferentiability frame-
work to revisit the design of a hash function from an ideal cipher: namely they
showed that a number of variants of the Merkle-Damgård domain extension
method [19,47], used with an ideal cipher in Davies-Meyer mode, are indiffer-
entiable from a random oracle. The converse direction, i.e. proving that it is
possible to construct an ideal cipher from a random oracle, turned out to be
harder to achieve. A first attempt to prove that the Feistel construction with
public random round functions is indifferentiable from a random permutation
(and hence from an ideal cipher by prepending the key to each input to the
random round functions) was made by Coron et al. for six rounds [16], and later
by Seurin for ten rounds [55], but serious flaws were found in both proofs [37,32].
The situation was corrected with a proof by Holenstein et al. [32] that the 14-
round Feistel construction with public random round functions is indifferentiable
from a random permutation. This must be contrasted with the classical Luby-
Rackoff result stating that the 4-round Feistel construction with pseudorandom
round functions yield a SPRP.

Our Contribution. The indifferentiability result for the Feistel construction
mentioned above is fundamentally about how to obtain a random permutation
from a random (function) oracle. The step to obtain an ideal cipher (i.e. an
exponential number of independent permutations) is trivially achieved through
domain separation of the underlying primitive (namely by prepending the key to
each call to the random function oracles). However, it does not tell us anything
about how the key should be concretely mixed into the state. In a departure from
this approach, we ask the following question: given a small number of objects with
n-bit inputs (e.g. n-bit permutations P1, . . . , Pr), is there a way to “combine”
them together with an m-bit key in order to obtain a construction which is
close to an n-bit block and m-bit key ideal cipher, i.e. a set of 2m independent
permutations, without appealing to a trivial domain separation argument? This

2 Care has to be taken with this composition result when the security definition for
the cryptosystem puts some limitations on the adversary, such as an upper bound
on its memory [52,20]
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naturally prompts us to turn our attention towards the second class of designs,
namely key-alternating ciphers.3 More formally, we consider the construction of
a block cipher with n-bit blocks and m-bit keys from r public n-bit permutations
P1, . . . , Pr defined as follows: derive (r + 1) n-bit round keys (k0, . . . , kr) from a
master key K through some key derivation function, and encrypt the plaintext
x ∈ {0, 1}n by computing the ciphertext y defined as:

y = kr ⊕ Pr(kr−1 ⊕ Pr−1(· · · P2(k1 ⊕ P1(k0 ⊕ x)) · · · )) .

When r = 1 and two independent n-bit keys (k0, k1) are used, so that the ci-
phertext is simply y = k1 ⊕ P1(k0 ⊕ x), one obtains the so-called Even-Mansour
cipher [22]. When P1 is modeled as a public random permutation (that the ad-
versary can query in a black-box way), Even and Mansour [22] showed that the
resulting block cipher is a SPRP, with security ensured up to O(2n/2) distin-
guisher queries. The indistinguishability of the general construction for r > 1
with independent keys (k0, . . . , kr) was later studied for two rounds by Bog-
danov et al. [13], for three rounds by Steinberger [57], and for any number r of
rounds (with non-tight security bounds) by Lampe et al. [38]. Unsurprisingly,
the number of adversarial queries up to which the key-alternating cipher is indis-
tinguishable from a random permutation increases with the number of rounds.
Following [38], and to emphasize that we work in the random permutation model
for P1, . . . , Pr, we will use the naming r-round iterated Even-Mansour cipher to
designate the idealized key-alternating cipher where the permutations P1, . . . ,
Pr are public and perfectly random permutations oracles.

In this paper, we consider the iterated Even-Mansour cipher from the point of
view of indifferentiability, and ask whether this construction is indifferentiable
from an ideal cipher for a sufficient number of rounds when the permutations
P1, . . . , Pr are public and random. A first simple observation is that the con-
struction with r + 1 independent n-bit keys (k0, . . . , kr) (resulting in a total
key space {0, 1}m = {0, 1}(r+1)n) is never indifferentiable (for any r) from an
ideal cipher with n-bit blocks and (r + 1)n-bit keys (this had already been in-
formally observed by [13]). In a sense, independent keys offer too much freedom
to the attacker, enabling to easily find related-key relations. There are two pos-
sible approaches to solve this problem. The first one is to derive the round keys
(k0, . . . , kr) from the master key using some cryptographic function (modeled
as a random oracle for the indifferentiability proof). This was considered in an
earlier and independent work by Andreeva et al. [2] (see below for a discussion of
their result). The second possibility (not relying on any cryptographic assump-
tion about the key derivation function) is to “correlate” the round keys. This is
the approach we adopt: namely, we consider the iterated Even-Mansour cipher
where the n-bit round keys (k0, . . . , kr) are obtained by applying efficiently in-
vertible n-bit permutations (γ0, . . . γr) to the n-bit master key k (see Figure 1
on page 453). As will appear clearly in view of its proof, the fact that the master
key length is equal to the block length is crucial for our result. To insist on this
3 One could certainly undertake the same study for Feistel-based block ciphers, but

this seems more complicated.
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particular point, we call this construction the single-key iterated Even-Mansour
cipher. Our main result is the following one.

Theorem. The 12-round single-key iterated Even-Mansour cipher with twelve
independent random public n-bit permutations (P1, . . . , P12) and any efficiently
invertible (public) n-bit permutations (γ0, . . . , γ12) for the key schedule is indif-
ferentiable from an ideal cipher with n-bit blocks and n-bit keys.

In fact, the key derivation permutations γi will not play any role in the proof,
so that we will focus on the simple case where they are all equal to the identity.
Additionally, we show that at least four rounds are necessary by describing
attacks (using only a constant number of queries) for three rounds or less (see
the full version of the paper [39]).

Together with the result of [2] discussed below, our main theorem validates
the design strategy underlying SPNs and more generally key-alternating ciphers
as a sound way to ensure security beyond pseudorandomness: it (theoretically)
enables to achieve resistance against related-key, known-key and chosen-key at-
tacks (that an ideal cipher can withstand). We stress that our result cannot be
used as is to take concrete design decisions: first, our bounds (as is often the
case with indifferentiability results) are extremely loose.4 More importantly, the
permutations Pi used in concrete block ciphers such as AES are often too simple
to be deemed close to random permutations (not to say independent: they are
often the same).

Our Techniques. The techniques used to prove our main theorem are very
similar to the ones introduced in [16,55,32] for the Feistel construction (while
the formalism we adopt is very close to [32]). We simply give a very cursory
overview of the main ideas here (assuming all γi’s are the identity). The simu-
lator works by detecting and completing “partial chains” created by the queries
of the distinguisher. Define the computation path for a plaintext x and a key
k as the sequence of pairs (x1, y1), . . . , (x12, y12) of corresponding input and
output values for the simulated permutations P1, . . . , P12. It must hold that the
value y obtained through this computation path matches the value E(k, x) ob-
tained from the ideal cipher, otherwise one could straightforwardly distinguish
the “simulated” world from the “real” world. Hence, simply answering the dis-
tinguisher queries randomly will not work: the simulator must somehow “adapt”
the computation path to match the ideal cipher E. Observe now the following
important property of the single-key iterated Even-Mansour cipher: given only
two consecutive values yi and xi+1 of the computation path (i.e. the output
value of permutation Pi and the input value to permutation Pi+1), it is possi-
ble to deduce the corresponding key k = yi ⊕ xi+1, and hence to move forward
and backward along the path. Note that this property essentially relies on the
fact that the master key length is equal to the block length of the permutations
(would the master key be larger, then it could not be uniquely determined by
4 Since the proof is already quite involved, we favored simplicity rather than tightness,

but the bounds can probably be improved at some places.
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yi and xi+1). Note also that this is the exact analogue of the property of the
Feistel network that the input and output values to two consecutive round func-
tions enable to uniquely move forward and backward inside the construction.
With this in mind, the strategy of the simulator will be to detect partial chains
in computation paths created by queries of the distinguisher to two consecutive
permutations, and “complete” them by moving forward and backward inside the
iterated Even-Mansour construction (randomly setting undefined permutation
values encountered along the way, and making a call to the ideal cipher to “wrap
around”) until the input x� and the output y� for one particular permutation
P� are obtained (but still undefined inside P� history). This permutation is then
“adapted” by setting P�(x�) := y� so that the corresponding input and output
for the simulated Even-Mansour cipher and for the ideal cipher match. A mo-
ment of thinking should make clear that the simulator cannot complete each and
every partial chain created in its history, since this would create a “chain reac-
tion” leading to an exponential running time and an exponential number of ideal
cipher queries from the simulator. Hence, one must make a careful and parsimo-
nious choice of “detection zones” for deciding which partial chains to complete.
In addition, one must ensure that the simulator never overwrites an entry when
adapting permutation P�, thereby rendering a previously completed chain in-
consistent. How exactly this is done is very similar to the case of the Feistel
construction [55,32], and we refer to Section 3.1 for a more detailed overview.

As a retrospective afterthought, we note that the Feistel and the iterated
Even-Mansour indifferentiability results are not that far apart: they both tell
how to construct a “big object” (which in both cases has some specific syntactic
constraints which are relevant only from a cryptographic perspective) taking 2n
bits of input (the left and right n-bit halves of the input in the case of the Feistel
network, and the key and the plaintext in the case of the iterated Even-Mansour
cipher) from smaller objects with only n bits of input (fourteen n-bit to n-bit
functions for the Feistel network, and twelve n-bit permutations for the iterated
Even-Mansour cipher).

Related Work. In a prior and independent work [2], Andreeva et al. proved
a result which is close and complementary to ours: they showed that the iter-
ated Even-Mansour construction with five rounds and a key derivation function
modeled as a random oracle is indifferentiable from an ideal cipher. Though sig-
nificantly reducing the number of rounds required for the proof to go through,
and lifting the restriction that the master key length be equal to the block length
of the permutations, their technique puts a strong burden on the key derivation
function, which can hardly be seen as close to a random oracle in most con-
crete block ciphers. In fact, most key schedules, such as the one of AES, are
“lightweight” and invertible, which makes our result (where the key derivation
function has no cryptographic role) more relevant to practice. On the other
hand, the bounds obtained by [2] are better: the number of queries, the running
time, and the indistinguishability bound achieved by their simulator are respec-
tively O(q2), O(q3), and O(q10/2n), while for our simulator they are respectively
O(q4), O(q6), and O(q12/2n).
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Taken together, the two results indicate, not too surprisingly, that using a
cryptographically strong key schedule, though not being necessary, enables to
lower the number of rounds needed to obtain an ideal cipher (however this in-
terpretation must be taken cautiously: it may well be that, say, the iterated
Even-Mansour cipher with four rounds is indifferentiable from an ideal cipher,
independently of the cryptographic strength of the key schedule).

Regarding the purely theoretical question of the minimal number of n-bit
permutations needed to construct an n-bit block and n-bit key ideal cipher, it
was additionally showed in [2] that six independent permutations is sufficient, by
using a 5-round key-alternating cipher and an independent random permutation
P0 to build a key derivation function k �→ P0(k) ⊕ k.

2 Preliminaries

2.1 Notation and Definitions

Given a finite non-empty set S, we write s ←$ S to mean that a value is sampled
uniformly at random from S and assigned to s. The security parameter will be
denoted n and will be identified with the block length of permutations in the
Even-Mansour construction. We will write f ∈ poly(n) to denote a polynomially
bounded function and f ∈ negl(n) to denote a negligible function. For δ ∈
{+, −}, we denote δ̄ the opposite of δ.

In the following, we will use calligraphic fonts (A, B, . . .) to denote interactive
Turing machines, and typewriter fonts to denote Procedures attached to these
machines. A distinguisher is an oracle Turing Machine D which takes as input a
security parameter 1n, has access to a set of oracles O1, . . . , Om, and outputs a bit
b, an experiment we denote DO1,...,Om = b. We will always consider distinguishers
that are deterministic and computationally unbounded, and restricted only with
respect to the number of oracle queries they make.

An ideal primitive is a probability distribution on some set of functions, and
will be denoted with bold fonts. In the corresponding model, a function is drawn
at random from the corresponding distribution (say F ) and all parties (say M)
involved in the security experiment are given oracle access to the corresponding
function, which we simply denote MF . In the following we will consider the
following two ideal primitives:

– a random permutation Pi on {0, 1}n, which is a permutation drawn at ran-
dom from the set of all permutations on {0, 1}n, and which can be ac-
cessed in the two directions Pi(x) and P −1

i (y); we will use the notation
P = (P1, . . . , Pr) to denote a tuple of independent random permutations;

– an ideal cipher E with message space and key space {0, 1}n, which is drawn
at random from the set of all block ciphers of this form, and which can be
accessed in encryption, denoted E(k, x), and decryption, denoted E−1(k, y).

2.2 Indifferentiability

We recall the usual definition of indifferentiability.
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Definition 1. Let q, σ, t : N → N and ε : N → R be four functions of the security
parameter n. A Turing machine C with oracle access to an ideal primitive F
is said to be statistically and strongly (q, σ, t, ε)-indifferentiable from an ideal
primitive G if there exists an interactive Turing machine S with oracle access
to G such that for any distinguisher D making at most q queries, S makes at
most σ oracle queries, runs in time at most t, and the following holds:

∣
∣
∣Pr

[

DG,SG

= 1
]

− Pr
[

DCF ,F = 1
]∣
∣
∣ ≤ ε .

CF is simply said to be statistically and strongly indifferentiable from G if for any
q ∈ poly(n), the above definition is fulfilled with σ, t ∈ poly(n) and ε ∈ negl(n).

This definition does not refer to the running time of D. When only polynomial-
time distinguishers are considered, indifferentiability is said to be computational.
Weak indifferentiability is defined as above, but the order of quantifiers for the
distinguisher and the simulator are switched (for all distinguisher, there is a
simulator. . . ).

In this paper, and similarly to [32], we will slightly tweak the definition of
strong indifferentiability as follows: we will describe a simulator which, for any
distinguisher D making a polynomial number q of queries, runs in time at most
t and makes at most σ queries with overwhelming probability (rather than prob-
ability one) in system DG,SG . This is not a big concern since any such simulator
S can be transformed into a simulator S′ for weak indifferentiability (which is
sufficient for the composition theorem of [45] to hold) which takes the maximal
number of queries q of D as input, and aborts when its number of queries be-
comes larger than σ (computed as a function of q), hence making at most σ
queries with probability one.

2.3 The Iterated Even-Mansour Cipher

Fix an integer r ≥ 1. Let P = (P1, . . . , Pr) be a tuple of permutations on {0, 1}n.
The r-round iterated Even-Mansour construction associated with P , denoted C̄P

r ,
is the block cipher with message space {0, 1}n and key space ({0, 1}n)r+1 which
maps a message x and a key (k0, . . . , kr) to the ciphertext defined by:

C̄P
r ((k0, . . . , kr), x) = kr ⊕ Pr(kr−1 ⊕ Pr−1(· · · P2(k1 ⊕ P1(k0 ⊕ x)) · · · )) .

Let γ = (γ0, . . . , γr) be a tuple of efficiently invertible permutations on {0, 1}n.
The single-key r-round iterated Even-Mansour construction associated with P
and γ, denoted CP,γ

r , is the block cipher with message space {0, 1}n and key
space {0, 1}n which maps a message x and a key k to the ciphertext defined by
(see Figure 1):

CP,γ
r (k, x) = γr(k) ⊕ Pr(γr−1(k) ⊕ Pr−1(· · · P2(γ1(k) ⊕ P1(γ0(k) ⊕ x)) · · · )) .

In all the following, we will focus on the case where all permutations γi are the
identity, and simply denote CP

r the resulting cipher, namely:

CP
r (k, x) = k ⊕ Pr(k ⊕ Pr−1(· · · P2(k ⊕ P1(k ⊕ x)) · · · )) .
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We stress that our main result (Theorem 1) holds for arbitrary permutations γi

as long as they are efficiently invertible.

x P1

γ0

k

P2

γ1

k

Pr y

γr

k

Fig. 1. The single-key iterated Even-Mansour cipher with r rounds CP,γ
r . We focus in

this paper on the special case γi = Id for i = 0, . . . , r.

3 Indifferentiability for Twelve Rounds

In this section we prove the main result of this paper, which is the following
theorem.

Theorem 1. For any q, the 12-round single-key iterated Even-Mansour cipher
CP ,γ

12 with twelve independent random n-bit permutations P = (P1, . . . , P12), and
fixed, efficiently invertible n-bit permutations γ = (γ0, . . . , γ12) for the key sched-
ule, is strongly and statistically (q, σ, t, ε)-indifferentiable from an ideal cipher E
with n-bit blocks and n-bit keys, where:

σ = 27 × q4, t = O(q6), and ε =
291 × q12

2n
.

To prove this, we will describe an efficient simulator S, and show that the two
systems (CP ,γ

12 , P ) and (E, SE) are indistinguishable. For simplicity we focus on
the case where all γi’s are the identity, but the generalization is straightforward.

Notational Convention. In all this section, we will use the following useful
notational convention: we will interchangeably denote the input to the ideal
cipher or the iterated Even-Mansour cipher x or y0, and the output y or x13.

3.1 Informal Description of the Simulator

We start with a high-level view of the simulator (see also Figure 2). It offers
an interface to the distinguisher for querying the simulated permutations, which
formally takes the form of a public procedure Query(i, δ, z), where i ∈ {1, . . . , 12}
names the permutation, δ ∈ {+, −} tells whether this is a direct or indirect query,
and z ∈ {0, 1}n is the actual value queried. The simulator maintains an history
for the simulated permutations under the form of hash tables P1, . . . , P12. Each
such table maps entries (δ, z) ∈ {+, −} × {0, 1}n to values z′ ∈ {0, 1}n. We
denote P +

i , resp. P −
i , the (time-dependent) sets of strings z ∈ {0, 1}n such that
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Pi(+, z), resp. Pi(−, z), is defined. When the simulator receives a query (i, δ, z),
it looks in hash table Pi to see whether the corresponding answer Pi(δ, z) is
already defined. When this is the case, it outputs the answer and waits for the
next query. Otherwise, it draws a uniformly random answer z′ and defines in hash
table Pi(δ, z) := z′, as well as the answer to the opposite query Pi(δ̄, z′) := z
(note that this last assignment may overwrite an entry in Pi).

Additionally, before outputting the answer z′, and for some specific values of
(i, δ), the simulator triggers a chain detection mechanism followed by a chain
completion mechanism to ensure consistency of its answers with the ideal cipher
E. An essential point to notice about the iterated Even-Mansour cipher in order
to understand these mechanisms is that given an output value yi for permutation
Pi and an input value xi+1 for permutation Pi+1, it is possible to compute the
corresponding key k = yi ⊕ xi+1, and therefore to move forward and backward
in the construction up and down to the corresponding input x and output y
to the cipher. Hence, any tuple (yi, xi+1, i) (a so-called partial chain later in
the reasoning) defines a unique computation path inside the whole construction.
This is the exact analogue of the property of the Feistel construction that the
input values to two consecutive round functions uniquely define the computation
path inside the Feistel network.

There are exactly six such values of (i, δ) for which the simulator performs
additional steps: (2, +), (6, +), (6, −), (7, +), (7, −), and (11, −). The cases (2, +)
and (11, −) are similar. When receiving a query (2, +, x2) for which the answer
is still undefined, the simulator, after having drawn a random answer y2 to
this query, considers all values y1 ∈ P −

1 , computes the corresponding key k :=
y1 ⊕x2, and moves backward in the iterated Even-Mansour cipher by computing
x1 := P1(−, y1), y0 := x1 ⊕ k, x13 := E(k, y0) (hence making a query to the
ideal cipher), and y12 := x13 ⊕ k, and checks whether y12 ∈ P −

12. When this is
the case, it enqueues in a queue Queue the tuple (y0, x1, 0, 4). The first three
elements (y0, x1, 0) specify the partial chain that must be completed, while the
last element � = 4 specifies which permutation will be adapted during completion
of the chain to ensure consistency with E. The behavior of the simulator when
receiving a query (11, −, y11) is symmetric: after having drawn a random answer
x11, for all x12 ∈ P +

12, it moves forward in the iterated Even-Mansour cipher
to check whether the corresponding value x1 is in P +

1 , and if so enqueues the
corresponding tuple (y0, x1, 0, 9) (note that in this case adaptation will take place
at permutation P9).

The four remaining cases (i, δ) = (6, +), (6, −), (7, +), and (7, −) are similar,
except that there is no check: the simulator enqueues a tuple (y6, x7, 6, �) for
each newly generated pair (y6, x7) ∈ P −

6 × P +
7 . If this was a query with i = 6,

then adaptation will take place at � = 4, while if this was a query with i = 7,
adaptation will take place at � = 9. Assume for a concrete example that the
simulator receives a query (6, +, x6) whose answer is undefined yet. Then it draws
a random answer y6 ←$ {0, 1}n, and enqueues (y6, x7, 6, 4) for all x7 ∈ P +

7 .
Immediately after having enqueued newly created chains (yi, xi+1, i, �), the

simulator starts completing the partial chains, by dequeuing tuples from Queue.
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For this, when dequeuing (yi, xi+1, i, �), it computes the key k := yi ⊕ xi+1,
and moves forward and backward in the iterated Even-Mansour cipher, possibly
defining missing permutations values Pi(+, ·) or Pi(−, ·), and making a query
to E(k, ·) to “wrap around”, until it reaches the input value x� for P� (when
moving forward) and the corresponding output y� (when moving backward). It
finally “adapts” permutation P� by setting P�(+, x�) := y� and P�(−, y�) := x�

in order to ensure consistency of the entire chain with E. It also adds chains
that have been completed in a set Completed in order to avoid completing
them twice. While completing a chain and adding possibly missing permutation
values, the simulator uses the same chain detection mechanism as when receiving
a direct query from the distinguisher. Hence new tuples may be enqueued while
dequeuing and completing a chain, and the simulator keeps dequeuing tuples
until the queue is empty. When this is the case, it returns the answer to the
original query of the distinguisher.

As in the indifferentiability proof of the Feistel construction, there will be two
crucial points to show: first, that the recursive chain completion mechanism ter-
minates in polynomial time (except maybe with negligible probability); second,
that the simulator can always adapt, i.e. that it never has (or only with negligi-
ble probability) to overwrite previously defined entries when adapting a chain,
which would render previously completed chains inconsistent with the ideal ci-
pher E. Permutations P3, P5, P8, and P10 (i.e. the permutations surrounding
the two adaptation rounds P4 and P9) will play a key role while proving this
last point: they will ensure that no bad collisions occur at the input or output
of the two permutations used for adapting chains.

We defer the formal definition of the simulator to the full version of the
paper [39].

3.2 Sketch of the Proof of Theorem 1

We sketch the main ideas of the proof of Theorem 1. The detailed proof is
deferred to the full version of the paper [39].

We use intermediate systems that are depicted on Figure 3. System Σ1 is
the simulated world (E, SE), while Σ4 is the real world (CP

12, P ). In system Σ2,
the ideal cipher E is replaced with a so-called keyed two-sided random function
F(η) which offers the same interface for encryption and decryption as the ideal
cipher. However, when asked for an encryption query (k, x) or a decryption
query (k, y), F first checks (by maintaining a hash table denoted E) whether
this value appeared in a previous query, and if so answers consistently. Otherwise
it draws a uniformly random answer (the randomness is made explicit through a
uniformly random table η) and updates E. Besides, F has an additional interface
F .Check(k, x, y) (only used by the simulator) which returns true if and only if
E(+, k, x) = y or E(−, k, y) = x (in particular, if neither (k, x) was queried
for encryption nor (k, y) for decryption, Check(k, x, y) returns false). In Σ2, the
simulator S is slightly modified into a new simulator T which queries Check
rather than the encryption or decryption interface when deciding whether a
tuple (y0, x1, 0, �) must be enqueued. Moreover the randomness of T is made
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Fig. 2. Detection and adaptation zones used by the simulator
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Fig. 3. Systems used in the indifferentiability proof

explicit with uniformly random tables ϕ = (ϕ1, . . . , ϕ12). In system Σ3, the
keyed two-sided random function is replaced with an iterated Even-Mansour
cipher using uniformly random permutations π = (π1, . . . , π12), enhanced with
a Check procedure similarly to F . The simulator T now uses tables π as well for
its random draws.

To prove Theorem 1, we will upper bound the statistical distance between
successive worlds Σi. Additionally, we must show that S makes a polynomial
number of oracle queries and runs in polynomial time in Σ1 with overwhelming
probability. We start the analysis in Σ2: namely we show that in this system, T
will always complete at most q chains of the form (y0, x1, 0, �). The reason for this
is quite simple: since T uses interface F .Check to decide whether such a tuple
must be enqueued, such a chain can be detected and enqueued only if (k, y0)
with k = y0 ⊕ x1 appeared in the queries (or the answers) of the distinguisher to
F . Since by assumption the distinguisher makes at most q queries, this implies
the result. Starting from this observation, one can then upper bound the size of
the hash tables Pi maintained by the simulator as well as the number of queries
of T to F .

We then upper bound the statistical distance between Σ1 and Σ2. For this,
we appeal to a previous result from [32] to obtain the following lemma.

Lemma 1. For any distinguisher D which makes at most q queries in total, we
have:

∣
∣
∣Pr

[

DΣ1 = 1
]

− Pr
[

DΣ2(η,ϕ) = 1
]∣
∣
∣ ≤ 222 × q12

2n
.

As a side result, this directly implies that with overwhelming probability, S
runs in polynomial time and makes a polynomial number of queries to E in
system Σ1, as captured by the following lemma.
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Lemma 2. Assume that the distinguisher D makes at most q queries in total.
Then with probability greater than 1 − 221 × q12/2n over an execution of DΣ1 ,
the simulator S makes at most 27 × q4 queries to E or E−1 (assuming S never
repeats a query), and runs in time at most O(q6).

We then move to the hard part of the proof, which is to upper bound the sta-
tistical distance between Σ2 and Σ3. For this, an important first step is to show
that in Σ2, the simulator never (more precisely only with negligible probabil-
ity) overwrites an entry in hash tables Pi during a call to ForceVal (i.e. the
procedure which adapts chains by forcing the value of permutation P4 or P9).
To reason about the behavior of system Σ2, we introduce the concept of partial
chain, which is simply a tuple (yi, xi+1, i) for i ∈ {1, . . . , 12}. Considering, at
some point in the execution, hash tables P1, . . . , P12 maintained by the distin-
guisher and the hash table E maintained by F , we define for any partial chain
C = (yi, xi+1, i) and any � ∈ {1, . . . , 12} the functions val+

� (C) and val−
� (C)

as follows: val+
� (C) is defined as the direct input value x� to permutation P�

obtained when moving forward in the Even-Mansour construction (possibly look-
ing in hash table E to wrap around), or ⊥ is at some point the computation
stops because the necessary value was missing in some hash table (including E).
Similarly val−

� (C) is defined as the indirect input value y� to permutation P�

obtained when moving backward in the Even-Mansour construction, or ⊥ if the
computation stops at some point.

As a preliminary step, we need to exclude some bad events that lead to a
pathological behavior of Σ2. These bad events correspond to the draw of bad
values when the simulator randomly defines the value of some permutation Pi

or when F draws a random answer. More precisely, the bad values are exactly
those that can be written as the bitwise xor of up to five values in the history,
where the history includes all n-bit strings appearing in hash tables Pi and E
at the moment where the random answer is drawn. Since the size of the history
remains polynomial, the probability of these bad events is negligible.

Then, the proof that the simulator never overwrites an entry in hash tables
Pi during a call to ForceVal roughly consists of two steps. First, we show that
just before the query which leads to some partial chain C being enqueued to
be adapted at position �, one has val+

�−1(C) = ⊥ and val−
�+1(C) = ⊥, unless

an equivalent chain B (where equivalent means that one can obtain B from C
by moving forward or backward in the Even-Mansour construction) has been
previously enqueued. This crucially relies on fact that the two chain detection
zones (“border” and “center”) are “protecting” each other. For example, consider
the case where some chain C = (y0, x1, 0) is enqueued to be adapted at position
� = 4 due to a query for P2(x2). Then clearly, before P2(x2) is defined, one has
val+

3 (C) = ⊥. On the other side, if val−
5 (C) 
= ⊥, then this means that C is

equivalent to some partial chain B = (y6, x7, 6) with y6 ∈ P −
6 and x7 ∈ P +

7 , so
that D would have been enqueued previously due to some query to P6 or P7.

The second step is to show that between the moment where C is enqueued, and
the moment where C is dequeued, the completion of other chains (possibly) in
the queue will not lead to val+

�−1(C) ∈ P +
�−1 or val−

�+1(C) ∈ P −
�+1. In particular



How to Construct an Ideal Cipher from a Small Set of Public Permutations 459

this requires to show that C cannot collision with another, previously enqueued
chain D at round � − 1 or � + 1. This is carried out via a careful analysis of all
the ways this could happen, which would all imply the occurrence of the bad
event previously discussed. Once this is done, it is easy to show that no entry
is overwritten during the call to ForceVal when adapting C. To finalize the
reasoning, we use a randomness mapping argument similar to the one that was
introduced in [32], and obtain the following lemma.

Lemma 3. For any distinguisher D which makes at most q queries in total, we
have:

∣
∣
∣Pr

[

DΣ2(η,ϕ) = 1
]

− Pr
[

DΣ3(π) = 1
]∣
∣
∣ ≤ 289 × q12

2n
.

Finally, upper bounding the statistical distance between Σ3 and Σ4 is easily
handled, and yields the following lemma.

Lemma 4. For any distinguisher D which makes at most q queries in total, we
have:

∣
∣
∣Pr

[

DΣ3(π) = 1
]

− Pr
[

DΣ4 = 1
]
∣
∣
∣ ≤ 289 × q12

2n
.

Combining Lemmas 1, 2, 3, and 4 finally enables to prove Theorem 1.

Remark 1. Our choice to use a keyed two-sided random function and a simulator
T accessing random function tables ϕ in system Σ2 allows to handle uniformly
random values, which slightly simplifies the computation of various bounds in the
proof. It is however possible (and conceptually more satisfying) to use an ideal
cipher enhanced with a Check procedure rather than a keyed two-sided random
function, and random permutation tables rather than random function tables.
This would have some nice effects in the analysis of system Σ2, in particular this
would exclude some bad events such as potential overwrites in the hash table
E when F defines an answer by reading table η or in hash tables Pi when T
defines an answer by reading tables ϕi. This kind of approach was taken in [2].

Remark 2. If one contents oneself with weak indifferentiability (where the sim-
ulator is allowed to depend on the distinguisher), one can slightly simplify the
simulator by having it abort when it is about to complete more than q chains of
the form (y0, x1, 0); this allows to get rid of the intermediate system Σ2 where
the Check procedure is added to the keyed two-sided random function (or the
ideal cipher) in order to ensure that the simulator makes a polynomial number
of queries and runs in polynomial time with probability 1. Such a simplification
does not seem to be possible if one wants to define a universal simulator which
does not depend on q.
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Abstract. We propose new generic key recovery attacks on Feistel-type
block ciphers. The proposed attack is based on the all subkeys recovery
approach presented in SAC 2012, which determines all subkeys instead
of the master key. This enables us to construct a key recovery attack
without taking into account a key scheduling function. With our ad-
vanced techniques, we apply several key recovery attacks to Feistel-type
block ciphers. For instance, we show 8-, 9- and 11-round key recovery
attacks on n-bit Feistel ciphers with 2n-bit key employing random keyed
F-functions, random F-functions, and SP-type F-functions, respectively.
Moreover, thanks to the meet-in-the-middle approach, our attack leads
to low-data complexity. To demonstrate the usefulness of our approach,
we show a key recovery attack on the 8-round reduced CAST-128, which
is the best attack with respect to the number of attacked rounds. Since
our approach derives the lower bounds on the numbers of rounds to be
secure under the single secret key setting, it can be considered that we
unveil the limitation of designing an efficient block cipher by a Feistel
scheme such as a low-latency cipher.

Keywords: block cipher, key scheduling function, all-subkeys-recovery
attack, meet-in-the-middle attack, key recovery attack, low-data com-
plexity attack.

1 Introduction

A block cipher is considered as an essential technology on modern cryptography,
since it is one of the most widely used primitives. Moreover, studies on designing
a secure and efficient block cipher are useful also for designing other symmetric
primitives such as hash functions and stream ciphers. Since DES was developed
in 1977 [19], a lot of progress has taken place in this area. Recently, with the large
deployment of network devices requiring security, block ciphers satisfying new
demands such as lightweight and low-latency have received a lot of attention. In
fact, several block ciphers designed for a lightweight hardware implementation
have been proposed such as PRESENT [9], KATAN/KTANTAN [16], LED [20]
and Piccolo [34]. The concept of a low-latency encryption, which is used for an
application requiring an instant response, was discussed in [24]. Since a low-
latency encryption requires a quick response, the number of rounds must be
reduced as much as possible compared to a general-purpose block cipher such

K. Sako and P. Sarkar (Eds.) ASIACRYPT 2013 Part I, LNCS 8269, pp. 464–485, 2013.
c© International Association for Cryptologic Research 2013
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as AES. In 2012, PRINCE was proposed as an instantiation of a low-latency
cipher [12]. Note that PRINCE is not only a low-latency cipher, but also a
lightweight block cipher even after supporting both encryption and decryption.
Those features are considered to be important in practical use of the cipher,
since its lightweightness directly leads to low power and energy consumption
and supporting decryption function without much cost leading to this cipher
being used more widely.

In general, an SPN cipher requires an inverse function when supporting de-
cryption, and thus an SPN cipher with a decryption function needs additional
gate areas. In spite of the fact that PRINCE is an SPN cipher, it is efficiently
implemented even when implementing a decryption function due to its novel
property called α-reflection. However, as pointed out by the designers, it has
been known that α-reflection reduces the security of the cipher [12,23,35] and
thus the cipher having α-reflection does not have optimal security. Meanwhile,
it has been known that a Feistel cipher, another traditional structure of block
cipher, is suitable for a lightweight block cipher especially when supporting both
encryption and decryption, since it does not require an inverse function. Thus,
a Feistel cipher is considered as a possible candidate of a low-latency cipher, if
it has sufficiently small number of rounds. However, it has been still unknown
how many rounds are sufficient for a Feistel cipher to be secure. Note that, for
low-latency encryption, since the key scheduling function can be precomputed,
it can be a heavy function. Thus, its performance with respect to low-latency is
considered to mainly depend on the data processing part, namely its number of
rounds. Hence, our question is “how many rounds can be reduced without loss
of security requirements for Feistel schemes”.

In this paper, we tackle the security evaluations of several Feistel schemes,
assuming that the key scheduling function is an ideal function. We deal with
key recovery attacks under the single secret key setting by extending the all
subkeys recovery approach [22]. Since our approach derives the lower bounds
on the numbers of rounds to be secure against a key recovery attack even if the
underlying key scheduling function is an ideal function, our results show the lim-
itation of designing a low-latency encryption by a Feistel scheme. We introduce
several advanced techniques including function reduction and key linearization.
Using those advanced techniques and with the help of the meet-in-the-middle
approach [10,21], we show several key recovery attacks on various Feistel ciphers.
Table 1 summarizes the number of attacked rounds for Feistel schemes by both
distinguishers and key recovery attacks under the single secret key and known-
key settings. Compared to the previous results, some of our attacks are the first
generic key recovery attacks and also the best for several Feistel schemes with
respect to the number of attacked rounds, even if the attacker is allowed to use
the known secret key. Moreover, our attack does not restrict the underlying F-
function to a permutation, which is a limitation of some of the previous attacks.
Furthermore, one of the advantages of our approach is its low data requirement
thanks to the meet-in-the-middle approach, in contrast to the classical statisti-
cal attacks such as an impossible differential attack [6]. As an example for the
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Table 1. Numbers of Attacked Rounds by Generic Attacks on Feistel Schemes

Single Secret Key Setting

Attack Type Feistel-1 Feistel-2 Feistel-3

5 [30] 5 [30] 5 [30]
Distinguisher 5∗ [25] 5∗ [25] 5∗ [25]

5∗ [11] 5∗ [11] 5∗ [11]

Key Recovery Attack (k = 2n) 7 [22] 8 (Ours) 9 (Ours) 11 (Ours)

Key Recovery Attack (k = 3n/2) 5 [22] 6 (Ours) 7 (Ours) 9 (Ours)

Key Recovery Attack (k = n) 3 [22] 4 (Ours) 5 (Ours) 7 (Ours)

Known Key Setting

Distinguisher not given 7 [26] 11* [33]

* : Each F function is restricted to a permutation

practical impact of our work, we show the best attack on the reduced CAST-
128 [1] even when its key scheduling function is ideal. Also, we show extremely
low-data attacks on the reduced Camellia [5] with less than 60 data sets.

This paper is organized as follows: Section 2 gives notations and definitions
used throughout this paper, and gives a brief review of the all subkeys recovery
approach. We review the related work and show its improvement in Section 3.
Our key recovery attacks on two types of Feistel ciphers and those applications
to CAST-128 and Camellia are described in Sections 4 and 5. Section 6 discusses
the usefulness of our attack. Finally, we conclude in Section 7.

2 Preliminary

In this section, we give notations used throughout this paper, then define our
target Feistel ciphers. Finally, we briefly review the all subkeys recovery approach
presented in [22].

2.1 Notation

The following notation will be used throughout this paper:
n : block size.
k : the size of the master key.

Li, Ri : left or right half of the i-th round input.
Ki : the i-th round subkey (n/2 bits).
� : the size of an S-box.
m : the number of S-boxes in an S-box layer.
Xi : the i-th round state.
Xi,j : the j-th S-box word (�-bit data) of Xi.

XiL, XiR : left or right half bits of Xi.
a|b or (a|b) : Concatenation.

2.2 Feistel Cipher

In this paper, we focus on balanced Feistel networks as illustrated in Fig. 1.
An n-bit plaintext P is divided into two sub-blocks as P = (L1, R1), where
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Fig. 1. Balanced Feistel Network (Feistel-1)

Li, Ri ∈ {0, 1}n/2. Then the (i+1)-th round input state is calculated as follows:

(Li+1, Ri+1)← (Ri ⊕FKi

i (Li), Li),

where FKi

i : {0, 1}n/2 → {0, 1}n/2 is a keyed function in the i-th round using the
i-th round (n/2)-bit subkeyKi. An n-bit ciphertext C for the r-round encryption
function is derived as C = (Rr+1, Lr+1). Note that the last round of the Feistel
cipher does not have a swap operation. Hereafter, the size of each subkey used
in one round is assumed to be half of the block size (i.e., Ki ∈ {0, 1}n/2).

In this work, we deal with three types of Feistel block ciphers illustrated in
Fig. 2. Feistel-1 denotes the Feistel cipher with random keyed F-functions. Each
subkey is assumed to be randomly independent. Thus each keyed F-function is
also independent from each other. In concrete ciphers, each subkey is usually
XORed before an F-function. Feistel-2 reflects such ciphers. In other words, the
output of the F-function Yi = FKi

i (Xi) is represented as Yi = Fi(Xi ⊕ Ki),
where Fi is a fixed function in the i-th round (not limited to a permutation).
Similarly, Feistel-3 is the Feistel-2 cipher whose Fi is limited to an SP-type F-
function, where each F-function consists of a bijective S-box layer (S-layer) and
a linear diffusion layer (P-layer), and an n/2-bit subkey is XORed before the
S-box layer. Each S-box layer consists of m �-bit S-boxes (i.e., m · � = n/2), and
each P-layer consists of an m ×m linear matrix represented as Mi. Note that
Feistel-1 includes Feistel-2 and Feistel-3, also Feistel-3 is a subset of Feistel-2.
The size of the master key is denoted as Feistel-[k]. For example, Feistel-2[n] is
the Feistel cipher with fixed F-functions XORed by a subkey before the function
whose master key size is the same as the block size (e.g., a 128-bit block cipher
taking a 128-bit key).

2.3 All Subkeys Recovery Approach [22]

The all subkeys recovery (ASR) attack was proposed by Isobe and Shibutani at
SAC 2012 [22]. The ASR attack is considered as an extension of the meet-in-the-
middle (MITM) attack, which mainly exploits a low key-dependency in the key
scheduling function. The basic concept of the ASR attack is guessing all subkeys
instead of the master key so that the attack can be constructed independently
from the structure of the key scheduling function, by regarding all subkeys as
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independent variables. Thus the attack can also be applied to a block cipher
having a complex key scheduling function.

Let us briefly review the procedure of the ASR attack. In the ASR attack,
an attacker first determines a t-bit matching state X , where X ∈ {0, 1}t. In the
forward direction, the matching state derived from a plaintext P and a set of
subkeys K(1) by a function F(1) is represented as X = F(1)(P,K(1)). Similarly,
the state computed from a ciphertext C and another set of subkeys K(2) by

a function F(2) in the backward direction is denoted as X = F−1
(2) (C,K(2)).

K(3) denotes a set of the remaining subkeys not required for computing X , i.e.,
|K(1)|+ |K(2)|+ |K(3)| = r · n/2. The attacker guesses K(1) and K(2) in parallel,

then checks if the equation F(1)(P,K(1)) = F−1
(2) (C,K(2)) holds. Note that the

equation holds when the guessed subkey bits are correct. After this process,
it is expected that there will be 2r·n/2−t key candidates. Finally, the attacker
exhaustively searches the correct key from the surviving key candidates. The
required computations of the attack in total Ccomp using N plaintext/ciphertext
pairs is estimated as

Ccomp = max(2|K(1)|, 2|K(2)|)×N + 2r·n/2−N ·t. (1)

The number of required plaintext/ciphertext pairs is max(N, �(r·n/2−N ·t)/n�).
The required memory is about min(2|K(1)|, 2|K(2)|)×N blocks, which is the cost
of the table used for the matching. Clearly, the ASR attack works faster than the
brute force attack when Eq.(1) is less than 2k, which is the required computations
for the brute force attack.

3 Generic Key Recovery Attack on Feistel-1

In this section, we first review key recovery attacks on balanced Feistel networks
presented in [22] and generalize it to Feistel-1[n], -1[ 32n] and -1[2n]. After that,
we show that the basic attack can be improved by using splice and cut [3] and
key linearization techniques. By the improved attack, the numbers of attacked
rounds for the Feistel-1 are increased by one round.

For a Feistel-1 cipher, an (n/2)-bit matching state X is computed from a
plaintext P and a set of subkeys K(1) ∈ {K(1), K(2), ..., K(a−1)} as shown in
Fig. 1 (i.e., X = F(1)(P,K(1))). Similarly, the matching state is obtained from
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a ciphertext C and another set of subkeys K(2) ∈ {K(a+1),K(a+2), ...,K(r)} as
X = F−1

(2) (C,K(2)). Also, X is computed independently from an (n/2)-bit subkey

K(a), i.e., K(3) ∈ {K(a)}.

3.1 Basic Attack on Feistel-1 [22]

For Feistel-1[2n] (e.g., a 128-bit block cipher accepting a 256-bit key), 7 rounds
of the cipher can be attacked in a straightforward manner, since F(1) and F(2)

are composed of 3 rounds of the cipher and thus the sizes of K(1) and K(2) are
both 3 · n/2 bits. In this attack, the total time complexity Ccomp using four
plaintext/ciphertext pairs is estimated as

Ccomp = max(23n/2, 23n/2)× 4 + 27·n/2−4·n/2 ≈ 23n/2+2 (= 23k/4+2)

The required memory is about 4×23n/2 blocks. Since Ccomp is less than 22n(= 2k)
when (4 < n), the attack works faster than the exhaustive key search.

Similarly to this, for Feistel-1[ 32n] and Feistel-1[n] (e.g., a 128-bit block cipher
accepting a 192-bit key or a 128-bit key), key recovery attacks of at least 5 and 3
rounds of the cipher are constructed, respectively. For Feistel-1[ 32n], F(1) and F(2)

consist of 2 rounds of the cipher, and thus the sizes of K(1) and K(2) are both n
bits. Therefore, the required time complexity using 3 plaintext/ciphertext pairs
is estimated as Ccomp = max(2n, 2n)× 3 + 25n/2−3n/2 ≈ 2n+2, and the required
memory is about 2n+2 blocks. For Feistel-1[n], a similar attack on 3 rounds
requiring 2n/2+1 (≈ 2n/2×2+2n/2) computations and (2×2n/2) blocks memory
is mounted by using 1 round of F(1) and F(2). Roughly speaking, when Eq.(1) is

less than 2k, the ASR attack works faster than the brute force attack. Therefore,
the necessary condition for the basic ASR attack is that each size of all subkeys
in F(1) and F(2) is less than the size of the master key.

3.2 Improved Attack on Feistel-1

We demonstrate that the basic attack on Feistel-1 presented in [22] is improved
by controlling the value of plaintexts. It allows us to attack one more round on
Feistel-1, e.g., an 8-round attack on Feistel-1[2n].

Suppose that an input L1(= R2) is fixed to an arbitrary (n/2)-bit constant
CON, then L2 is expressed as L2 = R1 ⊕ K ′

1, where K ′
1 = F1(K1 ⊕ CON).

Since K ′
1 depends only on K1, it is regarded that a new (n/2)-bit subkey K ′

1
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is linearly inserted in the first round without an F-function, which is called key
linearization.

As shown in Fig. 3, since K ′
1 can be divided into two (n/4)-bit words K ′

1L

and K ′
1R, the splice and cut technique in [4] enables us to separately use K ′

1L

and K ′
1R in F(1) and F(2), respectively. Note that, in the splice and cut tech-

nique, the MITM attack starts from multiple values of start states for parallel
guesses of K(1) and K(2), while the basic MITM attack starts from multiple
plaintext/ciphertext pairs.

For Feistel-1[2n], an 8-round generic key recovery attack is mounted thanks to
the splice and cut technique, while each cost (namely time, memory and data)
for the attack is increased by O(2n/4) compared to the basic attack. The size of
each key set K(1) and K(2) is increased by (n/4) bits due to the splice and cut,
and thus the size of each set K(1) and K(2) is 7n/4(= 3 · n/2+n/4) bits long. In
this attack, the total time complexity Ccomp using five start states is estimated
as

Ccomp = max(27n/4, 27n/4)× 5 + 28·n/2−5·n/2 ≈ 27n/4+3 (= 27k/8+3).

The required memory is about 5×27n/4 blocks. Since (n/4) bits of plaintexts are
varied depending on K(2) and the start states, the required data is 2n/4 chosen
plaintexts when the other 3n/4 bits of the start state are fixed.

For Feistel-1[ 32n] and Feistel-1[n], by using the splice and cut technique, key
recovery attacks of at least 6 and 4 rounds of the cipher are constructed, re-
spectively. For Feistel-1[ 32n], the sizes of K(1) and K(2) are 5n/4 bits each.
Therefore, the required time complexity with four start states is estimated as
Ccomp = max(25n/4, 25n/4) × 4 + 26n/2−4n/2 ≈ 25n/4+2, and the required mem-
ory is about 25n/4+2 blocks. For Feistel-1[n], a similar attack requiring 23n/4+2

(≈ 23n/4 × 3 + 2n/2) computations and (3 × 23n/4) blocks memory is mounted.
These attacks also require 2n/4 chosen plaintexts. Those results are summarized
in Table 2.

4 Key Recovery Attack on Feistel-2

This section shows generic key recovery attacks on Feistel-2 ciphers. In con-
trast to Feistel-1 ciphers, key injections of Feistel-2 ciphers are restricted to
XOR operations. This allows an attacker to equivalently transform subkeys,
then more rounds can be attacked. To begin with, we introduce an advanced
technique called function reduction, which enables us to reduce the number of
involved subkey bits by exploiting degrees of freedom of a plaintext/ciphertext
pair. Combining it with a (multi-)collision technique, 5, 7 and 9 rounds attacks
on Feistel-2[n], -2[ 32n] and -2[2n] are demonstrated, respectively. The overview
of the function reduction is depicted in Fig. 4. The required complexities for
those attacks are summarized in Table 2, and the overview of the attacks are
illustrated in Fig. 5. Note that the key additions of Feistel-2 are limited to XOR
operations, however, similar idea may be applied to other key additions such
as modular additions. Moreover, as an application of our approach on Feistel-2,
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Fig. 4. Function Reduction Technique

we show a key recovery attack on the reduced CAST-128 [1,2]. The structure of
CAST-128 is similar to Feistel-2, however, the size of each round key of CAST-
128 is larger than that of Feistel-2 and the key additions are not only XOR
operations but also modular additions and subtractions. Since the larger round
key generally requires more computations to guess, it seems to be hard to di-
rectly mount an attack on CAST-128. We use the improved function reduction
technique to make an attack feasible, then show a key recovery attack on the
8-round reduced CAST-128, which is the best attack known in literature.

4.1 Function Reduction Technique

Suppose that the half outputs of the r-round Feistel-2 cipher Lr+1 and Rr+1

are represented by functions FL,r and FR,r as Lr+1 = FL,r(KL, L1|R1) and
Rr+1 = FR,r(KR, L1|R1), where KL and KR denote sets of subkeys used in FL,r
and FR,r, respectively. In general, after sufficient number of round operations,
all subkeys are required to compute Lr+1, i.e., |KL| = n/2 · r, while Rr+1 is
derived independently from the last subkey Kr, i.e., |KR| = n/2 · (r− 1). For the
Feistel-2 cipher, fixing half bits of inputs, one more round of subkey data can be
reduced as follows:

Theorem 1 (Function Reduction). For the Feistel-2 cipher, if L1 is fixed,
KL and KR used in FL,r and FR,r contain at most (n/2 · r) and (n/2 · (r − 2))
subkey bits when r is odd, and contain at most (n/2 · (r− 1)) and (n/2 · (r− 1))
subkey bits when r is even, respectively.

Proof. By using the key linearization, L2 is considered to be linearly affected by
the subkey K ′

1 as follows. Assuming that L1 is an arbitrary (n/2)-bit constant
CON, L2 and R2 are expressed as L2 = R1 ⊕ K ′

1 and R2 = CON , where
K ′

1 = F (K1 ⊕ CON)1. Since K ′
1 depends only on K1, it can be regarded as a

1 For simplicity, we assume that all F-functions are identical. However, our attack
works even if each F-function is distinct from each other.
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Fig. 5. Key Recovery Attacks on Feistel-2 Ciphers

new subkey instead of K1 (see Fig. 4-(b)). By using an equivalent transform,
K ′

1 is moved to the end of the cipher as shown in Figs. 4-(c) and (d). After the
transform, each subkey introduced in even round is XORed with K ′

1, and thus
it can be redefined as K ′

p = Kp ⊕K ′
1 (p is even). When r is even, K ′

1 is linearly
affecting to Rr+1 in the last as shown in Fig. 4-(c). Therefore, both Lr+1 and
Rr+1 contain at most (n/2 ·(r−1)) bits of subkeys. When r is odd, K ′

1 is linearly
affecting to Lr+1 in the last as shown in Fig. 4-(d). Consequently, Rr+1 contains
at most (n/2 · (r− 2)) bits of subkeys, while the amount of subkey bits required
for computing Lr+1 is not reduced (i.e., |KL| = n/2 · r). ��

The function reduction technique, which consists of equivalent transforms of
round keys and the key linearization, is related to the complementation prop-
erties of Feistel networks in which the round keys of even (or odd) rounds are
complemented by some fixed values. It essentially exploits the property of Feis-
tel network that an input of a keyed F-function in the i-th round (Li) linearly
affects an input of a keyed F-function in the (i + 2)-th round (Li+2). In other
words, the relation of Li and Li+2 is expressed as Li+2 = Li⊕Xi+1, where Xi+1

is an output of an F-function of (Li+1). We exploit it in the line of a MITM at-
tack to reduce the subkey data for the computation of the intermediate values,
while the previous attacks are used for differential attacks [15,8] and speeding
up keysearches using equivalent keys [7,18].
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4.2 Key Recovery Attack on 5-Round Feistel-2[n]

In order to apply the function reduction to both the forward and backward
computations, we prepare plaintext/ciphertext pairs in the form of L1 = CON1

and R6 = CON2, where CON1 and CON2 denote arbitrary (n/2)-bit constants.
Let R4 be an (n/2)-bit matching state. From Theorem 1, in the forward

computation, R4 can be computed by an (n/2)-bit subkey K ′
2(= K2 ⊕ K ′

1),
where K ′

1 = F (K1 ⊕ CON1). In the backward computation, since R4 can be
regarded as an output of the even round (r = 2), R4 can also be computed by an
(n/2)-bit subkey K ′

4(= K4 ⊕K ′
5), where K ′

5 = F (K5 ⊕ CON2), i.e., K(1) ∈ K ′
2

and K(2) ∈ K ′
4. Since |K(1)| = |K(2)| = n/2 and the size of the matching state

is also n/2, two plaintext/ciphertext pairs are sufficient to determine K(1) and
K(2). In order to obtain such two pairs that have the form of L1 = CON1

and R6 = CON2, we use 2n/4 chosen plaintexts by randomly changing R1 as
P = (CON1|R1). After this process, we have 2n/4 corresponding ciphertexts,
and thus there will exist (n/2) bits colliding R6 with high probability due to the
birthday paradox.

The time complexity of determining K ′
2 and K ′

4 by the MITM approach is
estimated as Ccomp = max(2n/2, 2n/2) × 2 = 2n/2+1. In order to determine all
subkeys, we use the following equation: F (R4 ⊕ K3) = R1 ⊕ K ′

1 ⊕ L6 ⊕ K5 =
R1 ⊕ L6 ⊕ K ′′

1 , where K ′′
1 = K ′

1 ⊕ K5. Since R4 can be computed from K ′
2 or

K ′
4, we can recursively mount the MITM approach to determine K3 and K ′′

1

with complexity of 2n/2+1(= max(2n/2, 2n/2) × 2). After exhaustively guessing
K1 with a time complexity of 2n/2, all subkeys Ki (1 ≤ i ≤ 5) are determined
from the previously obtained subkeys K ′

2, K
′
4 and K ′′

1 . Therefore, the whole time
complexity is estimated as 2n/2+2(≈ 2n/2+1 +2n/2+1 +2n/2). Due to k = n, the
time complexity 2n/2+2 = 2k/2+2 is less than 2k which is required computations
for the brute force attack. The required data is 2n/4 chosen plaintext, and the
required memory is about 2n/2+1 words. If the function reduction technique is
used only in the forward computation, a 4-round attack is constructed with less
data (see Fig. 5-(a) and Table 2).

4.3 Key Recovery Attack on 9-Round Feistel-2[2n]

A key recovery attack on a 9-round Feistel-2[2n] is constructed in a similar
way to the 5-round attack on Feistel-2[n]. In this attack, we can add 2 more
rounds in each direction, and a 6-multicollision is required to obtain desired
plaintext/ciphertext pairs unlike the attack on Feistel-2[n]. It has been known
that an n-bit t-multicollision is found in t! · 2n·(t−1)/t random data with high
probability [36]. Thus, the six plaintext/ciphertext pairs whose form are P =
(CON1|R1) and C = (CON2|L10) could be found from 6!1/6 · (2n/2)5/6 ≈ 3 ·
(2n/2)5/6 chosen plaintexts. More precisely, after querying 3 · (2n/2)5/6 chosen
plaintexts with distinct R1, there will exist a 6-collision of R10 in corresponding
ciphertexts with high probability (see Fig. 5-(c) and Table 2).
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Table 2. Details of Our Attacks

Target key size Round Time Memory Data Reference

Feistel-1

n 4 23n/4+2 23n/4+2 2n/4 Sect. 3
3
2
n 6 25n/4+2 25n/4+2 2n/4 Sect. 3

2n 8 27n/4+3 27n/4+3 2n/4 Sect. 3

Feistel-2

n
4 2n/2+2 2n/2+1 2 Sect. 4.2

5 2n/2+2 2n/2+1 2n/4 Sect. 4.2

3
2
n

6 25n/4+4 2n+4 9 Sect. 4.4

7 25n/4+4 2n+4 9!1/9 · (2n/2)8/9 Sect. 4.4

2n
8 23n/2+3 23n/2+3 6 Sect. 4.3

9 23n/2+3 23n/2+3 6!1/6 · (2n/2)5/6 Sect. 4.3

Feistel-3

n 7 23n/4+� ·N1 23n/4+� ·N1 N1 Sect. 5.3

3
2
n

8 2n+� ·N2 2n+� ·N2 N2 Sect. 5.5

9 2n+� ·N2 2n+� ·N2 N !1/N2 · (2n/2)(N2−1)/N2 Sect. 5.5

2n 11 27n/4+� ·N3 27n/4+� ·N3 N3 Sect. 5.4

N1 = (3n/2 + 2�)/�, N2 = (2n+ 2�)/�, N3 = (7n/2 + 2�)/�

4.4 Key Recovery Attack on 7-Round Feistel-2[3
2
n]

In this attack, R5 is used as the matching state. From Theorem 1, in the forward
computation, R5 can be computed from 3 · n/2 bits subkeys K ′

2, K3 and K ′
1,

where K ′
2 = K2⊕K ′

1 and K ′
1 = F (K1⊕CON1). In the backward computation,

R5 can be computed from 3 · n/2 bits subkeys K ′
6, K5 and K ′

7, where K ′
6 =

K6 ⊕ K ′
7 and K ′

7 = F (K7 ⊕ CON2). Since R5 is expressed as K ′
1 ⊕ L4 and

K ′
7 ⊕ (F (R6 ⊕ K5) ⊕ L6), if only (n/4) bits of K ′

1 ⊕ K ′
7 are guessed, (n/4)-

bit matching is feasible. It is regarded that K ′′
7 (= K ′

1 ⊕K ′
7) is included in the

backward computation (see Fig. 5-(b)).
Then, since |K(1)| = n/4, |K(2)| = 5n/4, and the size of the matching state

is n/4, nine plaintext/ciphertext pairs are required to determine K(1) and K(2)

due to the relation (n + 5n/4)/(n/4) = 9. Such nine plaintext/ciphertext pairs
whose form are P = (CON1|R1) and C = (CON2|L8) can be found from 9!1/9 ·
(2n/2)8/9 ≈ 4.2 · (2n/2)8/9 chosen plaintexts. The other complexities required for
this attack and the low data attack on 6-round Feistel-2[ 32n] are described in
Table 2.

4.5 Application to 8-Round Reduced CAST-128

In order to demonstrate the practical impact of our work on Feistel-2, we apply
it to CAST-128 block cipher. Using the improved function reduction techniques,
we show an attack on the 8-round reduced CAST-128 having more than 118 bits
key, which is the best attack with respect to the number of attacked rounds in
literature even when its key scheduling is an ideal function.
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Fig. 6. Key Recovery Attack on 8-Round CAST-128

Description of CAST-128. CAST-128 [1,2] is a 64-bit Feistel block cipher
accepting a variable key size from 40 up to 128 bits (but only in 8-bit increments).
The number of rounds is 16 when the key size is longer than 80 bits. First, the
algorithm divides the 64-bit plaintext into two 32-bit words L0 and R0, then the
i-th round function outputs two 32-bit data Li+1 and Ri+1 as follows:

Li+1 = Ri ⊕ Fi(Li,K
rnd
i ), Ri+1 = Li,

where Fi denotes the i-th round function and Krnd
i is the i-th round key con-

sisting of a 32-bit masking key Kmi and a 5-bit rotation key Kri . The detail of
Fi is expressed as

Fi = f((Li©i Kmi) ≪ Kri),

where f consists of four 8 to 32-bit S-boxes, ≪ Kri denotes a Kri-bit left rota-
tion, and©i denotes addition, XOR or subtraction depending on the round num-
ber i, i.e.,©i denotes addition for i ∈ {1, 4, 7, 10, 13}, XOR for i ∈ {2, 5, 8, 11, 14}
and subtraction for i ∈ {3, 6, 9, 12, 15}. We omit the details of f , since, in our
analysis, it is regarded as the random function that outputs a 32-bit random
value from a 32-bit input.

Key Recovery Attack on 8-Round CAST-128. The structure and the
parameter of CAST-128 having sufficiently large key are similar to Feistel-2[2n].
However, for CAST-128, a 37(= 32 + 5)-bit subkey is inserted into each Fi, i.e.,
a 32-bit subkey is used in ©i and the remaining 5-bit subkey is used in a key
dependent rotation, while a 32-bit subkey is inserted in each round for Feistel-
2[2n] with n = 32. Thus, the 9-round attack on Feistel-2[2n] is not directly
applicable to CAST-128. However, the improved function reduction technique
allows us to construct an 8-round attack on CAST-128.

Let R5 be an (n/2)-bit matching state. In the backward computation, R9 is
fixed as CON , and K ′

8 = f((CON⊕Km8) ≪ Kr8) is moved to L5 and an input
of the 7-th round function, by convertingKm5 into K ′

m5
= K ′

8⊕Km5 , as shown in
Fig. 6. Then, the input of f in the 7-th round is expressed as (L9 ⊕K ′

8) +Km7 .
If the lower b bits of L9, which are controllable by the ciphertext, are fixed
to 0, the lower b bits of this computation are expressed as K ′

8 + Km7 . Thus,
(K ′

8 + Km7) is regarded as a new b-bit subkey K ′
m7

= (K ′
8 + Km7), while the

upper (n/2− b) bits remain (L9 ⊕K ′
8) +Km7 . In the backward computation of

R5, |K(2)| = 37× 2 + (b+ (n/2− b)× 2 + 5) bits of the key are involved.



476 T. Isobe and K. Shibutani

L
i

L
i

L
i

L
i+1

L
i+2

L
i+3

L
i+3

R
i

R
i

R
i+1

R
i+2

R
i+3R

i+3

R
i+3

M
−1
i

(R
i
)

M
−1
i+2

(L
i+3)

K
i

K
i

K
i

K
i+1

K
i+2K

i+2

K
i+2

M
i

M
i

M
i

M
i+1

M
i+2M

i+2
M

i+2

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

X

X

X

X

X matching

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

Fig. 7. Matching without Matrix

Evaluation. Since |K(1)| = 111, |K(2)| = 114 (b = 29) and the size of the
matching state is 32 bits, eight plaintext/ciphertext pairs are required to de-
termine K(1) and K(2) due to the relation (111 + 114)/32 < 8(= 232−29). The

required time complexity to determine subkeys Krnd
1 , Krnd

2 , Krnd
3 , Krnd

6 , K ′
m5

,
Kr5 , the lower 29 bits of K ′

m7
, the upper 3 bits of K ′

8, and Km7 is estimated
as Ccomp = max(2111, 2114) × 10 ≈ 2118. The remaining Kr4 and K ′

8 are ex-
haustively searched with the time complexity of 264. Then, all subkeys are ob-
tained by using the relations of K ′

m7
= K ′

8 + Km7 , K ′
m5

= K ′
8 ⊕ K ′

m5
and

K ′
8 = f((CON ⊕Km8) ≪ Kr8). The required data is eight chosen ciphertexts,

and the required memory is 2111 words. Therefore, when the key size is more
than 118 bits long, our attack works faster than the brute force attack.

5 Key Recovery Attack on Feistel-3

This section presents generic key recovery attacks on Feistel-3 ciphers. Feistel-3
ciphers are the Feistel-2 ciphers whose F-functions are restricted to be SP-type F-
functions, which consist of an S-box layer followed by a linear matrix operation.
This allows an attacker to exploit a linearity of a matrix computation, and thus
the number of attacked rounds can be increased. To begin with, we review two
techniques which exploit a linearity of a matrix computation. We refer those
two techniques as matching without matrix and matrix separation to make our
explanation simple. However, those techniques have already been introduced,
for example, in [29,32]. Combining them with a (multi-)collision technique and
function reduction, 7, 9 and 11 rounds attacks on Feistel-3[n], -3[ 32n] and -3[2n]
are demonstrated, respectively. Furthermore, as an application of our approach
on Feistel-3, we show several key recovery attacks on the reduced Camellia [5].
Since Camellia is a Feistel cipher with SP-type F-functions, our attack on Feistel-
3 can be directly applied to it even if its key scheduling function is ideal. Besides,
the number of attacked rounds by our attack is further increased by one round
for Camellia due to its non-MDS matrix. Consequently, we present generic key
recovery attacks requiring extremely low data on the 8-, 10-, 12-round reduced
Camellia without FL/FL−1 functions and key whitenings.
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Fig. 8. Matrix Separation

5.1 Matching without Matrix [32]

Let us consider three consecutive rounds of the Feistel-3 cipher whose input and
output are represented as (Li|Ri) and (Li+3|Ri+3) as shown in Fig. 7. Assuming
that an attacker knows those input and output variables, the following equation
holds:

Fi(Li ⊕Ki)⊕Ri = Fi+2(Ri+3 ⊕Ki+2)⊕ Li+3. (2)

In order to check if the equation holds, we need to guess 2 · n/2 bits subkeys
Ki and Ki+2, while Ki+1 is not needed to be guessed. However, if F-functions
are SP-type F-functions (i.e., Fi = Mi ◦ Si, where Mi and Si denote an m×m
matrix and an S-box layer consisting of m �-bit S-boxes, respectively), the size
of guessing subkey bits can be reduced by exploiting the linearity of the matrix
operation. Since Mi is a linear function, Eq.(2) is redescribed as:

Mi(Si(Li ⊕Ki))⊕Ri = Mi+2(Si+2(Ri+3 ⊕Ki+2))⊕ Li+3,

Mi(Si(Li ⊕Ki)⊕M−1
i (Ri)) = Mi+2(Si+2(Ri+3 ⊕Ki+2)⊕M−1

i+2(Li+3)).

When Mi = Mi+2, we have

Si(Li ⊕Ki)⊕M−1
i (Ri) = Si+2(Ri+3 ⊕Ki+2)⊕M−1

i+2(Li+3). (3)

Unlike Eq.(2), we can separately check if Eq.(3) holds by the size of the S-
box �. Therefore, this technique enables us to reduce the number of subkey
bits to be guessed for the 3-round matching from 22·n/2 to 22�. When Mi �=
Mi+2, the matching technique called matching through matrix presented in [31]
is utilized. In this case, more than m · � bits subkeys are required to be guessed.
For simplicity, from now on, we assume that Mi = Mi+2.

In the function reduction, the modified subkey K ′
1 affects L2t and R2t−1 (t =

1, 2, ...). Also, in the matching without matrix, we utilize the relation of Li+1 as
the matching state. This implies that if (i + 1) is even (i.e., (i + 1) = 2t), Li+1

is affected by K ′
1 and it cannot be used as the matching state. Therefore, if the

matching without matrix is used with the function reduction, the starting round
of the matching i must be even (i.e., (i+ 1) must be odd).
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5.2 Matrix Separation [29]

In general, for the function reduction technique, all inputs of an F-function
are needed to be fixed. However, in the Feistel-3 ciphers, the (partial) function
reduction is constructed by fixing only a part of inputs due to the linearity of the
matrix. This technique referred as matrix separation in this paper gives more
degrees of freedom to the inputs.

Since Mi is a linear operation, each operation can be divided by � bits. For
instance, we show the case of m = 4 as an example (see Fig. 8). Suppose that
Ki = (Ki,1|Ki,2|Ki,3|Ki,4), Ki,j ∈ {0, 1}� and Li = (Li,1|Li,2|Li,3|Li,4), Li,j ∈
{0, 1}�. If three input words Li,1, Li,2 and Li,3 are fixed, only 3/4× n/2 bits of
Ki are linearly inserted into the (i + 1)-round by regarding T = M(S′((Li,1 ⊕
Ki,1)|(Li,2⊕Ki,2)|(Li,3⊕Ki,3))|0�) as new subkey bits, where S′ consists of three
S-boxes and 0� denotes � bits of 0. Note that T is an (n/2)-bit data, however,
it is determined by (3/4 · n/2) bits subkeys Ki,1, Ki,2 and Ki,3. Since Li,4 is
not fixed, M(03/4·n/2|s(Li,4 ⊕Ki,4)) is non-linearly inserted into the (i + 1)-th
round.

5.3 Key Recovery Attack on 7-Round Feistel-3[n]

For the 7-round Feistel-3[n], it seems that the function reduction is applied to
both directions and the matching without matrix is used in the rounds 3 to 5.
However, this approach does not work due to the restriction of the combina-
tion of the matching without matrix and the function reduction. To overcome
this problem, we utilize the partial function reduction in conjunction with the
matching without matrix.

At first, L1 is fixed as CON1, and K ′
1 = F (K1 ⊕ CON1) is moved to R5 by

converting K2 and K4 into K2⊕K ′
1 and K4⊕K ′

1, respectively. In addition, R1L,
which is the left half of R1 (n/4 bits), is also fixed as an n/4-bit constant CONL.
Using the matrix separation technique, the partial function reduction technique
is applicable to the left half of K ′

2 represented as K ′
2L. Specifically, let an n/2-bit

variable K ′′
2 be K ′′

2 = M(S′(K ′
2L ⊕ CONL)|0n/4), where S′ consisting of m/2

S-boxes and 0n/4 denotes n/4 bits of 0. Since K ′′
2 is linearly inserted in round 2

by the matrix separation, it is possible to move to L7 (see Fig. 9-(a)).
The matching without matrix technique is applied to the three consecutive

rounds from rounds 4 to 6. In the forward and backward computations, (L4|R4)
and (L7|R7) are computable from (K ′

2R,K
′
3) and (K ′

2L,K
′
7), respectively. Then,

if � bits of K ′
4 and K6 are guessed, an �-bit matching is feasible, i.e., K(1) ∈

{K ′
2R,K

′
3,K

′
4,a} and K(2) ∈ {K ′

2L,K
′
7,K6,a}, where (1 ≤ a ≤ m), and K ′

4,a and
K6,a denote arbitrary � bits data of K ′

4 and K6, respectively.
Since |K(1)| = |K(2)| = 3/2 · n/2 + � and the matching size is � bits, N1 =

(3n/2 + 2�)/� plaintext/ciphertext pairs are required to determine K(1) and
K(2). The complexity of determining K(1) and K(2) is estimated as Ccomp =

max(23n/4+�, 23n/4+�)×N1. After that, we are able to determine the other bits
for finding all subkey bits by using a simple MITM attack on the remaining K ′

4

and K6, and K ′
1 and K5, respectively.
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(a) 7-round Attack on Feistel-3[n]

(b) 9-round Attack on Feistel-3[ 32n]

(c) 11-round Attack on Feistel-3[2n]

Fig. 9. Key Recovery Attacks on Feistel-3 Ciphers

Therefore, the whole time complexity is estimated as 23n/4+� × N1. Due to
k = n, the required complexity 23k/4+� ·N1 is less than 2k. The required data is
N1 = (3n/2 + 2�)/� chosen plaintexts, and the memory is 23n/4+� ·N1 words.

5.4 Key Recovery Attack on 11-Round Feistel-3[2n]

Similarly to the attack on the 7-round Feistel-3[n], chosen plaintexts in the form
of P = (L1|R1L|R1R) = (CON |CONL|R1R) are used. Then two more rounds can
be added to both forward and backward directions due to increasing the master
key size. Thus, an 11-round attack is constructed. For the detailed parameters,
see Table 2 and Fig. 9.

5.5 Key Recovery Attack on 9-Round Feistel-3[3
2
n]

As shown in Fig. 9-(b), for the 9-round Feistel-3[ 32n], the function reduction is
applied to both directions combined with the matching without matrix to the
rounds 4 to 6, since the middle of the matching is odd indexed round. Thus, a
key recovery attack is constructed in a straightforward way, unlike the attacks
on Feistel-3[n] and -3[2n].

In this attack, since |K(1)| = |K(2)| = 2n/2 + � and the matching size is �
bits from Fig. 9-(b), N2 = (2n+2�)/� plaintext/ciphertext pairs are required to
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determine K(1) and K(2). Such pairs in the form of L1 = CON1 and R10 = CON2

are found from N2!
1/N2 · (2n/2)N2−1/N2 chosen plaintext/ciphertext pairs. Note

that, if the number of required chosen plaintext/ciphertext pairs, which depends
on the parameter n and �, is more than n/2, the partial function reduction
technique can be applied to L1 and R10. Otherwise, another attack approach
is required for this variant. Moreover, if the function reduction is used only in
the forward direction, an 8-round attack with extremely low data complexity is
derived (see Table 2).

5.6 Application to Reduced Camellia

In order to demonstrate the usefulness and versatility of our approach on Feistel-
3, we apply our attack to the reduced version of Camellia block cipher [5], which
is Camellia without FL/FL−1 functions and key whitenings. Camellia is a Feis-
tel block cipher whose F-function is the SP-type F-function consisting of eight
8-bit S-boxes followed by an 8 × 8 matrix operation. Thus, our attacks on the
Feistel-3 cipher presented in the previous section are directly applicable to the
7/9/11-round reduced Camellia-128/192/256. Note that since our attack does
not depend on the key scheduling function, the attack works on any key schedul-
ing function even ideal. Furthermore, by exploiting the low diffusion property
on the matrix used in Camellia, we develop the advanced five round matching
technique. Then we present low-data complexity attacks requiring less than 60
plaintext/ciphertext pairs on the 8/10/12-round reduced Camellia-128/192/256
without FL/FL−1 and key whitenings.

Five Round Matching for Non-MDS Matrix. Let us consider five consec-
utive rounds of the Camellia whose input and output are represented as (Li|Ri)
and (Li+5|Ri+5), respectively. By using the three-round matching without ma-
trix technique in the middle, the following equation holds.

S(Li+1 ⊕Ki+1)⊕M−1(Li) = S(Ri+4 ⊕Ki+3)⊕M−1(Ri+5).

Since the S-box layer consists of eight 8-bit S-boxes, by guessing two bytes of
subkeys with the same byte position Ki+1,j and Ki+3,j , the 8-bit matching is
possible if the same indexed 8 bits data Li+1,j and Ri+4,j are also known. Since
Li+1 = M(S(Li⊕Ki))⊕Ri and Ri+4 = M(S(Li+5⊕Ki+4))⊕Ri+5, all bits of Ki

and Ki+4 are required to be guessed to obtain any byte of Li+1 and Ri+4 if the
underlying matrix M is optimal (i.e., MDS matrix). However, for Camellia, the
8 bits data Li+1,j and Ri+4,j are derived by guessing corresponding 40(= 8× 5)
bits of Ki and Ki+4 when (5 ≤ j ≤ 8), since Camellia utilizes non-MDS matrix
(See [5] for the details of the matrix used in Camellia). For example, Li+1,5

and Ri+4,5 are derived from Ki,p(p ∈ {1, 2, 6, 7, 8}) and Ki+4,q(q ∈ {1, 2, 6, 7, 8},
respectively. Therefore, the number of key bits to be guessed for the 5-round
matching in each direction is reduced from 128 bits (= 64 × 2) to 48 bits (= 8
+ 40).
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Fig. 10. Key Recovery Attacks on Reduced Camellia-128/192/256

Key Recovery Attack on 8-Round Reduced Camellia-128. Let us con-
sider the 8-round reduced Camellia-128. In order to use the function reduction
technique in the forward process, we collect chosen plaintexts in the form of
L1 = CON1.

The five round matching for non-MDS matrix technique is used from rounds
3 to 7. In the forward and backward computations, (L3|R3) and (L8|R8) are
computable by using K ′

2(= K2 ⊕K ′
1) and K8, respectively. Then, for the 8-bit

matching, 8 bits subkey K ′
4,a and the corresponding 40 bits of subkey K3 in the

forward computation are required to be guessed, where K ′
4 = K4⊕K ′

1. Similarly,
we need to guess 8 bits subkey K6,a and the corresponding 40 bits of subkey K7

in the backward computation. In other words, K(1) ∈ {K ′
2,K

′
4,a, 40 bits of K3}

and K(2) ∈ {K8,K6,a, 40 bits of K7}, where 5 ≤ a ≤ 8.
Since |K(1)| = |K(2)| = 112 and the matching size is 8 bits, 28(= (112+112)/8)

plaintext/ciphertexts are sufficient to determine K(1) and K(2). The complexity
of determining K(1) and K(2) is estimated as Ccomp = max(2112, 2112)×28 ≈ 2117.
After that, we are able to determine the other bits for finding all subkeys by using
the simple MITM attack on the remaining 24 bits of K3 and K7, and 56 bits of
K ′

4 and K6 in the forward and backward computations, respectively. Therefore,
the whole complexity is estimated as 2117(≈ 2117 + 280). The required memory
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Table 3. Comparisons of Key Recovery Attacks on Reduced Camellia-128/192/256
without FL/FL−1 Functions and Key Whitenings

Target # Attacked Rounds Attack Type Time Memory Data Reference

Camellia-128
12 Impossible Differential 2116.6 not given 2116.3 [28]

8 Meet-in-the-Middle 2117 2117 28 Sect. 5.6

Camellia-192
14 Impossible Differential 2182.2 not given 2117 [27]

10 Meet-in-the-Middle 2190 2174 44 Sect. 5.6

Camellia-256
16 Impossible Differential 2249 not given 2123 [27]

12 Meet-in-the-Middle 2246 2246 60 Sect. 5.6

is 2117 words, and the required data is only 28 chosen plaintext/ciphertext pairs
(see Fig. 10-(a)).

Key Recovery Attack on 12-Round Reduced Camellia-256. Similarly
to the attack on the reduced Camellia-128, for the reduced Camellia-256, the
five round matching for non-MDS matrix technique is used. Since two more
rounds can be appended to each direction, a 12-round attack is constructed (see
Fig. 10-(c) and Table 3).

Key Recovery Attack on 10-Round Reduced Camellia-192. In this at-
tack, in order to utilize the function reduction technique in conjunction with
the matrix separation technique, we collect chosen plaintexts in the form of
L1 = CON1 and R1,1−7 = CONL, where R1,1−7 denotes the left 56 bits of R1

and CONL is a 56-bit constant. Then K ′
1 = F (CON1 ⊕K1) is moved to R7 by

redefining K ′
p = Kp ⊕K ′

1(p = 2, 4, 6). In addition, the left 56 bits of K ′
2 defined

as K ′
2,1−7 is also moved to R10 by using the partial function reduction technique.

Namely, we assume that K ′′
2 = M(S′(K ′

2,1−7 ⊕ CONL)|08) is linearly inserted
in round 2 and the remaining 8-bit subkey K ′

2,8 is non-linearly inserted in round
2, where S′ consists of seven 8-bit S-boxes.

The five round matching for non-MDS matrix technique is used from rounds
5 to 9. Here, (L5|R5) and (L10, R10) are computed from (K ′

2,8,K
′
3(= K3 ⊕

K ′′
2 ),K

′
4(= K4 ⊕ K ′

1L)) and (K ′
2,1−7,K9), respectively. For the 8-bit match-

ing, K ′
6,8 and the corresponding 40 bits of K ′

5(= K5 ⊕ K ′′
2 ) are required to be

guessed in the forward computation, where K ′
6 = K6 ⊕ K ′

1. Similarly, in the
backward computation, K8,8 and the corresponding 40 bits of K ′

9(= K9 ⊕K ′′
2 )

are required to be guessed. Namely, K(1) ∈ {K ′
2,8,K

′
3,K

′
4,K

′
6,8, 40 bits of K ′

5}
and K(2) ∈ {K ′

2,1−7,K9,K8,8, 40 bits of K ′
9}. In this attack, the whole complex-

ity to determine all subkey bits is estimated as 2190(≈ 2190 +280). The required
memory is 2174(≈ 2168 × 44) words, and the required data is only 44 chosen
plaintext/ciphertext pairs (see Fig. 10-(b) and Table 3).
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6 Discussion

In order to compare the numbers of attacked rounds by our attacks with the
previous results, we consider key recovery attacks from a 5-round impossible
differential distinguisher or a 5-round zero-correlation linear distinguisher on
the Feistel ciphers employing bijective F-functions [6,11]. Note that those distin-
guishers depend only on the structure of the cipher unlike the other distinguishers
such as a differential and a linear distinguisher. When k = n, guessing n/2 bits
subkey involved in the 6-th round, it is possible to construct a 6-round key recov-
ery attack from the 5-round distinguishers. Similarly, for k = 3n/2 and k = 2n,
a 7 and an 8-round key recovery attacks are constructed by additionally guess-
ing n/2 and n bits subkeys, respectively. Compared to those results, our attacks
are the best attacks with respect to the number of attacked rounds for Feistel-
2[2n], -3[n], -3[ 32n] and -3[2n] as described in Table 1. Also, for Feistel-1[2n]
and Feistel-2[ 32n], the same numbers of rounds are attacked by our approach.
Especially, the attack on the 11-round Feistel-3[2n] greatly exceeds the number
of attacked rounds given by the distinguisher based attacks. More importantly,
Feistel-3[2n] structure is well used in concrete block ciphers such as a 128-bit
block cipher taking a 256-bit key, e.g., Camellia-256.

In addition, thanks to the MITM approach, most of our attacks require an
extremely small data complexity, in contrast to the classical statistical attacks
such as the impossible differential and zero correlation linear attacks that gener-
ally require huge amount of data. This implies that our attacks may work even
if the number of queries to the encryption oracle is restricted. In fact, the similar
approach, which is the low-data complexity attacks on AES, has already been
studied in [13,14]. Thus, our work is also regarded as the first evaluation results
on the low-data complexity attacks on the Feistel schemes.

7 Conclusion

This paper has shown the improved generic key recovery attacks on Feistel
schemes independent of the key scheduling function. The proposed approach
is based on the all subkeys recovery attack. With several advanced techniques
such as function reduction and key linearization, which basically reduce the num-
ber of involved subkey bits, we presented several new key recovery attacks on
the Feistel schemes.

To demonstrate the usefulness and the versatility of our approach, we showed
several attacks on the concrete block ciphers including CAST-128 and Camellia.
Among them, we would like to stress that the presented attack on the 8-round
reduced CAST-128 having more than 118 bits key is the best attack with respect
to the number of attacked rounds. Since our approach is generic, it is expected
to be applied to other Feistel-type block ciphers. We believe that our results are
useful not only for a deeper understanding the security of the Feistel schemes,
but also for designing an efficient block cipher such as a low-latency cipher.
Moreover, we expect that our attacks could be improved by combining with the
recent attack called sieve-in-the-middle attack [17].
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Abstract. The development of a leakage detection testing methodology
for the side-channel resistance of cryptographic devices is an issue that
has received recent focus from standardisation bodies such as NIST. Sta-
tistical techniques such as hypothesis and significance testing appear to
be ideally suited for this purpose. In this work we evaluate the candi-
dacy of three such detection tests: a t-test proposed by Cryptography
Research Inc., and two mutual information-based tests, one in which data
is treated as continuous and one as discrete. Our evaluation investigates
three particular areas: statistical power, the effectiveness of multiplicity
corrections, and computational complexity. To facilitate a fair compar-
ison we conduct a novel a priori statistical power analysis of the three
tests in the context of side-channel analysis, finding surprisingly that the
continuous mutual information and t-tests exhibit similar levels of power.
We also show how the inherently parallel nature of the continuous mu-
tual information test can be leveraged to reduce a large computational
cost to insignificant levels. To complement the a priori statistical power
analysis we include two real-world case studies of the tests applied to
software and hardware implementations of the AES.

1 Introduction

The evaluation of the resilience of cryptographic devices against side-channel
adversaries is an issue of increasing importance. The potential of side-channel
analysis (SCA) as an attack vector is driving the need for standards organisations
and governing bodies to establish an acceptance-testing methodology capable of
robustly assessing the vulnerability of devices; the National Institute of Stan-
dards and Technology (NIST) held a workshop in 2011 driving the requirements
[4] and recent papers have been published on this topic by industry [13,16].

Current evaluation methodologies such as Common Criteria [2], used by bod-
ies such as ANSSI [1] and BSI [3], consist of executing a battery of known side-
channel attacks on a device and considering whether the attack succeeds and, if
so, the quantity of resources expended by an adversary to break the device. This
methodology is likely to prove unsustainable in the long-term: the number and
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type of Simple Power Analysis (SPA), and particularly Differential Power Anal-
ysis (DPA) attacks is steadily increasing year-on-year, lengthening the testing
process and forcing evaluation bodies to keep up-to-date with an increasingly
large, technically complex and diverse number of researched strategies.

A desirable complement or alternative to an attack-focused evaluation strat-
egy is to take a ‘black-box’ approach; rather than attempting to assess security
by trying to find the data or computational complexity of an optimal adversary
against a specific device, we can attempt to quantify whether any side-channel
information is contained in power consumption data about underlying secrets
without having to precisely characterise and exploit leakage distributions. We
describe this as a detection strategy; the question any detection test answers is
whether any side-channel information is present, and not to precisely quantify
the exact amount or how much of it is exploitable. Detection-based strategies
can be used to support ‘pass or fail’ type decisions about the security of a device
[13], or can be used to identify time points that warrant further investigation.

In practice we estimate information leakage, and so any reasonable detection
strategy should ideally incorporate a degree of statistical rigour. In this paper we
provide a comprehensive evaluation of three leakage detection hypothesis tests
in the context of power analysis attacks: a t -test proposed by [13], and two tests
for detecting the presence of zero mutual information (MI)—one in which power
traces are treated as continuous data (hereafter the CMI test) [10], and one as
discrete (hereafter the DMI test) [9].

Our contribution. Previous work in the context of side-channel analysis has as-
sessed detection tests through practical experimentation only [13]. This approach
creates flawed comparisons of tests for reasons similar to those encountered in
the practical analysis of distinguishers in DPA [28]; the effects of sample size and
estimation error on detection test performance cannot be quantified in a prac-
tical experiment and consequently it becomes difficult to draw fair comparisons
that apply in a general context. To ensure a fair comparison in this work we
perform an a priori statistical power analysis1 of the three detection tests using
a variety of practically relevant side-channel analysis scenarios. The analysis al-
lows us to study the effects that sample size, leakage functions, noise and other
hypothesis testing criteria have on the performance of the detection tests in a fair
manner. In addition to statistical power, we also investigate the computational
complexity of the tests and the effectiveness of multiplicity corrections.

Related work. An alternative to the black-box strategy is the ‘white-box’ leakage
evaluation methodology proposed by Standaert et al. [26]. Their methodology re-
quires an estimation of the conditional entropy of a device’s leakage distribution
using an estimated leakage model. This allows for a tighter bound on the amount
1 The overlap in terminology of the statistical power analysis of hypothesis tests with

the entirely different differential or simple power analysis technique is unfortunate.
To establish a reasonable separation of terminology we will use ‘DPA’ or ‘SPA’ to
address the latter technique, and ‘statistical power’ when referencing the former
topic.
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of information available to an adversary, but requires additional computational
expense and the ability to profile a device, and bounding estimation error in the
results is non-trivial. The black-box detection approach outlined in this work
does not require any device profiling, trading-off the ability to estimate the ex-
ploitable information leakage contained within the device for efficiency gains and
the ability to increase robustness through statistical hypothesis testing. A de-
tection strategy may be used as a complement to the approach of Standaert et
al. by identifying a subset of time points that are known to leak information and
can be further explored in a white-box analysis.

There is no previous a priori power analysis study of these three tests in
the context of SCA. A generic analysis of the CMI test and additional non-
parametric hypothesis tests was conducted in [10], but does not consider the
influence of variables such as noise and leakage function in the context of side-
channel analysis, and cannot be used in comparison with the DMI or t -tests.

Organisation In Section 4 of this work we present the results of the first a priori
statistical power analysis of the three detection tests in the context of side-
channel analysis. To support the a priori analysis we also provide a case study
illustrating an example application of the tests to real-world traces acquired from
a software and a hardware implementation of the AES in Section 5. Section 6
discusses the computational complexity of the three tests.

2 Introduction to Selected Hypothesis Tests

2.1 Side-Channel Analysis

We will consider a ‘standard’ SCA scenario whereby the power consumption T of
a device is dependent on the value of some internal function fk(x) of plaintexts
and secret keys evaluated by the device. Using the random variable X ∈ X to
represent a plaintext and the random variable K ∈ K to represent a sub-key,
the power consumption T of the device can be modelled using T = L ◦ fk(x) +
ε, where L is a function that describes the data-dependent component of the
power consumption and ε represents the remaining component of the power
consumption modelled as additive random noise.

2.2 Candidate Tests

There are many hypothesis tests that may be used to detect information leakage:
one can test for differences between particular moments (such as the mean) of
leakage distributions, or one can test for any general differences between leakage
distributions. In this work we consider three tests, one from the former category
and two from the latter. In the former category, the Welch t -test [27], used to
assess the difference between the means of two distributions, has been proposed
by Cryptography Research Inc. [13]. One can also analyse higher moments using
tests such as the F-test [20]. Information leakage solely occurring in a particular
higher moment is rare—to our knowledge, one example of this is in [20]—and so
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a natural progression is to use a generic non-parametric test instead. Chatzikoko-
lakis et al. and Chothia et al. present hypothesis tests capable of detecting the
presence of discrete and continuous mutual information [9,10].

Whilst alternative non-parametric tests are available, mutual information-
based methods provide an intuitive measure and are frequently used in other
contexts [23,26]. There is a generic a priori power analysis comparing the CMI
test and additional non-parametric hypothesis tests in [10], finding that the CMI
test compared favourably. The analysis does not discuss any of the side-channel
specific variables described in Section 2.1 and cannot be used in comparison
with the t -test, but does suggests that an MI-based test is a natural choice for
a generic test candidate. As such, we focus on the t -test and the two MI-based
methods, and note that our evaluation strategy can be easily applied to other
detection tests in the future.

The null hypothesis for any hypothesis testing procedure used in a detection
context is that there is no information leakage: using the t -test, any statistically
significant difference of means is evidence for an information leak, and using
MI-based tests, any significant non-zero mutual information is evidence.

The generic strategy followed by each test is to systematically evaluate each in-
dividual time point in a set of traces in turn. This is a ‘univariate’ approach, and
in many cases is likely to be sufficient; vulnerabilities arising from sub-optimal
security measures are likely to manifest themselves as leakage detectable within
a single time point. To detect leakage exploitable by n-th order attacks would
necessitate the joint comparison of n time points. This results in a considerable
increase on the the amount of computation required—the brute force strategy
would be to analyse the joint distribution of every possible n-tuple of points—
and additionally can substantially increase the complexity of the test statistics,
with multivariate mutual information in particular becoming costly. Whilst an
efficient multivariate strategy would be desirable, it is beyond the scope of this
initial work.

2.3 Difference-of-means and the t-test

Exploiting the difference-of-means T1 − T2 between two sets of power traces T1

and T2 partitioned on a single bit of a targeted intermediate state was proposed
by Kocher et al. and is the canonical example of a generic DPA attack [17]. The
same difference-of-means can also be used to detect information leakage, and
was proposed as a candidate detection test in [13].

Welch’s t -test is a hypothesis test that (in the two-tailed case) tests the null
hypothesis that the population means of two variables are equal, where the
variables have possibly unequal variances, yielding a p-value that may or may
not provide sufficient evidence to reject this hypothesis. The test statistic t is:

t =
T1 − T2√
s21
N1

+
s22
N2

, (1)
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where Ti, s2i and Ni are the sample means, sample variances and sample size of
the i-th set Ti. Using this test statistic and the Welch-Satterthwaite equation2

to compute the degrees of freedom ν, a p-value can be computed to determine
whether there is sufficient evidence to reject the null hypothesis at a particular
significance level 1 − α. Using the quantile function for the t distribution at a
significance level α and with ν degrees of freedom, a confidence interval for the
difference-of-means can also be computed.

Leveraging the t -test requires a partitioning of the traces based on the value
of a particular bit of an intermediate state with the targeted algorithm, and
therefore to comprehensively evaluate a device every single bit of every single
intermediate state must be tested. To assess the i-th bit of a particular state
for leakage (e.g. the output of SubBytes in a particular round), an evaluator
must compute the intermediate values for the chosen state, using a set of chosen
messages. Having recorded the encryption or decryption of the chosen messages,
the resulting traces can be partitioned into two sets T1 and T2, depending on
the value of the i-th bit of the intermediate state. The test statistic t and corre-
sponding p-values or confidence intervals can then be used to determine whether
a difference between the means exists.

The t -test by design can only detect differences between subkeys that are
contained within the mean of the leakage samples, and assumes that the popu-
lations being compared are normally distributed. In practice univariate leakage
from unprotected devices is typically close enough to Gaussian for this condition
to not be too restrictive [7,8,17].

2.4 Mutual Information

Given two random variables X and Y , the MI I(X ;Y ) computes the average
information gained about X if we observe Y (and vice-versa). The application of
MI to detecting information leaks from a cryptographic device is straightforward:
any dependence between subkeys and the power consumed by the device, giving
I(K;T ) > 0, may be evidence for an exploitable information leak3.

The rationale for using MI to detect information leaks is that it compares
distributions in a general way, incorporating all linear and non-linear dependen-
cies between sub-keys and power values. Unfortunately, the estimation of MI
is well-known to be a difficult problem. There are no unbiased estimators, and
it has been proven that there is no estimator that does not perform differently
depending on the underlying structure of the data [22].

Recent results on the behaviour of zero MI can help to alleviate this problem.
Chatzikokolakis et al. find the sampling distribution of MI between two discrete
random variables when it is zero, where the distribution of one of the variables
is known and the other unknown, and use this to construct a confidence interval
2 Using Welch-Satterthwaite, the degrees of freedom ν for a t-distribution can be

calculated as ν =
(s21/N1+s22/N2)

2

(s21/N1)2/(N1−1)+(s22/N2)2/(N2−1)
.

3 Under the assumption of the ‘equal images under different sub-keys’ property [24]
we can safely compute I(X;T ), if simpler.
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test [9]. A second result from Chothia and Guha establishes a rate of convergence,
under reasonable assumptions, for the sampled estimate for zero MI between one
discrete random variable with a known distribution and one continuous random
variable with an unknown distribution [10]. This result is then used to construct a
non-parametric hypothesis test to assess whether sampled data provides evidence
of an information leak within a system.

Discrete mutual information As side-channel measurements are typically sam-
pled using digital equipment, it may be viable to treat the sampled data as
discrete. The most common way to make continuous data discrete is to split the
continuous domain into a finite number of bins. Using the standard formula for
marginal and conditional entropy, the discrete MI estimate can be computed as

Î(K;T ) =
∑
k∈K

∑
t∈T

p̂(k, t) log2

(
p̂(k, t)

p(k)p̂(t)

)
. (2)

The test of Chatzikokolakis et al. is biased by (I − 1)(J − 1)/2n, where I and
J are the sizes of the distribution domains of two random variables in question,
and n is the number of samples acquired. In our context, I = |K|, the number of
possible sub-keys, and J = |T |, the number of possible power values as a result of
discretisation. Consequently, the point estimate e for MI is the estimated value
minus this bias: e = Î(K;T ) − (I − 1)(J − 1)/2n. We can use this to compute
100(1 − α)% confidence intervals for zero and non-zero MI (full details can be
found in [9]).

As a result of the bias of the test, to be sure of good results it is necessary
to ensure that the number of traces sampled is larger than the product of the
number of sub-keys and the number of possible power values. The applicability
of this discrete test is then dictated by the ability of an evaluator to sample
enough traces to meet this condition.

Continuous mutual information. The test of Chothia and Guha requires two
assumptions about the data to guarantee a convergence result for zero MI [10].
The first is that the power values are continuous, real-valued random variables
with finite support. This may or may not hold theoretically, depending on the
distribution of the leakages, but in practice will be true; the sampling resolution
used dictates the range of the recorded power consumption. The second is that
for u = {0, 1}, the probability p(u, t) must have a continuous bounded second
derivative in t. This can be fulfilled with the leakage analysis of a single bit of a
key only. However, Chothia and Guha also demonstrate experimentally that the
test works well in cases of multiple inputs, often outperforming other two-sample
tests [10].

Under the assumption of a continuous leakage distribution, we are estimating
a hybrid version of the MI:

Î(K;T ) =
∑
k∈K

∫
T

p̂(k, t) log2

(
p̂(k, t)

p(k)p̂(t)

)
dt. (3)
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To compute this estimate we are required to estimate a conditional probability
density function P̂r{t|k} using kernel density estimation. The assumptions un-
derlying the test’s convergence result dictate the use of a function such as the
Epanechnikov kernel4 as the chosen kernel function, and a bandwidth function
such as Silverman’s [25] general purpose bandwidth5.

Using this estimated density function, we can compute an estimate of the
MI, Î(K;T ). The following step of the hypothesis test is a permutation stage
requiring s permutations of the sampled data T ′: for each sampled power value,
we randomly assign a new sub-key to the value without replacement. The power
values contained in each permuted set should now have no relation with the sub-
keys, and so the MI of the s sets can now be computed Î1(K;T ′

1), . . . , Îs(K;T ′
s),

providing a baseline for zero MI.
An estimated p-value can be computed by computing the percentage of the MI

estimates Î1, . . . , Îs that have a value greater than the observed point estimate
Î(K;T ). The suggested number of shuffled estimates to achieve useful baseline
results is given to be 100 by Chothia and Guha, but to increase the power of the
test and the precision of the estimated p-values a few thousand shuffles may be
required.

3 Evaluation Methodology

3.1 Comparing Detection Tests

The most important notion in hypothesis testing is of the quantification and classi-
fication of the error involved. The type I error rate α is defined as the probability of
incorrectly rejecting a true null hypothesis, usually termed the significance crite-
rion. Tests are also associated with a type II error rate β: the probability of failing
to reject a false null hypothesis. The exact valuation assigned to these error rates
is an important factor to balance; typically decreasing one error rate will result in
an increase in the other, and the only way to reduce both in tandem is to increase
the sample size available to the test. The statistical power of a test is defined as
the probability of correctly rejecting a false null hypothesis, π = 1 − β. This is
the key factor for our detection tests: higher statistical power indicates increased
robustness and lessens reliance on large sample sizes.

A common motivation for performing an a priori statistical power analysis6
is to compute or estimate the minimum sample size required to detect an effect
of a given size, or to determine the minimum effect size a test is likely to de-
tect when supplied with a particular sample size. The determination of sample
sizes required to achieve acceptable power has two-fold uses: firstly, data acquisi-
tion from a cryptographic device is an expensive and time-consuming operation,
and so tests that are less data-hungry are likely to be preferable, and secondly,
4 Epanechikov’s kernel function is defined as K(u) = 3/4(1− u2)χ{|u|≤1}.
5 h = 1.06sTN

−1/5, where sT is the sample standard deviation of T and N is the
number of sampled traces.

6 For further discussion of statistical power analysis, see [11].
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knowledge of the sample sizes required to detect a particular effect can serve as a
guideline for evaluators to determine the number of trace acquisitions sufficient
for detecting an information leak.

3.2 Multiple Testing

When considering the results of large numbers of simultaneously-computed hy-
pothesis tests, we must take into account that the probability a single test falsely
rejects the null hypothesis will increase in proportion with the number of tests
computed. A single test computed at significance level α = 0.05 has a 5% chance
of incorrectly rejecting the null hypothesis; when conducting a large number
of simultaneous tests the probability of a false positive increases. The intuitive
solution is to control the overall false rejection rate by selecting a smaller signifi-
cance level for each test. There are two main classes of procedure: controlling the
familywise error rate (FWER) and controlling the false discovery rate (FDR).

Familywise error rate. The FWER is defined as the probability of falsely re-
jecting one or more true null hypotheses (one or more type I errors) across a
family of hypothesis tests. The FWER can be controlled, allowing us to bound
the number of false null hypothesis rejections we are willing to make—in our de-
vice evaluation context this would allow the evaluator to control the probability
a device is falsely rejected. FWER controlling procedures are conservative, and
typically trade-off FWER for increasing type II error.

False discovery rate. Proposed by Benjamini and Hochberg in 2005, the FDR
is defined as the expected proportion of false positives (false discoveries) within
the hypothesis tests that are found to be significant (all discoveries). Procedures
that control the FDR are typically less stringent than FWER-based methods,
and have a strong candidacy for situations where test power is important. The
Benjamini-Hochberg (BH) procedure is a ‘step-up’ method that strongly con-
trols the FDR at a rate α [6]. Given m simultaneous hypothesis tests, the BH
procedure sorts the p-values and selects the largest k such that pk ≤ k

mα, where
all tests with p-values less than or equal to pk can be rejected. Many additional
FWER and FDR controlling methods exist, e.g. [14,15], but are beyond the scope
of this paper.

A trade-off with multiplicity corrections that control the FWER is that gen-
erally decreasing the FWER results in an increase in type II error. As a conse-
quence the FDR approach may be more suitable if an evaluator is particularly
concerned with ensuring that the type II error rate is kept low—that the statisti-
cal power remains high. It may also serve a useful purpose by identifying a small
candidate set of time points that are likely to contain information leakage—the
evaluator can then perform further analysis on the set of points, for example by
inspecting the effect sizes reported for each of the points, re-sampling additional
data and performing new hypothesis tests, or even by trying to attack the points
using an appropriate method. We demonstrate an example application of the BH
procedure in Section 5.
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3.3 Why Perform an a priori Power Analysis?

Having established the importance of statistical power to our detection tests,
the motivation for performing an a priori power analysis for our three candidate
tests is that it is not possible to make generally true inferences based on practical
experiments alone; given that it is only possible to establish the vulnerability
of a time point by successfully attacking it, it becomes impossible to establish
whether a reported rejection of the null hypothesis is a false positive—in other
words, the type II error rate β cannot be estimated—and hence any a posteriori
(or post-hoc) power analysis is likely to be misleading.

To be able to perform an a priori statistical power analysis, we need to be
able to produce or simulate data, ideally with characteristics as close as possible
to those observed in practice, for which we are sure of the presence of informa-
tion leakage. The most straightforward way to do this is to simulate trace data
under the ‘standard’ DPA model commonly used throughout the existing body
of literature, detailed in Section 2.1.

4 A priori Power Analysis

As all of the variables in the standard SCA model outlined in Section 2.1 have an
effect on detection test performance, to perform a useful a priori power analysis
we defined a variety of leakage scenarios that have relevance to practice, and then
estimated the power π of each of the detection tests under many combinations
of the different parameters in the SCA model for each scenario. For each leakage
scenario, power was estimated under varying sample sizes, noise levels and using
two different significance criteria: α = 0.05 and α = 0.00001. The former provides
a general indication of test power with a common level of significance, and the
intention with the latter level of significance is to gain an understanding of how
much statistical power is degraded by the typical tightening of the significance
criteria enforced by multiple testing corrections.

Leakage model. We defined five different practically-relevant leakage models L
under which to simulate trace data:

1. Hamming weight—a standard model under which the device leaks the
Hamming weight of the intermediate state;

2. Weighted sum—the device leaks an unevenly weighted sum of the bits of
the intermediate state, where the least significant bit (LSB) dominates with
a relative weight of 10, as motivated by [5];

3. Toggle count—the power consumption of hardware implementations has
been shown to depend on the number of transitions that occur in the S-Box.
The model used here is computed from back-annotated netlists as in [19],
and creates non-linear leakage distributions;

4. Zero value—for this model we set the power consumption for every non-
zero intermediate value to be 1, and for the value zero we set the power
consumption to be 0; this will typically produce small amounts of information
leakage and should stress the data efficiency of the tests;
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5. Variance—the mean of the power consumption does not leak, and the
variance of the power consumption follows the distribution given in Maghrebi
et al. [18]. The t -test will not be able to detect any leakage, but the model
can be used to evaluate the relative performances of the MI tests.

A statistical power analysis would ideally be performed for each candidate
target function; given the limited space available we have focused on the AES.
For this comparison we targeted, without loss of generality, the first byte of the
key. For each leakage model, we simulated traces under a wide range of signal-to-
noise ratios (SNRs), ranging from 2−14 to 212, enabling us to assess the maximum
amount of noise a test can overcome when provided with a particular sample
size.

Estimation process. The estimated power for the test is computed as the fraction
of times the test correctly7 rejects the null hypothesis for 1, 000 tests run. For
the CMI and t -tests we used the significance criterion α to determine rejection
or acceptance, and for the DMI test we checked whether the corrected estimate
for the MI was inside the 100(1− α)% confidence interval for zero MI.

In the following section we present the results of our a priori statistical power
analysis on the five leakage models in terms of the number of samples required
to achieve 80% power for each combination of model, SNR and sample size. We
performed 1, 000 permutations of the simulated traces for each CMI test, and
used the Epanechnikov kernel with Silverman’s bandwidth for the kernel density
estimation. To enable a fair comparison between the bit and byte level tests, we
chose to represent the results for the t -test corresponding to the most leaky bit
of the state. Graphs illustrating the number of samples required by each test to
achieve 80% power for each leakage model and SNR are shown in Figure 1.

Hamming weight. We can see that the t -test is the most powerful test in
general, as we would expect given the unbiased estimator for the mean values
and the Gaussian noise assumption holding true in the model. The CMI test
requires slightly more samples to achieve the requisite power in the presence of
high noise, and both tests seem to perform equivalently for mid-range and low
levels of noise.

The DMI test appears to be significantly less powerful; this is unsurprising
given a loss of information from the treatment of continuous data as discrete is
to be expected, and we also see that the test struggles to cope with high levels
of noise—the lowest SNR for which we could detect an information leak with
up to 192,000 samples was 2−3. A closer inspection indicates that this is caused
by the bias correction required; the size of the input space for the AES often
necessitates a large sample size to minimise the size of the correction to within
manageable bounds.
7 Each of these scenarios contain information leakage; even for the extremely low

SNRs, given sufficiently large data an attacker will eventually be able to exploit the
leakage, and as a consequence candidate detection tests should, for some level of
sample size, be able to consistently detect information leakage.
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Fig. 1. Number of samples required for the t-test, CMI and DMI tests to achieve
estimated 80% power for a variety of leakage models and SNRs.

The stricter significance criterion α = 0.00001 seems to have a small but
noticeable effect on the test power for the CMI and t -tests. Under the DMI test
we see little change in behaviour; the dominant factor influencing power is the
bias correction rather than the precise width of the confidence intervals.



Does My Device Leak Information? An a priori Statistical Power Analysis 497

Weighted sum. The relative dominance of the LSB in the leakage provides
an additional advantage for the t -test and we found as expected that the test
achieved its highest power when evaluating this bit. This results in a relative in-
crease in overall power compared to the CMI test than we observed in the Ham-
ming weight scenario and also allows for detection of leakage at lower SNRs. The
CMI test seems to exhibit performance consistent with that under the Hamming
weight model, and similarly for the DMI test. The effects of the stricter signifi-
cance criterion are also similar, with noticeable reductions in power observed for
each of the tests under the smaller α values save for the DMI test, where again
the bias correction is the predominant factor.

Toggle count. An analysis of the underlying true distance of means for the
Toggle count model indicated that the largest information leakage was con-
tained within the second-least significant bit, which was also twice the leakage in
the next most leaky bit. As with the Weighted sum model, the relative domi-
nance of this bit supplies the t -test with an advantage over the CMI test but in
this instance the advantage is by a smaller margin. We can also see that the CMI
test appears to be significantly more robust to the stricter significance criterion,
outperforming the more sensitive t -test in all of the high noise settings. Here
we also see the DMI test exhibiting an increased sensitivity to the significance
criterion.

Zero value. The size of the information leak present in a noise-free setting
for the Zero value model is small relative to those in the other models: the
true MI in a noise-free setting is 0.0369 and the true distance-of-means 0.0078.
As such it is interesting to note the stronger performance of the CMI test in
high noise settings relative to that of the t -test observed in these results—the
additional information on the non-linear dependencies contained in the estimated
MI values increases the power of the CMI test whereas the quantity of noise has a
stronger effect on the difference-in-means estimated by the t -test. The low power
estimates for the DMI test are consistent with the small size of the information
leak in the model coupled with the loss of information in the conversion process
of continuous to discrete data.

Variance. By design the mean of the power consumption for all sub-key values
is equivalent in the Variance model, and so the t -test cannot be applied. As a
test for the applicability of the CMI and DMI to situations in which only higher-
order moments leak, the CMI test appears to be robust, so that small sample
sizes suffice to achieve the requisite power at medium and low noise levels. The
true information leakage contained within the variances is strongly affected by
the amount of noise in the samples, which explains why both tests soon begin
to struggle as the SNR drops below 20.

Conclusion. The t -test was generally shown by the a priori power analysis to
be the most powerful. This is not unexpected: the sample mean is a consistent,
unbiased estimator for the population mean and converges quickly to the true
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value. The performance of the CMI test was close to that of the t -test in all
scenarios, indicating that it remains a robust, if slightly inferior alternative in
the majority of settings. The DMI test was expected to be less powerful due to
the loss of information by the conversion of continuous data to discrete, and this
was observed in our analysis; the results indicate that the test is a viable choice
only when supplied with large amounts of trace data and only when the SNR is
high.

Of note was the superior performance of the CMI test when detecting the
small leaks produced by our Zero value model, particularly in high-noise set-
tings. This suggests that the CMI test may be a better, or safer, choice when
applied to devices with these sorts of characteristics. The results obtained under
the Variance model indicate that the CMI test is sufficiently robust to han-
dle ‘tough’ leakage scenarios in which the leakage is solely contained in higher
moments of the power consumption distribution.

5 Case Studies

The a priori statistical power analysis is the primary method for comparison
of the detection tests. To complement the analysis, and to further explore the
effectiveness of multiplicity corrections, in the following section we demonstrate
the application of the three detection tests to the evaluation of two crypto-
graphic devices implementing the AES. The first device we analyse is an ARM7
microcontroller implementing the AES in software, with no countermeasures ap-
plied. This device would be expected to exhibit significant information leakage
in Hamming-weight form, and hence is a good opportunity to analyse the ef-
ficacy of multiple testing correction procedures. The second device analysed is
a Sasebo-R evaluation board manufactured using a 90nm process implementing
AES in hardware with a Positive-Prime Reed-Muller (PPRM) based SubBytes
operation using single-stage AND-XOR logic [21]. This second case study is in-
tended to investigate the performance of the detection tests under increasingly
complex leakage distributions as well as acting as a further test for the multi-
plicity corrections.

5.1 ARM7 Microcontroller

Our data set contained 32, 000 traces from the device and we chose to evaluate
the first key byte for information leakage. For the t -test we analysed the output
of the first SubBytes operation. Figure 2 illustrates the estimated MI values
and t -test statistics produced by the detection tests ran at a significance level
α = 0.05 for each of the 200, 000 time points in our traces. For the CMI test we
performed 1, 000 permutations of the traces at each time point, and as we found
that all 8 of the bits in the intermediate state produced similar information
leakage we elected to display the results for the LSB.

At the initial significance level α = 0.05, the CMI test identified 9, 360 time
points consistent with information leakage, the discrete test 178, and the t -test
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Fig. 2. Estimated CMI and DMI values and t-test statistics produced using 32,000
traces during an evaluation of an ARM7 microcontroller implementing a software ver-
sion of the AES.

9, 713. These occur across the full range of the traces, and account for around 4.8%
of the total in the CMI and t -test cases. Using our prior knowledge of the device we
could ascertain that many of these points are likely to be false positives.

To gain an indication of how many of these time points actually contain
exploitable leakage, we conducted a battery of attacks on the output of the Sub-
Bytes operation on all of the time points using the same set of traces including
Brier et al.’s correlation (CPA) [7], Gierlichs et al.’s mutual information analysis
(MIA) [12], both using a Hamming weight power model, and Kocher et al.’s
difference of means [17]. Whilst we have argued that practical results should not
be used to perform a post hoc power analysis, the results of the DPA attacks can
be used to quantify under-performances of the three tests—time points that can
be successfully attacked that are missed by detection tests are indicative of low
statistical power given the available sample size. In this regard the only notable
false acceptances of time points occurred under the DMI test, with the CMI
and t -tests able to spot the vast majority of the vulnerable time points. These
results appear to be consistent with those observed under the Hamming-weight
scenario in the statistical a priori power analysis.
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False discovery rate Applying any correction to the results produced by the
DMI test is redundant as the ‘raw’ results are already highly unlikely to contain
falsely rejected null hypotheses. The FDR controlling procedures are likely to
be the most successful of the multiple testing corrections for our purposes, so
we applied the Benjamini-Hochberg correction to the results produced by the
CMI and t -tests, controlling the FDR at the levels 0.05 and 0.5. Using prior
knowledge of the device and the results of the DPA attacks we would not expect
to observe any information leaked about the first key byte after time 25,000.

The effect of increasing the value of the FDR on the type I error can be ob-
served by the larger number of false positives produced when the FDR is 0.5.
The t -test appears to react more effectively to the corrective procedure, eliminat-
ing larger numbers of the false positives previously observed at the time points
greater than 25, 000. An inspection of the p-values reported by the CMI test
indicates that the number of permutations performed is the proximate cause for
the under-performance: the 1, 000 executed do not appear to produce enough
precision in the estimated p-values to allow the step-up procedure to differen-
tiate between neighbouring tests. The procedures do not appear to result in a
significant rise in type II error—the increase is lessened with the looser FDR of
0.5, but appears to be slight in both cases. As always, increasing the sample size
available would reduce the size of any increase in type II error.

5.2 Hardware AES with PPRM SubBytes Implementation

The dataset contained 79, 360 traces from the device at 5 giga-samples per second
and we again chose to evaluate the first key byte for information leakage; for the
t -test we analysed the output of the first SubBytes operation. Figure 4 illustrates
the estimated MI values and t -test statistics produced by the detection tests run
at a significance level α = 0.05 for each of the 50, 000 time points in our traces.
The first and last 10, 000 points are not displayed as they do not correspond to
any part of the full AES operation. For the CMI test we increased the number of
permutations to 10, 000 per time point in an attempt to gain additional precision
on the estimated p-values. Information leakage was found to occur to a varying
degree across all 8 bits of the intermediate state when using the t -test—as such,
we have elected to superimpose the results for all of the state bits on a single
graph. The DMI test was not able to identify any information leakage.

A visual inspection of the results produced by both the CMI test and t -tests
indicate that there are 10 groups of points within the power traces that contain
significant amounts of information leakage. As would be expected the shape and
scale of the leakages differ: the t -test is only assessing the SubBytes operation
and the leakage of individual bits. We were able to confirm the vulnerability of
the device by successfully executing a reduced Bayesian template attack on the
intermediate values of the SubBytes operation at the time points the detection
tests indicated would be vulnerable. The hardware device exhibits less, but still
significant leaking behaviour when compared to the ARM7 microcontroller im-
plementation, as evidenced by the lower mutual information estimates and the
smaller t -test statistic scores.



Does My Device Leak Information? An a priori Statistical Power Analysis 501

0

4

8

12

16

20

t−
te

st
st

at
is

tic

0 50000 100000 150000 200000

0

0.2

0.4

0.6

0.8

Time indexTime index

E
st

im
at

ed
m

ut
ua

li
nf

or
m

at
io

n
I(K

;T
)

Continuous mutual information test t-test, bit 0

0

0.2

0.4

0.6

0.8

0

4

8

12

16

20

t−
te

st
st

at
is

tic

E
st

im
at

ed
m

ut
ua

li
nf

or
m

at
io

n
I(K

;T
)

Be
nj

am
in

i-H
oc

hb
er

g,
 F

D
R 

=
 0

.0
5

Be
nj

am
in

i-H
oc

hb
er

g,
 F

D
R 

=
 0

.5

0 50000 100000 150000 200000

Fig. 3. Plots of the time points consistent with information leakage after applying the
Benjamini-Hochberg FDR controlling procedure to the results produced by the t-test
and CMI test.
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The performance of the CMI and t -tests appears to be similar. The extra
definition in the CMI graph is likely due to the t -test assessing leakage from the
output of the SubBytes operation only. The DMI test could not identify any
information leakage, indicating that many more samples would be required to
begin to match the power of the CMI and t -tests.

False discovery rate. The Benjamini-Hochberg correction was applied to the
results produced by the CMI and t -tests, this time controlling the FDR at the
levels 0.05 and 0.005. The previous FDR of 0.5 used in the analysis of the ARM7
device yielded too many clear false rejections of the null hypothesis, possibly due
to the smaller number of time points, and as a consequence two stricter criteria
were used. Figure 5 shows the results of applying the two criteria to the results
produced by the CMI and t -test. The effectiveness of the multiplicity corrections
is lessened in the hardware device evaluation. The t -test again reacts better to the
stricter corrective procedure, eliminating larger numbers of likely false positives.
Despite the increase of permutations per time point from 1, 000 to 10, 000 for
the CMI test, the effectiveness of the multiplicity correction is again dampened
by the lack of precision available in the estimated p-values. It is likely that a
different, more complex approach may be required to effectively mitigate the
multiplicity problem under the CMI test.

6 Computational Complexity

If we consider commercial and logistical pressures on the evaluation process then
we must also include the computational complexity of the detection tests as a
factor in our evaluation. In this regard, the CMI test is particularly expensive.
Under reasonable parameters of a data set of 80, 000 traces each consisting of
50, 000 sampled time points, and where the test computes 1, 000 permuted esti-
mates of the MI at each time point, a full run of the detection test on a single
key byte necessitates the evaluation of 50 million continuous MI values. If we
factor in the cost of finding conditional probability density functions, then we
may expect to perform in total 2.05×1015 (≈ 251) evaluations of the kernel func-
tion used in the density estimation, at a total cost of roughly 1.64×1016 floating
point operations.

This presents a significant obstacle; we estimated that our naive single-CPU
implementation would take around a month to analyse a device. However the
problem is ‘embarrassingly parallel’ and we implemented the test in parallel form
using OpenCL: using two AMD Radeon 7970 GPUs we were able to execute a
test with the above parameters in approximately 14 hours; a throughput of 300
GFLOPS. The addition of inexpensive GPUs decreases the running time linearly,
ensuring that the CMI test, even with large data set parameters, is feasible to
run. By comparison the DMI and t -tests are efficient; a key byte can be fully
assessed for leakage in under 30 minutes.
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Fig. 5. Plots of the time points consistent with information leakage after applying the
Benjamini-Hochberg FDR controlling procedure at levels 0.05 and 0.005 to the results
produced by the t-test and CMI test for the hardware AES implementation.

7 Conclusion

Taking the perspective of a ‘black-box’ evaluation, in which the evaluatormayhave
little knowledge about the leakage characteristics of the device, it would be desir-
able to select a leakage detection test that is the most generally applicable and that
has the best all-roundperformance. In themajority of our apriori analysis thiswas,
by a small margin, the t -test. However we must also take into account the inherent
limitations in the t -test’s inability to measure leakage in any moment other than
the mean. If an evaluator wished to gain the most coverage over all possible leakage
scenarios, then, given the significant under-performance of the discrete version in
the a priori analysis, the CMI test is the only viable candidate.

The complexity of the tests is an additional factor to consider. The t -test must
be re-run for every bit and every intermediate operation within the algorithm
implemented on the device, whereas the CMI and DMI tests need only to be run
once per bit or byte of key analysed. At first glance the computational cost of
the CMI test appears to be prohibitive, but we have demonstrated that using



504 L. Mather et al.

relatively inexpensive GPUs and the inherently parallel nature of the problem,
the running time can easily and cheaply be reduced to insignificant levels.

In the absence of any general result that can translate MI, entropy or a dif-
ference of means into the trace requirements for an adversary, the interpretation
of the results of any standardised detection test becomes heavily reliant on the
tools provided by statistics. The large body of work on multiplicity corrections is
a rich resource to draw upon, and further research in this area may yield useful
results. In addition, a multivariate detection procedure capable of detecting any
higher-order information leakage warrants research effort.
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Abstract. Since the introduction of side channel attacks in the nineties,
a large amount of work has been devoted to their effectiveness and ef-
ficiency improvements. On the one side, general results and conclusions
are drawn in theoretical frameworks, but the latter ones are often set in
a too ideal context to capture the full complexity of an attack performed
in real conditions. On the other side, practical improvements are pro-
posed for specific contexts but the big picture is often put aside, which
makes them difficult to adapt to different contexts. This paper tries to
bridge the gap between both worlds. We specifically investigate which
kind of issues is faced by a security evaluator when performing a state
of the art attack. This analysis leads us to focus on the very common
situation where the exact time of the sensitive processing is drown in
a large number of leakage points. In this context we propose new ideas
to improve the effectiveness and/or efficiency of the three considered
attacks. In the particular case of stochastic attacks, we show that the
existing literature, essentially developed under the assumption that the
exact sensitive time is known, cannot be directly applied when the latter
assumption is relaxed. To deal with this issue, we propose an improve-
ment which makes stochastic attack a real alternative to the classical
correlation power analysis. Our study is illustrated by various attack
experiments performed on several copies of three micro-controllers with
different CMOS technologies (respectively 350, 130 and 90 nanometers).

1 Introduction

Since the seminal differential power analysis of Kocher et al. [17], various side
channel Attacks (SCA) have been proposed and improved (e.g. [8, 9, 11, 12, 31]).
In order to to compare and classify them, theoretical frameworks have then
been introduced [11, 22, 35, 39]. Their main purpose is to identify the attacks
similarities and differences, and to exhibit contexts where one is better than
another. They have laid the foundation stones for a general comparison and
evaluation framework. In parallel, several practical works have addressed issues
arising when applying an SCA in the real world (e.g. in an industrial context)
[2, 5, 16, 24, 37]. Those works essentially attempt to fill the gap between the
theoretical analysis of the attacks and their application in non-idealized contexts.
However, whereas the published theoretical analyses usually tend towards generic
and formal statements (sometimes at the cost of too simple models), many of

K. Sako and P. Sarkar (Eds.) ASIACRYPT 2013 Part I, LNCS 8269, pp. 506–525, 2013.
c© International Association for Cryptologic Research 2013
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the practical analyses only focus on a particular attack specificity and often
put the big picture aside. The latter analyses are indeed usually dedicated to
one specific attack running against a specific target device, which makes them
hard to generalize. This paper tries to be at the intersection of both worlds:
we study practice-driven issues while keeping a generic approach w.r.t. attacks
mechanisms and targeted platforms. This approach and our final purpose are
close to those in the works of Standaert et al. [33] and Renauld et al. [29].

The starting observation of our study is that side channel traces are never
reduced to one point in practice, even when they rely on the manipulation of a
single variable. In contrary, those traces are often composed of a large number of
points (typically several thousands). In spite of the evidence of this observation,
it is rarely taken into account when analysing the effectiveness of a side chan-
nel attack. Such an analysis is indeed frequently done under the assumption,
sometimes implicit, that a small number of points of interest (POI) has already
been extracted from the traces either by pattern matching [21], or by dimension
reduction [1, 6, 7, 32] or thanks to a previous successful attack [10, 29]. However,
the two first categories of techniques are not yet perfect and, after reduction,
the traces are often still composed of several points in practice. And, what is
more important, the risk of information loss during the reduction process leads
most of attack practitioners to not apply them. The third technique (performing
a first attack to identify the POI) allows for interesting analyses, but it does not
correspond to a real attack context. Moreover, the best POI for one attack type
may not be so good for another one. Eventually, we come to a situation where
attacks are analysed in a (uni-dimensional) context which does not fit with the
(multi-dimensional) reality faced by the attack practitioners.

We argue in this paper that the state-of-the-art uni-dimensional analyses can-
not be straightforwardly adapted to multi-dimensional contexts, which raises
new interesting issues. The selection of the most likely candidate among the re-
sults of several instantaneous attacks is one of them. Indeed when the leakage
traces are composed of several points, a side channel attack against the targeted
sensitive variable must be performed for each point (a.k.a time index) in the
traces. Then, the adversary must apply a strategy to select the most likely can-
didate among the different instantaneous attacks results. A classical method is
to select the one with the highest score (e.g. the highest correlation coefficient
in a Correlation Power Analysis – CPA– [8]). Nevertheless we argue that this
strategy can be ineffective for some attack categories, including the case of the
Linear Regression Analysis (LRA) [11,30,31]. For the latter one, we propose a new
strategy to select the most likely candidate and we demonstrate its effectiveness
in practice.

Another interesting issue when dealing with a large number of high dimen-
sional traces is the reduction of the computational complexity. Here again, some
works have investigated the use of parallel computing to decrease the data pro-
cessing time [4,19] but their goal was not to diminish the algorithmic complexity
of the attacks. This work studies the LRA1 and the Template Attacks (TA) with

1 In this paper we only consider the unprofiled version of LRA [11].
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this goal in mind. A common structure in their algorithmic description is ex-
hibited and then used to propose a new general modus operandi which enables
to significantly reduce the computation time when the number of traces is non-
negligible. The strategy can also be applied to other attack (e.g. the CPA).

Finally, to make sure that our analysis is consistent with the reality, we
completed our investigations by several experiments performed on three micro-
controllers based on different CMOS technologies (350, 130 and 90 nanometers
process). We report here on these experiments results. We moreover use them to
confirm and complete the interesting behaviours observed in [29]: (1) the leak-
age seems to diverge from the classical Hamming weight model as the CMOS
technology tends to the nanometer scale, which makes LRA a promising tool for
side channel evaluations of nano-scale devices and (2) TA is effective in practice,
even when the templates are built on one copy of the device and the attack is
done on another copy.

The paper is organized as follows. In Section 2, we introduce the theoretical
background for our study and we present the outlines of our proposal. Then, two
sections are dedicated to the application of our ideas to the LRA and TA attacks
respectively2.

2 SCA: Practical Issues

In this section, we introduce some basics and we get into the specifics of the
problematic focussed in this paper.

2.1 Notations

Throughout this paper, random variables are denoted by large letters. A real-
ization of a random variable, said X , is denoted by the corresponding lower-
case letter, said x. A sample of several observations of X is denoted by (xi)i.
It will sometimes be viewed as a vector defined over the definition set of X .
The notation (xi)i ←↩ X denotes the instantiation of the set of observations
(xi)i from X . The mean of X is denoted E [X ], its standard deviation by σ[X ]
and its variance by var[X ]. The latter equals E

[
(X − E [X ])2

]
. The covari-

ance of two random variables X and Y is denoted by cov(X,Y ) and satisfies
cov(X,Y ) = E [(X − E [X ])(Y − E [Y ])]. When we will need to specify the vari-
able on which statistics are computed, we will write the variable in subscript
(e.g. EX [Y ] instead of E[Y ]).

The notation
−→
X will be used to denote column vectors and

−→
X [u] will denote

its uth coordinate. Calligraphic letters will be used to denote a matrix. The
elements of a matrix M will be denoted by M[i][j]. Classical additions and
multiplications (over real values, vectors or matrices) are denoted by + and ×
respectively. Scalar-vector operations are denoted by · and / (all the coordinates

2 This work is completed in the extended version of this paper with a similar study
on CPA.
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of the vector are multiplied, respectively divided, by the scalar). When applied
to vectors or matrices, the symbols ·2 and

√
· denote the operation consisting in

computing the square (resp. the square root) of all the vector/matrix coordinates.
Eventually, a function from Fn2 to Fm2 will be called a (n,m)-function.

2.2 General Attacks Framework

In this paper, the attacks framework is described by considering that the adver-
sary targets the manipulation of a single sensitive variable Z, but the study and
results directly extend to contexts where several variables are targeted in par-
allel. The variable Z is supposed to functionally depend on a public variable X
and a secret sub-part k such that Z = F (X, k) where F is a (n+ n,m)-function
(which implies X, k ∈ Fn2 and Z ∈ Fm2 ). The bit-lengths n and m depend on the
cryptographic algorithm and the device architecture3.

The attacks are described under the assumption that the adversary owns N

side channel traces
−→
� 0, ...,

−→
� N−1, each of them containing information about

Z. Namely, the ith leakage trace
−→
� i ←↩

−→
L corresponds to the processing of

a public value xi ←↩ X and contains information on the value zi ←↩ Z such
that zi = F (xi, k). The dimension of the traces (i.e. the number of different

instantaneous leakage points) is denoted by d. By definition, we have d
.
= dim

−→
L .

When little information is known about the implementation and the device
(which is usually the case in practice), the exact manipulation time of zi cannot
be precisely determined a priori. Also, precision in the observation often comes
at the cost of a high sampling rate4. As a consequence, the dimension of the
traces is usually high (from several thousand of points up to millions) and the
attack must be repeated on all of their coordinates independently (as e.g. in
LRA) or must consider huge traces chunks globally (as e.g. for TA). Although
bearing differences, most of side-channel attacks (including LRA and TA) follow a
common process flow. Starting from this generic description, this paper studies,
in Sections 3 and 4 respectively, the effectiveness and efficiency of the LRA and
TA attacks. The core ideas of those analyses are presented in the two next sub-
sections.

2.3 Effectiveness Discussions

A part of our study is dedicated to the distinguisher value definition and, more
precisely its relevance when considering side channel traces with a large number
of points. This study was motivated by the observation that the classical LRA dis-
tinguisher value for one leakage time is not comparable as such to that computed
for another leakage time. Figure 1(a) illustrates this claim for an LRA targeting
the device B described in Section 2.5: when directly applying the protocol given
in [11, 31], the correct key candidate does not maximize the distinguisher value

3 An example of function F is the function that applies a so-called sbox transformation
to the bitwise addition between k and X.

4 Especially in the case of Electro-Magnetic side channel measurements
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Fig. 1. Instantaneous LRA scores computed over 10000 traces (scores for the correct
key in black)

globally but only in a local area, which makes the attack unsuccessful unless this
area is known by the adversary (which is not assumed here). This observation
led us to study the handling of distinguishing values in SCA attacks. We for in-
stance show that by normalizing the LRA distinguishing values, the correct key
candidate becomes clearly distinguishable even when considering the full vector
of instantaneous attack results (as depicted on Figure 1(b)).

More generally, our study relies on a well studied problem which is the com-
parison of the results of two different instantaneous attacks [11,20,33,34,36,38].
For the LRA, it will lead to a modification of the candidate selection rule.

2.4 Algorithmic Complexity Improvements Proposals

The other important issue an evaluator faces when performing SCA, is the com-
putational complexity of the attack when the number of traces N and their
dimension grows to millions. Indeed, the execution time of naive attack imple-
mentations can easily reach several days of processing and this is not compatible
with standard evaluation processes5.

We show in Sections 3 and 4 that the two considered attacks may be re-
written in a partitioning fashion that can be exploited to significantly decrease
the algorithmic complexity. Roughly speaking, the basic idea is to lower the
impact of the heavy computations so that its complexity does no longer depend
on the traces number N but on the dimension n of the targeted data. To that
purpose, we propose to modify the attack first step so that it processes separately
the traces with respect to their input value xi. As a result, the algorithmic
complexity of the attacks is divided by N

2n making the algorithmic improvement
interesting when N � 2n (which is often the case in practice).

5 In Common Criteria evaluations applied on hardware security devices, all penetra-
tion tests (including invasive and non-invasive attacks) have usually to be performed
in 3 months, leaving only few weeks for the whole side channel evaluation.
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Almost every SCA may be rewritten as a combination of tests on statistics
estimated on leakage partitions. Some of them (e.g. the DPA [17] or the multi-bit
DPA [23]) were actually originally written as such, whereas the other ones were
developed in a partitioning way after their introduction (see e.g. [18] for the
CPA, [10] for the LRA and [33] for the MIA). To the best of our knowledge, this
property has however never been exploited to improve the attacks efficiency.

2.5 Experimental Setup

For each studied SCA, practical experiments were performed on three Micro-
Controller Units (MCUs for short) with different CMOS technologies (350, 130
and 90 nanometers processes). The observed processing was that of an AES128
encryption handling one byte at a time. Each attack was performed against 4
sbox outputs of the first round. Furthermore, to measure the variability of our
experiments, we used three different copies for each MCU (called copy 1, 2 and
3 in the sequel). This choice enabled us to perform the TA profiling step on one
copy and to use the results to attack other ones. Also, it gives more credit to our
experimental results as the templates consistency was checked on three different
versions of the same MCU.

The side channel observations were obtained by measuring the electromagnetic
(EM) radiations emitted by the device. To this aim, several sensors were used,
all made of several coils of copper (the diameters of the coils were respectively of
1mm, 500μm and 250μm for the 350, 130 and 90nm MCUs), and were plugged
into a low-noise amplifier. To sample measurements, a digital oscilloscope was
used with a sampling rate of 1G samples per second for the 350nm MCU and
10G samples per second for the others, whereas the MCUs were running at few
dozen of MHz.

We insist on the fact that the temporal acquisition window was set to record
the first round of the AES only. This synchronization has been done thanks to
simple electromagnetic analysis [26]. As the MCU clocks were not stable, we had
to resynchronize the measurements. This process is out of the scope of this work,
but we emphasize that it is always needed in a practical context and it impacts
the measurements noise.

We sum-up the specificities of the three experimental campaigns hereafter:

– Device A (3 copies): 90nm CMOS technology with MCU based on a 8-bit
8051 architecture. EM traces composed of 12800 points each after resynchro-
nization. Highest Signal to Noise Ratio (SNR) over the full traces equals to
0.09.

– Device B (3 copies): 130nm CMOS technology with MCU based on a 8-bit
8051 architecture. EM traces composed of 16800 points each after resynchro-
nization. Highest SNR equals to 0.6.

– Device C (3 copies): 350nm CMOS technology with MCU based on a 8-bit
AVR architecture. EM traces composed of 51600 points each after resyn-
chronization. Highest SNR equals to 0.3.
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3 Practical Evaluation of Linear Regression Attacks

Linear regression attacks (a.k.a. stochastic attacks) have been introduced by
Schindler et al. in 2005 [31]. Initially, they were presented with a profiling step
and were viewed as an alternative to the template attacks [13]. In [11], the
authors have shown how to express the linear regression attacks such that the
profiling stage is no longer required. They also argued that the LRA can be
applied in the same context as the CPA, but with weaker assumption on the device
behavior. Subsequently, these results of Doget et al. have been extended in [10] to
apply against masked implementations. In parallel, linear regression attacks have
been used to analyse/model the deterministic part of the information leakage for
complex circuits [14,15]. As a matter of fact, all those analyses assume that the
side-channel traces are composed of a single leakage point: the issue raised in
Section 2.3 is thus put aside. Moreover, the question of the efficient processing of
the attack, when applied against high dimensional leakage traces, is not tackled.
The rest of this section aims at dealing with two issues.

3.1 Attack Description

In LRA, the adversary chooses a so-called basis of functions6 (mp)1�p�s with the
only condition that m1 is a constant function (usually m1 = 1). Then, for each

xi and each sub-key hypothesis k̂, the prediction ẑi = F (xi, k̂) is calculated.
The basis functions mp are then applied to the ẑi independently, leading to the

construction of a (N × s)-matrix Mk̂

.
= (mp(F (xi, k̂))i,p. The comparison of

this matrix with the set of d-dimensional leakages (
−→
� i)i�N ←↩

−→
L is done by

processing a linear regression of each coordinate of
−→
� i in the basis formed by the

row elements ofMk̂. Namely, a real-valued (s×d)-matrix Bk̂ with column vectors
−→
β1, · · · ,

−→
β d is estimated in order to minimize the error when approximating

−→
� �
i

by (m1(F (xi, k̂)), · · · , ms(F (xi, k̂)))× Bk̂. The matrix Bk̂ is defined such that:

Bk̂ =
(
M�

k̂
×Mk̂

)−1 ×M�
k̂︸ ︷︷ ︸

Pk̂

×L , (1)

where L denotes the (N×d)-matrix with the
−→
� �
i as row vectors. In the following,

the uth column vector of L (composed of the uth coordinate of all the
−→
� i) is

denoted by
−→L [u]. Moreover, the (s × N)-matrix

(
M�

k̂
×Mk̂

)−1 ×M�
k̂
, which

does not depend on the leakage values, is denoted by Pk̂.
To quantify the estimation error, the goodness of fit model is used and the

correlation coefficient of determination R2 is computed for each u. The latter
is defined by R2 = 1 − SSR/SST, where SSR and SST respectively denote
the residual sum of squares (deduced from Bk̂) and the total sum of squares7

(deduced from L). We give in Algorithm 1 the pseudo-code corresponding to a
classical LRA attack processing.

6 The basis choice and its impact are not a trivial matter, see [10] for a detailed study.
7 For their exact definitions, see their construction in Alg. 1
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Algorithm 1: LRA - Linear Regression Analysis

Input : a set of d-dimensional leakages (
−→
� i)i�N and the corresponding plaintexts

(xi)i�N , a set of model functions (mp)p�s

Output: A candidate sub-key k̂

/* Processing of the leakage Total Sum of Squares (
−−→
SST) */

1 for i = 0 to N − 1 do

2 μ−→
L

= μ−→
L

+
−→
� i

3 σ−→
L

= σ−→
L

+
−→
� 2

i

4
−−→
SST = σ−→

L
− 1/N · μ2−→

L

/* Processing of the 2n predictions matrices Mk̂ and Pk̂ */

5 for k̂ = 0 to 2n − 1 do
/* Construct the matrix Mk̂ and Pk̂ */

6 for p = 1 to s do
7 for i = 0 to N − 1 do

8 Mk̂[i][p] ← mp[F (xi, k̂)]

9 Pk̂ = (M�
k̂

× Mk̂)
−1 × M�

k̂

10 for k̂ = 0 to 2n − 1 do

/* Test hyp. k̂ for all leakage coordinates */
11 for u = 0 to d− 1 do

/* Instantaneous attack (at time u) */

12
−→
β = Pk̂ × −→L [u]

/* Compute an estimator
−→
E of

−→L [u] = (
−→
� 0[u], · · · ,

−→
� N−1[u])

� */

13
−→
E = Mk̂ × −→

β
/* Compute the estimation error (i.e. the SSR) */

14 SSR = 0
15 for i = 0 to N − 1 do

16 SSR = SSR +
(−→
E [u]− −→

� i[u]
)
2

/* Compute the coefficient of determination */

17 R[k̂][u] = 1 − SSR/
−−→
SST[u]

/* Most likely candidate selections */

18 candidate = argmaxk̂(maxu R[k̂][u])

19 return candidate

3.2 On the LRA Effectiveness

Let us focus on the best candidate selection step in a classical LRA. Each sub-key
hypothesis k̂ is first associated with a score which is the greatest instantaneous
coefficient of determination when testing it for all temporal coordinates u. It
is denoted by maxuR[k̂][u] in Alg. 1. The second phase of the selection con-

sists in the processing of the maximum argmaxk̂(maxuR[k̂][u]). The purpose of
the latter step is to identify the candidate that maximises the greatest instan-
taneous coefficient. Implicitly, such a classical approach by total maximisation
of the distinguisher value assumes that the most likely candidate corresponds to
the greatest value taken by the distinguisher not only over all sub-key hypotheses
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but also over all the leakage times. This assumption relies on another one, often
done in the embedded security community, which states that the value of a
distinguisher computed between wrong hypotheses (i.e. computed for a wrong
sub-key value or a wrong time) and the leakage values tends toward its minimum
value (often 0) when the sample size N increases (see e.g. [20]). However, as
already noticed in several papers (e.g. by Messerges in [23], Brier et al. in [8] or
by Whitnal et al. in [40]), both assumptions are often not verified in practice,
where the adversary must for instance deal with the ghost peaks phenomenon.

The situation is even worst for the LRA attacks since the vector of coefficients
−→
β

(and thus the set of predictions) depends not only on k̂ but also on the attack
time u. The strength of the LRA, namely its ability to adapt to the instantaneous
leakage, is also its weakness as it makes it difficult to compare the different
instantaneous attacks results.

To illustrate the issue raised in the previous paragraph, we experimented a
LRA against an AES sbox processing running on Device B (see Section 2.5). The
full leakage traces were composed of 16800 points. We performed the attack
on the full trace length and, for each time coordinate, we recorded the scores
of all the 256 key-candidates after N = 1000 observations. For clarity reasons,
we present in Figure 2 the results only for a temporal window of size 250 points
where the targeted variable was known to occur. In the top of the figure, the rank
of the correct key is plotted and it can yet be observed that it is 0 for few times.
In the second trace of Figure 2, the instantaneous maximum scores comprised in
[0.9982, 0.999] are plotted8: it may be checked that the maximum among those
scores corresponds to a time (t = 238) when the correct key is not ranked first.
This explains why the total maximisation approach fails in returning the correct
key candidate in this case.

To build a better rule than the total maximisation test, we respectively plotted
in the third and fourth traces of Figure 2 the mean (plain green trace) and the
variance (plain red trace) of the instantaneous scores (i.e. the values μ(u) =

2−8
∑

k̂R[k̂][u] and σ(u) = 2−8
∑

k̂(R[k̂][u] − μ(u))2 with u denoting the time
coordinate in abscissa). For each time, we also plotted in black dashed line, the

maximum score max(u) = maxk̂(R[k̂][u]). It may be observed that the correct
key is ranked first at the time u when the distance max(u) − μ(u) is large
and σ(u) is small. The third (red) trace and the fourth (gray) trace aim at
supporting this claim. Eventually, they suggest us the following pre-processing
before comparing the instantaneous attack results: for each leakage coordinate,
center the maximum of the coefficients of determination and divide it by their
standard deviation. The resulting scoring is plotted in the fifth (magenta) trace,
where it can been checked that the maximum is indeed achieved for the correct
key.

8 For visibility purpose, we chose to not plot the scores lower than 0.9982.
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Fig. 2. LRA on Device B (over 1000 traces): Scores Statistics

As a conclusion, and in the light of our analysis, we propose to replace the
candidate selection step of the LRA by the following ones9:

18 for u = 0 to d− 1 do

19 attackRes[u] = {argmaxk̂

(
R[k̂][u]

)
,
max

k̂

(
R[k̂][u]

)
−E

k̂

[
R[k̂][u]

]
σ
k̂

[
R[k̂][u]

] }

20 candidate = arg1max2
(
attackRes

)

In Section 3.4, our scores pre-processing technique is applied to attack samples
of Device A and Device C in order to test whether our observations, about (1)
the ineffectiveness of the classical LRA and (2) the soundness of the new pre-
processing, stay valid for other devices than Device B.

3.3 On the LRA Efficiency

The construction of the prediction matrices in Alg. 1 implies, for each k̂, the
processing of 3 products of matrices with one dimension equal to s (number
of basis functions) and the second dimension equal to N (number of leakage
traces). The processing of the instantaneous attacks also requires two such matrix

products for each pair (k̂, u) with u � d. This makes the application of a linear
regression attack as depicted in Alg. 1 difficult to perform (and even impossible)
when the number N of leakage traces and/or the number d of attack times are

9 Where arg1max2 is a function returning the first coordinate of the maximum of an
array of 2-dimensional elements, the maximisation being computed with respect to
the second coordinate of the array elements.
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large. Fortunately this complexity can be significantly reduced. It can indeed

be easily shown (see [10]) that the processing of the vectors
−→
β is unchanged if

performed for the set of averaged leakages ( 1
#{i:xi=x}

∑
i,xi=x

−→
� i)x∈Fn

2
instead of

(
−→
� i)i. Actually, this amounts to change the definition of the matricesMk̂ and L

in (1) such thatMk̂

.
= (mp(F (x, k̂))x∈Fn

2 ,p�s and L is a (2n×d)-matrix whose xth

row vector
−→
L�[x] equals 1

#{xi=x}
∑

i,xi=x

−→
� i. This improvement essentially lets

the first 9 steps of Alg. 1 unchanged except the loop 7-8 which is now computed
over x ∈ Fn2 instead of over i ∈ [0;N − 1]. Then, before Step 10, the following
processing is done to compute the elements of the matrix L:

for i = 0 to N − 1 do
−→
L�[xi] =

−→
L�[xi] +

−→
� i

count[xi] = count[xi] + 1

for x = 0 to 2n − 1 do
−→
L�[x] =

−→
L�[x]/count[x]

Eventually, Steps 10-17 are replaced by the following ones where we recall

that
−→L [u] denotes the uth column vector of L.

for k̂ = 0 to 2n − 1 do

/* Test hypothesis k̂ for all leakage coordinates */
for u = 0 to d− 1 do

/* Instantaneous attack (at time u) */
−→
β = Pk̂ × −→L [u]

/* Compute an estimator
−→
E of

−→L [u] = (L[0][u], · · · ,L[2n − 1][u])� */
−→
E = Mk̂ × −→

β
/* Compute the estimation error (i.e. the residual sum of squares) */
SSR = 0
for x = 0 to 2n − 1 do

SSR = SSR +
(−→
E [x]− L[x][u]

)
2

/* Compute the coefficient of determination */

R[k̂][u] = 1 − SSR/
−−→
SST[u]

The efficiency improvements proposed here for the LRA attack allows for a
significant time/memory gain. First, it replaces the (N × s)-matrix products at
Step 13 by (2n × s)-matrix products. More globally, the complexity is reduced

from O(s × d × N) to O(s × d × 2n). If the
−→
β values are not needed (i.e. the

weights of the linear regression is of no interest to the attacker), the matrix
productsMk̂ ×Pk̂ can also be pre-processed. This enables to save one matrices

product per loop iteration (over k̂ and u).
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3.4 Experiments

Weexperimented the classical and improvedLRA against against three copies ofDe-
vicesA,B andC (see Section 2.5). The attacks target four bytes of theAES state af-
ter the first SubBytes operation and they are applied on the full side channel traces.
Each attack has been performed 10 times against each of the three copies. The av-
erage rank over the four correct sub-keys is plotted in Figure 3 for each device. We
recall that the rank of a sub-key k is here defined as the position of maxuR[k][u] in
the vector (maxuR[k̂][u])k̂ after sorting (see Section 2.2 for a discussion about this
choice). The experiments reported in Figure 3(a)-(c) are done with a linear basis
(i.e. the functions mi were chosen such that m0 is constant equal to 1 and mi, with
i � 8, returns the ith bit of its inputs). It may be observed that the classical attack
always failed whereas the improved one succeededwith less than 2500 observations
(and even less than 800 for Device B).
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(b) LRA on Device B
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(c) LRA on Device C

Fig. 3. LRA campaign – Rank evolution versus number of observations

4 Practical Evaluation of Template Attacks

Template attacks have been introduced in 2002 by Chari et al. [9]. Subse-
quent works have then been published which either show how to apply them
against particular implementations (e.g. AES, RSA or ECDSA) or propose ef-
ficiency/effectiveness improvements [1, 3, 27, 29]. In [27], the authors reduce the
complexity of template attacks by first applying a pre-processing on the mea-
surements (to go from time domain to frequency domain) and then by applying
dimension reduction techniques (e.g. PCA). The latter idea is also followed in [1]
and [3]. In all those papers, the improvement of the template attacks efficiency
is not studied at the algorithmic level. Moreover, the reported template attack
experiments involve the same device for the profiling and matching phases of the
attacks, which strongly reduces the practical significance of the argumentations.
Indeed, as the profiling phase requires a full access to the device (and in partic-
ular the ability to chose the secret parameter), the latter experiments do not fit
with the large majority of real attack/evaluation contexts where the adversary
has no (or very few) control on the target device. In a more realistic attacker
model the profiling phase is conducted on a different device. For such a model,
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we have the following well known question10 about the efficiency of template
attack: how sound/relevant is a profiling done on a device A when attacking
another device B ? The first work, and to the best of our knowledge, the single
one reporting on template attacks in such context is due to Renauld et al. [29].
On the latter article, the two devices used for the experiments are test chips
implementing an AES s-box and made in 65-nanometer CMOS technology.

The results presented in the rest of this section improve the state-of-the-art
recalled previously on two points. First, the efficiency improvement is done at
the algorithmic level. It can hence be combined with the previous improvements
which essentially correspond to measurements traces pre-processing. Secondly,
the reported experiments concern a full AES implementation running on 3 differ-
ent samples of 3 different technologies. This allowed us to complete the analyses
done in [29] and to draw, for the first time, conclusions about the template attack
efficiency for realisitic scenarios.

4.1 Attack Description

A template attack (TA for short) assumes that a preliminary profiling step has
been performed on an open copy of the targeted device. During this phase, the

adversary has measured N ′ leakage traces
−→
� i

′
for which he knows exactly the

values taken by the corresponding sensitive value Z (which also implies that
he knows the corresponding sub-key k). Those leakages have then been used to

compute estimations fz(·) of the probability density function of (
−→
L | Z = z) for

all possible z (which imposes N ′ � 2m). The pdf estimations fz(·) will play in
a template attack, a similar role as the model functions in a CPA or LRA.

Once the adversary has the set of pdf estimations (fz(·))z∈Fm
2

in hand, a

TA against the set of traces (
−→
� i)i�N (for which the secrets are unknown) fol-

lows essentially the same outlines as the LRA: the hypothesis k̂ is tested by first
computing the predictions ẑi = F (xi, k̂) and then by calculating the product∏

i�N fẑi(
−→
� i). Usually, the pdf of the variables (

−→
L | Z = z) is estimated by a

multivariate normal law, which implies that fz can be developed s.t.:

fz(
−→
� i) =

1

(2π)ddet
(
Σz

)exp(− 1

2

(−→
� i −−→μ z

)�
Σ−1
z

(−→
� i −−→μ z

))
, (2)

where Σz denotes the (d× d)-matrix of covariances of
−→
L | Z = z and where the

(d)-dimensional vector −→μ z denotes its mean.
To minimize approximation errors induced by the processing of the product

of exponential values, one usually prefers, in practice, a log-maximum likelihood
processing to the classical maximum likelihood11. Together with (2), this leads

to the following computation to test the hypothesis k̂:

10 This question is sometimes also related to the statistical problem of pdf estimations
robustness [25].

11 The two processes discriminate equivalently.
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ML[k̂] = −
∑
i�N

(−→
� i−−→μ ẑi

)�
Σ−1
ẑi

(−→
� i−−→μ ẑi

)
−

∑
i�N

log((2π)d+1det
(
Σẑi)

)
. (3)

We give in Alg. 2 the pseudo-code corresponding to the TA attack discussed
previously.

Algorithm 2: TA - Template Attacks

Input : a set of d-dimensional leakages (
−→
� i)i�N and the corresponding plaintexts

(xi)i�N , a set of pdf estimations (−→μ z , Σz)z∈Fm
2

Output: A candidate sub-key k̂

/* Pre-Processing of the 2m log-determinants log(2πd+1Σz) and inverse-matrices

Σ−1
z */

1 for z = 0 to 2m − 1 do

2 logDetz = log(2πd+1Σz)

3 invCovz = Σ−1
z

/* Instantaneous TA attacks Processing */

4 for k̂ = 0 to 2n − 1 do

/* Test hyp. k̂ */

5 ML[k̂] = 0
6 for i = 0 to N − 1 do

7 ẑ = F (xi, k̂)

8 ML[k̂] = ML[k̂] −
(−→
� i − −→μ ẑ

)� × invCovẑ ×
(−→
� i − −→μ ẑ

)
− logDetẑ

/* Most likely candidate selections */

9 candidate = argmaxk̂(maxML[k̂])

10 return candidate

4.2 On the TA Effectiveness

The idea developed in previous sections to improve the selection of the best can-
didate among the results of several instantaneous attacks is not relevant here.
Indeed, for both the profiling and attack phases, a template attack exploits,

by nature, all the leakage coordinates of the
−→
� i simultaneously. There is con-

sequently no need to compare the results of several (different) instantaneous
attacks.

4.3 On the TA Efficiency

Applying the same idea as for the LRA, we propose hereafter an alternative
writing of ML[k̂] that leads to a much faster attack processing. For such a

purpose, we focus on the term
(−→
� i −−→μ ẑi

)�
Σ−1
ẑi

(−→
� i −−→μ ẑi

)
in (3).

After denoting by Li each (d×d)-matrix (
−→
� i[u]

−→
� i[u

′])u,u′ , we get the follow-
ing rewriting of the latter term:

∑
u,u′

(
Li[u][u′]×Σ−1

ẑi
[u][u′]

)
−−→μ �

ẑi ×
(
Σ−1
ẑi

+Σ−1
ẑi

�)
×−→� i +

−→μ �
ẑi ×Σ−1

ẑi
×−→μ ẑi .
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After recalling that ẑi equals F (xi, k̂) and after denoting F (x, k̂) by ẑ and

#{i, xi = x} by Nx, we deduce that the sum
∑

i

(−→
� i − −→μ ẑi

)�
Σ−1
ẑi

(−→
� i − −→μ ẑi

)
may be rewritten:

∑
x∈Fn

2

⎛⎝∑
u,u′

( ∑
i,xi=x

Li
)
[u][u′]×Σ−1

ẑ [u][u′]

−−→μ �
ẑ ×

(
Σ−1
ẑ +Σ−1

ẑ

�)
×

( ∑
i,xi=x

−→
� i

)
+Nx ×−→μ �

z ×Σ−1
z ×−→μ z

⎞⎠ .

As a consequence, if the 2n possible sums
∑

i,xi=x Li and
∑

i,xi=x

−→
� i have

been precomputed, then the complexity of evaluating (3) for each k̂ goes from
O(Nd2) to O(2nd2). Algorithm 3 describes the improved TA attack.

Algorithm 3: TA - Template Attacks (Improved Version)

Input : a set of N leakages (
−→
� i)i and the corresponding plaintexts (xi)i, a set of pdf

estimations (−→μ z , Σz)z∈Fm
2

Output: A candidate subkey k̂

/* Pre-Processing of the predictions data */
1 for z = 0 to 2m − 1 do

2 logDetz = log(2πd+1Σz); invCovz = Σ−1
z ; meanCovz =

−→μ�
z × invCovz × −→μ z ; sumMeanCovz = −→μ�

z × (Σ−1
z +Σ−1

z
�
)

/* Pre-Processing of the leakage data12 �x =
∑

i,xi=x

−→
� i,Lx =

∑
i,xi=x Li and

N [x] = #{i;xi = x}. */
3 for i = 0 to N − 1 do

4 x = xi; N [x] = N [x] + 1; Lx = Lx +
−→
� i

−→
� �

i ; �x = �x +
−→
� i

/* Instantaneous TA attacks Processing */

5 for k̂ = 0 to 2n − 1 do

/* Test hyp. k̂ */

6 ML[k̂] = 0
7 for x = 0 to 2n − 1 do

8 ẑ = Fj(x, k̂)
9 for u = 0 to d− 1 do

10 for u′ = 0 to d− 1 do

11 ML[k̂] = ML[k̂] − Lx[u][u
′] × invCovẑ[u][u

′]

12 ML[k̂] = ML[k̂] + sumMeanCovz × �x −N [x]× (meanCovẑ + logDetẑ)

/* Most likely candidate selections */

13 candidate = argmaxk̂(maxML[k̂])

14 return candidate
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4.4 Experiments

To study the effectiveness of TA attacks in practice (and to confirm the observa-
tions reported in [29]) we experimented them against the families of devices A,
B and C for three different scenarios. In the first scenario (referred to as ”copy
1 → copy 1”), the profiling and the attacks are performed on the same device
copy. In the second and third scenarios (respectively referred to as ”copy 1 →
copy 2” and ”copy 1 → copy 3”), the profiling made for copy 1 is used to attack
the second and third copies. For each of these 9 attacks frameworks, we plot
in Figure 4 the average rank of the correct sub-key (in color) with respect to
both the number of traces used for the profiling (in ordinate) and the number of
traces used for the attack (in abscissa). The rank averaging has been done over
10 attacks.

In the first scenario, a profiling done on 15000 (resp. 47000) traces on Device
B (resp. Device C) allows for a very efficient attack phase (the correct sub-key
ranked first with less than ten traces). Moreover, it may be observed that a
profiling on 8000 traces for Devices B and C is sufficient to have a successful
attack in less than 23 (resp. 90) traces for device B (resp. C). For Device A, the
TA attack in Scenario 1 is one order of magnitude less efficient (roughly speaking
the values are multiplied per ten w.r.t. the traces for devices B and C).

Attacks on Devices B (resp. C) perform quite similarly in Scenarios 2 and 3.
For Device A, a profiling performed on copy 1 for 18000 traces is sufficient to
successfully attack copies 2 and 3 with less than 10 traces. Moreover, a profiling
on 8000 traces enables successful attacks for less than 30 traces. For Device C, it
may be observed that, even for a profiling performed on 50000 traces, the attacks
on copies 2 and 3 require at least 80 traces to succeed. However, a profiling on
9000 traces is sufficient to have the TA succeeding in less than 130 traces.

As expected, we may observe a significant variability for the attack results in
Scenarios 2 and 3 for Device A: templates done on copy 1 are almost as efficient
to attack copy 2 than they were to attack copy 1 itself. They are however much
less informative on the copy 3 behaviour since the profiling on copy 1 must be
performed on at least 130000 traces to see the attack working on copy 3 with
less than 700 traces. This observation is in-line with those done in [28] about the
high variability of nano-scale technologies (we recall that Device A is made in a
90nm CMOS technology).

In the full version of this paper, we report on similar experiments results
when only the leakage means (and not the covariance matrices) are involved
in the templates. This approach indeed seems to be a natural alternative to
the attacks described here since the traces contain instantaneous leakages. Our
results actually confirm this feeling and it can even be noticed that it leads to
improve the TA efficiency for Scenario 3 on Device A13. Another general remark
on these simplified templates is that they perform much better than the full ones
when the number of traces used for the profiling is small (around 4000).

13 This could be explained by the fact that the technology variability has more impact
on the electromagnetic leakage variances than it has on the means.
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(a) Dev. A: copy 1→copy 1
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(b) Dev. A: copy 1→copy 2
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(c) Dev. A: copy 1→copy 3
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(d) Dev. B: copy 1→copy 1
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(e) Dev. B: copy 1→copy 2
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(f) Dev. B: copy 1→copy 3
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(g) Dev. C: copy 1→copy 1
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(h) Dev. C: copy 1→copy 2
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Fig. 4. TA campaigns – Rank evolution vs. nb. of traces for the attack phase (x-axis)
and the profiling (y-axis)

5 Conclusion

In this paper, we have studied the effectiveness and efficiency of the LRA and the
TA attacks when performed in a context where the exact time of the sensitive
computations is not known. In this situation, and even after the application of
pattern matching or resynchronization techniques, the exploited leakage traces
may be composed of several thousands of points and the same attack must
be processed for each of those points. We noticed that the study of the side
channel attacks effectiveness and efficiency in this multivariate context is an over-
estimated problem. Most of the time, it is indeed assumed that the adversary
succeeded in significantly reducing the traces size (e.g. by priorly processing a
SNR, or a test attack, or even a dimension reduction). However, as argued in
this paper, those techniques are either unrealistic or may lead to a significant
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loss of useful information (a dimension reduction technique like the PCA may
be sound for one attack – e.g. the CPA – and not for another one – e.g. the MIA or
the LRA –). As a consequence, there was no work discussing about the rule to
apply in order to select a candidate among all of those returned by a same attack
performed against several time coordinates. To the best of our knowledge, the
de facto rule was hence to simply choose the key candidate maximising all the
attacks scores. In this paper, we have shown that this rule does not work for a
LRA attack and we have conducted a statistical analysis to deduce a new selection
rule that renders it effective in practice, even when the traces are composed of
huge number of points. In this paper, we have also tackled out the efficiency
problem for the multivariate LRA and TA attacks. For each of them, we have
followed a similar approach which led us to significantly reduce their complexity
when the number of traces and their dimension are high. It may be noticed that
the approach could also be applied (almost straightforwardly) to improve the
efficiency of the correlation power attack and of the mutual information attack
(with histogram pdf estimation). Eventually, all our results and analyses have
been illustrated by several attack experiments on three different copies of three
different technologies. In particular, the latter experiments have enabled us to
confirm the practicability of template attacks when the profiling phase and the
attack are performed on different copies of the same device.
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18. Le, T.-H., Clédière, J., Canovas, C., Robisson, B., Servière, C., Lacoume, J.-L.: A
Proposition for Correlation Power Analysis Enhancement. In: Goubin, L., Matsui,
M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 174–186. Springer, Heidelberg (2006)

19. Lee, S.J., Seo, S.C., Han, D.-G., Hong, S., Lee, S.: Acceleration of Differential
Power Analysis through the Parallel Use of GPU and CPU. IEICE Transactions
93-A(9), 1688–1692 (2010)

20. Mangard, S.: Hardware Countermeasures against DPA – A Statistical Analysis of
Their Effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp.
222–235. Springer, Heidelberg (2004)

21. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks – Revealing the Secrets
of Smartcards. Springer (2007)

22. Mangard, S., Oswald, E., Standaert, F.-X.: One for All - All for One: Unifying
Standard DPA Attacks. IET Information Security (2011)

23. Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant
Software. In: Paar, C., Kocc, cC.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–
251. Springer, Heidelberg (2000)

24. Oswald, D., Paar, C.: Breaking Mifare DESFire MF3ICD40: Power Analysis and
Templates in the Real World. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 207–222. Springer, Heidelberg (2011)

25. Press, W.: Numerical Recipes in Fortran 77: The Art of Scientific Computing.
Fortran Numerical Recipes. Cambridge University Press (1992)

26. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)



Behind the Scene of Side Channel Attacks 525

27. Rechberger, C., Oswald, E.: Practical Template Attacks. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005)

28. Renauld, M., Kamel, D., Standaert, F.-X., Flandre, D.: Information Theoretic and
Security Analysis of a 65-Nanometer DDSLL AES S-Box. In: Preneel, B., Takagi,
T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 223–239. Springer, Heidelberg (2011)

29. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A
Formal Study of Power Variability Issues and Side-Channel Attacks for Nanoscale
Devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–
128. Springer, Heidelberg (2011)

30. Schindler, W.: Advanced Stochastic Methods in Side Channel Analysis on Block
Ciphers in the Presence of Masking. Journal of Mathematical Cryptology 2, 291–
310 (2008)

31. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Chan-
nel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 30–46. Springer, Heidelberg (2005)

32. Standaert, F.-X., Archambeau, C.: Using Subspace-Based Template Attacks to
Compare and Combine Power and Electromagnetic Information Leakages. In: Os-
wald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer,
Heidelberg (2008)

33. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. Comparison Side-
Channel Distinguishers: An Empirical Evaluation of Statistical Tests for Univari-
ate Side-Channel Attacks against Two Unprotected CMOS Devices. In: Lee, P.J.,
Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg
(2009)

34. Standaert, F.-X., Koeune, F., Schindler, W.: How to Compare Profiled Side-
Channel Attacks? In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D.
(eds.) ACNS 2009. LNCS, vol. 5536, pp. 485–498. Springer, Heidelberg (2009)

35. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

36. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The World is not Enough: Another Look on Second-
Order DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129.
Springer, Heidelberg (2010)

37. Télécom ParisTech. DPA Contest v1 and v2, http://www.dpacontest.org/ (re-
trieved on August 1, 2012)

38. Whitnall, C., Oswald, E.: A Comprehensive Evaluation of Mutual Information
Analysis Using a Fair Evaluation Framework. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 316–334. Springer, Heidelberg (2011)

39. Whitnall, C., Oswald, E.: A Fair Evaluation Framework for Comparing Side-
Channel Distinguishers. J. Cryptographic Engineering 1(2), 145–160 (2011)

40. Whitnall, C., Oswald, E., Mather, L.: An Exploration of the Kolmogorov-Smirnov
Test as Competitor to Mutual Information Analysis. In: Prouff, E. (ed.) CARDIS
2011. LNCS, vol. 7079, pp. 234–251. Springer, Heidelberg (2011)

http://www.dpacontest.org/


SCARE of Secret Ciphers with SPN Structures

Matthieu Rivain1 and Thomas Roche2

1 CryptoExperts, France
matthieu.rivain@cryptoexperts.com

2 ANSSI, Fance
thomas.roche@ssi.gouv.fr

Abstract. Side-Channel Analysis (SCA) is commonly used to recover
secret keys involved in the implementation of publicly known crypto-
graphic algorithms. On the other hand, Side-Channel Analysis for
Reverse Engineering (SCARE) considers an adversary who aims at re-
covering the secret design of some cryptographic algorithm from its
implementation. Most of previously published SCARE attacks enable
the recovery of some secret parts of a cipher design –e.g. the substitu-
tion box(es)– assuming that the rest of the cipher is known. Moreover,
these attacks are often based on idealized leakage assumption where
the adversary recovers noise-free side-channel information. In this pa-
per, we address these limitations and describe a generic SCARE attack
that can recover the full secret design of any iterated block cipher with
common structure. Specifically we consider the family of Substitution-
Permutation Networks with either a classical structure (as the AES) or
with a Feistel structure. Based on a simple and usual assumption on
the side-channel leakage we show how to recover all parts of the design
of such ciphers. We then relax our assumption and describe a practical
SCARE attack that deals with noisy side-channel leakages.

1 Introduction

Side-Channel Analysis for Reverse Engineering (SCARE) refers to a set of tech-
niques that exploit side-channel information to recover secret algorithms and/or
software/hardware designs. One of the main application of SCARE is the recov-
ery of symmetric ciphering algorithms of private design, as often used in Pay-TV
and GSM authentication protocols. The first SCARE attack in this context was
introduced by Novak [25], who showed how to recover one out of two s-boxes
from a secret instance of A3/A8 algorithm (used in GSM protocol). This work
was subsequently improved by Clavier [10] who described how to recover both
s-boxes altogether with the secret key used by the cipher. In parallel to these
results, Daudigny et al. [13] showed that simple secret modifications of the DES
cipher could also be recovered from side-channel observations. In a more recent
work, Réal et al. [27] took a closer look at Feistel schemes in a more general
sense. They showed how an adversary that gets the Hamming weight of some
intermediate result can interpolate the round function of the cipher. Eventually,
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a SCARE attack on stream ciphers was proposed by Guilley et al. [19]. They
showed how to retrieve the overall design when either the linear or the nonlinear
part of the cipher is known.

Our Contribution. In this paper, we introduce a SCARE attack that recovers
the full secret design of an iterated Substitution-Permutation Network (SPN for
short), namely an iterated cipher composed of substitution boxes (or s-boxes),
linear layers and key additions. As in [25,10], our attack is based on the simple
assumption that the side-channel leakage enables the detection of colliding s-
box computations. Specifically, the attacker is able to select strips of side-channel
traces where the s-box computations are located and decide on collisions between
the processed values from the observation of these traces. This assumption has
been the basis of various previously published side-channel key-recovery attacks
(see for instance [32,31,3,4,2,6,5,24,11,17]). We first show how a perfect detection
of colliding s-box computations enables an efficient recovery of a secret cipher
with classical SPN structure as the one of the AES [14]. Roughly speaking, the
collision detection mechanism allows us to build simple linear equation systems
involving the different unknowns of the cipher algorithm (i.e. the s-box values,
the linear layer coefficients, the secret round key coordinates). In the full version
of the paper [29], we further extend our basic attack to relax as much as possible
the constraints on the design, allowing several different s-boxes, binary linear
layers, and Feistel structures, so that we cover a wide spectrum of usual block
cipher designs. In the second part of this paper, we address the practical aspects
of our attack and relax the perfect detection assumption. We describe a practical
SCARE attack working in the presence of noise in the side-channel leakage and
we provide experimental results showing its practicability.

Related Work. In a recent independent work [12], Clavier et al. present a
SCARE attack against AES-like block ciphers. The authors consider a chosen-
plaintext and known-ciphertext scenario with perfect detection of colliding s-
boxes. Under these assumptions, they show how to efficiently recover the secret
parameters of a modified AES. They further address the case of protected imple-
mentations with common software countermeasures against side-channel attacks.
In comparison, our attack targets a wider class of SPN ciphers, including mod-
ified AES ciphers as a particular case. Moreover, we extend our attack to deal
with noisy leakages, hence relaxing the perfect detection assumption. However,
we do not deal with the case of protected implementations (though we give a
few insights about it in Section 6).

Paper Organization. In the first section we describe the design of target SPN
block ciphers. Then we present our generic SCARE attack in Section 3. The
practical SCARE attack dealing with noisy leakages is described in Section 4, and
experimental results are presented in Section 5. Finally, we give some discussions
and perspectives in Section 6.
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2 Substitution-Permutation Networks

We consider a block cipher E computing an �-bit ciphertext block c from an
�-bit plaintext block p through the repetition of a key-dependent permutation,
called round function ρ. Each round is parameterized by a different round key
ki derived from the secret key k through a key scheduling process. Let r denote
the number of rounds, the ciphertext block is then defined as

c = Ek(p) = ρkr ◦ ρkr−1 ◦ · · · ◦ ρk1(p) .

In an SPN block cipher, the round function is composed of linear permutations
and nonlinear substitutions, and the key is introduced by addition. The addition
and linearity are considered over the vectorial space F�2. Namely round keys
are introduced by a simple exclusive-or (XOR), and linear permutations are
homomorphic with respect to the XOR operation. Non-linear substitutions are
applied on small blocks of bits which are replaced by new blocks looked-up from a
predefined table usually called s-box (for substitution-box). In what we shall call
a classical SPN structure, the different s-boxes and linear transformations are
bijective (e.g. the Advanced Encryption Standard [14]). But when they are not, it
is common to use a so-called Feistel scheme in order to make the round function,
and hence the overall cipher, invertible (e.g. the Data Encryption Standard [15]).
In the following, we only focus on the classical SPN structures. Extension of our
work to Feistel schemes is provided in the full version of the paper.

In a classical SPN structure, the plaintext is considered as a n-dimensional
vector of m-bit coordinates: p = (p1, p2, . . . , pn), with � = nm. The round func-
tion is composed of a key addition layer σki , a nonlinear layer γ, and a linear
layer λ, that is

ρki = λ ◦ γ ◦ σki .

The key addition layer is a simple XOR-ing of the round key:

σk(p) = p⊕ k .

The nonlinear layer consists of the parallel application of an m×m s-box S:

γ(p) = (S(p1), S(p2), . . . , S(pn)) ,

And the linear layer is a linear transformation over (F2m)n:

λ(p) =

⎛⎜⎜⎜⎝
a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n

⎞⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎝

p1
p2
...
pn

⎞⎟⎟⎟⎠ (1)

where the aij and the pj are considered as elements of F2m .

Remark 1. The final round sometimes skips the linear layer and an additional
key addition is often performed after the final nonlinear layer. The attack de-
scribed in this paper works as well for these variants.
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3 Basic SCARE of Classical SPN Structures

3.1 Attacker Model

We present a generic SCARE attack in a known-plaintext scenario, and we show
how its complexity can be lowered in a chosen-plaintext scenario. Our attack
does not require the knowledge of the ciphertext but only exploits the side-
channel leakage of the cipher execution. Moreover, it is assumed that colliding
s-box computations can be detected from the side-channel leakage. Specifically,
we assume that the attacker is able to

(i) identify the s-box computations in the side-channel leakage trace and extract
the leakage corresponding to each s-box computation,

(ii) decide whether two s-box computations y1 ← S(x1) and y2 ← S(x2) are
such that x1 = x2 or not from their respective leakages.

Remark 2. This assumption implicitly means that the cipher implementation
processes the s-box computations in a sequential way and that two s-box com-
putations of the same input at two different points in the execution produce
identical side-channel leakages. These constraints are further discussed in Sec-
tion 6.

Under the above assumption, the attacker can identify r different groups of n
s-box computations, and hence recover the number r of rounds, the number n of
s-boxes per round and hence the s-box size m = �/n, where � is the block size. We
will therefore assume these parameters to be known in our attack description.

In what follows, we first show how the above assumption enables the complete
recovery of a secret cipher with SPN structure as described in Section 2. In
Section 4, we relax this assumption and extend our attack to deal with noisy
leakages which can lead to decision errors in the collision detections.

3.2 Equivalent Representations

Several equivalent representations are possible for an SPN cipher such as con-
sidered here. For instance one can change the s-box S for the s-box S′ defined
as

S′(x) = S(x⊕ δ)

for some δ ∈ F2m , and replace every round key ki = (ki,1, ki,2, . . . , ki,n) by

k′
i = (ki,1 ⊕ δ, ki,2 ⊕ δ, . . . , ki,n ⊕ δ) .

The two representations are clearly equivalent in a functional sense. Moreover,
the ability of detecting collisions in s-box computations does not make it possible
to distinguish between two different equivalent representations.

Another way to obtain equivalent representations is by changing the s-box S
for the s-box S′ defined as

S′(x) = α · S(x)
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for some α ∈ F∗
2m , and by replacing the linear layer λ defined in (1) by the linear

layer λ′ obtained from the matrix (a′i,j)i,j whose coefficients satisfy

a′i,j = ai,j/α

for every (i, j).
In our attack, we fix the first round key coordinate k1,1 to 0 and we fix the

coefficient a1,1 to 1, which is equivalent to fixing the variables δ and α. Note
that a1,1 may equal 0 (which is revealed by the attack), in which case we try
fixing a1,2, then a1,3, and so on. We describe hereafter the successive stages of
the attack.

3.3 Stage 1: Recovering k1

Since we have fixed k1,1 = 0, we aim to recover the n − 1 remaining subkeys
k1,2, k1,3, . . . , k1,n. Let I denote the set of indices i for which k1,i is known. At
the beginning of the attack I = {1}. Then for any collision [yi ← S(pi⊕ k1,i)] ∼
[yj ← S(pj ⊕ k1,j)] for some i ∈ I, one deduces

k1,j = pj ⊕ pi ⊕ k1,i ,

and the index j is added to I. We expect to retrieve all subkeys with less than
2m/2 encryptions.

3.4 Stage 2: Recovering λ, S and k2

Once k1 has been recovered, one knows the inputs of the s-box in the first round.
Let us define xi = S(i) for every i ∈ {0, 1, . . . , 2m − 1}, so that recovering the
s-box means recovering the 2m unknowns x0, x1, . . . , x2m−1. The attack consists
in constructing a set of equations in the xi’s, the ai,j ’s and the k2,i’s. Solving
the obtained system hence amounts to recover λ, S and k2.

The first step of this stage consists in collecting the leakages �β from s-box
computations μ ← S(β) for every β ∈ F2m . We shall denote by B the obtained
leakage basis {�β | β ∈ F2m}. Such a basis can be constructed since k1 is known
from the first stage, hence the inputs of the s-box computations in the first
round are known. This basis is then used to detect collisions between s-box
computations in the second round and s-box computations μ← S(β). Let wj be
the jth s-box input before key addition in the second round (i.e. wj is the jth
m-bit output of the first round), in the encryption of some plaintext p. Then wi

satisfies
wi = ai,1 xj1 ⊕ ai,2 xj2 ⊕ · · · ⊕ ai,n xjn ,

where jt = pt ⊕ k1,t is a known index. If the corresponding s-box computation
yi ← S(wi ⊕ k2,i) collides with some s-box computation μ← S(β) from B, then
we get the following quadratic equation

ai,1 xj1 ⊕ ai,2 xj2 ⊕ · · · ⊕ ai,n xjn ⊕ k2,i = β .

Once several such equations have been collected, one can solve the system and
recover all the unknowns (i.e. the xi’s, the ai,j ’s and the k2,i’s).
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Solving the System. In order to solve the quadratic system obtained from
all the collected equations, one can use the linearization method. The mono-
mial ai,j xu is replaced by a new unknown yt for every triplet t ≡ (i, j, u) where
1 ≤ i, j ≤ n and 0 ≤ u ≤ 2m−1. We get a linear system with 2mn2+n unknowns
(the yt and the k2,i), which can be solved based on 2mn2 +n independent equa-
tions. Since every encryption provides n new equations, the required number of
encryptions is 2mn+ 1.

However, using linearization is not mandatory and we show hereafter that the
system can be directly rewritten as a linear system. To do so, we consider the n
equations obtained for the different s-box computations at the same time. Let
β1, β2, . . . , βn be the values such that yi ← S(wi⊕k2,i) collides with μi ← S(βi).
The obtained system for the n equations can be written in matrix form as

A · x⊕ k2 = β ,

where A = (ai,j)i,j , x = (xj1 , xj2 , . . . , xjn)
T , k2 = (k2,1, k2,2, . . . , k2,n)

T and
β = (β1, β2, . . . , βn)

T . Since λ is invertible, we have

x⊕A−1 · k2 = A−1 · β .

Let k′
2 = (k′

2,1, k
′
2,2, . . . , k

′
2,n) denote the vector resulting from the product A−1 ·

k2 and let a′i,j denote the coefficients of A−1. We obtained the n following
equations:

xj1 ⊕ k′
2,1 = a′1,1 β1 ⊕ a′1,2 β2 ⊕ · · · ⊕ a′1,n βn ,

xj2 ⊕ k′
2,2 = a′2,1 β1 ⊕ a′2,2 β2 ⊕ · · · ⊕ a′2,n βn ,

...

xjn ⊕ k′
2,n = a′n,1 β1 ⊕ a′n,2 β2 ⊕ · · · ⊕ a′n,n βn .

After collecting several such equations, we obtained a linear system with n2+
n + 2m unknowns: the xi’s, the a′i,j ’s and the k′

2,i’s. This system can hence be

solved based on n2 + n + 2m independent equations. Since every encryption
provides n new equations, the required number of encryptions is at least n+1+
2m/n. Once all the a′i,j ’s and the k′

2,i’s have been recovered, we can inverse the

matrix A−1 to get λ and then compute k2 = A · k′
2.

As explained in Section 3.2, we must fix a1,1 = 1 in order to fix a representation
among the equivalence class of the cipher. For the above system, this amounts to
fixing a′1,1 = 1. Here again, a′1,1 may equal 0 in which case the solving fails and
the attacker must try again by fixing a′1,2 and so on. Another degree of freedom
exists that is not recovered by solving the above system: one can add a fixed
offset δ to every s-box output and to every coordinate of k′

2 (which amounts to
add A · (δ, δ, . . . , δ) to k2). Clearly, such a modification would not change the
collected equations. In order to set this degree of freedom, we can fix one of the
s-box output, say x0 to 0. To summarize, additionally to the collected n-equation
groups from each encryption, we add the equations a′1,1 = 1 and x0 = 0 in order
to obtain a full rank system.
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Note that fixing x0 = 0 may induce a non-equivalent representation of the
cipher. Indeed, the recovered cipher is equivalent to the real cipher but a fixed
offset δ is xor-ed to each s-box outputs in the last round. As a consequence the
resulting ciphertexts are xor-ed with the constant value A · (δ, δ, . . . , δ). Note
that if a key-addition is performed after the nonlinear layer in the last round
then its recovery absorbs this offset as for the other rounds. Otherwise, one
must recover the offset δ in order to correct the ciphertext values and get an
equivalent representation of the cipher. This can be easily done by comparing a
real ciphertext with the one obtained from the recovered cipher.

Chosen Plaintexts Attack. To optimize the attack, one shall select the plain-
texts in order to make every unknown of the system appear with the least possi-
ble number of requested encryptions. The a′i,j ’s and the k′

2,i’s all appear in each
group of n equations resulting from a single encryption. On the other hand such
a group of equations only involves n out of 2m unknowns xi’s. The best approach
is hence to make n different xi’s appear for each encryption request. To do so,
one can simply ask for the encryption of the plaintext

(i · n+ 0, i · n+ 1, i · n+ 2, . . . , (i + 1)n− 1)⊕ k1 ,

for i = 0, 1, . . . , �2m/n� − 1. The s-box inputs in the first round of the corre-
sponding encryptions then equal (0, 1, 2, . . . , n − 1), (n, n + 1, . . . , 2n − 1), etc.
Every possible s-box value thus appears in the system after �2m/n� encryptions.
It just remains to ask for the encryption of n+ 1 additional plaintexts to get a
full rank linear system in the n2 + n+ 2m unknowns.

3.5 Stage 3: Recovering k3, k4, . . . , kr

Once the two first stages have been completed, it only remains to recover the
last round keys k3, k4, . . . , kr. This is simply done by detecting a collision
[yi ← S(pj,i ⊕ kj,i)] ∼ [μj,i ← S(βj,i)] giving kj,i = pj,i ⊕ βj,i for every round
j ∈ {3, 4, . . . , r} and every s-box index i ∈ {1, 2, . . . , n}.

4 SCARE in the Presence of Noisy Leakage

So far, we have considered an idealized model in which the attacker is able to
detect a collision between two s-box computations from their respective leakages
with a 100% confidence. As a matter of facts, the proposed SCARE attack do
not tolerate any false-positive error in the collision detections. In this section,
we relax this assumption and describe a practical SCARE attack in the presence
of noise in the side-channel leakage. As for the basic attack, the principle is
to exploit equations arising from collisions in s-box computations. We explain
hereafter how to collect sound equations with high confidence in the presence of
noisy leakage.
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4.1 Stage 1: Recovering k1

In our SCARE attack, the first stage exactly corresponds to the usual scenario
of linear collision attacks that aim at recovering key bytes differences k1,i ⊕ k1,j
by detecting collisions between s-box computations in the first round from the
side-channel leakage [3,4,24,17].

In a linear collision attack, the attacker is assumed to possess the leakage
traces corresponding to the encryption of N random plaintexts ((pt)t≤N ). Let
�t,i denote the leakage associated to ith s-box computation in the encryption of
pt. The principle is to compute the mean leakage �̄i,x of the set {�t,i ; pt,i = x}
for every i and x, in order to average the leakage noise and detect collisions
more easily. As explained in Section 3.3, detecting a collision between �̄i,x and
�̄j,y implies the equality of the two s-box inputs x ⊕ k1,i and y ⊕ k1,j and pro-
vides the linear equation k1,i ⊕ k1,j = x ⊕ y. In [3], Bogdanov points out that
the equation system arising from the key byte differences is overdetermined and
that the redundant information could be used to tolerate some erroneous equa-
tions. In [17], Gérard and Standaert further show that solving such an equation
system can be written as a LDPC1 code decoding problem for which an efficient
algorithm is known. We suggest to use their method for the first stage of our
practical SCARE attack.

4.2 Stage 2: Recovering λ, S and k2

As for the attack without collision errors, the second stage is the main task. To
deal with the leakage noise, we make the well admitted Gaussian noise assump-
tion. Namely, we assume that the leakage corresponding to an s-box computation
μ ← S(β) follows a multivariate Gaussian distribution with mean mβ and co-
variance matrix Σβ , denoted N (mβ , Σβ).

Building Leakage Templates. The first step of the second stage consists in
estimating the leakage parameters. Namely, for each β ∈ F2m we estimate the
mean mβ and the covariance matrix Σβ of the leakage from the s-box computa-
tion μ ← S(β). The leakage basis of the noise-free attack is then replaced by a

leakage template basis B = {(m̂β , Σ̂β)β | β ∈ F2m} where m̂β and Σ̂β denote the
estimated values for the leakage parameters. The estimation is obtained from the
leakages used in the first stage, and possibly more, until the estimated means
converge.

Our convergence criterion is based on the Hotelling T 2-test which is the natu-
ral extension of the Student T -test for multinormal distributions (see for instance
[21]). Let d denote the dimension of the distribution N (mβ , Σβ) i.e. the number
of points in an s-box leakage trace, and let F−1

(d1,d2)
denote the quantile function

of the Fisher’s F -distribution with parameters (d1, d2) (i.e. F(d1,d2) is the dis-
tribution CDF). For some confidence parameter α ∈ [0; 1] and some estimation
quality parameter q ∈ [0; 1], our convergence criterion is satisfied when we have:

1 Low Density Parity Check
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Rα

( σ̂2
β

det(Ŝ)

)1/d

≤ q where Rα :=
d

N − d
F−1
(d,N−d)(α) .

The rationale of this definition is detailed in the full version of the paper.
Based on this criterion, the template basis is built iteratively: we first collect

N leakage samples for every s-box input value β. Based on these samples, we
estimate the distribution parameters (m̂β , Σ̂β) for every β, as well as the inter-

class covariance matrix Ŝ. Then if we have maxβ Rα(σ̂
2
β/ det(Ŝ))

1/d ≤ q for some
chosen confidence α and estimation quality parameter q we stop. Otherwise we
continue with twice more samples (namely we collect N more leakage samples
and set N to 2N), and so on until we get a satisfying estimation quality. In
practice, we shall use α = 99% and q = 0.5.

Remark 3. A possible variant for building the template basis is to make the
identical noise assumption which considers that Σβ is equal to some constant

matrix Σ for every β. This enables a better estimation Σ̂ based on all leakage
samples.

Collecting Equations. Once the template basis has been built, we collect
several groups of n equations of the form x ⊕ k′

2 = A−1 · β, as in the basic
attack (see Section 3.4). Due to the noise, we cannot determine the value of β
with a 100% confidence. To deal with this issue we use averaging. Namely, the
encryption of the same plaintext p is requested several – say N – times and we
compute the average leakage for each s-box computation in the second round.
Let �i denote the average leakage for the ith s-box, and let β∗

i denote the corre-
sponding (unknown) s-box input. The average leakage �i follows a distribution
N (mβ∗

i
, 1
NΣβ∗

i
). Then we must recover the n corresponding values β∗

1 , β
∗
2 , . . . ,

β∗
n in order to get a group of equations. The problem is hence to determine to

which distribution N (mβ ,
1
NΣβ) belongs each leakage �i based on the template

basis. For such a purpose, we use a maximum likelihood approach, namely we
follow the classical approach of template attacks [9]. Given the leakage observa-
tion �i, the probability that the ith s-box input value β∗

i equals some value β
satisfies

Pr[β∗
i = β | �i] =

φβ(�i)∑
β′∈F2m

φβ′(�i)
,

where φβ denotes the pdf of N (mβ ,
1
NΣβ) satisfying

φβ(�) ∝ exp
(
− N

2
(�−mβ)

T ·Σ−1
β · (�−mβ)

)
.

The likelihood of the candidate β for β∗
i based on the estimations (m̂β)β and

(Σ̂β)β is hence defined as

L(β | �i) :=
exp

(
− N

2 (�i − m̂β)
T · Σ̂−1

β · (�i − m̂β)
)∑

β′∈F2m
exp

(
− N

2 (�i − m̂β′)T · Σ̂−1
β′ · (�i − m̂β′)

) . (2)
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The corresponding likelihood for a vector β = (β1, β2, . . . , βn) given the average
leakage vector 
 = (�1, �2, . . . , �n) can then be defined as L(β | 
) :=

∏
i L(βi | �i).

Note that the most likely candidate argmaxβ L(β | 
) is also the one whose
coordinates are the most likely i.e. equal to argmaxβi

L(βi | �i) for every i.
In practice, we shall select the most likely value of β as the good one with a con-

fidence Lβ. However we not only want to select the best candidate, we further want
its likelihood to be high (i.e. close to 1) in order to have a high confidence in the se-
lected candidate. Getting a vectorβ with high likelihood may however be far more
difficult than getting a single coordinate βi with high likelihood since for the vector
one needs all coordinates to have high likelihood. Indeed, the probability of having
a high likelihood for the vector β is the probability of having a high likelihood for
all coordinates βi which is exponentially smaller in n.

To deal with this issue, our approach is to restrict the number of equations
of the form x⊕ k′

2 = A−1 · β that are needed to succeed the attack. For such a
purpose, we first solve a subsytem (i.e. with less unknowns) for which we require
less equations than in the original attack, and then we recover the remaining
unknowns based on simpler forms of equations.

Solving a Subsystem. We first solve a subsystem involving the a′i,j ’s, the
k2,i’s and a restricted number of xi’s. To do so we select a set of s values β,
say S = {0, 1, . . . , s − 1}, and we only request the device for the encryption of
plaintexts from the set

Ps = {(p1, p2, . . . , pn) | ∀i : 0 ≤ pi ⊕ k1,i ≤ s− 1} .

These plaintexts are such that all s-box inputs in the first encryption rounds are
in S. We hence obtained a linear system as described in Section 3.4 but with
n2 + n + s − 2 unknowns: the a′i,j ’s (but a′1,1 which is set to 1), the k′

2,i’s, and
the xi’s for i ∈ S (but x0 which is set 0). Such a system can be solved based on
t = n+ 1+ �(s− 2)/n� good groups of equations. The value of s must hence be
selected to ensure that the plaintext subspace Ps is large enough to get t good
groups with high confidence, while making t the smallest possible.

In order to increase our chances to actually come up with t groups of correct
equation, one direction would be to select a larger set of say q groups of equations
(instead of only taking the t best) and test all combinations of t groups among
them. The complexity of the resulting attack will however increase dramatically
with q.

So, let us assume that we have a computing power of 2k, meaning that we
can try to solve 2k linear systems, and that we can get the leakage measurement
from T encryptions. Then our approach is to request N times for the encryption
of T/N different plaintexts in Ps. For each of the T/N plaintexts, we compute
the more likely candidate β for the s-box inputs in the second round, based on
the N -averaged leakages. We thus obtained T/N groups of n equations with a
corresponding confidence (i.e. the likelihood of the best candidate β). Then we
select the q groups for which we get the highest confidence in the best candidate
β, where q is such that

(
q
t

)
≈ 2k (that is q = c0t 2

k/t for some c0 ∈ [e−1; 1]), and



536 M. Rivain and T. Roche

we try to solve each system arising from t of these q groups. In order to make
sure that a found solution is the good one, we make the system over determined.
This can be done without increasing the number t of needed equation groups.
Namely, we take s ≤ n+2 in order to get t = n+1+�(s−2)/n�= n+2. We thus
obtain systems of n2 +2n equations with n2 + n+ s− 2 unknowns. Obtaining a

bad system that has a solution roughly occurs with probability pe ≈
(

1
2m

)n−s+2
.

So we take s to make this probability small, typically s = n+ 2 − 32/m giving
pe ≈ 2−32. For instance, for n = 16 and taking s = 14, we then have to select
t = 18 good groups of equations from |Ps| ≈ 261 possible encryptions (which is
quite enough). Another direction in increasing our chances of success would be
to select the optimal averaging level.

Selecting the Averaging Level. We now explain how to select the averaging
level N in order to optimize the success probability of the attack. Increasing
the averaging level is good on the one hand to lower the noise and get better
confidence in the recovered s-box inputs. On the other hand, the lower N , the
greater the number T/N of different equation groups among which we can select
the q best ones. To select a good tradeoff, we adopt the approach of [28] which
estimates the success probability of an attack based on estimated leakage param-
eters. Namely we assume that the estimated paremeters (mβ)β , and (Σβ)β are
the real leakage parameters and we simulate the attack accordingly. To simulate
an attack, we fill two lists Succ and Fail by repeating the following steps:

1: β∗ ←$ (F2m)n

2: for i = 1 to n do �i ←$ N (m̂β∗
i
, 1
N Σ̂β∗

i
)

3: Lmax ←
∏

imaxβ L(β | �i)
4: if argmaxβL(β | �i) = β∗

i for every i
5: then add Lmax to Succ
6: else add Lmax to Fail

After iterating the above steps T/N times, one checks whether the q maximum
values of Succ∪Fail include at least t value from Succ or not. In the affirmative,
the simulated attack succeeded, otherwise it failed. Once the attack simulation
has been performed several times, we obtain an estimation for the success prob-
ability of the attack.

Compared to a real attack experiment, the obtained success probability is
affected by two differences: the actual leakage distributions N (mβ∗

i
, 1
NΣβ∗

i
) are

replaced by the estimated distributions N (m̂β∗
i
, 1
N Σ̂β∗

i
) and the distribution of

the vector β∗ of s-box inputs in the second round is replaced by the uniform
distribution although it is not the case in practice since the plaintexts are ran-
domly drawn from Ps instead of {0, 1}�. However for good estimations of the
leakage parameters, we expect to get a good estimation of the trade-off of choice
for averaging.

Recovering Remaining Unknowns. For the remaining unknowns xs, xs+1,
. . . , x2m−1 we will here again use an iterative approach that recovers them one
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by one. For the sake of clarity, we assume that the linear layer is such that the
matrix A has a column j0 with no zero coefficients. Then our approach is to take
a random plaintext p in Ps and to set its j0th coordinates to s ⊕ k1,j0 so that
the j0th s-box inputs equals s. By definition, the ith s-box input in the second
round satisfies

β∗
i = ai,1 xt1 ⊕ ai,2 xt2 ⊕ · · · ⊕ ai,n xtn ⊕ k2,i ,

where tj ≤ s− 1 for every j �= j0 and tj0 = s. This can be rewritten

β∗
i = ai,j xs ⊕ k2,i ⊕

⊕
j �=j0

ai,j xtj . (3)

Since we know the values of the ai,j ’s, the k2,i’s and the xtj ’s for tj ≤ s − 1,
recovering xs amounts to recovering β∗

i . And as we cannot recover β∗
i with a

100% success probability, we use a maximum likelihood approach.
Specifically, the likelihood of each candidate value ω ∈ F2m for xs is initialized

to 0 if ω ∈ {x0, x1, . . . , xs−1} (indeed xs /∈ {x0, x1, . . . , xs−1} as the s-box is
bijective) and to (2m − s)−1 otherwise. Then the leakage �i resulting from each
s-box computation is used to update the likelihood of each candidate for xs.
Namely, the likelihood L(ω) of the candidate ω is multiplied by the likelihood of
the candidate βωi for the ith s-box input, where βωi = ai,j ω⊕k2,i⊕

⊕
j �=j0

ai,j xtj
according to (3). Doing so for every s-box, L(ω) is updated by

L(ω)← L(ω)×
n∏
i=1

L(βωi | �i) ,

where L(· | �i) is computed as in (2) with N = 1 (since we do not use averaging
here). Eventually, the likelihood vector is normalized, that is all the coordinates
are divided by

∑
ω L(ω). We iterate this process for several encryptions until one

likelihood value L(ω) get close enough to 1. Then we deduce xs = ω, and start
again with xs+1, and so on until x2m−1. Note that we can stop once x2m−2 since
a single value remains for x2m−1.

4.3 Stage 3: Recovering k3, k4, . . . , kr

Eventually, the last round keys can be recovered one by one by performing any
classical side-channel key recovery attack (since we now know the design of the
cipher). We suggest to use a maximum likelihood approach based on the template
basis.2

5 Experiments

We report hereafter the results of various simulations of the practical SCARE
attack described in the previous section. Each simulated attack aims at recov-
ering a secret cipher with classical SPN structure (such as described in Section
2). We consider two different settings for the cipher dimensions:

2 Such technique is well known and pretty similar to that used in the previous section
so we do not detail it here.
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• the (128,8)-setting: 128-bit message block and 8-bit s-boxes, as in the
AES block cipher [14] (i.e. � = 128, n = 16, m = 8),

• the (64,4)-setting:64-bitmessage block and 4-bit s-boxes, as in the LED [20]
and PRESENT [7] lightweight block ciphers (i.e. � = 64, n = 16,m = 4).

For each attack experiment, a random secret cipher is picked up. Namely, we
randomly generate a full-rank n × n matrix over F2m , a bijective m-bit s-box,
and several �-bit round keys. The attack succeed if it recovers an equivalent
representation of the generated cipher.

In order to evaluate our attack under a realistic leakage model, we have pro-
filed the leakage of an 8-bit s-box computation on an AVR chip.3 The side-channel
leakage was captured by the means of an electromagnetic probe and a digital os-
cilloscope with a sampling rate of 1G sample per second. To infer a leakage model
from themeasurementswemade theGaussian and independent noise assumptions.
We therefore estimated the mean leakage for every s-box input value and the mean
leakage for every s-box output value based on 100000 leakage traces. We then se-
lected three leakage points for the input and three leakage points for the output.
We thus obtained 256 means (m1,β,m2,β ,m3,β)β for the 256 possible input values
β ∈ {0, 1, . . . , 255} and the 256means (m4,μ,m5,μ,m6,μ)μ for the 256 possible out-
put values μ ∈ {0, 1, . . . , 255}. Afterwards we estimated the noise covariance ma-
trix Σ for the selected points (i.e. the matrix of covariances between the 6 points
after subtracting the means). A preview of the obtained parameters can be found
in the full version of the paper. In particular we get a multivariate SNR4 of 0.033
and univariate SNRs5 of 0.13, 0.033, 0.099, 0.058, 0.047, and 0.051, for the different
leakage points. These inferred parameters provide us with a leakage model for our
attack simulations. Namely, for a given cipher with s-box S, the leakage associated
to the s-box computation with input β is randomly drawn from the multivariate
Gaussian distributionN (mβ , Σ) with mean satisfying

mβ = (m1,β ,m2,β,m3,β,m4,S(β),m5,S(β),m6,S(β)) .

Stage 1. For the recovering of k1, we implemented the Gérard and Standaert
method based on the normalized Euclidean distance. For the (128,8)-setting, we
obtained a 100% success rate using a few thousands of leakage traces while for
the (64,4)-setting a few hundreds were sufficient. We did not try to optimize this
stage of the attack (in particular we did not use the Bayesian extension proposed
in [17]) as it requires a very small amount of leakage traces compared to the next
stage.

3 ATMega 32A, 8-bit architecture, 8Mz.
4 The multivariate SNR is defined as the ratio of the interclass generalized variance (i.e.
the determinant of the leakagemeans covariancematrix) over the intraclass generalized
variance (i.e. the determinant of the noise covariance matrix) to the power 1/d (where
d is the dimension equal to 6 in our case).

5 The univariate SNR is defined as the variance of the means over the variance of the
noise.
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Fig. 1. Stage 2.1 for the (128,8)-setting:
success rate over an increasing num-
ber of leakage traces (in log2-scale) for
a computing power of 2k with k ∈
{0, 1, 8, 32}
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Fig. 2. Stage 2.1 for the (64,4)-setting:
success rate of stage 2.1 over an increas-
ing number of leakage traces (in log2-
scale) for a computing power of 2k with
k ∈ {0, 1, 8, 32}

Stage 2.1. For this stage (recovery of λ, k2, S(0), S(1), . . . , S(s−1)) we fixed the
number s of s-box outputs in the system to 14 for the (128,8)-setting and to 10
for the (64,4)-setting (according to the suggested formula s = n+2−32/m). For
both settings, we chose a precision quality parameter q = 0.5 for the building
of the template basis and we simulated the attack for a computing power of
2k with k ∈ {0, 8, 16, 32} (i.e. 2k systems among the likeliest ones are tested).
The obtained success rates are plotted in Figure 1 for the (128,8)-setting and
in Figure 2 for the (64,4)-setting. Each curve represents a different computing
power. Naturally the leftmost curves (i.e. the most successful) correspond to the
232 computing power and the rightmost ones to the 20 computing power. As
one can see, with a reasonable computing power, a 100% success rate is reached
with less than 216 leakage traces for the (128,8)-setting, and with less than 213

leakage traces for the (64,4)-setting.
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Fig. 3. Stage 2.1 for the (128,8)-setting:
success rate over an increasing number
of leakage measurements (in log2-scale)
for a estimation quality q = 0.1
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Fig. 4. Stage 2.1 for the (64,4)-setting:
success rate over an increasing number
of leakage measurements (in log2-scale)
for a estimation quality q = 0.1
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For the (128,8)-setting the precision quality q = 0.5 makes our means esti-
mations to converge after 1024 leakage samples per value β ∈ F256. Since 16
samples are provided per leakage trace (one for each s-box in the first round),
this makes a data complexity of 214 leakage traces for building the template
basis. As we need around 216 leakage traces to get a 100% success rate in stage
2.1 we might get a better overall attack complexity by improving the estimation
precision a little bit. In order to see the kind of improvement we could get from
a better estimation, we also performed attack simulations for a precision quality
q = 0.1, implying an increase of the data complexity to 217 leakage traces for
the template basis. The obtained success rates are given in Figure 3. We get a
100% success rate with between 214 and 214.5 leakage traces for all computing
powers except for k = 0 which requires 215 traces.

For the (64,4)-setting, the estimated means converge after 2048 samples per
value β ∈ F16, making a data complexity of 2048 for template basis. Here again
we also performed attack simulations for a precision quality of q = 0.1 (see results
in Figure 4). We get a data complexity of 213 leakage traces for the template basis
and around 212.5 leakage traces for the system solving. This precision therefore
seems to give the best tradeoff for the (64,4)-setting.

0.2 0.4 0.6 0.8 1.0

5000

10 000

15 000

Fig. 5. Number of leakage traces to get a 90% success rate over an increasing SNR in
[0.1; 1] for the (128,8)-setting (green curve) and the (64,4)-setting (red curve)

In order to observe the impact of the SNR on the data complexity we per-
formed attack simulation for which we weighted the noise covariance matrix in
order to get some desired multivariate SNR between 0.1 and 1. For both settings,
we fixed the estimation quality to q = 0.5 and the computed power to 216. Figure
5 plot the required number of leakage traces to obtain a 90% success rate with
respect to the multivariate SNR. We observe a strong impact of the SNR on the
attack efficiency. In particular for an SNR close to 1 our attack only requires a
few thousands of traces.

Stage 2.2 and 3. The recovery of the remaining s-box outputs based on the
maximum likelihood approach is very efficient. Taking a lower bound of 0.999 on
the likelihood to decide that a candidate is the good one, the attack stops after
640 leakage traces on average and reaches a 97% success rate for the (128,8)-
setting (a tighter likelihood bound would yield a 100% success rate). For the



SCARE of Secret Ciphers with SPN Structures 541

(64,4)-setting, it stops after 10 leakage traces on average and reaches a 100%
success rate. The high efficiency of the attack for the (64,4)-setting comes from
the fact that it only has to recover 6 remaining s-box outputs. Therefore the
likelihoods quickly converge.

We did not implement attack simulation for the third step but we would
clearly get comparable figures than for stage 2.2, i.e. negligible data requirements
compared to stage 2.1 which is clearly the bottleneck of our attack.

6 Discussions and Perspectives

In this paper we have described a generic SCARE attack against a wide class
of SPN block ciphers. The attacker model defined in Section 3.1 assumes that
colliding s-box computations can be detected from the side-channel leakage. We
have first investigated the case of perfect collision detection and then we have
extended our attack to deal with noisy leakages.

About the Attacker Model. As mentioned in Section 3.1 (Remark 2), our
attacker model implicitly means that the cipher implementation processes the
s-box computations in a sequential way, which is therefore more suited for soft-
ware implementations. This makes sense for secret ciphers which are rarely im-
plemented at the hardware level. Note that it is also common to use a sequential
approach for the s-box computations in light-weight hardware implementations
of block ciphers, and our attack naturally applies to this context. Our model
further implicitly assumes that two s-box computations with the same input at
two different points in the execution produce identical side-channel leakages (or
identically distributed in the noisy context). Although this assumption seems
fair in practice, it might not always be satisfied. It was for instance observed in
[17,30] that for some software implementations the side-channel leakage of an s-
box computation may vary according to the s-box index and the target register.
For such implementations, it might not be possible to detect collisions between
two s-box computations at different indices. This issue can be addressed by con-
sidering each s-box index independently, which amounts to deal with themultiple
s-boxes setting studied in the full version of the paper (except that we need to
recover a single s-box). In this context, one only detects collisions between s-box
computations at the same index. Note that our attack still assumes that s-box
computations at a given index leak identically in the successive rounds.

Countermeasures to Our Attack. Our work shows that under a practically
relevant assumption, it is possible to retrieve the complete secret design of a
block cipher with a common SPN structure. This clearly emphasizes that the se-
crecy of the design is not sufficient to prevent side-channel attacks, and that one
should include countermeasures to the implementation of secret ciphers as well.
A typical choice for block cipher implementations in software is to use mask-
ing with table recomputation for the s-box (see for instance [23,1]). As studied
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by Roche and Lomné in [30], such a countermeasure only prevents collision de-
tections between different cipher executions but it still allows the detection of
intra-execution collisions. In a variant of their attack against AES-like secret
ciphers, Clavier et al. take this constraint into account in order to bypass the
masking countermeasure with table recomputation [12]. Our attack in the ideal-
ized leakage model (perfect collision detection) could also be extended to work
with this constraint. It would be more tricky in the presence of noise as averaging
would not be an option anymore, but our attack could still be generalized using
a similar approach as [30]. In order to thwart our attack, one should therefore
favor masking schemes enabling the use of different masks for the different s-box
computations (see for instance [26,8]), so that intra-execution collisions would
not be detectable anymore. Another common software countermeasure is oper-
ation shuffling (see for instance [22]). This countermeasure has a direct impact
on our attack as it randomizes the indices of the s-box computations from one
execution to another. As shown by Clavier et al. [12], such a countermeasure
can be simply bypassed in the idealized leakage model. However, it seems more
complicated to deal with in a noisy leakage model especially if combined with
masking. We therefore suggest to use such a combination of countermeasure
against our attack.

Perspectives. Our work opens several interesting issues for further research.
First, our attack could probably be improved by using better/optimal approaches
to solve the set of noisy equations arising in Stage 2.1 (see Section 4.2). One
could for instance follow the approach of [18,16] by rewriting the system as a
decoding problem. Our attack could also be improved by considering a known
ciphertext scenario (as e.g. done in [12]). On the other hand, our attack was only
validated by simulations (although from a practically inferred leakage model).
It would be interesting to mount the attack against a real implementation of a
secret SPN cipher e.g. on a smart card, to check how the different steps work in
practice. Another interesting direction would be to investigate extensions of our
attack against protected implementations in order to determine to what extent
an implementation should be protected in practice.
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Choi, Seung Geol I-235
Chou, Li-Ping II-341
Choudhury, Ashish II-221
Chung, Kai-Min II-120
Coretti, Sandro I-134

Dachman-Soled, Dana I-316
Dagdelen, Özgür II-62
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