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Preface

It is our great pleasure to present the proceedings of Asiacrypt 2013 in two
volumes of Lecture Notes in Computer Science published by Springer. This was
the 19th edition of the International Conference on Theory and Application of
Cryptology and Information Security held annually in Asia by the International
Association for Cryptologic Research (TACR). The conference was organized by
TACR in cooperation with the Cryptology Research Society of India and was
held in the city of Bengaluru in India during December 1-5, 2013.

About one year prior to the conference, an international Program Committee
(PC) of 46 scientists assumed the responsibility of determining the scientific
content of the conference. The conference evoked an enthusiastic response from
researchers and scientists. A total of 269 papers were submitted for possible
presentations approximately six months before the conference. Authors of the
submitted papers are spread all over the world. PC members were allowed to
submit papers, but each PC member could submit at most two co-authored
papers or at most one single-authored paper. The PC co-chairs did not submit
any paper. All the submissions were screened by the PC and 54 papers were
finally selected for presentations at the conference. These proceedings contain
the revised versions of the papers that were selected. The revisions were not
checked and the responsibility of the papers rests with the authors and not the
PC members.

Selection of papers for presentation was made through a double-blind re-
view process. Each paper was assigned three reviewers and submissions by PC
members were assigned six reviewers. Apart from the PC members, 291 external
reviewers were involved. The total number of reviews for all the papers was more
than 900. In addition to the reviews, the selection process involved an extensive
discussion phase. This phase allowed PC members to express opinion on all the
submissions. The final selection of 54 papers was the result of this extensive and
rigorous selection procedure. One of the final papers resulted from the merging
of two submissions.

The best paper award was conferred upon the paper “Shorter Quasi-Adaptive
NIZK Proofs for Linear Subspaces” authored by Charanjit Jutla and Arnab Roy.
The decision was based on a vote among the PC members. In addition to the
best paper, the authors of two other papers, namely, “Families of Fast Elliptic
Curves from Q-Curves” authored by Benjamin Smith and “Key Recovery Attacks
on 3-Round Even-Mansour, 8-Step LED-128, and Full AES?” authored by Itai
Dinur, Orr Dunkelman, Nathan Keller and Adi Shamir, were recommended by
the Editor-in-Chief of the Journal of Cryptology to submit expanded versions to
the journal.

A highlight of the conference was the invited talks. An extensive multi-round
discussion was carried out by the PC to decide on the invited speakers. This
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resulted in very interesting talks on two different aspects of the subject. Lars
Ramkilde Knudsen spoke on “Block Ciphers — Past and Present” a topic of
classical and continuing importance, while George Danezis spoke on “Engineering
Privacy-Friendly Computations,” which is an important and a more modern
theme.

Apart from the regular presentations and the invited talks, a rump session
was organized on one of the evenings. This consisted of very short presentations
on upcoming research results, announcements of future events, and other topics
of interest to the audience.

We would like to thank the authors of all papers for submitting their research
works to the conference. Such interest over the years has ensured that the Asi-
acrypt conference series remains a cherished venue of publication by scientists.
Thanks are due to the PC members for their enthusiastic and continued partic-
ipation for over a year in different aspects of selecting the technical program.
External reviewers contributed by providing timely reviews and thanks are due
to them. A list of external reviewers is provided in these proceedings. We have
tried to ensure that the list is complete. Any omission is inadvertent and if there
is an omission, we apologize to the person concerned.

Special thanks are due to Satyanarayana V. Lokam, the general chair of
the conference. His message to the PC was to select the best possible scientific
program without any other considerations. Further, he ensured that the PC co-
chairs were insulated from the organizational work. This work was done by the
Organizing Committee and they deserve thanks from all the participants for
the wonderful experience. We thank Daniel J. Bernstein and Tanja Lange for
expertly organizing and conducting the rump session.

The reviews and discussions were entirely carried out online using a software
developed by Shai Halevi. At several times, we had to ask Shai for his help with
some feature or the other of the software. Every time, we received immediate
and helpful responses. We thank him for his support and also for developing the
software. We also thank Josh Benaloh, who was our TACR liaison, for guidance
on several issues. Springer published the volumes and made these available before
the conference. We thank Alfred Hofmann and Anna Kramer and their team for
their professional and efficient handling of the production process.

Last, but, not the least, we thank Microsoft Research; Google; Indian Statis-
tical Institute, Kolkata; and National Mathematics Initiative, Indian Institute of
Science, Bengaluru; for being generous sponsors of the conference.

December 2013 Kazue Sako
Palash Sarkar
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Block Ciphers — Past and Present

Lars Ramkilde Knudsen

DTU Compute, Denmark
1rkn@dtu.dk

Abstract. In the 1980s researchers were trying to understand the de-
sign of the DES, and breaking it seemed impossible. Other block ciphers
were proposed, and cryptanalysis of block ciphers got interesting. The
area took off in the 1990s where it exploded with the appearance of dif-
ferential and linear cryptanalysis and the many variants thereof which
appeared in the time after. In the 2000s AES became a standard and
it was constructed specifically to resist the general attacks and the area
of (traditional) block cipher cryptanalysis seemed saturated.... Much of
the progress in cryptanalysis of the AES since then has come from side-
channel attacks and related-key attacks.

Still today, for most block cipher applications the AES is a good
and popular choice. However, the AES is perhaps not particularly well
suited for extremely constrained environments such as RFID tags. There-
fore, one trend in block cipher design has been to come up with ultra-
lightweight block ciphers with good security and hardware efficiency. I
was involved in the design of the ciphers Present (from CHES 2007),
PrintCipher (presented at CHES 2010) and PRINCE (from Asiacrypt
2012). Another trend in block cipher design has been try to increase the
efficiency by making certain components part of the secret key, e.g., to
be able to reduce the number of rounds of a cipher.

In this talk, I will review these results.



Engineering Privacy-Friendly Computations

George Danezis 1+2
! University College London
2 Microsoft Research, Cambridge

Abstract. In the past few years tremendous cryptographic progress has
been made in relation to primitives for privacy friendly-computations.
These include celebrated results around fully homomorphic encryption,
faster somehow homomorphic encryption, and ways to leverage them to
support more efficient secret-sharing based secure multi-party compu-
tations. Similar break-through in verifiable computation, and succinct
arguments of knowledge, make it practical to verify complex computa-
tions, as part of privacy-preserving client side program execution. Besides
computations themselves, notions like differential privacy attempt to cap-
ture the essence of what it means for computations to leak little personal
information, and have been mapped to existing data query languages.

So, is the problem of computation on private data solved, or just about
to be solved? In this talk, I argue that the models of generic computation
supported by cryptographic primitives are complete, but rather removed
from what a typical engineer or data analyst expects. Furthermore, the
use of these cryptographic technologies impose constrains that require
fundamental changes in the engineering of computing systems. While
those challenges are not obviously cryptographic in nature, they are nev-
ertheless hard to overcome, have serious performance implications, and
errors open avenues for attack.

Throughout the talk I use examples from our own work relating to
privacy-friendly computations within smart grid and smart metering de-
ployments for private billing, privacy-friendly aggregation, statistics and
fraud detection. These experiences have guided the design of ZQL, a
cryptographic language and compiler for zero-knowledge proofs, as well
as more recent tools that compile using secret-sharing based primitives.
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Abstract. We define a novel notion of quasi-adaptive non-interactive
zero knowledge (NIZK) proofs for probability distributions on parametri-
zed languages. It is quasi-adaptive in the sense that the common reference
string (CRS) generator can generate the CRS depending on the language
parameters. However, the simulation is required to be uniform, i.e., a sin-
gle efficient simulator should work for the whole class of parametrized
languages. For distributions on languages that are linear subspaces of
vector spaces over bilinear groups, we give quasi-adaptive computation-
ally sound NIZKs that are shorter and more efficient than Groth-Sahai
NIZKs. For many cryptographic applications quasi-adaptive NIZKs suf-
fice, and our constructions can lead to significant improvements in the
standard model. Our construction can be based on any k-linear assump-
tion, and in particular under the eXternal Diffie Hellman (XDH) as-
sumption our proofs are even competitive with Random-Oracle based
X-protocol NIZK proofs.

We also show that our system can be extended to include integer
tags in the defining equations, where the tags are provided adaptively by
the adversary. This leads to applicability of our system to many applica-
tions that use tags, e.g. applications using Cramer-Shoup projective hash
proofs. Our techniques also lead to the shortest known (ciphertext) fully
secure identity based encryption (IBE) scheme under standard static
assumptions (SXDH). Further, we also get a short publicly-verifiable
CCA2-secure IBE scheme.

Keywords: NIZK, Groth-Sahai, bilinear pairings, signatures,
dual-system IBE, DLIN, SXDH.

1 Introduction

In [I3] a remarkably efficient non-interactive zero-knowledge (NIZK) proof sys-
tem [3] was given for groups with a bilinear map, which has found many appli-
cations in design of cryptographic protocols in the standard model. All earlier
NIZK proof systems (except [12], which was not very efficient) were constructed
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© International Association for Cryptologic Research 2013
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by reduction to Circuit Satisfiability. Underlying this system, now commonly
known as Groth-Sahai NIZKs, is a homomorphic commitment scheme. Each
variable in the system of algebraic equations to be proven is committed to using
this scheme. Since the commitment scheme is homomorphic, group operations
in the equations are translated to corresponding operations on the commitments
and new terms are constructed involving the constants in the equations and the
randomness used in the commitments. It was shown that these new terms along
with the commitments to variables constitute a zero-knowledge proof [13].

While the Groth-Sahai system is quite efficient, it still falls short in comparison
to Schnorr-based X-protocols [§] turned into NIZK proofs in the Random Oracle
model [2] using the Fiat-Shamir paradigm [10]. Thus, the quest remains to obtain
even more efficient NIZK Proofs. In particular, in a linear system of rank t,
some t of the equations already serve as commitments to ¢ variables. Thus, the
question arises if, at the very least, fresh commitments to these variables as done
in Groth-Sahai NIZKs can be avoided.

Our Contributions. In this paper, we show that for languages that are linear
subspaces of vector spaces of the bilinear groups, one can indeed obtain more ef-
ficient computationally-sound NIZK proofs in a slightly different quasi-adaptive
setting, which suffices for many cryptographic applications. In the quasi-adaptive
setting, we consider a class of parametrized languages {L,}, parametrized by p,
and we allow the CRS generator to generate the CRS based on the language
parameter p. However, the CRS simulator in the zero-knowledge setting is re-
quired to be a single efficient algorithm that works for the whole parametrized
class or probability distributions of languages, by taking the parameter as input.
We will refer to this property as uniform simulation.

Many hard languages that are commonly used in cryptography are distri-
butions on class of parametrized languages, e.g. the DDH language based on
the decisional Diffie-Hellman (DDH) assumption is hard only when in the tuple
(g,f,2 g,z -f), even f is chosen at random (in addition to x - g being chosen
randomly). However, applications (or trusted parties) usually set f, once and
for all, by choosing it at random, and then all parties in the application can
use multiple instances of the above language with the same fixed f. Thus, we
can consider f as a parameter for a class of languages that only specify the last
two components above. If NIZK proofs are required in the application for this
parametrized language, then the NIZK CRS can be generated by the trusted
party that chooses the language parameter f. Hence, it can base the CRS on the
language parameterl].

We remark that adaptive NIZK proofs [3] also allow the CRS to depend
on the language, but without requiring uniform simulation. Such NIZK proofs
that allow different efficient simulators for each particular language (from a
parametrized class) are unlikely to be useful in applications. Thus, most NIZK
proofs, including Groth-Sahai NIZKs, actually show that the same efficient

! However, in the security definition, the efficient CRS simulator does not itself gen-
erate f, but is given f as input chosen randomly.
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simulator works for the whole class, i.e. they show uniform simulation. The
Groth-Sahai system achieves uniform simulation without making any distinc-
tion between different classes of parametrized languages, i.e. it shows a single
efficient CRS simulator that works for all algebraic languages without taking
any language parameters as input. Thus, there is potential to gain efficiency by
considering quasi-adaptive NIZK proofs, i.e. by allowing the (uniform) simulator
to take language parameters as inputf?.

Our approach to building more efficient NIZK proofs for linear subspaces is
quite different from the Groth-Sahai techniques. In fact, our system does not
require any commitments to the witnesses at all. If there are t free variables in
defining a subspace of the n-dimensional vector-space and assuming the subspace
is full-ranked (i.e. has rank ¢), then ¢ components of the vector already serve as
commitment to the variables. As an example, consider the language L (over a
cyclic group G of order ¢, in additive notation) to be

L:{<l1,lz,l3> EGS‘Hl‘hZ‘Q EZqZ lh=m - g, lo=ao-f, I3 :(.’L‘l —‘rl‘z)h}

where g, f, h are parameters defining the language. Then, I, and ls are already
binding commitments to x; and xs. Thus, we only need to show that the last
component I3 is consistent.

The main idea underlying our construction can be summarized as follows.
Suppose the CRS can be set to be a basis for the null-space Lf; of the language
L,. Then, just pairing a potential language candidate with Lj‘ and testing for
all-zero suffices to prove that the candidate is in L,, as the null-space of Lff
is just L,. However, efficiently computing null-spaces in hard bilinear groups is
itself hard. Thus, an efficient CRS simulator cannot generate Lj, but can give a
(hiding) commitment that is computationally indistinguishable from a binding
commitment to L;J;. To achieve this we use a homomorphic commitment just
as in the Groth-Sahai system, but we can use the simpler El-Gamal encryption
style commitment as opposed to the more involved Groth-Sahai commitments,
and this allows for a more efficient verifierd. As we will see later in Section Bl
a more efficient verifier is critical for obtaining short identity based encryption
schemes (IBE).

In fact, the idea of using the null-space of the language is reminiscent of
Waters’ dual-system IBE construction [24], and indeed our system is inspired
by that constructiorﬁ7 although the idea of using it for NIZK proofs, and in
particular the proof of soundness is novel. Another contribution of the paper is
in the definition of quasi-adaptive NIZK proofs.

2 Tt is important to specify the information about the parameter which is supplied as
input to the CRS simulator. We defer this important issue to Section 2] where we
formally define quasi-adaptive NIZK proofs.

3 Our quasi-adaptive NIZK proofs are already shorter than Groth-Sahai as they require
no commitments to variables, and have to prove lesser number of equations, as
mentioned earlier.

4 In Section [fl and in the Appendix, we show that the design of our system leads to a
shorter SXDH assumption based dual-system IBE.
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For n equations in ¢ variables, our quasi-adaptive computationally-sound
NIZK proofs for linear subspaces require only k(n — t) group elements, under
the k-linear decisional assumption [23J5]. Thus, under the XDH assumption for
bilinear groups, our proofs require only (n — t) group elements. In contrast, the
Groth-Sahai system requires (n + 2t) group elements. Similarly, under the deci-
sional linear assumption (DLIN), our proofs require only 2(n—t) group elements,
whereas the Groth-Sahai system requires (2n + 3t) group elements. These pa-
rameters are summarized in Table Il While our CRS size grows proportional to
t(n—t), more importantly there is a significant comparative improvement in the
number of pairings required for verification. Specifically, under XDH we require
at most half the number of pairings, and under DLIN we require at most 2/3 the
number of pairings. The X-protocol NIZK proofs based on the Random Oracle
model require n group elements, t elements of Z, and 1 hash value. Although
our XDH based proofs require less number of group elements, the X-protocol
proofs do not require bilinear groups and have the advantage of being proofs of
knowledge (PoK). We remark that the Groth-Sahai system is also not a PoK
for witnesses that are Z, elements. A recent paper by Escala et al [9] has also
optimized proofs of linear subspaces in a language dependent CRS setting. Their
system also removes the need for commitment to witnesses but still implicitly
uses Groth Sahai proofs. In comparison, our proofs are still much shorter.

Table 1. Comparison with Groth-Sahai NIZKs for Linear Subspaces. Parameter ¢ is
the number of unknowns or witnesses and n is the dimension of the vector space, or in
other words, the number of equations.

XDH DLIN
Proof CRS #Pairings Proof CRS #Pairings

Groth-Sahai n + 2t 4 2n(t + 2) 2n + 3t 9 3n(t + 3)
This paper n—t 2t(n—t)+2 (n—t)(t+2) 2n—2t 4t(n —t)+3 2(n—1t)(t+2)

Thus, for the language L above, which is just a DLIN tuple used ubiqui-
tously for encryption, our system only requires two group elements under the
DLIN assumption, whereas the Groth-Sahai system requires twelve group el-
ements (note, t = 2, n = 3 in L above). For the Diffie-Hellman analogue of
this language (z - g, « - f), our system produces a single element proof under the
XDH assumption, which we demonstrate in Section [ (whereas the Groth-Sahai
system requires (n + 2t =) 4 elements for the proof with t =1 and n = 2).

Our NIZK proofs also satisfy some interesting new properties. Firstly, the
proofs in our system are unique for each language member. This has interesting
applications as we will see later in a CCA2-IBE construction. Secondly, the CRS
in our system, though dependent on the language parameters, can be split into
two parts. The first part is required only by the prover, and the second part
is required only by the verifier, and the latter can be generated independent
of the language. This is surprising since our verifier does not even take the
language (parameters) as input. Only the randomization used in the verifier
CRS generation is used in the prover CRS to link the two CRSes. This is in
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sharp contrast to Groth-Sahai NIZKs, where the verifier needs the language as
input. This split-CRS property has interesting applications as we will see later.

Extension to Linear Systems with Tags. Our system does not yet extend nat-
urally to quadratic or multi-linear equations, whereas the Groth-Sahai system
doed’. However, we can extend our system to include tags, and allow the defining
equations to be polynomially dependent on tags. For example, our system can
prove the following language:

I (11,12, 13, TAG) € G® X Zy | Ty, 72 € Zyy
o l1=x1~f,lgzxg-g,lgz(x1+TAG~x2)-h ’

Note that this is a non-trivial extension since the TAG is adaptively provided by
the adversary after the CRS has been set.

The extension to tags is very important, as we now discuss. Many applications
require that the NIZK proof also be simulation-sound. However, extending NIZK
proofs for bilinear groups to be unbounded simulation-sound requires handling
quadratic equations (see [5] for a generic construction). On the other hand, many
applications just require one-time simulation soundness, and as has been shown

n [14], this can be achieved for linear subspaces by projective hash proofs [7].
Projective hash proofs can be defined by linear extensions, but require use of
tags. Thus, our system can handle such equations. Many applications, such as
signatures, can also achieve implicit unbounded simulation soundness using pro-
jective hash proofs, and such applications can utilize our system (see Section [Hl).

Applications. While the cryptographic literature is replete with NIZK proofs,
we will demonstrate the applicability of quasi-adaptive NIZKs, and in particular
our efficient system for linear subspaces, to a few recent applications such as sig-
nature schemes [5], UC commitments [I1], password-based key exchange [T6J14],
key-dependent encryption [5]. For starters, based on [I1], our system yields an
adaptive UC-secure commitment scheme (in the erasure model) that has only
four group elements as commitment, and another four as opening (under the
DLIN assumption; and 3 + 2 under SXDH assumption), whereas the original
scheme using Groth-Sahai NIZKs required 5 + 16 group elements.

We also obtain one of the shortest signature schemes under a static standard
assumption, i.e. SXDH, that only requires five group elements. We also show
how this signature scheme can be extended to a short fully secure (and perfectly
complete) dual-system IBE scheme, and indeed a scheme with ciphertexts that
are only four group elements plus a tag (under the SXDH assumption). This is
the shortest IBE scheme under the SXDH assumption, and is technically even
shorter than a recent and independently obtained scheme of [6] which requires
five group elements as ciphertext. Table [2] depicts numerical differences between
the parameter sizes of the two schemes. The SXDH-IBE scheme of [6] uses the
concept of dual pairing vector spaces (due to Okamoto and Takashima [T9J20],

® However, since commitments in Groth-Sahai NIZKs are linear, there is scope for
mixing the two systems to gain efficiency.
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and synthesized from Waters’ dual system IBE). However, the dual vector space
and its generalizations due to others [I7] do not capture the idea of proof ver-
ification. Thus, one of our main contributions can be viewed as showing that
the dual system not only does zero-knowledge simulation but also extends to
provide a computationally sound verifier for general linear systems.

Table 2. Comparison with the SXDH-based IBE of Chen et al. [6]. The notation | - |
denotes the bit length of an element of the given group.

Public Key Secret Key Ciphertext #Pairings Anonymity
CLLWW12 [GJ 8|(G71‘ + |GT‘ 4|(G72| 4‘@1‘ + |GT‘ 4 yes
This paper 5|G1| + |G| 5|Ga| 3|G1| + |G| + |Zg] 3 yes

Finally, using our QA-NIZKs we show a short publicly-verifiable CCA2-secure
IBE scheme. Public verifiability is an informal but practically important notion
which implies that one can publicly verify if the decryption will yield “invalid
ciphertext”. Thus, this can allow a network gateway to act as a filter. Our scheme
only requires two additional group elements over the basic IBE scheme.

Organization of the Paper. We begin the rest of the paper with the definition
of quasi-adaptive NIZKs in Section Pl In Section B we develop quasi-adaptive
NIZKs for linear subspaces under the XDH assumption. In Section @], we extend
our system to include tags, define a notion called split-CRS QA-NIZKs and
extend our system to construct split-CRS NIZKs for affine spaces. Finally, we
demonstrate applications of our system in Section Bl We defer detailed proofs
and descriptions to the full paper [I5]. We also describe our system based on the
k-linear assumption in [15].

Notations. We will be dealing with witness-relations R that are binary rela-
tions on pairs (z,w), and where w is commonly referred to as the witness. Each
witness-relation defines a language L = {z| 3w : R(z,w)}. For every witness-
relation R, we will use L, to denote the language it defines. Thus, a NIZK proof
for a witness-relation R, can also be seen as a NIZK proof for its language L,.

Vectors will always be row-vectors and will always be denoted by an arrow
over the letter, e.g. T for (row) vector of Z, elements, and d as (row) vector of
group elements.

2 Quasi-Adaptive NIZK Proofs

Instead of considering NIZK proofs for a (witness-) relation R, we will consider
Quasi-Adaptive NIZK proofs for a probability distribution D on a collection of
(witness-) relations R = {R,}. The quasi-adaptiveness allows for the common
reference string (CRS) to be set based on R, after the latter has been chosen
according to D. We will however require, as we will see later, that the simulator
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generating the CRS (in the simulation world) is a single probabilistic polynomial
time algorithm that works for the whole collection of relations R.

To be more precise, we will consider ensemble of distributions on witness-
relations, each distribution in the ensemble itself parametrized by a security
parameter. Thus, we will consider ensemble {D,} of distributions on collection of
relations R, where each D) specifies a probability distribution on Ry = {Rx ,}.
When A is clear from context, we will just refer to a particular relation as R,
and write Ry = {R,}.

Since in the quasi-adaptive setting the CRS could depend on the relation, we
must specify what information about the relation is given to the CRS generator.
Thus, we will consider an associated parameter language such that a member of
this language is enough to characterize a particular relation, and this language
member is provided to the CRS generator. For example, consider the class of
parametrized relations R = {R,}, where parameter p is a tuple g, f, h of three
group elements. Suppose, R, (on (I, l2,13), (x1,22)) is defined as

def x1,x2€Zq,l1,l2,l3€Gand
R<g7f7h)(<l1, lo, l3), (x1,22)) = (ll =x1-gly=ay fl3=(x1+22)-h

For this class of relations, one could seek a quasi-adaptive NIZK where the CRS
generator is just given p as input. Thus in this case, the associated parameter
language Lpar will just be triples of group elementdd. Moreover, the distribution
D can just be on the parameter language Lpar, i.e. D just specifies a p € Lpar.
Again, Lpar is technically an ensemble.

We call (Ko,K1,P,V) a QA-NIZK proof system for witness-relations Ry =
{R,} with parameters sampled from a distribution D over associated parameter
language Lpar, if there exists a probabilistic polynomial time simulator (Si,Sz),
such that for all non-uniform PPT adversaries A1, Az, A3 we have:

Quasi-Adaptive Completeness:
Pr[A + Ko(1™); p < Dy; b < Ky (A, p); (z,w) + A1 (N, ¢, p);
w4 P, z,w): V(,z,m) =1if Ry(z,w)] =1
Quasi-Adaptive Soundness:

PrA <= Ko(1™); p = Dx; b < Ki(A, p);
(x,m) < A2(X\, ¢, p) 0 V(¢,z,m) =1 and —(Fw : R,(z,w))] =0

Quasi-Adaptive Zero-Knowledge:

PriA < Ko(1™); p <= Dx; ¢ < Ki(A, p) As(w"")()\,w,p) =1] =
PI‘[)\ <~ KO(lm)wO — D)\; ('(/JvT) — Sl()‘ap) : Ag(w’ﬂ.’.)()‘vva) = 1]a

5 It is worth remarking that alternatively the parameter language could also be discrete
logarithms of these group elements (w.r.t. to some base), but a NIZK proof under
this associated language may not be very useful. Thus, it is critical to define the
proper associated parameter language.
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where S(¢, 7, z, w) = Sq(¢, T, x) for (z,w) € R, and both oracles (i.e. P and
S) output failure if (z,w) & R,.

Note that 9 is the CRS in the above definitions.

3 QA-NIZK for Linear Subspaces under the XDH
Assumption

Setup. Let G1,Gs and Gp be cyclic groups of prime order ¢ with a bilinear
map e : Gy x Go — Gp chosen by a group generation algorithm. Let g; and
g, be generators of the group G; and Gy respectively. Let 01, 02 and Or be
the identity elements in the three groups Gi, G2 and Gp respectively. We use
additive notation for the group operations in all the groups.

The bilinear pairing e naturally extends to Zg-vector spaces of G; and G2

. . — - n . —
of the same dimension n as follows: e(a,b ) = > ", e(a;,b;). Thus, if & =

., T
X-g; and b = § - gy, where X and ¥ are now vectors over Z,, then e(d,b ) =

(X-7')-e(g,, &) The operator “T”

indicates taking the transpose.

Linear Subspace Languages. To start off with an example, a set of equations
li=21-g,lo =251 l3 = (z1 + x2) - h will be expressed in the form | =X- A
as follows:

l= [ll l2 l3] = [.’L‘l .Z‘Q] . |:0g1 Ofl E:|
where X is a vector of unknowns and A is a matrix specifying the group constants
g, f h.

The scalars in this system of equations are from the field Z,. In general, we
consider languages that are linear subspaces of vectors of G; elements. These
are just Zg-modules, and since Z, is a field, they are vector spaces. In other
words, the languages we are interested in can be characterized as languages
parameterized by A as below:

Lp ={X-AeG} |XeZ,}, where A is a t x n matrix of G; elements.

Here A is an element of the associated parameter language Lpar, which is all
t X n matrices of Gy elements. The parameter language Lpar also has a corre-
sponding witness relation Rpar, where the witness is a matrix of Z, elements :
Rpar(A,A) iTA=A- g1

Robust and Efficiently Witness-Samplable Distributions. Let the t x n dimen-
sional matrix A be chosen according to a distribution D on Lpar. We will call
the distribution D robust if with probability close to one the left-most ¢ columns
of A are full-ranked. We will call a distribution D on Lpar efficiently witness-
samplable if there is a probabilistic polynomial time algorithm such that it out-
puts a pair of matrices (A, A) that satisfy the relation Rpar (i.e., Rpar(A,A)
holds), and further the resulting distribution of the output A is same as D. For
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example, the uniform distribution on Lpar is efficiently witness-samplable, by
first picking A at random, and then computing A. As an example of a robust dis-
g 01 h
0, f h]
with g, f and h chosen randomly from G;. It is easy to see that the first two
columns are full-ranked if g # 07 and f # 03, which holds with probability

(1-1/9)

tribution, consider a distribution D on (2 x 3)-dimensional matrices

QA-NIZK Construction. We now describe a computationally sound quasi-adap-
tive NIZK (Ko, Ky, P,V) for linear subspace languages {Lp} with parameters
sampled from a robust and efficiently witness-samplable distribution D over the
associated parameter language Lpar-

Algorithm Kj. Ky is same as the group generation algorithm for which the XDH

assumption holds. A def (¢,G1,G2,Gr,e,81,85) + Ko(1™), with (q,G1, G, Gr,
€,81,8,) as described above.

We will assume that the size ¢ x n of the matrix A is either fixed or determined
by the security parameter m. In general, ¢ and n could also be part of the
parameter language, and hence t,n could be given as part of the input to CRS
generator Kj.

Algorithm K;. The algorithm K; generates the CRS as follows. Let A™™ be

the parameter supplied to K;. Let s 4ef ) — & this is the number of equations

in excess of the unknowns. It generates a matrix D'** with all elements chosen
randomly from Z, and a single element b chosen randomly from Z,. The common
reference string (CRS) has two parts CRS, and CRS, which are to be used by
the prover and the verifier respectively.

Dt><s b-D
CRS**:=A. {b_l % } CRS("F)*s .— I“"XSXS - g5
—b-T*

Here, I denotes the identity matrix. Note that CRS, is independent of the pa-
rameter.

Prover P. Given candidate I = %-A with witness vector X, the prover generates
the following proof consisting of s elements in Gy:

p :=X-CRS,
Verifier V. Given candidate Z, and a proof p, the verifier checks the following:

e([i 5] ,CRSU) L gbxs

The security of the above system depends on the DDH assumption in group
Go. Since Gy is a bilinear group, this assumption is known as the XDH assump-
tion. These assumptions are standard and are formally described in [15].

Theorem 1. The above algorithms (Ko, K1, P,V) constitute a computationally
sound quasi-adaptive NIZK proof system for linear subspace languages { L p } with
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parameters A sampled from a robust and efficiently witness-samplable distribu-
tion D over the associated parameter language Lpgr, given any group generation
algorithm for which the DDH assumption holds for group G,.

Remark. For language members, the proofs are unique as the bottom s rows of
CRS, are invertible.

Proof Intuition. A detailed proof of the theorem can be found in [I5]. Here we
give the main idea behind the working of the above quasi-adaptive NIZK, and
in particular the soundness requirement which is the difficult part here. We first
observe that completeness follows by straightforward bilinear manipulation. Zero
Knowledge also follows easily: the simulator generates the same CRS as above
but retains D and b as trapdoors. Now, given a language candidate T, the proof
b—l I.)ISXS
then the distribution of the simulated proof is identical to the real world proof.

We now focus on the soundness proof which we establish by transforming the
system over two games. Let Game Gg be the original system. Since D is efficiently
witness samplable, in Game G the challenger generates both A and A =A-g;.

tXs
Then it computes a rank s matrix { 6% ] of dimension (t+s) x s whose columns

is simply p := 8 JIf Tis in the language, i.e., it is X+ A for some X,

tXs
form a complete basis for the null-space of A, which means A - xs | = 0ts.

Now statistically, the CRS in Game Gy is indistinguishable from the one where
we substitute D'+b~1-W for D, where D’ itself is an independent random matrix.
With this substitution, the CRS, and CRS, can be represented as

D’ w

/

CRS;XS —A- |: ?xs:| , CRSE,”J'_S)XS — b- |:05X8:| + |:Is><s:| g
0 —b'ISXS

Now we show that if an efficient adversary can produce a “proof” p for which
the above pairing test holds and yet the candidate lisnotin L A, then it implies
an efficient adversary that can break DDH in group Gs. So consider a DDH game,
where a challenger either provides a real DDH-tuple (g, b 5,7 89, X = br- o)
or a fake DDH tuple (g,,b 85,785, X = br’ - 8,). Let us partition the Z, matrix

A as [AYY A**] and the candidate vector I as [f01Xt —»11><S ] Note that, since

Ag has rank t, the element§ of io are ‘free’ elements and Zo can be extended to
a unique n element vector I/, which is a member of L p. This member vector I’

can be computed as 1’/ [ —To ~W}, nothing W = —AalAl. The proof of

1" is computed as p’ := i . Since both (I, ) and (I’, p’) pass the verification
- -

equation, we obtain: I; — l1 = b(p — P), where le = —ly - W. In particular

there exists i € [1,s], such that, I}, — l;; = b(p, — p;) # 01. This gives us a

straightforward test for the DDH challenge: e(l}; — 11,7 - g5) < e(p; — pi, X)-
This leads to a proof of soundness of the QA-NIZK.
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Remark. Observe from the proof above that the soundness can be based on
the following computational assumption which is implied by XDH, which is a
decisional assumption:

Definition 1. Consider a generation algorithm G taking the security parameter
as input, that outputs a tuple (q¢,G1,Ga,Gr,e,81,85), where G1,Go and Gr
are groups of prime order q with generators g, 8, and e(gy,,) respectively and
which allow an efficiently computable Z4-bilinear pairing map e : G1 x Gg = Gr.

The assumption asserts that the following problem is hard: Given f, & Gao,
output h,h' € Gy, such that h' = h° #0;.

Ezxample: QA-NIZK for a DH tuple. In this example, we instantiate our general
system to provide a NIZK for a DH tuple, that is a tuple of the form (z- g,z -f)
for an a priori fixed base (g, f) € G%. We assume DDH for the group Go.

As in the setup described before, we have A = [g f]. The language is: L =
{[a] A |z €Z,).

Now proceeding with the framework, we generate D as [d] and the element b
where d and b are random elements of Z,. With this setting, the NIZK CRS is:

D b-D bd - g,
CRSP:_A[b_l_lel]_[d'g+b1~f], CRS, = X1 g, = 2,
—b'Il><1 —bg2

The proof of a tuple (r, ) with witness r, is just the single element r - (d- g+
b=1 - f). In the proof of zero knowledge, the simulator trapdoor is (d,b) and the
simulated proof of (r,#) is just (d-r+b~!-1).

4 Extensions

In this section we consider some useful extensions of the concepts and construc-
tions of QA-NIZK systems. We show how the previous system can be extended
to include tags. The tags are elements of Z,, are included as part of the proof and
are used as part of the defining equations of the language. We define a notion
called split-CRS QA-NIZK system, where the prover and verifier use distinct
parts of a CRS and we construct a split-CRS system for affine systems.

Tags. While our system works for any number of components in the tuple (ex-
cept the first ¢) being dependent on any number of tags, to simplify the pre-
sentation we will focus on only one dependent element and only one tag. Also
for simplicity, we will assume that this element is an affine function of the tag
(the function being defined by parameters). We can handle arbitrary polynomial
functions of the tags as well, but we will focus on affine functions here as most
applications seem to need just affine functions. Then, the languages we handle
can be characterized as

Lpag 4, = (& [A (& +mac-4;)],m6) | £€Z, mac € Z,}
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where A1), &' and & are parameters of the language. A distribution is
still called robust (as in Section B)) if with overwhelming probability the first ¢
columns of A are full-ranked. Write A as [AP* | AX("=179] where without loss
of generality, A; is non-singular. While the first n — 1 — ¢ components in excess
of the unknowns, corresponding to A, can be verified just as in Section [ for
the last component we proceed as follows.

Algorithm K;. The CRS is generated as:

CRS;,XOI = [A 5;] . bD,ll CRS%1 = [A 5;] ) bD*21
b-D; b-Ds
CRS ;P =] 1 |-g CRS!T* = | 0 | g

where Dy and Dy are random matrices of order ¢ x 1 independent of the matrix
D chosen for proving the other components. The Z, element b can be re-used
from the other components.

Prover. Let I’ %' z. [Al (é’;— + TAG - é’;) ] The prover generates the following
proof for the last component:

p:=X-(CRS, o+ TAG - CRS, )
Verifier. Given a proof p for candidate I’ the verifier checks the following:
e ([Z/ f)} ,CRS, 0 + TAG - CRSN) Loy

The size of the proof is 1 element in the group G;. The proof of completeness,
soundness and zero-knowledge for this quasi-adaptive system is similar to proof
in Section Bl and a proof sketch can be found in [I5].

Split-CRS QA-NIZK Proofs. We note that the QA-NIZK described in Section [3]
has an interesting split-CRS property. In a split-CRS QA-NIZK for a distri-
bution of relations, the CRS generator K; generates two CRS-es 1, and 1, such
that the prover P only needs 1, and the verifier V only needs v,,. In addition,
the CRS 1, is independent of the particular relation R,. In other words the CRS
generator K; can be split into two PPTs Ky; and Kio, such that Ki; generates
1, using just A, and K;2 generates 1, using p and a state output by Ki;. The
key generation simulator S; is also split similarly. The formal definition is given
in [I5].

In many applications, split-CRS QA-NIZKs can lead to simpler constructions
(and their proofs) and possibly shorter proofs.

Split-CRS QA-NIZK for Affine Spaces. Consider languages that are affine spaces
LAvgl:{(iAJré’) eGl |Re ZZ}

The parameter language Lpar just specifies A and &. A distribution over Lpar is
called robust if with overwhelming probability the left most ¢ x ¢ sub-matrix of A
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is non-singular (full-ranked). If & is given as part of the verifier CRS, then a QA-
NIZK for distributions over this class follows directly from the construction in
Section[3l However, that would make the QA-NIZK non split-CRS. We now show
that the techniques of Section [3] can be extended to give a split-CRS QA-NIZK
for (robust and witness-samplable) distributions over affine spaces.

The common reference string (CRS) has two parts v, and v, which are to

be used by the prover and the verifier respectively. The split-CRS generator Ky

and Kio work as follows. Let s def 1, —t: this is the number of equations in excess

of the unknowns.
Algorithm K;;. The verifier CRS generator first generates a matrix D*** with
all elements chosen randomly from Z, and a single element b chosen randomly

S1x
from Z,. It also generates a row vector d * at random from Z4. Next, it com-
putes

b-D
CRS("Ho)xs .— | o -85 £ = (g, b-d-g,)
—b'ISXS

The verifier CRS %, is the matrix CRS,, and £
Algorithm Ki5. The prover CRS generator K15 generates

s AtXTL D Ot><S
CRS;X = {§1><n:| . |:b—1 . |s><s:| - l&lxs ‘81

The (prover) CRS 1, is just the matrix CRS,.
Prover. Given candidate (X- A + &) with witness vector X, the prover generates
the following proof:

p:=[%X 1] -CRS,

Verifier. Given a proof p of candidate Z, the verifier checks the following:

e([f f)],CRSv) iy

We provide a proof sketch in [I5]. The split-CRS QA-NIZK for affine spaces
also naturally extends to include tags as described before in this section.

5 Applications

In this section we mention several important applications of quasi-adaptive NIZK
proofs. Before we go into the details of these applications, we discuss the general
applicability of quasi-adaptive NIZKs. Recall in quasi-adaptive NIZKs, the CRS
is set based on the language for which proofs are required. In many applications
the language is set by a trusted party, and the most obvious example of this is
the trusted party that sets the CRS in some UC applications, many of which
have UC realizations only with a CRS. Another obvious example is the (H)IBE
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trusted party that issues secret keys to various identities. In many public key
applications, the party issuing the public key is also considered trusted, i.e.
incorruptible, as security is defined with respect to the public key issuing party
(acting as challenger). Thus, in all these settings if the language for which proofs
are required is determined by a incorruptible party, then that party can also
issue the QA-NIZK CRS based on that language. It stands to reason that most
languages for which proofs are required are ultimately set by an incorruptible
party (at least as far as the security definitions are concerned), although they may
not be linear subspaces, and can indeed be multi-linear or even quadratic. For
example, suppose a potentially corruptible party P wants to (NIZK) prove that
x € L,, where L, is a language that it generated. However, this proof is unlikely
to be of any use unless it also proves something about L, e.g., that p itself is in
another language, say L’. In some applications, potentially corruptible parties
generate new linear languages using random tags. However, the underlying basis
for these languages is set by a trusted party, and hence the NIZK CRS for the
whole range of tag based languages can be generated by that trusted party based
on the original basis for these languages.

Adaptive UC Commitments in the Erasure Model. The SXDH-based commit-
ment scheme from [I1] requires the following quasi-adaptive NIZK proof (see [15]
for details)

{R,S,T) | FIr:R=r-g,S=r-hT=r -(d+TAG e1)}

with parameters h,dq, e; (chosen randomly), which leads to a UC commitment
scheme with commitment consisting of 3 G; elements, and a proof consisting of
two G2 elements. Under DLIN, a similar scheme leads to a commitment consist-
ing of 4 elements and an opening of another 4 elements, whereas [I1] stated a
scheme using Groth-Sahai NIZK proofs requiring (5+ 16) elements. More details
can be found in [I5].

One-time (Relatively) Simulation-Sound NIZK for DDH and Others. In [14]
it was shown that for linear subspace languages, such as the DDH or DLIN
language, or the language showing that two El-Gamal encryptions are of the
same message [I8/22], the NIZK proof can be made one-time simulation sound
using a projective hash proof [7] and proving in addition that the hash proof is
correct. For the DLIN language, this one-time simulation sound proof (in Groth-
Sahai system) required 15 group elements, whereas the quasi-adaptive proof in
this paper leads to a proof of size only 5 group elements.

Signatures. We will now show a generic construction of existentially unforgeable
signature scheme (against adaptive adversaries) from labeled CCA2-encryption
schemes and split-CRS QA-NIZK proof system (as defined in Section M) for
a related language distribution. This construction is a generalization of a sig-
nature scheme from [5] which used (fully) adaptive NIZK proofs and required
constructions based on groups in which the CDH assumption holds.
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Let £ = (KeyGen, Enc, Dec) be a labeled CCA-encryption scheme on messages.
Let X, be any subset of the message space of £ such that 1/|X,,| is negligi-
ble in the security parameter m. Consider the following class of (parametrized)
languages {L,}:

L,={(c,M)|3r: c= Encpk(u;r; M)}

with parameter p = (u,pk). The notation Ency) (u;r; M) means that u is en-

crypted under public key pk with randomness r and label M. Consider the
following distribution D on the parameters: u is chosen uniformly at random
from X, and pk is generated using the probabilistic algorithm KeyGen of £ on
1™ (the secret key is discarded). Note we have an ensemble of distributions, one
for each value of the security parameter, but we will suppress these details.

Let Q = (Ko, (K11, Ki2), P, V) be a split-CRS QA-NIZK for distribution D on
{L,}. Note that the associated parameter language Lpar is just the set of pairs
(u, pk), and D specifies a distribution on Lpar-.

Now, consider the following signature scheme S.

Key Generation. On input a security parameter m, run Ko(1™) to get A. Let
E.pk be generated using KeyGen of £ on 1™ (the secret key sk is discarded).
Choose u at random from X,,. Let p = (u, £.pk). Generate 1, by running K
on A (it also generates a state s). Generate 1, by running Ki on (), p) and state
s. The public key S.pk of the signature scheme is then 1,. The secret key S.sk
consists of (u, £.pk, ¢).

Sign. The signature on M just consists of a pair {c, ), where c is an £-encryption
of u with label M (using public key £.pk and randomness r), and 7 is the QA-
NIZK proof generated using prover P of Q on input (¢, (¢, M), r). Recall r is
the witness to the language member (¢, M) of L, (and p = (u, £.pk)).

Verify. Given the public key S.pk (= v,,), and a signature (¢, 7) on message M,
the verifier uses the verifier V of Q and outputs V(¢,, (¢, M), 7).

Theorem 2. If £ is a labeled CCAZ2-encryption scheme and Q is a split-CRS
quasi-adaptive NIZK system for distribution D on class of languages {L,} de-
scribed above, then the signature scheme described above is existentially unforge-
able under adaptive chosen message attacks.

The theorem is proved in [I5]. It is worth remarking here that the reason
one can use a quasi-adaptive NIZK here is because the language L, for which
(multiple) NIZK proof(s) is required is set (or chosen) by the (signature scheme)
key generator, and hence the key generator can generate the CRS for the NIZK
after it sets the language. The proof of the above theorem can be understood
in terms of simulation-soundness. Suppose the above split-CRS QA-NIZK was
also unbounded simulation-sound. Then, one can replace the CCA2 encryption
scheme with just a CPA-encryption scheme, and still get a secure signature
scheme. A proof sketch of this is as follows: an Adversary B is only given 1,
(which is independent of parameters, including u). Further, the simulator for the
QA-NIZK can replace all proofs by simulated proofs (that do not use witness r
used for encryption). Next, one can employ CPA-security to replace encryptions
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of u by encryptions of 1. By unbounded simulation soundness of the QA-NIZK
it follows that if B produces a verifying signature then it must have produced
an encryption of u. However, the view of B is independent of u, and hence its
probability of forging a signature is negligible.

However, the best known technique for obtaining efficient unbounded simula-
tion soundness itself requires CCA2 encryption (see [5]), and in addition NIZK
proofs for quadratic equations. On the other hand, if we instantiate the above
theorem with Cramer-Shoup encryption scheme, we get remarkably short sig-
natures (in fact the shortest signatures under any static and standard assump-
tion). The Cramer-Shoup encryption scheme PK counsists of g, f,k,d, e chosen
randomly from Gq, along with a target collision-resistant hash function H (with
a public random key). The set X from which u is chosen is just the whole group
G1. Then an encryption of u is obtained by picking r at random, and obtaining
the tuple

(R=r-g, S=r-f,T=u+r-k, H=r-(d + TAG-e))

where TAG = H(R, S, T, M). It can be shown that it suffices to hide u with the
hash proof H (although one has to go into the internals of the hash-proof based
CCA2 encryption; see Appendix in [I4]). Thus, we just need a (split-CRS) QA-
NIZK for the tag-based affine system (it is affine because of the additive constant
u). There is one variable r, and three equations (four if we consider the original
CCA-2 encryption) Thus, we just need (3—1)x1(= 2) proof elements, leading to
a total signature size of 5 elements (i.e. R, S,u+ H, and the two proof elements)
under the SXDH assumption.

Dual-System Fully Secure IBE. 1t is well-known that Identity Based Encryption
(IBE) implies signature schemes (due to Naor), but the question arises whether
the above signature scheme using Cramer-Shoup CCA2-encryption and the re-
lated QA-NIZK can be converted into an IBE scheme. To achieve this, we take
a hint from Naor’s IBE to Signature Scheme conversion, and let the signatures
(on identities) be private keys of the various identities. The verification of the

QA-NIZK from Section [Blworks by checking e ([Z f)’] ,CRSU> < 04"* (or more

precisely, e ([T f)’] , CRSU> Z Ffor the affine language). However, there are two

issues: (1) CRS,, needs to be randomized, (2) there are two equations to be veri-
fied (which correspond to the alternate decryption of Cramer-Shoup encryption,
providing implicit simulation-soundness). Both these problems are resolved by
first scaling CRS, by a random value s, and then taking a linear combination
of the two equations using a public random tag. The right hand side s - f can
then serve as secret one-time pad for encryption. Rather than being a provable
generic construction, this is more a hint to get to a really short IBE. We give
the construction in Appendix [A] and a complete proof in [I5]. It shows an IBE
scheme under the SXDH assumption where the ciphertext has only four group
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(G1) elements plus a Z,-tag, which is the shortest IBE known under standard
static assumptiond/.

Publicly- Verifiable CCA2 Fully-Secure IBE. We can also extend our IBE scheme
above to be publicly-verifiable CCA2-secure [2I[I]. Public verifiability is an in-
formal but practical notion: most CCA2-secure schemes have a test of well-
formedness of ciphertext, and on passing the test a CPA-secure scheme style
decryption suffices. However, if this test can be performed publicly, i.e. without
access to the secret key, then we call the scheme publicly-verifiable. While there
is a well known reduction from hierarchical IBE to make an IBE scheme CCA2-
secure [4], that reduction does not make the scheme publicly-verifiable CCA2
in a useful manner. In the IBE setting, publicly-verifiable also requires that it
be verifiable if the ciphertext is wvalid for the claimed identity. This can have
interesting applications where the network can act as a filter. We show that our
scheme above can be extended to be publicly-verifiable CCA2-fully-secure IBE
with only two additional group elements in the ciphertext (and two additional
group elements in the keys). We give the construction in Appendix[Bland a com-
plete proof in [I5]. The IBE scheme above has four group elements (and a tag),
where one group element serves as one-time pad for encrypting the plaintext.
The remaining three group elements form a linear subspace with one variable
as witness and three integer tags corresponding to: (a) the identity, (b) the tag
needed in the IBE scheme, and (c) a 1-1 (or universal one-way) hash of some
of the elements. We show that if these three group elements can be QA-NIZK
proven to be consistent, and given the unique proof property of our QA-NIZKs,
then the above IBE scheme can be made CCA2-secure - the dual-system already
has implicit simulation-soundness as explained in the signature scheme above,
and we show that this QA-NIZK need not be simulation-sound. Since, there are
three components, and one variable (see the appendix for details), the QA-NIZK
requires only two group elements under SXDH.

References

1. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26-45. Springer, Heidelberg (1998)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62-73. ACM Press
(November 1993)

3. Blum, M., Feldman, P.,; Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: STOC, pp. 103-112 (1988)

4. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput. 36(5), 1301-1328 (2007)

" [6] have recently and independently obtained a short IBE under SXDH, but our IBE
ciphertexts are even shorter. See Table[2in the Introduction for detailed comparison.



18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

C.S. Jutla and A. Roy

. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351-368. Springer,
Heidelberg (2009)

Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter IBE and signatures
via asymmetric pairings. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS,
vol. 7708, pp. 122-140. Springer, Heidelberg (2013)

Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45-64. Springer, Heidelberg (2002)

Damgard, I.: On X protocols, http://wuw.daimi.au.dk/~ivan/Sigma.pdf
Escala, A., Herold, G., Kiltz, E., Rafols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I1. LNCS, vol. 8043, pp. 129-147. Springer, Heidelberg (2013)

Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186-194. Springer, Heidelberg (1987)

Fischlin, M., Libert, B., Manulis, M.: Non-interactive and re-usable universally
composable string commitments with adaptive security. In: Lee, D.H., Wang, X.
(eds.) ASTACRYPT 2011. LNCS, vol. 7073, pp. 468-485. Springer, Heidelberg
(2011)

Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASTACRYPT 2006. LNCS, vol. 4284,
pp. 444-459. Springer, Heidelberg (2006)

Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415-432. Springer,
Heidelberg (2008)

Jutla, C., Roy, A.: Relatively-sound NIZKs and password-based key-exchange. In:
Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp.
485-503. Springer, Heidelberg (2012)

Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. Cryp-
tology ePrint Archive, Report 2013/109 (2013), http://eprint.iacr.org/

Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293-310. Springer,
Heidelberg (2011)

Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318-335. Springer, Heidelberg (2012)

Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: 22nd ACM STOC Annual ACM Symposium on Theory of
Computing. ACM Press (May 1990)

Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector
decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 57-74. Springer, Heidelberg (2008)

Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASTACRYPT 2009. LNCS, vol. 5912, pp. 214-231. Springer,
Heidelberg (2009)

Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433-444. Springer, Heidelberg (1992)


http://www.daimi.au.dk/~ivan/Sigma.pdf
http://eprint.iacr.org/

Shorter Quasi-Adaptive NIZK Proofs for Linear Subspaces 19

22. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS Annual Symposium on Foundations of Com-
puter Science, pp. 543-553. IEEE Computer Society Press (October 1999)

23. Shacham, H.: A Cramer-Shoup encryption scheme from the linear assumption
and from progressively weaker linear variants. Cryptology ePrint Archive, Report
2007/074 (2007), http://eprint.iacr.org/

24. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619
636. Springer, Heidelberg (2009)

A Dual System IBE under SXDH Assumption

For ease of reading, we switch to multiplicative group notation in the following.
Setup: The authority uses a group generation algorithm for which the SXDH
assumption holds to generate a bilinear group (G1, Gz, Gr) with g; and g, as
generators of G; and Gs respectively. Assume that G; and G are of order ¢, and
let e be a bilinear pairing on G; X Gz. Then it picks ¢ at random from Z,, and
sets f = g5. It further picks Ay, Ag, A3, Ay, b, d, e, u from Z,, and publishes
the following public key PK:

g1 8}, vi =g T vo = g 2T vy = g7 2 and k = e(gy, )
The authority retains the following master secret key MSK: g,, f = (g5), and
Al, AQ, A3, A4, d, €, U.

—Ay-btu

Encrypt(PK, i, M). The encryption algorithm chooses s and TAG at random
from Zg. It then blinds M as Cy = M - k*, and also creates

s bs s 1-s TAG-S
Cr=g7,Co=g1",C3 =v] vy - vy

and the ciphertext is C' = (Cy, Cy, Cs, C3, TAG).

KeyGen(MSK, ). The authority chooses r at random from Z, and creates

R _ gg’ S _ gg.c,T _ g;+r-(d+l~e)’ W] _ g2—A4—7"'(A1+Z'A2)’ W2 _ g2—7"~A3
as the secret key K for identity i.
Decrypt(K;, C). Let TAG be the tag in C. Obtain

_ e(Ch, ST T) - e(Co, Wy - W)
6(03, R)

and output Cy/k.

Theorem 3. Under the SXDH Assumption, the above scheme is a fully-secure
IBE scheme.
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B Publicly Verifiable CCA2-IBE under SXDH
Assumption

Setup. The authority uses a group generation algorithm for which the SXDH
assumption holds to generate a bilinear group (G1, Gz, Gr) with g, and g; as
generators of G; and G respectively. Assume that G; and G are of order g,
and let e be a bilinear pairing on G; x Gg. Then it picks ¢ at random from Z,,
and sets f = g§. It further picks Ay, Ay, Az, A4, A5, b, d, e, u, z from Z,, and
publishes the following public key PK:
215 gl{a Vi = gl_Al'bera Vo = gl_AQ'bJre?
e(gy,8p) 0.
Consider the language:

L ={(C1,Cs,C5,i,TAG, h) | 35 : Cy =g, Cy = gh*, O3 = v -vis . yIaes yhsy

It also publishes the QA-NIZK CRS for the language L (which uses tags i, TAG
and h). It also publishes a 1-1, or Universal One-Way Hash function (UOWHF)
‘H. The authority retains the following master secret key MSK: g,, f (= g5),
and Al, AQ, A3, A4, A5, d, e, u, z.

vy =g T vy = g M and k =

Encrypt(PK, i, M). The encryption algorithm chooses s and TAG at random
from Zg. It then blinds M as Cy = M - k*, and also creates

8 _ bs S -5 TAG-S h-s
Cr=g],Co=g1",C3=v] vy’ vy Vi o,

where h = H(Cy, C1,Ca, TAG, 7). The ciphertext is then C = (Cy, Cy,Co, Cs,
TAG, P1, Py), where (p;, Py) is a QA-NIZK proof that (Cy, C1, Ca, Cs, i, TAG, h) €
L.

KeyGen(MSK, 7). The authority chooses r at random from Z, and creates

R=g} S =g Sy =gh™ T =gyt ("),

Az (A1+1-A) A _ —1rA
Wi =g, Wo =gy T Wy =gy

as the secret key K; for identity i.

Decrypt(kK;, C). Let TAG be the tag in C. Let h = H(Cy, C1, C2, TAG, 7). First
(publicly) verify that the ciphertext satisfies the QA-NIZK for the language
above. Then, obtain

_ e(CL ST S T) - e(Co, W - W3- W)
B 6(03, R)
and output Cy/k. If the QA-NIZK does not verify, output L.

This public-verifiability of the consistency test is informally called the publicly-
verifiable CCA2 security.

Theorem 4. Under the SXDH Assumption, the above scheme is a CCA2 fully-
secure IBE scheme.
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Abstract. In [I8] Goyal et al. introduced the bounded player model for
secure computation. In the bounded player model, there are an a pri-
ori bounded number of players in the system, however, each player may
execute any unbounded (polynomial) number of sessions. They showed
that even though the model consists of a relatively mild relaxation of
the standard model, it allows for round-efficient concurrent zero knowl-
edge. Their protocol requires a super-constant number of rounds. In this
work we show, constructively, that there exists a constant-round concur-
rent zero-knowledge argument in the bounded player model. Our result
relies on a new technique where the simulator obtains a trapdoor corre-
sponding to a player identity by putting together information obtained
in multiple sessions. Our protocol is only based on the existence of a
collision-resistance hash-function family and comes with a “straight-line”
simulator.

We note that this constitutes the strongest result known on constant-
round concurrent zero knowledge in the plain model (under well accepted
relaxations) and subsumes Barak’s constant-round bounded concurrent
zero-knowledge result. We view this as a positive step towards getting
constant round fully concurrent zero-knowledge in the plain model, with-
out relaxations.

Keywords: concurrent zero knowledge, straight-line simulation,
bounded player model.

1 Introduction

The notion of a zero-knowledge proof [I7] is central in cryptography, both for
its conceptual importance and for its wide ranging applications to the design of
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secure cryptography protocols. Initial results for zero-knowledge were in the so
called stand-alone setting where there is a single protocol execution happening
in isolation.

The fact that on the Internet an adversary can control several players mo-
tivated the notion of concurrent zero knowledge [15] (cZK). Here the prover is
simultaneously involved in several sessions and the scheduling of the messages is
coordinated by the adversary who also keeps control of all verifiers. Concurrent
zero knowledge is much harder to achieve than zero knowledge. Indeed, while we
know how to achieve zero-knowledge in 4 rounds, a sequence of results [21I33/0]
increased the lower bound on the round complexity of concurrent zero-knowledge
with black-box simulation to almost logarithmic in the security parameter. In
the meanwhile, the upper bound has been improved and now almost matches
the logarithmic lower bound [BII20030]. After almost a decade of research on
this topic, the super-logarithmic round concurrent zero-knowledge protocol of
Prabhakaran et al. [30] remains the best known in terms of round complexity.

Some hope for a better round complexity started from the breakthrough result
of Barak [I] where non-black-box simulation under standard assumptions was
proposed. His results showed how to obtain bounded-concurrent zero knowl-
edge in constant rounds. This refers to the setting where there is an a priori
fixed bound on the total number of concurrent executions (and the protocol
may become completely insecure if the actual number of sessions exceed this
bound). Unfortunately, since then, the question of achieving sub-logarithmic
round complexity with unbounded concurrency using non-black-box techniques
has remained open, and represents one of the most challenging open questions
in the study of zero-knowledge protocolsE

Bounded player model. Recently, Goyal, Jain, Ostrovsky, Richelson and Visconti
[18] introduced the so called bounded player model. In this model, it is only
assumed that there is an a-priori (polynomial) upper-bound on the total number
of players that may ever participate in protocol executions. There is no setup
stage, or, trusted party, and the simulation must be performed in polynomial
time. While there is a bound on the number of players, any player may join in
at any time and may be subsequently involved in any unbounded (polynomial)
number of concurrent sessions. Since there is no a priori bound on the number of
sessions, it is a strengthening of the bounded-concurrency model used in Barak’s
result. The bounded player model also has some superficial similarities to the
bare-public-key model of [5] which is discussed later in this section.

As an example, if we consider even a restriction to a single verifier that runs
an unbounded number of sessions, the simulation strategy of [I] breaks down
completely. Goyal et al. [18] gave a w(1)-round concurrent zero knowledge pro-
tocol in the bounded player model. The technique they proposed relies on the

!'In this paper, we limit our discussion to results which are based on standard
complexity-theoretic and number-theoretic assumptions. We note that constant
round concurrent zero-knowledge is known to exist under non-standard assump-
tions such as a variation of the (non-falsifiable) knowledge of exponent assumption
[19] or the existence of P-certificates [§].
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fact that the simulator has several choices in every sessions on where to spend
computation trying to extract a trapdoor, and, its running time is guaranteed
to be polynomial as long as the number of such choices is super-constant. Their
technique fails inherently if constant round-complexity is desired.

We believe the eventual goal of achieving round efficient concurrent zero-
knowledge (under accepted assumptions) is an ambitious one. Progress towards
this goal would not only impact how efficiently one can implement zero-knowledge
(in the network setting), but also, will improve various secure computation pro-
tocol constructions in this setting (as several secure computation protocols use,
e.g., PRS preamble [30] for concurrent input extraction). Bounded player model
is somewhere between the standard model (where the best known protocols re-
quire super-logarithmic number of rounds), and, the bounded concurrency model
(where constant round protocols are known). We believe the study of round com-
plexity of concurrent zero-knowledge in the bounded player model might shed
light on how to construct such protocols in the standard model as well.

Our Results. In this work, we give a constant-round protocol in the bounded
player (BP) model. Our constructions inherently relies on non-black-box simu-
lation. The simulator for our protocol does not rely on rewinding techniques and
instead works in a “straight-line” manner (as in Barak [I]). Our construction is
only based on the existence of a collision-resistant hash-function family.

Theorem 1. Assuming the existence of a collision-resistance hash-function fam-
ily, there exists a constant round concurrent zero-knowledge argument system
with concurrent soundness in the bounded player model.

We note that this constitutes the strongest result known on constant-round zero-
knowledge in the concurrent setting (in the plain model). It subsumes Barak’s
result: now the total number of sessions no longer needs to be bounded; only
the number of new players starting the interaction with the prover is bounded.
A player might join in at anytime and may subsequently be involved in any
unbounded (polynomial) number of sessions.

We further note that, as proved by Goyal et al. [I§], unlike previously studied
relaxations of the standard model (e.g., bounded number of sessions, timing
assumptions, super- polynomial simulation), concurrent-secure computation is
still impossible to achieve in the bounded player model. This gives evidence
that the BP model is “closer” to the standard model than previously studied
models, and study of this model might shed light on constructing constant-round
concurrent zero-knowledge in the standard model as well. Moreover, despite
the impossibility of concurrent-secure computation, techniques developed in the
concurrent zero-knowledge literature have found applications in other areas in
cryptography, including resettable security [5], non-malleability [I4], and even
in proving black-box lower bounds [27].

1.1 Technical Overview

In this section, first, we recall some observations by Goyal et al [I§] regarding why
simple approaches to extend the construction of Barak [I] to the bounded player
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model are bound to fail. We also recall the basic idea behind the protocol of [1§].
Armed with this background, we then proceed to discuss the key technical ideas
behind our constant round ¢ZK protocol in the bounded player model. Initial
parts of this section are borrowed verbatim from [I8].

Why natural approaches fail. Recall that in the bounded player model, the only
assumption is that the total number of players that will ever be present in the
system is a priori bounded. Then, as observed by Goyal et al [I§], the black-box
lower-bound of Canetti et al. [6] is applicable to the bounded player model as
well. Thus, it is clear that we must resort to non-black-box techniques. Now, a
natural approach to leverage the bound on the number of players is to associate
with each verifier V; a public key pk; and then design an FLS-style protocol [16]
that allows the ZK simulator to extract, in a non-black-box manner, the secret
key sk; of the verifier and then use it as a “trapdoor” for “easy” simulation.
The key intuition is that once the simulator extracts the secret key sk; of a
verifier V;, it can perform easy simulation of all the sessions associated with V;.
Then, since the total number of verifiers is bounded, the simulator will need
to perform non-black-box extraction only an a priori bounded number of times
(once for each verifier), which can be handled in a manner similar to the setting
of bounded-concurrency [IJ.

Unfortunately, as observed by Goyal et al. [I8], the above intuition is mis-
leading. In order to understand the problem with the above approach, let us
first consider a candidate protocol more concretely. In fact, it suffices to focus
on a preamble phase that enables non-black-box extraction (by the simulator)
of a verifier’s secret key since the remainder of the protocol can be constructed
in a straightforward manner following the FLS approach. Now, consider the fol-
lowing candidate preamble phase (using the non-black-box extraction technique
of [3]): first, the prover and verifier engage in a coin-tossing protocol where the
prover proves “honest behavior” using a Barak-style non-black-box ZK protocol
[1]. Then, the verifier sends an encryption of its secret key under the public key
that is determined from the output of the coin-tossing protocol [I§].

In order to analyze this protocol, we will restrict our discussion to the simpli-
fied case where only one verifier is present in the system (but the total number of
concurrent sessions are unbounded). At this point, one may immediately object
that in the case of a single verifier identity, the problem is not interesting since
the bounded player model is identical to the bare-public key model, where one
can construct four-round cZK protocols using rewinding based techniques. How-
ever, simulation techniques involving rewinding do not “scale” well to the case of
polynomially many identities (unless we use a large number of rounds) and fail.
In contrast, our simulation approach is “straight-line” for an unbounded number
of sessions and scales well to a large bounded number of identities. Therefore, in
the forthcoming discussion, we will restrict our discussion to straight-line simu-
lation. In this case, we find it instructive to focus on the case of a single identity
to explain the key issues and our ideas to resolve them.

We now turn to analyze the candidate protocol. Now, following the intuition
described earlier, one may think that the simulator can simply cheat in the
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coin-tossing protocol in the “inner-most” session in order to extract the secret
key, following which all the sessions can be simulated in a straight-line manner,
without performing any additional non-black-box simulation. Consider, however,
the following adversarial verifier strategy: the verifier schedules an unbounded
number of sessions in such a manner that the coin-tossing protocols in all of these
sessions are executed in a “nested” manner. Furthermore, the verifier sends the
ciphertext (containing its secret key) in each session only after all the coin-tossing
protocols across all sessions are completed. Note that in such a scenario, the
simulator would be forced to perform non-black-box simulation in an unbounded
number of sessions. Unfortunately, this is a non-trivial problem that we do not
know how to solve.

The approach of Goyal et al. [I8]. In an effort to bypass the above problem,
Goyal et al. use multiple (w(1), to be precise) preamble phases (instead of only
one), such that the simulator is required to “cheat” in only one of these pream-
bles. This, however, immediately raises a question: in which of the w(1) pream-
bles should the simulator cheat? This is a delicate question since if, for example,
we let the simulator pick one of preambles uniformly at random, then with
non-negligible probability, the simulator will end up choosing the first preamble
phase. In this case, the adversary can simply perform the same attack as it did
earlier playing only the first preamble phase, but for many different sessions so
that the simulator will still have to cheat in many of them. Indeed, it would seem
that any randomized oblivious simulation strategy can be attacked in a similar
manner by simply identifying the first preamble phase where the simulator would
cheat with a non-negligible probability.

The main idea in [I8] is to use a specific probability distribution such that
the simulator cheats in the first preamble phase with only negligible probabil-
ity, while the probability of cheating in the later preambles increases gradually
such that the “overall” probability of cheating is 1 (as required). Further, the
distribution is such that the probability of cheating in the i*" preamble is less
than a fixed polynomial factor of the total probability of cheating in one of the
previous ¢ — 1 blocks. This allows them (by a careful choice of parameters) to
ensure that the probability of the simulator failing in more than a given poly-
nomially bounded number of sessions w.r.t. any given verifier is negligible (and
then rely on the techniques from the bounded-concurrency model [I] to handle
the bounded number of non-black-box simulations).

Our Construction. The techniques used in our work are quite different and un-
related to the techniques in the work of Goyal et al. [I8]. As illustrated in the
discussion above, the key issue is the following. Say that a slot of the protocol
completes. Then, the simulator starts the non-black-box simulation and com-
putes the first “heavy” universal argument message, and, sends it across. How-
ever, before the simulator can finish this simulation successfully (and somehow
learn a trapdoor from the verifier which can then be used to complete other ses-
sions without non-black-box simulation), the verifier switches to another session.
Then, in order to proceed, the simulator would have to perform non-black-box
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simulation and the heavy computation again (resulting in the number of ses-
sions where non-black-box simulation is performed becoming unbounded). So
overall, the problem is the “delay” between the heavy computation, and, the
point at which the simulator extracts the verifier trapdoor (which can then be
used to quickly pass through other sessions with this particular verifier without
any heavy computation or non-black-box simulation).

Our basic approach is to “construct the trapdoor slowly as we go along”: have
any heavy computation done in any session (with this verifier) contribute to the
construction of a trapdoor which can then be used to quickly pass through other
sessions. To illustrate our idea, we shall focus on the case of a single verifier as
before. The description below is slightly oversimplified for the sake of readability.

To start with, in the very first session, the verifier is supposed to choose a key
pair of a signature scheme (this key pair remains the same across all sessions
involving this verifier). As in Barak’s protocol [I], we will just have a single slot
followed by a universal argument (UA). However, now once a slot is complete,
the verifier is required to immediately send a signatureg on the transcript of
the slot (i.e., on the prover commitment, and, the verifier random string) to the
prover. This slot now constitutes a “hard statement” certified by the verifier:
it could be used by the prover in any session (with this verifier). If the prover
could prove that he has a signed slot such that the machine committed to in
this slot could output the verifier random string in this slot, the verifier would
be instructed to accept. Thus, the simulator would now simply take the first
slot that completes (across all sessions), and, would prove the resulting “hard
statement” in the universal arguments of all the sessions. This would allow him
to presumably compute the required PCP only once and use it across all sessions.
Are we done? Turns out that the answer is no.

Even if the prover is executing the UA corresponding to the same slot (on
which he has obtained a signature) in every session, because of the interactive
nature of UAs, the (heavy) computation the prover does in a session cannot
be entirely used in another session. This is because the challenge of the verifier
would be different in different sessions. To solve this problem and continue the
construction of a single trapdoor (useful across all sessions), we apply our ba-
sic idea one more time. The prover computes and sends the first UA message.
The verifier is required to respond with a random challenge and a signature on
the UA transcript so far. The prover can compute the final UA message, and, the
construction of the trapdoor is complete: the trapdoor constitutes of a signed
slot, an accepting UA transcript (proving that the machine committed to in the
slot indeed outputs the random string in that slot), and, a signature on the first
two UA messages (proving that the challenge was indeed generated by the veri-
fier after getting the first UA message). To summarize, the simulator would use
the following two sessions for the construction of the trapdoor: the first session

2 Signatures of committed messages computed by a verifier where previously used
in [12] to allow the simulator to get through rewindings one more signature in order
to cheat in the main thread. Here instead we insist with straight-line simulation.
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where a slot completes, and, the first session where the verifier sends the UA
random challenge.

The above idea indeed is oversimplified and ignores several problems. Firstly,
since an honest prover executes each concurrent session oblivious of others, any
correlations in the prover messages across different sessions (in particular, send-
ing the same UA first message) would lead to the simulated transcript being
distinguishable from the real one. Furthermore, the prover could be proving a
different overall statement to the verifier in every session (and hence even a UA
first message cannot be reused across different sessions). The detailed description
of our construction is given in Section [3

1.2 Related Work

Bare public key and other related models. The bare public key model was pro-
posed in [5] where, before any interaction starts, every player is required to
declare a public key and store it in a public file (which never changes once
the sessions start). In this model it is known how to obtain constant-round
concurrent zero knowledge with concurrent soundness under standard assump-
tions [I3I353634]. This model has also been used for constant-round concurrent
non-malleable zero knowledge [25] and various constant-round resettable and
simultaneously resettable protocols [22I39TTIOTOBRIZ7IT].

As discussed in [I§], the crucial restriction of the BPK model is that all players
who wish to ever participate in protocol executions must be fixed during the pre-
processing phase, and new players cannot be added “on-the-fly” during the proof
phase. We do not make such a restriction in our work and, despite superficial
resemblance, the techniques useful in constructing secure protocols in the BPK
model have limited relevance in our setting. In particular, constant round cZK is
known to exist in the BPK model using only black-box simulation, while in our
setting, non-black-box techniques are necessary to achieve sublogarithmic-round
cZK.

In light of the above discussion, since the very premise of the BPK model
(that all players are fixed ahead of time and declare a key) does not hold in the
bounded player model, we believe that the bounded player model is much closer
in spirit (as well as technically) to the bounded concurrency model of Barak.
The bounded player model is a strict generalization of the bounded concurrency
model. Thus, our constant-round construction is the first strict improvement
to Barak’s bounded concurrent ZK protocol. We stress that we improve the
achieved security under concurrent composition, still under standard assump-
tions and without introducing any setup/weakness. Summing up, ours is a con-
struction which is the closest known to achieving constant-round concurrent zero
knowledge in the plain model.

Round efficient concurrent zero-knowledge is known in a number of other
models as well (which do not seem to be directly relevant to our setting) such
as the common-reference string model, the super-polynomial simulation model,
etc. We refer the reader to [18] for a more detailed discussion.
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2 Preliminaries and Definitions

Notation. We will use the symbol “||” to denote the concatenation of two strings

appearing respectively before and after the symbol.

2.1 Bounded Player Model

We first recall the bounded player model for concurrent security, as introduced
in [I8]. In the bounded player model, there is an a-priori (polynomial) upper
bound on the total number of player that will ever be present in the system.
Specifically, let n denote the security parameter. Then, we consider an upper
bound N = poly(n) on the total number of players that can engage in concurrent
executions of a protocol at any time. We assume that each player P; (i € N) has
an associated unique identity id;, and that there is an established mechanism to
enforce that party P; uses the same identity id; in each protocol execution that it
participates in. Note, however, that such identities do not have to be established
in advance. In particular, new players can join the system with their own (new)
identities, as long as the number of players does not exceed N. We stress that
there is not bound on the number of protocol executions that can be started by
each party.

The bounded player model is formalized by means of a functionality Fb]g
that registers the identities of the player in the system. Specifically, a player
P; that wishes to participate in protocol executions can, at any time, register
an identity id; with the functionality Fég . The registration functionality does
not perform any checks on the identities that are registered, except that each
party P; can register at most one identity id;, and that the total number of
identity registrations are bounded by N. In other words, Fbjg refuses to register
any new identities once N number of identities have already been registered.
The functionality Fég is formally defined in Figure [l

Functionality Fbll\,f
Fbl;,’ initializes a variable count to 0 and proceeds as follows.

— Register commands: Upon receiving a message (register, sid, id;) from some
party P;, the functionality checks that no pair (P;,id;) is already recorded and
that count < N. If this is the case, it records the pair (F;,id;) and sets count =
count + 1. Otherwise, it ignores the received message.

— Retrieve commands: Upon receiving a message (retrieve, sid, P;) from some
party P; or the adversary A, the functionality checks if some pair (P;,id;) is
recorded. If this the case, it sends (sid, P;,id;) to P; (or A). Otherwise, it returns
(sid, P;, L).

Fig. 1. The Bounded Player Functionality sz’\)r
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In our constructions we will explicitly work in the setting where the identity
of each party is a tuple (h,vk), where h < H,, is a hash function chosen from a
family H,, of collision resistant hash functions, and vk is a verification key for a
signature scheme.

2.2 Concurrent Zero Knowledge in Bounded Player Model

In this section, we formally define concurrent zero knowledge in the bounded
player model. The definition given below, is an adaptation of the one of [30] to
the bounded player model, by also considering non-black-box simulation. Some
of the text below is taken verbatim from [30].

Let ppT denote probabilistic-polynomial time. Let (P, V) be an interactive
argument for a language L. Consider a concurrent adversarial verifier V* that,
given input x € L, interacts with an unbounded number of independent copies
of P (all on the same common input z and moreover equipped with a proper
witness w), without any restriction over the scheduling of the messages in the
different interactions with P. In particular, V* has control over the scheduling
of the messages in these interactions. Further, we say that V* is an N-bounded
concurrent adversary if it assumes at most N verifier identities during its (un-
bounded) interactions with P

The transcript of a concurrent interaction consists of the common input z,
followed by the sequence of prover and verifier messages exchanged during the
interaction. We denote by viewe*(:ﬂ,z,N ) the random variable describing the
content of the random tape of the N-bounded concurrent adversary V* with
auxiliary input z and the transcript of the concurrent interaction between P
and V* on common input z.

Definition 1 (Concurrent Zero Knowledge in Bounded Player Model).
Let (P,V') be an interactive argument system for a language L. We say that
(P,V') is concurrent zero-knowledge in the bounded player model if for every
N -bounded concurrent non-uniform PPT adversary V*, there exists a PPT algo-
rithm S, such that the following ensembles are computationally indistinguishable,

{viewi,. (z, 2, N)}eer,zefo,1y- and {S(2, 2, N)}oer ze{0,1}-

As a final note, we remark that following previous work in the BPK model and
in the BP model, we will consider the notion of concurrent soundness where the
malicious prover is allowed to play any concurrent number of sessions with the
same verifier. Indeed, this is notion is strictly stronger than sequential soundness.

2.3 Building Blocks

In this section, we discuss the main building blocks that we will use in our c¢ZK
construction.

3 Thus, V* can open multiple sessions with P for every unique verifier identity.
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Statistically binding commitment schemes. In our constructions, we will make
use of a statistically binding string commitment scheme, denoted Com. For sim-
plicity of exposition, we will make the simplifying assumption that Com is a
non-interactive perfectly binding commitment scheme. In reality, Com would
be taken to be a standard 2-round commitment scheme, e.g. [24]. Unless stated
otherwise, we will simply use the notation Com(z) to denote a commitment
to a string x, and assume that the randomness (used to create the commit-
ment) is implicit. We will denote by Com(z;7) a commitment to a string = with
randomness 7.

Witness indistinguishable arguments of knowledge. We will also make use of a
witness-indistinguishable proof of knowledge (WIPOK) for all of NP in our con-
struction. Such a scheme can be constructed, for example, by parallel repetition
of the 3-round Blum’s protocol for Graph Hamiltonicity [4]. We will denote such
an argument system by (P, Vin).

The universal argument of [2]. In our construction, we will use the 4-round
universal argument system (UA), denoted pUA presented in [2] and based on
the existence of collision-resistant hash functions. We will assume without loss
of generality that the initial commitment of the PCP sent by the prover in
the second round also contains a commitment of the statement. We notice that
such an argument system is still sound when the prover is required to open the
commitment of the statement in the very last round.

Signature schemes. We will use a signature scheme (KeyGen, Sign, Verify)
that is unforgeable against chosen message attacks. Note that such signatures
schemes are known based on one way functions [32].

3 A Constant-Round Protocol

In this section, we describe our constant-round concurrent zero-knowledge pro-
tocol in the bounded player model.

Relation Rgm. We first recall a slight variant of Barak’s [I] NTIME(T (n))
relation Rgm, as used previously in [2§]. Let T : N — N be a “nice” function
that satisfies T'(n) = n“M). Let {#,}, be a family of collision-resistant hash
functions where a function h € H, maps {0,1}* to {0,1}", and let Com be
a perfectly binding commitment scheme for strings of length n, where for any
a € {0,1}™, the length of Com(«) is upper bounded by 2n. The relation Reim
is described in Figure 2l

Remark 1. The relation presented in Figure [ is slightly oversimplified and
will make Barak’s protocol work only when {#,}, is collision-resistant against
“slightly” super-polynomial sized circuits. For simplicity of exposition, in this
manuscript, we will work with this assumption. We stress, however, that as dis-
cussed in prior works [2[26]29)28]18], this assumption can be relaxed by using
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Instance: A triplet (h,c,7) € H, x {0,1}" x {0, 1}P°V ™),
Witness: A program IT € {0,1}*, a string y € {0,1}"* and a string s € {0, 1}p01y(n)‘
Relation: Rsm({h,c,7),(Il,y,s)) =1 if and only if:

L |yl < r| —n.
2. ¢=Com(h(I);s).
3. II(y) = r within T'(n) steps.

Fig. 2. Rsm - A variant of Barak’s relation [28]

a “good” error-correcting code ECC (with constant distance and polynomial-
time encoding and decoding procedures), and replacing the condition ¢ =
Com(h(II); s) with ¢ = Com(ECC(h(IT)); s).

Our protocol. We are now ready to present our concurrent zero knowledge proto-
col, denoted (P, V). Let P and V denote the prover and verifier respectively. Let
N denote the bound on the number of verifiers in the system. In our construction,
the identity of a verifier V; corresponds to a verification key vk; of a secure signa-
ture scheme and a hash function h; € H,, from a family H,, of collision-resistant
hash functions. Let (KeyGen, Sign, Verify) be a secure signature scheme. Let
(Pwi, Vavi) be a witness-indistinguishable argument of knowledge system. Let
pUA be the universal argument (UARG) system of [2] that we discussed pre-
viously; the transcript is composed by four messages (h,3,7,d) where h is a
collision-resistant hash function.

The protocol (P, V) is described in Figure Bl For our purposes, we set the
length parameter /(N) = N - P(n)+n, where P(n) is a polynomial upper bound
on the total length of the prover messages in the UARG pUA plus the output
length of a hash function h € H,,. For simplicity we omit some standard checks
(e.g., the prover needs to check that vk and h are recorded, the prover needs to
check that the signatures is valid).

The completeness property of (P, V) follows immediately from the construc-
tion. Next, in Section B2l we prove concurrent soundness of (P,V), i.e., we
show that a computationally-bounded adversarial prover who engages in multi-
ple concurrent executions of (P, V) (where the scheduling across the sessions is
controlled by the adversary) can not prove a false statement in any of the ex-
ecutions, except with negligible probability. As observed in [I8], “stand-alone”
soundness does not imply concurrent soundness in the bounded player model.
Informally speaking, this is because the standard approach of reducing concur-
rent soundness to stand-alone soundness by “internally” emulating all but one
verifier does not work since the verifier’s keys are private

* Indeed, Micali and Reyzin [23] gave concrete counter-examples to show that stand-
alone soundness does not imply concurrent soundness in the bare public key model.
It is not difficult to see that their results immediately extend to the bounded player
model.
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Parameters: Security parameter n, number of players N = N(n), length parameter
L(N).

Common Input: z € {0, 1}P°¥ ("),

Private Input to P: A witness w s.t. Rp(z,w) = 1.

Private Input to V: A key pair (sk,vk) & KeyGen(1"), and a hash function

& U,

Stage 1 (Preamble Phase):
V — P: Send vk, h.
P — V: Send ¢ = Com(0").
V = P: Send r & {0,1}*™) "and o = Sign,, (c||r).
P — V: Send ¢’ = Com(0").
V — P: Send v & {0,1}", and o’ = Sign_, (c'||7).
Stage 2 (Proof Phase):
P + V: An execution of WIPOK (P, Vim) to prove the OR of the following
statements:
1. 3w e {0,1}P°Y0=D st Ry (z,w) = 1.
2. Ie,r,0), and (B,7,d,c ,t,0') s.t.
— Verify,,(c|lr;o) =1, and
— ¢ = Com(B;t), and Verify,,(c'||y;0’) = 1, and
— (h,B,7,98) is an accepting transcript for a UARG pUA proving the
following statement: 3(I1,y, s) s.t. Rsm({h,c,r),(Il,y,s)) = 1.

Fig. 3. Protocol (P, V)

We now turn to prove that protocol (P, V) is concurrent zero-knowledge in
the bounded player model.

3.1 Proof of Concurrent Zero Knowledge

In this section, we prove that the protocol (P, V) described in Section [3is con-
current zero-knowledge in the bounded player model. Towards this end, we will
construct a non-black-box (polynomial-time) simulator and then prove that the
concurrent adversary’s view output by the simulator is indistinguishable from
the real view. We start by giving an overview of the proof and then proceed to
give details.

Overview. Recall that unlike the bounded concurrency model, the main chal-
lenge in the bounded player model is that the total number of sessions that a
concurrent verifier may schedule is not a priori bounded. Thus, one can not di-
rectly employ Barak’s simulation strategy of committing to a machine that takes
only a bounded-length input y (smaller than the challenge string r) and outputs
the next message of the verifier. Towards this end, the crucial observation in [I§]
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is that in the bounded player model, once the simulator is able to “solve” the
identity of a specific verifier, then it does not need to be perform any more
“expensive” (Barak-style) non-black-box simulation for that identity. Then, the
main challenge remaining is to ensure that the expensive non-black-box sim-
ulations that need to be performed before the simulator can solve a particular
identity, can be a-priori bounded, regardless of the number of concurrent sessions
opened by the verifier. Indeed, [I8] use a randomized simulation strategy (that
crucially relies on a super-constant number of rounds) to achieve this effect.

In our case, we also build on the same set of observations. However, we cru-
cially follow a different strategy to a-priori bound the number of expensive non-
black-box simulations that need to performed in order to solve a given identity.
In particular, unlike [I8], where the “trapdoor” for a given verifier simply corre-
sponds to its secret key, in our case, the trapdoor consists of a signed statement
and a corresponding universal argument proof transcript (where the signature
is computed by the verifier using the signing key corresponding to its identity).
Further, and more crucially, unlike [I§], where the simulator makes a “disjoint”
effort in each session corresponding to a verifier to extract the trapdoor, in our
case, the simulator gradually builds the trapdoor by making “joint” effort across
the sessions. In fact, our simulator only performs one expensive non-black-box
simulation per identity; as such, the a-priori bound on the number of identities
immediately yields us the desired effect. Indeed, this is why we can perform
concurrent simulation in only a constant number of rounds.

The Simulator. We now proceed to describe our simulator S. Let IV denote the
a priori bound on the number of verifiers in the system. Then, the simulator S
interacts with an adversary V* = (V}*, ..., V) who controls verifiers Vi, ..., V.
V* interacts with S in m sessions, and controls the scheduling of the messages.
S is given non-black-box access to V*.

The simulator S consists of two main subroutines, namely, Seasy and Sheavy. As
the name suggests, the job of Sheavy is to perform the “expensive” non-black-box
simulation operations, namely, constructing the transcripts of universal argu-
ments, which yield a trapdoor for every verifier V;. On the other hand, Seasy
computes the actual (simulated) prover messages in both the preamble phase
and the proof phase, by using the trapdoors. We now give more details.

SIMULATOR S. Throughout the simulation, S maintains the following three data
structures, each of which is initialized to _L:

1. a list w = (m1,...,7n), where each m; is either L or is computed to be
h;(IT). Here, h; is the hash function corresponding to V; and I7 is the aug-
mented machine code that is used for non-black-box simulation. We defer
the description of IT to below.

2. a list trap"® = (trap =", ... ,trap?\e,’avy)7 where each trap

a tuple (h;,c,r, I1,y, s) s.t. Rem({(hi,c,7), (IT,y,s)) = 1.

heavy
7

corresponds to
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3. a list trap®Y = (trap{™,..., trapy "), where each trap;"> corresponds to a
tuple <C, T, 0, 6a s 6a C/, t? UI) s.t.
— Verify . (c|lr;0) =1, and
— ¢/ = Com(f;t), and Verify,, (c'||v;0’) =1, and
— (h4, B,7,6) is an accepting transcript for a UARG pUA proving the fol-
lowing statement: 3(II,y, s) s.t. Rsim((hs,c, ), (II,y,s)) = 1.

Augmented machine II. The augmented machine code IT simply consists of the
code of the adversarial verifier V* and the code of the subroutine Seasy (With a
sufficiently long random tape hardwired, to compute the prover messages in each
session) , i.e., IT = (V*, Seasy). The input y to the machine IT consists of the lists
7 and trap®¥, ie., y = (m,trap®¥). Note that it follows from the description
that |y| < ¢(N) —n.

We now describe the subroutines Seasy and Sheavy, and then proceed to give a
formal description of S. For simplicity of exposition, in the discussion below, we
assume that the verifier sends the first message in the WIPOK (P, Vivi).

ALGORITHM Sezs (4, msg}/7 7, trap®; z). The algorithm Seasy prepares the (simu-
lated) messages of the prover P in the protocol. More specifically, when executed
with input (i, msg}/, 7, trap®¥; z), Seasy does the following:

1. If msg}/ is the first verifier message of the preamble phase from V; in a session,
then Seasy parses 7 as mi,...,my. It computes and outputs ¢ = Com(7;; 2).

2. If msg;-/ is the second verifier message of the preamble phase from V; in a
session, then Se.sy computes and outputs ¢ = Com(f; z), where § is the
corresponding (i.e., fourth) entry in trap;">~ € trap®.

3. If msg}/ is a verifier message of the WIPOK from V; in the proof phase of
a session, then if trap?®¥ = L, then Sessy aborts and outputs L, otherwise
Seasy simply runs the code of the honest Ry to compute the response using

randomness z and the trapdoor witness trap;>>.

ALGORITHM Sheavy (4, 7,7, trap™®2%). The algorithm Sheavy simply prepares one
UARG transcript for every verifier V;, which in turn is used as a trapdoor by
the algorithm Seasy. More concretely, when executed with input (2, 7, v, tra pheaw),
Sheavy does the following:

eavy .

1. If j = 1, then Sheavy parses the it" entry trap? in traph®®¥ as (h;, ¢, r, I1, y, 5).
It runs the honest prover algorithm Pya and computes the first message 8 of
a UARG for the statement: 3(II,y, s) s.t. Rsim((hi,c,7), (II,y,s)) = 1. Sheavy
saves its internal state as state; and outputs 3

2. If j = 2, then Sheavy uses state; and v to honestly compute the final prover
message ¢ for the UARG with prefix (h;, 8,7). It outputs 4.

ALGORITHM S. Given the above subroutines, the simulator S works as follows.
We assume that every time S updates the lists w and trap®®, it also auto-
matically updates the entry corresponding to y (i.e., the fifth entry) in each

® For simplicity of exposition, we describe Sheavy as a stateful algorithm.
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trap?ea"y € trap"¥. For simplicity of exposition, we do not explicitly mention
this below.

Preamble phase:

1. On receiving the first message msg! = (vk;, h;) from V* on behalf of V; in
the preamble phase of a session, S first checks whether m; = L (where ; is
the ' entry in the list 7); if the check succeeds, then S updates m; = h;(IT).
Next, S samples fresh randomness s from its random tape and runs Seasy on
input (i, msg}’,, trap®®®;s). S sends the output string ¢ from Sessy to V*.
Further, S adds (hy, ¢, -, IT,y, s) to trap’®* and (¢, -, ) to trap?Y.

2. On receiving the second message message msgy = (r,0) from V* on behalf
of V; in the preamble phase of a session, S first verifies the validity of the
signature o w.r.t. vk;. If the check fails, S considers this session aborted (as
the prover would do) and ignores any additional message for this session.
Otherwise, S checks whether the entries corresponding to r and o (i.e., 2nd

and 3rd entries) in trap:®” are L. If the check succeeds, then:
heavy

— & sets r as 3rd entry of trap;
trap; .

— Further, S runs Sheavy 0n inputﬁ (i,1, L, trap"2®%) to compute the message
B ot a UARG for the statement: 3(I1, y, s) s.t. Rsim((hi, ¢, 1), (II,y,s)) = 1.

Here hi, ¢, 7, I1,y, s are such that trap]*Y = (h;, ¢, 7, II,y, s).

— On receiving the output message 3, S sets to 8 the fourth slot of trap;™.
Next, & samples fresh randomness ¢ and runs Sesy on input
(i, msgy , m, trap®¥; ). On receiving the output string ¢’ from Sessy, S for-
wards it to V*. Further, S sets to (¢, t) the 7th and 8th slot of trap; .

3. Finally, on receiving the last message msg{ = (v,0’) from V* on behalf
of V; in the preamble phase of a session, S first verifies the validity of the
signature ¢’ w.r.t. vk;. If the check fails, S considers this session aborted
(as the prover would do) and ignores any additional message for this session.
Otherwise, S checks whether the entries corresponding to v and ¢’ in trap;

are . If the check succeeds, then:

— S sets to v and o’ the 5th and 9th slot of trap; ™.

— Further, S runs Sheavy on input (4,2, 7, trap™®¥) to compute the final
prover message 0 of the UARG with prefix (h;,3,7), where (3,7) are
the corresponding entries in trap;™.

— On receiving the output message §, S sets to § the 6th slot of trap

and 7,0 as second and third entries of

easy
..
Proof phase: On receiving any message msg}/ from V* on behalf of V;, S runs
Seasy o1 input (3, msg}/, 7, trap®¥) and fresh randomness. S forwards the output
message of Seasy to V*.

This completes the description of & and the subroutines Seasy, Sheavy. It follows
immediately from the above description that S runs in polynomial time and
outputs L with probability negligibly close to an honest prover.

6 For simplicity of exposition, we assume that randomness is hardwired in S"*% and do
not mention it explicitly.
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We now show through a series of hybrid experiments the simulator’s output is
computationally indistinguishable from the output of the adversary when inter-
acting with honest provers. Our hybrid experiments will be H; for i =0, ..., 3.
We write H; =~ H; if no V* can distinguish (except with negligible probability)
between its interaction with H; and H;.

Hybrid Hy. Experiment Hy corresponds to the honest prover. That is, in every
session j € [m], Hy sends ¢ and ¢’ as commitments to the all zeros string in
the preamble phase. We provide Hy with a witness that x € L which it uses to
complete the both executions of the WIPOK (PRyy, Vivi) played in each session.

Hybrid Hi. Experiment H; is similar to Hp, except the following. For every
i € [N], for every session corresponding to verifier V;, the commitment ¢ in the
preamble phase is prepared as a commitment to m; = h;(II), where h; is the
hash function in the identity of V; and II is the augmented machine code as
described above.

The computational hiding property of Com ensures that Hy; ~ Hj.

Hybrid Hy. Experiment Hs is similar to H;, except the following. For every
i € [N], for every session corresponding to verifier V;, the commitment ¢’ in the
preamble phase is prepared as a commitment to the string 8 with randomness
t, where f is the first prover message of a UARG computed by Sheavy, in the
manner as described above.

The computational hiding property of Com ensures that Hy ~ Hj.

Hybrid Hs. Experiment Hj is similar to Hs, except the following. For every
1 € [N], for every session corresponding to verifier V;, the WIPOK (P, Vi) in
the proof phase is executed using the trapdoor witness trap:””, in the manner
as described above. Note that this is our simulator S.

The witness indistinguishability property of (Pwi, Vim) ensures that Hs ~ Hs.

3.2 Proof of Concurrent Soundness

Consider the interaction between a cheating P* and an honest V. Suppose that
P* fools V into accepting a false proof in some session with non-negligible prob-
ability. We show how to reduce P* to an adversary that breaks the security of
one of the used ingredients. We will first consider P* as a sequential malicious
prover. We will discuss the issues deriving from a concurrent attack later.

First of all, notice that by the proof of knowledge property of the second
WIPOK, we have that with non-negligible probability, an efficient adversary FE
can simply run as a honest verifier and extract a witness from that WIPOK of ses-
sion [ where the false statement is proved. Since the statement is false, the witness
extracted will therefore be (¢, 7, g, 8,7, 9, ,t,0’) such that Verify ;. (c||r;0) = 1,
¢ = Com(p;t), Verify, . (c||y;0") = 1, and (h, 5,7, d) is an accepting transcript
for a UARG pUA proving the statement 3(IT,y, s) s.t. Rsim((h,c,7), (IT,y,s)) =
1, and h is the hash function corresponding to the verifier run by E in session .
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By the security of the signature scheme, it must be the case that signatures
o and ¢’ were generated and sent by E during the experiment (the reduction is
standard and omitted).

Therefore we have that with non-negligible probability there is a session 4
where h and v were played honestly by E, (h, 3,7, d) is an accepting transcript
for the UARG for Rgm((h,c,7),{II,y,s)) =1, and a commitment to 5 was given
before v was sent. Moreover, there is a session j where ¢ and r were played as
commitment and challenge. Remember that the session ! is the one where the
false statement is proved.

We can now complete the proof by relying almost verbatim on the same
analysis of [Il2]. Indeed, by rewinding the prover and changing the challenge r
in session j, with another random string, we would have an execution identically
distributed with respect to the previous one. Therefore it will happen with non-
negligible probability that the prover succeeds in session [, still relying on the
information obtained in sessions ¢ and j. The analysis of [II2] by relying on
the weak proof of knowledge property of the UA, shows that this event can be
reduced to finding a collision that contradicts the collision resistance of h.

We finally discuss the case of a concurrent adversarial prover. Such an at-
tack is played by a prover aiming at obtaining from concurrent sessions some
information to be used in the target session where the false theorem must be
proved. In previous work in the BPK model and in the BP model this was a
major problem because the verifier used to give a proof of knowledge of its se-
cret key, and the malleability of such a proof of knowledge could be exploited
by the malicious prover. Our protocol however bypasses this attack because our
verifier does not give a proof of knowledge of the secret key of the signature
scheme, but only gives signatures of specific messages. Indeed the only point in
which the above proof of soundness needs to be upgraded is the claim that by
the security of the signature scheme, it must be the case that signatures ¢ and
o’ where generated and sent by F during the experiment. In case of sequential
attack, this is true because running the extractor of the WIPOK in session [
does not impact on other sessions since they were played in full either before
or after session [. Instead, in case of a concurrent attack, while rewinding the
adversarial prover, new sessions could be started and more signatures could be
needed. As a result, it could happen that in such new sessions the prover would
ask precisely the same signatures that are then extracted from the target session.
We can conclude that this does not impact on the proof for the following two
reasons. First, in the proof of soundness it does not matter if those signatures
appear in the transcript of the attack, or just in the transcript of a rewinded
execution. Second, the reduction on the security of the signature scheme works
for any polynomial number of signatures asked to the oracle, therefore still holds
in case of a concurrent attack. Indeed, the work of F is performed in polynomial
time even when rewinding a concurrent malicious prover, therefore playing in
total (i.e., summing sessions in the view of the prover and sessions played during
rewinds) a polynomial number of sessions, and therefore asking a polynomial
number of signatures only to the signature oracle.
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Further details on the proof of soundness. Given a transcript (h, UA1, U A2, U A3)
for the universal argument of [2], we stress that soundness still works when the
prover sends the statement to the verifier only at the 4th round, opening a com-
mitment played in the second round. The proof of concurrent soundness of our
protocol goes through a reduction to the soundness of the universal argument of
[2] and goes as follows.

Let P}, be the adversarial prover that we construct against the universal
argument of [2], by making use of the adversary P* of our protocol. Let V,, be
the honest verifier of the universal argument of [2]. P}, gets “h” from V,,, and
plays it in a random session s of the experiment (it could therefore be played in
a rewinding thread) with P*. Later on, since by contradiction P* is successful,
UA messages (UA1,UA2,U A3) are extracted and with noticeable probability
they correspond to session s. Therefore P, sends UAl to V,, and gets back
UA2'. Then P}, rewinds P* to the precise point where U A2 was played. Now
P, plays UA2'. Again, later on, since by contradiction P* is successful, P, will
again extract from P* and with noticeable probability (still because the number
of sessions played in the experiment is polynomial), it will get an accepting
transcript (UA1, UA2',U A3*) for the same statement (this is guaranteed by the
security of the signature scheme and the binding of the commitment). Then P,
can send U A3* to V., therefore proving a false statement.

Acknowledgments. Work supported in part by NSF grants 0830803, 09165174,
1065276, 1118126 and 1136174, US-Israel BSF grant 2008411, OKAWA Foun-
dation Research Award, IBM Faculty Research Award, Xerox Faculty Research
Award, B. John Garrick Foundation Award, Teradata Research Award, MIUR
Project PRIN “GenData 2020” and Lockheed-Martin Corporation Research
Award. This material is based upon work supported by the Defense Advanced
Research Projects Agency through the U.S. Office of Naval Research under Con-
tract N0O0O014 — 11 — 1 — 0392. The views expressed are those of the author and
do not reflect the official policy or position of the Department of Defense or the
U.S. Government.

References

1. Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS,
pp. 106-115 (2001)

2. Barak, B., Goldreich, O.: Universal arguments and their applications. In: IEEE
Conference on Computational Complexity, pp. 194-203 (2002)

3. Barak, B., Lindell, Y.: Strict polynomial-time in simulation and extraction. In:
STOC, pp. 484493 (2002)

4. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of
the International Congress of Mathematicians, pp. 1444-1451 (1987)

5. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: STOC, pp. 235-244 (2000)

6. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-

knowledge requires Q (log n) rounds. In: STOC, pp. 570-579 (2001)



Constant-Round Concurrent Zero Knowledge in the Bounded Player Model 39

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Cho, C., Ostrovsky, R., Scafuro, A., Visconti, I.: Simultaneously resettable argu-
ments of knowledge. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 530-547.
Springer, Heidelberg (2012)

Chung, K.M., Lin, H., Pass, R.: Constant-round concurrent zero knowledge from
p-certificates. In: FOCS. IEEE Computer Society (2013)

Deng, Y., Lin, D.: Instance-dependent verifiable random functions and their appli-
cation to simultaneous resettability. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS,
vol. 4515, pp. 148-168. Springer, Heidelberg (2007)

Deng, Y., Lin, D.: Resettable zero knowledge with concurrent soundness in the
bare public-key model under standard assumption. In: Pei, D., Yung, M., Lin, D.,
Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 123-137. Springer, Heidelberg
(2008)

Di Crescenzo, G., Persiano, G., Visconti, I.: Constant-round resettable zero knowl-
edge with concurrent soundness in the bare public-key model. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 237-253. Springer, Heidelberg (2004)
Di Crescenzo, G., Persiano, G., Visconti, I.: Improved setup assumptions for 3-
round resettable zero knowledge. In: Lee, P.J. (ed.) ASTACRYPT 2004. LNCS,
vol. 3329, pp. 530-544. Springer, Heidelberg (2004)

Di Crescenzo, G., Visconti, I.: Concurrent zero knowledge in the public-key model.
In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 816-827. Springer, Heidelberg (2005)

Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Com-
put. 30(2), 391-437 (2000)

Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: STOC,
pp. 409418 (1998)

Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: FOCS, pp. 308-317 (1990)
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: STOC, pp. 291-304 (1985)

Goyal, V., Jain, A., Ostrovsky, R., Richelson, S., Visconti, I.: Concurrent zero
knowledge in the bounded player model. In: Sahai, A. (ed.) TCC 2013. LNCS,
vol. 7785, pp. 60-79. Springer, Heidelberg (2013)

Gupta, D., Sahai, A.: On constant-round concurrent zero-knowledge from a knowl-
edge assumption. IACR Cryptology ePrint Archive 2012, 572 (2012)

Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In: STOC, pp. 560-569 (2001)

Kilian, J., Petrank, E., Rackoff, C.: Lower bounds for zero knowledge on the inter-
net. In: FOCS, pp. 484-492 (1998)

Micali, S., Reyzin, L.: Soundness in the public-key model. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 542-565. Springer, Heidelberg (2001)
Micali, S., Reyzin, L.: Soundness in the public-key model. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 542-565. Springer, Heidelberg (2001)

Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151-158
(1991)

Ostrovsky, R., Persiano, G., Visconti, I.: Constant-round concurrent non-malleable
zero knowledge in the bare public-key model. In: Aceto, L., Damgard, I., Goldberg,
L.A., Halld6rsson, M.M., Ing6lfsdéttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
II. LNCS, vol. 5126, pp. 548-559. Springer, Heidelberg (2008)

Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest
majority. In: STOC, pp. 232-241 (2004)



40

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

V. Goyal et al.

Pass, R.: Limits of provable security from standard assumptions. In: STOC,
pp. 109-118 (2011)

Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: FOCS,
pp. 563-572 (2005)

Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: STOC, pp. 533-542 (2005)

Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarith-
mic round-complexity. In: FOCS, pp. 366-375 (2002)

Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415-431. Springer,
Heidelberg (1999)

Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: STOC, pp. 387-394 (1990)

Rosen, A.: A note on the round-complexity of concurrent zero-knowledge. In: Bel-
lare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 451-468. Springer, Heidelberg
(2000)

Scafuro, A., Visconti, I.: On round-optimal zero knowledge in the bare public-
key model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 153-171. Springer, Heidelberg (2012)

Visconti, I.: Efficient zero knowledge on the internet. In: Bugliesi, M., Preneel, B.,
Sassone, V., Wegener, 1. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 22-33. Springer,
Heidelberg (2006)

Yao, A.C., Yung, M., Zhao, Y.: Concurrent knowledge extraction in the public-
key model. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F.,
Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp. 702-714. Springer,
Heidelberg (2010)

Deng, Y., Feng, D., Goyal, V., Lin, D., Sahai, A., Yung, M.: Resettable cryptogra-
phy in constant rounds — the case of zero knowledge. In: Lee, D.H., Wang, X. (eds.)
ASTACRYPT 2011. LNCS, vol. 7073, pp. 390-406. Springer, Heidelberg (2011)
Yung, M., Zhao, Y.: Generic and practical resettable zero-knowledge in the bare
public-key model. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515,
pp. 129-147. Springer, Heidelberg (2007)

Zhao, Y.: Concurrent/resettable zero-knowledge with concurrent soundness in the
bare public-key model and its applications. Cryptology ePrint Archive, Report
2003/265 (2003), http://eprint.iacr.org/


http://eprint.iacr.org/

Succinct Non-Interactive Zero Knowledge
Arguments from Span Programs and Linear
Error-Correcting Codes

Helger Lipmaa

Institute of Computer Science, University of Tartu, Estonia

Abstract. Gennaro, Gentry, Parno and Raykova proposed an efficient
NIZK argument for CIRCUIT-SAT, based on non-standard tools like con-
scientious and quadratic span programs. We propose a new linear PCP
for the CIRCUIT-SAT, based on a combination of standard span pro-
grams (that verify the correctness of every individual gate) and high-
distance linear error-correcting codes (that check the consistency of wire
assignments). This allows us to simplify all steps of the argument, which
results in significantly improved efficiency. We then construct an NIZK
CIRCUIT-SAT argument based on existing techniques.

Keywords: Circuit-SAT, linear error-correcting codes, linear PCP, non-
interactive zero knowledge, polynomial algebra, quadratic span program,
span program, verifiable computation.

1 Introduction

By using non-interactive zero knowledge (NIZK, [3]), the prover can create a
proof 7, s.t. any verifier can later, given access to a common reference string,
the statement, and 7, verify the truth of the intended statement without learning
any side information. Since a single proof might get transferred and verified many
times, one often requires sublinear communication and verifier’s computation.
(Unless stated explicitly, we measure the communication in group elements, and
the computation in group operations.) While succinct NIZK proofs are impor-
tant in many cryptographic applications, there are only a few different generic
methodologies to construct them efficiently.

Groth [I6] proposed the first sublinear-communication NIZK argument
(computationally-sound proof, [4]) for an NP-complete language. His construc-
tion was improved by Lipmaa [I9]. Their CIRCUIT-SAT argument consists of
efficient arguments for more primitive tasks like Hadamard sum, Hadamard
product and permutation. The CIRCUIT-SAT arguments of [I6/I9] have con-
stant communication, quadratic prover’s computation, and linear verifier’s com-
putation in s (the circuit size). In [16], the CRS length is ©(s?), and in [19], it is
O(r;1(s)) = o(s22V21°82%) where r3(N) = 2(N log"/* N/22V21°8: N [] is the
cardinality of the largest progression-free subset of [N]. Because of the quadratic
prover’s computation, the arguments of Groth and Lipmaa are not applicable in
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practice, unless s is really small. Very recently, Fauzi, Lipmaa and Zhang [10] con-
structed arguments for NP-complete languages Set Partition, Subset Sum and
Decision Knapsack with the CRS length O(r; '(s)) and prover’s computation
O(r3*(s)log s). They did not propose a similar argument for the CIRCUIT-SAT.

Gennaro, Gentry, Parno and Raykova [15] constructed a CIRcurT-SAT NIZK
argument based on efficient (quadratic) span programs. Their argument con-
sists of two steps. The first step is an information-theoretic reduction from the
CIRcUIT-SAT to QSP-SAT [2], the satisfaction problem of quadratic span pro-
grams (QSPs, [I5]). The second step consists of cryptographic tools that allow
one to succinctly verify the satisfiability of a QSP.

Intuitively, a span program consists of vectors u; for i > 0, a target vector ug,
and a labelling of every vector u; by a literal z, = x! or #, = 2% or by L. A span
program accepts an input w iff ug belongs to the span of the vectors w; that
are labelled by literals !+ (or by L) that are consistent with the assignment
w = (w,) to the input = = (x,). Le., uo = > ;. aiu;, where a; # 0 if the
labelling of w; is not consistent with w. (See Sect. 3 for more background.)

Briefly, the first step constructs span programs (which satisfy a non-standard
conscientiousness property) that verify the correct evaluation of every individual
gate. Conscientiousness means that the span program accepts only if all inputs
to the span program were actually used (in the case of CIRCUIT-SAT, this means
that the prover has set some value to every input and output wire of the gate,
and that exactly the same value can be uniquely extracted from the argument).
The gate checkers are aggregated to obtain a single large conscientious span
program that verifies the operation of every individual gate in parallel. They then
construct a weak wire checker that verifies consistency, i.e., that all individual
gate checkers work on an unequivocally defined set of wire values. The weak wire
checker of [I5] guarantees consistency only if all gate checkers are conscientious.
They define quadratic span programs (QSPs, see [I5]) and construct a QSP that
implements both the aggregate gate checker and the weak wire checker.

In the second step, Gennaro et al. construct a non-adaptively sound NIZK
argument that verifies the QSP, with a linear CRS length, O(s log? s) prover’s
computation, and linear-in-input size verifier’s computation. It can be made
adaptively sound by using universal circuits [25], see [I5] for more information.

The construction of [I5] is quite monolithic and while containing many new
ideas, they are not sufficiently clarified in [I5]. Bitansky et al [2] simplified the
second step of the construction from [I5], by first constructing a linear PCP [2],
then a linear interactive proof, and finally a NIZK argument for CIRCUIT-SAT.
Their more modular approach makes the ideas behind the second step more
accessible. Unfortunately, [2] is slightly less efficient than [I5], and uses a (pre-
sumably) stronger security assumption.

We improve the construction of [15] in several aspects. Some improvements are
conceptual (e.g., we provide cleaner definitions, that allow us to offer more ef-
ficient constructions) and some of the improvements are technical (with special
emphasis on concrete efficiency). More precisely, we modularize — thus making
its ideas more clear and accessible — the first step of [I5] to construct a succinct
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non-adaptive 3-query linear PCP [2] for CIRCUIT-SAT. Then we use the tech-
niques of [2], together with several new techniques, to modularize the second step
of [I5]. Importantly and contrarily to [2], by doing so we both improve on the effi-
ciency of both steps and relax the security assumptions. We outline our construc-
tion below, and sketch the differences compared to [15].

The main body of the current work consists of a cleaner and more efficient
reduction from CIRCUIT-SAT to QSP-SAT (another NP-complete language,
defined later). Given a circuit C, we construct an efficient circuit checker, a QSP
that is satisfiable iff C' is satisfiable.

To verify whether circuit C' accepts an input, we use a small standard (i.e.,
not necessarily conscientious) span program to verify an individual gate. For
example, a NAND checker is a span program that accepts if the gate implements
NAND correctly. We construct efficient span programs for gate checkers, needed
for the CIRCUIT-SAT argument. E.g., we construct a size 6 and dimension 3
NAND checker; this can be compared to size 12 and dimension 9 conscientious
NAND checker from [I5]. By using the AND composition of span programs, we
construct a single large span program that verifies every gate in parallel.

Unfortunately, simple AND composition of the gate checkers is not secure,
because it allows “double-assignments”. More precisely, some vectors of several
adjacent gate checkers are labelled by the variable corresponding to the same
wire. While every individual checker might be locally correct, one checker could
work with value 0 while another checker could work with value 1 assigned to the
same wire. Clearly, such bad cases should be detected. More precisely, it must
be possible to verify efficiently that the coefficients a; that were used in the gate
checkers adjacent to some wire are consistent with a unique wire value.

We solve this issue as follows. Let Code be an efficient high-distance linear
[N, K, D] error-correcting code with D > N/2. For any wire 7, consider all
vectors from adjacent gate checkers that correspond to the claimed value z,
of this wire. Some of those vectors (say wu;) are labelled by the positive literal
x, and some (say v;) by the negative literal Z,. The individual gate checker’s
acceptance “fixes” certain coefficients a; (that are used with w;) and b; (that are
used with v;) for all adjacent gate checkers. Roughly stating, for consistency of
wire 7 one requires that either all a; are zero (then unequivocally x, = 0), or
all b; are zero (then unequivocally z,, = 1). We verify that this is the case by
applying Code separately to the vectors a and b. The high-distance property of
Code guarantees that if @ and b are not consistent, then there exists a coefficient
i, s.t. Code(a); - Code(b); # 0.

Motivated by this construction, we redefine QSPs [15] as follows. Let o denote
the pointwise product of two vectors. A QSP (that consists of two target vectors
up = (up;) € F? and vo = (vg;) € F¢ and two m x d matrices U = (u;;) and
V = (vy;) for i € [m] and j € [d]) over some field F accepts an input iff for some
vectors a and b, consistent with this input,

(@" - U—wug)o(b" -V —wp)=0 . (1)

Clearly, Eq. () is equivalent to the requirement that for all ;7 € [d],
(O ajuig — uoj) - (Oieq bivij — vo;) = 0. Since F is an integral domain, the
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latter holds iff for all j € [d], either Y ", a;uj; = uoj or > vy bivy; = voj,
which can be seen as an element-wise OR of two span programs. This can be
compared to the element-wise AND of two span programs that accepts iff for
all j € [d], both >°1" | a;ui; = ug; and > bivy; = vo; iff two span programs
accept simultaneously, i.e., Y a;u; = ug and Y b;jv; = vo. On the other hand,
it is not known how to implement an element-wise OR composition of two span
programs as a small span program. QSPs add an element-wise OR, to an element-
wise AND, and thus it is not surprising that they increase the expressiveness of
span programs significantly.

The above linear error-correcting code based construction implements a QSP
(a wire checker), with U and V being related to the generating matrices of the
code. (See Def. @) Basically, the wire checker verifies the consistency of vectors
a and b with the input.

We use the systematic Reed-Solomon code, since it is a maximum distance
separable code with optimal support (i.e., it has the minimal possible number
of non-zero elements in its generating matrix). It also results in the smallest
degree of certain polynomials in the full NIZK argument. While no connection
to error-correcting codes was made in [I5], their wire checker can be seen as
a suboptimal (overdefined) variant of the systematic Reed-Solomon code. Due
to the better theoretical foundation, the new wire checker is more efficient, and
optimal in its size and support. Moreover, one can use any efficient high-distance
(D > N/2) linear error-correcting code, e.g., a near-MDS code [7]. Whether this
would result in any improvement in the computational complexity of the final
NIZK argument is an interesting open question.

Moreover, the wire checker of [15] is consistent (and thus their NIZK argument
is sound) only if the gate checkers are conscientious. The new wire checker does
not have this requirement. This not only enables one to use more efficient gate
checkers but also potentially enables one to use known techniques (combinatorial
characterization of span program size [I1], semidefinite programming [24]) to
construct more efficient checkers for larger unit computations.

We construct an aggregate wire checker by applying an AND composition
to wire checkers, and then construct a single QSP (the circuit checker) that
implements both the aggregate gate checker and the aggregate wire checker. At
this point, the approach of the current paper pays off also conceptually: one can
compare the description of the circuit checker (called a canonical QSP) in [I5]
Sect. 2.4], that takes about 3/4 of a page, with the description from the current
paper (Def. B]) that takes only a couple of lines.

We prove that the circuit checker (the QSP) is satisfiable iff the original circuit
is satisfiable. Since the efficiency of the new circuit checker depends on the fan-
out of the circuit, we use the classical result from [I7] about constructing low fan-
out circuits that allows us to optimize the worst case size and other parameters,
especially support, of the circuit checker.

To summarize, the new circuit checker consists of two elements. First, an ag-
gregate gate checker (a span program) that verifies that every individual gate
is executed correctly on their local variables. Second, an aggregate wire checker
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(a QSP, based on a high-distance linear error-correcting code) that verifies that
individual gates are executed on the consistent assignments to the variables. Im-
portantly (for the computational complexity of the NIZK argument), the circuit
checker is a composition of small (quadratic) span programs, and has only a
constant number of non-zero elements per vector.

This finishes the description of the CIRCUIT-SAT to QSP-SAT reduction.
To construct an efficient NIZK argument for CIRCUIT-SAT, we need several ex-
tra steps. Based on the new circuit checker, we first construct a non-adaptive
2-query linear PCP([2], see Sect. B for a definition) for CIRCUIT-SAT with linear
communication. This seems to be the first known non-trivial 2-query linear PCP.
Moreover, we use a more elaborate extraction technique which, differently from
the one from [15], also works with non-conscientious gate checkers. This improves
the efficiency of the linear PCP. In particular, the computation of the decision
functionality of the linear PCP is dominated by a small constant number of field
operations. The same functionality required @(n) operations in [I5l2]. Interest-
ingly, this construction by itself is purely linear-algebraic, by using concepts like
span programs, linear error-correcting codes, and linear PCPs.

To improve the communication of the linear PCP, as in [I5], we define poly-
nomial span programs and polynomial QSPs. Differently from [I5] (that only
gave the polynomial definition), our main definition of QSPs — as sketched
above — is linear-algebraic, and we then use a transformation to get a QSP to a
“polynomial” form. We feel the linear-algebraic definition is much more natural,
and describes the essence of QSPs better. Based on the polynomial redefinition
of QSPs and the Schwartz-Zippel lemma, we construct a succinct non-adaptive
3-query linear PCP for CIRCUIT-SAT. The prover’s computation in this linear
PCP is O(slog s), where s is the size of the circuit, and the verifier’s computation
is again ©(1). In [I5], the corresponding parameters were O(slog® s) and O(n).
Thus, the new 3-query linear PCP is more efficient and conceptually simpler
than the previously known 3-query linear PCPs [2].

By using techniques of [2], we convert the linear PCP to a succinct non-
adaptive linear interactive proof, and then to a succinct non-adaptive NIZK
argument. (See the full version, [20].) As in the case of the argument from [I5],
the latter can be made adaptive by using universal circuits [25].

Since the reduction from linear PCP to NIZK from [2] loses some efficiency
and relies on a stronger security assumption than stated in [I5], we also describe
a direct NIZK argument with a (relatively complex) soundness proof that fol-
lows the outline of the soundness proof from [I5]. The main difference in the
proof is that we rephrase certain proof techniques from [I5] in the language of
multilinear universal hash functions. This might be an interesting contribution
by itself. Apart from a more clear proof, this results in a slightly weaker security
assumption. (See the full version [20] of this paper.)

The new non-adaptive CIRCUIT-SAT argument has CRS length ©(s), prover’s
computation O(slogs), verifier’s computation ©(1), and communication ©(1).
In all cases, the efficiency has been improved as compared to the (QSP-based)
argument from [I5]. Moreover, all additional optimization techniques applicable
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to the argument from [I5] (e.g., the use of collision-resistant hash functions) are
also applicable to the new argument.

We hope that by using our techniques, one can construct efficient NIZK argu-
ments for other languages, like the techniques of [19] were used in [5] to construct
an efficient range argument, and in [21] to construct an efficient shuffle. QSPs
have more applications than just in the NIZK construction. We only mention
that one can construct a related zap [§], and a related (public or designated-
verifier) succinct non-interactive argument of knowledge (SNARK, see [22/[6]) by
using the techniques of [II14].

It is also natural to apply our techniques to verifiable computation [13]: in-
stead of gates, one can talk about small (but possibly much larger) compu-
tational units, and instead of wires, about the values transferred between the
computational units. Since here one potentially deals with much larger span
programs than in the case of the CIRCUIT-SAT argument, the use of standard
(non-conscientious) span programs is especially beneficial. Since in the case of
verifiable computation, the computed function F' (and thus also the circuit C') is
known while generating the CRS, one can use the non-adaptively sound version
of the new argument [23].

Gennaro et al. [T5] also proposed a NIZK argument that is based on quadratic
arithmetic programs (QAP-s), a novel computational model for arithmetic cir-
cuits. QAP-based arguments are often significantly more efficient than QSP-based
arguments, see [1523]. We can use our techniques to improve on QAP-based argu-
ments, but here the improvements are less significant and thus we have omitted full
discussion. (See the full version.) Briefly, differently from [15], we give an (again,
more clean) linear-algebraic definition of QAP-s. This enables us to present a short
alternative proof of the result from [I5] that any arithmetic circuit with n inputs
and s multiplication gates can be computed by a QAP of size n+ s and dimension
s. We remark that the QAP-based construction results in a 4-query linear PCP,
while the QSP-based construction from the current paper results in a 3-query
linear PCP.

Due to the lack of space, many proofs are given only in the full version [20].

2 Preliminaries: Circuits and Circuit-SAT

For a fixed circuit C, let s = |C] be its size (the number of gates), s. its number
of wires, and n be its input size. Every gate ¢+ computes some unary or binary
function f, : {0,1}52 — {0,1}. We denote the set of gates of C by [s] and the set
of wires of C by [se]. Assume that the first n wires, € [n], start from n input
gates ¢ € [n]. Every wire ) € [se] corresponds to a formal variable x, in a natural
way. This variable obtains an assignment wy,, 1 € [se], computed by C' from the
input assignment (w;)j_;. Denote w := (wy);_;. We write C(w) := C((w;)7_;).
For a gate ¢ of C, let deg™(:) be its fan-out, and let deg™(:) be its fan-in. Let
deg(t) = deg™ (1) + deg™(1).

Let poly(z) := 2. Let R = {(C,w)} be an efficiently computable binary
relation with |w| = poly(|C|) and s := |C| = poly(|w]). Here, C is a statement,
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and w is a witness. Let £ = {C : Jw, (C,w) € R} be the related NP-language.
For fixed s, we have a relation R and a language L.

The language CIRCUIT-SAT consists of all (strings representing) circuits that
produce a single bit of output and that have a satisfying assignment. That is,
a string representing a circuit C' is in CIRCUIT-SAT if there exists w € {0, 1}
such that C(w) = 1.

As before, we assume that s = |C| is the number of gates, not the bitlength
needed to represent C. Thus, L, = {C : |C| = s A (Gw € {0,1}%,C(w) = 1)}
and Rs = {(C,w) : |C| =sAw € {0,1}° A C(w) = 1}.

Let G = (V, E) be the hypergraph of the circuit C. The vertices of G corre-
spond to the gates of C. A hyperedge n connects the input gate of some wire
to (potentially many) output gates of the same wire. In C, an edge 7 (except
input edges, that have ¢ adjacent vertices) has ¢ + 1 adjacent vertices, where ¢
is the fan-out of 7n’s designated input gate. Every vertex of G can only be the
starting gate of one hyperedge and the final gate of two hyperedges (since we
only consider unary and binary gate operations). Thus, |E(G)| < 2(|]V(G)| —n).

3 Preliminaries: Span Programs

Let F = Z4 be a finite field of size ¢ > 2, where ¢ is a prime. However, most
of the results can be generalized to arbitrary fields. By default, vectors like w
denote row vectors. For matrix U, let u; be its ith row vector. For an m x d
matrix U over F, let span(U) := {>_I" | a;u; : @ € F™}. Let 2, ¢ € [n], be formal
variables. Denote the positive literals z, by 2! and the negative literals z, by x°.

A span program [18] P = (ug,U, o) over a field F is a linear-algebraic compu-
tation model. It consists of a non-zero target vector ug € F%, an m x d matrix
U over F, and a labelling ¢ : [m] — {z,,Z, : ¢ € [n]} U{L} of U’s rows by
one of 2n literals or by L. Let U, be the submatrix of U consisting of those
rows whose labels are satisfied by the assignment w € {0,1}", that is, belong
to {z : v € [n]} U{L}. P computes a function f, if for all w € {0,1}™
ug € span(Uy,) if and only if f(w) = 1.

Let o5t = {i € [m] : 0(i) € {z% : 1 € [n]} U{L}} be the set of rows
whose labels are satisfied by the assignment w. The size, size(P), of P is m. The
dimension, sdim(P), is equal to d. P has support supp(P), if all vectors u € U
have altogether supp(P) non-zero elements. Clearly, ug can be replaced by an
arbitrary non-zero vector; one obtains the corresponding new span program (of
the same size and dimension, but possibly different support) by applying a basis
change matrix. Let D(z,) := max;ego,13 |0~ ' (27)], for each ¢ € [n] and j € {0,1},
be the maximum number of vectors that have the same label (¢, j); this parameter
is needed when we construct wire checkers.

Complex span programs are constructed by using simple span programs and
their composition rules. The Boolean function NAND A is defined as A(x,y) =
Ay = —(z A y). Span programs for AND, NAND, OR, XOR, and equality
of two variables z and y are as in Fig. [[l Given span programs Py = SP(fo)
an P = SP(f;) for functions fy and fi, one uses well-known AND and OR
compositions to construct span programs for fo A f1 and fy V fi.
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Fig. 1. From left to right: standard span programs SP(A), SP(A), SP(V), SP(®),
SP(=) and new span programs SP(cx) and SP(cy)

A span program (uo, U, 0) is conscientious [19] if a linear combination associ-
ated to a satisfying assignment must use at least one vector associated to either
x, or z, for every ¢ € [n]. Clearly, SP(A), SP(®) and SP(=) are conscientious,
while SP(V) is not.

4 Efficient Gate Checkers

A gate checker for a gate that implements f : {0,1}"™ — {0,1} is a function
ey {0,131 — {0,1}, s.t. ¢f(x,y) = 1 iff f(z) = y. The NAND-checker
cn {0,133 — {0,1} outputs 1 iff 2 = zAy.

Lemma 1. SP(cx) on Fig.[lis a span program for cx. It has size 6, dimension
3, and support 7.

As seen from the proof , given an accepting assignment (z,y,z), one can
efficiently find small values a; € [-2,1] such that ) .., a;u; = wuo. How-
ever, a satisfying input to SP(cx) does not fix the values a; unequivocally: if
(x,y,2) = (0,0,1) (that is, a3 = a2 = ag = 0), then one can choose an arbitrary
a4 and set as < 1 — a4. Since one can set ay = 0, SP(ca) is not conscientious.

Given SP(cn), one can construct a size 6 and dimension 3 span program for
the AND-checker cp(x,y, 2) := (z Ay) @ Z by interchanging in SP(cx) the rows
labelled by z and Z. Similarly, one can construct a size 6 and dimension 3 span
program for the OR~checker ¢y (z,y, z) := (T AgY) ® 2z by interchanging in SP(cx)
the rows labelled by = and Z, and the rows labelled by y and y. NOT-checker
[ # y] =z @y is just the XOR function, and thus one can construct a size 4
and dimension 2 span program for the NOT-checker function.

We need the dummy gates y < x, and corresponding dummy checkers
c=(x,y) = [z = y]. Clearly, the dummy checker function is just to the equal-
ity test, and thus has a conscientious span program of size 4 and dimension 2.
Moreover, if z =y € {0,1}, then a; = ag = x, while a3 = a4 =1 — z.

We need the fork-checker ey (x, y1,y2) for the fork gate that computes y; < z,
y2 < x. In the CNF form, ¢y (z,y1,y2) = (TVy2) A(@VF1) A(y1 VP2). Since every
literal is mentioned once in the CNF, we can use AND and OR compositions to
derive the span program on Fig. [Il It has size 6, dimension 3, and support 6.
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We also need a 1-to-¢ fork-checker that has 1 input = and ¢ outputs y,, with
y, < x. The ¢-fork checker is c$(x, Y =@AYyL A Ay) VE@EAGLA- - AGy).
Clearly, c$ has CNF c$(x, Y)=@VHi)AWLVG2) A A(Yp—1 VTPg) A (Yp V T).
From this we construct a span program exactly as in the case ¢ = 2, with size
2(¢ + 1) and dimension ¢ + 1. It has only one vector labelled with every z,/y
or its negation, thus D(z) = D(y,) = 1 for all .. To compute the support, note
that SP*(C$) has two 1l-entries in every column, and one in every row. Thus,

supp(SP(cy)) = S0H 2 =2 + 2.

5 Aggregate Gate Checker

Given a circuit that consists of NAND, AND, OR, XOR, and NOT gates, we
combine the individual gate checkers by using the AND composition rule. In
addition, for the wire checker of Sect.[6:2] (and thus also the final NIZK argument)
to be more efficient, all gates of the circuit C' need to have a small fan-out. In [15],
the authors designed a circuit of size 3 - |C| that implements the functionality
of C' but only has fan-out 2 except for a specially introduced dummy input.
Their aggregate gate checker (AGC) has size 36 - |C| and dimension 27 - |C|.
By using the techniques of [I7] (that replaces every high fan-out gate with an
inverse binary tree of fork gates, and then gives a more precise upper bound of
the resulting circuit size), we prove a more precise result. We do not introduce
the dummy input but we still add a dummy gate for every input. We then say
that we deal with a circuit with dummy gates.

Since we are interested in circuit satisfiability, the X-checker (where say X =
NAND) of the circuit’s output gate simplifies to the X gate (e.g., NAND checker
simplifies to NAND). Since X has a more efficient span program than X checker,
then for the sake of simplicity, we will not mention this any more.

Let C be a circuit. The AGC function agc of a circuit C' is a function agc :
{0, 1}21@1 des(t) 5 0,1} TIf ¢, is the gate checker of the tth gate and x, has
dimension deg(¢), then agc(x1,...,zc|) = (c1(®1), - - -, ¢c)(T)C)))-

As in [I5], we construct the AGC by AND-composition of the gate checkers of
the individual gate checkers. Since for an individual gate checker and a satisfying
assignment, one can compute the corresponding coeflicient vector a in constant
time, the aggregate coefficient vector a can be computed from w in time O(s).
Let a + c2q(w) be the corresponding algorithm.

Theorem 1. Let f: {0,1}™ — {0,1} be the function computed by a fan-in < 2
circuit C with s = |C| NAND, AND, OR, XOR, and NOT gates. There exists
a fan-in < 2 and fan-out < ¢ circuit with dummy gates Cpng for f, that has
the same s gates as C, n additional dummy gates, and up to (s —2n)/(¢ — 1)
additional ¢-fork gates. Let ¢* := 1/(¢ — 1). The AGC agc(Chpng) has a span
program P with size(P) < (8 +4¢*)s — (6 + 8¢*)n, sdim(P) < (4+2¢*)s —
(3+4¢*)n, and supp(P) < (9+4¢*)s — (5 +8¢p*)n. If ¢ = 3, then size(P) <
10s — 10n, sdim(P) < 5s — 5n, and supp(P) < 11s — 9n.
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The upper bounds of this theorem are worst-case, and often imprecise. The
optimal choice of ¢ depends on the parameter that we are going to optimize.
The AGC has optimal size, dimension and support if ¢ is large (preferably even
if the fan-out bounding procedure of Thm. [Ilis not applied at all). The support
of the aggregate wire checker (see Sect. [6.3) is minimized if ¢ = 2. To balance
the parameters, we concentrate on the case ¢ = 3.

6 Quadratic Span Programs and Wire Checker

6.1 Quadratic Span Programs

An intuitive definition of quadratic span programs (QSPs) was given in the in-
troduction and will not be repeated here. We now give a formal (linear-algebraic)
definition of QSPs. In Sect. [ we will provide an equivalent polynomial redefi-
nition of QSPs that is the same as the definition given in [15].

Definition 1. A quadratic span program (QSP) Q = (uo,vo,U,V,0) over a
field F consists of two target vectors ug,vo € F%, two m x d matrices U and V,
and a common labelling o : [m] — {x,,Z, : ¢ € [n]}U{L} of the rows of U and V.
Q accepts an input w € {0, 1}" iff there exist (a,b) € F™ xF™, witha; =0=1b;
for alli € oy, such that (a” -V —wug)o(b' - W —vg) = 0, where x oy denotes

the pointwise (Hadamard) product of © and y. @ computes a function f if for
allw e {0,1}": f(w) =1 iff Q accepts w.

We remark that one can have ug = vo = 0. (See Def. [ for example.)

The size, size(Q), of @ is m. The dimension, sdim(Q), of @ is d. The support,
supp(@), of @ is equal to the sum of the supports (that is, the number of non-
zero elements) of all vectors u; and wv;. Clearly, one can compose QSPs by using
the AND and OR composition rules of span programs, though one has to take
care to apply the same transformation to both U and V' simultaneously.

The language QSP-SAT consists of all (strings representing) QSPs that pro-
duce a single bit of output and that have a satisfying assignment. L.e., a string
representing an n-input QSP @ is in QSP-SAT if there exists w € {0,1}", such
that Q(w) = 1. The witness of this fact is (a,b), and we write Q(a, b) = Q(w).

6.2 Wire Checker

Gate checkers verify that every individual gate is followed correctly, i.e., that its
output wire obtains a value which is consistent with its input wires. One also
requires inter-gate (wire) consistency that ensures that adjacent gate checkers do
not make double assignments to any of the wires. Here, we consider hyperwires
that have one input gate and potentially many output gates. Following [15], for
this purpose we construct a wire checker. We first construct a wire checker for
every single wire (that verifies that the variables involved in the span programs
of the vertices that are adjacent to this concrete wire do not get inconsistent
assignments), and then aggregate them by using an AND composition.
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For a (hyper)wire 7, let N(n) be the set of ’s adjacent gates. For gate ¢ €
N(n),let P, = (u(()b),U(L), o) be its gate checker. For every ¢ € N(n), one of the
input or output variables of P, (that we denote by z,.,) corresponds to z;,. Recall
that for a local variable y of a span program P,, D(y) = max(|o~1(y)|, |o=*()])-
We assume |0~ (y)| = |0~ (y)|, by adding zero vectors to the span programs if
necessary. Let D(n) := }_, ¢ n(,) D(.:n) be the number of the times the rows of
adjacent gate checkers have been labelled by a local copy of x}]

We define the nth wire checker between the rows of adjacent gates i € N(n)
in the AGC that are labelled either by the local variable x;., or its negation Z;.,,,
i.e., between 2D(n) rows {i : Ik € N(n) s.t. 0¥ (i) = 2y V 0¥ (3) = Tpp}. Let
¢ be the natural labelling of the wire checkers, with ¢ (i) = «J iff o) (i) = xizn
for some k € N(n).

Ezample 1. Consider a (hyper)wire n that has one input gate ¢; and two output
gates 1o and t3. Assume that all three gates implement NAND, and thus they
have gate checkers SP(cx) from Fig. [l Assume that z, = z,, = z,, = y,,. Thus,
the nth wire checker is defined between the rows 3 and 6 of the checker for ¢1,
rows 1 and 4 of the checker for ¢5, and rows 2 and 5 of the checker for ¢3. Thus,
D(n) = D(z,,) + D(x,,) + D(y.,) = 6. 0

We first define the wire checker for a wire n and thus for one variable z,. In
Sect. 6.3l we will give a definition and a construction in the aggregate case.

For y = (y,...,2p)", let y® = (y,...,yp)7 and y®@ :=
(Ypit1,---,y2p)". Fix a wire 7. Assume that D = D(n). Let Q =
(ug, vo, U, V,4), with m x d matrices U and V', be a QSP. Q is a wire checker,
if for any a,b € F2P Eq. (@) holds iff @ and b are consistent bit assignments in
the following sense: for both k € {1,2}, either a*) = 0 or b(*) = 0.

We propose a new wire checker that is based on the properties of high-distance
linear error-correcting codes, see the introduction for some intuition. To obtain
optimal efficiency, we choose particular codes (namely, systematic Reed-Solomon
codes).

Definition 2. Let D* := 2D — 1. Let RSp be the D x D* generator matrix
of the [D*, D, D], systematic Reed-Solomon code. Let m = 2D and d = 2D*.

_ 7 _ ( BRSp Opxp- _ v _ (Upxp~ RSp _
Let U = Up = (ODxD* RSp andV =Vp = RSp Opp- ) Let Que =

(0,0,U,V, %), where =1 (z,) = [1, D] and v~ *(z,) = [D + 1,2D)].

We informally define the degree sdeg(Q) of a (quadratic) span program @ as
the degree of the interpolating polynomial that obtains the value wu;; at point j.
See Sect. [l for a formal definition.

Lemma 2. Q. is a wire checker of size 2D, degree D+ D* = 3D —1, dimension
2D* = 4D — 2, and support 4D?.

Proof. The claim about the parameters follows straightforwardly from the prop-
erties of the code. It is easy to see that if @ and b are consistent bit as-
signments, then Quc accepts. For example, if a® = b2 = 0, then clearly
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a” -U); =" au;=0forje[l,D]and (b" -V); = > by;; =0 for
€ [D* +1,2D*]. Thus, (a” - U); - (b" - V); = 0 for j € [1,2D*], and thus
a’ - U—-0)o(d" -V~ 0) 0.
Now, assume that a and b are inconsistent bit assignments, i.e., a*) # 0 and
b*) £ 0 for k € {1,2}. W.lo.g., let k = 1. Since RSp is the generator ma-
trix of the systematic Reed-Solomon code, the vectors a' - RSp and b' - RSp
have at least D > D*/2 non-zero coefficients among its first D* coefficients.
Thus, both >°7" | a;u;; and Y .-, b;v;; are non-zero for more than D*/2 dif-
ferent values j € [D*]. Hence, there exists a coefficient j € [D*], such that
(3o asuig) (S bivij) # 0. Thus, Que does not accept. 0
We chose a Reed-Solomon code since it is a maximum distance separable (MDS)
code and thus minimizes the number of columns in RSp. It also naturally mini-
mizes the degree of the wire checker. Moreover, RSp has D? non-zero elements.
Clearly (and this is the reason we use a systematic code), D? is also the smallest
support a generator matrix G of an [n = 2D — 1,k = D,d = D], code can
have, since every row of GG is a codeword and thus must have at least d non-zero
entries. Thus, G must have at least dD > D? non-zero entries, where the last
inequality is due to the singleton bound.

The (weak) wire checker of [15], while described by using a completely different
terminology, can be seen as implementing an overdefined version (with D* =
3D —2) of the construction from Def. 2l The linear-algebraic reinterpretation of
QSPs together with the introducing of coding-theoretic terminology allowed us
to better exposit the essence of wire checkers. It also allowed us to improve on
the efficiency, and prove the optimality of the new construction.

A wire checker with U = V = RSp satisfies the even stronger security re-
quirement that Eq. () holds iff either @ = 0 or b = 0. One may hope to pair
up literals corresponding to z,, in the U part and literals corresponding to Z, in
the V part. This is impossible in our application: when we aggregate the wire
checkers, we must use vectors labelled with both negative and positive literals in
the same part, U or V, and we cannot pair up columns from U and V' that have
different indices. (See Def. Bl) The construction of Def. ] allows one to do it,
though one has to use V' that is a dual of U according to the following definition.

For a labelling ¥, we define the dual labelling 1pqyal, such that qua(i) = xZ? iff
Y(i) = 2177 Let V' = Uqual be the same matrix as U, except that it has rows from
Y~1(z,) and ¥~ (z,) switched, for every n. To simplify the notation, we will not
mention the dual labelling 14,5 unless absolutely necessary, and we will assume
implicitly that (as it was in Def. ) always V = Ugyai. Now, [15] constructed a
weak wire checker that guarantees consistency if all individual gate checkers are
conscientious. The new wire checker is both more efficient and more secure.

(
j
(

6.3 Aggregate Wire Checker
Let @ = (0,0,U,V, ), with two m x d matrices U and V' = Ugyal, be a QSP. @ is
an aggregate wire checker (AWC) for circuit C, if Eq. () holds iff a,b € F™ are

consistent bit assignments in the following sense: for each n € [se] and k € {0, 1},
either a; = 0 for all i € ¥~ !(x )orb =0forallicy !(x )
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We construct the AWC by AND-composing wire checkers for the individual
wires. The AWC first resets all vectors u; and v; to 0, and precomputes RSp,
for all relevant values D, < 2(¢ + 1). After that, for every wire n, it sets the
entries in rows, labelled by either x, or Z,, and columns corresponding to wire
7, according to the nth wire checker.

We recall from Sect. that for the wire checker of some wire to work, the
vectors in U and V of this wire checker must have dual orderings. To keep
notation simple, we will not mention this in what follows.

Theorem 2. Let ¢ > 2. Assume that Cpng is the circuit, obtained by the
transformation described in Thm. [ (including the added dummy gates). For
1 € E(Cpnd), denote Dy =2D, — 1. Let d + ZD;‘; We obtain the AWC Qanc
by merging wire checkers for the individual wires n € E(Cpnd) as described above.

Proof. Let m be the size of the AWC (see Thm. B]). If a, b are consistent assign-
ments, then their restrictions to 1 ~1(z,) Ut ~1(z,) are consistent assignments
of the nth wire. For every n € E(Chnd), the nth wire checker guarantees that
(> asuig) (S bivij) = 0, for columns j corresponding to this wire, iff the bit
assignments of the nth wire are consistent. Thus, (7", a;ui;)(> i bivij) =0
for j € [1,d] iff the bit assignments of all wires are consistent. O

Theorem 3. Let ¢* :=1/(¢p — 1). Assume C implements f : {0,1}" — {0, 1},
and s = |C|. Then size(Qawc) < (6 + 4¢*)s — (2 + 80*)n — 4, sdim(Qawc) <
(12 4 8¢*)s — (6 4+ 16¢*)n — 8, sdeg(Qawc) < (9 + 6¢*)s — (4 + 12¢™)n — 6,
upp(Qawe) < (6 + 12((1+ )5+ (41— 26" ) — 1). If 6 = 3, then size(Quue) <
8s — 6n — 4, sdim(Qawec) < 165 — 14n — 8, sdeg(Qawc) < 125 — 10n — 6, and
supp(Qawc) < 725 — 68n — 36.

Clearly, other parameters but support are minimized when ¢ is large. If support
is not important, then one can dismiss the bounding fan-out step, and get size
2s, dimension 12s, and degree 9s.

Like in the case of wire checkers, [15] constructed a weak AWC that guaran-
tees the required “no double assignments” property only if the individual gate
checkers are conscientious. The new AWC does not have this restriction. The
size of the weak AWC from [I5] is 24s and the degree of it is 76s.

7 Circuit Checker

Next, we combine the aggregate gate and wire checkers into a circuit checker, that
can be seen as a reduction from CIRCUIT-SAT to QSP-SAT. Circuit checker was
called a canonical quadratic span program in [I5]. Since [I8] introduced canonical
span programs in a completely different context, we changed the terminology.
Let C be a circuit and let P¥ = (0,0,U%, V% ¢) be an AWC for Chppg.
Let P& = (ug,U®,0) be an AGC for Cpng. Let P§ | = (uo, V¥, 0qual) be the
corresponding dual span program. As before, V& = U§ | and V¥ = U}, and
o and ¢ are related as in Sect. Let mg = size(P") = size(P?) = size(P5 )
Assume that U"" = {uy,. .. u¥, } and U® = {uf,...,u8, } (and similarly,

VW= {v},...,oW } and V&) are ordered consistently (see Sect. 63).

) m
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Definition 3. For mg = size(P%), dg = sdim(P%) and d,, = sdim(P"), define
the circuit checker to be the QSP cA(C) = (ug,vo, U, V, 0), where

Uo Uo 14, Og,
U _ U8 Opmyxda, UY @)
Vo 1, w0 Og, | °
|4 Omgxdg Ve v
Here, U = (u1,...,%m) , V = Ujual = (V1, ..., Um) .

Recall that we denoted by c2q that computed the witness a of the AGC from
w. We also denote (a,b) < c2q(w), given that b is the dual of a.

Theorem 4. Let w € {0,1}%. C(w) =1 iff cA(C)(c2q(w)) = 1.

Proof. Clearly, ca(C)(a,b) = 1 iff P&, P} and P“ all accept with the same
witness (a,b): (i) (>in, a, fj —ug;)(0—1) =0 for j € [dg] iff D7, auf; = uo;
for j € [dg] iff Zznlaz = wo, (i) (0 — 1)(Zm bivf; — uo;) = 0 for j €
dg] iff Zlnlb Uzg = Uoj for J € [dg] iff Z:‘ilb U = 'U'Ov (iii) (Z:il aiu‘%) :
(Ot bivf) =0 for j € [dw].

Assume C(w) = 1. By the construction of P%, there exists a € F™, with
a; =0fori gyl st.a’ - Ut =wug. Let b+ a, then also b - V& = ug. Since
a and b are consistent bit assignments in the evaluation of C(w), P" accepts.

Second, assume that there exist (a, b), s.t. c4(C)(a,b) = 1. Since P" accepts,
there are no double assignments. That means, that for each 7, for some (possibly
non-unique) bit w, € {0,1} and all i € ¥~ (x,"), a; = 0. Dually, b; = 0 for all
i € ¢yl (zn) (w, clearly has to be the same in both cases). Since this holds for
every wire, there exists an assignment w of input values, s.t. for all i € ¢! and
7 & (Wgm)w, ai = bj = 0. Moreover, C(w) = 1. O

We will explain in the full version how the parameters of Q@ := ¢4 (C) influence
the efficiency of the CIRCcUIT-SAT NIZK argument. For example, the support of
Q affects the prover’s computation, while its degree d affects the CRS length but
also the prover’s computation and the security assumption. More precisely, the
prover’s computation of the non-adaptive NIZK argument is ©(supp(Q)+d-log d)
non-cryptographic operations and ©(d) cryptographic operations. One should
choose ¢ such that the prover’s computation will be minimal. This value depends
on the constants in @. For simplicity, we will consider the case ¢ = 3.

Theorem 5. Let s = |C] and Q := cA(Cona). Let ¢ be the fanout of Chpnd,
and ¢* = 1/(¢ — 1). Then sdeg(Q) < (17 + 10¢*)s — (6 + 20¢*)n — 6,
supp(Q) < (50 +8(3 + 6) +406")s + 2(—13 + 8H(3 + 26) — 406" )n — 8(1 + 62,
and size(Q) < size(P"Y) +size(P8) < 2(7+4¢*)s — (84 16¢*)n —4. If ¢ = 3, then
sdeg(Q) < 225—16n—6, size(Q) < 18s—16n—4, and supp(Q) < 2145+366n—128.

The degree of the circuit checker from [I5] is 130s and its size is 36s. Thus, even
when ¢ = 3, we have improved on their construction about 6 times degree-wise
and 2 times size-wise. The QSP-SAT witness (a, b) can be computed in linear
time O(s) by using the algorithm c2q.
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8 Two-Query Linear PCP for Circuit-SAT

In Thm. 4 we presented a reduction from CIRCUIT-SAT to QSP-SAT. That
is, we showed that if for some w, C(w) = 1, then one can efficiently construct a
witness (a, b) = c2q(w) such that c4(C)(a,b) = 1. In this section, we construct
a two-query non-adaptive linear PCP [2] for CirculT-SAT. In the rest of the
paper, we modify this to succinct three-query non-adaptive linear PCP, to a non-
adaptive linear interactive proof and finally to a non-adaptive non-interactive
zero knowledge argument. Here, non-adaptivity means that the query algorithm
(in the linear PCP and linear interactive proof) or the CRS generation algorithm
(in the NIZK argument) may depend on the statement C.

Let R = {(C,w)} be a binary relation, F be a finite field, Pipep be a determin-
istic prover algorithm and Vipep = (Qipep, Dipep), Where Qipep is a probabilistic
query algorithm and D)., is an oracle deterministic decision algorithm. The pair
(Pipcps Vipep) 18 a non-adaptive k-query linear PCP [2] for R over F with query
length m if it satisfies the following conditions.

Syntax: on any input C and oracle 7, the verifier Vi, works as follows.

Qipep(C) generates k queries qi,...,qx € F™ to w, and a state informa-
tion st. Given k oracle answers z; + (m,q1), ..., 2z < (m, qg), such that
z = (21, 2k), D (st;w) = Dipep(st, z; w) accepts or rejects.

Completeness: for every (C,w) € R, the output of Pipep(C, w) is a descrip-
tion of a linear function 7 : F™ — F such that Dff_ (st;w) accepts with
probability 1.

Knowledge: there exists a knowledge extractor Xjpcp, such that for every linear
function 7* : F™ — TF: if the probability that Vf;:p(C) accepts is at least ¢,

then /’\,’l"’)":p(C’) outputs w such that (C,w) € R.
(Pipeps Vipep) has degree (dg,dp), if Qipep (resp., Dipep) can be computed by an
arithmetic circuit of degree dg (resp., dp).

We remark that in the following non-adaptive linear PCP, Dy, does not

depend on w.

Theorem 6. Let F be a field, and let C' be a circuit with dummy gates. Let Plfc)p
and V& — (Q(Q) D

lpcp Ipcp? “lpcp

Q2 (C): Q + ca(0); m  size(Q); qu + (ui,0,)1; Go + (0, i)y

q < (Qu,qv); st < (uo,vo); return (q,st);

) be as follows:

P (Cow): Q + ea(C); (u, m0) = (a,b) < c2q(w); return m = (T, 70);
Dl(sc)p(st, (Zu, Z0); W)t if (24 — Ug) © (2 — Vo) = O then return 1 else return 0;
(Pl(pZC)p’ Vf;c)p) is a non-adaptive 2-query linear PCP for CIRCUIT-SAT with query

length 2md and knowledge error 0.

Proof. COMPLETENESS: Clearly, zy < (,qu) = >oiv) Gilli, Zy + (7,qy) =
S bivs. Thus, 2 —uo =a' -U —ug and 2, —vo = b' -V — vp, and the
circuit checker accepts.

. 2
KNOWLEDGE PROPERTY: Due to the construction of Ql(pc)p, Zu = Z;ll a; U4,

and z, = Yo b, If lec)p accepts, then by Thm. @], the wire checker implies
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that no wire 1 gets a double assignment. However, it may be the case that some
wire has no assignment. Nevertheless, on input (st,C') and access to the oracle
m*, we will now extract a CIRCUIT-SAT witness w = (wy);, (i.e., the vector
of wire values) such that C(w) = 1.

First, the extractor obtains the whole linear function 7* = (a, b), by querying
the oracle w* up to 2m times. We deduce w from 7* as follows.

Let n be any wire of the circuit C. Since the wire checker accepts, the gate
checkers of its neighbouring gates do not assign multiple values to the wire 7.
There are two different cases.

If 5 is an input wire to the circuit, then its output gate ¢ is a conscientious
dummy gate. Therefore, the value w,, can be extracted from the local values of
a; corresponding to the gate ¢.

Assume that 7 is an internal wire. Since all gates implement functions with
well-defined outputs, the gate checker of the input gate of n assigns some value
wy to this wire. Moreover, every output gate ¢ of 7 either assigns the same value
wy, or does not assign any value. In the latter case, the output value of ¢ does not
depend on w,,, and thus assigning w, to 1 is consistent with the output value
of «. Therefore, also here the value w, can be extracted, but this time from the
local values of a; and b; corresponding to the input gate of 7. O

A simple corollary of this theorem is that the algorithm c2q is efficiently invert-
ible. Thus, the constructed NP-reduction from CIRCUIT-SAT to QSP-SAT
preserves knowledge (i.e., it is a Levin reduction).

Note that the communication and computation can be optimized by defining
Qu < (W)™, v < (v;)12,, and computing say 2z, < (Tu, Qu)-

9 Succinct 3-Query Linear PCP from Polynomial QSPs

Since we are interested in succinct arguments, we need to be able to compress the
witness vectors @ and b. As in [15], we will do it by using polynomial interpolation
to define polynomial QSPs. We employ the Schwartz-Zippel lemma to show that
the resulting succinct 3-query linear PCP has the knowledge property.

9.1 Polynomial Span Programs and QSPs

Instead of considering the target and row vectors of a span program or a QSP as
being members of the vector space F?, interpret them as degree-(d — 1) polyno-
mials in F[X]. The map w — 4(X) is implemented by choosing d different field
elements (that are the same for all vectors u) r; <— F, and then defining a degree-
(< d—1) polynomial 4(X) via polynomial interpolation, so that @(r;) = u; for
all j € [d]. This maps the vectors u; of the original span program P to poly-
nomials @;(X), and the target vector ug to the polynomial y(X). Finally, let
Z(X):= H;.lzl(X — r;); this polynomial can be thought of as a mapping of the
all-zero vector 0 = (0,...,0).

The choice of r; influences efficiency. If r; are arbitrary, then multipoint eval-
uation and polynomial interpolation take time O(dlog2 d) [12]. If d is a power of
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2andr; = wé, where wy is the dth primitive root of unity, then both operations
can be done in time O(dlogd) by using Fast Fourier Transform [I2]. In what
follows, d and r; are chosen as in the current paragraph.

Clearly, uo is in the span of the vectors that belong to g, iff ug =
ZzEg;l a;u; for some a; € F. The latter is equivalent to the requirement
that Z(X) divides 4(X) := Zzeg—l a;1;(X) — 1uo(X). Really, ug is the vec-
tor of evaluations of @(X), and wu; is the vector of evaluations of @;(X). Thus,
daju; —ug = 0iff > a;4,(X) — Go(X) evaluates to 0 at all r;, and hence is
divisible by Z(X).

A polynomial span program P = (g, U, p) over a field F consists of a target
polynomial 4o(X) € F[X], a tuple U = (4;(X))", of polynomials from F[X],
and a labelling o : [m] — {z,,Z, : + € [n]} U{L} of the polynomials from U. Let
Uy be the subset of U consisting of those polynomials whose labels are satisfied
by the assignment w € {0,1}", that is, by {z¥ : ¢ € [n]} U{L}. The span
program P computes a function f, if for all w € {0,1}": there exists a € F™
such that Z(X) | (40(X) + 3 ,ep, ait(X)) (P accepts) iff f(w) =1

Alternatively, P accepts w € {0,1}" iff there exists a vector a € F™, with
a; =0foralli & o', s.t. Z(X) | Yo%, a;0;(X) — do(X). The size of P is m and
the degree of P is deg Z(X).

1

Definition 4. A polynomial QSP Q = (dg,00,U,V,0) over a field F con-
sists of target polynomials 1o(X) € TF[X] and 9(X) € F[X], two tuples
U = (;(X), and V = (0;(X))™, of polynomials from F[X], and a la-
belling o0 : [m] — {x,,Z, : v € [n]} U{L}. @ accepts an input w € {0,1}"
iff there exist two vectors a and b from F™, with a; = 0 = b; for all i € o',
st Z(X) | (X, aii (X) — ao(X)) (O, biti(X) — 9o(X)). Q computes a
Boolean function f:{0,1}"™ — {0,1} if Q accepts w iff f(w) =1

The size of @ is m and the degree of @ is deg Z(X). Keeping in mind the
reinterpretation of span programs, Def. [ is clearly equivalent to Def. [l (Also
here, V' = Ugyal, with the dual operation defined appropriately.)

To get from the linear-algebraic interpretation to polynomial interpretation,
one has to do the following. Assume that the dimension of the QSP is d and that
the size is m. Let rj < w’, j € [d]. For i € [m], interpolate the polynomial @;(X)
(resp., 0;(X)) from the values @;(r;) = w;; (resp., ¥;(rj) = v;j) for j € [d]. Set
Z(X) = H?ZI(X — ;). The labelling v is left unchanged. It is clear that the
resulting polynomial QSP (g, 0o, U, V, 1) computes the same Boolean function
as the original QSP.

The polynomial circuit checker c%Oly(C’) = (o, 00, U,V ), with U =
(tg, - .., Um) and V = (0o, ..., 0m ), is the polynomial version of c4(C).

Theorem 7. Let w € {0,1}". C(w) =1 iff & (C)(c2q(w)) = 1.

Proof. Follows from Thm. ] and the construction of polynomial QSPs. O
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9.2 Succinct Three-Query Linear PCP

To achieve better efficiency, following [2], we define a 3-query linear PCP with
|z| = ©(1) that is based on the polynomial QSPs. For a set P of polynomials, let
span(P) be their span (i.e., the set of F-linear combinations). Then, w is in the
span of vectors u;, w = > " | a;u4, iff the corresponding interpolated polynomial
@(X) is in the span of polynomials @;(X), i.e., 4(X) = > iv, a;0;(X).

Let F be any field. We recall that according to the Schwartz-Zippel lemma,
for any nonzero polynomial f : F"™ — F of total degree d and any finite subset
S of F, Prggm[f(x) = 0] < d/|5].

Theorem 8. Let F be a field, and C a circuit with dummy gates. Let Plpcp and
,pcp (Ql(s’c)p,Dlpcp) be as follows. Here, PolyInt is polynomial interpolation.

o® (¢ (C): Q + ca(C); m +size(Q); d + sdeg(Q); For i< 1 tod do: r; + w;

Ipcp

0« F; Compute (0')i2y: Z(0) + H?ZI(U rj); Compute (ii(0))io,
(0i(0))iZo; st < (Z(0),t0(0),00(0)); Gu <= (((Uz( ))it1:0m,04); qv <
Eom’)(@i(a));zlaod) an — (0,0, ()0 ¢ — (qu,qu,qn); return
q,st

Pl(pgc)p(c w): Compute (Q,m, (r;);) as in Qfsc)p(C’); (a,b) + c2q(w); ul «
wo + Yo aiug; 4T(X) Polylnt((n—,uz)?zl)' vl wo + 3 vy
v*(X)ePolylnt«wJ)f:l); 2(X) 4= [Ty (X —ro); h(X) = S5 hiX'
’U,T(X) ( )/Z( ) c Fd—Z; return w = (Tru’ﬂ',u’ﬂ'h) — (a’b’ h) c ]F2m+d7

Dl(pc)p(St (Zus 2o, 2n); w): if (20 — U0(0)) - (20 — V0(0)) = Z(0) - 21, then return 1
else return 0;

(Pl(;)i)p’ p&) ) is a non-adaptive 3-query linear PCP over F for CIRCUIT-SAT with

Ipcp
query length 2m + d and knowledge error 2d/|F|.

Proof. COMPLETENESS: again straightforward, since z, = 1y, (0) < (7, qu) =
POy ciiﬁi(a), 2y = 0(0) < (T,qv) = > vy bii(0), and 2z, = h(0) < (7, qn) =
Zfz_ol hio!. KNOWLEDGE: assume that the verifier accepts with probability
e > 2d/|F|. That is, Pror[(> 0 aitis(0) — Go(0))(Xit, aiti(o) — to(0)) =
Z(o) - (Zf;ol hio")] = €. Due to the Schwartz-Zippel lemma, since & > 2d/|F|,
(7 aidts(X) — it (X)) (X0 asti(X) —0(X)) = Z(X)-(Sizg hiX"), and due
to the equivalence between QSPs and polynomial QSPs, Eq. () holds. The claim
now follows from Thm. [Gl 0

runs in time ©(dlogd), 0¥ runs

Ipcp Ipcp
1s dominated by 2 F-additions and by 2

Theorem 9. Assume d is a power 0f2 P
in time O(dlogd), and the time of Dlpcp
F-multiplications. Vl( ) has degree (d,2).

A similar result was proven in [I5] (though without using the terminology of
linear PCPs) in the case of conscientious gate checkers. We only require the
dummy gates to be conscientious.

In [I5], it was only shown that iL(X ) can be computed by using multipoint
evaluation and polynomial interpolation in time 6(dlog2 d). Moreover, the com-
putation of D was ©(n) due to a different extraction technique.
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10 From Non-Adaptive Linear PCP to Adaptive NIZK

Given the 3-query linear PCP of Thm. [§] one can use the transformation [2] to
construct first a non-adaptive NIZK argument for CIRCUIT-SAT. See the full
version. The The non-adaptive NIZK argument can be made adaptive by using
universal circuits [25], see [15] for details.

We will provide more details in the full version [20]. There, we will also provide
a direct construction of the non-adaptive NIZK argument. The latter has a (quite
complex) soundness proof related to the soundness proof from [I5] that results
in the use of a weaker security assumption. Here, we state only the following
straightforward corollary of Thm. [ and the transformations from [2].

Theorem 10. Assume d is a power of 2. There exists a non-adaptive NIZK
CIRCUIT-SAT argument, s.t. the prover and the CRS generation take ©(dlog d)
cryptographic operations, the verification time is dominated by ©(1) pairings,
and the communication is a ©(1) group elements.
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Abstract. We construct new families of elliptic curves over F,. with
efficiently computable endomorphisms, which can be used to accelerate
elliptic curve-based cryptosystems in the same way as Gallant-Lambert—
Vanstone (GLV) and Galbraith-Lin-Scott (GLS) endomorphisms. Our
construction is based on reducing quadratic Q-curves (curves defined
over quadratic number fields, without complex multiplication, but with
isogenies to their Galois conjugates) modulo inert primes. As a first ap-
plication of the general theory we construct, for every prime p > 3, two
one-parameter families of elliptic curves over F,» equipped with endo-
morphisms that are faster than doubling. Like GLS (which appears as a
degenerate case of our construction), we offer the advantage over GLV
of selecting from a much wider range of curves, and thus finding secure
group orders when p is fixed. Unlike GLS, we also offer the possibility of
constructing twist-secure curves. Among our examples are prime-order
curves over F,2, equipped with fast endomorphisms, and with almost-
prime-order twists, for the particularly efficient primes p = 2'27 — 1 and
p =225 _ 19,

Keywords: Elliptic curve cryptography, endomorphisms, GLV, GLS,
exponentiation, scalar multiplication, Q-curves.

1 Introduction

Let € be an elliptic curve over a finite field F,, and let G C E(F,) be a cyclic
subgroup of prime order N. When implementing cryptographic protocols in G,
the fundamental operation is scalar multiplication (or exponentiation):

Given P in G and m in Z, compute [m|P := P& --- & P.
~ ~ -~
m times

The literature on general scalar multiplication algorithms is vast, and we
will not explore it in detail here (see [10, §2.8,§11.2] and [5l Chapter 9] for
introductions to exponentiation and multiexponentiation algorithms). For our
purposes, it suffices to note that the dominant factor in scalar multiplication
time using conventional algorithms is the bitlength of m. As a basic example,
if G is a generic cyclic abelian group, then we may compute [m|P using a variant

K. Sako and P. Sarkar (Eds.) ASTACRYPT 2013 Part I, LNCS 8269, pp. 61-[/8] 2013.
© International Association for Cryptologic Research 2013



62 B. Smith

of the binary method, which requires at most [log, m] doublings and (in the
worst case) about as many addings in G.

But elliptic curves are not generic groups: they have a rich and concrete ge-
ometric structure, which should be exploited for fun and profit. For example,
endomorphisms of elliptic curves may be used to accelerate generic scalar mul-
tiplication algorithms, and thus to accelerate basic operations in curve-based
cryptosystems.

Suppose € is equipped with an efficient endomorphism 1, defined over IF,. By
efficient, we mean that we can compute the image ¢(P) of any point P in £(F,)
for the cost of O(1) operations in IF,. In practice, we want this to cost no more
than a few doublings in E(Fy).

Assume 9(G) C G, or equivalently, that ¢ restricts to an endomorphism of G
Now G is a finite cyclic group, isomorphic to Z/NZ; and every endomorphism
of Z/NZ is just an integer multiplication modulo N. Hence, v acts on G as
multiplication by some integer eigenvalue Ay: that is,

Ylg = [Aylg -

The eigenvalue Ay is a root of the characteristic polynomial of ¢ in Z/NZ.
Returning to the problem of scalar multiplication: we want to compute [m]P.
Rewriting m as
m=a+bly (modN)

for some a and b, we can compute [m]P using the relation
[mIP = [a]P + BAIP = [a]P + [pl(P)

and a two-dimensional multiexponentation such as Straus’s algorithm [28], which
has a loop length of log, ||(a, b) ||« (ie, log, ||(a,b)||cc doubles and as many adds;
recall that ||(a,b)|lcc = max(|al,|b])). If Ay is not too small, then we can easily
find (a,b) such that log, ||(a, b)|| e is roughly half of log, N. (We remove the “If”
and the “roughly” for our ¢ in §l) The endomorphism lets us replace conven-
tional log, N-bit scalar multiplications with ; log, N-bit multiexponentiations.
In terms of basic binary methods, we are halving the loop length, cutting the
number of doublings in half.

Of course, in practice we are not halving the execution time. The precise
speedup ratio depends on a variety of factors, including the choice of exponenti-
ation and multiexponentiation algorithms, the cost of computing 1, the shortness
of @ and b on the average, and the cost of doublings and addings in terms of
bit operations—to say nothing of the cryptographic protocol, which may pro-
hibit some other conventional speedups. For example: in [I1], Galbraith, Lin,

! This assumption is satisfied almost by default in the context of classical discrete log-
based cryptosystems. If 1/(G) € G, then E[N](Fq) = G + ¥(G) = (Z/NZ)?, so N? |
#E(Fq) and N | ¢ — 1; such £ are cryptographically inefficient, and discrete logs in
G are vulnerable to the Menezes—Okamoto—Vanstone reduction [2I]. However, these
G do arise naturally in pairing-based cryptography; in that context the assumption
should be verified carefully.
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and Scott report experiments where cryptographic operations on GLS curves re-
quired between 70% and 83% of the time required for the previous best practice
curves—with the variation depending on the architecture, the underyling point
arithmetic, and the protocol.

To put this technique into practice, we need a source of cryptographic elliptic
curves equipped with efficient endomorphisms. To date, in the large character-
istic cas%, there have been essentially only two constructions:

1. The classic Gallant-Lambert-Vanstone (GLV) construction [12]. Here, ellip-
tic curves over number fields with explicit complex multiplication (CM) by
CM-orders with small discriminants are reduced modulo suitable primes p;
an explicit endomorphism on the CM curve reduces to an efficient endomor-
phism over the finite field.

2. The more recent Galbraith-Lin-Scott (GLS) construction [11]. Here, curves
over IF;, are viewed over IF2; the p-power sub-Frobenius induces an extremely
efficient endomorphism on the quadratic twist (which can have prime order).

These constructions have since been combined to give 3- and 4-dimensional vari-
ants [I8I32], and extended to hyperelliptic curves in a variety of ways [BIT7I26]29].
However, basic GLV and GLS remain the archetypal constructions.

Our contribution: new families of endomorphisms. In this work, we propose a
new source of elliptic curves over F,> with efficient endomorphisms: quadratic
Q-curves.

Definition 1. A quadratic Q-curve of degree d is an elliptic curve & without
CM, defined over a quadratic number field K, such that there exists an isogeny
of degree d from & to its Galois conjugate °E, where (o) = Gal(K/(@)E

Q-curves are well-established objects of interest in number theory, where they
formed a natural setting for generalizations of the Modularity Theorem. Ellen-
berg’s survey [8] gives an excellent introduction to this beautiful theory.
__ Our application of quadratic Q-curves is rather more prosaic: given a d-isogeny
& — ?& over a quadratic field, we reduce modulo an inert prime p to obtain an
isogeny & — 7€ over Fj 2. We then exploit the fact that the p-power Frobenius
isogeny maps ?€& back onto &£; composing with the reduced d-isogeny, we obtain
an endomorphism of £ of degree dp. For efficiency reasons, d must be small; it
turns out that for small values of d, we can write down one-parameter fami-
lies of Q-curves (our approach below was inspired by the explicit techniques of
Hasegawa [I5]). We thus obtain one-parameter families of elliptic curves over F 2
equipped with efficient non-integer endomorphisms. For these endomorphisms we
can give convenient explicit formulae for short scalar decompositions (see §)).
For concrete examples, we concentrate on the cases d = 2 and 3 (in §5l and §6|
respectively), where the endomorphism is more efficient than a single doubling

2 We are primarily interested in the large characteristic case, where ¢ = p or p?, so we
will not discuss 7-adic/Frobenius expansion-style techniques here.

3 The Galois conjugate °& is the curve formed by applying o to all of the coefficients
of the defining equation of &£; see §2}
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(we briefly discuss higher degrees in §IT]). For maximum generality and flexibility,
we define our curves in short Weierstrass form; but we include transformations
to Montgomery, twisted Edwards, and Doche—Icart—Kohel models where appro-
priate in g8l

Comparison with GLV. Like GLV, our method involves reducing curves defined
over number fields to obtain curves over finite fields with explicit CM. However,
we emphasise a profound difference: in our method, the curves over number fields
generally do not have CM themselves.

GLV curves are necessarily isolated examples—and the really useful examples
are extremely limited in number (see [I8, App. A] for a list of curves). The
scarcity of GLV curved] is their Achilles’ heel: as noted in [11], if p is fixed
then there is no guarantee that there will exist a GLV curve with prime (or
almost-prime) order over F,. Consider the situation discussed in [II), §1]: the
most efficient GLV curves have CM discriminants —3 and —4. If we are working
at a 128-bit security level, then the choice p = 22°° — 19 allows particularly fast
arithmetic in F,. But the largest prime factor of the order of a curve over F,
with CM discriminant —4 (resp. —3) has 239 (resp. 230) bits: using these curves
wastes 9 (resp. 13) potential bits of security. In fact, we are lucky with D = —3
and —4: for all of the other discriminants offering endomorphisms of degree at
most 3, we can do no better than a 95-bit prime factor, which represents a
catastrophic 80-bit loss of relative security.

In contrast, our construction yields true families of curves, covering ~ p iso-
morphism classes over [F,2. This gives us a vastly higher probability of finding
prime (or almost-prime)-order curves over practically important fields.

Comparison with GLS. Like GLS, we construct curves over )2 equipped with
an inseparable endomorphism. While these curves are not defined over the prime
field, the fact that the extension degree is only 2 means that Weil descent attacks
offer no advantage when solving DLP instances (see [IT], §9]). And like GLS, our
families offer around p distinct isomorphism classes of curves, making it easy to
find secure group orders when p is fixed.

But unlike GLS, our curves have j-invariants in IF,,2: they are not isomorphic to
or twists of subfield curves. This allows us to find twist-secure curves, which are
resistant to the Fouque-Lercier-Réal-Valette fault attack [9]. As we will see in
g9 our construction reduces to GLS in the degenerate case d = 1 (that is, where

4 The scarcity of useful GLV curves is easily explained: efficient separable endomor-
phisms have extremely small degree (so that the dense defining polynomials can be
evaluated quickly). But the degree of the endomorphism is the norm of the corre-
sponding element of the CM-order; and to have non-integers of very small norm,
the CM-order must have a tiny discriminant. Up to twists, the number of elliptic
curves with CM discriminant D is the Kronecker class number h(D), which is in
O(V/D). Of course, for the tiny values of D in question, the asymptotics of h(D)
are irrelevant; for the six D corresponding to endomorphisms of degree at most 3,
we have h(D) = 1, so there is only one j-invariant. For D = —4 (corresponding to
j = 1728) there are two or four twists over IF,; for D = —3 (corresponding to j = 0)
we have two or six, and otherwise we have only two. In particular, there are at most
18 distinct curves over ), with a non-integer endomorphism of degree at most 3.
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¢ is an isomorphism). Our construction is therefore a sort of generalized GLS—
though it is not the higher-degree generalization anticipated by Galbraith, Lin,
and Scott themselves, which composes the sub-Frobenius with a non-rational
separable isogeny and its dual isogeny (cf. [I1, Theorem 1]).

In §4 we prove that we can immediately obtain scalar decompositions of the
same bitlength as GLS for curves over the same fields: the decompositions pro-
duced by Proposition2lare identical to the GLS decompositions of [11] Lemma 2]
when d = 1, up to sign. For this reason, we do not provide extensive imple-
mentation details in this paper: while our endomorphisms cost a few more [Fy-
operations to evaluate than the GLS endomorphism, this evaluation is typically
carried out only once per scalar multiplication. This evaluation is the only dif-
ference between a GLS scalar multiplication and one of ours: the subsequent
multiexponentiations have exactly the same length as in GLS, and the underly-
ing curve and field arithmetic is the same, too.

2 Notation and Conventions

Throughout, we work over fields of characteristic not 2 or 3. Let
£ y2 = 2% 4+ a4z + ag

be an elliptic curve over such a field K.

Galois conjugates. For every automorphism o of K, we define the conjugate
curve

7€ 1 y* =2® + Tasx + ag.
If ¢ : £ — & is an isogeny, then we obtain a conjugate isogeny “¢ : 7€ — 7&;
by applying o to the defining equations of ¢, £, and &;.

Quadratic twists. For every A # 0 in K, we define a twisting isomorphism
S(N) & — &y = 2% + Magx + Nag
by
SN = (w,y) — (N2, \y) .
The twist £ is defined over K(A2?), and §(\) is defined over K()\)El
For every K-endomorphism 1 of £, there is a twisted K (A\?)-endomorphism
PN = SN

of EX. Observe that 6(\1)d(\2) = (A1 \g) for any Ay, Ao in K, and 6(—1) = [~1].
Also, 7(E) = (7€) for all automorphisms o of K.

If 1 is a nonsquare in K, then EV* is a quadratic twist of £. If K = Fy,
then EV#1 and EVH2 are F,-isomorphic for all nonsquares gy, po in F, (the
isomorphism &(+/p1/p2) is defined over F, because ji1/p2 must be a square).

® Throughout, conjugates are marked by left-superscripts, twists by right-superscripts.
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When the choice of nonsquare is not important, £ denotes the quadratic twist.
Similarly, if ¢ is an Fg-endomorphism of &, then 1’ denotes the corresponding
twisted Fy-endomorphism of £’.

The trace. 1f K = Iy, then m¢ denotes the g-power Frobenius endomorphism
of £. Recall that the characteristic polynomial of ¢ has the form

xe(T) =T? —tr(E)T + q, with Itr(€)| < 2v/q .

The trace tr(€) of &€ satisfies #E(Fy) = ¢+ 1 — tr(€) and tr(&’') = —tr(E).

p-th powering. We write (p) for the p-th powering automorphism of F,. Note
that (p) is almost trivial to compute on F,2: = F,(v/A), because P (a + by/A) =
a—bVA for all a and b in F,,.

3 Quadratic Q-curves and Their Reductions

Suppose 5/(@(\/A) is a quadratic Q-curve of prime degree d (as in Definition [I),
where A is a discriminant prime to d, and let qS E = 9E be the corresponding
d-isogeny. In general, ¢ is only defined over a quadratic extension Q(\/ A,v) of

Q(v/4). We can compute v from A and kerg using [I3} Proposition 3.1], but
after a suitable twist we can always reduce to the case where v = v/%d (see [13|
remark after Lemma 3.2]). The families of explicit Q-curves of degree d that
we treat below have their isogenies defined over Q(v/A,v/—d); so to simplify
matters, from now on we will

Assume (Z is defined over (@(\/A7 V—d).

Let p be a prime of good reduction for £ that is inert in Q(\/A) and prime to
d. If O, is the ring of integers of Q(v/A), then

F,o = 04/(p) = F,(V4) .
Looking at the Galois groups of our fields, we have a series of injections
(1) = Gal(F,(VA)/Fy) < Gal(Q(V4)/Q) = Gal(Q(VA, V~d)/Q) .

The image of (p) in Gal(Q(v/A)/Q) is &, because p is inert in Q(v/A). When
extending ¢ to an automorphism of (@(\/A7 v/—d), we extend it to be the image
of (p): that is,

o (a + VA + 4V —d + 5\/fdA> = a—BVA+(—d/p) (W—d _ 5\/—dA) (1)

for all a, 8,7, and § € Q. (Recall that the Legendre symbol (n/p) islifnisa
square mod p, —1 if n is not a square mod p, and 0 if p divides n.)

Now let £/F,2 be the reduction modulo p of &. The curve 7€ reduces to ®)€,
while the d-isogeny ¢ : € = 7€ reduces to a d-i isogeny ¢ : € — P)E over Fp2
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Applying o to 5, we obtain a second d-isogeny "5 S E travelling in the
opposite direction, which reduces mod p to a conjugate isogeny (p)(b (p)é’ - &
over [F2. Composing "(b with ¢ yields endomorphlsms ¢ o ¢ of £ and (b ) ‘7¢

of ”5, each of degree d?. But (by definition) € and °€ do not have CM, so all
of their endomorphisms are integer multiplications; and since the only integer
multiplications of degree d? are [d] and [—d], we conclude that

hod= [epd]z  and $o’d= lepd],g , where ¢, € {£1} .

Technically, "5 and )¢ are—up to sign—the dual isogenies of $ and ¢, respec-
tively. The sign €, depends on p (as well as on ¢): if 7 is the extension of o

0 Q(vA,+v/—d) that is not the image of (p), then Tgo (Z = [~€pd]z. Reducing
modulo p, we see that

Plpod= [epdle and ¢o (p)(b = [epd] e -
The map (z,y) — (aP,y?) defines p-isogenies
m0:PWE—E and @y & — Vg,

Clearly, ®)mgomg (resp. mpo (P)7g) is the p2-power Frobenius endomorphism of £
(resp. (P)E). Composing 7y with ¢ yields a degree-pd endomorphism

Y :=mgo¢p € End(€) .

If d is very small—say, less than 10—then v is efficient because ¢ is defined by
polynomials of degree about d, and 7y acts as a simple conjugation on coordinates
in Fp2, as in Eq. (). (The efficiency of ¢ depends primarily on its separable
degree, d, and not on the inseparable part p.)

We also obtain an endomorphism 1)’ on the quadratic twist £ of £. Indeed,
if & = EVF, then ¢/ = V¥, and ¢’ is defined over F .

Proposition 1. With the notation above:
V? = [epd]me and (Y)? = [—epd]mer.
There exists an integer v satisfying dr? = 2p + e,tr(£) such that
Y = ! (e + €epp) and ¢ = "1 (me — ep).
The characteristic polynomial of both v and v’ is
Py(T) = Py (T) =T? — e,rdT + dp .
Proof. Clearly mgo0¢ = ®¢o @ ry so

2 = modmod = W0¢(p)¢(p)ﬂo = mol€pd] Py = [Epd]’fro(p)’ﬂ'() = [epd]Te .
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Choosing a nonsquare p in Fp2, so & = EVH and ¢/ = ¢V*, we find

1 1 1 _1
(W) = 8(n2)*5 (= 2) = (n2)lepdlmed(u™2)
= (a3 ) e dimer = 6(—D)lepdimer = [—epd]mer
Using 72 — tr(E)me + p? = 0 and 72, + tr(E)mer + p? = 0, we verify that the
expressions for ¢ and ¢’ give the two square roots of €,dng in Q(rwg), and —epdmes
in Q(7g), and that the claimed characteristic polynomial is satisfied. O

Now we just need a source of quadratic Q-curves of small degree. Elkies [7] shows
that all Q-curves correspond to rational points on certain modular curves: Let
X*(d) be the quotient of the modular curve Xo(d) by all of its Atkin—Lehner
involutions, let K be a quadratic field, and let o be the involution of K over Q.
If e is a point in X*(d)(Q) and E is a preimage of e in Xo(d)(K) \ Xo(d)(Q),
then E parametrizes (up to Q-isomorphism) a d-isogeny 5 1€ 7€ over K.

Luckily enough, for very small d, the curves Xo(d) and X*(d) have genus
zero—so not only do we get plenty of rational points on X*(d), we get a whole
one-parameter family of Q-curves of degree d. Hasegawa gives explicit universal
curves for d = 2, 3, and 7 in [I5], Theorem 2.2]: for each squarefree integer A # 1,
every Q-curve of degree d = 2,3,7 over (@(\/ A) is Q-isomorphic to a rational
specialization of one of these families. Hasegawa’s curves for d = 2 and 3 (52 Ays
in 8] and 53 A,s in g0 suffice not only to illustrate our ideas, but also to give
useful practical examples.

4 Short Scalar Decompositions

Before moving on to concrete constructions, we will show that the endomor-
phisms developed in §3 yield short scalar decompositions. Proposition 2] below
gives explicit formulee for producing decompositions of at most [log, p] bits.
Suppose G is a cyclic subgroup of £(F,2) such that ¥/(G) = G; let N = #G.
Proposition [1 shows that ¢ acts as a square root of €,d on G: its eigenvalue is

Ao =(1+ep)/r (mod N) | (2)
We want to compute a decomposition
m=a+bly (mod N)
so as to efficiently compute
mlP = [alP + [pAIP = [alP + [Bl(P) .

The decomposition of m is not unique: far from it. The set of all decomposi-
tions (a,b) of m is the coset (m,0) 4+ L, where

L :=((N,0),(=\y, 1)) C Z?
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is the lattice of decompositions of 0 (that is, of (a,b) such that a + bAy = 0
(mod N)).

We want to find a decomposition where a and b have minimal bitlength: that
is, where [log, ||(a,b)]|oo| is as small as possible. The standard technique is to
(pre)-compute a short basis of £, then use Babai rounding [1] to transform each
scalar m into a short decomposition (a,b). The following lemma outlines this
process; for further detail and analysis, see [12], §4] and [10] §18.2].

Lemma 1. Let eq, ey be linearly independent vectors in L. Let m be an integer,
and set

(a,b) :== (m,0) — |aler — | flez ,

where (v, B) is the (unique) solution in Q2 to the linear system (m,0) = ae; +
Bes. Then

m=a+ b (mod N) and (@, b)]| oo < max (||e1]oos |l€2]l00) -
Proof. This is just [I2, Lemma 2] (under the infinity norm). O

We see that better decompositions of m correspond to shorter bases for £. If | Ay |
is not unusually small, then we can compute a basis for £ of size O(v/N) using
the Gauss reduction or Euclidean algorithms (cf. [12] §4] and [10), §17.1.1])E The
basis depends only on N and Ay, so it can be precomputed.

In our case, lattice reduction is unnecessary: we can immediately write down
two linearly independent vectors in £ that are “short enough”, and thus give
explicit formulae for (a,b) in terms of m. These decompositions have length
[log, p], which is near-optimal in cryptographic contexts: if N ~ #&(F,z2) ~ p?,
then logy p ~ é logy N.

Proposition 2. With the notation above: given an integer m, let

a=m— Lm(l + epp)/#g(]sz)] (14 €pp) + [mr/#g(]sz)] epdr and
b= Lm(l + epp)/#é‘(]sz)]r — Lmr/#é‘(]sz)] (14 €pp) -

Then, assuming d < p and m Z0 (mod N), we have
m=a-+bly (modN) and [logs |[(a,b)]|eo] < [logy p] -

Proof. Eq. @) yields rAy =14 ¢,p (mod N) and repd = (14 €pp) Ay (mod N),
so e1 = (14¢€pp, —7) and ex = (—¢pdr, 1+¢pp) are in L (they generate a sublattice
of determinant #&(F2)). Applying Lemma [l with a = m(1 +¢€pp)/#E(F)2) and
B = mr/#E(F,2), we see that m = a + bAy (mod N) and ||(a,b)|« < [l€2] oo-
But d|r| < 2y/dp (since [tr(€)| < 2p) and d < p, s0 ||€z2]lc = p + €. The result
follows on taking logs, and noting that [log,(p + 1)] < [log, p] (since p > 3). O

% General bounds on the constant hidden by the O(-) are derived in [26], but they are
suboptimal for our endomorphisms in cryptographic contexts, where Proposition
gives better results.
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5 Endomorphisms from Quadratic Q-curves of Degree 2

Let A be a squarefree integer. Hasegawa defines a one-parameter family of elliptic
curves over Q(v/A) by

Erns iy’ =a%—6(5—3sVA)z+8(7— 9svV/A) (3)

where s is a free parameter taking values in Q [I5, Theorem 2.2]. The discrimi-
nant of EQ’A’S is 29.35(1—s24)(1 +5\/A), SO 52,4’5 has good reduction at every
p > 3 with (A/p) = —1, for every s in Q.

The curve gg’ A,s has a rational 2-torsion point (4,0), which generates the
kernel of a 2-isogeny 52’4,5 : EQ’A’S — UgQ’A’S defined over Q(\/A, V=2). We
construct 52, A,s explicitly: Vélu’s formulae [30] define the (normalized) quotient
527@3 — 52,@3/((4,0)), and then the isomorphism 527478/«4,0)) — 0527A73
is the quadratic twist §(1/v/—2). Composing, we obtain an expression for the
isogeny as a rational map:

—z 9(1+sV/A) gy (-1 9(1+5\/A)>>.

b2,a,t  (2,y) —> ( 2 z-4 -2\ 2 (x — 4)2

Conjugating and composing, we see that U@,A’t&ﬁg,m =[2]if o(v/—2) = —v/—2,

and (2] if o(v/~2) = v/~2: that is, the sign function for ¢, is
+1 if p=5,7 (mod38),
€p (—2/p) {_1 if p=1,3 (mod38). W

Theorem 1. Let p > 3 be a prime, and define €, as in Eq. {@l). Let A be a
nonsquard] in Fp, so F,2 =F,(vVA). For each s in F,,, let

Cy.a(s) := 9(1 + sV A)
and let E3 4,5 be the elliptic curve over Fp. defined by
Eans y? =23+ 2(Ca,a(s) —24)x — 8(Co,a(s) — 16) .
Then &3 A5 has an efficient Fp2-endomorphism of degree 2p defined by

—aP Coa(s)? P (—1 n C2,A($)p>) ,

wQ,A,s : (xay) — < 2 TP — 4 ’ \/_2 2 (.’I,‘p — 4)2

and there exists an integer v satisfying 2r? = 2p + eptr(Ea,a.s) such that

1
Z/JQ,A,S = r (7r€2,A‘s + 617p) and wS,A,s = [EPQ]T‘-&‘A,S .

" The choice of A is (theoretically) irrelevant, since all quadratic extensions of F, are
isomorphic. If A and A’ are two nonsquares in F,, then A/A’ = a? for some a in Fp,
so E2,4,t and & ar 4+ are identical. We are therefore free to choose any practically
convenient value for A, such as one permitting faster arithmetic in Fp(v/A).
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The twisted endomorphism Y 5 . on E} 5 . satisfies Yy o o = (e, . — epp)
and (5 a )* = [—€ep2]me; , . The characteristic polynomial of o A5 and 1y 5
is Py as(T) =T? — eyrT + 2p.

Proof. Reduce 52’4,5 and 52’4,5 mod p and compose with mg as in §3l then apply
Proposition [[] using Eq. (@). O

If G C &,4,5(F)2) is a cyclic subgroup of order N such that ¥ A s(G) = G,
then the eigenvalue of ¢ A s on G is

1
A2, A5 = - (14 ¢pp) = :I:\/ep2 (mod N) .

Applying Proposition[2] we can decompose scalar multiplications in G as [m|P =
[a] P + [b]Y2,4,s(P) where a and b have at most [log, p| bits.

Proposition 3. Theorem/[d yields at least p—3 non-isomorphic curves over I
(and at least 2p — 6 non-IF,2-isomorphic curves, if we count the quadratic twists)
equipped with efficient endomorphisms.

Proof. Tt suffices to show that the j-invariant j(527A73) = P6B-3VAP okes

T (1—-s2A)(1+sVA)
at least p — 3 distinct values in F,2 as s ranges over F,,. If j(E2.4.5,) = j(€2,A,5,)
with s1 # sg2, then s1 and s satisfy Fp(s1,s2) — 2V AFy(s1,82) = 0, where
Fl(Sl,SQ) = (81 + 82)(63A8182 — 65) and Fo(Sl,SQ) = (A5152 + 1)(81A8182 —
175)+49A(s1+s2)? are polynomials over FF,,. If s; and sq are in FF,,, then we must
have Fy(s1,s2) = Fi(s1,52) = 0. Solving the simultaneous equations, discarding
the solutions that can never be in Fp,, and dividing by two (since (s1,s2) and
(s2,s1) represent the same collision) yields at most 3 collisions j(&2 45,) =
(&2 A.s,) With s1 # so in . O

We observe that &5 a5 = £2,4,—s, 50 we do not gain any more isomorphism
classes in Proposition B by including the codomain curves.

6 Endomorphisms from Quadratic Q-curves of Degree 3

Let A be a squarefree discriminant; Hasegawa defines a one-parameter family of
elliptic curves over Q(v/A) by

Eans vt =% —3(5+4sVA)x +2(252A + 145V A +11) (5)

where s is a free parameter taking values in Q. As for the curves in §5 the curve
537@3 has good reduction at every inert p > 3 for every s in Q.

The curve gg’ A,s has a subgroup of order 3 defined by the polynomial z — 3,
consisting of 0 and (3, £2(1 — sv/A)). Exactly as in §5, taking the Vélu quotient
and twisting by 1/\/73 yields an explicit 3-isogeny 53’4,5 : 53,4’5 — Ugg’A’S; its
sign function is

) [+ i p=2 (mod3),
6,,(3/]9){_1 if p=1 (mod3). ©)
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Theorem 2. Let p > 3 be a prime, and define €, as in Eq. [@l). Let A be a
nonsquard in F,, so Fp2 = F,(VA). For each s in F, let

C3.A(s) :=2(1+ sV A)
and let €3 4,5 be the elliptic curve over Fp» defined by
E3ns Yy’ =a— 3(2C3,A(s) + 1)x + (03’4(3)2 +10C5 A(s) — 2) .

Then &E3,A,s has an efficient Fpz2-endomorphism 3 A s of degree 3p, mapping
(2,y) to

_aP AC3A(s)P 4C5 A(s)?P  yP (=1  4C3 A(s)P . 8C5.A(5)%P
3 P —3 3(zP —3)27 /-3 \ 3 (zp —3)2  3(ap — 3)3 ’

and there exists an integer v satisfying 3r? = 2p + eytr(E3, a.s) such that

1
1/J§,A,s = [GPS]W?:&A‘S and 1/J37A,S = r (7T + Gpp) .
The twisted endomorphism 5 5 , on & A o satisfies (1/137&3)2 = [76p3]ﬂgé,A,s
and Py A = (—T(gé L. T ep)/r. Both Y3 a5 and Y3 A, have characteristic

polynomial Py A s(T) =T? — ;7T + 3p.

Proof. Reduce 53’4,5 and ggg’A’S mod p, compose with g as in §3] and apply
Proposition [[] using Eq. (@)). O

Proposition 4. Theorem[2 yields at least p—8 non-isomorphic curves over F 2
(and counting quadratic twists, at least 2p — 16 non-F,2-isomorphic curves)
equipped with efficient endomorphisms.

Proof. The proof is exactly as for Proposition [3l O

7 Cryptographic-Sized Curves

We will now exhibit some curves with cryptographic parameter sizes, and se-
cure and twist-secure group orders. We computed the curve orders below using
Magma’s implementation of the Schoof-Elkies—Atkin algorithm [25]19//4].

First consider the degree-2 curves of §5l By definition, & a s and its quadratic
twist & 4 , have points of order 2 over F2: they generate the kernels of our
endomorphisms. If p = 2 (mod 3), then 2r* = 2p + ¢,tr(€) implies tr(€) #
0 (mod 3), so when p = 2 (mod 3) either p? — tr(€) + 1 = #&E A s(Fp2) or
p?+tr(E)+1= #E5 A s(Fp2) is divisible by 3. However, when p =1 (mod 3) we
can hope to find curves of order twice a prime whose twist also has order twice
a prime.

8 As in Theorem [ the particular value of A is theoretically irrelevant.
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Ezxample 1. Let p = 230 — 93 and A = 2. For s = 4556, we find a twist-secure
curve: #&2 2 4556(Fp2) = 2N and #E5 5 4556(Fp2) = 2N' where

N = 730750818665451459101729015265709251634505119843 and
N’ = 730750818665451459101730957248125446994932083047

are 159-bit primes. Proposition 2 lets us replace 160-bit scalar multiplications in
E2.2,4556(Fp2) and &3 5 4556 (Fp2) with 80-bit multiexponentiations.

Now consider the degree-3 curves of §6l The order of & A (Fp2) is always
divisible by 3: the kernel of 93 A , is generated by the rational point (3, Cs a(s)).
However, on the quadratic twist, the nontrivial points in the kernel of ’(/Jé’ A T€
not defined over 2 (they are conjugates), so &5 5 ((F2) can have prime order.
Ezample 2. Let p = 2127 —1; then A = —1 is a nonsquare in F,. The parameter
value s = 122912611041315220011572494331480107107 yields

#53,71’5(15‘1,2) =3-N and #gé7_173(]Fp2) = N/ s

where N is a 253-bit prime and N’ is a 254-bit prime. Using Proposition [2]
any scalar multiplication in & 1 s(Fj2) or & _; ((F,2) can be computed via a
127-bit multiexponentiation.

Example 3. Let p = 225

—19; then A = —2 is a nonsquare in F,. Taking
s = 52060937784593362700485649923279446947410945689208862015782690291692803003486

yields #&3 2 (Fy2) =3 - N and #&3 2 4(F,2) = N, where N and N’ are 509-
and 510-bit primes, respectively. Proposition [2] transforms any 510-bit scalar
multiplication in &3 2 s(Fp2) or & 4 ((F)2) into a 255-bit multiexponentiation.

8 Alternative Models: Montgomery, Twisted Edwards,
and Doche—Icart—Kohel

Montgomery models. The curve £ A, has a Montgomery model over [ if and
only if 2C5 A(s) is a square in Fp2 (by [22, Proposition 1]): in that case, setting

Bya(s):=/202.a(s)  and  Aga(s)=12/Bya(s) .

the birational mapping (z,y) — (X/Z,Y/Z) = ((x — 4)/Ba,a(s),y/Bz,a(s)?)
takes us from & A s to the projective Montgomery model

EXN S Boa(s)Y?Z = X (X? + Ao a($)XZ + Z7) . (7)

2,4(8) is not a square, then is F,,2-isomorphic to the quadratic twis
If 2C5, is not then £)1, | is Fpa-i hic to th dratic twist
&5 A.s-) These models offer a particularly efficient arithmetic, where we use only
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the X and Z coordinates [20]. The endomorphism is defined (on the X and Z
coordinates) by

Vons: (X :Z)— (X2 + Ay A(S)PXPZP + Z?P : —2Bs aA(s) P XPZP) .

Twisted Edwards models. Every Montgomery model corresponds to a twisted
Edwards model (and vice versa) [2/T6]. Let

az(s) = (Az,a(s) +2)/B2,a(s) and  da(s) = (A2,a(s) —2)/B2,a(s) ;
then with u = X/Z and v = Y/Z, the birational maps

u u—1

1+ a9 1+ 2o
v u+1

171’271'1(17$2)

()= v = (U0 1) L o) o ) =

take us between the Montgomery model of Eq. () and the twisted Edwards
model

55373 Dag(s)x? + 23 =14 dy(s)xiad .

Doche—Icart-Kohel models. Doubling-oriented Doche—Icart—Kohel models of el-
liptic curves are defined by equations of the form

y* = x(2* + Dz + 16D) .

These curves have a rational 2-isogeny ¢ with kernel ((0,0)), and ¢ and its dual
isogeny ¢ are both in a special form that allows us to double more quickly by
using the decomposition [2] = ¢T¢ (see [6, §3.1] for details).

Our curves & A s come equipped with a rational 2-isogeny, so it is natural to
try putting them in Doche-Icart—Kohel form. The isomorphism

a: (z,y) — (u,v) = (uQ(x + 4),,u3y) with  p= 4\/6/02’4(3)
takes us from & A s into a doubling-oriented Doche-Icart—Kohel model
eg?ljfs vt = (u2 + Do a(s)u+ 16D2,A(s)) ,

where Dy A(s) = 27/(1+sv/A). While 52%3 is defined over IF,2, the isomorphism

is only defined over Isz(\/l + sx/A); so if 1 + sv/A is not a square in F,2 then
SQIAK’S is [Fp2-isomorphic to & 4 .. The endomorphism ¢]23,IAI<,S = oo n sl s
F,-isomorphic to the Doche-Icart-Kohel isogeny (they have the same kernel).

Similarly, we can exploit the rational 3-isogeny on &3 o s for Doche-Icart—
Kohel tripling (see [6], §3.2]). Let az a(s) = 9/C3.a(s) and b3 a(s) = az a(s)~/?;
then the isomorphism (z,y) — (u,v) = (as,a(s)(x/3 —1),b3,4(s)%y) takes us
from &5 A s to the tripling-oriented Doche-Icart-Kohel model

5;52?5 cv? = u? + 3aza(s)(u+ 1) .
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9 Degree One: GLS as a Degenerate Case

Returning to the framework of 3l suppose & is a curve defined over Q and
base-extended to Q(\/ D): then € = °&, and we can apply the construction of §3]
taking qS £ — 9€ to be the identity map. Reducing modulo an inert prime p,
the endomorphism 1) is nothing but 7y (which is an endomorphism, since £ is
a subfield curve). We have ¢? = 2 = mg, so the eigenvalue of 1 is +1 on
cryptographic subgroups of £(FF,2). Clearly, this endomorphism is of no use to
us for scalar decompositions.

However, looking at the quadratic twist &', the twisted endomorphism ¢’
satisfies (1)')? = —me/; the eigenvalue of ¥’ on cryptographic subgroups is a
square root of —1. We have recovered the Galbraith—Lin—Scott endomorphism
(cf. [II, Theorem 2]).

More generally, suppose 5 1€ 9Eisa Q-isomorphism: that is, an isogeny
of degree 1. If £ does not have CM, then “¢ = 6p¢_1, S0 1/}2 = [ep|me with
€p = *1. This situation is 1somorph1(3 to GLS. In fact, Exog implies ](5)

J(°E) = 7§(€); s0 j(€) is in Q, and & is isomorphic to (or a quadratic twist of)
a curve defined over Q. We note that in the case d = 1, we have r = +ty in
Proposition [l where tg is the trace of mg, and the basis constructed in the proof
of Proposition [ is (up to sign) the same as the basis of [I1, Lemma 3].

While £'(FF,2) may have prime order, £(FF,2) cannot: the points fixed by o
form a subgroup of order p+1—tg, where tZ—2p = tr(€) (the complementary sub-
group, where 7y has eigenvalue —1, has order p+ 1+ tg). We see that the largest
prime divisor of #&(IF,2) can be no larger than O(p). If we are in a position to
apply the Fouque—Lercier—Réal-Valette fault attack [9]—for example, if Mont-
gomery ladders are used for scalar multiplication and multiexponentiation—then
we can solve DLP instances in £'(F,z2) in O(p!/?) group operations (in the worst
case!). While O(p'/?) is still exponentially difficult, it falls far short of the ideal
O(p) for general curves over Fj 2. GLS curves should therefore be avoided where
the fault attack can be put into practice.

10 CM Specializations

By definition, Q-curves do not have CM. However, some exceptional fibres of
the families 52 A,s and 53 A,s do have CM. There are only finitely many such
curves over any given Q(v/A); following Quer (|23, §5] and [24, §6]), we give
an exhaustive list of the corresponding parameter values in Tables [[] and 2l In
each table, if A is a squarefree discriminant and there exists s in Q such that
1/(s2A — 1) takes the first value in a column, then the curve £4.4,/Q(v/A) has
CM by the quadratic order of discriminant D specified by the second value.
Suppose we have chosen d, A, and s such that g, s is a CM-curve. If the dis-
criminant of the associated CM order is small, then we can compute an explicit
endomorphism of £; 4 s of small degree, which then yields an efficient endomor-
phism p (say) on the reduction 4, 4 s modulo p (as in the GLV construction). If
p is inert, then we also have the degree-dp endomorphism 1 constructed above.
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Table 1. CM specializations of &2 A s (cf. Quer [23} §5])

1/(s*A—1) 4 -9 48 —81 324 —2401 —9801 25920 777924 —96059601
D —-20 —24 -36 —40 =52 —-72 —-88 —100 —148 —232

Table 2. CM specializations of &3 4,5 (cf. Quer [24] §6])

1/(s*A—1) 1/4 —2 —27/2 16 —125/4 80 1024 3024 250000
D —15 —24 —48 —51  —60 —75 —123 —147 —267

Combinations of p and 1 may be used for four-dimensional scalar decomposi-
tions; for example, the endomorphisms [1], p, 1, p1) can be used as a basis for the
4-dimensional decomposition techniques elaborated by Longa and Sica in [I§].

In fact, reducing these CM fibres modulo a well-chosen p turns out to form a
simple alternative construction for some of the curves investigated by Guillevic
and Ionica in [I4]: the twisted curve 52\,/2,5 coincides with the curve E . of [14]
§2] when ¢ = sv/A, while €3 A  is the curve Es . of [I4, §2] when ¢ = —2sVA.
The almost-prime-order 254-bit curve of [I4, Example 1] corresponds to the
reduction modulo p of a twist of one of the curves in the column of Table [I]
with 1/(s2A — 1) = 4. This curve has an efficient CM endomorphism (a square
root of [—5]) as well as an endomorphism of degree 2p; these endomorphisms are
combined to compute short 4-dimensional scalar decompositions.

From the point of view of scalar multiplication, using CM fibres of these
families allows us to pass from 2-dimensional to 4-dimensional scalar decompo-
sitions, with a consequent speedup. However, in restricting to CM fibres we also
re-impose the chief drawback of GLV on ourselves: that is, as explained in the
introduction, we cannot hope to find secure (and twist-secure) curves over F 2
when p is fixed. In practice, this means that the 4-dimensional scalar decom-
position speedup comes at the cost of suboptimal field arithmetic; we pay for
shorter loop lengths with comparatively slower group operations.

We must therefore make a choice between 4-dimensional decompositions and
fast underlying field arithmetic. In this article we have chosen the latter option,
so we will not treat CM curves in depth here (we refer the reader to [14] instead).

11 Higher Degrees

We conclude with some brief remarks on Q-curves of other degrees. Hasegawa
provides a universal curve for d = 7 (and any A) in [I5, Theorem 2.2], and our
results for d = 2 and d = 3 carry over to d = 7 in an identical fashion, though
the endomorphism is slightly less efficient in this case (its defining polynomials
are sextic).
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For d = 5, Hasegawa notes that it is impossible to give a universal Q-curve for
every discriminant A: there exists a quadratic Q-curve of degree 5 over Q(v/A)
if and only if (B/pi) = 1 for every prime p; # 5 dividing A [I5 Proposition
2.3]. But this is no problem when reducing modulo p, if we are prepared to give
up total freedom in choosing A: we can take A = —11 for p = 1 (mod 4) and
A = —1for p=3 (mod 4), and then use the curves defined in [I5 Table 6]. The
generic curves here do not have rational torsion points; it is therefore possible
for the reductions and their twists to have prime order.

Composite degree Q-curves (such as d = 6 and 10) promise more interesting
results. Degrees greater than 10 yield less efficient endomorphisms, and so are
less interesting from a practical point of view.
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Abstract. The Gallant-Lambert-Vanstone (GLV) algorithm uses effi-
ciently computable endomorphisms to accelerate the computation of
scalar multiplication of points on an abelian variety. Freeman and Satoh
proposed for cryptographic use two families of genus 2 curves defined over
E, which have the property that the corresponding Jacobians are (2, 2)-
isogenous over an extension field to a product of elliptic curves defined
over 2. We exploit the relationship between the endomorphism rings
of isogenous abelian varieties to exhibit efficiently computable endomor-
phisms on both the genus 2 Jacobian and the elliptic curve. This leads
to a four-dimensional GLV method on Freeman and Satoh’s Jacobians
and on two new families of elliptic curves defined over Ep2.

Keywords: GLV method, elliptic curves, genus 2 curves, isogenies.

1 Introduction

The scalar multiplication of a point on a small dimension abelian variety is one of
the most important operations used in curve-based cryptography. Various tech-
niques were introduced to speed-up the scalar multiplication. Firstly there exist
exponent-recoding techniques such as sliding window and Non-Adjacent-Form
representation [7]. These techniques are valid for generic groups and improved
for elliptic curves as the inversion (or negation in additive notation) is free.

Secondly, in 2001, Gallant, Lambert and Vanstone [I1] introduced a method
which uses endomorphisms on the elliptic curve to decompose the scalar multi-
plication in a 2-dimensional multi-multiplication. Given an elliptic curve E over
a finite field F, with a fast endomorphism ¢ and a point P of large prime order
r such that ¢(P) = [A]P, the computation of [k]P is decomposed as

[P =[] P + [k2]o(P),

with k = k1 + Mk (mod 7) such that |k1], k2| =~ /7. Gallant et al. provided
examples of curves whose endomorphism ¢ is given by complex-multiplication
by v/—1 (j-invariant j = 1728), ~¥=3 (j = 0), /=2 (j = 8000) and '+~ 7
(j = —3375). In 2009 Galbraith, Lin and Scott [L0] presented a method to con-
struct an efficient endomorphism on elliptic curves E defined over F,> which are

K. Sako and P. Sarkar (Eds.) ASTACRYPT 2013 Part I, LNCS 8269, pp. 79-P6] 2013.
© International Association for Cryptologic Research 2013
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quadratic twists of elliptic curves defined over F,. In this case, a fast endomor-
phism ¢ is obtained by carefully exploiting the Frobenius endomorphism. This
endomorphism verifies the equation 12 + 1 = 0 when restricted to points defined
over F,2. In 2012, Longa and Sica improved the GLS construction, by showing
that a 4-dimensional decomposition of scalar multiplication is possible, on GLS
curves allowing efficient complex multiplication ¢. Let X, u denote the eigenval-
ues of the two endomorphisms ¢, 1. Then we can decompose the scalar k£ into
k=ko+ k1A + kop + ksAp and compute

(k1P = [ko] P + [k1]¢(P) + [k2]t(P) + [ks]¢ 0 (P).

Moreover, Longa and Sica provided an efficient algorithm to compute decompo-
sitions of k such that |k;| < Cr/4,i =1,...,4. Note that most curves presented
in the literature have particular j-invariants. GLV curves have j-invariant 0,
1728, 8000, or —3375, while GLS curves have j-invariant in F,, even though they
are defined over F.

In 2013, Bos, Costello, Hisil and Lauter proposed in [3] a 4-dimensional GLV
technique to speed-up scalar multiplication in genus 2. They considered the
Buhler-Koblitz genus 2 curves y2 = x®+b and the Furukawa-Kawazoe-Takahashi
curves y? = x° + ax. These two curves have a very efficient dimension-4 GLV
technique available.

In this paper we study GLV decompositions on two types of abelian varieties:

— Elliptic curves defined over F,2, with j-invariant defined over F,2.
— Jacobians of genus 2 curves defined over F,, which are isogenous over an
extension field to a product of elliptic curves defined over Fp.

First, we study a family of elliptic curves whose equation is of the form
Eyo(Bpe) : y? = 23+ 27(10 — 3c)z + 14 — 9c with ¢ € E2 \ E,, ¢? € F,. These
curves have an endomorphism @ satisfying #2 + 2 = 0 for points defined over
[E,>. Nevertheless, the complex multiplication discriminant of the curve is not
2, but of the form —D = —2D". The second family is given by elliptic curves
with equation of the form Es (Ey2) : y* = 2% + 3(2¢ — 5)z + ¢ + 14c + 22 with
c € E2 \ E,, ¢ € F,. We show that these curves have an endomorphism & such
that #? + 3 = 0 for points defined over F,2. The complex multiplication discrim-
inant of the curve Es . is of the form —D = —3D'. Our construction is a simple
and efficient way to exploit the existence of a p-power Frobenius endomorphism
on the Weil restriction of these curves. If the discriminant D is small, we propose
a 4-dimensional GLV algorithm for the E; . and E . families of curves. We use
Velu’s formulas to compute explicitly the endomorphisms on F; , and Es ..

At last, we study genus 2 curves whose equations are C; : Y2 = X°+aX3+bX
and Co : Y2 = X%+ aX3 + b, with a,b € F,. The Jacobians of these curves split
over an extension field in two isogenous elliptic curves. More precisely, the Ja-
cobian of C; is isogenous to Fy . x Ei . and the Jacobian of C; is isogenous to
Es> . x Ey .. These two Jacobians were proposed for use in cryptography by
Satoh [I§] and Freeman and Satoh [9], who showed that they are isogenous over
E, to the Weil restriction of a curve of the form E; . or E;.. This property is
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exploited to derive fast point counting algorithms and pairing-friendly construc-
tions. We investigate efficient scalar multiplication via the GLV technique on
Satoh and Freeman’s Jacobians. We give explicit formulae for the (2, 2)-isogeny
between the product of elliptic curves and the Jacobian of the genus 2 curve.
As a consequence, we derive a method to efficiently compute endomorphisms on
the Jacobians of C; and Cs.

This paper is organized as follows. In Section 2l we review the construction of
(2, 2)-isogenies between Jacobians of C; and Co and products of elliptic curves. In
Section [ and [ we give our construction of efficient endomorphisms on F4 . and
Es . and derive a four-dimensional GLV algorithm on these curves. Section
explains how to obtain a four-dimensional GLV method on the Jacobians of
C1 and Cy. Finally, in Section [} our operation count at the 128 bit security
level is proof that both elliptic curves defined over F,> and Satoh and Freeman’s
Jacobians yield scalar multiplication algorithms competitive with those of Longa
and Sica and Bos et al.

2 Elliptic Curves with a Genus 2 Cover

In this paper we will work with two examples of genus 2 curves whose Jacobians
allow over an extension field a (2,2)-isogeny to a product of elliptic curves. We
first study the genus 2 curve

Ci(F,) : Y? = X5 + aX? + bX, with a,b#0 €T, . (1)

It was shown [I5II8[9] §2, §3, §4.1] that the Jacobian of C; is isogenous to Ej . X
E1 .., where

By (B, [VD]) - 4% = (¢4 2)2® — (3¢ — 10)2® + (3¢ — 10)z — (¢ +2)  (2)

with ¢ = a/\/b. We recall the formulae for the cover maps from C; to Ej .. The
reader is referred to the proof of Prop. 4.1 in [9] for details of the computations.

p1:C1(,) = ELC(]FpW/b]) w2 : C1(IFy) — ELC(]FP[\%’D

AN (mwb)Q iy Vb
(z,y) — ((x—i‘/b) ’(x—i‘/bp) (z,y) — ( et ¥b) O (et Y0)3 )7
3)
where i = v/—1 € E, or F,2. The (2,2)-isogeny is given by

I: JC1 — El,c X El,c (4)
P+ Q= 2Px = (¢1:(P) + ¢1.(Q), p2:(P) + ¢2.(Q))

and its dual is

I: El,c X El,c — JC1
(51,52) = ¢1(51) + ¢3(S2) — 4Pes
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H * _ +1 1 ¥° —vT1+1 NS
with ¢7(S1) = (ﬁi—l Vb, (f//xl—l)?’) + (—ﬁlq Vb, (—Zﬁxl—m)

* _ [ 1+/x2 4 iy Ib° 1—\/xz2 4 —iys Ib°

and ¢3(52) = (1—\/362 \/b’ (1Z—y\2/x2)3) + (1-&-\/96; \/b’ (12’\2/%2)3)'

Note that I and its dual are defined over an extension field of F, of degree
1, 2, 4 or 8. One may easily check that T ol = [2] and I o I = [2]. Since I
splits multiplication by 2, an argument similar to [I4, Prop. 21] implies that
2End(Je,) € End(E; . x E1,c) and 2End(F; . x E1,.) € End(J¢,). We will use
these inclusions to exhibit efficiently computable endomorphisms on both J¢,
and E ..

Secondly, we consider an analogous family of degree 6 curves. These curves
were studied by Duursma and Kiyavash [8] and by Gaudry and Schost [12].

Co(F,) : Y2 = X6 +aX?® + b with a,b 0 € F, . (5)

The Jacobian of the curve denoted Je, is isogenous to the product of elliptic
curves Ea . X Ey _., where

Ea (B, [VD]) - 4% = (¢4 2)2® + (=3¢ + 30)2% + 3¢+ 30)z + (—c +2) (6)
By _o(F,[VD]) : 4> = (—c+2)2° + (3¢ + 30)2® + (=3¢ + 30)z + (¢ +2), (7)
with ¢ = a/\/b. The construction of the isogeny is similar to the one for I. We

recall the formulae for cover maps from Cs to Es . and to Es _.. For detailed
computations, the reader is referred to Freeman and Satoh [J, Prop. 4].

02 : CQ(IFP) — By ¢ % Ez,—c(]Fp[{s/b])
x+9\> sy x-o\? sy )
T ()

Note that the isogeny constructed using these cover maps is defined over an
extension field of degree 1,23 or 6.

3 Four-Dimensional GLV on FE, .

In this section, we construct two endomorphisms which may be used to compute
scalar multiplication on F . using a 4-dimensional GLV algorithm. We assume
that ¢ € F2 \ F, and ¢ € F,.

3.1 First Endomorphism on E; . with Vélu’s Formulas

We aim to compute a 2-isogeny on FEj .(F,2). First we reduce the equation (2]
of By to
E1c(B2) :y* = 2* + 27(3¢c — 10)z — 108(9c — 14) (9)

through the change of variables (z,y) — (3(c + 2)x — (3¢ — 10), (¢ + 2)y). Note
that we can write

E1o(Fe):y® = (v — 12)(2® + 122 + 81c — 126). (10)
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Hence there always exists a 2-torsion point P, = (12,0) on E; .(F,2). We apply
Velu’s formulas [2006/T4] to compute the isogeny whose kernel is generated by
P,. We obtain an isogeny from F; . into Ep : y? = 23 + by + bg with by =
—22.27(3c 4+ 10), bg = —22 - 108(14 + 9c). We observe that E, is isomorphic to
the curve whose equation is

By _o(Bp2) : y? = 2 +27(=3c — 10)z + 108(14 + 9¢) (11)

through (zp, y») = (x6/(—2), y»/(—2v/—2)). Note that v/—2 € F,» and thus this
isomorphism is defined over F,>. We define the isogeny

IQ : El,c(FpQ) — El’,C(FIﬁ) (12)
- 162+81 - 162+81
(z,y) — ( 2 T aa19) 2ys (1 - (1712)5)) :
We show that we can use this isogeny to get an efficiently computable endo-
morphism on Ej .. Observe that since ¢ € E,2 \ F, and ¢? € F,, we have that

mp(c) = ¢ = —¢, mp(j(Ene)) = j(En,—c) (13)

hence the curves E1 . and Ep _. are isogenous over I, via the Frobenius map
mp. They are not isomorphic, because they do not have the same j-invariant.

To sum up, by composing 7, o Z3, we obtain an efficiently computable endo-
morphism @5 as follows:

@2 : El,c(]Fp2) — El,c(]Fp2)
o) (5 16281y () 1628l
Y 2 202 —12) 22" (27 — 12)2
_ <x2p — 1227 4162 — 8lc o’ —242P — 18 + 81(:)
- —20r—12) Y oy of(er — 12)2

If we compute formally@ &2 then we obtain exactly the formulas to compute
mp2 0 [=2] on By (Fye) if /=2 € F, or my2 o [2] if /=2 ¢ E,. This difference
occurs because a term /—2v/—2" appears in the formula. If p = 1,3 mod 8,
V=2 =y/=2 and if p = 5,7 mod 8, /—2" = —/—2. Hence &, restricted to
points defined over [, verifies the equation

P2+2=0. (14)

We note that the above construction does not come as a surprise. Since
2End(Je,) € End(Eq . X Ei,.) and since the Jacobian J¢, is equipped with
a p-power Frobenius endomorphism, we deduce that there are endomorphisms
with inseparability degree p on the elliptic curve E; .. Our construction is simply
an explicit method to compute such an endomorphism.

! E.g. Verification code with Maple can be found at the address
http://www.di.ens.fr/~ionica/VerificationMaple-Isogeny-2p-El.maple
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Two-Dimensional GLV. By using Id and ®-, we get a two-dimensional GLV
algorithm on the curve Ej .. Smith [I9] constructs families of 2-dimensional
GLV curves by reducing mod p Q-curves defined over quadratic number fields.
Q-curves are curves without complex multiplication with isogenies towards all
their Galois conjugates. Since we are interested into designing a fast higher
dimensional algorithm, we will study curves with small complex multiplication
discriminant. In this purpose, our curves are constructed using the complex
multiplication method. For a discussion on the advantages of using dimension 2
curves, see [19].

3.2 Efficient Complex Multiplication on E; .(F,2)

We suppose that the complex multiplication discriminant D of the curve E;
is small. A natural way to obtain an efficiently computable endomorphism is
to take @p the generator for the endomorphism ring (i.e. v/—D). Guillevic and
Vergnaud [I3] proof of Th. 1 (4.) §2.2] showed that D = 2D’, for some integer
D'. Let t,2 be the trace of E1 .(F,2). The equation of the complex multiplication
is then

(tp2)? —4p® = —2D'+?, (15)

for some v € Z. We prove that there is an endomorphism on F; . whose degree of
separability is D’. In order to do that, we will need to compute first the general
equation of @s.

Lemma 1. There are integers m and n such that if p=1,3 (mod 8), then
tye +2p = D'm? and ty2 —2p = —2n> (16)

and if p= 5,7 (mod 8), then

’

ty2 +2p=2n? and t,2 —2p = —D m?>. (17)
Moreover, the characteristic equation of @y is
P2 — 2Py +2pId =0 . (18)

Proof. We have that Tr(®2) — Tr?(P) + 2 deg(P2) = 0. We know that deg(P2) =
2p because $y = m, 0T, and deg(m,) = p,deg(Zz) = 2, so Tr?(Py) = Tr(P3) +4p.
Now, if p=1,3 mod 8, Tr(®3) = Tr(m,2 o [-2]) = —2t,2 and we get Tr*(Ps) =
—2t,2 +4p = —2(t,2 — 2p). We may thus write ¢,2 —2p = —2n?, for some integer
n.If p=>5,7 mod 8, Tr(P3) = Tr(my2 o [2]) = 2t,2 and we get Tr?(p2) = 2t,2 +
4p = 2(tp2 + 2p). Hence t,2 +2p = 2n? again. Using the complex multiplication
equation (II), we have that there is an integer m such that ¢, 4+ 2p = D'm?,
if p=1,3 (mod 8) and tfgg —2p = —D'm?, if p = 5,7 (mod 8). Using these
notations, the characteristic equation of @ is

D —2n Py +2p1d=0.
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Theorem 1. Let By . be an elliptic curve given by equation ([I0), defined over
Fy2. Let —D be the complex multiplication discriminant and consider D" such
that D = 2D'. There is an endomorphism @p: of E1 . with degree of separability
D'. The characteristic equation of this endomorphism is

2, ~Dm &, +Dpld=0. (19)

Proof. Since D = 2D’, we have that @p is the composition of a horizontal isogeny
of degree 2 with a horizontal? isogeny of degree D’. We denote by Zy : Eq . —
E; . the isogeny given by equation (I2). Note that Zy is a horizontal isogeny
of degree 2. Indeed, since m, : Fy _. — Ej., it follows that (End(Ei.))2 ~
(End(E1,—¢))2. Since 2|D, there is a unique horizontal isogeny of degree 2 starting
from E, .. Hence the complex multiplication endomorphism on F; . is ¢p =
Ipr o1y, with Ips : Ey,_. — E1 . a horizontal isogeny of degree D’. We define
Ppr =1Tp 07r]’3, with 7T1/7 : B1.c — Ei _.. To compute the characteristic polynomial
of @/, we observe that
@D/ 0@2 = @D o 7Tp2.

Hence, by using equation (8], we obtain that ®p, seen as algebraic integer in
Z|V-D] is _D/mi;“/_ZD/. Hence we have &2, — D'm &, +D'pld=0.

The endomorphism @p: constructed in Theorem [ is thus computed as the
composition of a horizontal isogeny with the p-power of the Frobenius. Since
computing the p-power Frobenius for extension fields of degree 2 costs one nega-
tion, we conclude that @ may be computed with Vélu’s formulae with half the
operations needed to compute @p over [Fp.

Four-Dimensional GLV Algorithm. Assume that F; . is such that #FE; .(F,2)
is divisible by a large prime of cryptographic size. Let ¥ = &p, and ¢ = &s.
We observe @ and ¥ viewed as algebraic integers generate disjoint quadratic
extensions of Q. Consequently, one may use 1,®, ¥, d¥ to compute the scalar
multiple [k]P of a point P € E (IF,2) using a four-dimensional GLV algorithm.
We do not give here the details of the algorithm which computes decompositions

k=ky+ koA + kdp + k4>\p,

with A and y the eigenvalues of ® and ¥ and |k;| < Cr'/4. Such an algorithm is
obtained by working over Z[®, ¥], using a similar analysis to the one proposed
by Longa and Sica [16].

Eigenvalue Computation. From equation (I4]), we deduce that the eigenvalue
of @5 is pv/—2 if p=1.3 mod 8 and pv/2 if p = 5,7 mod 8. We explain how to
compute this eigenvalue mod #FE1 .(F,2). We will use the formulas (I€) and ().

2 An isogeny I : E — E’ of degree £ is called horizontal if (End(E)), ~ (End(E’)),.
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If p=1,3 mod 8, we obtain

#E1 o(Fe) = (p+ 1) — D'm? VD
= (p - 1)2 + 2n? — \/f2
= (1 —t,2/2)? + 2D (nm/2)? - v/-2D'

(p+1)/m
(p—1)/n,
(2 —ty2)/(nm) .

If p=5,7 mod 8, we obtain

#E1 (Fe2) = (p—1)2 + D'm? s V-D
= (p+1)2 — 2n? — \/2
= (1 —t,2/2)? + 2D (nm/2)? — v/ —2D’

(p—1)/m
(p+1)/n,
(2 t,2)/(nm) .

The eigenvalue of @5 on Ej .(F,2) is pv/—2 = p(p — 1)/n mod #E1 .(F,) if
p=1,3 mod 8 or pv/2=p(p+1)/n mod #E1 (Ee2)if p=5,7 mod 8.

The eigenvalue of @, on E; .(F,2) is pVD' = p(p+1)/m mod #E; .(F,) if
p=1,3 mod 8 or pv/—D' =p(p—1)/m mod #F .(E,:) if p=5,7 mod 8.

3.3 Curve Construction and Examples

We construct curves Ey . with good cryptographic properties (i.e. a large prime
divides the number of points of £ . over 2 ) by using the complex multiplication
algorithm. More precisely, we look for prime numbers p such that the complex
multiplication equation

4p = 2n% + D'm?

is verified. Once p is found, we compute the roots of the Hilbert polynomial in
F,2 to get the j-invariant of the curve j(Ei.). We finally get the value of ¢ by

solving j(F ) = 2° (c(i));;(i?;)Q in F,> and choosing a solution satisfying ¢? € F,.

We note that for a bunch of discriminants (such as —20, —24, —36 etc.), Hilbert
polynomial precomputation may be avoided by using parameterizations com-
puted by Quer [17]:

Cp:y? =2 —6(5+ 3Vt + 8(7+ 9V1), (20)

for some t € Q. For instance t = i for D = —-20,t = S for D = —24 etc. Once p
is found, one may directly reduce mod p the curve given by equation 20l Curves
given by equation ([20) are Q-curves and for these discriminants, we obtain the
same curves as in [19].

Complex multiplication algorithms may not be avoided in certain crypto-
graphic frames, such as pairing-friendly constructions. One advantage of the
construction is that one has the liberty to choose the value 7 of the large prime
number dividing the curve group order. This helps in preventing certain attacks,
such as Cheon’s attack [4] on the ¢-DH assumption. On the negative side, we
cannot construct curves with fixed p (such as the attractive 2127 — 1).

Using Magma, we computed an example with p =5 mod 8, D = 40, D' = 20.
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Example 1. We first search 63-bit numbers n, m such that p = (2n? + 20m?)/4
is prime and #F .(F,2) is almost prime. We can expect an order of the form 4r,
with 7 prime. In a few seconds, we find the following parameters.

n = 0x5bd23edfabalf7ed

m = 0x549906b3eca27851

ty2 = - Oxfaca844b264dfaa353355300f9ce9d3a

p = 0x9a2a8c914e2d05c3f2616cade9b911ad

r = 0x1735ce0c4fbac46c2245c3ce9d8da0244f9059ae9ae4784d6b2f65b29c444309
c? = 0x40b634aec52905949ea0fe36099cb21a

with 7, p prime and #E1 . (F,2) = 4r.

We use Vélu’s formulas to compute a degree-5 isogeny from E; . into Ep 5. We
find a 5-torsion point P5(Xs,Ys) on E1 . (F,s). The function IsogenyFromKernel
in Magma evaluated at (Ey c(E,), (X — Xp,)(X — Xop,)) outputs a curve Ey 5 :
yi = a3 — 25-27(3¢c + 10)zp, + 125 - 108(9¢ + 14). The curve Ej is isomorphic
to Ey . over F,. through i : (zp,yp) — (z5/5,ys/(5v/5)). The above function
outputs also the desired isogeny with coefficients in F,2:

I5 :
El,c(]sz) — Eb,5 (]prz)
2:3%( 2 (13c+40)2+4(27c+28))
(l‘,y) = (.’17 + z2+227cm7% c+162
I —2%.3%((9¢+16)2>+ 211(27c+64)z+ 2 3% (53¢+80)
(m2+227cz7 ?éc+162)2 ’

14 —2%-3*((9c+16)z°+ £ 11(27c+64)z° + 2 3% (53c+80)z+ 3 3% (4419c+13360))
Y (12+227 cmffé c+162)3

2~33(g(13c+40)x2+23(27c+28)x+2§(3690+1768))))
+ (@24 % cx— 5} c+162)2

(21)
We finally obtain a second computable endomorphism on Ej . in this example
by composing 7, 04 /5 0 Zs.

4 Four-Dimensional GLV on FE, ()

The construction of two efficiently computable endomorphisms on FEs ., with
degree of inseparability p, is similar to the one we gave for F .
We consider the elliptic curve given by eq. (@) in the reduced form:

Eso(Fpe):y® =2%+3(2c—5)rv +c* — 14dc+22 . (22)

We assume that ¢ € Fy2 \ E,, c? € E,, ¢ is not a cube in E,>. In this case the
isogeny ([B) between Je, and Es. x Ej _. is defined over E,s. The 3-torsion
subgroup Ej3 .(F,2)[3] contains the order 3 subgroup {O, (3,c+2),(3, —c — 2)}.
We compute an isogeny whose kernel is this 3-torsion subgroup. With Vélu’s
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formulas we obtain the curve Ej, : y? = 23 — 27(2c+5)x — 27(c? + 14c+ 22). The
curve Ej is isomorphic to Ea _. : (F,) : y* = 23 — 3(2c 4 5)z + ¢* + 14c + 22,
via the isomorphism (z,y) — (z/(—3),y/(—3v/—3)). We define the isogeny

Ig : EQVC — E27_C
-1 12(c+2) | 4(c+2)? - 12(c+2)  8(c+2)?
(,y) — ( 3 (5”+ o3 T (z-3)2 ) J 3\/33 (1 T (@-3)2 T (2-3)3 ))
Finally, we observe that m,(c) = —c and m,(j(E2,.)) = j(E2,—¢). This implies

that Ey . and Ey _. are isogenous through the Frobenius map m,. We obtain the
isogeny @3 = Z3 o m, which is given by the following formula

@3 :
E27C(Fp2) — E27C(Fp2)
- 12(2—c) |, 4(2—c)? P 12(2—c) 8(2—c)?
(@y) = ( 3 (xp e (xp—3>2) JEVARY (1 T (@r-3)2 T (xv—3)3))'

We compute formally #3 and obtain &3 = m,20[+3]. There is a term v/—3/—3"
in the y-side of 2. We observe that if p =1 mod 3, then ( _p?’) =1,y/-3y/-3" =
—3 and ®% = 7,2 o [—3]. Similarly, if p =2 mod 3, then ¢3 = m,2 o [3]. We con-
clude that for points defined over F,2, we have

P2+3=0.

Guillevic and Vergnaud [13], Theorem 2] showed that the complex multiplica-
tion discriminant is of the form 3D’. With the same arguments as for E ., we
deduce that there are integers m and n such that if p =1 (mod 3), then

tp2 +2p = D'm? and ty2 —2p= —2n?.
and if p = 2 (mod 3), then
tp2 +2p = 2n? and tpr — 2p = -D'm?2.

As a consequence, we have the following theorem, whose proof is similar to the
proof of [l

Theorem 2. Let Ey . be an elliptic curve given by equation [22), defined over
Fy2. Let —D be the complex multiplication discriminant and consider D" such
that D = 3D'. There is an endomorphism @p: of Ea . with degree of separability
D’. The characteristic equation of this endomorphism is

2, —Dmd, +Dpld=0. (23)

We have thus proven that @ = @3 and ¥ = ®p/, viewed as algebraic integers,
generate different quadratic extensions of Q. As a consequence, we obtain a
four-dimensional GLV algorithm on Ej ..
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5 Four-Dimensional GLV on J¢, and Jg,

The first endomorphism ¥ on J¢, is induced by the curve automorphism (z,y) —
(—x,iy), with i a square root of -1. The characteristic polynomial is X2 +1 = 1.
On Je, we consider ¥ the endomorphism induced by the curve automorphism
(x,y) = ((37,y). Its characteristic equation is X2 + X + 1. The second endo-
morphism is constructed as & = f((PD/,(PD/)I, where @p: is the elliptic curve
endomorphism constructed in Theorem [Il In order to compute the character-
istic equation for @, we follow the lines of the proof of Theorem 1 in [I0]. We
reproduce the computation for the Jacobian of C;.

Theorem 3. Let C; : y> = 2° + ax® + b be a hyperelliptic curve defined over
E, with ordinary Jacobian and let r a prime number such that r||Je, (F,). Let
I:Je, = Eic x Eq the (2,2)-isogeny defined by equation @) and assume I is
defined over an extension field of degree k > 1. We define & = f(gZiD/ X ®pi)l.
where ®p, is the endomorphism defined in Theorem [d Then

1. For P € Je,[r](E,), we have &(P) = [A|P, with \ € Z.
2. The characteristic equation of @ is ®> — 2D'm & + 4D/p Id =0.

Proof. 1. Note that End(J¢,) is commutative, and & is defined over F, (see [2,
Prop. II1.1.3]). Hence, for D € J¢, (F,), we have that 7(®(D)) = &(n(D)) =
&(D). Since there is only one subgroup of order r in J¢, (F,), we obtain that
&(D) = AD.

2. Since IT = [2] then

* = [(Ppr x Pp)II(Ppr x Bp/)I = 21(D%,,P2,)1. (24)
Since @p: verifies the equation
@2, —~D'm & +Dpld=0, (25)
we have
211((2%,,8%,) — D'm (D, ®p) + D'p (1d,1d))] = Oy,

Using equation (24)), we conclude that 2 — 2D'm &+ 4D'p 1d = 0.

5.1 Computing I on Jg, (I,)

We show first how to compute stately the (2, 2)-isogeny on J¢, (F,) with only a
small number of operations over extension fields of I,.
Let D be a divisor in J¢, (F,) given by its Mumford coordinates

D= [U, V] = [T2 4+ w1 T + ug, 1T + Uo], U, U1, V0, v1 € B, .
It corresponds to two points P; (X1, Y1), P2(X2,Y2) € C1(F,) or Ci(E,2). We have

-1 _ XiYo - XoY,

— (X1 + Xa),u0 = X1 Xo, 01 = -
U (X1 + X2),uo0 1X2, 01 X2—X1’v0 X, — X,
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Ezxplicit formula to compute ©1.(P1) + p14(P2). Let 1.(P1) = (z11,y1,1) and
01:(P2) = (2271,y21) In the following we give the formulas to compute
S1(x3,1,y3,1) = P1(P1) + @1.(P2).
" A 3c-10 iy
31 = o — (11 +x21) + 705 wit

)\1 _ 82 [(voul—vluo)ul—vouo] + [3(v0u1—v1uo)] Yo+ [31}0] Vb4 [m] 3/1)3 .
Vb [ug—b]—&-[uoul] Yo+ [—ul]\/b
We denote A\ = Al/\fyb. The computation of the numerator of A; costs 4M), and
the denominator costs S, + M,. We will use the Jacobian coordinates for S;:
31 = Xg,l/Zg’l, Y31 = Yg,l/Zg”l to avoid inversion in F,«. We continue with

oo (el Lol ) ([ [-2u]0)
e ([i5m4] o] Y0+ -] 1)

As u3 was already computed in Ay, this costs one square (u$) and a multiplication

in Fy2, hence S, + M,2. The denominator is the same as the one of A2, that is,

Z2.

Then

_ A 3¢—10
T3,1 = (1/2(6+2) (x11+221) + 12
_ VAR 3a—10Vb
(a+2v/) (1,1 +x21) + at2vb

To avoid tedious computations, it is preferable to precompute both 1/(a + 2v/b)
and (3a — 10v/b)/(a + 2v/b) with one inversion in F,2 and one multiplication in

F,..

Computing v/bA? is done by shifting to the right coefficients and costs one
multiplication by b (as A2 € F,1). Then v/bA? - (a +2vb) ™! costs 2M,z. Finally

we need to compute 32;;(\%” - Z3 which costs Spa +2M,2. The total cost of X3 1,

Zs1 and Z3 | is 6M), + 25, + 5M2 + Spa.
Computing ys,; is quite complicated because we deal with divisors so we do
not have directly the coefficients of the two points. We use this trick:

Ys,1 = A1 (21,1 — T3,1) — Y11
Ys,1 = A1(T2,1 — T3,1) — Y21
2y31 = M@0 + 221 — 2w31) — (Y1,1 + Y2,1)

Since z1,1 + x2,1 was already computed for 31, getting (21,1 + z21 — 223,1)
costs only additions. We multiply the numerators of A; and (21,1 + x2,1 — 223.1)
which costs 1Mj,a. The denominator is Zgyl and as Z3271 is already computed,
this costs 1M,4. The numerator of (y1,1 +y2,1) contains products of ug, u1, vg, v1
previously computed and its denominator is simply Z3. The total cost of y3 1 is
then 2M,,4. Finally, computing (z3,1,¥3,1) costs

GMp + QSp + 5Mp2 + Sp4 + QMP4 .
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Now we show that computing Sa(z3 2,¥3.2) is free of cost. We notice that
01(X;,Y)) = pa(—Xj,1Y5)

with i such that 2 = —1 and j € {1,2}. Rewriting this equation in terms of
divisors, we derive that

S2(w3,2,Y3,2) = @1x([—u1, uo, —ivy, tvg)) .
We can simply compute Sy with ¢1,:

.1‘372 = $371([—U1, Uuop, —iUl, ivob With
A2 = A ([—u1, ug, —iv1, ivo)) ‘
_ 2 (vour—viuo)(u1—3 Vb)—vouo+3vbvo— V6 v1 _ 2()\ )
R (w0 —V/b) (1o — Vbus +V/b) = TprA
and

24+vVbu? —6vbug+b

(w1 @2) ([, wo, vy dvo]) = 27, T L0,

= mp2(T1,1 + T2,1) -
We deduce that x35 = mp2(x3,1), y3,2 = mp2(y3,1) and

©2:4(D) = p2:(P1) + p2:(P2) = mp2 (914 (P1) + p14(12)) -

Computing (x3,2,¥3,2) costs two Frobenius 7,2 which are performed with four
negations on ..

5.2 Computing Endomorphisms on F; .

Here we apply the endomorphism @, on S1(x31,¥3,1). As @ is defined over
Fy2, it commutes with 7,2 hence @ (232) = mp2(Ppr(23,1)) is free. Unfortu-
nately S; has coefficients in F,« hence we need to perform some multiplications
in 4. More precisely, y3 1 is of the form \E;/l)ygh1 with y3 ; € F,a. As the endo-
morphism is of the form ¢/ (z,y) = (Pp ,(2),yPp () the \beé’l term is
not involved in the endomorphism computation.

5.3 Computing I on Jg, (F,).

Then we go back to J¢,. We compute the divisor of these two points (with
+,/23,1) on Je, and get

1 (r31,y31) = T% — Q{VbiiiiT + Vb, 2(‘52’?5) (ms’ﬁST - ‘4/b> :

r3,1—1
.. . . 1
If (x3,1,y3,1) is in Jacobian coordinates (X3 1, Y3,1, Z3,1) then we compute 7" 1

13,171
X3,1+Z§,1
Xs1—Z3 ;"
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A similar computation gives

©5 (23,2, Y3,2) = T2+2\4/b§§§iT + Vb, 2(\§:i3¥21) <x3‘2+3T+\%) '

r3,2—1

Since 32 = mp2(v3,1) and y3 2 = mp2(y3,1), we have

« T 1)+1 Vb R ™ 1)+3
@2($3,2,y3,2)=T2+2\‘76w:zgz;371T+\/b,2 p2(vs.1) ( p2(v5.1) T+\4/b) .

(mp2(23,1)—1) \ m,2(zs,1)—1

Hence ©5(23,2,y3,2) = mp2 (97 (23,1, ¥3,1)).
Finally, we have

P2 (2« (P1) + 92:(P2)) = mp2 (1 (012 (P1) + 014(F2)))) -

and, with similar arguments,

¢2(Ppy (p2: (P1) + 92 (P2))) = mp2 (01 (Ppy (014 (P1) + 914(F2))))) -

The computation of the sum ] (P (¢14(D))) + mp2 0 YI(Ppr (p1+(D))) in-
volves terms in F,« but thanks to its special form, we need to perform the opera-
tions in F,2 only. We give the table of computations in Appendix[Aland show that
most multiplications are performed over F,:. We have followed computations for
a multiplication in Mumford coordinates provided in [5].

We conclude that applying ¢1.(P1) + @1.(P2) costs roughly as much as an
addition on J¢, over Ey,, w2, (P1) 4 ¢2.(P2) is cost free. Computing $ps depends
on the size of D’ and costs few multiplications over F,a. Finally adding ¢} + ¢35
costs roughly an addition of divisors over Fy2.

6 Complexity Analysis and Comparison to GLS-GLV
Curves

We explain that our construction is valid for GLS curves with discriminants
-3 and -4. These curves are particularly interesting for cryptography, because
their simple equation forms result into simple and efficient point additions. A
four-dimensional GLV algorithm on these curves was proposed by Longa and
Sica [16]. Although the endomorphisms we construct do not allow to derive
a higher dimension algorithm, they offer an alternative to Longa and Sica’s
construction.

The Case D = —4. We consider a curve with CM discriminant D = —4,
defined over Fy», with p = 1 mod 8. Assume that the curve is of the form
Eo(Bp2) : y? = 2% + az with a € E,2. A 2-torsion point is P»(0,0). Using Vélu’s
formulas, we get the isogeny with kernel generated by P», whose equation is

o (%
(xay) = (ZL’+ x’y_yx2> .
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This isogeny sends points on F, on the curve Ej : y? = 23 — 4ax. We use the
same trick as previously. If & € F,2 is such that m,(a) = a? = —a (this is the
case for example if @ = v/a with a € F, a non-square) then by composing with

(zp,yp) +— (xg (—=2),y) (72\/72)), we get an endomorphism ®;. Note that
v—1 € F, since p=1 mod 8. We obtain

By : Eq(Fp) — Eo(F,)
o if (z,y) = (0,0),

(z,y) — ((w’;f:-a’ 2@52 (1 _ (:1:?;)2)) otherwise.

We obtained an endomorphism & such that #3 — 2 = 0, when restricted to
points defined over 2. The complex multiplication endomorphism & on E, is
(x,y) — (—x,iy) and verifies the equation @ 4+ 1 = 0. The 4-dimensional GLV
algorithm of Longa and Sica on this curve uses an endomorphism ¥ such that
¥4 4+ 1 = 0. With our method we obtain two distinct endomorphisms, but the
three ones ¥, @3, ® are not “independent” on the subgroup E(F,2)\ E[2]. Indeed,
we have @y + &Py = 20,

Note that in this case the corresponding Jacobian splits into two isogenous
elliptic curves over F,, namely the two quartic twists defined over F, of E ..

The Case D = —3. We consider the curve Eg whose Weierstrass equation is
y? = 2"+ B, (26)

where 3% € F,. Our construction yields the following efficiently computable en-

domorphism
1 4PN\ yP 8"
) — P
@d(x?y)i (3 <'T + x2p)’\/3 (1+ x3p :

When restricted to points defined over F,2, this endomorphism verifies the equa-
tion @32 — 3 = 0, while the complex multiplication endomorphism & has charac-
teristic equation @2 + @ + 1 = 0. Longa and Sica’s algorithm uses the complex
multiplication @ and an endomorphism ¥ verifying ¥2 + 1 = 0 for points defined
over F,2. We observe that 203V — 1 = 29.

We give in Table [0l the operation count of a computation of one scalar multi-
plication using two-dimensional and four-dimensional GLV on E and Ej3 given by
equation (26]). We denote by m, s and by M, S the cost of multiplication and squar-
ing over If, and over 2, respectively. We denote by c the cost of multiplication by
a constant in 2. In order to give global estimates, we will assume that m ~ s and
that M ~ 3m and S ~ 3s. Additions in [f, are not completely negligible compared
to multiplications, but we do not count additions here. We counted operations by
using formulae from Bernstein and Lange’s database [I] for addition and doubling
in projective coordinates. On the curve F; . addition costs 12M + 2, while dou-
bling costs 55 + 6M + 1c. For Eg , addition costs 12M + 25, while doubling is
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3M+55+1c. Note that by using Montgomery’s simultaneous inversion method, we
could also obtain all points in the look-up table in affine coordinates and use mixed
additions for the addition step of the scalar multiplication algorithm. This variant
adds one inversion and 3(n— 1) multiplications, where n is the length of the look-up
table. We believe this is interesting for implementations of cryptographic applica-
tions which need to perform several scalar multiplications. For genus 2 arithmetic
on curves of the form y? = 2° + az® + bx, we used formulze given by Costello and
Lauter [5] in projective coordinates. An addition costs 43M + 4.5 and a doubling
costs 30M + 95.

Table 1. Total cost of scalar multiplication at a 128-bit security level

Curve Method Operation count Global estimation
Ei. 4-GLV, 16 pts. 1168M + 440S 479Tm
Eg 4-GLV, 16 pts. 976 M + 4408 4248m
FEic 2-GLV, 4 pts. 2048M + 8325 8640m
Ejs 2-GLV, 4 pts. 1664M + 8325 7488m
Je, 4-GLV, 16 pts. 4500m + 816s 5316m
Je, 2-GLV, 4 pts. 7968m + 1536s 9504m
FKT 3] 4-GLV, 16 pts. 4500m + 816s 5316m
Kummer [3] - 3328m + 2304s 5632m

The practical gain of the 4-dimensional GLV on Ej ., when compared to the
2-dimensional GLV method, is of 44%. Curves with discriminant -3, defined over
[E,2, which belong both to the family of curves we propose and to the one proposed
by Longa and Sica, offer a 12% speed-up, thanks to their efficient arithmetic.

7 Conclusion

We have studied two families of elliptic curves defined over F,> which have the
property that the Weil restriction is isogenous over F, to the Jacobian of a
genus 2 curve. We have proposed a four dimensional GLV algorithm on these
families of elliptic curves and on the corresponding Jacobians of genus 2 curves.
Our complexity estimates show that these abelian varieties offer efficient scalar
multiplication, competitive to GLV algorithms on other families in the literature,
having two efficiently computable and “independent” endomorphisms.
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A Appendix 1

Following [5], we explain here the step addition of two divisors in the isogeny
computation in Section 1.3l We denote by m,, and s,, the cost of multiplication
and squaring, respectively, in an extension field FE,n».

o1 =u1 +mp2(ur), Ao = vo — mp2(vo), Ay = v1 — mp2(v1), Ur = u? (1my)

My =u2 — 72 (u?) Mz = Vb(mpe (ur) — 1), M3 = ug — mp2 (ur);

lg = 2(M2 . Al + A() . Ml); l3 = A() . Mg; d= 72M2 . M3; (4m2)

A=1/(d-13); B=d-A;C=d-B; D=1Is-B; (3ma+1my)
E=12-4,CC=C%ul/=2-D-CC — o1 (1ma+2s2)

uf =D?*+C - (v1 + mp(v1)) — ((uf — CC) - o1 + (Ur + mp2(U1)))/2 (2ma+1s4)
UY =mpe(ur) -upg; o = D - (ug — i) +uf —uf —Uy; (2mat1s;)

vg =D - (uo —ug) + Uy vf = =(E-vf +v1); v = —=(E - vf + vo); (3ma)
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Abstract. The classic Leftover Hash Lemma (LHL) is often used to
argue that certain distributions arising from modular subset-sums are
close to uniform over their finite domain. Though very powerful, the
applicability of the leftover hash lemma to lattice based cryptography is
limited for two reasons. First, typically the distributions we care about in
lattice-based cryptography are discrete Gaussians, not uniform. Second,
the elements chosen from these discrete Gaussian distributions lie in an
infinite domain: a lattice rather than a finite field.

In this work we prove a “lattice world” analog of LHL over infinite
domains, proving that certain “generalized subset sum” distributions
are statistically close to well behaved discrete Gaussian distributions,
even without any modular reduction. Specifically, given many vectors
{x;};~; from some lattice L C R™, we analyze the probability distribu-
tion Z?;l zix; where the integer vector z € Z™ is chosen from a discrete
Gaussian distribution. We show that when the x;’s are “random enough”
and the Gaussian from which the z’s are chosen is “wide enough”, then
the resulting distribution is statistically close to a near-spherical dis-
crete Gaussian over the lattice L. Beyond being interesting in its own
right, this “lattice-world” analog of LHL has applications for the new
construction of multilinear maps [5], where it is used to sample Discrete
Gaussians obliviously. Specifically, given encoding of the x;’s, it is used
to produce an encoding of a near-spherical Gaussian distribution over
the lattice. We believe that our new lemma will have other applications,
and sketch some plausible ones in this work.

1 Introduction

The Leftover Hash Lemma (LHL) is a central tool in computer science, stating
that universal hash functions are good randomness extractors. In a characteristic
application, the universal hash function may often be instantiated by a simple
inner product function, where it is used to argue that a random linear combina-
tion of some elements (that are chosen at random and then fixed “once and for
all”) is statistically close to the uniform distribution over some finite domain.
Though extremely useful and powerful in general, the applicability of the left-
over hash lemma to lattice based cryptography is limited for two reasons. First,
typically the distributions we care about in lattice-based cryptography are dis-
crete Gaussians, not uniform. Second, the elements chosen from these discrete
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Gaussian distributions lie in an infinite domain: a lattice rather than a finite
field.

The study of discrete Gaussian distributions underlies much of the advances in
lattice-based cryptography over the last decade. A discrete Gaussian distribution
is a distribution over some fixed lattice, in which every lattice point is sampled with
probability proportional to its probability mass under a standard (n-dimensional)
Gaussian distribution. Micciancio and Regev have shown in [I0] that these distri-
butions share many of the nice properties of their continuous counterparts, and
demonstrated their usefulness for lattice-based cryptography. Since then, discrete
Gaussian distributions have been used extensively in all aspects of lattice-based
cryptography (most notably in the famous “Learning with Errors” problem and
its variants [I4]). Despite their utility, we still do not understand discrete Gaussian
distributions as well as we do their continuous counterparts.

A Gaussian Leftover Hash Lemma for Lattices?

The LHL has been applied often in lattice-based cryptography, but sometimes
awkwardly. As an example, in the integer-based fully homomorphic encryption
scheme of van Dijk et al. [18], ciphertexts live in the lattice Z. Roughly speaking,
the public key of that scheme contains many encryptions of zero, and encryption
is done by adding the plaintext value to a subset-sum of these encryptions of
zero. To prove security of this encryption method, van Dijk et al. apply the
left-over hash lemma in this setting, but with the cost of complicating their
encryption procedure by reducing the subset-sum of ciphertexts modulo a single
large ciphertext, so as to bring the scheme back in to the realm of finite rings
where the leftover hash lemma is naturally applied It is natural to ask whether
that scheme remains secure also without this artificial modular reduction, and
more generally whether there is a more direct way to apply the LHL in settings
with infinite rings.

As another example, in the recent construction of multilinear maps [5], Garg
et. al. require a procedure to randomize “encodings” to break simple algebraic
relations that exist between them. One natural way to achieve this randomization
is by adding many random encodings of zero to the public parameters, and
adding a random linear combination of these to re-randomize a given encoding
(without changing the encoded value). However, in their setting, there is no
way to “reduce” the encodings so that the LHL can be applied. Can they argue
that the new randomized encoding yields an element from some well behaved
distribution?

In this work we prove an analog of the leftover hash lemma over lattices,
yielding a positive answers to the questions above. We use discrete Gaussian
distributions as our notion of “well behaved” distributions. Then, for m vectors
{xi}iepm) chosen “once and for all” from an n dimensional lattice L C R”,
and a coefficient vector z chosen from a discrete Gaussian distribution over the

! Once in the realms of finite rings, one can alternatively use the generic proof of
Rothblum [15], which also uses the LHL.
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integers, we give sufficient conditions under which the distribution Y ;" | z;; is
“well behaved.”

Oblivious Gaussian Sampler

Another application of our work is in the construction of an extremely simple
discrete Gaussian sampler [6/I3]. Such samplers, that sample from a spherical
discrete Gaussian distribution over a lattice have been constructed by [6] (using
an algorithm by Klein [7]) as well as Peikert [13]. Here we consider a much sim-
pler discrete Gaussian sampler (albeit a somewhat imperfect one). Specifically,
consider the following sampler. In an offline phase, for m > n, the sampler sam-
ples a set of short vectors @1, s, ..., x,, from L — e.g., using GPV or Peikert’s
algorithm. Then, in the online phase, the sampler generates z € Z™ according to
a discrete Gaussian and simply outputs 2111 zix;. But does this simpler sam-
pler work — i.e., can we say anything about its output distribution? Also, how
small can we make the dimension m of z and how small can we make the entries
of 27 Ideally m would be not much larger than the dimension of the lattice and
the entries of z have small variance — e.g., O(y/n).

A very useful property of such a sampler is that it can be made oblivious to
an explicit representation of the underlying lattice, which makes it applicable
easily within an additively homomorphic scheme. Namely, if you are given lattice
points encrypted under an additively homomorphic encryption scheme, you can
use them to generate an encrypted well behaved Gaussian on the underlying
lattice. Previous samplers [6/I3] are too complicated to use within an additively
homomorphic encryption scheme 2.

Our Results

In this work, we obtain a discrete Gaussian version of the LHL over infinite
rings. Formally, consider an n dimensional lattice L and (column) vectors X =
[x1|x2] ... |Tm] € L. We choose x; according to a discrete Gaussian distribution

Dyr.s, where Dy, g is defined as Dy, s () = Zi’cgg with pg () def exp(—l|x —

c|?/s*) and pg.c(A) for set A denotes Y- . 4 ps,c(x).
Let z < Dzm o, we analyze the conditions under which the vector X - z is
statistically close to a “near-spherical” discrete Gaussian. Formally, consider:

Ex.s def {X-z:2+Dgm o}
Then, we prove that £x ¢ is close to a discrete Gaussian over L of moder-
ate “width”. Specifically, we show that for large enough s’, with overwhelming
probability over the choice of X:

1. Ex s is statistically close to the ellipsoid Gaussian Dy, o x 7, over L.

2. The singular values of the matrix X are of size roughly si/m, hence the
shape of Dy, »x7 is “roughly spherical”. Moreover, the “width” of Dy, . x
is roughly s's\/m = poly(n).

2 As noted by Peikert [T3], one can generate an ellipsoidal Gaussian distribution over
the lattice given a basis B by just outputting y <— B - z where z is a discrete
Gaussian, but this ellipsoidal Gaussian distribution would typically be very skewed.
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We emphasize that it is straightforward to show that the covariance matrix
of Ex,¢ is exactly s X XT. However, the technical challenge lies in showing
that €x, ¢ is close to a discrete Gaussian for a non-square X. Also note that
for a square X, the shape of the covariance matrix XX " will typically be very
“skewed” (i.e., the least singular value of X " is typically much smaller than the
largest singular value). We note that the “approximately spherical” nature of the
output distribution is important for performance reasons in applications such as
GGH: These applications must choose parameters so that the least singular value
of X “drowns out” vectors of a certain size, and the resulting vectors that they
draw from Ex s grow in size with the largest singular value of X, hence it is
important that these two values be as close as possible.

Our Techniques

Our main result can be argued along the following broad outline. Our first theo-
rem (Theorem[2]) says that the distribution of X -z < Ex s is indeed statistically
close to a discrete Gaussian over L, as long as s’ exceeds the smoothing param-
eter of a certain “orthogonal lattice” related to X (denoted A). Next, Theorem
Bl clarifies that A will have a small smoothing parameter as long as X | is “reg-
ularly shaped” in a certain sense. Finally, we argue in Lemma [§] that when the
columns of X are chosen from a discrete Gaussian, x; + Dr g, then X is
“regularly shaped,” i.e. has singular values all close to o,,(S)y/m.

The analysis of the smoothing parameter of the “orthogonal lattice” A is
particularly challenging and requires careful analysis of a certain “dual lattice”
related to A. Specifically, we proceed by first embedding A into a full rank lattice
Ag4 and then move to study M, — the (scaled) dual of A,. Here we obtain a lower
bound on A,4+1(M,), i.e. the n + 1** minima of M,. Next, we use a theorem
by Banasczcyk to convert the lower bound on A,11(My) to an upper bound
on Am—n(44), obtaining m — n linearly independent, bounded vectors in A,.
We argue that these vectors belong to A, thus obtaining an upper bound on
Am—n(A). Relating Ay—n(A) to ne(A) using a lemma by Micciancio and Regev
completes the analysis. (We note that probabilistic bounds on the minima and
smoothing parameter A,, M, are well known in the case when the entries of
matrix X are uniformly random mod ¢ (e.g. [6]), but here we obtain bounds in
the case when X has Gaussian entries significantly smaller than q.)

To argue that X | is regularly shaped, we begin with the literature of random
matrices which establishes that for a matrix H € R™*", where each entry of H
is distributed as NV(0, s?) and m is sufficiently greater than n, the singular values
of H are all of size roughly sy/m. We extend this result to discrete Gaussians —
showing that as long as each vector x; <— Dy, g where S is “not too small” and
“not too skewed”, then with high probability the singular values of X T are all
of size roughly s/m.

Related Work

Properties of linear combinations of discrete Gaussians have been studied before
in some cases by Peikert [I3] as well as more recently by Boneh and Freeman [3].
Peikert’s “convolution lemma” (Theorem 3.1 in [I3]) analyzes certain cases in
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which a linear combination of discrete Gaussians yields a discrete Gaussian, in
the one dimensional case. More recently, Boneh and Freeman [3] observed that
under certain conditions, a linear combination of discrete Gaussians over a lattice
is also a discrete Gaussian. However, the deviation of the Gaussian needed to
achieve this are quite large. Related questions were considered by Lyubashevsky
[9] where he computes the expectation of the inner product of discrete Gaussians.

Discrete Gaussian samplers have been studied by [6] (who use an algorithm
by [7]) and [I3]. These works describe a discrete Gaussian sampling algorithm
that takes as input a ‘high quality’ basis B for an n dimensional lattice L and
output a sample from Dp . In [6], s > ||B|| - w(v/logn), and B = max; ||b;]|
is the Gram Schmidt orthogonalization of B. In contrast, the algorithm of [13]
requires s > o1(B), i.e. the largest singular value of B, but is fully parallelizable.
Both these samplers take as input an explicit description of a “high quality basis”
of the relevant lattice, and the quality of their output distribution is related to
the quality of the input basis.

Peikert’s sampler [13] is elegant and its complexity is difficult to beat: the only
online computation is to compute ¢ — By | By ' (¢ — @2)], where ¢ is the center of
the Gaussian, B is the sampler’s basis for its lattice L, and x5 is a vector that
is generated in an offline phase (freshly for each sampling) in a way designed
to “cancel” the covariance of Bj so as to induce a purely spherical Gaussian.
However, since our sampler just directly takes an integer linear combination of
lattice vectors, and does not require extra precision for handling the inverse By t
it might outperform Peikert’s in some situations, at least when ¢ = 0.

2 Preliminaries

We say that a function f: RT — R* is negligible (and write f(\) < negl(\)) if
for every d we have f(A\) < 1/\¢ for sufficiently large \. For two distributions
D; and D, over some set {2 the statistical distance SD(Dy, Ds) is

def 1
SD(D1,D2) =, > | Prls] — Prla]]
TEN

Two distribution ensembles D; () and Da(\) are statistically close or statisti-
cally indistinguishable if SD(D;(A), D2(A)) is a negligible function of A.

2.1 Gaussian Distributions

For any real s > 0 and vector ¢ € R", define the (spherical) Gaussian func-
tion on R™ centered at ¢ with parameter s as pso(z) = exp(—7|z — ¢/|?/s?)
for all @ € R™. The normal distribution with mean p and deviation o, de-
noted N (u,0?), assigns to each real number z € R the probability density
flz) = J\}% * Poy/2m,u(T). The n-dimensional (spherical) continuous Gaussian

distribution with center ¢ and uniform deviation o2, denoted N™(c,0?), just
chooses each entry of a dimension-n vector independently from N(c;, 0?).
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The n-dimensional spherical Gaussian function generalizes naturally to el-
lipsoid Gaussians, where the different coordinates are jointly Gaussian but are
neither identical nor independent. In this case we replace the single variance
parameter s> € R by the covariance matrix X € R"*" (which must be positive-
definite and symmetric). To maintain consistency of notations between the spher-
ical and ellipsoid cases, below we let S be a matrix such that ST x S = X. Such
a matrix S always exists for a symmetric X, but it is not unique. (In fact there
exist such S’es that are not even n-by-n matrices, below we often work with such
rectangular S’es.)

For a rank-n matrix S € R™*™ and a vector ¢ € R™, the ellipsoid Gaussian
function on R™ centered at ¢ with parameter S is defined by

psc(x) =exp(—m(x—c) (STS)(x—c)) VxeR™

Obviously this function only depends on X = STS and not on the particular
choice of S. It is also clear that the spherical case can be obtained by setting
S = sl,,, with I,, the n-by-n identity matrix. Below we use the shorthand ps(-)
(or ps(-)) when the center of the distribution is 0.

2.2 Matrices and Singular Values

In this note we often use properties of rectangular (non-square) matrices. For
m > n and a rank-n matrix] X’ € R™*" the pseudoinverse of X' is the (unique)
m-by-n matrix Y’ such that X'y =y'Tx! = I,, and the columns of Y’ span
the same linear space as those of X'. It is easy to see that Y’ can be expressed
as Y/ = X/(X'T X')~1 (note that X’ X’ is invertible since X’ has rank n).

For a rank-n matrix X’ € R™*", denote Ux: = {|| X ul| : v € R", ||u| = 1}.
The least singular value of X' is then defined as 0,,(X’) = inf(U% ) and similarly
the largest singular value of X' is 01(X’) = sup(Uk ). Some properties of singular
values that we use later in the text are stated in Fact [

Fact 1. For rank-n matrices X' Y' € R™*™ with m > n, the following holds:

1. If XX =Y'""Y’ then XY’ have the same singular values.
2. If Y' is the (pseudo)inverse of X' then the singular values of X')Y' are

reciprocals.

3. If X' is a square matriz (i.e., m = n) then X', X'" have the same singular
values.

4. If 01(Y") < 60, (X") for some constant § < 1, then o1 (X' +Y') € [1-4§,1+
0o (X") and o (X' +Y') € [1 — 6,1 + 0]on(X'). O

It is well known that when m is sufficiently larger than n, then the singular values
of a “random matrix” X’ € R™*" are all of size roughly /m. For example,
Lemma [Tl below is a special case of [§, Thm 3.1], and Lemma [2] can be proved
along the same lines of (but much simpler than) the proof of [I7, Corollary 2.3.5].

3 We use the notation X’ instead of X to avoid confusion later in the text where we
will instantiate X' = X 7.
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Lemma 1. There exists a universal constant C' > 1 such that for any m >
2n, if the entries of X' € R™*™ are drawn independently from N(0,1) then
Pro,(X') < vm/C] < exp(—O(m)). |

Lemma 2. There exists a universal constant C' > 1 such that for any m >
2n, if the entries of X' € R™*™ are drawn independently from N(0,1) then
Prlo1(X") > Cy/m] < exp(—O(m)). O

Corollary 1. There exists a universal constant C' > 1 such that for any m > 2n
and s > 0, if the entries of X' € R™ "™ are drawn independently from N(0, s?)
then

Pr[svm/C < on(X') < 01(X') < sCy/m] >1—exp(—O(m)). O

Remark. The literature on random matrices is mostly focused on analyzing the
“hard cases” of more general distributions and m which is very close to n (e.g.,
m = (1 + o(1))n or even m = n). For our purposes, however, we only need the
“easy case” where all the distributions are Gaussian and m > n (e.g., m = n?),
in which case all the proofs are much easier (and the universal constant from
Corollary [T gets closer to one).

2.3 Lattices and Their Dual

A lattice L C R™ is an additive discrete sub-group of R™. We denote by span(L)
the linear subspace of R", spanned by the points in L. The rank of L C R™ is
the dimension of span(L), and we say that L has full rank if its rank is n. In
this work we often consider lattices of less than full rank.

Every (nontrivial) lattice has bases: a basis for a rank-k lattice L is a set of k
linearly independent points by, ..., by € L such that L = {Zle zib; 1 z; € LV},
If we arrange the vectors b; as the columns of a matrix B € R"** then we can
write L = {Bz : z € Z*}. If B is a basis for L then we say that B spans L.

Definition 1 (Dual of a Lattice). For a lattice L C R", its dual lattice
consists of all the points in span(L) that are orthogonal to L modulo one, namely:

L* ={yespan(l) :Vz € L,(x,y) € Z}

Clearly, if L is spanned by the columns of some rank-k matrix X € R™"** then
L* is spanned by the columns of the pseudoinverse of X. It follows from the
definition that for two lattices L C M we have M* Nspan(L) C L*.

Banasczcyk provided strong transference theorems that relate the size of short
vectors in L to the size of short vectors in L*. Recall that \;(L) denotes the i-th
minimum of L (i.e., the smallest s such that L contains ¢ linearly independent
vectors of size at most s).

Theorem 1 (Banasczcyk [2]). For any rank-n lattice L C R™, and for all
i€ [n],
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2.4 Gaussian Distributions over Lattices

The ellipsoid discrete Gaussian distribution over lattice L with parameter S,
centered around c, is

_ pS,c(w)

VaxelL D x )
L7S7C( ) pS,c(L)

where pg c(A) for set A denotes ) 4 ps.c(x). In other words, the probability
Dp,s,c(x) is simply proportional to pg (), the denominator being a normaliza-
tion factor. The same definitions apply to the spherical case, which is denoted by
Drs,c(-) (with lowercase s). As before, when ¢ = 0 we use the shorthand Dy, g
(or Dr,s). The following useful fact that follows directly from the definition,
relates the ellipsoid Gaussian distributions over different lattices:

Fact 2. Let L C R™ be a full-rank lattice, ¢ € R™ a vector, and S € R™*"™,
B € R™ ™ two rank-n matrices, and denote L' = {B~'v :v € L}, ¢/ = B l¢,
and S" = Sx (BT)~L. Then the distribution Dy, s is identical to the distribution
induced by drawing a vector v <~ Dy, ¢/ o and outpulting u = Bv. O

A useful special case of FactPlis when L’ is the integer lattice, L' = Z", in which
case L is just the lattice spanned by the basis B. In other words, the ellipsoid
Gaussian distribution on L(B), v <~ Dr,(p),g,e, is induced by drawing an integer
vector according to z <— Dzn g+ and outputting v = Bz, where §' = S(B~1)T
and ¢/ = B~ 'e.

Another useful special case is where S = sB', so S is a square matrix and
S’ = sI,,. In this case the ellipsoid Gaussian distribution v < Dy, g, is induced
by drawing a vector according to the spherical Gaussian w < Dy, . .~ and out-

,8,C

putting v = 1 STu, where ¢’ = s(ST)"'cand L' = {s(ST)"'v:v € L}.

Smoothing parameter. As in [10], for lattice L and real ¢ > 0, the smoothing
parameter of L, denoted nc(L), is defined as the smallest s such that p;,4(L*\
{0}) < e. Intuitively, for a small enough €, the number 7. (L) is sufficiently larger
than L’s fundamental parallelepiped so that sampling from the corresponding
Gaussian “wipes out the internal structure” of L. Thus, the sparser the lattice,
the larger its smoothing parameter.

It is well known that for a spherical Gaussian with parameter s > n.(L), the
size of vectors drawn from Dy,  is bounded by sy/n whp (cf. [I0, Lemma 4.4],
[12Z, Corollary 5.3]). The following lemma (that follows easily from the spherical
case and Fact [2) is a generalization to ellipsoid Gaussians.

Lemma 3. For a rank-n lattice L, vector ¢ € R™, constant 0 < € < 1 and
matriz S s.t. op(S) > ne(L), we have that for v < Dr, g,

<1+€.
—1—c¢

Pr  ([lv—c| > 01(S)Vn) 27",

'U<_DL,S,c
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Moreover, for every z € R™ r > 0 it holds that

Pr (|(v—ec,z)| >ro1(9)]|z]]) < 2en - exp(—mnr?).

'U<_DL,S,c

The proof can be found in the long version [IJ.

The next lemma says that the Gaussian distribution with parameter s > n.(L)
is so smooth and “spread out” that it covers the approximately the same number
of L-points regardless of where the Gaussian is centered. This is again well known
for spherical distributions (cf. [0, Lemma 2.7]) and the generalization to ellipsoid
distributions is immediate using Fact 2l

Lemma 4. For any rank-n lattice L, real € € (0, 1), vector ¢ € R™, and rank-n

matriz S € R™*™ such that 0,(S) > ne(L), we have ps (L) € [175,1] - ps(L).
O

Regev also proved that drawing a point from L according to a spherical discrete
Gaussian and adding to it a spherical continuous Gaussian, yields a probability
distribution close to a continuous Gaussian (independent of the lattice), provided
that both distributions have parameters sufficiently larger than the smoothing
parameter of L.

Lemma 5 (Claim 3.9 of [14]). Fiz any n-dimensional lattice L C R™, real € €
(0,1/2), and two reals s,r such that \//;152 > ne(L), and denote t = \/r2 + s2.

Let Rp .y be a distribution induced by choosing x < Dy s from the spherical
discrete Gaussian on L and y < N™(0,7%/27) from a continuous Gaussian,
and outputting z = x + y. Then for any point u € R™, the probability den-
sity R rs(w) is close to the probability density under the spherical continuous
Gaussian N™(0,t%/2m) upto a factor o L_ri :

LN (0,82 /2m) (u) < Rpgs(u) < FENT(0,2/27) (u)

In particular, the statistical distance between Ry, . s and N™(0,t2/27) is at most 4e.

More broadly, Lemma [B] implies that for any event F(u), we have

wl-13¢ < Pro [Bw)] < P

1+e
r wu)| -
e = weRp.,s T weN(0,£2/27) )

Pr | 1—¢
weN (0,62 /2m)

Another useful property of “wide” discrete Gaussian distributions is that they
do not change much by short shifts. Specifically, if we have an arbitrary subset of
the lattice, T' C L, and an arbitrary short vector v € L, then the probability mass
of T is not very different than the probability mass of T —v ={u—v :u € T}.
Below let erf(-) denote the Gauss error function.

Lemma 6. Fiz a lattice L C R™, a positive real ¢ > 0, and two parameters
s, ¢ such that ¢ > 2 and s > (14 ¢)n(L). Then for any subset T C L and any

additional vector v € L, it holds that Dy, s(T)—Dp «(T—v) < erf(qge}:(_;q/)C)/Q) Jabe

where ¢ = ||v||/7/s.
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We provide the proof in [A1]
One useful special case of Lemma [6]is when ¢ = 100 (say) and ||v|| = s, where

we get a bound D s(T) — Drs(T —v) < e'iffo(';’\z/‘;)“) . ifi ~ 0.81. We note

that when ”Z” — 0, the bound from Lemma [f] tends to (just over) 1/4, but we
note that we can make it tend to zero with a different choice of parameters in
the proof (namely making H, and HJ thicker, e.g. H] = H, and H, = 2H,).
Lemma [f] extends easily also to the ellipsoid Gaussian case, using Fact

Corollary 2. Fiz a lattice L C R", a positive real € > 0, a parameter ¢ > 2 and

a rank-n matriz S such that s < on(S) > (14 e)ne(L). Then for any subset

T C L and any additional vector v € L, it holds that D s(T) — Dr s(T —

v) < FH/0/2) 1t

— erf(2q) 1—e€’ where q= ||UH\/7T/S

Micciancio and Regev give the following bound on the smoothing parameter in
terms of the primal lattice.

Lemma 7. [Lemma 3.3 of [10]] For any n-dimensional lattice L and positive
real € > 0,

In(2n(1+1/e
In particular, for any superlogarithmic function w(logn), there exists a negligible
function €(n) such that n.(L) < /w(logn) - A, (L).

3 Our Discrete Gaussian LHL

Consider a full rank lattice L C Z™, some negligible ¢ = €(n), the corresponding
smoothing parameter 1 = n.(L) and parameters s > §2(n), m > 2(nlogn), and
s' > 2(poly(n)log(1/¢€)). The process that we analyze begins by choosing “once
and for all” m points in L, drawn independently from a discrete Gaussian with
parameter s, x; < Dr, s

Once the x;’s are fixed, we arrange them as the columns of an n-by-m matrix
X = (z1|x2]. .. |xm), and consider the distribution £x s, induced by choosing
an integer vector v from a discrete spherical Gaussian with parameter s’ and
outputting y = X - v:

def
SX,S' = {X cV LV DZm’sl}. (1)

Our goal is to prove that £x . is close to the ellipsoid Gaussian Dy, o x,
over L. We begin by proving that the singular values of X T are all roughly of
the size sy/ni.

4 More generally, we can consider drawing the vectors @; from an ellipsoid discrete
Gaussian, x; < Dr_ s, so long as the least singular value of S is at least s.

5 Since we eventually apply the following lemmas to X', we will use X' in the
statement of the lemmas for consistency at the risk of notational clumsiness.
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Lemma 8. There exists a universal constant K > 1 such that for all m > 2n,
€ > 0 and every n-dimensional real lattice L C R™, the following holds: choosing
the rows of an m-by-n matriz X independently at random from a spherical
discrete Gaussian on L with parameter s > 2Kn.(L), X" « (DL s)™, we have

Pr [3\/27rm/K<an(XT) <o (X") < sK\/Qﬂ'm] > 1—(4me+O(exp(—m/K))).

The proof can be found in the long version [IJ.

3.1 The Distribution £x , Over Z"

We next move to show that with high probability over the choice of X, the
distribution £x  is statistically close to the ellipsoid discrete Gaussian Dy, o x .
We first prove this for the special case of the integer lattice, L = Z™, and then
use that special case to prove the same statement for general lattices. In either
case, we analyze the setting where the columns of X are chosen from an ellipsoid
Gaussian which is “not too small” and “not too skewed.”

Parameters. Below n is the security parameters and ¢ = negligible(n). Let S
be an n-by-n matrix such that ¢,(S) > 2Kn.(Z"), and denote s; = o01(S),
Sn = on(S), and w = $1/s,. (We consider w to be a measure for the “skewness”
of S.) Also let m, g, s’ be parameters satisfying m > 10nlogq, g > 8m®/2n1/2s 1w,
and s’ > 4wm?3/?n'/?In(1/€). An example setting of parameters to keep in mind
is m = n?, s, = /n (which implies € ~ 27V"), 51 = n (so w = /n), ¢ = 8n7,
and s’ = nb.
Theorem 2. For € negligible in n, let S € R™*™ be a matriz such that s, =
on(S) > 18Kn(Z"™), and denote sy = 01(S) and w = s1/sn. Also let m,s" be
parameters such that m > 10n log(8m5/2n1/231w) and s’ > dwm3/2nt/? In(1/e).
Then, when choosing the columns of an n-by-m matrix X from the ellipsoid
Gaussian over Z", X < (Dzn g)™, we have with all but probability 2-0(m)
over the choice of X, that the statistical distance between Ex o and the ellipsoid
Gaussian Dyn o x7 is bounded by 2e.

The rest of this subsection is devoted to proving Theorem [l We begin by showing
that with overwhelming probability, the columns of X span all of Z™, which
means also that the support of £x o includes all of Z".

Lemma 9. With parameters as above, when drawing the columns of an n-by-m
matriz X independently at random from Dzn g we get X - Z™ = Z™ with all but
probability 2-°0m).

The proof can be found in the long version [IJ.

From now on we assume that the columns of X indeed span all of Z". Now
let A = A(X) be the (m — n)-dimensional lattice in Z™ orthogonal to all the
rows of X, and for any z € Z™ we denote by A, = A,(X) the z coset of A:

A=AX) ¥ (vezm: Xv=0} and 4, = A, (X) & {veZ™: Xv =2}



108 S. Agrawal et al.

Since the columns of X span all of Z™ then A, is nonempty for every z € Z",
and we have A, = v, + A for any arbitrary point v, € A,.

Below we prove that the smoothing parameter of A is small (whp), and use
that to bound the distance between £x o and Dyn o x 7. First we show that if
the smoothing parameter of A is indeed small (i.e., smaller than the parameter
s" used to sample the coefficient vector v), then £x ¢ and Dzn o xT must be
close.

Lemma 10. Fiz X and A = A(X) as above. If s’ > n.(A), then for any point
z € Z"™, the probability mass assigned to z by Ex s differs from that assigned by
Dzn o xv by at most a factor of (1 —¢€)/(1 4+ €), namely

SX,S’ (z) € H_T_:v 1] 'IDZ",S’X—r (z)

In particular, if € < 1/3 then the statistical distance between Ex ¢ and Dzn ¢ x
15 al most 2e.

The proof can be found in Appendix [A2]

The Smoothing Parameter of A. We now turn our attention to proving
that A is “smooth enough”. Specifically, for the parameters above we prove that
with high probability over the choice of X, the smoothing parameter 7.(A) is
bounded below s" = 4wm?/?n'/21n(1/¢).

Recall again that A = A(X) is the rank-(m — n) lattice containing all the
integer vectors in Z™ orthogonal to the rows of X. We extend A to a full-
rank lattice as follows: First we extend the rows space of X, by throwing in
also the scaled standard unit vectors ge; for the integer parameter ¢ mentioned
above (¢ > 8m®?n'/2s,w). That is, we let M, = M,(X) be the full-rank m-
dimensional lattice spanned by the rows of X and the vectors ge;,

My = {X'24+qy:2€2",yeZ™} = {ucZ™:32€Zst.u=X"2z (modq)}

(where we identity Z, above with the set [—q/2,q/2) N Z). Next, let A, be the
dual of M, scaled up by a factor of ¢, i.e.,

Ay = qMy ={v € R" :Yu € M, (v,u) € ¢Z}
={veR":VzeZ;ycZm, 2" X v+ q(v,y) € qZ}

It is easy to see that A C A, since any v € A is an integer vector (so ¢ (v, y) € ¢Z
for all y € Z™) and orthogonal to the rows of X (so z' X -v = 0 for all z € Z7).

Obviously all the rows of X belong to M,, and whp they are linearly inde-
pendent and relatively short (i.e., of size roughly s;4/m). In Lemma [[1] below
we show, however, that whp over the choice of X’s, these are essentially the only
short vectors in M,.

Lemma 11. Recall that we choose X as X < (Dzn g)™, andletw = 01(S) /0, (S)
be a measure of the “skewness” of S. The n + 1°st minima of the lattice M, =
My (X) is at least g/ (4w/mn), except with negligible probability over the choice of
X. Namely, Prx  (p,. oym[Ant1(My) < ¢/(dwy/mn)] < 2790,
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Proof. We prove that with high probability over the choice of X, every vector
in M, which is not in the linear span of the rows of X is of size at least ¢/4nw.

Recall that every vector in M, is of the form X "z + qy for some 2z € Zq and
y € Z™. Let us denote by [v], the modular reduction of all the entries in v into
the interval [—q/2, q/2), then clearly for every z € Zy

X "2l = mf{||X "z +qyll:y € Z™}.

Moreover, for every z € Z7,y € Z™, if X "z 4 qy # [X " 2], then || Xz + qy|| >
q/2. Thus it suffices to show that every vector of the form [X T 2], which is not
in the linear span of the rows of X has size at least ¢/4nw (whp over the choice
of X).

Fix a particular vector z € Zj (i.e. an integer vector with entries in [-¢q/2, ¢/2)).
For this fixed vector z, let iy,ax be the index of the largest entry in z (in absolute
value), and let zp,ax be the value of that entry. Considering the vector v = [X ' 2],
for arandom matrix X whose columns are drawn independently from the distribu-
tion Dzn g, each entry of v is the inner product of the fixed vector z with a random
vector &; <— Dzn g, reduced modulo ¢ into the interval [—¢/2, +¢/2).

Denoting s; = 01(5) and s, = 0,(S), we now have two cases, either z
is “small”, i.e., |zmax| < q/(2s1v/mn) or it is “large”, |zmax| > ¢/(2s1/mn).
By the “moreover” part in Lemma [J (with » = /m), for each x; we have

[{(xi, z)|| < s14/m] 2] except with probability bounded below 27 If z is “small”
then [|z|| < q/(2s1v/m) and so we get

(@i, 2)| < 2] s1vm < q/2

except with probability < 27™. Hence except with probability m2~™ all the
entries of X "z are smaller than ¢/2 in magnitude, which means that [X "z], =
X Tz, and so [X "z], belongs to the row space of X. Using the union bound
again, we get that with all but probability ¢” - m2~"™ < m2~9"/10 the vectors
[X Tz], for all the “small” 2’s belong to the row space of X.

We next turn to analyzing “large” z’s. Fix one “large” vector z, and for
that vector define the set of “bad” vectors © € Z", i.e. the ones for which
[[{(z,x)]4] < ¢/4nw (and the other vectors & € Z" are “good”). Observe that if
x is “bad”, then we can get a “good” vector by adding to it the i,ax th standard
unit vector, scaled up by a factor of 1 =min ([s,], [¢/]22max|] ), since

(2,2 + pei0lal = [[{2,2) + pzmaxlel = plzmax| = [[{z,2)lg| = g/4nw.

(The last two inequalities follow from q/2nw < p|zmax| < q/2 and |[(z,x)],] <
q/(4w+/mn).) Hence the injunction « — = + pe; . maps “bad” x’es to “good”
x’es. Moreover, since the x’es are chosen according to the wide ellipsoid Gaus-
sian Dzn g with 0,(S) = s, > n.(Z"), and since the scaled standard unit
vectors are short, u < s, + 1, then by Lemma [0 the total probability mass
of the “bad” vectors « differs from the total mass of the “good” vectors x +
pe; .. by at most 0.81. It follows that when choosing < Dz~ g, we have
Pry [|[(z, x)]q| < q/(4wy/mn)] < (14 0.81)/2 < 0.91. Thus the probability that
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all the entries of [X " 2], are smaller than ¢/(4wy/nm) in magnitude is bounded
by (0.91)™ = 27017 Gince m > 10nlogq, we can use the union bound to
conclude that the probability that there exists some “large” vector for which
I[X T 2],|l < q/(4wy/mn) is no more than ¢" - 270-14m < 2-0(m),

Summing up the two cases, with all but probability Q*O(m)) over the choice
of X, there does not exist any vector z € Zj for which [X T2], is linearly
independent of the rows of X and yet |[X "2],| < q/(4wy/mn).

Corollary 3. With the parameters as above, the smoothing parameter of A =
A(X) satisfies n.(A) < 8" = dwm>/?n'/21In(1/€), except with probability 2™

The proof can be found in the long version [IJ.
Putting together Lemma [I0 and Corollary Bl completes the proof of Theorem 21
]

3.2 The Distribution £x . over General Lattices

Armed with Theorem [2] we turn to prove the same theorem also for general
lattices.

Theorem 3. Let L be a full-rank lattice L C R™ and B a matriz whose columns
form a basis of L. Also let M € R™" be a full rank matriz, and denote S =
M(BT)™Y, 51 = 01(9), sn = 0a(S), and w = s1/s,. Finally let ¢ be negligible
in n and m,s' be parameters such that m > 10nlog(8m>/?n'/?2s,w) and s’ >
4wm3?nt/2In(1/e).

If s, > ne(Z™), then, when choosing the columns of an n-by-m matriz X from
the ellipsoid Gaussian over L, X < (Dr )™, we have with all but probability
2=0(m) ouer the choice of X, that the statistical distance between Ex ¢ and the
ellipsoid Gaussian Dy, g x v is bounded by 2e.

This theorem is an immediate corollary of Theorem 2] and Fact 2l The proof
can be found in the long version [I].

4 Applications

In this section, we discuss the application of our discrete Gaussian LHL in the
construction of multilinear maps from lattices [5]. This construction is illustrative
of a “canonical setting” where our lemma should be useful.

Brief overview of the GGH Construction. To begin, we provide a very high level
overview of the GGH construction, skipping most details. We refer the reader to
[5] for a complete description. In [5], the mapping a — g* from bilinear maps is
viewed as a form of “encoding” a — Enc(a) that satisfies some properties:

1. Encoding is easy to compute in the forward direction and hard to invert.
2. Encoding is additively homomorphic and also one-time multiplicatively ho-
momorphic (via the pairing).
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3. Given Enc(a), Enc(b) it is easy to test whether a = b.

4. Given encodings, it is hard to test more complicated relations between the
underlying scalars. For example, BDDH roughly means that given Enc(a),
Enc(b), Enc(c), Enc(d) it is hard to test if d = abe.

In [5], the authors construct encodings from ideal lattices that approximately sat-
isfy (and generalize) the above properties. Skipping most of the details, [5] roughly
used a specific (NTRU-like) lattice-based homomorphic encryption scheme, where
Enc(a) is just an encryption of a. The ability to add and multiply then just follows
from the homomorphism of the underlying cryptosystem, and GGH described how
to add to this cryptosystem a “broken secret key” that cannot be used for decryp-
tion but is good enough for testing if two ciphertexts encrypt the same element. (In
the terminology from [5], this broken key is called the zero-test parameter.)

In the specific cryptosystem used in the GGH construction, ciphertexts are
elements in some polynomial ring (represented as vectors in Z"), and addi-
tive/multiplicative homomorphism is implemented simply by addition and mul-
tiplication in the ring. A natural way to enable encoding is to publish a sin-
gle ciphertext that encrypts/encodes 1, y1 = Enc(l). To encode any other
plaintext element a, we can use the multiplicative homomorphism by setting
Enc(a) = a - y; in the ring. However this simple encoding is certainly not hard
to decode: just dividing by y; in the ring suffices! For the same reason, it is also
not hard to determine “complex relations” between encoding.

Randomizing the encodings. To break these simple algebraic relations, the au-
thors include in the public parameters also “randomizers” x; (i = 1,...,m),
which are just random encryptions/encodings of zero, namely x; < Enc(0).
Then to re-randomize the encoding u, = a - y1, they add to it a “random lin-
ear combination” of the x;’s, and (by additive homomorphism) this is another
encoding of the same element. This approach seems to be thwart the simple
algebraic decoding from above, but what can be said about the resulting encod-
ings? Here is where GGH use our results to analyze the probability distribution
of these re-randomized encodings.

In a little more detail, an instance of the GGH encoding includes an ideal
lattice L and a secret ring element z, and an encoding of an element a has the
form e, /z where e, is a short element that belongs to the same coset of L as the
“plaintext” a. The x;’s are therefore ring elements of the form b;/z where the
b;’s are short vectors in L. Denoting by X the matrix with the x; as columns
and by B the matrix with the numerators b; as columns, i.e., X = (z1]...|zm)
and B = (by|...|bm). Re-randomizing the encoding u, = e,/z is obtained by
choosing a random coefficient vector r < Dzm ,« (for large enough ¢*), and
setting

/

B
u = u,+Xr = €t 'r.

z

Since all the b;’s are in the lattice L, then obviously e, + Br is in the same coset
of L as e, itself. Moreover since the b;’s are short and so are the coefficients
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of 7, then also so is e, + Br. Hence ¢’ is a valid encoding of the same plaintext a
that was encoded in u,.

Finally, using our Theorem [ from this work, GGH can claim that the distri-
bution of u is nearly independent of the original u, (conditioned on its coset). If
the b;’s are chosen from a wide enough spherical distribution, then our Gaussian
LHL allows them to conclude that Br is close to a wide ellipsoid Gaussian. With
appropriate choice of ¢* the “width” of that distribution is much larger than
the original e,, hence the distribution of e, + Br is nearly independent of e,,
conditioned on the coset it belongs to.

5 Discussion

Unlike the classic LHL, our lattice version of LHL is less than perfect — instead
of yielding a perfectly spherical Gaussian, it only gives us an approximately
spherical one, i.e. Dy o yv. Here approximately spherical means that all the
singular values of the matrix X T are within a small, constant sized interval. It
is therefore natural to ask: 1) Can we do better and obtain a perfectly spherical
Gaussian? 2) Is an approximately spherical Gaussian sufficient for cryptographic
applications?

First let us consider whether we can make the Gaussian perfectly spherical.
Indeed, as the number of lattice vectors m grows larger, we expect the greatest
and least singular value of the discrete Gaussian matrix X to converge — this
would imply that as m — oo, the linear combination Z;il zix; does indeed
behave like a spherical Gaussian. While we do not prove this, we refer the reader

o [16] for intuitive evidence. However, the focus of this work is small m (e.g.,
m = O(n)) suitable for applications, in which case we do not know how to prove
the same.

This leads to the second question: is approximately spherical good enough?
This depends on the application. We have already seen that it is sufficient for
GGH encodings [5], where a canonical, wide-enough, but non-spherical Gaussian
is used to “drown out” an initial encoding, and send it to a canonical distribu-
tion of encodings that encode the same value. Our LHL shows that one can
sample from such a canonical approximate Gaussian distribution without using
the initial Gaussian samples “wastefully”.

On the other hand, we caution the reader that if the application requires the
basis vectors @1, . .., ., to be kept secret (such as when the basis is a trapdoor),
then one must carefully consider whether our Gaussian sampler can be used
safely. This is because, as demonstrated by [I1] and [], lattice applications
where the basis is desired to be secret can be broken completely even if partial
information about the basis is leaked. In an application where the trapdoor is
available explicitly and oblivious sampling is not needed, it is safer to use the
samplers of [6] or [I3] to sample a perfectly spherical Gaussian that is statistically
independent of the trapdoor.
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A More Proofs

A.1 Proof of Lemma

Proof. Clearly for any fixed v, the set that maximizes Dy, s(T) — Dr (T — v)
is the set of all vectors w € L for which Dy, s(u) > Dy s(u — v), which we

denote by Ty, def {ueL:Dps(u) >Dps(u—v)}. Observe that for any u € L
we have Dr s(u) > Dr s(u — v) iff ps(u) > ps(u — v), which is equivalent to
llu|| < |Ju — v|. That is, v must lie in the half-space whose projection on v is
less than half of v, namely (u,v) < ||v||?/2. In other words we have

Ty ={ucL: (u,v) <|v|?*/2},

which also means that 7, —v = {u € L : (u,v) < —||v[|*/2} C T,. We can
therefore express the difference in probability mass as Dy, (Ty) —Dr,s(Ty —v) =
Dr.s(Ty \ (T — v)). Below we denote this set-difference by

Hy T\ (T —v) = {wel:(uo)e"" 00

That is, H, is the “slice” in space of width ||v| in the direction of v, which is
symmetric around the origin. The arguments above imply that for any set T we
have D, s(T')—Dr,s(T—v) < Dy, s(Hy). The rest of the proof is devoted to upper-
bounding the probability mass of that slice, i.e., D, s(Hy) = Prycop, ,[u € Hy).

To this end we consider the slightly thicker slice, say H, = (1+*)H,,, and the
random variable w, which is obtained by drawing w < Dy, ; and adding to it a
continuous Gaussian variable of “width” s/c. We argue that w is somewhat likely
to fall outside of the thick slice H}, but conditioning on w € H, we have that
w is very unlikely to fall outside of H.. Putting these two arguments together,
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we get that w must have significant probability of falling outside H,,, thereby
getting our upper bound.

In more detail, denoting r = s/c we consider drawing u < Dy, s and z <+
N™(0,72/27), and setting w = w + z. Denoting ¢t = /72 + 52, we have that
s<t<s(l+!)andrs/t >s/(c+1) > ne(L). Thus the conditions of Lemma [l
are met, and we get that w is distributed close to a normal random variable
N™(0,t2/27), upto a factor of at most %fi

Since the continuous Gaussian distribution is spherical, we can consider ex-
pressing it in an orthonormal basis with one vector in the direction of v. When
expressed in this basis, we get the event z € H, exactly when the coefficient
in the direction of v (which is distributed close to the 1-dimensional Gaussian
N(0,t2/27)) exceeds |[v(1+ %)/2| in magnitude. Hence we have

1
Priwe H)J<  Pr fla| <]+
a+N(0,t2/2m) 1-
lollv/r(1+4)\ 1+e¢ lollvr(l+2)\ 1+e
= erf : < erf '
2t 1—¢ 2s 1—¢

On the other hand, consider the conditional probability Prjw € H,|u € H,):
Let H]) = %H,, then if w € H, and z € H}/, then it must be the case that
w = u+ z € H,. As before, we can consider the continuous Gaussian on z in
an orthonormal basis with one vector in the direction of v, and we get

Pr[w € H,|u € Hy] > Pr[z € Hy|u € H,]=Pr[z € H,)]
(18] < 2[|v]|/c]=erf(|lv[|2v/7/cr) = erf(2||v]v7/s)

= Pr
BN (0,72 /2m)

Putting the last two bounds together, we get

e (V70 i)) e

5 ) >Prjw € H)] > Pr[u € Hy,]-Prjw ¢ H,|u € Hy)
s —€

> Priu € Hy] - erf <||U|§\/7r)

erf([lvllvm(14+4/¢)/25) 14

et ([[v]12y//5) - 17¢, as needed.

from which we conclude that Pr[u € H,] <

A.2 Proof of Lemma

Proof. Fix some z € Z". The probability mass assigned to z by Ex s is the
probability of drawing a random vector according to the discrete Gaussian Dzm ¢
and hitting some v € Z™ for which X - v = z. In other words, this is exactly the
probability mass assigned by Dzm ¢ to the coset A,. Below let T'=T'(X) C R™
be the linear subspace containing the lattice A, and T, = T,(X) C R™ be the
affine subspace containing the coset A,:

T=TX)={veR": X -v=0}, and T, =T,(X)={veR": X -v = z}.
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Let Y be the pseudoinverse of X (i.e. XY T = I, and the rows of Y span the
same linear sub-space as the rows of X). Let u, = Y "z, and we note that wu,
is the point in the affine space T, closest to the origin: To see this, note that
u, € T, since X -u, = X xY Tz = 2. In addition, u. belongs to the row space
of Y, so also to the row space of X, and hence it is orthogonal to T'.

Since u is the point in the affine space T, closest to the origin, it follows
that for every point in the coset v € A, we have ||v]|? = ||[uz|? + ||v — uz|?,
and therefore

py (V) = e mlwl/s)? _ p=m(lluzll/s)? | p=rm(llo—uzll/s)? _ psr(Uz) - psr (v —uy).

This, in turn, implies that the total mass assigned to A, by ps is

Ps’ (Az) = Z ps' (V) = po(uz)- Z psr (v —uz) = po(uz)-ps (Az - u@)

vEA, vEA,

Fix one arbitrary point w, € A., and let §, be the distance from u, to that
point, §, = u, —w,. Since A, = w,+ A, we get A, —u, = A—4d., and together
with the equation above we have:

Ps’ (Az) = Ps’ (uz) * Ps’ (Az - uz) = Ps (uz) * Ps (A - 6z)
= ps/(uz) . ps/vaz (A) Lemgam ps/(uz) . ps/ (A) . [i;z, 1]. (3)
As a last step, recall that u, = Y "z where YY T = (XX ")~!. Thus py (u.) =

po (¥ 2) = exp(—rlz VY 2|/5"%) = exp (~nl=T (' X)(' X)) ' 2]) = prorxy 7 (2).

Putting everything together we get

s’ Az
SX,S'(Z):DZW,S’(Az) = P ( )) € p(s'XT)(z)'

Ps’ (A) . [
ps (27

1—e 1
ps (Z™)

1+e? ]

The term pé ‘j’((Z’,L,‘,L)) is a normalization factor independent of z, hence the proba-

bility mass x ¢ (2) is proportional to p(y x7)(2), upto some “deviation factor”

in H;:,l]
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Abstract. This paper investigates the mathematical structure of the
“Isomorphism of Polynomial with One Secret” problem (IP1S). Our pur-
pose is to understand why for practical parameter values of IP1S most
random instances are easily solvable (as first observed by Bouillaguet et
al.). We show that the structure of the equations is directly linked to a
matrix derived from the polar form of the polynomials. We prove that
in the likely case where this matrix is cyclic, the problem can be solved
in polynomial time — using an algorithm that unlike previous solving
techniques is not based upon Groébner basis computation.

1 Introduction

Multivariate cryptography is a sub area of cryptography the development of
which was initiated in the late 80’s [I3] and was motivated by the search for
alternatives to asymmetric cryptosystems based on algebraic number theory.
RSA and more generally most existing asymmetric schemes based on algebraic
number theory use the difficulty of solving one univariate equation over a large
group (e.g. ¢ = y where e and y are known). Multivariate cryptography as for
it, aims at using the difficulty of solving systems of multivariate equations over
a small field.

A limited number of multivariate problems have emerged that can be reason-
ably conjectured to possess intractable instances of relatively small size. Two
classes of multivariate problems are underlying most multivariate cryptosystems
proposed so far, the MQ problem of solving a multivariate system of m quadratic
equations in n variables over a finite field F, - that was shown to be NP-complete
even over Fo for m ~ n [10]- and the broad family of the so-called isomorphism
of polynomials (IP) problems.

Isomorphism of Polynomial problems can be roughly described as the equiv-
alence of multivariate polynomial systems of equations up to linear (or affine)
bijective changes of variables. Two separate subfamilies of IP problems can be
distinguished: isomorphism of polynomials with two secrets (IP2S for short) and
isomorphism of polynomials with one secret (IP1S for short). A little more in

K. Sako and P. Sarkar (Eds.) ASTACRYPT 2013 Part I, LNCS 8269, pp. 117-[[33] 2013.
© International Association for Cryptologic Research 2013
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detail, given two m-tuples a = (a1,...,am) and b = (by,...,by) of polyno-
mials in n variables over K = [y, IP2S consists of finding two linear bijective
transformations S of K™ and T of K™, such that b = ToaoS. Respectively, (com-
putational) IP1S consists of finding one linear bijective transformations S of K",
such that b = a 0 S. Many variants of both problems can be defined depending
on the value of the triplet (n,m, ¢), the degree d of the polynomial equations of a
and b, whether these polynomials are homogeneous or not, whether S and T are
affine or linear, etc. It turns out that there are considerable security and simplic-
ity advantages in restricting oneself, for cryptographic applications, to instances
involving only homogeneous polynomials of degree d and linear transformations
S and T. For performance reasons, the quadratic case d = 2 is most frequently
encountered in cryptography. Due to the existence of an efficient canonical re-
duction algorithm for quadratic forms, instances such that m > 2 must then be
considered. The cubic case d = 3 is also sometimes considered, then instances
such that m = 1 are generally encountered.

Many asymmetric cryptosystems whose security is related to the hardness of
special trapdoor instances of IP2S were proposed in which all or part of the
m-tuple of polynomials b plays the role of the public key and is related by secret
linear bijections S and T to a specially crafted, easy to invert multivariate poly-
nomial mapping a. Most of these systems, e.g. Matsumoto and Imai’s seminal
multivariate scheme C* [I3], but also reinforced variants such as SFLASH and
HFE [I8/16] were shown to be weak because the use of trapdoor instances of
IP2S with specific algebraic properties considerably weakens the general IP2S
problem. A survey of the status of the IP2S problems and improved techniques
for solving homogencous instances are presented in [I] and [4].

The IP1S problem was introduced in [I6] by Patarin, who proposed in the
same paper a zero-knowledge asymmetric authentication scheme named the IP
identification scheme with one secret (IP1S scheme for short). This authenti-
cation scheme is inspired by the well known zero-knowledge proof for Graph
Isomorphism by Goldreich et al. [TI]. It can be converted into a (less practical)
asymmetric signature scheme using the Fiat-Shamir transformation. The TP1S
problem and the related identification scheme were believed to possess several
attractive features:

— The conjecture that the IP1S problem is not solvable in polynomial time was
supported by the proof in [I7] that the quadratic version of IP1S (QIP1S for
short) is at least as hard as the Graph Isomorphism problem (GI) [ , one of
the most extensively studied problems in complexity theory. While the GI
problem is not believed to be NP-complete since it is NP and co-NP and
hard instances of GI are difficult to construct for small parameter values, GI
is generally believed not to be solvable in polynomial time.

— unlike the encryption or signature schemes based on IP2S mentioned above,
the IP1S scheme does not use special trapdoor instances of the IP1S problem

! However as mentioned in the conclusion of this paper, if the flaw recently discovered
by the authors in the corresponding proof in [I7] is confirmed, this casts some doubts
on the fact that Quadratic IP1S is indeed as hard as GI.
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and therefore its security is directly related to the intractability of general
IP1S instances.

The IP1S problem also has some loose connections with the multivariate signa-
ture scheme UOV [12], that has until now remarkably well survived all advances
in the cryptanalysis of multivariate schemes. While in UOV the public quadratic
function b is related to the secret quadratic function by the equation b =a o .S,
both a and S are unknown whereas only S is unknown in the IP1S problem.

Former Results. Initial assessments of the security of practical instances of
the TP1S problem suggested that relatively small public key and secret sizes -
typically about 256 bits - could suffice to ensure a security level of more than 264,
The IP1S scheme therefore appeared to favorably compare with many other zero-
knowledge authentication schemes, e.g [21122]20]. Moreover, despite advances in
solving some particular instances of the IP1S problem, in particular Perret’s
Jacobian algorithnﬁ [19], the four challenge parameter values proposed in 1996
[16] (with ¢ = 2 or 216, d = 2 and m = 2, or d = 3 and m = 1) remained
unbroken until 2011.

Significant advances on solving IP1S instances that are practically relevant for
cryptography were made quite recently [2/]. Dubois in [7] and the authors of [2]
were the first to notice that the IP1S problem induces numerous linear equations
in the coefficients of the matrix of S and of the inverse mapping T = S~1.
When m > 3, the number mn? of obtained linear equations is substantially
larger than the number 2n? of variables. While the system cannot have full
rank since the dimension of the vector space of solutions is at least 1, it can
heuristically be expected to have a very small vector space of solutions that can
be tried exhaustively. The authors of [2] even state that they “empirically find
one solution (when the polynomials are randomly chosen)”.

Therefore the most interesting remaining case appears to be m = 2. It is
shown in [2] that the vector space of solutions of the linear equations is then
isomorphic to the commutant of a non-singular n X n matrix M and that its
dimension r is lower bounded by n in odd characteristic and 2n in even charac-
teristic. The reported computer experiments indicate that r is extremely likely
to be close to these lower bounds in practice. While for typical values of ¢" the
vector space of solutions is too large to be exhaustively searched, one can try
to solve the equation b = a o S over this vector space. This provides a system
of quadratic equations in a restricted variable set of r &~ n (resp. r ~ 2n) coor-
dinates. The approach followed in [2] in order to solve this system consisted of
applying Grobner basis algorithms such as Faugere’s F'4 [8] and related computer
algebra tools such as FGLM [J]. This method turned out to be quite successful:
all the IP1S challenges proposed by Patarin were eventually broken in comput-
ing times ranging from less than 1 s to 1 month. This led the authors of [2] to
conclude that “[the] IP1S-Based identification scheme is no longer competitive

2 This algorithm recovers mn linear equations in the coefficients of S and is therefore
suited for solving IP1S instances such that m ~ n.
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with respect to other combinatorial-based identification schemes”. However, the
heuristic explanation suggested in [2], namely that the obtained system was so
massively over defined that a random system with the same number of random
quadratic equations would be efficiently solvable in time O(n°) with overwhelm-
ing probability, was later on shown to be false by one of the authors of [2], due
to an overestimate of the number of linearly independent quadratic equations.

This is addressed in Bouillaguet’s PhD dissertation [I] where the results of
[2] are revisited. The main discrepancy with the findings of [2] is the observa-
tion that in all the reported experiments in odd and even characteristic, the
number of linearly independent quadratic equations, that was supposed in [2]
to be close to n2, is actually bounded over by a small multiple of n and only
marginally larger than r. The author writes “This means that we cannot argue
that solving these equations is doable in polynomial time. An explanation of this
phenomenon has eluded us so far.” Despite of the surprisingly small number of
linearly independent quadratic equations, nearly all instances are confirmed to
be efficiently solvable for all practical values of n when the size ¢ of the field
is sufficiently small (¢=2 or 3) and still solvable efficiently up to values of n of
about 20. The author writes “For instance, when ¢ = 2 and n = 128 we are
solving a system of 256 quadratic equations in 256 variables over F3. When the
equations are random this is completely infeasible. In our case, it just takes 3
minutes ! We have no clear explanation of this phenomenon.”

Our Contribution. The lack of explanation for the success of the attack — more
precisely the puzzling fact that the number of linearly independent quadratic
equations is close to n in odd characteristic and to 2n in even characteristic and
the even more puzzling fact that nearly all instances are nevertheless solvable —
motivated our research on IP1S. We revisited the former analysis and eventually
found an algebraic explanation of why most random instances of the quadratic
IP1S problem are efficiently solvable that leads to a new method (not based
on Grobuer basis computations) to directly solve these instances. Our analysis
shows in particular that in the likely cases where the characteristic is odd and
the matrix M is cyclic or the characteristic is even and M is similar to a block-
wise diagonal matrix with two equal cyclic 7 x 3 diagonal blocks, the quadratic
equations split up in an appropriate base in small triangular quadratic systems
that can be solved efficiently in polynomial time. The highlighted structure of
the quadratic equations seems to be the essential reason why Grobner basis
computations behave so well on most instances.

The rest of this paper is organized as follows. In Section Bl we present the
problem IP1S, its background and some major mathematical results used in
the following sections. We then discuss in Section [l and Hl the resolution of the
problem over finite fieds of odd, resp. even characteristic.
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2 The Isomorphism of Polynomial Problem with One
Secret

2.1 Notations and First Definitions

Let K be a field; for practical considerations, we shall assume that K is the finite
field F, with ¢ elements, although most of the discussion is true in the general
case.

A (homogeneous) quadratic form in n wvariables over K is a homogeneous
polynomial of degree two, of the form ¢ = Zm:ln_n o jxizj, where the coef-
ficients «; ; belong to K. For simplicity, we write z = (z;) for the vector with
coordinates z;. The quadratic form g can be described by the matrix with general
term oy ;. Note that the matrix representation of a quadratic form is not unique:
two matrices represent the same linear form if, and only if, their difference is
skew-symmetric.

The polar form associated to a quadratic form q is the bilinear form b = P(q)
defined by b(x,y) = q(z + y) — q(z) — ¢(y). This is a symmetric bilinear form.
This can be used to give an intrinsic definition of bilinear forms (which is useful
to abstract changes of bases from some proofs below): given a vector space V', a
quadratic form over V is a function ¢ : V' — K such that

(i) for all z € V and X € K, ¢(\z) = Nq(z);
(ii) the polar form P(q) is bilinear.

For any matrix A, let ‘A be the transpose matrix of A and P(A) be the
symmetric matrix ‘A + A. Then if ¢ is a quadratic form with matrix A, its polar
form has matrix P(A). The quadratic form ¢ is regular if its polar form is not
singular, i.e. if it defines a bijection from V to its dual. In general, we define the
kernel of a quadratic form to be the kernel of its polar form.

From the definition of b = P(q) we derive the polarity identity

2¢q(x) = b(z, x). (1)

This identity obviously behaves very differently when 2 is a unit in K and
when 2 = 0 in K. This forces us to use some quite different methods in both
cases.

If 2 is invertible in K then the polarity identity (I) allows recovery of a
quadratic form from its polar bilinear form. In other words, quadratic forms
in n variables correspond to symmetric matrices.

Conversely, if 2 = 0, then the polarity identity reads as b(z,x) = 0; in other
words, the polar form is an alternating bilinear form. In this case, equality of
polar forms does not imply equality of quadratic forms. Define A(A) as the
matrix of diagonal entries of the matrix A. Then quadratic forms A and B are
equal if, and only if, P(A) = P(B) and A(A) = A(B).

2.2 The Quadratic IP1S Problem

We now state the quadratic IP1S problem and give an account of its current
status after the recent work of [2] and [1].
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Problem 1 (Quadratic IP1S). Given two m-tuples a = (a1,...,a,) and b =
(b1,...,by) of quadratic homogeneous forms in n variables over K = Fg, find
a non-singular linear mapping S € GL,(K) (if any) such that b = a0 S, i.e.
b;=a;08 fori=1,...,m.

Remark 1. In order not to unnecessarily complicate the presentation, our def-
inition of the IP1S problem slightly differd] from the initial statement of the
problem introduced in [16]. Though the name “quadratic homogeneous IP1S”
might be more accurate to refer to the exact class of instances we consider, we
will name it quadratic IP1S or IP1S in the sequel.

If we denote by A;, resp. B; any n X n matrices representing the a;, resp. the b;
and denote by X the matrix representation of S, the conditions for the equality
of two quadratic forms given in Section 2.1. allow to immediately translate the
quadratic IP1S problem into equivalent matrix equations.

— If the characteristic of K is odd: the problem is equivalent to finding an
invertible matrix X that satisfies the m polar equations: P(B;) = ' XP(A4;) X

— If the characteristic of K is even: the problem is equivalent to finding an
invertible matrix X that satisfies the polar and the diagonal equations:
P(B;) = 'XP(A)X; AB;) = A("X A X).

In the following sections we will consider IP1S instances such that m = 2, that
are believed to represent the most “interesting” instances of IP1S as reminded
above. Matrix pencils, that can be viewed as n X n matrices whose coefficients
are polynomials of degree 1 of K[A] represent a convenient way to capture the
above equations in a more compact way. If we denote by A and B the matrix
pencils Ao+ Ay and ABy+ B1, and by extension P(A) and P(B) the symmetric
matrix pencils AP(Ag) + P(A1) and AP (By) + P(Bi), the two polar equations
can be written in one equation: P(B) = *XP(A)X. However, as detailed in the
next section, the theory of pencils is far more powerful than just a convenient
notation for pairs of matrices. See for instance [3].

2.3 Mathematical Background

In this Section we briefly outline a few known definitions and results related to
the classification of matrices and matrix pencils and known methods for solving
matrix equations that are relevant for the investigation the IP1S problem.

3 While in [16] the isomorphism of two m-tuples quadratic polynomials comprising also
linear and constant terms through a non-singular affine transformation was consid-
ered, we consider here the isomorphism of two m-tuples of quadratic forms through
a non-singular linear transformation. This replacement of the original definition by
a simplified definition is justified by the fact that all instances of the initial prob-
lem can be shown to be either easily solvable due to the lower degree homogeneous
equations they induce or efficiently reducible to an homogeneous quadratic instance.
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Basic Facts about Matrices. Two matrices A and B are similar if there
exists an invertible matrix P such that P~'AP = B and congruent if there
exists an invertible P such that *PAP = B.

The matrix A is called cyclic if its minimal and characteristic polynomials are
equal.

For any matrix A, the commutant of A is the algebra C4 of all matrices
commuting with A. It contains the algebra K[A], and this inclusion is an equality
if, and only if, A is cyclic.

For any matrix A, let [[p;" be the prime factorization of its minimal polyno-
mial. Then K[A] is the direct product of the algebras K[x]/p;(x)¢; each of these
factors is a local algebra with residual field equal to the extension field K[xz]/p;.

Pencils of Bilinear and Quadratic Forms. Let V' be a K-vector space and
Q(V) be the vector space of all quadratic forms on V. A projective pencil of
quadratic forms on V is a projective line in PQ(V), i.e. a two-dimensional sub-
space of Q(V). As a projective pencil is the image of the projective line P!
in Q(V), it is determined by the images of the points oo and 0 in P!, which we
write Ag and A.

An affine pencil of quadratic forms is an affine line in Q(V'), or equivalently
a pair of elements of Q(V'). The affine pencil with basis (A, Ag) may also be
written as a polynomial matrix Ay = Ay + AA,. Given a projective pencil A
of Q(V), the choice of any basis (Aec, Ag) of A determines an affine pencil.

A projective pencil is regular if it contains at least one regular quadratic
form. An affine pencil (A, Ao) is regular if Ay is regular; it is degenerate if the
intersection of the kernels of the quadratic forms A) is nontrivial.

If an affine pencil is non-degenerate, then the polynomial det Ay is non-zero;
choosing any A which is not a root of this polynomial proves that the associated
projective pencil is regular (over K itself if it is infinite, and over a finite extension
of K if it is finite). This gives a basis of the projective pencil which turns the
affine pencil into a regular one. We shall therefore assume all affine pencils to be
regular.

Two pencils A, B of quadratic forms are congruent if there exists an invertible
matrix X such that X A, X = B). The case m = 2 of the quadratic IP1S prob-
lem reduces to the Pencil congruence problem: given two affine pencils A and B,
known to be congruent, exhibit a suitable congruence matrix X.

We first note that the IP1S problem easily reduces to the case where both
pencils are regular. Namely, if one (and therefore both) is degenerate, then we
may quotient out both spaces by the (isomorphic) kernels of the pencils; this
defines non-degenerate affine pencils on the quotient vector spaces, which are
still congruent. Since the associated projective pencils are regular, a change of
basis in the pencils (and maybe an extension of scalars) brings us to the case of
two regular affine pencils.

We define pencils of bilinear forms in the same way as pencils of quadratic
forms. The pencil by = by + Abso Tegular if by, is; in this case, the characteristic
endomorphism of the pencil is the endomorphism f = b o by.
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The following lemma allows to decompose pencils as direct sums, with each
factor having a power of an irreducible polynomial as its characteristic endomor-
phism.

Lemma 1. Let b be a reqular pencil of symmetric bilinear forms. Then all pri-
mary subspaces of the characteristic endomorphism f are orthogonal with respect
to all forms of b.

Proof. We have to prove the following: given any two mutually prime factors p, ¢
of f and any z,y € V such that p(f)(z) =0 and ¢(f)(y) = 0, then for all \, we
have by (x,y) = 0. For this it is enough to show that by (z,y) = 0.

Since p, ¢ are mutually prime, there exist u,v such that up + vg = 1. Note
that, for all z,y € V, we have boo(z, fy) = bo(z,y) = bo(y,z) = boo(f,y);
therefore, all elements of K[f] are self-adjoint with respect to boo. From this we
derive the following:

beo (7, ) = boo(z, u(f)p(f)y +v(f)a(f)y)
= boo (u(f)P(f)7,y) + boo(z,v(f)a(f)y) (2)
=0.

Explicit Similarity of a Matrix and Its Transposed. The next result is
intensively used in the sequel to deal with symmetric pencils. Although this
result is classic [23], we are interested with the explicit form given below.

Theorem 1. For any matrix M, there exists a non-singular symmetric matric
T such that *MT = TM.

Proof. Using primary decomposition for M, we may assume that it is of the
form

My 1 0
M = , 3)
0 My

where My is the companion matrix of a polynomial p(A) = A" 4+ Z;L:_Ol pidt. We
then define matrices Ty and T by

p1 o Pa-1l
. . 0 T
To = o , IT'= : (4)
Pn-1 -° TO 0
1 0

One can easily verify that Ty is invertible, symmetric and *MyTy = Ty My, and
that the same is true for T' and M. O
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3 IP1S in Characteristic Different from Two

Let K be a field of characteristic different from twdd. In this case, the polarity
identity (I) identifies quadratic forms with symmetric bilinear forms, or again
with symmetric matrices with entries in K. We shall therefore write a quadratic
pencil A as Ay = Ay + A, where Ag and A, are symmetric matrices.

Proposition 1. Let Ay = Ag + M, By = By + ABs be two regular affine
pencils.

(i) If Ay is congruent to By, then the characteristic matrices
Ma=AAy and Mp= B 'By

are similar.

(ii) Assume that My and Mp are similar and choose P such that P IM,P =
Mp. Then tPA)\P = tPAooP()\ + MB).

(iii) Assume that Ay = Aoo(A+ M) and By = Boo(A 4+ M). Then the solutions
of the pencil congruence problem are exactly the invertible X such that

XM=MX and 'XAxX = Bs. (5)

Proof. (i). Since A is regular, A, is invertible and we may write Ay = Ao (A +
AL Ap); likewise, By = Boo (A + B3 ! By). Choose P such that tPA\P = By,
then

Bo(A+Mp) = 'PA\P = '"PALP(A\+ P 'M4P), (6)

which implies P~'M4P = Mp as required. The same computations prove (ii).
The equations (B follows directly from the equality ‘X Aoo(A + M)X =
EX A X(A + X 1M X). 0

We now restrict ourselves to the case where the characteristic endomorphism
is cyclic.

Proposition 2. Let Ay = Aoxw(A+ M) and By = Boo(A + M) be two regular
symmetric pencils such that the matriz M is cyclic, that is, its minimal and
characteristic polynomials are equal.

Then the solutions X of the pencil congruence problem are the square roots
of A7l By in the algebra K[M].

Proof. Since M is cyclic, its commutant is reduced to the algebra K[M]; there-
fore, all solutions of the congruence problem are polynomials in M.

Since Ay is symmetric, both matrices Ao, and Ag = Axc M are symmetric;
therefore, tMA,, = AsM. Since X is a polynomial in M, we deduce that
also X Ao = An X.

The relation *X A, X = B, may therefore be rewritten as A X? = B,
or X? = A 'Bw. O

4 Although this is not used in cryptography, we mention that this section also applies
verbatim to the case of characteristic zero.
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Theorem 2. Let K be a finite field of odd characteristic and Ay, By be two
reqular pencils of quadrics over K™, congruent to each other, such that at least
one is cyclic (and therefore both are). Then the pencil congruence problem may
be solved using no more than 5(n3) operations in the field K.

Proof. The first step is to reduce to the case of primary components of the
characteristic endomorphism. This may be done, using for example Frobenius
reduction of both matrices A} Ag and B !By, with a complexity of O(n?)
operations. This also provides the change of basis making the characteristic
endomorphism of both pencils to have the same matrix.

There remains to compute a square root of C' = A !B, in K[M], where
now the minimal polynomial of M is p®, with p irreducible. For this we first
write C' as a polynomial g(M); this again requires O(n®) operations. To solve
the equation y? = g(M) in the ring K[M] = K[z]/p(x)¢, we first solve it in the
(finite) residual field K[z]/p(z), with complexity O(n3) again; lifting the solution
to the ring K[M] requires only O(n2) with Hensel lifting. O

Solutions of the IP1S problem are square roots of an element C of the alge-
bra K[M]; therefore, the number of solutions is 2°, where s is the number of
connected components of K[M], that is, the number of prime divisors of the
minimal polynomial of M.

Summary and Computer Experiments. The case where all the elementary
divisors of P(A) are pairwise co-prime — or equivalently where M is cyclic — rep-
resents in practice a quite large fraction of random cases (see for instance [15]).
In this case, as shown above, the number of solutions is exactly 2° where s is
the numbers of elementary divisors and solutions can be efficiently computed
(in polynomial time O(n?)) by our method. The highlighted structure of the
equations also provides some likely explanations of why Grobner basis computa-
tion methods such as those presented in [2] were successful in this case. We give
in next table results (timings) of our MAGMA script SOLVECYCLICODDPC, t is the
mean execution time when solving 100 random cyclic IP1S instances, 7 is the
observed fraction in percent of such “cyclic” instances over random instances.

" - qgn t T

¢ 5920007 05 L b7
3 80 5. 8. 320'282' o 7% 32 1ls.100.
3 12834s. 88 .0 70T (X 65537 8 0.04s. 100,
0 s 95.

81082 155.100. a0 o 0 6553720 Ls. 100.

4 TIP1S in Characteristic Two

Let K be a perfect field of characteristic two. In this case, the polarity iden-
tity (@) shows that the polar form b = P(q) attached to a quadratic form ¢ is an
alternating bilinear form.
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4.1 Pencils of Alternating Bilinear Forms

This paragraph is a reminder of classical results. We refer the reader to [14] for
the proofs.

If b is alternating and nondegenerate, then the vector space V has a symplectic
basis, i.e. a basis (e1,...,€n, f1,..., fn) such that b(e;, f;) = 1 and all other
pairings are zero. In particular, the dimension of V is even. The vector E space
generated by the e; is equal to its orthogonal space E~; such a space is called a
Lagrangian space for b.

We recall that two matrices A and B define the same quadratic form if and
only if P(A) = P(B) and A(A) = A(B).

Although quadratic forms only produce alternating bilinear forms in charac-
teristic two, the following lemma about alternating forms is true in all charac-
teristics. It proves that there exists a basis of V' in which the pencil has the
block-matrix decomposition

¢ - F 0
Aoo:(gé>a AO:(g' 5>, AoolAO:(o tp>' (7)
The matrix F' is called the Pfaffian endomorphism of A.

Lemma 2. Let b = (boo,bo) be a regular pencil of alternating bilinear forms
on V. Then there exists a symplectic basis for bo, whose Lagrangian is stable by
the characteristic endomorphism of b.

Proof. Let f be the characteristic endomorphism of b. By Lemma [l we may
replace V by one of the primary components of f and therefore assume that
the minimal polynomial of f is p™ where p is a prime polynomial. By extending
scalars to K[\]/p(X) and replacing by by Abeo + bg we may assume that p(t) = t.
We now prove the lemma by induction on dim V.

Since t™ is the minimal polynomial of f and b. is non-degenerate, there
exists 2,y € V such that by (z, f"1y) = 1. Let W = K[f]z ® K[f]y. Then we
may write V = W @ W+ where both W and its b.,-orthogonal W+ are stable
by f; since W+ satisfies the lemma by the induction hypothesis, we only need
to prove it for W.

Let a(t) = 1 +ait+---+a,_1t"~! be a polynomial and 2’ = a(f)z. Then we
still have boo (2, "~ 1y) = 1, and moreover we can choose a so that b (2/, fiy) =
0 for alli =0,...,n — 2. In other words, (2, f2',..., f*~ 2/, f* =Yy, "2y, ...,
fy,y) is a symplectic basis for bo, on W. By construction, its Lagrangian is K[ f]z,
which is obviously stable by the characteristic endomorphism f. a

Proposition 3. Let K be a binary field. Any regular pencil of alternating bilin-
ear forms is congruent to a pencil of the form

A= (28), Ao= (2", ®)

where M is in rational (Frobenius) normal form and T is the symmetric matriz
defined in Theorem [
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Proof. From the equation [7, choose a matrix P such that M = P~'FP is

in rational normal form and define T as in Theorem [Il Then the coordinate
P 0 .

change | +p-1 4 ) produces the required form. a

Let A be a pencil as in (§). The automorphism group O(A) of A is the set of
matrices X = <§; §j) such that X AX = A, that is all X; commute with M
and tX1TX4 + thTXQ =1T.

From now, we suppose that M is cyclic and for the sake of simplicity that its
primary decomposition has only one component.

Since M is cyclic, all X; belong to K[M]. The group O(A) is generated by the
elementary transformations

ax) = (1Y), ) =(x1), GEO=(3%), Gi=(1). ©

where X € K[M], X invertible for G3(X). The first three transformations gen-
erate the subgroup of positive automorphisms of A. This is a subgroup of order
two of the orthogonal group [0].

4.2 Pencils of Quadratic Forms

The following proposition deals with the diagonal terms of a quadratic form in
the cyclic case. We recall that, using the notations of Theorem [Il K[Mp] is an
extension field of K, and K[M] is the (local) K[My]-algebra generated by

01 0
H= R I (10)
-
0 0

We write ¢(X) = X? for the Frobenius map of K[Mjp]. Since this is a finite field,
the Frobenius map is bijective. It extends to K[M] as (> z;H") = Y x7H".

Proposition 4. Define matrices M of size n, My, To of size e = n/d as in
Theorem [

(i) The K-linear map K[My] — K¢, X — A(TpX) is an isomorphism.
(ii) For any diagonal matriz D of size e, there exists a (unique) matriz C' =
Yo(D) € K[Mpy| such that, for all X € K[Mo]:

APXDX) = A(ToCX?). (11)
(iii) Let D be a diagonal matriz of size n, written as blocks Dy, ...,Dg_1, and
write X € K[M] as X = Y. z;H" with x; € K[M]. Also define (D) =

S tho(D;)H' € K[M]. Then we have the relation in K[M)]

Y(A('XDX)) = ¢(X) (D). (12)
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Proof. (i) Since 2 =0 in K, for any symmetric matrix A and any X, we have
AXAA)X) = APXAX). (13)

Since the space K[Mp] has dimension e over K, we only have to check injectivity.
Assume A(To ) = 0 with X # 0; since K[Mp] is a field, X is invertible. Let Y =
e (X ~1). We then have

A(Ty) = A(ToXY?) = A(YY (ToX)Y) = A('YA(ToX)Y) = 0. (14)

Let p(z) = po+- - *+pe—12°~ 1 +2° be the minimal polynomial of My. From A(Tp)
= 0 we deduce that p._1 = p._3 = --- = 0, which contradicts the irreducibility
of p.

(ii) Let C' € K[Mp] such that A(C) = D; applying ([3) to the symmetric
matrix ToC' and using the symmetry of Ty My yields

A(ToCX?) = ACXTyCX) = ACXA(ToC)X) = A(PXDX). (15)

(iii) From direct computation we find that the diagonal blocks of !X DX are
B = Y iy jem XiD;jXi; hence A(By,) = > A(Tovo(D;)X?) and o (By) =
22 Po(Dj) p(Xi). 0

For any binary field K, we write p(IK) for the set of elements 22 +x € K. This
is an additive subgroup of K, and the characteristic-two analogue of the set of
squares. For any element « of K[M], we call valuation of regularity of o that we
simply note val(a) the smallest integer m such that there exists an invertible o'
of K[M] such that « = H™d/

Proposition 5. Any regular pencil of quadratic forms is congruent to a pencil

of the form
= (B E). w- (3. o

where M, T are as in Prop.[d and D; are diagonal matrices whose values a; =
Y(D;) satisfy either one or the other of the following two kinds of canonical
forms:

(i) ar = H™, val(ay + az) > m, ag =0 or ag = SHY =™ wval(ay) > m, for
some m € {0,...,d}, and some fized 6 € K[My] ~\ p(K[Mo));

(i) an = H™ or az = H™, vallag + a3) = m, ag = ayq, val(az) > m for some
m € {0,...,d}, and some fized § € K[Mp| \ p(K[M))).

Proof. By Prop. Bl we may compute bases in which the pencils of polar forms
have the form (8). In the same bases the pencils have the form (I6) with M, T,
My, Ty as in Theorem [Il and D; are some diagonal matrices. We now perform
elementary transformations of the orthogonal group of P(A) to simplify the
diagonal part of the quadratic pencil. We use the transformations G;(X) from (@)
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for a matrix X = z¢ + -+ + 24-1 H%1 € K[M]. The effects of the elementary
transformations G;(X) on the coefficients «; are:

Gi1(X): a1 4 a1+ ¢(X)a +Y(ATX)),
ag — as+ (X)) as +P(A(TX)),
Qg < (o, Qg < Oy;

G2(X): az < az+p(X)ar +y(ATX)),
g g+ 9(X) az +P(ATX)),
a1 < o1, Q3 < Qs3;

G3(X): a1+ o(X)a1, az+ o(X 1 as,
a3+ o(X)as, g+ (X1 ay;

Gy: a1 & s, agz<ay.

A direct computation gives

Y(ATMX)) = Z Toi—(a-nH".

. d—1
>,

As in Prop. @l we write D; as d blocks D; ; and define «; ; = ¢oD; ;. From
what we get above we explicit the effects of the elementary transformation G; (X)
on the coefficients «; ;:

d—1
Gi(X): aim< arm+ ‘ Z a27ix§ form < 9
1+j=m

2 .
a1m < Q1m + E Qg T; + Tom—(a—1) form > 5
i+j=m

If all o; = 0, we are done: the pencil is canonical. If not, we search the value
«; with smallest valuation. Using G4, we may assume it is «; or ag. We first
suppose that we have val(a; +a3) > m, that is a; and ag have the same trailing
term. We call this the case (i). Using G3, we may assume oy = H™, and therefore
ag = H™+a, with val(a) > m. We look then for X such that G2 (X)(az) = 0. We
note that the corresponding system is triangular and all equations can be solved
except maybe for this one: ag g—1-m = 1}217172711 + T4—1—2m. Therefore we may
assume that ag = 0 or az = §H417™ for some fixed § € K[M]\ p(K[M]). We
note also that G2(X) does not decrease the valuation of as. We have therefore
by hypothesis val(ay) > m.

We now examine the case (ii) where val(a; + ag) = m. Using again G35, we
may assume that a3 = H™ or ag = H™. Let’s note a; + ag = H™a where
a is invertible. We are looking for X such that G2(X)(a2) = G2(X)(a4). By
hypothesis on the valuation, we can write as + ay = H™a' for some o'. We

naturally choose X = ¢~ (a’a™!). At this stage, we can consider that as = ay.
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However, the condition on the valuation may not hold. If by chance val(ag) > m,
then we are done. If on the contrary val(as) < m, then by using G4, we search
instead for a canonical form of the kind (i). o

Theorem 3. Let K be a finite field with characteristic two. The cyclic case of
the IP1S problem is solvable using O(n®) operations in the field K. Moreover,
in the gemeric case, the IP1S problem has exactly 2° solutions, where s is the
number of components within the primary decomposition of M.

Proof. To solve the IP1S problem for two pencils A and B, we may reduce them
to the same canonical form using Prop. [l using first the primary decomposition.
Following along the proof of the proposition, we see that it is constructive and
that all linear algebra algorithms used require at most O(n?) field operations.

Solutions of the IP1S problem correspond bijectively to automorphisms of the
canonical pencil. In the generic case, the ideal generated by the values (a1, ag)
is the full algebra K[M]; the canonical pencil is then such that that o = 1
and a9 € {0,(5Hd_1}.

For both values of a2, since the equation 2 | + x, ; = 0 has only the
solutions 0 and 1 in each component K[Mp], the IP1S problem has in this case
exactly 2° solutions. a

IP1S Problem for a and b: Summary and Computer Experiments.
Next table gives timings of our MAGMA script SOLVECYCLICEVENIP1S, with the
same convention as for the odd case : 7 represents the observed fraction of cyclic
cases and t the average computing time over these cases.

q n t

9 32 0.07s. 96. L " b
BT 98 90 0.2s. 100.

2128 25 95 g no oo o0

2 256 33.s. 94. 08 U

28 80 20.s. 100.

4
2732035, 100. o5 1 9g 133 <100,

27 32 0.5s. 100.

5 Conclusion and Future Work

We have shown that special instances of the quadratic homogeneous IP1S prob-
lem with m = 2 equations can be solved in polynomial time. These instances are
those where the characteristic endomorphism of the pencil (or its Pfaffian when
the characteristic of the field is 2) is cyclic, and represent in practice a large
fraction of generic instances. In a subsequent work, we studied the case where
the characteristic endomorphism is no longer cyclic and found similar results to
be published — at least for odd characteristic fields. In a work still in progress,
we try to extend these results to QIP1S problem with more than 2 equations,
and therefore expect to confirm that QIP1S is not as hard as GI.
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A Complexity, Timings, and Other Considerations

All the experimental results have been obtained with an Opteron 850 2.2GHz,
with 32 GBytes of Ram. The systems associated with the instance of the prob-
lems and their solutions have been generated using the MAGMA software, version
2.13-15. MAGMA scripts cited in this paper can be obtained from the authors.
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Abstract. The security of public-key encryption (PKE), a widely-used
cryptographic primitive, has received much attention in the cryptology
literature. Many security notions for PKE have been proposed, includ-
ing several versions of CPA-security, CCA-security, and non-malleability.
These security notions are usually defined via a game that no efficient
adversary can win with non-negligible probability or advantage.

If a PKE scheme is used in a larger protocol, then the security of this
protocol is proved by showing a reduction of breaking a certain security
property of the PKE scheme to breaking the security of the protocol. A
major problem is that each protocol requires in principle its own tailor-
made security reduction. Moreover, which security notion of the PKE
scheme should be used in a given context is a priori not evident; the
employed games model the use of the scheme abstractly through oracle
access to its algorithms, and the sufficiency for specific applications is
neither explicitly stated nor proven.

In this paper we propose a new approach to investigating the applica-
tion of PKE, based on the constructive cryptography framework [24125].
The basic use of PKE is to enable confidential communication from a
sender A to a receiver B, assuming A is in possession of B’s public key.
One can distinguish two relevant cases: The (non-confidential) communi-
cation channel from A to B can be authenticated (e.g., because messages
are signed) or non-authenticated. The application of PKE is shown to
provide the construction of a secure channel from A to B from two (as-
sumed) authenticated channels, one in each direction, or, alternatively,
if the channel from A to B is completely insecure, the construction of a
confidential channel without authenticity. Composition then means that
the assumed channels can either be physically realized or can themselves
be constructed cryptographically, and also that the resulting channels
can directly be used in any applications that require such a channel. The
composition theorem of constructive cryptography guarantees the sound-
ness of this approach, which eliminates the need for separate reduction
proofs.

We also revisit several popular game-based security notions (and vari-
ants thereof) and give them a constructive semantics by demonstrating
which type of construction is achieved by a PKE scheme satisfying which
notion. In particular, the necessary and sufficient security notions for the
above two constructions to work are CPA-security and a variant of CCA-
security, respectively.
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1 Introduction

Public-key encryption (PKE) is a cryptographic primitive devised to achieve con-
fidential communication in a context where only authenticated (but not confiden-
tial) communication channels are available [11I34]. The cryptographic security of
PKE is traditionally defined in terms of a certain distinguishing game in which
no efficient adversary is supposed to achieve a non-negligible advantage. There
exists quite a wide spectrum of security notions and variants thereof. These no-
tions are motivated by clearly captured attacks (e.g., a chosen-ciphertext attack)
that should be prevented, but in some cases they seem to have been proposed
mainly because they are stronger than previous notions or can be shown to be
incomparable.

This raises the question of which security notion for PKE is suitable or neces-
sary for a certain higher-level protocol (using PKE) to be secure. The traditional
answer to this question is that for each protocol one (actually, a cryptography
expert) needs to identify the right security notion and provide a reduction proof
to show that a PKE satisfying this notion yields a secure protocol

An alternative approach is to capture the semantics of a security notion by
characterizing directly what it achieves, making explicit in which applications
it can be used securely. The constructive cryptography paradigm [24I25] was
proposed with this general goal in mind. Resources such as different types of
communication channels are modeled explicitly, and the goal of a cryptographic
protocol or scheme 7 is to construct a stronger or more useful resource S from

an assumed resource R, denoted as R —— S. Two such construction steps can
then be composed, i.e., if we additionally consider a protocol i that assumes the
resource S and constructs a resource T', the composition theorem states that

T (] o
R=—S AN §=—T = Rw:>T,

where 1 o m denotes the composed protocol.

Following the constructive paradigm, a protocol is built in a modular fashion
from isolated construction steps. A security proof guarantees the soundness of
one such step, and each proof is independent of the remaining steps. The compo-
sition theorem then guarantees that several such steps can be composed. While
the general approach to protocol design based on reduction proofs is in principle
sound, it is substantially more complex, more error-prone, and not suitable for
re-use. This is part of the reason why it is generally not applied to the design of
real-world protocols (e.g., TLS), which in turn is the main reason for the large
number of protocol flaws discovered in the past. A major goal in cryptography
must be to break the cycle of flaw discovery and fixes by providing solid proofs.
Modularity appears to be the key in achieving this goal.

! Note that this work is orthogonal to the foundational problem of designing practical
PKE schemes provably satisfying certain security notions, based on realistic hardness
assumptions. The seminal CCA-secure PKE scheme based on the DDH-assumption
by Cramer and Shoup [9I0] falls into this category, as do, e.g., [I3I32ITI2TI35].
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In this spirit, we treat the use of PKE as such a construction step. The
contributions of this paper are two-fold. First, we show how one can construct,
using PKE, confidential channels from authenticated and insecure channels (cf.
Section[[J]and Section[3)). Second, we revisit several known game-based security
notions (and variants thereof) and give them a constructive semantics, providing
an explicit understanding of the application contexts for which a given notion is
suitable (cf. Section[[2and Section[]). In Section[[ 3 we describe how our results,
although stated in a simpler setting, capture settings with multiple senders and
the notion of corruption that exists in other frameworks, and in Section [[.4] we
contrast the constructive paradigm with the approach of idealizing the properties
of cryptographic schemes. Related work is discussed in Section

1.1 Constructing Confidential Channels Using PKE

From the perspective of constructive cryptography [24125], the purpose of a
public-key encryption scheme is to construct a confidential channel from non-
confidential channels. Here, a channel is a resource (or functionality) that in-
volves a sender, a receiver, and—to model channels with different levels of
security—an attacker. A channel generally allows the sender to transmit a mes-
sage to the receiver; the security properties of a particular channel are captured
by the capabilities available to the attacker, which might, e.g., include reading
or modifying the messages in transmission.

The parties access the channel through interfaces that the channel provides
and that are specific for each party. For example, the sender’s interface allows
to input messages, and the receiver’s interface allows to receive them. We refer
to the interfaces by labels A, B, and E, where A and B are the sender’s and
the receiver’s interfaces, respectively, and E is the adversary’s interface. In this
work, we consider the following four types of channels (from A to B; channels in
the opposite direction are defined analogously), using the notation from [27]@

— An insecure channel, denoted — —», allows the adversary to read, deliver,
and to delete all messages input at A, as well as to inject its own messages.

— An authenticated channel, denoted e——», still allows to read all messages,
but the adversary is limited to forwarding or deleting messages input at A.

— A confidential channel, denoted —o>—»e, only leaks the length of the messages
but does not necessarily prevent injections.

— A secure channel, denoted e—o—»e, also only leaks the message length, and
only allows the adversary to forward or delete messages input at A.

To use public-key encryption, the receiver initially generates a key pair and
transmits the public key to the sender. The sender needs to obtain the correct
public key, which corresponds to assuming that the channel from B to A is

2 The “o” in the notation signifies that the capabilities at the marked interface, i.e.,
sending or receiving, are exclusive to the respective party. If the “o” is missing, the

adversary also has these capabilities. The ¢-symbol is explained in Section 241
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authenticated (<—c|§) To transmit a message confidentially, the sender then
encrypts the message under the received public key and sends the ciphertext to
the receiver over a channel that could be authenticated or completely insecure.

The exact type of channel that is constructed depends on the type of assumed
channel used to transmit the ciphertext to the receiver: We show that if the
assumed channel is authenticated (e——») and the PKE scheme is ind-cpa-secure,
the constructed channel is a secure channel (e—>»e). If the assumed channel is
insecure (— —») and the PKE scheme is ind-cca-secure, the constructed channel is
only confidential (—o—»e). Using the above notation, for protocols 7 and 7’ based
on ind-cpa and ind-cca encryption schemes, respectively, these constructions can
be written as

’

[, 003] —= eove and [——e,——»] — —oe,

where the bracket notation means that both resources in the brackets are available.

The notion of constructing the confidential (or secure) channel from the two
assumed non-confidential ones is made precise in a simulation-based sense [25/24],
where the simulator can be interpreted as translating all attacks on the protocol
into attacks on the constructed (ideal) channel. As the constructed channel is
secure by definition, there are no attacks on the protocol.

The composability of the construction notion then means that the constructed
channel can again be used as an assumed resource (possibly along with additional
assumed or constructed resources) in other protocols. For instance, if a higher-
level protocol uses the confidential channel to transmit a message together with a
shared secret value in order to achieve an additionally authenticated (and hence
fully secure) transmission of the message, then the proof of this protocol is based on
the “idealized” confidential channel and does not (need to) include a reduction to
the security of the encryption scheme. In the same spirit, the authenticated chan-
nel from B to A could be a physically authenticated channel, but it could also be
constructed by using, for instance, a digital signature scheme to authenticate the
transmission of the public key (which is done by certificates in practice).

1.2 Constructive Semantics of Game-Based Security Notions

Security properties for PKE are often formalized via a game between a hypo-
thetical challenger and an attacker. We assign constructive semantics to several
existing game-based definitions by first characterizing the appropriate assumed
and constructed resources and then showing that the “standard use” of a PKE
scheme over those channels (as illustrated in Section [LT]) achieves the construc-
tion if (and sometimes only if) it has the considered propertyH

In particular, we show that ind-cpa-security is not only sufficient but also nec-
essary for constructing a secure channel from two authenticated channels. For

3 The simple arrow indicates that «—e is a single-use channel, i.e., only one message
can be transmitted.

4 We point out that our negative results do not rule out the existence of other protocols
that are derived from the scheme in some possibly more complicated way; those could
still achieve the respective construction.
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the construction of a confidential channel from an authenticated and an inse-
cure channel, it turns out that ind-cca-security, while sufficient, is unnecessarily
strong. The transformation only requires the weaker notion of ind-rcca-security,
which was introduced by Canetti et al. [§] to avoid the artificial strictness of
ind-cca. We continue the analysis of ind-cca-security and follow up on work by
Bellare et al. [4], where several non-equivalent definitional variants are consid-
ered. We show that only the stricter notions they consider are sufficient for the
channel construction, leaving the exact semantics of the weaker notions unclear.
We also consider non-adaptive CCA-security (ind-ccal) and non-malleability
(nm-cpa). We show that both notions correspond to transformations between
somewhat artificial channels, but might still be useful for specific applications.

1.3 Capturing Settings with Potentially Corrupted Senders

Although our security definitions for public-key encryption are phrased in a set-
ting where there is only one legitimate sender (at the A-interface), our treatment
can be “lifted” to a setting with multiple senders generically, cf. [29]. In a sce-
nario with multiple senders, it is important to formulate the guarantees that are
maintained if one or more of the senders deviate from the protocol because their
machines are controlled by some attacker (or virus). This is captured in most
security frameworks by considering an external adversary that has the capability
of corrupting some of the parties. In the context of PKE and secure communi-
cation, the goal is to still provide confidentiality guarantees to non-corrupted
senders. (If the receiver is corrupted, then no security can be guaranteed.)

The ability of an attacker to act on behalf of corrupted senders means that it
can directly send (bogus) ciphertexts to the receiver, even if the communication
to the receiver is authenticated. This capability corresponds exactly to the case
of assuming only an unauthenticated channel, where the messages are injected
via the E-interface. Hence, our treatment extends to the case of (static) sender
corruption by considering the lifting that relates the interfaces of the parties
in the multi-party scenario to the A-interface in the three-party setting, and
provides all capabilities of the statically corrupted parties also at the E-interface.

In summary, the security of public-key encryption in the presence of poten-
tially (statically) corrupted senders corresponds exactly to the construction of
a confidential channel ——»e from one insecure channel — — and one authen-
ticated channel <—e in the opposite direction, as discussed in Section [[.Il This
implies that in the presence of (static) corruption, ind-rcca security is required
and sufficient both in the case where the channel from the sender to the receiver
is authenticated, and also where it is not authenticated.

1.4 Idealizing Properties vs. Constructing Resources

The security guarantees that one requires from a cryptographic scheme can be
modeled in fundamentally different ways, even within a single formal security
framework. One approach, which underlies the PKE functionality Fexe in [§],
is to idealize the properties of the algorithms that comprise the scheme. Such a
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functionality corresponds to a cryptographic scheme, and its interfaces closely
resemble the interfaces of the algorithms (although, e.g., the private key is never
output by Fpkg). In such a treatment, elements that are essential for using the
scheme, such as the ciphertext or the public key, will still appear in the func-
tionality, but they are idealized in that, e.g., the ciphertext is independent of
the corresponding plaintext; the idealized scheme is unbreakable by definition.

Another—fundamentally different—approach is to explicitly model resources
that are available to one or more parties. The communication channels we
describe in Section [[LTl can be considered network resources; there are also func-
tionalities in the UC framework, such as Fyym or Fge in [7], that can be inter-
preted in this way. More generally, one can also think of randomness, memory, or
even computation as resources of this type. Following the constructive paradigm,
the guarantees of a cryptographic scheme are not a resource, but modeled as
the guarantee that the scheme transforms one (assumed) resource into another
(constructed) resourceld Compared to ideal functionalities of the above type,
the description of resources tends to be simpler and easier to understand. For
example, in the case of public-key encryption, the confidential channel does not
need to specify implementation artifacts such as ciphertexts or public keys.

While both approaches allow to divide the security proof of a composite pro-
tocol into several steps that can be proven independently, only the second ap-
proach enables a fully modular protocol design. Each sub-protocol achieves a
well-defined construction step transforming a resource R into a resource .S, which
abstracts from how S is achieved. A higher-level protocol can thus use such a
resource S independently of how it is obtained, and the construction of S can
be replaced with a different one without affecting the design or proof of the
higher-level protocol. Concretely, a protocol using the resource —o—»e does not
depend on whether or not the channel is constructed by a PKE scheme, whereas
a protocol using the functionality Fpkr will always be specific to this step.

1.5 Related Work

We provide here an abridged comparison with related work. A more comprehen-
sive comparison can be found in the full version of this work.

Game-based security. The study of PKE security was initiated by Goldwasser
and Micali [17], who introduced the notions of indistinguishability and seman-
tic security. Yao’s [36] definition, based on computational entropy, was shown
equivalent to variants of [I7] by Micali et al. [30]. Goldreich [I4/T5] made impor-
tant modifications and also dealt with uniform adversaries. Today’s widely-used

5 By contrast, a typical UC security statement is that a cryptographic scheme imple-
ments some functionality. While statements about hybrid protocols in UC appear
similar to constructive statements, they are less expressive since, e.g., the UC frame-
work technically does not allow to make statements about assuming only bounded
resources, as protocols that use hybrid functionalities can always instantiate arbi-
trarily many functionalities of a given type.
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variant, indistinguishability under chosen-plaintext attack or ind-cpa, has been
strengthened by considering more powerful attackers that can additionally ob-
tain decryptions of arbitrary ciphertexts. This lead to the notions of ind-ccal and
ind-cca2 (e.g., [31I37]). Different variants of ind-cca2-security were compared by
Bellare et al. [4]. Canetti et al. [8] introduced the weaker notion ind-rcca that
suffices for many applications. A second important security property is non-
malleability, introduced by Dolev et al. [I2]. Informally, it requires that an ad-
versary cannot change a ciphertext into one that decrypts to a related message.
Variations of this notion have been considered in subsequent work [3U5].

Real-world/ideal-world security. The idea of defining protocol security with re-
spect to an ideal execution was first proposed by Goldreich et al. [I6]; the concept
of a simulator can be traced back to the seminal work by Goldwasser et al. [18] on
zero-knowledge proofs. General security frameworks that allow the formalization
of arbitrary functionalities to be realized by cryptographic protocols have been
introduced by Canetti [6] as universal composability (UC) as well as by Backes
et al. [B3[I] as reactive simulatability (RSIM). Treatments of PKE exist in both
frameworks. The treatment in UC is with respect to an “ideal PKE” functional-
ity; realizing this functionality is equivalent to ind-cca2-security [§]. Canetti and
Krawczyk [7] formulate UC functionalities that model different types of commu-
nication channels and can be interpreted as network resources; they do not treat
public-key encryption from this perspective. The formalization of the functional-
ities in [33] is closer to our approach, but less modular and hence formally more
complex. In particular, the treatment is restricted to the case where the authen-
ticated transmission of the ciphertexts is achieved by digital signatures instead
of using a generic composition statement. More generally, both frameworks [0]
and [33] are designed from a bottom-up perspective (starting from a selected
machine model), whereas we follow the top-down approach of [25], which leads
to simpler, more abstract definitions and statements.

Maurer et al. [26] described symmetric encryption following the constructive
cryptography paradigm as the construction of confidential channels from non-
confidential channels and shared keys, and compared the security definitions
they obtained with game-based definitions. The goal of this work is to provide a
comparable treatment for the case of PKE. In the same spirit, specific anonymity-
related properties of PKE have been discussed by Kohlweiss et al. [22].

2 Preliminaries

2.1 Systems: Resources, Converters, Distinguishers, and Reductions

At the highest level of abstraction (following the hierarchy in [25]), systems are
objects with interfaces by which they connect to (interfaces of) other systems;
each interface is labeled with an element of a label set and connects to only a
single other interface. This concept of abstract systems captures the topological
structures that result when multiple systems are connected in this manner.
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The abstract systems concept, however, does not model the behavior of sys-
tems, i.e., how the systems interact via their interfaces. Consequently, statements
about cryptographic protocols are statements at the next (lower) abstraction
level. In this work, we describe all systems in terms of (probabilistic) discrete
systems, which we explain in Section

Resources and converters. Resources in this work are systems with three inter-
faces labeled by A, B, and E. A protocol is modeled as a pair of two so-called
converters (one for each honest party), which are directed in that they have an
inside and an outside interface, denoted by in and out, respectively. As a nota-
tional convention, we generally use upper-case, bold-face letters (e.g., R, S) or
channel symbols (e.g., &<—») to denote resources and lower-case Greek letters
(e.g., a, B) or sans-serif fonts (e.g., enc, dec) for converters. We denote by @ the
set of all resources and by X the set of all converters.

The topology of a composite system is described using a term algebra, where
each expression starts from one (or more) resources on the right-hand side and is
subsequently extended with further terms on the left-hand side. An expression
is interpreted in the way that all interfaces of the system it describes can be
connected to interfaces of systems which are appended on the left. For instance,
for a single resource R € &, all its interfaces A, B, and F are accessible.

For I € {A, B, E}, a resource R € &, and a converter a € X, the expression
a’R denotes the composite system obtained by connecting the inside interface
of « to interface I of R; the outside interface of o becomes the I-interface of the
composite system. The system o/ R is again a resource (cf. Figure[llon page I47).

For two resources R and S, [R, S| denotes the parallel composition of R and
S. For each I € {A, B, E}, the I-interfaces of R and S are merged and become
the sub-interfaces of the I-interface of [R,S], which we denote by I.1 and I.2.
A converter a that connects to the I-interface of [R,S] has two inside sub-
interfaces, denoted by in.1 and in.2, where the first one connects to 1.1 of R
and the second one connects to 1.2 of S.

Any two converters a and 8 can be composed sequentially by connecting the
inside interface of 8 to the outside interface of «, written 5 o o, with the effect
that (8o )R = B'a’R. Moreover, converters can also be taken in parallel,
denoted by [a, (], with the effect that [o, 3]/ [R,S] = [o'R, 3S].

We assume the existence of an identity converter id € X' with id/R = R for all
resources R € @ and interfaces I € {A, B, E'} and of a special converter L € ¥
with an inactive outside interface.

Distinguishers. A distinguisher is a special type of system D that connects to all
interfaces of a resource U and outputs a single bit at the end of its interaction
with U. In the term algebra, this appears as the expression DU, which defines
a binary random variable. The distinguishing advantage of a distinguisher D on
two systems U and V is defined as

AP(U,V) := |PIDU = 1] - P[DV = 1]|
and as AP (U, V) := suppep AP (U, V) for a distinguisher class D.
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The distinguishing advantage measures how much the output distribution of
D differs when it is connected to either U or V. There is an equivalence notion
on systems (which is defined on the discrete systems level), denoted by U =V,
which implies that AP(U,V) = 0 for all distinguishers D. The distinguish-
ing advantage satisfies the triangle inequality, i.e., AP (U, W) < AP(U,V) +
AP (VW) for all resources U, V, and W and distinguishers D.

Games. We capture games defining security properties as distinguishing prob-
lems in which an adversary A tries to distinguish between two game systems G,
and G;. Game systems (or simply games) are single-interface systems, which
appear, similarly to resources, on the right-hand side of the expressions in the
term algebra. The adversary is a distinguisher that connects to a game (instead
of a resource). We denote by A the class of all adversaries for games.

Reductions. When relating two distinguishing problems, it is convenient to use a
special type of system C that translates one setting into the other. Formally, C
is a converter that has an inside and an outside interface. When it is connected
to a system S, which is denoted by CS, the inside interface of C connects to the
(merged) interface(s) of S and the outside interface of C is the interface of the
composed system. C is called a reduction system (or simply reduction).

To reduce distinguishing two systems S, T to distinguishing two systems U, V|,
one exhibits a reduction C such that CS = U and CT = V[ Then, for all
distinguishers D, we have AP(U,V) = AP(CS,CT) = APC(S, T). The last
equality follows from the fact that C can also be thought of as being part of the
distinguisher.

2.2 Discrete Systems

Protocols that communicate by passing messages and the respective resources are
described as (probabilistic) discrete systems. Their behavior can be formalized by
random systems as in [23], i.e., as families of conditional probability distributions
of the outputs (as random variables) given all previous inputs and outputs of the
system. For systems with multiple interfaces, the interface to which an input or
output is associated is specified as part of the input or output. For the restricted
(but here sufficient) class of systems that for each input provide (at most) one
output, an execution of a collection of systems is defined as the consecutive
evaluation of the respective random systems (similarly to the models in [6120]).

2.3 The Notion of Construction

Recall that we consider resources with interfaces A, B, and E, where A and
B are interfaces of honest parties and F is the interface of the adversary. We

S For instance, we consider reductions from distinguishing game systems to distinguish-
ing resources. Then, C connects to a game on the inside and provides interfaces A,
B, and FE on the outside.
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formalize the security of protocols via the following notion of construction, which
was introduced in [24] (and is a special case of the abstraction notion from [25]):

Definition 1. Let @ and X be as in Section 21l A protocol ™ = (w1, m2) € X2
constructs resource S € @ from resource R € @ within ¢ and with respect to
distinguisher class D, denoted

()
R — S

<e (availability)
AP (nfrP R, 0FS) < ¢

AP ({78 LFR, 1L FS)
doeX: (security).

The availability condition captures that a protocol must correctly implement
the functionality of the constructed resource in the absence of the adversary. The
security condition models the requirement that everything the adversary can
achieve in the real-world system (i.e., the assumed resource with the protocol)
he can also accomplish in the ideal-world system (i.e., the constructed resource
with the simulator).

An important property of Definition [ is its composability. Intuitively, if a
resource S is used in the construction of a larger system, then the composability
implies that S can be replaced by a construction 7{'7Z R without affecting the
security of the composed system. Security and availability are preserved under

composition. More formally, if for some resources R, S, and T and protocols 7
(m,e) (d.€")
and ¢, R —= S and S —— T, then

(¢om,e+e’)
R —— T,

as well as

([rr,id],&) ([id,=],e)
RU =% U] and [UR —= (U]

for any resource U. More details can be found in [24].

2.4 Channels

We consider the types of channels Channel Name Symbol £(m) inj
shown on the right. Each channel Insecure Channel - m Y
initially expects a special cheat- Confidential Channel —o—se |m| v/
ing bit b € {0,1} at interface £,  Authenticated Channel e—— m x
indicating whether the adversary Secure Channel oowe |m| x

is present and intends to interfere

with the transmission of the messages. The special converter L (cf. Section 2.1])
always sets b = 0. For simplicity, we will assume that whenever L is not present,
all cheating bits are set to 1.
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A channel from A to B with leakage ¢ and message space M C {0,1}* is
a resource with interfaces A, B, and E and behaves as follows{] When the 4t
message m € M is input at interface A, it is recorded as (i,m) and (i, ¢(m))
is output at interface E. When (dlv,4’) is input at interface E, if (¢, m’) has
been recorded, m’ is delivered at interface B. If injections are permissible, when
(inj,m’) is input at interface FE, m’ is output at interface BA

The security statements in this work are parameterized by the number of
messages that are transmitted over the channels. More precisely, for each of the
above channels and each n € N, we define the n-bounded channel as the one
that processes (only) the first n queries at the A-interface and the first n queries
at the E-interface (as described above) and ignores all further queries at these
interfaces. We then require from a protocol that it constructs, for all n € N,
the n-bounded “ideal” channel from the n-bounded assumed channel. Wherever
the number n is significant, such as in the theorem statements, we denote the
n-bounded versions of channels by writing the n on top of the channel symbol

n
(e.g., —o—»e); we omit it in places that are of less formal nature.
Finally, a simple-arrow symbol (e.g., &—) denotes a single-use channel. That
is, only one message may be transmitted.

2.5 Public-Key Encryption Schemes

A public-key encryption (PKE) scheme with message space M C {0,1}* and
ciphertext space C is defined as three algorithms IT = (K, E, D), where the key-
generation algorithm K outputs a key pair (pk, sk), the (probabilistic) encryption
algorithm F takes a message m € M and a public key pk and outputs a cipher-
text ¢ <= Epk(m), and the decryption algorithm takes a ciphertext ¢ € C and a
secret key sk and outputs a plaintext m < Dgy(c). The output of the decryption
algorithm can be the special symbol ¢, indicating an invalid ciphertext.

A PKE scheme is correct if m = Dy (Epk(m)) (with probability 1 over the
randomness in the encryption algorithm) for all messages m and all key pairs
(pk, sk) generated by K.

It will be more convenient to phrase bit-guessing games used in definitions of
PKE security properties as a distinguishing problem between two game systems
(cf. Section [ZT]). We consider the following games, which correspond to the
(standard) notions of ind-cpa (cpa for short), ind-cca2 (cca), ind-ccal (ccal),
ind-rcca (rcca), and nm-cpa (nm) ] Informally, a scheme is secure in the sense of
a notion if efficient adversaries have negligible advantage in distinguishing the
two corresponding game systems.

" If the cheating bit is set to b = 0, all messages input at the sender interface A are
immediately delivered to B.

8 Note that none of the channels prevents the adversary from reordering or replaying
messages sent over the channel. The ¢o-symbol suggests the “internal buffer” in which
the channel stores messages input at A.

9 We consider the so-called real-or-random versions of these games, which are equiv-
alent to the more popular left-or-right formulations (as shown in [2] for symmetric
encryption). For non-malleability, we use an indistinguishability-based version by [5].
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CPA game. Consider the systems G¢™ and G{™ defined as follows: For a PKE
scheme II, both initially run the key-generation algorithm to obtain (pk,sk)
and output pk. Upon (the first) query (chall,m), G¢* outputs an encryption
¢ + Eyx(m) of m and G{™ an encryption ¢ < Ep(1m), called the challenge, of
a randomly chosen message m of length |m)|.

CCA games. For b € {0,1}, system G{=! proceeds as G;™ but additionally
answers decryption queries (dec,c’) before the challenge is output by returning
m’ < Dg(c). G§* answers decryption queries at any time unless ¢’ equals the
challenge ¢ (if defined), in which case the answer is test.

RCCA game. Consider the systems G and G{*® defined as follows: Initially,
both run the key-generation algorithm to obtain (pk,sk) and output pk. Upon
(the first) query (chall,m), both choose a random message m of length |m)|.
G outputs ¢ < Epk(m) and G outputs ¢ < Epk(m). Both systems answer
decryption queries (dec,c’), but if Dg(c’) € {m,m} (if m and m are defined),
the answer is test.

For more details about RCCA-security, see Section or consult [§], where
the notion was introduced.

NM game. Consider the systems G{™ and G|™ defined as follows: Both initially
run the key-generation algorithm to obtain (pk,sk) and output pk. Upon (the
first) query (chall,m), G{™ outputs an encryption ¢ < Ey(m) of m and Gi™
an encryption ¢ < Ep(m) of a randomly chosen message m of length |m].
When a query (dec,cq,...,ce) is input, both systems decrypt ci,...,cp, return
the resulting plaintexts (if any of the ciphertexts equal ¢, the corresponding
plaintexts are replaced by test), and terminate the interaction.

2.6 Asymptotics

To allow for asymptotic security definitions, cryptographic protocols are often
equipped with a so-called security parameter. We formulate all statements in this
paper in a non-asymptotic fashion, but asymptotic statements can be obtained
by treating systems S as asymptotic families {S,}.en and letting the distin-
guishing advantage be a real-valued function of k. Then, for a given notion of
efficiency, one can consider security w.r.t. classes of efficient distinguishers and a
suitable negligibility notion. All reductions in this work are efficient with respect
to the standard polynomial-time notions.

3 Constructing Confidential Channels with PKE

The main purpose of public-key encryption (PKE) is to achieve confidential com-
munication. As a constructive statement, this means that we view a PKE scheme
IT as a protocol, a pair of converters (enc, dec), whose goal is to construct a con-
fidential channel from non-confidential channels. Differentiating between the two
cases where the communication from the sender to the receiver is authenticated
and unauthenticated, this is written as
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(enc,dec) (enc,dec)
[«—e, 003 —= eove (1) and [—e,——] — —ove, (2)
respectively.

In both cases, the single-use channel <—e captures the ability of the sender to
obtain the receiver’s public key in an authenticated fashion. In construction (),
the communication from the sender A to the receiver B is authenticated, which
is modeled by the channel &—<o—». The goal is to achieve a secure channel e—c—»e,
which only leaks the length of the messages sent at interface A. In construc-
tion (@), the communication from A to B is completely insecure, which is cap-
tured by the insecure channel — —. Here, the goal is to achieve a confidential
channel —o—»e, which still hides messages input at the A-interface but also allows
to inject arbitrary messages at F.

In the following, we first show how a PKE scheme IT can be seen as a converter
pair (enc, dec). We then prove that (enc,dec) achieves construction () if the un-
derlying PKE scheme is cpa-secure, and construction (2)) if the underlying PKE
scheme is cca-secure. We also briefly discuss the usefulness of the constructed
channels.

3.1 PKE Schemes as Protocols

Let IT = (K, E, D) be a PKE scheme. Based on IT, we define a pair of protocol
converters (enc, dec) for constructions () and (). Both converters have two sub-
interfaces in.1 and in.2 on the inside, as we connect them to a resource that is
a parallel composition of two other resources (cf. Section 2]).

Converter enc works as follows: It initially expects a public key pk at in.1.
When a message m is input at the outside interface out, enc outputs ¢ < Ey(m)
at in.2. Converter dec initially generates a key pair (pk, sk) using key-generation
algorithm K and outputs pk at in.1. When dec receives ¢’ at in.2, it computes
m’ < Dg(c') and, if m’ # o, outputs m’ at the outside interface out.

3.2 Constructing a Secure from Two Authenticated Channels

Towards proving that the protocol (enc,dec) indeed achieves construction (),
note first that the correctness of II implies that the awvailability condition of
Definition [ is satisfied. To prove security, we need to exhibit a simulator o
such that the assumed resource [<—e, e——»]| with the protocol converters is
indistinguishable from the constructed resource e——»e with the simulator (cf.
Figure [II).

Theorem [I] implies that (enc,dec) realizes () if the underlying PKE scheme
is cpa-secure.

Theorem 1. There exists a simulator o and for any n € N there exists a (effi-
cient) reduction C such that for every D,

AP (enc dec” [, o], o e=ose) < n - APC(GF, GF).
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E1l E2 E1l E2

Fig. 1. Left: The assumed resource (two authenticated channels) with protocol con-
verters enc and dec attached to interfaces A and B, denoted encdec?[«—e, o—o—].
Right: The constructed resource (a secure channel) with simulator o attached to the
E-interface, denoted o”e—o—se. In particular, ¢ must simulate the E-interfaces of the
two authenticated channels. The protocol is secure if the two systems are indistinguish-
able.

Proof. First, consider the following simulator ¢ for interface E of e——»e, which
has two sub-interfaces, denoted by out.l and out.2, on the outside (since the
real-world system has two sub-interfaces at F): Initially, o generates a key pair
(pk, sk) and outputs (1, pk) at out.1. When it receives (i, 1) at the inside interface
in, o generates an encryption ¢ < Ey«(m) of a randomly chosen message m of
length ! and outputs (i,c) at out.2. When (dlv,#’) is input at out.2, o simply
outputs (dlv,4’) at in.

Consider the two systems U := enc*dec”[«—e, k<1>—»] and V := oF 0%:—»0
Distinguishing G¢™ from G{™ can be reduced to distinguishing these two sys-
tems via the following reduction system C’, which connects to a game on the
inside and provides interfaces A, B, and F on the outside (cf. Section [ZT] for
details on reduction systems): Initially, C’ takes a value pk from the game (on
the inside) and outputs (1, pk) at the (outside) E.l-interface. When a message
m is input at the A-interface of C’, it is passed as (chall, m) to the game. The
resulting challenge ¢ is output as (1,¢) at the E.2-interface. When (dlv, 1) is
input at the E.2-interface, C’ outputs m at interface B.

We have C'G¢™ = U and C'G]™ =V, and thus

AP (enctdec?[«—e, o-0-3], o¥ e—c—3e) < n- APC"(U, V)
=n- APC(C'GS?, C'GSP)
=n- APC(GF, GP),

where C := C”C’ and the first inequality follows from a standard hybrid argu-
ment for a reduction system C” (deferred to the full version). O

3.3 Confidential Channels from Authenticated and Insecure Ones

To prove that the protocol (enc, dec) achieves construction (2]), we need to again
exhibit a simulator o such that the assumed resource [«—e, — —| with the pro-
tocol converters is indistinguishable from the constructed resource ——»e with
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the simulator, as done in Theorem [2] which implies that (enc, dec) realizes ([2)) if
the underlying PKE scheme is cca-secure. We defer the proof to the full version.

Theorem 2. There exists a simulator o and for any n € N there exists a (effi-
cient) reduction C such that for every D,

AD(encAdecB[<—o, 77;)]’ O'E 4;;.) S n- ADC( BCa, G‘ica)-

The confidential channel —o—»e is the best channel one can construct from
the two assumed channels. As the F-interface has the same capabilities as the
A-interface at both the authenticated (from B to A) and the insecure channels,
it will necessarily also be possible to inject messages to the receiver via the
E-interface by simply applying the sender’s protocol converter.

3.4 Applicability of the Constructed Channels

The plain use of PKE yields constructions ([Il) and (@), i.e., one obtains the
resources e——»e and —o—»e. Both channels allow the adversary to reorder or
replace the messages sent by A. In practice, where PKE is often used to en-
capsulate symmetric keys, it is important, however, that keys used in various
protocols by different users are independent. Thus, it is more useful to obtain
independent single-use channels [e——e, ..., e——e] and [—e, ..., —e] instead of
o——»e and —o—»e, respectively.

In the authenticated setting, given independent authenticated channels, pro-
tocol (enc,dec) (with only formal modifications) achieves the construction

(enc,dec)

[«—e, 06— ... ] — [e—e, ... 0]
In the unauthenticated setting, however, the analogous construction

(enc,dec)
[¢—e,—, ..., —] - [—e, ..., —e]

is not achieved by (enc,dec) since, due to the absence of authenticity, the ad-
versary can freely take a ciphertext it observes on one of the insecure channels
— and insert it into another one. Thus, the ideal resource cannot consist of
independent channels. This issue can be taken care of by (explicitly) introducing
session identifiers (SIDs). A systematic treatment of handling multiple sessions
and senders can be found in [29].

4 Constructive Semantics of Game-Based Notions

We analyze several game-based security notions from a constructive viewpoint.
We complete the analysis of cpa-security from Section by showing that it is
also necessary to achieve construction ({l). Moreover, we explain why the notion
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of cca is unnecessarily strict for construction (2) and that the construction in
fact only requires the weaker notion of rcca introduced in [§].

Then, we follow up on work by Bellare et al. [4], who compared several variants
of defining cca-security, and showed that only the stricter notions they consider
are sufficient for construction (2). We also provide constructive semantics for
non-adaptive chosen-ciphertext security and non-malleability.

4.1 CPA Security Is Necessary for Construction (I

We prove in Section that indistinguishability under chosen-plaintext attacks,
cpa-security, suffices to construct a secure channel from two authenticated chan-
nels. Here, we show that it is also necessary. That is, if protocol (enc, dec), based
on a PKE scheme IT as shown in Section Bl achieves the construction, then I7
must be cpa-secure.

In the following, let

U := encAdecB[<—o7 ~——% and V = cFeove,

where o is an arbitrary simulator.

Theorem 3. There exist (efficient) reductions Co and C1 such that for all ad-
versaries A,

AX(GH, GP) < A% (U, V) + AU, V).

Proof. Consider the following reduction systems Cy and Cy, both connecting to
an {A, B, E}-resource on the inside and providing a single interface on the out-
side (for the adversary): Initially, both obtain (1, pk) at the inside E.l-interface
and output pk at the outside interface. When (chall,m) is received on the out-
side, Cy outputs m at the inside A-interface and C; a randomly chosen message
m of length |m|. Subsequently, (1,c¢) is received at the inside F.2-interface, and
¢ is output (as the challenge) on the outside by both systems. We have

CoU = G™ and C,U=G"™ and C)V=0C,V,

where the last equivalence follows from the fact that, in V, the input from
e——»e to o is the same in both systems (the length of the message input at the
A-interface of e—o—»e), and therefore they behave identically. Hence,

AA(GBPG’ Gipa) = AA(COU7 ClU)
< AR(CoU, CyV) + AA(CyV,C V) 4+ AA(C,V, C,U)
= AAC(U, V) 4+ AACH(U, V).
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4.2 RCCA Security Is Necessary for Construction (2]

Indistinguishability under chosen-ciphertext attacks, cca-security, suffices to con-
struct a confidential channel from an authenticated and an insecure one (cf. Sec-
tion B3)). It is, however, unnecessarily strict, as can be seen from the following
example, adapted from [8]: Let IT be a PKE scheme and assume it is cca-secure.
Consider a modified scheme [T’ that works exactly as IT, except that a 0-bit is
appended to every encryption, which is ignored during decryption. It is easily
seen that IT’ is not cca-secure, since the adversary can obtain a decryption of
the challenge ciphertext by flipping its last bit and submitting the result to the
decryption oracle. PKE scheme II’ can, however, still be used to achieve con-
struction (2)) using a simulator that issues the dlv-instruction to —o—»e whenever
a recorded ciphertext is received at the outside interface or one where flipping
the last bit results in a recorded ciphertext (cf. full version for more details).
Canetti et al. [8] introduced the notion of replayable chosen ciphertext security,
rcca, which is more permissive in that it allows the adversary to transform a
ciphertext into one that decrypts to the same message. In the full version of
this paper, we show that if protocol (enc,dec), based on a PKE scheme IT (cf.
Section [B), achieves (@), then II must be rcca-secure, and that rcca is also
sufficient for the construction if the message space of IT is sufficiently large.

4.3 Variants of Chosen-Ciphertext Security

Bellare et al. [4] analyze several ways of enforcing the condition that the adver-
sary must not query the challenge ciphertext ¢ to the decryption oracle. They
consider modifications along two axes: First, the condition can be enforced dur-
ing the entire game (b for both phases) or only in the second phase (s for second
phase), i.e., after the ¢ has been given to the adversary. Second, one can ei-
ther exclude adversaries with a non-zero probability of violating the condition
from consideration (e for exclusion) or penalize an adversary (by declaring the
game lost) whenever he asks the challenge ¢ (p for penalty). The combination of
these choices yields four non-equivalent notions ind-cca-sp, ind-cca-se, ind-cca-bp,
ind-cca-be. The s-notions are equivalent to each other and to our formulation of
cca-security (cf. Section 2H). The e-notions are strictly weaker and do in fact
not even imply ccal-security [4]. Since ccal-security is weaker than rcca-security
and rcca is needed for construction (2), they are not sufficient for (2.

4.4 Non-malleability

Informally, a non-malleable PKE scheme is such that the adversary cannot trans-
form a ciphertext into one that decrypts to a related message. We consider the
notion of non-malleability under chosen-plaintext attacks, nm-cpa, and show that
from a PKE scheme with this property we can build a protocol (enc”, dec”) that
achieves the construction

(enc”’ ,dec”’)
[+—e, — =] —— —o—e, (3)
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where — — works like — —» but halts when halt is input at B and where the
channel —o—»e is defined as follows: It internally keeps an initially empty list £
of messages. When the i*" message m is input at interface A, it is recorded as
(i,m) and (4, |m|) is output at interface E. When (dlv,¢’) is input at interface E
and if (i, m’) has been recorded, m’ is appended to £. When (inj,m’) is input
at interface F, m’ is appended to £. When dlv-all is input at B, all messages in
L are output at B, and the channel halts.

The protocol converters (enc”,dec”) are built as (enc,dec) in Section B.I]
except that dec” only outputs the messages it received once dlv-all is input at
the outside interface, at which time it also outputs halt at its inside interface
and halts. In the full version of this paper, we prove that (enc”,dec”) achieves
construction (@) if IT is nm-cpa-secure.

The assumed channel — —» could itself be constructed in a setting where A
and B have synchronized clocks and B buffers all messages until an agreed point
in time, when A also stops sending. By the composition theorem, the channel
that is constructed in this manner can then serve as the assumed channel in
construction ([3) to construct the channel ——»e using PKE. This channel may
then for instance be useful for running a protocol implementing a blind auction.

4.5 Non-adaptive Chosen-Ciphertext Security

ind-ccal-security, is defined via a game G°?!, which works as G except that no
decryption queries are answered once the adversary has been given the challenge
ciphertext. The most natural way to translate this into a constructive statement
is to consider the construction of a (type of) confidential channel o——»e where
the adversary can inject messages at interface F only as long as no message has
been input at A from an insecure channel o— — with the same property.

In the full version of this paper, we show that protocol (enc,dec) built from a
ccal-secure PKE scheme IT as in Section 3] achieves

(enc”’ ,dec’’)
[+—e, 0— —»] —— o—0—»e. (4)
Although this construction seems artificial, as with construction (8], it can be
used in any setting where the assumed channel is an appropriate modeling of an
available physical channel (or can itself be constructed from such a channel).

5 Conclusions

The purpose of this paper is to present the basic ways of applying PKE (within a
larger protocol) as constructive steps, to be used for the modular design of com-
plex protocols, thus taming the complexity of security-protocol design. To be
ultimately applicable to full-fledged real-world protocols, other relevant crypto-
graphic primitives also need to be modeled in the same way. While for symmetric
encryption and MACs this was explained in [28/26], and for commitments in [25],
treating digital signatures and other cryptographic schemes and security mecha-
nisms (sequence numbers, session identifiers, etc.) in constructive cryptography
is left for future work (cf. [29]).
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Abstract. The equivalence of the random-oracle model and the ideal-
cipher model has been studied in a long series of results. Holenstein,
Kiinzler, and Tessaro (STOC, 2011) have recently completed the pic-
ture positively, assuming that, roughly speaking, equivalence is indiffer-
entiability from each other. However, under the stronger notion of reset
indifferentiability this picture changes significantly, as Demay et al. (EU-
ROCRYPT, 2013) and Luykx et al. (ePrint, 2012) demonstrate.

We complement these latter works in several ways. First, we show
that any simulator satisfying the reset indifferentiability notion must be
stateless and pseudo deterministic. Using this characterization we show
that, with respect to reset indifferentiability, two ideal models are either
equivalent or incomparable, that is, a model cannot be strictly stronger
than the other model. In the case of the random-oracle model and the
ideal-cipher model, this implies that the two are incomparable. Finally,
we examine weaker notions of reset indifferentiability that, while not
being able to allow composition in general, allow composition for a large
class of multi-stage games. Here we show that the seemingly much weaker
notion of 1-reset indifferentiability proposed by Luykx et al. is equivalent
to reset indifferentiability. Hence, the impossibility of coming up with a
reset-indifferentiable construction transfers to the setting where only one
reset is permitted, thereby re-opening the quest for an achievable and
meaningful notion in between the two variants.

1 Introduction

Idealized Models. The standard approach to cryptographic security is to reduce
the security of a scheme to a (hopefully) well-studied algebraic or combinatorial
complexity assumption. Unfortunately, a large number of cryptographic schemes
does not admit a security reduction in the standard model. In these cases, the
community often resorts to an idealized model, where we can sometimes obtain
a proof of security. It is, of course, highly controversial whether or not proofs
in idealized models are acceptable, but there is a tendency to prefer an analysis
in an idealized model over the utter absence of any proof at all—in particular,
when one is concerned with schemes that are widely deployed in practice [BJ69].

Arguably the most popular model of this kind is the random-oracle model
(ROM) where all parties have oracle access to a public, randomly chosen func-
tion [4]. Somewhat related is the ideal-cipher model (ICM) which gives all parties
oracle access to a public, randomly chosen (keyed) blockcipher [21]. Knowing
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© International Association for Cryptologic Research 2013
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that there is a close relation between pseudorandom functions and pseudoran-
dom permutations—namely existential equivalence—one could suspect that the
random-oracle model and the ideal-cipher model are equivalent, too. However,
formalizing the notion of equivalence is delicate and so are the proofs.

Equivalence of the ROM and ICM under Indifferentiability. Maurer, Renner and
Holenstein [19] introduced the concept of indifferentiability, which since then has
been regarded as the prevalent and actually only notion of equivalence between
ideal primitives. A construction G™ with access to some primitive 7 is called
indifferentiable from another ideal primitive I7, if there is a simulator S such
that the construction G™ implements an oracle that is indistinguishable from
II, even if the distinguisher D additionally gets access to w. Now, demanding
the distinguisher D to distinguish (G™, ) from IT is of little sense. Additionally
to the oracle II, the distinguisher gets access to the simulator & which tries
to emulate 7’s behavior consistently with I7. Thus, the distinguisher tries to
distinguish the pair of oracles (G™, ) from the pair of oracles (11, S™).

In the case of the ideal-cipher model and the random-oracle model, consider-
able effort has led to a proof of equivalence [ITJI2|T7] under indifferentiability.
The reason why indifferentiability was considered a suitable notion of equiva-
lence is the appealing composition theorem established by Maurer et al. [19].
Namely, they transform any reductionist argument in the presence of the ideal
primitive IT into a proof that relies on the existence of 7 only. Their theorem,
thus, transforms a reduction R into a reduction R’, where the latter locally im-
plements a single copy of the simulator §. Jumping ahead, it will turn out that
in this step, they rely on an implicit assumption.

Multi-Stage Adversaries. Ristenpart et al. [20] were the first to point out sce-
narios where indifferentiability of G™ from II was not sufficient to replace IT
by G™. Their counterexamples involve adversaries that run in multiple stages,
i.e., an adversary A consists of two or more sub-adversaries, say A = (A1, A2),
that do not share state (or at least not arbitrary state). Now, a reduction R
that reduces to such a multi-stage game also needs to be split into two parts
(R1,R2) where the same restriction upon the sharing of state applies. Hence,
for the composition theorem by Maurer et al., each part of the reduction Ry and
R2 needs to implement its own, independent copy of the simulator S. However,
in this case, the two copies of the simulator will not necessarily behave in the
same way as opposed to the “real” primitive w which is, roughly, what makes
the composition theorem collapse in the setting of multi-stage games.
Curiously, their composition holds in the presence of strong, colluding adver-
saries, while it does not in the setting of weaker, non-colluding ones. Usually in
cryptography, a conservative approach corresponds to considering the strongest
possible adversary, as a primitive that is secure against a strong adversary is also
secure against a weaker adversary. However, the indifferentiability composition
theorem is not, by itself, a security model or a proof of security. Instead, it is
a tool to transform any proof in a security model in the presence of one ideal
primitive into a security proof in the same security model in the presence of
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another ideal primitive. Hence, one tries to cover any type of security model,
which, in particular, includes security models where stage-sharing adversaries
can mount trivial attacks. And thus, a conservative approach in the setting of
indifferentiability demands including also weaker, namely non-colluding state-
sharing adversaries. Technically, the composition theorem is harder to prove for
weaker adversaries, because it transforms an adversary of one type into another
adversary of the same type. Considering a stronger adversary corresponds to a
stronger assumption in the theorem, but also to a harder statement to prove,
and vice versa for weaker adversaries.

One might hope that the distinction is of technical interest only. Unfortu-
nately, as we argue, in basically all real-life scenarios, we need to consider multi-
stage adversaries. Ristenpart et al. give several examples of multi-stage games
for notions such as deterministic encryption [IJ2], key-dependent message secu-
rity [8], related-key attacks [3], and non-malleable hash functions [I0]. On the
other hand, many classical notions of security seem inherently single stage: IND-
CPA or IND-CCA security for encryption, or signature schemes which are ex-
istentially unforgeable under (adaptive) chosen message attacks. However, any
classical definition of security becomes multi staged if it is augmented with a
leakage oracle. The reason is that, in the random oracle model, every party
should have access to the random oracle. In particular, this includes the leakage
oracle and the adversarially specified leakage function, resulting in an implicit
second stage [14]. Hence, whenever side-channel attacks are reflected in a model,
adversaries act at least in two stages—and for real-life applications, we cannot
discard side-channel attacks.

In order to cope with the new challenge of multi-stage adversaries, Ristenpart
et al. put forward a strengthened notion called reset indifferentiability. Roughly
speaking, in this game, the distinguisher may reset the simulator’s internal state
between any two queries. Returning to ROM/ICM equivalence, an inspection of
the simulators defined in [I1] and [I7] (as well as [12], for that matter) reveals
that their behavior varies substantially with their state and, thus, they are not
reset indifferentiable.

Equivalence of the ROM and ICM under Reset Indifferentiability. As plain in-
differentiability is not sufficient to argue that two primitives are equivalent, the
question regarding the ideal cipher model and the random oracle model is, thus,
again open. Building on first negative results from [20], the authors of [I3/I8]
have recently shown that reset-indifferentiable constructions cannot be built via
domain extension, thereby ruling out constructions from ideal ciphers that are
reset indifferentiable from a random oracle; note that random oracles are usually
perceived as having an infinite domain while ideal ciphers have a finite domain.
With this result at hand, we thus know that ideal ciphers cannot be used to
obtain random oracles via a reset-indifferentiable construction, but it might still
be possible to construct an ideal cipher from a random oracle, i.e., either the
two models are entirely incomparable, or the random-oracle model is strictly
stronger.
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We rule out such a possibility. Our so-called duality lemma establishes that if
there is no construction GT that is reset indifferentiable from primitive II, then
also vice versa, there is no construction G4 that is reset indifferentiable from
primitive w. Hence, our theorem complements the results by Demay et al. and
Luykx et al. [I3II8] showing that there can also not be a domain-shrinking
construction.

Proving that according to plain indifferentiability, the ICM and ROM are
equivalent had been a serious challenge and finally involved a Feistel network
with many rounds. A Feistel network is a domain-doubling construction, and
is thus ruled out by the previous impossibility results. The few leverages that
remain to bypass the current impossibility results possibly require quite new
techniques. Firstly, it might still be possible to build a construction that is
neither domain shrinking, nor domain extending. However, as we will see later,
that means settling either direction (RO from IC and vice versa) simultaneously,
and this might be quite challenging. The second leverage is a distinction that has
been irrelevant in most works in the area of indifferentiability so far and that we
would like to point out. Namely, strong indifferentiability requires the simulator
S to work for any distinguisher D, while weak indifferentiability only demands
that for every D, there exists a good simulator S. Known constructions are
usually strongly indifferentiable, while most existing impossibility results rule out
even weakly indifferentiable constructions. In contrast, we do not rule out weakly
indifferentiable constructions. It would be interesting to see techniques that make
non-black-box use of the distinguisher D and establish a reset-indifferentiable
construction that is domain shrinking.

Notions between indifferentiability and reset indifferentiability. From the cur-
rent state-of-the-art, there are two ways to proceed: firstly, we can develop new
techniques to exploit the few remaining leverages left to bypass the existing
impossibility results. Secondly, we might weaken the notion of reset indifferen-
tiability as introduced by Ristenpart et al., to a notion that is achievable by
constructions and which is sufficient for a subclass of multi-stage games.

Demay et al. [I3] introduce resource-restricted indifferentiability where adver-
saries may share a limited amount of state. If a certain amount s of shared state
is allowed, then their impossibility result shows that a reset-indifferentiable con-
struction cannot extend the domain by more than s + [log(s)] bits. Maybe the
additional bits allow to bypass the impossibility results more easily, as proving
domain extension by a few bits might be easier than requiring equality of the
domain sizes—however, in this setting, the composition results accounts for a
certain class of games only.

Another approach that has been put forward by Luykx et al. [18] is to reduce
the number of resets. Indeed, allowing for a polynomial number of resets/stages
seems to be an overkill, as some games such as the security model for determin-
istic encryption [1l2] and also certain forms of leakage require a constant number
of adversarial stages only. To this end, Luykx et al. propose the notion of single-
reset indifferentiability where a distinguisher can make a single reset call only;
naturally, a construction that is single reset indifferentiable would be sufficient
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in any security game consisting of exactly two distinct adversarial stages such as
deterministic encryption. Analogously, one can define n-reset indifferentiability
for n + 1 adversarial stages.

However, as we prove, single-reset indifferentiability is already equivalent to
full-reset indifferentiability and so are all notions of n-reset indifferentiability.
Hence, reducing the number of allowed reset queries does not help us to es-
tablish composition results for a restricted class of games. Thus, if a general
indifferentiability result is indeed impossible, then it is a curious open question
how to cope with the uncomfortable situation. It might be possible to establish
indifferentiability results and composition theorems for a class of games that is
restricted in another way than by the number of queries. Indeed, it would be in-
teresting to see how such a class could look like and whether there are games for
which, in general, finding a suitable, indifferentiable construction is impossible.

Summary of our Contributions. We first introduce the notion of pseudo-determi-
nistic algorithms, which captures, that a probabilistic algorithm almost always
returns the same answer on the same queries and thus shares many properties
with deterministic algorithms. Essentially, a probabilistic (and possibly state-
ful) algorithm A is called pseudo deterministic, if no efficient distinguisher with
black-box access to A can make A return two different answers on the same in-
put. This notion of pseudo determinism can be seen as an average-case version of
the pseudo-deterministic algorithms that were recently introduced by Goldreich,
Goldwasser, and Ron [I6]. While they require probabilism to be hard to detect
on any input, we only require indistinguishability for efficiently generatable in-
puts, on the average. As stressed by Goldreich et al. [16], pseudo-deterministic
algorithms are practically as useful as deterministic algorithms, but they are also
easier to construct—which we indeed exploit in our paper.

We will show in Section [B] that simulators for reset indifferentiability need to
be stateless and pseudo deterministic. Simplifying pseudo determinism to de-
terminism for the moment, this allows us to establish what we call the duality
lemma. Perhaps surprisingly, it states that, with respect to reset indifferentiabil-
ity, two idealized models are either equivalent or incomparable. The reason is that
a deterministic and stateless simulator can act as a construction and vice versa.
Consequently, in order to prove equivalence in terms of reset indifferentiability,
this lemma makes it sufficient to prove the “easier” direction, whichever this
might be. In turn, for impossibility results, one might use this as a tool to prove
impossibility more easily. In fact, we use the duality lemma to establish that not
only domain-extending constructions are impossible, but also domain-shrinking
constructions (Section @) thereby complementing the results of [I3]. Note that
the duality lemma covers strong indifferentiability, leaving non-black-box use of
the distinguisher as a potential leverage to bypass this impossibility.

The recently proposed [18] notion of single-reset indifferentiability intends to
define a notion of indifferentiability that is easier to achieve and simultaneously
covers an interesting class of multi-stage games that has two adversary stages
only. Interestingly, as we establish, restricting the number of resets does not
yield a weaker notion of equivalence. We prove that single- (and n-) reset
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indifferentiability is equivalent to reset indifferentiability (Section[(]). Maybe sur-
prisingly, our proof does not rely on a hybrid argument; instead, we establish a
tight reduction that merely reduces the distinguisher’s advantage by a factor of 2.

2 Preliminaries

For a natural number n € N we denote by {0,1}"™ the set of all bit strings of
length n. By {0,1}* we denote the set of all bit strings of finite length. As usual
|M| denotes the cardinality of a set M and logarithms are to base 2. For some
probabilistic algorithm A4 and input x we denote by A(x; R) the output of A on
z using randomness R. Throughout this paper we assume that A is a security
parameter (if not explicitly given then implicitly assumed) and that algorithms
(resp., Turing machines) run in polynomial time with respect to .

In this paper we consider random oracles and ideal ciphers (defined below)
which we will collectively refer to as ideal primitives. Although we present most
of the results directly for ideal ciphers and random oracles, the following more
general notion of ideal primitives allows us to generalize some of our results:

Definition 1. An ideal primitive Iy is a distribution on functions indexed by
the security parameter X. For some algorithm A, security parameter X and ideal
primitive ITy we say that A has access to IT if A has oracle access to a function
f chosen from the distribution II.

We simply write I1, i.e., omit the security parameter, if it is clear from the
context.

Remark 1. We will usually encounter only single instances of an ideal primitive
II at a time. Unless stated otherwise, if multiple parties have access to I, then
we implicitly assume that the corresponding function f was chosen from the
distribution IT using the same randomness for all parties, i.e., all parties have
oracle access to the same function f.

Random Oracles and Ideal Ciphers. A random oracle (Rg,)x is the uniform
distribution on all functions mapping {0,1}¢ to {0,1}™ with ¢ := ¢()\) and
m = m(A). An ideal cipher (£ n)x is the uniform distribution on all keyed
permutations of the form {0, 1}* x {0,1}" — {0,1}" with k := k()\) and n :=
n(\). That is, for a cipher in the support of (€ ,,)a each key & € {0, 1}* describes
a random (independent) permutation &, (k,-) : {0,1}" — {0,1}". By abuse of
notation, the term random oracle (resp., ideal cipher) also refers to a specific
instance chosen from the respective distribution.

Keyed vs. unkeyed ciphers. The ideal-cipher model has either been considered as
a public unkeyed permutation or as a public keyed permutation. We present our
results in the keyed setting since we feel that the ideal cipher-model is usually
perceived in this way. However, we want to point out that the results are equally
valid for the unkeyed setting because our proofs do not rely on the presence of
a key.
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Independently of this, one might be tempted to argue that the settings are in-
terchangeable since we know, for example, constructions of a keyed permutation
from an ideal public permutation (Even and Mansour, [15]). Note though, that
in order to make this argument work, one needs to show that these constructions
are reset indifferentiable. However, the construction by Even and Mansour is a
domain extender where the key size is twice the message size and we rule out
reset indifferentiability for such extending constructions in Section @l We note
that it is an interesting open problem whether or not such (reset-) indifferentiable
non-extending transformations exist.

2.1 Indifferentiability

Let us now recall the indifferentiability notion of Maurer et al. [I9] in the ver-
sion by Coron et al. [I1] who replace random systems by oracle Turing machines
(resp., ideal primitives). Since we are concerned with different types of indifferen-
tiability, we will sometimes use the term plain indifferentiability when referring
to this original notion of indifferentiability.

Definition 2. A Turing machine G with black-box access to an ideal primitive w
1s strongly indifferentiable from an ideal primitive II if there exists a simulator
ST such that for any distinguisher D there exists negligible function negl, such
that:

’Pr [DG"vﬂ(ﬂ) - 1} ~Pr [pﬂvsn(ﬂ) - 1” < negl(\) (1)

We say that the construction is weakly indifferentiable if for any D there
exists a simulator S such that ([{) holds.

We will use the term real world to denote that the distinguisher D talks to the
construction G™ and the primitive 7, whereas in the ideal world, the distinguisher
D talks to the “target” primitive /7 and simulator S”. The goal of the distin-
guisher is to determine which of the two pairs of oracles he is talking to. Towards
this goal, the distinguisher D queries its two oracles, of which one is called the
honest interface h which is either G™ (in the real world) or IT (in the ideal world).
The other oracle is called the adversarial interface a and corresponds to either
7 (real world) or S¥ (ideal world). Thus, (h,a) := (G™, ) if distinguisher D is
in the real world and (h,a) := (11, 87) if it is in the ideal world. The names h
(honest) and a (adversarial) are in the style of [20] and suggestive: an honest
party uses a construction as the designer intended; an adversary could, however,
use the underlying building blocks to gain an advantage.

Reset Indifferentiability. Ristenpart et al. show [20] that, in general, we cannot
securely replace a primitive IT by a construction G from primitive 7, if the
construction is indifferentiable only. Instead, G™ needs to be (weakly) reset in-
differentiable from IT which extends the original indifferentiability definition by
giving the distinguisher the power to reset the simulator at arbitrary times:
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Definition 3. Let the setup be as in Definition [d. An oracle Turing machine
G™ is called strongly (resp. weakly) reset indifferentiable from ideal primitive
11 if the distinguisher D can reset the simulator S to its initial state arbitrarily
many times during the respective experiment.

For reset indifferentiability the adversarial interface a in the real world simply ig-
nores reset queries. Reset indifferentiability now allows composition in arbitrary
games and not only in single-stage games, as does the original indifferentiability
notion [20/19].

3 Pseudo-deterministic Stateless Simulators for
Indifferentiability

Recall that the composition theorem by Maurer et al. [I9] for plain indifferentia-
bility holds for single-stage adversaries only. Their theorem says that if (i) the
construction G™ is indifferentiable from the ideal primitive IT and if (ii) there
is a reduction R that transforms a successful adversary A against some notion
of security into an adversary R against a single-stage game in the presence of
the ideal primitive I, then also in the presence of the construction G™ there is
a reduction R’ that transforms a successful adversary A into an adversary R’ A
against the single-stage game.

Inorder to prove a general composition theorem, Ristenpart et al. [20] strengthen
the notion of indifferentiability to account for the different stages of the adversary.
They introduce the notion of (weak) reset indifferentiability and prove that the
aforementioned theorem works for arbitrary games, if the construction G™ is reset
indifferentiable from the ideal primitive II. In contrast to plain indifferentiability,
here, the distinguisher gets extra powers, namely to reset the simulator at arbitrary
times. Ristenpart et al. [20] and Demay et al. [13] remark that reset indifferentia-
bility is equivalent to plain indifferentiability with stateless simulators. Intuitively,
this follows from the observation that the distinguisher in the reset indifferentiabil-
ity game can simply reset the simulator after each query it asks. We believe that, al-
beit equivalent, stateless simulators are often easier to handle than reset-resistant
simulators and thus explicitly introduce indifferentiability with stateless simula-
tors as multi-stage indifferentiability and then prove that it is equivalent to reset
indifferentiability.

In Subsection B.2] we prove that strong multi-stage indifferentiability implies
that the simulators are also pseudo deterministic, a notion that we put forward
in this section. Relative to a random oracle or an ideal cipher, we show how
to derandomize pseudo-deterministic simulators, if the simulators are allowed to
depend on the number of queries made by the distinguisher.

3.1 Multi-stage Indifferentiability

A stateless interactive algorithm is an algorithm whose behavior is statistically
independent from the call/answer history of the algorithm. We now prove that in-
differentiability with stateless simulators is equivalent to reset indifferentiability.
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Definition 4. A construction G with black-bozx access to primitive 7 is strongly
multi stage indifferentiable from primitive II if there exists a stateless probabilis-
tic polynomial-time simulator S (with access to IT ), such that for any probabilis-
tic polynomial-time distinguisher D there exists negligible function negl such that:

’Pr [DGW’”(l’\) - 1} _Pr [DH’SH(l’\) - 1} ‘ < negl(\) 2)

We say that a construction G™ is weakly multi stage indifferentiable from IT
if for any probabilistic polynomial-time distinguisher D there exists a stateless
probabilistic polynomial-time simulator S such that @) holds.

Lemma 1. A construction G with black-box access to primitive w is weakly
(resp., strongly) multi stage indifferentiable from primitive II if and only if G is
weakly (resp., strongly) reset indifferentiable from primitive II.

Proof. First note that any stateless simulator is, naturally, indifferent to resets
and thus multi-stage indifferentiability implies reset indifferentiability. Moreover,
strong reset indifferentiability implies strong multi-stage indifferentiability since
the simulator for reset indifferentiability must work for any distinguisher, in
particular for those which reset after each query. Hence this stateful simulator
can be simply initialized and run by a stateless simulator (the stateless simulator
does this for each query it receives).

We now prove the remaining relation, i.e., that weak reset indifferentiability
implies weak multi-stage indifferentiability. Assume that reset indifferentiability
holds and consider an arbitrary distinguisher D in the multi-stage indifferentia-
bility game. From this we construct a distinguisher D’ for the reset indifferentia-
bility game which runs D and sends a reset query to its adversarial a-interface
after every a-query issued by D. Let S’ be the simulator for D’ guaranteed to
exist by reset indifferentiability. We construct a stateless simulator S for multi-
stage indifferentiability which simply runs (the stateful) S’ and resets its own
state after each query. Now the following equations hold for b € {0,1}:

Pr[ DS (1) = b| = Pr[DTS(1Y) = b] = Pr[DTS(1) = b].

Thus, if equation (2] holds for (D’,S’), then it holds equally for (D, S).

3.2 Pseudo-deterministic Algorithms

Our notion of pseudo-deterministic algorithms intuitively captures that no dis-
tinguisher can query the algorithm on an input such that it returns something
different from the most likely output. That is, the adversary wins if in its set
of input/output pairs to the algorithm there is a query for which the algorithm
did not return the most likely response. We also introduce a weak notion of this
property, where we call A pseudo deterministic for a specific distinguisher if the
probability of the distinguisher winning in the above experiment is negligible.
Our notion of pseudo determinism can be seen as an average-case version
of the pseudo-deterministic algorithms as recently introduced by Goldreich et
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al. [16]. While they require probabilism to be hard to detect on any input, we
only require indistinguishability for efficiently generatable inputs, on average.

Definition 5. Let \ be a security parameter and A° a stateless probabilis-
tic polynomial-time oracle Turing machine with access to some oracle O. Let
L[D, A, O] denote the induced set of input/output pairs (x,y) of A when queried
arbitrarily many times by the distinguisher D, where A uses fresh coins in each
run. We say that A is pseudo deterministic if for all probabilistic polynomial-
time distinguishers D there exists a negligible function negl, such that

Prp a0 [V(z,y) € L[D,A,0] y=y, 40| >1—negl()). (3)

The notation y, a0 denotes the most likely output of A on input x over the
randomness of A, i.e., conditioned on a fixed oracle O. If there are two equally
likely answers on input x, we choose y, so to be the lewicographically smaller
one.

We say algorithm AC is pseudo deterministic for distinguisher DAO(IA")(lA),
if there exists negligible function negl, such that equation [B]) holds for D.

Note that the definition of A being pseudo deterministic for distinguisher D
does not imply that it is hard to distinguish whether A is probabilistic or
deterministic—it is only hard for a particular algorithm D. Although this might
sound like a weak and somewhat useless property, it will be sufficient to show
that if a simulator is pseudo deterministic for a distinguisher, then the simulator
can be entirely derandomized via random oracles/ideal ciphers.

We now show that strong multi-stage indifferentiability implies that the sim-
ulators are not only stateless but also pseudo deterministic. This is captured by
the following lemma.

Lemma 2. Let G™ be a construction with black-box access to primitive ™ which
1s strongly multi stage indifferentiable from primitive I1. Then there is a stateless
pseudo-deterministic probabilistic polynomial-time simulator S such that for all
probabilistic polynomial-time distinguishers D equation (2) holds in the strong
case.

Proof. Let us assume there exists stateless simulator S such that for all distin-
guishers D equation (2) holds and such that S is not pseudo deterministic. The
latter implies that there exists distinguisher D,,4 against the pseudo determinism
of simulator S, i.e., there is a non-negligible probability that D,q asks a query to
S, where S has a non-negligible probability of returning a different value than the
most likely one. We now construct distinguisher D’ against strong multi-stage
indifferentiability. Distinguisher D’ runs D,q on the adversarial a-interface. Let
q1,---,q be the queries asked by D,p4. Distinguisher D’ then sends the same
queries once more to its a-interface and returns 1 if at least one response does
not match and 0 otherwise. If D’ is in the real world, talking to G™ and 7 algo-
rithm D’ will always output 0 as 7 is a function. If on the other hand, D’ is in
the ideal world, then D4 will succeed with noticeable probability and hence D’
will distinguish both worlds with noticeable probability, a contradiction.
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Deterministic Simulators. Bennett and Gill prove in [7] that relative to a random
oracle the complexity classes BPP and P are equivalent. Let us quickly sketch
their idea. Given a probabilistic polynomial time oracle Turing machine M™%
which has access to random oracle R and which decides a language £ in BPP
we can prove the existence of a deterministic polynomial time Turing machine
DR which also decides £. Let us by p(|x|) denote the runtime of machine M™ for
inputs of length |z|. As M™ runs in polynomial time there exists a polynomial
upper bound p(|z|) on the length of queries M™ can pose to the random oracle.
To derandomize MP® we construct a deterministic machine D which works
analogously to M™” with the single exception that when M™ requests a random
coin then DR generates this coin deterministically by querying the random oracle
on the next smallest input that cannot have been queried by MR due to its
runtime restriction. As the random oracle produces perfect randomness, the
machines decide the same language with probability 1 over the choice of random
oracle.

Using the techniques developed by Bennet and Gill [7] we now show that in the
multi-stage indifferentiability setting, if a simulator is pseudo deterministic for a
distinguisher D, then it can be derandomized, in case the constructed primitive
IT is a random oracle or an ideal cipher. When applied to a simulator S that is
universal for all distinguishers (strong indifferentiability), these derandomization
techniques yield a family of simulators that depends only on the number of
queries made by the distinguisher (weak indifferentiability).

Lemma 3. Let AT be a stateless probabilistic polynomial-time algorithm with
oracle access to a random oracle Ry, or an ideal cipher &, for £ € w(log )
(resp., (k+n) € w(log\)). Let s be polynomial in \. From AU we construct
a deterministic algorithm B such that the following holds: for all efficient dis-
tinguisher D that make less than s queries to their oracle, it holds that if AY is
pseudo deterministic for D, then

[Pra [ DPATEI(1Y) 1] - Prg [DTETO (1Y) = 1]

1s negligible, where the probability is over the choice of oracle II and algorithm
A’s and distinguisher D’s internal coin tosses for the first case and over the
choice of oracle II and distinguisher D’s internal coin tosses in the second.

Proof. Let A™ be a stateless algorithm with access to ideal primitive I7 where
IT is either a random oracle Ry,,, or an ideal cipher & .

Let D be an efficient distinguisher for which A" is pseudo deterministic. As
distinguisher D is efficient, there exists an upper bound p(|A|) on the number of
queries to the IT-interface by D. We construct a deterministic algorithm B which
works as A with the only exception that B deterministically generates “random”
bits by querying its random oracle, whenever A makes use of a random bit. For
the jth requested random bit, algorithm B calls the II-oracle (either random
oracle R or ideal cipher € where it uses the encryption interface of £) on p(|A|)+j
distinct values xor-ing the result and choosing a bit from this result. Note that
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as ¢ € w(logA) (resp., n + k € w(logA)) there exist sufficiently many distinct
values.

Remember that we denote by y, 40 the most likely output of algorithm A on
input ¢ conditioned on fixed oracle O. We want to prove that

‘PrH,D,A [DH’AH(P) - 1] —Priop [D”’B”(P) - 1”

is negligible in A\. We prove a stronger statement, namely, that the outputs
of A and B are likely to be identical. We define event C capturing that “the
outputs of A and B agree on all inputs.” Towards this goal we define event A as
“algorithm A returns y,. 4n for all queries ¢;” where y,. 4m is the most likely
answer of A on input ¢, i.e., we set Yg; AT i= AIgMax, {PrR [An(qi; R) = y]}
(cf. Definition[3]). Likewise, we define event B as “algorithm B returns y,, 4n for
all queries ¢;.” We will show that

Pripa[A] =1 — negl (4)
and

Prpp[B] > 1— negl (5)

Clearly, the probability that A and B produce the same answers for all g; is
lower bounded by the probability that A and B both output y,, 4= for all g;.
Thus,

PI"H7'D7A[C} > PI"H,D,A[A/\ B]
= 1—P1"H7'D7A[—\A\/—\B]
Z 1-— (PI‘U’D’A[—'A] + PTH’D[—!B])
> 1 — negl — negl.

Let us now make these statements formal as well as prove inequalities (@) and
(). We denote with ¢; the queries to A by D and by R; the randomness used
by A on query ¢;. We say that event A occurs (over II, D, Ry, ..., Ry), if

Vi A7 (qis Ri) = yg, an-
Note that the pseudo-determinism of A for D directly implies that
Prap, Ry, ke [V AT (5 Ri) = yg, an | > 1 — negl, (6)
which establishes inequality (@l). We say that event B occurs (over IT, D), if
Vi B (¢:) = yq, am,

where ¢; now denotes the queries by D to algorithm B. Inequality (&) we derive
from inequality () via an averaging argument. Note that in inequality (@) we
consider fresh randomness R; for every query ¢;. If for all queries ¢; a random
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choice of randomness is good with overwhelming probability, then a random
choice of randomness is good for all ¢; with overwhelming probability:

PrH,D,R [VZ An(qi; R) = yqi’An] Z 1-— negl. (7)

Moreover, when considering the random oracle via lazy sampling, one can observe
that the randomness generated by B from I is independent from the part of IT
that is used in the experiment, which yields that

Prp [Vi; B (q;) = Yo A1 | =Prop g |Vi; A (g R) = Ygs AT |
> 1 — negl

as desired.

4 The Random Oracle and Ideal Cipher Model Are
Incomparable

In this section we prove that the random oracle-model and the ideal cipher-model
are incomparable with respect to strong multi-stage indifferentiability. We start
by giving an alternative, simpler proof of the fact that multi-stage indifferentiable
constructions cannot be built via domain extension [I3I18] (Lemmal[d). [13] rule
out domain extension even for a single bit of extension. In turn, we obtain an
easier proof in the setting where the extension factor is super logarithmic. In
Section .1l we then present our duality lemma for multi-stage indifferentiability
which allows us to conclude that the ROM and the ICM are incomparable with
respect to strong multi-stage indifferentiability.

Lemma 4. Let R be a random oracle with domain {0,1}* (resp., £ be an ideal
cipher with domain {0,1}* x {0,1}") and 7 be any ideal primitive with domain
size 2V. For £ —v € w(log(N) (resp., k +n —v € w(log(X))) there exists no
construction G™ that is weakly multi-stage indifferentiable from R (resp., £).

We prove Lemma [4] for the random oracle case; the proof for ideal ciphers works
analogously. Note that we prove the statement for weak multi-stage indifferentia-
bility, thereby essentially ruling out any (possibly non-black-box) construction.

In the following proof we consider a particular distinguisher that tests for the
ideal world by forcing the simulator to query its oracle on a particular value
M. We show that no simulator is able to do this with more than negligible
probability since M is drawn from a very large set while the simulator, being
stateless, is only able to make queries from a negligible fraction of this large set;
it thus fails to pass the test.

Proof (Proof of Lemmal[j]). Assume towards contradiction that there exists con-
struction G™ that is weakly multi stage indifferentiable from random oracle R
and, hence, for every distinguisher D there exists a stateless simulator S such
that D cannot distinguish between the real and ideal world.
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We consider a distinguisher D"? with access to honest and adversarial inter-
faces (h,a) which implement the random oracle R and simulator S in the ideal
world and construction G™ and ideal primitive 7 in the real world. The distin-
guisher D chooses a message M € {0,1} uniformly at random and executes
construction G via an internal simulation using its adversarial interface a, i.e., it
computes G*(M). Then, the distinguisher asks its honest interface on message
M to compute h(M) and returns 1 if the two results agree and 0 otherwise. Note
that in the real world distinguisher D will always output 1. Thus, the simulator
S has to ensure that GS™ (M ) is equal to R(M) with overwhelming probabil-
ity over the choice of the random oracle R. We now prove that, in the ideal
world, the two values match only with negligible probability over the choice of
the message M and the two settings can thus be distinguished by D.

Let us assume the ideal world and denote the query/response pairs to the a-
interface with (¢;,7;)1<i<¢- We analyze the simulator’s behavior when it is asked
these queries qy,...,q;. If for none of the ¢; the simulator S asks the random oracle
on M, then the answer of G5 (M ) is independent of R(M) and thus different
with overwhelming probability. By a simple counting argument, we now prove
that, with high probability over the choice of M, on no query (not even one
outside of the set (g;,7:)1<i<t), the simulator S asks R on M. For this, note
that the queries which simulator S receives are of length v. Hence there are at
most 2Y distinct possible queries to S. Denote by ¢ the upper bound on the
number of queries that S asks to its random oracle over all possible queries
that S itself receives. As the simulator S runs in polynomial time ¢ exists and is
polynomial. Noting that S is stateless, we conclude that S asks at most 2 < 2¢
queries. Hence the probability that the distinguisher’s M is in the set

{M : 3¢ S® asks M on input q}

is negligible. The probability that the distinguisher D returns 1 in the ideal world
where it is given access to simulator S and a random oracle R is therefore also
negligible. Thus, the distinguisher D has a distinguishing advantage of almost 1
which concludes the proof.

4.1 The Duality Lemma for Multi-stage Indifferentiability

We now prove the inverse direction, that is an ideal cipher cannot be build
from a random oracle with larger domain. In contrast to the previous section
we here give an impossibility result for strong multi-stage indifferentiability. Our
result is, however, more general and of independent interest. Strong multi-stage
indifferentiability guarantees the existence of a simulator that is stateless and
deterministic. Constructions of ideal primitives often need to be stateless and
deterministic as well. If for example, the construction, implements a publicly
accessible function such as a hash function, it has to be stateless. Note that this
is the case both for random oracles and ideal ciphers.

Now, if we assume that constructions are deterministic and stateless, then
we show that, in the case of multi-stage indifferentiability, we can exchange the
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role of the construction and the role of the simulator, if the simulator is also
deterministic and stateless. Our Duality Lemma establishes that in this case, an
impossibility result (resp. feasibility result) in one direction translates into an
impossibility result (resp. feasibility result) in the other direction. However, if
the simulator is not deterministic, but only pseudo deterministic, then we need
to slightly adapt our notion of constructions to also allow pseudo-deterministic
constructions. For this note that pseudo deterministic constructions are as useful
as deterministic ones since inconsistencies due to the pseudo determinism can
only be detected with negligible probability. Formally, however, they are not
known to be equivalent, in particular, because P # BPP implies that pseudo-
deterministic polynomial-time algorithms are more powerful than deterministic
polynomial-time algorithms.

We prove the Duality Lemma in the case of strong multi-stage indifferentia-
bility.

Lemma 5 (Duality Lemma for Multi-stage Indifferentiability). Let =
and 7 by two ideal primitives. Assuming constructions are stateless and pseudo
deterministic, then one of two following statements holds:

1. The two primitives are computationally equivalent, i.e., there exist construc-
tions G1,Ga such that GT is strongly multi stage indifferentiable from 7' and
Ggl is strongly multi stage indifferentiable from w, or

2. w and ' are incomparable with respect to strong multi-stage indifferentiabil-
ity.

In essence this means that a positive or negative result in either direction gives
us a result for the other direction. As we have already seen a negative result for
domain extenders this gives us the result for the other directions, i.e., going from
a large random oracle R to a small ideal cipher £, or from a large ideal cipher
£ to a small random oracle R.

Proof (Proof of Lemma [8). Assume construction G™ with black-box access to
ideal primitive 7 is strongly multi stage indifferentiable from #’. Then by defini-
tion there exists a (pseudo-)deterministic, stateless simulator S such that no dis-
tinguisher D can tell apart the ideal world (7', 8™ ) from the real world (G, 7).
Likewise, by definition, G is stateless and (pseudo-)deterministic. We now ex-
change the roles of construction G and simulator S, thereby getting a new “con-
struction” 8™ implementing primitive . It remains to show that S™ is strongly
multi-stage indifferentiable from .

Let us assume the contrary. Then there exists distinguisher D that can distin-
guish between the settings (77’,8”/) and the setting (G™, 7). This, however, con-
tradicts the assumption that G™ is strongly multi stage indifferentiable from 7.

An immediate consequence of the duality lemma and Lemma Ml is captured by
the following corollary:

Corollary 1. The ideal cipher model and the random oracle model are incom-
parable with respect to strong multi-stage indifferentiability.
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Remark 2. One interesting consequence of the duality lemma is best seen by
an example: Can a random oracle with smaller domain be constructed from
a random oracle with a larger domain? Intuitively, it feels natural to assume
that this works. However, Lemma [ tells us, that the inverse is not possible
and, thus, by the duality lemma we can directly conclude that any construction
using a large random oracle cannot be strongly multi stage indifferentiable from
a small random oracle. So far, we have failed to either prove impossibility for
weak multi-stage indifferentiability or to come up with a construction. We leave
this for future work.

5 Single versus Multi-reset

Luykx et al. [I8] introduce the presumably weaker notion of n-reset indifferen-
tiability, where the distinguisher is allowed to reset the simulator only n times.
Naturally, for a construction that is n-reset indifferentiable the composition the-
orem holds for games that have n 4+ 1 or less stages. In the following we show
that, however, already the extreme single-reset notion implies full reset indiffer-
entiability for simulators that do not depend on the distinguisher (i.e., the strong
case). This yields that also for n-reset indifferentiability all our separations hold
in a black-box fashion.

What we prove is that the advantage of an n-reset distinguisher is bound by
the advantage of an (n — 1)-reset distinguisher and that of a single-reset distin-
guisher where the advantage of a distinguisher D in the n-reset indifferentiability
game is defined as

AdVEE = [Pr[DRST (1Y) = 1] — Pr [P (1Y) = 1] |

Assuming that a construction is strongly single reset indifferentiable (and thus
the advantage for any single-reset distinguisher is negligible) yields the above
claim. We use

Lemma 6. Let G™ be a construction with black-box access to primitive w. Then
there exists simulator S such that for all n > 1 and all distinguishers D,, that
make at most n reset queries there exists a distinguisher Dy,_1 that makes at
most n — 1 reset queries and a distinguisher D1 that makes a single reset query
and

AdVET ! (12) < AdvE'p DT (1Y) + AdvET (1)
s negligible in \.

The proof idea is simple. Given a distinguisher which makes n resets we con-
struct one that ignores the first reset. Now, either this changes the input/output
behavior of the simulator noticeably, which yields a distinguisher that only needs
a single reset, or it does not in which case the distinguisher with n — 1 resets is
as good as the n-reset distinguisher.
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Proof. Let D,, be a distinguisher that makes at most n reset queries. We con-
struct a distinguisher D,,_; as follows. The distinguisher D,,_; runs exactly as
D,, but does not perform the first reset query of D,.

In the real world, where the distinguisher is connected to the construction G™
and 7, reset queries have no effect and thus we immediately have that

Pr,, [ij“v”(ﬂ;m) _ 1} — Pr,, {Dfﬁf(ﬁ;rp) - 1] (8)

where the probability is over the random coins rp of the distinguisher.

Let in the ideal world Ls[D,,,S,R,rp,rs| denote the ordered list of query-
answer pairs of queries by distinguisher D,, to simulator S up to the second
reset query by D,, when D,, runs with randomness rp and simulator & runs with
randomness rs and R is the random oracle. Note that after each reset query
simulator S takes a fresh set of random coins. Thus, technically we have that
rs :=r&||rZ| ... where rl denotes the simulator’s coins up to the first reset and
r% its coins after the first and up to the second reset. All further random coins
are irrelevant for the definition of Lo since we only consider queries up to the
second reset query.

Similarly, we define L1[D,,—1,S, R, rp, rs] to be the list of query-answer pairs
by distinguisher D,,_1 to simulator S up to the first reset query. Note that again
rs = ri||r| ... but this time already the second part (r%) is irrelevant since
we only consider queries up to the first reset query.

Define predicate E(R,rp,7s) to hold, iff

LQ[DH7S,R7 T'D,Ts] = Ll['Dn_l,S,'R, D, ’I“s]

for a random oracle R and randomnesses rp and rs. Note that in case of event
E(R,rp,rs) it holds that

R
Prrrprs | DRS" (1) = 1 [E(R.1p.75) |

R
=Prrps | DS (1%) = 1E(R,1p,7s) | - (9)

In the following we simplify notation and do not make the probability space
explicit. That is, the probabilities in the ideal world are always over the random
oracle R the random coins of the distinguisher rp and the various random coins
of the simulator rs. Also, we simply write E instead of E(R,rp,rs).

Let D; denote a distinguisher which makes only a single reset query and which
works as follows: Dy runs D,, up to the second reset query, passing on queries
to its own oracles but not passing on the two reset queries. Let g; denote the
queries to the simulator up to the first (ignored) reset query and g2 the queries
to the simulator after the first (ignored) reset and up to the second (ignored)
reset. Now, after the second ignored reset, distinguisher D; makes its single reset
query and once more sends the sequence g2 to the simulator. It outputs 0 in case
the simulator’s answers are consistent with the previous ¢2 sequence and else it
outputs 1. See Figure [ for a pictorial representation of this operation.
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Dy (rp) f é,}‘=

Dn_l(’l“p) }

q1 q2

Fig. 1. Nlustration of D, and D,_1’s operation; circles denote queries and rectangles
denote resets. The dashed part resembles the resulting single-reset distinguisher D;
that asks the queries g2 twice (separated by a reset). Whether or not the answer to
these two query sequences are identical is captured by the event E.

In the real world, distinguisher D; will always output 0 since the answers will
always match. Thus, we observe that

Ad 1- reset _

Pr[ 1] - Pr{wa’”(l’\) - 1]
:Pr[ )=1]
>Pr[E] P [DRS (1% =1 |E]
=Pr[E]. (10)

For the last equality, note that if E occurs then there is at least one query answer
that differs in both runs. This difference must be during ¢o since, up to D,’s
first reset, both algorithms are identical and operate on the same coins with the
same oracles. Hence D; always detects this difference and outputs 1. Thus, we
have

AVEE (1Y) =Pr[ DRS" (1) = 1] — Pr[ D77 (1Y) = 1]

— Pr[E] ~Pr[DZ§7SR(1’\) —1 ’E}

Using equations (§)) and (@) we can exchange distinguisher D,, for distinguisher
D,,—1 and after reordering we get that

=Pr[ D" (1Y) =1 |E] e[ D7 (1Y) = 1] + Pr[E].
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Using equation (0]

<Pr[DS (1N =1 |E] = Pe[ DT (1Y) = 1] + AdvE (1)
SAdvg (1) + Adv R (1)

which yields the desired statement.
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Computational Fuzzy Extractors
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Abstract. Fuzzy extractors derive strong keys from noisy sources. Their
security is defined information-theoretically, which limits the length of
the derived key, sometimes making it too short to be useful. We ask
whether it is possible to obtain longer keys by considering computational
security, and show the following.

— Negative Result: Noise tolerance in fuzzy extractors is usually
achieved using an information reconciliation component called a “se-
cure sketch.” The security of this component, which directly affects
the length of the resulting key, is subject to lower bounds from
coding theory. We show that, even when defined computationally,
secure sketches are still subject to lower bounds from coding the-
ory. Specifically, we consider two computational relaxations of the
information-theoretic security requirement of secure sketches, using
conditional HILL entropy and unpredictability entropy. For both
cases we show that computational secure sketches cannot outper-
form the best information-theoretic secure sketches in the case of
high-entropy Hamming metric sources.

— Positive Result: We show that the negative result can be overcome
by analyzing computational fuzzy extractors directly. Namely, we
show how to build a computational fuzzy extractor whose output
key length equals the entropy of the source (this is impossible in
the information-theoretic setting). Our construction is based on the
hardness of the Learning with Errors (LWE) problem, and is secure
when the noisy source is uniform or symbol-fixing (that is, each
dimension is either uniform or fixed). As part of the security proof,
we show a result of independent interest, namely that the decision
version of LWE is secure even when a small number of dimensions
has no error.

Keywords: Fuzzy extractors, secure sketches, key derivation, Learning
with Errors, error-correcting codes, computational entropy, randomness
extractors.

1 Introduction

Authentication generally requires a secret drawn from some high-entropy source.
One of the primary building blocks for authentication is reliable key derivation.
Unfortunately, many sources that contain sufficient entropy to derive a key are

K. Sako and P. Sarkar (Eds.) ASTACRYPT 2013 Part I, LNCS 8269, pp. 174-[[03] 2013.
© International Association for Cryptologic Research 2013
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noisy, and provide similar, but not identical secret values at each reading (ex-
amples of such sources include biometrics [I4], human memory [37], pictorial
passwords [9], measurements of capacitance [35], timing [34], motion [I0], quan-
tum information [5] etc.).

Fuzzy extractors [15] achieve reliable key derivation from noisy sources (see
[7IT6I11] for applications of fuzzy extractors). The setting consists of two algo-
rithms: Generate (used once) and Reproduce (used subsequently). The Generate
(Gen) algorithm takes an input w and produces a key r and a public value p.
This information allows the Reproduce (Rep) algorithm to reproduce r given p
and some value w’ that is close to w (according to some predefined metric, such
as Hamming distance). Crucially for security, knowledge of p should not reveal
r; that is, r should be uniformly distributed conditioned on p. This feature is
needed because p is not secret: for example, in a single-user setting (where the
user wants to reproduce the key r from a subsequent reading w'), it would be
stored in the clear; and in a key agreement application [7] (where two parties
have w and w’, respectively), it would be transmitted between the parties.

Fuzzy extractors use ideas from information-reconciliation [5] and are defined
(traditionally) as information-theoretic objects. The entropy loss of a fuzzy ex-
tractor is the difference between the entropy of w and the length of the derived
key 7. In the information-theoretic setting, some entropy loss is necessary as the
value p contains enough information to reproduce r from any close value w’. A
goal of fuzzy extractor constructions is to minimize the entropy loss, increasing
the security of the resulting application. Indeed, if the entropy loss is too high,
the resulting secret key may be too short to be useful.

We ask whether it is possible to obtain longer keys by considering computa-
tional, rather than information theoretic, security.

Our Negative Results. We first study (in Section [B]) whether it could be fruitful
to relax the definition of the main building block of a fuzzy extractor, called a
secure sketch. A secure sketch is a one-round information reconciliation protocol:
it produces a public value s that allows recovery of w from any close value w’.
The traditional secrecy requirement of a secure sketch is that w has high min-
entropy conditioned on s. This allows the fuzzy extractor of [I5] to form the key
r by applying a randomness extractor [28] to w, because randomness extractors
produce random strings from strings with conditional min-entropy. We call this
the sketch-and-extract construction.

The most natural relaxation of the min-entropy requirement of the secure
sketch is to require HILL entropy [2I] (namely, that the distribution of w con-
ditioned on s be indistinguishable from a high-min-entropy distribution). Under
this definition, we could still use a randomness extractor to obtain r from w, be-
cause it would yield a pseudorandom key. Unfortunately, it is unlikely that such
a relaxation will yield fruitful results: we prove in Theorem [ that the entropy
loss of such secure sketches is subject to the same coding bounds as the ones
that constrain information-theoretic secure sketches.

Another possible relaxation is to require that the value w is unpredictable con-
ditioned on s. This definition would also allow the use of a randomness extractor
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to get a pseudorandom key, although it would have to be a special extractor—
one that has a reconstruction procedure (see [22] Lemma 6]). Unfortunately, this
relaxation is also unlikely to be fruitful: we prove in Theorem [2] that the unpre-
dictability is at most log the size of the metric space minus log the volume of
the ball of radius ¢. For high-entropy sources of w over the Hamming metric,
this bound matches the best information-theoretic security sketches.

Our Positive Results. Both of the above negative results arise because a secure
sketch functions like a decoder of an error-correcting code. To avoid them, we
give up on building computational secure sketches and focus directly on the
entropy loss in fuzzy extractors. Our goal is to decrease the entropy loss in a
fuzzy extractor by allowing the key r to be pseudorandom conditioned on p.

By considering this computational secrecy requirement, we construct the first
lossless computational fuzzy extractors (Construction [I), where the derived key
r is as long as the entropy of the source w. Our construction is for the Hamming
metric and uses the code-offset construction [23],[I5] Section 5] used in prior
work, but with two crucial differences. First, the key r is not extracted from w
like in the sketch-and-extract approach; rather w “encrypts” r in a way that is
decryptable with the knowledge of some close w’ (this idea is similar to the way
the code-offset construction is presented in [23] as a “fuzzy commitment”). Our
construction uses private randomness, which is allowed in the fuzzy extractor
setting but not in noiseless randomness extraction. Second, the code used is a
random linear code, which allows us to use the Learning with Errors (LWE)
assumption due to Regev [B0/3I] and derive a longer key 7.

Specifically, we use the recent result of Déttling and Miiller-Quade [I7], which
shows the hardness of decoding random linear codes when the error vector comes
from the uniform distribution, with each coordinate ranging over a small interval.
This allows us to use w as the error vector, assuming it is uniform. We also use
a result of Akavia, Goldwasser, and Vaikuntanathan [I], which says that LWE
has many hardcore bits, to hide r.

Because we use a random linear code, our decoding is limited to reconciling
a logarithmic number of differences. Unfortunately, we cannot utilize the results
that improve the decoding radius through the use of trapdoors (such as [30]),
because in a fuzzy extractor, there is no secret storage place for the trapdoor.
If improved decoding algorithms are obtained for random linear codes, they
will improve error-tolerance of our construction. Given the hardness of decoding
random linear codes [6], we do not expect significant improvement in the error-
tolerance of our construction.

In Section Bl we are able to relax the assumption that w comes from the uni-
form distribution, and instead allow w to come from a symbol-fixing source [24]
(each dimension is either uniform or fixed). This relaxation follows from our re-
sults about the hardness of LWE when samples have a fixed (and adversarially
known) error vector, which may be of independent interest (Theorem H).

An Alternative Approach. Computational extractors [26/313] have the same goal
of obtaining a pseudorandom key r from a source w in the setting without errors.



Computational Fuzzy Extractors 177

They can be constructed, for example, by applying a pseudorandom generator to
the output of an information-theoretic extractor. One way to build a computa-
tional fuzzy extractor is by using a computational extractor instead of the
information-theoretic extractor in the sketch-and-extract construction of [15].
However, this approach is possible only if conditional min-entropy of w conditioned
on the sketch s is high enough. Furthermore, this approach does not allow the use of
private randomness; private randomness is a crucial ingredient in our construction.
We compare the two approaches in Section[4.4l

2 Preliminaries

For a random variable X = Xj||...||X,, where each X; is over some alphabet
Z, we denote by X1 = Xil|...||Xk. The min-entropy of X is Hoo(X) =
—log(max, Pr[X = z]), and the average (conditional) min-entropy of X given
Y is Hoo(X|Y) = —log(E ey max, Pr[X = z|Y = y]) [I5, Section 2.4]. The
statistical distance between random variables X and Y with the same domain
is A(X,Y) = 3>, |Pr[X = 2] — Pr[Y = 2]|. For a distinguisher D (or a class
of distinguishers D) we write the computational distance between X and Y as
§P(X,Y) = |E[D(X)] — E[D(Y)]|. We denote by Ds.., the class of randomized
circuits which output a single bit and have size at most ss... For a metric space
(M, dis), the (closed) ball of radius t around x is the set of all points within
radius ¢, that is, Bi(z) = {y|dis(z,y) < t}. If the size of a ball in a metric
space does not depend on x, we denote by |B;(-)| the size of a ball of radius t.
For the Hamming metric over 27, |B,(-)| = Y0_, (M) (IZ] = 1)°. U,, denotes the
uniformly distributed random variable on {0,1}". Usually, we use bold letters
for vectors or matrices, capitalized letters for random variables, and lowercase
letters for elements in a vector or samples from a random variable.

2.1 Fuzzy Extractors and Secure Sketches

We now recall definitions and lemmas from the work of Dodis et. al. [I5], Sections
2.5-4.1], adapted to allow for a small probability of error, as discussed in [15,
Sections 8]. Let M be a metric space with distance function dis.

Definition 1. An (M,m,¥,t, €)-fuzzy extractor with error § is a pair of ran-
domized procedures, “generate” (Gen) and “reproduce” (Rep), with the following
properties:

1. The generate procedure Gen on input w € M outputs an extracted string
r € {0,1}* and a helper string p € {0,1}*.

2. The reproduction procedure Rep takes an element w' € M and a bit string
p € {0,1}* as inputs. The correctness property of fuzzy extractors guarantees
that for w and w' such that dis(w,w") < t, if R, P were generated by (R, P) +
Gen(w), then Rep(w’, P) = R with probability (over the coins of Gen, Rep) at
least 1 — 0. If dis(w, w’) > t, then no guarantee is provided about the output
of Rep.
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3. The security property guarantees that for any distribution W on M of min-
entropy m, the string R is nearly uniform even for those who observe P: if
(R, P) + Gen(W), then SD((R, P), (U, P)) < e.

A fuzzy extractor is efficient if Gen and Rep run in expected polynomial time.

Secure sketches are the main technical tool in the construction of fuzzy ex-
tractors. Secure sketches produce a string s that does not decrease the entropy
of w too much, while allowing recovery of w from a close w’:

Definition 2. An (M, m,m,t)-secure sketch with error ¢ is a pair of random-
ized procedures, “sketch” (SS) and “recover” (Rec), with the following properties:

1. The sketching procedure SS on input w € M returns a bit string s € {0, 1}*.

2. The recovery procedure Rec takes an element w' € M and a bit string
s € {0,1}*. The correctness property of secure sketches guarantees that if
dis(w,w") < t, then Pr[Rec(w’,SS(w)) = w] > 1 — 6 where the probability is
taken over the coins of SS and Rec. If dis(w,w') > t, then no guarantee is
provided about the output of Rec.

3. The security property guarantees that for any distribution W over M with
min-entropy m, the value of W can be recovered by the adversary who ob-
serves w with probability no greater than 2=™. That is, Hoo (W|SS(W)) > 7.

A secure sketch is efficient if SS and Rec run in expected polynomial time.

Note that in the above definition of secure sketches (resp., fuzzy extractors),
the errors are chosen before s (resp., P) is known: if the error pattern between
w and w’ depends on the output of SS (resp., Gen), then there is no guarantee
about the probability of correctness.

A fuzzy extractor can be produced from a secure sketch and an average-case
randomness extractor. An average-case extractor is a generalization of a strong
randomness extractor [28, Definition 2]) (in particular, Vadhan [36, Problem 6.8]
showed that all strong extractors are average-case extractors with a slight loss
of parameters):

Definition 3. Let x1, x2 be finite sets. A function ext : x1 x{0,1}% — {0,1}¢ a
(m, €)-average-case extractor if for all pairs of random variables X,Y over x1, x2
such that Hoo (X|Y) > m, we have A((ext(X,Uq),Uq,Y),Us x Ug xY) <e.

Lemma 1. Assume (SS, Rec) is an (M, m, 1, t)-secure sketch with error §, and
let ext : M x {0,1}% — {0,1}¢ be a (1, €)-average-case extractor. Then the
following (Gen, Rep) is an (M, m, £, t, €)-fuzzy extractor with error §:

— Gen(w) : generate x < {0,1}%, set p = (SS(w), x),r = ext(w;x), and output

(r,p)-
— Rep(w', (s,2)) : recover w = Rec(w', s) and output r = ext(w;x).

The main parameter we will be concerned with is the entropy loss of the con-
struction. In this paper, we ask whether a smaller entropy loss can be achieved
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by considering a fuzzy extractor with a computational security requirement. We
therefore relax the security requirement of Definition [I] to require a pseudoran-
dom output instead of a truly random output. Also, for notational convenience,
we modify the definition so that we can specify a general class of sources for
which the fuzzy extractor is designed to work, rather than limiting ourselves
to the class of sources that consists of all sources of a given min-entropy m, as
in definitions above (of course, this modification can also be applied to prior
definitions of information-theoretic secure sketches and fuzzy extractors).

Definition 4 (Computational Fuzzy Extractor). Let W be a family of
probability distributions over M. A pair of randomized procedures “generate”
(Gen) and “reproduce” (Rep) is a (M, W, £, t)-computational fuzzy extractor
that is (€, Ssec)-hard with error § if Gen and Rep satisfy the following properties:

— The generate procedure Gen on input w € M outputs an extracted string
R € {0,1} and a helper string P € {0,1}*.

— The reproduction procedure Rep takes an element w' € M and a bit string
P € {0,1}* as inputs. The correctness property guarantees that for all w,w’
where dis(w, w") < t, if (R, P) < Gen(w) then Pr[Rep(w’,P) =R] >1—§
where the probability is over the randomness of (Gen, Rep). If dis(w, w’) > ¢,
then no guarantee is provided about the output of Rep.

— The security property guarantees that for any distribution W € W, the string
R is pseudorandom conditioned on P, that is 6P ((R, P), (U, P)) < e.

Any efficient fuzzy extractor is also a computational fuzzy extractor with the
same parameters.

Remark. Fuzzy extractor definitions make no guarantee about Repbehavior when
the distance between w and w’ is larger than ¢. In the information-theoretic setting
this seemed inherent as the “correct” R should be information-theoretically un-
known conditioned on P. However, in the computationally setting this is not true.
Looking ahead, in our construction R is information-theoretically determined con-
ditioned on P (with high probability over the coins of Gen). Our Rep algorithm will
never output an incorrect key (with high probability over the coins of Gen) but may
not terminate. However, it is not clear this is the desired behavior. For this reason,
we leave the behavior of Rep ambiguous when dis(w, w') > t.

3 Impossibility of Computational Secure Sketches

In this section, we consider whether it is possible in build a secure sketch that
retains significantly more computational than information-theoretic entropy. We
consider two different notions for computational entropy, and for both of them
show that corresponding secure sketches are subject to the same upper bounds
as those for information-theoretic secure sketches. Thus, it seems that relaxing
security of sketches from information-theoretic to computational does not help.

In particular, for the case of the Hamming metric and inputs that have full
entropy, our results are as follows. In Section B.I] we show that a sketch that
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retains HILL entropy implies a sketch that retains nearly the same amount of
min-entropy. In Section B.2] we show that the computational unpredictability
of a sketch is at most log | M| — log|B¢(-)|. Dodis et al. [I5, Section 8.2] con-
struct sketches with essentially the same information-theoretic securit . In
Section B3] we discuss mechanisms for avoiding these bounds.

3.1 Bounds on Secure Sketches Using HILL Entropy

HILL entropy is a commonly used computational notion of entropy [21]. It was
extended to the conditional case by Hsiao, Lu, Reyzin [22]. Here we recall a
weaker definition due to Gentry and Wichs [19] (the term relaxed HILL en-
tropy was introduced in [32]); since we show impossibility even for this weaker
definition, impossibility for the stronger definition follows immediately.

Definition 5. Let (W, S) be a pair of random variables. W has relaxed HILL en-
tropy at least k conditioned on S, denoted HE"""*(W|S) > k if there exists a joint

distribution (X,Y), such that Hoo (X|Y) > k and §Psscc (W, ), (X,Y)) < e.

Intuitively, HILL entropy is as good as average min-entropy for all computa-
tionally bounded observers. Thus, redefining secure sketches using HILL en-
tropy is a natural relaxation of the original information-theoretic definition; in
particular, the sketch-and-extract construction in Lemma [I] would yield pseudo-
random outputs if the secure sketch ensured high HILL entropy. We will con-
sider secure sketches that retain relaxed HILL entropy: that is, we say that
(SS, Rec) is a HILL-entropy (M, m,m,t) secure sketch that is (e, ssec)-hard with
error § if it satisfies Definition [, with the security requirement replaced by
HFLL=1x(W|SS(W)) > rin.

Unfortunately, we will show below that such a secure sketch implies an er-
ror correcting code with approximately 2™ points that can correct ¢t random
errors (see [I5, Lemma C.1] for a similar bound on information-theoretic secure
sketches). For the Hamming metric, our result essentially matches the bound on
information-theoretic secure sketches of [I5, Proposition 8.2]. In fact, we show
that, for the Hamming metric, HILL-entropy secure sketches imply information-
theoretic ones with similar parameters, and, therefore, the HILL relaxation gives
no advantage.

The intuition for building error-correcting codes from HILL-entropy secure
sketches is as follows. In order to have HIM*(W|SS(W)) > s, there must
be a distribution X,Y such that Hoo (X|Y) > 7 and (X,Y) is computationally
indistinguishable from (W,SS(W)). Sample a sketch s <— SS(W). We know that
SS followed by Rec likely succeeds on W|s (i.e., Rec(w’, s) = w with high prob-
ability for w < W|s and w’ < B(w)). Consider the following experiment: 1)
sample y «+ Y, 2) draw z < X|y and 3) 2’ < Bi(x). By indistinguishability,

! The security in [I5] Section 8.2] is expressed in terms of entropy of the error rate;
recall that log B.(-) ~ Hy(t/n), where n is the number of symbols, ¢ is the alphabet
size, and Hy is the g-ary entropy function.
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Rec(z’,y) = x with high probability. This means we can construct a large set
C from the support of X|y. C will be an error correcting code and Rec an effi-
cient decoder. We can then use standard arguments to turn this code into an
information theoretic sketch.

To make this intuition precise, we need an additional technical condition:
sampling a random neighbor of a point is efficient.

Definition 6. We say a metric space (M, dis) is (Speigh, t)-neighborhood sam-
plable if there exists a randomized circuit Neigh of size Sneign that for allt’ <t,
Neigh(w, t") outputs a random point at distance t' of w.

We review the definition of a Shannon code [33]:

Definition 7. Let C be a set over space M. We say that C is an (t,€)-Shannon
code if there exists an efficient procedure Rec such that for all ¥ < t and for
all ¢ € C, Pr[Rec(Neigh(c,t')) # ¢] < e. To distinguish it from the average-error
Shannon code defined below, we will sometimes call it a maximal-error Shannon
code.

This is a slightly stronger formulation than usual, in that for every size t' < t
we require the code to correct ' random errordd. Shannon codes work for all
codewords. We can also consider a formulation that works for an “average”
codeword.

Definition 8. Let C be a distribution over space M. We say that C is an (t,€)-
average error Shannon code if there exists an efficient procedure Rec such that
for all t' <t Pre.c[Rec(Neigh(c,t')) # ] <.

An average error Shannon code is one whose average probability of error is
bounded by e. See [12, Pages 192-194] for definitions of average and maximal
error probability. An average-error Shannon code is convertible to a maximal-
error Shannon code with a small loss. We use the following pruning argument
from [12| Pages 202-204] (we provide a proof in the full version [18§]):

Lemma 2. Let C be a (t, €)-average error Shannon code with recovery procedure
Rec such that Hoo(C) > k. There is a set C' with |C'| > 2*~1 that is a (t,2¢)-
(maximal error) Shannon code with recovery procedure Rec.

We can now formalize the intuition above and show that a sketch that retains
m-bits of relaxed HILL entropy implies a good error correcting code with nearly
2™ points (proof in the full version of this work [I8]).

Theorem 1. Let (M,dis) be a (Speigh,t)-neighborhood samplable metric space.
Let (SS, Rec) be a HILL-entropy (M, m,m,t)-secure sketch that is (€, Sse.)-secure

2 In the standard formulation, the code must correct a random error of size up to t,
which may not imply that it can correct a random error of a much smaller size ¢/,
because the volume of the ball of size ' may be negligible compared to the volume
of the ball of size t. For codes that are monotone (if decoding succeeds on a set of
errors, it succeeds on all subsets), these formulations are equivalent. However, we
work with an arbitrary recover functionality that is not necessarily monotone.
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with error §. Let s,yec denote the size of the circuit that computes Rec. If Sgec >
(t(Sneigh + Srec)), then there exists a value s and a set C with |C| > 2™~ that is
a (t,4(e + t6))-Shannon code with recovery procedure Rec(-, s).

For the Hamming metric, any Shannon code (as defined in Definition [7) can be
converted into an information-theoretic secure sketch (as described in [15], Sec-
tion 8.2] and references therein). The idea is to use the code offset construction,
and convert worst-case errors to random errors by randomizing the order of the
symbols of w first, via a randomly chosen permutation 7 (which becomes part of
the sketch and is applied to w’ during Rec). The formal statement of this result
can be expressed in the following Lemma (which is implicit in [I5 Section 8.2]).

Lemma 3. For an alphabet Z, let C over Z™ be a (t,d) Shannon code. Then
there exists a (2™, m,m — (nlog|Z| — log|C|),t) secure sketch with error ¢ for
the Hamming metric over Z™.

Putting together Theorem [I] and Lemma [3 gives us the negative result for the
Hamming metric: a HILL-entropy secure sketch (for the uniform distribution)
implies an information-theoretic one with similar parameters:

Corollary 1. Let Z be an alphabet. Let (SS',Rec’) be an (€, 8se.)-HILL-entropy
(Z™,nlog|Z|, m,t)-secure sketch with error § for the Hamming metric over Z™,
with Rec’ of circuit size Syec. If Ssee > t(Srec + nlog|Z]), then there exists a

(2™, nlog|Z|,m—2,t) (information-theoretic) secure sketch with error 4(e+1td).

Note. In Corollary [l we make no claim about the efficiency of the resulting
(SS, Rec), because the proof of Theorem [Iis not constructive.

Corollary M extends to non-uniform distributions: if there exists a distribution
whose HILL sketch retains m bits of entropy, then for all distributions W, there
is an information theoretic sketch that retains Hoo (W) — (nlog | Z| — m) — 2 bits
of entropy.

3.2 Bounds on Secure Sketches Using Unpredictability Entropy

In the previous section, we showed that any sketch that retained HILL entropy
could be transformed into an information theoretic sketch. However, HILL en-
tropy is a strong notion. In this section, we therefore ask whether it is useful to
consider a sketch that satisfies a minimal requirement: the value of the input is
computationally hard to guess given the sketch. We begin by recalling the defi-
nition of conditional unpredictability entropy [22, Definition 7], which captures
the notion of “hard to guess” (we relax the definition slightly, similarly to the
relaxation of HILL entropy described in the previous section).

Definition 9. Let (W, S) be a pair of random variables. W has relaxed unpre-
dictability entropy at least k conditioned on S, denoted by HI2™™(W|S) > k,

if there exists a pair of distributions (X,Y) such that §Pssec (W, S), (X,Y)) < ¢,
and for all circuits T of size Sgee,

Pr[Z(Y) = X] <27"
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A pair of procedures (SS,Rec) is a unpredictability-entropy (M, m,m,t) secure
sketch that is (e, $se.)-hard with error ¢ if it satisfies Definition [ with the secu-
rity requirement replaced by HX®™(W|SS(W)) > . Note this notion is quite
natural: combining such a secure sketch in a sketch-and-extract construction
of Lemma [l with a particular type of extractor (called a reconstructive extrac-
tor [4]), would yield a computational fuzzy extractor (per [22, Lemma 6]).
Unfortunately, the conditional unpredictability entropy m must decrease as ¢
increases, as the following theorem states. (The proof of the theorem, generalized

to more metric spaces, is in the full version [I§].)

Theorem 2. Let Z be an alphabet. Let (SS,Rec) be an unpredictability-entropy
(2™, m,m,t)-secure sketch that is (€, Ssec)-secure with error §, if ssec > t(|Rec|+
nlog|Z|), then m < nlog|Z| — log|B:(-)| + log(1 — € — t4).

In particular, if the input is uniform, the entropy loss is about log|B:(-)|. As
mentioned at the beginning of Section [3] essentially the same entropy loss can
be achieved with information-theoretic secure sketches, by using the randomized
code-offset construction. However, it is conceivable that unpredictability entropy
secure sketches could achieve lower entropy loss with greater efficiency for some
parameter settings.

3.3 Avoiding Sketch Entropy Upper Bounds

The lower bounds of Corollary [l and Theorem 2] are strongest for high entropy
sources. This is necessary, if a source contains only codewords (of an error cor-
recting code), no sketch is needed, and thus there is no (computational) entropy
loss. This same situation occurs when considering lower bounds for information-
theoretic sketches [15, Appendix C] .

Both of lower bounds arise because Rec must function as an error-correcting
code for many points of any indistinguishable distribution. It may be possible
to avoid these bounds if Rec outputs a fresh random variabldd. Such an algo-
rithm is called a computational fuzzy conductor. See [25] for the definition of a
fuzzy conductor. To the best of our knowledge, a computational fuzzy conductor
has not been defined in the literature, the natural definition is to replace the
pseudorandomness condition in Definition ] with a HILL entropy requirement.

Our construction (in Section H]) has pseudorandom output and immediately
satisfies definition of a computational fuzzy extractor (Definition H). It may be
possible to achieve significantly better parameters with a construction that is a
computational fuzzy conductor (but not a computational fuzzy extractor) and
then applying an extractor. We leave this as an open problem.

3 If some efficient algorithm can take the output of Rec and efficiently transform it back
to the source W, the bounds of Corollary [l and Theorem 2l both apply. This means
that we need to consider constructions that are hard to invert (either information-
theoretically or computationally).
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4 Computational Fuzzy Extractor Based on LWE

In this section we describe our main construction. Security of our construction
depends on the source W. We first consider a uniform source W; we consider
other distributions in Section Bl Our construction uses the code-offset construc-
tion [23], [15], Section 5] instantiated with a random linear code over a finite field
F,. Let Decode; be an algorithm that decodes a random linear code with at most
t errors (we will present such an algorithm later, in Section E.2]).

Construction 1. Letn be a security parameter and let m > n. Let q be a prime.
Define Gen, Rep as follows:

Gen Rep
1. Input: w < W (where W is some 1. Input: (w',p) (where the Haomming
distribution over Ty ). distance between w' and w is at
2. Sample A € F"*",x € Fy uni- most t).
formly. 2. Parse p as (A,c); letb=c—w'.
3. Compute p = (A, Ax + w), 3. Let x = Decode; (A, b)
r=Xi,.,n/2-
4. Output (r,p). 4. Output r = 1, n/2.

Intuitively, security comes from the computational hardness of decoding ran-
dom linear codes with a high number of errors (introduced by w). In fact, we
know that decoding a random linear code is NP-hard [6]; however, this statement
is not sufficient for our security goal, which is to show

(SDSSGC((XI,M,n/%P)’ (Un/QIqu’P)) se

Furthermore, this construction is only useful if Decode; can be efficiently imple-
mented.

The rest of this section is devoted to making these intuitive statements precise.
We describe the LWE problem and the security of our construction in Section 11
We describe one possible polynomial-time Decode; (which corrects more errors
than is possible by exhaustive search) in Section In Section 3] we describe
parameter settings that allow us to extract as many bits as the input entropy,
resulting in a lossless construction. In Section L4l we compare Construction [I]
to using a sketch-and-extract approach (Lemma[I]) instantiated with a compu-
tational extractor.

4.1 Security of Construction [I]

The LWE problem was introduced by Regev [30/31] as a generalization of “learn-
ing parity with noise.” For a complete description of the LWE problem and
related lattices problems (which we do not define here) see [30]. We now recall
the decisional version of the problem.
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Definition 10 (Decisional LWE). Let n be a security parameter. Let m =
m(n) = poly(n) be an integer and ¢ = q(n) = poly(n) be a primdd. Let A be
the uniform distribution over Fg**™, X be the uniform distribution over Fy and
X be an arbitrary distribution on Fg'. The decisional version of the LWE problem,
denoted dist-LWE,, 1, 4.x, s to distinguish the distribution (A, AX + x) from the
uniform distribution over (Fy*>" F;").

We say that dist-LWE,, 1, q.x 5 (€, Ssec)-Secure if no (probabilistic) distin-
guisher of size Ssec can distinguish the LWE instances from uniform except with
probability e. If for any ssec = poly(n), there exists ¢ = ngl(n) such that
dist-LWEy, i, q, 15 (€, Ssec)-secure, then we say it is secure.

Regev [30] and Peikert [29] show that dist-LWE,, ,,, 4 is secure when the distri-
bution x of errors is Gaussian, as follows. Let ¥, be the discretized Gaussian
distribution with variance (pq)?/2m, where p € (0, 1) with pg > 2/n. If GAPSVP
and SIVP are hard to approximate (on lattices of dimension n) within polyno-
mial factors for quantum algorithms, then dist—LWEnyqu’@;n is secure. (A recent

result of Brakerski et al. [8] shows security of LWE based on hardness of approx-
imating lattices problems for classical algorithms. We have not considered how
this result can be integrated into our analysis.)

The above formulation of LWE requires the error term to come from the dis-
cretized Gaussian distribution, which makes it difficult to use it for constructing
fuzzy extractors (because using w and w’ to sample Gaussian distributions will
increase the distance between the error terms and/or reduce their entropy). For-
tunately, recent work Dottling and Miiller-Quade [I7] shows the security of LWE,
under the same assumptions, when errors come from the uniform distribution
over a small intervall. This allows us to directly encode w as the error term in an
LWE problem by splitting it into m blocks. The size of these blocks is dictated
by the following result of Dottling and Miiller-Quade:

Lemma 4. [T7, Corollary 1] Let n be a security parameter. Let ¢ = q(n) =
poly(n) be a prime and m = m(n) = poly(n) be an integer with m > 3n. Let
o € (0,1) be an arbitrarily small constant and let p = p(n) € (0,1/10) be such
that pq > 2n'/?*t7m. If the approzimate decision-version of the shortest vector
problem (GAPSVP) and the shortest independent vectors problem (SIVP) are
hard within a factor of O(n*t7m/p) for quantum algorithms in the worst case,
then, for x the uniform distribution over [—pq, pg)™, dist-LWE,, 1, ¢, s secure.

To extract pseudorandom bits, we use a result of Akavia, Goldwasser, and
Vaikuntanathan [I] to show that X has simultaneously many hardcore bits. The
result says that if dist-LWE(,,_ m,q,y) is secure then any k variables of X in a
dist-LWE (;, 1 q,y) instance are hardcore. We state their result for a general error
distribution (noting that their proof does not depend on the error distribution):

4 Unlike in common formulations of LWE, where ¢ can be any integer, we need ¢ to
be prime for decoding.

® Micciancio and Peikert provide a similar formulation in [27]. The result Déttling and
Miiller-Quade provides better parameters for our setting.
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Lemma 5. [1, Lemma 2] If dist-LWE (,, _j, 1. q.x) 5 (€, Ssec) Secure, then
6DS“C/ ((Xl,m,kv Aa AX + X)a (Ua A7 AX + X)) S €,

where U denotes the uniform distribution over ]F’;, A denotes the uniform distri-
bution over ]F;”X”, X denotes the uniform distribution over ]Fg, X1,k denote
the first k coordinates of x, and s\, = Ssec — n°.

The security of Construction [ follows from Lemmas [ and B when parameters
are set appropriately (see Theorem B), because we use the hardcore bits of X as
our key.

4.2 Efficiency of Construction [

Construction [Mlis useful only if Decode; can be efficiently implemented. We need
a decoding algorithm for a random linear code with ¢ errors that runs in poly-
nomial time. We present a simple Decode; that runs in polynomial time and can
correct correcting O(logn) errors (note that this corresponds to a superpolyno-
mial number of possible error patterns). This algorithm is a proof of concept,
and neither the algorithm nor its analysis have been optimized for constants. An
improved decoding algorithm can replace our algorithm, which will increase our
correcting capability and improve Construction [l

Construction 2. We consider a setting of (n,m,q,x) where m > 3n. We de-
scribe Decode; :

Input A,b=Ax+w—w

Randomly select rows without replacement iy, ...,1i2, < [1,m].

Restrict A, b to rows i1, ...,12,; denote these A;, . iy sDiy,. . s, -

Find n rows of Ay, ... i, that are linearly independent. If no such rows exist,

output 1 and stop.

5. Denote by A’ b’ the restriction of Ai, .. iy, s Piy,..
rows. Compute x' = (A’)~'b/.

6. If b — Ax' has more than t nonzero coordinates, go to step (2).

7. Output x'.

e e~

(respectively) to these

5l2n

Each step is computable in time O(n?). For Decode; to be efficient, we need ¢
to be small enough so that with probability at least pol;(n), none of the 2n rows
selected in step 2 have errors (i.e., so that w and w’ agree on those rows). If this
happens, and A;, . ;,, has rank n (which is highly likely), then x’ = x, and the
algorithm terminates. However, we also need to ensure correctness: we need to
make sure that if x' # x, we detect it in step 6. This detection will happen if
b — Ax’ = A(x —x’) + (w — w’) has more than ¢ nonzero coordinates. It suffices
to ensure that A(x — x’) has at least 2¢ + 1 nonzero coordinates (because at
most ¢t of those can be zeroed out by w — w’), which happens whenever the code
generated by A has distance 2t + 1.
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Setting t = O("" logn) is sufficient to ensure efficiency. Random linear codes
have distance at least O("" logn) with probability 1 — e~ (") (the exact state-
ment is in Corollary ), so this also ensures correctness. The formal statement
is below (proof in the full version of this work [1§]):

Lemma 6 (Efficiency of Decode; when ¢ < d(m/n — 2)logn). Let d be a
positive constant and assume that dis(W,W') < t where t < d("" — 2)logn.
Then Decode; runs in expected time O(n*d*3) operations in ¥, (this expectation
18 over the choice of random coins of Decode;, regardless of the input, as long as
dis(w,w’) < t). It outputs X with probability 1 — e~ (this probability is over
the choice of the random matriz A and random choices made by Decode; ).

4.3 Lossless Computational Fuzzy Extractor

We now state a setting of parameters that yields a lossless construction. The
intuition is as follows. We are splitting our source into m blocks each of size
log pg (from Lemma M) for a total input entropy of mlog pq. Our key is derived
from hardcore bits of X: X7, and is of size klogq (from Lemma[f). Thus,
to achieve a lossless construction we need klogq = mlogpg. In other words,
in order to decode a meaningful number of errors, the vector w is of higher
dimension than the vector X, but each coordinate of w is sampled using fewer
bits than each coordinate of X. Thus, by increasing the size of ¢ (while keeping
pq fixed) we can set klogg = mlogpq, yielding a key of the same size as our
source. The formal statement is below.

Theorem 3. Let n be a security parameter and let the number of errors t =
clogn for some positive constant c. Let d be a positive constant (giving us a
tradeoff between running time of Rep and |w|). Consider the Hamming metric
over the alphabet Z = [—2°71 2571 where b = log2(c/d + 2)n? = O(logn).
Let W be uniform over M = Z™, where m = (¢/d+ 2)n = O(n). If GAPSVP
and SIVP are hard to approximate within polynomial factors using quantum
algorithms, then there is a setting of ¢ = poly(n) such that for any polyno-
mial Ssec = poly(n) there exists € = ngl(n) such that the following holds:
Constructiond is a (M, W, mlog|Z|,t)-computational fuzzy extractor that is
(€, 8sec)-hard with error § = e~ (™). The generate procedure Gen takes O(n?) op-
erations over F,, and the reproduce procedure Rep takes expected time O(n+3)
operations over IFy.

Proof. Security follows by combining Lemmas [l and B efficiency follows by
Lemma [6l For a detailed explanation of the various parameters and constraints
see the full version of this work [I§].

Theorem [3] shows that a computational fuzzy extractor can be built without
incurring any entropy loss. We can essentially think of AX 4+ W as an encryption
of X that where decryption works from any close W’.
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4.4 Comparison with Computational-Extractor-Based
Constructions

As mentioned in the introduction, an alternative approach to building a computa-
tional fuzzy extractor is to use a computational extractor (e.g., [26/3/13]) in place of
the information-theoretic extractor in the sketch-and-extract construction. We will
call this approach sketch-and-comp-extract. (A simple example of a computational
extractor is a pseudorandom generator applied to the output of an information-
theoretic extractor; note that LWE-based pseudorandom generators exist [2].)

This approach (specifically, its analysis via Lemma[Il) works as long as the
amount of entropy m of w conditioned on the sketch s remains high enough to
run a computational extractor. However, as discussed in Section Bl m decreases
with the error parameter ¢ due to coding bounds, and it is conceivable that, if
W has barely enough entropy to begin with, it will have too little entropy left
to run a computational extractor once s is known.

In contrast, our approach does not require the entropy of w conditioned on
p= (A, AX + w) to be high enough for a computational extractor. Instead, we
require that w is not computationally recoverable given p. This requirement is
weaker—in particular, in our construction, w may have no information-theoretic
entropy conditioned on p. The key difference in our approach is that instead of
extracting from w, we hide secret randomness using w. Computational extractors
are not allowed to have private randomness [26], Definition 3].

The main advantage of our analysis (instead of sketch-and-comp-extract) is
that security need not depend on the error-tolerance t. In our construction,
the error-tolerance depends only on the best available decoding algorithm for
random linear codes, because decoding algorithms will not reach the information-
theoretic decoding radius.

Unfortunately, LWE parameter sizes require relatively long w. Therefore, in
practice, sketch-then-comp-extract will beat our construction if the computa-
tional extractor is instantiated efficiently based on assumptions other than LWE
(for example, a cryptographic hash function for an extractor and a block cipher
for a PRG). However, we believe that our conceptual framework can lead to
better constructions. Of particular interest are other codes that are easy to de-
code up to t errors but become computationally hard as the number of errors
increases.

To summarize, the advantage of Construction [l is that the security of our
construction does not depend on the decoding radius ¢. The disadvantages of
Construction [T are that it supports a limited number of errors and only a uni-
formly distributed source. We begin to address this second problem in the next
section.

5 Computational Fuzzy Extractor for Nonuniform
Sources

While showing the security of Construction[I] for arbitrary high-min-entropy
distributions is an open problem, in this section we show it for a particular class
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of distributions called symbol-fixing. First we recall the notion of a symbol fixing
source (from [24], Definition 2.3]):

Definition 11. Let W = (W1, ..., Wi14) be a distribution where each W; takes
values over an alphabet Z. We say that it is a (m + «,m,|Z|) symbol fixing
source if for a indices i1,...,%iq, the symbols W, are fized, and the remaining
m symbols are chosen uniformly at random. Note that Hoo (W) = mlog|Z].

Symbol-fixing sources are a very structured class of distributions. However, ex-
tending Construction [Il to such a class is not obvious. Although symbol-fixing
sources are deterministically extractible [24], we cannot first run a deterministic
extractor before using Construction [Il This is because we need to preserve dis-
tance between w and w’ and an extractor must not preserve distance between
input points. We present an alternative approach, showing security of LWE di-
rectly with symbol-fixing sources.

The following theorem states the main technical result of this section, which
is of potential interest outside our specific setting. The result is that dist-LWE
with symbol-fixing sources is implied by standard dist-LWE (but for n and m
reduced by the amount of fixed symbols).

Theorem 4. Let n be a security parameter, m,« be polynomial in n, and q =
poly(n) be a prime and B € Z* be such that ¢~® = ngl(n). Let U denote the
uniform distribution over Z™ for an alphabet Z C F,, and let W denote an
(m + a,m,|Z|) symbol fizing source over Z™F*. If dist-LWE,, ., q.u is secure,
then dist-LWE, 4 o+ 8,m+a,q,w 18 also secure.

Theorem [4] also holds for an arbitrary error distribution (not just uniform error)
in the following sense. Let ' be an arbitrary error distribution. Define y as the
distribution where m dimensions are sampled according to x’ and the remaining
dimensions have some fixed error. Then, security of dist-LWE,, ,,, 4., implies se-
curity of dist-LWE,, 1 a4 8,m+a,q,x- We prove this stronger version of the theorem
in the full version of this work [I8].

The intuition for this result is as follows. Providing a single sample with
no error “fixes” at most a single variable. Thus, if there are significantly more
variables than samples with no error, search LWE should still be hard. We are
able to show a stronger result that dist-LWE is still hard. The nontrivial part of
the reduction is using the additional o+ ( variables to “explain” a random value
for the last o samples, without knowing the other variables. The § parameter is
the slack needed to ensure that the “free” variables have influence on the last «
samples. A similar theorem for the case of a single fixed dimension was shown
in concurrent work by Brakerski et al. [8] Lemma 4.3]. The proof techniques of
Brakerski et al. can be extended to our setting with multiple fixed dimensions,
improving the parameters of Theorem [ (specifically, removing the need for j3).

Theorem (] allows us to construct a lossless computational fuzzy extractor
from block-fixing sources:

Theorem 5. Let n be a security parameter and let t = clogn for some positive
constant c¢. Let d < ¢ be a positive constant and consider the Hamming metric
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over the alphabet Z = [—2°~1 25~ where b ~ log2(c/d + 2)n? = O(logn).
Let M = Z™T* where m = (¢/d + 2)n = O(n) and a < n/3. Let W be
the class of all (m + a,m,|Z|)-symbol fizing sources. If GAPSVP and SIVP
are hard to approximate within polynomial factors using quantum algorithms,
then there is a setting of ¢ = poly(n) such that for any polynomial Ssec =
poly(n) there exists e = ngl(n) such that the following holds: Construction ]
is a (M, W,mlog|Z|,t)-computational fuzzy extractor that is (€, Ssec)-hard with
error 6 = e~ (") The generate procedure Gen takes O(n?) operations over F,,
and the reproduce procedure Rep takes expected time O(n*@+3logn) operations
over IFy.

Proof. Security follows by Lemmas [ and B and Theorem H] . Efficiency follows
by Lemma 6l For a more detailed explanation of parameters see the full version
of this work [I§].
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A Properties of Random Linear Codes

For efficient decoding of Construction [Il we need the LWE instance to have high
distance with overwhelming probability. We will use the g-ary entropy function,
denoted H,(x) and defined as H,(r) = xlog,(¢—1)—zlog, z—(1—x)log,(1—x).
Note that Ha(z) = —zlogz — (1 —2)log(1 — z). In the region [0, 1] for any value
q > q, Hy(x) < Hy(x). The following theorem is standard in coding theory:

Theorem 6. [20, Theorem 8] For prime ¢, € [0,1 —1/¢),0 < e <1 — Hy(9)
and sufficiently large m, the following holds for n = [(1 — Hy(0) — e)m] . If
A € F"*" s drawn uniformly at random, then the linear code with A as a
generator matriz has rate at least (1 — Hy(0) — €) and relative distance at least
8 with probability at least 1 — e~
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Our setting is the case where m = poly(n) > 2n and 6 = O(logn/n). This
setting of parameters satisfies Theorem

Corollary 2. Letn be a parameter and let m = poly(n) > 2n. Let q be a prime
and 7 = O("" logn). For large enough values of n, when A € F**" is drawn
uniformly, the code generated by A has distance at least T with probability at
least 1 — e~ (M) > 1 — ¢=92(n),

Proof. Let ¢ be some constant. Let § = 7/m = Cl';g". We show the corollary
for the case when m = 2n (increasing the size of m only increases the relative
distance). It suffices to show that for sufficiently large n, there exists € > 0 where
1-— Hq(Ck;Lg") — e = 1/2 or equivalently that Hq(ClZf") < 1/2 as then setting
€=1/2— H,(°'*™) satisfies Theorem B For sufficiently large n:

n

- Cl(;g" < 1/2, so we can work with the binary entropy function Hs.

_ clf;g” < .1 <1/2 and thus Hq(ClZgn) < Hy(1).

Putting these statements together, for large enough n, Hq(Ck;Lg”) < Hy(1) <
H(.1) < 1/2 as desired. This completes the proof.
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Abstract. We introduce explicit schemes based on the polarization phe-
nomenon for the task of secret-key agreement from common information
and one-way public communication as well as for the task of private chan-
nel coding. Our protocols are distinct from previously known schemes in
that they combine two practically relevant properties: they achieve the
ultimate rate—defined with respect to a strong secrecy condition—and
their complexity is essentially linear in the blocklength. However, we are
not able to give an efficient algorithm for code construction.
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capable, less noisy, degraded, polarization phenomenon, polar codes,
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1 Introduction

Consider two parties, Alice and Bob, connected by an authentic but otherwise
fully insecure communication channel. It has been shown that without having
access to additional resources, it is impossible for them to communicate privately,
with respect to an information-theoretic privacy condition [IJ2]. In particular
they are unable to generate an unconditionally secure key with which to encrypt
messages transmitted over the public channel. However, if Alice and Bob have
access to correlated randomness about which an adversary (Eve) has only partial
knowledge, the situation changes completely: information-theoretically secure
secret-key agreement and private communication become possible. Alternatively,
if Alice and Bob are connected by a noisy discrete memoryless channel (DMC)
to which Eve has only limited access—the so-called wiretap channel scenario of
Wyner [3], Csiszar and Kérner [4], and Maurer [2]—private communication is
again possible.

In this paper, we present explicit schemes for efficient one-way secret-key
agreement from common randomness and for private channel coding in the wire-
tap channel scenario. As discussed in Section [Z.5] we improve previous work that
requires extra assumptions about the structure of the wiretap channel or/and
do not achieve strong secrecy. Our schemes are based on polar codes, a family of
capacity-achieving linear codes, introduced by Arikan [5], that can be encoded
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and decoded efficiently. Previous work in a quantum setup [6] already implies
that practically efficient one-way secret-key agreement and private channel cod-
ing in a classical setup is possible, where a practically efficient scheme is one
whose computational complexity is essentially linear in the blocklength. The
aim of this paper is to explain the schemes in detail and give a purely classi-
cal proof that the schemes are reliable, secure, practically efficient and achieve
optimal rates.

This paper is structured as follows. Section [2] introduces the problems of per-
forming one-way secret-key agreement and private channel coding. We summa-
rize known and new results about the optimal rates for these two problems for
different wiretap channel scenarios. In Section Bl we explain how to obtain one-
way secret-key agreement that is practically efficient, strongly secure, reliable,
and achieves the one-way secret-key rate. However, we are not able to give an
efficient algorithm for code construction, as discussed in Section B3l Section M
introduces a similar scheme that can be used for strongly secure private chan-
nel coding at the secrecy capacity. Finally we conclude in Section B and state
an open problem that is of interest in the setup of this paper as well as in the
quantum mechanical scenario introduced in [6].

2 Background and Contributions

2.1 Notation and Definitions

Let [k] = {1,...,k} for k € Z*. For x € Z§ and T < [k] we have z[Z] = [z; :
i €I], 2" = [21,...,2;] and z} = [x;,...,2;] for j < i. The set A° denotes
the complement of the set A. The uniform distribution on an arbitrary random
variable X is denoted by Px. For distributions P and @ over the same alpha-
bet X, the variational distance is defined by 6(P,Q) := 5> . |P(z) Q(z)|.
Let X and Y be two (possibly correlated) random variables. We use standard
information theoretic notation, such as H(X) for the (Shannon) entropy of X,
H(X,Y) for the joint entropy of (X,Y"), H(X|Y") for the conditional entropy of
X given Y, and I(X;Y) for the mutual information between X and Y [] The
notation X o Y o Z means that the random variables X, Y, Z form a Markov
chain in the given order.

In this setup we consider a discrete memoryless wiretap channel (DM-WTC)
W: X — Y x Z, which is characterized by its transition probability distribution
Py g XE We assume that the variable X belongs to Alice, Y to Bob and Z to
Eve.

According to Koérner and Marton [§], a DM-WTC W : X — Y x Z is termed
more capable if I(X;Y) = I(X;Z) for every possible distribution on X. The

! These quantities are properly defined in [7].

2 Recall that a discrete channel is defined as a system consisting of an input alphabet
(here X'), an output alphabet (here Y x Z) and a transition probability distribution
(here Py 7 x) between the input and the output. A channel is said to be memoryless
if the probability distribution of the output depends only on the input at that time
and is conditionally independent of previous channel inputs or outputs.
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channel W is termed less noisy if I(U;Y) = I(U; Z) for every possible distribu-
tion on (U, X) where U has finite support and U o X o (Y, Z) form a Markov
chain. If X o Y o Z form a Markov chain, W is called degmded It has been
shown [§] that being more capable is a strictly weaker condition than being less
noisy, which is a strictly weaker condition than being degraded. Hence, having a
DM-WTC W which is degraded implies that W is less noisy, which again implies
that W is also more capable.

2.2 Polarization Phenomenon

Let X" be a vector whose entries are i.i.d. Bernoulli(p) distributed for p € [0, 1]
and N = 2" where n € Z*. Then define UYN = Gy X", where Gy denotes the
polarization (or polar) transform which can be represented by the matrix

®log N
11
Gy = <0 1> , (1)

where A®* denotes the kth Kronecker power of an arbitrary matrix A. Note that
it turns out that Gy is its own inverse. Furthermore, let Y~ = WY X/ where
W denotes N independent uses of a DMC W : X — ). For € € (0,1) we may
define the two sets

RY(X|Y):={ie [N]: H(UJU" ', Y")
DN(X|Y):={ie[N]: H{U;|U" ', Y")

1 €} and (2)
€}. (3)

The former consists of outputs U; which are essentially uniformly random, even
given all previous outputs U7 ! as well as YV, while the latter set consists
of the essentially deterministic outputs. The polarization phenomenon is that
essentially all outputs are in one of these two subsets, and their sizes are given
by the conditional entropy of the input X given Y.

=
<

Theorem 1 (Polarization Phenomenon [549]). For any e € (0,1)

| = NH(X|Y) o(N) and (4)
DY(XIV)|=N@1 H(X[Y)) oN). (5)

Based on this theorem it is possible to construct a family of linear error cor-
recting codes, called polar codes. The logical bits are encoded into the U; for
i € DN(X|Y), whereas the inputs to U; for i € DN(X|Y)° are fixedd It has
been shown that polar codes have several desirable attributes [BITOITITZ)]: they
provably achieve the capacity of any DMC; they have an encoding and decoding

3 To call a DM-WTC W : X — Y x Z more capable is an abbreviation meaning that
the main channel W; : X — ) is more capable than the eavesdropping channel
Ws : X — Z. The same convention is used for less noisy and degraded DM-WTCs.

4 These are the so-called frozen bits.
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complexity that is essentially linear in the blocklength N; the error probability
decays exponentially in the square root of the blocklength.

Non-binary random variables can be represented by a sequence of correlated
binary random variables, which are then encoded separately. Correlated se-
quences of binary random variables may be polarized using a multilevel construc-
tion, as shown in [10] Given M i.i.d. instances of a sequence X = (X(1), X(2),

-, X(k)) and possibly a correlated random variable Y, the basic idea is to first
polarize X (1\1/1) relative to Y™, then treat X (]‘14) YM as side information in polariz-
ing X( 5> and so on. More precisely, defining U( Ny = GMX(J) forj=1,...,K,
we may define the random and deterministic sets for each j as

REHEpIXG 1, X Y)
— (i e [M]: H (U0

M

D) (XX 1), ,X(l),Y)
={ie[M]:H<U(])

IX(J\/[

Y XSYM) =1 g, and (6)

(]yl)a aX(]\f)aYM) <€} (7)

In principle we could choose different e parameters for each j, but this will not
be necessary here. Now, Theorem [I applies to the random and deterministic
sets for every j. The sets RM(X|Y) = {jo(j) (X)X 15+ X(l),Y)}K , and
DM(X|Y) = {D6 X)X 1), , X(1), )}, have sizes given by

K
RM(XIY)| = ) [RM,) (X)X 15+ X1y, V)| 8)
=1
K
Z H (X)X, X 1),Y)  o(M) (9)
_MHXIY) oK), (10)
and
K
DY (X)) =Z\ M) (XGIXG 1 X Y| (11)
K
= ZM X)Xy, X 1),Y))  o(M) (12)
=M(K H(X|Y)) o(KM). (13)

In the following we will make use of both the polarization phenomenon in its
original form, Theorem [Tl and the multilevel extension. To simplify the presen-
tation, we denote by G& the K parallel applications of G s to the K random
variables X (];I)

® An alternative approach is given in [I3IT4], where the polarization phenomenon has
been generalized for arbitrary finite fields. We will however focus on the multilevel
construction in this paper.
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2.3 One-Way Secret-Key Agreement

At the start of the one-way secret-key agreement protocol, Alice, Bob, and Eve
share N = 2" n € Z* iid. copies (XV, YN, ZN) of a triple of correlated
random variables (X, Y, Z) which take values in discrete but otherwise arbitrary
alphabets X, Y, 2[

Alice starts the protocol by performing an operation 74 : XY — (587,C)
on XV which outputs both her secret key S 1{1 e S’ and an additional random
variable C' € C which she transmits to Bob over an public but noiseless public
channel. Bob then performs an operation 75 : (V,C) — S/ on Y and the
information C' he received from Alice to obtain a vector S% € S”; his secret key.
The secret-key thus produced should be reliable, i.e., satisfy the

reliability condition: ]\}im Pr[Sj # Sé] =0, (14)
-0
and secure, i.e., satisfy the

(strong) secrecy condition: A}im HPSZ‘ zvc  Pgs x Pzy CH =0, (15)
-0 e Tl

where Pgs denotes the uniform distribution on random variable S e
Historically, secrecy was first characterized by a (weak) secrecy condition of
the form )
: J. 7N _
1\}1_11117 NI(SA,Z ,C’) = 0. (16)
Maurer and Wolf showed that (I6) is not a sufficient secrecy criterion [I5J16]
and introduced the strong secrecy condition
lim I(S4;ZN,C) =0, (17)

N—>w

where in addition it is required that the key is uniformly distributed, i.e.,
A}i_r)r}bé(PSi‘,PSi‘) = 0. (18)

In recent years, the strong secrecy condition (I7), (I8]) has often been replaced by
(I3, since (half) the L, distance directly bounds the probability of distinguishing
the actual key produced by the protocol with an ideal key. This operational
interpretation is particularly helpful in the finite blocklength regime. In the limit
N — oo, the two secrecy conditions ([0 and ([[T) are equivalent, which can be
shown using Pinskser’s and Fano’s inequalities.

Since having weak secrecy is not sufficient, we will only consider strong se-
crecy in this paper. It has been proven that each secret-key agreement protocol
which achieves weak secrecy can be transformed into a strongly secure protocol
[16]. However, it is not clear whether the resulting protocol is guaranteed to be
practically efficient.

6 The correlation of the random variables (X,Y, Z) is described by their joint proba-
bility distribution Px,y,z.
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For one-way communication, Csiszdr and Korner [4] and later Ahlswede and
Csiszér [I7] showed that the optimal rate R := limy_,, 3 of generating a secret
key satisfying (Idl) and ([T, called the secret-key rate S_,(X;Y|Z), is charac-
terized by a closed single-letter formula.

Theorem 2 (One-Way Secret-Key Rate [4)17]). For triples (X,Y,Z) de-
scribed by Pxy,z as explained above,

max H{U|zZ,V) HU|Y,V)
SL(X5Y[Z) =1 st.V o U o X o (V,2), (19)
VI <[], Ul < | X2
The expression for the one-way secret-key rate given in Theorem [2] can be
simplified if one makes additional assumptions about Pxy,z.
Corollary 3. For Pxy z such that the induced DM-WTCW described by Py, 71 x
s more capable,
max H(X|Z,V) H(X|Y,V)
So(X5Y|Z) =19 st.V o X o (V,2), (20)
VI <.
Proof. In terms of the mutual information, we have
H(UIZ V) HUIY,V)
=IU;Y|V) IU;Z|V) (21
I(X,U;Y\V) I(X,U;Z|[V) (I(X;Y|UV) I(X;Z|UV)) (22
<I(X,U;Y|V) I(X,U;Z|V) (
I(X;Y|V) I(X;Z|V), (24

)
)
)
)

using the chain rule, the more capable condition, and the Markov chain prop-
erties, respectively. Thus, the maximum in S, (X;Y|Z) can be achieved when
omitting U. O

Corollary 4. For Pxy z such that the induced DM-WTCW described by Py, 71 x
1s less noisy,
SL(X;Y|Z)=H(X|Z) H(X|Y). (25)

Proof. Since W being less noisy implies W being more capable, we know that
the one-way secret key rate is given by (20)). Using the chain rule we obtain

H(X|2,V) H(X|Y.V)

= I(X;Y|V) I(X;Z|V) (26)
= I(X,V;Y) I(X,ViZ) I(V;Y)+I(V:Z) (27)
=I(X;Y) I(X;2) (I(V;Y) I(V;Z)) (28)
<I(X;Y) I(X;Z). (29)

Equation (28) follows from the chain rule and the Markov chain condition. The
inequality uses the assumption of being less noisy. O
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Note that (23] is also equal to the one-way secret-key rate for the case where
W is degraded, as this implies W being less noisy. The proof of Theorem 2l does
not imply that there exists an efficient one-way secret-key agreement protocol.
A computationally efficient scheme was constructed in [I§], but is not known to
be practically efficient[1

For key agreement with two-way communication, no formula comparable to
(@) for the optimal rate is known. However, it has been shown that the two-
way secret-key rate is strictly larger than the one-way secret-key rate. It is also
known that the intrinsic information I(X;Y| Z) := minp,,  I(X;Y|Z") is an
upper bound on S(X;Y|Z), but is not tight [I7UT920].

2.4 Private Channel Coding

Private channel coding over a wiretap channel is closely related to the task of one-
way secret-key agreement from common randomness (cf. Section [Z3]). Here Alice
would like to transmit a message M7 € MY privately to Bob. The messages can
be distributed according to some arbitrary distribution P;;s. To do so, she first
encodes the message by computing X~ = enc(M”) for some encoding function
enc : M7 — XY and then sends X* over the wiretap channel to Bob (and
to Eve), which is represented by (Y, ZV) = WY XN. Bob next decodes the
received message to obtain a guess for Alice’s message M7 = dec(YN) for some
decoding function dec : YV — M. As in secret-key agreement, the private
channel coding scheme should be reliable, i.e., satisfy the

reliability condition: Jlim Pr [MJ # MJ] =0, forall M7eM’ (30)
— 0

and (strongly) secure, i.e., satisfy the
(strong) secrecy condition: Jh_rg HPMJ7ZN7C Py X PZN7CH1 =0. (31)

The variable C denotes any additional information made public by the protocol.
As mentioned in Section 23] in the limit J — oo this strong secrecy condition
is equivalent to the historically older (strong) secrecy condition

lim [(M7;ZN,C) =0. (32)
J—x
The highest achievable rate R := limy_,,. 3 fulfilling (30) and (3I) is called the
secrecy capacity.
Csiszar and Korner showed [4, Corollary 2] that there exists a single-letter
formula for the secrecy capacity.

" As defined in Section [[, we call a scheme practically efficient if its computational
complexity is essentially linear in the blocklength.

8 Maurer and Wolf showed that the single-letter formula remains valid considering
strong secrecy [16].
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Theorem 5 (Secrecy Capacity [4]). For an arbitrary DM WTCW as intro-

duced above,
max H(V|Z) H(VI|Y)
VvV, X

Cs=13 st.Vo X o (V,2), (33)
V< |X].

This expression can be simplified using additional assumptions about W.

Corollary 6 ([8]). If W is more capable,

C’Szrr})axH(X|Z) H(X|Y). (34)
X
Proof. A proof can be found in [8] or [2I} Section 22.1]. O

2.5 Previous Work and Our Contributions

In Section [3, we present a one-way secret-key agreement scheme based on polar
codes that achieves the secret-key rate, is strongly secure, reliable and whose
implementation is practically efficient, with complexity O(N log N) for block-
length N. Our protocol improves previous efficient secret-key constructions [22],
where only weak secrecy could be proven and where the eavesdropper has no
prior knowledge and/or degradability assumptions are required. Our protocol
also improves a very recent efficient secret-key construction [23], which requires
to have a small amount of shared key between Alice and Bob and only works for
binary degraded (symmetric) discrete memoryless sources. However, we note that
a possible drawback of our scheme compared to [23] is that its code construction
may be more difficult.

In Section @ we introduce a coding scheme based on polar codes that prov-
ably achieves the secrecy capacity for arbitrary discrete memoryless wiretap
channels. We show that the complexity of the encoding and decoding opera-
tions is O(N log N) for blocklength N. Our scheme improves previous work on
practically efficient private channel coding at the optimal rate [24], where only
weak secrecy could be proven under the additional assumption that the channel
W is degradedﬁ Recently, Bellare et al. introduced a polynomial-time coding
scheme that is strongly secure and achieves the secrecy capacity for binary sym-
metric wiretap channels [25} Several other constructions of private channel
coding schemes have been reported [26l2728], but all achieve only weak secrecy.
Very recently, Sagoglu and Vardy introduced a new polar coding scheme that

9 Note that Mahdavifar and Vardy showed that their scheme achieves strong secrecy
if the channel to Eve (induced from W) is noiseless. Otherwise their scheme is not
provably reliable [24].

10 They claim that their scheme works for a large class of wiretap channels. However,
this class has not been characterized precisely so far. It is therefore not clear whether
their scheme requires for example degradability assumptions. Note that to obtain
strong secrecy for an arbitrarily distributed message, it is required that the wiretap
channel is symmetric [25] Lemma 14].
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can be used for private channel coding being strongly secure [29]. However, it
still requires the assumption of having a degraded wiretap channel which we
do not need for our scheme. In [30], an explicit construction that achieves the
secrecy capacity for wiretap channel coding is introduced, but efficiency is not
considered.

The tasks of one-way secret-key agreement and private channel coding ex-
plained in the previous two subsections are closely related. Maurer showed how
a one-way secret-key agreement can be derived from a private channel coding
scenario [2]. More precisely, he showed how to obtain the common randomness
needed for one-way secret-key agreement by constructing a “virtual” degraded
wiretap channel from Alice to Bob. This approach can be used to obtain the
one-way secret-key rate from the secrecy capacity result in the wiretap channel
scenario [2I], Section 22.4.3]. One of the main advantages of the two schemes in-
troduced in this paper is that they are both practically efficient. However, even
given a practically efficient private coding scheme, it is not known that Maurer’s
construction will yield a practically efficient scheme for secret key agreement. For
this reason, as well as simplicity of presentation, we treat the one-way secret-key
agreement and the private channel coding problem separately in the two sections
to follow.

3 One-Way Secret-Key Agreement Scheme

Our key agreement protocol is a concatenation of two subprotocols, an inner
and an outer layer, as depicted in Figure [II The protocol operates on blocks
of N i.i.d. triples (X,Y, Z), which are divided into M sub-blocks of size L for
input to the inner layer. At the outer layer, we use the multi-level construction
introduced in Section In the following we assume X = {0, 1}, which however
is only for convenience; the techniques of [10] and [31] can be used to generalize
the schemes to arbitrary alphabets X

The task of the inner layer is to perform information reconciliation and that
of the outer layer is to perform privacy amplification. Information reconciliation
refers to the process of carrying out error correction to ensure that Alice and
Bob obtain a shared bit string, and here we only allow communication from
Alice to Bob for this purpose. On the other hand, privacy amplification refers to
the process of distilling from Alice’s and Bob’s shared bit string a smaller set of
bits whose correlation with the information available to Eve is below a desired
threshold.

Each subprotocol in our scheme is based on the polarization phenomenon.
For information reconciliation of Alice’s random variable X’ relative to Bob’s
information Y~ Alice applies a polar transformation to X and forwards the
bits of the complement of the deterministic set DL (X|Y) to Bob over a public
channel, which enables him to recover X* using the standard polar decoder [5].
Her remaining information is then fed into a multilevel polar transformation and
the bits of the random set are kept as the secret key.
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Let us now define the protocol more precisely. For L = 2¢, ¢ € Z*, let VI =
G XY where Gy, is as defined in (D). For €1 > 0, we define

Ex = DE(X|Y), (35)

with K := |D£1(X|Y)| Then, let T(; = VEL[Ek]j for j =1,...,K and Cyy =
VE[ES], for j=1,...,L K sothat T = (T(1y, -, Tk)) and C = (Cpyy, - -+
C k). For e2 > 0 and U(% = GMT(% for j = 1,...K (or, more briefly,

UM = GETM) we define
Fy=RM(T|CZ"), (36)
with J := |[RM(T|CZ")].

Protocol 1: One-way secret-key agreement

Given: Index sets £k and F (code construction)
Notation: Alice’s input: z™¥ € Z2' (a realization of X™)
Bob’s / Eve’s input: (y~,2") (realizations of Y and Z%)
Alice’s output: s%
Bob’s output: s%
Step 1:  Alice computes UZLL = GLxﬁf for allie {0,L,2L,...,(M 1)L}.
Step 2:  Alice computes t; = v {1 [€x] for all i € {0, L,2L,..., (M 1)L}
Step 3:  Alice sends ¢; = vfif[gf(] forall i € {0,L,2L,...,(M 1)L} over a pub-
lic channel to Bob.
Step 4:  Alice computes v = G t™ and obtains s} = u™ [F,.2
Step 5:  Bob applies the standard polar decoder [B12] to (cz,yfj_'lL) to obtain ¥
TEk], for i€ {0,L,2L,..., (M 1)L}

it+L
é i+1
and t; = 0
Step 6: Bob computes @ = G5t™ and obtains s = 4 [F].

3.1 Rate, Reliability, Secrecy, and Efficiency

Theorem 7. Protocol [ allows Alice and Bob to generate a secret key S4 re-
specitvely S using public one-way communication CM such that for any 8 < ;

Reliability:  Pr[S% # S3] = 0(M2 Lﬁ) (37)

Secrecy: HPS‘J“ZNVC Pgy x PZN’CH1 - O(\/NQ fo) (38)
J 1 c o(N)

Rate: Ri= | =H(X|Z) LH(VL[gK]|ZL) N (89)

All operations by both parties can be performed in O(N log N) steps.

' The expression u™ [F;] is an abuse of notation, as Fs is not a subset of [M]. The
expression should be understood to be the union of the random bits of ué\;[), for all
j=1,..., K, as in the definition of Rg (T|1cZ5).
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Fig. 1. The secret-key agreement scheme for the setup N =8, L =4, M =2, K = 2,
and J = 2. We consider a source that produces N i.i.d. copies (XN,YN,ZN) of a
triple of correlated random variables (X,Y, Z). Alice performs the operation 74, sends
(VE[E5])™M over a public channel to Bob and obtains S, her secret key. Bob then
performs the operation 75 which results in his secret key S3.

Proof. The reliability of Alice’s and Bob’s key follows from the standard polar
decoder error probability and the union bound. Each instance of the decoding
algorithm employed by Bob has an error probability which scales as O(2 Lﬂ) for

any (8 < % [9]; application of the union bound gives the prefactor M. Since G,

as defined in () is its own inverse, G, is its own inverse as well.
The rate of the scheme is

r= (40)
_ iH(VL[EKHVL[E}(],ZL) O(Z{]V) (41)
- i (H(VE|ZE)  H(VE[EL]|ZY)) Ogifv) (42)
— H(X|Z) iH(VL[Ef(HZL) O(Jifv), (43)

where (@I uses the polarization phenomenon stated in Theorem [
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To prove the secrecy statement requires more effort. Using Pinsker’s inequality
we obtain

In2
5(Psg,ZN,chfast x PZN,CM) S \/nz D(PS;LZN,CM

=\ (7 H(S{1ZN,0M)), (45)

PS,% X PZNVCIVI> (44)

where the last step uses the chain rule for relative entropies and that P 57 denotes
the uniform distribution. We can simplify the conditional entropy expression
using the chain rule

H(S4|zN,c™M)

= HUM[FA|ZN, (VI EEDM) (46)

= iH(U%[fw]‘U(J‘f)[f(l)]a---7U<J}4 lFG ol 2V (VEERDY) (@)
1l |

-3 DGl T R e AT o R NS
o 5 H (Vo U F O 012V (HEDY ) (49

TR (50)

where the first inequality uses the fact that that conditioning cannot increase
the entropy and the second inequality follows by the definition of F;. Recall
that we are using the notation introduced in Section For F; as defined in
(Bﬂ), we have .FJ = {f(j) }szl where .7:(]) = Rg (T(j) |T(j 1)s - .,T(l),C, ZL)
The polarization phenomenon, Theorem [I implies J = O(N), which together
with (@) proves the secrecy statement of Theorem [ since e; = O(2 V *Y for
any (8 < ;

It remains to show that the computational complexity of the scheme is
O(Nlog N). Alice performs the operation Gy, in the first layer M times, each
requiring O(Llog L) steps [5]. In the second layer she performs C;’f/[, or K paral-
lel instances of G s, requiring O(K M log M) total steps. From the polarization
phenomenon, we have K = O(L), and thus the complexity of Alice’s operations
is not worse than O(N log N). Bob runs M standard polar decoders which can be
done in O(M Llog L) complexity [5JI2]. Bob next performs the polar transform
GK v, Whose complexity is not worse than O(N log N) as justified above. Thus,
the complexity of Bob’s operations is also not worse than O(N log N). O

In principle, the two parameters L and M can be chosen freely. However, to
maintain the reliability of the scheme (cf.([37))), M may not grow exponentially
fast in L. A reasonable choice would be to have both parameters scale compa-

rably fast, i.e., Ajj[ = O(1).
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Corollary 8. The rate of Protocol[dl given in Theorem [7 can be bounded as

R> max{O,H(X|Z) H(X|Y) "(;]V) } (51)
Proof. According to ([A3)) the rate of Protocol [l is
R=H(X|Z) iH(vL[g;(HZL) "(]]VV) (52)
> max {0,H(X|Z) |5Lf<| O(Jifv)} (53)
- maX{O,H(X|Z) H(X|Y) Ogifv) } , (54)
where (B4]) uses the polarization phenomenon stated in Theorem [ O

3.2 Achieving the Secret-Key Rate of a Given Distribution

Theorem [ together with Corollaries @ and [§ immediately imply that Protocol[I]
achieves the secret-key rate S_,(X;Y|Z) if Px y,z is such that the induced DM
WTP W described by Py, z x is less noisy. If we can solve the optimization
problem ([[9), i.e., find the optimal auxiliary random variables V' and U, our
one-way secret-key agreement scheme can achieve S_,(X;Y|Z) for a general
setup. We then make V public, replace X by U and run Protocol Il Note that
finding the optimal random variables V and U might be difficult. It has been
shown that for certain distributions the optimal random variables V' and U can
be found analytically [L§].

An open problem discussed in Section [§ addresses the question if Protocol [II
can achieve a rate that is strictly larger than max {0, H(X|Z) H(X|Y )} if
nothing about the optimal auxiliary random variables V' and U is known, i.e., if
we run the protocol directly for X without making V' public.

3.3 Code Construction

To construct the code the index sets £ and F; need to be determined. The set
€k can be computed approximately with a linear-time algorithm introduced in
[32], given the distributions Px and Py |x. Alternatively, Tal and Vardy’s older
algorithm [33] and its adaption to the asymmetric setup [I2] can be used.

To approximately compute the outer index set F; requires more effort. In
principle, we can again use the above algorithms, which require a description
of the “super-source” seen by the outer layer, i.e., the source which outputs
the triple of random variables (VL[Ek], (YL, VL[ES]), (ZL, VLES])). However,
its alphabet size is exponential in L, and thus such a direct approach will not
be efficient in the overall blocklength N. Nonetheless, due to the structure of
the inner layer, it is perhaps possible that the method of approximation by
limiting the alphabet size [33J32] can be extended to this case. In particular,
a recursive construction motivated by the decoding operation introduced in [6]
could potentially lead to an efficient computation of the index set F .
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4 Private Channel Coding Scheme

Our private channel coding scheme is a simple modification of the secret key
agreement protocol of the previous section. Again it consists of two layers, an
inner layer which ensures transmitted messages can be reliably decoded by the
intended receiver, and an outer layer which guarantees privacy from the unin-
tended receiver. The basic idea is to simply run the key agreement scheme in
reverse, inputting messages to the protocol where secret key bits would be out-
put in key agreement. The immediate problem in doing so is that key agreement
also produces outputs besides the secret key, so the procedure is not immediately
reversible. To overcome this problem, the encoding operations here simulate the
random variables output in the key agreement protocol, and then perform the
polar transformations G%; and G, in reverse[

The scheme is visualized in Figure 2] and described in detail in Protocol Bl
Not explicitly shown is the simulation of the bits UM [FS] at the outer layer
and the bits VL[€%] at the inner layer. The outer layer, whose simulated bits
are nearly deterministic, makes use of the method described in [34, Definition
1], while the inner layer, whose bits are nearly uniformly-distributed, follows
[12] Section 4]. Both proceed by successively sampling from the individual bit
distributions given all previous values in the particular block, i.e., constructing
V; by sampling from Py, |y; 1. These distributions can be efficiently constructed,
as described in Section

Note that a public channel is used to communicate the information reconcili-
ation information to Bob, enabling reliable decoding. However, it is possible to
dispense with the public channel and still achieve the same rate and efficiency
properties, as will be discussed in Section (1.3

In the following we assume that the message M to be transmitted is uni-
formly distributed over the message set M = {0, 1}‘]. As mentioned in Sec-
tion 214l it may be desirable to have a private coding scheme that works for an
arbitrarily distributed message. This can be achieved by assuming that the wire-
tap channel W is symmetric—more precisely, by assuming that the two channels
W; : X - Yand Wy : X - Z induced by W are symmetric. We can de-
fine a super-channel W' : T — YT x ZI x C which consists of an inner encoding
block and L basic channels W. The super-channel W’ again induces two channels
W) : T - Y xCand W) : T — ZL xC. Arikan showed that W; respectively Wa
being symmetric implies that W/ respectively WY, is symmetric [5, Proposition
13]. It has been shown in [24] Proposition 3] that for symmetric channels polar
codes remain reliable for an arbitrary distribution of the message bits. We thus
conclude that if W; is assumed to be symmetric, our coding scheme remains reli-
able for arbitrarily distributed messages. Assuming having a symmetric channel
W, implies that WY is symmetric which proves that our scheme is strongly secure
for arbitrarily distributed messages

2 As it happens, G, is its own inverse.
3 This can be seen easily by the strong secrecy condition given in (BI) using that W5
is symmetric.
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Protocol 2: Private channel coding

Given: Index sets £k and F; (code Construction)ﬁ

Notation:  Message to be transmitted: m”’

Outer enc.: Let u™[F;] = m”! and v [F5] = r*M 7 where r®M 7 is (ran-
domly) generated as explained in [34) Definition 1]. Let t" = G¥u™
Inner enc.: Forallie {0,L,...,L(M 1)}, Alice does the following: let ’Zif[&(]

=t(i/r)+1 and O.f] [EK] = sitt * where s{T1 ¥ is (randomly) gen-
erated as explained in [12, Section 4]. Send C(z/K)+1 =511 ¥ over

a pubhc channel to Bob. Finally, compute sz =GLv z+1L

Transmis.: (y",z") = WVgV

Inner dec.: Bob uses the standard decoder [512] with inputs C(;/r)4+1 and yfﬂ‘
to obtain 9.1, and hence #(;/zy+1 = 0,11 [€x], for each
i€e{0,L,...,L(M 1)}

1 GK M

Outer dec.: Bob computes v and outputs a guess for the sent message

m’ = aM[Fs].

4.1 Rate, Reliability, Secrecy, and Efficiency

Corollary 9. For any 8 < é, Protocol [D satisfies

Reliability: Pr[MJ " MJ] - O<M2 Lﬁ) (55)
NB

Secrecy: HPMJ7ZN7C Pr x PZN’CH1 = O(\/N2 2 ) (56)

Rate: R=H(X|Z) iH(VL[SE(HZL) O(Jifv) (57)

and its computational complexity is O(N log N).

Proof. Recall that the idea of the private channel coding scheme is to run Proto-
colMbackwards. Since Protocol @lsimulates the nearly deterministic bits UM [F ]
at the outer encoder as described in [34, Definition 1] and the almost random
bits VL[ES] at the inner encoder as explained in [I2, Section 4], it follows that
for large values of L and M the private channel coding scheme approximates
the one-way secret-key scheme setupE ie., limy_ o 6(PTM,P(VL[5K])M) =0
and limyp_, 0 (PXL , Py L) = 0, where Pxr denotes the distribution of the vector
X1 which is sent over the wiretap channel W and Py 1. denotes the distribution
of Alice’s random variable X~ in the one-way secret-key agreement setup. We

14 By the code construction the channel input distribution Px is defined. Px should
be chosen such that it maximizes the scheme’s rate.

5 Again an abuse of notation. See the Footnote [IT] of Protocol [

16 This approximation can be made arbitrarily precise for sufficiently large values of L
and M.
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Fig. 2. The private channel coding scheme for the setup N = 8, L = 4, M = 2,
K = 2, and J = 2. The message M7 is first sent through an outer encoder which
adds some bits (simulated as explained in [I2} Section 4]) and applies the polarization
transform C:*ﬁ The output 7™ = (T1ys - - - ,T(K))M is then encoded a second time
by M independent identical blocks. Note that each block again adds redundancy (as
explained in [34] Definition 1]) before applying the polarization transform Gr. Each
inner encoding block sends the frozen bits over a public channel to Bob. Note that
this extra public communication can be avoided as justified in Section 3] The output
XV is then sent over N copies of the wiretap channel W to Bob. Bob then applies a
decoding operation as in the key agreement scheme, Section

thus can use the decoder introduced in [9] to decode the inner layer. Since we
are using M identical independent inner decoding blocks, by the union bound
we obtain the desired reliability condition. The secrecy and rate statement are
immediate consequences from Theorem [ O

As mentioned after Theorem [7 to ensure reliability of the protocol, M may
not grow exponentially fast in L.

Corollary 10. The rate of Protocol[d given in Corollary [ can be bounded as

N
R> max{O,H(X|Z) H(X|Y) O(N ) } (58)
Proof. The proof is identical to the proof of Corollary O

4.2 Achieving the Secrecy Capacity of a Wiretap Channel

Corollaries [0l and [[0] immediately imply that our private channel coding scheme
achieves the secrecy capacity for the setup where W is more capable. If we can
find the optimal auxiliary random variable V' in (33), Protocol ] can achieve
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the secrecy capacity for a general wiretap channel scenario. We define a super-
channel W : ¥V — Y x Z which includes the random variable X and the wiretap
channel W. The super-channel W is characterized by its transition probability
distribution Py, 71, where V' is the optimal random variable solving (33)). The
private channel coding scheme is then applied to the super-channel, achieving
the secrecy capacity. Note that finding the optimal random variable V' might be
difficult.

In Section Bl we discuss the question if it is possible that Protocol Blachieves a
rate that is strictly larger than max {0, maxp, H(X|Z) H(X|Y )}, if nothing
about the optimal auxiliary random variable V' is known.

4.3 Code Construction and Public Channel Communication

To construct the code the index sets £x and F as defined in (B5) and (38) need
to be computed. This can be done as explained in Section One first chooses
a distribution Py that maximizes the scheme’s rate given in (57), before looking
for a code that defines this distribution Px.

We next explain how the communication C™ € CM from Alice to Bob can be
reduced such that it does not affect the rate, i.e., we show that we can choose
IC| = o(L). Recall that we defined the index set £k := DX (X|Y) in @H). Let G :=
RL(X]Y) using the noation introduced in @) and Z := [L]\(€x u G) = E5\G.
As explained in Secti