
Kapees: A New Tool for Standard Cell

Placement

Sameer Pawanekar1,�, Kalpesh Kapoor2, and Gaurav Trivedi1

1 Department of Electronics and Electrical Engineering
Indian Institute of Technology Guwahati, India
{p.sameer,trivedi,kalpesh}@iitg.ernet.in

2 Department of Mathematics
Indian Institute of Technology Guwahati, India

Abstract. We consider the well-known problem of efficient cell place-
ment on a fixed die. We investigate minimization of half perimeter that
is required for a design that in turn results into minimal routed wire
length and thus wire delay. We describe a new method, Kapees, for large
scale standard cell placement. Our technique is based on recursive par-
titioning of placement circuit which is modeled as a hypergraph. It uses
partitioning during the global placement phase and a greedy approach
is followed to reduce the wire length during detailed placement phase.
Our results show a significant improvement in comparison to Cadence
Encounter’s Amoeba and Capo tools by 9% and 5%, respectively.

1 Introduction

Standard Cell Placement is a well studied problem over several years. The objec-
tive of standard cell placement is to find coordinates of all the standard cells in
a netlist in such a way that the wire length connecting them is minimum. The
wire length is modeled as Half Perimeter wire length (HPWL) which can be de-
fined as sum of all the perimeters of the smallest bounding box enclosing each net
of the design. There are four broad approaches to solve this problem: 1. Min-cut
[1–3], 2. Simulated annealing [4], 3. Analytic [5], and 4. Force directed [6]. Al-
though both academic and commercial tools for placement are available, there is a
scope for improvement because of inherent complexity of the problem [7]. This is
also apparent from the ISPD placement contests held in the recent past in which
none of the placers dominated across the entire benchmark set. A comparative
study has also shown that the current state of the art is far from optimal [8].

Our approach to solve this problem is based on partition driven placement. Net
cut objective follows wire length objective at initial hierarchical levels. At later
hierarchical levels, net cut objective no longer follows wire length objective. This
is when the number of cells are less than say 10. After this step detail placement
(DP) follows. The existing placers such as Capo [1], Dragon [2] and feng shui [3]
use different approaches during detailed placement.

� Sameer Pawanekar is currently a senior engineer with SiConTech, Bangalore. He is
enrolled as a part-time Ph.D. student at IIT Guwahati.

M.S. Gaur et al. (Eds.): VDAT 2013, CCIS 382, pp. 66–73, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Kapees: A New Tool for Standard Cell Placement 67

The tool feng shui does k-way partitioning and legalization and carries out the
detailed placement by a branch and bound method [3]. In addition to traditional
partitioning with hMetis, feng shui also uses large-scale k-way partitioning by
iterative deletion to obtain initial terminal propagation information. Both Capo
and Dragon uses a top-down hierarchical partitioning approach. Capo uses the
hypergraph partitioner tool MLPart [9]. Dragon performs bin swapping for net
cut optimization and low temperature annealing in its global and detailed place-
ment phases, respectively [2].

Partition driven placement tools rely on terminal propagation to a large ex-
tent. This technique is capable of obtaining better cuts with regard to placement.
Work in [10] relies heavily on the terminal propagation technique. It helps the
partitioner to gather the characteristics of cut nets and derive hence good wire
length results. The tool NTUPlace [11] proposes a terminal propagation method
which was a generalized version of a method presented in Theto [10].

We present a new method, Kapees, for the cell placement which has two steps
(a) partitioning in global placement phase, and (b) low temperature annealing
in detailed placement phase, followed by greedy cell swapping. We compare our
HPWL results with two existing tools: Cadence Encounter’s Amoeba and Capo
[12].

The rest of the paper is organized as follows. In Section 2, we present the
flow of our algorithm and our global placement strategy. Section 3 presents low
temperature annealing algorithm. Finally, experimental results and comparison
with three other tools and the conclusion are given in Section 4.

2 Global Placement Phase

Our placement tool works in two phases – Global Placement Phase and Detailed
Placement Phase. We describe these phases in detail below. The former phase
involves partitioning of hypergraph using hMetis package [13]. We recursively
bipartition the circuit and perform the arrangement. An arrangement is a step
in which coordinates are assigned to the bins in all possible ways. We continue
to partition until an optimum level is reached. We aim to use bisection because
of the fact that we got better partitioning and wirelength results in case of
bisection compared to using k-way partitioning and our partitioning approach
is not aimed at obtaining the slicing of floorplan In the next phase, we use a
simulated annealing algorithm with multiple objectives which is then followed by
a greedy algorithm for Half Perimeter Wire Length (HPWL) reduction. In global
placement phase we recursively bipartition the given circuit. We first partition
the circuit horizontally followed by vertically partitioning the two sub-circuits
that are obtained in the previous step. In the second step, these four partitioned
circuits are bisected. This continues until an optimum level is reached which is
defined as log(number of rows). If the number of rows is four, we can recursively
bipartition the circuit up to two levels. At the end of partitioning phase we
are left with 4log(number of rows) sub-circuits that we refer to as bins. Each bin
typically has between five to ten cells. During global phase all the cells in a

68 S. Pawanekar, K. Kapoor, and G. Trivedi

Fig. 1. Flow of Kapees

bin have the same coordinates. At every level an arrangement of the bins in all
possible locations is performed. For the first level, entire circuit forms a bin and
is placed at the center. In the second level, there are four bins and 24 possible
ways of arranging the four bins in four locations. In the third level we have
4 × 4 = 16 bins. Here each bin in the third level is arranged in 24 ways within
the region of its parent bin.

The existing placers such as [2] and [10] typically carry out terminal prop-
agation. In terminal propagation, when the cells of circuit is partitioned into
two bins, dummy cells are introduced into each bins. These dummy cells are
included in external (cut) nets. When the two bins are possible candidate for
further partitioning, external nets carry information that they are connected to
a bin externally, and hence they do not get cut. As a result better wire length is
obtained. However, in our experiment with terminal propagation we did not find
noticeable improvement in the wire length resulting from terminal propagation
scheme. So we do not perform terminal propagation but instead swap and move
cells within bins. This is equivalent to improve upon the cuts obtained at Global
placement phase. We discuss Cell Swapping in section 3.2.

Kapees: A New Tool for Standard Cell Placement 69

3 Detailed Placement Phase

In Detailed placement phase we perform bin swapping based simulated annealing
and cell swapping based simulated annealing followed by greedy cell swapping.

3.1 Bin Swapping Based Simulated Annealing

In bin swapping phase, we use a simulated annealing algorithm (see Algorithm
1) with two objectives. These are (A) reduction of wire length, and (B) balancing
row width, respectively.

To implement Multi-Objective Simulated Annealing, the objective function,
C, has to be equal to a sum of two objective functions C = αA+βB. It is difficult
to determine the ratio α and β as these values may not be the same for different
designs. We overcome this problem by selecting the moves in such a way that
any move that causes an imbalance is not accepted. We swap coordinates of the
bins to achieve HPWL reduction along with the condition that row imbalance
should not occur. The minimization function, F (x), is the x-direction HPWL
estimate and is given by Equation (1) from [14], where nH and eH are the node
and edge sets of the hypergraph H , respectively.

F (x) =
∑

ek∈eH

max
∀i,j∈nH

|xi − xj | (1)

Algorithm 1. Multi Objective Simulated Annealing

while init temp ≥ final temp do

P = eδWL/init temp

Perturb � Will cause swapping of bin coordinates
if δ WL ≤ 0 and row imbalance ≤ 0 then

Accept the perturbation
else

if random number ≤ P and row imbalance ≤ 0 then
Accept the perturbation

else
Revert the perturbation

end if
if sufficient number of perturbations then

Decrease init temp
end if

end if
end while

3.2 Cell Swapping Based Simulated Annealing

We do not perform terminal propagation therefore it is important for us to
improve the cuts obtained during global placement phase. This is achieved by

70 S. Pawanekar, K. Kapoor, and G. Trivedi

performing cell swapping between the bins. In this step all cells within a bin are
placed on top of each other, that is, there exists overlap between the cells. All
the cells of a bin have the same coordinates. After completion of cell swapping
between the bins, all the cells are spread out to remove overlap. Spreading is
placing of the cells of the bins adjacent to each other in such a way that there
is no overlap between them. It is important that the wire length obtained after
spreading out all the cells must correlate with the changes that are done during
cell swapping phase. Cell swapping and cell movement between the bins is studied
by [15] and implemented in Dragon version 2.1. They attempt to achieve a bin
width balance by swapping of cells. By doing this they achieve a correlation
between the wire length of spread out cells and wire length during cell swapping.
We tried two approaches for doing annealing based on cell swapping.

Algorithm 2. Perturbation Method 1

Randomly Select Two Bins in sufficiently close vicinity
Select one Cell from Each Bin
Calculate Incremental Cost = Cost1
Swap the Cell coordinates
Calculate Incremental Cost = Cost2
Return δWL = Cost1− Cost2

Algorithm 3. Perturbation Method 2

Randomly Select Two Bins in sufficiently close vicinity
Select one Cell from Each Bin
Calculate Incremental Cost = Cost1
Swap the Cell coordinates and arrange all Bins to the right of the selected Bins
separated by a distance equal to their widths
Calculate Incremental Cost = Cost2
Return δWL = Cost1− Cost2

In the first approach we did not move the bin location ie, all the bins have
fixed coordinates. Here the bin coordinates are not changed and there exists even
spacing between the bins. Here we randonly select the bins which are within a
distance of numberofrows/3 bins. For us this method does not correlate well with
the spread out wire length.

In the second approach Figure 2, bins are placed at a distance equal the their
widths and we shift the bins towards right by the difference in cell widths. Let
Cell A belongs to Bin A and Cell B belongs to Bin B, then after swapping the
cells, all the bins to the right of Bin A will be moved by a difference amount
(Width(cellB)-width(cellA)) where as all the bins to the right of Bin B Bin B
will be moved to right with a difference amount (Width(cellA)-width(cellB)). If
we spread out the cells after the first method, we get worse wire length. This is

Kapees: A New Tool for Standard Cell Placement 71

Fig. 2. Method 2 for Perturbation

because the estimates for bin width separation are not correct. We do not aim to
obtain a balance for bin widths but only for row widths. In the second method
the wire length during cell swapping stage correlates well with spread out cost.

3.3 Greedy Cell Swapping

In this stage, initially, all the cells for the bins are spread out. Then we randomly
pick two cells in sufficiently close vicinity and see if swapping their coordinates
with each other can reduce the wire length. The swapping is done in such a way
that there does not exist any overlap between the adjacent cells. All the cells to
the right of the selected cells are spread out.

Table 1. Characteristics of IBM version 2 benchmarks

Circuits Cell Count Net Count Rows core utilization

IBM01 easy 12028 11753 132 85.12%

IBM01 hard 12028 11753 130 88.00%

IBM02 easy 19062 18688 153 90.42%

IBM02 hard 19062 18688 149 95.28%

IBM07 easy 44811 44681 233 89.95%

IBM07 hard 44811 44681 226 95.30%

IBM08 easy 50672 48230 243 90.03%

IBM08 hard 50672 48230 236 95.16%

IBM09 easy 51382 50678 246 90.24%

IBM09 hard 51382 50678 240 95.12%

IBM10 easy 66762 64971 321 90.22%

IBM10 hard 66762 64971 313 95.08%

IBM11 easy 68046 67422 281 90.11%

IBM11 hard 68046 67422 273 95.33%

4 Experimental Results and Conclusion

We selected the IBM version 2.0 benchmarks to test our tool. These benchmarks
have cell counts ranging from 12028 to 68046. Most of the current state of art

72 S. Pawanekar, K. Kapoor, and G. Trivedi

Table 2. HPWL comparison for IBM version 2 benchmarks

Circuits Amoeba (A) Capo (C) Kapees (K)

×106 ×106 ×106 K/A K/C

IBM01 easy 58.0278 55.8873 51.7759 0.89 0.92

IBM01 hard 57.6793 55.1354 51.456 0.89 0.93

IBM02 easy 165.906 158.743 146.253 0.88 0.92

IBM02 hard 164.541 156.048 145.224 0.88 0.93

IBM07 easy 373.388 368.7 354.121 0.94 0.96

IBM07 hard 359.586 355.686 353.964 0.98 0.99

IBM08 easy 406.834 387.502 352.928 0.86 0.91

IBM08 hard 395.116 379.512 363.081 0.91 0.95

IBM09 easy 341.532 317.126 311.554 0.91 0.98

IBM09 hard 338.188 321.029 321.057 0.94 1.00

IBM10 easy 605.746 636.689 601.824 0.99 0.94

IBM10 hard 642.065 629.543 624.721 0.97 0.99

IBM11 easy 521.413 481.637 478.191 0.91 0.99

IBM11 hard 514.758 476.332 472.878 0.91 0.99

Average 0.91 0.95

placers have reported their work on these benchmarks. For our experiments and
HPWL comparison we obtained the tool Cadence Encounter’s Ameoba (version
9.1) and Capo (version 8.8) [12] from its respective websites.

The implementation of our tool, Kapees, for large scale standard cell place-
ment, is done in C language. The experiments are performed on 1.5 GHz, 32-bit,
2GB RAM, Intel dual core machine running Ubuntu, a variant of GNU-Linux, as
operating system. We compared our tool with Capo as they are run on the same
machine, whereas Amoeba run results are extracted on a different machine.

The run time of our tool is 10 times more when compared to that of Capo for
designs with cells less than 2000. For the design IBM01 easy, run time of Capo is
21 seconds, whereas, runtime of Kapees is 428 seconds, which means kapees is 22
times slower than Capo for this design. For the design IBM12 hard, run time of
Capo is 205 seconds, whereas, runtime of Kapees is 9084 seconds, which means
kapees is 44 times slower than Capo for this design. We observed that the runtime
of Kapees increases with the growth of number of cells. This is primarily due to
the use of simulated annealing technique wherein we perform HPWL calculation
for each iteratve move. We plan to improve run-time in future.

As reported in Table 2, the experiments show that the half perimeter wire
lengths obtained for these designs by Kapees are on an average 9% and 5%
less than that obtained from Amoeba and Capo, respectively. We get superior
results over other simulated annealing techniques because of our contribution as
the method2. Instead of using terminal propagation, we use method2 to improve
the already obtained cuts during global placement.

Kapees: A New Tool for Standard Cell Placement 73

References

1. Caldwell, A.E., Kahng, A.B., Markov, I.L.: Can recursive bisection alone pro-
duce routable, placements? In: Proceedings of Design Automation Conference, pp.
477–482 (2000)

2. Wang, M., Yang, X., Sarrafzadeh, M.: Dragon2000: standard-cell placement tool
for large industry circuits. In: Proceedings of IEEE/ACM International Conference
on Computer Aided Design (ICCAD), pp. 260–263 (2000)

3. Agnihotri, A., Yildiz, M.C., Khatkhate, A., Mathur, A., Ono, S., Madden, P.H.:
Fractional cut: improved recursive bisection placement. In: Proceedings of Interna-
tional Conference on Computer Aided Design (ICCAD), pp. 307–310 (November
2003)

4. Sechen, C., Sangiovanni-Vincentelli, A.: The timberwolf placement and routing
package. IEEE Journal of Solid-State Circuits 20(2), 510–522 (1985)

5. Kahng, A.B., Wang, Q.: Implementation and extensibility of an analytic placer.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 24(5), 734–747 (2005)

6. Cong, J., Xie, M.: A robust detailed placement for mixed-size ic designs. In: Pro-
ceedings of Asia and South Pacific Conference on Design Automation, pp. 188–194
(January 2006)

7. Shahookar, K., Mazumder, P.: VLSI cell placement techniques. ACM Computing
Surveys 23(2), 143–220 (1991)

8. Chang, C.C., Cong, J., Romesis, M., Xie, M.: Optimality and scalability study of
existing placement algorithms. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 23(4), 537–549 (2004)

9. Alpert, C.J., Caldwell, A.E., Kahng, A.B., Markov, I.L.: Hypergraph partitioning
with fixed vertices (VLSI CAD). IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 19(2), 267–272 (2000)

10. Selvakkumaran, N., Karypis, G.: Theto - a fast and high-quality partitioning driven
global placer. Technical report, in university of minnesota - computer science and
engineering technical reports (2003)

11. Chen, T.C., Hsu, T.C., Jiang, Z.W., Chang, Y.W.: Ntuplace: a ratio partitioning
based placement algorithm for large-scale mixed-size designs. In: Proceedings of
the 2005 International Symposium on Physical Design, ISPD 2005, pp. 236–238.
ACM, New York (2005)

12. Capo: Tool,
http://vlsicad.eecs.umich.edu/BK/PDtools/tar.gz/Placement-bin/

(accessed 17 January 2013)
13. Karypis, G., Kumar, V.: Multilevel k-way hypergraph partitioning. In: Proceedings

of 36th Design Automation Conference, pp. 343–348 (1999)
14. Kennings, A., Markov, I.: Analytical minimization of half-perimeter wirelength.

In: Proceedings of Design Automation Conference (ASP-DAC), pp. 179–184 (June
2000)

15. Yang, X., Choi, B.K., Sarrafzadeh, M.: A standard-cell placement tool for designs
with high row utilization. In: Proceedings of the 2002 IEEE International Confer-
ence on Computer Design: VLSI in Computers and Processors, pp. 45–47 (2002)

http://vlsicad.eecs.umich.edu/BK/PDtools/tar.gz/Placement-bin/

	Kapees: A New Tool for Standard Cell Placement
	1 Introduction
	2 Global Placement Phase
	3 Detailed Placement Phase
	3.1 Bin Swapping Based Simulated Annealing
	3.2 Cell Swapping Based Simulated Annealing
	3.3 Greedy Cell Swapping

	4 Experimental Results and Conclusion
	References

