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Abstract. Compressed Sensing (CS) is found to be promising method for 
sparse signal recovery and sampling. The paper proposes the architecture for 
computing various computational functions useful in realizing CS recovery 
consisting of Singular Value Decomposition (SVD) using Bi-diagonalization 
method; L1 norm of vector, L2 norm of vector calculations.  This is one of the 
early VLSI implementation attempt for CS recovery. We have verified the 
design for speed and accuracy of results on FPGA.  

Keywords: Compressed Sensing, Compressive Sensing, Architecture. 

1 Introduction 

Compressed Sensing (CS) has been receiving a lot of interest as a promising method 
for sparse signal recovery and sampling.  As a general principle, a sparse solution x to 
an under-determined linear system of equations “Ax = y” may be obtained by 
minimizing the L1 norm of x. Minimizing ||x||1 is recognized as a practical avenue for 
obtaining sparse solutions x.  If the "observation" y is contaminated with noise, then 
an appropriate norm of the residual (Ax – y) should be minimized.  If there is noise in 
y, the L1-regularized least square problem (LSP) [1-4] 

 minimize||Ax - y||2
2
       + λ ||x||1 (1) 

                     λ >0, ||x||1   L1 norm, ||Ax - y||2   L2 norm 
 
Numerous schemes have been proposed for obtaining sparse solutions of 

underdetermined systems of linear equations; popular methods have been developed 
from many viewpoints: L1-minimization, convex regularization and nonconvex 
optimization [2-5], matching pursuit [2-5], iterative thresholding methods and 
subspace methods [6-7], Singular Value Decomposition (SVD) methods [8-10]. These 
specific proposals are often tailored to different viewpoints, ranging from formal 
analysis of algorithmic properties to particular application requirements. 

As per our review, Patrick et al [7] work is an early paper proposing VLSI 
Implementation for CS recovery using message passing/iterative methods. Yeyang et 
al [10] proposes to use SVD as data-adaptive sparsity basis for compressed sensing 
Magnetic Resonance (MR) images and is able to give sparser representation for 
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broader range of MR images as it is better than the conventional transforms like 
Discrete Cosine Transform and Discrete Wavelet transform.  

We reviewed various CS recovery algorithms. Matrix and vector processing is 
most suited to implement various computational functions. The paper contributes in 
identifying and implementing various computational functions required for VLSI 
implementation. The functional verification of the VLSI implementation was done by 
using LAPACK/LINPACK/TNT (Template Numerical Toolkit) software wherever 
required.  

The paper is organized as follows. The section 2 give Computational Functions, 
Section 3 give Design and Implementation and Section 4 give results. The conclusion 
and future scope is presented in section 5. 

2 Computational Functions  

The review of various CS recovery algorithms [1-10], highlight use of L1 norm of 
vector, L2 norm of vector, matrix SVD function as basis for implementing various CS 
algorithms. The current work focuses on following CS recovery algorithms: L1-
minimization, convex regularization [2-4], iterative thresholding methods [6-7] and 
Singular Value Decomposition (SVD) [8-10].  

The computational functions are defined as follows: L1 norm of vector = Σi |xi|, L2 

norm of vector = Squareroot (Σi|xi|
2) and Matrix SVD includes solving least square 

problem (eq. 1), i.e. computing the following equation:   
 x = arg min||Ax - y||2           (2) 

To compute equation (2), SVD is computed as factorization of matrix A (= USVT). 
U, S, V denote matrix factorization of A 

There are two methods for computing the SVD: Bi-diagonal form with QR 
algorithm and Jacobi rotation method. The QR algorithm is computationally much 
more efficient than the Jacobi method. On the other hand, Jacobi methods exhibit 
much more inherent parallelism than the QR. The review indicates SVD FPGA 
implementation [11-15] using Jacobi rotation. Jacobi SVD [15] analyzes small and 
mid sizes matrices around 8X8 size. The Jacobi method works well for real 
symmetric matrices. However the algorithm is slower for matrices of order greater 
than about 10, by a significant constant factor, than the Bi-diagonal form with QR 
method [16].     

Compressed sensing recovery normally deals with larger matrix sizes.  We require 
SVD method dealing for dense, real non-symmetric matrices which is not the case 
with Jacobi method. The accuracy requirement is also important and requires floating 
point operations. We propose SVD calculation as Householder’s reduction to Bi-
diagonal form (Bi-diagonalization) followed with QR algorithm.  The Householder’s 
reduction [17, 18] reduces a matrix to bi-diagonal form by repeated transformation. 
Transformation annihilates the required part of whole column and whole 
corresponding row by using a Householder matrix of the form P = 1 -2w.wT. 
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3 Design and Implementation 

3.1 Design 

We designed various architectural entities and have presented the architecture. These 
entities are used multiple times in the CS recovery schemes. The details are as 
follows: 
• L1 norm of vector  
• L2 norm of vector 
• SVD calculation using Bi-diagonalization of matrix with QR algorithm (Bi-

diagonalization entity , Sum1, Sum2 and Squareroot entities) 
The design and RTL implementation of L1 norm of vector, L2 norm of vector and Bi-
diagonalization are given below. The QR algorithm's functional implementation has 
been used for testing SVD. 

L1 Norm and L2 Norm:    
The Fig. 1 gives iterative design and RTL implementation of L1 norm and L2 norm for 
a vector. To our knowledge L1 norm and L2 norm architecture is not available in 
literature comes as our contribution. 

   

 
Fig. 1. (a) L1 norm of vector (b) L2 norm of vector (c) RTL view 

Bi-diagonalization: 
The Householder’s reduction [17-18] to Bi-diagonal form is designed and 
implemented in VHDL. The Bi-diagonalization steps are given below: 

1. Compute the transformation on matrix A for the ith column and place the 
ith diagonal in vector1, Apply transformation 

2. Place the ith row of Matrix A into vector2 for the row transformation and 
it’s calculation 

3. Store the transformation in U  
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4. Find the ith row transformation and place the ith super-diagonal in 
vector2, Apply transformation 

5. Store the transformation in V  
6. Order the Matrix to bi-diagonal form, storing the diagonal elements in 

vector1 and the super-diagonal element in another vector2 
7. Generate U 
8. Generate V 

The Fig. 2 gives the overview of Bi-diagonalization design and Fig. 3 gives  
Bi-diagonalization entity RTL view and SVD implementation.  To our knowledge Bi-
diagonalization architecture is not available in literature and comes as our 
contribution. 

 
Fig. 2. Overview of Bi-diagonalization design and implementation 

 

Fig. 3. Bi-diagonalization entity RTL view and SVD Implementation 
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The Fig. 4 gives Sum1, Sum2 and Square root entities. The Bi-diagonalization 
entity (and SVD) is based on these entities. For Sum2 and Square root entities we use 
two multipliers (floating point) and there by introducing parallelism in operations. 

 

                    

Fig. 4. (a) Sum1 (a) Sum2 (c) Square Root 

3.2 Implementation 

We have implemented and synthesized L1 norm of vector, L2 norm of vector, Bi-
diagonalization of matrix, Sum1, Sum2, Square root. The Bi-diagonalization entity 
uses Sum1 and Squareroot entities and other FP core entities. The architectural 
entities are implemented and synthesized on Xilinx Artix-7 with ISE-14.x and the 
implementation is done in VHDL.  The Floating Point core (FP) 6.0 is used. 

The Xilinx FP Core (blocking mode) gives the results of calculation after certain 
duration. The duration is multiple (N) of clock cycles for operations like Multiply, 
ADD/SUB, DIV etc. 

We have implemented following techniques: 
• For repetitive operations, ‘for loop’ i.e. for functional we have provided a 

control flag (gated if with clock) which controls the execution to next stage. 
The flag is updated when all the required operations are done in each of the 
iteration. 

• Wait for the floating point operations is implemented by using a variable to 
count the desired number of cycles on clock along with a flag whether to 
proceed to next stage or not. 

• We have used above techniques for creating L1 norm of vector, L2 norm of 
vector, Bi-diagonalization of matrix synthesizable entities.  

 
The Fig. 1 gives RTL view of L1 norm of vector and L2 norm of vector. The 

memory module uses LogiCore to define memory. The controller interacts with L1 
norm entity and L2 norm entity. The controller along with memory module gets data 
in/out for processing. 

The Fig. 2 gives the brief overview of Bi-diagonalization. It indicates that there are 
multiple loops and nested loops along with conditional checks. The design decision to 
create the entities like Sum1, Sum2 and Squareroot and techniques enabled us to 
create synthesizable entity for Bi-diagonalization. 
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We also have done VHDL implementation of SVD using Bi-diagonalization entity 
and other entities as shown in Fig. 3. The memory module uses LogiCore to define 
memory. The controller interacts with Bi-diagonalization entity and QR module. The 
controller along with memory module gets data in/out for processing. The QR 
algorithm is part of test code and uses Sum2 and other FP components. We have 
tested the output of SVD and verified against matlab. For the cases when rows are 
less than columns for a matrix A, the SVD of the AT is to be computed initially and 
then perform interchanges U and V which can be part of testcode.  

4 Results 

The scheme has been tested using Xilinx Artix-7 with ISE-14.x and FP core 6.0. The 
test input given to the system was random.  The device summary details are also 
given below for various synthesized entities. 
 
L1 Norm: 
We have implemented L1 norm for various vector sizes. This can be configured as per 
user need.  We verified the output of L1 norm using matlab as reference output and no 
error was observed. The time to compute L1 norm for few vector lengths is given 
below and the time scales in proportion of the length. 
 

Vector Lengths Time 

10, 100 1.305 us, 13.005 us 
 

L2 norm: 
We have implemented L2 norm for various vector sizes. This can be configured as per 
user need. We verified the output of L2 norm using matlab as reference output and no 
error was observed. The time to compute L2 norm for few vector lengths is given 
below and the time scales in proportion of the length. 

Vector Lengths  Time 
100, 49 23.695 us, 11.969 us 

 
Bi-diagonalization: 
We have implemented Bi-diagonalization and verified its output with the reference 
software implementation and the results were matching. The timing for a matrix size 
is given below and found to be acceptable for SVD implementation.  

Matrix Time 
4X4 24.915 us 

 
Device Summary for L1 Norm of Vector and L2 Norm of Vector and  
Bi-diagonalization:  
Selected Device: xa7a100tcsg324-2i.  
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Parameters L1 norm L2 norm  Bi-diag 
Number of Slice Registers* 32   97   137  
Number of Slice LUTs **             32   66   76  
Number used as Logic **              NA 2   12  
Number of LUT FF pairs used 64 

 
98 213 

Number of bonded IOBs  *** 97   97  65  
(* out of 1268000, ** out of 63400, *** out of 210) 
Note1 

 
Design Summary of Sum1, Sum2, Squareroot: 
Selected Device: xa7a100tcsg324-2i.  
 

Parameters Sum1 Sum2 Squareroot 
Number of Slice 
Registers* 

65  240  282  

Number of Slice LUTs  **   1  117  67  
Number used as Logic  **    1  53      67  
Number of LUT FF pairs 
used 

66 253 304 

Number of bonded IOBs  
***  

64  161  97  

       (* out of 1268000, ** out of 63400, *** out of 210) 

 
SVD:  
The SVD implementation is done using various synthesized Architectural entities 
given above. The Table 1 gives comparison of first diagonal element of 'S' Matrix 
(equation (2)) of VHDL implementation and Matlab implementation, though we have 
the complete Matrix (U, S, V) available, the first diagonal element being the dominant 
value of SVD is used for comparison in the table. We compared the timing for our 
SVD calculation to the implementation in [15] for size 16 X 32 and have found to be 
faster by a factor of 2.7. Our implementation for 32X16 takes 1.969 ms while 
implementation given in [15] takes 5.344 ms. The clock period used is 10 ns for 
getting the results but it can be reduced to 3 ns as lower limit, so the above values in 
the table can reduce to 1/3rd.   

The Xilinx ISE value and the Matlab value indicated in the table are output of SVD 
for various sample input vectors. The ISE values and Matlab values are observed to 
be almost same and the error is negligible compared to implementation done by [15] 
which has error of around 1.4% for first diagonal element for 16X32 size.  

                                                           
1  The device summary does not add the hardware resources used by FP core. The resource 

utilization for Artix7 is available in the document, LogiCORE IP Floating-Point Operator 
v6.2 Product Guide PG060 December 18, 2012. 
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Table 1. SVD results 

Matrix Size Xilinx ISE value Matlab value Time 
 4x4 4 4 41.330 us2 
 4x4 2 2 18.130 us 
4X4 1.999999 2 49.750 us 
32x16 16 16 1.969 ms 
32x32 22.62739 22.6274     4.578 ms 
96x96     67.88227 67.8823 50.904 ms 
128x128    90.50966 90.5097 90.869 ms 
(The timing values given above can be 1/3rd if minimum clock period of 3ns is 

used) 

5 Conclusion 

In this paper we have implemented and synthesized the computational functions 
required for doing compressive sensing recovery. We believe ours is one the early 
attempts to carry out VLSI implementation and synthesis of computational functions 
for compressive sensing recovery. We could not get any reference for L1 norm of 
vector and L2 norm of vector implementations and could not do comparison. 
Similarly, Bi-diagonalization architecture is also our contribution. Our SVD 
implementation has been found to be faster and more accurate compared to 
implementations done in [15]. 

We also studied algorithms (second order methods) like interior point method 
which can be solved in the polynomial time (O(N 3)) and it uses preconditioned 
conjugate gradient (PCG) method to approximately solve linear systems in a truncated 
Newton framework. Iteration methods (first order) are studied for L1-minimization 
and literature has compared iterative algorithms (Hard /Soft, IST/IHT) along with its 
tuning. For certain very large matrices it can rapidly apply and without representing 
as a full matrix and in such settings, the work required scales very favorably with N. 
In future we plan to consider implementation of SVD based method/ first order 
method, along with calculation of power and present compressive sensing recovery 
architecture. 

References 

[1] Maleki, A.: Approximate Message Passing Algorithms for compressed sensing, PhD 
Thesis, Stanford University (September 2011) 

[2] Kim, S.-J., Koh, K., Lustig, M., Boyd, S.: An Interior-Point Method for Large Scale l1-
Regularized Least Squares. IEEE Journal of Selected Topics in Signal Processing 1(4), 
606–617 (2007) 

[3] Kim, S.-J., Koh, K., Lustig, M., Boyd, S.: An Efficient Method for Compressed Sensing. 
In: IEEE International Conference on Image Processing, vol. 3, pp. III-117–III-120, 
http://www.stanford.edu/~boyd/l1_ls/ 

                                                           
2  The timing corresponds to the same input that was also used for bi-diagonalization testing. 



 Computational Functions’ VLSI Implementation for Compressed Sensing 43 

[4] Hale, E.T., Yin, W., Zhang, Y.: A Fixed Point Continuation method for l1-Regularized 
Minimization with Applications to Compressed Sensing, CAAM Technical Report TR07-
07, Dept of Computational and Applied Mathematics, Rice University, Houstan, Texas 
(July 7, 2007) 

[5] Baraniuk, R., Davenport, M.A., Duarte, M.F., Hegde, C.: An Introduction to Compressive 
Sensing. In: Connexions. Rice University, Houston (2011) 

[6] Maleki, A., Donoho, D.L.: Optimally Tuned Iterative Reconstruction Algorithms for 
Compressed Sensing. IEEE Journal of Selected Topics in Signal Processing 4(2) (April 
2010) 

[7] Maechler, P., Studer, C., Bellasi, D.E., Maleki, A., Burg, A., Felber, N., Kaeslin, H., 
Baraniuk, R.G.: VLSI Implementation of Approximate Message Passing for Signal 
Restoration and Compressive Sensing. Submitted to IEEE Journal on Emerging and 
Selected Topics in Circuits and Systems 

[8] Xu, L., Liang, Q.: Compressive Sensing Using Singular Value Decomposition. In: 
Pandurangan, G., Anil Kumar, V.S., Ming, G., Liu, Y., Li, Y. (eds.) WASA 2010. LNCS, 
vol. 6221, pp. 338–342. Springer, Heidelberg (2010) 

[9] Peng, Y., He, Y.: A Reconstruction Algorithm for Compressed Sensing Noise Signal. 
Journal of Computational Information Systems 8(14), 6025–6031 (2012) 

[10] Yu, Y., Hong, M., Liu, F., Wang, H., Crozier, S.: Compressed Sensing MRI Using 
Singular Value Decomposition based Sparsity Basis. In: 33rd Annual International 
Conference of the IEEE EMBS, Boston, Massachusetts USA, August 30-September 3 
(2011) 

[11] Ahmedsaid, A., et al.: Improved SVD systolic array and implementation on FPGA. In: 
Proceedings of the 2003 IEEE International Conference on Field-Programmable 
Technology, FPT (2003) 

[12] Ma, W., et al.: An FPGA based Singular Value Decomposition processor. In: IEEE 
Canadian Conference on Electrical and Computer Engineering, CCECE 2006 (2006) 

[13] Rahmati, M., et al.: FPGA Based Singular Value Decomposition for Image Processing 
Applications. In: IEEE International Conference on Application-Specific Systems, 
Architectures and Processors, ASAP 2008 (2008) 

[14] Szecówka, P.M., et al.: CORDIC and SVD Implementation in Digital Hardware. In: IEEE 
17th International Conference on Mixed Design of Integrated Circuits and Systems, 
MIXDES 2010, Wrocław, Poland, June 24-26 (2010) 

[15] Ledesma-Carrillo, L.M.: Reconfigurable FPGA-Based Unit for Singular Value 
Decomposition of Large m × n Matrices. In: IEEE 2011 International Conference on 
Reconfigurable Computing and FPGAs (2011) 

[16] Numerical Recipes- The Art of Scientific Computing, 3rd edn. Cambridge University 
Press 

[17] Golub, Reinsch: Singular Value Decomposition and Least Squares Solutions. Handbook 
Series Linear Algebra, Numer. Math. 14, 403–420 (1970) 

[18] Strang, G.: Linear Algebra and its Applications, 4th edn. Cengage Learning 


	Computational Functions’ VLSI Implementation for Compressed Sensing
	1 Introduction
	2 Computational Functions
	3 Design and Implementation
	3.1 Design
	3.2 Implementation

	4 Results
	5 Conclusion
	References




