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    Abstract  
  The neurotransmitter dopamine plays a role in many different functions of the 
human brain, ranging from psychomotor planning to cognition. This short review 
addresses which parts of the dopamine system can be imaged quantitatively in 
the living human brain using positron-emission tomography (PET) or single-
photon emission computed tomography (SPECT). 

 Nowadays, imaging of the nigrostriatal dopaminergic pathway in humans can 
be performed quantitatively using radiotracers like the aromatic amino acid 
decarboxylase (AADC) substrate [ 18 F]FDOPA, vesicular monoamine transporter 
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2 (VMAT-2) radioligands derived from tetrabenazine or PET/SPECT radioli-
gands that bind to the dopamine transporter (DAT). Using PET, also several other 
dopaminergic projection pathways (e.g. mesocortical projections) can be 
assessed in humans. Several antagonist PET radioligands for the dopamine D 1  
receptor have been developed successfully. In addition, well-validated antagonist 
PET and SPECT radioligands are available for imaging of dopamine D 2/3  recep-
tors in the living human brain. Recently, also agonist PET radioligands for the 
dopamine D 2/3  receptors have become available, which afford the opportunity to 
evaluate the existence of the high-affi nity state of these receptors in vivo. These 
agonist radiopharmaceuticals may also prove more sensitive to changes in dopa-
mine concentrations (e.g. induced by the dopamine releaser amphetamine). 
Finally, selective antagonist PET radioligands for the dopamine D 4  receptor have 
recently been synthesized and evaluated successfully in small laboratory  animals, 
although these radioligands have not yet been reported as applied in human 
subjects. 

 In conclusion, after almost three decades of research, several relevant parts 
of the central dopamine system can be assessed quantitatively in the living 
human brain using PET or SPECT. Future studies may include application of 
agonist radioligands and more dopamine receptor subtype selective 
radioligands.  

10.1        Introduction 

 Numerous cognitive, psychomotor and emotional functions are regulated, at least 
in part, by dopaminergic circuits in the brain. The neurotransmitter dopamine 
plays, for example, an important role in movement and the experience of pleasure 
(hedonia). Dopaminergic neurons in the midbrain area are relevant in coding the 
value of neuronal signals, and indeed, these neurons are activated by a rewarding 
stimuli (like amphetamines, which induce dopamine release), but may also play a 
role in reward learning, the prediction of error signalling and the interpretation of 
the salience of events (Fiorillo et al.  2003 ; Nakahara et al.  2004 ; Morris et al. 
 2006 ; Zijlstra et al.  2008 ; Enomoto et al.  2011 ). In addition, neurodegeneration of 
the dopaminergic neurons in the midbrain can lead to severe locomotor dysfunc-
tion such as in Parkinson’s disease. Given the broad spectrum of functions of 
dopamine in the brain, it is reasonable that imaging of the central dopamine sys-
tem has been used frequently as a tool to assess different aspects of dopaminergic 
functioning in health and disease, particularly in a variety of neuropsychiatric 
disorders. 

 Here we will review shortly which parts of the central dopamine system can be 
imaged quantitatively in the living human brain using positron-emission tomogra-
phy (PET) or single-photon emission computed tomography (SPECT). The fi ndings 
of SPECT and PET studies of the dopamine system in different neuropsychiatric 
disorders will be discussed only shortly, since they will be discussed in depth in 
other chapters of this book.  
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10.2    Imaging of the Presynaptic Dopamine System 

10.2.1    [ 18 F]FDOPA and [ 18 F]FMT 

 The majority of the cell bodies of dopaminergic neurons are located in the midbrain 
area, with axons predominantly projecting to the striatum (e.g. the nigrostriatal 
dopaminergic pathway). The scintigraphic techniques PET and SPECT offer unique 
means to assess the in vivo integrity of the nigrostriatal pathway. The biochemical 
integrity of presynaptic dopamine neurons can be assessed with the PET radioli-
gands 6- 18 F-fl uoro- L -DOPA ([ 18 F]FDOPA) or 6- 18 F-fl uoro-meta-tyrosine ([ 18 F]
FMT) (for reviews, see Booij et al.  1999 ; Kumakura and Cumming  2009 ). 

 [ 18 F]FDOPA is a widely applied PET tracer commonly radiolabelled with fl uo-
rine- 18, although in some clinical studies, DOPA was applied as radiolabelled with 
carbon-11. After injection, the radiotracer will be taken up into dopaminergic neu-
rons by the amino acid transporter (Fig.  10.1 ), decarboxylated (by aromatic amino 
acid decarboxylase; AADC) to [ 18 F]fl uorodopamine (or [ 11 C]dopamine when [ 11 C]
DOPA is used) and then temporarily stored in vesicles within the nerve terminals. 
Therefore, [ 18 F]FDOPA distribution in dopamine neurons refl ects a regulated aspect 
of the synthesis of dopamine in presynaptic neurons. The trapping of [ 18 F]fl uorodo-
pamine in nigrostriatal dopamine terminals has, however, been demonstrated not to 
be completely irreversible (Holden et al.  1997 ; Cumming et al.  2001 ). Indeed, 
steady-state kinetic analyses of [ 18 F]FDOPA PET studies have shown that besides 
the synthesis, also the turnover of [ 18 F]FDOPA to  O -methyl-[ 18 F]FDOPA can be 
assessed (Kumakura et al.  2005 ). Importantly, in most clinical studies, static striatal 
[ 18 F]FDOPA uptake was assessed relative to uptake in a reference tissue (refl ecting 
the non-specifi c radioactivity concentration) and using linear graphical analysis. 
This approach is convenient for clinical studies in which arterial blood samples are 
commonly not available (Kumakura and Cumming  2009 ). However, the kinetic 
properties of [ 18 F]FDOPA are complex and include not only the washout of radio-
tracer but also the entry of a metabolite of [ 18 F]FDOPA into brain. Consequently, 
relative long acquisitions of dynamic PET images, as well as the analysis of the 
metabolite-corrected arterial [ 18 F]FDOPA input function, are required to yield a 
more physiological index of [ 18 F]FDOPA utilization, including [ 18 F]FDOPA turn-
over (for a review, see Kumakura and Cumming  2009 ).

   As an alternative to [ 18 F]FDOPA, the tyrosine derivative [ 18 F]FMT has been 
developed. This radiotracer is similar to [ 18 F]FDOPA in that both radiotracers are 
substrates of AADC. However, unlike [ 18 F]FDOPA, [ 18 F]FMT is not a substrate for 
catechol-O-methyl-transferase (COMT), an enzyme essential in the breakdown of 
dopamine. Therefore, there are no radioactive  O -methyl-metabolites which contrib-
ute to the non-specifi c radioactivity in the brain, which enables the use of simplifi ed 
kinetic modelling approaches (   Dejesus et al.  2001 ). 

 The enzyme AADC plays an important role in the synthesis of dopamine, in that 
it converts  L -DOPA to dopamine. It is important to consider that AADC also plays 
a role in the synthesis of other monoamine transmitters, e.g. in the conversion of 
5-hydroxytryptophan to serotonin (5-HT). Since both [ 18 F]FDOPA and [ 18 F]FMT 
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  Fig. 10.1    Simplifi ed diagram of a striatal dopaminergic synapse. On the presynaptic side, poten-
tial markers for imaging of the integrity of dopaminergic neurons in humans are shown. [ 18 F]
FDOPA and [ 18 F]FMT PET provide measures of the structural and biochemical integrity of the 
dopaminergic neurons. [ 11 C]DTBZ is a commonly used radiopharmaceutical for the vesicular 
monoaminergic transporter. Substituted (nor)phenyltropanes ([ 11 C]CFT, [ 11 C]PE2I, [ 123 I] β -CIT, 
[ 123 I]FP-CIT and [ 99m Tc]TRODAT) are frequently used PET and SPECT radioligands for imaging 
of the DAT in humans. On the postsynaptic sides, [ 11 C]NNC112 and [ 11 C]SCH23390 are com-
monly used antagonist radiopharmaceuticals for the dopamine D 1  receptor. Dopamine D 2  receptors 
are predominantly expressed on the postsynaptic side than on the presynaptic side of the dopami-
nergic synapse. [ 11 C]NPA and [ 11 C]PHNO are agonist radioligands for dopamine D 2/3  receptors. 
Commonly used antagonist radioligands for D 2/3  receptors are substituted benzamides ([ 11 C]raclo-
pride, [ 11 C]FLB 457, [ 18 F]fallypride and [ 123 I]IBZM).  DAT  dopamine transporter,  VMAT-2  vesicu-
lar monoaminergic transporter 2       
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are substrates of AADC, these tracers are not only converted in dopaminergic neu-
rons but also in serotonergic and noradrenergic neurons (Brown et al.  1999 ; Moore 
et al.  2003 ). The striatal accumulation of these tracers does however predominantly 
refl ect conversion in nigrostriatal dopaminergic neurons (Pavese et al.  2012 ). 

 Initial PET studies applying [ 18 F]FDOPA or [ 18 F]FMT focused on evaluation of 
the nigrostriatal pathway, by studying the distribution of these tracers in the striatum 
(   Antonini et al.  1995 ). Due to the better performance characteristics of the PET 
systems, as well as the improved PET data analysis methods, also extrastriatal 
radioactivity concentrations can nowadays be quantifi ed (e.g. cortical areas). 
However, and as mentioned before, due to the expression of AADC in all monoami-
nergic neurons, accumulation in the raphe nuclei and locus coeruleus likely refl ects 
predominantly serotonergic and noradrenergic activity, respectively, instead of 
accumulation in dopaminergic neurons (Ito et al.  2008 ; Lewis et al.  2012 ; Pavese 
et al.  2012 ). An important consideration when studying extrastriatal brain regions is 
that the reliability of measurements in extrastriatal regions is lower than in the stria-
tum (Egerton et al.  2010 ). 

 Neuropsychiatric diseases like Parkinson’s disease and dementia with Lewy 
bodies are characterized by severe loss of dopaminergic nigrostriatal neurons. 
Consequently, many PET studies have utilized [ 18 F]FDOPA and [ 18 F]FMT to dem-
onstrate the ability to detect loss of dopaminergic neurons in cohorts of these 
patients (   Brooks et al.  1990 ; Antonini et al.  1995 ; Hu et al.  2000 ; Pavese et al. 
 2012 ). In addition, several [ 18 F]FDOPA PET studies have been performed in patients 
suffering from psychosis, with the majority of them demonstrating an elevated stria-
tal [ 18 F]FDOPA uptake, which suggests an increased synthesis as well as dopamine 
turnover in these patients (Kumakura et al.  2007 ; Howes and Kapur  2009 ). [ 18 F]
FDOPA has also been applied to evaluate the role of dopamine in the human reward 
system (Dreher et al.  2008 ; Schlagenhauf et al.  2013 ). Finally, in healthy controls 
[ 18 F]FDOPA and [ 18 F]FMT PET have been used to assess ageing effects and cogni-
tive functions (Braskie et al.  2008 ; Dreher et al.  2008 ; Kumakura et al.  2010 ).  

10.2.2    Imaging of the VMAT-2 

 The vesicular monoamine transporter type 2 (VMAT-2; Fig.  10.1 ) is located in pre-
synaptic dopaminergic neurons. Initially, carbon-11-labelled tetrabenazine deriva-
tives have been developed successfully for PET imaging to visualize and quantify 
the VMAT-2 in humans (for a review, see Kilbourn  1997 ). Recently, also fl uorine-
18- labelled radioligands for the VMAT-2 have been developed successfully (Lin 
et al.  2010 ), which affords the opportunity to use these radioligands also in hospitals 
not equipped with a cyclotron. 

 VMAT-2 is not exclusively present in dopaminergic neurons, but also in other 
monoaminergic neurons, including serotonergic (Guillot and Miller  2009 ), although 
the vast majority of the striatal radioactivity concentration represents binding in 
dopaminergic nerve terminals (Wang et al.  2010 ). In this regard, it is of interest that 
it has been suggested that VMAT-2 radioligands can also be used to visualize loss 
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of pancreatic beta-cell mass in type 1 diabetes (Goland et al.  2009 ), since beta-cells 
express VMAT-2. However, the specifi c binding of VMAT-2 PET radioligands 
binding to beta-cell mass has recently been disputed (Virostko et al.  2011 ). 

 Like [ 18 F]FDOPA and [ 18 F]FMT use in PET studies, VMAT-2 studies in humans 
have demonstrated that VMAT-2 imaging is a sensitive technique to detect reduc-
tions of nigrostriatal dopaminergic terminals in patients suffering from Parkinson’s 
disease or dementia with Lewy bodies (Frey et al.  1996 ; Okamura et al.  2010 ;    Burke 
et al.  2011a ; Villemagne et al.  2011 ). In addition, VMAT-2 binding has been evalu-
ated in relation to natural ageing effects (Bohnen et al.  2006 ). Until now, SPECT 
radioligands have not been developed successfully for imaging of the VMAT-2.  

10.2.3    Imaging of the Dopamine Transporter 

 The dopamine transporter (DAT) is mainly located in the membrane of terminals of 
presynaptic dopaminergic neurons (Fig.  10.1 ), but is also expressed at much lower 
levels in cell bodies in the substantia nigra (Ma et al.  1999 ). Radioligands for the 
DAT have been developed successfully for both PET and SPECT. Regarding 
SPECT radioligands, radiopharmaceuticals derived from cocaine, e.g. [ 99m Tc]
TRODAT-1, [ 123 I]β-CIT and [ 123 I]FP-CIT, are non-selective DAT radioligands, 
although binding in the striatum predominantly refl ects binding to DAT (Laruelle 
et al.  1993 ; Booij    et al.  1997a ,  2007 ; Dresel et al.  1998 ; Ziebell et al.  2010 ; Koopman 
et al.  2012 ). Indeed, [ 123 I]FP-CIT SPECT studies have shown that extrastriatal bind-
ing (in the diencephalon and midbrain) can be blocked by a selective serotonin 
reuptake inhibitor, indicating predominantly binding to serotonin transporters in 
these brain areas (Booij et al.  2007 ; Ziebell et al.  2010 ). In addition, also promising 
and DAT-selective SPECT ligands, like [ 123 I]PE2I, have been developed and used in 
human subjects (Kuikka et al  1998 ; Ziebell et al.  2010 ). 

 PET radioligands for imaging of the DAT have been developed numerously over 
the last two decades (see for reviews Varrone and Halldin  2012a ,  b ). Initially, non- 
selective DAT radioligands (e.g. [ 11 C/ 18 F]CFT, Rinne et al.  2002 ; Nurmi et al.  2003 ; 
[ 18 F]FP-CIT; Oh et al.  2012 ) were applied in human studies, but more recently 
reported radioligands have an improved DAT selectivity (e.g. [ 11 C]PE2I (Hirvonen 
et al.  2008 ) (Fig.  10.2 ) or [ 18 F]FE-PE2I (Varrone et al.  2009 ; Sasaki et al  2012 )). The 
developed PET radioligands also afford the opportunity to assess extrastriatal DAT 
binding, i.e. binding in the midbrain area and the orbitofrontal area (Jucaite et al. 
 2005 ; Hirvonen et al.  2008 ; Yagi et al.  2010 ), while with SPECT only DAT binding 
in the striatum can be assessed accurately.

   The DAT plays an important role in regulating dopaminergic neurotransmission. 
In this regard, appropriate regulation of the DAT expression is critical. Indeed, the 
DAT expression undergoes dynamic control by cellular protein kinases and phos-
phatases (Ramamoorthy et al.  2011 ). So, the DAT is not only expressed on the 
plasma membrane of dopaminergic neurons, as internalization of the DAT has been 
reported (Eriksen et al.  2009 ; Chen et al.  2010 ). Until now, it is not clear whether 
the abovementioned DAT radioligands label only plasma membrane-bound 
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transporters or also internalized transporters when applied in PET/SPECT studies 
evaluating in vivo conditions (Earley et al.  2011 ). The radioligand binding charac-
teristics to internalized transporters may differ from those transporters that are not 
internalized. Interestingly, Guo and co-workers have recently demonstrated that 
radioligands binding the dopamine D 2/3  receptors have a lower affi nity to internal-
ized than to non-internalized receptors (Guo et al.  2010 ). Future studies are neces-
sary to evaluate whether DAT internalization is a relevant consideration for in vivo 
imaging of DAT. 

 Numerous PET and SPECT studies evaluating DAT binding have shown the pos-
sibility to detect in vivo degeneration of nigrostriatal cells in disorders like Parkinson’s 
disease and dementia with Lewy bodies (Booij et al.  1997b ; Varrone et al.  2001 ; 
McKeith et al.  2007 ; Yagi et al.  2010 ; Oh et al.  2012 ). Also, DAT binding has been 
examined in relation to ageing and gender effects in healthy controls, as well as the 
effects of polymorphism of the DAT gene (Lavalaye et al.  2000 ; van Dyck et al. 
 2005 ; van de Giessen et al.  2009 ; Troiano et al.  2010 ; Burke et al.  2011b ). Generally 
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  Fig. 10.2    Transversal planes of a mean PET summation image (6–93 min) obtained after i.v. 
injection of [ 11 C]PE2I (selective radiotracer for the dopamine transporter) into a healthy male 
control subject. Intense specifi c binding is visible in the caudate nucleus and putamen and lower 
specifi c binding in extrastriatal brain areas (thalamus/midbrain). This study has been acquired on 
a brain-dedicated PET system (HRRT) (Images courtesy of Dr. Andrea Varrone and Professor 
Christer Halldin, Karolinska Institutet)       

 

10 PET and SPECT Imaging of the Central Dopamine System in Humans



236

speaking, brain SPECT imaging of neuroreceptors/transporters is cheaper than PET 
imaging, and consequently DAT imaging with SPECT is commonly used in routine 
clinical studies to exclude or detect loss of nigrostriatal neurons in individual patients 
(Booij et al.  2001 ; Løkkegaard et al.  2002 ; Catafau et al.  2004 ; Ziebell et al.  2012 ).   

10.3    Imaging of the Postsynaptic Dopaminergic System 

10.3.1    Imaging of Dopamine D 1  Receptors 

 Dopamine exerts its pharmacological action through G-protein-coupled receptors. 
These transmembrane receptors can be divided into two subfamilies based on their 
pharmacological properties: the D 1 - (D 1 , D 5 ) and D 2 -like receptor subfamily (D 2 , D 3 , 
D 4 ; Stoof and Kebabian  1981 ; Strange  1993 ; Beaulieu and Gainetdinov  2011 ). 

 The dopamine D 1  receptor is a highly prevalent dopamine receptor in the striatum 
and neocortex and is located postsynaptically (Cortés et al.  1989 ; Volkow et al.  1996 ). 
The radiopharmaceuticals [ 11 C]NNC 112 and [ 11 C]SCH 23390 have successfully been 
developed to image dopamine D 1  receptors in the living human brain using PET 
(Fig.  10.3 ). Both radioligands are high-affi nity dopamine D 1  receptor antagonists, 
although they also have been reported to bind to serotonin 2A (5-HT 2A ) receptors, 
estimated as approximately 25 % of cortical binding being due to binding to 5-HT 2A  
receptors (Ekelund et al.  2007 ). To circumvent this limitation, a recent study proposed 
the use of the 5-HT 2A  receptor antagonist ketanserin. After ketanserin administration, 
the 5-HT 2A  receptor binding is inhibited, and cortical D 1  receptor binding can be accu-
rately assessed using [ 11 C]NNC 112 in humans (Catafau et al.  2010 ).

   Although [ 11 C]NNC 112 and [ 11 C]SCH 23390 bind to both dopamine D 1  and 
5-HT 2A  receptors, the affi nity to dopamine D 2 -like receptors is substantially lower 
(Andersen et al.  1992 ) although binding to dopamine D 5  receptors cannot be 
excluded (Sunahara et al.  1991 ; Chou et al.  2006 ). While dopamine D 1  receptors are 
expressed at high levels in the striatum and cortical areas, the expression of dopa-
mine D 5  receptors in the brain is low (Beaulieu and Gainetdinov  2011 ). Consequently, 
in vivo binding to dopamine D 5  receptors, as compared to D 1  receptors, with PET 
radioligands like [ 11 C]NNC 112 is likely negligible. 

 Dopamine receptors have been demonstrated to exist in two affi nity states in vitro. 
The two receptor states are convertible and consist of a state of high and low affi nity 
for the endogenous agonist dopamine (or exogenous agonists) (Sibley et al.  1982 ; 
Chio et al.  1994 ). The high-affi nity state represents the active form of the receptors 
that are coupled to G proteins (Zahniser and Molinoff  1978 ). Regarding dopamine 
D 1  receptors, results of in vitro experiments suggest that 20–40 % of these receptors 
are in the high-affi nity state (Richfi eld et al.  1989 ; Mamelak et al.  1993 ; McCauley 
et al.  1995 ). Importantly, while antagonist radioligands label both the high- and low-
affi nity state of the receptors, agonist radioligands may label receptors only in its 
high-affi nity state. So far, the available radioligands [ 11 C]NNC 112 and [ 11 C]SCH 
23390 are both antagonists for the dopamine D 1  receptor. Developments of agonist 
radioligands for the dopamine D 1  receptor are ongoing and will enable to examine in 
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future studies whether the high-affi nity state of the dopamine D 1  receptor exists in 
living humans (Palner et al.  2010 ). Also, dopamine agonist radioligands may be 
more sensitive to detect changes in dopamine concentrations in the synapse, e.g. 
changes induced by dopamine releasers like amphetamines (see below). 

 Since dopamine D 1  receptors have been implicated in cognitive performance, dopa-
mine D 1  PET studies in healthy volunteers have been used to examine changes in work-
ing memory (McNab et al.  2009 ), amygdala response to affective stimuli (Takahashi 
et al.  2010 ) and natural ageing (Jucaite et al.  2010 ) and to study the effects of genes 
involved in the dopaminergic tone (Slifstein et al.  2008 ). Dopamine D 1  receptor imag-
ing in neuropsychiatric disorders has so far focused on schizophrenia (and the mecha-
nism of action of antipsychotics) and cocaine addiction (Nordström et al.  1995 ; 
Karlsson et al.  2002 ; Hirvonen et al.  2006 ; Martinez et al.  2009 ). Until now, the devel-
opment of SPECT radioligands for the dopamine D 1  receptor has not been successful.  

10.3.2    Imaging of Dopamine D 2 -Like Receptors 

10.3.2.1    Dopamine D 2/3  Receptor Imaging 
 In the past three decades, PET as well as SPECT radioligands have been developed 
successfully to image and quantify dopamine D 2/3  receptors in the human brain. 
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  Fig. 10.3    Transversal plane of a mean PET summation image (12–63 min) obtained after i.v. 
injection of [ 11 C]SCH 23390 (radiotracer for the dopamine D 1  receptor) into a healthy male control 
subject. Intense specifi c binding is visible in the caudate and putamen, and lower specifi c binding 
in the extrastriatal brain areas (cortex). This study has been acquired on a brain-dedicated PET 
system (ECAT EXACT HR) (Images are courtesy of Per Stenkrona and Professor Christer Halldin, 
Karolinska Institutet)       
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 Regarding SPECT imaging, the commonly used benzamide [ 123 I]IBZM is an 
antagonist radioligand which binds with high affi nity to dopamine D 2/3  receptors 
(i.e. in the low nanomolar range) (Verhoeff et al.  1993 ; Videbaek et al.  2000 ; de 
Haan et al.  2003 ; Boot et al.  2008 ; Visser et al.  2008 ). With this radioligand striatal 
dopamine D 2/3  receptors can be assessed accurately, and extrastriatal distribution 
may be visualized, particularly when using brain-dedicated SPECT systems 
(Fig.  10.4 ). The radioligand [ 123 I]epidepride is a dopamine D 2/3  receptors antagonist 
with an enhanced affi nity (picomolar range) for the D 2/3  receptors (Kessler et al. 
 1991 ). This ultrahigh-affi nity SPECT radioligand allows assessing D 2/3  receptors 
availability in extrastriatal brain areas, such as the midbrain, diencephalon and cor-
tical areas (Kornhuber et al.  1995 ; Varrone et al.  2000 ; Glenthoj et al.  2006 ; 
Tuppurainen et al.  2010 ).

   Regarding PET imaging, the benzamide [ 11 C]raclopride is an antagonist radioli-
gand that binds with high affi nity to dopamine D 2/3  receptors (in the low nanomolar 
range; Farde et al.  1986 ) and is commonly used in human studies (Ito et al.  2011 ; 
Martinez et al.  2011 ). The radioligand [ 11 C] N -methylspiperone binds also with high 
affi nity to dopamine D 2/3  receptors, although binding has also been shown to be 
partly related to 5-HT 2A  receptors (Nyberg et al.  1999 ). Also antagonist PET 

  Fig. 10.4    Transversal [ 123 I]IBZM slices obtained in a healthy control, 2 h after start of bolus/
constant infusion. Intense specifi c binding is visible in the striatum, and much lower specifi c bind-
ing in the extrastriatal brain areas (thalamus/midbrain). The used colour scale represents a maxi-
mum intensity scale. This study has been acquired on a brain-dedicated SPECT system 
(Neurofocus)       
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radioligands with ultrahigh affi nity for the dopamine D 2/3  receptors have been devel-
oped successfully. For example, [ 11 C]FLB 457 (Halldin et al.  1995 ) and [ 18 F]fal-
lypride (Mukherjee et al.  1995 ) are radioligands with a very high receptor affi nity 
allowing for evaluation of extrastriatal dopamine D 2/3  receptors (picomolar range; 
Mukherjee et al.  1995 ; for a review see Högberg  1993 ). 

 More recently, at least three agonist PET radioligands for dopamine D 2/3  recep-
tors have been developed and tested successfully in humans, that is [ 11 C]PHNO, 
[ 11 C]NPA and [ 11 C]MNPA (Willeit et al.  2006 ; Laymon et al.  2009 ; Otsuka et al. 
 2009 ). The apomorphine derivatives NPA and MNPA bind with high affi nity to both 
dopamine D 2  and D 3  receptors (Seeman et al.  1985 ; Neumeyer et al.  1990 ). In con-
trast, in vitro studies have shown that the affi nity of PHNO is 30- to 50-fold lower 
for the dopamine D 2  than for the D 3  receptor (Freedman et al.  1994 ; van Vliet et al. 
 2000 ). Indeed, a recent study in humans demonstrated that binding of [ 11 C]PHNO 
in several brain regions, e.g. hypothalamus, substantia nigra, ventral pallidum and 
globus pallidus, is predominantly to dopamine D 3  receptors. On the other hand, in 
striatal subregions, in vivo binding is predominant to dopamine D 2  receptors 
(Tziortzi et al.  2011 ). Although the agonist [ 11 C]PHNO binds predominantly to 
dopamine D 3  receptors in certain brain areas, selective radioligands for dopamine 
D 2  or D 3  receptors are not available yet. 

 Regarding dopamine D 2  receptors, in vitro experiments on homogenized striata 
from rats and mice show that roughly 15–30 % of the receptors are in the high- 
affi nity state with a range up to 80 % depending on the detection method used. In 
more intact tissue (brain slices), 90 % of these receptors may even be in the high- 
affi nity state (van Wieringen et al.  2013 ). Initial results of in vivo PET measure-
ments using amphetamine in non-human primates suggested that 60–80 % of these 
receptors are in the high-affi nity state (Narendran et al.  2004 ). However, although 
several attempts have been made, formerly the existence of the high- and low- 
affi nity state has until now not been confi rmed or disputed in vivo (Finnema et al. 
 2009 ; see for reviews Finnema et al.  2010 ; Skinbjerg et al.  2012 ). The results of the 
recent application of agonist radioligands in human PET studies suggest that 
60–65 % of dopamine D 2  receptors are in the high-affi nity state in vivo (Narendran 
et al.  2010 ; Shotbolt et al.  2012 ). 

 As discussed earlier, dopamine agonist radioligands may be more sensitive to 
detect changes in dopamine concentrations in the synapse, e.g. changes induced by 
dopamine releasers like amphetamines (Laruelle et al.  1995 ) or depletion induced 
by AMPT (Laruelle et al.  1997 ; Boot et al.  2008 ). Indeed, recent studies have indi-
cated that the agonist radioligands ([ 11 C]NPA and [ 11 C]PHNO) are more vulnerable 
to endogenous dopamine competition than the antagonist radioligand [ 11 C]raclo-
pride in humans (Narendran et al.  2010 ; Shotbolt et al.  2012 ). It can be concluded 
that agonist dopamine D 2/3  receptors radioligands hold promise for studying changes 
in dopamine concentrations although further confi rmation in human subjects is 
required. 

 The dopamine D 2/3  receptors are not only expressed on the plasma membrane of 
postsynaptic neurons, but also presynaptically (Fig.  10.1 ). There are two splice vari-
ants of dopamine D 2  receptors, the dopamine D 2  long (D 2 L) and the short variant 
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(D 2 S) (   Chio et al.  1990 ). These isoforms have different localizations, with D 2 S pri-
marily located presynaptically (as an autoreceptor) (Khan et al.  1998 ). From a phar-
macological point of view, these splice variants cannot be discriminated, and 
consequently, radioligands for the dopamine D 2/3  receptors may bind to both D 2 L 
and D 2 S. However, since the striatal density of D 2 L is much higher than that of D 2 S 
(Rani and Kanungo  2006 ), imaging of dopamine D 2/3  receptors is frequently referred 
to as imaging of postsynaptic D 2/3  receptors. Also, imaging of the midbrain dopa-
mine D 2/3  receptors may predominantly visualize dopamine D 2/3  autoreceptors 
(Buckholtz et al.  2010 ). 

 Dopamine D 2  receptors can internalize into the intracellular compartment after 
agonist stimulation, similar as for other G-protein-coupled receptors. Interestingly, 
Guo and co-workers recently reported that dopamine D 2  receptor radioligands have 
a lower affi nity to internalized than to non-internalized receptors (Guo et al.  2010 ). 
A frequently used approach to assess dopamine release in vivo is the use of dexam-
phetamine (see for review Laruelle  2000 ). Administration of dexamphetamine 
intravenously or orally in doses of 0.2–0.3 mg/kg body weight induces a substantial 
release of endogenous dopamine, which will result in a displacement of radioligand 
binding to dopamine D 2/3  receptors (i.e. decrease of, e.g. striatal [ 123 I]IBZM or [ 11 C]
raclopride binding; Laruelle et al.  1995 ; Breier et al.  1997 ). Typically, administra-
tion of dexamphetamine leads to a rapid release of extracellular dopamine which is 
not long lasting (Breier et al.  1997 ). However, in imaging studies a prolonged dis-
placement of radioligand binding has been observed, which may be caused (partly) 
by receptor internalization (Laruelle  2000 ; Cárdenas et al.  2004 ; Scott et al.  2007 ). 
Indeed, studies in knockout mice, which are incapable of internalizing dopamine D 2  
receptors, suggest that the prolonged displacement is mainly due to internalization 
of D 2  receptors (Skinbjerg et al  2010 ). Additional studies are needed to demonstrate 
whether molecular imaging studies are able to assess internalization of dopamine D 2  
receptors in humans, which may be relevant to study the role of a possible abnormal 
internalization of these receptors in neuropsychiatric disorders.  

10.3.2.2    Dopamine D 4  Receptor Imaging 
 The dopamine D 4  receptor was cloned for the fi rst time in 1991 (Van Tol et al.  1991 ) 
and is thought to play a role in a variety of neuropsychiatric disorders. This receptor 
is mainly expressed postsynaptically (Rivera et al.  2002 ). In contrast to dopamine 
D 2/3  receptors, dopamine D 4  receptors do not internalize after agonist stimulation 
(Spooren et al.  2010 ). Interestingly, the antipsychotic clozapine, for instance, demon-
strates a substantially higher affi nity for the dopamine D 4  than for the D 2  receptor 
subtype (Van Tol et al.  1991 ; Eisenegger et al.  2010 ; Smith  2010 ). Very recently, 
progress has been reported on the development of a dopamine D 4  receptor radioli-
gand. This has been a challenging task as the density of dopamine D 4  receptors in the 
human brain is much lower than that of other D 2 -like receptors (Marazziti et al.  2009 ) 
(Lacivita et al.  2010 ; Kügler et al.  2011 ). Although Lacivita and co-workers reported 
that their radioligand mainly demonstrated high binding in the retina of non-primates 
(Lacivita et al.  2010 ), it is promising that a recent study demonstrated clear brain 
uptake of a dopamine D 4  receptor antagonist radioligand in mice (Kügler et al.  2011 ).    
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   Conclusion 

 Imaging of the nigrostriatal pathway in humans can be performed quantitatively 
with PET and SPECT techniques, using the PET radiotracer [ 18 F]FDOPA, PET 
radioligands for the VMAT-2 and PET or SPECT radioligands for the DAT. With 
PET, also several other dopaminergic projections (e.g. mesocortical projections) 
can be assessed adequately in the human brain. Several antagonist PET radioli-
gands for the dopamine D 1  receptor have been developed successfully. In addi-
tion, well- validated antagonist PET and SPECT radioligands are available to 
image dopamine D 2/3  receptors in the living human brain. Recently, also agonist 
PET radioligands for the dopamine D 2/3  receptors have been developed, which 
affords the opportunity to evaluate the existence of the high-affi nity state of these 
receptors in vivo, and these radiopharmaceuticals may be more sensitive to detect 
changes in dopamine concentrations. Finally, although selective antagonist PET 
radioligands for the dopamine D 4  receptor have been synthesized and evaluated 
successfully in small laboratory animals, these radioligands have not yet been 
applied in human research.     
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