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Abstract. At ASIACRYPT 2012, Petit and Quisquater suggested that
there may be a subexponential-time index-calculus type algorithm for the
Elliptic Curve Discrete Logarithm Problem (ECDLP) in characteristic
two fields. This algorithm uses Semaev polynomials and Weil Descent to
create a system of polynomial equations that subsequently is to be solved
with Gröbner basis methods. Its analysis is based on heuristic assump-
tions on the performance of Gröbner basis methods in this particular
setting. While the subexponential behaviour would manifest itself only
far beyond the cryptographically interesting range, this result, if correct,
would still be extremely remarkable. We examined some aspects of the
work by Petit and Quisquater experimentally.

1 Introduction

Throughout this paper, let E be an elliptic curve over F2n ,

E/F2n : y2 + xy = x3 + a2x
2 + a6

where a2, a6 ∈ F2n
∗ and such that the trace TrF2n/F2

(a2) = 1. (In particular,
if n is odd, then we can set a2 = 1.) For such an elliptic curve, and an integer
m ≥ 2, the m-th Semaev polynomial Sm [10] is the unique polynomial in m
variables with the following property: Sm(x1, . . . , xm) = 0 for x1, . . . , xm ∈ F2n

if and only if there exist y1, . . . , ym ∈ F2n with (xi, yi) ∈ E(F2n) and such
that

∑m
i=1(xi, yi) = ∞ ∈ E(F2n). Here,

∑m
i=1(xi, yi) denotes the addition of m

points on the elliptic curve E, and ∞ denotes the point at infinity. For example,
S2(x1, x2) = x1+x2 since (x1, y1)+(x2, y2) = ∞ in E(F2n) if and only if x1 = x2.
For a fixed integer m, Semaev polynomials can be used to find relations on the
set of points in E(F2n). This is done by combining Weil descent and Gröbner
basis techniques to find certain zeroes of Sm. This yields an index-calculus type
algorithm to solve the elliptic curve discrete logarithm problem (ECDLP): given
P ∈ E(F2n) and Q ∈ 〈P 〉, find � such that Q = �P . Variants of this algorithm
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are due to Gaudry [7] and Diem [3]. We will refer to it as Diem’s algorithm for
the remainder of this paper.

This paper is motivated by the works of Faugère, Perret, Petit and Renault
[6], and Petit and Quisquater [9] who both emphasize the special form of the
multivariate polynomial equations arising in Diem’s algorithm, thereby suggest-
ing a significant speed-up in the running time of special-purpose Gröbner basis
techniques. While Diem [3] gives a runtime complexity of exp(O(n(log n)1/2)),
Faugère, Perret, Petit and Renault [6] derive complexity bounds for solving
Sm = 0 based on the so-called Linearization Method and suggest a runtime
complexity of O(2ωt) with 2.376 ≤ ω ≤ 3 (ω = the linear algebra constant)
and t ≈ n/2. (Compare this with the running time of the parallelized Pollard
Rho method of O(2n/2)). This running time is under the unproven yet plausible
heuristic assumption that a certain set of equations arising in the algorithm is
linearly independent. Petit and Quisquater [9] conduct a more aggressive analysis
of Diem’s algorithm, and claim a running time complexity that is subexponen-
tial in the input size. More specifically, under the assumption on bounds on
the so-called degree of regularity of a the system of equations that arises in the

computation, the ECDLP over F2n is said to be solved in time O(2cn
2/3 logn),

where c = 2ω/3. Petit and Quisquater also give estimated running times for
specific values of the extension degree n, which indicate that Diem’s algorithm
outperforms the Pollard rho method for n > 2000. On the other hand, both
papers [6,9] suggest that for large enough n (and m), the use of the so-called
hybrid method (for computing a Gröbner basis) should produce even further
speed-up. While these results seem to be no threat for current ECDLP-based
cryptographic systems, they do require further study. The purpose of this paper
is to do exactly this.

In particular, the contributions of this paper are the following:

– We confirm and extend the Petit-Quisquater experimental data [9] on the
degree of regularity, up to n = 29. (Petit-Quisquater give data for n = 11, 17
only.)

– We suggest the Delta Method to achieve speed-up.
– We study the effect of various realizations of the hybrid method.
– Lastly, for the case n even only, we report on experiments with subfield-based

factor-bases.

2 Preliminaries

2.1 Semaev’s Summation Polynomials

For an integer m ≥ 2, the m-th Semaev polynomial has been defined in the
introduction. Further,

S3(x1, x2, x3) = x2
1x

2
2 + x2

1x
2
3 + x2

2x
2
3 + x1x2x3 + a6

([3, Lemma 3.4]), and recursively, for m ≥ 4:

Sm(x1, . . . , xm) = ResX(Sm−k(x1, . . . , xm−k−1, X), Sk+2(xm−k, . . . , xm, X)),
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where 1 ≤ k ≤ m−3. By definition Sm is symmetric, and Sm has degree 2m−2 in
each xi for m ≥ 2. For Semaev polynomials to solve the ECDLP, we think of m
to be small. For example, in the running time analysis by Petit and Quisquater,
best running times are achieved with m ≤ 4 if n ≤ 2000, and with m ≤ 14 for
n ≤ 100, 000. Petit and Quisquater argue that using a method by Collin’s [2],
the calculation of Sm can be done in time O(2m(m+1)).

2.2 An Index Calculus for the ECDLP

In our description of Diem’s algorithm for the ECDLP, using Semaev’s summa-
tion polynomials, we follow Petit and Quisquater [9].

Input:

– F2n = F2[z]/(f(z)), where deg f = n and f irreducible/F2.
We view F2n as a vector space over F2 of dimension n.

– Elliptic curve E/F2n , P ∈ E(F2n), Q ∈< P >.

Output:

– The least positive integer � such that Q = �P .

Algorithm:

– Find a Factor Basis FV :
- Fix n′ ∈ [1, n] ∩ Z.
- Choose a subspace V ⊆ F2n/F2 of dimV = n′.
- Set FV = {(x, y) ∈ E(F2n);x ∈ V }
(among pairs (x, y), (x, y′) with y �= y′, take only those (x, y) with lexico-
graphically smaller y).

– Compute Relations:
- Fix m.
- Do about 2n

′
times:

• REPEAT
- Take a, b ∈R [0, 2n] ∩ Z.
- Set R = aP + bQ =: (xR, yR).
- Look for (x1, . . . , xm) ∈ V m with Sm+1(x1, . . . , xm, xR) = 0.
UNTIL such x1, . . . , xm are found.

• For j = 1, . . . ,m, compute y1, . . . , ym such that Rj := (xj , yj) ∈ FV .
• Find ej ∈ {±1} such that R+

∑m
j=1 ejRj = ∞.

- Result: about 2n
′
Relations:

#FV∑

i=1

εikRi + akP + bkQ = ∞

where εik = {0, 1,−1}.
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– Linear Algebra Step:
Use sparse matrix Linear Algebra to find a linear dependency among the
relations.
Then easily obtain a solution � to the ECDLP Q = �P .
Return �.

Notes:

– According to Faugère et al. [6], one should choose m,n′ such that mn′ ≈ n.
– If dimV = n′, then Diem [3] shows that #FV ≈ 2n

′
.

– If dim V = n′, the probability that Sm+1(x1, . . . , xm, xR) = 0 with

(x1, . . . , xm) ∈ V is, on average, ≈ 2mn′−n

m! .

Weil Descent. It remains to discuss how to solve Sm+1(x1, . . . , xm, xR) = 0
with the added constraint that x1, . . . , xm ∈ V . This is achieved via Weil descent,
followed by Gröbner basis techniques. More specifically, one does the following:

– Choose a basis {Θ1, . . . , Θn} of F2n/F2.
– Choose a basis {v1, . . . , vn′} of V/F2.
– Introduce mn′ new variables xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n′:

Write

xi =

n′
∑

j=1

xijvj , i = 1, . . . ,m.

– Substitute the xi into Sm+1.
Decompose each vj , j = 1, . . . , n′, and xR, into the Θs, s ∈ {1, . . . , n}.
Reduce any x2

ij − xij = 0.
– Obtain equation:

0 = Sm+1(x1, . . . , xm, xR)

= Sm+1(

n′
∑

j=1

x1jvj , . . . ,

n′
∑

j=1

xmjvj , xR)

= [f ]1Θ1 + · · ·+ [f ]nΘn

where [f ]s ∈ F2[x11, . . . , xmn′ ] for s = 1, . . . , n.

Thus, and after adding the field equations, one has to solve the set of polynomial
equations in mn′ variables

[f ]s = 0, s = 1, . . . , n,

x2
ij − xij = 0, i = 1, . . . ,m; j = 1, . . . , n′,

(2.1)

for which one can use Gröbner basis techniques such as F4 [4] or F5 [5]. See [6]
and [9] for details.
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2.3 The Hybrid Method

Reconsider the system (2.1). The hybrid method [1] (see also [8]) works as follows:

– Choose k variables among the xij , label them y1, . . . , yk. There are 2k pos-
sible choices to assign values to the k-tuple (y1, . . . , yk).

– For each such assignment, try to solve the new system in mn′ − k variables
via a Gröbner basis calculation.

– With probability ≈ 2mn′−n

m! , one of these new systems yields a solution to
(2.1).

Using the hybrid method will require doing more Gröbner basis calculations, but
since we are fixing k variables each time, the number of variables in the system
is reduced. This produces an over-determined system which causes the Gröbner
basis algorithms to run much faster.

Fixing k variables could require doing up to 2k times as many Gröbner basis
calculations. Thus we require a speed up of at least 2 each time k goes up by 1.
Consequently, setting k too high causes the solution time for a single polynomial
system to start increasing, since the decrease in running time for each of the 2k

required Gröbner basis calculations is not sufficient to make up for the increased
number of calculations.

Note that setting k = n corresponds to an exhaustive search. This approach
is only efficient for very small n.

Faugère et al. [6] observed in experiments that with a suitable choice of k and
some tweaking, the hybrid method is faster than solving (2.1) directly. They
speculate that the hybrid method gives speedup by a factor m in the exponent.

3 Supporting the Petit-Quisquater Analysis, and More
Experimental Evidence

In their Table 3, Petit and Quisquater [9] give running time estimates for Diem’s
algorithm for the ECDLP in E(F2n) for various extension degrees 50 ≤ n ≤
100, 000. These data illustrate the claimed subexponential behaviour, and sug-
gest that for large enough n (n ≥ 2000), Diem’s algorithm outperforms the
Pollard rho method. We reproduce their table in Table 3.1.

The Petit-Quisquater analysis is based on the assumption that for the Semaev
polynomial equations (2.1),

degree of regularity = first fall degree + o(1). (3.1)

Here, the degree of regularity Dreg is the degree of the largest Macaulay matrix
appearing in a Gröbner basis computation with the algorithm F5 (cf. [9]), while
the first fall degree Dfirstfall is the degree at which a non-trivial degree fall occurs
during a Gröbner basis computation (see [9, Definition 2]).

We have the following facts ([9]):

– In general: Dreg ≥ Dfirstfall.
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Table 3.1. Petit-Quisquater complexity estimates for the ECDLP in E(F2n). Here,

tS = time to compute the mth Semaev polynomial, tR = time to generate 2n
′
relations,

tLA = time for the linear algebra step, and T = max{tS, tR, tLA}.

n m n′ tS tR tLA T

50 2 25 6 97 57 97
100 2 50 6 137 108 137
160 2 80 6 177 168 177
200 2 100 6 202 209 209
500 3 167 12 393 344 393

1000 3 250 20 664 512 664
2000 4 500 20 965 1013 1013
5000 6 833 42 1926 1682 1926

10000 7 1429 56 3020 2873 3020
20000 9 2222 90 4986 4462 4986
50000 11 4545 132 9030 9110 9110
100000 14 7143 210 14762 14306 14762

– (3.1) is true for many systems analyzed in the context of multivariate
cryptosystems.

– Dfirstfall ≤ m2 + 1.
– The running time to solve (2.1) with F4 or F5 is O(nωDreg ). Memory

requirements: O(n2Dreg ).

In their Table 2, Petit and Quisquater support (3.1) with experimental evidence
for the Semaev polynomial equations, for n = 11, 17, m = 2, 3.

3.1 Extending the Petit-Quisquater Data

Mimicking the Petit-Quisquater experiments [9], we reproduced and expanded
their Table 2. For this, we did the following;We fixed n, n′ andm. We constructed
F2n = F2[z]/(f(z)) with f a Conway polynomial of degree n. We chose a random
elliptic curve over F2n of order twice a prime. We chose the vector space V
of dimension n′ with basis {1, z, . . . , zn′−1}. We picked a random point R =
(xR, yR) of prime order on the elliptic curve and used Magma on an AMD
Opteron Processor 6168 to solve the (m + 1)-st Semaev polynomial associated
with R, that is, to solve Sm+1(x1, . . . , xm, xR) = 0. This was done for 20 random
curves. We measured the average degrees of regularity, the average time for
solving Sm+1 = 0, and the maximum memory requirement for that computation.
Selected results are shown in Table 3.2 (for m = 2), and in Table 3.3 (for
m = 3). They agree with the Petit-Quisquater data (given for n = 11, 17) and
also confirm that the average degrees of regularity are lower than the assumed
upper bound m2 + 1. Further, for 10 ≤ n ≤ 21 and m = 3, we observed
Dreg = 7, 8 most often, and always Dreg ≤ 9.

We repeated the computations for 20 random points R on the Koblitz curves
y2 + xy = x3 + x2 + 1 for various values of n, and m = 2, 3. Results are given in
Table 3.4.
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Table 3.2. Solving S3(x1, x2, xR) = 0. Random curves: a6 ∈R F2n . Average degrees of
regularity, average running times and maximum memory use.

n n′ m m2 + 1 Dreg Time (s) Max Mem (MB)

11 6 2 5 3.0 0 11
11 5 2 5 2.7 0 11

13 7 2 5 3.0 0 11
13 6 2 5 3.2 0 11

15 8 2 5 3.1 0 11
15 7 2 5 3.2 0 11

17 9 2 5 3.1 0 11
17 8 2 5 2.8 0 11

23 12 2 5 4.0 0 29
23 11 2 5 3.0 0 12

29 15 2 5 4.0 3 97
29 13 2 5 3.0 0 13

Table 3.3. Solving S4(x1, x2, x3, xR) = 0. Random curves: a6 ∈R F2n . Average degrees
of regularity, average running times and maximum memory use.

n n′ m m2 + 1 Dreg Time (s) Max Mem (MB)

11 4 3 10 7.0 1 24
11 3 3 10 6.4 0 11

13 4 3 10 7.0 1 23
13 3 3 10 6.0 0 11

15 5 3 10 7.0 15 188
15 3 3 10 6.0 0 11

17 6 3 10 7.2 220 2143
17 3 3 10 6.0 0 11

21 7 3 10 7.0 6910 27235
21 3 3 10 6.0 0 11

4 The Delta Method

So far, we always worked with parameters m and n′ such that mn′ ≈ n. In fact,
previous work [9,6] used work with n′ = �n/m. A closer look at the data in
Tables 3.2 and 3.3 however suggests that choosing n′ < n/m is favourable: for
each value of n, the first row gives the data for n′ = �n/m while the second
row gives the data for an optimized n′ < n/m. We notice lower average degrees
of regularity, running times and memory requirements almost throughout. This
gives rise to the Delta method. Let

Δ := n−mn′ > 0.
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Table 3.4. Solving S3(x1, x2, xR) = 0 and S4(x1, x2, x3, xR) = 0. Koblitz curves y2 +
xy = x3 + x2 + 1. Average degrees of regularity, average running times and maximum
memory use.

n n′ m m2 + 1 Dreg Time (s) Max Mem (MB)

11 6 2 5 3.0 0 11

11 4 3 10 7.1 1 24

13 7 2 5 3.1 0 11

13 4 3 10 7.0 1 23

15 8 2 5 3.1 0 11

15 5 3 10 7.0 16 189

17 9 2 5 3.0 0 11

17 6 3 10 7.1 211 2139

23 12 2 5 4.0 0 28

29 15 2 5 4.0 2 95

There is a tradeoff to consider when picking the value of n′, as a lower n′ value
will reduce the chances of finding a decomposition of R into m points in the
factor base, but will also reduce the factor base and therefore the number of
relations needed in Diem’s algorithm. The important experimental observation
is that lowering n′ causes the complexity of the Gröbner basis calculation (using
the F4 algorithm) to decrease dramatically.

More precisely, decreasing n′ by 1 decreases the chance of a decomposition
being found by a factor of 2m. It also decreases the number of relations needed
by a factor of 2, since 2n

′
+ c relations are needed to solve the ECDLP (for

some small constant c). Thus we require a speedup of 2m−1 in Gröbner basis
calculation times in order for the Delta method to offer an improvement.

Also note that we expect that for the majority of polynomial systems for which
we are trying to calculate a Gröbner basis, the system will have no solution. This
follows from that an elliptic curve point R can be decomposed into m points of
the factor basis if and only if the m+1-st Semaev polynomial associated with R
has a solution. Thus the Delta method with Δ > 0 is useful as long as the time
required to calculate a Gröbner basis for systems with no solution decreases by
a factor of slightly over 2 each time n′ is reduced by 1 (and the time required for
systems with a solution does not increase by too much). For n = 26, we do in
fact get this required decrease for n′ ≥ 11. For n = 34, we get the decrease for
n′ ≥ 14. Table 4.1 shows some selected average degrees of regularity and Gröbner
basis running times (using Magma on an AMD Opteron 6168); to obtain these
data, we used the same experiment as in Section 3.1, but separated the data
into the cases that the system S3(x1, x2, xR) = 0 had a solution or not. We took
averages over 5 calculations in each case. Observe that looking at solvable and
unsolvable systems separately, we can see that solvable systems have a degree of
regularity between 3 and 5, while unsolvable systems are between 2 and 4.
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Table 4.1. Average degree of regularity and Gröbner basis running time, for Semaev
polynomial systems with, or without solution

Degree of Regularity Gröbner Basis Running Time
n m n′ No Sol Sol No Sol Sol

26 2 13 2.8 4.0 0.39 0.99
26 2 12 2.4 3.0 0.06 0.14
26 2 11 2.4 3.0 0.01 0.03
26 2 10 2.6 4.0 0.01 0.02

34 2 17 2.8 4.0 12.31 55.20
34 2 16 3.2 4.0 1.42 3.14
34 2 15 2.8 3.0 0.21 0.47
34 2 14 2.6 3.0 0.03 0.07
34 2 13 2.0 4.0 0.02 0.04

Obviously and unfortunately, we cannot increase Δ arbitrarily in order to
decrease the ECDLP running time. As we continue to increase Δ the Gröbner
basis times stop decreasing as rapidly, and the overall running time starts going
back up. Our experimental data suggests that for the case m = 2, the optimal
value of Δ is given by

Δ =

{
2�n−15

6 � if n is even

2�n−15
6 − 1� if n is odd

At present, our best explanation for the remarkable decrease in Gröbner basis
calculation time offered by the Delta method is that decreasing n′ gives a system
with the same number of equations, but in fewer variables. This creates a more
over-determined system which can be solved more efficiently by F4. Why the
F4 algorithm works so remarkably well needs more investigation. Decreasing
n′ often results in the polynomial systems having a lower degree of regularity.
However, this is not always the case. In fact, there are cases where a decrease
in n′ results in both faster F4 times and a higher average degree of regularity.
Clearly, a more detailed theoretic explanation for the Delta method’s success is
still needed.

The above optimal Δ values are based on experimental results for m = 2 and
values of n from 25 to 40. For each n value, we decreased n′ from � n

m until the
overall ECDLP running time started going up. For each choice of n and n′, we
solved Semaev polynomials until we found five systems with a solution. Data for
n = 42 and n = 48 was also generated, and our formula remains valid at these
higher n values.

There are also some results available for m = 3 and values of n from 10 to 20.
Using a value of m = 3 is much slower than using m = 2, as is expected based
on the complexity analysis in [9]. We do however expect that for higher values
of n, a choice of m = 3 will be preferable. Interestingly, the total ECDLP times
for m = 3 increase faster than the times for m = 2, so our experimental results
suggest that using m = 2 will always remain the better option. This result is
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actually to be expected, as the theoretical running time determined by Petit
and Quisquater increases at a faster rate for m = 2 than it does for m = 3 until
we reach n > 200. The relation gathering stage is in fact faster for m = 2 than
m = 3 until n > 600. Note that the theoretical switch to m = 3 occurs earlier,
around n = 290, but that this is due to the complexity of the linear algebra
stage, not the relation gathering stage.

5 Experiments with the Hybrid Method

Recall the hybrid method from Section 2.3, in which we fix k variables y1, . . . , yk ∈
F2 among themn′ variables and perform a Gröbner basis computation for each of
the 2k possible assignments for (y1, . . . , yk) ∈ F

k
2 (or until a solution to Sm+1 = 0

has been found). We experimentally determined optimal values of k for various n
(as we could not make sensible use of existing Magma code for the hybrid method
that allegedly determines such k). We worked with m = 2 and 21 ≤ n ≤ 40, and
used the same set-up for our experiments as before, with the exception that we
used a Magma implementation of the hybrid method by Bettale [8] instead of the
built-in Magma function GröbnerBasis. For each value of n, we used n′ = � n

m�
(corresponding to Δ = 0 or 1) and incremented k from 0 until the average run-
ning time to solve S3(x1, x2, xR) = 0 stopped improving. Optimal values for k
are given in Table 5.1.

Table 5.1. Optimal k-values in the hybrid method

n 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

n′ 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20

k 0 1 0 3 1 3 2 3 2 5 3 5 4 5 4 6 5 7

We confirmed some speed-up for optimal k over k = 0, but the observed
speed-up for the overall ECDLP running time was not always as much as with
the Delta method. Specifically, for n > 28, an optimal choice of Δ produced
better results with the Delta method than the hybrid method with an optimal
choice of k.

5.1 Block Hybrid Method versus Standard Hybrid Method

When using the hybrid method, we can choose which of the mn′ variables occur-
ring in the final system to fix. Let X1, X2, . . . , Xm be the m variables occurring
in the original Semaev polynomial. Let x1, x2, . . . , xmn′ be the mn′ variables we
get after doing the Weil descent, where Xi is a function of the block of variables
x(i−1)n′+1, . . . , xin′ , for i = 1, . . . ,m.

The above results are based on fixing the first k variables, x1 to xk. Thus
we fix all the variables corresponding to Xi before starting to fix the variables
corresponding to Xi+1.
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Other approaches are certainly possible however. For example, in the block
hybrid method, the order in which we fix the variables is to fix the first variables
x(i−1)n′+1 occurring in each Xi, then to fix the second variables x(i−1)n′+2, and
so on. So for n′ = 3, m = 2 and k = 3 we would fix the variables x1, x2, x4.

We ran the same tests for the block hybrid method as we ran for the standard
hybrid method, although only for n from 21 to 28. For optimal k values, the
block hybrid method performed worse than the standard hybrid method for
every value of n. The optimal block hybrid times were always within a factor of
2 of the optimal standard hybrid times, however. Even for non-optimal k values,
the block hybrid method was normally slower. In particular, if we take k = m
so that we fix the first variable in each block, then the block hybrid method was
slower than the standard hybrid method by a factor of over 10 times.

In conclusion, simply fixing the first k variables is preferable to the block
hybrid method.

5.2 Combining the Hybrid and Delta Methods

Since the hybrid and Delta methods both give rise to faster ECDLP algorithms,
we asked whether combining the two methods could give an additional speed-up?

We tried combining the two methods for n-values of 27, 36 and 40 (using
m = 2). We used values of k from 0 to one more than the optimal k-value in the
hybrid method, and values of n′ from � n

m to one less than the optimal value
for the n′ in the Delta method. Our data were generated in the same way as
before. For n = 27, the best combination of k and Δ was simply to take k = 0
and n′ optimal as determined in Section 4. For n = 36 and 40, the best times
were obtained with k = 1 and n′ one higher than optimal. However, these times
were very similar to those for k = 0 and n′ optimal.

In conclusion, combining the hybrid and Delta methods doesn’t seem to offer
any significant speedup compared to just using the Delta method.

6 Exploiting the Existence of Subfields

Another choice that we have when implementing Diem’s algorithm is how to
choose the factor basis. Recall that the factor basis FV is the set of points on
the elliptic curve whose x-coordinate lies in an n′-dimensional subspace V of
the underlying finite field. So we can change the factor basis by changing the
basis for V . The standard basis we used to generate our data so far is given by
{1, z, . . . , zn′−1}, where z is a generator for F2n . However if m|n, then one can
choose a basis of the form {1, a, . . . , an′−1}, where a is a generator for F2n/m ,
so that V is an n′-dimensional subfield of F2n and FV contains only points
(x, y) ∈ V × V . We do not expect that using this alternate basis will affect the
probability that a random elliptic curve point can be written as a sum of m
points in FV . Hence we will still need to do the same number of Gröbner basis
calculations.
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In this section we report on experiments for the case that m = 2 and n is
even, so n′ = n/2. Using a subfield-based basis for V , we performed the same
experiments outlined in Section 4, but repeated our experiment until we had
data for 50 solvable systems and 50 unsolvable systems. The reason that we
used a greater number of systems was that the calculations required less time
than they did for the Delta method. For even n values between 26 and 40, we set
m = 2, n′ = n/2 and calculated the average time required to do a Gröbner basis
calculation. From theses calculations we estimated the expected time required
to solve an ECDLP instance.

Gröbner basis calculations went much faster both for both systems with a
solution and systems without a solution. For n = 40, the calculation took 0.02
seconds for systems with no solution and 0.08 seconds for systems with a solution.
In comparison, similar calculations using the standard basis take 374.77 seconds
and 388.09 seconds, respectively. Significant speedups were also observed for all
lower n values.

We noted that using a subfield-based basis produced systems of polynomials
with a much lower degree of regularity. For each n-value tested, every single
solvable systems had a degree of regularity of 3. This is lower than the average
degree of regularity observed when using the standard basis. Similar results
hold for systems with no solution, where the average degree of regularity ranged
between 2.1 and 2.3, depending on the value of n.

See Table 6.1 for a complete comparison of average degrees of regularity. Here
the data for the standard basis are taken from our Delta method results.

Table 6.1. Average degrees of regularity for subfield-based basis and standard basis

Average Degree of Regularity
Standard Basis Subfield Basis

n m n′ No Sol Sol No Sol Sol

26 2 13 2.5 4.0 2.2 3.0
28 2 14 2.6 4.0 2.1 3.0
30 2 15 4.0 4.0 2.2 3.0
32 2 16 2.7 4.0 2.3 3.0
34 2 17 2.6 4.0 2.1 3.0
36 2 18 4.0 4.0 2.3 3.0
38 2 19 3.0 4.0 2.3 3.0
40 2 20 4.0 4.0 2.2 3.0

At present we do not have a good explanation for why the degree of regularity
is so much lower. The decrease is not the result of any cancellation during the
Weil descent, as the systems of polynomials produced have the same number of
terms and same total degrees no matter which basis we chose. Nonetheless, the F4
algorithm is much better at finding low degree combinations of the polynomials
when a subfield is used. It is normally able to determine if a system is solvable
or not after only one iteration.
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7 Bonus Track: Using the Magma “PairsLimit”
Parameter

When using values of m > 2, the default Magma implementation of the F4 algo-
rithm tends to start using massive amounts of memory if n is increased as high as
even 19 or 20. Looking at the detailed output from the Magma implementation
reveals a way to decrease the memory usage.

Let I be the ideal for which we are trying to find a Gröbner basis. The F4
algorithm goes through a sequence of steps in which it takes linear combinations
of polynomials in the current basis for I, and adds some of them to the basis.
Magma’s default behaviour is to add all new polynomials having minimal degree
among the new polynomials. In large systems, this can result in thousands of
polynomials being added in a single step. However, it may turn out that only
a fraction of these systems needed to be added to the basis in order to find a
Gröbner basis. Thus by limiting the number of new polynomials that are added
each steps, we can make sure that Magma’s memory usage never increases by
too much at once.

The Magma function “Gröbner Basis” takes an optional parameter
“PairsLimit” that can be used to include at most k new pairs at each step.
Experimental results show that setting an appropriate value for this parameter
can significantly improve the running time. See Table 7.1 for running time data
based on n = 19, n′ = 6, m = 3 which uses a single system for each value of
“PairsLimit”.

Table 7.1. Effect of PairsLimit

n m n′ PairsLimit Running Time (s) Memory (MB)

19 3 6 500 305.5 2091
19 3 6 1000 238.8 2483
19 3 6 1750 197.1 2468
19 3 6 2500 234.4 3009

Unfortunately, there is no known formula for determining optimum values to
use for “PairsLimit”. Using too high of a value can result in high memory usage
and can also cause the final F4 step to take a very long time. However, using too
low of a value can result in needing a large number of steps before a Gröbner
basis is found.

Some experimentally determined values that give low running times have been
chosen as defaults when working with m > 2. The benefits described above are
also present when using m = 2, although not to as large of an extent. Note that
using the “PairsLimit” parameter is primarily helpful when using n′ values that
require working with systems that take lots of time and memory to solve. As
such, using this parameter likely can’t help improve times for the Delta method,
since the systems that result from optimal Δ values can be solved very quickly
and with very little memory.
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8 Conclusion

Further research, both experimentally and theoretically is needed to determine
the true complexity of the ECDLP index calculus method based on Semaev
polynomials, Weil descent and Gröbner basis methods!
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