
Shorter Compact Representations

in Real Quadratic Fields

Alan K. Silvester1, Michael J. Jacobson, Jr.2,�, and Hugh C. Williams1

1 Department of Mathematics and Statistics, University of Calgary
2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

aksilves@ucalgary.ca, williams@math.ucalgary.ca
2 Department of Computer Science, University of Calgary

2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
jacobs@cpsc.ucalgary.ca

Abstract. Compact representations are explicit representations of al-
gebraic numbers with size polynomial in the logarithm of their height.
These representations enable much easier manipulations with larger al-
gebraic numbers than would be possible using a standard representation
and are necessary, for example, in short certificates for the unit group
and ideal class group. In this paper, we present two improvements that
can be used together to reduce significantly the sizes of compact rep-
resentations in real quadratic fields. We provide analytic and numerical
evidence demonstrating the performance of our methods, and suggest-
ing that further improvements using obvious extensions are likely not
possible.

Keywords: compact representation, real quadratic field, fundamental
unit, infrastructure.

1 Introduction

Let α (> 1) be an algebraic integer in the quadratic order O of discriminant
Δ (> 0). If we put α = (x + y

√
Δ)/2, where the coefficients x and y are ra-

tional integers, it is often the case that even when the absolute norm of α,
|N(α)|, is small, the values of x and y can be very large. Consider the case
where |N(α)| = 1. In this case α is a unit of O and therefore a power of the fun-
damental unit ηΔ ofO, but we know (see, for example, Chapter 9 of [16]) that the
coefficients in ηΔ can be very large, so much so, that even if Δ is only moderately
large it is difficult to impossible to write them down, using conventional decimal
representation. For example, when we attempt to solve the famous Cattle Prob-
lem of Archimedes we encounter an order of discriminant Δ = 410286423278424
and the coefficients in ηΔ contain about 103,200 decimal digits each. Further-
more, if Δ = 990676090995853870156271607886, a number of 30 decimal digits,
then each of the coefficients in ηΔ contains more than 2 × 1015 decimal digits,

� The second and third authors are supported in part by NSERC of Canada.

M. Fischlin and S. Katzenbeisser (Eds.): Buchmann Festschrift, LNCS 8260, pp. 50–72, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Shorter Compact Representations in Real Quadratic Fields 51

see [16, pp. 62,285]. As the average paperback novel contains about one million
symbols, this means that it would take over two billion such volumes to record
only one of the coefficients. Thus, it is necessary to find a much more compact
representation for α other than simply recording the decimal representation of
each of the coefficients.

Although a technique for doing this was anticipated in work of Lagarias
[17,18], it was Cohen in [4, pp 274, 280-282], who first described in print a
method that could be applied to this problem. Somewhat before Cohen’s idea
had appeared, I (Hugh Williams) had been approached by my graduate student,
Gilbert Fung, with the question of how the units in a cubic field with negative
discriminant could be represented without recourse to the voluminous decimal
representation. This discussion led, in 1991, to our writing a paper [9] on this
topic, which we submitted to Mathematics of Computation. Unfortunately, the
editor, Dan Shanks, did not seem to know what to do with the paper, and it lan-
guished in his care for many months, without being accepted or rejected. At this
point, I must confess that I had rather lost interest in this idea, but fortunately
I was invited to present a paper at a meeting on Computational Algebra and
Number Theory to be held at the University of Sydney in November of 1992.
During a previous visit to Saarbrücken, I had explained my ideas to Johannes
Buchmann, and he suggested that we work jointly on an account of the tech-
nique for application to real quadratic fields. I wrote up a preliminary version
of the paper and sent it to Johannes for comments and revisions. This was the
paper that I presented at the Sydney meeting. Johannes enlisted the aid of one of
his graduate students, Christoph Thiel, and they produced a completely revised
version of the paper, with Christoph being added as a third author. Ultimately,
this revised paper [2] appeared in the proceedings of the Sydney meeting.

This paper essentially elaborated upon the idea of Cohen, but both extended
and formalized it. An improved, but much briefer version appears in Buchmann
and Vollmer [3, pp.251-256]. In [16, Chapter 12], we presented another variant
which allows us to avoid trying to approximate logarithms and produces some-
what better results than those in [3]. The basic idea of all these techniques is
to represent the algebraic number α in terms of a power product which satisfies
a number of conditions. In doing this one can drastically reduce the number of
digits needed to record the coefficients in α. Furthermore, it can be shown how
arithmetic operations can be performed on such representations, leading to more
efficient calculations than those required for the standard decimal representation.
It must be emphasized that in order to produce a compact representation of α,
we usually need an approximate value, within about 1, say, of logα.

The purpose of this paper is to provide an adjustment to our previous defini-
tion of a compact representation, which allows us to compute it in fewer iterations
than those required for the earlier definition. We also provide an analysis which
suggests that these new compact representations are quite likely as small as we
can expect to achieve with these methods. These analytical results are backed
up by various numerical computations.

52 A.K. Silvester, M.J. Jacobson, and H.C. Williams

2 Background on Quadratic Fields

For more details about quadratic fields, the reader is referred to [16], upon which
the following material is based.

Let D ∈ Z be an integer, not a perfect square, and greater than 1. The
elements of the real quadratic field K = Q(

√
D) have the form α = (a+ b

√
D)/c

for integers a, b, and c. The conjugate α of a α ∈ K is given by α = (a− b√D)/c.
The quadratic integers of K have the form α = a+ bω where

r =

{
1 if D �≡ 1 (mod 4) ,
2 otherwise

and ω =
r − 1 +

√
D

r
, (1)

The height of a quadratic integer measures its size.

Definition 1. The height of a quadratic integer α is H(α) = max{|α|, |α|}.
Recalling that |N(α)| = |αα| ≥ 1, we see that H(α) ≥ 1 and so an element’s
height cannot be arbitrarily small.

The set of all quadratic integers of K is called the maximal order, denoted
OK. The field discriminant ΔOK

is the discriminant of the order OK, and can be
explicitly determined as ΔOK

= 4D/r2. Suborders OΔ of OK have discriminant
Δ = f2ΔOK

, f > 1.
The smallest unit of OΔ greater than 1 is called the fundamental unit and

is denoted ηΔ. If η ∈ O∗
Δ is a unit then η = ±ηnΔ for some integer n, i.e., the

unit group of a quadratic order OΔ is given by O∗
Δ = 〈−1, ηΔ〉. As the size of

ηΔ grows exponentially as Δ increases, we often work with a more manageable
quantity called the regulator, denoted R = log ηΔ.

2.1 Ideals

The non-zero ideals of OΔ can be represented as

a = S

[
Q

r
,
P +
√
D

r

]
, (2)

where S,Q, P ∈ Z, r ∈ {1, 2}, r | Q, and rQ | D−P 2. We will refer to an ideal as
“S[Q,P]” where it is understood that S,Q, and P satisfy the conditions listed
here. Given two ideals in S[Q,P] representation, well-known formulas originally
due to Gauss can compute their product in S[Q,P] representation [16, Ch.5].

A principal ideal a is an OΔ-ideal which can be written as a = (θ) for some
θ ∈ OΔ, in other words it has only a single generator. Two ideals are said to
be equivalent if there exist non-zero α, β ∈ OΔ such that (α)a = (β)b and we
denote this by a ∼ b. We remark that we will frequently abuse this notation
by writing a = (γ)b, where it is understood that (γ) = (β/α) is a fractional
OΔ-ideal, i.e., there exists a non-zero α ∈ OΔ such that α(γ) ⊆ OΔ.

Our algorithms for compact representations rely on arithmetic with principal
ideals that are reduced. An OΔ-ideal a is primitive if it cannot be written as

Shorter Compact Representations in Real Quadratic Fields 53

an integer multiple of another ideal b, i.e., if a �= (m)b for any m ∈ Z, where
|m| > 1. Using the notation of (2), we say an ideal a is primitive if S = 1,
denoted as a = [Q,P]. The norm N(a) of an OΔ-ideal a is the index |OΔ/a| and
when the ideal a is written in the form of (2), we have

N(a) = S2Q/r . (3)

Finally, an OΔ-ideal a is reduced if it is primitive and there does not exist
α ∈ a, α �= 0, such that both |α| < N(a) and |α| < N(a). A useful property
of reduced OΔ-ideals, when written in the form of (2), is that 0 < P <

√
D

and 0 < Q < 2
√
D [16, Cor. 5.8.1, p. 101]. That is, if a is a reduced ideal, then

N(a) <
√
Δ.

A primitive ideal a given by [Q,P] can be reduced by expanding the con-
tinued fraction of α = (P +

√
D)/Q as described in [16, Ch.5]. If we start the

reduction procedure with the reduced ideal a = a1 = OΔ, we obtain a sequence
of reduced principal ideals ai+1 = (θi)a1. Since the coefficients of a reduced ideal
are bounded, there are only finitely many, and consequently this sequence must
be periodic. Hence, we can find some minimal p > 0 such that ap+1 = a1. These
ideals can be arranged into a cycle C = {a1, a2, . . . , ap} with

1 = θ1 < θ2 < θ3 < · · · < θp < · · · .

called the cycle of reduced principal ideals . A well-known fact—derived, for in-
stance, from [16, (5.33), p. 113]—is that if the fundamental unit ηΔ = θp+1. It
can be shown that p ≈ O(R) = O(Δ1/2+ε).

2.2 Infrastructure

The infrastructure, discovered by Daniel Shanks [20], refers to the group-like
structure existing within each equivalence class of ideals in OΔ. For our purposes,
we focus on the principal class, in particular the set of reduced principal ideals
C. The arithmetic properties of this set are key to algorithms for computing
compact representations.

Let a1 = [1, ω] be the first ideal in C. The distance of ai = (θi) is defined as
δi = δ(ai) = log2 θi (mod R). Let ai and aj be two reduced principal ideals in C.
Since they are principal, their product a = aiaj = (θiθj) will also be principal.
However, amay no longer be reduced, but is equivalent to some reduced principal
ideal al ∈ C. Thus,

al =

(
θ′kθiθj
m

)

δl = δ(al) = log2

(
θ′kθiθj
m

)
≡ δi + δj + log2

θ′k
m

(mod R) . (4)

We denote by ai
 aj the computation of the reduced ideal equivalent to the
product ideal aiaj and refer to this process as a giant step. The key observation
is that C is almost a group under this operation — only associativity fails,

54 A.K. Silvester, M.J. Jacobson, and H.C. Williams

because instead of having δl = δi + δj in (4), we are stuck with the additional
error term log2(θ

′
k/m) and so δl is only close to δi + δj . However, this error

term can be bounded in absolute value, say by μ. This bound depends on the
particular reduction algorithm selected, but for the method described above, it
can be shown [16, p. 175] that μ < O(logΔ) which is quite small compared to
δi, δj ≈ O(R).

In the rest of this paper, we will refer to one application of the continued
fraction algorithm to the ideal ai as a (forward) baby step, denoted ai+1 = ρ(ai).
Although we will not derive formulas here, given a reduced principal ideal ai ∈ C,
we can also compute the backward baby step ai−1 = ρ−1(ai) [16, §3.4, p. 64].

2.3 Approximating Distances

While performing computations in the infrastructure, we need to keep track of
distances while maintaining accurate approximations in the face of round-off
and truncation errors. The method of (f, p) representations [14], adapted from
ideas of Hühnlein and Paulus [12], was devised to provide provable bounds on
the round-off and truncation errors accumulated during computations. This idea
was later refined by the authors of [15] and we will use the method of w-near
(f, p) representations, as described in [16, Ch. 11, p. 265].

Let p ∈ N and f ∈ R be such that 1 ≤ f < 2p. If a is a primitive OΔ-ideal,
then an (f, p) representation of a is a triple (b, d, k) where b ∼ a, d ∈ N with
2p < d ≤ 2p+1, and k ∈ Z. In addition, there exists θ ∈ K such that b = (θ)a
with ∣∣∣∣ θ

2k−pd
− 1

∣∣∣∣ < f

2p
.

In essence, an (f, p) representation stores both an approximation to the relative
generator θ and an approximation of its distance, both with precision p. The
parameter f is a measure of the approximation error, though it is rarely if ever
explicitly computed. If b is a reduced OΔ-ideal, then (b, d, k) is a reduced (f, p)
representation of a.

A w-near (f, p) representation is a a reduced (f, p) representation (b, d, k) of
an OΔ-ideal a with the following two additional conditions:

1. k < w for some w ∈ Z
+ and

2. if ρ(b) = (ψ)b then there exist integers d′ and k′ such that k′ ≥ w, 2p < d′ ≤
2p+1 and ∣∣∣∣ ψθ

2k′−pd′
− 1

∣∣∣∣ < f

2p
.

Such representations have the useful property that θ ≈ 2w and k ≈ w. Since this
property will be used repeatedly in later material, particularly with respect to
compact representations, we will state it more formally.

Lemma 1 ([16, Lem. 11.3, p. 270]). Let (b, d, k) be a w-near (f, p) repre-
sentation of some OΔ-ideal a with p > 4 and f < 2p−4. If θ and ψ are defined
as above, then

Shorter Compact Representations in Real Quadratic Fields 55

15N(b)

16
√
Δ

<
15

16ψ
<

θ

2w
<

17

16
and − log2

34ψ

15
< k − w < 0 .

2.4 Algorithms

We define here the basic algorithms we require for performing various compu-
tations with (f, p) representations. The majority of these algorithms will not be
explicitly presented, rather references to the appropriate sections of [16] will be
given.

1. Given μ, ν ∈ OΔ, Algorithm IMULT [16, Alg. 12.2, p. 286] computes λ = μν.
2. Given an (f, p) representation (b, d, k) of a, we can determine a w-near repre-

sentation (c, g, h) of a along with the corresponding relative generator using
EWNEAR [16, Alg. 12.1, pp. 286 and 457] provided that k < w. In order to
implement our improved algorithms, we require a version that also works in
the case k > w. A modified version of EWNEAR that takes care of this is
presented in Appendix A.

3. If (a[x], dx, kx) and (a[y], dy, ky) are respectively, x- and y-near (f ′, p) and
(f ′′, p) representations of a = (1), we can employ EADDXY [16, Alg. 12.3,
p. 286] to produce an x + y-near (f, p) representation (a[x + y], d, k) of a
where f = 13/4 + f ′ + f ′′ + f ′f ′′/2p, as well as a relative generator λ ∈ O
such that

a[x+ y] =

(
λ

N(a[x])N(a[y])

)
a[x]a[y] .

4. If (a[x], d′, k′) is an x-near (f ′, p) representation of the OΔ-ideal a = (1),
algorithm ETRIPLEX (described in Appendix B) computes a 3x-near (f, p)
representation (a[3x], d, k) of a with f = 13/4+ 3f ′ + 3f ′2/2p + f ′3/22p and

λ =
a+ b

√
D

r
such that a[3x] =

(
λθ3

N(a[x])3

)
a,

where a[x] = (θ)a.

3 Compact Representations

In this section, we describe how to compute a compact representation. Our
presentation follows that of [16]; for a more detailed description, see [16, §§12.2–
3, pp. 290–304].

The algorithm AX [16, Alg. 11.6, pp. 279–80] computes a reduced principal
ideal a at distance approximately x from a1 = (1). At the heart of AX is a square-
and-multiply routine that uses the binary expansion of x to make a series of giant
steps in the infrastructure. For each bit in the binary expansion, we compute
the giant step aj
 aj—the squaring step—which results in an ideal with roughly

56 A.K. Silvester, M.J. Jacobson, and H.C. Williams

double the distance from where we started. If the current bit is 1, then we also
adjust the resulting ideal via ρ to correct the distance—the multiplying step.

At each stage of AX, suppose we were to keep track of the relative gen-
erator that appears. For the giant steps we would have μj such that a′j+1 =

(μj/N(aj)
2)a2j from EADDXY, and for the adjustment steps we would have

νj such that aj+1 = (νj)a
′
j+1 from EWNEAR. Then aj+1 = (λj/L

2
j+1)a

2
j with

λj = μjνj (computed with IMULT) and Lj+1 = N(aj) <
√
Δ Note that the νj

values will be small compared to the μj .
At the end of AX, we will not only have an ideal an = a[x] = (θ) at distance

approximately x, but also a list of quadratic integers {λ1, λ2, . . . , λn}, and a list of
ideal norms {L1, L2, . . . , Ln}. At this point it should be clear that if we combine
the relative generators λj and ideal norms Lj by an appropriate combination of
multiplications, divisions, and exponentiations, we will get the generator θ. This
leads to the definition of a compact representation.

Definition 2. For any θ such that (θ) = a[x] ∈ OΔ, a compact representation
of θ is

θ =
l∏

i=0

(
λi
L2
i

)2l−i

where the following properties are satisfied:

1. l = O(log log θ) for large θ.
2. λi ∈ OΔ and Li is an integer (0 ≤ i ≤ l).
3. 0 < Li ≤ Δ1/2 and H(λi) = O(Δ) (0 ≤ i ≤ l).
4. πj ∈ OΔ, Lj+1 = |N(πj)|,

πj =

j∏
i=0

(
λi
L2
i

)2j−i

,

πj generates a reduced ideal bj, where b0 = a[1], and

L2
i+1bi+1 = λi+1b

2
i (0 ≤ i ≤ l − 1) .

We remark that this definition is slightly different from that given in [16].
Notice that upon substituting di := Li+1, λ := dl, L0 = N

(
(1)

)
= 1 and shifting

the denominators, we get the same presentation as in [16, (12.8), p. 290].
Returning to the Cattle Problem, a compact representation of η410286423278424

requires only 1,212 bits, whereas writing out its coefficients explicitly would re-
quire 206,400 bits. In general, in order to write down θ using standard decimal
representation, we require O(log2 θ) bits. However, using a compact representa-
tion, we require only O((log2 log2 θ) log2Δ) bits to express θ.

4 Reducing the Size of the Terms

The overall size of a compact representation is determined by two factors: the
size of the individual terms and the total number of terms. In this section, we
describe a method to reduce the size of the terms.

Shorter Compact Representations in Real Quadratic Fields 57

Consider the sequence of si values computed as AX executes, corresponding
to the intermediate results produced by applying a square-and-multiply process
according to the binary representation of x. Let x =

∑l
i=0 2

l−ibi be such a
representation and set s0 = b0 (= 1). As we progress through AX computing
giant steps, ideally we wish to compute

a[si+1]
′ = a[si]

2 .

However because of the way giant steps in the infrastructure work, when we
compute a[si]

2 we actually “fall short” of this ideal, computing instead

a[si+1]
′ = (μi)a[si]

2

for a correction factor μi corresponding to the error term in (4). We then take
the ideal a[si+1]

′ and, depending on the value of bi, either set a[si+1] = a[si+1]
′

or compute a baby-step a[si+1] = ρ(a[si+1]
′) = (νi)a[si+1]

′ so that

a[si+1] = (λi)a[si]
2 .

As we also mentioned in Section 3, the μi values constitute the bulk of the
λi terms that we wish to store as a compact representation. With some careful
reasoning [16, pp. 445–6], one can show that when using EADDXY as in [16,
Alg. 12.3, p. 286] we have

O(Δ1/4) < μi < O(Δ3/4) . (5)

In other words, while the relative generator μi is bounded and cannot become
too large, it also cannot become very small.

In the following, we will describe a method to adjust the si values to exploit
the short-fall we experience and so reduce the upper bound in (5). If we increase
the si values at each step, we will compute ideals a[si+1]

′ further along the
infrastructure than we want. As before, we still experience a short-fall, but will
be closer to our goal of a[si+1] than before. By using a larger and backwards
EWNEAR step, we use the relative generator νi to cancel out, in a sense, a
substantial portion of μi.

Let h ∈ Z
+ and let n be the largest integer such that x ≥ (2n − 1)h. Set

y = x + (2n − 1)h and compute the binary representation of y =
∑l

i=0 2
l−ibi.

We iterate the while-loop over 0 ≤ i < l − n as usual (si+1 = 2si + bi), and use
si+1 = 2si + bi − h for l − n ≤ i < l. This yields

si =

{∑i
j=0 2

i−jbj for 0 ≤ i ≤ l − n∑i
j=0 2

i−jbj − (2n−l+i − 1)h for l − n < i ≤ l.

Note that sl = y − (2n − 1)h = x; thus at the end of the algorithm, we have
a[sl] = a[x] as desired. Furthermore, we clearly have si > 0 for 0 ≤ i ≤ l − n.
now, if si ≤ 0 for some i such that l − n < i < l, then

si+1 = 2si + bi − h ≤ 0

58 A.K. Silvester, M.J. Jacobson, and H.C. Williams

because h ≥ 1. By induction, we get x = sl ≤ 0, a contradiction. Thus, si > 0
for all i such that 0 ≤ i ≤ l.

All that remains is to determine an appropriate value for h and from that,
determine how much the height of λi can be reduced.

Recalling (5), we see that h = (1/4) log2Δ� is a good choice. In order
to determine how much λi is reduced, we must compute a revised bound for
H(λi). As the algorithm executes, it finds a series of reduced principal OΔ-
ideals a[si] = ai = (πi)a1. By Lemma 1, we can conclude that for an si−1-near
(f, p)-representation of a[si−1] and an si-near (f, p)-representation of a[si] where
l − n < i ≤ l,

15Li

16
√
Δ
2si−1 < πi−1 <

17

16
2si−1 and

15Li+1

16
√
Δ

2si < πi <
17

16
2si . (6)

From the definition of a compact representation, we also know that

πi =

(
λi
L2
i

)
π2
i−1 =⇒ λi =

L2
iπi
π2
i−1

, (7)

and so combining (6) and (7), we get

λi < L2
i

(
17

16
2si

)(
16
√
Δ

15Li
2−si−1

)2

=
16 · 17
152

2si−2si−1Δ .

Since si − 2si−1 = bi − h and bi ∈ {0, 1} we have

0 < λi <
5

2
2−�(1/4) log2 Δ�Δ ≤ 5

2
Δ−1/4Δ =

5

2
Δ3/4.

We can also show that |λi| < 5/2Δ3/4 by using the reasoning of [16, p.289].
Hence, our modified algorithm reduces the height of λi for l − n < i ≤ l from
O(Δ) to O(Δ3/4). The λi values for 0 ≤ i ≤ l − n will have height O(Δ), but
there are only a small number of these as l−n < 2+ log2 h. Thus, they will have
little impact on the amount of space needed to record θ.

We refer to a compact representation computed using the ideas above as an
h-compact representation.

Theorem 1. Let θ ∈ OΔ such that a[x] = (θ) for some x ∈ Z
+. The number of

bits in an h-compact representation of θ is O((log2 log2 θ) log2Δ
3/4).

Proof. From the preceding discussion, we know H(λi) < (5/2)Δ3/4. As l =
log2 x� and 2x < (16

√
Δ/15)θ, we also have l = O(log2 log2 θ). Thus, we require

O(l log2Δ
3/4) = O((log2 log2 θ) log2Δ

3/4)

bits to express θ as an h-compact representation. ��
Although our improvement does not change the asymptotic running time, the

improvement to the O-constant does yield a significant improvement in practice.
Returning to our running example, an h-compact representation of the funda-
mental unit η410286423278424 uses only 974 bits, a substantial size reduction of
19.6% as compared to the standard compact representation.

Shorter Compact Representations in Real Quadratic Fields 59

5 Reducing the Number of Terms

In the following, we describe a method to reduce the number of terms in a com-
pact representation, in an effort to further reduce the overall size. Recall that for
each step of the algorithm we compute an ideal (a[si+1]) at double the distance
of the ideal we are currently at (a[si]). In order to store fewer terms, we have to
progress further from ideal to ideal, for example, by computing an ideal at triple
the distance we are at currently. In other words, instead of computing the binary
expansion of x and applying a square-and-multiply routine, we could compute
a ternary expansion and use a cube-and-multiply routine, using ETRIPLEX
in place of EADDXY. We refer to a compact representation produced in this
manner as a 3-compact representation.

To see that this method computes a correct compact representation, note that
it produces a series of reduced principal OΔ-ideals a[si] = bi = (πi)a1 (a1 = (1))
where ∣∣∣∣ 2

pπi
2kidi

− 1

∣∣∣∣ < f

2p
.

Moreover, πi ∈ OΔ, |N(πi)| = N(a[si]) = N(bi) = Li+1 and if p is sufficiently
large, we can appeal to a result analogous to Theorem 11.9 of [16, p. 280] to
ensure that f < 2p−4. If we set λi = (mi + ni

√
D)/r, then

πi+1 =

(
λi+1

L3
i+1

)
π3
i (8)

where π0 = λ0. If we define L0 = 1, then we get

πj =

j∏
i=0

(
λi
L3
i

)3j−i

for j = 0, 1, . . . , l. When j = l, we have sl = x, a[x] = bl = (πl), and hence
a[x] = (θ) where

θ =

l∏
i=0

(
λi
L3
i

)3j−i

.

One simple improvement on this idea that will slightly reduce the sizes of
the terms is to use a signed ternary representation of x. Instead of digits 0, 1, 2,
in the ternary representation of x, we use digits −1, 0, 1, thereby reducing the
average size of terms obtained when bi �= 0.

Notice that we can also combine the ideas behind the h-compact and 3-
compact representations to reduce both the sizes and number of terms. Work-
ing through the details of adding “−h” to the 3-compact representation, we
find we must let n be the largest integer such that x ≥ ((3n − 1)/2)h and set
y = x+ ((3n − 1)/2)h. Furthermore, using ETRIPLEX, we compute

a[si+1]
′ = (μi)a[si]

3 = ((μ′
i)a[si])

(
(μ′′

i)a[si]
2
)

60 A.K. Silvester, M.J. Jacobson, and H.C. Williams

for each iteration of the main while-loop. Thus, we have O(Δ1/4) < μ′
i, μ

′′
i <

O(Δ3/4), and since μi = μ′
iμ

′′
i , we see O(Δ1/2) < μi < O(Δ3/2). So our choice

of h needs to be increased to h = (1/2) log2Δ�.
Let y =

∑l
i=0 3

l−ibi. We now derive bounds on the heights of the λi defined
above. From (8) we have λi = (L3

iπi)/π
3
i−1, which, when combined with (6) gives

λi < L3
i

(
17

16
2si

)(
16
√
Δ

15Li
2−si−1

)3

<
162 · 17
153

2si−3si−1Δ3/2 .

Since si − 3si = bi − h and bi ∈ {0,±1} we have

λi <
162 · 17 · 2

153
· 2−hΔ3/2 <

11

4
Δ .

Now, since λi = (L3
iπi)/π

3
i−1 and |πiπi| = Li+1, we find

|λi| =
∣∣∣∣L

3
iπi

π3
i−1

∣∣∣∣ = L3
i (Li+1/πi)

(Li/πi−1)3
=
L3
iLi+1π

3
i−1

L3
iπi

=
Li+1π

3
i−1

πi

and thus

|λi| < Li+1

(
17

16
2si−1

)3 (
16
√
Δ

15Li+1
2−si

)
≤ 173 · 2

15 · 162 · 2
hΔ1/2 <

11

4
Δ . (9)

since 3si−1−si = h− bi and bi ∈ {0,±1}. Thus, we find for a signed 3h-compact
representation that

H(λi) <
11

4
Δ (10)

for l − n < i ≤ l. Considering λ0, we see

15L1

16
√
Δ
< λ0 <

17

16
2s0 =

17

8
,

as s0 = 1, and so (10) holds for i = 0 as well. For 0 < i ≤ l − n we have
H(λi) ∈ O(Δ3/2), but only for l− n < 2 + log3 h terms.

We can now state the definition of a signed 3h-compact representation. An
algorithm to compute such representations is presented in Appendix C.

Definition 3. For any θ such that (θ) = a[x] ∈ O, a signed 3h-compact repre-
sentation of θ is

θ =

l∏
i=0

(
λi
L3
i

)bl−i

where the following properties are satisfied:

1. l = log3 log2 θ�.
2. λi ∈ OΔ and Li is an integer (0 ≤ i ≤ l).

Shorter Compact Representations in Real Quadratic Fields 61

3. 0 < Li ≤ Δ1/2 and H(λi) = O(Δ) (0 ≤ i ≤ l).
4. πj ∈ OΔ, Lj+1 = |N(πj)|,

πj =

j∏
i=0

(
λi
L3
i

)3j−i

,

πj generates a reduced ideal bj, where b0 = a[1] and

L3
i+1bi+1 = λi+1b

3
i (0 ≤ i ≤ l − 1) .

Theorem 2. Let θ ∈ OΔ such that a[x] = (θ) for some x ∈ Z
+. The number of

bits in a signed 3h-compact representation of θ is O((log3 log2 θ) log2Δ).

The proof is analogous to that of Theorem 1.
Going back to our running example, we find that a signed 3h-compact repre-

sentation of the fundamental unit η410286423278424 requires 843 bits. Compared to
the compact and h-compact representations respectively, the signed 3h-compact
representation saves us 30.7% and 13.7%. Again, note that the asymptotic size
is not changed, but having log3 terms instead of log2, combined with the size
reduction in terms, further improves the O-constant and the size in practice.

6 Using Larger Bases

Can we extend this idea further? What about a 4-compact, 5-compact, or higher
representation?

For the time being, we will occupy ourselves with only signed 4- and 5-compact
representations. We can compute a signed quaternary representation of an in-
teger x using digit set {−1, 0, 1, 2} or {−2,−1, 0, 1}. For the signed quinary
representation we use {−2,−1, 0, 1, 2}. When using base 4, we require an al-
gorithm which computes an ideal a[4x] from an ideal a[x] using w-near (f, p)-
representations. An analogous algorithm is also required for base 5.

As with base 3, we consider signed 4h-compact representations as follows. As
in the base-3 case, we need to increase h by a further factor of (1/4) log2Δ to
h = (3/4) log2Δ�. We also must compute the maximal n such that

x

(4n − 1)/3
≥ h,

and put y = x+ ((4n − 1)/3)h. We find that for most of the λi in the resulting
algorithm

H(λi) <
45

8
Δ5/4

for a signed 4h-compact representation. Furthermore, for θ ∈ OΔ such that
a[x] = (θ) (x ∈ Z

+), the total number of bits required to express θ as a signed
4h-compact representation is O((log4 log2 θ) log2Δ

5/4).
The signed 4h-compact representation of η410286423278424 using digits bi ∈

{−1, 0, 1, 2} requires only 832 bits to store. Compared to the signed 3h-compact

62 A.K. Silvester, M.J. Jacobson, and H.C. Williams

representation, this represents an additional savings of 1.3%. The signed 4h-
compact representation using bi ∈ {−2,−1, 0, 1} requires 843 bits. In general, it
seems hard to predict a priori which signed base will produce a shorter signed
compact representation.

If we set h = log2Δ�, compute the maximal n such that

x

(5n − 1)/4
≥ h,

and put y = x + ((5n − 1)/4)h, we can compute a signed 5h-compact represen-
tation. Looking at the heights of the λi, we see that for most of the λi

H(λi) <
47

4
Δ3/2

and O((log5 log2 θ) log2Δ
3/2) bits are needed to store the total representation.

The signed 5h-compact representation of η410286423278424 requires 875 bits, which
is larger than the storage needed for the signed 4h-compact representations.

At this point, we find the first indications that pursuing this idea to higher
powers (i.e., 6-compact and higher representations) may not result in further
memory savings. Unfortunately, the increase in size of the individual terms of
the compact representations begins to dominate the savings from a decreased
overall number of terms. In the remainder of this section, we look at an analytical
argument to justify this claim. In the following section, we will present some
calculations that confirm, numerically at least, that this analysis is valid.

To determine the overall expected size Sx of the signed base-x h-compact
representation in bits, we multiply the base-2 logarithm of the H(λi) bounds by
the corresponding number of terms l. For most of these λi (i ≥ 2 + logx h) the
H(λi) bounds are given by some constant Bx multiplied by Δ(x+1)/4. Expanding
and converting the logarithms to base 2, we see that

Sx = log2

(
BxΔ

(x+1)/4
)
· logx log2 θ

=

(
log2Bx

log2 x

)
log2 log2 θ +

(
x+ 1

4 log2 x

)
log2Δ log2 log2 θ . (11)

The Bx values are given by

Bx = max

{
16x−1 · 17

15x
,

17x

15 · 16x−1

}
2�x/2� =

17

15
max

{
16

15
,
17

16

}x−1

2�x/2�

as 17/15, 16/15, and 17/16 are all greater than 1. Thus,

Bx <
17

15

(
16

15

)x−1

2�x/2� <
17

15

(
16

15

)x−1

2x−1 =
17

15

(
32

15

)x−1

and log2Bx is of size O(x). Asymptotically then, the (x+1)/(4 log2 x) coefficient
will dominate this expression as the discriminant increases. Looking at Figure 1,
we see this coefficient has a minimum between x = 3 and x = 4.

Shorter Compact Representations in Real Quadratic Fields 63

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

2 3 4 5 6

(l
o
g
2
Δ
)2

co
effi

ci
en
t

Compact representation base

Fig. 1. Plot of (x+ 1)/(4 log2 x) coefficients

In this paper, we are most interested in computing compact representations
where θ = ηΔ, the fundamental unit. As such, we can write

logx log2 θ = logx log2 ηΔ = logxR,

where x ∈ {2, 3, . . . , 6}. Recall that we can loosely bound the regulator by
√
Δ

and, after substitution, we are left with

l < logx
√
Δ (12)

as an upper bound on the number of terms in our various compact representa-
tions. Specializing (11) using (12), we find

Sx =

(
log2Bx

2 log2 x

)
log2Δ+

(
x+ 1

8 log2 x

)
(log2Δ)

2
.

Again, asymptotically, the (x+1)/(8 log2 x) coefficient will dominate this expres-
sion as the discriminant increases and the minimum still occurs between x = 3
and x = 4. In fact, if we compare the two functions S3 and S4, we find that
S4 < S3 for discriminants greater than 1016.5. In other words, for discriminants
larger than about 16 decimal digits, the signed 4h-compact representation is the
most efficient one.

64 A.K. Silvester, M.J. Jacobson, and H.C. Williams

This conclusion supports our initial impression that base-5 and higher repre-
sentations are not likely to produce shorter compact representations. From an
analytic viewpoint, the trade-off between increasing the heights of the individual
terms and gaining a representation with a fewer number of terms is no longer
working in our favor. Because of this, we will not provide numerical results for
the base-5 or higher compact representations in the next section.

7 Numerical Results

Since the preceding discussion only shows the savings in one particular case, we
turn to some empirical results to further support our memory-saving claims. We
calculated an approximation of the associated regulator for a random sampling
of 28,000 discriminants evenly spread from decimal length 5 through 18, and
for each discriminant used this to compute various compact representations of
the fundamental unit. For each of the regular, h-, signed 3h-, signed 4h-, and
signed 5h-compact representations, we computed a best-fit regression line for
the data, as well as provided distribution box plots,1 a 95% confidence interval
for our regression line, and a 95% prediction interval for further data points.
Figure 2 shows a summary comparison of the average representation length for
each discriminant length, along with the associated best-fit curves.

In the previous section, our analysis concluded that the signed 4h-compact
representation should be the most efficient for large enough discriminants. How-
ever, the numerical results that follow seems to show that the signed 4h-compact
representation is more efficient all the time. We initially speculated that this
discrepancy is caused by our conservative bound on H(λi). However, this only
provides a piece of the answer. In our analysis, we assumed that each digit in the
base-3 representation is a 1 and each digit in the base-4 representation is a 2 (or
−2). Turning to a probabilistic argument, for a randomly selected number we
would expect the proportions of the digits in its representation to approximately
be equal. For example, for a signed base-3 representation, we would expect to
see 0, 1, and −1 each roughly 33% of the time. If we take this into account, can
we derive the following bound on H(λi) for the signed base-3 case:

H(λi) = max

{
162 · 17
153

,
173

15 · 162
}(

2−1

3
+

20

3
+

21

3

)
Δ <

43

20
Δ .

Similarly for the signed base-4 case, we have

H(λi) = max

{
163 · 17
154

,
174

15 · 163
}(

2−1

4
+

20

4
+

21

4
+

22

4

)
Δ5/4 <

13

5
Δ5/4 .

Using these probabilistic bounds in S3 and S4, we find that S4 is now strictly
less than S3 for discriminants larger than roughly 1014.

We extended these empirical results further by using the series of discriminants
from [10, Tbl. 7.8, p. 101], as well as the regulator approximations given there, to

1 For each box plot, potential outliers have been marked with a “×” symbol.

Shorter Compact Representations in Real Quadratic Fields 65

0

500

1000

1500

2000

2500

3000

4 6 8 10 12 14 16 18

S
iz
e
(b
it
s)

Discriminant length (decimal digits)

CR
h CR

Signed 3h CR
Signed 4h CR
Signed 5h CR

Fig. 2. Comparison of the sizes of some various compact representations for random
discriminants (1,000 discriminant values for each length from 5–18)

produce the same variety of compact representations as above for the associated
fundamental units. A comparison of the sizes of these representations is shown
in Figure 3.

We must be cautious with these extended results. Because of the limited
sampling, it is difficult to make a definitive claim on the relative efficiencies of
the various h-compact representations at this point. For the majority of these
larger discriminants, the signed 4h-compact representation is the most efficient.
However, for a given discriminant, the signed 3h-compact representation may be
just as, or even slightly more, efficient. With further measurements, we expect
to find that the signed 4h-compact representation is most efficient on average.

8 Future Directions

In this paper, we presented two substantial improvements that can be used to-
gether to reduce the sizes of a compact representations for certain quadratic
integers. The first was noticing that the size of the individual compact represen-
tation terms could be reduced by a substantial factor. The second refinement
was to notice that the overall number of terms could be reduced by comput-
ing larger giant steps on each iteration of the algorithm using bases larger than
two. Asymptotically, the signed 4h-compact representation results in the most

66 A.K. Silvester, M.J. Jacobson, and H.C. Williams

0

5000

10000

15000

20000

25000

30000

35000

40000

10 20 30 40 50 60

S
iz
e
(b
it
s)

Discriminant length (decimal digits)

CR
h CR

Signed 3h CR
Signed 4h CR
Signed 5h CR

Fig. 3. Comparison of the sizes of some various compact representations for the series
of discriminants presented in [10, Tbl. 7.8, p. 101]

efficient balance between larger individual compact representation terms and a
reduced overall number of terms. Numerical testing supports this conclusion. In
the large-discriminant tests we performed, we found overall memory savings of
around 37% as compared to the standard compact representation.

There are other types of number representations we did not investigate which
may lead to further memory savings for compact representations. For example,
we could consider using a non-adjacent form (NAF) representation [19], a signed
base-2 representation for which the average density of non-zero digits among all
NAFs of a given length is approximately 1/3 [11, Thm. 3.29] as opposed to 1/2 for
the regular binary representation. A width-w NAF (wNAF) uses odd digits less
than 2w−1 in absolute value and has average density of non-zero digits 1/(w+1),
so that NAF is a wNAF with w = 2. In terms of an overall length the NAF and
wNAF representation of an integer is at most one more than the length of its
binary representation.

Another example is the double-base representation of the integer x, given by

x =
∑
i,j

bi,j2
i3j ,

Shorter Compact Representations in Real Quadratic Fields 67

where bi,j ∈ {0, 1}. These representations only require O(logn/ log logn) dig-
its to store and near-canonic representations can be computed via a number
of methods [1,5,6,8]. The advantage to this representation over a standard bi-
nary or ternary representation is that we require fewer terms. It could be quite
beneficial if this numeric representation could be applied to create a double-
base compact representation. First, by reducing the overall number of terms of
the representation, we would reduce the overall storage requirements by moving
from a compact to a 3-compact to a 4-compact representation. Furthermore, by
restricting ourselves to the bases 2 and 3, we have the potential of avoiding the
per-term expansion we encountered due to the increasing bound on H(λi).

References

1. Avanzi, R., Dimitrov, V., Doche, C., Sica, F.: Extending scalar multiplication using
double bases. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 130–144. Springer, Heidelberg (2006)

2. Buchmann, J., Thiel, C., Williams, H.C.: Short representation of quadratic inte-
gers, Mathematics and its Applications, vol. 325, pp. 159–185. Kluwer Academic
Publishers, Amsterdam (1995)

3. Buchmann, J., Vollmer, U.: Binary Quadratic Forms, Algorithms and Computation
in Mathematics, vol. 20. Springer (2007)

4. Cohen, H.: A Course in Computational Algebraic Number Theory, Graduate Texts
in Mathematics, 4th edn., vol. 138. Springer, New York (2000)

5. Dimitrov, V., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point mul-
tiplication using double-base chains. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS,
vol. 3788, pp. 59–78. Springer, Heidelberg (2005)

6. Dimitrov, V.S., Jullien, G.A., Miller, W.C.: An algorithm for modular exponenti-
ation. Information Processing Letters 66, 155–159 (1998)

7. Dixon, V., Jacobson Jr., M.J., Scheidler, R.: Improved exponentiation and key
agreement in the infrastructure of a real quadratic field. In: Hevia, A., Neven, G.
(eds.) LatinCrypt 2012. LNCS, vol. 7533, pp. 214–233. Springer, Heidelberg (2012)

8. Doche, C., Imbert, L.: Extended double-base number system with applications to
elliptic curve cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006)

9. Fung, G.W., Williams, H.C.: Compact representation of the fundamental unit in
a complex cubic field (1991) (unpublished manuscript)

10. de Haan, R.: A fast, rigorous technique for verifying the regulator of a real quadratic
field. Master’s thesis, University of Amsterdam (2004)

11. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, New York (2004)

12. Hühnlein, D., Paulus, S.: On the implementation of cryptosystems based on real
quadratic number fields (extended abstract). In: Stinson, D.R., Tavares, S. (eds.)
SAC 2000. LNCS, vol. 2012, pp. 288–302. Springer, Heidelberg (2001)

13. Imbert, L., Jacobson Jr., M.J., Schmidt, A.: Fast ideal cubing in imaginary
quadratic number and function fields. Advances in Mathematics of Communica-
tions 4(2), 237–260 (2010)

68 A.K. Silvester, M.J. Jacobson, and H.C. Williams

14. Jacobson Jr., M.J., Scheidler, R., Williams, H.C.: The efficiency and security of
a real quadratic field based key exchange protocol. In: Alster, K., Urbanowicz,
J., Williams, H.C. (eds.) Public-Key Cryptography and Computational Number
Theory, September 11-15 (2000); Walter de Gruyter GmbH & Co., Warsaw (2001)

15. Jacobson Jr., M.J., Scheidler, R., Williams, H.C.: An improved real quadratic field
based key exchange procedure. J. Cryptology 19, 211–239 (2006)

16. Jacobson Jr., M.J., Williams, H.C.: Solving the Pell Equation. CMS Books in
Mathematics. Springer (2009)

17. Lagarias, J.C.: Succinct certificates for the solvability of binary quadratic diophan-
tine equations (extended abstract). In: Proc. 20th IEEE Symp. on Foundations of
Computer Science, pp. 47–54 (1979)

18. Lagarias, J.C.: Succinct certificates for the solvability of binary quadratic dio-
phantine equations. Tech. Rep. Technical Memorandum 81-11216-54, Bell Labs,
28 (1981)

19. Reitwiesner, G.W.: Binary arithmetic. Advances in Computers 1, 231–308 (1960)
20. Shanks, D.: The infrastructure of a real quadratic field and its applications.

In: Proc. 1972 Number Theory Conference, University of Colorado, Boulder,
pp. 217–224 (1972)

21. Silvester, A.K.: Improving regulator verification and compact representations in
real quadratic fields. Ph.D. thesis, University of Calgary, Calgary, Alberta (2012)

A EWNEAR

We present a version of EWNEAR [16, Alg. 12.1, pp. 286 and 457] that also
works when k > w. As the new version merely adds some key values which allow
the determination of a relative generator, the proof of correctness of EWNEAR
will remain unchanged.

Algorithm 3: EWNEAR

Input: (b, d, k), w, p, where (b, d, k) is a reduced (f, p) representation of someO-
ideal a. Here b[Q/r, (P+

√
D)/r], where P+�√D� ≥ Q, 0 ≤ �√D�−P ≤ Q.

Output: (c, g, h) a w-near (f + 9/8, p) representation of a and a, b, where κ =
(a+ b

√
D)/Q and c = κb.

1: case 1: k < w
2: Put B−2 = 1, B−1 = 0.
3: Find s ∈ Z

≥0 such that 2sQ ≥ 2p+4. Put Q0 = Q, P0 = P , M =
2p+s−k+wQ0/d�, Q−1 = (D − P 2)/Q, T−2 = −2sP0 + �2s

√
D�, T−1 =

2sQ0, i = 1.
4: while Ti−2 ≤M do

5: qi−1 = �(Pi−1 + �
√
D�)/Qi−1�

6: Pi = qi−1Qi−1 − Pi−1

7: Qi = Qi−2 − qi−1(Pi − Pi−1)
8: Ti−1 = qi−1Ti−2 + Ti−3

9: Bi−1 = qi−1Bi−2 +Bi−3

10: i← i+ 1
11: end while
12: Put ei−1 = 2p−s+3Ti−3/Q0�

Shorter Compact Representations in Real Quadratic Fields 69

13: if dei−1 ≤ 22p−k+w+3 then
14: Put c = [Qi−2/r, (Pi−2 +

√
D)/r], e = ei−1,

a = (Ti−3 − �2s
√
D�)/2s, b = Bi−3.

15: else
16: Put c = [Qi−3/r, (Pi−3 +

√
D)/r], e = 2p−s+3Ti−4/Q0�,

a = (Ti−4 − �2s
√
D�)/2s, b = Bi−4.

17: end if
18: Find t such that

2t <
ed

22p+3
≤ 2t+1 .

19: Put

g =

⌈
ed

2p+t+3

⌉
, h = k + t .

20: end case
21: case 2: k > w

22: Put B∗−2 = 1, B∗−1 = 0.
23: Put s = p+ 4, Q∗

0 = Q, P ∗
0 = P , M∗ = d2k−w+4, Q∗

1 = (D − P 2)/Q,
T ∗−2 = 2sQ∗

0, T
∗−1 = 2sP ∗

0 + �2s√D�, and i = 1.
24: while T ∗

i−2 < Q∗
iM

∗ do

25: q∗i = �(P ∗
i−1 + �

√
D�)/Q∗

i �
26: P ∗

i = q∗iQ
∗
i − P ∗

i−1

27: Q∗
i+1 = Q∗

i−1 − q∗i (P ∗
i − P ∗

i−1)
28: T ∗

i−1 = q∗i T
∗
i−2 + T ∗

i−3

29: B∗
i−1 = q∗iB

∗
i−2 +B∗

i−3

30: i← i+ 1
31: end while
32: Put q∗i = �(P ∗

i−1 + �
√
D�)/Q∗

i �, P ∗
i = q∗iQ

∗
i − P ∗

i−1,
e = T ∗

i−2/2Q
∗
i �, e′ = T ∗

i−3/2Q
∗
i−1�, j = 3.

33: while e′ ≥ d2k−w+3 do
34: e← e′

35: e′ ← Ti−2−j/2Q
∗
i−j�

36: j ← j + 1
37: end while
38: Find t (t′) such that

2t−1 ≤ e

8d
< 2t .

(
2t

′−1 ≤ e′

8d
< 2t

′
.

)

39: Put c = [Q∗
i−j+3/r, (P

∗
i−j+3 +

√
D)/r], g = 2p+3+td/e�, h = k − t,

a = (T ∗
i−2 −B∗

i−2�2s
√
Δ�)/2s, b = B∗

i−j+2.
40: end case

70 A.K. Silvester, M.J. Jacobson, and H.C. Williams

B ETRIPLEX

In order to implement a triple-and-add algorithm to use compact representations,
a precision analysis for cubing an (f, p)-representation is required. To this end,
we include the following theorem.

Theorem 4 ([16, Thm. 11.2, p. 268]). Let (b, d′, k′) be an (f ′, p) represen-
tation of an OΔ-ideal a. If d′3 ≤ 23p+1, put d = d′3/22p� and k = 3k′. If
23p+1 < d′3 ≤ 23p+2, put d = d′3/22p+1� and k = 3k′ + 1. If d′3 > 23p+2, put
d = d′3/22p+2� and k = 3k′ + 2. Then (b3, d, k) is an (f, p) representation of
the product ideal a3, where f = 1 + 3f ′ + 3f ′2/2p + f ′3/22p.

Proof. Let b = θa for θ ∈ K. By the definition of d in the theorem, it is easy to
see that 2p < d ≤ 2p+1. From the definition of an (f, p) representation, we know

∣∣∣∣∣
2p−k′

θ

d′
− 1

∣∣∣∣∣ <
f ′

2p
,

and rearranging this inequality gives

d′

2p

(
1− f ′

2p

)
<

θ

2k′ <
d′

2p

(
1 +

f ′

2p

)
.

As 2p < d′ ≤ 2p+1 and f ′/2p < 1/16, we have

d′

2p

(
1− f ′

2p

)
> 1 ·

(
1− 1

16

)
> 0 and

d′

2p

(
1 +

f ′

2p

)
< 2 ·

(
1 +

1

16

)
< 4,

and thus (
1− f ′

2p

)3

<
23(p−k′)θ3

d′3
<

(
1 +

f ′

2p

)3

.

If we set f∗ = 3f ′ + 3f ′2/2p + f ′3/22p then

1− f∗

2p
= 1− 3f ′

2p
− 3f ′2

22p
− f ′3

23p
< 1− 3f ′

2p
+

3f ′2

22p
− f ′3

23p
=

(
1− f ′

2p

)3

and

(
1 +

f ′

2p

)3

= 1 +
3f ′

2p
+

3f ′2

22p
+
f ′3

23p
= 1 +

3f ′ + 3f ′2/2p + f ′3/22p

2p
= 1 +

f∗

2p
.

Hence

1− f∗

2p
<

23p−3k′
θ3

d′3
< 1 +

f∗

2p
. (13)

Now suppose that d′3 ≤ 23p+1. Since d = d′3/22p+ ε for 0 ≤ ε < 1, (13) becomes

1− f∗

2p
<

2p−kθ3

d− ε < 1 +
f∗

2p

Shorter Compact Representations in Real Quadratic Fields 71

and as d− ε = d(1 − ε/d),
(
1− ε

d

)(
1− f∗

2p

)
<

2p−kθ3

d
<

(
1− ε

d

)(
1 +

f∗

2p

)
.

Looking at the right-hand side of this inequality, (1 − ε/d) < 1 so

(
1− ε

d

)(
1 +

f∗

2p

)
< 1 +

f∗

2p
< 1 +

1

2p
+
f∗

2p
= 1 +

f

2p
;

considering the left-hand side, ε < 1 and 2p < d so 2pε < d. Rearranging this
inequality gives 1− 1/2p < 1− ε/d and thus

1− f

2p
= 1− 1

2p
− f∗

2p
<

(
1− 1

2p

)(
1− f∗

2p

)
<

(
1− ε

d

)(
1− f∗

2p

)
.

It follows that ∣∣∣∣2
p−kθ3

d
− 1

∣∣∣∣ < f

2p

and (b3, d, k) is an (f, p) representation of a3, where b3 = θ3a3. The theorem
follows by applying similar arguments when 23p+1 < d′3 ≤ 23p+2 and when
d′3 > 23p+2. ��

In practice, ideal cubing could be accomplished by a square and a multipli-
cation. Another option is to use the dedicated ideal cubing algorithm NUCUBE
[13, Alg. 4] described by Imbert, Jacobson, and Schmidt. An extended version of
this algorithm for w-near representations is presented in [7]. Finally, ETRIPLEX
is obtained by extending the algorithm further to also produce the corresponding
relative generator. For a complete description, see [21, §§ 5.3].

C Algorithm to Compute Signed 3h-Compact
Representations

We present here an algorithm to compute a signed 3h-compact representation,
based on the ideas of Section 5.

Algorithm 5: 3HCRAX

Input: x, p, where x ∈ Z
+ and 2p > 11.2xmax{16 log2 x}.

Output: (a[x], d, k), (mi, ni), and Li, where (a[x], d, k) is an x-near (f, p) rep-
resentation of a = (1) with f < 2p−4, (mi, ni) are pairs of integers, and

Li ∈ Z
+ for i = 0, 1, . . . , l where l is such that x =

∑l
j=0 3

l−jbj and b0 �= 0,
bj ∈ {0, 1, 2}.

1: Put h = (1/2) log2Δ� and compute the maximal n such that

x

(3n − 1)/2
≥ h,

and put y = x+ ((3n − 1)/2)h.

72 A.K. Silvester, M.J. Jacobson, and H.C. Williams

2: Compute the signed ternary representation of y with

y =
l∑

i=0

3l−ibi and b0 �= 0, bi ∈ {−1, 0, 1} (1 ≤ i ≤ l).

3: Put

Q = r, P = r

⌊
�√Δ� − r + 1

r

⌋
+ r − 1, (b, d, k) = ([Q,P], 2p + 1, 0),

s = b0, L0 = 1, and i = 0.
4: Put ((b0, d0, k0),m0, n0) = EWNEAR((b, d, k), s, p).
5: while i < l − n do

6: Put Li+1 = N(bi) and

((bi+1, di+1, ki+1),mi+1, ni+1) = ETRIPLEX((bi, di, ki), s, p).

7: Set s← 3s+ bi+1.
8: if bi+1 �= 0 then

9: Put N = N(bi+1) and set

((bi+1, di+1, ki+1),m
′
i+1, n

′
i+1)←EWNEAR((bi+1, di+1, ki+1), s, p).

10: Set (mi+1, ni+1)← IMULT(mi+1, ni+1,m
′
i+1, n

′
i+1, N).

11: end if
12: Set i← i+ 1.

13: end while
14: while i < l do

15: Put Li+1 = N(bi) and

((bi+1, di+1, ki+1),mi+1, ni+1) = ETRIPLEX((bi, di, ki), s, p).

16: Set s← 3s+ bi+1 − h.
17: Put N = N(bi+1) and set

((bi+1, di+1, ki+1),m
′
i+1, n

′
i+1)← EWNEAR((bi+1, di+1, ki+1), s, p).

18: Set (mi+1, ni+1)← IMULT(mi+1, ni+1,m
′
i+1, n

′
i+1, N).

19: Set i← i+ 1.
20: end while
21: Put Ll+1 = N(bl) and (a[x], d, k) = (bl, dl, kl).

	Shorter Compact Representations in Real Quadratic Fields
	1 Introduction
	2 Background on Quadratic Fields
	2.1 Ideals
	2.2 Infrastructure
	2.3 Approximating Distances
	2.4 Algorithms

	3 Compact Representations
	4 Reducing the Size of the Terms
	5 Reducing the Number of Terms
	6 Using Larger Bases
	7 Numerical Results
	8 Future Directions
	References

