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Global navigation satellite systems (GNSS) use ac-
curate, stable atomic clocks in satellites and on the
ground to provide world-wide position, velocity,
and time to millions of users. Orbiting clocks have
gravitational and motional frequency shifts that
are so large that, without carefully accounting for
numerous relativistic effects, the systems would
not work. The basis for navigation using GNSS,
founded on special and general relativity, includes
relativistic principles, concepts and effects such
as the constancy of the speed of light, relativity
of synchronization, coordinate time, proper time,
time dilation, the Sagnac effect, the weak equiva-
lence principle, and gravitational frequency shifts.
Additional small relativistic effects such as the co-
ordinate slowing of light speed and the effects of
tidal potentials from the moon and the sun may
need to be accounted for in the future. Examples of
new navigation systems that are being developed
and deployed are the European GALILEO system
and the Chinese BEIDOU system; these will greatly
widen the impact of GNSS. This chapter discusses
applications of relativistic concepts in GNSS.

24.1  The Principle of Equivalence ................. 510
24.2 Navigation Principles in the GNSS.......... 511

Since the first deployment of high-performance atomic
clocks in satellites in 1977, position, navigation, and
timing have been revolutionized world-wide. The Uni-
ted States’ global positioning system (GPS), the Rus-
sian global navigation satellite system (GLONASS —
globalnaya navigatsionnaya sputnikovaya sistema), the
European GALILEO system, and China’s BEIDOU
system will soon provide 100 or more satellites with
synchronized clocks in precisely determined orbits.
Each system consists of approximately 30 satellites, ca-
pable of transmitting messages that enable a receiver
to accurately compute its position, velocity, and time
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anywhere near earth’s surface. There are also numerous
augmentation systems designed to provide improved re-
liability and accuracy. Examples are the US’s WAAS
(wide area augmentation system), which uses geosyn-
chronous satellites to broadcast GPS-like signals over
the continental United States, and Japan’s QZSS system
that uses satellites in highly eccentric orbits, enabling
them to spend considerable time directly over an area
of particular interest. These systems together are gener-
ally referred to as GNSS.

A vast infrastructure supports these systems: world-
wide networks of receivers and organizations to mon-
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itor and estimate the satellite orbits and clocks; en-
sembles of high-performance clocks on the ground to
provide time references; industries to design, manufac-
ture, and launch the satellites; and hundreds of millions
of users with receivers of varying degrees of complexity
and expense. The GPS infrastructure has been ade-
quately described elsewhere [24.1].

The remarkable positioning precision achieved by
GNSS is due to careful accounting for a number of
systematic effects that would otherwise greatly degrade
the results and eventually render the system useless.
Among these effects are signal delays due to water
vapor in the troposphere, free electrons in the iono-
sphere, and reflections of signals from surfaces near
the receiver antenna. Unless relativistic concepts and
effects on clocks and radio signals in the GNSS are

24.1 The Principle of Equivalence

The weak equivalence principle is based on the ob-
served universality of free fall, namely that all objects
fall with equal accelerations in a given gravitational
field, independent of their internal structure, mass, or
composition. Thus in a freely falling laboratory of suffi-
ciently small extent, no experiment performed locally —
entirely within the laboratory — can tell that the labora-
tory is in free fall. Although this has been tested only to
a certain, very high level of precision [24.2], it means
that even if there is no gravitational field due to nearby
masses, then in a uniformly accelerating laboratory an
induced gravitational field will appear that can in no
way, by local measurements only, be distinguished from
a real gravitational field.

Some have been tempted to think that clocks in
satellites, which are momentarily on the side of the
earth nearest the sun, are affected more by the sun than
satellites on the side of earth away from the sun; one
implication that has been put forward numerous times
is that clocks in satellites nearer the sun suffer a greater
shift in frequency toward the red than do clocks on the
opposite side of the earth. By the principle of equiva-
lence, however, this picture is erroneous.

The earth and its satellites are in free fall about the
sun, moon, and other solar system bodies. Locally, the
gravitational field due to external bodies causes accel-
eration, which in turn induces an equal but opposite
fictitious gravitational field; these can be superimposed
and they cancel to high precision near earth’s center of
mass. Let the total gravitational potential in the neigh-
borhood of the earth be denoted by @(r); it will be the

taken into account, the systems will not work. This
article discusses the fundamental principles of special
and general relativity that provide the basis for posi-
tioning in the GNSS. The principle of equivalence is
discussed in Sect. 24.2, where it is shown that to a first
approximation, gravitational potentials due to the sun
and the moon can be neglected in the GNSS. Relative
motions of clocks and the rotation of the earth leads
to the discussion of coordinate time and the Sagnac
effect in Sect. 24.3. In Sect. 24.4 we discuss interna-
tional atomic time (TAI) and universal coordinated time
(UTC). Sections Sect. 24.5 through Sect. 24.9 discuss
relativistic effects on ground-based clocks and orbiting
clocks and how such effects are accounted for. Addi-
tional effects that are currently neglected are described
in Sect. 24.10.

sum of earth’s potential, V(r), plus the potential due to
external sources, @ex:(r)

D(r) = V() + feu(r) (26.1)
where r = {x!, x>, x>} is a vector from the center of
mass of the earth to the point of observation. We take
the origin of spatial coordinates to be earth’s center of
mass. The distance r = |r| is small compared to the dis-
tance to any external source, so we may imagine a series
expansion of the external potential about earth’s center
of mass

@(r) = ¢(r) + dpexi(0)
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The term ¢y (0) represents a constant potential every-
where near the earth and affects all physical objects in
the same way. It cannot be detected and thus can be
ignored. The linear terms on the second line of (24.2)
represent the strength of the gravitational field due to
external sources and are canceled by the induced grav-
itational field due to the acceleration. This is not easy
to prove from first principles but proofs can be found
in the literature [24.3-5]. Evidence for this result is that
the linear term would exert a huge effect on the oceans,
whereas it is only the last term in (24.2) that gives rise
to the ocean tides. For most purposes in the GNSS tidal
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effects on clocks are small and can at first be neglected.
The tidal effects will be discussed further in Sect. 24.9.
We conclude that for GNSS, to a high degree of approx-
imation the only gravitational potential of significance
is that of the earth itself. Although the earth and its
satellites fall freely in the gravitational fields of external

sources, one can introduce coordinate axes with origin
at earth’s center of mass and axes pointing toward dis-
tant references in the cosmos; this defines a reference
system which is locally very nearly inertial. In such
a system clocks can be synchronized using constancy
of the speed of light.

24.2 Navigation Principles in the GNSS

The principles of position determination and time trans-
fer in the GNSS can be very simply stated. Let there
be four synchronized atomic clocks which transmit
sharply defined pulses from the positions 7; at times f,
with j = 1,2, 3,4 an index labeling the different trans-
mission events.

Then from the principle of the constancy of the
speed of light
|2

A—t)=lr—n*, j=1234, (24.3)

where the defined value of ¢ is exactly 299 792458 m/s.
These four equations can be solved for the unknown
space-time coordinates of the reception event, {r,t}.
Hence the principle of the constancy of ¢ finds appli-
cation as the fundamental concept on which navigation
and timing in the GNSS is based. Obviously, it is nec-
essary to specify carefully the reference frame in which
the transmitter clocks are synchronized, so that (24.3)
is valid.

Equation (24.3) is nonlinear. Typically solutions
are obtained by linearizing, solving approximately, and
then iterating until a solution converges. For example,
if one guesses that the solution is r =rg+ 8(r), ct =
cty + 8(ct), where the corrections §(r) and &(ct) are
small, then linearizing the navigation equations gives

N;-8(r) —6(ct) = c(to — ;) — [ro—r;| , (24.4)

where N; is a unit vector from the j-th satellite to
the assumed receiver position. Four such equations
can be written in matrix form and the matrix equa-
tion can be solved for the corrections; iteration of
the calculation usually converges very rapidly because

24.3 Rotation and the Sagnac Effect

Almost all users of GNSS are at fixed locations on
the rotating earth, or else are moving very slowly
over earth’s surface. This led to an early design deci-
sion in the GPS to broadcast the satellite ephemerides

the distances between receiver and satellites are large
compared to the distance from earth’s center to the
receiver.

Equation (24.4) also allows one to estimate position
uncertainties arising from uncertainties in determining
the propagation time intervals or from poor satellite
geometry. For example, suppose a receiver is at the geo-
metric center of a tetrahedral satellite configuration and
that timing errors from the satellites are uncorrelated
and are each 10ns (1ns = 1077s); 10 ns corresponds
to a position error of 3 m in each direction resulting in
an estimated position which is within a sphere of radius
4.7m. In real navigation situations such ideal tetra-
hedral symmetry cannot be achieved since the earth’s
presence forces the received signals to come from
somewhat less than 27 steradians of the sky above. The
position error then crucially depends on the indepen-
dence of the vectors NVj; if these vectors should all lie
close to some plane then the position uncertainty can be
many times larger. Thus, the navigation equations play
an important role in design of the satellite configuration
so that such errors are minimized.

Signals transmitted to users from the satellites are
right circularly polarized. Usually information is trans-
mitted by encoding the high frequency carriers with
phase reversals. The timing signals in question can then
be thought of as places in the transmitted wave trains
where there is a particular phase reversal of the circu-
larly polarized electromagnetic signals. At such places
the electromagnetic field tensor passes through zero;
these are relativistically invariant events and, therefore,
provide relatively moving observers with sequences of
events that they can agree on in principle.

in a model earth-centered, earth-fixed reference frame
(ECEF frame), in which the model earth rotates
about a fixed axis with a defined rotation rate, wg =
7.292115 x10™ rad s~!. This reference frame is desig-
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nated by the symbol WGS-84; the station coordinates
used to define this system have been updated several
times since 1984 [24.6-8]. The latest realization is
termed WGS-84(G1150) and is generally assumed to
be identical to the International Terrestrial Reference
Frame ITRFOO [24.8]. The differences among these
frames are only a few centimeters. Other GNSS sys-
tems use their own earth-fixed reference systems. The
Galileo terrestrial reference frame (GTRF) is an inde-
pendent realization of the International Terrestrial Ref-
erence System (ITRS) established by the Central Bu-
reau of the International Earth Rotation Service (IERS).
For discussions of relativity, the particular choice of
ECEF frame is immaterial. Also, the fact that the earth
truly rotates about a slightly different axis with a vari-
able rotation rate has little consequence for relativity
and will not be discussed here. We shall simply re-
gard the ECEF frame of the appropriate GNSS system
as closely related to, or determined by, the ITRF es-
tablished by the International Bureau of Weights and
Measures (BIPM).

It should be emphasized that the transmitted navi-
gation messages provide the user only with a function
from which the satellite position can be calculated in
the ECEF as a function of the transmission time. Usu-
ally, the satellite transmission times £ are unequal, so
the coordinate system in which the satellite positions
are specified changes orientation from one measure-
ment to the next. Therefore, to implement (24.3), the
receiver must generally perform a different rotation for
each measurement made, into some common inertial
frame, so that (24.3) apply. After solving the propaga-
tion delay equations, a final rotation must usually be
performed into the ECEF to determine the receiver’s
position. This can become exceedingly complicated and
confusing. A technical note [24.9] discusses these is-
sues in considerable detail.

Although the ECEF frame is of primary interest for
navigation, it is simpler to describe many physical pro-
cesses (such as electromagnetic wave propagation) in
an inertial reference frame. Certainly, inertial reference
frames are needed to express (24.3), whereas it would
lead to serious error to assert (24.3) in the ECEF frame.
A conventional inertial frame is frequently discussed,
whose origin coincides with earth’s center of mass,
which is in free fall with the earth in the gravitational
fields of other solar system bodies, and whose z-axis
coincides with the angular momentum axis of earth at
the epoch J2000.0. Such a local inertial frame may be
related by a transformation of coordinates to the so-
called international celestial reference frame (ICRF), an

inertial frame defined by the coordinates of about 500
stellar radio sources. The center of this reference frame
is the barycenter of the solar system.

Let us, therefore, consider the simplest instance of
a transformation from an inertial frame, in which the
space-time is Minkowskian, to a rotating frame of refer-
ence. Ignoring gravitational potentials for the moment,
the metric in an inertial frame in cylindrical coordinates
is

—ds? = —(cdn)?> + dr* + rPde* + dz?, (24.5)
and the transformation to a coordinate system
{¢',r,¢’, 7} rotating at the uniform angular rate wg is

/

t="t, r=r,

o +ont (24.6)

z=7.

This results in the following well-known metric
(Langevin metric) in the rotating frame

2.2
_ds? = (1 _LEr ) (cdr)?
c? (24.7)
+ 2wpr?d¢’ di’ + (do”)?,

where the abbreviated expression (do’)? = (dr’)? +
(' d¢’)? 4 (dZ)? for the square of the coordinate dis-
tance has been used.

The time transformation ¢ = ¢’ in (24.6) is deceiv-
ingly simple. It means that in the rotating frame the time
variable 7’ is really determined in the underlying inertial
frame. It is an example of coordinate time. A similar
concept is used in the GNSS.

Consider a process in which observers in the rotat-
ing frame attempt to use Einstein synchronization (that
is, the principle of the constancy of the speed of light) to
establish a network of synchronized clocks. Light trav-
els along a null worldline, so we may set ds*> =0 in
(24.7). Also, it is sufficient for this discussion to keep
only terms of first order in the small parameter wgr’/c.
Then

2wpr? dg’ (cd’
(cd')? — 20er”d¢’(cdr) (do’)>=0, (28.8)
c
and solving for (cd?’),
/Zd /
cdi = do’ + 292 (24.9)
c

The quantity r>d¢’/2 is just the infinitesimal
area dA/ in the rotating coordinate system swept out
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by a vector from the rotation axis to the light pulse and
projected onto a plane parallel to the equatorial plane.
Thus the total time required for light to traverse some
path is

, do’ 2wg P
d = [ ==+ =5 | AL Dight]. (26.10)
path path path

Observers fixed on the earth, who were unaware of earth
rotation, would use just [* do”/c for synchronizing their
clock network. Observers at rest in the underlying in-
ertial frame would say that this leads to significant
path-dependent inconsistencies, which are proportional
to the projected area encompassed by the path. Con-
sider, for example, a synchronization process which
follows earth’s equator eastward around the globe. For
earth, 2a)E/c2 =1.6227 x 1072 s/m? and the equato-
rial radius is a; = 6378 137 m, so the area is Jmf =
1.27802 x 10'* m? . Thus the last term in (24.10) is

26!)]3
c2
path

dA] =207.4ns. (24.11)

Traversing the equator once eastward, the last clock in
the synchronization path would lag the first clock by
207.4 ns. Traversing the equator once westward, the last
clock in the synchronization path would lead the first
clock by 207.4ns. From the underlying inertial frame,
this can be regarded as the additional travel time re-
quired by light to catch up to the moving reference
point. Simple-minded use of Einstein synchronization
in the rotating frame gives only [ do’/c and thus leads
to a significant error.

In an inertial frame a portable clock can be used to
disseminate time. The clock must be moved so slowly
that changes in the moving clock’s rate due to time di-
lation, relative to a reference clock at rest on earth’s
surface, are extremely small. On the other hand, ob-
servers in a rotating frame who attempt this find that the
proper time elapsed on the portable clock is affected by
earth’s rotation rate. Factoring (24.7), the proper time
increment dt on the moving clock is given by

ds\?
doy* = —
=)
wer’ \*  2wpr?d¢’ do’\?
=d? |- 2=) =7 _ .
c ctdr cd?

(24.12)

For a slowly moving clock (do’/cdt’)? << 1, so the
last term in brackets in (24.12) can be neglected.
Also, keeping only first-order terms in the small quan-
tity wgr’ /c

(x)EV,2 d(ﬁ/

dr = d7 5 , (24.13)

C

which leads to

2
/dt’=/dr+ o
C

path path path

/ dA’ [portable clock] .

(24.14)

This should be compared with (24.10). Path-dependent
discrepancies in the rotating frame are thus inescapable
whether one uses light or portable clocks to disseminate
time, while synchronization in the underlying inertial
frame using either process is self-consistent.

Equations (24.10) and (24.14) can be reinterpreted
as a means of realizing coordinate time ¢ =t in
the rotating frame, if after performing a synchro-
nization process appropriate corrections of the form
+2wg fpmh dAl/ ¢? are applied. It is remarkable how
many different ways this can be viewed. For exam-
ple, from the inertial frame it appears that the reference
clock from which the synchronization process starts is
moving, requiring light to traverse a different path than
it appears to traverse in the rotating frame. The Sagnac
effect can be regarded as arising from the relativity of
simultaneity in a Lorentz transformation to a sequence
of local inertial frames comoving with points on the ro-
tating earth. It can also be regarded as the difference
between proper times of a slowly moving portable clock
and a reference clock fixed on earth’s surface.

This was recognized in the early 1980s by the Con-
sultative Committee for the Definition of the Second
and the International Radio Consultative Committee,
who formally adopted procedures incorporating such
corrections for the comparison of time standards lo-
cated far apart on earth’s surface. For GNSS it means
that synchronization of the entire system of ground-
based and orbiting atomic clocks is performed in the
local inertial frame, or ECI coordinate system [24.10].

Satellite clocks can be used to compare times on
two earth-fixed clocks when a single satellite is in view
from both locations. This is the common-view method
of comparison of Primary standards, whose locations
on earth’s surface are usually known very accurately in
advance from ground-based surveys. Signals from a sin-
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gle GPS satellite in common view of receivers at the
two locations provide enough information to determine
the time difference between the two local clocks. The

24.4 Coordinate Time and TAI

For GNSS the time variable ¢ = ¢ becomes a coordi-
nate time in the rotating frame of the earth, which is
realized by applying appropriate corrections while per-
forming synchronization processes. Synchronization is
thus performed in the underlying inertial frame in which
self-consistency can be achieved.

With this understanding, we next describe the grav-
itational fields near the earth due to the earth’s mass
itself. Assume for the moment that earth’s mass distri-
bution is static, and that there exists a locally inertial,
nonrotating, freely falling coordinate system with ori-
gin at the earth’s center of mass, and write an approx-
imate solution of Einstein’s field equations in isotropic
coordinates

2V
—ds? =— (l + —2) (cdr)?
c

2V
+H1-=
x (dr? +r2d6? + r* sin® 0 d¢?)

(24.15)

where {r,0,¢} are spherical polar coordinates and
where V is the Newtonian gravitational potential of the
earth, given approximately by

GM;
v=-—22E

[l -/ (a—rl)ng(cos 9)] . (24.16)

In (24.16), GMg = 3.986004418 x10'*m?s™2 is the
product of earth’s mass times the Newtonian grav-
itational constant, J, = 1.0826300x1073 is earth’s
quadrupole moment coefficient, and a; = 6.3781370 x
10° is earth’s equatorial radius. (WGS-84(G1150) val-
ues of these constants are used in this article [24.8].)
The angle 6 is the polar angle measured downward
from the axis of rotational symmetry; P, is the Leg-
endre polynomial of degree 2. In using (24.15), it is
an adequate approximation to retain only terms of first
order in the small quantity V/c?. Higher multipole mo-
ment contributions to (24.16) have very small effect on
relativity in GNSS.

One additional expression for the invariant interval
is needed, the transformation of (24.16) to a rotating,

Sagnac effect is very important in making such com-
parisons, as it can amount to hundreds of nanoseconds,
depending on the geometry.

ECEF coordinate system by means of transformations
equivalent to (24.6). The transformations for spherical
polar coordinates are

/
r=r,

¢=¢/+a)Et/.

t=t,

24.17
6= ( )

Upon performing the transformations, and retaining
only terms of order 1/ ¢?, the scalar interval becomes

2V 'sinf"\*
_ds2:_|:1+_2_(w) :|(cdt/)2
c c

+ 2wpr? sin® 6’ d¢’ df’

2v
+H1-%
x (dr”? +r2d0" + 1 sin” 6" d¢?) .

(24.18)

To the order of the calculation, this result is a simple
superposition of the metric, (24.15), with the correc-
tions due to rotation expressed in (24.17). The metric
tensor coefficient g, in the rotating frame is

, 2V w,r sin 07\ 2
e e
20
E—(1+—CQ),

where @ is the effective gravitational potential in the
rotating frame, which includes the static gravitational
potential of the earth and a centripetal potential term.

(24.19)

24.4.1 The Earth's Geoid

In (24.16) and (24.17), the rate of coordinate time is de-
termined by atomic clocks at rest at infinity. The rate of
coordinate time used in GNSS, however, is closely re-
lated to international atomic time (TAI), which is a time
scale computed by the (BIPM) in Paris on the basis of
inputs from hundreds of primary time standards, hydro-
gen masers, and other clocks from all over the world. In
producing this time scale, corrections are applied to re-
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duce the elapsed proper times on the contributing clocks
to earth’s geoid, a surface of constant effective gravita-
tional equipotential at mean sea level in the ECEF.

Universal coordinated time (UTC) is a time scale
that differs from TAI by a whole number of leap sec-
onds. These leap seconds are inserted every so often
into UTC so that UTC continues to correspond to time
determined by earth’s rotation. Time standards orga-
nizations which contribute to TAI and UTC generally
maintain their own time scales. For example, the time
scale of the US Naval Observatory, based on an en-
semble of hydrogen masers and Cs clocks, is denoted
UTC(USNO). GPS time is steered so that, apart from
the leap second differences, it stays within 100ns of
UTC(USNO). Usually this steering is so successful that
the difference between GPS time and UTC(USNO) is
of order 10 ns. Receiver equipment cannot tolerate leap
seconds, as such sudden jumps in time would cause re-
ceivers to lose their lock on transmitted signals, and
other undesirable transients would occur.

To account for the fact that reference clocks for
GNSS are not at infinity, We need to consider the rates
of atomic clocks at rest on the earth’s geoid. These
clocks move because of the earth’s spin; also, they are
at varying distances from the earth’s center of mass
since the earth is slightly oblate. In order to proceed one
needs a model expression for the shape of this surface
and a value for the effective gravitational potential on
this surface in the rotating frame.

For this calculation, (24.18) in the ECEF is relevant.
For a clock at rest on earth, (24.18) reduces to

2V 2,72 & 29/
_ds2=_(1+_2_w (cdr .
C C

(24.20)

with the potential V given by (24.16).

This equation determines the radius 7’ of the effec-
tive equipotential geoid surface as a function of polar
angle 6. The numerical value of @, at the geoid can be
determined at the equator where 6’ = /2 and ¥ = qa;.
This gives

P GMy GMgpJ, wia}
2 ac? 2a;c? 2c?
=—6.95348 x1071°
—3.764 x107 "% — 1.203 x 101
=—6.96927 x10 1.

There are thus three distinct contributions to this ef-
fective potential: a simple 1/r contribution due to the

(24.21)

earth’s mass; a more complicated contribution from the
quadrupole potential, and a centripetal term due to the
earth’s rotation. The main contribution to the gravi-
tational potential arises from the mass of the earth,
the centripetal potential correction is about 500 times
smaller, and the quadrupole correction is about 2000
times smaller. These contributions have been divided
by ¢? in the above equation since the time increment
on an atomic clock at rest on the geoid can be easily
expressed thereby. In recent resolutions of the Inter-
national Astronomical Union [24.11] a terrestrial time
scale (TT) has been defined by defining the value @, /c?
= 6.969290134 x107 19, Equation (24.21) agrees with
this definition to within the accuracy needed for the
GNSS.
From (24.18), for clocks on the geoid,

ds / @0
dt = — = dr 1+—2 .
C C

Clocks at rest on the rotating geoid run slow com-
pared to clocks at rest at infinity by about seven
parts in 10'°. These effects sum to about 10000 times
larger than the fractional frequency stability of a high-
performance cesium clock. The shape of the geoid in
this model can be obtained by setting @ = @, and solv-
ing (24.19) for " in terms of 6. The first few terms
in a power series in the variable X’ = sin 6’ can be ex-
pressed as

(24.22)

¥ = 6356742.025 + 21 353.642x% + 39.832x"

+0.798x"% +0.003x%m .
(24.23)

This treatment of the gravitational field of the oblate
earth is limited by the simple model of the gravitational
field. Actually (24.23) estimates the shape of the so-
called reference ellipsoid, from which the actual geoid
is conventionally measured.

Better models can be found in the literature of geo-
physics [24.12-14]. The next term in the multipole
expansion of the earth’s gravity field is about a thousand
times smaller than the contribution from J,; although
the actual shape of the geoid can differ from (24.23) by
as much as 100 m, the effects of such terms on timing
in GNSS are small. Incorporating up to 20 higher zonal
harmonics in a calculation @, affects the value only in
the sixth significant figure.

Observers at rest on the geoid define the unit of time
in terms of the proper rate of atomic clocks. In (24.22),
@, is a constant. On the left-hand side of (24.22), dt
is the increment of proper time elapsed on a standard
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clock at rest, in terms of the elapsed coordinate time
dt. Thus the very useful result has emerged that ideal
clocks at rest on the geoid of the rotating earth all beat
at the same rate. This is reasonable since the earth’s
surface is a gravitational equipotential surface in the ro-
tating frame. (It is true for the actual geoid, whereas
here we constructed a model.) Considering clocks at
two different latitudes, the one further north will be
closer to the earth’s center because of the flattening — it
will, therefore, be more redshifted. However, it is also
closer to the axis of rotation and goes more slowly, so
it suffers less second-order Doppler shift. The earth’s
oblateness gives rise to an important quadrupole cor-
rection. This combination of effects cancels exactly on
the reference surface.

Since all clocks at rest on the geoid beat at the same
rate, it is advantageous to exploit this fact to redefine
the rate of coordinate time. Equation (24.15) defines the
rate of coordinate time in terms of the rate of standard
clocks at rest at infinity. What is needed instead is to
define the rate of coordinate time by standard clocks at
rest on earth’s geoid. Therefore, we define a new coor-
dinate time 7 by means of a constant rate change

=0+ &/ =1 +Dy/A)t. (24.24)
The correction is about seven parts in 109 (see (24.21)).

When this time scale change is made, the metric of
(24.18) in the earth-fixed rotating frame becomes

—ds? =—

(1 +H2-%) - %)) (cd?’)?
C

+ 2wpr? sin® 6’ d¢’ dt”

2v
+H1-=
x (dr”? +r2d0" + 1 sin” 6" d¢) .
(24.25)

where only terms of order ¢~2 have been retained.
Whether d7’ or df” is used in the Sagnac cross term
makes no difference since the Sagnac term is very small
anyway. The same time scale change in the nonrotating
ECI metric, (24.15), gives

2(V — &)
2 _
—ds*=— (1-|-072

2v
+H1-=
x (dr? + 17 d6* + ¥ sin® 0 d¢?) .
(24.26)

) (Cdt//)Z

Equations (24.25) and (24.26) imply that the proper
time elapsed on clocks at rest on the geoid (where
@ = @) is identical with the coordinate time ¢”. This
is the correct way to express the fact that ideal clocks at
rest on the geoid provide all of our standard reference
clocks.

24.5 The Realization of Coordinate Time

We are now able to address the real problem of clock
synchronization within GNSS. In the remainder of this
paper we drop the primes on ¢ and just use the sym-
bol ¢, with the understanding that unit of this time is
referenced to one of the realizations of UTC on the ro-
tating geoid, but with synchronization established in an
underlying, locally inertial, reference frame. The metric
(24.26) will henceforth be written as

—ds? =— (1 + L?Q))) (cdr)?
c

2V
4 (1 _ C_z)
X (dr2 +r2d0% + P sin® 9d¢2) .
(24.27)

The difference (V — @) that appears in the first term of
(24.27) arises because in the underlying earth-centered,

locally inertial (ECI) coordinate system in which the
equation is expressed, the unit of time is determined
by moving clocks in a spatially dependent gravitational
field.

Obviously (24.27) contains within it the well-
known effects of time dilation (the apparent slowing of
moving clocks) and frequency shifts due to gravitation.
Due to these effects, which have an impact on the net
elapsed proper time on an atomic clock, the proper time
elapsing on the orbiting GNSS clocks cannot simply be
used to transfer time from one transmission event to an-
other. Path-dependent effects must be accounted for.

On the other hand, according to general relativity
the coordinate time variable ¢ of (24.27) is valid in
a coordinate patch large enough to cover the earth and
the GNSS satellite constellations. Equation (24.27) is
an approximate solution of the field equations near
the earth, which include the gravitational fields due
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to earth’s mass distribution. In this local coordinate
patch, the coordinate time is single-valued. (It is not
unique, of course, because there is still gauge freedom,
but (24.27) represents a fairly simple and reasonable
choice of gauge.) It is natural, therefore, to propose that
the coordinate time variable 7 of (24.27) and (24.25) be
used as a basis for synchronization in the neighborhood
of the earth.

To see how this works for a slowly moving atomic
clock, solve (24.26) for dt as follows. First factor out
(cdr)? from all terms on the right-hand side

—ds?

:_|:1+2(V7j¢0)
C

) 2V dr? +r2d6% + * sin® 0 d¢?)
c? (cdr)?

x (cdn)? .
(24.28)

Simplify by writing the velocity in the ECI coordinate
system as
» A2+ r7d6% + P sin® O dg?
Vo= .

i (24.29)

Only terms of order ¢~ 2 need be kept so the potential
term modifying the velocity term can be dropped. Then
upon taking a square root, the proper time increment on
the moving clock is approximately

c? 2c2

d V—® 2
:_S:|:1+g v
c

— —] dr. (24.30)

24.6 Effects on Satellite Clocks

For atomic clocks in satellites it is most convenient to
consider the motions as they would be observed in the
local ECI frame. Then the Sagnac effect becomes ir-
relevant. (The Sagnac effect on moving ground-based
receivers must still be considered.) Gravitational fre-
quency shifts and second-order Doppler shifts must be
taken into account together. The term @, in (24.30) in-
cludes the scale correction needed in order to use clocks
at rest on the earth’s surface as references. Earth’s
quadrupole contributes to @ in the term —GMEgJ,/2a,

Finally, solving for the increment of coordinate time
and integrating along the path of the atomic clock,

Joe ol

path path

+ 3 2i| (24.31)

The relativistic effect on the clock, given in (24.30), is
thus corrected by (24.31).

Suppose for a moment there were no gravitational
fields. Then one could picture an underlying nonrotat-
ing reference frame, a local inertial frame, unattached
to the spin of the earth, but with its origin at the center
of the earth. In this nonrotating frame, a fictitious set of
standard clocks is introduced, available anywhere, all of
them being synchronized by the Einstein synchroniza-
tion procedure, and running at agreed upon rates such
that synchronization is maintained. These clocks read
the coordinate time ¢. Next one introduces the rotating
earth with a set of standard clocks distributed around
upon it, possibly roving around. One applies to each
of the standard clocks a set of corrections based on
the known positions and motions of the clocks, given
by (24.31). This generates a coordinate clock time in
the earth-fixed, rotating system. This time is such that
at each instant the coordinate clock agrees with a fic-
titious atomic clock at rest in the local inertial frame,
whose position coincides with the earth-based standard
clock at that instant. Thus coordinate time is equivalent
to time which would be measured by standard clocks at
rest in the local inertial frame [24.15].

When the gravitational field due to the earth is con-
sidered, the picture is only a little more complicated.
There still exists a coordinate time which can be found
by computing a correction for gravitational redshift,
given by the first correction term in (24.31).

in (24.21); there it contributes a fractional rate correc-
tion of —3.76 x10™!3, This effect must be accounted
for in GNSS. Also, V is the earth’s gravitational po-
tential at the satellite’s position. Fortunately the earth’s
quadrupole potential falls off very rapidly with dis-
tance, and up until very recently its effect on satellite
vehicle (SV) clock frequency was neglected. This will
be discussed in a later section, for the present we only
note that earth’s quadrupole potential effect on orbiting
GNSS clocks is only about one part in 10'4.
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24.6.1 Satellite Orbits

Let us assume that the satellites move along Keple-
rian orbits. This is a good approximation for GNSS
satellites, but poor if the satellites are at low altitude.
This assumption yields relations with which to simplify
(24.31). Since the quadrupole (and higher multipole)
parts of the earth’s potential are neglected, in (24.31)
the potential is V = —GME/r. Then the expressions can
be evaluated using what is known about the Newtonian
orbital mechanics of the satellites. Denote the satel-
lite’s orbit semimajor axis by a and eccentricity by e.
Then the solution of the orbital equations is as fol-
lows: [24.16] the distance r from the center of the earth
to the satellite in ECI coordinates is

r=a(l—e*)/(1+ecosf). (24.32)

The angle f, called the true anomaly, is measured from
perigee along the orbit to the satellite’s instantaneous
position. The true anomaly can be calculated in terms
of another quantity E called the eccentric anomaly, ac-
cording to the relationships

= 24.33
cosf 1—ecosE ( )
inE
sinf=v1_e2 02 (24.34)
1—ecosE

Then another way to write the radial distance r is
r=a(l —ecoskE) . (24.35)

To find the eccentric anomaly E, one must solve the
transcendental equation

GM,
E—esinE=\|—="(1—1). (24.36)
a

where t, is the coordinate time of perigee passage.

In Newtonian mechanics, the gravitational field is
a conservative field and total energy is conserved. Us-
ing the above equations for the Keplerian orbit, one can
show that the total energy per unit mass of the satellite
is

L, GMy  GMg
2\1 ro 2a

(24.37)

Inserting (24.37) for v into (24.31) results in the
following expression for the elapsed coordinate time on

the satellite clock

At = [ dr

path

y 3GME+(P0 2GMg (1 1
2ac? c? c? a r)|’

1+—
(24.38)

The first two constant rate correction terms in
(24.38) for GPS have the values

3GMg
E 20— 12504610710

2ac? c?
—6.9693 x10710

=—4.4647x10710

(24.39)

The negative sign in this result means that the stan-
dard clock in orbit is beating too fast, primarily because
its frequency is gravitationally blueshifted. In order for
the satellite clock to appear to an observer on the geoid
to beat at the chosen frequency of 10.23 MHz, the satel-
lite clocks are adjusted lower in frequency so that the
proper frequency is

[1—4.4647 x1071°] x 10.23 MHz

(24.40)
= 10.22999999543 MHz .

This adjustment is accomplished on the ground before
the clock is placed in orbit. Five sources of relativis-
tic effects contribute to this frequency offset. This
effect is formally incorporated into the GPS speci-
fications [24.17] and into GLONASS [24.18] but is
not mentioned in the formal GALILEO signal-in-space
specifications [24.19].

For GNSS systems other than GPS, typically some
choice is made concerning the nominal period re-
quired for the satellite’s ground track to repeat. For
GLONASS, the satellite periods are 16/17 of the GPS
satellite periods, while for GALILEO, the ground track
repeats after 17 orbits, which takes 10 days. For BEI-
DOU it appears that the satellites in medium earth orbit
(MEO) will have repeating ground tracks after 13 or-
bits in 10 days. Table 24.1 gives the nominal semimajor
axes and the fractional frequency offsets for several of
the systems.

The purpose of this frequency offset is to make cor-
rections applied by the receiver smaller, so the job of
the receiver is easier. Typically navigation messages
from the satellites contain three coefficients that enable
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Table 24.1 Nominal values of SV clock frequency offsets

GNSS system a (km) 10 x Af/f
GPS 26562.76 —4.46473
GLONASS 25509.64 —4.36144
GALILEO 29601.31 —4.72191
BEIDOU (MEO) 27910.20 —4.58538
Geosynchronous 42164.17 —5.39151

the receiver to make corrections for satellite clock er-
rors. These coefficients are denoted by ag, a;, and as;
ap is a time or synchronization error correction, a; is
a frequency correction, and a, is a frequency drift cor-
rection. The coefficient a, is seldom used. Although it is
quite possible to implement a system in which this fac-
tory frequency offset is not applied before launch, the
transmitted navigation messages would have to trans-
mit a much larger a; coefficient, in which the first few
bits are always the same. This would be wasteful of re-
sources and would limit the number of bits available for
real variations in the actual frequency offsets.

Figure 24.1 shows a histogram of 271 values of the
a; coefficient transmitted by the GLONASS satellites,
sampled from the GLONASS broadcast ephemeris at
the beginning of each year for the last 7 years. The av-
erage of this sample is very nearly zero, with an RMS
variation of about 1.6 x10™'2, In an ideal world this
number would be zero. Thus for GLONASS the fre-
quency offsets achieved are within about 4% of the
desired value.

Small frequency shifts can arise from clock drift,
launch vibrations, environmental changes, and other

Number of occurrences
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Fig. 24.1 Histogram of transmitted fractional frequency
shift corrections for GLONASS. The horizontal axis is in
units of 1012

unavoidable effects such as the inability to launch the
satellite into an orbit with precisely the desired semi-
major axis. Because of such effects, it is difficult to
use GNSS clocks to measure relativistic frequency
shifts.

24.6.2 The Eccentricity Correction

The last term in (24.38) may be integrated exactly by
using the following expression for the rate of change of
eccentric anomaly with time, which follows by differ-
entiating (24.36)

dE VGMx /a3
dE _ VGMg/a® (24.41)
dr 1—ecosE

A relativistic correction is being computed, so
ds/c >~ drand

2GMg (1 1\7 ds
[ G-l
2
GCIZME/a/r—ua) dt

2GMg / ecosE
= dt
ac? 1—ecosE
2/ GMg

. a . . .
=—Q0 ¢ (sin E —sin Ep)

2»‘/ GMEa

c2

~

(24.42)

=+ esin E + constant .

The constant of integration in (24.42) can be
dropped since this term is lumped with other clock
offset effects in the process of estimating the clock
correction. The net correction for clock offset due to
relativistic effects which vary in time is

Aty = +4.4428 x1070s /m eJasinE. (24.43)

This correction of (24.43) is called the eccentricity cor-
rection; it is of the same form for all orbiting clocks
and is ordinarily made by the receiver software. It repre-
sents a correction to the coordinate time as transmitted
by the satellite. For a satellite of eccentricity e = 0.01,
the maximum size of this term for GALILEO is about
24 ns. The correction is needed because of a combina-
tion of effects on the satellite clock due to gravitational
frequency shift, and second-order Doppler shift, which
vary due to orbit eccentricity. For the QZS-1 satellite,
the amplitude of this effect is about 200 ns. Figure 24.2
gives a plot of the relativistic effect — the negative of the
correction.
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Fig. 24.2 Relativistic correction for orbital eccentricity ef-
fect, for a semimajor axis of 26 600 km

Equation (24.43) can be expressed without approx-
imation in the following form, which is valid for Kep-
lerian orbits,

2r-v

Aty =+ ERE

(24.44)

24.7 Doppler Effect

Since orbiting clocks have had their rate adjusted so
they beat coordinate time, and since responsibility for
correcting for the periodic relativistic effect due to ec-
centricity has been delegated to receivers, one must take
extreme care in discussing the Doppler effect for signals
transmitted from satellites. Even though second-order
Doppler effects have been accounted for, for earth-
fixed users there will still be a first-order (longitudinal)
Doppler shift, which has to be dealt with by receivers.
As is well known, in a static gravitational field coordi-
nate frequency is conserved during propagation of an
electromagnetic signal along a null geodesic. If one
takes into account only the monopole and quadrupole
contributions to earth’s gravitational field, then the field
is static and one can exploit this fact to discuss the
Doppler effect.

Consider the transmission of signals from rate-
adjusted transmitters orbiting on GPS satellites. Let the
gravitational potential and velocity of the satellite be
V(r;) = V;, and v, respectively. Let the frequency of
the satellite transmission, before the rate adjustment is
done, be fy. After taking into account the rate adjust-
ment discussed previously, it is straightforward to show
that for a receiver of velocity vg and gravitational po-

where r and v are the position and velocity of the satel-
lite at the instant of transmission. This may be proved
using the expressions (24.33)—(24.36) for the Keplerian
orbits of the satellites. This latter form is usually used
in implementations of the receiver software.

It is not necessary, in a navigation satellite sys-
tem, that the eccentricity correction be applied by the
receiver. It appears that the clocks in the GLONASS
satellite system do have this correction applied before
broadcast. In fact historically, this was dictated in the
GPS by the small amount of computing power available
in the early GPS satellite vehicles. It would actually
make more sense to incorporate this correction into the
time broadcast by the satellites; then the broadcast time
events would be much closer to coordinate time — that
is, GPS system time. It may now be too late to re-
verse this decision because of the investment that many
dozens of receiver manufacturers have in their products.
However, it does mean that receivers are supposed to
incorporate the relativity correction; therefore if appro-
priate data can be obtained in raw form from a receiver
one can measure this effect [24.20].

tential Vg (in ECI coordinates), the received frequency
Jr is given by

fR=Jfo
fo
— 2 g
:[ vR+vR/2+¢22+2GME/a+2v,] .
(1-=N-vg/c)
X
(1-N-v/c)

where N is a unit vector in the propagation direction
in the local inertial frame. For a receiver fixed on the
earth’s rotating geoid, this reduces to

fR—fo [2GMg (1 1
-G

The correction term in square brackets gives rise to the
eccentricity effect. The longitudinal Doppler shift fac-
tors are not affected by these adjustments; they will be
of order 10, while the eccentricity effect is of order
ex 10710,

(1-N-vg/c)
(I=Now/o)
(24.46)
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24.8 Relativity and Orbit Adjustments

To deal with satellite failures, it is common to have
spares parked out of the way in orbits close to the nom-
inal satellite orbits of the system. Performance of the
clocks in these spares are monitored but not broadcast
to the general user. As these spare satellites are raised
or lowered in altitude to place them in assigned slots
or take them out of service, their clocks suffer relativis-
tic frequency changes from a combination of velocity
changes and gravitational frequency shifts. If the initial
and final orbits can be described as Keplerian orbits,
(24.38) gives for the fractional frequency effect (the
negative of the correction)

f=h _ _3GMe_, (24.47)
fo 2¢%a

The defined potential on the geoid, @y, does not de-

pend on satellite position. If the semimajor axis changes

by a small amount da, there will be a change in the

frequency that can be adequately described by differ-

entiating (24.47)
— 3GM,
S(fffo):+22 Z5a. (24.48)
0 cea

This simple equation has been very successful in pre-
dicting frequency shifts due to small changes in the
semimajor axis. For a discussion of several measure-
ments of such shifts, see [24.20]. The magnitudes of
frequency shifts induced by such orbit changes are typ-
ically a few parts in 10'3.

The factor 3/2 in (24.48) arises from the combined
effect of second-order Doppler and gravitational fre-
quency shifts. If the semimajor axis increases, the satel-
lite will be higher in earth’s gravitational potential and
will be gravitationally blueshifted more, while at the
same time the satellite velocity will be reduced, reduc-
ing the size of the second-order Doppler shift (which is
generally a redshift). The net effect would make a pos-
itive contribution to the fractional frequency shift.

24.9 Effects of Earth's Quadrupole Moment

Perturbations of GNSS orbits due to earth’s quadrupole
mass distribution are a significant fraction of the change
in the semimajor axis associated with the orbit change
discussed above. This raises the question whether it
is sufficiently accurate to use a Keplerian orbit to de-
scribe GPS satellite orbits and estimate the semimajor
axis change as though the orbit were Keplerian. In this
section, we estimate the effect of earth’s quadrupole
moment on the orbital elements of a nominally circu-
lar orbit. Previously, such an effect on the SV clocks
was neglected, and indeed it does turn out to be small.
However, the effect is of the same order as the stability
of the best orbiting clocks, so it is significant.

To see how large such quadrupole effects may
be, we use exact calculations available in the liter-
ature, for the perturbations of the Keplerian orbital
elements [24.16]. For the semimajor axis, if the ec-
centricity is very small the dominant contribution has
a period twice the orbital period and has amplitude
3h,a? sin? i/(2a), where a; is earth’s equatorial radius
and i is the inclination of the satellite orbit. The ampli-
tude can be more than a kilometer.

The oscillation in the semimajor axis would signifi-
cantly affect calculations of the radius at any particular

time. This suggests that (24.37) needs to be reexamined
in light of the periodic perturbations on the semimajor
axis. Therefore, in this section we develop an approx-
imate description of a satellite orbit, for small eccen-
tricity, taking into account earth’s quadrupole moment
to first order. Terms of order J, x e will be neglected.
This problem is nontrivial because the perturbations
themselves (see, for example, the equations for mean
anomaly and altitude of perigee) have factors 1/e,
which blow up as the eccentricity approaches zero. This
problem is a mathematical one, not a physical one. It
simply means that the observable quantities — such as
coordinates and velocities — need to be calculated in
such a way that finite values are obtained.

24.9.1 Conservation of Energy

The gravitational potential of a satellite at position
(x,y,7) in equatorial ECI coordinates in the model un-
der consideration here is

GM, Ja* [322 1
V(x,y,2) =— rE(l—L[———D.

r2 | 2r2 2

(24.49)
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Since the force is conservative in this model (solar ra-
diation pressure, thrust, etc., are not considered), the
kinetic plus potential energy is conserved. Let € be the
energy per unit mass of an orbiting mass point. Then

€ = constant
2

v

=5 tVky.2) (24.50)
v GM

=— -2 E 4V (2,
2 r

where V’(x,y, z) is the perturbing potential due to the
earth’s quadrupole potential.

It is shown in textbooks [24.16] that, with the help
of Lagrange’s planetary perturbation theory, the conser-
vation of energy condition can be put in the form

GMg
2a

€= +V(x,y.2), (24.51)
where a is the perturbed (osculating) semimajor axis. In

other words, for the perturbed orbit,

v GMg GMg,

2 r= 2a

(24.52)

On the other hand, the net fractional frequency shift rel-
ative to a clock at rest at infinity is determined by the
second-order Doppler shift (a redshift) and a gravita-
tional redshift. The total relativistic fractional frequency
shift (relative to a reference at infinity) is

Af vV GMg

f 2 r

The conservation of energy condition can be used to
express the second-order Doppler shift in terms of
the potential. Therefore, from perturbation theory we
need expressions for the square of the velocity, for
the radius r, and for the perturbing potential. We now
proceed to derive these expressions. We refer to the lit-
erature [24.16] for the perturbed osculating elements.
These are exactly known, to all orders in the eccen-
tricity, and to first order in J,. We shall need only the
leading terms in eccentricity e for each element.

+V'(x,,2). (24.53)

24.9.2 Perturbed Semimajor Axis

From [24.16], the perturbed semimajor axis in the limit
of negligible eccentricity is

za%
am

sin? i cos(2nt + 2w) ,

a=a,-+ (24.54)

where n = /GMg/a3}, is the unperturbed mean motion,
a,, is the mean semimajor axis, i the mean inclination,
n=./GMg/a}, the unperturbed mean motion, and @
the mean altitude of perigee.

24.9.3 Perturbed Radius

The orbit radius depends on the combination e cos E
where E is the eccentric anomaly. The eccentric
anomaly depends on the mean anomaly; perturbation
equations for the mean anomaly have terms with a fac-
tor e~!, so one must take extra care in computing the
product e cos E in order to obtain a meaningful result in
the limit of small eccentricity. For the perturbed radius
we then obtain

r=au(l —e,cosE,)
3.]2[1%

2a,,

(24.55)

sin’ i cos(2nt + 2w) .

24.9.4 Perturbed Velocity

Then conservation of energy, (24.50) gives the follow-
ing expression for the velocity

v GMg(1 + e, cos Ey,)

2 2a,(1 —e, cos E,)

3GMgJra? 3
+ﬂ(l—§sin2i)

&2
sin? i cos(2nt + 2w) .

(24.56)

24.9.5 Evaluation
of the Perturbing Potential

Since the perturbing potential contains the small factor
J», to leading order, we may substitute unperturbed val-
ues for r and z in V’(x, y, z) which yields the expression

GMgJra? 3
V/(x,y, 7) = —722’35(11 (1 -5 sin® i)
3GMgJ,a? sin® i

i cos(2nt 4+ 2w) .
am

(24.57)

24.9.6 Fractional Frequency Shift

The fractional frequency shift calculation is very similar
to the calculation of the energy, except that the second-
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order Doppler term contributes with a negative sign.
The result is

Af Vo GMg  V

22 e e
3GMg 2GMg e, cosE,
24,2 c2a, 1—e,cosE,
- —7GMejza% (1 3 sin’ i)
2a3 c? 2
GMEJzaf sin? i

302
a,c

(24.58)

cos(2nt 4 2w) .

The first term, when combined with the reference po-
tential at earth’s geoid gives rise to the factory frequency
offset. The second term gives rise to the eccentricity ef-
fect. The third term can often be neglected. The angle
of inclination for which the third term vanishes exactly
is i = 55°. For good coverage in the temperate zones,
the orbits of most satellite navigation systems have in-
clinations very close to this value. For GPS the last term
has an amplitude

GMgJ,a? sin? i

_ —15
o = 6951070,

(24.59)

The best clocks in orbit in the GPS have stabilities of
around 5 parts in 10" at 1 day; this is only slightly
less than the quadrupole effect, suggesting that this de-
terministic effect should be included in the systematic
error budget.

The last periodic term in (24.58) is of a form similar
to that which gives rise to the eccentricity correction,
which is applied by GNSS receivers. Considering only
the last periodic term, the additional time elapsed on the
orbiting clock will be given by

GMgJ,a? sin’ i
amc

path

x cos(2nt + 2w)] . (24.60)

Upon integrating and dropping the constant of integra-
tion (assuming as usual that such constant time offsets
are lumped with other contributions) gives the periodic
relativistic effect on the elapsed time of the SV clock

due to earth’s quadrupole moment

GMg Jza% sin? i
e
a, c

x sin(2nt + 2w) .

(24.61)

The correction which should be applied by the receiver
is the negative of this expression

. _ |GMg Jza% sin® i
dty, (correction) = —
a, 22

x sin(2nt + 2w) .

(24.62)

The phase of this correction is zero when the satellite
passes through earth’s equatorial plane going north-
wards.

24.9.7 Effect of Other Solar System Bodies

One set of effects that has been rediscovered many
times are the redshifts due to other solar system bodies.
The principle of equivalence implies that sufficiently
near the earth, there can be no linear terms in the ef-
fective gravitational potential due to other solar system
bodies, because the earth and its satellites are in free
fall in the fields of all these other bodies. The net effect
locally can only come from tidal potentials, the third
terms in the Taylor expansions of such potentials about
the origin of the local freely falling frame of reference.
Such tidal potentials from the sun, at a distance r from
earth, are of order GMqr*/R?, where R is the earth-
sun distance [24.3]. The gravitational frequency shift
of most GNSS satellite clocks from such potentials is
a few parts in 10'®. However, this potential causes or-
bit perturbations of GNSS satellites that change both
the radius in the main potential term —GM /r and in
the velocity; thus there are three contributions to the net
frequency shift arising from this tidal potential. The ge-
ometry is complicated because earth’s equatorial plane,
the satellite orbital plane, and the ecliptic are inclined
with respect to each other. Furthermore, there is a sim-
ilar set of contributions from the moon’s tidal potential
that is larger and that can add to or subtract from so-
lar tidal effects in a time-dependent manner. The net
fractional frequency shift on a GALILEO satellite is es-
timated to be about five parts in 10'.
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24.10 Secondary Relativistic Effects

There are several additional significant relativistic ef-
fects which must be considered at the level of accuracy
of a few centimeters (which corresponds to 100 ps of
delay). Many investigators are modeling systematic ef-
fects down to the millimeter level, so these effects,
which are currently not sufficiently large to affect navi-
gation, may have to be considered in the future.

24.10.1 Signal Propagation Delay

The Shapiro signal propagation delay may be easily
derived in the standard way from the metric, (24.25),
which incorporates the choice of coordinate time rate
expressed by the presence of the term in @,/ c?. Setting
ds* =0 and solving for the increment of coordinate
time along the path increment

do = \/dr? + r2d62 4 2 sin® 0 d g2

gives
1 2V @
dt=-|1——+—|do. (24.63)
c

The time delay is sufficiently small that quadrupole
contributions to the potential (and to @;) can be ne-
glected. Integrating along the straight line path a dis-
tance / between the transmitter and receiver gives for
the time delay

oyl 2GM, l
0 " Eln|:r1+l’2+

Atdelay: C_2; c? ri+rn—I

i| , (24.64)
where r; and r, are the distances of transmitter and re-
ceiver from earth’s center. The second term is the usual
expression for the Shapiro time delay. It is modified for
GNSS by a term of opposite sign (Py is negative), due
to the choice of coordinate time rate, which tends to
cancel the logarithm term. The net effect for a satellite
to earth link is less than 2 cm and for most purposes can
be neglected. One must keep in mind, however, that in
the main term, //c, [ is a coordinate distance and further
small relativistic corrections are required to convert it
to a proper distance.

24.10.2 Effect on Geodetic Distance

At the level of a few millimeters, spatial curvature
effects should be considered. For example, using the
metric (24.26), the proper distance between a point at
radius r; and another point at radius r, directly above
the first is approximately

T

2
GMg
dr|1+ > =rn—n
c’r
" (24.65)
GM, r
+ 2E In (—2) .
C ry
Between earth’s surface and the radius of a geosyn-
chronous satellite, the difference between proper dis-
tance and coordinate distance, and between the earth’s
surface and the radius of GPS satellites, is approxi-
mately 8 mm. Effects of this order of magnitude would
enter, for example, in the comparison of laser ranging to
GPS satellites, with numerical calculations of satellite

orbits based on relativistic equations of motion using
coordinate times and coordinate distances.

24.10.3 Phase Wrap-Up

Transmitted signals from GNSS satellites are right cir-
cularly polarized and thus have negative helicity. For
areceiver at a fixed location, the electric field vector ro-
tates counterclockwise, when observed facing into the
arriving signal. Let the angular frequency of the signal
be w in an inertial frame, and suppose the receiver spins
rapidly with angular frequency 2, which is parallel to
the propagation direction of the signal. The antenna and
signal electric field vector rotate in opposite directions
and thus the received frequency will be w + §2. In the
literature this is described in terms of an accumulation
of phase called phase wrap-up. This effect has been
experimentally measured with receivers spinning at ro-
tational rates as low as 8 Hz [24.21, 22]. It is similar to
an additional Doppler effect; it does not affect naviga-
tion if four signals are received simultaneously by the
receiver as in (24.1).
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24.11 Conclusions

GNSS is a remarkable laboratory for applications of the
concepts of special and general relativity. It is also valu-
able as an outstanding source of pedagogical examples.
It is particularly important to confirm that the basis for
synchronization is on a firm conceptual foundation.
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