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Abstract. The insufficient hydropower resources along with the environmental 
effects of thermal generations necessitate a proper scheduling scheme to 
comply with the growing power demand. In fact, the water resource at 
reservoirs has been affected by fluctuation of whether while exhausting fossil 
fuels and polluted emissions from thermal plants have become a serious 
problem. Therefore, the hydrothermal scheduling considering environment 
constraint becomes a very important problem. This paper proposes an 
augmented Lagrange Hopfield network (ALHN) for solving the multi-objective 
short-term hydrothermal scheduling (MOSTHS) problem. In the proposed 
method, ALHN is used to find a set of non-dominated solutions and the fuzzy 
decision-making methodology is then exploited to determine the best 
compromise solution among the obtained ones. The proposed method has been 
tested on different systems and the obtained results in terms of total fuel cost, 
emission, and computation time have been compared to those other methods in 
the literature. The result comparisons have indicated that the proposed method 
is effective for solving the MOSTHS problem. 

Keywords: Augmented Lagrange Hopfield network, multi-objective, fixed 
head, hydrothermal scheduling. 

1 Introduction 

The short term hydro-thermal scheduling (HTS) problem is to determine the power 
generation among the available thermal and hydro power plants so that the total fuel 
cost of thermal units is minimized over a schedule time of a single day or a week 
while satisfying both equality and inequality constraints including power balance, 
available water, and generation limits of both thermal and hydro plants. In practical 
systems, thermal power generating stations are the sources of carbon dioxide (CO2), 
sulfur dioxide (SO2), and nitrogen oxides (NOx) causing atmospheric pollution. 
Therefore, the optimal scheduling of generation in a hydrothermal system involves 
the allocation of generation among the hydro and thermal plants to simultaneously 
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minimize the fuel cost and emission level of thermal plants satisfying the various 
constraints on the hydraulic and system network becomes a practical requirement.  

Several optimization techniques have been proposed to deal with the 
multiobjective programming problems. Improved quantum-behaved particle swarm 
optimization (IQPSO) [1] has been applied for short-term combined economic 
emission hydrothermal scheduling. In this paper, quantum-behaved particle swarm 
optimization is improved employing heuristic strategies in order to handle the equality  
constraints especially water dynamic balance constraints and active power balance 
constraints. As a result, the method has obtained quality solutions. A novel multi-
objective optimization procedure based on probability security criteria for optimal 
generation dispatch has been proposed to obtain a set of non-inferior solutions [2]. 
Nondominated sorting genetic algorithm-II (NSGA-II) [3] has been used for solving 
dynamic economic emission dispatch problem. NSGA-II is proposed to handle 
dynamic economic emission dispatch problem as a true multi-objective optimization 
problem with competing and noncommensurable objectives. Two novel search 
methods have been presented in [4] for dealing the problem those are hybrid 
algorithm and heuristic searches with genetic algorithm (GA). Both techniques can 
obtain a low maximum generation. However, the computation time of the heuristic 
searches with GA is very long compared to the hybrid algorithm. An improved 
bacterial foraging algorithm (BFA) has been applied to solve the short-term HTS 
problem considering the environmental aspects given in [5]. The research has carried 
out optimization for each of the objectives individually and optimization of the four 
objectives. However, the best compromise solution for the combined four objectives 
is not provided in [5]. Another method, non-dominated sorting genetic algorithm-II 
(NSGA II) [6] has been applied to economic environmental dispatch of fixed head 
hydrothermal scheduling problem with both convex and non-convex fuel cost and 
emission functions. The effectiveness of NSGA-II has been verified on two systems 
and compared to other methods of real-coded genetic algorithm (RCGA), strength 
Pareto evolutionary algorithm 2 (SPEA2) and multi-objective differential evolution 
(MODE). NSGA-II seems to be a powerful method through the comparisons in terms 
of cost, emission and computation time. However, the computation time is still long 
and both cost and emission are still high.  

In this paper, an augmented Lagrange Hopfield network (ALHN) has been 
proposed for solving multi-objective short term fixed head hydrothermal scheduling 
problem. ALHN is a combination of augmented Lagrange relaxation and continuous 
Hopfield neural network where the augmented Lagrange function is directly used as 
the energy function of the continuous Hopfield network. ALHN is tested on two 
systems and the results are compared to those from BFA [5], and NSGA-II, SPEA 2, 
RCGA, and MODE in [6]. 

2 Problem Formulation 

Consider an electric power system network having N1 thermal plants and N2 hydro 
plants; N is the total number of plants. The basic problem is to find the active power 
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generation of each plant in the system as a function of time over a finite time period 
from 0 to M. 

2.1 Thermal Model 

The objective function to be minimized is the total system operating cost, represented 
by the fuel cost of thermal generation, over the optimization interval. 

 2
1111 skssksssk PcPbaF ++=   ($/h)  (1) 

where a1s, b1s, c1s are cost coefficients for thermal unit s, 

2.2 Emission Model  

The atmospheric pollutants such as nitrogen oxides (NOx), sulphur oxides (SO2) and 
carbon oxides (CO2) caused by fossil-fueled thermal generator can be modeled 
separately. The NOx, SO2, CO2 emission objective can be defined as: 

 2
1112 skssksssk PPF γβα ++=  (Kg/h) (2) 

 2
2223 skssksssk PPF γβα ++=  (Kg/h) (3) 

 2
3334 skssksssk PPF γβα ++=  (Kg/h) (4) 

where  
sss 111 ,, γβα  are NOX emission coefficients; 

sss 222 ,, γβα  are SO2 emission 

coefficients; 
sss 333 ,, γβα  are CO2 emission coefficients.  

2.3 Hydro Model   

Relationship between water discharge and power generated was proposed by Glimn-
Kirchmayer [7]. 

 2
hk h h hk h hkq a b P c P= + +   (5) 

where qhk is rate of water flow ; tk is duration of subinterval k;  ah, bh, ch are water 
discharge coefficients for hydro unit h. 

2.4 Equality and Inequality Constraints 

1. Load demand equality constraint: 
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where PDk, PLk are load demand, transmission loss during subinterval k, in MW; Phk, 
Psk are generation output of hydro unit h, thermal unit s during subinterval k, in MW; 
Bij, B0i, and B00 are loss formula coefficients of transmission system. 

2. Water availability constraints: 
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where Wh is volume of water available for generation by hydro unit h during the 
scheduling period. 

3. Generator operating limits: 

 maxmin
ssks PPP ≤≤ ; s = 1, …, N1; k = 1, …, M (9) 

 maxmin
hhkh PPP ≤≤ ; h = 1, …, N2; k = 1, …, M (10) 

where Ph
min, Ph

max and Ps
min, Ps

max are lower and upper generation limits of hydro unit 
h and thermal unit s respectively. 

3 ALHN for the Problem 

To generate the non-inferior solution to the multi-objective problem, the weighting 
method is applied. In this method the problem is converted into a scalar optimization 
as given below [8]: 

 Minimize 
=

4

1j
jj Fw   (11) 

subject to (4)-(7) and satisfying 
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where weighting factors, wj is determined based on the relative importance of 
objective j, which may vary from place to place and utility to utility. 

The augmented Lagrange function L of the problem is formulated as follows: 
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where: λk, γh are Lagrangian multipliers associated with power balance and water 
constraint, respectively. βk, βh are penalty factors associated with power balance and 
water constraint, respectively, and 
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The energy function E of the problem is described in terms of neurons is 
determined as: 
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where: Vλk, Vγh are outputs of the multiplier neurons associated with power balance 
and water constraint, respectively; Vhk, Vsk are output of continuous neuron hk, sk 
representing Phk, Phk, respectively. 

The dynamics of the model for updating neuron inputs are defined as follows: 
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The inputs of neurons at step n are updated: 
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where Uλk, Uγh are inputs of the multiplier neurons; Usk, Uhk are inputs of the neurons 
sk and hk respectively; αλk, αγh are step sizes for updating of multiplier neurons; αsk, 
αhk are step sizes for updating of continuous neurons.   

The outputs of continuous neurons and multiplier neurons: 
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 Vλk = Uλk (28) 

 Vγh = Uγh (29) 

where σ is slope of the sigmoid function.  

3.1 Initialization 

The initial outputs of continuous neurons are set at their middle limits and the 
multiplier neurons are set as follows:  
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3.2 Stopping Criteria  

The algorithm will be terminated when either the maximum error Errmax is lower than 
a predefined threshold ε or maximum number of iterations Nmax is reached. 

4 Best Compromise Solution by Fuzzy-Based Mechanism 

In this paper, the best compromise solution for the problem is determined using fuzzy 
satisfying method [9]. The fuzzy goal is represented in linear membership function as 
follows [9]: 
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where Fj is the value of objective j; Fjmax and Fjmin are maximum and minimum values 
of objective j, respectively. For each k non-dominated solution, the membership 
function is normalized as follows [9]: 
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where μk
D is the cardinal priority of kth non-dominated solution, µ(Fj) is membership 

function of objective j, Nobj is number of objective functions, and Np is number of 
Pareto-optimal solutions. The solution that attains the maximum membership μk

D in 
the fuzzy set is chosen as the ‘best’ solution based on cardinal priority ranking [8]: 

 Max {μk
D: k = 1, 2, … , Np}    (34) 

5 Numerical Results 

The proposed method has been tested on two test systems. The first test system 
consists of two thermal and two hydropower plants from [5]. The second system 
comprises of two hydro plants and two thermal plants in [6].The proposed algorithm 
has been coded in Matlab 7.2 programming language and executed on an Intel 2.0 
GHz PC. For termination criteria, the maximum tolerance Errmax is set to 10-4 and 10-3 
for the first and second system respectively.  

5.1 The First System 

For this system, the emissions consist of NOx, SO2 and CO2. The optimization for 
each of the objectives is individually carried out. The results of the fuel cost and each 
emission with computation time are given in Table 1. The result comparison between 
ALHN and BFA is given in Table 2. For all cases, the proposed ALHN method can 
obtain better solution than BFA except for the case of CO2 emission individual  
optimization.  

5.2 The Second System 

In this system, the objective includes one total cost and one emission. The obtained 
economic distich and emission dispatch from the proposed method are compared to 
those from RCGA [6] as in Table 3. From the table, the proposed method obtains  
better results than RCGA method in all cases. Moreover, the proposed method is also 
much faster than RCGA method for both cases.  
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Table 1. Total cost and emission minimization of individual objective for the first system 

 Min F1 ($) Min F2 (kg) Min F3 (kg) Min F4 (kg) 

F1 ($) 51891.4144 54294.5255 53,104.1251 54,221.8203 

F2 (kg) 27443.0377 18,958.608 20,822.2018 18,963.2433 

F3 (kg) 73381.1457 72,416.895 71,641.9112 72,358.5684 

F4 (kg) 442113.2112 335,810.13 357,415.3897 335,764.1868 
CPU time (s) 1.29 1.53 1.79 1.11 

Table 2. Comparison of the individual minimization of each objective for the first system 

 BFA [5] ALHN 

Min F1 ($) 52,753.291 51,891.414 

Min F2 (Kg) 19,932.248 18,958.608 

Min F3 (Kg) 71,988.754 71,641.911 

Min F4 (Kg) 334,231.219 335,764.187 

Table 3. Result comparison for economic and emission dispatch of the second system 

Economic dispatch  Emission dispatch 

Method Cost (104 $) Emis. (lb) CPU (s) Method Cost (104 $) Emis. (lb) CPU (s) 

RCGA [6] 6.6031 681.1655 21.64 RCGA [6] 6.6892 586.1481 20.28 

ALHN 6.4576 668.9824 2.84 ALHN 6.5797 585.6592 3.2 

Table 4. Comparison of economic emission dispatch for the second system 

Method Cost (104 $) Emission (lb) CPU (s) 

MODE [6] 6.6354 619.4280 30.72 

SPEA2 [6] 6.6332 618.4580 34.88 

NSGA-II [6] 6.6331 618.0660 27.86 

ALHN 6.4778 615.1773 2.01 

 
For the case of economic emission dispatch, we have determined 11 non-

dominated solutions to form Pareto optimal front with the change of weights 
associated with objectives from 0 to 1 satisfying (12). The best compromise solution 
from the obtained 11 non-dominated solution is determined by fuzzy based 
mechanism in Section 4. The obtained the best compromise solution from the 
proposed method is compared to that from MODE, SPEA2, and NSGA II in [6]. 
Obviously, the proposed method can obtain better solution than the other methods for 
both total cost and emission. Moreover, the proposed method is also much faster than 
the others. Note the computational time in the table is for obtaining one solution and 
the CPU times of the methods in [6] were from a Pentium-IV, 80 GB, 3.0 GHz. 
Therefore, the proposed method is very effective and efficient for obtaining the best 
compromise solution for the problem.  
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6 Conclusion 

The paper has been implemented an augmented Lagrange neural network based 
method for solving the multi-objective short-term hydrothermal scheduling problem. 
In the proposed method, the ALHN method is implemented for obtaining non-
dominated solution and a fuzzy based mechanism is applied for determining the best 
compromise solution. The ALHN method is an improvement of continuous Hopfield 
neural network with its energy function based on augmented Lagrange function. 
Moreover, the ALHN method is recurrent network so it can obtain an optimal solution 
for an optimization problem in a very fast manner. The proposed method has been 
tested on two systems with different number of objectives and the obtained results 
have been compared to those from other methods in the literature. The result 
comparison has indicated that the proposed method can obtain better solution than 
other methods with faster computational time. Therefore, the proposed method can be 
very favorable for solving the multi-objective short-term hydrothermal scheduling  
problems. 
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