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Abstract. It is commonly known that evolutionary algorithms use pseudoran-
dom numbers generators. They need them for example to generate the first pop-
ulation, they are necessary in crossing or perturbation process etc. In this paper
chaos attractors Arnold Cat Map and Sinai are used as chaotic numbers gener-
ators. The main goal was to investigate if they are usable as chaotic numbers
generators and their influence on the cost functions convergence’s speed. Next
goal was to compare reached values of Arnold Cat Map and Sinai and assess
which attractor is better from the view of cost function convergence’s speed.

1 Introduction

Differential evolution (DE) and Self migrating aglorithm (SOMA) belong to the great
family of evolutionary algorithms. Evolutionary algorithms are based on three basic
principles - natural selection, crossing and mutation. They work with population of
individuals, which is developing during generation cycles. DE is typical example of
the evoutionary algorithm, because in its principle we can find each aspect mentioned
above. There is the population of individuals, individuals are crossed and mutated. Best
survive while worse die [12]. On the other hand the principle of SOMA is different.
There is the population of individuals too but individuals migrate in space of possible
solutions. There is no offspring. The individuals just change their positions. Generation
cycles are replaced by migration cycles and crossing is replaced by perturbation.

For DE and SOMA, generator of pseudorandom numbers is necessary in many steps
of the algorithms. The first population of individuals is created randomly. Each individ-
ual is created by parameters and fitness value. Each parameter has its own lower and
upper bound. The parameters of individuals in the first population in these algorithms
are generated randomly in that bounds. It is not possible to cross over these bounds.
Pseudorandom numbers generators are necessary for example in crossing, perturba-
tion vector creating etc. In this paper Sinai and Arnold Cat Map have been chosen as
the chaotic numbers generators. As the cost functions 1st de Jong’s, Schwefel’s and
Ranna’s function have beed chosen.

In 2013 papers [1]-[5] have been written in connection with DE. In [6]-[9] DE and
SOMA are connected with chaos. In [10] we can find a pseudorandom number generator
of q-Gaussian random variables based on chaotic map dynamics.
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2 Evolutionary Algorithms

As it was mentioned above, evolutionary algorithms are based on three basic principles
according to Darwin’s and Mendel’s theory. The family of these algorithms is very
robust. In this paper, DE and SOMA have been chosen because their main principles
are different.

2.1 Differential Evolution

Differential evolution works with population of individuals. These individuals are
crossed and mutated and best survive while worse die. At beginning the first popu-
lation is generated randomly. The number of individuals is given by parameter NP. As
it was mentioned above individuals are created from parameters and fitness value. Fit-
ness value says how good is this individual in population. When the first population is
generated, reproduction cycle can begin:

• For each individual three next random individuals are chosen.
• Mutation is realize according to the Eq.1, where v j denotes noise vector, r1, r2, r3

are three randomly chosen individuals from the population and F denotes mutation
constant, its values can move in interval [0,2].

• New individual creating. For each parameter random number r from interval [0,1]
is generated. If r is smaller than crossing probability CR the value from the noise
vector is chosen as a parameter of new individual, else parameter from the actual
individual is chosen.

• The fitness value of new individual is computed. If it is smaller than fitness of actual
individual, new individual will replace actual individual, else, new individual will
be forgotten and actual individual will stay in the population.

There are many types of DE. These types ussually differ in noise vector computation.
In this paper DE/rand/1/exp is used [11].

v j = xG
r3, j +F(xG

r1, j − xG
r2, j) (1)

2.2 Self Organizing Migrating Algorithm (SOMA)

The principle of SOMA differs from DE. There is no offspring, individuals just migrate
in the space of possible solutions. The begin of the algorithm is same like in DE. First
popualtion is generated randomly. Next steps differs according to the type of SOMA.
In this paper SOMA AllToOne is used. Except this, AllToAll, AllToOne Random, All-
ToAll Adaptive and AllToOne Adaptive exist. In the case of AllToOne next steps are
realize [13]:

• Leader, the individual with best fitness, is chosen.
• Each individual migrate to the Leader – for each individual perturbation vector α

is created. Perturbation vector consists of 0 and 1, and says in which direction the
individual will migrate to the Leader.
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• Individual migrate to the Leader in steps. The value of parameter t which denotes
step is ussually 0.11. Migration of individual is realize according to the Eq.2 where
r is a new candidate solution, r0 denotes actual individual, m is a difference between
Leader and start position of individual and t is the step, t ∈ [0,PathLength].

r = r0 +mtα (2)

2.3 Chaos

There is no precise definition of chaotic system, we can find just sme conditions to
clasify the system as chaotic:

• The system must be sensitive to initial conditions. This condition is very well
known as a ”butterfly effect” [14].

• The system must be topologically mixing. The typical example of chaotic system
is mixing of colored dyes or fluids[15].

• The system’s periodic orbits must be dense. Every point in the space is approached
arbitrary closely by periodic orbits.

Chaotic map is define such that:

Definition 1. A map: f : X →X of a metric space is said to exhibit sensitive dependence
on initial conditions if there is a Δ > 0, called a sensitivity constant, such that for every
x ∈ X and ε > 0 there exists a point Y ∈ Xwith d(x,y)< ε and d( f N(x), f N(y))≥ Δ for
N ∈N [14].

According to [14] this means that ”the slightest error (ε) in any initial condition (x)
can lead to a macroscopic discrepancy (Δ) in the evolution of the dynamics. Δ does not
depend on x, nor on ε but only on the system.”

Theorem 1. Chaotic maps exhibit sensitive dependence on initial conditions, except
when the entire space consists of a single periodic orbit [14].

To visualize the chaotic movement phase diagram of movement is ussually used.
Time is implicit in this diagram and each axis represents one dimension of the state.
If the graph creates the closed curve, this curve will be called orbit. It can be very of-
ten seen that the system ends in the same movement for all begining states in the area
around this movement - it seems that this system is attracted to this movement. This
movement is called attractor of the system [16]. In [17] author says about attractor: ”If
oneconsiders a system and its phase space, then the initial conditions may be attracted
tosome subset of the phase space (attractor) at time t → ∞.” Next author says about
strange attractor: ”For many other attractors the attracting set can be much more ir-
regular (some woud say pathological) and, in fact, can have a dimension that is not an
integer. Such sets have been clled fractal and, when they are attractors, they are called
strange attractors.”
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In this paper Sinai attractor (Eq. 3) and Arnold Cat Map (Eq. 4) have been chosen.
Sinai billiard is mentioned in [21] and [22]. In [18], [19] and [20] we will find Arnold
Cat Map’s using.

xn+1 = (xn + yn +σ cos(2πyn)) mod 1,

yn+1 = (xn + 2yn) mod 1
(3)

xn+1 = (xn + yn) mod 1,

yn+1 = (xn + kyn) mod 1
(4)

Fig. 1. Sinai map

Fig. 2. Arnold Cat Map
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3 Motivation

The main goal was to find out if Sinai and Arnold Cat map are useful as a generators of
chaotic numbers and comparison of these chaotic equations each other. These equations
have been compared from the view of the evolutionary algorithms (DE and SOMA) cost
functions convergence’s speed.

4 Experiments Design

For experiments HP Pavilion dv7-6050 with processor Intel Core i7 with frequency 2
GHz, 4 GB RAM and graphic card AMD Radeon HD 6770M and Microsoft Visual
Studio 2010 have been used. The experiments have beed processed by Mathematica 8
and Gnuplot 4.6. Precise setting of DE is mentioned in Table 1 and precise setting of
SOMA in Table 2. Schwefel’s function, 1st de Jong’s function and Ranna’s function
have been chosen as the testing functions. Schwefel’s function has many local extremes
while 1st de Jong is not so jagged. And Ranna’s function has been chosen because there
is no global extreme described in the literature. For each function and chaos equation
special experimental set has been created. For each equation, Sinai and Arnold Cat Map,
one set of experiments has been created. In each set each experiment has been repeated
one hundred times.

Table 1. DE setting

Parameter Value
NP 100
D 20
Migrations 300
PathLength 3
Step 0.11
α 0.1

Table 2. SOMA setting

Parameter Value
NP 50
D 20
Generations 1800
F 0.9
CR 0.4

5 Results

Results are mentioned in Tab. 3, where we can see minimum, maximum and average
reached values for DE and SOMA, where 1st de Jong’s, Ranna’s and Schwefel’s func-
tions have been used as testing functions. In Fig. 3 comparison of Arnold Cat Map
and Sinai used as chaotic numbers generators in DE, where 1st de Jong’s function has
been used as testing function is depicted. Fig. 4 shows the comparison, where SOMA
has been used as the evolutionary algorithm and Ranna’s function has been used as the
cost function and in Fig. 5 comparison of both chaotic numbers generators used in DE,
where Schwefel’s function has been chosen as the cost function is depicted.
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Table 3. Comparison of chaotic numbers generators Sinai and Arnold Cat Map, from the view
of evolutionary algorithm convergence’s speed. For better illustration there is smaller numbers in
the rows with 1st de Jong’s function. Settings of evolutionary algorithms are mentioned in Tables
1 and 2.

Evolutionary
algorithm

Pseudorandom
numbers generator

Function Min Max Average

DE

Sinai
1st de Jong 6.963×10−9 7.015×10−8 2.530×10−8

Ranna -6220.839 -5240.327 -5641.828
Schwefel -8379.658 -8379.658 -8379.658

Arnold Cat Map
1st de Jong 9.343×10−9 9.634×10−8 3.859×10−8

Ranna -6359.965 -5048.777 -5460.802
Schwefel -8379.658 -8379.658 -8379.658

SOMA

Sinai
1st de Jong 3.021 ×

10−33
1.020 ×
10−31

2.199 ×
10−32

Ranna -9065.627 -8477.0319 -8789.540
Schwefel -8379.658 -8261.219 -8377.289

Arnold Cat Map
1st de Jong 4.569 ×

10−33
1.185 ×
10−31

3.509 ×
10−32

Ranna -8967.828 -8402.458 -8669.560
Schwefel -8379.658 -8261.219 -8376.105

Fig. 3. DE, 1st de Jong’s function, comparison of Arnold Cat Map (red) and Sinai (green)

Fig. 4. SOMA, Ranna’s function, comparison of Arnold Cat Map (red) and Sinai (green)
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Fig. 5. DE, Schwefel’s function, comparison of Arnold Cat Map (red) and Sinai (green)

6 Conclusion

In Tab. 3 there are described minimum, maximum and average values reached during
the evolution for DE and SOMA, where 1st de Jong’s, Ranna’s and Schwefel’s functions
has been used as testing function and Arnold Cat Mapand Sinai have beed used as
psedorandom numbers generators. From these results we can make some conclusions:

• We can say that both algorithms are usable as the generators of chaotic numbers.
When we look at the Table 3 we will see that their results are comparable.

• DE, 1st de Jong’s function: We can say that when Arnold Cat Map was used, 1st
de Jong’s function convergence has been faster. But the difference between Arnold
Cat Map and Sinai is very small and we can consider it insignificant, see Fig. 3.

• DE, Ranna’s function: There is no global minimum mentioned in literature by
Ranna’s function. As we can see both algorithms reached values around -6300.
Arnols Cat Map reached smaller values than Sinai and the situation is the same like
in the previous case, see Fig. 5.

• DE, Schwefel’s function: Both algorithms reached the global minimum of the
Schwefel’s function. Their values mentioned in Table 3 are the same.

• SOMA, 1st de Jong’s function: Reached values are significantly smaller than in DE.
From the view of chaotic numbers generators both algorithms reached comparable
values. Arnold Cat Map reached smaller values than Sinai. But the difference is
insignificant.

• SOMA, Ranna’s function: The same situation happened when Ranna’s function has
been used as the cost function. The results of both chaotic numbers generators are
comparable, see Fig. 4.

• SOMA, Schwefel’s function: As well as in previous cases both algorithms reached
comparable values. In Schwfel’s function they reached the global minimum of the
cost function.

• The results of both attractors are very similar. When we look at Figs. 1 and 2 it is
not surprising phenomenon, because these attractors are relatively similar.
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