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Abstract. In this paper, Differential Evolution (DE) is used for the evolutionary 
optimization of control of chaotic Lozi map system. The novality of the 
approach is that the identical selected discrete dissipative chaotic system is used 
as the chaotic pseudo random number generator to drive the mutation and 
crossover process in the DE. The optimization was performed for two types of 
case studies and developed cost functions. 
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1 Introduction 

These days the methods based on soft computing such as neural networks, 
evolutionary algorithms, fuzzy logic, and genetic programming are known as 
powerful tool for almost any difficult and complex optimization problem. 

The interest about the interconnection between evolutionary techniques and control 
of chaotic systems is spread daily. First steps were done in [1], [2], [3] where the 
control law was based on Pyragas method: Extended delay feedback control – 
ETDAS [4], [5], [6]. These papers were concerned to tune several parameters inside 
the control technique for chaotic system. The big advantage of the Pyragas method for 
evolutionary computation is the amount of accessible control parameters, which can 
be easily tuned by means of evolutionary algorithms (EA). 

This paper is aimed at investigating the chaos driven Differential Evolution (DE). 
Although a number of DE variants have been recently developed, the focus of this 
paper is the embedding of chaotic systems in the form of chaos pseudo random 
number generator (CPRNG) for DE and its application to optimization of chaos 
control. 

Firstly, the problem design is proposed. The next sections are focused on the 
description of used cost functions, evolutionary algorithm DE and the concept of 
chaos driven DE. Results and conclusion follow afterwards. 
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2 Motivation 

This research is a continuation of the previous successful initial application based 
experiment with chaos driven DE [7], [8].  

This paper extends the research of evolutionary chaos control optimization by 
means of both SOMA or DE algorithm [3] and initial experiment with chaos driven 
DE [9]. 

In this paper the DE/rand/1/bin strategy driven by Lozi chaotic map (system) was 
utilized to solve the issue of evolutionary optimization of chaos control for the very 
same chaotic system. Thus the idea was to utilize the hidden chaotic dynamics in 
pseudo random sequences given by chaotic Lozi map system to help Differential 
evolution algorithm in searching for the best controller settings for the very same 
chaotic system. 

Recent research in chaos driven heuristics has been fueled with the predisposition 
that unlike stochastic approaches, a chaotic approach is able to bypass local optima 
stagnation. This one clause is of deep importance to evolutionary algorithms. A 
chaotic approach generally uses the chaotic map in the place of a pseudo random 
number generator [10]. This causes the heuristic to map unique regions, since the 
chaotic map iterates to new regions. The task is then to select a very good chaotic map 
as the pseudo random number generator. 

Several papers have been recently focused on the connection of DE and chaotic 
dynamics either in the form of hybridizing of DE with chaotic searching algorithm 
[11] or in the form of chaotic mutation factor and dynamically changing weighting 
and crossover factor in self-adaptive chaos differential evolution (SACDE) [12].  

The focus of this paper is the embedding of chaotic systems in the form of chaos 
pseudo random number generator for DE. 

The chaotic systems of interest are discrete dissipative chaotic systems. The Lozi 
map chaotic system was selected as the chaos pseudo random number generator for 
DE based on the successful results obtained with DE [13] or PSO algorithm [14]. 

3 Selected Chaotic System 

The chosen example of discrete dissipative chaotic system used both as a CPRNG and 
within the evolutionary optimization of chaos control problem was the two-
dimensional Lozi map system. 

The Lozi map is a simple discrete two-dimensional chaotic map. The map 
equations are given in (1). The parameters used in this work are: a = 1.7 and b = 0.5 
as suggested in [15].  

For these value, the system exhibits chaotic behavior. The example of this behavior 
is depicted in the numerical simulation of direct system output (x or y) in the 
uncontrolled state (Fig. 1). 
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Fig. 1. Iterations of the uncontrolled Lozi map (variable x) 

4 Original ETDAS Chaos Control Method 

This work is focused on the utilization of the chaos driven DE for tuning of 
parameters for ETDAS control method to stabilize desired Unstable Periodic Orbits 
(UPO). In the described research, desired UPO was p-1 (stable state). The original 
control method – ETDAS in the discrete form suitable for Lozi map has the form (2). 

 nnnn FYaXx +−=+
2

1  
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Where: K and R are adjustable constants, which have to be evolutionary tuned. F is 
the perturbation; S is given by a delay equation utilizing previous states of the system, 
m is the period of m-periodic orbit to be stabilized. The perturbation nF  in equations 

(2) may have arbitrarily large value, which can cause diverging of the system outside 
the output interval of Lozi map system {-1.4, 1.4}. Therefore, nF  should have a value 

between < maxF− , maxF >. The suitable maxF  value was also obtained from 

evolutionary optimization process. 

5 Cost Functions 

This research utilizes and compares two cost function design. 
The proposal of the first basic cost function (CF) is in general based on the simplest 

CF, which could be used problem-free only for the stabilization of p-1 orbit. The idea 
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was to minimize the area created by the difference between the required state and the 
real system output on the whole simulation interval – τi. The simple CF is given in (3). 
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Nevertheless this simple approach has one big disadvantage, which is the including 
of initial chaotic transient behavior of not stabilized system into the cost function 
value. As a result of this, the very tiny change of control method setting for extremely 
sensitive chaotic system causing very small change of CF value, can be suppressed by 
the above-mentioned including of initial chaotic transient behavior. 

Another universal cost function had to be used for securing the stabilization of 
either p-1 orbit (stable state) or higher periodic orbit and having the possibility of 
adding penalization rules. It was synthesized from the simple CF and other terms 
were added. 

This CF is in general based on searching for desired stabilized periodic orbit and 
thereafter calculation of the difference between desired and found actual periodic 
orbit on the short time interval - τs (approx. 20 - 50 iterations) from the point, where 
the first min. value of difference between desired and actual system output is found 
(i.e. floating window for minimization). The CFUNI has the form (4). 
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Where:   
TS - target state, AS - actual state 
τ1 - the first minimal value of difference between TS and AS 
τ2 – the end of optimization interval (τ1+ τs) 
pen1= 0 if τi - τ2 ≥ τs; pen1= 10*( τi - τ2) if τi - τ2 < τs (i.e. late stabilization) 

6 Differential Evolution 

DE is a population-based optimization method that works on real-number-coded 
individuals [16]. DE is quite robust, fast, and effective, with global optimization 
ability. It does not require the objective function to be differentiable, and it works 
well even with noisy and time-dependent objective functions. Description of the 
utilized DERand1Bin strategy is presented in [16], [17], [18] and [19] together the 
description of all other strategies. 

7 Chaos Driven DE 

The main principle of this concept is the embedding of chaotic systems in the form of 
chaos pseudo random number generator (CPRNG) for DE. In this research, direct 
output iterations of the chaotic map were used for the generation of real numbers in 
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the process of crossover based on the user defined CR value and for the generation of 
the integer values used for selection of individuals. The initial concept of embedding 
chaotic dynamics into the evolutionary algorithms is given in [20]. 

8 Experimental Results 

Within the research a total number of 50 simulations with chaos driven DE by means 
of Lozi map system were carried out for each CF design. All simulations were 
successful and have given new optimal settings for ETDAS control method securing 
the fast stabilization of the chaotic system at required behaviour (p-1 orbit). 

Following Tables 2 and 4 contains the simple statistical overview of 
optimization/simulation results. Tables 3 and 5 contain the best founded individual 
solutions of parameters set up for ETDAS control method, corresponding final CF 
value, also the Istab. value representing the number of iterations required for 
stabilization on desired UPO and further the average error between desired output 
value and real system output from the last 20 iterations. 

Graphical simulation outputs of the best individual solutions for both case studies 
are depicted in Fig. 2 and Fig. 4, whereas the Fig. 3 and Fig 5 shows the simulation 
output of all 50 runs of CHAOS DE, thus confirm the robustness of this approach. 

For the illustrative purposes, all graphical simulations outputs are depicted only for 
the variable x of the chaotic Lozi map system. 

Settings of EA parameters for both processes were based on performed numerous 
experiments with chaotic systems (Table 1). 

Based on the mathematical analysis, the real p-1 UPO for unperturbed Lozi map 
system has following value: xS = 0.4545. 

The ranges of all estimated parameters were these: 
-2 ≤ K ≤ 2 , 0 ≤ maxF  ≤ 0.9 and 0 ≤ R ≤ 0.99, 

Table 1. CHAOS DE settings  

DE Parameter Value 

PopSize 25 

F 0.8 

CR 0.8 

Generations 250 

Max. CF Evaluations (CFE) 6250 

8.1 Case Study 1 – Simple Cost Function 

From the results presented in the Tables 2 and 3, it follows that the CF-simple is very 
convenient for evolutionary process, which means that repeated runs of EA are giving 
identical optimal results (i.e. very close to the possible global extreme). This is 
graphically confirmed in the Figure 3 when all 50 simulations are basically merged 
into the one line. On the other hand the disadvantage of including of initial chaotic 
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transient behavior of not stabilized system into the cost function value and resulting 
very tiny change of control method setting for extremely sensitive chaotic system is 
causing suppression of stabilization speed and numerical precision. 

Table 2. CF-simple values statistic 

Statistical data CF Value 

Min 0.520639 

Max 0.520639 

Median 0.520639 

Std.Dev. 2.41•1010-15 

Avg. Full Stab. (Iteration) 32 

Table 3. Characteristics of the best solution 

Parameter Value 

K -1.11259 

Fmax 0.9 

R 0.289232 

CF Value 0.520639 

Istab. Value 21 

Avg. error per iteration 7.21•1010-15 

 

 

 

Fig. 2. Simulation of the best individual solution, CHAOS DE - CF Simple 
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Fig. 3. Simulation of the all 50 solutions, CHAOS DE - CF Simple 

8.2 Case Study 2 – Universal Cost Function 

Results obtained in this case study lend weight to the argument, that the technique of 
pure searching for periodic orbits is advantageous for faster and more precise 
stabilization of chaotic system. 

Table 4. CF-universal values statistic 

Statistical data CF Value 

Min 3.5331•1010-15 

Max 4.0551•1010-15 

Average 3.8063•1010-15 

Std.Dev. 1.19•1010-16 

Avg. Stab. (Iteration) 11 

Table 5. Characteristics of the best solution 

Parameter Value 

K -0.859989 

Fmax 0.643099 

R 0.065669 

CF Value 3.5331•1010-15 

Istab. Value 9 

Avg. error per iteration 0 
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Fig. 4. Simulation of the best individual solution, CHAOS DE - CF Universal 

 

 

Fig. 5. Simulation of the all 50 solutions, CHAOS DE - CF Universal 

9 Conclusions 

Based on obtained results, it may be claimed, that the presented Chaos DE driven by 
selected discrete dissipative chaotic system has given satisfactory results in the chaos 
control optimization issue. 

The results show that embedding of the chaotic dynamics in the form of chaotic 
pseudo random number generator into the differential evolution algorithm may help to 
improve the performance and robustness of the DE. Thus to obtain optimal solutions 
securing the very fast and precise stabilization for both convenient CF surface in case 
of the CF-simple and very chaotic and nonlinear CF surface in case of the  
CF-universal. 
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When comparing the both CF designs, the CF-simple is very convenient for 
evolutionary process (i.e. repeated runs are giving identical optimal results), but it has 
many limitations.  

The second universal CF design brings the possibility of using it problem free for 
any desired behavior of arbitrary chaotic systems, but at the cost of the highly chaotic 
CF surface. Nevertheless the embedding of the chaotic dynamics into the evolutionary 
algorithms helped to deal with such an issue.  

The primary aim of this work was not to develop any new pseudo random number 
generator, which should normally pass many statistical tests, but to show that through 
embedding the hidden chaotic dynamics into the evolutionary process in the form of 
chaotic pseudo random number generators may help to obtain better results and avoid 
problems connected with evolutionary computation such as premature convergence 
and stagnation in local extremes. 

The issue of possible stagnation in local extremes was tested within the previous 
initial research with ChaosDE and CEC 2005 benchmark functions. The results lend 
weight to the argument that no through the distribution of pseudo-random numbers, 
but the hidden dynamics of chaotic systems representing the sequence of numbers 
may help to the evolutionary process and drives the population out of the local 
optimum. 

Future plans include testing of different chaotic systems, either manually or 
evolutionary tuning of chaotic maps parameters, comparisons with different heuristics 
and obtaining a large number of results to perform statistical tests. 

The future research will include the development of better cost functions, testing of 
different AP data sets, and performing of numerous simulations to obtain more results 
and produce better statistics, thus to confirm the robustness of this approach. 
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