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Abstract. An advanced probabilistic algorithm developed based on log-
linearized Gaussian mixture model aims to estimate posteriori probability of 
neighboring pixel method in image segmentation. We firstly apply the log-
linearized Gaussian mixture to develop and determine the mixture and the 
mixture component of the Gaussian mixture model. Then, the posterior 
probabilities of each pixel are also identified by using neighboring pixel 
method. Secondly, employing maximum likelihood technique to simulate the 
statistic model under our algorithm framework aims to improve accuracy of 
segmented images and to reduce impacts of noise during image segmentation 
process. Our research results present good segmentation yields, and the 
segmented images are more accuracy comparing to the segmented images 
which obtained by other segmentation methods. 
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1 Introduction 

Today, color image segmentation is useful in many applications in image processing 
and image recognition systems. The good segmentation results would help to identify 
regions of interest and objects in the scenes that is very beneficial to the subsequent 
image analysis or annotation. For example, many communication tasks require high 
compression ratio to save network resource. One possible way to realize the higher 
compression ratio is to discriminate objects in an image and compress only the 
targeted objects toward user’s concerns. This makes image segmentation extremely 
important role in providing the necessary information. Several previous works have 
been carrying out for image segmentation by using threshold method [1]. However, it 
is not easy to determine and identify a proper threshold value. This is also the large 
disadvantage to threshold method, and in some cases a bad choice of a certain 
thresholds could alternate the quality of the segmentation and probably leads to a 
worse interpretation. An artificial neutral network is an approach applied in image 
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segmentation in order to avoid this disadvantage. In the paper [2], the authors applied 
a feature vectors that are extracted from an image using a neural network. This 
method and model simulation do not place out spatial information, the spatial 
attributes of pixels are maximally used in this method. This method would help to 
minimize the distance between the feature vectors. The experiment results indicate 
that this method work well and lead to sub-optimal image segmentation. 

Recently, with the expansion application of Gaussian mixture model (GMM), 
image segmentation based on GMM has become popular [3].In this approach a 
mixture of multi-variant densities and the mixture parameters are estimated by using 
EM algorithm. However, a main drawback of this method is that the number of 
Gaussian mixture components is assumed known as prior, resulting not sensitive to 
noise of segmentation. The spatially variant finite model was proposed in [4]. In this 
model a maximum-a-posteriori (MAP) estimation is determined by using Markov 
random fields (MRF). The main advantage of MRF models is that prior information 
of the pixel labels can be imposed locally through clique potentials. Importantly, 
segmentation accuracy is quite sensitive to the initialization of segmentation 
algorithm, because of using the local optimization parameter estimation algorithms 
such as EM. Therefore, the initializations for these local algorithms have to be well 
selected and determined. This approach works well in minimizing the impacts of 
noise though the image segmentation process. 

An advanced algorithm based on the GMM and the log-linear model is necessarily 
to be developed to improve image segmentation. Therefore our study objectives aim: 
1) applying the log-linear model to a product of the mixture coefficient and the 
mixture component of the GMM. 2) using the local spatial interactions between 
neighboring pixels to reduce impacts of noise in image segmentation. The proposed 
method will be applied for segmenting synthetic and real world grayscale images. The 
robustness, accuracy and effectiveness of proposed model and other methods such as 
standard GMM, and K-means, and Mean-shift are compared to evaluate the 
advantages of the proposed method.  

This paper is organized as follows. In section 2, the segmentation algorithm for 
image is presented. In section 3, the experimental results are presented and discussed. 
Finally, the conclusions are given in section 4. 

2 Proposed Approach 

2.1 Neighboring Pixels 

In this paper, we use the local spatial interaction between neighboring pixels in a 
3 3× window. For each of the ith window, neighboring pixels are denoted by    

1 1 1 2 1 2 2 2 3 2( , , ..., , , , ..., , ..., )d d d dX x x x x x x x x x x x x x x=               (1) 

where 2 2x x  is the central pixel of k-th window and  

1 1 1 2 1 3 2 1 2 3 3 1 3 2 3 3, , , , , , ,x x x x x x x x x x x x x x x x  are called the neighboring pixels of 

the 2 2x x . 
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For each window, the posterior probability ( | )P k x for all classes. with the 

central pixel 2 2x x will belong to an certain class that has the largest posterior 

probability. 

2.2 Log-linearized Gaussian Mixture Model 

Here, a PDF ( )f x  of a feature vector dx ∈ ℜ  is represented by a GMM with K 

classes: 
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where ( 1,... )kM k K=  denotes the number of components of the class ,; k mk α  

denotes a mixture coefficient or a mixing proportion of each component { , }k m  and 

( , )k m dμ ∈ℜ and ( , )k m d d×Σ ∈ ℜ  d  represent the mean vector and the covariance 

matrix of each component { , }k m . Note that | . |  represents the determinant. 

Let us consider a problem to classify an observed vector x  into one of K  
classes. The Bayes decision theory determines a specific class if a posteriori 
probability of the vector belonging to the class is larger than the ones to any other 
classes. Using the GMM of the PDF of x , the posteriori probability 

( | )( 1,... )P k x k K=  is given as 

            
1 1

( , ) ( , | , )
( | ) ( , | )

( )

kMK

k m

P k m P x x k m
P k x P k m x

P x= =

= =            (5) 

where P(k, m) is the a priori probability of the class k  and the component m , 

which corresponds to the mixing coefficient ,k mα ; and ( | , )P x k m is the PDF of 

x  conditioned by the class k and the component m . Then, using Eq. (l), the 
posteriori probability ( | , )P x k m  can be expressed as  
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Since ( , ) ( , )( ; , )k m k mg x μ Σ is the d-dimensional Gaussian distribution given as Eq. 

(3), using the mean vector ( , ) ( , ) ( , )
1( ,...}, )k m k m k m T

dμ μ μ=  and the inverse of the 

covariance matrix ( , ) 1 ( , )[ ]k m k m
ijs−Σ = , the numerator of the right side of Eq. (5) can 

be represented as ( , ) ( , )
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where jlδ is the Kronecker delta: 1ijδ =  when i j= and 0ijδ = when i j≠ .  

Let us consider to linearize the right side of Eq. (6). Taking a logarithm of Eq. (6), we 
can get  

( , ) ( , ) ( , )
, ( , )log ( ; , )

Tk m k m k m
k m k m g x Xζ α μ βΣ = ……        (8) 

Where HX ∈ ℜ and ( , )k m Hβ ∈ℜ are defined as from Eq. (1) 
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And the dimensionally is H  defined as 1 ( 3) / 2H d d= + + . We can see 

that ,k mζ  can be expressed as a product of the coefficient vector ( , )k mβ  and the 

modified input vector HX ∈ ℜ . 

However, since 
1 1

( , | ) 1
kMK

k m

P k m x
= =

=  , the variable is ,k mζ  redundant. Then, 

a new variable ,k mY and a new coefficient vector ( , )k m Hw ∈ ℜ  are introduced: 
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k m k m M MY X w Xζ ζ β β− = − =            (11) 

where ( , ) 0kK Mw = . It should be noted that ( , )k mw  becomes a weight coefficient 
with no constraints. Then the posterior probability  
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As mentioned above, by taking a logarithm of the PDF of each component, the 

posterior probability can be expressed using the variable ,k mY  that is a linear sum of 

the modified input vector X  and the coefficient vector ( , )k mw : that is, the GMM is 
log-linearized. 

Using the data image, a log-likelihood function L can be derived as 

( , ) ( , )
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3 Experimental Results 

In this section, we evaluate the segmentation performance of the proposed algorithm 
by using a subset of the Berkeley image segmentation dataset and benchmark [8] (Fig. 
1). This benchmark dataset consists of a set of natural images along with their ground 
truth segmentation maps which were provided by different individuals. In this 
experiment, we employ the probabilistic rand (PR) index [9] to quantitatively evaluate 
the performance of the proposed algorithm. Let                denote a set of 
 

1 2{ , ,..., }kGT GT GT GT=
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ground truth images and G the segmentation result to be evaluated the PR index is 
given by 

 
                                                                         (14) 
 
where cij=1 if pixels i and j belong to the same class in Gs, otherwise. M is the number 
of image pixels, and is the ground truth probability of pixels i and j belong to the 
same class. The PR index takes values between 0 and 1 with the values close to 1 
means a good segmentation result, and close to 0 means a bad result. Unnikrishnan 
and Hebert in [10] have proved that the PR index is robust to segmentation maps 
resulting from ground truth segment splitting or merging. 

 
 

 

(a)            (b)              (c)             (d)              (e) 

 

 

(f)            (g)              (h)              (i)             (j) 

Fig. 1. Images from the Berkeley’s image segmentation dataset. (a) 118035, (b) 2096, (c) 
135069, (d) 124084, (e) 238011, (f) 167062, (g) 58060, (h) 62096, (i) 176035, (j) 253036. 

 

 
 

(a)              (b)              (c)              (d)             (e) 

 
 
 
 
  (f)                   (g)                  (h)                 (i)                (j) 

Fig. 2. Image segmentation results obtained by employing the proposed method. (a) 118035, 
(b) 2096, (c) 135069, (d) 124084, (e) 238011, (f) 167062, (g) 58060, (h) 62096, (i) 176035, (j) 
253036. 
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Figure 3 presents the segmentation results obtained from our proposed method and 
4 other methods by using the real world image as the input. 

 

 
 
 
 

(a)                        (b)                       (c) 

 
 
 
 
 

(d)                             (e)                             (f) 

Fig. 3. 481x321 color testing data, (a) Original image, (b) Standard deviation of Gaussian noise 
(0 mean, 0.001 variance), (c) K-means (PR=0.670), (d) Mean shift (PR=0.691), (e) Standard 
GMM (PR=0.723), (f) Our method (PR=0.8184). 

Table 1. The PR indexes of segmentation applying our proposed method and other 4 methods 
on Berkeley images 

PR indexes 

Image k K-means Mean-shift Standard GMM The proposed 
algorithm 

118035 3 0.624 0.688 0.706     0.784 

2096 2 0.980 0.980 0.982     0.984 

135069 2 0.983 0.983 0.983     0.985 

124084 3 0.520 0.624 0.663     0.730 

238011 3 0.714 0.769 0.800     0.815 

167062 3 0.630 0.635 0.720     0.786 

58060 3 0.552 0.588 0.596     0.605 

62096 3 0.601 0.615 0.628 0.642 

176035 3 0.754 0.760 0.769 0.771 

253036 3 0.630 0.635 0.635 0.660 

Mean - 0.688 0.727 0.748 0.762 

 
Table 1 presents the PR values indicating the efficiencies of image segmentation 

obtained from our proposed algorithm and from other algorithms, namely K-means, 
Mean-shift and Standard GMM. These show that using the same number of 
segmentation, presented in Eq. 8, the PR values obtained from our method is slightly 
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higher than the PR values obtained from other methods for the same tested images. 
Importantly, by comparing the images in Figure 1 and 2, our method results in Figure 
2 show that the developed algorithm is efficiently applied for image segmentation at 
different class regions results, as well as can preserve well boundary information for 
all cases. 

In another experiment, our method is tested robustness and efficacy with 10 
iterations though the segmentation process, and the testing process is implemented by 
adding noise into the original images. Figure 3 presents the image segmentation 
results of our research method and other methods for the same one image extracted 
from the Berkeley Segmentation Dataset. Figure 3a shows the original image with 3 
classes. Figure 3b is the result that obtained by using Gaussian noise (0 mean, 0.001 
variance). Figure (3c-3e) present results obtained from 3 methods (with 15 iterations 
for each method). Figure 3f presents our study result. Although the tested images 
during our experiment process are somehow degraded by adding high levels of noise, 
the results show that our method provides better images than other methods. 
Moreover, our proposed method demonstrates robustness with respect to noise 
yielding a better segmentation result. 

4 Conclusions 

In this paper, we proposed a new mixture model based on the log-linerarized 
Gaussian mixture model, which can estimate the posterior probability for image 
segmentation. Here we have presented experimental results of the proposed model 
and also presented a comparison of image segmentation results between our method 
and three other algorithms to validate our research method. Experimental results show 
that the proposed algorithm has generally satisfying properties for image 
segmentation, and it outperforms the competing algorithms in terms of robustness to 
efficiency and preservation of target boundary information. Finally, in this paper, the 
number of classes (K) is manually selected. In the future, we would like to further our 
study on how to automatically optimize this parameter. 
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