

T. Skersys, R. Butleris, and R. Butkiene (Eds.): ICIST 2013, CCIS 403, pp. 297–309, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Design of Visual Language Syntax for Robot
Programming Domain

Ignas Plauska and Robertas Damaševičius

1 Kaunas University of Technology, Centre of Real Time Computer Systems,
Studentų 50, LT-51368, Kaunas, Lithuania

2 Kaunas University of Technology, Software Engineering Department,
Studentų 50-415, LT-51368, Kaunas, Lithuania

ignas.plauska@ktu.lt, robertas.damasevicius@ktu.lt

Abstract. The paper discusses the development of the visual language syntax
based on the application of sound methodological principles, a visual communi-
cation model, a visual syntax model, a formal description of syntax based on
visual grammar metalanguage (an extension of BNF) and ontology of visual
signs (graphemes). The syntax of an illustrative visual language VisuRobo for
the mobile robot programming domain is presented.

Keywords: visual programming, visual language, visual communication model,
visual syntax model, visual metalanguage.

1 Introduction

Software design and development involves high-level cognitive processes such as
assimilating, constructing and sharing domain knowledge and making decisions.
Cognition is based on the developer’s mental models [1], which provide a structure
for organization of domain knowledge within the developer’s mind. The task of the
programmer is to map a mental model of a solution of a domain-specific problem to a
system of computer-readable signs, i.e. a program written in a programming language.
Many types of programming languages exist. General purpose programming lan-
guages are usually domain-independent and are good for general problem solving. On
the other hand, domain-specific programming languages (DSLs) are tailored towards
a specific application domain, and are based only on the relevant concepts and fea-
tures of that domain. A DSL allows domain experts to express high-level concepts
succinctly using a notation tailored to a set of specific domain problems. Therefore,
DSLs can be considered as a medium of communication that allows to bridge the gap
between the mental model and the problem domain systems and, consequently, to cut
the distance from ideas to products in software engineering.

The complexity of modern software engineering and its application domains
such as robotics stimulated the move from one-dimensional string grammar based
textual languages to visual languages which use non-linear graphical notations. The
problem transcends just using graphical symbols for programming and includes visual

298 I. Plauska and R. Damaševičius

knowledge engineering [2] and visual software engineering [3]. Currently, visual
programming languages (VPLs) are used in many different application fields such as
the development of graphical user interfaces (GUIs), teaching computer science, and
model-driven development [4]. In particular, Unified Modeling Language (UML) [5]
is a widely known example of a visual software engineering language that is used for
modelling and specifying software-intensive systems.

The main motivations for visual languages are as follows: 1) higher level of ab-
straction, which is closer to the user’s mental model and involves manipulation of
visual elements rather than machine instructions [6], 2) higher expressive power char-
acterized by two (or more) dimensional relations between visual elements [7], and 3)
higher attractiveness to non-professional or novice programmers motivated by simpler
description of complex things. Other advantages of VPLs include economy of con-
cepts required to program (i.e., smaller program size), concreteness of programming
process, explicit depiction of relationships between program entities, and immediate
visual feedback [8].

Visual programming allows using a conceptual model that is tailored to the mental
process of the user rather than constraints of the programming language syntax or the
target platform. Indeed, visual notations allow for the description and understanding
of complex systems, such as concurrent and/or real-time systems, for which tradi-
tional textual descriptions are inadequate [9]. Robots are good examples of such
complex systems which require having knowledge of multiple domains such as
mechatronics, analogue and digital electronics, embedded software, real-time sys-
tems, kinematics, communication protocols and control algorithms, etc. The robotics
domain is characterized by heterogeneity and diversity of robots and their different
capabilities. Furthermore, a large variety of existing robotic platforms requires having
high-level methods for general modelling and reasoning about what different robots
are capable of doing. The examples of VPLs designed for the robot programming
domain, are Microsoft Visual Programming Language (MVPL) and Lego NXT-G
language. These languages have been criticized for lack of flexibility and usability
[10]. Other challenges to these languages come from targeting users that are usually
not formally trained in programming or software engineering (e.g., children, or robot
hobbyists), and include unusual features that do not seem to be shared by a majority
of users.

The contribution of this paper is the design of the visual language syntax for the
robot programming domain based on the application of sound methodological princi-
ples including a model of visual communication, a formal description of syntax based
on using visual metalanguage and an ontology of signs.

The structure of the remaining parts of the paper is as follows. Section 2 presents a
Visual Communication Model as a foundation of the proposed visual programming
language syntax. Section 3 describes the modelling of visual language grammar
using visual meta-syntax. Section 4 provides a case study in developing syntax for
the VisuRobo language. Finally, Section 5 presents evaluation of results and
conclusions.

 Design of Visual Language Syntax for Robot Programming Domain 299

2 Elements and Models of Visual Communication

Using a VPL to develop a visual program (diagram) is a form of visual communica-
tion (conversation or dialogue) between a designer and a user. In general, any
language is a formal system of signs described by a set of grammatical rules to com-
municate some meaning. In particular, a VPL is a system of visual signs (i.e., primi-
tive graphical elements, graphemes or pictograms), which represent domain-specific
concepts, processes, or physical entities, and uses more than one dimension of space
to convey semantics [8]. Spatial arrangement of graphical elements together with a
semantic interpretation provides a space of communication for users of a VPL [11].
Below we present an analysis of known models of visual communication.

2.1 Shannon-Weaver’s and Berlo’s Models of Communication

A model of communication proposed by Shannon and Weaver [12] consists of a
sender (a source), a message, a code (a language or other set of symbols or signs that
can be used to transmit a message), a channel (the path on which the message travels),
noise (or interference), and a receiver. The sender selects a message and encodes it
into a signal that is sent over the communication channel to the receiver. The receiver
decodes the transmitted signal and interprets the message. In the process, the message
may be corrupted by noise that can be psychological (arising from the receiver's atti-
tudes, biases or beliefs), physical (coming from the environment of communication)
or semantic (caused by the receiver’s misinterpretation). The model has been criti-
cized for disregarding the semantic content of message and the simplistic interpreta-
tion of concept of information. Furthermore, it implies that human communication is
similar to machine communication such as sending a signal in computer systems [13].

Berlo’s Model of Communication [14] extended the Shannon and Weaver’s model
with perceptory (hearing, seeing, touching, etc. channels), structural (content, ele-
ments, structure of message) and social (skills, culture, attitudes) elements of commu-
nication, but provided no technical details how the model could be implemented.

2.2 Semiotic Engineering

Semiotic engineering [15] interprets the communication channel as a human-computer
interface (HCI). Designers (senders) send their message to users (receivers) through
the interface using signs, which associate domain entities with their meaning and
representation. The interface acts as a meta-message from a designer to users. This
meta-message conveys the designers’ interpretation of the domain problem and pro-
vides users with artefacts to support users in solving the problem. The meta-message
is defined using a metalanguage, and a metalanguage consists of signs that signify
relationships of interface elements to each other and to domain entities they represent.
The difficulties with semiotic engineering arise from the lack of practical approaches
how to deal with the interpretability problem: the designer aims to formulate a concise
singular message (that can be interpreted only one way) while the users may derive
multiple and often conflicting interpretations of the message.

300 I. Plauska and R. Damaševičius

2.3 Visual Language Model

A visual language model proposed by Hari Narayan et al. [16] focused on the human
use of visual languages and described three objects of interest to investigation of such
languages: a computational system, a cognitive system, and the visual display as a
communication medium (or channel). Visual representations that encode and convey
information appear on the visual display and require visual perception, comprehen-
sion and reasoning on the cognitive side, as well as visual parsing, interpretation, and
program execution on the computational side. The authors themselves recognize that
the model is not full as a more complete taxonomy complemented with a formal sys-
tem to define semantics is required.

2.4 Theory of Visual Display and Visual Variables

Theory of Visual Display [17] elaborated on the structure of visual display as the
communication channel. The main elements are: 1) objects – basic units of meaning,
2) regions – provide context for objects, and 3) relations – connect objects or regions.

Bertin [18] analysed the main elements of visual objects. These could be encoded
graphically using 8 visual variables which provide a visual alphabet for constructing
visual notations as follows: shape, size, orientation, pattern, colour, hue and two spa-
tial dimensions (vertical and horizontal). Notation designers can create graphical
symbols by combining the variables together in different ways.

2.5 Physics of Notations

Moody [19] proposed a framework of methodology for developing cognitively-
effective visual languages. The framework defines a visual notation that consists of a
set of graphical symbols (visual vocabulary), a set of compositional rules (visual
grammar), and definitions of the meaning of each symbol (visual semantics). Visual
vocabulary includes 1D graphic elements (lines), 2D graphic elements (areas), 3D
graphic elements (volumes), textual elements (labels) and spatial relationships. A
valid expression (diagram) in a visual notation consists of visual symbols (tokens)
arranged according to the rules of the visual grammar. Visual vocabulary and visual
grammar together form the visual syntax of the notation. The language metamodel
defines mapping of visual symbols to the constructs they represent. The approach has
been defined as a scientific theory that allows both understanding how and why visual
notations communicate as well as improve their ability to communicate [19].

2.6 Ontological Engineering

Ontological engineering provides methodologies for building ontologies: formal rep-
resentations of concepts within a domain and the relationships between concepts.
Ontology defines the vocabulary of a problem domain and a set of constraints on how
terms can be combined to model the domain in a declarative way [20]. The language

 Design of Visual Language Syntax for Robot Programming Domain 301

ontology is the description of what the primitives of a language are able to represent
in terms of domain phenomena, i.e., it is the representation of a conceptualization of
the domain in terms of the language’s vocabulary [21].

2.7 Proposed Model of Visual Communication

Based on the discussed models of visual communication and visual modelling, we
propose our Model of Visual Communication (Fig. 1). The model has sound formal
and engineering foundations. It defines the composition of language’s syntax and
ensures “low noise” communication due to using shared domain and sign ontologies.

Fig. 1. Model of Visual Communication

A Visual diagram, which describes a specific domain process or a solution of do-
main problem, is a Message. The Message is sent by a Designer, transmitted via a
Visual Display as a communication channel and received by the User(s). Visual Dis-
play is a metaphor that facilitates the rapid transfer of an effective mental model into
the user’s head [22]. The elements of Visual Display are Signs (basic units of domain
knowledge), Regions that provide context to Signs and Relations that connect Signs to
Regions. The arrangement of Signs is defined by Visual Language that models Visual
Display, whereas Visual Language is modelled by Visual Metalanguage. Signs are
chosen to signify a shared meaning of domain that is conceptualized by Domain On-
tology, whereas their graphical representation is conceptualized by Sign Ontology
shared both by Designer and User(s). The use of ontologies as shared conceptualiza-
tions of knowledge minimize the “noise” (i.e., misunderstanding, etc.) introduced
during the communication process and allows logical reasoning and inference over
signs as representation of meaning. Therefore, ontologies can be employed as a tool
for visual or diagrammatic reasoning [23].

302 I. Plauska and R. Damaševičius

3 Modelling the Syntax of Visual Language

A VPL is an artificial system of communication that uses visual elements. Any visual
language can be characterized by three main elements: lexical definition (symbol
vocabulary), syntactical definition (grammar), and semantic definition. VPLs differ
from textual programming languages by the type of used symbols and the type of
their relation to each other.

3.1 Lexical Definition

First, a set of symbols is extended from a set of characters (e.g., ASCII, Unicode) to a
set of any images. Formally, a visual symbol vS is defined as a quadruple

()AMCISv ,,,= , where I is the image that is shown to the user of the language; C is
the position of the symbol in the visual sentence that defines its context, i.e., the rela-
tion of the visual symbols to other symbols; M is the semantic meaning of the visual
symbol; and A is the set of actions that are performed when the symbol is activated.

We propose using ontological engineering methods for modelling and specifying a
vocabulary of the language. The symbol vocabulary formally can be defined as ontol-

ogy of symbols (signs) ()RDO ,= , where D is some domain, and nDR ⊆ is a set of

relations defined in D. Visual language vL can be defined as OSSL vvv ∈⊆ ,* . The
relations between symbols can be: taxonomic (the symbols belong to the same group
or category of symbols), mereologic (one symbol is a part of other symbol), positional
(the symbols are always used together though do not form a separate symbol).

Second, the sequencing of symbols is extended from one-dimensional to multi-
dimensional. If we have a visual language vL then a visual sentence of a language

vL is a spatial arrangement of visual symbols specified according to the syntax

rules (grammar) of vL . The definition of language grammar implies the need for a
meta-grammar that defines the structural composition of the syntax grammar rules.

3.2 Syntactical Definition

In the classic definition of generative string grammars, a grammar G(L) of language L
is defined as () ()SPTNLG ,,,= , where N is a finite set of nonterminal symbols
(grammar variables), none of which appear in strings formed from G, T is a finite set
of terminal symbols (grammar constants), ∅=∩ NT ; P is a finite set of production
rules that map from one string of symbols to another in the form of

() () ()*** TNTNNTN ∪→∪∪ , and S is the start symbol, NS ∈ . In a visual lan-
guage, the ordering of visual symbols is non-linear, therefore, the visual production

rules include visual relations R as follows: ()() ()() ()*** TNTNRNRTN ∪→∪∪ .
In practice, the syntax of textual languages is usually defined by meta-syntax nota-

tion such as the Extended Backus-Naur-Form (EBNF) (ISO/IEC 14977).To define
a visual grammar of a visual language, the definition of string grammar must be

 Design of Visual Language Syntax for Robot Programming Domain 303

extended to include visual symbols and visual relations, which indicate the spatial
arrangement of the elements of productions such as connection relation to connect
visual symbols with adjacent regions through links or arrows, and geometric relations
(containment, horizontal/vertical and left/right concatenations, etc.). In one of such
extensions, Picture Description Language (PDL) [24], each terminal symbol is la-
belled at its head and its tail, and the coincidence operations between primitives are
defined. Ledley [25] also proposed a set of topological operators as relations between
terminal symbols. The summary of visual relation operators is given in Table 1.

Table 1. Visual relation operators

Operator Interpretation Operator Interpretation

s1 + s2

s1 → s2

s1 × s2 s1 ↑ s2

s1 − s2

s1 ʘ s2

s1 * s2

Fig. 2. Visual Syntax model

 s1

s2

 s1

s2

 s1 s2
 s1 s2

 s1

 s2

 s1

 s2

 s1 s2

304 I. Plauska and R. Damaševičius

3.3 Visual Syntax Model and Meta-syntax of Visual Language

The proposed Visual Syntax Model is summarized in Fig. 2. The model defines two
types of symbols: terminals (characters or graphemes) and non-terminals. Production
rules describe how a sequence of terminal and nonterminal symbols can be consumed
by the parser of the language to produce terminal symbols as governed by the gram-
mar operators. Grammar operators are: choice operator (selection of production rules
out of a set of alternatives), geometrical operators (2D production), topological opera-
tors (symbol containment/concatenation) and abstraction operators (symbol instantia-
tion between different levels of abstraction beyond the 2D visual space).

Considering the above, we propose the following meta-syntax based on EBNF:

<syntax> ::= <rule> | <rule> <syntax>
<rule> ::= "<" <rule-name> ">" "::=" <expression> <EOL>
<expression> ::= <term-list> | "(" <term-list> ")"
 | <term-list> <operator> <expression>

<operator> ::= "|" | "+" | "-" | "×" | "*" | "→ " | "↑" | " ʘ "
<term-list> ::= <term> | <term> <term-list>
<term> ::= <grapheme> | "<" <rule-name> ">"
<grapheme> ::= <icon> | <icon> "(" <attribute-list> ")"
<attribute-list> ::= <literal> | <literal> <attribute-list>
<literal> ::= ' " ' <text> ' " '

4 Case Study: Modelling Syntax of Visual Language

As a case study of the proposed approach, we analyse and present results of modelling
a visual programming language VisuRobo for the mobile robotics domain. The de-
signer faces two main challenges when developing a visual language: 1) selection
(construction) and design of a visual vocabulary for the developed language, and 2)
selection of the meta-modelling language for describing the syntax of the language.

4.1 Visual Vocabulary of the Language

When designing a vocabulary the main concerns are as follows:

1) Understandability. The designers want to communicate ideas using visual lan-
guage with as less noise as possible. This requires that the mental models of designers
must be “shareable”, i.e., the symbols used to communicate meaning must be easily
recognizable and interpretable. The meaning of symbols must be known intuitively.

2) Usability. The symbols must be designed using a principled methodology (see,
e.g., Moody’s “Physics of notations” [19]), and their usability must be thoroughly
evaluated using quantitative metrics [10] and/or qualitative surveys.

For our design task we have decided to select a subset of symbols from a set of
road traffic sign system rather than to design our own set of symbols. The advantages
of such choice are as follows: 1) Traffic signs are a part of our everyday life and
are simple, easily recognizable, legible and understandable [26]; 2) Traffic signs
were designed to be usable in different contexts of use (day/night, static/dynamic

 Design of Visual Language Syntax for Robot Programming Domain 305

environment) and contain a minimum amount of information (or “conceptual bag-
gage” [27]) required to communicate a message; 3) Traffic signs are an international
standard (Vienna Convention on Road Signs and Signals); 4) Ontology of road signs
is available [28]; 5) Meaning of traffic signs are easily transferrable to a mobile robot-
ics domain using the analogy principle [29], which allows the user to metaphorically
reinterpret familiar signs in another context of use based on the similarity of vehicle
driving and mobile robotics domains.

The selection of signs for VisuRobo is based on the Robot Programming Ontology
[30], which defines the main actions of a mobile robot. Ontological description allows
to define their graphical representation formally and ontology tools (such as Protégé)
provide capabilities for checking consistency of formal description and reasoning
over the meaning of signs. An example of the description of the PARKING sign in
the Road Sign Ontology [28] is given in Fig. 3. The ontology provides the classifica-
tion of road signs and defines their graphical composition in terms of colour, shape
and represented symbols. The description of the Parking sign states that the sign shall
have blue background, white border, a rectangular shape and the “P” symbol on it.

Fig. 3. Parking sign and its assertions derived from the Road Sign Ontology as seen in Protege

In Table 2, we summarize the visual graphemes of the VisuRobo language. We
consider each sign as a metaphor; therefore the description is given following the
Barr’s [31] relations (parts) of metaphor as follows: 1) Definition: the meaning of the
metaphor itself. 2) Designer’s Interpretation: the meaning of the grapheme according
to the designer’s mental model. 3) Match: how metaphor in the mental model matches
to its realization, i.e., the evaluation of the designer’s interpretation. 4) User interpre-
tation: the meaning of the grapheme according to the user’s mental model. 5) Suc-
cess: how the user’s interpretation matches the definition of grapheme, i.e., the
evaluation of user’s interpretation.

Visual variables [18] that are used to communicate meaning are shape, colour and
orientation. The signs for the begin/end of a program have an octagonal shape, the
signs for moving (driving) have a round shape, and the signs for temporary stopping
or complex nested operation have a rectangular shape. The colours are used sparingly:
green for starting command, black for road and sensors, red for stopping command,
yellow for conditional execution, and blue for other commands. The orientation of
arrows on driving signs shows the direction of movement. Textual notation is used for
communicating simple meaning (“Start”, “Stop”, “Park”). Good visibility is ensured
by high contrast between background, foreground and text colour.

306 I. Plauska and R. Damaševičius

Table 2. Graphemes (visual tokens) of language and their interpretation

Grapheme Definition Designer’s
interpretation

User’s
interpretation

Match/Success

Road Defines a path of execution for
the robot

Drive, proceed to
next command

The metaphor of execution
is captured and transferred
to user well

(non stan-
dard sign)

Defines an entry point to the
program

Start driving robot Analogy to “STOP” sign is
used (shape), but colour is
changed to “prohibitive”
red to “permissive” green

Stop Defines an end point to the
program

Robot stops Analogy between the
concepts of stopping a
vehicle and finishing a
program is used

Ahead only Instructs a robot to drive for-
ward for a set amount of time

Robot drives
forward

Perfect match

(non stan-
dard sign)

Instructs a robot to drive
backward for a set amount of
time

Robot drives
backward

Analogy with driving
forward is used to create a
sign for “driving back-
ward”

Turn left Instructs a robot to turn left
using given the turn angle

Robot turns left Perfect match

Turn right Instructs a robot to turn right
using given the turn angle

Robot turns right Perfect match

Round-
about

Repetitive statement Loop Metaphor of driving
roundabout matches well
with repetition and looping
concepts

Recom-
mended
speed

Set a speed of driving Robot’s driving
speed, in percents

Good match (though some
unclarity in measurement
units is noted)

Parking Instructs a robot to stop driving
and wait for the given amount
of time

Pause, parking The meaning of sign is
understood intuitively well

Repair Instructs a robot to execute a
mission until the sensor com-
mand returns true

Robot performs
some operations

An analogy between repair
workshop and complexity
of robot mission is ob-
served

Speed
camera

Reads ultrasound sensor value
and returns true if sensor value
is higher than given threshold
value

Any sensor Metaphor of “Camera” as
on observing device is
extended to all kinds of
sensors

Y-
intersection

Defines two paths of execution
the selection thereof is defined
by value returned by the sensor
command

Conditional ex-
ecution

Decision on taking differ-
ent roads matches well
with metaphor of condi-
tional execution

(non stan-
dard sign)

Defines an intersection of two
paths of execution

Merging of ex-
ecution paths

Analogy with the Y-
intersection sign is used to
create a sign for a merger
of execution paths

 Design of Visual Language Syntax for Robot Programming Domain 307

4.2 Specification of Grammar Rules

The language is based on a metaphor of road traffic and follows a set of assumptions:

1. The behaviour of a robot is represented by a road metaphor.
2. Each road may consist of an unlimited number of sub-roads a robot must cover.
3. Road defines an independent path of execution.
4. Each road has its speed limitations valid until next intersection with another road.
5. Intersection means the end of incoming roads and beginning of outgoing roads.
6. There are two types of intersections. Join intersection has 2 incoming roads

and one outgoing road. Split intersection has one incoming road and 2 outgoing
roads.

7. Each road has only one beginning and only one end.
8. While on road the robot can execute a number of missions.
9. Each mission consists of implementing a pre-defined algorithm until specific con-

dition is met.
10. Conditions are defined by the value returned from a sensor.

The syntax of the VisuRobo language is defined using EBNF-like syntax extended
with visual tokens, geometrical relation primitives and topological operators (Fig. 4).

Fig. 4. Syntax description using visual extension of BNF

<program> ::= + <semi-road>

<semi-road> ::= + <road>
<road> ::= <sign> + <semi-road>

| <split-road> + (<semi-road> × <semi-road>)
| (<semi-road> × <semi-road>) + <join-road>

|

<split-road> ::= → ʘ (<s-name> <threshold>)

<join-road> ::= → ʘ (<s-name> <threshold>)

<sign> ::= ʘ <time> | ʘ <time>

| ʘ <angle> | ʘ <angle>

| | ʘ <time>
| <mission> | <loop>

<mission> ::= (ʘ <m-name>) → ʘ (<s-name> <threshold>)

<loop> ::= → ʘ (<s-name> <threshold>)

308 I. Plauska and R. Damaševičius

5 Conclusions

1. Visual Communication Model, which is based on the combination and amalga-
mation of ideas from [12, 14-19] as well as elements of ontological engineering.
The model defines the construction of visual language’s syntax and ensures
“low noise” communication due to shared domain and sign ontologies.

2. Visual Syntax Model for describing grammar of VPLs and meta-syntax of vis-
ual metalanguage. The metalanguage is an extension of EBNF with visual sym-
bols and nonlinear composition of rules that allows to define the syntax of VPL.

3. VisuRobo, an illustrative visual robot programming language, serves as a proof-
of-concept for the proposed Visual Communication Model, Visual Syntax
Model and visual metalanguage. The language uses a metaphor of road driving
for a mobile robot and uses a subset of visual signs adopted from the Road Sign
Ontology to facilitate transfer of meaning between language designers and us-
ers, and to deal with the sign interpretability problem.

4. The evaluation of the language syntax according to Barr [31] and Bertin [18] is
given. The familiarity of visual signs and the context of their use allow to trans-
fer the designer message to the users without significant semantic misinterpreta-
tions while the consistent use of visual variables (shape, colour and orientation)
allows to create a simple, usable and attractive vocabulary of the language.

Acknowledgement. The work described in this paper has been carried out within the
framework of the Operational Programme for the Development of Human Resources
2007-2013 of Lithuania „Strengthening of capacities of researchers and scientists"
project VP1-3.1-ŠMM-08-K-01-018 „Research and development of Internet tech-
nologies and their infrastructure for smart environments of things and services"
(2012-2015), funded by the European Social Fund (ESF).

References

1. Gentner, D., Stevens, A.L. (eds.): Mental Models. Lawrence Erlbaum Associates (1983)
2. Eisenstadt, M., Domingue, J., Rajan, T., Motta, E.: Visual Knowledge Engineering. IEEE

Transactions on Software Engineering 16(10), 1164–1177 (1990)
3. Zhang, K., Kong, J., Cao, J.: Visual Software Engineering. Wiley Encyclopaedia of Com-

puter Science and Engineering (2008)
4. Zhang, K.: Visual Languages and Applications. Springer (2007)
5. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide. Ad-

dison Wesley Longman Publishing Co., Inc., Redwood City (1999)
6. Bentrad, S., Meslati, D.: Visual Programming and Program Visualization – Towards an

Ideal Visual Software Engineering System. IJIT- ACEEE Int. Journal on Information
Technology 1(3), 56–62 (2011)

7. Myers, B.A.: Taxonomies of Visual Programming and Program Visualization. Visual Lan-
guages and Computing 1(1) (1990)

8. Burnett, M.: Visual Programming. In: J. Webster (ed.), Encyclopedia of Electrical and
Electronics Engineering. John Wiley & Sons (1999)

 Design of Visual Language Syntax for Robot Programming Domain 309

9. Deufemia, V.: A Grammar-based Approach to Specify and Implement Visual Languages.
PhD Dissertation, University of Salerno (2002)

10. Plauska, I., Damaševičius, R.: Usability Analysis of Visual Programming Languages Us-
ing Computational Metrics. In: Proceedings of the IADIS International Conference on In-
terfaces and Human-Computer Interaction 2013, Prague, Chech Republic, pp. 63–70 (July
2013)

11. Lakin, F.: Visual grammars for visual languages. In: Proc. of the Sixth National Confe-
rence on Artificial Intelligence AAAI 1987, vol. 2, pp. 683–688. AAAI Press (1987)

12. Shannon, C.E., Weaver, W.: The mathematical theory of communication. University of Il-
linois Press, Urbana (1949)

13. Mortensen, C.D.: Communication: The Study of Human Communication. In: Communica-
tion Models, ch. 2, McGraw-Hill Book Co. (1972)

14. Berlo, D.K.: The Process of Communication. Holt, Rinehart, and Winston (1960)
15. Souza, C.S.: The Semiotic Engineering of Human-Computer Interaction. MIT Press (2005)
16. Hari Narayanan, N., Hubscher, R.: Visual language theory: Towards a human computer inte-

raction perspective. In: Marriott, K., Meyer, B. (eds.) Visual Language Theory, pp. 87–128
(1998)

17. Tartre, M.: Theory of Visual Display (2013), http://www.metaperture.com
18. Bertin, J.: Semiology of Graphics: Diagrams, Networks, Maps. ESRI Press (2010)
19. Moody, D.L.: The “Physics” of Notations: Toward a Scientific Basis for Constructing Vis-

ual Notations in Software Engineering. IEEE Trans. Soft. Eng. 35(6), 756–779 (2009)
20. Devedzic, V.: Understanding Ontological Engineering. Communications of the

ACM 45(4), 136–144 (2002)
21. Guizzardi, G.: On Ontology, ontologies, Conceptualizations, Modeling Languages, and

(Meta)Models. In: Proc. of conference on Databases and Information Systems IV: Selected
Papers from the 7th International Baltic Conference DB&IS 2006, pp. 18–39. IOS Press
(2007)

22. Blackwell, A.F.: The reification of metaphor as a design tool. ACM Transactions on Com-
puter-Human Interaction (TOCHI) 13(4), 490–530 (2006)

23. Glasgow, J., Hari Narayanan, N., Chandrasekaran, B.: Diagrammatic Reasoning: Cogni-
tive and Computational Perspectives. MIT Press, Cambridge (1995)

24. Shaw, A.: A Formal Picture Description Scheme as a Basis for Picture Processing Sys-
tems. Inf. Control (14), 9–52 (1969)

25. Ledley, R.: Programming and Utilising Digital Computers. McGraw-Hill (1962)
26. Ng, A.W.Y., Chan, A.H.S.: Cognitive Design Features on Traffic Signs. Engineering Let-

ters 14(1), 13–18 (2007)
27. Anderson, B., Smyth, M., Knott, R.P., Bergan, M.S., Bergan, J., Alty, J.L.: Minimising

conceptual baggage: making choices about metaphor. In: Proc. of Conference on People
and Computers IX (HCI 1994), pp. 179–194. Cambridge University Press (1994)

28. Pousa, M., Motto, O., Carasusán, E.: Road Sign Ontology (2011),
https://raw.github.com/ecarasusan/roadsign/master/
roadsign.owl

29. Breitman, K.K., Barbosa, S.D.J., Casanova, M.A., Furtado, A.L.: Conceptual modeling by
analogy and metaphor. In: Proc. of the 16th ACM Conference on Information and Know-
ledge Management, Lisbon, Portugal, pp. 865–868 (2007)

30. Plauska, I.: Ontology for Robot Programming Domain. In: IVUS, pp. 51–56 (2013)
31. Barr, P., Noble, J., Biddle, R.: A semiotic model of user-interface metaphor. In: Liu, K.

(ed.) Virtual Distributed and Flexible Organisations, pp. 189–216. Kluwer Academic
(2003)

	Design of Visual Language Syntax for Robot
Programming Domain
	1 Introduction
	2 Elements and Models of Visual Communication
	2.1 Shannon-Weaver’s and Berlo’s Models of Communication
	2.2
Semiotic Engineering
	2.3 Visual Language Model
	2.4 Theory of Visual Display and Visual Variables
	2.5 Physics of Notations
	2.6 Ontological Engineering
	2.7
Proposed Model of Visual Communication

	3 Modelling the Syntax of Visual Language
	3.1 Lexical Definition
	3.2 Syntactical Definition
	3.3 Visual Syntax Model and Meta-syntax of Visual Language

	4 Case Study: Modelling Syntax of Visual Language
	4.1 Visual Vocabulary of the Language
	4.2 Specification of Grammar Rules

	5 Conclusions
	References

