

T. Skersys, R. Butleris, and R. Butkiene (Eds.): ICIST 2013, CCIS 403, pp. 122–133, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Process for Applying Derived Property
Based Traceability Framework in Software and Systems

Development Life Cycle

Saulius Pavalkis and Lina Nemuraite

Department of Information Systems, Kaunas University of Technology,
Studentu 50-313a, Kaunas, Lithuania

saulius.pavalkis@nomagic.com, lina.nemuraite@ktu.lt

Abstract. For implementing the idea of applying derived properties for tracing
project artifacts, the Derived Property Based Traceability Framework was
created that consists of Model-Driven Domain Specific Language (DSL) engine
for extending UML with derived property specifications, traceability schemas,
and traceability analysis means. Traceability schemas may be generic, suitable
for every purpose, but they often are characteristic to a development method,
modeling language or a particular project. The paper presents a process for ap-
plying the Derived Property Based Traceability Framework consisting of three
parts: process for adapting Derived Property Based Traceability solution for de-
velopment method or Domain Specific Language; process for applying the
solution in a development process, and process for automating the maintenance
of traceability relations. Process is illustrated with examples from several case
studies.

Keywords: traceability, derived properties, model-driven development, tracea-
bility framework.

1 Introduction

Traceability of software and systems models is an important aspect of Model Driven
Development. Current state of traceability implementations in CASE tools often lacks
flexibility, customizability and other qualities, analyzed by many authors and our
previous works [1]. Usually, traceability solutions cause significant overhead and
require routine efforts what often discourages from using traceability means at all.

We have proposed the traceability solution [1], based on derived properties, which
is directed for solving frequent traceability problems. In particular, traceability solu-
tions lack for automation; they pollute models with traceability information that can
be redundant, burdening specification and analysis; additional relationships introduce
dependencies and tight coupling among project stages that are incompatible with
principles of good architectural design; traceability schemas are hardly customizable
and maintainable.

 Process for Applying Derived Property Based Traceability Framework 123

The Derived Property Based Traceability Approach helps to avoid these problems
as traceability relations are automatically calculated by a CASE tool when they are
needed for analysis or validation of models. Derived attributes and relations of model
elements are accessible for developers and analysts in specifications, dialog windows,
visualization and analysis means in the same way as primary ones; so they do not
require additional skills or specific attention.

The proposed traceability solution involves a traceability metamodel, profile, and
the overall framework for implementing the solution [1], which is independent from a
particular CASE tool. However, developers may wish to create specific traceability
schemas for their chosen development methodologies and/or modeling languages as
traceability schemas depend on types of modeling concepts and relationships, which
are intended to trace.

Therefore, the goal of the paper is to present a complete process for ensuring tra-
ceability including adaption of the framework for different cases and automation of
maintaining traceability relations. The overall process for using Derived Property
Based Traceability approach consists of three parts: a process for adapting the
solution for a particular methodology or language; process for applying the adapted
solution in development projects; and a process for automating maintenance of tra-
ceability relations. We do not present here the traceability metamodel, profile, frame-
work etc., as such information is available in [1] and [2]; instead, we illustrate the
process with traceability schemas, validation rules etc., when needed.

The rest of the paper is structured as follows. Sections 2 − 4 present the process for
adapting, applying and automating derived property based traceability means in
CASE tools. Section 5 provides overview of experimental approval. Section 6 analys-
es related work and gives a comparison of the approach with existing capabilities of
similar tools. Section 7 presents conclusions and future works.

2 Process for Adapting Derived Property Based Traceability
Solution

Process for adapting Derived Property Based Traceability solution is shown in Fig. 1.
During creation of a traceability schema for a chosen modeling language, develop-
ment process or a problem, one has to identify traceable artifacts and create derived
properties for traceable links among these artifacts.

Choose Traceability Target. Any modeling language or development methodology
can be selected as a traceability target. E.g. it could be the SysML [3] for specifying
requirements, BPMN [4] for business analysis, and UML for software design. Stan-
dard or custom development processes (e.g. UP or SYSMOD [5]) can be used.

Identify Traceable Artifacts. In this step artifacts, whose evolution through project
stages should be traced, are identified. Unless this is a mission critical system or dif-
ferent requirements are specified by standard regulations, usually only main artifacts,
which influence stage or project completeness, are in focus. Too many artifacts will
introduce overhead for managing traceability. Traceability rules are created for each

124 S. Pavalkis and L. Nemuraite

relation between main artifacts, which relations are decided to be tracked. In order to
achieve two–way traceability, traceability rules are created for deriving properties of
both ends of traceability relations. Examples of such artifacts are BPMN Process,
UML Use Case, SysML Requirement.

Fig. 1. Process for adapting Derived Property Based Traceability solution

Create Traceability Schema. In order to create traceability schema, metaclasses of
artifacts identified in the previous step are associated with tracing relations. Properties
reflecting these associations will be owned by associations itself and will make no
influence on standard modeling language or process metamodels. Example of tracea-
bility schema is presented in Fig. 2.

Define Derived Properties for Traceability. Simple expressions can be used to specify
derived properties based on direct relationships, e.g. “Use Case → Satisfy → Require-
ment”. The advanced Metachain expression should be used for transitive relations, e.g.
“Business process → Abstraction → Use case → Abstraction→ Requirement → Satisfy
→ Component”. OCL expressions and scripting languages should be used in more
complex cases, e.g. for specifying recursive relations. An example of OCL expression
for derived relation between component and use case (Fig. 2) is presented in Fig. 3.

 Process for Applying Derived Property Based Traceability Framework 125

Fig. 2. Traceability schema for software development process

Fig. 3. OCL expression for derived property

Group Derived Properties into Categories, e.g. specification and realization groups
(if traceability relation is established between artifacts of business process and its
implementation, we treat traceability rules as realization ones; if we are going from
implementation to business process, we consider them as specification rules).

Store Reusable Traceability Schema as a Module. Traceability schemas (sets of
traceability relations) are dependent on traceability context – e.g. modeling language
such as BPMN or software engineering process. It is desirable to keep traceability
schemas in UML profiles and implement them as separate modules that could be
loaded and reused in various projects. Derived properties defined in the loaded mod-
ule are added to elements of considered models.

Specify Traceability Validation Rules. On the base of traceability schemas we can
create validation rules and automate model analysis for checking model completeness
(finding model elements not covered with their realizing artifacts, or identifying re-
dundant artifacts); ensuring absence of cyclic traceability relations (i.e. such relations
when e.g. one element is involved in both realizing and specifying traceability rela-
tions with another element).

126 S. Pavalkis and L. Nemuraite

OCL allows not only to specify traceability rules, but also to execute them. Having
predefined traceability validation rules and using validation engine it is possible to
check project for model completeness and cyclic traceability relations. Completeness
validation rules are created for checking completeness of traceability (coverage of
artifacts), e.g. each Use Case should be traced by at least one Requirement (Fig. 4).

Fig. 4. OCL expression for artifact completeness validation rule

Adapt Visualization and Analysis Means for a Particular Traceability Schema.
There are multiple types of UML relationships, properties and custom tags that can be
used for traceability visualization. In order to help to quickly visualize traceability,
custom (derived) properties are treated in the same way as regular element properties
and can be represented on diagrams, validated with validation engine, and inserted
into generated documents. Traceability property groups are visible in Element Speci-
fications, Quick Properties, Go To, Reports, etc. Traceability information is available
in Relation Maps for multi-level graph type traceability analysis; Dependency Matrix
may be used for visualizing single level traceability and analyzing gaps. In order to be
able to efficiently create and use traceability visualization means they can be prede-
fined and distributed together with traceability schema.

3 Process for Applying Derived Property Based Traceability
Solution

Process for applying Derived Property Based Traceability solution is shown in Fig. 5.

Apply Traceability Schema for Project. If traceability schema is held in a separate
module (i.e. reusable project part) it can be loaded in a project and used starting from
the beginning of the project or at any moment of already going project. If reusable
traceability schema comes together with validation suites and visualization means,
tree main immediate changes are observed on traceability module used in the project:
1) traceability properties appear in element specifications, context menu, and other
places, and are immediately evaluated; 2) validation suites (if automatic) check model
for completeness; incomplete and redundant artifacts are shown; 3) traceability visua-
lization and analysis means (Dependency Matrix, Relation Map Dedicated reports,
Generic tables are available and ready to be used).

Perform Coverage Analysis. The Coverage analysis gives coverage information at
immediate higher (e.g., Specification) or lower (e.g., Realization) levels having the
objective is to visualize and verify that artifacts of different stages, e.g., analysis,
design, and implementation, are covered. It allows finding areas of not covered parts
and to evaluate coverage metrics, to improve an understanding of the system and
acceptance of the system accordingly.

 Process for Applying Derived Property Based Traceability Framework 127

Fig. 5. Process for applying Derived Property Based Traceability solution

Calculate Traceability and Coverage Metrics. Examples of coverage metrics,
which could be calculated for requirements of the overall system or level n:

1. The percent Fr of requirements in level n derived from requirements at level n+1: ܨ௥ ൌ ܴԢ௡,௡ାଵܴ௡ 100%

Here R’n,n+1 is a number of requirements derived from requirements in level n+1;
Rn − a number of all requirements in level n.
2. The percent Or of requirements in level n excluding orphans derived from require-

ments at level n+1:

௥ܱ ൌ ܴԢ௡,௡ାଵሺܴ െ ܱሻ௡ 100%

Here Rn,n+1 is a number of requirements derived from requirements in level n+1;
(R−O)n − a number of all requirements in level n excluding orphans.
3. The percent Vr of requirements in level n that are not verified (have no incoming

verify relations):

௥ܸ ൌ ௡ܴܸ௡ 100%

Here Vn is a number of requirements in level n that are not verified.

128 S. Pavalkis and L. Nemuraite

4. The percent Sr of requirements in level n that are not satisfied by functions (used
only at Sub-system level): ܵ௥ ൌ ܵ௡ܴ௡ 100%

Here Sn is a number of requirements in level n that are not satisfied by functions
(i.e. having no incoming Satisfy relationships from PrincipleSet or Activity).
5. The percent Sr of requirements in level n that are not satisfied by structural ele-

ments (i.e. having no incoming Satisfy relationships from System, Subsystem,
Product, etc.): ܵܧ௥ ൌ ௡ܴ௡ܧܵ 100%

Here SEn is a number of requirements in level n that are not satisfied by structural
elements.
6. The percent STr of requirements in level n that are not covered with Safety and

Tests (i.e., have no outgoing trace relationships to requirements in level n+1) : ܵ ௥ܶ ൌ ܵ ௡ܴܶ௡ 100%

Here STn is a number of requirements in level n that are not are not covered with
Safety and Tests.

Perform Completeness Analysis. It is possible to evaluate model against validation
rules, which are checked automatically in all model or in a certain scope on demand.
Results of validation rules evaluation show model elements, properties and diagrams,
which does not satisfy validation constraints. One can see areas not yet covered with
artifacts – incomplete ones, and redundant artifacts.

4 Automating Traceability Solution

Using derived property approach, traceability relations are automatically evaluated by
derived property engine via calculating derived property values. However, without
automation means for creating and updating derived properties, the approach would
have a significant overhead, which would greatly discourage its usage in projects.
Process for adapting and applying the Framework for Creating Custom Wizards
(FCCW) [6] for automation of creating traceability relations and updating traceability
information is shown in Fig. 6.

Choose Development Process for Automation. It is the first step in automating tra-
ceability. In the paper [6] two examples are presented about applying the proposed
method for RUP-based workflow for use case modeling and capturing robustness
analysis classes.

Create Process Workflow. Workflow, which will be automated, should be specified
using Software Process Engineering Metamodel v2.0. In particularly, Process diagram
needs to be used.

 Process for Applying Derived Property Based Traceability Framework 129

Fig. 6. Process for applying FCCW for automating creation and updating of traceability relations

Identify Traceability Steps for Automation. Further, process steps, which will be
automated, are identified. FCCW allows having 4 types of automation: creating an
element which symbolizes the target model and defines its name; capturing elements
and defining their properties, and listing elements existing in a model; joining ele-
ments with editable matrix like table to represent element relations; informing, navi-
gating and invoking other features.

Supplement Workflow with Automation Specific Information. The specified process
steps, which will be automated, are stereotyped with FCCW specific stereotypes identify-
ing required automation type. Execution dedicated properties of each step are specified.

Create Process Execution Wizard. On the base of the specified workflow, FCCW
stereotypes and their property information, executable wizard specification is created.
To be generated wizard will guide through the workflow of traceability creation,
analysis and update according to the chosen methodology, providing step-by-step
dialog for tracing and creating elements. The wizard output is a model, from which
further artifacts can be created: views, documentation, coverage analysis reports, etc.

Trace Project Using Traceability Guidance. The specified wizard can be included into
a reusable traceability module together with traceability schema, validation rules and
predefined view information. The wizard provides automation for gathering data accord-
ing rules of modeling language and visualizing, creating and maintaining traceability.

130 S. Pavalkis and L. Nemuraite

5 Experimental Approval

Three experiments were conducted for evaluating the suitability of the Derived Prop-
erty Based Traceability approach for implementing traceability solutions for software
and system development processes, and modeling language BPMN. The experiments
have shown that the approach is capable ensuring consistency of project artifacts, to
analyze change impact, and to avoid typical traceability problems for software devel-
opment [1] and for systems development [7] processes. It is capable to solve tracea-
bility problems of BPMN 2 models [8]: lack of traceability between BPMN processes
and resource roles, BPMN processes and business concepts, participants and messag-
es, thus allowing validating BPMN 2 models for correctness and completeness, and
performing change impact analysis;

Discussion of Threats to Validity. The major threat of validity of the approach is an
overhead raised by applying any traceability approach. This thread is eliminated in
mission critical projects (e.g. health care, military, nuclear engineering, aerospace) in
which traceability is of the great importance. The threat could be minimized in regular
projects if only major artifacts are traced, and traceability automation means are used
such us editable matrix for traceability relations, traceability validation suites, etc.

Another threat is the reliability of traceability validation results. Even approach is
straightforward its results depend on how well it is followed. Also, if we validate cover-
age of major artifacts, we would not validate a quality of covering artifacts. To do so,
validation constraints need to be extended to validate the content of covering artifacts.

6 Related Works

Early empirical studies showing importance of traceability for validating complete-
ness of software or system projects have been published by Gotel and Finkelstein [9],
Watkins and Neal [10], Ramesh and Edwards [11]. Aizenbud-Reshef et al. [12] em-
phasized the importance of automating traceability. We noticed three research direc-
tions for automatic creation and maintenance of traceability links: 1) Text mining and
information retrieval techniques for recovering traceability links between software
artifacts (e.g., [13]−[14]); 2) Establishing traceability links by monitoring users’ mod-
ifications and analyzing change history; 3) Deriving traceability links from existing
ones. The latter principle as less time consuming was used in our Derived Property
based approach. We have supplemented it with two additional possibilities for reduc-
ing a manual input in creation and maintenance of traceability relations and obtaining
a higher usability:

• Creating traceability information during model transformations. Automatic crea-
tion of traceability relations during transformation is analyzed in [13], [14]−[17].
As transformations are especially popular in Model Driven Engineering [18]−[25],
we treat relations created during transformations as traceability ones.

• Analysis of existing relationships to obtain implied relations [26]. In our approach,
a part of traceability information is based on transitive relations.

 Process for Applying Derived Property Based Traceability Framework 131

Comparison of existing traceability solutions in CASE tools with implementation
of Derived Property Based Traceability approach in MagicDraw is presented in the
Table 1:

Table 1. Comparison of existing traceability solutions in CASE tools

Criteria / CASE tool

R
at

io
na

l S
of

t-
w

ar
e

A
rc

hi
te

ct

V
is

ua
l P

ar
a-

di
gm

E
nt

er
pr

is
e

A
rc

hi
te

ct

M
od

e-
lio

R
eq

ti
fy

M
ag

ic
D

ra
w

1. Traceability schema and rules are easy
customizable and model driven − − − − +/− +

2. Capabilities of modeling tool are reusa-
ble for traceability analysis and visualiza-
tion

+ + + + − +

3. Model is not polluted by traceability
information + +/− − − + +

4. Model is loosely coupled + +/- − − + +
5. Creation and maintenance of traceabili-
ty relations is automatic and flexible +/− +/- − +/- + +/−

6. Suggests traceability schemas + +/- − − + +
7. Coverage/completeness/change man-
agement analysis. +/+/− −/−/− −/−/− +/+/+ +/+/+ +/+/+

Analysis of existing traceability based solutions in CASE tools has shown that the

presented solution provides advantages against other currently existing ones. The only
equal solution with a similar number of steps to adapt to a custom development me-
thod is supported by the non-modeling tool − Geensoft Reqtify. Unfortunately, it
requires programmatic integration with a modeling tool and adoption to a custom
development method, what is not easy to achieve.

7 Conclusions and Future Works

The use of the proposed process by the real life examples for systems and software
modeling projects and BPMN language has shown that the presented process provides
the complete, development method independent methodology for adapting, using and
automating the proposed traceability solution based on derived properties making it
available for every model driven CASE tool.

Implementation of the approach in UML CASE tool MagicDraw has approved the
expected quality criteria and was favorably met by MagicDraw users. It may be ac-
complished much faster and easier in comparison with traceability solutions of other
CASE tools, which analysis revealed the advantages of the proposed process. The
only equal solution with a similar number of steps to adapt to custom development
method is supported by non-modeling tool − Geensoft Reqtify but it requires pro-
grammatic integration with a modeling tool and adaption to a custom development
method, what is not easy to achieve.

132 S. Pavalkis and L. Nemuraite

Derived Property Based Traceability Approach already has been successfully
adapted by companies including large aerospace and telecommunication corporations
and academic institutions.

In our future work, we are planning to deepen our approach on the base of acquired
practical experience: to automate transition from traceability metamodel to derived
properties as this step could be fully automated; to help creating required traceability
solutions by validating non-traced elements and automatically suggesting required rela-
tions to be created by using validation engine; to develop more powerful, comprehen-
sive traceability schemas for modeling databases, business processes and enterprise
architectures, which would be reusable across a large variety of software projects.

Acknowledgements. The work is supported by the project VP1-3.1-ŠMM-10-V-02-
008 “Integration of Business Processes and Business Rules on the Basis of Business
Semantics” (2013-2015), which is funded by the European Social Fund (ESF).

The authors would like to thank No Magic, Inc, especially the MagicDraw UML
product team for the comprehensive support.

References

1. Pavalkis, S., Nemuraite, L., Butkiene, R.: Derived Properties: A User Friendly Approach
to Model Traceability. Information Technology and Control 42(1), 48–60 (2013)

2. No Magic, Inc. UML Profiling and DSL (2011), https://secure.nomagic.com/
files/manuals/UML%20Profiling%20and%20DSL%20UserGuide.pdf

3. OMG. OMG Systems Modeling Language (OMG SysML), Version 1.2. OMG, OMG
Document Number: formal/2010-06-01 (2010)

4. OMG. Business Process Model and Notation (BPMN), Version 2.0. OMG, OMG Docu-
ment Number: formal/2011-01-03 (2010)

5. SYSMOD, The Systems Modeling Process (2011), http://sysmod.system-
modeling.com/

6. Silingas, D., Pavalkis, S., Morkevicius, A.: MD Wizard - a model-driven framework for
wizard-based modeling guidance in UML tools. In: Proceedings of the International Multi-
conference on Computer Science and Information Technology, pp. 609–615. IEEE Com-
puter Society Press, Los Alamitos (2009)

7. Pavalkis, S., Nemuraite, L.: Lightweight Model Driven Process to Ensure Model Tracea-
bility and a Case for SYSMOD. In: 2013 2nd International Conference on Advances in
Computer Science and Engineering (CSE 2013), pp. 2019–2223. Atlantis Press (2013)

8. Pavalkis, S., Nemuraite, L., Milevičienė, E.: Towards Traceability Metamodel for Busi-
ness Process Modeling Notation. In: Skersys, T., Butleris, R., Nemuraite, L., Suomi, R.
(eds.) Building the e-World Ecosystem. IFIP AICT, vol. 353, pp. 177–188. Springer, Hei-
delberg (2011)

9. Gotel, O.C.Z., Finkelstein, A.C.W.: An analysis of the requirements traceability problem.
In: Proceedings of the 1st IEEE International Requirements Engineering Conference (RE
1994), pp. 94–101. IEEE Computer Society, New York (1994)

10. Watkins, R., Neal, M.: Why and how of requirements tracing. IEEE Softw. 11(4), 104–106
(1994)

 Process for Applying Derived Property Based Traceability Framework 133

11. Ramesh, B., Edwards, M.: Issues in the development of a requirements traceability model.
In: Proceedings of the IEEE International Symposium on Requirements Engineering, pp.
256–259. IEEE Computer Society, New York (1993)

12. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceability. IBM
Systems Journal 45(3), 515–526 (2006)

13. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering traceability
links between code and documentation. IEEE Transactions on Software Engineer-
ing 28(10), 970–983 (2002)

14. Hayes, J.H., Dekhtyar, A., Osborne, J.: Improving requirements tracing via information re-
trieval. In: Proceedings of the 11th IEEE International Requirements Engineering Confe-
rence, pp. 138–147 (2003)

15. Mens, T., Van Gorp, P.: A taxonomy of model transformation. In: Proceedings of the In-
ternational Workshop on Graph and Model Transformation (GraMoT 2005), March 27.
Electronic Notes in Theoretical Computer Science, vol. 152, pp. 125–142 (2005)

16. Porres, I.: Rule-based update transformations and their application to model refactorings.
Software and Systems Modeling 4(2), 368–385 (2005)

17. Van Gorp, P., Janssens, D., Gardner, T.: Write once, deploy N: A performance oriented
MDA case study. In: Proceedings of the IEEE International Conference on Enterprise Dis-
tributed Object Computing, pp. 123–134 (2004)

18. Schmidt, C.: Model-Driven Engineering. IEEE Computer 39(2), 25–31 (2006)
19. Briand, L.C., Labiche, Y., Yue, T.: Automated traceability analysis for UML model re-

finements. Information and Software Technology 51(2), 512–527 (2009)
20. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On Challenges of Model Transformation

from UML to Alloy. Journal on Software & System Modeling 9, 69–86 (2010)
21. Meijler, T.D., Nytun, J.P., Prinz, A., Wortmann, H.: Supporting fine-grained generative

model-driven evolution. Software and Systems Modeling 9(3), 403–424 (2010)
22. Bryant, B.R., Gray, J., Mernik, M., Clarke, P.J., France, R.B., Karsai, G.: Challenges and

Directions in Formalizing the Semantics of Modeling Languages. Computer Science and
Information Systems 8(2), 225–253 (2011)

23. Recker, J.: Modeling with tools is easier, believe me − The effects of tool functionality on
modeling grammar usage beliefs. Information Systems 37, 213–226 (2012)

24. Ablonskis, L., Nemuraitė, L.: Discovery of complex model implementation patterns in
source code. Information Technology and Control 39(4), 291–300 (2010)

25. Lopata, A., Ambraziunas, M., Gudas, S., Butleris, R.: The main principles of knowledge-
based information systems engineering. Elektronika ir Elektrotechnika 4(120), 99–102
(2012)

26. Sherba, S.A., Anderson, K.M., Faisal, M.: A Framework for Mapping Traceability Rela-
tionships. In: Proceedings of the 2nd International Workshop on Traceability in Emerging
Forms of Software Engineering, Montreal, Canada (September 2003)

	Process for Applying Derived Property Based Traceability Framework in Software and Systems
Development Life Cycle
	1 Introduction
	2 Process for Adapting Derived Property Based Traceability Solution
	3 Process for Applying Derived Property Based Traceability Solution
	4 Automating Traceability Solution
	5 Experimental Approval
	6 Related Works
	7 Conclusions and Future Works
	References

