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Abstract. User generated virtual worlds, such as Second Life, typically
lack accurate metadata for their virtual world objects. This is a signifi-
cant problem for blind users who rely on textual descriptions in order to
access virtual worlds using synthetic speech. In this paper, we consider
the problem of automatic object labeling to improve accessibility of vir-
tual worlds for users with disabilities. Taking advantage of the primitive-
based representation of virtual world objects in Second Life, we present
an approach that leverages histogram-based geometric object represen-
tations, machine learning and crowdsourcing to accurately label virtual
world objects at a large scale. We report excellent classification results
using seven challenging object classes.

1 Introduction

Though virtual worlds, such as Second Life, have somewhat waned in popularity
over the past years, they still attract a respectable number of users and are still
very profitable [2]. A number of accessible interfaces [8, 1, 3] have been developed
that allow users with visual impairments to navigate their avatar and explore
Second Life using audio, for example, by extracting textual descriptions that can
be read with a screen reader [8]. Such interfaces require textual descriptions of
objects to be present in order to create descriptions of the avatar’s environment.

Second Life’s content is entirely user generated. When users create new ob-
jects, they typically leave the object’s name to its default value. A study of
Second Life content in 2009 revealed that nearly 32% of Second Life’s objects
are called “object” [16]. This accessibility problem is similar to web images lack-
ing the alt attribute tag. Over the past years, a number of techniques have been
developed for labeling virtual world objects in order to make virtual worlds more
accessible. This is a challenging problem since the same object can be created in
completely different ways (i.e., using different number and type of primitives) by
different users. These techniques typically employ some form of crowdsourcing
(i.e., humans provide object descriptions).

Although object recognition is a task where average human performance out-
performs machine learning, labeling millions of objects is a tedious and time
consuming task when done manually. Unlike objects in real images where it
may be difficult to segment due to background clutter, extracting virtual world
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objects does not require explicit segmentation as they can be captured in isola-
tion from the background. Virtual world objects are represented using geometric
primitives which enables extracting geometric object representations efficiently
and fast. In this paper, we present an approach that uses a small amount of
crowdsourcing efforts to train a classifier that enables large-scale, real-time la-
beling of virtual world objects.

The rest of the paper is organized as follows: Section 2 reviews related work.
Section 3 describes the proposed approach. Our experimental evaluation and
results are provided in Section 4. Section 5 discusses our results and provides
directions of future work.

2 Related Work

Various techniques have been proposed for 3D object classification and retrieval.
Many of them analyze 3D objects by considering a monolithic 3D model [13,
14, 15, 5, 10, 17]. These techniques rely on extracting shape features that are
invariant to geometric transformations.

In [5], second-order 3D and spherical-kernel moment invariants are extracted
from the density function in order to represent objects with a set of rotation-
scale-translation invariant features. These features are used to find the closest
match over a database of objects.

In [13], the creation of a ”shape function” was proposed. First, randomly
selected points are sampled on the surface of an object. These points are then
used to compute geometric object properties such as the Euclidean distance of
two random points, the square root of the area of the triangle formed by three
random points, etc. These properties, which are called shape functions, are used
to extract shape distributions, and compare them against each other to find out
which one can better represent different classes of objects.

Using machine learning to automatically label 3D objects was proposed in
[17] using features such as volume-surface ratio, moment invariants, and Fourier
transform coefficients. A different approach considered the topological and skele-
tal object structure by utilizing multi-resolution Reeb graphs [10].

In [11], 3D objects are divided into smaller parts followed by classification.
These parts are grouped into part classes. To classify an object, points are sam-
pled on the query object and are compared to different parts, yielding a proba-
bility that this object belongs to a class.

In a related approach, instead of dividing the object into parts, the object
is rendered in a volume using voxels [6]. Only the voxels inside the object are
taken into consideration. Features are extracted from those voxels and stored
in histograms. Support Vector Machines (SVM) are then used for training and
classification.

A more recent work utilizes the bag of features technique [7]. Similarly to
previous technique, the object is rendered in a volume using voxels. Points are
sampled in the object and local patches are extracted based on the points. These
patches are then represented as histograms which are used for classification.
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3 Approach

We present an automated approach which consists of four main steps (see Fig. 1):

1. Collect objects using a spider.
2. Filter objects to remove noise and duplicates.
3. Extract useful features.
4. Train a classifier to distinguish among different object classes.

Object Collection. An automated agent/spider has been developed which can
control an avatar in the virtual world, and can teleport automatically from region
to region. In each region, the agent collects objects in that region and stores them
in an XML file using their unique identifier as their name. By passing keywords as
parameters, the agent collects specific objects we are interested in; for example,
it can collect all objects that have a specific name as a substring in their name.

Filter Objects. The agent collects objects based on their name. For example,
passing the keyword “table” results in a collection of objects whose name includes
the string “table”. This means that the agent may collect objects that are both
tables (e.g., “my table”) but also not tables (e.g. “table lamp”, “table cloth”).
Moreover, it can collect mislabelled objects. To verify the correctness of the
collected objects, we need to filter them by visually inspecting them.

Because this may involve large amounts of human effort, we use a crowd-
sourcing marketplace where human workers are paid to verify the correctness
of a label given a picture of that object. Crowdsourcing can be done in a large
scale at a low cost; a higher level of accuracy may be expected when involving
a higher number of individuals for verifying the labels. Our agent can take the
XML definition of an object as input and render it in the virtual world. We
render objects in a white box to allow for a good contrast between the object
and the background. For objects that are white, a different background color is
used. The objects are scaled to fit and fill the box so as to make sure the picture
contains the whole object. The agent takes a snapshot from each object at a
certain distance. Then, the snapshot is saved as an image into a folder that is
named after the object’s class.

Fig. 1. A four step process is used for classifying objects: (1) objects are collected based
on their class name; (2) crowdsourcing verifies the correctness of each object class name;
(3) useful features are extracted to represent each object and (4) a classifier is trained
to classify objects into known object classes
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These pictures are used to create human intelligence tasks (HITs) at a crowd-
sourcing marketplace, where workers are paid to confirm whether the label of
an object matches its picture. The results of multiple HITs are compared to
determine the accuracy of a given label for an object. Although this reduces the
possibility of wrong labels, it does not completely eliminate objects having wrong
labels. Therefore, when training a classifier, some training examples might have
been labelled incorrectly.

Determine Useful Features. The previous step results in a set of objects
with accurate labels that can be used to train a classifier. In Second Life, 3D
objects are formed by 3D primitives or prims (e.g., boxes, spheres etc.) instead
of meshes. Various features can be extracted from each primitive. Here, we have
experimented with the type of prims, their size, orientation, and eccentricity.

Prim type describes the type of the primitive (e.g., box, sphere, cylinder,
etc.). Second Life contains eight main prim types. These prim types are box,
sphere, cylinder, prism, torus, tube, ring, and unknown. It should be mentioned
that besides the main prim types, there is a special prim type called ”sculpted”
prim whose shape is determined by an array of x, y, z coordinates stored as RGB
values in an image file (i.e. texture or map). Since the properties of each sculpted
prim are mainly defined by embedded textures rather than parameters which are
common in all other types, the encapsulated information may be misleading for
a learning agent. Therefore, objects with sculpted prims were not included in
our data set.

Size refers to the volume of the bounding box of a primitive. For scale in-
variance, we represent it as the ratio of the volume of the primitive to the total
volume of the object (i.e., sum of prim volumes). Orientation is defined as the
relative angle between the primitive’s orientation and the object’s average orien-
tation; this is also rotation invariant. We estimate the average orientation of an
object by the orientation of its largest dimension. Finally, eccentricity is defined
in scale invariant way as the ratio of the smallest to the largest dimension of the
primitive.

Besides these features, several other features were explored. Some prims in
Second Life, for example, have taper and/or twist. Taper thins out either the
top or the bottom side of prim while twist twists either the top or the bottom side
of the object. However, after running several experiments using these features,
our results indicated that they were not helpful in distinguishing between object
classes. In addition, color was taken into consideration but was discarded quickly
as in virtual worlds, objects typically have a wide range of colors.

To take advantage of the prim-based representation of objects in Second Life,
we have adopted a bag-of-features approach [4] which has demonstrated good
success in computer vision. In the bag-of-features approach, objects are repre-
sented as order-less collections of local features using histograms. The main idea
is quantifying the number of occurrences of local features in an object. Since the
number of local features might be very large, a visual vocabulary is typically
built by clustering the local features. Features belonging to the same cluster are
represented by the center of that cluster which is referred to as ”visual” word.
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Therefore, bag-of-features represent objects as histograms of visual words drawn
from a visual vocabulary which is built from local features.

When using type as a feature, each prim type is considered as a visual word.
In this case, each object is represented as a histogram which encodes the relative
frequency of occurrence of each prim type in an object. When using any of other
of the three features (i.e., size, orientation, eccentricity), the visual words are
defined by dividing the range of values that each feature can assume into a
number of bins and associating the center of each bin with a visual word. In
this case, each object is represented as a histogram which encodes the relative
frequency of occurrence of various feature values in the object.

It should be mentioned that building the visual vocabulary for each feature is
fast and easy. In general, the bag-of-features approach is sensitive to background
clutter since it cannot distinguish between objects and background. This is not
an issue in Second Life since objects in virtual worlds are defined independently
of other objects.

Classifier Training. The histograms described in the previous section are used
for training the object classifier. From our experiments, we have found that using
each feature separately does not provide enough discrimination. However, more
powerful object representations can be built by considering combinations of fea-
tures. For this reason, we have investigated combinations of features by building
joint histograms where each dimension corresponds to a different feature. Joint
histograms provide more discriminatory information, however, they are memory
and time consuming. Moreover, they tend to be quite sparse which implies that
some kind of dimensionality reduction is necessary to eliminate redundancy and
improve classification time and accuracy.

To address the issues above, we have adopted Linear Discriminant Analy-
sis (LDA) [12]. LDA is a powerful dimensionality reduction technique which
projects the data into an appropriate space where inter-class variability is max-
imized while intra-class variability is minimized. The reduced dimensionality
data is used to train a Support Vector Machine (SVMs)classifier [9]. SVMs are
supervised classifiers that have been shown to be an attractive and more sys-
tematic approach to learning linear or nonlinear decision boundaries. Given a
set of points and assuming two classes, SVM finds the hyper-plane leaving the
largest possible fraction of points of the same class on the same side, while max-
imizing the distance of either class from the hyper-plane. This is equivalent to
performing structural risk minimization. Here, we use a multi-class SVM which
is a generalization of the two-class SVM classifier.

4 Experiments

We have validated our technique experimentally using objects extracted from
Second Life.

Collect Objects. An agent for Second Life was developed in Windows using
the LibOpenMetaVerse library. For our experiments, we had the agent collect
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Table 1. The first line indicates the number of items collected from Second Life.
Consecutive lines represent the number of items that were filtered out and the last line
shows the final number of remaining items.

Buildings Cars Chairs Lamps Plants Tables Trees

Items Collected 2880 821 3144 2170 2658 1207 3317
1-prim items -1639 -374 -14 -666 -1608 -147 -2179
2-prim items -185 -46 -22 -247 -269 -117 -223

Duplicate items -284 -104 -58 -548 -520 -47 -593
Items with sculpts -4 -44 -27 -57 -62 -11 -139

AMT -329 -165 -2619 -115 -59 -153 -50

Final # of items 439 88 404 537 140 732 133

objects for the following seven object classes: “building”, “car”, “chair”, “lamp”,
“plant”, “table”, “tree”. Table 1 shows the number of objects collected for each
class. These classes were chosen because a the plethora of examples available for
each one of them in Second Life. It should be noted that some object classes
are structurally very similar (e.g., see Figure 2), making it challenging to define
appropriate features for accurate classification.

Filter Objects. Before training, the objects collected are filtered through var-
ious stages. First, objects with one or two primitives are removed because they
do not contain enough information for classification purposes. Then, we filter
objects using Amazon Mechanical Turk (AMT) which is a popular marketplace
for HITs. Pictures were created for each object and used to create HITs in AMT.
Workers were asked to confirm a given label for 10 images by checking a checkbox
under each image. Seven to nine out of ten images used in each HIT were taken
out of our collected items and the remaining one to three were taken from an-
other set of images of virtual people (avatars) and places. Noise was introduced
to be able to detect and filter out the entries submitted by unreliable workers,
who may just label all or no objects. Figure 3 shows an example HIT.

The remaining objects are further filtered in order to remove potential
duplicates.

Classification. To investigate the importance of various feature combinations,
we have experimented with joint feature histograms where each dimension

Fig. 2. An example of a table and a chair that look very similar
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Fig. 3. A sample HIT with 7 images of tables and 3 noisy images

Table 2. Examples of joint histogram sizes before and after excluding empty bins

number of bins before number of bins after

2D 4500 2257

3D 90000 5528

4D 720000 7537

corresponds to a different feature. The entries of joint histograms are determined
by computing the number of occurrences of combinations of feature values in an
object.

When considering three or four features together, the corresponding his-
tograms might have very large size which becomes problematic when applying
LDA. Since most entries in joint histograms are empty, we only keep track of
non empty bins. By taking the union of non-empty bins across all objects in
our dataset, we determine which bins are most important (i.e., contain non-zero
entries). These bins are then concatenated into a one dimensional histogram of
fixed length which is used to represent objects in our dataset more efficiently.
This process reduces the size of histograms significantly as shown in Table 2,
without omitting any useful information.

The concatenated 1D histograms are then provided to LDA which determines
the most discriminatory features. The results of LDA are used to train the SVM
classifier To test the accuracy of the classifier, we used a five-fold cross-validation
procedure. In five-fold cross-validation, the data is randomly divided into five
mutually exclusive partitions of equal size. Then, one of this partitions is chosen
for testing the classifier while the other four are used for training the classifier.
This process is repeated five times, each time using a different partition for
testing and the other four partitions for training. We report the average five-fold
cross validation error.

Parameters. An important parameter when computing the histograms is the
number of histogram bins. To see how this parameters affects classification per-
formance, we performed experiments by varying the number of bins from ten
to hundred with a step of five (except for type where the number of bins was
equal to the number of prim types). Figure 4 shows our results in the case
of size, orientation, and eccentricity. As it can be observed, best results were
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Fig. 4. Success rate of different features by varying the number of histogram bins

Fig. 5. Graphs of various features’ success rate based on the amount of threshold

obtained using 90-100 bins for size, 10-20 bins for orientation, and 35-45 bins for
eccentricity.

We also considered removing primitives having very small size as they might
introduce mostly noise. Specifically, prims that were smaller than a percentage
of the whole object were removed. Various levels of thresholding were consid-
ered starting from 0% and going as high as 10% in increments of 1%. For each
feature, we experimented with all three optimum number of bins found in the
previous experiment. Our experimental results, shown in Figure 5, indicate that
thresholding does not improve classification accuracy.
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Fig. 6. Results for 1D histograms

Results. In this section, we report our results using 1D histograms (i.e., using
each feature separately), 2D histograms (i.e., using pairs of features) and 3D
histograms (i.e., using triplets of features). For each feature, we have considered
the optimum number of bins found in the previous subsection.

Fig. 6 shows our results using 1D histograms; as expected, performance is
rather poor indicating that more information is need for discriminating among
the object classes. Best results (i.e., 57.67%) were obtained using eccentricity.

Next, we investigated 2D histograms; Tables 3,4,5,6, show different combina-
tions with performance being for most combinations between 55% to 65%. While

Table 3. Results for 2D histograms Type-Size, Type-Orientation, and Type-
Eccentricity

Type-Size Type-Orientation Type-Eccentricity

90 95 100 10 15 20 35 40 45

64.15% 65.01% 64.89% 54.77% 54.65% 54.40% 61.37% 64.73% 64.48%

Table 4. Results for 2D histogram Size-Orientation

10 15 20

90 56.21% 62.27% 65.92%

95 57.27% 63.05% 67.39%

100 58.38% 64.07% 68.05%
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Table 5. Results for 2D histogram Size-Eccentricity

35 40 45

90 94.35% 95.58% 97.05%

95 95.62% 96.27% 98.07%

100 96.31% 97.17% 97.95%

Table 6. Results for 2D histogram Orientation-Eccentricity

35 40 45

10 59.12% 62.02% 62.97%

15 62.39% 63.50% 65.87%

20 66.00% 68.13% 69.32%

these results are better than the results obtained using 1D histograms, they are
still not satisfactory. However, the combination of size with eccentricity yields a
much higher performance between 94% and 98%. This implies that combining size
and eccentricity provides high discriminatory information for the 7 object classes.

Our results using 3D histograms are shown in Tables 7,8,9 ,10. As it can be
observed, the combination of size, orientation, and eccentricity yields the best
results, reaching a classification accuracy as high as 99.96%. These results are
consistent with the results obtained using 2D histograms; the addition of an
extra feature to the size-eccentricity combination has improved performance.

Table 7. Results for 3D histogram Type-Size-Orientation

10 15 20

90 83.24% 89.27% 90.17%

95 83.04% 88.28% 90.76%

100 84.76% 89.88% 91.48%

Table 8. Results for 3D histogram Type-Size-Eccentricity

35 40 45

90 98.77% 99.34% 99.55%

95 99.22% 99.39% 99.63%

100 99.30% 99.59% 99.63%

Table 9. Results for 3D histogram Type-Orientation-Eccentricity

35 40 45

10 78.86% 80.87% 82.18%

15 83.78% 85.21% 86.36%

20 85.91% 87.75% 88.73%
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Table 10. Results for 3D histogram Size-Orientation-Eccentricity

10-35 10-40 10-45 15-35 15-40 15-45 20-35 20-40 20-45

90 99.75% 99.88% 99.92% 99.84% 99.88% 99.92% 99.84% 99.88% 99.92%

95 99.71% 99.88% 99.92% 99.88% 99.88% 99.92% 99.88% 99.88% 99.92%

100 99.88% 99.92% 99.96% 99.88% 99.92% 99.96% 99.92% 99.92% 99.96%

While it is possible to consider 4D histogram (i.e., combine all four features),
our results using 3D histograms are already very satisfactory. Therefore, the ex-
tra computational time needed to compute 4D histograms would not be justified
by a possible small increase in performance.

Once training has been completed, a classifier using size-orientation-
eccentricity takes on average 2.4 seconds to classify a 3D object.

5 Conclusion

We have presented a new approach for automatically classifying virtual 3D ob-
jects in Second Life. Our experimental results show that it is possible to obtain
very high classification accuracy using 3D histograms based on size, orientation,
and eccentricity. Our technique can be integrated in existing accessible virtual
world clients [8, 1, 3]. When a user encounters an object lacking a name, our
technique may allow for recognizing it in real time.

It is worth mentioning that our training set might contain wrong labels and
that there is a tradeoff between cost and accuracy when filtering objects using
crowdsourcing. More accurate object labels can be obtained by choosing workers
with higher acceptance rates, injecting more noise, having more strict agreement
rules, decreasing the number of images in a HIT and increasing payment. How-
ever, each of these strategies will increase the associated costs. Especially when
having to filter large numbers of objects, cost may become a serious consider-
ation. Future work will research whether it is still possible to reach acceptable
recognition rates using fewer examples.

For future work, we plan to build a hierarchical classification system in order to
assign objects to more abstract categories (e.g., furniture, vehicles). It would be
interesting to use crowdsourcing again in order to have workers verify whether
objects with a given label (cat) belong to a certain category (animal). This
can help us to establish rules for a taxonomy animal←cat that the classifier
could use. This approach is similar to Yuan [16], with the difference that it
could be performed at a much larger scale by taking advantage of crowdsourcing
marketplaces, such as AMT.
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