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Abstract. Regulatory compliance is gaining attention from information
systems engineers who must design systems that at the same time satisfy
stakeholder requirements and comply with applicable laws. In our pre-
vious work, we have introduced a conceptual modelling language called
Nòmos 2 that aids requirements engineers analyze law to identify alterna-
tive ways for compliance. This paper presents an implemented reasoning
tool that supports analysis of law models. The technical contributions of
the paper include the formalization of reasoning mechanisms, their im-
plementation in the NRTool, as well as an elaborated evaluation frame-
work intended to determine whether the tool is scalable with respect to
problem size, complexity as well as search space. The results of our ex-
periments with the tool suggest that this conceptual modelling approach
scales to real life regulatory compliance problems.

Keywords: Conceptual Modeling, Automated Reasoning, Experimen-
tal Evaluation, Regulatory Compliance.

1 Introduction

The risk of information system non-compliance with relevant laws is gaining
increasing attention from government and business alike, partly because of po-
tentially staggering losses and partly because of growing public concern that,
somehow, information systems need to be reined in. This trend has made reg-
ulatory compliance of software systems an important topic for Software and
Information Systems Engineering: systems must comply with applicable laws
(legal norms), in addition to fulfilling stakeholder requirements.

To deal with the problem of regulatory compliance, we need formal models
of law that can be formally analyzed through various forms of reasoning to help
requirements engineers find compliant solutions. Modeling approaches intended
for law have been studied for decades in AI (more precisely, AI and Law), gener-
ally grounded on expressive, often modal, logics. Other approaches, grounded in
Natural Language Processing and Information Retrieval, support different forms
of analysis such as determining case similarity and relevance. We contend that
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neither heavy-handed logical representations, nor natural language ones properly
support the analysis requirements engineers need when they tackle the problem
of regulatory compliance. Instead, we propose to use conceptual models of law
that sit somewhere between logical and natural language models with respect to
complexity, to help requirements engineers answer questions such as “In situa-
tion S, what are my alternative ways for complying with law fragment L?” , and
if stakeholders have given preferences in addition to requirements, “What is a
preferred compliance solution for law L, given situation S?”

The modeling framework for building conceptual models of law and capturing
preferences (named Nòmos 2) has been presented in two companion papers [9,20].
This paper focuses on tool support for Nòmos 2. Given the size of law models,
tool support is essential for any type of analysis. Accordingly, we have imple-
mented such a tool that is founded on an inference engine (DLV [2,11]) to answer
questions concerning compliance solutions in different situations, taking into ac-
count stakeholder preferences.

The specific questions addressed in this paper are: (1) What kind of auto-
mated reasoning is useful in tackling the compliance problem? (2) Can we have
a reasoning tool that scales with the size and/or complexity of law models? In
order to answer these questions, we first formalized reasoning mechanisms in
terms of axioms, then conducted a series of experiments with the implemented
tool. Artificial models of increasing sizes and with different properties were gen-
erated automatically and analyzed by the tool. The performance data from a
series of runs were collected and analyzed. Our conclusions suggest that indeed
the NRTool scales to problems of moderate law size.

The rest of the paper is organized as follows. Section 2 recalls the Nòmos 2
modeling language. Section 3 details the formal framework for reasoning on law
models. Section 4 presents the NRTool that answers compliance queries through
automated reasoning. Section 5 evaluates the efficiency of the tool through a
scalability analysis involving a series of experiments. Section 6 surveys the state
of the art and related work, while Section 7 concludes.

2 Baseline

Nòmos 2 [20] is a modeling framework that aims at capturing the variability of
law. Indeed, legal texts often contain both a set of norms and elements such as
conditions, exceptions and derogations, which make different norms hold under
different conditions. These elements define a variability space, intended as alter-
native ways to comply with the set of norms within the legal text. This trait is
captured in Nòmos 2 by differentiating applicability and satisfiability values for
norms, and by defining compliance on the bases of the two.

Specifically, a norm is defined as a 5-tuple (type, hol, ctrpart, ant, cons): type
is the type of the norm (e.g., duty or right); hol is the holder of the norm, the role
having to satisfy the norm; ctrpart is the counterpart, the role whose interests
are helped if the norm is satisfied; ant is the antecedent, the conditions to satisfy
to make the norm applicable; cons is the consequent, the conditions to satisfy
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Fig. 1. An example of a Nòmos 2 model representing the duty for an administration
office to keep the personal and administrative data of their clients/employee separated

in order to comply with the norm. Consequent and antecedents are modeled in
terms of situations. A situation is a partial state of the world – or state-of-affairs
– expressed through a proposition. For example, ”Christmas season 2012” is a
situation. A situation can be true, false, or have an unknown truth value. We use
abbreviations ST, SF, SU to refer to truth values Satisfied True/False/Unknown,
while AT, AF, AU refer to truth values Applicable True/False/Unknown. If the
situations make the antecedent true, the norm applies; if the situations make the
consequent true, the norm is satisfied. Situations are related to norms and to
other situations by four basic relations. The activate relation, from a situation to
a norm, means that if the situation is satisfied the norms is applicable; viceversa,
the block relation makes the norm not applicable. The satisfy relation, from a
situation to a norm or another situation, means that if the situation is satisfied
the norm or the target situation is satisfied; viceversa, the break relation makes
it not satisfied. Additionally, three shortcut relations have been defined between
norms, in order to model the cases where one norm derogates, endorses or implies
another one (see [20] for more details).

Depending on its applicability and satisfiability value, a norm may have value:
complied with, violated, tolerated or inconclusive. For example, Figure 1 shows
an example of a Nòmos 2 model describing the duties of an administration office
that should keep personal data of their employees/clients separated from the
administrative data used for running their business. When the two situations s1
and s2 hold (both have label ST), the conjunction of their labels is processed by
the activate relation that propagates an applicability value to the norm (the label
AT). Should s3 hold, the duty will receive a label indicating that it is satisfied
(ST). Since there is evidence that the duty is both applicable and satisfied, we
say it is complied. Should there be no evidence of satisfiability for any of the
situations that are linked with a satisfy relation (s3–s6 have label SU), the duty
would be applicable and not satisfied — i.e., violated.

In a Nòmos 2 model when several relations target the same situation or norm

(e.g., s3
sat−−→ D1, (s4 and s5)

sat−−→ D1, s6
sat−−→ D1), the values propagated to that

target are treated as being in disjunction. So, as we can see in the example,
different sets of situations can satisfy the duty D1 and make it complied with.
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Table 1. Axiom schema for invariants and propagation rules in norm models

Nr. Description Axiom Definition
A1 prioritization for satisfiability ST(φ) > SU (φ) > SF(φ) ST(φ) ∧ SU (φ)→ ST(φ),

ST(φ) ∧ SF(φ) → ST(φ),
SF(φ) ∧ SU (φ)→ SU (φ),
ST(φ) ∧ SF(φ) ∧ SU (φ)→ ST(φ)

A2 prioritization for applicability AT(φ) > AU (φ) > AF(φ) AT(φ) ∧ AU (φ) → AT(φ),
AT(φ) ∧ AF(φ) → AT(φ),
AF(φ) ∧ AU (φ)→ AU (φ),
AT(φ) ∧ AF(φ) ∧ AU (φ)→ AT(φ)

A3 default satisfiability value φ ¬ST(φ) ∧ ¬SF(φ) → SU (φ)
default applicability value φ ¬AT(φ) ∧ ¬AF(φ) → AU (φ)

A4 compliance rule φ AT (φ) ∧ ST (φ)→ Com(φ)
A5 not applicability rule φ ¬AT (φ)→ Tol(φ)
A6 compliance subsumption φ Com(φ)→ Tol(φ)
A7 duty violation φ AT(φ) ∧ ¬ST(φ) ∧Duty(φ) → Vio(φ)
A8 right non-exercisation φ AT(φ) ∧ ¬ST(φ) ∧Right(φ) → Tol(φ)
A9 inconclusiveness φ ¬Tol(φ) ∧ ¬V io(φ)→ Inc(φ)

Description Relation Axiom

A10 satisfy φ
satisfy−−−−→ ψ ST(φ) → ST(ψ)

A11 break φ
break−−−−→ ψ ST(φ) → SF(ψ)

A12 activate φ
activate−−−−−→ ψ ST(φ) → AT(ψ)

A13 block φ
block−−−−→ ψ ST(φ) → AF(ψ)

A14 and-satisfy (φ1 ∧ φ2)
satisfy−−−−→ ψ ST(φ2 ) ∧ ST(φ1 )→ ST(ψ)

A15 and-break (φ1 ∧ φ2)
break−−−−→ ψ ST(φ2 ) ∧ ST(φ1 )→ SF(ψ)

A16 and-activate (φ1 ∧ φ2)
activate−−−−−→ ψ ST(φ2 ) ∧ ST(φ1 )→ AT(ψ)

A17 and-block (φ1 ∧ φ2)
block−−−−→ ψ ST(φ2 ) ∧ ST(φ1 )→ AF(ψ)

In order to select one (or a few) way of complying, out of many possible ones, we
have extended our framework with a preference relation between situations [9].
The problem of compliance becomes then the Preferred Compliance Problem —
i.e., the problem of finding a compliant solution to a norm model, given a set of
applicable norms, such that the chosen solution best fits stakeholder preferences.

For example in Figure 1, deleting the data every time after each use can be
considered a task more time consuming than using different server: we say that
s6 is less desirable than s3 according to the time criterion (s6 <time s3). The use
of different server profiles in one server can be evaluated at least as desirable
as using different servers: (s5 ≤time s3). However, from an economical perspec-
tive, using two servers is more expensive than using one (s3 <cost s4). Given
all the preferences above, possible solutions to the norm model are evaluated
and ranked.

3 Formal Analysis of Norm Models

In order to be analyzed, Nòmos 2 models need to be translated into sets of FOL
formulas. Formally, a norm model is a pair {P ;R} where P is a set of propositions
and R is a set of relations over P . If (φ1; ...;φn) → φ is a relation in R, we call
φ1...φn source propositions and φ the target proposition of the relation.
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Axioms. In Table 1 we introduce the axioms used to formalize the propaga-
tion of satisfiability and applicability values. We use six primitive predicates
over propositions: ST (φ), SF (φ), SU (φ), AT (φ), AF (φ), AU (φ), meaning re-
spectively that there is evidence that a given proposition φ is satisfied (ST (φ)),
not satisfied (SF (φ)) or its satisfaction is undefined (SU (φ)), that its appli-
cability is true (AT (φ)), false (AF (φ)) or undefined (AU (φ)). We establish a
total order over satisfiability predicates ST (φ) >SU (φ) >SF (φ), meaning that
x >y → {(x ∧ y) → x}); e.g., if there is conflicting evidence over φ, say ST (φ)
and SF (φ) then (ST (φ) ∧ SF (φ)) → ST (φ). Similarly, we have a total order
over applicability predicates: AT (φ) >AU (φ) >AF (φ). Axioms A4–A9 state the
four derived predicates for compliance. Com(φ) indicates that φ is complied with,
being applicable (AT (φ)) and satisfied (ST (φ)). A tolerated norm (Tol(φ)) is
also complied with (Tol subsumes Com). A first case of tolerated norm is when
the norm is not applicable (A5). Another tolerated case is when a right is appli-
cable but not satisfied (A8) (e.g., a subject having a right but not exercising is
a tolerated case). A violation (V io(φ)) is a case of an applicable duty that is not
satisfied (A7). When none of the 3 cases above applies (compliance, tolerance
or violation), we say that a norm is inconclusive (A9). Relation axioms define
how the relations in a norm model propagate labels in order to deduce primi-
tive and derived predicates. Satisfy/break relations define how positive/negative
satisfiability values are propagated (A10, A11). Activate/block define how posi-
tive/negative applicability values are propagated (A12, A13). If neither a posi-
tive or negative value is propagated, an undefined value is propagated by default
(A3). Axioms A14–A17 are used to characterize satisfiability/applicability val-
ues in case of a conjunction of values. The axioms for disjunction are defined
similarly. For more details see [8].

Different propositions may be preferable over others. To capture this infor-
mation, we add a set of binary reflexive, antisymmetric and transitive relations
≤C∈ P×P , each ≤C defining a partial order on propositions. Informally, we call
these relations preference relations, and we read “’φ ≤C ψ” as “ψ is at least as
preferred as φ according to criterion C”. We let “φ =C ψ” abbreviates “φ ≤C ψ
and ψ ≤C φ”, so that “φ <C ψ” abbreviates “φ ≤C ψ and not φ =C ψ”. Infor-
mally reads “ψ is strictly more desirable than φ according to criterion C”. Each
criterion C defines a partial order over propositions. Preference relations allow
us to record relative preference of stakeholders between propositions, according
to different criteria for comparison. Let C denote the set of all criteria. We can
further add relations between criteria, to help comparisons. We can define a hi-
erarchy of domain-specific criteria for comparison, such as, for example: criterion
cost is an aggregate of criteria production cost, infrastructure cost, transporta-
tion cost, etc. Such a structuring can help define aggregation functions and/or
procedures to automatically rank alternative sets of propositions.

We do not discuss how preferences are negotiated between stakeholders, since
different stakeholders can have opposing preferences over the same criteria. Both
the definition of aggregation functions of preferences over criteria, and the ne-
gotiation of conflicting preferences are outside the scope of this paper.
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Table 2. Propagation rules for satisfiability propagation

Rules for Satisfiability Propagation

R1 sat evidence(X1,true) ← sat evidence(X2,true), situation(X2), satisfy(X2,X1).

R2 sat evidence(X1,undefined) ← ¬ sat evidence(X2,true), situation(X2), satisfy(X2,X1).

R3 sat evidence(X1,false) ← sat evidence(X2,true), situation(X2), break(X2,X1).

R4 sat evidence(X1,undefined) ← ¬ sat evidence(X2,true), situation(X2), break(X2,X1).

Propagation Rules. The formal semantics defined in this section allows the
support of formal analysis on norm models. To do this we represent a Nòmos 2
model as a database of facts, and using a declarative logic programming lan-
guage we have define propagation rules that implement the Nòmos 2 axioms of
previous section.

For example the propagation rules for the satisfiability of a proposition specify
that, if there is a satisfy (or break) relation between two propositions and the
source proposition is satisfied, then the target is also satisfied (or not satisfied, re-
spectively). As we can see in table 2, the propagation rules associated with these
axioms (A10, A11) ensure that the correct label is propagated depending on the
evidence of satisfiability for the source proposition (Rule R1, R3). When there
is not evidence of such satisfiability, indeed both relations propagate undefined
evidence of satisfiability (Rule R2, R4).

These propagation rules have been defined for all our axioms in accordance
with the rules in [20].1 Once these rules are encoded, the user can therefore
query this database of facts and infer the truth values of axioms. In the follow-
ing section we describe the architecture of a tool (called NRTool), which imple-
ments the rules and exploits the DLV framework [11] to compute and verify the
norm models.

4 Automated Reasoning with Norm Models

The specification and analysis of Nòmos 2 models — formalized in the previ-
ous section — is supported by a tool called Norm-Reasoning Tool, or NRTool.
With this tool we can perform automated bottom-up and top-down analysis of
a Nòmos 2 model, as described in [20], in order to support the analyst answer
questions about these models; e.g., what are the applicable norms? Do we com-
ply with a set of norms? What are the alternative ways to comply with a set of
norms? etc.

A preliminary evaluation of this reasoning tool and its assessment on a small
part of a case study is presented in [9].

Figure 2 describes the overall behaviour of the tool. The tool takes a struc-
tured representation of a norm model as input, and converts it into a Datalog
logic program. Datalog [1] is a first-order logic program for querying deductive
databases. A Datalog program is a set of rules of the form r:- l1∧ ...∧ ln, where
1 See the technical report [8] for the full details of all propagation rules.
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Fig. 2. Overall architecture of the NRTool tool. It takes in input the Nòmos 2 model,
the preferences, the assumptions and the queries from the analyst and transforms them
into a disjunctive Datalog program as input for the DLV engine. The NRTool reports
the output of DLV to the analyst in a human readable format.

r (called the head of the rule) is a positive literal, and l1, ..., ln are literals (called
the body of the rule). Intuitively, the rule states that if l1, ..., ln are true then r
must be true.

The NRTool relies on the DLV reasoning engine [2, 11] to execute the logic
program and perform queries on the norm model. DLV is an Answer Set system
that extends Datalog in different ways. It adds disjunctions in the rule heads,
thus generating multiple alternatives; it adds support for true negations; it also
supports weak constraints – i.e., constraints that can be violated at a cost, al-
lowing solutions to be ranked according to the number of violations occurring.
The search techniques and heuristics used by DLV are: backward search (simi-
lar to SAT algorithms), and advanced pruning operators, for model generation
and innovative techniques for answer-set checking. DLV generates as output a
complete set of models produced by the set of predicates and assignments to the
variables or a pruned set of models that depends on input preferences.

Soft constraints allow us to identify the best compliance solution(s) in terms of
their minimality. Since a large number of solutions could be returned – possibly
too many – we are interested in having only the best solutions. To do this, we
adopt the criterion of maximizing the number of not assigned values. The idea
is that the fewer are the situations whose satisfiability is set to true or false
in a compliance solution, the less analysts are constrained; viceversa, the more
“undefined” situations we have, the more analysts are free to make their own
decisions. By adding a soft constraint that situations’ satisfiability should be
neither true nor false, we force the selection of the solutions with the highest
possible number of “undefined” values.

The NRTool maps situations and norms into Datalog facts, while relations are
mapped into deduction rules. Moreover, the Nòmos 2 model is encoded via ground
formulae (without variables and logical quantifiers). The output of DLV is parsed
by NRTool that presents it to the user in the form of a report specifying the truth
value of the situations in the model and their respective compliance values.
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Example: which set of norms is applicable? In this example we will see how the
tool works in order to evaluate the applicable norms to a scenario. Answering to
this question involves performing a forward reasoning analysis on the Nòmos 2
model. Given an initial values assignment for situations (expressed by the as-
sumption), forward reasoning focuses on the propagation of these values to the
norms accordingly to the propagation rules of Nòmos 2. The norms will receive
applicability and satisfiability value depending on the relations in the law model.
After translating this model into Datalog, the NRTool enables the reasoner to
apply the propagation rule and calculate the applicability values. The NRTool
then parses the output and returns to the analyst the set of norms of the model
that are applicable.

5 Evaluation

Laws usually consist of tens or even hundreds of pages of natural language text,
resulting in large models that may involve tens of thousands of concepts and
links. In this section we investigate the scalability of our proposed reasoning
tool with respect to the following three criteria (research questions):

RQ1. How does the tool scale with respect to the size of the problem, defined
as the number of elements in the model?

RQ2. How does the tool scale with respect to the complexity of the problem,
defined as the number of relationships constraining the different elements of
the model? Also, how does the tool scale w.r.t. the number of solutions?

RQ3. How does the tool scale with respect to the space of alternatives,
defined as the number of alternative refinements?

To answer these questions we have set up a testing framework, capable of
producing artificial norm models with desired properties, run compliance anal-
ysis and record execution times. All experiments have been performed on an
Intel i7 eight core 2.80 GHz computer equipped with 6 GB of memory running
Linux version 2.6.18. The tool, the setting data, and the results generated by
the experiments are available at http://selab.fbk.eu/lawvariability/.

5.1 Results

RQ1. To answer the first research question we have set up an experiment that
tests the behaviour of the tool when the size of the norm model grows. A first
model (the input model) was initially manually created. It consisted of 4 norms
and 10 situations. Starting from this input model, 50 test models were then
automatically generated. The generation algorithm consisted in: (i) creating a
number (from 1 to 50) of replicas of the input model, resulting in models of size
from 15 to 13875 nodes; (ii) creating a root norm that represents the full law; the
root norm is and-refined into the root norm of each replica, through the imply
relation; and (iii) adding a fixed number (10) of random relations from each
replica to others. The number 10 was selected to ensure that our model has a

http://selab.fbk.eu/lawvariability/
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sufficient connectivity — indeed in our second experiment we study the impact of
having different number of relations between replicas. The randomness of these
relations was controlled by a parameter in our configuration called ‘seed’. It is
worth noting that by changing this seed, the random relations also change, thus
creating similar but not identical test models. The experiment was run 5 times
with the same input model but different seeds.

The results of this experiment are reported in Figure 3. The figure reports
on the x-axis the size of the model, expressed as number of nodes (including all
types of Nòmos 2 concepts) of the test model. The y-axis reports the time taken
at each execution to identify the set of solutions. There is a difference in one
run, which results to be steeper, indicating a dependence of the slope from the
seed; but the overall trend is quite linear in the considered problem size interval.
In [20] we show an extract of a Nòmos 2 model for one column of HIPAA’s section
164.502, where we identified 15 situations. Given that the entire law consists of
approximately 250 columns, an estimate of 4000 situations for the whole law is
well within the boundaries of the models we tested.
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Fig. 3. Results from the experiments testing scalability wrt the size of the problem

RQ2. Answering the second research question requires understanding how the
tool behaves when the connectivity of its input model changes. As in the previous
case, we started from an input model and produced 700 test models. Differently
from the previous case, now we kept fixed the size of the model, expressed as
number of nodes, to a value of 225. Then, a random number of relations, varying
from 0 to 750, were added to produce the test models.
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The results of the experiments are reported in Figure 4. The x-axis reports the
“connectivity” parameter — i.e., how many random relations have been added
to the model. The y-axis reports the time taken at each execution to find the
solutions. The left figure reports the execution time for all the connectivity val-
ues. A timeout of 60 seconds had been set, and in the first 7 runs the timeout
was reached. For the remaining connectivity values execution time decreases sig-
nificantly. The right figure magnifies the runs from a value of connectivity 8 to
500 and basically highlight the trend that is not possible to see in the left figure.
In these cases the execution time decreases slightly and then increases again,
smoothly. The reason of this behavior is that for unconstrained Nòmos 2 models
(i.e., models with few relations among nodes) the number solutions depends ex-
ponentially on the number of nodes N (3N , to be exact). As relations are added,
the number of solution decreases, as does the time to find all of them. As more
relations are added, the complexity of the problem to be solved — defined by
the number of relations over a fixed graph — overtakes the cost of finding all
solutions. This peculiarity results in the increasing trend shown on the graph of
Figure 4. Besides this, we see a trend that decreases until a connectivity of 50,
and then it increases smoothly.
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Fig. 4. Results from the experiments testing scalability wrt the complexity of the
problem

RQ3. To answer the last research question we set up an experiment to analyze
how the behaviour of the tool changes when specific constructs are introduced
into the models. The constructs are those that theoretically change the number
of available solutions, and so the space of solutions change without changing
neither the size of the model nor its connectivity. The experiment was run with
a model of 14000 nodes. 5 variations of the input model have been created.
At each variation, the proportion between AND-relations and OR-relations has
changed, from a value of OR of 0% (i.e., all the relations are in AND) to 100%
(i.e. all the relations are in OR).

The results are shown in Figure 5. Here, the results are roughly the same with
connectivity values of 0, 25% and 50%. With values of 75% and 100% (where
the OR-decomposition becomes prevalent) times increase by approximately 20%
passing from an average of 230ms to 275ms.
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Fig. 5. Results from the experiments testing scalability wrt the space of alternatives

5.2 Discussion

The results of these experiments are twofold. On the one hand, we see a very
encouraging linear trend for execution times, which generally corresponds to at
most a few seconds. On the other hand, in the second experiment, we see in
some cases times running out of bounds. This is due to the difference between
searching for a solution set and exploring the solution set. The exploration time
may overcome search time and diverge if the model is highly sparse and the space
of alternatives is extremely large. Also with the third experiments we confirmed
how the space of alternatives directly influences execution time. Moreover, as
we can see from the second experiment, the initial constraints added to the
model resulted first in a reduction of the time (as the number of solutions was
decreasing) but then complexity kicks-in increasing overall execution times. The
result of this experiment is comparable with similar investigations performed,
e.g., in [17]. The lesson learnt from these experiments is that conceptual models
can be a viable solution in analyzing laws for compliance, but only if the modelled
laws are not too under-constrained. Given that laws are generally comprised of
a high number of conditions, exceptions, derogations, cross-references and so on,
we expect that real law models are not under-constrained.

6 Related Work

The main focus of this paper is the investigation of automated reasoning tech-
niques to enable compliance analysis on real-size conceptual models of laws, in-
cluding experimental evaluation of scalability. Similar approaches can be found in
conceptual modelling for complex socio-technical systems [14], and for goal mod-
elling in requirements engineering [7]. Relevant works on experimental evaluation
of scalability of reasoning techniques and related tools, include the following.
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In [11] the evaluation of DLV has been performed considering several prob-
lems, such as Traveling Salesperson or Quantified boolean formulas, having an
increasing theoretical complexity (from NP to ΣP

2 ). For each one of these prob-
lems, models of growing dimension have been considered; the performance of the
solver has been measured in terms of the time necessary to solve the problems.
In [17] is presented a method for randomly generating clausal formulae in modal
logics. The paper describes several expected properties of good test sets, such as
representativeness, reproducibility, parametrization, and presents the generating
algorithms that produce 3CNF formula of growing complexity. Finally [5] char-
acterizes hard SAT problems and identifies a “phase transition” in the problem
attribute space.

In our work, we generate artificial norm models by cloning a manually de-
fined input model. A similar procedure is used in [22], where a goal based frame-
work for monitoring and diagnosing software requirements is presented. Thus,
in our experimental evaluation we can generate models with increasing number
of nodes (i.e. norms and situations), and increasing percentage of “AND/OR”,
“activate/block”, and “satisfy/break” relationships, in a controlled way.

Worth pointing out that empirical evaluation in conceptual modelling has a
wider scope with respect to what addressed in our paper, which, as reminded
above, focuses on one specific but essential property to enable conceptual rea-
soning for regulatory compliance, namely scalability of automated reasoning.
Addressing a different purpose with respect to ours in this paper, the empirical
evaluation of conceptual models has been investigated from a domain under-
standing perspective. In this direction, [4] proposes a framework for the empiri-
cal evaluation of conceptual modeling grammars. [15] instead propose four crite-
ria to evaluate conceptual modeling techniques. Differently from our work, these
guidelines also focus on the effectiveness of the grammar modeled and the criteria
to chose for its evaluation (independent variables, participants, . . . ). Recker [18]
pursues a more philosophical-paradigmatic directions and discusses how existing
evaluation methods can be assessed through the Bunge-Wand-Weber ontology.
For a general overview on quality frameworks for conceptual modeling, Daniel
L. Moody [12] presents a review of research in this field, identifies some theoret-
ical and practical issues, and advocates the need of a common standard for the
evaluation of quality of conceptual models.

Concerning the underlying approach in our work, namely law modeling for
supporting compliance analysis, relevant related work are modeling approaches
for RE and law, which extend existing RE modeling languages. For example,
in [16] time line visualizations and decision trees are used to model legal terms
or regulations in contracts. In [13] a Semantic Process Language (SPL) was
created by combining Petri nets and a formal language, to describe legal regula-
tions. In [21] business process models are checked for legal compliance through a
modeling method called Event-driven Process Chain (EPC). However, all these
approaches assess a different and specific aspect of legal compliance and appear
therefore relatively isolated. [10] proposes a framework that supports analyzing
the compliance of legacy Information Systems, which rests on the alignment of
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a model of the transactions in the legacy system with an ontology of the laws
that regulated the IS domain. This law ontology explicates the organizational
roles, which correspond to the legal subjects of the laws governing the IS domain,
with the domain artifacts and processes under their responsibility. Goal oriented
techniques have also been used to represent legal prescriptions. For example,
Darimont and Lemoine have used KAOS to represent objectives extracted from
regulation texts [3]. Ghanavati et al. [6] use URN (User Requirements Notation)
to model goals and actions prescribed by laws. Likewise, Rifaut and Dubois use
i* to produce a goal model of the Basel II regulation [19].

7 Conclusions

In this paper we have presented an implemented reasoning tool that supports
situational analysis of law models. The technical contributions of this work in-
clude an axiomatic formalization of the reasoning mechanism realized by the
tool, as well as its implementation based on an off-the-shelf inference engine
(DLV). In addition, we report on a series of experiments that evaluated the tool
for scalability with respect to problem size (the size of the model being ana-
lyzed), problem complexity (measured by the inter-connectivity of nodes in a
model), and the space of alternatives (measured by the number of alternative
refinements in a model). The results of these experiments suggest that the tool
scales to real regulatory compliance problem involving a full law such as HIPAA.

The main limitation of our work is that our evaluations used artificial models.
Accordingly, an important future research task will be the evaluation of the tool
using Nòmos 2 models of real law. To this end, we need tools that support the
generation of law models that are a good-enough approximation of a real law.
Our future plans include exploring how to exploit existing tools for legal text
analysis to support the extraction of Nòmos 2 models from text. Also, we plan
to extend our language and reasoning tool to provide support for compliance
analysis based on legal and social roles, delegations and related concepts.
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