
Managing Security Requirements Conflicts
in Socio-Technical Systems

Elda Paja1, Fabiano Dalpiaz2, and Paolo Giorgini1

1 University of Trento, Italy
{elda.paja,paolo.giorgini}@unitn.it

2 University of Toronto, Canada
dalpiaz@cs.toronto.edu

Abstract. Requirements are inherently prone to conflicts, for they originate from
stakeholders with different, often opposite, needs. Security requirements are no
exception. Importantly, their violation leads to severe effects, including privacy
infringement, legal sanctions, and exposure to security attacks. Today’s systems
are Socio-Technical Systems (STSs): they consist of autonomous participants
(humans, organisations, software) that interact to get things done. In STSs, se-
curity is not just a technical challenge, but it needs to consider the social compo-
nents of STSs too. We have previously proposed STS-ml, a security requirements
modelling language for STSs that expresses security requirements as contrac-
tual constraints over the interactions among STS participants. In this paper, we
build on top of STS-ml and propose a framework that, via automated reasoning
techniques, supports the identification and management of conflicts in security re-
quirements models. We apply our framework to a case study about e-Government,
and report on promising scalability results of our implementation.

Keywords: security requirements, automated reasoning, requirements models.

1 Introduction

Socio-Technical Systems (STSs) are complex systems composed of autonomous sub-
systems (participants), which are either technical (software) of social (humans and or-
ganisations). These subsystems interact to achieve objectives they cannot achieve on
their own and to exchange information. STSs are loosely controllable, for their partici-
pants are autonomous. Autonomy makes the design of secure STSs a challenging task.
For example, if a participant transfers confidential information to another, how does she
know that data is kept confidential, without having control?

Goal-oriented approaches to security requirements engineering [7,12,13] offer a suit-
able abstraction level for the design of secure STSs. They model STSs as a set of ac-
tors that are intentional—they have objectives—and social—they interact with others
to achieve their objectives. Unfortunately, their underlying ontology is too abstract to
effectively represent real-world information security requirements, which include fine-
grained and contradictory authorisations over information entities [1,19].

To overcome this limitation, we have previously proposed the Socio-Technical Secu-
rity modelling language for STSs (STS-ml) [2]. The language relies on a more expres-
sive ontology and its security requirements are relationships between couples of STS

W. Ng, V.C. Storey, and J. Trujillo (Eds.): ER 2013, LNCS 8217, pp. 270–283, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Managing Security Requirements Conflicts in Socio-Technical Systems 271

actors, where a requester actor requires a requestee actor to comply with a security
need. Each participant expresses her own requirements. STS-ml models are actor- and
goal-oriented, and they represent the business policies of the participants, their security
requirements over information and goals, and organisational constraints.

Being specified independently by different actors, policies and security requirements
are likely to clash, thus leading to inconsistent specifications that cannot be satisfied
by an implemented STS (at least one requirement would be violated). The detection
and handling of conflicts between requirements is a hard task [5] (goal-models tend
to become huge and complex), and it often requires the usage of automated reasoning
techniques. This is true in STS-ml too, for the language supports complex security
requirements (due to its expressiveness) and real-world models are typically large [17].

In this paper, we propose a framework for managing conflicts in STS-ml require-
ments. Our framework suggests to iteratively (i) create STS-ml models for the domain
at-hand, (ii) identify conflicts through automated reasoning techniques, and (iii) resolve
conflicts. Specifically, we focus here on the first two steps, and leave conflicts resolution
for future work. We address two types of conflicts: among security requirements, and
between actors’ business policies and security requirements. We consider the interplay
between different requirements sources: the business policies of individual actors, their
security expectations on other actors, and the organisational constraints in the STS.

The contributions of the paper are as follows:

– A revised version of the STS-ml modelling language that includes a richer set of
security requirements along with their formal definition.

– A framework for detecting conflicts between (i) security requirements, as well as
(ii) among participants’ business policies and security requirements.

– An implementation of our framework—using disjunctive Datalog logic programs—
as essential part of a CASE tool called STS-Tool.

– Results from a case study, which show the effectiveness of our framework in iden-
tifying non-trivial conflicts as well as promising scalability results.

Section 2 reviews related work. Section 3 presents a case study about e-Government.
Section 4 presents the current version of STS-ml and its supported security require-
ments. Section 5 describes our framework for identifying conflicts, while Section 6 eval-
uates it on the case study and reports on scalability results. Finally, Section 7 presents
conclusions and future directions.

2 Related Work

We review related work concerning identifying conflicting requirements, reasoning
about security requirements, and methodologies for security requirements engineering.

Conflicting Requirements. The importance of handling conflicts in requirements is
well-known in practice and has been acknowledged by the research community [6,18].
We review here the main frameworks in goal-oriented requirements engineering.

Giorgini et al. [8] analyse goal satisfaction/denial by mapping goal models to the
satisfiability problem. Their analysis determines evidence of goal satisfaction/denial
by using label propagation algorithms. Conflicts occur in case of both positive and

272 E. Paja, F. Dalpiaz, and P. Giorgini

negative evidence. Their approach inspired further research. Horkoff and Yu [10] deal
with conflicts by demanding resolution to the analyst in an interactive fashion. Fuxman
et al. [6] use first-order linear-time temporal logic to identify scenarios with conflicts.
KAOS [18] includes analysis techniques to identify and resolve inconsistencies that
arise from the elicitation of requirements from stakeholders with different viewpoints.

All these approaches detect conflicting goals. Our approach, instead, treats security
requirements as relationships between actors. These approaches could be used to detect
inconsistencies within an individual business policy, i.e., within the scope of one actor.

Reasoning about Security Requirements. SI* [7] is a security requirements engineer-
ing framework that builds on i* [20] by adding security concepts, including delegation
and trust of execution or permission. SI* uses automated reasoning to check security
properties of a model, reasoning on the interplay between execution and permission of
trust and delegation relationships. STS-ml supports a more expressive ontology (fea-
turing fine-grained authorisations) to represent information security requirements, and
decouples business policies (an actor’s goals) from security requirements.

De Landtsheer and van Lamsweerde [3] model confidentiality claims as specification
patterns, representing properties that unauthorised agents should not know. They iden-
tify violations of confidentiality claims in terms of counterexample scenarios present in
requirements models. While their approach represents confidentiality claims in terms
of high-level goals, ours represents authorisation requirements as social relationships,
and we identify violations by looking at the business policies of the actors.

Security Requirements Methodologies. These are methods to identify possible con-
flicts, as opposed to using automated reasoning. Secure Tropos [13] models security
concerns throughout the whole development process. It expresses security requirements
as security constraints, considers potential threats and attacks, and provides method-
ological steps to validate these requirements and overcome vulnerabilities.

Liu et al. [12] extend i* to deal with security and privacy requirements. Their method-
ology defines security and privacy-specific analysis mechanisms to identify potential
attackers, derive threats and vulnerabilities, thereby suggesting countermeasures.

Haley et al. [9] construct the context of the system, define security requirements as
constraints over functional requirements, and develop a structure of satisfaction argu-
ments to verify the correctness of security requirements. This approach focuses mainly
on system requirements, while ours is centred on the interaction among actors.

3 Motivating Case Study: Tax Collection in Trentino

Trentino as a Lab (TasLab)1 is an online collaborative platform to foster ICT innova-
tion among research institutions, universities, enterprises, and public administration in
the Trentino province [16]. We focus on a TasLab collaborative project concerning tax
collection. The Province of Trento (PAT) and the Trentino Tax Agency require a system
that verifies if correct revenues are collected from Citizens and Organisations, provides
a complete profile of taxpayers, generates reports, and enables online tax payments.

1 http://www.taslab.eu

http://www.taslab.eu

Managing Security Requirements Conflicts in Socio-Technical Systems 273

This is an STS in which actors interact via a technical system: citizens and organisa-
tions pay taxes online; municipalities (Municipality) furnish information about citizens’
tax payments; Informatica Trentina (InfoTN) is the system contractor; other IT compa-
nies develop specific functionalities (e.g., data polishing); the Tax Agency is the system
end user; and PAT withholds the land register (information about buildings and lots).

These actors exchange documents that contain confidential information. Each ac-
tor has a business policy for achieving her goals, and expects others to comply with
her security requirements (e.g., integrity and confidentiality). Organisational constraints
(rules and regulations) apply to all actors. Different types of conflict may arise:

– Business policies can clash with security requirements. The Tax Agency’s security
requirements may include authorising InfoTN to read some data, but they prohibit
further transmission of such data. If InfoTN’s business policy includes relying upon
an external provider to polish data, a conflict would occur.

– Security requirements can be conflicting. For instance, citizens’ security require-
ments may include prohibiting IT companies to access their personal data, while
the municipality’s (possessing citizens’ records) security requirements towards IT
companies may specify granting them such authority.

– Organisational constraints may make some requirements unsatisfiable. For instance,
a constraint may prohibit private subjects from matching citizens’ personal infor-
mation with tax records. This could create a conflict with the business policy of the
data polishing company, which specifies as necessary matching such information.

4 The STS-ml Framework for Security Requirements Modelling

STS-ml is a security requirements modelling framework for designing secure STSs [2].
We present a revised version of STS-ml, which introduces (i) a specialised set of security
requirements over information including non-reading, non-modification, non-production,
non-disclosure, and non-reauthorisation; (ii) two specialisations of the non-repudiation
security requirement; (iii) four specialisations of redundancy; (iv) requirements over the
exchange of documents, such as integrity of transmission; and (v) security requirements
from rules and regulations, such as separation and binding of duties.

In this section, we formalise the modelling primitives of STS-ml (Section 4.1) and
the security requirements that STS-ml supports (Section 4.2).

4.1 Modelling with STS-ml

STS-ml models are constructed by iteratively building three views (social, information,
and authorisation), each focussing on different aspects of the STS. An STS-ml model
consists of all the elements and relationships from the three views. The multi-view
modelling feature of STS-ml promotes modularity and separation of concerns. Figure 1
shows part of the model for our case study (the complete model is available in [14]).

Social View. This represents actors as intentional (having goals that they want to attain)
and social (interacting via goal delegations and document exchange) entities. STS-ml
supports two types of actors: agents are concrete participants, while roles are abstract
actors, used when the actual participant is unknown. We model InfoTN as an agent,

274 E. Paja, F. Dalpiaz, and P. Giorgini

��

��
��
�
��
	

��
��
��
��
�

�	
��
��

�
��
�

��
�	
�

��
�

�

��

�	
���

�
��
��
��
��
��

��
	�
��
��
�

�

�
��
��
��
��
��

��
�
�

�
!

��
��
��
��

�
��
��

�	
��
��
		
��
�"

��
��
��
�
�

�

 !

��
��

�

��

�	
���

�
��
��
��
��
��

��

�	

�

���
��

�
�

��
��

�
��

���
��

�
�

��
��

�
��

��
��
��
��
�
��

��

�	

�

��
��
��
��
�
��

��
��
��

��
��
�	
��

��
��
#�
	

$

�
��

"
��
�

��
��
�	
��

��
��

�	
��
��
��
��

��
��
�

��
	�
�

��
��
�
��

�

��
��
�

�

��
�

�
��
	�
��
	�
�

�
�	
��	
�

�
��

��
��
��

��
��
���
��

�
��
��
��
�

��
��
���

��
��
��
�	
��

��
��
���

��
��
��
�

�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�
�
���

�
�
�
���

�
�
�
���
�

�
��
�
�
	

�

�

�
�

�

�
�

�
�

�
��
�
�
	

�

�
�

�

�
�

�

�
�
�

�
�

�
�

"

�
�
��
�

�
�
��
�
�

�
�

�
��
��

�
��
��
�

��
��
��

�
��
��

�
��
��
�

��
��
��

��

�
��
��

�
��
	�
��
	�
�

��
��

��
�
��
��
	"

��
	

��
��

�
��
��

��
�
��
��
	"

��
	

��
��

�
�
�
��
�

�
�

��

�	

�

��
��
��
��
�
���
�
�
��
�
�

�
�
�
��
�
�

�
��
�
�
	

�

�
��
�
�
	

�

�

�
�

�
�
�

��
�

�	
��

��
��
��

��
��

��
	�
�

��
��
�

��
	�
�

��
��
�%
��
���

�
��
��

��
��
�%
��
���

�
��
��

��
��
�%
��
���

�
��
��

��
��
�%
��
���

�
��
��

��
��
%�
��
��

��
��

��
%�
��
��

��
�

��
��
�%
��
���

�
��
��

��
�
�
�

��
��

%�
��
��

��
��

	�
��
��
�"�

�
��
��
�

��
��
��

	�
��
��
�"�

�
��
��
�

��
��
��

 !

�
�
�	
���

�
��
��

��
��
��

��

�	

�

��
��

�
�

��
�

�	
��

��
��
��

��
��

��

�
��
��

�
��
	�
��
	�
�

	�
��
��
�"

�
��
��
�

��
��
��

�
��
��

�
��
��
�

��
��
��

��
�

�	
��

��
��
�

��
��

�
��

��
��
��
��
�
��

��
�

�	
��

���
��
��

��
��#
�	

$

��
�

"��

�
��
��
�	
��

��
��
���

��
��
��
�	
��

��
�

�	
��

�
��
��

��
��

�
��

���
��

�
�

��
��
	�
�

�
��

�
��
	�
��
	�
�

�

�
�

�

�
��

�
�

�

�
�

�

�
�

��
��

��
��

	�
��

�

��

��
	�
��
�	

��
�

�
��

	
	�
��

��
��
��
��

��

�

��
�

��
	�
�

��
	�
��
�	
��
��

��
�

��
��

��
	�

��
��

	

��
�

��
�

�
��

	

��
�
 ��

��

�	
���

��
�

��
��

��
�

�	
��

��
��
�

��
�

��
��

�
��

��
��

�
�

��

�	

�

��
��

�
�

��

�
��
	�
��
�

��
���
�	
�

��
	�

�&
	�
�

��
�

��
	�

��
��
��

�
��
��
��
�

��
��
���
	

�
�
��
�
��

�
�
�
�
��
�

��
�
�

�
�
��
�
�

�
�
��
�
�

�
�
��
�
�

�
�

�
�
�
�
��
�

��
�
�

�
�

�
�
�
�
��
�

��
�
�

�
�
��
�
�

�
�
��
�
�

�
�
�
�
��
�

��
�
�

�
�
�
�
��
�

��
�
�

��
��
��

�	
��
�

��
��

��
��
�

��
��

��
�	

�
��

�

�

��
�

��
��

�

�
�
�
��
�
�
	

�

�

	
�

��
�
��
��

�	
��
�
�

�
�
�

�
�
	
�
��
�
��
��
�

�
�
	
�

�
�
	
�
��
�
��

�
�

�
��
�
	

��
��
�
�
	
��
�
�

�
�
�
��
��

�
	
��
��

��
�
	
�

�

�

�
��

�
�
�

�
�
�
�

�!
��

�
��
�
� �
��
�
�

�
��
�
�

�
�
��
�
��

�
�
��
�
��

�
�

�
�

�
�
��
�
	
�
��
�	
��
��
��
�
�
	
��
�
��
�
�
�
��
��

��
�
�

�
	
��
��

��
�
	
�

��
��
�

�
�
�	
��
�	
�
�

�
�

�
�

�

�

�
��

�
�
�
��
�
�

�
	
��
��

��
�
	
�

��
�
�"
�
��

�

�
��
�
	

�
�

�
�

�
�
��
�
	
�
��
�	
��
��
��
�
�
	
��
�
��
�
�
�
��
��

��
�
�

�
	
��
��

��
�
	
�

#
�
�
��
��
��
��

�
�	
��
�	
$

�
�

�
�

�

�

�
��

�
�
�

�
�
��
�	
��
�
��
��
�

�
�

�
�

�
�
��
�
	
�
��
�	
��
��
��
�
�
	
��
�
��
�
�
�
��
��

��
�
�

�
	
��
��

��
�
	
�

�
�
��
��
�

�

	
�
�

�
�
��
�
	
�
��
�	
��
��
��
�
�
	
��
�
��
�
�
�
��
��

	
�
"
��
�
�
�

��
��

��
�
��
�
�

�
�
�
�

��
��

��
�

�
�

�
	
��
��

��
�
	
�

�
��

�
�

�
�

�

�

�
��

�
�
�
�
�
��
�
	
�
��
�	
��

�
�
��
��
	
��
�

�
	
	
�

�
�
�

��
�

�

��
��

�

�

�
�
��

�
��

��
�	
��
��

�
�	

��
�

��
	

��
��

�

��
��
��

�	
��
�

��
��

Fig. 1. Partial STS-ml model of the tax collection case study

while Municipality is a role that can be adopted by any municipality in the province
(Figure 1). InfoTN has goals online system built, data completn. ensured, and so on.
Actors refine their goals through and/or decompositions: InfoTN and-decomposes goal
data completn. ensured into data refined and data integrated. Actors may possess doc-
uments; they may read, modify, or produce documents while achieving their goals.
InfoTN modifies tax for data refined. Actors can transmit documents to others only if

Managing Security Requirements Conflicts in Socio-Technical Systems 275

they possess the required document. PAT possesses the business registry and transmits
it to InfoTN, which reads this document in order to have business data verified.

An actor’s business policy defines alternative strategies for an actor to achieve her
root goals. It is a sub-model of the social view that includes all the goals and documents
in the scope of that actor in the social view, the relationships (and/or-decompose, read,
modify, and produce) among those goals and documents, as well as goal delegations
and document transmissions that start from that actor and end to another actor.

The business policy of TN Company Selector includes goals data refined, navigat.
module built, for which document high quality data is read, and search module built
that the actor or-decomposes into semantic search built and enterprise search built (Fig-
ure 1). These subgoals denote alternative strategies: the actor can choose either of them.

Information View. This defines the relation between information (the data that actors
care of) and documents (artifacts that represent information), and represents informa-
tion ownership. Information can be represented by one or more documents (Tangible
By). One or more information pieces can be part of some document. The linkage be-
tween information and documents is key to identify which information actors affect,
while reading, modifying, producing, or transmitting documents. In Figure 1, infor-
mation on fiscal code owned by PAT is made tangible by document business registry.
Also, the information view structures information and documents through part-of rela-
tions. For instance, residential buildings is part of cadastre registry.

Authorisation View. This defines the requirements of the actors about who can access
information, for what purpose, and which operations can be performed on documents rep-
resenting information. Authorisations are granted on a set of information I, specifying
the operations the authorisee is allowed to perform from the set{R,M, P,T} (whereR-read,
M-modify,P-produce,T-transmit), and the purpose (which goals)G for which the authori-
sation is passed. If G = ∅, no restriction about the purpose exists. STS-ml authorisations
also specify if authority to delegate authority to others is granted (transferrable). The
Municipalityauthorises InfoTN to read (R) informationpersonal info, residential address,
and tax contributions, in the scope of goal system maintained granting authority to del-
egate (graphically, the authorisation has a continuous arrow line).

4.2 Security Requirements in STS-ml

STS-ml aims to ensure information security and secure interaction among participants.
The supported requirements originate from the main security aspects in the NIST glos-
sary [11], they have been refined through collaboration with industry 2, and confirmed
by evaluation workshops [17]. STS-ml supports three types of security requirements:

– Interaction (security) requirements are security-related constraints actors express
over their interactions, namely goal delegations and document transmissions.

– Organisational constraints determine another range of requirements that constrain
the adoption of roles and the uptake of responsibilities.

– Authorisation requirements determine authorisations and prohibitions over infor-
mation specifying whether they can be used, how, for which purpose, and by whom.

2 Our partners in the EU FP7 Project Aniketos http://www.aniketos.eu

http://www.aniketos.eu

276 E. Paja, F. Dalpiaz, and P. Giorgini

An STS-ml model is consistent when there are no conflicts between security require-
ments and business policies.

Interaction (Security) Requirements. STS-ml supports several interaction security
requirements on goal delegations and document transmissions (illustrated in Figure 1).
Let Del stand for delegate(A1, A2, G), where A1 and A2 are actors, G is a goal:

– Non-repudiation of delegation/acceptance [R1: r-not-repudiated-del(A2, A1,Del),
R2: r-not-repudiated-acc(A1, A2,Del)]: A2 (A1) requires A1 (A2) not to repudiate
the delegation (acceptance of the delegation) Del. In Figure 1, Tax Agency wants
InfoTN not to repudiate the acceptance of delegation for data completn. ensured.

– Redundancy [r-red-ensured]: the delegatee has to adopt redundant strategies for
the achievement of a delegated goal, either by (a) relying on other actors, or by (b)
using alternative internal capabilities. We consider two types of redundancy: (1)
Fallback redundancy: a primary strategy is selected to fulfill the goal, while other
strategies are maintained as backup, and are used only if the primary strategy fails.
(2) True redundancy: two or more different strategies are executed simultaneously.
By intertwining (a-b) with (1-2), STS-ml supports four mutually exclusive redun-
dancy security requirements: (a1) true redundancy single [R3: r-ts-red-ensured(A1,
A2, G)], (a2) fallback redundancy single [R4: r-fs-red-ensured(A1, A2, G)], (b1)
true redundancy multi [R5: r-tm-red-ensured(A1, A2, G)], and (b2) fallback re-
dundancy multi [R6: r-fm-red-ensured(A1, A2, G)]. For instance, InfoTN requires
TN Company Selector to ensure true redundancy single for goal data refined.

– Not-redelegation [R7: r-not-redelegated(A1, A2, G)]: the delegator wants the dele-
gatee not to further delegate goal fulfilment. InfoTN requiresTN Company Selector
not to redelegate goal search module built, for instance.

Let Tx stand for transmit(A1, A2,Doc), where A1, A2 are actors, Doc is a document:

– Integrity of transmission [R8: r-integrity-ensured(A2, A1, Tx)] requires the sender
to guarantee the integrity of Doc while transmitting it. Tax Agency requires InfoTN
to guarantee the transmission integrity of high quality data.

Organisational Constraints. These requirements do originate from laws, business rules,
and regulations. In these constraints, the STS is the legal regulatory context for the con-
sidered domain. STS-ml supports two basic types of organisational constraints: Separa-
tion of Duties (SoD), and Binding of Duties (BoD). These constraints dictate restrictions
over role-to-role relationships as well as agent-to-role and goal-to-goal relationships:

– Role-based SoD [R9: r-not-played-both(STS, A,R1, R2)]: defines that two roles
are incompatible, i.e., no agent A can play both roles R1 and R2.

– Role-based BoD [R10: r-played-both(STS, A,R1, R2)]: defines a binding between
roles, i.e., if agent A plays role R1 (R2), then A must also play R2 (R1).

– Goal-based SoD [R11: r-not-pursued-both(STS, A,G1, G2)]: defines incompatible
goals, i.e., every agent A must not pursue both goals G1 and G2.

– Goal-based BoD [R12: r-pursued-both(STS, A,G1, G2)]: defines that if an agent A
pursues goal G1 (G2), A should pursue G2 (G1) too. An example of this require-
ment is expressed between goals semantic search built and enterprise search built.

Authorisation Requirements. These are obtained from authorisations in the authori-
sation view. If an actor A2 has no incoming authorisation for any information I from

Managing Security Requirements Conflicts in Socio-Technical Systems 277

I, then A2 has a prohibition for I . Such prohibition is an STS-ml authorisation from
the information owner to A2 where no operation is allowed nor authority to transfer is
passed. Let Auth stand for authorise(A1, A2, I, G,OP , TrAuth), where A1, A2 are ac-
tors, I is a set of information,G is a set of goals, OP is the set of operations {R, M, P, T},
and TrAuth is a boolean value determining if the authorisation is transferrable:

– G �= ∅ → Need-to-know [R13: r-not-ntk-violated(A1, A2, I,G)]: A2 is required
not to perform any operation (read/modify/produce) on documents that make some
information in I tangible, for any goals not included in G. The authorisation from
Tax Agency to InfoTN is an example: personal info, residential address and tax
contributions shall be used only for goal data refined.

– R /∈ OP → Non-read [R14: r-not-read(A1, A2, I)] and Not-reauthorise-read [R18:
r-not-reauthorised(A1, A2, I,G, {R})] : A2 is required not to read documents rep-
resenting information in I, or authorise others to do so. Tax Agency expresses
such requirement on the authorisation for personal info, residential address and
tax contributions to InfoTN, for authority to read those information is not granted.

– M /∈ OP→Non-modification [R15: r-not-modified(A1, A2, I)] and Not-reauthorise-
modification [R18: r-not-reauthorised(A1, A2, I,G, {M})]:A1 wantsA2 not to mod-
ify documents that include information inI, or authorise others to do so.Municipality
expresses a non-modification requirement over the authorisation towards InfoTN,
when authorising it to read personal info, residential address and tax contributions.

– P /∈ OP → Non-production [R16: r-not-produced(A1, A2, I)] and Not-reauthorise-
production [R18: r-not-reauthorised(A1, A2, I,G, {P})]: A1 requires A2 not to
produce any documents that include information in I, or authorise others to do
so. For example, PAT requires InfoTN not to produce information fiscal code.

– T /∈ OP → Non-disclosure [R17: r-not-disclosed(A1, A2, I)] and Not-reauthorise-
disclosure [R18: r-not-reauthorised(A1, A2, I,G, {T})]: A1 requires A2 not to
transmit to other actors any document that includes information in I, or autho-
rise others to do so. For instance, Municipality expresses such requirement in the
authorisation over information fiscal code and tax contributions granted to PAT.

– TrAuth = false→ Not-reauthorised [R18: r-not-reauthorised(A1, A2, I,G, {R, M,
P, T})]: A1 requires A2 not to further transfer any rights when transferability of the
authorisation is false (A2 cannot transfer any permission on I and for G). In Fig-
ure 1, an example is the authorisation from Citizen to Municipality (dashed arrow).

Among these requirements, R1,R2, and R8 can be verified only at runtime, for they
require checking runtime actions that actors carry out (e.g., repudiating a delegation).

5 Detecting Conflicts at Design-Time

STS-ml models can be inconsistent. After describing the possible types of inconsis-
tencies, we show how our reasoning framework detects conflicts among authorisations
(Section 5.1), and between business policies and security requirements (Section 5.2).

5.1 Conflicts among Authorisations

We check if the stakeholders have expressed conflicting authorisations. This is non-
trivial, for STS-ml models contain multiple authorisations over the same information,

278 E. Paja, F. Dalpiaz, and P. Giorgini

and every authorisation expresses a prohibition on the operations for which rights are
not transferred. The authorisation from Municipality to InfoTN allows reading (R is
selected, Figure 1) information personal info, residential address and tax contributions,
but prohibits the modification, production, and transmission of the given information.

Def. 1 (Authorisation conflict). Two authorisations Auth1 = authorise(A1, A2, I1,
G1,OP1, TrAuth1), and Auth2 = authorise(A3, A2, I2, G2, OP2, TrAuth2), are con-
flicting (a-conflict(Auth1,Auth2)) iff I1 ∩ I2 �= ∅, and either:

1. G1 �= ∅ ∧ G2 = ∅ , or vice versa; or,
2. G1 ∩ G2 �= ∅, and either (i) OP1 �= OP2, or (ii) TrAuth1 �= TrAuth2. �

An authorisation conflict occurs if both authorisations apply to the same information,
and either (1) one authorisation restricts the permission to a goal scope, while the other
does not (one implies an r-not-ntk-violated requirement, the other grants rights for
any purpose); or, (2) the scopes are intersecting, and different permissions are granted
(on operations, or authority to transfer). There are two authorisations to InfoTN on
personal info, residential address and tax contributions: that from Municipality grants
R, but prohibits M, P, and T; that from Tax Agency grants M and P, but prohibits R and T.
The authorisations’ scopes intersect: the goal data refined of the second authorisation
is a subgoal of system maintained of the first authorisation. Thus, they are conflicting
with respect to reading, modification, and production of the specified information.

5.2 Conflicts between Business Policies and Security Requirements

Given an STS-ml model without authorisation conflicts, we verify the existence of secu-
rity requirements that are violated by some actor’s business policy. For instance, require-
ment r-not-modified(Municipality, InfoTN, {personal info}) conflicts with a business
policy for InfoTN that includes the relationship modify(InfoTn, goal, personal info).

Business policies define alternative strategies for an actor to fulfil her root goals.
Alternatives are introduced by (i) choosing one subgoal in an or-decomposition; and (ii)
deciding whether to pursue root goals that are delegated from other actors. Formally:

Def. 2 (Actor strategy). Given a business policy for an actor A, P (A), an actor strat-
egy SP (A) is a sub-model of P (A) obtained by pruning P (A) as follows:

– for every or-decomposition, only one subgoal is kept. All other subgoals are pruned,
along with the elements that are reachable from the pruned subgoals only (via
and/or-decompose, read/produce/modify, transmit, and delegate relationships);

– for every root goal G that is delegated to A, G can optionally be pruned. �
In Figure 1, the business policy for TN Company Selector includes only delegated

root goals. One strategy involves keeping only search module built. This goal is or-
decomposed; by Def. 2, one subgoal is kept in the strategy (e.g., semantic search built).
The read relationship to document high quality data is retained, as well as the document
itself. An alternative strategy could, however, involve not building the search module.

We define a variant to enable identifying conflicts that occur only when the actors
choose certain strategies. A variant combines consistently actors’ strategies (each ac-
tor fulfills the root goals in her strategy), by requiring that delegated goals are in the
delegatee’s strategy. Also, a variant includes the authorise relationships in the model.

Managing Security Requirements Conflicts in Socio-Technical Systems 279

Def. 3 (Variant). Let M be an authorisation-consistent STS-ml model, P (A1), . . . ,
P (An) be the business policies for all actors in M . A variant of M (VM) consists of:

– a set of strategies {SP (A1), . . . , SP (An)} such that, for each Ai, Aj , G, if delegate
(Ai, Aj , G) is in SP (Ai), then G is in SP (Aj), and

– all the authorise relationships from M . �

Variants constrain the strategies of the actors. In Figure 1, every variant includes
TN Company Selector pursuing goal search module built, for InfoTn’s root goal online
system built is not delegated to it by others (thus, it has to be in her strategy), and the
only possible strategy involves delegating goal search module built to TN Company
Selector. Thus, there exists no variant where the latter actor does not pursue that goal.

An STS-ml model can contain more variants. TN Company Selector can choose to
achieve search module built through semantic search built or enterprise search built.

Variants enable detecting conflicts between business policies and security require-
ments. The latter define (dis)allowed relationships for the actors’ business policies.

Def. 4 (Bus-Sec conflict). Given a variant VM , a conflict between business policies
and security requirements exists if and only if, for every actor A:

– The strategy of A in VM contains one or more relationships that are prescribed by
a security requirement requested from another actor A′ to A;

– The strategy of A in VM does not contain any relationships required by some re-
quirement requested from another actor A′ to A. �

Table 1 describes semi-formally how these conflicts are verified for the different types
of security requirements that STS-ml supports. Below, we provide some more details.

Security Requirements. Redundancy requirements (R3 to R6) can be partially checked.
The existence of redundant alternatives is possible, but a variant does not allow distin-
guishing true and fallback redundancy. Thus, true and fallback redundancy are checked
the same way. Single-agent redundancy (R3 and R4) is fulfilled if A2 has at least two
disjoint alternatives (via or-decompositions) for G. Multi-actor redundancy (R5 and R6)
requires that at least one alternative involves another actor A3. Not-redelegation (R7)
holds if there is no delegation of G or its subgoals from A2 to other actors in the variant.

Organisational Constraints. R9 and R10 require A not to or to play two roles through
play relationships, respectively. R11 is verified if A is not the final performer for both
G1 and G2 or their subgoals. R12 is verified in a similar way, but A has to be the final
performer (i.e., does not delegate) for both goals.

Authorisation Requirements. These prescribe relationships that shall not be in A2’s
strategy in the variant. Need-to-know (R13) requires no read, modify, or produce rela-
tionship on documents that make tangible some information in I for some goal G′ that
is not in G or in descendants of some goal in G. R14 to R16 are verified if A2’s strat-
egy in the variant includes no read, modify, or produce relationships on documents that
make tangible part of I ∈ I, respectively. Non-disclosure (R17) does a similar check but
looking at transmissions. Non-reauthorisation (R18) is fulfilled if there is no authorise
relationship from A2 to others on any operation in OP over I in the scope of G.

280 E. Paja, F. Dalpiaz, and P. Giorgini

Table 1. Security requirements and their design-time verification against a variant VM

Requirement Verification at design-time
Interaction requirements

R3 : r-ts-red-ensured(A1, A2, G) Partial. A2 pursues goals in VM that define at
R4 : r-fs-red-ensured(A1, A2, G) least two disjoint ways to support G
R5 : r-tm-red-ensured(A1, A2, G) Partial. Both A2 and another actor A3 support
R6 : r-fm-red-ensured(A1, A2, G) G, each in a different way

R7 : r-not-redelegated(A1, A2, G)
�delegate(A2, A3, G

′) ∈ VM . G′ = G or G′

is a subgoal of G
Organisational constraints

R9 : r-not-played-both(STS, A,R1, R2) {play(A,R1), play(A,R2)} � VM

R10 : r-played-both(STS, A,R1, R2) {play(A,R1), play(A,R2)} ⊆ VM

R11 : r-not-pursued-both(STS, A,G1, G2)
A is not the final performer for both G1 and G2

or their subgoals

R12 : r-pursued-both(STS, A,G1, G2)
A is the final performer for both G1 and G2 or
their subgoals

Authorisation requirements

R13 : r-not-ntk-violated(A1, A2, I, G) �read/modify/produce(A2, G,D) ∈ VM . D
makes tangible (part of) I ∈ I and G /∈ G

R14 : r-not-read(A1, A2, I) �read(A2, G,D) ∈ VM . D makes tangible
(part of) I ∈ I

R15 : r-not-modified(A1, A2, I) �modify(A2, G,D) ∈ VM . D makes tangible
(part of) I ∈ I

R16 : r-not-produced(A1, A2, I) �produce(A2, G,D) ∈ VM . D makes tangible
(part of) I ∈ I

R17 : r-not-disclosed(A1, A2, I) �transmit(A2, A3, D) ∈ VM . D makes tangi-
ble (part of) I ∈ I

R18 : r-not-reauthorised(A1, A2, I,G,OP)
�authorise(A2, A3, I, G,OP ′) ∈ VM .
OP ′ ⊆ OP

6 Implementation and Evaluation

STS-Tool 3 [15] supports STS-ml modelling, inter-view consistency, requirements doc-
ument generation, as well as automated analysis for conflict detection. Under the hood,
the tool encodes STS-ml models into disjunctive Datalog programs to support our rea-
soning [14]. The current version of STS-Tool is the result of an iterative development
process that intertwined evolutions of the language and continuous evaluations [17].

We evaluate our framework in two ways: (i) we show its effectiveness in identifying
conflicts in our case study, and (ii) we conduct experiments to assess its scalability.

Findings from the Case Study. We first modelled the case study using STS-Tool (Fig-
ure 1) to then run the automated analysis to identify authorisation conflicts. The analysis
returned severl conflicts that we had not identified during the modelling, including:

– On authority to produce: Tax Agency authorises InfoTN to produce documents
with information personal info, residential address and tax contributions to obtain
refined data, whereas Municipality requires read-only access, and not production.

3 http://www.sts-tool.eu

http://www.sts-tool.eu

Managing Security Requirements Conflicts in Socio-Technical Systems 281

– On authority to modify: InfoTN grants Okkam Srl the authority to modify docu-
ments with information personal info to obtain interconnected data, whereas TN
Company Selector requires no document representing this information is modified.

These conflicts, which went unnoticed while modelling, originate from the stakehold-
ers’ authorisation policies. The former conflict can be resolved by negotiating the provi-
sion of adequate rights with the Municipality, while the latter can be fixed by revoking
the authorisation, given that Okkam Srl does not need it (from the social view).

After fixing authorisation conflicts, we used the tool’s capabilities to identify Bus-Sec
conflicts. This activity provided us with further useful insights:

– r-not-redelegated: TN Company Selector relies on Okkam Srl to build a seman-
tic search module (delegation of semantic search built). However, while relying on
TN Company Selector, InfoTN wants this company to build the search modules,
requiring it not to redelegate goal semantic search built. This interaction require-
ment is in conflict with the business policy on delegating semantic search built.

– r-not-modified: Engineering Tribute Srl makes an unauthorised modification of Ci-
tizen’s personal info, violating the authorisation requirement r-not-modified spec-
ified by Citizen and passed on by TN Company Selector.

– r-not-produced: Citizen makes an unauthorised production of addresses, for this
information is owned by the Municipality and no authorisation is granted to Citizen.

– r-not-reauthorised: Citizen wants only the Municipality to read and produce her
personal info and does not allow transfer of authority, however the Municipality
further authorises InfoTN to read documents with this information.

– r-pursued-both: goals semantic search built and enterprise search built should be
pursued by the same actor, since a r-pursued-both normative requirement is spec-
ified between these goals. A conflict occurs because TN Company Selector is not
the final performer for both goals (semantic search built is delegated to Okkam Srl).

These conflicts are due to the different policies of the companies. They can be re-
solved through trade-offs [4] between business policies and security requirements.

Scalability Study: Design. We have investigated how the reasoning execution time is
affected by the size of the model. Taking the model in Figure 1 as a basic building
block, we cloned it to obtain larger models in terms of (i) number of elements (nodes
and relationships); and (ii) number of variants. The latter is motivated by our reasoning
techniques, which generate STS-ml model variants (Def. 3). For details, see [14].

We ran tests on models with zero, medium and high variability, by customising the
decomposition types in the original model. For each model, we ran the analysis 7 times,
discarded the fastest and slowest executions, and computed the average execution time.

Scalability Study: Results. We have conducted our experiments on a DELL Optiplex
780 desktop PC, Pentium(R) Dual-Core CPU E5500 2.80GHz, 4Gb DDR3 399, pow-
ered by Windows 7. Below, we detail the results (summarized in Figure 2) and draw
conclusions for the two scalability dimensions we have considered:

– Number of elements [Figure 2(a)]: we present results for all the conflict types we
can detect, i.e., authorisation conflicts, violation of interaction and authorisation
requirements, as well as of organisational constraints. As noticeable by the plot,

282 E. Paja, F. Dalpiaz, and P. Giorgini

Fig. 2. Scalability results with increasing number of elements and number of variants

all techniques scale very well (linear growth). Furthermore, the tool managed to
reason over our extra-large models (6,000+ elements) in about twelve seconds.

– Number of variants [Figure 2(b)]: this dimension affects execution time the most.
We show only violations of authorisation and interaction requirements; the other
checks do not increase the number of variants. While the growth is still linear in
the number of variants, it is exponential in the number of elements (the model with
1,048,576 variants consists of 2,500 elements). Some medium-variability tests take
longer than high-variability because, for a given number of variants, a medium-
variability model contains twice the elements than a high-variability model.

The results are very promising, especially when considering that the size of real world
scenarios is smaller than the extra-large models we produced with our cloning strategy.

7 Conclusions

We have proposed a framework to detect conflicts in security requirements adopting
a socio-technical perspective on requirements models. Our framework is based on a
revised version of STS-ml [2], the security requirements modelling language for STSs.
STS-ml supports a rich set of security requirements: interaction security requirements,
fine-grained authorisation requirements, and organisational constraints.

We have shown how to detect two types of conflicts: (1) among authorisation require-
ments; and (2) between business policies and security requirements. We have illustrated
the effectiveness of our conflict identification techniques on an industrial case study, and
we have reported on promising scalability results of our implementation.

Our future work includes: (1) devising further reasoning techniques to identify con-
flicts among security requirements (so far, we identify conflicts only among authorisa-
tion requirements); and (2) exploring possible ways to resolve the identified conflicts.

Managing Security Requirements Conflicts in Socio-Technical Systems 283

Acknowledgments. The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7/2007-2013) under grants no
257930 (Aniketos) and 256980 (NESSoS).

References

1. Bertino, E., Jajodia, S., Samarati, P.: A flexible authorization mechanism for relational data
management systems. ACM Transactions on Information Systems 17(2), 101–140 (1999)

2. Dalpiaz, F., Paja, E., Giorgini, P.: Security requirements engineering via commitments. In:
Proc. of STAST 2011, pp. 1–8 (2011)

3. De Landtsheer, R., van Lamsweerde, A.: Reasoning about confidentiality at requirements
engineering time. In: Proc. of FSE 2005, pp. 41–49 (2005)

4. Elahi, G., Yu, E.: A goal oriented approach for modeling and analyzing security trade-offs.
In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801,
pp. 375–390. Springer, Heidelberg (2007)

5. Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., Nuseibeh, B.: Inconsistency handling in
multiperspective specifications. IEEE TSE 20(8), 569–578 (1994)

6. Fuxman, A., Pistore, M., Mylopoulos, J., Traverso, P.: Model checking early requirements
specifications in tropos. In: Proc. of RE 2001, pp. 174–181 (2001)

7. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling security requirements
through ownership, permission and delegation. In: Proc. of RE 2005, pp. 167–176 (2005)

8. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with goal models.
In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp.
167–181. Springer, Heidelberg (2002)

9. Haley, C.B., Laney, R., Moffett, J.D., Nuseibeh, B.: Security requirements engineering: A
framework for representation and analysis. IEEE TSE 34(1), 133–153 (2008)

10. Horkoff, J., Yu, E.: Finding solutions in goal models: An interactive backward reasoning
approach. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS,
vol. 6412, pp. 59–75. Springer, Heidelberg (2010)

11. Kissel, R.: Glossary of key information security terms. Technical Report IR 7298 Rev 1,
NIST (2011)

12. Liu, L., Yu, E., Mylopoulos, J.: Security and privacy requirements analysis within a social
setting. In: Proc. of RE 2003, pp. 151–161 (2003)

13. Mouratidis, H., Giorgini, P.: Secure Tropos: A security-oriented extension of the tropos
methodology. IJSEKE 17(2), 285–309 (2007)

14. Paja, E., Dalpiaz, F., Giorgini, P.: Identifying conflicts in security requirements with STS-ml.
Technical Report DISI-12-041, University of Trento (2012)

15. Paja, E., Dalpiaz, F., Poggianella, M., Roberti, P., Giorgini, P.: STS-Tool: socio-technical
security requirements through social commitments. In: Proc. of RE 2012, pp. 331–332 (2012)

16. Shvaiko, P., Mion, L., Dalpiaz, F., Angelini, G.: The TasLab portal for collaborative innova-
tion. In: Proc. of ICE 2010 (2010)

17. Trösterer, S., Beck, E., Dalpiaz, F., Paja, E., Giorgini, P., Tscheligi, M.: Formative user-
centered evaluation of security modeling: Results from a case study. IJSSE 3(1), 1–19 (2012)

18. van Lamsweerde, A., Darimont, R., Letier, E.: Managing conflicts in goal-driven require-
ments engineering. IEEE TSE 24(11), 908–926 (1998)

19. Whitman, M.E., Mattord, H.J.: Principles of Information Security, 4th edn. Course Technol-
ogy Press (2011)

20. Yu, E.: Modelling strategic relationships for process reengineering. PhD thesis, University of
Toronto, Canada (1996)

	Managing Security Requirements Conflictsin Socio-Technical Systems
	1 Introduction
	2 Related Work
	3 Motivating Case Study: Tax Collection in Trentino
	4 The STS-ml Framework for Security Requirements Modelling
	4.1 Modelling with STS-ml
	4.2 Security Requirements in STS-ml

	5 Detecting Conflicts at Design-Time
	5.1 Conflicts among Authorisations
	5.2 Conflicts between Business Policies and Security Requirements

	6 Implementation and Evaluation
	7 Conclusions
	References

