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Abstract. In this work we perform a thorough evaluation of the most popular 
CR-based classification scheme, the SRC, on the task of classification in dissi-
milarity space. We examine the performance utilizing a large set of public do-
main dissimilarity datasets mainly derived from classification problems relevant 
to visual information. We show that CR-based methods can exhibit remarkable 
performance in challenging situations characterized by extreme non-metric and 
non-Euclidean behavior, as well as limited number of available training samples 
per class. Furthermore, we investigate the structural qualities of a dataset neces-
sitating the use of such classifiers. We demonstrate that CR-based methods 
have a clear advantage on dissimilarity data stemming from extended objects, 
manifold structures or a combination of these qualities. We also show that the 
induced sparsity during CR, is of great significance to the classification perfor-
mance, especially in cases with small representative sets in the training data and 
large number of classes.   

1 Introduction 

Dissimilarity representations are commonly used in several contemporary applica-
tions, where the structural approach to intelligent data analysis is followed as a natural 
and powerful alternative to the traditional vectorial representations. During the pre-
vious decades many techniques aiming to quantify the dissimilarity between objects 
were developed. The problem of computing a dissimilarity value can be viewed from 
different perspectives: using dynamic programming in order to estimate the non-linear 
warping between two trajectories in the feature space [1], transforming the problem 
into the graph domain and comparing the corresponding graphs [3], considering the 
given sets of vectors as multivariate distributions and applying statistical tests [11] or 
computing appropriate distances [8,16] etc. Regardless of the method chosen, the 
resultant dissimilarity values are the quantification of pairwise object comparisons in 
a global manner. Additionally, such a representation provides a context where infor-
mation fusion can be expressed very easily (i.e. averaging dissimilarity values derived 
from different descriptors).  

In this context, a large number of applications aim to classify objects using pair-
wise dissimilarities to a set of labeled objects. In order to utilize modern classifiers, 
the dissimilarity data typically has to be transformed into a vector representation 
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through embedding into a vector space of fixed dimensions. The problem is that 
usually the dissimilarity measures and the resultant data do not satisfy the mathemati-
cal requirements of a metric function, that is the underlying Gram matrix to be posi-
tive semi-definite. Consequently, the dissimilarity data have to be further processed in 
order to suppress the non-Euclideanity and/or non-metricity. Some popular methods 
for transforming non-Euclidean dissimilarity into vector representations include the 
positive definite subspace embedding i.e. classical multidimensional scaling [27], 
based on the assumption that metric violations are noise artifacts lacking of useful 
information, the  pseudo-Euclidean embedding [12] , generalizations such as MDS [4] 
and kernel PCA [24], and the manifold embedding i.e. [28], assuming that Euclidean 
violations are an outcome of the intrinsic manifold structure of the data.  

Recent studies [18, 5] though, have shown that significant discriminative informa-
tion can be expressed through the negative eigenspace. This particularly stands in 
applications related to the perception of visual information, where the raw data are 
usually characterized by very high dimensionality compared to that of the underlying 
structure of the classes. Additionally, the human perception of dissimilarity between 
objects is rarely Euclidean and commonly non-metric, resulting a considerable 
amount of information to be encoded in the negative eigenspace. Therefore, although 
a highly non-Euclidean/ non-metric measure is able to describe a given problem quite 
well, data cannot be embedded distortionless into a real Euclidean space.  

An alternative approach to the embedding into a vector-space is the representation 
in the dissimilarity space [21], where each sample is directly represented by a vector 
of dissimilarities with a set of representative samples. In this case, the information 
lying in the negative eigenspace is preserved since no modification is being per-
formed to the data. The properties of such spaces have not been extensively studied 
yet, although there is a solid justification for the construction of classifiers in dissimi-
larity spaces [20]. Furthermore, there is strong evidence regarding to the benefits of 
using classifiers in this context, as recently reported by R. Duin et al. [5], achieving 
state-of-the-art classification performance on publicly available dissimilarity data, 
using linear SVM in the dissimilarity space. Furthermore, an extensive evaluation [6] 
of several linear classifiers operating in the dissimilarity space, including SVMs, 
Fisher discriminant, Linear Logistic regression etc., revealed that they perform similar 
or better compared to linear and non-linear feature-based classifiers in a wide range of 
datasets.  

Motivated by these findings, several works have been published recently, investi-
gating different aspects of dissimilarity-based pattern recognition. Hammer et al. [15] 
proposed a scheme for prototype-based classification of possibly non-Euclidean dis-
similarity data. Schleif et al. [23] proposed a prototype-based conformal classifier 
which enables the calculation of a confidence measure for the produced classification. 
Both of these schemes are based on the relational prototype based learning, where is 
assumed that the prototypes are linear combination of the underlying data points. 
Elhamifar et al. [7] proposed a scheme for the discovery of appropriate exemplars, in 
order to efficiently represent the data using non-Euclidean/non-metric dissimilarities. 
They formulated the problem as a row-sparsity trace minimization problem, solved 
via convex programming. Calana et. al. [22] proposed a supervised criterion for the 
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selection of feature lines, a concept associated with generalized dissimilarity represen-
tations which has proven to be very efficient for small representation sets. A similar 
approach has also been proposed [25], presented as a two-stage, sparse-based classifi-
cation scheme for the human action recognition task, where at the first stage a test 
sequence is represented as a mixture of the training actions and at the second stage 
this mixture is used in order to classify the sequence.  

In this work we aim to thoroughly investigate the capabilities of collaborative 
sparse representation regarding the classification in the dissimilarity space, and espe-
cially the discriminative efficiency in challenging visual classification tasks. This 
classification scheme is based on the popular SRC [29] classifier, and has recently 
been successfully utilized [26] for the task of human action recognition using pose 
data from low-cost devices, characterized by significant inaccuracies and noise. Fur-
thermore, we aim to define the structural characteristics of a dataset that constitute the 
utilization of the above classification scheme truly beneficial. The rest of this work is 
organized as follows: The basic formulation of representation in the dissimilarity 
space is given in section 2. The principles and basic properties of collaborative repre-
sentation-based classification are detailed in Section 3. The thorough experimental 
procedure, and the obtained results are given in Section 4. Conclusions are drawn in 
Section 5. 

2 2 Representation in Dissimilarity Space 

Let { }1 2, , ..., no o o=S  be a training set of objects io , represented by an arbitrary type 

of data. Given an appropriate dissimilarity function d , a mapping  ( ), : kP →X S   

can be defined, where { }1 2, , ..., kP p p p=  is, in the general case, a set of  k  objects, 

namely prototypes, and can be a subset of Χ . In the resulting space, called dissimilar-
ity space, each dimension ( ), ipX   describes the dissimilarity to the thi  prototype.  

In the current work we assume that :P = S , so as every object to be represented by an 
n-dimensional vector of dissimilarities to all training objects : 

( ) ( ) ( ) ( )1 2, , , , ,..., , no d o o d o o d o o
Τ

= =   y X S  (1)

Thereafter, the representative vectors for the objects of S  are simply the columns of 
the corresponding dissimilarity matrix X . 

3 Classification Based on Collaborative Representation 

Collaborative representation (CR) constitutes the representation of a data sample 
m∈y   as a linear combination ≈y Xa  of n training samples from K classes forming 

the dictionary m n×∈X  . Thus, X  is of the form [ ]1 2, , ... K=X X X X , where iX  is the 

matrix holding the training samples from the thi as column vectors. The coefficient 
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vector n∈a  of the representation is computed by solving an optimization problem 
of the form 

2

2
ˆ arg min

p
λ= − +aa y Xa a  (2)

where λ is a regularization factor. The classification of the test sample y  can now be 

performed by seeking for the partial linear combination ˆ
i iX a , where ˆ

ia  is the vector 

holding the coefficients associated with the training samples of class i, that best 
represents the test sample y  in terms of minimum reconstruction error.  In a more 

formal way 

( ) 2

2
ˆarg min i i iIdentity = −y y X a  (3)

In order to gain some insights regarding the classification mechanism based on col-
laborative representation, we can discard the regularization factor from the optimiza-
tion problem (1), for simplicity. Thus, the representation becomes the least-square  

problem 
2

2
ˆ arg min= −aa y Xa . The associated representation ˆˆ =y Xa  is the perpen-

dicular projection of y  onto the space spanned by X . The reconstruction error by each 
class can be written 

2 2 2

2 2 2
ˆ ˆˆ ˆi i i ie = − = − + −y X a y y y X a  (4)

The useful term for discrimination is the 
2*

2
ˆ

i ie = −y X a , since the amount 
2

2
ˆ−y y is 

constant for all classes. It can be easily shown [28] that the representation error can be 
represented as 

( )
( )

22
* 2

2

ˆ ˆsin ,

sin ,
i

i
i i

e
χ
χ χ

=
y y

 (5)

where ˆ
i i ιχ = X a  is the projection of y onto the subspace spanned by the samples of 

class i , and ˆi j j
i j

χ
≠

=X a  is the projection onto the subspace spanned by the samples 

of all the other classes. From eq. (4) it is apparent that the minimization of the repre-
sentation error as expressed by eq. (2), is equivalent to the quest for small angle  
between the overall representation ŷ and the class-depended representation iχ  and 

simultaneously large angle between iχ  and iχ . Thus, when applying the classifica-

tion rule (2) on collaborative representations, we seek for the class that best represents 
a test sample in a voracious manner. This form of dual objective gives robustness  
to the CR-based classification methods, especially when the classes are hardly  
distinguishable. 

Maybe the most successful CR-based classification scheme is the Sparse Represen-
tation-based Classification scheme (SRC), proposed by Wright et al. in [29], where l1 
–norm regularization (p=1) has been imposed to the optimization problem (1), in  
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order to induce sparsity in the representation coefficients â . The role of sparsity is 
essential in order to make the solution of (1) stable, especially in applications with 
large number of classes and/or small number of training samples per class. In order to 
fully benefit from the induced sparsity, the dictionary X  has to be over-complete. 
Therefore, PCA or random projections are usually applied to the data in order to re-
duce dimensionality and render the training set to an overcomplete dictionary. The 
problem (1) can be solved efficiently using linear programming techniques. The me-
thod has been applied in several challenging classification problems such as face rec-
ognition, achieving state-of-the-art performance. A very effective validation criterion 
has also been proposed, based on the class-specific sparsity of the coefficients ˆ

ia . In 

this paper we evaluate SRC classifier on several dissimilarity datasets, in order to 
examine the effectiveness of the CR-based classification, on the task of classifying 
data into dissimilarity space.   

4 Experiments 

In this work, our goal is to systematically assess the performance of CR-based me-
thods on the classification of dissimilarity data. To this purpose, we evaluate SRC 
using a set of 11 public domain dissimilarity datasets, shown in Table 1. The utilized 
datasets are derived mostly from problems concerning classification of visual infor-
mation both static (such as shape gradient etc.) and dynamic (human motion etc.). The 
first 6 datasets of Table 1 are available at the D3.3 deliverable of the EU SIMBAD 
project, and are considered as a benchmark in classification of dissimilarity data. Spe-
cifically, WoodyPlants is a subset of the shape dissimilarities between leaves of woo-
dy plants [17], including only classes with more than 50 objects. Catcortex is based 
on the connection strength between 65 cortical areas of a cat, [13]. GaussM1 and 
GaussM02 are based on two 20-dimensional normally distributed sets of objects,  
for which dissimilarities are computed using the Minkowsky distance of order 1 and 
0.2 respectively. The three Coil dataset is based on the same sets of SIFT points in 
COIL images compared using graph distance. The Delft dataset consists of the dissi-
milarities computed from a set of gestures in a sign-language study [19]. They are 
measured by two video cameras observing the positions the two hands in 75 repeti-
tions of creating 20 different signs. The dissimilarities result from a dynamic time 
warping procedure. 

The remaining five consists of a group of challenging datasets, namely UPCV-
Dissim, emerged from popular computer vision problems. Specifically, UPCV-Gait 
datasets consists of the dissimilarity matrix of pose sequences derived by capturing 
the gait of 22 individuals, five times each. The dissimilarities were computed using 
the multivariate extension of Wald–Wolfowitz statistical test. For details regarding 
the dataset and the dissimilarities calculation see [25]. The UPCV-Act-m and UPCV-
ActD datasets correspond to the dissimilarities between sequences of poses, captured 
from 10 individuals performing 10 actions, twice each. The dissimilarities were com-
puted using MNPD and DTW algorithms respectively.  For details the reader can 
refer to [26]. The MPEG7-Shape dataset corresponds to the dissimilarities between 69 
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classes of shapes from the MPEG7 shape dataset. The dissimilarities were computed 
using time delay embedding of the Centroid Contour Descriptor and the MNPD algo-
rithm. For details the reader can refer to [9]. Finally, the Leafs dataset consists of the 
dissimilarities computed on a set of leaf images, subset of a larger Herbarium data-
base, used in [10]. It is derived from images from 37 leaf species with 25 leaves from 
each species. The dissimilarities resulted according to the authors using multivariate 
extension of Wald–Wolfowitz statistical test via mapping of the angle sequence (AS) 
descriptor of leaf contours into the phase space. 

In the first section of Table 1 there are some general properties of the datasets: 
number of objects (size), number of classes, the fraction of triangle violations in the 
corresponding dissimilarity matrix (non-metric) and the Negative Eigen-Fraction 
(NEF). As can be seen, the utilized datasets span across a wide range of properties, 
regarding non-metric and non-Euclidean behavior as also samples-per-class ratio.  

Table 1. Datasets characteristics and classification errors for SRC and SVM using leave-one-
out cross validation 

 
Dataset Characteristics 
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WoodyPlants50 791 14 5E-04 0.23 0.073 0.075 

CatCortex 65 4 2E-03 0.21 0.015 0.046 

GaussM1 500 2 0 0.26 0.182 0.202 

GaussM02 500 2 5E-04 0.39 0.18 0.204 

CoilDelftSame 288 4 0 0.03 0.406 0.413 

Delft 1500 20 9E-06 0.31 0.025 0.027 

UPCV-Gait 110 22 6E-03 0.1 0.046 0.391 

UPCV-Act-m 200 10 1E-03 0.13 0.045 0.05 

UPCV-ActD 200 10 1E-02 0.21 0.09 0.1 

MPEG7-Shape 1380 69 3E-03 0.21 0.065 0.107 

Leafs 925 37 3E-02 0.31 0.088 0.102 

 
We compare the performance of the CR-based classification to the results obtained 

by the linear SVM operating in the dissimilarity space, reported by Duin et al. in [5]. 
In order to constitute the results directly comparable, we use the same preprocessing 
and experimental protocol, followed in [5]. Thus, for every dataset the dissimilarity 
matrix is made symmetric by averaging with its transpose and normalized by the av-
erage off-diagonal dissimilarity. Error estimates are based on the leave-one-out cross-
validation protocol. Due to the fact that the training set in dissimilarity representations 
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consists of the dissimilarity matrix of the training samples, the dictionary used for CR 
is complete. As explained in the previous section though, in order to reinforce the 
sparsity of the obtained CR, especially in the case of SRC, the dictionary has to be 
overcomplete. To this purpose, after normalization we apply PCA to each dataset in 
order to reduce the dimensionality of the representation vectors. The projection matrix 
was computed in each run using the corresponding training set. 

The obtained results are shown in Table 1. One can observe that SRC outperforms 
SVM in all datasets. In a first attempt to specify the characteristics of a dataset  
that favor CR-based methods for classification, one can observe that the advantage of 
CR-based classification compared to SVM is greater on datasets with smaller sam-
ples-per-class ratio such as the UPCV-Gait dataset. This can be explained due to the 
sparsity induced during CR via the l1-norm regularization, which constitutes the re-
presentation stable even for very small representative sets. Concerning the behavior of 
CR-based classification regarding non-metric and non-Euclidean properties of the 
datasets, we cannot draw reliable conclusions from the above results, since SRC is 
able to perform better than SVM both on metric and non-metric datasets, as also in 
datasets within a wide range of NEF. These results raise the question whether exist 
appropriate markers, indicating than the incorporation of a CR-based method could be 
beneficial to the classification accuracy, comparing to the standard SVM. 

In order to model structural characteristics of the utilized datasets, thus forming 
appropriate criteria for the utilization of CR-based methods in the classification of 
dissimilarity data, we follow the rationale of Xu et al. in [31]. In their work, they con-
sidered three sources of non-Euclidean/non-Metric behavior in dissimilarity data: a) 
The manifold structure of the underlying data that implies non-Euclidean behavior to 
the derived dissimilarities, b) The spatially extended nature of the data samples forc-
ing distance to be measured between the closest points of the surface of two samples, 
resulting pairwise distances that violate the triangle inequality, and c) Additive Gaus-
sian noise to the originally Euclidean dissimilarities, resulting both non-Euclidean and 
non-metric data. In the same work authors introduced some empirical measures in 
order to identify the source of non-metric and non-Euclidean behavior of an arbitrary 
dataset. To this purpose, they proposed to model the negative spectrum of the Gram 
matrix corresponding to a dissimilarity matrix, by fitting a simple exponential func-
tion of the form ( ) bxy x a e= ⋅ , with b being the slope and a the intercept. Further-

more, as a measure for the characterization of the non-metric behavior, the parameter 

, ,
max ij ik jk
i j k

C d d d= + −  is computed, where ijd  is the dissimilarity between the ith and 

jth data sample. The parameters a,b and C are used as measures, characterizing the 
negative spectrum and therefore the whole dataset. 

We calculated the above parameters for all the utilized datasets and the results are 
illustrated in figure 1. In figure 1.a the datasets are distributed according to the cor-
responding values of parameters b and C. Figure 1.b illustrates the distribution of 
datasets according to the values of a and C. The area marked in green on both plots, 
indicate the space where the datasets characterized by manifold structure of their data 
lie in. The area marked in red, indicate the domain of datasets characterized by  
the spatially extended nature of their data samples. Finally, the area marked in blue 
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indicates the domain of the datasets, in which Gaussian noise has been added to the 
initially Euclidean dissimilarities. The illustration is based on the findings in [31], 
where artificially data from the three categories were used in order to define the cor-
responding regions. Apparently, the unmarked area corresponds to intermediate or 
mixed states, where more than one source of non-metric/mom-Euclidean behavior is 
inherent in the data.  

 

 
(a) 

 
(b) 

Fig. 1. The distribution of the datasets used for evaluation, according to (a) The slope b and the 
metric constant C; (b) The slope b and the intercept a. The area marked in green corresponds to 
datasets that exhibit non-Euclidean behavior due to manifold structure of their data. The area 
marked in red, indicate datasets with spatially extended objects, and the area in blue indicate 
additive Gaussian noise to initially Euclidean dissimilarities. 
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As illustrated in Figure 1, the most of UPCV-Dissim datasets are characterized by 
mixed non-Euclidean/ non-metric behavior, where more than one sourse of negative 
spectrum and triangular violations affect the data. Specifically, UPCV-Action-m data-
set is likely to contain extended objects lying and a loose manifold structure of the 
data. Delft and Leafs datasets are expressing a manifold behavior mixed with noise. 
The UPCV-Gait dataset probably contains extended objects in the underlying data 
samples, causing the triangular violations. Finally, we cannot be conclusive about the 
source of the properties of MPEG7-Shape and UPCV-ActionD datasets, although the 
large percentage of triangular violations and high NEF indicate the presence of ex-
tended objects on a manifold data structure, possibly with some additive noise. 

Regarding the properties that favor the CR-based methods, it is easily inferred that 
such schemes perform significantly better than SVM on datasets characterized by the 
presence of spatially extended objects. Also, in the intermediate states which are cha-
racterized by low noise, CR-based methods seem to have a clear advantage. Things 
become vague as the properties of a dataset resemble the noisy case. There are many 
cases though, that due to limited number of available samples for training, CR-based 
methods proved to be advantageous in noisy conditions, such as Delft, Leafs and 
Woodyplants50 datasets. 

5 Conclusions 

In this work we performed a thorough evaluation of the collaborative sparse represen-
tation SRC scheme, on the classification task in dissimilarity space. In particular we 
examined the performance of the most popular CR-based classification scheme, using 
a large set of public domain dissimilarity datasets, representing a wide range of tasks 
requiring classification of visual information. We compared the performance of the 
above methods to that of linear SVM scheme which is considered to be a landmark to 
the classification of dissimilarity data. We showed that CR-based classification can 
offer a clear advantage in challenging situations characterized by extreme non-metric 
and non-Euclidean behavior, as well as limited number of available training samples 
per class. Furthermore, we investigated the structural qualities of a dataset that consti-
tute the CR-based classification beneficial compared to the SVM. To this purpose we 
utilized a three-parameter modeling of the non-metric and non-Euclidean properties 
of a dataset, corresponding to three independent sources of such behavior. 

We demonstrated that CR-based methods outperform SVM on classifying dissimi-
larity data that contain spatially extended objects, manifold structure of the underlying 
data or a combination of these qualities, even if a small amount of noise has infiltrated 
to the data. We also showed that the induced sparsity during CR in the SRC scheme is 
of great significance to the classification performance, especially in cases with small 
representative sets in the training data and large number of classes. 
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