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Abstract. In the problem of object category recognition, we have studied 
different families of descriptors exploiting RGB and 3D information. 
Furthermore, we have proven practically that 3D shape-based descriptors are 
more suitable for this type of recognition due to low shape intra-class variance, 
as opposed to image texture-based. In addition, we have also shown how an 
efficient Naive Bayes Nearest Neighbor (NBNN) classifier can scale to a large 
hierarchical RGB-D Object Dataset [2] and achieve, with a single descriptor 
type, an accuracy close to state-of-art learning based approaches using 
combined descriptors. 

1 Introduction 

Object category recognition is the task of classifying one object instance never seen 
before. Here instance stands for object physically unique and category consists of 
instances that share common features. The recent availability of RGB-D information 
provided by Microsoft Kinect Sensor encouraged researchers to use this combined 
information in computer vision problems. Progress was made in instance recognition 
[1][2][3][4], object categorization [2][3] and pose estimation [1]. In this context we 
have studied the performance of different families of feature descriptors, exploring 
this information on the task of generic object category recognition. For this purpose 
we rely on a publicly available large hierarchical RGB-D object dataset [2]. 

The bases of most computer vision applications are local features. Numerous 
feature descriptors have been proposed for intensity images [6][7][8] and for 3D point 
clouds [9][10][11] respectively: local image descriptors and local surface descriptors, 
and both share common principles. Since the last decade, SIFT [6] has been 
consistently the most accepted and used local image feature and Spin Image [9] is 
arguably the most popular local surface descriptor. However, in recent literature, 
some local image feature methods [7][8] faster than SIFT are reported and, some local 
surface descriptor methods [10][11], claim to be more noise resilient and 
discriminative than Spin Image. As our first contribution we have tested local surface 
descriptors and local image descriptors side by side.  

In object recognition, state-of-art methods are usually based on a combination of 
bag of words (BoW) [12] with Support Vector Machine classifier. In image 
classification, Naive Bayes Nearest Neighbor (NBNN) classifier [5] was introduced 
as a competitive alternative to these learning based methods.  This non-parametric 
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classifier does not require a quantization step, inherent of BOW, and thus features 
maintain their discriminative power. NBNN also generalizes well beyond the training 
data by exploiting Image–to-Class distance rather than Image-to-Image distance used 
in other NN approaches. Over the recent years several modified versions were 
proposed to deal with NBNN limitations.  

In [14] a more powerful parametric version of NBNN than the original was 
introduced, supporting unbalanced datasets, where the number of features per class is 
strongly class-dependent. Thanks to the introduction of a learning phase, the bias 
towards more densely classes was corrected, resulting in 15-percentage points gain in 
several datasets.  In [15] it was criticized the independence assumption of NBNN. The 
argument was that since each feature is treated separately, the information as a whole 
describing the image, is ignored. As a result, the accuracy of distinguishing classes 
that share similar local features is worse than in BOW, which encodes the feature 
distribution over the image.  More recently the problem of scalability was addressed 
in [16]. It was shown that multi-way NBNN version using one merged search 
structure for all the training data instead of a separate search structure for each class, 
achieved a 100 times speed-up over original NBNN, with 256 classes. As a second 
contribution of our paper, we have extended NBNN to local surface descriptors in a 
dataset [2] dominated by learning based methods. 

2 Classification Pipeline 

An example of our 3D Object Classification Workflow approach is depicted in Figure 
1.  Our pipeline builds on the data provided by the RGB-D Object Dataset [2], which 
comprises RGB images and 3D point clouds, already segmented, from several views 
around the objects. At training time, for each class, we simply extract image and 3D 
descriptors from a set of views from all training objects belonging to a category and 
then, we build random kd-trees as an approximate search structure. Our simple 
NBNN training stage is class-independent and has no weight-learning phase hence it’s 
much more suitable to online learning applications than learning-based approaches.  

 

 

Fig. 1. Overview of the classification pipeline proposed in this work. We show an example of a 
cap class query for a cap point cloud using 3D surface descriptors. 
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In testing time, given a query frame (i.e. image or point cloud) from a never-seen-
before object, we extract descriptors from the test frame the same way we did in the 
training phase, although a sparser sampling in this phase causes a significantly speed-
up, in exchange for a minor performance loss [15]. Our method is no different from 
NBNN algorithm described in Algorithm 1 below. To evaluate the likelihood of a 
query frame ܳ belonging to a class ܿ, for each query descriptor ݀௜ we search its 
approximated nearest neighbor in c: ܰ ௖ܰሺ݀௜ሻ. Then our distance to c is the sum of all 
the correspondence distances measured using the squared ܮଶ distance. This procedure 
is repeated to all training classes. Then the class estimated is the class with smaller 
distance.  
 

1. Compute descriptors d1 ,…,  dfrom query image Q. 

2. ∀d∀C     compute the NN of din c    : NN(d) 

3. ܿ̂ ൌ arg ݉݅݊௖ ∑ ԡ݀௜ െ ܰ ௖ܰሺ݀௜ሻԡଶ௡௜ୀଵ
Algorithm 1. NBNN [5] 

3 Approximate Nearest Neighbor Search 

The number of training descriptors in each class is very large: in a dense descriptor 
extraction, we can get 500 feature descriptors in one image of one object instance. 
Our regular number of training images for instance is around 120, if a class has at 
least 4 instances, the total number of descriptors in that class is 240,000. Hence a 
simple linear search is not a choice. A kd-tree has logarithmic time complexity for 
low dimensions though its efficiency tends to decrease with the feature 
dimensionality, which in our case is at least 128 dimensions.  

Therefore approximate nearest neighbor search methods are required when using 
NBNN. Approximate search neighbor’s search time-precision tradeoff is controlled 
by parameter ܿ, the number of leaf nodes checked. We use FLANN [17] 
implementation and our chosen search structure is 4 random k-d-trees [18] with ܿ ൌ 20, as they are quite precise at a cost of relatively low memory footprint. Our 
search time complexity is then ܱ൫ܿ ஽ܰொ ஼ܰ logሺ ூܰ ஽ܰூሻ൯. Where c in number of 
checks, ஽ܰொ is the number of query descriptors, ஼ܰ  is the number of Classes, ூܰ is the 
number of instances per class and ஽ܰூ is the number of descriptors per instance. One 
query with 51 classes in our parallel x64 implementation takes between 30 to 160 ms, 
depending on ஽ܰொ and building 4 random k-d trees per class takes between 0.56 to 4.4 
seconds. Tests were performed in one 2.3 GHz core i5 with 4 GB of RAM. 

4 Visual Appearance and Shape Descriptors 

Our work focuses on the study of different kinds of descriptors, under the 
classification approach described in Section 2, and the selection of the one that we 
believe is more appropriate for object classification tasks.  In Section 4.1 we describe  
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the descriptors that capture the visual appearance information present in RGB images. 
In section 4.2 we describe the surface descriptors that capture the 3D shape 
information from point clouds. 

4.1 Visual Appearance Descriptors 

We have selected SIFT [6] as representative of local image feature descriptors due to 
its superiority in precision, discriminability and popularity. We have used VLFeat 
[19] DSIFT implementation, to extract SIFT descriptors from regular dense grid 
points using one fixed scale patch (see parameter details in Section 5). We have 
discarded low contrast features as in [16] and unlike the original SIFT, the rotation 
invariance is disabled in these descriptors. We state that in this classification 
approach, the discriminative power of the descriptors is more relevant than the 
invariance propriety and that the feature orientation information, favors 
discriminability.  Rotation invariance loses this information, leading consequently to 
lower discriminability.  

In order to make the descriptors even more discriminative we have included the 
keypoint normalized coordinates in the descriptor histogram, keeping the aspect ratio. 
Hence the 128-dimensional SIFT descriptor becomes 130-D. This technique used 
initially in [5], represents spatial information in finer way than spatial pyramid [13]. 
In Section 5 we show the gain of including this information.  

Local image descriptors explore the intensity-images and not color information, 
thus we include global Hue Histograms in our framework to capture this 
complementary information. One Hue histogram is extracted from each image, low 
saturation zones are unreliable therefore we discard them. We tested both a Hard and 
Soft Assignment version. In hard version a Hue sample is simply assigned to the 
closest histogram bin, whereas in a soft version, a Hue sample is count in the closest 
and in the second closest bin with weights proportional to proximity.  

4.2 Shape Descriptors 

As local surface feature descriptor we have selected Spin Image [9], already used by 
other authors in the RGB-D Object Dataset and the most recent SHOT descriptor 
[10]. Both are view-invariant.  In Spin Image, the 3D surface around the point feature 
is represented by a 2D Histogram. Points falling into the neighborhood (support) of 
the point feature are count according to their cylindrical coordinates ሺݎ,  ሻ, withoutݖ
the azimuth angle, where the origin is the feature point location, the longitudinal axis 
 the radius. Hence the descriptor is ݎ ,is the feature points normal (the signed height ݖ)
rotation invariant around the feature point normal.  

On the other side, SHOT uses spherical coordinates and encodes the azimuth angle, 
the radial distance and the elevation angle, by estimating a unique reference frame 
instead of a single reference axis (i.e. feature point normal) and using local histograms 
like SIFT. Therefore we believe that SHOT yields more discriminative power than 
Spin Image.  
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As feature detection we have used a common method to both descriptors and 
analogous to DSIFT. Keypoints are detected using a uniform voxel grid over the point 
cloud. In each voxel, the centroid of points within the voxel generates a point feature 
3D location. Our sampling parameter is the voxel size.  

To enhance the descriptor descriptiveness we have included the feature point 3D 
location (relative to the bounding box enclosing the object) in the descriptor 
histogram. We normalize the 3D coordinates dividing them by the largest dimension 
found in the bounding box. In Section 5 we tune both descriptors support radius on 
the RGB-D Object dataset keeping the standard descriptor length: SHOT with 352 
bins + 3 spatial bins and Spin Image with 153 dimensions + 3 spatial bins. 

4.3 Comparing Local Descriptors 

Comparing fairly image local descriptors with local surface descriptors is a difficult 
task, since each family of descriptors has its own particular parameterization namely, 
the sampling step. We believe that the simple and fairest way to compare them is to 
take into account the number of descriptors per frame.  

We simply perform a coarse tuning of the sampling parameters to find close 
cardinality matches, in two different categories of objects: Apple and Cereal Box, the 
former a relatively smaller and low-textured object and the latter a larger object rich 
in textures. In Table 1 we show this cardinality in two types of sampling, a sparser 
and a denser, these parameters are further used in our official results. As can be 
observed there’s a certain disparity that gives DSIFT some advantage. Our method is 
far from ideal considering that the density of local image features strongly depends on 
the textures, whereas the local surface descriptors depend rather on the size of the 
object. One could impose a limit of features per category as the minimum descriptors 
extracted between both descriptor types but instead we let the methods capitalize on 
the class features in order to perform a discriminative evaluation at the class level. 

Table 1. Average number of local features, per frame, in each class in function of the sampling 
step. In DSIFT sampling is the grid resolution. In SHOT and Spin Image sampling is the grid 
voxel size in meters. 

Class 
DSIFT SHOT & SI 

8x8 3x3 0.015 0.005 

Apple 63 425 59 397 

Cereal_box 555 3887 407 3005 

5 Experiments and Results 

5.1 Dataset for Training and Testing  

Throughout our experiments we have used the RGB-D Object dataset [2]. This large 
dataset is comprised of sequences of 640x480 color and depth images of 300 
instances of household objects grouped in 51 categories, it is unbalanced in the sense 
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that the number of instances per category ranges from 3 to 14, with the average being 
6 instances. Each object was recorded from 3 elevation angles (30º, 45º, 60º) while it 
was rotating in a turntable rig. We subsampled the dataset as in [2] by taking every 5th 
frame of the video resulting in about 120 frames per Object instance. Our results 
reported in Section 5.3 follow the standard object category recognition evaluation 
method: We measure accuracy over 10 trials and in each trial one random instance 
from each category is left for testing and the remaining instances from all classes are 
used for training.   

5.2 Tuning Descriptors 

All results in this section were obtained for 20-train classes. Figure 2 shows the effect 
of adding spatial information. α is the weight assigned to scale the normalized spatial 
bins. In all descriptors there’s a performance boost. However we realize that the 
weight for spatial information is descriptor-dependent. We emphasize the importance 
of finding optimum spatial information-descriptor tradeoff. For instances, Spin Image 
is better without spatial information than with α = 2. Based on this results we set α = 
0.25 for Spin Image, α = 0.5 for SHOT and α = 1.5 to DSIFT. Still in Figure 2 we 
show the tuning of the descriptor length for the Hue Histogram. The soft assignment 
version reaches high accuracy with remarkably only 6 bins. The hard assignment only 
meets this value with 14 bins.   

Experiments in Figure 3 and Figure 4 aims to discover the optimum descriptor size. 
As can be generally observed, accuracy has at least two distinctive zones: a growth 
and a saturation zone. In the former the size of the descriptor is not enough to fully 
exploit the object’s features, along this zone discriminative power increases until the 
saturation zone where increasing the descriptor size doesn’t add more discriminative 
information and ends on losing it (Figure 3). 

 

    

Fig. 2. (Left) Alpha Tuning. The effect of spatial information weight on the descriptors 
performance. (Right) Histogram length tuning in Hue Histograms. Soft Hue corresponds to our 
Hue descriptor implementation with soft assignment. 

For DSIFT in Figure 3, we used a sampling step of 8 pixels (which means 
descriptors always overlap). We also show the average feature extraction time for the 
two different classes considered in section 4.3. Based on these results we use a 24x24 
patch instead of the traditional 16x16. For Spin Image and SHOT we used a voxel 
size of 3 cm due to efficiency. In SHOT we choose a support radius of 5 cm taking 
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into account the time complexity, which is exponential, this is not observed for the 
apple due to its size being smaller than the support at a certain level. Spin Image is 
faster to extract than SHOT however it requires a much larger support radius, as result 
Spin Image ends up being slower, we choose using a support radius of 30 cm to 
maximize accuracy. Here the cereal box time slope drops by the same reason as the 
apple in SHOT. 

 

    

Fig. 3. Patch size tuning in DSIFT. (Left) Accuracy as function of the patch size. (Right) 
Feature extraction time per category. 

     

            

Fig. 4. Support size tuning in surface descriptors. SHOT in the top row, Spin Image in the 
bottom row. (Left) Accuracy as function of the support radius (Right) Feature extraction time 
for category, Omp stands for OpenMP, corresponds to the parallel implementation version 
available in PCL, running with two threads. 
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5.3 Results 
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