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Abstract. Thinning is an iterative object reduction to obtain skeleton-
like shape features of volumetric binary objects. Conventional thinning
algorithms preserve endpoints to provide important geometric informa-
tion relative to the object to be represented. An alternative strategy is
also proposed that accumulates isthmuses (i.e., generalization of curve
and surface interior points as skeletal elements). This paper presents two
parallel isthmus-based 3D thinning algorithms that are capable of pro-
ducing centerlines and medial surfaces. The strategy which is used is
called subiteration-based or directional: each iteration step is composed
of 12 subiterations each of which are executed in parallel. The proposed
algorithms make efficient implementation possible and their topological
correctness is guaranteed.

Keywords: Object Recognition, Shape Representation, Discrete Geom-
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1 Introduction

Skeleton is a region-based shape descriptor which represents the general shape
of objects. 3D skeleton-like shape features (i.e., centerlines and medial surfaces)
play important role in various applications in image processing, computer vision,
and pattern recognition [14].

A fairly illustrative definition of the skeleton is given using the prairie-fire
analogy: the object boundary is set on fire, and the skeleton is formed by the
loci where the fire fronts meet and extinguish each other. Thinning is a digital
simulation of the fire front propagation [5]: the border points that satisfy certain
topological and geometric constraints are deleted in iteration steps. The entire
process is repeated until stability is reached.

Most of the existing thinning algorithms are parallel, since the fire front prop-
agation is by nature parallel. Those algorithms delete some object points in a
binary image simultaneously [3]. Thinning has a major advantage over the al-
ternative 3D skeletonization methods: it can produce both skeleton-like shape
features. Surface-thinning algorithms can extract medial surfaces and curve-
thinning algorithms can produce centerlines. General 3D objects can be rep-
resented by their medial surfaces, and centerlines are usually extracted from
tubular structures.
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Conventional 3D thinning algorithms preserve some curve-endpoints or sur-
face-endpoints that provide relevant geometrical information with respect to the
shape of the object. Bertrand and Couprie proposed an alternative approach by
accumulating some curve/surface interior points that are called isthmuses [2].
Characterizations of these isthmuses (for curve-thinning and surface-thinning)
were defined first by Bertrand and Aktouf [1]. There are dozens of endpoint-
based 3D thinning algorithms, but just a few ones use the isthmus-based thinning
scheme [1,2,7,12].

In this paper a curve-thinning algorithm and a surface-thinning algorithm are
presented. Both 3D parallel thinning algorithms accumulate isthmuses in each
thinning phase as elements of the final shape features. They use subiteration-
based (or directional) strategy: each iteration step is composed of a number of
subiterations where only border points of a certain kind can be deleted in each
subiteration [3,11]. The new algorithms are derived from endpoint-preserving
3D parallel 12-subiteration thinning algorithms proposed by Palágyi and Kuba
[8]. It is illustrated that the isthmus-based algorithms produce ”more reliable”
results with fewer skeletal points than the original endpoint-based algorithms
do. The topological correctness of the new algorithms is proved.

2 Basic Notions and Results

Some concepts of digital topology and their key results will be given below as
they will be needed later on. The basic concepts of digital topology are applied
as reviewed in [5].

Let p be a point in the 3D digital space Z
3. Let us denote Nj(p) (for j =

6, 18, 26) the set of points that are j-adjacent to point p and let N∗
j (p) =

Nj(p)\{p} (see Fig. 1a).
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Fig. 1. Frequently used adjacency relations in Z
3 (a). The set N6(p) contains point p

and the six points marked U, D, N, E, S, and W. The set N18(p) contains N6(p) and
the twelve points marked “�”. The set N26(p) contains N18(p) and the eight points
marked “�”. The 12 possible non-opposite pairs of points in N∗

6 (p) (b).

The sequence of distinct points 〈x0, x1, . . . , xn〉 is called a j-path (for j =
6, 18, 26) of length n from point x0 to point xn in a non-empty set of points
X if each point of the sequence is in X and xi is j-adjacent to xi−1 for each
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i = 1, . . . , n. Note that a single point is a j-path of length 0. Two points are said
to be j-connected in the set X if there is a j-path in X between them. A set of
points X is j-connected in the set of points Y ⊇ X if any two points in X are
j-connected in Y .

A 3D binary (26, 6) digital picture P is a quadruple P = (Z3, 26, 6, B) [5].
Each element of Z3 is said to be a point of P . Each point in B ⊆ Z

3 is called
a black point and has a value of 1 assigned to it. Each point in Z

3\B is known
as a white point and has a value of 0. A picture (Z3, 26, 6, B) is called finite if
the set B contains finitely many points. An object is a maximal 26-connected set
of black points, while a white component is a maximal 6-connected set of white
points. In a finite picture there is a unique infinite white component, which is
called the background . A finite white component is said to be a cavity.

A black point is called a border point in a (26, 6) picture if it is 6-adjacent to
at least one white point. A border point is said to be a U-border point if the
point marked U in Fig. 1a is white. We can define D-, N-, E-, S-, and W-border
points in the same way.

There are three kinds of opposite (unordered) pair of points in N∗
6 (p) denoted

byUD, NS, and EW. The twelve possible non–opposite pairs of points in N∗
6 (p)

are denoted by US, NE, DW, SE, UW, DN, SW, UN, DE, NW, UE, and
DS. These can be associated with the twelve edges of a cube, see Fig. 1b. A
border point is called a US-border point if it is a U-border point or an S-border
point. The remaining 11 kinds of border points corresponding to the other non–
opposite pairs can be defined in the same way.

A reduction transforms a binary picture only by changing some black points
to white ones (which is referred to as the deletion of black points). A reduction is
not topology-preserving [4] if any object in the input picture is split (into several
ones) or is completely deleted, any cavity in the input picture is merged with the
background or another cavity, or a cavity is created where there was none in the
input picture. There is an additional concept called hole (which doughnuts have)
in 3D pictures [5]. Topology preservation implies that eliminating or creating any
hole is not allowed.

A black point is simple in a (26, 6) picture if and only if its deletion is a
topology-preserving reduction [5]. A useful characterization of simple points on
(26, 6) pictures is stated by Malandain and Bertrand as follows:

Theorem 1. [6] A black point p is simple in a picture (Z3, 26, 6, B) if and only
if all of the following conditions hold:

1. The set N∗
26(p) ∩B contains exactly one 26–component.

2. The set N6(p) \B is not empty.
3. Any two points in N6(p) \B are 6–connected in the set N18(p) \B.

Based on Theorem 1, the simplicity of a point p can be decided by examining
the set N∗

26(p).
Reductions delete a set of black points and not just a single simple point.

Palágyi and Kuba proposed the following sufficient conditions for 3D reductions
to preserve topology.
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Theorem 2. [8] Let R be a reduction. Let p be any black point in any picture
P = (Z3, 26, 6, B) such that p is deleted by R. Let Q be the family of all the sets
of Q ⊆ (N18(p)\{p})∩B such that q1 ∈ N18(q2), for any q1 ∈ Q and q2 ∈ Q. R
is topology-preserving for (26, 6) pictures if all of the following conditions hold:

1. p is a simple point in (Z3, 26, 6, B\Q) for any Q in Q.
2. No object contained in a 2× 2× 2 cube can be deleted completely by R.

3 Endpoint-Preserving 12-Subiteration Thinning
Algorithms

Palágyi and Kuba developed two endpoint-preserving parallel 3D 12-subiteration
thinning algorithms [8]. Let us denote these algorithms as 3D-12S-EC and 3D-
12S-ES . Algorithm 3D-12S-EC is capable of producing centerlines by preserv-
ing curve-endpoints of type EC , and 3D-12S-ES is a surface-thinning algo-
rithm that does not delete surface-endpoints of type ES . The considered types of
endpoints are defined as follows:

Definition 1. [8] A black point p in picture (Z3, 26, 6, B) is a curve-endpoint
of type EC if the set N∗

26(p) ∩B contains exactly one point.

Definition 2. [8] A black point p in picture (Z3, 26, 6, B) is a surface-endpoint
of type ES if the set N∗

6 (p) contains at least one opposite pair of white points.

Note that each curve-endpoint of type EC is simple and a surface-endpoint of
type ES .

Existing algorithms 3D-12S-EC and 3D-12S-ES are described by Algorithm
1.

Algorithm 1. Algorithm 3D-12S-E (E ∈ {EC , ES})
1: Input: picture (Z3, 26, 6, X)
2: Output: picture (Z3, 26, 6, Y )
3: Y = X
4: repeat
5: // one iteration step
6: for each d ∈ {US, . . . ,DS} do
7: // subiteration for deleting some d-border points
8: D(d) = { p | p is d-E-deletable in Y }
9: Y = Y \ D(d)
10: end for
11: until D(US) ∪ . . . ∪D(DS) = ∅

Note that choosing another order of the 12 types of border points yields
another algorithm. Palágyi and Kuba proposed the following ordered list of
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the border points associated with the 12 subiterations of Algorithm 1 [8]:
〈US,NE,DW, SE,UW,ND, SW,UN,DE, NW,UE,DS 〉.

In the first subiteration, all US-E-deletable points are deleted simultaneously,
and all DS-E-deletable points are deleted in the last (i.e., the 12th) subiteration
at a time (E ∈ {EC , ES}). Deletable points are given by a set of 3 × 3 × 3
matching templates. A black point is deletable if at least one template in the
corresponding set of templates matches it. Templates are usually described by
three kinds of elements, “•” (black), “◦” (white), and “.” (“don’t care”), where
“don’t care” matches either black or white point in a given picture. In order to
reduce the number of templates Palágyi and Kuba use additional notations [8].

Deletable points in the first subiteration of the curve-thinning algorithm
3D-12S-EC (i.e., US-EC-deletable points) are given by the set of 14 match-
ing templates TC = {C1, . . . ,C14} depicted in Fig. 2. Similarly, deletable
points in the first subiteration of the surface-thinning algorithm 3D-12S-ES

(i.e., US-ES-deletable points) are given by the set of 6 matching templates
TS = {S1,S2,C7,C8,C9,C10}, see Figs. 2 and 3. Deletable points of the re-
maining 11 subiterations can be obtained by proper rotations and/or reflections
of the templates associated with the first subiteration.

It is easy to see that all curve-endpoints of type EC (see Def. 1) are pre-
served by curve-thinning algorithm 3D-12S-EC and surface-thinning algorithm
3D-12S-ES never deletes any surface-endpoint of type ES (see Def. 2).

4 Isthmus-Based 12-Subiteration Thinning Algorithms

In this section two isthmus-based 3D parallel 12-subiteration thinning algorithms
are presented. The new curve-thinning and surface-thinning algorithms use the
following characterizations of isthmuses.

Definition 3. [1] A border point p in a picture (Z3, 26, 6, B) is an IC -isthmus
(for curve-thinning) if the set N∗

26(p)∩B contains more than one 26–component
(i.e., Condition 1 of Theorem 1 is violated).

Definition 4. [1] A border point p in a picture (Z3, 26, 6, B) is an IS-isthmus
(for surface-thinning) if p is not a simple point (i.e., Condition 1 of Theorem 1
or Condition 3 of Theorem 1 is violated).

It can be stated that no isthmus point is simple and the considered charac-
terizations of isthmuses depend on the set N∗

26(p) for a point p in question.
The scheme of the proposed two isthmus-based thinning algorithms 3D-12S-

IC and 3D-12S-IS is sketched in Algorithm 2.
In each subiteration of the new algorithms, isthmuses (i.e., some border points

that are not simple ones) are dynamically detected and accumulated in a con-
straint set I. In the first subiteration of both thinning algorithms, all US-
deletable points are deleted simultaneously, and all SD-deletable points are
deleted in the last (i.e., the 12th) subiteration. US-deletable points are given
by the set of 16 matching templates TI = {I1, I2, I3,C4, . . . ,C14, I15, I16}
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Fig. 2. The set of templates TC assigned to the first subiteration of the curve-thinning
algorithm 3D-12S-EC . Notations: at least one position marked “x” matches a black
point; at least one position marked “v” matches a white point; at least one position
marked “w” matches a white point; two positions marked “z” match different points
(one of them matches a black point and the other one matches a white one).
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“x” matches a black point; at least one position marked “y” matches a black point.
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Algorithm 2. Algorithm3D-12S-I (I ∈ {IC , IS})
1: Input: picture (Z3, 26, 6, X)
2: Output: picture (Z3, 26, 6, Y )
3: Y = X
4: I = ∅
5: repeat
6: // one iteration step
7: for each d ∈ {US, . . . ,DS} do
8: // subiteration for deleting some d-border points
9: I = I ∪ { p | p ∈ Y \ I and p is an I-isthmus }
10: D(d) = { p | p ∈ Y \ I and p is d-deletable in Y }
11: Y = Y \ D(d)
12: end for
13: until D(US) ∪ . . . ∪D(DS) = ∅

depicted in Figs. 2 and 4. Deletable points of the other 11 subiterations can be
obtained by proper rotations and/or reflections of the templates assigned to the
first subiteration.

It can be readily seen that – due to the new templates I1, I2, I3, I15, and I16,
(see Fig. 4) and their rotated and reflected versions associated with the other
11 subiterations – all curve-endpoints of type EC (with the exception of objects
that are formed by two endpoints) and some (simple) surface-endpoints of type
ES are deleted by an iteration step of the proposed algorithms 3D-12S-IC and
3D-12S-IS .

The topological correctness of the new isthmus-based algorithms is proved in
Section 6.

5 Results and Implementation

In experiments the existing endpoint-based and the proposed isthmus-based al-
gorithms were tested on various synthetic and natural objects. Due to the lack
of space, here we can present just three illustrative examples, see Figs. 5-7. The
numbers in parentheses are the counts of object points in the produced skeleton-
like shape features.

Thanks to the isthmus-based approach, the proposed algorithms (3D-12S-IC
and 3D-12S-IS) can produce less unwanted side branches and surface patches
than the conventional endpoint-ones (3D-12S-EC and 3D-12S-ES) do. Note
that each skeletonization technique (including thinning) is rather sensitive to
coarse object boundaries. The false segments included by the produced skeleton-
like shape features can be removed by a pruning process (i.e., a post-processing
step) [13].

One may think that the proposed algorithms are time consuming and it is
rather difficult to implement them. In [10], Palágyi proposed a fairly general
framework that can be used for parallel 3D thinning algorithms [11] and some se-
quential ones as well [9]. That efficient method uses pre-calculated look-up-tables
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Fig. 4. The three modified and the two new templates in the set TI that is assigned to
the first subiteration of the proposed isthmus-based thinning algorithms 3D-12S-IC
and 3D-12S-IS . The modified templates I1, I2, and I3 are derived from templates
C1, C2, and C3 (see Fig. 2), respectively. All these five templates match some curve-
endpoints of type EC .

3D-12S-EC (936) 3D-12S-ES (60 245)

3D-12S-IC (889) 3D-12S-IS (42 921)

Fig. 5. The skeleton-like shape features produced by the existing endpoint-preserving
algorithms and the proposed isthmus-based algorithms superimposed on a 217×304×98
3D image of a biplane containing 656 424 object points
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3D-12S-EC (909) 3D-12S-ES (52 632)

3D-12S-IC (823) 3D-12S-IS (14 646)

Fig. 6. Skeleton-like shape features produced by the existing endpoint-preserving algo-
rithms and the proposed isthmus-based algorithms superimposed on a 174× 103× 300
3D image of a hand containing 865 941 object points

to encode the deletion rules of the thinning algorithm to be implemented. In addi-
tion, two lists are used to speed up the process: one for storing the border-points
in the current picture (since thinning can only delete border-points, thus the
repeated scans/traverses of the entire array storing the picture can be avoided);
the other list is to store all deletable points in the current phase of the pro-
cess. At each iteration, the deletable points are found and deleted, and the
list of border points is updated accordingly. The algorithm terminates when no
further update is required. To implement the proposed isthmus-based 3D 12-
subiteration thinning algorithms we use three look-up-tables, one for detecting
the US-deletable points (see Algorithm 2) and two additional ones to encode
IC -isthmus and IS-isthmus points, respectively. Note that deletable points for
the other 11 subiterations can be identified by the look-up-table associated with
the first subiteration by using the proper permutations of the elements in the set
N∗

26(p) for a point p in question. Since US-deletable points are given by a set of
3 × 3 × 3 matching templates (see Fig. 4) and the considered characterizations
of isthmuses can be decided by investigating the 3× 3 × 3 neighborhood of the
point is question, each pre-calculated look-up-table has 226 entries of 1 bit in
size. It is not hard to see that both look-up-tables require just 8 megabytes of
storage space in memory.



96 K. Palágyi

3D-12S-EC (1 589) 3D-12S-IC (1 490)

Fig. 7. Centerlines produced by the existing endpoint-preserving curve-thinning algo-
rithm and the proposed isthmus-based curve-thinning algorithm superimposed on a
512× 512× 333 3D image of a segmented human airway tree containing 272 901 object
points.

By adapting the efficient implementation method, our algorithms can be well
applied in practice: they are capable of producing skeleton-like shape features
from large 3D pictures containing 1 000 000 object points within half a second
on a standard PC.

6 Verification

Now we will show that the proposed algorithms are topologically correct. It is
sufficient to prove that reduction given by the set of matching templates TI (see
Figs. 2 and 4). Let us state some properties of the US-deletable points (see
Algorithm 2).

Proposition 1. Let us consider the configuration depicted in Fig. 8a. If black
point p is US-deletable, then

– point q is white,
– at least one point in {r, s} is white,
– if point r is black, then p can be deleted only by template I2 in set TI , and
– if point s is black, then p can be deleted only by template I1 in set TI .

Proposition 2. Let us consider the configuration depicted in Fig. 8b. If black
point p is US-deletable, then at least one point marked q is black.

These properties follow from an examination of the templates in TI .
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Fig. 8. Configurations associated with Proposition 1 (a) and Proposition 2 (b). A
2× 2× 2 cube corresponding to Condition 2 of Theorem 2 (c).

Lemma 1. Each US-deletable point is simple of (26, 6) pictures.

We need to show that all conditions of Theorem 1 are satisfied. It is obvious
by careful examination of the templates in TI .

We are now ready to state the main theorem.

Theorem 3. Both algorithms 3D-12S-IC and 3D-12S-IS are topology-preserv-
ing for (26, 6) pictures.

Proof. (Sketch) It is sufficient to prove that the reduction that deletes all
US-deletable points from any (26, 6) pictures is topology-preserving. We need
to show that both conditions of Theorem 2 are satisfied.

1. Let us consider Condition 1 of Theorem 2. If Q = ∅, then it holds by Lemma
1. If Q 
= ∅, then the given point p in question is simple after the deletion of
Q by Proposition 1.

2. Let us consider an object O that is contained in the 2 × 2 × 2 cube as it is
illustrated in Fig. 8c. Then the following statements hold by Proposition 2.

– If a ∈ O and it is US-deletable, then b, c, d, or D is in O.
– If A ∈ O and it is US-deletable, then B, C, D, or d is in O.
– If b ∈ O and it is US-deletable, then d ∈ O.
– If B ∈ O and it is US-deletable, then D ∈ O.
– If c ∈ O and it is US-deletable, then d ∈ O.
– If C ∈ O and it is US-deletable, then D ∈ O.
– If d ∈ O, then it is not US-deletable.
– If D ∈ O, then it is not US-deletable.

Since O contains at least one point that is not US-deletable, no object con-
tained in a 2× 2× 2 cube can be deleted completely.

The reduction given by the set of templates TI fulfills both conditions of Theorem
2. Hence, the first subiteration of the proposed thinning algorithms is topology-
preserving. It can be proved for the other 11 subiterations in a similar way. The
entire algorithms are topology-preserving, since they are composed of topology-
preserving reductions. ��
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