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Abstract. We introduce a new concept of constructing a generalized Voronoi
inverse (GVI) of a given tessellation T of the plane. Our objective is to place
a set Si of one or more sites in each convex region (cell) ti ∈ T , such that all
edges of T coincide with edges of Voronoi diagram V (S), where S =

⋃
i Si, and

∀i, j, i �= j, Si

⋂
Sj = ∅. Computation of GVI in general, is a difficult problem.

In this paper, we study properties of GVI for the case when T is a rectangular
tessellation and propose an algorithm that finds a minimal set of sites S. We also
show that for a general tessellation, a solution of GVI always exists.

1 Introduction

1.1 Motivation and Problem Definition

In the design of Integrated Circuits (IC), the placement of modules is often guided
by thermal constraints, which have become important because of high amount of power
consumption per unit area and low thermal conductivities [12]. During the design phase
it is thus required to estimate the thermal profile of each module and identify the lo-
cations for placement of heat sinks. A suitable geometry of heat sinks increases the
dependability of the chip as the hot spots and the subsequent thermal gradient across
the chip have a direct impact on its performance. The thermal environment around a
cell depends on the thermal resistance between its location and the heat sink and the
thermal contributions from other neighboring cells [24], [25]. The thermal resistance
varies directly on the distance to the heat sink and inversely proportional to the thermal
conductivity of the material on the way to heat sink [11]. Chen and Sapatnekar [13]
studied partitioning based thermal placement methods to determine the location of heat
sinks in each partition. In order to drain off the heat efficiently from a hot spot, ded-
icated heat sinks should be placed in the concerned partition so as to facilitate heat
dissipation predominantly for the components belonging to that partition. Similar prob-
lems may arise in placing reservoir wells on a digital microfluidic biochip [14], where
one or more reagents ought to be supplied independently to fluidic modules with least
transportation cost from a source placed within the same block. These engineering de-
sign issues mandate a formal analysis and motivate us to address the following problem
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in rectangular tessellations. Before that, we introduce the concept generalized Voronoi
inverse problem described below.

The Voronoi diagram V (S) of a point set (site) S = {s1, s2, . . . , sn} is defined as
the partitioning of a plane into n convex regions (Voronoi regions). Any point in each
Voronoi region V (si), will be closer to si ∈ S than to any other site of S \ si. The
edges of the Voronoi diagram are the set of points in the plane that are equidistant to
two nearest sites. The Voronoi vertices are the points equidistant to three (or more) sites.

Assume that we are given a tessellation T of the plane where each of its cell is
convex. In the inverse Voronoi diagram problem, the following question is asked: Given
T , does there exist a set of sites S, one site for each cell of T , such that the following
holds. If si ∈ S is placed in the cell ti ∈ T , then the Voronoi cell of si in the Voronoi
diagram of S (denoted by V (S)) is ti. Obviously, an inverse Voronoi diagram for any
T may not exist. Therefore, we consider the problem of constructing a generalized
Voronoi inverse (GVI) of a given tessellation T of the plane. Our objective is to place a
set Si of one or more sites in each of the cells of T , such that each edge of T coincides
with edges of V (S), where S =

⋃
i Si, and ∀i, j, i �= j, Si

⋂
Sj = ∅. Observe that

any cell of V (S) must not lie in more than one cell of T . Furthermore in GVI, such
placement of sites ought to satisfy the following property: for any point x ∈ ti, if y ∈ S
is the closest site of x then y ∈ Si. Our objective is to identify such a set S of minimum
cardinality. We define the cell ti as the Voronoi cell of set Si and denote it by t(Si).

The layout of an integrated circuit can be viewed as a tessellation of a rectangular
region R. Given a layout the heat sinks in each block should be placed in such a fashion
that the heat generated in one block is drained off locally without affecting the thermal
load of adjacent blocks. Moreover, the number of heat sinks placed in a block should
be minimum. It turns out that for a rectangular tessellation, such an exclusive heat sink
placement problem is equivalent to finding a GVI.

1.2 Notations and Definitions

Given a rectangular bounding region R, a rectangular tessellation of R is a partition-
ing of the region R into isothetic rectangles. As in Voronoi diagrams we refer to each
rectangle in the tessellation as a cell whose boundary is defined by axis-parallel seg-
ments. These segments are defined as the edges of the tessellation. The intersection of
two orthogonal segments (edges) of a cell is defined as follows. A T- junction is a point
where two orthogonal segments form a T-like structure (do not intersect), and a cross
junction is an intersection point where two orthogonal segments cross each other. Here
any intersection with the outermost boundary of the tessellation T is not considered as
junction. We define a rectangular tessellation without any cross or T junction as linear
rectangular tessellation.

In this paper we consider the GVI problem for a given rectangular tessellation T of
a rectangular region R. We need to locate a set S consisting of minimum number of
points inside T such that for each rectangular cell ti ∈ T , the set of sites Si ∈ S that
lie inside ti satisfies the following:

a) for any point x ∈ ti (x is not on a boundary) if y is its nearest neighbor in S, then
y ∈ Si and the closest neighbor y need not be unique.
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b) If point x lies on the edge adjacent to the cells ti and tj , then it is the perpendicular
bisector between the two sites x and y such that x ∈ Si and y ∈ Sj for i �= j. It is
assumed that there is no point on the boundary of the cells.

1.3 New Results

We study the generalized Voronoi inverse problem (GVI), i.e. we compute a set of points
S of minimum cardinality, so that the given rectangular tessellation T is a subgraph of
the 1-skeleton of the Voronoi diagram of S. We present the following results:

1. In Section 3 we present a linear-time algorithm for computing a GVI of optimum
size for a linear rectangular tessellation.

2. In Section 4 we establish a combinatorial bound of O(n2) on the required number
of sites for a general rectangular tessellation where n is the number of rectangles
in the given rectangular tessellation. Here we propose an algorithm fore generating
point set S for any general rectangular tessellation T which will provide a minimal
solution for GVI. Later, in this section we establish lower bounds on the required
number of sites for some special cases of rectangular tessellation.

3. In Section 5 we show that there always exists a feasible placement of sites that will
correspond to any given arbitrary tessellation T .

1.4 Related Works

Balzer et al. [3, 4] had worked on inverse Voronoi diagram with capacity constraints in
each Voronoi region. A close correlation of inverse Voronoi diagram with facility lo-
cation problem had been shown earlier [1, 2]. Hartvigsen [6] showed that the construc-
tion of an inverse Voronoi diagram problem can be mapped to a linear programming
problem. Discussions and literature survey on Generalized Voronoi diagrams have been
presented by Gavrilova [5]. GVI has also applications in biological growth model [7],
GIS system [8], and competitive facility location [9].

2 Preliminaries

Let T be a tessellation of rectangular regions, where each cell is a rectangle (Fig. 1(a)).
Let the vertices of a tessellation T be the junction points of segments either of type
T or cross type junction. A Hanan grid [10] is generated by constructing vertical and
horizontal lines through each junction point. The length of the vertical boundary and
the horizontal boundary of a cell (r) will be denoted by width(r) and breadth (r), re-
spectively. Let N (T ) denote the minimum number of sites in the GVI for a tessellation
T . The existence of GVI for any rectangular tessellation follows from the following
theorem:

Theorem 1. For any rectangular tessellation T , there exists a point set S of size O(n2)
such that any cell V (s)(⊆ V (S), s ∈ S) lies in exactly one cell of T , where n is the
number of cells in T .
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(b) (c)(a)

Fig. 1. Proof of Theorem 1. (a) Original tessellation (b) site placement on Hanan tessellation and
(c) site placement in original tessellation.

Proof. A Hanan grid can be constructed from the given rectangular tessellation T (See
Fig. 1a) that produces a Hanan tessellation (Fig. 1b). Here each cell of T is partitioned
into one or more parts. Moreover, each cell of Hanan tessellation must lie inside exactly
one cell of T . Fix a small positive constant ε whose value is smaller than half of the
smallest length among breadths and widths of all rectangular cells of T . For each grid
point of co-ordinate (a, b) of Hanan tessellation, place sites at positions (a + ε, b + ε),
(a−ε, b+ε), (a−ε, b−ε), (a+ε, b−ε) as in (Fig. 1b) Observe that the junction points of
the Hanan tessellation are Voronoi vertices and the edges of the tessellation emanating
from the junction points are Voronoi edges. However, all Voronoi vertices and edges
may not coincide with junction points and grid edges respectively. The site placement
in the original tessellation can be obtained as in (Fig. 1c) just by ignoring these extra
vertices or edges shown by dotted lines. For a point in a cell of Hanan tessellation, its
nearest sites must be one of the sites in the cell. Hence, in this Voronoi diagram, the
Voronoi region of a site must lie inside a cell of the tessellation. Thus, T is a subgraph
of Voronoi diagram of S. Now we can bound the maximum number of sites required for
any given rectangular tessellation containing n cells. There are at most O(n2) junction
points in the respective Hanan grid. So, we can place four sites around each junction
points in order to construct the GVI. Hence, the maximum number of sites required is
of O(n2). In fact, N (T ) ≤ 4n2. �

The above placement strategy may yield to a large number of sites compared to the
optimal solution. We will discuss some special cases where the number of sites can
be reduced significantly. In the next section, we consider only the linear rectangular
tessellation.

3 Locating Sites in a Linear Rectangular Tessellation

Here we consider the placement of sites S in rectangular tessellation that is devoid of
cross- and T- junctions.

Observation 1. If the widths of all the cells in T are equal then N (T ) = n, where n
is the number of cells in the tessellation.

Proof. Placing the sites S in the intersection points of the diagonals of the rectan-
gles are alternately increasing and decreasing and widths of the rectangles are in such
order. �
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Observation 2. For a rectangular tessellation T containing two rectangles of different
widths, N (T ) = 2.

Proof. Let l be the line containing the segment common to both the rectangles. Place
two sites on opposite halves of l at ε distance from l (Fig. 2(b)). �

Observation 3. For a rectangular tessellation consisting of three rectangles of widths
w1, w2, and w3 respectively, N (T ) ≤ 4.

Proof. Let the three rectangles be of widths w1, w2, and w3 respectively such that (a)
w1 < w2, (b), w3 < w2, (c) (w2/2 < w1) and (d) (w2/2 < w3). Observe that placing
one site in each rectangle is necessary and sufficient if all the above conditions hold
simultaneously. Suppose, all the above conditions do not hold simultaneously; in this
case, placing two sites in the rectangle of width w2 and one site in each of the rectangles
corresponding to w1 and w3, is necessary and sufficient (Fig. 2(b)). �

(a) (b) (c)

Fig. 2. Placement strategy of a linear rectangular tessellation having (a) equal width rectangles
(b) 3 cells of different widths (c) arrangement of cells in non-decreasing width

Observation 4. Given a linear rectangular tessellation T where the widths of the rect-
angles are in non-decreasing (or non-increasing) order, then N (T ) = n where n is the
number of rectangles in T .

Proof. The placement of sites has to be made in sequential order starting from the
rectangle with smallest width. Place a site anywhere in the rectangle of smaller width
and then placement can be carried out for the next site in the adjacent rectangle, which
is the reflective image of the previous one with respect to adjacent boundary (Fig. 2(c)).

�

Observation 5. For any given linear rectangular tessellation T , n ≤ N (T ) ≤ � 3n
2 	 .

Proof. The number of sites required will be maximum when the widths of the rectangles
are alternately increasing and decreasing and widths of the rectangles are such order
that for any 3 consecutive rectangles the reflective images of the outer boundary of
two rectangles do not overlap at the middle rectangle. In a tessellation consisting of n
rectangles there are �n

2 	 rectangles where two sites are enough in each rectangle (refer
Observation 3 ). Hence the total number of sites required will be (2∗�n

2 	+�n
2 	 = � 3n

2 	).
�
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Following observation leads to the tightness results of the bound of N (T ).

Observation 6. There are tessellations where N (T ) = � 3n
2 	.

Proof. Consider an arrangement formed by concatenation of linear tessellation of the
basic pattern as shown in (Fig. 2(b)) where n is odd and there are �n

2 	 rectangles of
width w interspersed with �n

2 	 rectangles of width less than w
2 . Therefore, N (T ) will

be (2 ∗ �n
2 	+ �n

2 	 = � 3n
2 	).

Observation 7. For any k between n and � 3n
2 	, there exists a linear rectangular tes-

sellation of size n such that N (T ) = k.

Proof. The minimum number of sites required for any given tessellation is n and the
maximum number of sites required is � 3n

2 	. Here it is shown that the required number
of (sites can be any positive integer (it is obvious as the number of sites cannot be
fractional)) between n and � 3n

2 	. Suppose there exists a partition where the optimal
number of sites required is t where t is any number between n and � 3n

2 	. Now, the claim
is: there exists a linear tessellation with n rectangles where the obtained number of sites
will be t+1 or t−1. This can be done by increasing the width of one particular rectangle
such that the reflective images of adjacent rectangles do not overlap, and as a result we
have to increase the number of sites in that rectangle. Similarly, a tessellation with
t − 1 sites can be obtained by decreasing the width of one particular rectangle (where
previously two sites are required because of non-overlapping of reflective images of the
adjacent rectangles). �

Theorem 2. The optimal placement of sites corresponding to any given linear rectan-
gular tessellation T can be found in O(n) time where T is a partition of size n.

Proof. Consider a linear rectangular tessellation T that consists of a sequence of con-
tiguous rectangles {A[0], A[1], . . . , A[n]} of equal length but of arbitrary widths. Now
divide the sequence of rectangles into overlapping subsequences such that each one is
a maximal subsequence of rectangles with either non-decreasing widths or with non-
increasing widths. By maximal is meant that the subsequence is not contained in any
larger increasing or decreasing subsequence. Note that, if the tessellation consists of
rectangles of distinct widths, then the subsequences overlap at one rectangle. This divi-
sion can be done in O(n) time.

Consider the left-to-right order sequence of rectangles A[0], A[1], ...., A[k] to be in
non-decreasing order of their widths followed by A[k + 1], A[k + 2], ..., A[t] in non-
increasing order of the widths. Let li and ri denote the left and right boundary of rectan-
gle A[i] respectively. We denote I(A[i], li) as the image of rectangle A[i] with respect
to line segment li on the neighbor rectangle A[i−1]. If the image I(A[i], li) ⊂ A[i−1],
then for every possible location of a site in A[i] there is a location for another site in
A[i− 1] that defines the line li.

Now, consider the image R1 = I(I(. . . (I(A[0], l1), l2), . . .), lk) of A[0] on A[k].
Observe that R1 is a rectangle of the same width as A[0] lying inside the region of
A[k]. Now similar process can be done for the region A[t]. Thus, we have the image
R2 = I(I(. . . (I(A[t], rt−1), rt−2), . . .), rk) inside A[k].
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Now we define Sk = R1 ∩ R2 �= ∅ as safe region of the kth rectangle. If R1 ∩
R2 = ∅, we need two sites at A[k] and one site for A[i], i = 1, 2, . . . , k − 1, k +
1, . . . , t. Otherwise we have a placement of one site per rectangle in the GVI parti-
tion {A[0], A[1], . . . , A[t]}. Let F0 = I(I(. . . I(I(Sk, lk), lk−1), . . .), l1) and Ft =
I(I(. . . I(I(Sk, rk), rk+1), . . .), rt−1) be the propagated image of Sk on A[0] and A[t]
respectively. ThereforeF0 and Ft are the feasible regions for placing sites such that each
rectangle requires at most one site. Note that, there may exist many such non-decreasing
followed by non-increasing maximal subsequences. Consider another sequence of rect-
angles {A[t], A[t + 1], . . . , A[x]} in non-decreasing order followed by {A[x], A[x +
1], . . . , A[z]} in decreasing order of the widths. Now there will be a safe region Sx

at A[x] resulting from the sequence of rectangles {A[t], A[t + 1], . . . , A[x], . . . , A[t]}.
Corresponding to Sx there will be feasible region F ′

t on A[t]. If Ft ∩ F ′
t �= ∅ then it

is always possible to satisfy the tessellation with one site for each rectangle. For each
rectangle {A[t]} whose width is less than both of its neighboring rectangles A[t − 1]
and A[t + 1], compute the feasible regions F = {Ft}. If Ft �= ∅ for all Ft ∈ F , then
the tessellation T can be realized by n sites. These feasible regions can be generated in
O(n) time by traversing the partition once. Hence the theorem. �

4 Locating Sites in a General Rectangular Tessellation

Observation 8. If the tessellation consists of only identical square cells, then placing
one site in each of the cell is necessary and sufficient.

Proof. Place one site in each of the cell at the intersection point of the diagonals of each
cell (see Fig. 3). �

Fig. 3. One site is enough per rectangle

Theorem 3. N (T ) ≤ (� 3n
2 	)2, where T is a tessellation generated from a Hanan grid

of size n× n.

Proof. Consider a column of a Hanan tessellation. From Observation 5, we can generate
this part of the tessellation by placing at most � 3n

2 	 sites. Let A represent this placement
of sites along a column. Similarly, we may consider a row of the tessellation. Here,
we can generate this part of the tessellation by placing at most � 3n

2 	 sites and let B
represent such a placement of sites along a row. Now replicate arrangement A in each
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x-coordinate location of the arrangement B. Now we claim that this way of placement
generates the given Hanan tessellation.

For justification, consider a site s of the placement and look at its four neighboring
sites and their neighbors. The Voronoi edges of V (s) form a rectangular cell and the
cell must lie inside a cell of Hanan tessellation. Again observe that at least one vertical
and one horizontal edge of the Hanan cell must coincide with the edges of V (s). Hence,
the placement is optimal. �

H1

V1 V2

O

A
B

C D

E

X Y

Fig. 4. Illustration of observation 9

Observation 9. Consider a tessellation T (3) that consists of rectangular cells, H and
V with a common horizontal edge between them. The cell V is further partitioned into
two rectangles by a vertical segment. Then N (T (3)) is at least 4.

Proof. Consider Fig. 4, where the given rectangular tessellation T (3) consists of three
rectangles H1, V1 and V2. Suppose the sites corresponding to V1 and V2 are placed at
C and D respectively. We claim that we require at least two sites for H1 to make AB
a Voronoi edge. We will prove this by contradiction. Assume that there is only one site
placed at O for the rectangle H1. Therefore C and D should be at an infinite distance
from O to make AB a Voronoi edge. But the given tessellation is bounded. Hence the
contradiction. �

Now we describe an algorithm for generating a point set S for any general rectangu-
lar tessellation T which will provide a minimal solution for GVI. A minimal solution
is a solution where the size of the solution set cannot be further reduced without repo-
sitioning the site locations in the solution.

Example: For the tessellation of Fig. 5(a), the steps of Algorithm 1, are shown in
Fig. 5(b) and 5(c). Theorem 3 concludes that for any rectangular tessellation of size
n, there always exists a feasible solution and that the upper bound on the size of sites
is O(n2). Algorithm 1 produces a valid minimal solution of GVI with rectangular tes-
sellation. From Observation 9 we can conclude that 4 sites are required around each
T-junction. These sites will form a square and a circle centering at the T-junction will
pass through all these 4 sites. Initially one can place 4 such sites around eachT-junction;
however, Algorithm 1 reduce the number of sites by sharing such placement in the ad-
jacent squares. Such a solution is shown in Fig. 5(c). It may be noted that the solution
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Algorithm 1. GVI for any rectangular tessellation T
Input: A rectangular tessellation T
Output: GVI of T
foreach cross- and T-junctions j do

Extend the vertical and horizontal lines through j up to the boundary of T to
produce the Hanan Grid G

end
minr =the row of minimum width in G;
minc =the column of minimum width in G;
Following the placement strategy of Theorem 2, place sites in the minrth row
and mincth column of G;
Using the reflection principlea, place sites in the adjacent columns or rows
starting from either minrth row or mincth column;
foreach site si do

Check its cell boundaries {bik|k = 1, 2, 3, 4};
if bik is a virtual segmentb for all k = 1, . . . , 4 then

remove the site si;
end

end
Remove all virtual segments of the Hanan tessellation;

a Consider two adjacent rectangles and let one of which contains a site. Then there must exist a
site in the other rectangle such that the euclidean distance of these two sites are equal from the
common edge of the two adjacent rectangles; thus the second site is the reflective image of the
first site.

b The segments which do not appear in the original tessellation.

(a) (b)

(c) (d)

Fig. 5. (a) Original tessellation T (b-c) Steps of Algorithm 1 (d) tessellation with fewer number
of sites

produced by Algorithm 1 may not be optimum. An solution with fewer number of sites
is shown in Fig. 5(d). Determination of a minimum solution for GVI is posed as an open
problem.



On the Construction of Generalized Voronoi Inverse of a Rectangular Tessellation 31

1

2

3 4

5

6

7

8
9

1011

12

13
14

15
16

17

18

19

20
21

22

23 24

1
2

3

4 5

6

7

8

9

1011

12

13

14

15

16

17

18

19
20

21

22

23

24
25

1a

1b 2b

2a

Fig. 6. (a) Original tessellations T corresponding to VLSI floorplans (b) Site placement by
Algorithm 1

Results obtained by the proposed method for some well known VLSI benchmark
floorplans [22], [23] are shown in Fig. 6.

4.1 Optimum Placement for Some Special Cases

In general, when the length and breadth of each of the rectangles are not equal, then
from Theorem 1 we can derive an upper bound on the number of sites. In the next few
observations, we will discuss some cases where we can have tighter results.

Consider a stack of n rectangles (all congruent to the rectangle H1) on H1 such that
the length of the new tessellation remains the same as T (3). In such a case, two sites
are sufficient in each of the stacked rectangles, which are congruent to H1 because of
the two base rectangles V1 and V2. The requirement of the base rectangle may prop-
agate to the other rectangles. The impact of propagation would be enormous if there
are m base rectangles (say, T (m)) on the top of which there are n stacked rectangles
(say, T (n)). For the tessellation T (m,n) ( n rectangles stacked above m rectangles),
N (T (m,n)) ≤ n · N (T (m)) +N (T (m)). However, this provides only upper bound.
For some special instances, the required number of sites may not be much less. There
is a scope to reduce this propagation effect as discussed below.

Consider Fig. 7a, where the given rectangular tessellation T (2, 3) consists of three
stacked rectanglesH1,H2,H3 and two rectanglesV1 andV2 at the base. Eight sites (refer
Fig. 7c) are sufficient for the tessellation to follow Voronoi properties, i.e,N (T (2, 3)) ≤
8. Note that two sites placed at R and S in the rectangle H3 are necessary (Observation
9). But if we place one extra site at Q in the rectangle H3, then rectangles H2 and H1
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O H1

H2

H3

V1V2

P

Q

R S

U V

A B

C D

H1

H2

H3

V1V2

H1

H2

H3

V1V2

(a) (b) (c)

Fig. 7. Propagation depends on the aspect ratio

require 1 site each. This is possible since the perpendicular bisectors of the segments
RQ and SQ do not intersect with the line segment AB, which is the common boundary
between the rectanglesH2 andH3. Therefore, placing one extra site in one rectangle may
reduce the number of sites in subsequent rectangles. The placing of extra site depends
upon the aspect ratio of the corresponding rectangle. This way of lowering down the
required number of sites in the tessellation is called blocking of the propagation effect,
which is illustrated next.

Observation 10. For any rectangular tessellation of type T (m,n), N (T (m,n)) de-
pends on the aspect ratios of the corresponding rectangles.

Proof. Consider Hi to be one of the stacked rectangles in the tessellation T (m,n)
where H1, H2, . . . , Hn are stacked from top to bottom respectively. Suppose the rect-
angle Hi requires a set Si of m sites to make the separating edge between Hi and Hi+1

a Voronoi edge, and those m sites are placed on a line, say l. As for instance, consider
Fig.7 where H3 requires 2 sites that are placed on R and S to take care of the common
edge between H3 and base Voronoi. Let sl and sr be the extreme left and the extreme
right sites among Si. Let d be the distance between sl and sr. We place another site s
in Hi such that d(s, sl) = d(s, sr) and d(s, l) = d(s, sl) = d(s, sr), the site s will be
placed on the perpendicular bisector of the segment (sl, sr) and the perpendicular dis-
tance of s from the line will be d

2 . Therefore, if such a placement of site s is possible in
a rectangle Hi then the neighboring rectangles Hi−1, Hi−2, . . . , H1 will require fewer
sites in each of them. Thus the propagation effect in all the above rectangles is blocked.
It might happen that if we can place extra n

2 sites in Hi such that in each of the stacked
rectangles (from Hi−1, . . . , H1) n

2 sites are enough instead of n sites. For instance, in
Fig. 7 where one extra site is placed in the rectangle H3 at Q and as a result one site is
enough both at H2 and H1. If such a placement is not possible, try to place two sites
considering half of the sites of S for each new site. Recursively following the above
procedure, we can reduce the required number of sites. �

By Observation 3, if the stacked and base tessellations T (n) and T (m) are consid-
ered separately then at most � 3m

2 	 and � 3n
2 	 sites will be required. Now we have the

following observation:

Observation 11. For all tessellations of type T (m,n), (2m + n) ≤ N (T (m,n)) ≤
(� 9mn

4 	+� 3n
2 	). There exists an instance where N (T (m,n) is exactly (� 9mn

4 	+� 3n
2 	),

and there also exists an instance where N (T (m,n)) is exactly (2m+ n).
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Proof. First we will show that � 3n
2 	 + � 9mn

4 	 sites are sufficient in the tessellation of
type N (T (m,n)) (See Fig.7). Initially we will place sites on the rectangles Vi’s (here
i varies from 1 to n) ignoring the Hi’s (here i varies from 1 to m). Now � 3n

2 	 sites are
sufficient to make all the edges between Vi’s Voronoi edges (refer to Observation 6).
We require exactly � 3n

2 	 sites to take care of the edge between Hm and Vi’s (refer to
Observation 9). Now there exists an instance (the worst case scenario) where among n
stacked rectangles placed vertically above (See Fig. 7) there are n

2 rectangles where in
each of them 2 × (� 3m

2 	) sites are sufficient and in each of the remaining n
2 rectangles

� 3m
2 	 sites are sufficient (follows from Observation 9). Hence, it follows that there

exists an instance where N (T (m,n)) is exactly (3m2 +2× (n2 )× (� 3m
2 	)+ n

2 (�
3m
2 	))

on simplification, we get N (T (m,n)) = � 3m
2 	+ � 9mn

4 	.
Now in proving the lower bound, at least one site is required in each of the m rectan-

gles located in the base that is in T (m) to make the edges between each of the rectan-
gle in T (m) a Voronoi edge. Now to make the edge located in between Hn and T (m)
Voronoi m sites are enough in the rectangle Hn (follows from Observation 9). In the
best case the propagation effect can be stopped with the inclusion of one site in Hn.
There exists an instance where in each of the n − 1 stacked rectangles (Hn−1 . . . H1),
one site is sufficient. Hence, it follows that there exists an instance where T (m,n) is
exactly (m+ (m+ 1) + (n− 1)), simplifying we get N (T (m,n)) = (2m+ n). �

V1V2V3

H1

H2

H3 Vh1 Vh2 Vh3 Vh4

Vl1 Vl2 Vl3 Vl4

H1

H2

(b)(a)

Fig. 8. (a) Observation 11 (b) Observation 12

Consider another variant of rectangular tessellation where the tessellation has an-
other set of base rectangles on top of the stacked rectangles, i.e, the stacked rectangles
are sandwiched between two set of base rectangles (See Fig. 8a). Denote this variant
as T (m1,m2, n) where m1,m2 and n are the number of the top base rectangles, bot-
tom base rectangles and stacked rectangles respectively. Now we have the following
observation.

Observation 12. For all tessellations of type T (m1,m2, n), (2(m1 + m2) + n) ≤
N (T (m1,m2, n)) ≤ (� 9n×max{m1,m2}

4 	 + � 3n
2 	). There exists an instance where

N (T (m1,m2, n)) is exactly (� 9n×max{m1,m2}
4 	 + � 3n

2 	) and there also exists an in-
stance where N (T (m1,m2, n)) is exactly (2(m1 +m2) + n).
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Proof. First we will prove that the lower bound on the number of sites required for a
partitioning of T into H , Vh and Vl (See Fig. 8b)) Suppose Vh needs m1 sites and Vl

needs m2 sites; then we have to place m1 (m2) sites in the rectangle which is adjacent
to Vh (Vl). In the best case we can block the propagation effect in the next adjacent
rectangle such that we require 1 site in all other horizontal rectangles. Hence, we need
at least (2(m1 +m2) + n) sites.

Now we will prove the upper bound on the number of sites required for partitioning
of T into H , Vl and Vh. The number of sites required is at most (� 9n×max{m1,m2}

4 	+
� 3n

2 	) (Observation 11). If Vl and Vh are partitioned into m1 and m2 rectangles re-
spectively then at most � 3m1

2 	 and � 3m2

2 	 sites are required in Vl and Vh respectively
(Observation 5). Hence, the maximum number of sites required in the worst case is
(� 9n×max{m1,m2}

4 	+ � 3n
2 	). �

Observation 13. For a tessellation T consisting of n rectangles with cross- and T
junctions, there exists an instance where the minimum number of sites required will be
of Ω(n2).

Proof. Consider Fig. 8(a) where the widths of H1, H2, H3 and V1, V2, are such that
the reflective images of H1 and H3 do not overlap at H2, similarly the reflective image
of V1 and V3 do not overlap at V2. Now from Observation 6, we require four sites
altogether in V1, V2, and V3. In order to make the common boundary between Vi (where
i = 1, 2, 3) and H1 an Voronoi edge, four sites are required. From the discussion made
in Observation 9, it follows that four sites placed in H1 will replicate in H2 and H3. The
optimality is proved by the fact that if we replace any one site from Vi it will strictly
contradict the Observation 6, and if we replace any one site from H1 it will contradict
Observation 9. We cannot further reduce the number of sites in H2 and H3 because of
the patterns of the aspect ratios of the corresponding rectangles. �

5 Locating Sites in a General Tessellation

In this section we will provide a feasible solution of GVI for any arbitrary tessellation
within a bounded region. In other words, T may be viewed as a partition of a bounded
two-dimensional space into polygons, or a plane graph with no pendant vertices (See
Fig. 9). Without loss of generality, assume that the bounded region is rectangular in
shape. This imposition does not restrict us in deriving general theoretical results.

Theorem 4. Given an arbitrary tessellation T there always exists a feasible placement
of sites, which is a GVI of the tessellation T .

Proof. To prove the theorem we will use some earlier results on acute and non-obtuse
triangulation of polygons and planar straight line graphs [15] [16] [17] [18] [19] [20]
[21]. Consider a tessellation T that consists of n vertices. It is known that a tessellation,
which is a planar straight line graph, admits an conforming non-obtuse triangulation
if additional vertices and edges are included in T [15]. A conforming triangulation is
defined as follows. Let V be the set of vertices in T and suppose V ′ is a point set con-
taining V . We say a triangulation of V ′ conforms to T if the edges of the triangulation
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cover the edges of T . A conforming non-obtuse triangulation of the tessellation T can
be obtained by adding O(n2.5) new vertices [15]. Once a non-obtuse triangulation of
T is obtained, we fix a small positive quantity ε which is strictly smaller than half the
length of the smallest edge of the triangulation, and an angle δ which is smaller than
half of the smallest angle between any two edges of the triangles. Construct a circle of
radius ε around each of the vertices of the triangles. Place sites on the circumference of
the above circle such that each edge emanating from a vertex is a perpendicular bisec-
tor of the two neighboring sites (one in clockwise and another in anticlockwise) placed
on the circle. See Figs. 10a, 10b. These two sites are so placed as the circle that they
subtend an angle 2δ at the center. These sites are called ε− neighbor of the correspond-
ing vertex. We repeat this site placement procedure for every vertex of the triangulated
graph.

We will prove the fact that the above procedure will return a feasible solution of GVI
by the following argument. Let ABC be one of the acute-angled triangle. Three circles
CA, CB , CC centering at the vertices A,B,C respectively each of radius ε, are drawn.
Let D be any arbitrary point inside the triangle ABC which lies outside the circles
CA, CB , CC (See Fig. 11a). Suppose D is unable to fulfill its Voronoi requirement
from any of the sites placed on the circumference of the circles CA, CB, CC . On the
contrary D finds its nearest neighbor from outside the triangle ABC, say at site P ; note
that by construction, P must be an ε- neighbor of a vertex of an acute-angled triangle.
Then there will be two cases

1) Q is a vertex of the triangle whose one of its edge is BC (See Fig. 11a);

Proof. A circle CD is drawn centering at D and radius DQ. Now there will be 2
sub-cases.
a) If the circle CD intersects any of the circles CA, CB , CC then it is obvious that

D will satisfy its Voronoi requirement from a site placed on the circumference
of the corresponding circles. This contradicts that P is the nearest neighbor of
D.

b) Suppose the circle CD intersects the triangle at the points S,R. The segment
EF subtends a right angle at Q since EF is the diameter. Note that ∠SQR
is greater than ∠EQF , and as a result ∠SPR is obtuse. Therefore, the face
BQC is not a non-obtuse triangle. Hence, contradiction.

2) Q is not the vertex of the triangle whose one of its edge is BC;

Proof. Let XY be the edge of the triangle whose one of the vertex is M . The line
segment DM is joined. Consider a point M ′ on the line segment DM such that M ′

is just outside the face XYM (See Fig. 11b). Note that there must be at least one
edge crossing the line segment DM otherwise triangulation will be contradicted. It
is easy to see that (Fig. 11c) the nearest neighbor of M ′ will be M as the circle CD

(with center at D and radius DM ) includes the circle CM ′ (with center at M ′ and
radius M ′M ). Hence, with respect to the face XYM and the point M ′, we land up
with a situation which can be contradicted as in Case 1. Thus M cannot be nearest
neighbor of M ′. �
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Fig. 9. Example of an arbitrary tessellation

a b

ε

δ

Fig. 10. (a) Applying theorem 4 in star (b) Applying theorem 4 in the given tessellation (dotted
lines show extension of a segment in order to triangulate)
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Fig. 11. Proof of Theorem 4
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Now, we bound the number of sites required for a given arbitrary tessellation. The
total number of vertices formed after obtaining conforming non-obtuse triangulation
will be of O(n2.5), where n is the number of vertices in the tessellation T . Since, a
triangulated graph is a plane graph, the number of edges will also be of order O(n2.5).
The number of sites placed around each vertex can be bounded by the number of edges
as the number of sites placed is constant across each edge. Hence, the total number of
sites required in the given tessellation T will be O(n2.5).

6 Conclusion

We have introduced a new concept of Generalized Voronoi Diagram (GVI) of a given
tessellation, which was motivated from several engineering design problems of VLSI
and microfluidics. For a rectangular tessellation T we derive several interesting prop-
erties of GVI and proposed an algorithm that constructs a solution of minimal size for
T . Finding an optimum solution of a GVI problem for rectangular tessellation in poly-
nomial time seems to be a challenging problem. We have also studied the GVI problem
for the general case and suggested a method of constructing a feasible solution. Finding
a minimal solution of GVI problem for an arbitrary tessellation is posed as an open
problem.

Acknowledgement. A preliminary version of this paper appears in the proceedings
of the 9th International Symposium on Voronoi Diagrams in Science and Engineering
(ISVD), 2012.
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