
Transactions on
Computational
Science XX

Special Issue on Voronoi Diagrams
and Their Applications

LN
CS

 8
11

0

Marina L.Gavrilova · C. J. Kenneth Tan
Editors-in-Chief

Jo
ur

na
l S

ub
lin

e

 123

Bahman Kalantari
Guest Editor

Lecture Notes in Computer Science 8110
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Marina L. Gavrilova C.J. Kenneth Tan
Bahman Kalantari (Eds.)

Transactions on
Computational
Science XX

Special Issue on Voronoi Diagrams
and Their Applications

13

Editors-in-Chief

Marina L. Gavrilova
University of Calgary, AB, Canada
E-mail: mgavrilo@ucalgary.ca

C.J. Kenneth Tan
CloudFabriQ Ltd., London, UK
E-mail: cjtan@CloudFabriQ.com

Guest Editor

Bahman Kalantari
Rutgers University, New Brunswick, NJ, USA
E-mail: kalantari@cs.rutgers.edu

ISSN 0302-9743 (LNCS) e-ISSN 1611-3349 (LNCS)
ISSN 1866-4733 (TCOMPSCIE) e-ISSN 1866-4741 (TCOMPSCIE)
ISBN 978-3-642-41904-1 e-ISBN 978-3-642-41905-8
DOI 10.1007/978-3-642-41905-8
Springer Heidelberg New York Dordrecht London

CR Subject Classification (1998): I.3.5, I.4, I.3, I.2

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

LNCS Transactions on Computational Science

Computational science, an emerging and increasingly vital field, is now widely
recognized as an integral part of scientific and technical investigations, affecting
researchers and practitioners in areas ranging from aerospace and automotive re-
search to biochemistry, electronics, geosciences, mathematics, and physics. Com-
puter systems research and the exploitation of applied research naturally comple-
ment each other. The increased complexity of many challenges in computational
science demands the use of supercomputing, parallel processing, sophisticated
algorithms, and advanced system software and architecture. It is therefore in-
valuable to have input by systems research experts in applied computational
science research.

Transactions on Computational Science focuses on original high-quality re-
search in the realm of computational science in parallel and distributed en-
vironments, also encompassing the underlying theoretical foundations and the
applications of large-scale computation. The journal offers practitioners and re-
searchers the opportunity to share computational techniques and solutions in
this area, to identify new issues, and to shape future directions for research, and
it enables industrial users to apply leading-edge, large-scale, high-performance
computational methods.

In addition to addressing various research and application issues, the journal
aims to present material that is validated – crucial to the application and ad-
vancement of the research conducted in academic and industrial settings. In this
spirit, the journal focuses on publications that present results and computational
techniques that are verifiable.

Scope

The scope of the journal includes, but is not limited to, the following computa-
tional methods and applications:

• Aeronautics and Aerospace
• Astrophysics
• Bioinformatics
• Climate and Weather Modeling
• Communication and Data Networks
• Compilers and Operating Systems
• Computer Graphics
• Computational Biology
• Computational Chemistry
• Computational Finance and Econometrics
• Computational Fluid Dynamics
• Computational Geometry

VI LNCS Transactions on Computational Science

• Computational Number Theory
• Computational Physics
• Data Storage and Information Retrieval
• Data Mining and Data Warehousing
• Grid Computing
• Hardware/Software Co-design
• High-Energy Physics
• High-Performance Computing
• Numerical and Scientific Computing
• Parallel and Distributed Computing
• Reconfigurable Hardware
• Scientific Visualization
• Supercomputing
• System-on-Chip Design and Engineering

Editorial

The Transactions on Computational Science journal is part of the Springer series
Lecture Notes in Computer Science, and is devoted to the gamut of computa-
tional science issues, from theoretical aspects to application-dependent studies
and the validation of emerging technologies.

The journal focuses on original high-quality research in the realm of com-
putational science in parallel and distributed environments, encompassing the
facilitating theoretical foundations and the applications of large-scale computa-
tions and massive data processing. Practitioners and researchers share computa-
tional techniques and solutions in the area, identify new issues, and shape future
directions for research, as well as enable industrial users to apply the techniques
presented.

The current volume is devoted to recent advancements in the area of geomet-
ric algorithms, specifically Voronoi Diagrams and their applications. The issue
contains ten papers, presented at the International Symposium on Voronoi Di-
agrams 2012, held in June 2012 at Rutgers University, NJ, USA. These papers
provide an in-depth overview of current research on topological data structures
and a comprehensive evaluation of their application in cartography, physics, ma-
terial modeling, chemistry, GIS, motion planning, and computer graphics. The
issue also features a position paper by ISVD 2012 Conference Chair Prof. Bah-
man Kalantari.

We would like to extend our sincere appreciation to Guest Editor Prof. Kalan-
tari, to all of the authors for submitting their papers to this special issue, and the
associate editors and referees for their valuable work. We would like to express
our gratitude to the LNCS editorial staff of Springer, who supported us at every
stage of the project.

It is our hope that the fine collection of papers presented in this special issue
will be a valuable resource for Transactions on Computational Science readers
and will stimulate further research into the vibrant area of computational science
applications.

August 2013 Marina L. Gavrilova
C.J. Kenneth Tan

LNCS Transactions on Computational

Science – Editorial Board

Marina L. Gavrilova, Editor-in-Chief University of Calgary, Canada
Chih Jeng Kenneth Tan, Editor-in-Chief CloudFabriQ Ltd., UK
Tetsuo Asano JAIST, Japan
Brian A. Barsky University of California at Berkeley, USA
Alexander V. Bogdanov Institute for High Performance Computing

and Data Bases, Russia
Martin Buecker Aachen University, Germany
Rajkumar Buyya University of Melbourne, Australia
Hyungseong Choo Sungkyunkwan University, South Korea
Danny Crookes Queen’s University Belfast, UK
Tamal Dey Ohio State University, USA
Ivan Dimov Bulgarian Academy of Sciences, Bulgaria
Magdy El-Tawil Cairo University, Egypt
Osvaldo Gervasi Università degli Studi di Perugia, Italy
Christopher Gold University of Glamorgan, UK
Rodolfo Haber Council for Scientific Research, Spain
Andres Iglesias University of Cantabria, Spain
Deok-Soo Kim Hanyang University, South Korea
Ivana Kolingerova University of West Bohemia, Czech Republic
Vipin Kumar Army High Performance Computing Research Center, USA
Antonio Lagana Università degli Studi di Perugia, Italy
D.T. Lee Institute of Information Science, Academia Sinica, Taiwan
Laurence Liew Platform Computing, Singapore
Nikolai Medvedev Novosibirsk Russian Academy of Sciences, Russia
Graham M. Megson University of Reading, UK
Edward D. Moreno UEA – University of Amazonas State, Brazil
Youngsong Mun Soongsil University, South Korea
Dimitri Plemenos Université de Limoges, France
Viktor K. Prasanna University of Southern California, USA
Muhammad Sarfraz KFUPM, Saudi Arabia
Dale Shires Army Research Lab, USA
Masha Sosonkina Ames Laboratory, USA
Alexei Sourin Nanyang Technological University, Singapore
David Taniar Monash University, Australia
Athanasios Vasilakos University of Western Macedonia, Greece
Chee Yap New York University, USA
Igor Zacharov SGI Europe, Switzerland
Zahari Zlatev National Environmental Research Institute, Denmark

Table of Contents

The State of the Art of Voronoi Diagram Research 1
Bahman Kalantari

DT-RANSAC: A Delaunay Triangulation Based Scheme for Improved
RANSAC Feature Matching . 5

Priyadarshi Bhattacharya and Marina Gavrilova

On the Construction of Generalized Voronoi Inverse of a Rectangular
Tessellation . 22

Sandip Banerjee, Bhargab B. Bhattacharya, Sandip Das,
Arindam Karmakar, Anil Maheshwari, and Sasanka Roy

Localizing the Delaunay Triangulation and Its Parallel
Implementation . 39

Renjie Chen and Craig Gotsman

Decomposition of a Protein Solution into Voronoi Shells and Delaunay
Layers: Calculation of the Volumetric Properties . 56

Alexandra V. Kim, Vladimir P. Voloshin, Nikolai N. Medvedev, and
Alfons Geiger

Proximity and Motion Planning on �1-Rigid Planar Periodic Graphs 72
Norie Fu, Akihiro Hashikura, and Hiroshi Imai

Tunnels and Voids in Molecules via Voronoi Diagrams and
Beta-Complexes . 92

Deok-Soo Kim, Youngsong Cho, Jae-Kwan Kim, and
Kokichi Sugihara

On Properties of Forbidden Zones of Polygons and Polytopes 112
Ross Berkowitz, Bahman Kalantari, Iraj Kalantari, and
David Menendez

Voronoi-Based Medial Axis Approximation from Samples: Issues and
Solutions . 138

Farid Karimipour and Mehran Ghandehari

XII Table of Contents

Globally Rigid Ball-Polyhedra in Euclidean 3-Space 158
Károly Bezdek

On Voronoi Diagrams in the Planar Line Space and Their
Generalizations . 170

Dominique Schmitt and Kira Vyatkina

Author Index . 181

The State of the Art of Voronoi Diagram

Research

Bahman Kalantari

Rutgers, The State University of New Jersey
New Brunswick, NJ, USA

The notion of Voronoi diagrams refer to a conceptually simple geometric con-
struct that is based on a finite set of points in a Euclidean space. Intuitively
speaking, it is such a simple notion that it can be described to a non-specialist.
Indeed even some social and cultural settings can be described that would con-
vey the essence of the concept. Consider for instance a number of strangers who
are standing still in a room at random locations. In what region of space can
an individual freely move his/her arms without appearing to be impolite to the
others? Without having a precise definition of this personal space, each individ-
ual would most likely have an intuitive notion of it. If each individual is reduced
to a single point occupying a specific location in the room, the personal space of
a particular point is its Voronoi cell, the set of all points that are closer to that
point than to any of the other points. Each Voronoi cell is a polyhedral region.
The Voronoi diagram of the set of points is the partitioning of the space into the
collection of Voronoi cells, together with their boundaries.

It is not surprising that such a simple geometric construct should find nu-
merous practical or theoretical applications in many fields of science. Voronoi
diagrams of sets of points in the Euclidean spaces are fundamental geomet-
ric constructs. They find natural connections to other fundamental constructs
appearing in computational geometry, e.g. Delaunay Triangulation, present in
many applications of Computer Graphics.

Over the past few decades the subject of Voronoi diagrams has been flourish-
ing through numerous research articles, turning it into a well-regarded area of
computational geometry, with numerous theoretical and practical applications in
diverse scientific areas. The 9th International Symposium on Voronoi Diagrams
in Science and Engineering (ISVD) 2012, took place during June 27-29 at Rut-
gers, The State University of New Jersey. It was the first time this international
event was held in the U.S.

ISVD 2012 addressed a wide range of research and applications related to
Voronoi diagrams. Forty submissions were refereed by anonymous reviewers from
among the program committee members. Out of thirteen full articles and seven
short ones that were selected for presentation at ISVD 2012, the top 20 percent
were invited to submit a revised and extended version of their article for further
review and consideration for the present issue. These papers have been selected
based on several criteria, including quality, reviewer’s comments, and feedback
from conference participants.

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XX, LNCS 8110, pp. 1–4, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 B. Kalantari

The ISVD Symposia, originated by Kokichi Sugihara, Chair of ISVD 2004,
and Deok-Soo Kim, Chair of ISVD 2005, provides a platform to bring more vis-
ibility to Voronoi diagrams. These symposia help foster synergy and exchange
of ideas among researchers working in various areas who have found connec-
tions through Voronoi diagram methodology, its applications, generalizations or
variations. ISVD facilitates the state-of-the-art research on Voronoi diagrams by
bringing different applications of this concept into view and thus help increase
the possibilities of collaborations between researchers of diverse areas. The goal
of ISVD 2012 was to help contribute to the further development of the theo-
retical foundations of computational geometry, to bring about new innovations
and solutions to applied problems through the use of Voronoi diagram method-
ology, and to extend its boundaries by describing novel theoretical and practical
connections with other fields of science and art.

Indeed the connections of one of the Chairs of the ISVD 2012 to the notion
to Voronoi diagrams came about in a non-traditional manner: the relationship
between Voronoi diagrams and polynomial root-finding and Polynomiography.
Polynomiography pertains to algorithms for the visualization of polynomial root-
finding methods via iteration functions. It gives rise to images that are not
necessarily fractal. The field of polynomiography in particular gives rise to a
form of art that overlaps with Voronoi art, fractal art, and even fine art. For a
comprehensible source on polynomiography, see [1]. For a general introductory
and non-technical article, see [2].

One of the most famous of all algorithms, Newton’s method for polynomial
root-fining, when applied to a complex polynomial can indeed be viewed as a
mechanism for approximation of the Voronoi diagram of roots. This is in the
sense that the Voronoi diagram of the roots is roughly approximated by their
basins of attraction under Newton’s iterations. One can argue that the notion
of Voronoi diagram was in the minds of Cayley and Schröder who pioneered
complex polynomial root-finding in the late nineteenth century, before Georgy
Voronoy took a formal interest in the concept that was to be named after him.

Through polynomiography one can introduce concepts such as basins of at-
traction of polynomial roots and Voronoi diagrams, not only in the context of
education, but to artists and to the general public, making them realize that
some artwork by the most famous artists bring to mind connections to these
mathematical notions. Polynomiography helps introduce concepts related to dy-
namical systems and can help teach notions that are related to fractals, making
them much more meaningful and tangible than what generic characterizations
and approaches to fractals seem to offer. On the connections between Voronoi
diagram and polynomial root-finding, far beyond Newton’s method, the reader
is invited to examine [3,4].

Voronoi diagrams have given rise to many variations. One of these, the zone
diagram defined by Asano, et al. [5], is a new and rich variation of the Voronoi
diagram for a given finite set of points in the Euclidean plane. The notion of a
zone diagram and its existence was the main motivation behind defining mol-
lified versions in [6], called territory diagrams and maximal territory diagrams.

The State of the Art of Voronoi Diagram Research 3

However, the study was also motivated by an intriguing relationship between
approximations to Voronoi diagrams and certain regions of attraction in poly-
nomial root-finding through iterations, see [3,4]. A mollified zone diagram can
be viewed as a relaxation of a zone diagram in the sense that a zone diagram is
a particular instance of the more general notion of maximal territory diagrams.
The geometric concept of forbidden zone is intrinsic in the characterization of
maximal territory diagrams in general and zone diagrams in particular. One of
the articles in this volume is dedicated to properties of forbidden zones, “On
properties of forbidden zone of polygons and polytopes.” The notion of forbid-
den zone promises to bring new and interesting lines of research and applications
into computational geometry. Indeed, the concept of forbidden zone has certain
connections to a fundamental convex hull problem which is also a special case
of the feasibility problem in linear programming, see [7].

The state of the art in Voronoi diagram applied research field was reported in
2008 in [8]. For applications of Voronoi diagrams in material sciences see [9,10], in
mechanical engineering see [11,12], in biometrics see [13,14], and for applications
in GIS see [15,16].

We would like to thank the NSF for a grant toward ISVD 2012, and DIMACS
for its administrative support. Finally, we would like to thank all researchers
who expressed interest in ISVD 2012, and the invited authors for this issue for
submitting extended versions of their article. We thank the Invited Speakers,
Chee Yap and Prosenjit Bose, and all conference attendants for making the
ISVD 2012 Symposium a premium event. We hope that the Voronoi diagram
community will continue to grow and mature, resulting in the development of
new concepts and ideas in Computational Geometry, as well as new connections
and applications in areas outside of Computational Geometry.

References

1. Kalantari, B.: Polynomial Root-Finding and Polynomiography. World Scientific,
New Jersey (2008)

2. Kalantari, B.: Polynomiography: From the fundamental theorem of algebra to art.
LEONARDO 38, 233–238 (2005)

3. Kalantari, B.: Voronoi diagrams and polynomial root-finding. In: International
Symposium on Voronoi Diagrams, pp. 31–40 (June 2009)

4. Kalantari, B.: Polynomial root-finding methods whose basins of attraction approxi-
mate voronoi diagram. Discrete & Computational Geometry 46(1), 187–203 (2011)

5. Asano, T.: Matoušek, J., Tokuyama, T.: Society for Industrial and Applied Math-
ematics

6. de Biasi, S.C., Kalantari, B., Kalantari, I.: Mollified zone diagrams and their com-
putation. In: Gavrilova, M.L., Tan, C.J.K., Mostafavi, M.A. (eds.) Transactions
on Computational Science XIV. LNCS, vol. 6970, pp. 31–59. Springer, Heidelberg
(2011)

7. Kalantari, B.: A characterization theorem and an algorithm for a convex hull prob-
lem (2012), arxiv.org/pdf/1204.1873v2.pdf

8. Gavrilova, M. (ed.): Generalized Voronoi Diagram: A Geometry-Based Approach
to Computational Intelligence. Springer (2008)

arxiv.org/pdf/1204.1873v2.pdf

4 B. Kalantari

9. Luchnikov, V.A., Gavrilova, M.L., Medvedev, N.N., Voloshin, V.P.: The voronoi-
delaunay approach for the free volume analysis of a packing of balls in a cylindrical
cylindrical container. Future Generation Comp. Syst. 18, 673–679 (2002)

10. Gavrilova, M.L., Ratschek, H., Rokne, J.G.: Exact computation of delaunay and
power triangulations. Reliable Computing 6(1), 39–60 (2000)

11. Gavrilova, M.L., Rokne, J.: Collision detection optimization in a multi-particle
system. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS
2002, Part III. LNCS, vol. 2331, pp. 105–114. Springer, Heidelberg (2002)

12. Gavrilova, M.L., Rokne, J.G.: Collision detection optimization in a multi-particle
system. J. Comput. Geometry Appl. 13, 279–302 (2003)

13. Wang, C., Gavrilova, M.L.: Delaunay triangulation algorithm for fingerprint match-
ing. In: ISVD, pp. 208–216 (2006)

14. Wang, C., Gavrilova, M.L., Luo, Y., Rokne, J.G.: An efficient algorithm for fin-
gerprint matching. In: International Conference on Pattern Recognition ICPR, pp.
1034–1037. IEEE-CS (2006)

15. Bhattacharya, P., Gavrilova, M.L.: Crystal - a new density-based fast and efficient
clustering algorithm. In: ISVD, pp. 102–111 (2006)

16. Xuan, K., Zhao, G., Taniar, D., Srinivasan, B., Safar, M., Gavrilova, M.L.: Network
voronoi diagram based range search. In: AINA, pp. 741–748 (2009)

DT-RANSAC: A Delaunay Triangulation Based

Scheme for Improved RANSAC Feature
Matching

Priyadarshi Bhattacharya and Marina Gavrilova

Dept. of Computer Science, University of Calgary, 2500 University Drive NW,
Calgary, AB, Canada

Abstract. The main objective in content-based image retrieval is to
find images similar to a query image in an image collection. Matching
using descriptors computed from regions centered at local invariant in-
terest points (keypoints) have become popular because of their robust-
ness to changes in viewpoint and occlusion. However, local descriptor
matching can produce many false matches. To improve the retrieval re-
sults, geometric verification is usually performed as a post-pocessing step.
RANSAC can robustly fit a model to data in presence of outliers and
has been widely used for the geometric verification stage. But obtaining
a good hypothesis may require many trial runs, particularly when the
proportion of inliers in the data is low. We introduce a novel geometric
verification scheme called DT-RANSAC based on topological informa-
tion in the Delaunay Triangulation of putatively matched keypoints to
construct a refined set of matches, that is presented to the RANSAC
algorithm to fit a homography. Experiments reveal that DT-RANSAC
is able to converge to correct hypothesis in very few trial runs and the
retrieval results are consistently better than geometric verification based
on plain RANSAC.

1 Introduction

Content-based image retrieval (CBIR) systems are usually based on query by
example, where the objective is to find images similar to a query image from an
image dataset. Most current CBIR systems extract local features in the form of
interest points (keypoints) from query image which are invariant to scale and
rotation changes. For a detailed description of local feature detectors, refer to
[20]. Typically, some measurements are taken from a region centered on a local
feature and converted into fixed dimension vectors called descriptors. Different
types of descriptors have been proposed in literature. See [14] for a performance
evaluation. Most state-of-the-art CBIR systems use the bag-of-words (BoW)
model introduced by [18], which represents an image as a histogram of visual
words. The visual words are obtained by clustering the descriptors computed
from the image corpus or from an independent dataset and represent the cluster
centers. In order to represent an image under the BoW scheme, the descriptors
are mapped to the nearest visual word and the number of occurrences of each

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XX, LNCS 8110, pp. 5–21, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

6 P. Bhattacharya and M. Gavrilova

visual word in the image is computed. This generates a frequency histogram
of an image which is then normalized. Matching between a pair images then
translates into determining the Euclidean or cosine distance between the corre-
sponding normalized histograms. But comparing a query image to all images in
corpus is prohibitively expensive. To scale the retrieval to large image corpuses,
an indexing approach is used based on inverted files [18], that can efficiently
determine the images in corpus that have common visual words with query im-
age. Figure 1 illustrates the BoW approach of finding images similar to a query
image.

Fig. 1. Image retrieval using BoW approach

The BoW approach, despite its success, has a significant weakness. It discards
any spatial information about visual words when constructing the histograms.
This makes the model vulnerable to false matches as a pair of unrelated images
may have a number of visual words in common but with a widely different spatial
arrangement. In order to regain some of the discriminative power, spatial infor-
mation is typically introduced at a later stage through geometric verification.
The geometric verification stage ensures that the common visual words between
a pair of images agree on their spatial layout.

RANSAC [8] is a powerful estimation method used to robustly fit a model
to data in presence of outliers. It has been utilized to eliminate false matches
between local features in the geometric verification stage [5][19][23]. Iteratively,
RANSAC picks a random subset of matches from a putative match list and fits
a model (homography) to them. For fitting an affine homography, a minimum of
four element subset is required. This is usually termed a minimal subset. Then,

DT-RANSAC: A Delaunay Triangulation Based Scheme 7

the model is tested against all other correspondences in the putative match list.
Correspondences that fit the model are considered as hypothetical inliers. Those
that do not fit are considered as hypothetical outliers. After a fixed number of
iterations (Γ), the model with highest number of hypothetical inliers is selected.
Higher values of Γ are required to ensure a higher probability of finding a correct
hypothesis. Γ is also dependent on the proportion of inliers in the dataset. As
a result, with a lot of noise (false matches) in the data, RANSAC may require
many iterations before it can find a correct hypothesis. When the number of
inliers is < 50%, RANSAC may not be able to find a good hypothesis even after
a large number of iterations.

To overcome these limitations, variations of RANSAC have been proposed that
have been shown to produce better correspondences than standard RANSAC. Lo-
cally Optimized RANSAC [6] is one of the notable variations. See [17] for a com-
parison of RANSAC variants. But the results have been tested on just a handful
of images and not in an image retrieval setting.

We introduce a novel geometric approach called DT-RANSAC based on utiliz-
ing topological information in the Delaunay Triangulation of putatively matched
keypoints to improve recognition results over RANSAC. The method is based
on the simple idea that putatively matched keypoints that have other puta-
tively matched keypoints in neighbourhood are more likely to be true positive
matches and hence should be prioritized for inclusion in the putative match list
for RANSAC verification.

The Delaunay Triangulation (DT) and its dual the Voronoi diagram (VD)
have found applications in a large number of areas such as robotics [2,3], com-
puter simulation [12], network optimization [22], and clustering [4]. We construct
the DT of putatively matched keypoints for an image and to define the neigh-
bourhood of a keypoint, we simply consider the keypoints that are connected
to it by an edge in the DT. By virtue of DT properties, this defines a very
natural neighbourhood for a keypoint. The number of putative matches among
the neighbours of a keypoint acts as its support. A match with higher support
gets higher priority for inclusion in the minimal subset for RANSAC verifica-
tion. Thus, instead of random selection of putative match list, we prioritize the
order so that the probability of RANSAC converging on a good hypothesis in
very few iterations is maximized. The better matching using proposed approach
is observed to improve retrieval results. The performance of DT-RANSAC is
evaluated in an image retrieval setting, based on quality of final ranked list of
images.

2 BoW Framework for Finding Similar Images

In this section, we discuss the details of the implemented system and provide
some visual illustrations. Our content-based retrieval system is designed for find-
ing landmarks similar to a query image from a landmark image database. The
first step is extracting keypoints from all images in corpus and computing the de-
scriptors. We use the 20K and 100K codebooks of [9] computed from Flickr60K
dataset for our experiments.

8 P. Bhattacharya and M. Gavrilova

2.1 Local Features

We use the Hessian-Affine detector [15] for features as it is more robust to view-
point changes than other feature detectors. As part of background information,
the rotation invariant Hessian detector was introduced in [1]. It uses the deter-
minant of the Hessian matrix which reaches a maximum for blob-like structures
in the image. In [13], a scale-invariant blob detector, coined Hessian-Laplace was
introduced which was based on the Hessian detector but detected interest points
in scale space. Thus it was both rotation and scale invariant. The Hessian-Affine
detector is an affine adaptation of the Hessian-Laplace detector and has been
shown to perform well in [7]. It is relatively more robust to nonuniform scaling
and skew than scale invariant detectors. Each keypoint has four attributes - the
x and y coordinates in the image, the scale at which the keypoint was detected
and the orientation.

2.2 Feature Descriptor

The step represents the local neighbourhood centered at a keypoint with a de-
scriptor. A large number of descriptors have been proposed in literature [14]. We
use the SIFT [11] descriptor. It is computed as a set of orientation histograms
(8 bins) on a 4 × 4 grid centered at each keypoint. So the dimensionality of the
descriptor is 4× 4× 8 = 128.

2.3 Tf-idf Weighting and Inverted Index

For BoW representation, we map each descriptor to the nearest visual word
in the codebook using the fast randomized kd-tree module of [21] with nearest
neighbour approximation. We utilize the term frequency-inverse document fre-
quency (tf-idf) weighting (similar to [16]) as it yields better retrieval results over
frequency histogram approach. Using the tf-idf weighting scheme, each image
Ij is represented as a vector of weights wj = {w1j , w2j , . . . wkj} where k is the
number of visual words in the codebook and wij is represented as:

wij =
ni,j∑
i ni,j︸ ︷︷ ︸

term freq.

log
N∑

j

|ni,j > 0|

︸ ︷︷ ︸
inverse doc. freq.

where ni,j is the number of occurrences of word i in image j and N is the total
number of images in the image database. In the equation, |ni,j > 0| denotes the
number of images in which word i is present.

The L2-normalized tf-idf weight for each visual word occurring in a corpus
image is stored in the inverted index structure.

DT-RANSAC: A Delaunay Triangulation Based Scheme 9

2.4 Image Matching

Given a query image, the keypoints and corresponding descriptors are first com-
puted. The descriptors are assigned to visual words and a tf-idf representation is
computed for the image which is then L2-normalized. The initial ranked list of
images is computed using a voting mechanism [16]. Scores of all images in corpus
is first initialized to zero. For each visual word in query image, we determine the
corpus images where this word occurs using the inverted index. The score for
each of these images in then incremented as:

s(i) + = tq ∗ tc

where s(i) is the score for ith image in corpus, tq is normalized tf-idf weight for
the visual word for query image and tc is the normalized tf-idf weight of the
visual word for corpus image (pre-computed and stored in inverted index file).
The score, in effect, represents the cosine similarity of the tf-idf representations
between query and corpus image and holds a value between 0 and 1. Based on
the computed score, the initial ranked list of images is generated.

2.5 Geometric Verification

Geometric verification using RANSAC is computationally expensive and so can
only be applied to a relatively small part of the ranked list of images. In our
experiments, we apply geometric verification up-to a maximum of 200 images in
ranked list. The geometrically verified images are re-ranked based on the number
of established correspondences in the verification stage.

RANSAC requires a putative list of correspondences as input. We access the
computed descriptors for images and derive a putative set of correspondences
based on the descriptor matching scheme described in [11]. A pair of descriptors
is considered a match if the distance ratio between the closest match and second
closest one is below some threshold Γ :

d2(f, f1st)

d2(f, f2nd)
< Γ 2

where f is the descriptor to be matched and f1st and f2nd are the nearest and
the second nearest descriptors from the corpus dataset, with d(. . .) denoting the
Euclidean distance between two descriptors. A threshold Γ = 0.8 was suggested
in [11]. We use a stricter threshold of 0.67 to eliminate more false matches.

Figure 2 shows local features detected for two different views of the same land-
mark. The matches obtained using the descriptor matching scheme just outlined
is shown in figure 3. Because local features need to be repeatable in the face
of viewpoint changes and occlusion, they can only cover small neighbourhoods
around keypoints. This reduces their discriminative power resulting in many
false matches as evident in figure 3.

In standard RANSAC verification, these putative matches are input to the
RANSAC algorithm which iterates by considering four matches randomly from

10 P. Bhattacharya and M. Gavrilova

Fig. 2. Local features detected at various scales and orientations for two different views
of the same landmark (Courtesy: VLFeat library [21])

Fig. 3. Putative matches obtained from descriptor matching

the list and fits a model to these features. On each iteration, it computes the
number of inliers that conform to the model and the outliers that do not conform
and finally selects the model that has the highest number of inliers. Given a
proportion p of inliers in the dataset, the probability P of finding a correct
hypothesis after Γ RANSAC iterations is given by [8]:

P = 1− (1− pm)Γ

DT-RANSAC: A Delaunay Triangulation Based Scheme 11

where m is the size of the minimal subset and set to 4. So given a desired
probability P , the number of iterations Γ is given by:

Γ =
log(1− P)

log(1− pm)
(1)

In reality, the actual number of trial runs required is much more than this
theoretical value. In next section, we detail the steps of our proposed algorithm
DT-RANSAC.

3 DT-RANSAC Methodology

DT-RANSAC derives a refined list of matches from the putative list of matches,
which is then input to RANSAC. Figure 4 compares the correspondences ob-
tained by DT-RANSAC after 5 trials with 500 runs of plain RANSAC for a pair
of landmark images. As evident from the figure, the output of our method is as
good or better which indicates that the refinement helps significantly in enabling
RANSAC to find a correct hypothesis after very few runs.

Algorithm 1 outlines the proposed refinement scheme. The putative list of
matches L is input to our algorithm along with the computed features from the
two images being matched. Steps 2 and 3 reduce the feature list to just those that
putatively matched. Thus, 1st feature of fa matches 1st feature of fb, 2

nd feature
matches 2nd and so on. Steps 5-8 compute the Delaunay Triangulations of the
matched feature locations. Step 9 invokes getRefinedList which is outlined in
Algorithm 2. If the number of correspondences with support = 2 is < 4, spatial
verification with RANSAC is not performed and number of verified matches is
reported as zero. If the number is ≥ 4, minimal subsets are formed in sequence
from the refined list in groups of 4 and input to RANSAC. This eliminates
random selection and replaces it with a prioritized selection based on the support
value of a correspondence.

Algorithm 2 computes the refined match list input to RANSAC. The Hessian-
Affine detector can detect multiple keypoints at the same location that differ
in orientation. As Delaunay Triangulation is purely based on the location of
the features, it considers each location only once. Thus, a single vertex in the
Delaunay Triangulation can correspond to multiple features and it is necessary
to compute a mapping from features to Delaunay vertices and back.

The map function in steps 2 and 3 computes this mapping for the two trian-
gulations. F2VMap denotes the feature to vertex map while V2FMap denotes
the vertex to feature mapping. The map function constructs a kd-tree of the De-
launay vertices. For each feature, we utilize the kd-tree to efficiently determine
the Delaunay vertex closest to it.

We construct a mapping from features to Delaunay vertices which is many
to one and another from Delaunay vertices to features which is one to many.
The first is implemented as a simple array with length set to number of features
and each element holding the index of nearest Delaunay vertex. The second
is implemented as a cell array (matlab) having length equal to the number of

12 P. Bhattacharya and M. Gavrilova

(a) Output of plain RANSAC after 500 iterations.

(b) Output of DT-RANSAC after 5 iterations.

Fig. 4. Correspondences obtained between two views of the same landmark using DT-
RANSAC and RANSAC

Delaunay vertices. Each cell element of this cell array is a vector that holds the
indices of the features that share that location.

Steps 6-22 iterate over all the putatively matched features of one of the images.
Step 7 computes the vertex index corresponding to the current feature index.
Step 9 computes the indices of the vertices adjacent to this vertex in the Delau-
nay Triangulation using topological search while Step 10 translates these vertex
indices to corresponding feature indices. Note that a single vertex index can
translate into multiple features. Steps 11-13 perform the same task for the other
triangulation. Step 15 computes the intersection of the neighbouring feature lists
in the two triangulations which represents the neighbouring feature indices that
match in the putative match list. The size of the intersection represents the

DT-RANSAC: A Delaunay Triangulation Based Scheme 13

Algorithm 1. geoMatch (L, fa, fb)

Inputs:
L: 2×N element matrix where N is the number of putative matches. The 1st row of
L are the indices of the matching features in image I1 and the 2nd row are the indices
of the matching features in image I2.

fa: Local features extracted from image I1. This is a 4 × n1 matrix with each
column being of the form {x, y, scale, orientation} and n1 is the total number of
features detected in I1.

fb: Local features extracted from image I2. This is a 4 × n2 matrix with each
column being of the form {x, y, scale, orientation} and n2 is the total number of
features detected in I2.

Output: Number of verified matches

1: {Reduce features to just those matched:}

2: fa ← fa(:, L(1, :))
3: fb ← fb(:, L(2, :))

4: {compute Delaunay Triangulation:}

5: X ← fa(1, :); Y ← fa(2, :)
6: DT1 ← DT (X, Y)
7: X ← fb(1, :); Y ← fb(2, :)
8: DT2 ← DT (X, Y)

9: Lrefined ← getRefinedList(fa, fb, DT1, DT2)

10: if Length(Lrefined) < 4 then
11: Report 0 correspondences from geometric verification
12: else
13: Select sets of 4 correspondences from L in sequence ((1− 4), (2− 5) and so on)

and use as minimal subset for RANSAC.
14: Terminate RANSAC when L is exhausted or maximum number of trials is

reached.
15: Report maximum number of inliers found so far.
16: end if

support for the correspondence. Steps 18-21 retain the index and support of all
correspondences with support ≥ 2. Finally, Step 23 reorders the list of indices L
in descending order of support. This ensures that correspondences with highest
support are considered first as hypothetical inliers by RANSAC.

4 Datasets and Evaluation

The Oxford 5k landmarks dataset [16] has been used for experiments. The origi-
nal dataset consists of 5062 images collected from Flickr by searching for Oxford

14 P. Bhattacharya and M. Gavrilova

Algorithm 2. getRefinedList (fa, fb, DT1, DT2)

1: {compute feature ↔ vertex mapping:}

2: [F2V Map1, V 2FMap1]←map(fa, DT1)
3: [F2V Map2, V 2FMap2]←map(fb, DT2)

4: L← φ
5: S ← φ

6: for i = 1 to Size(fa, 2) do
7: v ← F2VMap1(i)

8: {Find vertex indices adjacent to v (joined by an edge in the triangulation):}

9: nV ers← findAdjVertexIndices(DT1, v)
10: adjF1 ← cell2mat(V 2FMap1(nV ers))

11: v ← F2VMap2(i)

12: nV ers← findAdjVertexIndices(DT2, v)
13: adjF2 ← cell2mat(V 2FMap2(nV ers))

14: {Create a list of the neighbouring feature indices that match:}

15: s← adjF1

⋂
adjF2

16: {Check for a minimum support of 2}
17:
18: if Length(s) ≥ 2 then
19: L ← L

⋃
i

20: S ← S
⋃

Length(s)
21: end if
22: end for

23: Reorder L according to descending order of support in S

landmarks. It has images of 11 different landmarks with a large number of dis-
tractor images. There are 5 query images for each landmark resulting in a total
of 55 different queries. Images in this dataset are classified in [16] as Good if a
clear picture of a query landmark is present in it, as Ok if > 25% of the landmark
is clearly visible, Junk if < 25% is visible or there is severe occlusion and Absent
if none of the query landmarks are present.

For our experiments, we created the corpus dataset with only the images that
were marked as Good and changed the evaluation code so that Ok images are
not considered. The query images are the same as used in [16].

Our RANSAC implementation is based on the Matlab code from [10]. Our
Delaunay Triangulation implementation uses Matlab’s in-built functions. For
evaluation of the system, we utilize the evaluation scheme of [16]. For each query,
the retrieval quality is measured as the area under the precision-recall curve. This
measure is then averaged over all 55 queries to obtain a Mean Average Precision
(mAP) value. All experiments were performed with a single CPU on a Macbook

DT-RANSAC: A Delaunay Triangulation Based Scheme 15

Pro with 2.4 GHz Intel Core i5 processor and 16 GB memory. Except section
4.1, a codebook size of 100K is used exclusively for all experiments.

4.1 mAP vs. Vocabulary Size

We compare the retrieval performance of our method (referred to as
DT-RANSAC) in figure 5 with RANSAC and BoW for two different vocabulary
sizes (from [9]) and different number of max. trials. The geometric verification
was performed on top 200 retrieved results. For figure 5(a), the max. number
of trials is set to 15 for both RANSAC and DT-RANSAC. As evident from the
figure, DT-RANSAC achieves much better retrieval results than both RANSAC
and BoW for both vocabulary sizes. Increasing the max. number of trials in fig-
ure 5(b) to 50 improves retrieval results for both RANSAC and DT-RANSAC
with DT-RANSAC clearly outperforming RANSAC again for both vocabulary
sizes. This demonstrates the usefulness of the refinement strategy as the higher
precision indicates that DT-RANSAC is able to find better hypothesis in much
less trials.

(a) Max. trials = 15 (b) Max. trials = 50

Fig. 5. mAP vs. vocabulary size

4.2 mAP vs. Top-N Verified Images

Figure 6 plots performance of the different methods for different number of ge-
ometrically verified images. For figure 6(a), the max. number of trials is set to
15 while for figure 6(b), the max. number of trials is set to 50. It is interest-
ing to note that the performance of DT-RANSAC steadily increases with more
number of geometrically verified images and is stable. On the other hand, the
performance of RANSAC does not increase much with more verified images and
degrades at times. This indicates that RANSAC is not able to converge on a good
hypothesis within the max. trails set and, as a result, performing verification on
more images does not necessarily improve retrieval results.

16 P. Bhattacharya and M. Gavrilova

(a) Max. trials = 15 (b) Max. trials = 50

Fig. 6. mAP vs. top-N verifications

4.3 mAP vs. Maximum Trials

Figure 7 shows the performance of RANSAC and DT-RANSAC for various num-
ber of max. trails. Geometric verification is performed on top 100 retrieved re-
sults. As evident from figure, the precision of RANSAC increases with more num-
ber of max. trials allowed but even for a max. of 500 trials, the mAP achieved
is significantly less than DT-RANSAC. DT-RANSAC peaks at max. trials = 50
and then the precision no longer changes indicating saturation is reached. Even
for max. trials set to as low as 15, the mAP achieved by DT-RANSAC is
impressive.

Fig. 7. mAP vs. max. trials (top N = 100)

DT-RANSAC: A Delaunay Triangulation Based Scheme 17

4.4 Actual Number of Trials

We performed retrieval with 5 queries from 5 different landmarks to measure
the actual number of trails run. Figure 8 shows the actual number of trials for
RANSAC and DT-RANSAC when geometric verification is performed on top
100 retrieved images and max. trials set to 50. Note that the expected maximum
number of runs is 100× 50 = 5000. As evident from figure, the actual number of
runs for RANSAC is close to 5000 for majority of queries. The actual number of
runs by DT-RANSAC is 1409 on average or ∼ 71.8 % less than the maximum.
This is a significant gain and clearly indicates that DT-RANSAC yields better
retrieval results in much less trials. It is important to note that DT-RANSAC
does not perform any geometric verification if the value of support computed is
< 2. This avoids trying to find homography in unrelated images and saves on
trials run.

Fig. 8. Number of trials (top N = 100 and max. trials = 50)

4.5 Retrieval Results by Landmark Category

Experiments were conducted to determine the performance for the different land-
mark categories. For the 5 queries per landmark, the mean precision was com-
puted. There are in all 11 different landmark categories. As evident from figure
9, DT-RANSAC performs better than RANSAC for all landmark categories ex-
cept “Keble”. The mAP for all 55 queries is 0.590 for BoW, 0.614 for RANSAC
and 0.644 for DT-RANSAC. Interestingly, BoW outperforms both RANSAC and
DT-RANSAC for some landmark categories. This is because, some queries per-
form poorly when geometric verification is performed. We have observed that
this is mostly for cases when viewpoint varies significantly (e.g. a side-view of

18 P. Bhattacharya and M. Gavrilova

a building is being matched with a frontal view) or the scale of query image
varies grossly from corpus image. This, in reality, is a test for the descriptor
robustness and the match quality depends on how well the descriptor is able to
handle wide-baseline changes. Figure 10 shows some sample query images for
which geometric verification does not seem to improve results over BoW.

Fig. 9. mAP by landmark category (top N = 200 and max. trials = 50)

4.6 Processing Time

Figure 11 shows the computation time for RANSAC and DT-RANSAC for all
55 queries with geometric verification being performed on the top 100 retrieved
results. This does not include computation time for creating putative match
list for either RANSAC or DT-RANSAC. For DT-RANSAC, this time includes
computation of Delaunay Triangulation, estimating the support value and then
performing RANSAC verification. Because of the additional processing required
for DT-RANSAC, it consumes more time than RANSAC when max. trials is set
more conservatively. However, for max. trials set to 100 or higher, DT-RANSAC
starts gaining on RANSAC as the additional processing is compensated by a

DT-RANSAC: A Delaunay Triangulation Based Scheme 19

(a) All Souls (b) Cornmarket (c) Magdalen

Fig. 10. Example queries for which geometric verification does not work well (images
from Oxford 5k [16])

Fig. 11. Processing time (sec.) vs. number of max. trials

much reduced number of trials required to converge to a good homography.
Also, it can be observed that the processing time for DT-RANSAC increases
much less steeply compared to RANSAC as the number of max. trials increases.

5 Conclusion

In this paper, we have proposed a novel approach named DT-RANSAC that
utilizes topological information from the Delaunay Triangulation of matched
keypoints to enable RANSAC to converge to a good hypothesis in very few trial
runs. The random selection of minimal subset by RANSAC from putative match
list is replaced with a sequential selection based on the computed support value.

20 P. Bhattacharya and M. Gavrilova

Experiments reveal that the DT-RANSAC consistently yields improved retrieval
results over plain RANSAC and is more stable. Since geometric verification and
re-ranking is an important step in the recognition pipeline, we expect our method
to find wide applicability in computer vision applications.

Acknowledgments. The authors would like to thank Natural Sciences and
Engineering Research Council of Canada and Alberta Innovates Technology Fu-
tures for continued support of this research.

References

1. Beaudet, P.R.: Rotationally invariant image operators. In: International Joint Con-
ference on Pattern Recognition, pp. 579–583 (1978)

2. Bhattacharya, P., Gavrilova, M.L.: Voronoi diagram in optimal path planning. In:
ISVD, pp. 38–47 (2007)

3. Bhattachariya, P., Gavrilova, M.L.: Roadmap-Based Path Planning - Using the
Voronoi Diagram for a Clearance-Based Shortest Path. IEEE Robotics and Au-
tomation Magazine (IEEE RAM), Special Issue on Computational Geometry in
Robotics 15(2), 58–66 (2008)

4. Bhattacharya, P., Gavrilova, M.L.: CRYSTAL - A new density-based fast and
efficient clustering algorithm. In: ISVD, pp. 102–111 (2006)

5. Brown, M., Szeliski, R., Winder, S.: Multi-image matching using multi-scale ori-
ented patches. In: CVPR (2005)

6. Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Michaelis, B.,
Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 236–243. Springer, Heidelberg
(2003)

7. Mikolajczyk, K., et al.: A comparison of affine region detectors. IJCV 65, 43–72
(2005)

8. Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24(6), 381–395 (1981)

9. Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric con-
sistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.)
ECCV 2008, Part I. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008)

10. Kovesi, P.D.: MATLAB and Octave functions for computer vision and image pro-
cessing. Centre for Exploration Targeting, School of Earth and Environment, The
University of Western Australia,
http://www.csse.uwa.edu.au/~pk/research/matlabfns/

11. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV,
91–110 (2004)

12. Luchnikov, V.A., Gavrilova, M.L., Medvedev, N.N., Voloshin, V.P.: The Voronoi-
Delaunay approach for the free volume analysis of a packing of balls in a cylindrical
container. Future Generation Comp. Syst. 18(5), 673–679 (2002)

13. Mikolajczyk, K.: Scale and affine invariant interest point detectors. PhD thesis
(2002)

14. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In:
CVPR (2003)

http://www.csse.uwa.edu.au/~pk/research/matlabfns/

DT-RANSAC: A Delaunay Triangulation Based Scheme 21

15. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors.
IJCV 60(1), 63–86 (2004)

16. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with
large vocabularies and fast spatial matching. In: CVPR (2007)

17. Raguram, R., Frahm, J.-M., Pollefeys, M.: A comparative analysis of RANSACtech-
niques leading to adaptive real-time Random Sample Consensus. In: Forsyth, D.,
Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 500–513.
Springer, Heidelberg (2008)

18. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching
in videos. In: ICCV, pp. 1470–1477 (2003)

19. Turcot, P., Lowe, D.G.: Better matching with fewer features: The selection of useful
features in large database recognition problems. In: ICCV Workshop on Emergent
Issues in Large Amounts of Visual Data, WS-LAVD (2009)

20. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: A survey. Foun-
dations and Trends in Computer Graphics and Vision 3(3), 177–280 (2008)

21. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer
vision algorithms (2008), http://www.vlfeat.org/ (last accessed 2012)

22. Xuan, K., Zhao, G., Taniar, D., Srinivasan, B., Safar, M., Gavrilova, M.L.: Network
Voronoi Diagram Based Range Search. In: International Conference on Advanced
Information Networking and Applications, pp. 741–748 (2009)

23. Zhang, Y., Jia, Z., Chen, T.: Image retrieval with geometry-preserving visual
phrases. In: CVPR, pp. 809–816 (2011)

http://www.vlfeat.org/

On the Construction of Generalized Voronoi Inverse
of a Rectangular Tessellation

Sandip Banerjee1, Bhargab B. Bhattacharya1, Sandip Das1, Arindam Karmakar2,
Anil Maheshwari3, and Sasanka Roy4

1 ACM Unit, Indian Statistical Institute, Kolkata, India
2 Tezpur University, Tezpur, India

3 Carleton University, Ottawa, Canada
4 Chennai Mathematical Institute, Chennai, India

Abstract. We introduce a new concept of constructing a generalized Voronoi
inverse (GVI) of a given tessellation T of the plane. Our objective is to place
a set Si of one or more sites in each convex region (cell) ti ∈ T , such that all
edges of T coincide with edges of Voronoi diagram V (S), where S =

⋃
i Si, and

∀i, j, i �= j, Si

⋂
Sj = ∅. Computation of GVI in general, is a difficult problem.

In this paper, we study properties of GVI for the case when T is a rectangular
tessellation and propose an algorithm that finds a minimal set of sites S. We also
show that for a general tessellation, a solution of GVI always exists.

1 Introduction

1.1 Motivation and Problem Definition

In the design of Integrated Circuits (IC), the placement of modules is often guided
by thermal constraints, which have become important because of high amount of power
consumption per unit area and low thermal conductivities [12]. During the design phase
it is thus required to estimate the thermal profile of each module and identify the lo-
cations for placement of heat sinks. A suitable geometry of heat sinks increases the
dependability of the chip as the hot spots and the subsequent thermal gradient across
the chip have a direct impact on its performance. The thermal environment around a
cell depends on the thermal resistance between its location and the heat sink and the
thermal contributions from other neighboring cells [24], [25]. The thermal resistance
varies directly on the distance to the heat sink and inversely proportional to the thermal
conductivity of the material on the way to heat sink [11]. Chen and Sapatnekar [13]
studied partitioning based thermal placement methods to determine the location of heat
sinks in each partition. In order to drain off the heat efficiently from a hot spot, ded-
icated heat sinks should be placed in the concerned partition so as to facilitate heat
dissipation predominantly for the components belonging to that partition. Similar prob-
lems may arise in placing reservoir wells on a digital microfluidic biochip [14], where
one or more reagents ought to be supplied independently to fluidic modules with least
transportation cost from a source placed within the same block. These engineering de-
sign issues mandate a formal analysis and motivate us to address the following problem

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XX, LNCS 8110, pp. 22–38, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On the Construction of Generalized Voronoi Inverse of a Rectangular Tessellation 23

in rectangular tessellations. Before that, we introduce the concept generalized Voronoi
inverse problem described below.

The Voronoi diagram V (S) of a point set (site) S = {s1, s2, . . . , sn} is defined as
the partitioning of a plane into n convex regions (Voronoi regions). Any point in each
Voronoi region V (si), will be closer to si ∈ S than to any other site of S \ si. The
edges of the Voronoi diagram are the set of points in the plane that are equidistant to
two nearest sites. The Voronoi vertices are the points equidistant to three (or more) sites.

Assume that we are given a tessellation T of the plane where each of its cell is
convex. In the inverse Voronoi diagram problem, the following question is asked: Given
T , does there exist a set of sites S, one site for each cell of T , such that the following
holds. If si ∈ S is placed in the cell ti ∈ T , then the Voronoi cell of si in the Voronoi
diagram of S (denoted by V (S)) is ti. Obviously, an inverse Voronoi diagram for any
T may not exist. Therefore, we consider the problem of constructing a generalized
Voronoi inverse (GVI) of a given tessellation T of the plane. Our objective is to place a
set Si of one or more sites in each of the cells of T , such that each edge of T coincides
with edges of V (S), where S =

⋃
i Si, and ∀i, j, i �= j, Si

⋂
Sj = ∅. Observe that

any cell of V (S) must not lie in more than one cell of T . Furthermore in GVI, such
placement of sites ought to satisfy the following property: for any point x ∈ ti, if y ∈ S
is the closest site of x then y ∈ Si. Our objective is to identify such a set S of minimum
cardinality. We define the cell ti as the Voronoi cell of set Si and denote it by t(Si).

The layout of an integrated circuit can be viewed as a tessellation of a rectangular
region R. Given a layout the heat sinks in each block should be placed in such a fashion
that the heat generated in one block is drained off locally without affecting the thermal
load of adjacent blocks. Moreover, the number of heat sinks placed in a block should
be minimum. It turns out that for a rectangular tessellation, such an exclusive heat sink
placement problem is equivalent to finding a GVI.

1.2 Notations and Definitions

Given a rectangular bounding region R, a rectangular tessellation of R is a partition-
ing of the region R into isothetic rectangles. As in Voronoi diagrams we refer to each
rectangle in the tessellation as a cell whose boundary is defined by axis-parallel seg-
ments. These segments are defined as the edges of the tessellation. The intersection of
two orthogonal segments (edges) of a cell is defined as follows. A T- junction is a point
where two orthogonal segments form a T-like structure (do not intersect), and a cross
junction is an intersection point where two orthogonal segments cross each other. Here
any intersection with the outermost boundary of the tessellation T is not considered as
junction. We define a rectangular tessellation without any cross or T junction as linear
rectangular tessellation.

In this paper we consider the GVI problem for a given rectangular tessellation T of
a rectangular region R. We need to locate a set S consisting of minimum number of
points inside T such that for each rectangular cell ti ∈ T , the set of sites Si ∈ S that
lie inside ti satisfies the following:

a) for any point x ∈ ti (x is not on a boundary) if y is its nearest neighbor in S, then
y ∈ Si and the closest neighbor y need not be unique.

24 S. Banerjee et al.

b) If point x lies on the edge adjacent to the cells ti and tj , then it is the perpendicular
bisector between the two sites x and y such that x ∈ Si and y ∈ Sj for i �= j. It is
assumed that there is no point on the boundary of the cells.

1.3 New Results

We study the generalized Voronoi inverse problem (GVI), i.e. we compute a set of points
S of minimum cardinality, so that the given rectangular tessellation T is a subgraph of
the 1-skeleton of the Voronoi diagram of S. We present the following results:

1. In Section 3 we present a linear-time algorithm for computing a GVI of optimum
size for a linear rectangular tessellation.

2. In Section 4 we establish a combinatorial bound of O(n2) on the required number
of sites for a general rectangular tessellation where n is the number of rectangles
in the given rectangular tessellation. Here we propose an algorithm fore generating
point set S for any general rectangular tessellation T which will provide a minimal
solution for GVI. Later, in this section we establish lower bounds on the required
number of sites for some special cases of rectangular tessellation.

3. In Section 5 we show that there always exists a feasible placement of sites that will
correspond to any given arbitrary tessellation T .

1.4 Related Works

Balzer et al. [3, 4] had worked on inverse Voronoi diagram with capacity constraints in
each Voronoi region. A close correlation of inverse Voronoi diagram with facility lo-
cation problem had been shown earlier [1, 2]. Hartvigsen [6] showed that the construc-
tion of an inverse Voronoi diagram problem can be mapped to a linear programming
problem. Discussions and literature survey on Generalized Voronoi diagrams have been
presented by Gavrilova [5]. GVI has also applications in biological growth model [7],
GIS system [8], and competitive facility location [9].

2 Preliminaries

Let T be a tessellation of rectangular regions, where each cell is a rectangle (Fig. 1(a)).
Let the vertices of a tessellation T be the junction points of segments either of type
T or cross type junction. A Hanan grid [10] is generated by constructing vertical and
horizontal lines through each junction point. The length of the vertical boundary and
the horizontal boundary of a cell (r) will be denoted by width(r) and breadth (r), re-
spectively. Let N (T) denote the minimum number of sites in the GVI for a tessellation
T . The existence of GVI for any rectangular tessellation follows from the following
theorem:

Theorem 1. For any rectangular tessellation T , there exists a point set S of size O(n2)
such that any cell V (s)(⊆ V (S), s ∈ S) lies in exactly one cell of T , where n is the
number of cells in T .

On the Construction of Generalized Voronoi Inverse of a Rectangular Tessellation 25

(b) (c)(a)

Fig. 1. Proof of Theorem 1. (a) Original tessellation (b) site placement on Hanan tessellation and
(c) site placement in original tessellation.

Proof. A Hanan grid can be constructed from the given rectangular tessellation T (See
Fig. 1a) that produces a Hanan tessellation (Fig. 1b). Here each cell of T is partitioned
into one or more parts. Moreover, each cell of Hanan tessellation must lie inside exactly
one cell of T . Fix a small positive constant ε whose value is smaller than half of the
smallest length among breadths and widths of all rectangular cells of T . For each grid
point of co-ordinate (a, b) of Hanan tessellation, place sites at positions (a + ε, b + ε),
(a−ε, b+ε), (a−ε, b−ε), (a+ε, b−ε) as in (Fig. 1b) Observe that the junction points of
the Hanan tessellation are Voronoi vertices and the edges of the tessellation emanating
from the junction points are Voronoi edges. However, all Voronoi vertices and edges
may not coincide with junction points and grid edges respectively. The site placement
in the original tessellation can be obtained as in (Fig. 1c) just by ignoring these extra
vertices or edges shown by dotted lines. For a point in a cell of Hanan tessellation, its
nearest sites must be one of the sites in the cell. Hence, in this Voronoi diagram, the
Voronoi region of a site must lie inside a cell of the tessellation. Thus, T is a subgraph
of Voronoi diagram of S. Now we can bound the maximum number of sites required for
any given rectangular tessellation containing n cells. There are at most O(n2) junction
points in the respective Hanan grid. So, we can place four sites around each junction
points in order to construct the GVI. Hence, the maximum number of sites required is
of O(n2). In fact, N (T) ≤ 4n2. �

The above placement strategy may yield to a large number of sites compared to the
optimal solution. We will discuss some special cases where the number of sites can
be reduced significantly. In the next section, we consider only the linear rectangular
tessellation.

3 Locating Sites in a Linear Rectangular Tessellation

Here we consider the placement of sites S in rectangular tessellation that is devoid of
cross- and T- junctions.

Observation 1. If the widths of all the cells in T are equal then N (T) = n, where n
is the number of cells in the tessellation.

Proof. Placing the sites S in the intersection points of the diagonals of the rectan-
gles are alternately increasing and decreasing and widths of the rectangles are in such
order. �

26 S. Banerjee et al.

Observation 2. For a rectangular tessellation T containing two rectangles of different
widths, N (T) = 2.

Proof. Let l be the line containing the segment common to both the rectangles. Place
two sites on opposite halves of l at ε distance from l (Fig. 2(b)). �

Observation 3. For a rectangular tessellation consisting of three rectangles of widths
w1, w2, and w3 respectively, N (T) ≤ 4.

Proof. Let the three rectangles be of widths w1, w2, and w3 respectively such that (a)
w1 < w2, (b), w3 < w2, (c) (w2/2 < w1) and (d) (w2/2 < w3). Observe that placing
one site in each rectangle is necessary and sufficient if all the above conditions hold
simultaneously. Suppose, all the above conditions do not hold simultaneously; in this
case, placing two sites in the rectangle of width w2 and one site in each of the rectangles
corresponding to w1 and w3, is necessary and sufficient (Fig. 2(b)). �

(a) (b) (c)

Fig. 2. Placement strategy of a linear rectangular tessellation having (a) equal width rectangles
(b) 3 cells of different widths (c) arrangement of cells in non-decreasing width

Observation 4. Given a linear rectangular tessellation T where the widths of the rect-
angles are in non-decreasing (or non-increasing) order, then N (T) = n where n is the
number of rectangles in T .

Proof. The placement of sites has to be made in sequential order starting from the
rectangle with smallest width. Place a site anywhere in the rectangle of smaller width
and then placement can be carried out for the next site in the adjacent rectangle, which
is the reflective image of the previous one with respect to adjacent boundary (Fig. 2(c)).

�

Observation 5. For any given linear rectangular tessellation T , n ≤ N (T) ≤ � 3n
2 � .

Proof. The number of sites required will be maximum when the widths of the rectangles
are alternately increasing and decreasing and widths of the rectangles are such order
that for any 3 consecutive rectangles the reflective images of the outer boundary of
two rectangles do not overlap at the middle rectangle. In a tessellation consisting of n
rectangles there are �n

2 � rectangles where two sites are enough in each rectangle (refer
Observation 3). Hence the total number of sites required will be (2∗�n

2 �+�n
2 � = � 3n

2 �).
�

On the Construction of Generalized Voronoi Inverse of a Rectangular Tessellation 27

Following observation leads to the tightness results of the bound of N (T).

Observation 6. There are tessellations where N (T) = � 3n
2 �.

Proof. Consider an arrangement formed by concatenation of linear tessellation of the
basic pattern as shown in (Fig. 2(b)) where n is odd and there are �n

2 � rectangles of
width w interspersed with �n

2 � rectangles of width less than w
2 . Therefore, N (T) will

be (2 ∗ �n
2 �+ �n

2 � = � 3n
2 �).

Observation 7. For any k between n and � 3n
2 �, there exists a linear rectangular tes-

sellation of size n such that N (T) = k.

Proof. The minimum number of sites required for any given tessellation is n and the
maximum number of sites required is � 3n

2 �. Here it is shown that the required number
of (sites can be any positive integer (it is obvious as the number of sites cannot be
fractional)) between n and � 3n

2 �. Suppose there exists a partition where the optimal
number of sites required is t where t is any number between n and � 3n

2 �. Now, the claim
is: there exists a linear tessellation with n rectangles where the obtained number of sites
will be t+1 or t−1. This can be done by increasing the width of one particular rectangle
such that the reflective images of adjacent rectangles do not overlap, and as a result we
have to increase the number of sites in that rectangle. Similarly, a tessellation with
t − 1 sites can be obtained by decreasing the width of one particular rectangle (where
previously two sites are required because of non-overlapping of reflective images of the
adjacent rectangles). �

Theorem 2. The optimal placement of sites corresponding to any given linear rectan-
gular tessellation T can be found in O(n) time where T is a partition of size n.

Proof. Consider a linear rectangular tessellation T that consists of a sequence of con-
tiguous rectangles {A[0], A[1], . . . , A[n]} of equal length but of arbitrary widths. Now
divide the sequence of rectangles into overlapping subsequences such that each one is
a maximal subsequence of rectangles with either non-decreasing widths or with non-
increasing widths. By maximal is meant that the subsequence is not contained in any
larger increasing or decreasing subsequence. Note that, if the tessellation consists of
rectangles of distinct widths, then the subsequences overlap at one rectangle. This divi-
sion can be done in O(n) time.

Consider the left-to-right order sequence of rectangles A[0], A[1],, A[k] to be in
non-decreasing order of their widths followed by A[k + 1], A[k + 2], ..., A[t] in non-
increasing order of the widths. Let li and ri denote the left and right boundary of rectan-
gle A[i] respectively. We denote I(A[i], li) as the image of rectangle A[i] with respect
to line segment li on the neighbor rectangle A[i−1]. If the image I(A[i], li) ⊂ A[i−1],
then for every possible location of a site in A[i] there is a location for another site in
A[i− 1] that defines the line li.

Now, consider the image R1 = I(I(. . . (I(A[0], l1), l2), . . .), lk) of A[0] on A[k].
Observe that R1 is a rectangle of the same width as A[0] lying inside the region of
A[k]. Now similar process can be done for the region A[t]. Thus, we have the image
R2 = I(I(. . . (I(A[t], rt−1), rt−2), . . .), rk) inside A[k].

28 S. Banerjee et al.

Now we define Sk = R1 ∩ R2 �= ∅ as safe region of the kth rectangle. If R1 ∩
R2 = ∅, we need two sites at A[k] and one site for A[i], i = 1, 2, . . . , k − 1, k +
1, . . . , t. Otherwise we have a placement of one site per rectangle in the GVI parti-
tion {A[0], A[1], . . . , A[t]}. Let F0 = I(I(. . . I(I(Sk, lk), lk−1), . . .), l1) and Ft =
I(I(. . . I(I(Sk, rk), rk+1), . . .), rt−1) be the propagated image of Sk on A[0] and A[t]
respectively. ThereforeF0 and Ft are the feasible regions for placing sites such that each
rectangle requires at most one site. Note that, there may exist many such non-decreasing
followed by non-increasing maximal subsequences. Consider another sequence of rect-
angles {A[t], A[t + 1], . . . , A[x]} in non-decreasing order followed by {A[x], A[x +
1], . . . , A[z]} in decreasing order of the widths. Now there will be a safe region Sx

at A[x] resulting from the sequence of rectangles {A[t], A[t + 1], . . . , A[x], . . . , A[t]}.
Corresponding to Sx there will be feasible region F ′

t on A[t]. If Ft ∩ F ′
t �= ∅ then it

is always possible to satisfy the tessellation with one site for each rectangle. For each
rectangle {A[t]} whose width is less than both of its neighboring rectangles A[t − 1]
and A[t + 1], compute the feasible regions F = {Ft}. If Ft �= ∅ for all Ft ∈ F , then
the tessellation T can be realized by n sites. These feasible regions can be generated in
O(n) time by traversing the partition once. Hence the theorem. �

4 Locating Sites in a General Rectangular Tessellation

Observation 8. If the tessellation consists of only identical square cells, then placing
one site in each of the cell is necessary and sufficient.

Proof. Place one site in each of the cell at the intersection point of the diagonals of each
cell (see Fig. 3). �

Fig. 3. One site is enough per rectangle

Theorem 3. N (T) ≤ (� 3n
2 �)2, where T is a tessellation generated from a Hanan grid

of size n× n.

Proof. Consider a column of a Hanan tessellation. From Observation 5, we can generate
this part of the tessellation by placing at most � 3n

2 � sites. Let A represent this placement
of sites along a column. Similarly, we may consider a row of the tessellation. Here,
we can generate this part of the tessellation by placing at most � 3n

2 � sites and let B
represent such a placement of sites along a row. Now replicate arrangement A in each

On the Construction of Generalized Voronoi Inverse of a Rectangular Tessellation 29

x-coordinate location of the arrangement B. Now we claim that this way of placement
generates the given Hanan tessellation.

For justification, consider a site s of the placement and look at its four neighboring
sites and their neighbors. The Voronoi edges of V (s) form a rectangular cell and the
cell must lie inside a cell of Hanan tessellation. Again observe that at least one vertical
and one horizontal edge of the Hanan cell must coincide with the edges of V (s). Hence,
the placement is optimal. �

H1

V1 V2

O

A
B

C D

E

X Y

Fig. 4. Illustration of observation 9

Observation 9. Consider a tessellation T (3) that consists of rectangular cells, H and
V with a common horizontal edge between them. The cell V is further partitioned into
two rectangles by a vertical segment. Then N (T (3)) is at least 4.

Proof. Consider Fig. 4, where the given rectangular tessellation T (3) consists of three
rectangles H1, V1 and V2. Suppose the sites corresponding to V1 and V2 are placed at
C and D respectively. We claim that we require at least two sites for H1 to make AB
a Voronoi edge. We will prove this by contradiction. Assume that there is only one site
placed at O for the rectangle H1. Therefore C and D should be at an infinite distance
from O to make AB a Voronoi edge. But the given tessellation is bounded. Hence the
contradiction. �

Now we describe an algorithm for generating a point set S for any general rectangu-
lar tessellation T which will provide a minimal solution for GVI. A minimal solution
is a solution where the size of the solution set cannot be further reduced without repo-
sitioning the site locations in the solution.

Example: For the tessellation of Fig. 5(a), the steps of Algorithm 1, are shown in
Fig. 5(b) and 5(c). Theorem 3 concludes that for any rectangular tessellation of size
n, there always exists a feasible solution and that the upper bound on the size of sites
is O(n2). Algorithm 1 produces a valid minimal solution of GVI with rectangular tes-
sellation. From Observation 9 we can conclude that 4 sites are required around each
T-junction. These sites will form a square and a circle centering at the T-junction will
pass through all these 4 sites. Initially one can place 4 such sites around eachT-junction;
however, Algorithm 1 reduce the number of sites by sharing such placement in the ad-
jacent squares. Such a solution is shown in Fig. 5(c). It may be noted that the solution

30 S. Banerjee et al.

Algorithm 1. GVI for any rectangular tessellation T
Input: A rectangular tessellation T
Output: GVI of T
foreach cross- and T-junctions j do

Extend the vertical and horizontal lines through j up to the boundary of T to
produce the Hanan Grid G

end
minr =the row of minimum width in G;
minc =the column of minimum width in G;
Following the placement strategy of Theorem 2, place sites in the minrth row
and mincth column of G;
Using the reflection principlea, place sites in the adjacent columns or rows
starting from either minrth row or mincth column;
foreach site si do

Check its cell boundaries {bik|k = 1, 2, 3, 4};
if bik is a virtual segmentb for all k = 1, . . . , 4 then

remove the site si;
end

end
Remove all virtual segments of the Hanan tessellation;

a Consider two adjacent rectangles and let one of which contains a site. Then there must exist a
site in the other rectangle such that the euclidean distance of these two sites are equal from the
common edge of the two adjacent rectangles; thus the second site is the reflective image of the
first site.

b The segments which do not appear in the original tessellation.

(a) (b)

(c) (d)

Fig. 5. (a) Original tessellation T (b-c) Steps of Algorithm 1 (d) tessellation with fewer number
of sites

produced by Algorithm 1 may not be optimum. An solution with fewer number of sites
is shown in Fig. 5(d). Determination of a minimum solution for GVI is posed as an open
problem.

On the Construction of Generalized Voronoi Inverse of a Rectangular Tessellation 31

1

2

3 4

5

6

7

8
9

1011

12

13
14

15
16

17

18

19

20
21

22

23 24

1
2

3

4 5

6

7

8

9

1011

12

13

14

15

16

17

18

19
20

21

22

23

24
25

1a

1b 2b

2a

Fig. 6. (a) Original tessellations T corresponding to VLSI floorplans (b) Site placement by
Algorithm 1

Results obtained by the proposed method for some well known VLSI benchmark
floorplans [22], [23] are shown in Fig. 6.

4.1 Optimum Placement for Some Special Cases

In general, when the length and breadth of each of the rectangles are not equal, then
from Theorem 1 we can derive an upper bound on the number of sites. In the next few
observations, we will discuss some cases where we can have tighter results.

Consider a stack of n rectangles (all congruent to the rectangle H1) on H1 such that
the length of the new tessellation remains the same as T (3). In such a case, two sites
are sufficient in each of the stacked rectangles, which are congruent to H1 because of
the two base rectangles V1 and V2. The requirement of the base rectangle may prop-
agate to the other rectangles. The impact of propagation would be enormous if there
are m base rectangles (say, T (m)) on the top of which there are n stacked rectangles
(say, T (n)). For the tessellation T (m,n) (n rectangles stacked above m rectangles),
N (T (m,n)) ≤ n · N (T (m)) +N (T (m)). However, this provides only upper bound.
For some special instances, the required number of sites may not be much less. There
is a scope to reduce this propagation effect as discussed below.

Consider Fig. 7a, where the given rectangular tessellation T (2, 3) consists of three
stacked rectanglesH1,H2,H3 and two rectanglesV1 andV2 at the base. Eight sites (refer
Fig. 7c) are sufficient for the tessellation to follow Voronoi properties, i.e,N (T (2, 3)) ≤
8. Note that two sites placed at R and S in the rectangle H3 are necessary (Observation
9). But if we place one extra site at Q in the rectangle H3, then rectangles H2 and H1

32 S. Banerjee et al.

O H1

H2

H3

V1V2

P

Q

R S

U V

A B

C D

H1

H2

H3

V1V2

H1

H2

H3

V1V2

(a) (b) (c)

Fig. 7. Propagation depends on the aspect ratio

require 1 site each. This is possible since the perpendicular bisectors of the segments
RQ and SQ do not intersect with the line segment AB, which is the common boundary
between the rectanglesH2 andH3. Therefore, placing one extra site in one rectangle may
reduce the number of sites in subsequent rectangles. The placing of extra site depends
upon the aspect ratio of the corresponding rectangle. This way of lowering down the
required number of sites in the tessellation is called blocking of the propagation effect,
which is illustrated next.

Observation 10. For any rectangular tessellation of type T (m,n), N (T (m,n)) de-
pends on the aspect ratios of the corresponding rectangles.

Proof. Consider Hi to be one of the stacked rectangles in the tessellation T (m,n)
where H1, H2, . . . , Hn are stacked from top to bottom respectively. Suppose the rect-
angle Hi requires a set Si of m sites to make the separating edge between Hi and Hi+1

a Voronoi edge, and those m sites are placed on a line, say l. As for instance, consider
Fig.7 where H3 requires 2 sites that are placed on R and S to take care of the common
edge between H3 and base Voronoi. Let sl and sr be the extreme left and the extreme
right sites among Si. Let d be the distance between sl and sr. We place another site s
in Hi such that d(s, sl) = d(s, sr) and d(s, l) = d(s, sl) = d(s, sr), the site s will be
placed on the perpendicular bisector of the segment (sl, sr) and the perpendicular dis-
tance of s from the line will be d

2 . Therefore, if such a placement of site s is possible in
a rectangle Hi then the neighboring rectangles Hi−1, Hi−2, . . . , H1 will require fewer
sites in each of them. Thus the propagation effect in all the above rectangles is blocked.
It might happen that if we can place extra n

2 sites in Hi such that in each of the stacked
rectangles (from Hi−1, . . . , H1) n

2 sites are enough instead of n sites. For instance, in
Fig. 7 where one extra site is placed in the rectangle H3 at Q and as a result one site is
enough both at H2 and H1. If such a placement is not possible, try to place two sites
considering half of the sites of S for each new site. Recursively following the above
procedure, we can reduce the required number of sites. �

By Observation 3, if the stacked and base tessellations T (n) and T (m) are consid-
ered separately then at most � 3m

2 � and � 3n
2 � sites will be required. Now we have the

following observation:

Observation 11. For all tessellations of type T (m,n), (2m + n) ≤ N (T (m,n)) ≤
(� 9mn

4 �+� 3n
2 �). There exists an instance where N (T (m,n) is exactly (� 9mn

4 �+� 3n
2 �),

and there also exists an instance where N (T (m,n)) is exactly (2m+ n).

On the Construction of Generalized Voronoi Inverse of a Rectangular Tessellation 33

Proof. First we will show that � 3n
2 � + � 9mn

4 � sites are sufficient in the tessellation of
type N (T (m,n)) (See Fig.7). Initially we will place sites on the rectangles Vi’s (here
i varies from 1 to n) ignoring the Hi’s (here i varies from 1 to m). Now � 3n

2 � sites are
sufficient to make all the edges between Vi’s Voronoi edges (refer to Observation 6).
We require exactly � 3n

2 � sites to take care of the edge between Hm and Vi’s (refer to
Observation 9). Now there exists an instance (the worst case scenario) where among n
stacked rectangles placed vertically above (See Fig. 7) there are n

2 rectangles where in
each of them 2 × (� 3m

2 �) sites are sufficient and in each of the remaining n
2 rectangles

� 3m
2 � sites are sufficient (follows from Observation 9). Hence, it follows that there

exists an instance where N (T (m,n)) is exactly (3m2 +2× (n2)× (� 3m
2 �)+ n

2 (�
3m
2 �))

on simplification, we get N (T (m,n)) = � 3m
2 �+ � 9mn

4 �.
Now in proving the lower bound, at least one site is required in each of the m rectan-

gles located in the base that is in T (m) to make the edges between each of the rectan-
gle in T (m) a Voronoi edge. Now to make the edge located in between Hn and T (m)
Voronoi m sites are enough in the rectangle Hn (follows from Observation 9). In the
best case the propagation effect can be stopped with the inclusion of one site in Hn.
There exists an instance where in each of the n − 1 stacked rectangles (Hn−1 . . . H1),
one site is sufficient. Hence, it follows that there exists an instance where T (m,n) is
exactly (m+ (m+ 1) + (n− 1)), simplifying we get N (T (m,n)) = (2m+ n). �

V1V2V3

H1

H2

H3 Vh1 Vh2 Vh3 Vh4

Vl1 Vl2 Vl3 Vl4

H1

H2

(b)(a)

Fig. 8. (a) Observation 11 (b) Observation 12

Consider another variant of rectangular tessellation where the tessellation has an-
other set of base rectangles on top of the stacked rectangles, i.e, the stacked rectangles
are sandwiched between two set of base rectangles (See Fig. 8a). Denote this variant
as T (m1,m2, n) where m1,m2 and n are the number of the top base rectangles, bot-
tom base rectangles and stacked rectangles respectively. Now we have the following
observation.

Observation 12. For all tessellations of type T (m1,m2, n), (2(m1 + m2) + n) ≤
N (T (m1,m2, n)) ≤ (� 9n×max{m1,m2}

4 � + � 3n
2 �). There exists an instance where

N (T (m1,m2, n)) is exactly (� 9n×max{m1,m2}
4 � + � 3n

2 �) and there also exists an in-
stance where N (T (m1,m2, n)) is exactly (2(m1 +m2) + n).

34 S. Banerjee et al.

Proof. First we will prove that the lower bound on the number of sites required for a
partitioning of T into H , Vh and Vl (See Fig. 8b)) Suppose Vh needs m1 sites and Vl

needs m2 sites; then we have to place m1 (m2) sites in the rectangle which is adjacent
to Vh (Vl). In the best case we can block the propagation effect in the next adjacent
rectangle such that we require 1 site in all other horizontal rectangles. Hence, we need
at least (2(m1 +m2) + n) sites.

Now we will prove the upper bound on the number of sites required for partitioning
of T into H , Vl and Vh. The number of sites required is at most (� 9n×max{m1,m2}

4 �+
� 3n

2 �) (Observation 11). If Vl and Vh are partitioned into m1 and m2 rectangles re-
spectively then at most � 3m1

2 � and � 3m2

2 � sites are required in Vl and Vh respectively
(Observation 5). Hence, the maximum number of sites required in the worst case is
(� 9n×max{m1,m2}

4 �+ � 3n
2 �). �

Observation 13. For a tessellation T consisting of n rectangles with cross- and T
junctions, there exists an instance where the minimum number of sites required will be
of Ω(n2).

Proof. Consider Fig. 8(a) where the widths of H1, H2, H3 and V1, V2, are such that
the reflective images of H1 and H3 do not overlap at H2, similarly the reflective image
of V1 and V3 do not overlap at V2. Now from Observation 6, we require four sites
altogether in V1, V2, and V3. In order to make the common boundary between Vi (where
i = 1, 2, 3) and H1 an Voronoi edge, four sites are required. From the discussion made
in Observation 9, it follows that four sites placed in H1 will replicate in H2 and H3. The
optimality is proved by the fact that if we replace any one site from Vi it will strictly
contradict the Observation 6, and if we replace any one site from H1 it will contradict
Observation 9. We cannot further reduce the number of sites in H2 and H3 because of
the patterns of the aspect ratios of the corresponding rectangles. �

5 Locating Sites in a General Tessellation

In this section we will provide a feasible solution of GVI for any arbitrary tessellation
within a bounded region. In other words, T may be viewed as a partition of a bounded
two-dimensional space into polygons, or a plane graph with no pendant vertices (See
Fig. 9). Without loss of generality, assume that the bounded region is rectangular in
shape. This imposition does not restrict us in deriving general theoretical results.

Theorem 4. Given an arbitrary tessellation T there always exists a feasible placement
of sites, which is a GVI of the tessellation T .

Proof. To prove the theorem we will use some earlier results on acute and non-obtuse
triangulation of polygons and planar straight line graphs [15] [16] [17] [18] [19] [20]
[21]. Consider a tessellation T that consists of n vertices. It is known that a tessellation,
which is a planar straight line graph, admits an conforming non-obtuse triangulation
if additional vertices and edges are included in T [15]. A conforming triangulation is
defined as follows. Let V be the set of vertices in T and suppose V ′ is a point set con-
taining V . We say a triangulation of V ′ conforms to T if the edges of the triangulation

On the Construction of Generalized Voronoi Inverse of a Rectangular Tessellation 35

cover the edges of T . A conforming non-obtuse triangulation of the tessellation T can
be obtained by adding O(n2.5) new vertices [15]. Once a non-obtuse triangulation of
T is obtained, we fix a small positive quantity ε which is strictly smaller than half the
length of the smallest edge of the triangulation, and an angle δ which is smaller than
half of the smallest angle between any two edges of the triangles. Construct a circle of
radius ε around each of the vertices of the triangles. Place sites on the circumference of
the above circle such that each edge emanating from a vertex is a perpendicular bisec-
tor of the two neighboring sites (one in clockwise and another in anticlockwise) placed
on the circle. See Figs. 10a, 10b. These two sites are so placed as the circle that they
subtend an angle 2δ at the center. These sites are called ε− neighbor of the correspond-
ing vertex. We repeat this site placement procedure for every vertex of the triangulated
graph.

We will prove the fact that the above procedure will return a feasible solution of GVI
by the following argument. Let ABC be one of the acute-angled triangle. Three circles
CA, CB , CC centering at the vertices A,B,C respectively each of radius ε, are drawn.
Let D be any arbitrary point inside the triangle ABC which lies outside the circles
CA, CB , CC (See Fig. 11a). Suppose D is unable to fulfill its Voronoi requirement
from any of the sites placed on the circumference of the circles CA, CB, CC . On the
contrary D finds its nearest neighbor from outside the triangle ABC, say at site P ; note
that by construction, P must be an ε- neighbor of a vertex of an acute-angled triangle.
Then there will be two cases

1) Q is a vertex of the triangle whose one of its edge is BC (See Fig. 11a);

Proof. A circle CD is drawn centering at D and radius DQ. Now there will be 2
sub-cases.
a) If the circle CD intersects any of the circles CA, CB , CC then it is obvious that

D will satisfy its Voronoi requirement from a site placed on the circumference
of the corresponding circles. This contradicts that P is the nearest neighbor of
D.

b) Suppose the circle CD intersects the triangle at the points S,R. The segment
EF subtends a right angle at Q since EF is the diameter. Note that ∠SQR
is greater than ∠EQF , and as a result ∠SPR is obtuse. Therefore, the face
BQC is not a non-obtuse triangle. Hence, contradiction.

2) Q is not the vertex of the triangle whose one of its edge is BC;

Proof. Let XY be the edge of the triangle whose one of the vertex is M . The line
segment DM is joined. Consider a point M ′ on the line segment DM such that M ′

is just outside the face XYM (See Fig. 11b). Note that there must be at least one
edge crossing the line segment DM otherwise triangulation will be contradicted. It
is easy to see that (Fig. 11c) the nearest neighbor of M ′ will be M as the circle CD

(with center at D and radius DM) includes the circle CM ′ (with center at M ′ and
radius M ′M). Hence, with respect to the face XYM and the point M ′, we land up
with a situation which can be contradicted as in Case 1. Thus M cannot be nearest
neighbor of M ′. �

36 S. Banerjee et al.

Fig. 9. Example of an arbitrary tessellation

a b

ε

δ

Fig. 10. (a) Applying theorem 4 in star (b) Applying theorem 4 in the given tessellation (dotted
lines show extension of a segment in order to triangulate)

A

B C

D

E F

S R
P

ε

A

B C

M

M ′

D

D

M ′

M

CD

CM ′

b ca

Q

X

Y

Fig. 11. Proof of Theorem 4

On the Construction of Generalized Voronoi Inverse of a Rectangular Tessellation 37

Now, we bound the number of sites required for a given arbitrary tessellation. The
total number of vertices formed after obtaining conforming non-obtuse triangulation
will be of O(n2.5), where n is the number of vertices in the tessellation T . Since, a
triangulated graph is a plane graph, the number of edges will also be of order O(n2.5).
The number of sites placed around each vertex can be bounded by the number of edges
as the number of sites placed is constant across each edge. Hence, the total number of
sites required in the given tessellation T will be O(n2.5).

6 Conclusion

We have introduced a new concept of Generalized Voronoi Diagram (GVI) of a given
tessellation, which was motivated from several engineering design problems of VLSI
and microfluidics. For a rectangular tessellation T we derive several interesting prop-
erties of GVI and proposed an algorithm that constructs a solution of minimal size for
T . Finding an optimum solution of a GVI problem for rectangular tessellation in poly-
nomial time seems to be a challenging problem. We have also studied the GVI problem
for the general case and suggested a method of constructing a feasible solution. Finding
a minimal solution of GVI problem for an arbitrary tessellation is posed as an open
problem.

Acknowledgement. A preliminary version of this paper appears in the proceedings
of the 9th International Symposium on Voronoi Diagrams in Science and Engineering
(ISVD), 2012.

References

1. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, V.J., Urrutia, G. (eds.) Handbook
of Computational Geometry, pp. 201–290. Elsevier Science Publishing (2000)

2. Ash, P., Bolker, E., Crapo, H., Whiteley, W.: Convex polyhedra, Dirichlet tessellations, and
spider webs. In: Senechal, M., Fleck, G. (eds.) Shaping Space: A Polyhedral Approach, ch.
17, pp. 231–250. Birkhauser, Basel (1988)

3. Balzer, M., Heck, D.: Capacity-constrained Voronoi diagrams in finite spaces. In: Proceed-
ings of the 4th International Symposium on Voronoi Diagrams in Science and Engineering,
pp. 44–56 (2008)

4. Balzer, M.: Capacity-constrained Voronoi diagrams in continuous spaces. In: Proceedings
of the 5th International Symposium on Voronoi Diagrams in Science and Engineering, pp.
79–88 (2009)

5. Gavrilova, M.L.: Generalized Voronoi Diagram: A Geometry-Based approach to computa-
tional intelligence. SCI, vol. 15 (2008)

6. Hartvigsen, D.: Recognizing Voronoi diagrams with linear programming. ORSA J. Com-
put. 4(4), 369–374 (1992)

7. Suzuki, A., Iri, M.: Approximation of a tessellation of the plane by a Voronoi diagram. J.
Oper. Res. Soc. Japan 29, 69–96 (1986)

8. Yuksek, K., Cezayirli, A.: Linking image zones to database by using inverse Voronoi dia-
grams: A Novel Liz-Ivd Method. In: IEEE International Symposium on Intelligent Control,
Saint Petersburg, Russia, July 8-10, pp. 423–427 (2009)

38 S. Banerjee et al.

9. Drezner, Z., Hamacher, H.W. (eds.): Facility location: applications and theory. Springer
(2002)

10. Hanan, M.: On Steiners problem with rectilinear distance. SIAM Journal Appl. Math 14,
255–265 (1966)

11. Goplen, B.: Advanced placement techniques for future VLSI circuits: A short term longitu-
dinal study, University of Minnesota (2006)

12. Tsai, C.H., Kang, S.M.: Cell-Level placement for improving substrate thermal distribution.
IEEE Trans. CAD 19(2), 253–266 (2000)

13. Chen, G., Sapatnekar, S.S.: Partition-driven standard cell thermal placement. In: Proceedings
of the International Symposium on Physical Design, pp. 75–80 (2003)

14. Chakrabarty, K., Xu, T.: Digital Microfluidic Biochips: Design and Optimization. CRC Press,
Boca Raton (2010)

15. Bishop, C.J.: Non obtuse triangulations of PSLGS (2010) (manuscript)
16. Hangan, T., Itoh, J., Zamfirescu, T.: Acute triangulations. Bull. Math. Soc. Sci. Math.

Roumanie 43, 279–286 (2000)
17. Yuan, L.: Acute triangulations of polygons. Discrete and Computational Geometry 34(4),

697–706 (2005)
18. Edelsbrunner, H.: Triangulations and meshes in computational geometry. Acta Numerica 9,

133–213 (2000)
19. Zamfirescu, C.T.: Survey of two-dimensional acute triangulations. Discrete Mathemat-

ics 313(1), 35–49 (2013)
20. Earten, H., Ungor, A.: Computing acute and non obtuse triangulations. In: Canadian Confer-

ence on Computational Geometry, Ottawa, Canada (2007)
21. Du, D.Z., Hwang, F.: Mesh generation and optimal triangulation. In: Bern, M., Eppstein, D.

(eds.) Computing in Euclidean Geometry, pp. 23–80. World Scientific (1995)
22. Wimer, S., Koren, I., Cederbaum, I.: Optimal aspect ratios of building blocks in VLSI. IEEE

Trans. CAD 8(2), 139–145 (1989)
23. Wang, T.C., Wong, D.F.: Optimal floorplan area optimization. IEEE Trans. CAD 11(8),

992–1002 (1992)
24. Majumder, S., Sur-Kolay, S., Nandy, S.C., Bhattacharya, B.B., Chakraborty, B.: Hot spots

and zones in a chip: A geometrician’s view. In: Poc. Int. Conf. VLSI Design, pp. 691–696
(2005)

25. Majumder, S., Bhattacharya, B.B.: Solving thermal problems of hot chips using Voronoi
diagrams. In: Poc. Int. Conf. VLSI Design, pp. 545–548 (2006)

Localizing the Delaunay Triangulation

and Its Parallel Implementation

Renjie Chen and Craig Gotsman

Technion - Israel Inistitute of Technology, Haifa, Israel
renjie.c@gmail.com

gotsman@cs.technion.ac.il

Abstract. We show how to localize the Delaunay triangulation of a
given planar point set, namely, bound the set of points which are possible
Delaunay neighbors of a given point. We then exploit this observation in
an algorithm for constructing the Delaunay triangulation (and its dual
Voronoi diagram) by computing the Delaunay neighbors (and Voronoi
cell) of each point independently. While this does not lead to the fastest
serial algorithm possible for Delaunay triangulation, it does lead to an
efficient parallelization strategy which achieves almost perfect speedups
on multicore machines.

Keywords: Delaunay triangulation, Voronoi diagram, parallel compu-
tation.

1 Introduction

The Delaunay triangulation (DT) of a set of planar point sites and its dual, the
Voronoi diagram (VD), are among the most fundamental structures in compu-
tational geometry. DT is the triangulation of the sites such that each triangle
satisfies the empty circumcircle property, i.e. its circumcircle contains none of
the other sites, thus, intuitively, the DT has the ”fattest” triangles among all
possible triangulations of the sites. The VD is a partition of the plane into (pos-
sibly unbounded) convex polygonal cells, one per site, such that the points inside
each cell are closer to the site corresponding to that cell than any other site. Due
to their many desirable properties, DT and VD are widely used in many fields
of science.

Because of the duality relationship between them, DT and VD can be con-
verted to each other in linear time. The classical algorithms for computing DT
and VD in O(n log n) time are Dwyer’s divide and conquer algorithm [1], For-
tune’s plane sweep algorithm [2], incremental construction [3] and variations
based on randomization [4], lifting to three dimensions and computing the con-
vex hull[5]. Su et al. [6] provide a thorough survey and comparison of these
algorithms.

Most of these serial algorithms achieve O(n log n) time complexity. When the
input is drawn from a uniform spatial distribution of sites, more efficient al-
gorithms are possible. Bentley et al. [7] first proposed a linear expected time

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XX, LNCS 8110, pp. 39–55, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

40 R. Chen and C. Gotsman

algorithm for the VD based on the idea of finding the Voronoi cell of each site
independently. Using a cell data structure and a spiral search [7, 8] technique,
the algorithm finds all other sites in the vicinity of the given site, and builds its
Voronoi cell from these. A rough estimate for the region that contains all the
possible neighboring Voronoi sites of each interior site is given. One of the tra-
ditional algorithms is used both for finding the VD of the periphery of the point
set, and also as a last resort for the rare cases where the algorithm fails on an
interior point. Using the same data structure, Maus [8] proposed another linear
expected time algorithm for the DT of sites drawn from a uniform distribution
by greedily finding all the Delaunay edges starting from an initial Delaunay edge
list. In addition to the sites, this algorithm requires the convex hull of the sites
as input, which serves as the initial Delaunay edge list.

Due to the increasing need to rapidly construct the DT in many applications
which may involve millions of points, there has been much research on computing
DT in parallel. Many of these [9–11, 3, 12–20] are based on the state-of-the-
art serial algorithms, such as divide and conquer and incremental construction.
They achieve parallelism by partitioning the set of sites into smaller subsets and
using parallel processing to construct the DT of each subset separately. The
separate triangulations are then combined by edge flipping where needed. These
algorithms make use of a ”master” processor which assigns tasks to ”slave”
processors, attempting to balance well the load between processors. Thus the
master becomes a bottleneck at some stage, and the algorithms do not scale well
with the number of processors. Furthermore, these algorithms do not fit well
into the current model of multi-core processors and general purpose graphics
processing units (GPU), in which no master process should be present.

In this paper, we present a new algorithm to construct the VD and DT.
This is achieved by running an incremental half-plane intersection method to
compute the Voronoi cell and Delaunay neighbors of each site independently. A
key Locality Lemma, which may be of independent interest, allows us to limit
the candidate set of the Delaunay neighbors to be considered for each site, thus
we drastically reduce the O(n2 logn) time complexity of the näıve half-plane
intersection algorithm [21]. For sets of uniformly distributed sites, the complexity
is O(1) per site. The algorithm is extremely simple and easy to implement.
Although this does not result in a serial algorithm which is any faster than
state-of-the-art serial algorithms, it does, as opposed to other algorithms, lend
itself to easy and efficient parallelization. With an extra (quite straightforward)
optimization as described in Section 6, the resulting parallel implementation
achieves almost perfect speedups.

2 Related Work

Serial algorithms for computing the VD and the dual DT are well known, so
we will not survey them here. Instead, we will concentrate on the lesser-known
parallel algorithms.

Rong et al. [22] proposed a parallel algorithm to compute the DT using the
GPU and CPU in tandem. With the GPU they compute the DT of a modified

Localizing the Delaunay Triangulation and Its Parallel Implementation 41

point set constructed by snapping each original input point to the nearest grid
point (”pixel”). After computing the DT of the grid point set using the GPU,
they move each point back to its original coordinates and repair the triangula-
tion by edge flipping where necessary. Because of its inherent serial nature, the
edge flip step is done on the CPU, thereby making the complete algorithm only
partially parallel, with limited speedup over serial algorithms. Very recently, Qi
et al. [23] improved this algorithm by implementing also the edge flipping on
the GPU, thus making the entire algorithm GPU-based. They also extend the
algorithm to a constrained DT.

It is well known that the DT contains the nearest neighbor graph as a sub-
graph. Maus and Drange [24] generalized this property to the k nearest neigh-
bors, namely, they prove that for any point x in the point set X with k nearest
neighbors {b1, b2 . . . bk} (bi are sorted by their distances to x), the j’th closest
neighbor bj is a neighbor of x in the DT ofX if it is not contained in any of circles
having the segment xbi, {i = 1, 2, . . . j−1} as its diameter. Based on this and the
nearest neighbor graph property, they presented two algorithms for construct-
ing the DT in parallel. With the nearest neighbor graph and k-nearest neighbor
graph as starting points, they use an incremental algorithm [8] and constrained
DT algorithm to find the Delaunay neighbors of each point independently in
the two algorithms respectively. However in both algorithms, a serial algorithm
is employed to compute the convex hull of the point set, which is necessary for
their algorithm to construct the DT, therefore making these algorithms also only
partially parallel.

Very recently, Reem [25] adapted his ray-shooting-based parallel algorithm
for computing the approximate VD in general settings [26] (general sites, and
general normed space) to compute the exact VD by carefully utilizing the in-
formation along the rays. A formal proof is given to show that the algorithm
will always terminate with the correct result within a finite number of steps. Ex-
perimental results show that this algorithm, equipped with appropriate spatial
data structures for the sites, achieves almost linear expected time complexity for
uniform distributions. However, since the VD is clipped to a rectangular domain,
an important component of the DT - the convex hull of the point set - will be
incomplete when transforming the VD into a DT.

Shewchuk [27] proposed the Star Splaying algorithm for transforming a tri-
angulation which is nearly DT into a DT. The algorithm seeks to adjust the
stars, the candidate Delaunay one-rings of all the vertices, so that they agree
with each other and therefore form a DT. Star Splaying is akin to the Delau-
nay edge flip algorithm, and it requires (near DT) connectivity in addition to
the point set as input. In this paper, we propose an algorithm which also seeks
to find the Delaunay one-rings for all the vertices. However, it does not check
the relation between different Delaunay one-rings, rather computes the Delau-
nay one-rings of the vertices independently of each other, making it inherently
parallelizable.

42 R. Chen and C. Gotsman

3 Localizing the Delaunay Triangulation

First some terminology.
Delaunay edge: an edge xy is a Delaunay edge if it is contained in the DT.
Delaunay neighbor: a vertex x is a Delaunay neighbor of y if xy is a De-

launay edge.
Delaunay one-ring: the Delaunay one-ring of a vertex x is the set of all

Delaunay neighbors of x.
Voronoi vertex: a vertex of a Voronoi cell boundary
Half-plane: the half-plane between two points c and v is the bisector of the

points.
The terms point, vertex and site are interchangeable through the paper.
In this section, we present a key Lemma, illustrated in Fig. 1, that leads to

the main algorithm of this paper. In general, Delaunay edges are short, because
they connect a site to other sites in close proximity. However, there is no strict
upper bound on the length of Delaunay edges, and in some extreme cases, edges
can span the entire point set. Furthermore, there is no easy rule of thumb that
can predict which sites exactly will be the Delaunay neighbors of a given site.
Thus, there is value in a rule which localizes the Delaunay triangulation, namely,
strictly bounds the set of possible Delaunay neighbors of a given site.

Lemma. Local Delaunay Lemma. Let X be a set of points in the plane. If the
ordered subset P = {p1, p2, . . . , pn} ⊆ X forms a simple polygon containing
c ∈ X , then the Delaunay neighbors of c are contained in the union of the
circumcircles of the n triangles formed by c and every two consecutive points of
P (irrespective of the triangle orientation).

Proof. Let CC = ∪icci, where cci is the circumcircle of ∠cpipi+1.
For any point v ∈ CC, since P is closed and contains c, v must be contained

in some (at least one) closed sector defined by c and an edge on P , say pipi+1.
The sector is defined as the unbounded region inside the angle ∠picpi+1, and a
closed sector includes the two defining rays, cpi and cpi, as shown in Fig. 2

Assume cv is a Delaunay edge. This implies that there exists a circle through
c and v which does not contain any other point of X , including pi and pi+1 [28].
Obviously, cv cannot be at the boundary of the sector, as this would imply that
either pi or pi+1 is inside this circle. Therefore pi and pi+1 are on opposite sides
of the chord cv that divides this circle into two arcs, as shown in Fig. 2. So, on
the one hand, for any point v1 on the arc which is on the same side of cv as pi,
we have ∠cv1v ≥ ∠cpiv. Similarly for any point v2 on the complementary arc,
we have ∠cv2v ≥ ∠cpi+1v. Therefore

∠cv1v + ∠cv2v ≥ ∠cpiv + ∠cpi+1v

Since v is outside the circumcircle of Δcpipi+1, we have

∠cpi+1v + ∠cpiv > π

Localizing the Delaunay Triangulation and Its Parallel Implementation 43

Fig. 1. The Local Delaunay Lemma. Only the black sites, inside or on the dashed
circumcircles, can be the Delaunay neighbors of the site c.

Fig. 2. Proof of the Local Delaunay Lemma

which leads to
∠cv1v + ∠cv2v ≥ ∠cpiv + ∠cpi+1v > π

On the other hand, since v1 and v2 are on the two complementary arcs of the
chord cv:

∠cv1v + ∠cv2v = π

which is a contradiction. Thus cv cannot be a Delaunay edge. ��

Note that by including the point at infinity, the Local Delaunay lemma can
be generalized to the case that the polygon P is unbounded, as is the case for

44 R. Chen and C. Gotsman

points on the convex hull. Consider the ”closed” polygon P ∪∞, any point inside
the unbounded sector of P falls inside either or both of the circumcircles of the
two infinite triangles, which are essentially two halfspaces.

We also note an important special case of the Local Delaunay Lemma. If P is
exactly the set of Delaunay neighbors of c, then the union of the circumcircles
will contain no other points, as expected. The Local Delaunay Lemma allows us
to significantly limit the number of points we need to consider when searching
for the Delaunay neighbors of a point x. Indeed, none of the points outside the
union of the circumcircles of triangles incident to c can be a Delaunay neighbor
of c. Therefore it suffices to consider only the points inside this union.

4 Delaunay Triangulation

Based on the Local Delaunay Lemma, we now outline an algorithm for computing
the Delaunay neighbors (and Voronoi cell) of a given point c.

Algorithm 1. LocDT (c)

1 Find a (simple) polygon P0 = {p1, p2, . . . , pk}, containing c
2 Initialize c’s candidate Delaunay one-ring: P = P0

3 Initialize c’s candidate Voronoi cell: Q = {q1, q2, . . . , qk}, where qi is the
circumcenter of Δcpipi+1

4 Construct the list of Delaunay neighbor candidates
V = {x ∈ X : ∃i, ‖x− qi‖ < ‖c− qi‖}

5 foreach v ∈ V do
6 Compute the half-plane Hv defined by the bisector of v and c, containing c
7 Q← Hv ∩Q
8 Update P , based on Q (See Algorithm 2)

9 end

Tofind the completeDTof a point setX , Algorithm1 is run for eachpoint c inX .
The core of the algorithm is half-plane intersection in the loop described

in Steps 5-9. Note that the candidate Voronoi cell changes (actually, shrinks)
between iterations, therefore the halfspace corresponding to a vertex in V may
not intersect it, thus not change it. This can be checked by inspecting whether
the candidate vertex v is inside any of the circumcircles defined by the current P
(or, equivalently, the current Q). Actually, for each candidate v, we can find the
sector picpi+1 that v resides in, then by comparing the distance ‖qi − v‖ with
the distance ‖qi− c‖, we can tell if v is inside the current union of circumcircles.
Since the vertices in P are ordered (CCW), we can find the sector containing v
in O(log d) time, where d is the length of P . The intersection with half-plane Hv

is now done easily, since, starting from the sector, we can find the two edges on
Q that Hv intersects in constant time, as shown in Fig. 3. Then we can simply
keep the vertices of Q that are closer to c than v is, and replace the other vertices
of Q with the centers of the new circumcircles.

Localizing the Delaunay Triangulation and Its Parallel Implementation 45

Before After

Fig. 3. Intersecting the (solid gray) candidate Voronoi cell of c with (dash dot) half-
plane Hv associated with the candidate v. After the intersection, the previous (solid
black) circumcircle is replaced with two new (solid black) circumcircles, and v is added
to the (solid black) candidate Delaunay one-ring of c. The relevant sector is shaded in
gray.

Some of the initial triangles incident to c could be very skinny and have large
circumcircles, which results in the list of Delaunay candidates V constructed in
Steps 1-4 containing many points. Since the Local Delaunay Lemma holds for
any polygon containing c, we can optimize the routine by implementing the loop
of Algorithm 1 in an incremental manner. Starting from the initial candidate
Delaunay polygon P , in each iteration we deal with one of its edges, pipi+1. We
check whether the circumcircle of the corresponding triangle Δcpipi+1 contains
a point. Only if it does do we run the half-plane intersection routine and update
P and Q. Algorithms 2 shows the pseudo-code for the incremental update of P
and Q.

In Algorithm 2, m+ 1 and j − 1 are computed modulus length(P).
For the algorithm to have good performance, we need a data structure that

supports efficient disk range queries on a set of points. We use the standard
cell/bucket data structure proposed by Bentley et al. [7] and Maus [8]: the do-
main, the bounding box of the point set, is partitioned into boxes of the same
size, and an index array is used to store the indices of the points inside each
box. The points inside each box can be retrieved in constant time, and the index
of the box containing any point can also be computed in constant time. For
point sets containing n points, we partition the domain into

√
n × √

n boxes.
Then each box contains a single point on the average, and we found that for
uniformly-distributed point sets it takes less than 10 half-plane intersections to
find the exact Voronoi polygon and Delaunay one-ring. To make the following
operations simpler, we scale the (square) domain to be the unit square.

46 R. Chen and C. Gotsman

Algorithm 2. LocDT (c, P,Q)

1 i = 1
2 while i ≤ length(P) do
3 V = {x ∈ X : ‖x− qi‖ < ‖c− qi‖}
4 if V is empty then
5 i++
6 else

// half-plane intersection

7 v = any vertex in V
8 j = index of first vertex of Q inside Hv

9 m = index of last vertex of Q inside Hv

10 o1 = circumcenter(pm+1, v, c)
11 o2 = circumcenter(v, pj−1, c)
12 Q = {q1, . . . qm, o1, o2, qj−1, . . . qend}
13 P = {p1, . . . pm+1, v, pj−1, . . . pend}
14 i = m+ 1

15 end

16 end

It remains to provide the details of Steps 1-3 in Algorithm 1, i.e. building
an initial candidate Delaunay polygon P0 and candidate Voronoi cell Q0 for c.
Obviously, we would like Q0 to be as tight as possible. Also, these steps should
be as fast as possible.

We use the ”spiral” search technique to find a fixed number, say 6, of non-
empty cells around c, and then sort all the points inside these cells in CCW
order around c to obtain the initial polygon P0. The dark dashed gray spiral in
Fig. 4 shows the procedure of the ”spiral” search. However in some cases, this
initial polygon will not contain c. Worse still, when c is on the convex hull of the
point set, there exists no polygon containing it at all. Luckily, as mentioned in
the previous section, we can always include the infinite point into P0, and make
it ”closed”.

The initial candidate Voronoi cell Q0 can be constructed as the ”dual” of the
site c by taking the i’th vertex of Q0 to be the circumcenter of Δcpipi+1 (the
circumcenter of infinite triangle is the infinite point). Unfortunately, this does
not always result in a simple polygon, as the triangulation inside the polygon
P0 is not always Delaunay itself. This will interfere with the later half-plane
intersecting procedure, since the initial candidate Voronoi cell must be valid
(simple and convex) for it to be correct. Thus we must prune the polygon
P0 in order to make Q0 valid. Obviously, this can be achieved by intersec-
tion of all the half-planes defined by c and all the vertices of P0. To sim-
ply this process, we first construct P0 to be the square formed by 4 virtual
points, {(−1/2,−1/2), (3/2,−1/2), (3/2, 3/2), (−1/2, 3/2)}, outside the domain
(the unit square), and take the candidate Voronoi cell Q0. to be the dual of P0.
Then for each vertex of P0 (without the infinite point), we run the same half-
plane intersection routine as in Step 5-9 of Algorithm 1, to update P and Q.

Localizing the Delaunay Triangulation and Its Parallel Implementation 47

Fig. 4. (Solid black) Candidate Delaunay one-ring polygon P and corresponding (solid
gray) dual candidate Voronoi cell Q constructed from the points inside the cells inside
the dotted gray rectangles. The solid black quadrilateral is the initial candidate Delau-
nay polygon formed by 4 virtual ”infinite” points. The right portion shows a candidate
Delaunay one-ring containing one virtual ”infinite” point. Circumcircles involving the
”infinite” point are actually (dotted black) half-planes.

After this step, we will usually be left with a very tight containing polygon
P . This will rule out the majority of the point set from the Delaunay neighbor
candidate list V , In fact, quite a few of the circumcircles are already empty, as
shown in Fig. 4, therefore the core of Algorithm 1, Steps 5-9, needs to process
only a very small number of candidate neighbors.

Thanks to the introduction of virtual (infinite) points, we do not need to take
special care of the points on the convex hull. However, note that the circumcircles
of the triangles containing the virtual points are actually halfspaces, therefore the
Delaunay neighbor candidates list V should be constructed slightly differently.
The point-in-circumcircle test in Algorithm 1 should also be replaced with a
point-in-halfplane test.

The top row of Fig. 6 shows the evolution of P and Q in a typical scenario.
Note that our algorithm does not take degenerate cases into account. When

such situations exist in the given point set, i.e. more than 3 points form an empty
circle, then the Delaunay one-rings of these points, as found by our algorithm,
may not agree with each other, rendering the complete DT invalid. In such cases,

48 R. Chen and C. Gotsman

we can slightly modify the algorithm by perturbing each point randomly so that
the degeneracy disappears while the DT is preserved.

5 Parallel Delaunay Triangulation

The Delaunay triangulation algorithm can be parallelized in a straightforward
manner. In fact, since the same procedure is applied to each point, and the
processing of each point is independent of the others, we can simply parallelize
the loop applying Algorithm 1 to all input points. Before running the main
algorithm, we need to partition the point set into uniform cells/buckets and
build the data structure. Due to its regularity and simplicity, this can also be
parallelized using standard thread synchronization techniques, such as atomic
operations. In any case, this preprocessing accounts for less than 0.1% of the
serial processing time.

5.1 Avoiding Redundancy

Each Delaunay triangle features in each of the three Delaunay one-rings of its
vertices, therefore simply applying Algorithm 1 to each point independently will
compute each Delaunay triangle three times. A similar analysis reveals that each
Delaunay edge will be computed four times. When running the serial version of
the algorithm, some of this can be saved in an obvious manner by updating
the Delaunay neighbor information for each pi after finding P - the Delaunay
one-ring of c - and then skipping the Delaunay neighbors already found when
applying Algorithm 1 on pi. Alas, it is difficult to apply this simple strategy
when running the algorithm in parallel, as this requires too much coordination
between processors when updating the Delaunay neighbor information.

Fortunately, it is still possible to reduce the redundant computation also in the
parallel case. Since a triangle is always intersected by one of the three vertical
lines through its vertices, we can construct the entire DT by computing only the
two Delaunay triangles that intersect the vertical line through each point. As shown
in Fig. 5, only the two gray Delaunay triangles need to be found for point c. To
implement this optimization, we modify Algorithm 1 and 2 accordingly. In Algo-
rithm 1, we build the initial candidate Delaunay one-ring using only four points
(including virtual points if necessary); one in each of c’s four quadrants. In Algo-
rithm 2 we process only the two edges of the Delaunay polygon which intersect
the vertical through c. The bottom row of Fig. 6 shows the evolution of P and
Q in this optimized version of the DT algorithm, which may be compared to the
evolution in the serial version of the algorithm in the top row of that figure.

5.2 Load Balancing

To achieve the best performance of a parallel algorithm, it is important to balance
the workload of the parallel tasks, since the overall performance is determined
by the slowest processor. However, Algorithm 1 performs quite differently for

Localizing the Delaunay Triangulation and Its Parallel Implementation 49

Fig. 5. Reducing the DT computation by computing only the two Delaunay triangles
incident on c that intersect the dashed black vertical through c

Fig. 6. Evolution of the (solid black) Delaunay one-ring P and (solid gray) Voronoi cell
Q as Algorithms 1 and 2 are running. (Top) Serial version. (Bottom) Parallel version
optimized to eliminate redundancy.

interior points and for boundary points, even in a uniformly distributed point
set. For most interior points, Algorithm 1 has constant time complexity w.r.t.
n, the size of the point set, while for points on the convex hull and some interior
points nearby, the time complexity is O(

√
n). This is because the Delaunay

polygon P contains the infinite point, which indicates that the circumcircle of
some triangle is a half-space, meaning that O(

√
n) cells of points must now be

checked. So although the serial version of the algorithm treated all points equally,
the parallel version must be wary of points on the convex hull.

50 R. Chen and C. Gotsman

Since it is difficult to tell apriori which points are on the convex hull, we
adopt a strategy which disguises these points as interior points. This is done by
using a periodic DT [29], which is the DT of a point set which is replicated in
tiles over the plane. Thus each point in the periodic DT may be considered as
an interior point and the time complexity of Algorithm 1 will then always be
constant. Based on this, we may adjust Step 1 and 4 in Algorithm 1 by replacing
the virtual (infinite) points with replicas of c in different periods and build the
Delaunay neighbor candidate list in periodic space. Fig 7. shows an example of
a periodic DT.

Fig. 7. Transforming a periodic DT to a regular DT. The solid gray square marks
the original domain of the input point set and the dashed black polygon its convex
hull. Four periods are shown. The solid black polygon marks the boundary of the
DT after removing all triangles of the periodic DT crossing the original (solid gray)
domain boundary. Only the region between it and the (dashed black) convex hull,
which consists of the union of simple polygons, such as the gray shaded polygon, need
to be triangulated.

Localizing the Delaunay Triangulation and Its Parallel Implementation 51

It remains to describe a method to transform a periodic DT into a regular DT
in linear time. First we remove the triangles crossing the boundary of the domain
in the periodic DT, and find the resulting triangulation boundary vertices by
checking whether their Delaunay one-ring is closed. Since no new triangles are
introduced, all the existing triangles stay Delaunay, and we need only to find the
Delaunay edges between the triangulation boundary and the convex hull. The
latter can be traced from the boundary vertices in time linear in the number of
boundary vertices [30]. Then, as shown in Fig. 7, the region between the (solid
gray) boundary and the (dashed black) convex hull is the union of simple closed
polygons, which may be identified by ”walking” along the boundary. A simplified
version of our Algorithm 1 may be used to triangulate these polygons by running
on their vertices in parallel. For each vertex c on any of these simple polygons
G, we replace c ∈ G with the infinite point, to obtain the initial candidate
Delaunay one-ring P , and construct the Delaunay neighbor candidate list V as
all the vertices of P .

6 Experimental Results

In this section, we demonstrate the efficiency of our DT algorithm, both serial
and parallel, for point sets drawn from a uniform distribution, and analyze the
complexity of the algorithm. Our experiments were run on a PC with an Intel
i7-i2720QM @ 2.2 GHz 4-core CPU and 8GB RAM.

For a uniformly distributed point set, the algorithm takes constant average
time to compute the Voronoi cell and the Delaunay one-ring for most interior
points and O(

√
n) for each point on the convex hull and a very few points near

the convex hull. Since the number of points on the convex hull is O(log n) on
the average [31], the overall time complexity of the algorithm is O((n− logn) +√
n logn) = O(n). Our serial implementation confirms this. As for the space

complexity, our algorithm needs to build and use the cell/bucket data structure,
which takes O(n) space. As discussed in Section 5, we only need to output two
triangles for each vertices, therefore we need O(n) space to store the results. For
each parallel thread, we need to maintain both the candidate Delaunay one-ring
polygon and the candidate dual Voronoi cell for current vertex. Let the largest
valence of the DT be k and the number of parallel threads be p, then the overall
space complexity is O(n) +O(n) +O(kp) = O(n+ kp).

Fig. 8 shows the runtime of our DT algorithm with 1 to 4 CPU cores in
comparison with Qhull [32], CGAL[33] and Triangle [34] - the best (and most
popular) serial algorithms that we are aware of - and GPU-DT [23], for uniformly
distributed point sets of different sizes (between 105 and 106 points). Triangle
and CGAL have similar performance, and the serial implementation of our DT
algorithm is approximately 2− 2.5 times slower.

The DT algorithm was parallelized on a multi-core CPU using OpenMP [35].
The atomic directive is used to build the cell data structure in parallel. Only
the point set and corresponding spatial data structure are shared among all the
threads. Fig 8. shows that the parallel DT gives an almost perfect speedup over

52 R. Chen and C. Gotsman

1.024 2.048 3.072 4.096 5.12 6.144 7.168 8.192 9.216 10.24

x 10
5

1

2

3

4

5

6

7

Number of points

Se
co

nd
s

Triangle
CGAL
Qhull
GPU−DT
CPU with 1 core
CPU with 2 cores
CPU with 3 cores
CPU with 4 cores

Fig. 8. Runtime of parallel DT with different configurations compared to Qhull[32],
CGAL[33] and Triangle[34] - the state-of-the-art serial algorithms, and GPU-DT [23]

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Number of CPU Cores

Sp
ee

d
up

Uniform 10M points
Uniform 1M points
Uniform 100K points
Uniform 10K points
Leaf
Gradient
Ring

Fig. 9. Speedup of parallel DT using multi-core CPU

the serial version, thus our parallel implementation on 3 cores and above outper-
forms Triangle and CGAL, and the same implementation on 4 cores outperforms
GPU-DT. Fig. 9 shows the speedup using different numbers of CPU cores for
different point sets. This particular experiment was run on a Linux server con-
taining two Intel Xeon E5420@2.5 GHz 4-core CPUs with 32GB RAM. As can
be seen, our parallel implementation gives an almost perfect speedup over the
serial version for point sets under either uniform or non-uniform distribution.

Localizing the Delaunay Triangulation and Its Parallel Implementation 53

Our algorithm is designed primarily for uniformly distributed point sets. Al-
though it can also be used for non-uniform distributions, its performance will
not be as good. Table 1 shows the timing of the algorithm run on some point sets
having irregular distributions. For point sets having ”reasonable” distributions,
such as the Gradient and Leaf examples, our algorithm still achieves reason-
able performance. However for point sets having extreme distributions, such as
the Ring example, our algorithm performs poorly. The reason is that most cells
in the underlying grids are either empty or very dense, causing the Delaunay
neighbor candidate sets V constructed in Algorithm 1 to be either very large or
empty. This significantly damages the load balance, increasing the complexity
of Algorithm 1.

Table 1. Runtime (sec) of parallel DT on non-uniform point sets

Point set Ring Gradient Leaf

(51, 200 points)

Parallel DT 0.516 0.036 0.048
on 4 cores
CGAL[33] 0.091 0.089 0.091
Triangle[34] 0.055 0.055 0.057

7 Conclusion

We have presented a Local Delaunay lemma which allows to localize the Delau-
nay triangulation, namely, bound the points in a set which may be Delaunay
neighbors of a given point. This localization may be used to design an algorithm
to construct the Delaunay triangulation and Voronoi diagram, which may easily
be parallelized, since the Delaunay neighbors of any point may be found indepen-
dently and relatively quickly by process of elimination. Our experiments show
that speedup is linear in the number of processors, which means that Delaunay
triangulations may be computed arbitrarily quickly by adding computing power.

Future work includes implementation on modern graphic hardware (GPU), ex-
tending the algorithm to 3D space, optimizations for point sets with non-uniform
distributions and generalization to power diagrams and regular triangulations.

Acknowledgment. This research project was financially supported by the
state of Lower-Saxony and the Volkswagen Foundation, Hannover, Germany. R.
Chen is partially supported by the Ali Kaufmann postdoctoral fellowship at the
Technion.

54 R. Chen and C. Gotsman

References

1. Dwyer, R.: A faster divide-and-conquer algorithm for constructing Delaunay tri-
angulations. Algorithmica 2, 137–151 (1987)

2. Fortune, S.: A sweepline algorithm for Voronoi diagrams. In: SCG 1986, pp. 313–322.
ACM, NY (1986)

3. Green, P.J., Sibson, R.: Computing Dirichlet tessellations in the plane. The Com-
puter Journal 21(2), 168–173 (1978)

4. Guibas, L., Knuth, D., Sharir, M.: Randomized incremental construction of Delau-
nay and Voronoi diagrams. Algorithmica 7, 381–413 (1992)

5. Barber, C.B.: Computational geometry with imprecise data and arithmetic. PhD
thesis, Princeton (1993)

6. Su, P., Scot Drysdale, R.L.: A comparison of sequential Delaunay triangulation
algorithms. Comput. Geom. Theory Appl. 7, 361–385 (1997)

7. Bentley, J.L., Weide, B.W., Yao, A.C.: Optimal expected-time algorithms for clos-
est point problems. ACM Trans. Math. Softw. 6(4), 563–580 (1980)

8. Maus, A.: Delaunay triangulation and the convex hull of n points in expected linear
time. BIT Numerical Mathematics 24, 151–163 (1984)

9. Cignoni, P., Montani, C., Perego, R., Scopigno, R.: Parallel 3D Delaunay triangu-
lation. Computer Graphics Forum 12(3), 129–142 (1993)

10. Blelloch, G., Miller, G.L., Talmor, D.: Developing a practical projection-based
parallel Delaunay algorithm. In: SoCG 1996, pp. 186–195. ACM (May 1996)

11. Lee, S., Park, C.I., Park, C.M.: An efficient parallel algorithm for Delaunay trian-
gulation on distributed memory parallel computers. In: PDPTA 1996, pp. 169–177.
CSREA Press (1996)

12. Amato, N.M., Goodrich, M.T., Ramos, E.A.: Parallel algorithms for higher-
dimensional convex hulls. In: FOCS, pp. 683–694. IEEE Computer Society (1994)

13. Blelloch, G.E., Hardwick, J.C., Miller, G.L., Talmor, D.: Design and implemen-
tation of a practical parallel Delaunay algorithm. Algorithmica 24(3-4), 243–269
(1999)

14. Dadoun, N., Kirkpatrick, D.G.: Parallel construction of subdivision hierarchies. J.
Comput. Syst. Sci. 39(2), 153–165 (1989)

15. Meyerhenke, H.: Constructing higher-order Voronoi diagrams in parallel. In: Eu-
roCG, Technische Universiteit Eindhoven, pp. 123–126 (2005)

16. Reif, J.H., Sen, S.: Optimal parallel randomized algorithms for three-dimensional
convex hulls and related problems. SIAM J. Comput. 21(3), 466–485 (1992)

17. Schwarzkopf, O.: Parallel computation of discrete Voronoi diagrams. In: Cori, R.,
Monien, B. (eds.) STACS 1989. LNCS, vol. 349, pp. 193–204. Springer, Heidelberg
(1989)

18. Spielman, D.A., Teng, S.H., Üngör, A.: Parallel Delaunay refinement: Algorithms
and analyses. Int. J. Comput. Geometry Appl. 17(1), 1–30 (2007)

19. Trefftz, C., Szakas, J.: Parallel algorithms to find the Voronoi diagram and the
order-k Voronoi diagram. In: IPDPS 2003, p. 270a. IEEE Computer Society, DC,
USA (2003)

20. Vemuri, B.C., Varadarajan, R., Mayya, N.: An efficient expected time parallel
algorithm for Voronoi construction. In: SPAA, pp. 392–401 (1992)

21. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial tessellations: Concepts and
applications of Voronoi diagrams. Wiley (2000)

22. Rong, G., Tan, T.S., Cao, T.T., Stephanus: Computing two-dimensional Delaunay
triangulation using graphics hardware. In: I3D 2008, pp. 89–97. ACM, NY (2008)

Localizing the Delaunay Triangulation and Its Parallel Implementation 55

23. Qi, M., Cao, T.T., Tan, T.S.: Computing 2D constrained Delaunay triangulation
using the gpu. In: I3D 2012, pp. 39–46. ACM, NY (2012)

24. Maus, A., Drange, J.M.: All closest neighbors are proper Delaunay edges gener-
alized, and its application to parallel algorithms. In: Proceedings of Norwegian
Informatikkonferanse (2010)

25. Reem, D.: On the possibility of simple parallel computing of Voronoi diagrams and
Delaunay graphs (preprint)

26. Reem, D.: An algorithm for computing Voronoi diagrams of general generators in
general normed spaces. In: ISVD 2009, pp. 144–152. IEEE Computer Society, DC,
USA (2009)

27. Shewchuk, J.R.: Star splaying: an algorithm for repairing Delaunay triangulations
and convex hulls. In: SCG 2005, pp. 237–246. ACM, NY (2005)

28. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications. Springer (2008)

29. Caroli, M., Teillaud, M.: On the computation of 3D periodic triangulations. In:
SCG 2008, pp. 222–223. ACM, NY (2008)

30. McCallum, D., Avis, D.: A linear algorithm for finding the convex hull of a simple
polygon. Inf. Process. Lett. 9(5), 201–206 (1979)

31. Har-Peled, S.: On the expected complexity of random convex hulls. ArXiv e-prints
(November 2011)

32. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex
hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)

33. : Cgal, Computational Geometry Algorithms Library
34. Shewchuk, J.R.: Triangle: Engineering a 2D quality mesh generator and Delaunay

triangulator. In: Lin, M.C., Manocha, D. (eds.) FCRC-WS 1996 and WACG 1996.
LNCS, vol. 1148, pp. 203–222. Springer, Heidelberg (1996)

35. OPENMP ARB: OpenMP API Specifications for Parallel Programming (2011)

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XX, LNCS 8110, pp. 56–71, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Decomposition of a Protein Solution into Voronoi Shells
and Delaunay Layers: Calculation of the Volumetric

Properties

Alexandra V. Kim1, Vladimir P. Voloshin1, Nikolai N. Medvedev1,2, and Alfons Geiger3

1 Institute of Chemical Kinetics and Combustion, SB RAS, 630090 Novosibirsk, Russia
{nikmed,kim}@kinetics.nsc.ru

2 Novosibirsk State University, Novosibirsk, Russia
3 Physikalische Chemie, Technische Universität Dortmund, 44221 Dortmund, Germany

alfons.geiger@udo.edu

Abstract. A simple formalism is proposed for a quantitative analysis of intera-
tomic voids inside and outside a solute molecule in solution. It can be applied
for the interpretation of volumetric data, obtained in studies of protein folding
and unfolding in water. In particular, it helps to divide the partial molar volume
of the solute into several components. The method is based on the Voronoi-
Delaunay tessellation of molecular-dynamic models of solutions. It is suggested
to select successive Voronoi shells, starting from the interface between the so-
lute molecule and the solvent, and continuing to the outside (into the solvent) as
well as into the inner of the molecule. Similarly, successive Delaunay layers,
consisting of Delaunay simplexes, can also be constructed. Geometrical proper-
ties of the selected shells and layers are discussed. The temperature behavior of
inner, boundary and outer shells is discussed by the example of a molecular-
dynamic model of an aqueous solution of the polypeptide hIAPP.

Keywords: Voronoi diagram, solvation shell, molecular dynamics of solutions,
Voronoi cells, Delaunay simplexes, partial molar volume.

1 Introduction

The volumetric properties of proteins in aqueous solution are most important for the
understanding of their thermodynamic and structural behavior [1]. In particular, they
help to understand the mechanism of protein folding in water at different temperatures
and pressures. The influence of temperature and pressure induces changes of the vo-
ids, both inside the solute molecule, at its boundary, and also in the surrounding
water. The knowledge of these contributions to the volume of the solution helps to
validate propositions about the occurring conformational changes. However, using
only experimental data, it is very difficult to separate these contributions.

Computer simulations help to solve this problem. Models of the solutions are gen-
erated usually by molecular dynamic simulations, see for example Ref. 2. The next
step is the analysis of the models: detection and characterization of interatomic voids
and local densities.

 Decomposition of a Protein Solution into Voronoi Shells and Delaunay Layers 57

There are very different approaches used for the analysis of voids in atomic and
molecular systems. Some of them were developed for the investigation of the empty
space between the atoms in liquids and glasses [3-6], granular matters and colloids
[7,8], polymers and membranes [9,11]. Others are specialized to study cavities and
pockets in large biological molecules [12-13]. Solvation shells [15,16] and the boun-
dary region between proteins are also studied [17,18]. Consecutive shells, consisting
of Voronoi cells, were used for the analysis of the density of hydration shells around
polypeptides in Ref. 19. However, we are not aware of articles, where the voids both
inside and in the surroundings of a solute molecule were analyzed. Such investiga-
tions should be made by a single-stage method for all regions of the solution. Fortu-
nately, there is no necessity to develop a new method for such a work. At present,
there is no doubt, that the most suitable and general method for the selection and
analysis of voids and the local density in molecular system is an approach, which is
based on Voronoi diagrams (the Voronoi-Delaunay method) [20,21].

In this work, we present a simple technique for the decomposition of the Voronoi-
Delaunay tessellation of a solution into shells (layers) related with the solute. It allows
to characterize voids (local density) both inside, at the boundary, and outside the
solute molecule.

2 Voronoi-Delaunay Tessellation of a Solution

Fig.1 shows a two-dimensional illustration of a solution model and its Voronoi-
Delaunay tessellation. Note, the size of the atoms should be taken into account, if one
studies interatomic voids [3,22,23]. This means that the Voronoi tessellation should
be calculated, allowing for the surface of the atoms. Thus we should deal with
 S-tessellation [24,25] (additively weighted [20]), instead of the ordinary Voronoi
tessellation (related with the atomic centers). In this case we make a more physical
assignment of the empty space to a given atom, i.e. we include all points of space,
which are closer to the surface of a given atom, than to the surfaces of all other atoms
of the system. A simpler variant, which considers the atomic surfaces, is the well-
known power or radical tessellation [20,23,26]. In this case the assignment of the
empty space to individual atoms is not quite physical, but it is easier to implement.
The known complexities of the S-tessellation (theoretically possible disconnectedness
of the tessellation and overlapping of Delaunay simplexes in some cases [21,25,27])
are not important for our molecular systems, where the size difference of the atoms is
rather small (usually less than a factor of 2). In addition, these peculiarities of the S-
tessellation can be easily taken in to account at the calculation of the tessellation. In
this work we use S-tessellation, however using radical, one obtains the same physical
results [19].

The molecules of the solvent (usually water molecules) are considered as uniform
spheres, as it is usually done in structure analyses of computer models of water and water
solutions. Note, the specific features of the interaction between water molecules (hydro-
gen bonds) are taken into account only in the stage of the molecular dynamics simulation,
when they are essential to create a realistic model, but not in the geometrical analysis.

58 A.V. Kim et al.

Fig. 1. Left: 2D illustration of a solution. Atoms of the solute molecule are shown by dark
disks. Atoms of the solvent are pink (light). Right: Voronoi-Delaunay tessellation of the model.
Thin (black) lines show Voronoi cells, thick (red) lines show Delaunay simplexes.

The Voronoi-Delaunay tessellation is calculated for every configuration of the stu-
died model. All atoms (both of the solute and solvent) are treated as a single, non-
subdivided system in this stage. The calculation of the tessellation is straightforward
now. Algorithms for the calculation of the S-tessellation were described in the litera-
ture, see e.g. [25]. Programs for the calculation of the power tessellation (as for ordi-
nary Voronoi-Delaunay tessellations) are available in standard geometrical libraries.

For the processing of the tessellation, it is convenient to use the Delaunay network.
The sites of this network are the atoms of the system, and the bonds connect adjacent
atoms. Remember, adjacency on the Delaunay network means, that the Voronoi cells
of a given pair of atoms have a common face, Fig.1. For the following applications it
is convenient to establish, which atoms determine the vertexes of the Delaunay sim-
plexes. In this stage of the work, we will differentiate between the atoms of the solute
and the solvent.

3 Voronoi Shells

Knowing the adjacency of the atoms (Delaunay network), one can begin the selection
of the Voronoi shells around the solute molecule.

3.1 Selection of the Boundary Voronoi Shells

The boundary Voronoi shell can be selected according to the following algorithm:

Go over all atoms of the solute molecule and find the atoms, which are adjacent to at
least one atom of the solvent. Record the numbers of these atoms.

Thus we establish the atoms of the solute molecule, which are in direct contact
with the solvent, and simultaneously, the atoms of the solvent which are in contact
with the solute. The former represent the boundary atoms of the solute, and the latter

 Decomposition of a Protein Solution into Voronoi Shells and Delaunay Layers 59

define the nearest solvation shell. Let us assign indexes 0 and 1 to these atoms, and
call these groups of atoms (and their Voronoi cells) as 0-th and 1-st Voronoi shells,
see Fig.2. Let us denote the number of atoms in the shells as N0 and N1. The volume
of the shells (V0 and V1) can be calculated as the sum of the volumes of the Voronoi
cells in a given shell.

Fig. 2. Illustration of the 1-st and the 0-th Voronoi shells. All atoms with index 1 have at least
one atom of the solute as a neighbor. All atoms with index 0 have at least one atom of the sol-
vent as a neighbor. If there are no solvent atoms inside the solute, both Voronoi shells are simp-
ly connected (left). The existence of solvent atoms inside the solute results in a not simple
connectivity of the shells. See shells 1 and 1′ (right).

Fig. 3. The 1-st (red) and the 0-th (black) Voronoi shells are presented as clusters on the Delau-
nay network for the models shown in Fig.2. Selected atoms are shown by large points and
squares.

Usually both of these shells are simply connected, Fig.2 (left). However, if some
atoms are inside the solute (this means, that the set of solvent atoms is not simply
connected on the Delaunay network), the 1-st shell is also not simply connected.

0 0

0 00
0

0

0

0

0
0

0

0
0

1

1
1

1

1

1

1

1 1

1

1

1

1

1

1
1

1

1

1

1

1
1

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1′

0 0

0

0

0
0′

0

0
0

0

0′

0
0

0

0′

0′

0′

0′

60 A.V. Kim et al.

The existence of water molecules inside the solute protein molecule has a special
interest in biology. One can see, our technique can be used to find such molecules in
computer models. Simply, one should make a standard analysis of the clusters on the
Delaunay network. If the selected (colored) sites (the atoms with index 1) represent a
simply connected cluster, then water inside the solute is absent.

Fig.3 demonstrates our Voronoi shells as clusters on the Delaunay network. In the
first case they are simple connected, Fig.3 (left). If there is a water molecule inside
the solute, there is a more complicated situation Fig. 3 (right).

Note, it is obvious, that when the solute molecule is simply connected on the
Delaunay network, then the 0-th Voronoi shell is also simply connected.

3.2 Calculation of Subsequent Voronoi Shells

The 2-nd Voronoi shell is defined by the solvent atoms which are neighbors of the 1-
st shell (adjacent to atoms with index 1). Let us assign index 2 to these atoms. Ob-
viously, none of these atoms are in contact with atoms of the solute, else it could be
assigned to the 1-st shell.

Similarly, we can select outer neighbors of the 2-nd shell. They define the 3-rd Vo-
ronoi shell and get index 3. To continue further, all subsequent Voronoi shells can be
selected, and called the 4-th, 5-th, ... k-th ... and so on, up to the maximum, that is
permitted by the model.

Fig. 4. 2D illustration of Voronoi shells outside and inside a big solute molecule. Only boun-
dary atoms of the molecule are shown schematically. The digits show the numbers of the shells.
The inner shells have negative numbers. They may be not simply connected.

From a mathematical point of view, the Voronoi shells correspond to the consecu-
tive topological neighbors on the Delaunay network, see for example Ref. 28 and

1

2

0
-1 -2

-2

-3

2
1
0

 Decomposition of a Protein Solution into Voronoi Shells and Delaunay Layers 61

references there. However, the selection of the neighbors usually begins from a single
(central) site (Voronoi cell). In our case we start from the boundary atoms of the so-
lute molecule. If the 1-st Voronoi shell is simply connected, all subsequent shells are
also simply connected. However, the shape of the Voronoi shells can be very different
and is determined by the morphology of the solute molecule. Protein molecules have
usually a globular shape. In this case the 0-th, 1-st and other Voronoi shells (unders-
tood as unions of the Voronoi cells with equal index) are isomorphic to a spherical
layer. However, in the case of a torus-like molecule, containing a ring of atoms, sol-
vent molecules can be located in the interior of this ring. In this case the first Voronoi
shells will also be tori.

Note, the Voronoi shells do not contain “through holes”, i.e. going from the (k-1)-
th to the (k+1)-th shell, one will be obligated to traverse the k-th shell. This is an ob-
vious consequence of the Voronoi shell definition. Indeed, the k-th Voronoi shell is an
obligatory “intercalation” between these shells: it is derived from the (k-1)-th, and
generates the (k+1)-th one.

Let us consider now the Voronoi shells, which are constructed, when proceeding
from the 0-th shell into the interior of the molecule. All internal neighbors of the 0-th
shell represent the -1st (minus first) Voronoi shell, Fig.4. The atoms of this shell have
index -1. None of these atoms contact the solvent, else it would belong to the 0-th shell.
Similarly, one can select inner neighbors of the -1st shell. They represent the-2nd
(minus second) Voronoi shell, and its atoms get the index -2. By continuing this, one
can determine all subsequent “negative” shells, until all atoms of the molecule are
covered. These shells can have a more complicate topology than the outer ones. In
particular, they can be not simply connected, in spite of a simply connected 0-th shell,
Fig.4.

Thus, we decomposed the solution into shells in relation to the surface of the solute
molecule. This decomposition is unambiguous: no atom (Voronoi cell) is unconsi-
dered, and none are taken into account twice.

For each Voronoi shell different characteristics can be calculated, e.g.: the number
of atoms Nk ; the volume Vk, defined as the sum of the volumes of all Voronoi cells of
the shell, the mean volume of the Voronoi cell vk = Vk,/ Nk, the inner and outer surface
areas Sk-1 and Sk, which are calculated as the sum of the area of the boundary Voronoi
faces. Since the outer surface of a given shell is the inner one for the following shell,
it is sufficient to speak of intermediate surfaces Sk-1,k. One can propose also other
characteristics of the Voronoi shells, e.g. the empty volume, and so on.

Every configuration of the solution is characterized by a set of numbers, in particular:
the numbers of atoms in the Voronoi shells

... N-2, N-1, N0, N1, N2 ...,

the shell volume values

... V-2, V-1, V0, V1, V2, ...,

the areas of the intermediate surfaces

... S-2,-1, S-1,0, S0,1, S1,2, S2,3 ,

and so on.

62 A.V. Kim et al.

4 Delaunay Layers

4.1 Selection of the First (Boundary) Delaunay Layer

We can classify the Delaunay simplexes by using the indexes of the Voronoi shells.
Let us define thus the index I of a given Delaunay simplex as the sum of the Voronoi
shell indexes of the atoms at its vertexes:

I= i1+i2+i3+i4

Remember, the Delaunay simplex is formed by “mutually close” atoms, all of them
are first topological neighbors. This means that the difference between the atomic
indexes i cannot be greater than 1.

Atoms of the 0-th and 1-st Voronoi shells can form the following simplex indexes:

I= 0 (all simplex vertexes are located on the solute molecule: 0+0+0+0);
I= 1 (three vertexes on the solute and one on solvent: 0+0+0+1);
I= 2 (correspondingly: 0+0+1+1);
I= 3 (correspondingly: 0+1+1+1);
I= 4 (all vertexes are on solvent molecules: 1+1+1+1).

We will call the union of Delaunay simplexes with the same index I as Delaunay
sub-layer I. The sub-layers 0 and 4 are produced by atoms of the same Voronoi shells.
They are result of “folds” of the Voronoi shells, and do not play a principal role in our
analysis. Moreover they can be absent in some models. We will discuss such sub-
layers in more details below. More important are the sub-layers, whose vertexes are
both on the 0-th and 1-st Voronoi shells (I=1,2,3). The union of these simplexes
represents a shell (layer) between the atoms of solute and solvent. We call this shell
the 1-st Delaunay layer.

I=2I=1

I=0

I=3

Fig. 5. 2D-illustration of the first Delaunay layer for the model shown in Fig.2 (left). Separate
Delaunay sub-layers and their unions are shown at the right.

Fig.5 shows a two-dimensional illustration of these Delaunay constructions. In a
plane a Delaunay simplex has three vertexes, thus there are only four different

 Decomposition of a Protein Solution into Voronoi Shells and Delaunay Layers 63

simplex indexes: I=0, (0+0+0); I=1, (1+0+0); I=2, (1+1+0) and I=3 (1+1+1), and
the first Delaunay layer is presented by two sub-layers, (I= 1 and 2).

It is significant that the union of Delaunay simplexes, the vertexes of which are
both on the solute and solvent, represent a solid shell, i.e. at no point its width is equal
to zero. For separate sub-layers this is not true. The thickness of a sub-layer degene-
rates into a point at the common vertexes, see Fig.5. (In 3D a zero width can also be
along a common simplex edge).

Fig. 6. Illustration of the first Delaunay layer of a one-atomic solute. It consists of Delaunay
simplexes with one index only: I=2, (0+1+1), and represents the area between the solute and
the solvent particles.

The first Delaunay layer characterizes the void space between the atoms of the so-
lute and solvent. This important feature of the Delaunay layer is also valid, if some
sub-layers are absent, see for example the one-atomic solute, Fig.6.

4.2 Calculation of the Subsequent Delaunay Layers

Let us consider Delaunay simplexes between the (k-1)-th and k-th Voronoi shells.
They produce the indexes:

I = 4k-4, (k-1+k-1+k-1+k-1);
I = 4k-3, (k-1+k-1+k-1+k);
I = 4k-2, (k-1+k-1+k+k);
I = 4k-1, (k-1+k+k+k);
I = 4k, (k+k+k+k).

The simplexes with indexes 4k-3, 4k-2 and 4k-1, whose vertexes are positioned on
atoms of both Voronoi shells, represent a solid shell between the atoms, and define
the K-th Delaunay layer. In this case K=k. The simplexes with index I=4k-4 had been
obtained already in the calculation of the previous, (K-1)-th Delaunay layer, and the
index I=4k will appear once more in the calculation of the next (K+1)-th Delaunay
layer. For the sake of definiteness, we will assign sub-layer 4k to the K-th Delaunay

64 A.V. Kim et al.

layer. In this case all Delaunay simplexes will be assigned to the Delaunay layers
unambiguously.

We can also select Delaunay simplexes inside the solute molecule. They manifest
the inner Delaunay layers.

The 0-th and -1-st Voronoi shells define simplex indexes:

I = 0, (0+0+0+0);
I = -1, (-1+0+0+0);
I = -2, (-1-1+0+0);
I = -3, (-1-1-1+0);
I = -4, (-1-1-1-1).

The union of sub-layers -1,-2,-3 represents the 0-th Delaunay layer. We should al-
so add sub-layer I = 0 to this layer, and sub-layer I = -4 will be assigned to the -1-st
Delaunay layer. If there is a -2-nd Voronoi shell, then one can define the -1-st Delau-
nay layer, which consist of sub-layers -4, -5, -6, -7. Sub-layer -8 will be related to
the next “negative” Delaunay layer (-2-nd). We can continue this procedure until all
Voronoi shells inside the solute molecule are covered.

Thus, Delaunay layers are defined unambiguously by the Voronoi shells and
represent an additional method for the decomposition of the Voronoi-Delaunay tessel-
lation of the solution both inside and outside the solute.

Every Delaunay layer can be characterized, for example, by a volume DK, calcu-
lated as the sum of its Delaunay simplex volumes. For physical applications it can
also be interesting to know the empty volume EK of the layers. In this case one sums
the empty volumes of the simplexes (without the volume occupied by the atoms).

Every configuration of the solution can be characterized by sets of Delaunay layer
parameters, in particular, by the volumes:

... D-2, D-1, D0, D1, D2, ...,

and/or the empty volumes:

... E-2, E-1, E0, E1, E2, ...

and so on.

5 Examination of an Aqueous Solution of the Polypeptide
hIAPP

Molecular-dynamic models of a single amyloidogenic polypeptide molecule (hIAPP)
(Fig.7) in aqueous solution had been generated in Ref. 29, and had been used for the
calculation of volumetric characteristics in Ref. 19. The solute molecule contains 462
heavy atoms (i.e. without hydrogen atoms) and is surrounded by 10843 water mole-
cules. Production runs of up to 500 ns each were performed for 11 different tempera-
tures from 250 to 450 K. For the analysis, 1000 independent configurations, equally
spaced over the last 200 ns (every 200 ps) of the equilibrated production runs, were
used for averaging.

 Decomposition of a Protein Solution into Voronoi Shells and Delaunay Layers 65

These models can be decomposed properly into five consecutive Voronoi shells: k
= -1, 0, 1, 2, 3. Shell -2 appears not in every configuration, therefore we do not ana-
lyze it specially. We calculated also the 4-th and 5-th Voronoi shells. However the
linear dimension of these shells exceeds half of the model box in some configurations.
An analysis of these shells could be problematic, because of the periodic boundary
conditions used for our models. Although, as we found, all distant shells (beginning
from the 2-nd) behave similarly, and are in accordance with bulk water.

Fig. 7. A configuration of the hIAPP molecule in aqueous solution. Water molecules are not shown.

Fig. 8. Voronoi shell volumes as a function of temperature. From bottom to top: the shells with
the numbers from -1 to 2. In the center (blue): the total Voronoi volume of the hIAPP molecule
(intrinsic volume).

250 300 350 400 450

0,3

0,6

0,9
4,5

4,8

5,1

5,1

5,4

5,7

10

11

16

18

250 300 350 400 450

Temperature, K

k = -1

k = 0

V
or

on
oi

 s
he

ll
vo

lu
m

es
, n

m
3

molecule

k = 1

k = 2

66 A.V. Kim et al.

Fig.8 demonstrates the temperature dependence of the volumes for the Voronoi
shells with numbers -1, 0, 1 and 2. The total Voronoi volume of the molecule is also
shown in the central diagram of Fig .8. In our approach it is calculated as the sum of
the volumes of all inner Voronoi shells: -2, -1 and 0. It represents the intrinsic volume
of hIAPP [1,19,30], i.e. the volume “assigned” to a solute molecule in solution. It
includes the van der Waals volume of the molecule as well as the volume of voids
assigned to the molecule: all voids inside the molecule plus a part of the surrounding
empty space.

The volumetric calculations performed in Ref. 19 gave exactly the same behavior
for the intrinsic volume of hIAPP. The increase of this volume with temperature is
natural, however the growth rate (slope of the curve) is larger at temperatures higher
than 350K, see Fig.8 (and also Fig.16 in Ref. 19). The previous analysis cannot ex-
plain this change of the thermal expansion coefficient. The present decomposition
into selected Voronoi shells helps to clarify the situation.

250 300 350 400 450
0

2

4

6

8

k = 2

k = 1

D
el

au
na

y
la

ye
rs

 e
m

pt
y

vo
lu

m
e,

 n
m

3

Temperature, K

k = 0

250 300 350 400 450
0

50

300

350

400

450

500

550

k =-1

k = 1

k = 0

N
um

be
r

of
 a

to
m

s
in

 th
e

V
or

on
oi

 s
he

lls

Temperature, K

k = 2

Fig. 9. Empty volume of the Delaunay
layers in aqueous solution of hIAPP as
function of temperature. From bottom to
top: the layers from K=0 to K=2.

Fig. 10. The number of atoms in the Voronoi
shells from k= -1 to k=2 (from bottom to top)

The following considerations can lead to an explanation of the observed tempera-
ture behavior of the intrinsic volume of hIAPP in aqueous solution. At first, one could
imagine, that some structural changes occur inside the molecule at higher tempera-
ture, which result in an additional increase of the interatomic voids. In our analysis,
the -1-st Voronoi shell and the 0-th Delaunay layer belong to the molecular interior.
However, there is no increase of the volume of these shells after 350K, see Fig.8 and
Fig.9. Instead, one can see an increase of the volumes of the 0-th Voronoi shell and
the 1-st Delaunay layer, which are at the border of the molecule. This could be ex-
plained by assuming that more atoms of the solute come into contact with the solvent
at higher temperatures (for example by unfolding). In fact, the boundary atoms

 Decomposition of a Protein Solution into Voronoi Shells and Delaunay Layers 67

involve some volume from outside, thus an increase of the number of these atoms
should result in an increase of the intrinsic volume of the molecule. However, as one
can see in Fig. 10, the numbers of atoms in the Voronoi shells have no tendency to
increase with temperature. This means that the additional increase of the intrinsic
volume cannot be explained by conformational changes (as the unfolding of the
molecule). We calculated the gyration radius of the molecule and indeed, the fraction
of “elongated” configurations increases slightly with temperature. However, this
is not the reason for the change of the intrinsic volume: when calculating the correla-
tion coefficient between gyration radius and intrinsic volume, we found that it is
negligible. Its value is less than 0.01 at 350K and decreases at higher temperatures.

Based on these considerations, we suppose that the origin of the additional increase
of the intrinsic volume of hIAPP at high temperature is the density decrease of the
surrounding water. Indeed, the water density changes faster above 350K than at lower
temperatures, see Fig.11. This can be also seen for the 1-st and 2-nd Voronoi shell in
Fig. 8. The next shells (k=3,4,5) demonstrate a very similar increase for the same
temperatures (not shown here).

Fig. 11. Temperature behavior of the density of bulk SPC/E water used in Ref. 29 (squares,
right axis) and the mean volume of the Voronoi cells of the water molecules, <v0> = 1/ρ (cir-
cles, left axis). Straight lines approximating the curve show schematically the stronger chang-
ing of density at higher temperature.

Fig.12 illustrates that the decrease of the water density results in an increased vo-
lume, assigned to the boundary atoms, and consequently to an increase of the intrinsic
volume of the solute molecule. A stronger change of the water density results in a
stronger increment of the volume in the 0-th Voronoi shell. As one can see in Fig. 8,
the total changing (~ 0.6nm3) of the of the intrinsic volume of the hIAPP molecule in
the interval from 250 to 450K is practically the same as for its 0-th Voronoi shell.
This confirms additionally that the structural changes in the closest surroundings are
responsible for the increase of the intrinsic volume of the molecule. Fig.12 illustrates
such a possibility.

250 300 350 400 450

0,030

0,033

0,036

0,039

0,042

Temperature, K

v
0

, n
m

3

0,675

0,750

0,825

0,900

0,975

ρ,
 g

/c
m

3

68 A.V. Kim et al.

In accord with suggestions from molecular biology we subdivide the partial molar
volume (apparent volume) of a dissolved bio-molecule into two major contributions:
the intrinsic and the thermal volume. The intrinsic volume we calculate as the Voro-
noi volume of the solute molecule (see above). It contains small pores in the interior
of the bio-molecule as well as void space between the molecular atoms. The thermal
volume is considered to be the additional empty space surrounding the bio-molecule,
which results from mutual molecular vibrations and reorientational motions of solute
and solvent, or, in other words, extra voids in the interface between solute and solvent
due to imperfect packing of solvent molecules near the the solute [1, 30, 31]. In our
geometrical approach this area can be represented by the first Delaunay layer, see
Fig.13. The empty volume of the first Delaunay layer can be used to characterize the
thermal volume.

Fig. 12. Left: a fragment of the boundary area between molecule and solvent (from Fig.2). The
0-th Voronoi shell is marked and colored (light blue). Right: the same part of the boundary area
but with the lower density of the surrounding water. The dotted line shows the new border
between molecule and solvent. One can see, the volume of the shell is increased in comparison
with the previous situation.

Fig. 13. A fragment of the first Delaunay layer for the model in Fig.12 (between thick read
lines). Black thin line shows the Voronoi border between molecule and solvent. The empty
space inside the Delaunay layer is shown in green. The dark-green area belongs to the
molecule, light-green area belongs to the solvent.

 Decomposition of a Protein Solution into Voronoi Shells and Delaunay Layers 69

However in our Voronoi-Delaunay decomposition, each Delaunay layer belongs to
two neighboring Voronoi shells. Thus the intrinsic volume of the dissolved molecule
in our definition includes a fraction of the thermal volume (dark - green in Fig.13), the
other part of the intermediate free volume (light-green) belongs to the solvent.

Having said that, we can state, that the increase of the thermal expansion coeffi-
cient of hIAPP molecule in water is mainly related with a change of the thermal
volume, but not with conformational changes of the molecule itself.

6 Conclusion

A simple method for the construction of shells around a solute molecule for the analy-
sis of molecular-dynamics models of solutions is proposed. In the first stage, the
Voronoi-Delaunay tessellation is calculated for the total ensemble of atoms of the
solution. After that, consecutive Voronoi shells are defined, starting from the border
between molecule and solvent, proceeding to the outside (into the solvent), as well as
into the interior of the solute molecule. The shells are numbered by integers k = ... -2,
-1, 0, 1, 2, 3, The 0-th Voronoi shell corresponds to the atoms of the solute, which
are adjacent to the solvent, and the 1-st one is defined by the solvent atoms which are
nearest neighbors of the solute molecule. Positive numbers belongs to the shells out-
side the solute (in the solvent), negative numbers refer to shells inside the solute mo-
lecule. (It is assumed, that the solute molecule can be large). Each atom gets an index
equal to the number of the Voronoi shell to which it belongs. These indexes are used
to identify Delaunay simplexes, and to define Delaunay layers, which characterize the
void space between the atoms of neighboring Voronoi shells (also both outside and
inside the solute molecule).

Note, the proposed decomposition into Voronoi shells and Delaunay layers can be
performed very fast. In particular, it needs negligible extra computational time in
comparison with the calculation of the Voronoi-Delaunay tessellation, if the data
structures are represented as described in Ref. 25.

The temperature behavior of the Voronoi shells and Delaunay layers was investi-
gated, using a molecular-dynamic model for an aqueous solution of an amyloidogenic
polypeptide (hIAPP). The non-trivial change of the thermal expansion coefficient was
discussed. Our analysis suggests that this is the result of the influence of the surround-
ing water, but not of a conformational modification of the solute molecule itself. Spe-
cifically, the thermal volume, which is located in the boundary layer between solute
and solvent, plays a major role in the increase of the intrinsic volume of hIAPP with
temperature.

The situation can be different for other molecules. In particular, modification of in-
ternal voids and molecular morphology can also play a role. The presented method is
a formalized instrument for such investigations.

Acknowledgments. Financial support from Alexander von Humboldt foundation and
RFFI grant No.12-03-00654 is gratefully acknowledged. We thank M. N. Andrews
and R. Winter to provide us with the data of their simulation runs.

70 A.V. Kim et al.

References

1. Chalikian, T.V.: Volumetric properties of proteins: Annu. Rev. Biophys. Biomol.
Struct. 32, 207–235 (2003)

2. Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C.:
GROMACS: Fast, Flexible, and Free. J. Comp. Chem. 26(16), 1701–1718 (2005)

3. Medvedev, N.N.: Computational porosimetry. In: Engel, P., Syta, H. (eds.) Voronoi’s Im-
pact on Modern Science, pp. 165–175. Institute of Math National Acad. of Sciences of
Ukraine, Kiev (1998)

4. Sastry, S., Truskett, T.M., Debenedetti, P.G., Torquato, S., Stillinger, F.H.: Free Volume in
the Hard-Sphere Liquid. Molecular Physics 95, 289–297 (1998)

5. Malavasi, G., Menziani, M.C., Pedone, A., Segre, U.: Void size distribution in MD-
modelled silica glass structures. Journal of Non-Crystalline Solids 352, 285–296 (2006)

6. Luchnikov, V.A., Gavrilova, M.L., Medvedev, N.N., Voloshin, V.P.: The Voronoi-
Delaunay approach for the free volume analysis of a packing of balls in a cylindrical
container. Future Generation Computer Systems, Special Issue on Computer Modeling,
Algorithms and Supporting Environments 18, 673–679 (2002)

7. Rémond, S., Gallias, J.L., Mizrahi, A.: Characterization of voids in spherical particle sys-
tems by Delaunay empty spheres. Granular Matter 10, 329–334 (2008)

8. Haw, M.D.: Void structure and cage fluctuations in simulations of concentrated suspen-
sions. Soft Matter 2, 950–956 (2006)

9. Sung, B.J., Yethiraj, A.: Structure of void space in polymer solutions. Phys. Rev. E 81,
031801 (2010)

10. Alinchenko, M.G., Anikeenko, A.V., Medvedev, N.N., Voloshin, V.P., Mezei, M.,
Jedlovszky, P.: Morphology of voids in molecular systems. A Voronoi-Delaunay analysis
of a simulated DMPC membrane. J. Phys. Chem. B 108(49), 19056–19067 (2004)

11. Anikeenko, A.V., Alinchenko, M.G., Voloshin, V.P., Medvedev, N.N., Gavrilova, M.L.,
Jedlovszky, P.: Implementation of the Voronoi-Delaunay Method for Analysis of Intermo-
lecular Voids. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi,
O. (eds.) ICCSA 2004. LNCS, vol. 3045, pp. 217–226. Springer, Heidelberg (2004)

12. Edelsbrunner, H., Facello, M., Liang, J.: On the definition and construction of pockets in
macromolecules. Discr. Appl. Math. 88, 83–102 (1998)

13. Liang, J., Edelsbrunner, H., Fu, P., Sudhakar, P., Subramaniam, S.: Analytical shape com-
putation of macromolecules: II. Inaccessible cavities in proteins. Proteins: Struct. Func.
Genet. 33, 18–29 (1998)

14. Kim, D., Cho, C.-H., Cho, Y., Ryu, J., Bhak, J., Kim, D.-S.: Pocket extraction on proteins
via the Voronoi diagram of spheres. Journal of Molecular Graphics and Modelling 26(7),
1104–1112 (2008)

15. Raschke, T.M., Levitt, M.: Nonpolar solutes enhance water structure within hydration
shells while reducing interactions between them. PNAS 102(19), 6777–6782 (2005)

16. Schröder, C., Rudas, T., Boresch, S., Steinhausera, O.: Simulation studies of the protein-
water interface. I.Properties at the molecular resolution. J. Chem. Phys. 124, 234907
(2006)

17. Bouvier, B., Grünberg, R., Nilges, M., Cazals, F.: Shelling the Voronoi interface of pro-
tein-protein complexes predicts residue activity and conservation. Proteins: Structure,
Function, and Bioinformatics 76(3), 677–692 (2008)

18. Neumayr, G., Rudas, T., Steinhausera, O.: Global and local Voronoi analysis of solvation
shells of proteins. J. Chem. Phys. 133, 084108 (2010)

 Decomposition of a Protein Solution into Voronoi Shells and Delaunay Layers 71

19. Voloshin, V.P., Medvedev, N.N., Andrews, M.N., Burri, R.R., Winter, R., Geiger, A.: Vo-
lumetric Properties of Hydrated Peptides: Voronoi-Delaunay Analysis of Molecular Simu-
lation Runs. J. Phys. Chem. B 115(48), 14217–14228 (2011)

20. Okabe, A., Boots, B., Sugihara, K., Chiu, S.: Spatial tessellations - concepts and applica-
tions of Voronoi diagrams. John Wiley & Sons, New York (2000)

21. Medvedev, N.N.: Voronoi-Delaunay method for non-crystalline structures. SB of Russian
Academy of Science, Novosibirsk (2000) (in Russian)

22. Richards, F.M.: Calculation of molecular volumes and areas for structures of known geo-
metry. Methods in Enzymology 115, 440–464 (1985)

23. Gellatly, B.J., Finney, J.L.: Calculation of protein volumes: an alternative to the Voronoi
procedure. J. Mol. Biol. 161, 305–322 (1982)

24. Anishchik, S.V., Medvedev, N.N.: Three-dimensional Apollonian packing as a model for
dense granular systems. Phys.Rev.Lett. 75(23), 4314–4317 (1995)

25. Medvedev, N.N., Voloshin, V.P., Luchnikov, V.A., Gavrilova, M.L.: An algorithm for
three-dimensional Voronoi S-network. J. Comput. Chem. 27, 1676–1692 (2006)

26. Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM J.
Comput. 16, 78–96 (1987)

27. Kim, D.-S., Cho, Y., Sugihara, K.: Quasi-worlds and Quasi-operators on Quasi-
triangulations. Computer-Aided Design 42(10), 874–888 (2010)

28. Aste, T., Szeto, K.Y., Tam, W.Y.: Statistical properties and shell analysis in random cellu-
lar structures. Phys.Rev.E 54(5), 5482–5492 (1996)

29. Andrews, M.N., Winter, R.: Comparing the Structural Properties of Human and Rat Islet
Amyloid Polypeptide by MD Computer Simulations. Biophys. Chem. 156, 43–50 (2011)

30. Mitra, L., Smolin, N., Ravindra, R., Royer, C., Winter, R.: Pressure perturbation calorime-
tric study of the solvation properties and the thermal unfolding of proteins in solution - ex-
periment and theoretical interpretation. Phys.Chem. Chem. Phys. 8, 1249–1265 (2006)

31. Imai, T.: Molecular theory of partial molar volume and its application to biomolecular
systems. Cond. Matter Physics 10, 3(51), 343–361 (2007)

Proximity and Motion Planning

on �1-Rigid Planar Periodic Graphs

Norie Fu, Akihiro Hashikura, and Hiroshi Imai

Department of Computer Science, University of Tokyo
{f norie,hashikura,imai}@is.s.u-tokyo.ac.jp

Abstract. Motivated by an application to nanotechnology, Voronoi dia-
grams on periodic graphs with few orbits under translations and a motion
planning problem on �1-embeddable Archimedean tilings have been in-
vestigated by Fu, Hashikura, Imai and Moriyama. In this paper, through
the investigations on the geodesic fibers defined originally as invariants
on periodic graphs by Eon, we show fast geometric algorithms for Voronoi
diagrams and the motion planning on �1-rigid planar periodic graphs.

1 Introduction

Periodic graph is an infinite graph which has a translation group as a subgroup
of its automorphism. Periodic graph is researched as a model of various things;
crystal structure [10], VLSI circuits [17], systems of uniform recurrence equa-
tions [18] and so on. By recent technology developments of handling real atoms
in a physical crystal surface [1], a reconfiguration problem on planar periodic
graphs, shown in Figure 1 of [15], arises as a new discrete mathematical prob-
lem. Călinescu, Dumitrescu and Pach proposed an algorithm for this reconfig-
uration problem on general finite graphs [9]. They showed the problem can be
solved by first computing a minimum-weight bipartite matching between the
given configuration and the objective configuration and then computing the se-
quence of the moves of the atoms. The computation time depends not only on the
number of configured objects but the size of the underlying graph, which may be
time-consuming for large-scale crystallographic graphs as underlying graphs. Our
purpose is to construct fast algorithms for the reconfiguration problem whose
time complexity is free from the size of the underlying graph, by exploiting the
periodicity of crystallographic graphs. In this paper, we focus on �1-embeddable
planar periodic graphs. By the classification of �1-embeddable tilings by Deza,
Shtogrin and Grishukhin [11], �1-embeddable planar periodic graphs are shown
to contain many crystallographic graphs.

The key tools are geodesic fibers and geodesics proposed by Eon [13], originally
proposed as topological invariants on periodic graphs. First, we investigate the
periodicity of the �1-embedding of the �1-rigid periodic graphs, i. e. the periodic
graphs with a unique �1-embedding. A sufficient condition for the �1-rigidity
is shown in [5]. An algorithm for the �1-embedding of possibly infinite planar
graphs using the alternating cuts, which are the set of the edges intersected by

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XX, LNCS 8110, pp. 72–91, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Proximity and Motion Planning on �1-Rigid Planar Periodic Graphs 73

the paths with alternate turns in the dual graph, is shown by Chepoi, Deza and
Grishukhin [5]. Their algorithm is very useful, but to show the periodicity of the
�1-embedding, further investigation on the inclusion relation among alternating
cuts is necessary. In this paper, in an effort to construct an �1-embedding algo-
rithm for general periodic graphs, we choose to try the theory on the geodesic
fibers defined to have a nice property geodesically complete, which plays an im-
portant role in the theory on �1-embeddability of graphs [12]. Although some
results still requires the planarity, several fundamental lemmas which may be
useful for the �1-embedding of general periodic graphs are also shown.

Next, we investigate fast geometric algorithms for the minimum-weight bi-
partite matching on �1-embeddable periodic graphs. Vaidya constructed fast
geometric algorithms for the minimum-weight bipartite matching on the plane,
by regarding the repeated queries appearing in the execution of the Hungarian
method as proximity problems on the plane and constructing fast data struc-
tures for them [20]. To extend his algorithm, we investigate Voronoi diagrams
on �1-rigid planar periodic graphs, using the periodicity of the �1-embedding.
In [16], Fu, Imai and Moriyama studied a data structure for the nearest neigh-
bor search on periodic graphs using Voronoi diagrams on the plane under convex
distance functions and under convex polygon-offset distance functions [3], by a
computational algebraic approach. Their method is interesting, but in order to
cope with some nonlinear constraints, applies only to the periodic graphs such
that the number of the orbits of the vertex set by the translation group is at
most 3. In this paper, we show an O(n logn) time algorithm for a data structure
for the nearest neighbor search on �1-rigid planar periodic graphs, including the
periodic graphs with more than 3 orbits. This result leads to an O(m2.5 logm)
time algorithm for the minimum-weight bipartite matching. We also show that
an O(m2 logd+1m) time algorithm for the minimum-weight bipartite matching
on �1-embeddable periodic graphs is possible, by pointing out that Vaidya’s dis-
cussion on the fast data structure for another proximity problem on the �1 plane
can be almost naturally applied to the case in d-dimensional �1 space.

Finally, we consider the problem to output the moves of the sequences for
the reconfiguration in a compact representation. For this problem, a compact
data structure to represent the shortest paths on periodic graphs is necessary.
We propose the primitive axis-path set on �1-rigid periodic graphs using the
geodesic infinite paths. If a periodic graph has the primitive axis-path set, then
the shortest paths on it can be represented in a compact way, as the x-axis and
the y-axis on the 2-dimensional orthogonal lattice do so. We show an algorithm
to compute the sequences of the moves made by the shortest paths with at most
one bend. We also show an algorithm to determine whether a given �1-rigid
planar periodic graph has the primitive axis-path set or not.

2 Preliminaries

Definition 1. Let G be a simple graph and T its automorphism. The pair (G, T)
is called an n-periodic graph if T is a free Abelian group of rank n acting freely on

74 N. Fu, A. Hashikura, and H. Imai

G and the number of (vertex and edge) orbits of G by T is finite. The elements
of T are called the translations of (G, T).

In this paper, we consider only connected 2-periodic graphs. If not otherwise
specified, by “periodic graph” we refer to a connected 2-periodic graph. Tilings
are the skeleton graphs of edge-to-edge planar tilings by regular polygons. All
tilings with at most three orbits of one of tiles, vertices or edges and those
tilings which satisfy certain homogeneity criteria are classified and are shown to
be periodic graphs by Chavey [4]. We denote each tiling by its vertex type, which
encodes the faces around each vertex and is used in [4] to label each tiling.

Let V be the vertex set of the periodic graph (G, T). Then there is a one-
to-one correspondence between V and (V/T) × Z2 = {v(z) : v ∈ V/T, z ∈ Z2}.
Every periodic graph has a finite representation labeled quotient graph.

Definition 2 ([7]). For a periodic graph (G, T) with the vertex set V and the
edge set E, the labeled quotient graph G/T of (G, T) is the finite graph with the
vertex set V/T constructed by the following manner: For each edge e ∈ E/T
connecting u(z) and v(z′) on (G, T), if z = z′, then connect u and v by an
undirected edge with no label, and otherwise, add a directed edge from u to v
with the label z′ − z.

Example 1. In Figure 1 (a), the periodic graph (4.82) is shown. The orbits V/T
corresponds to the four vertices encircled by the box, and the resulting labeled
quotient graph is shown in (b).

Fig. 1. (a) The periodic graph (4.82). and (b) its labeled quotient graph.

Definition 3. An countably many infinite graph G = (V,E) is �1-embeddable
if for some λ,m ∈ N, there exists a mapping φ : V → Zd such that λ ·
dG(v1, v2) = ‖φ(v1) − φ(v2)‖�1 =

∑d
k=1 |φk(v1) − φk(v2)| with vi ∈ V , φ(vi) =

(φ1(vi), . . . , φd(vi)) (i = 1, 2).

We call φ the �1-embedding of G and λ the scale of the embedding φ. Note
that the set Z

d is naturally endowed with d-dimensional square lattice, whose
path-metric corresponds to the �1-distance.

Definition 4. An �1-embeddable graph G is �1-rigid if G has a unique
�1-embedding into Zd, up to the symmetry of Zd.

By Corollary 2 in [5], Chavey’s 165 tilings in [4] are �1-rigid.

Proximity and Motion Planning on �1-Rigid Planar Periodic Graphs 75

We consider the proximity and a motion planning problem on the �1-rigid
periodic graphs in this paper. The main tool is geodesic fibers and the geodesic
infinite paths lifted from a cycle on quotient graphs on the periodic graphs, orig-
inally defined by Eon [13] to use as an invariant on n-periodic graphs.

Definition 5. A subgraph F of a graph G is geodesically complete in G if for
any pair of its vertices, it contains all geodesic paths between them in G. A vertex
set is convex if the subgraph induced by it is geodesically complete.

Definition 6 ([13]). A 1-periodic subgraph (F, S) of a periodic graph (G, T) is
a geodesic fiber if (a) the translation group S = 〈t〉 can be generated by some
local automorphism t of G, (b) F is geodesically complete in G, and (c) F is
minimal with respect to the conditions of periodicity (a) and completeness (b).

In this paper, we refer only to the geodesic fibers (F, 〈t〉) such that t ∈ T .
By Ext(t) we denote the maximal 1-periodic extension in T of the subgroup 〈t〉
generated by some translation t ∈ T . Following Eon’s terminology [13], we say
that the geodesic fiber (F, 〈t〉) runs along the direction t. Two geodesic fibers
(F1, 〈t1〉) and (F2, 〈t2〉) such that Ext(t1) = Ext(t2) are said to be parallel.

Theorem 1 ([13]). The labeled quotient graph of a geodesic fiber (F, 〈t〉) with
t ∈ T in a periodic graph (G, T) is a subgraph of the labeled quotient graph G/T .

A cycle on the labeled quotient graph lifts to an 1-periodic infinite path (P, 〈t〉)
on (G, T). The 1-periodic infinite path is called a geodesic if any subpath of it
is a shortest path. A cycle C lifts to a geodesic (P, 〈t〉) if and only if it has the
shortest reduced length [13], defined as the ratio |C|/k where |C| is the length of
C and k is the index of 〈t〉 in Ext(t).

The net voltage of a cycle on a labeled quotient graph is the sum of the labels
on the edges in the cycle. By Algorithm 4.1 in [13], the labeled quotient graph
of a geodesic fiber in (G, T) along a direction in Ext(t) can be computed from
G/T , by enumerating the cycles with net voltage in Ext(t) and shortest reduced
length, and then adding recursively all cycles with zero net voltage if they provide
short-cuts to the paths already derived.

3 �1-Embedding of �1-Rigid Planar Periodic Graphs

In this section we show a periodicity of the �1-embedding of �1-rigid planar peri-
odic graphs, which plays a central role in the construction of Voronoi diagrams.

The cut semimetric with respect to a vertex set S on a graph, denoted by
δ(S), is the semimetric defined as the next: δ(S)(u, v) = 1 if |S ∩{u, v}| = 1 and
δ(S)(u, v) = 0 otherwise. Since the proof is a similar as the proof in Proposition
4. 2. 2 in [12], we omit the proof of the next proposition.

Proposition 1. An countably infinite graph G has an �1-embedding φ : v �→
(φ1(v), . . . , φd(v)) if and only if there exist a set of collections of cut semimetrics
{C1, . . . , Cd} where Cj = {δ(Sj,k)}k∈Z with · · · ⊆ Sj,−1 ⊆ Sj,0 ⊆ Sj,1 ⊆ · · ·

76 N. Fu, A. Hashikura, and H. Imai

and a set of collections of non-negative real numbers {Λ1, . . . , Λd} where Λj =
{λj,k}k∈Z such that |φj(u)−φj(v)| =

∑
k∈Z λj,kδ(Sj,k)(u, v) for each j = 1, . . . , d

and u, v ∈ G, and for each Cj and for each u(y) ∈ G there exists Sj,k with K ∈ Z

with u(y) �∈ Sj,K and u(y) ∈ Sj,K′ for all K ′ > K.

The decomposition of dG into a non-negative combination of cut semimetrics
is called an �1-decomposition of dG. Note that for each cut semimetric δ(S) in
the �1-decomposition, S and its complement S̄ are both convex. If G is �1-rigid,
this decomposition is unique. Throughout this section, (G, T) is an arbitrary
�1-embeddable connected periodic graph, S is a set of vertices, φ : v(z) �→
(φ1(v(z)), . . . , φd(v(z))) is an �1-embedding of G into Zd with scale λ.

Lemma 1. If (G, T) is planar and a geodesic fiber (F, 〈t〉) is in (G, T), then
each vertex in (G, T) is contained in some geodesic fiber parallel to (F, 〈t〉).

Proof. If there is no geodesic fiber parallel to (F, 〈t〉) containing a vertex v(z)
in (G, T), then one of the follows holds for G/T : (a) there is no cycle containing
v with net voltage in Ext(t) and shortest reduced length, or (b) such a cycle
exists and there is a combination of cycles containing a vertex in the cycle with
individual net voltages not all in Ext(t), reduced length equal to the cycle. In
F/〈t〉, there is a cycle C with net voltage t′ with t′ ∈ Ext(t) and shortest reduced
length, beginning at a vertex u. If (a) holds, then for all a ∈ Z, dG(v(z), v(z +
at′)) > dG(u(z), u(z+at′)). Thus for all a ∈ Z, φ(v(z))−φ(u(z)) �= φ(v(z+at′))−
φ(u(z+at′)) since otherwise λdG(v(z), v(z+at′)) = ‖φ(v(z))−φ(v(z+at′))‖�1 =
‖φ(u(z)) − φ(u(z + at′))‖�1 = λdG(u(z), u(u + at′)). On the other hand, since
dG(v(z), u(z)) = dG(v(z + at′), u(z + at′)) for all a ∈ Z by periodicity of (G, T),
φ(v(z))−φ(u(z)) = φ(v(z+at′))−φ(u(z+a′t′)) for some a′ ∈ Z. Contradiction.
If (b) holds, then as shown in the proof of Lemma 4 in [14] the geodesic lifted
from a cycle in the combination of cycles has an intersection with the geodesic
lifted from C. Thus C has a common vertex with the combination of cycles,
contradicting to the assumption that (F, 〈t〉) is a geodesic fiber. ��

For each geodesic fiber (F, 〈t〉), we fix a vertex set q〈t〉(F) of (F, 〈t〉) such that
the subgraph of (F, 〈t〉) induced by it is connected and there is a bijection from
it to the vertex set of the labeled quotient graph of (F, 〈t〉). By Corollary 2. 5
in [8], such a vertex set does exist. For a vertex set S of (G, T) and a vector
y ∈ Z2, denote the vertex set {v(z + y) : v(z) ∈ S} by S + y. By Theorem 4. 1
in [13], for each a ∈ Z, the vertex set q〈t〉(F) + at is contained in (F, 〈t〉). Let
F≥a := ∪b≥a(q〈t〉(F) + bt) and F<a := F \ F≥a.

Lemma 2. If S and S̄ are both convex, then for some a ∈ Z≥0 one of F ∩ S
and F ∩ S̄ contains F≥a or F<a.

Proof. Since the labels on the edges of the labeled quotient graph of (F, 〈t〉) are
constants, for some k ∈ Z>0, the graph (F, 〈t〉) \ (Vk + at) have two connected
components F1 and F2 for all b ∈ Z≥0, where Vk = ∪k

i=0(q〈t〉 + it). Assume that
Vk+at is contained by S for some a ∈ Z. Since the intersection of two geodesically

Proximity and Motion Planning on �1-Rigid Planar Periodic Graphs 77

complete graphs is again geodesically complete, F ∩S̄ cannot contain the vertices
both from F1 and from F2. Thus S contains one of F1 and F2, and thus it also
contains either F≥a or F<a. The same argument holds for the case Vk + at ⊂ S̄.

Assume that Vk +at is not contained by S for any a ∈ Z. Let l be the number
of cycles with net voltage in Ext(t) in the quotient graph of the geodesic fiber
(F, 〈kt〉) and L be the maximum length of the cycles.There exists a vertex v(z)
and v(z′) such that dG(v(z), v(z

′)) > lL and both of them are contained in one of
F ∩S or F ∩S̄. Without loss of generality, assume v(z), v(z′) ∈ F ∩S. Since F ∩S
is geodesically complete and dG(v(z), v(z

′)) > L, F∩S contains all shortest paths
between v(z) and v(z′) including the one lifted from a cycle C(0) in the labeled
quotient graph. For each vertex u ∈ C(0), there exist two vertices u(y), u(y′)
contained in the shortest path lifted from a cycle C(0) with dG(u(y), u(y

′)) >
(l − 1)L. Again since F ∩ S is geodesically complete and dG(u(y), u(y

′)) > L,

F ∩ S contains the shortest paths lifted from the cycles C
(1)
1 , . . . , C

(1)

l(1)
which

intersects C(0) and are contained in the labeled quotient graph. By enumerating
the cycles which lifts to the shortest paths contained in F ∩S recursively in this
manner, we finally obtain the set of cycles. Since F∩S is geodesically complete, it
also contains all cycles with zero net voltages providing short-cuts. By combining
these cycles, we obtain a labeled quotient graph of a geodesic fiber (F ′, 〈s〉) along
the direction parallel to (F, 〈t〉). By the assumption, F ′ is properly contained by
F . This contradicts to the minimality (F, 〈t〉). ��

By Lemma 2, if S and S̄ are convex and a geodesic fiber (F, 〈t〉) is not con-
tained in S or S̄, then (F ∩ S) � (F ∩ S̄) is a partition of F such that (F ∩ S)
contains one of F≥a or F<a′ and (F ∩ S̄) contains the other, for some a, a′ ∈ Z.
We denote the one containing F≥a by F+ and the other by F−.

Lemma 3. For two parallel geodesic fibers (F (1), 〈t〉) and (F (2), 〈s〉), if S is

convex and S ∩ F (1) is F
(1)
+ (resp. F

(1)
−), then S ∩ F (2) is F

(2)
+ (resp. F

(2)
−).

Proof. Without loss of generality, we assume that (S∩F (1)) = F
(1)
+ and (S∩F (2))

is F
(2)
− . Since the vertex set of F (1) ∪ F (2) is convex, the vertex set of S ∩

(F (1) ∪ F (2)) is also convex, and thus any shortest path P between u(y) ∈ F (1)

and v(z) ∈ F (2) is the concatenation of a path connecting u(y) and u′(y′),
an edge (u′(y′), v′(z′)) and a path connecting v′(z′) and v(z) where u′(y′) ∈
F (1) and v′(z′) ∈ F (2). Suppose for some u(y) ∈ F (1) and v(z) ∈ F (2) there

exist r ∈ 〈t〉 ∩ 〈s〉 such that u(y + r) ∈ F
(1)
+ and u′(y′ + r) �∈ F

(1)
+ . Obviously,

v(y + r) ∈ S ∩ F (2), contradicting to the fact that S ∩ (F (1) ∪ F (2)) is convex
since the path P + r is a shortest path connecting u(y + r) and v(y + r) not
containing u′(y′ + r). Thus there exists L > 0 such that for all u(y) ∈ F (1) and
v(z) ∈ F (2), dG(u(y), u

′(y′)) < L. Taking u(y) and v(z) so that dG(u(y), v(z))
is sufficiently large, the shortest path connecting v′(z′) and v(z) contains two

verticesw(x), w(x+r) such that u′(y′+r) �∈ F
(1)
+ . By the correctness of Algorithm

4. 1 in [13], dG(u
′(y′), u′(y′ + r)) = dG(w(x), w(x + r)). By the periodicity,

dG(u
′(y′), w(x)) = dG(u

′(y′+r), w(x+r)). Thus the concatenation of the shortest

78 N. Fu, A. Hashikura, and H. Imai

paths connecting u(y) and u′(y′), u′(y′) and u′(y′ + r), u′(y′ + r) and w(x+ r),
and w(x + r) and v(z) is also a shortest path. This again contradicts to the
convexity of S ∩ (F (1) ∪ F (2)). ��

Lemma 4. If (G, T) is planar and S and S̄ are not empty, then each of S and
S̄ contains at least one geodesic fiber.

Proof. Let ∼ be the equivalence relation on the set of geodesic fibers such that
(F (1), 〈t〉) ∼ (F (2), 〈s〉) if and only if (F (1), 〈t〉) and (F (2), 〈s〉) are parallel. By
Theorem 4. 1 in [13], the number of the labeled quotient graphs of the geodesic
fibers is finite. Thus the quotient set Q of the set of all geodesic fibers by ∼ is
finite. By Theorem 4. 2 in [13], Q contains at least two elements, denoted by
A1 and A2. Without loss of generality, assume S does not contain any geodesic
fiber. Then by Lemma 1 and Lemma 3, for i = 1, 2, (a) F ∩ S = F+ for all
geodesic fiber F ∈ Ai, or (b) F ∩ S = F− for all geodesic fiber F ∈ Ai. Without
loss of generality, assume that (a) holds for i = 1, 2. Let (F (1), 〈t〉) ∈ A1. By

Lemma 1, each vertex in F
(1)
+ is also contained in F

(2)
+ where (F (2), 〈s〉) is some

geodesic fiber in A2. Thus for sufficiently large K ∈ Z>0, F
(1)
+ −Ks is contained

in S̄. Since F
(1)
− is contained in S̄, this contradicts to Lemma 3. ��

By Lemma 1, either two parallel geodesic fibers (F1, 〈t〉) and (F2, 〈s〉) have an
edge (u(y), v(z)) on (G, T) with u(y) ∈ F1 and v(z) ∈ F2, or they do not have
such an edge. If two parallel geodesic fibers have such an edge, we say that they
are neighboring. The next proposition is easy to verify.

Proposition 2. If (G, T) is planar, then a geodesic fiber has exactly two neigh-
boring geodesic fibers, and G \ F has two connected components.

We denote the vertex sets of the connected components in Proposition 2 by

G
(F)
1 and G

(F)
2 . By Proposition 2, Lemma 1, Lemma 3 and Lemma 4, the next

corollary can be obtained.

Corollary 1. If (G, T) is planar and S, S̄ �= ∅ are convex, then S = G
(F)
1 and

S̄ = G \G(F)
1 for some geodesic fiber (F, 〈t〉).

Theorem 2. For a vertex u in G/T , let φ(u) : Z2 → Zd, z �→ φ(u(z)). If (G, T)
is planar and �1-rigid, then for each u, the point set φ(u)(Z2) is on a 2 dimen-
sional hyperplane in Zd.

Proof. Without loss of generality, we can assume that φ(u)(0) = 0. It suffices to
show that for any y, z ∈ Z2, φ(u)(y + z) = φ(u)(y) + φ(u)(z) and that for any
z ∈ Z2, φ(u)(−z) = −φ(u)(z). Let {C1, . . . , Cd} with Cj = {δ(Sj,k)}k∈Z be the
set of collection of cut semimetrics and {Λ1, . . . , Λd} with Λj = {λj,k}k∈Z the
set of collection of non-negative reals in Proposition 1. For a vector z′ ∈ Z

2, let
(G(z′), T) be the periodic graph with the vertex set {v(z + z′) : v(z) ∈ G}
and the edge set {(u(y + z′), v(z + z′)) : (u(y), v(z)) ∈ G}. Then dG(z′) =∑d

j∈1

∑
k∈Z λj,kδ(Sj,k+z′). Since G(z′) is isomorphic to G and (G, T) is �1-rigid,

Proximity and Motion Planning on �1-Rigid Planar Periodic Graphs 79

if Sj,k + z′ = Sj′,k′ then λj,k = λj′,k′ . By Corollary 1, if Sj,k + z′ = Sj′,k′ then
j = j′, since otherwise by using {C1, . . . , Cd, (Cj∪Cj′)}\{Cj, Cj′} an �1-embedding
into Zd−1 can be constructed. Thus {Sj,k+z′}k∈Z = {Sj,k}k∈Z for all j = 1, . . . , d
and all z′ ∈ Z2. This means that φ(u)(z + z′) − φ(u)(z′) = φ(u)(z) − φ(u)(0) =
φ(u)(z) for all z′ ∈ Z2. Therefore, φ(u)(y+ z) = φ(u)(y+ z)−φ(u)(z)+φ(u)(z) =
φ(u)(y) + φ(u)(z). By a similar discussion as to the graph with the vertex set
{v(−z) : v(z) ∈ G} and the edge set {(u(−y), v(−z)) : (u(y), v(z)) ∈ G}, which
is isomorphic to G, φ(u)(−z) = −φ(u)(z) can be shown. ��

4 Voronoi Diagrams on �1-Rigid Planar Periodic Graphs

4.1 Voronoi Diagrams on the Plane under a Convex Piecewise
Linear Function Induced by a Set of Straight Lines

In this section, we give an O(|S| log |S|) time algorithm for the Voronoi diagrams
with respect to the point set S on the plane which is used in the nearest neighbor
search data structure on �1-embeddable planar periodic graphs later.

Definition 7. For a convex piecewise linear function fL : R2 → R+ such that
fL(0, 0) = 0 and the partition of its domain is indiced by the arrangement of d
lines in L = {l1, . . . , ld}, define a distance function DfL : R2 × R2 → R+ by
DfL(p, q) = fL(q− p). DfL is called a convex piecewise linear distance function.

Barequet, Dickerson and Goodrich showed an O(|S| log |S|) time algorithm for
Voronoi diagrams on the plane under a convex polygon-offset distance function,
which is a distance function based on offsetting convex polygons [3]. They showed
that the convex polygon-offset distance function satisfies the conditions necessary
to apply the theory of the abstract Voronoi diagram [19]. Our convex piecewise
linear function is also a distance function based on offsetting convex polygons,
and thus their proofs for the Euclidean topology, the properties of the bisectors
and the completeness of the convex polygon-offset distance function are valid
also on our convex piecewise linear function. In Lemma 5 and Lemma 6, we
prove remaining two conditions which are required by the theory of the abstract
Voronoi diagrams, but are not shown by the proofs in [3].

Lemma 5. For every pair of points p, q ∈ R2 there exists a point r �∈ {p, q} such
that DfL(p, r) +DfL(r, q) = DfL(p, q).

Proof. Without loss of generality, we assume p = 0. Denote the line segment
connecting p and q by p̄q. If p̄q is contained in a region induced by L, then
DfL(p, r) +DfL(r, q) = DfL(p, q) for all r ∈ p̄q and the theorem holds. Assume
that p̄q lies among more than one regions induced by L. Since the graph of fL
is the boundary of an upper envelope of hyperplanes, there must exist a point
s ∈ R2 such that DfL(p, s) > DfL(p, q). Because DfL(s, q) ≥ 0, DfL(p, s) +
DfL(s, q) > DfL(p, q). Let s

′ �∈ {p, q} be a point in p̄q. Again since the graph of
fL is the boundary of an upper envelope of hyperplanes,DfL(p, s

′)+DfL(s
′, q) <

DfL(p, q). There exists a finite curve C ⊂ R
2 connecting s and s′ such that p, q �∈

80 N. Fu, A. Hashikura, and H. Imai

C. Since DfL is a continuous function, the function t �→ DfL(p, t) + DfL(t, q)
is also a continuous function. Thus in C there must exist a point r such that
DfL(p, r) +DfL(r, q) = DfL(p, q). ��
Definition 8. Let α, α ∈ [0, π] and α �= α. A distance function D has (α, α)-
support if for every pair of points p, q such that the line passes through them has
the slope α, all points r that satisfy D(p, r) ≤ D(p, q) lie on the same side of l
as p, where l is the line with slope α that passes through q.

Lemma 6. There exists angles α, β and ᾱ �= β̄ such that DfL has both (α, ᾱ)-
support and (β, β̄)-support.

Proof. By the definition of fL, at least one line l in L passes through the origin.
Without loss of generality, we can assume that l has the slope γ in [0, π]. Let P
be the graph of the function fL. By the convexity of fL, P is a convex polyhedron
in R3. The projection of each edge of P onto the domain plane corresponds to
one of the line segments induced by L. Let L be the union of the edges in P
whose projection into the domain plane is in l. Since the number of lines in
L is finite, there is an unbounded edge in L. The two faces F1 and F2 of P
incident to it are infinite. Let α (resp. β) be the slope of the line obtained as the
intersection of the hyperplane containing F1 (resp. F2) and the domain plane.
Since P is a convex polyhedron, for any point s = (s1, s2, s3) ∈ L, the polyhedron
P ∩ (x, y, z) : z ≤ s3 is contained in the same side of F1 − s (or F2 − s) as the
origin. This means that for any point q on l, all points r in the domain that
satisfy DfL(0, r) ≤ DfL(0, q) lies on the same side of the line passing through
(s1, s2) with slope α (resp. β). Since DfL is invariant under any translation, DfL

has (γ, α)-support and (γ, β)-support.

Proposition 3 and Proposition 4 show the time complexity of each step in the
algorithm for the abstract Voronoi diagrams.

Proposition 3. For every p, q ∈ R2, DfL(p, q) can be computed in O(d) time.

Proof. We can compute DfL(p, q) = fL(q−p) as the following. First, among the
regions induced by L, determine in which region the point q − p is. This can be
done in O(d) time. The value fL(q − p) can be computed in a constant time by
computing the value of the linear function endowed with the region. ��
Proposition 4. For every p, q, r ∈ R2, the point equidistant from p, q, r accord-
ing to DfL in O(23d) time.

Proof. We show that a point s ∈ R
2 satisfying fL(s−p) = fL(s− q) = fL(s− r)

can be found in O(23d) time by the following brute force search. Assume that P
(resp. Q, R) be the region induced by L such that s− p (resp. s− q, s− r) is in
P (resp. Q, R). Denote the affine function endowed with P (resp. Q, R) by fP

(resp. fQ, fR). Solve the system of equations fP (s−p) = fQ(s−q) = fR(s−r).
If it has a solution, the solution is the point equidistant from p, q, r. By trying
all possible combinations of the three regions P,Q,R, we can find the point
equidistant. The d straight lines in L induce at most 2d regions in the plane.
Thus the number of the combinations of three regions is at most (2d)3. ��

Proximity and Motion Planning on �1-Rigid Planar Periodic Graphs 81

Combining the results in [3], Lemma 5, Lemma 6, Proposition 3 and Propo-
sition 4, by Theorem 5. 1 in [19], we obtain the next theorem.

Theorem 3. Let L be a set of d straight lines and DfL be a convex piecewise
linear distance function. Regarding d as a constant, the Voronoi diagram with
respect to the point set S under DfL can be computed in O(|S| log |S|) time.

4.2 Nearest Neighbor Data Structure on �1-Rigid Planar Periodic
Graphs

Let (G, T) be an �1-rigid planar periodic graph with an �1-embedding φ with
scale λ and V = {1, . . . , n} the vertex set of the labeled quotient graph. Let
S ⊂ V × Z

2 be the set of sites. In this section, we regard n and d as a constant
endowed with a given (G, T). The main purpose of this section is to show that an
O(log |S|) query time data structure for the nearest neighbor problem with sites
S on (G, T) can be constructed in O(|S| log |S|) time, using n2 Voronoi diagrams
on the plane under a convex piecewise linear function. First we see the geometric
property of the path-metric dG of (G, T). For v ∈ V , let φ(v) : z �→ φ(v(z)) =

(φ
(v)
1 (z), . . . , φ

(v)
d (z)). For u, v ∈ V , let fu→v(z) = dG(u(0), v(z)) : Z

2 → Z≥0.

Lemma 7. For any u, v ∈ V, the function fu→v(z) can be naturally extended to
a piecewise linear function with regions induced by d straight lines on the plane.

Proof. Without loss of generality, we assume φ(u)(0) = 0. Then fu→v(z) =
1
λ(|φ

(v)
1 (z)|+· · ·+|φ(v)

d (z)|). By Proposition 2, each φ
(v)
i : Z2 → Z can be naturally

extended so that it has the domain R2 and the range R. Thus, fu→v(z) can also
be extended to a piecewise linear function in which the domains correspond to

the division of the plane by the d lines φ
(v)
1 (z) = 0, . . . , φ

(v)
d (z) = 0. ��

With some abuse of notation, in the rest of this section we will refer to these

expansions in the proof of Lemma 7 whenever we write φ
(u)
i or fu→v.

Lemma 8. For any u, v ∈ V, the graph of the function fu→v is the boundary of
the upper envelope of hyperplanes in R3.

Proof. Without loss of generality, we assume φ(u)(0)=0. Since |c|=max{−c,+c},
for any p ∈ R2, fu→v(p) =

∑d
i=1 |φ

(v)
i (p)| = 1

λ{
∑d

i=1 max{−φ
(v)
i (p),+φ

(v)
i (p)}}.

Since each φ
(v)
i is an affine function on R2, the lemma follows. ��

Let r = argminfu→v(p). Let us defineDu→v : R2×R2 → R≥0 byDu→v(r, p) =
fu→v(p+r)−fu→v(r) andDu→v(p, q) = Du→v(r, q−p+r). Note thatDu→v(p, q)=
Du→v(0, q−p) for all p, q ∈ R2, and Du→v is normalized so that Du→v(p, p) = 0.

Lemma 9. For u, v ∈ V, Du→v is a convex piecewise linear distance function.

Proof. Let g(p) = fu→v(p+ r)− fu→v(r). Since Du→v(p, q) = g(q− p), g(0) = 0
and the graph of g is a translation of the graph of fu→v, the lemma follows by
Lemma 7 and Lemma 8. ��

82 N. Fu, A. Hashikura, and H. Imai

Remarkably, the next lemma holds and we can also use the Voronoi diagram
algorithm for a convex distance function [6].

Lemma 10. For any u ∈ V, Du→u is a convex distance function.

Proof. For a given c ∈ R≥0, we denote the convex polygon {p ∈ R2 : Du→u(0, p) =
c} by Pc. To show the lemma, we verify that for any c1, c2 ∈ R≥0 the con-
vex polygons Pc1 and Pc2 are congruent. Without loss of generality, assume
φ(u)(0) = 0. Since fu→u(0) = 0 by the definition of fu→u, Du→u(0, p) =

fu→u(p) =
∑d

i=1 |φ
(u)
i (p)|. Hence for k = 1, 2

φ(u)(Pck) = {φ(u)(p) : p ∈ R
2, ‖φ(u)(p)‖�1 = ck}. (1)

Let H = {φ(u)(p) ∈ Rd : p ∈ R2}. Since φ(u) is an affine function on R2 and
φ(u)(0) = 0, H is a 2-dimensional hyperplane passing through the origin in Rd.
The point set φ(u)(Pck) is the intersection ofH and the boundary of the polytope
Qck := {a ∈ Rd : ‖a‖�1 ≤ ck}. Since the polytopes Qc1 and Qc2 are congruent,
the intersections of H and them are also congruent. By (1), each Pck is an affine
transformation of the intersection of H and Qck . Thus the claim follows. ��

Example 2. Consider the tiling (4.6.12) and the labeling to its vertex set shown
in Figure 2. Vertices in the same period are indicated by gray faces. Coordinates
are omitted except the vertices v1(z). Its �1-embedding into Z6 is given in [11].
With appropriate translation in Z6, assume that the �1-embedding φ satisfies
φ(v1(0)) = 0. Then, for z = (x, y) ∈ Z2, φ(v1(z)) = (2x−y, x−y, x−2y, y, x+y, x)
and φ((v4, z)) = (2x−y+1, x−y, x−2y+1, y, x+y+1, x). For p = (p1, p2) in R2,
Dv1→v1(0, p) = |2p1− p2|+ |p1 − p2|+ |p1 − 2p2|+ |p2|+ |p1 + p2|+ |p1|. The loci
{p ∈ R2 : Dv1→v1(0, p) = c} for c = 0, 1, 2, 3, 4, 5, 6 are shown in Figure 3. The
2-dimensional hyperplane containing the point set {φ(v1(z)) : z ∈ Z6} passes
the origin and by Lemma 10 Dv1→v1 is a convex distance function. On the other
hand, Dv1→v4(0, p) = |2p1 − p2 +1|+ |p2|+ |p1 − 2p2+1|+ |p1 − p2|+ |p1 + p2 +
1|+ |p1| − 2. The loci of {p ∈ R2 : Dv1→v4(0, p) = c} for c = 0, 1, 2, 3, 4, 5, 6 are
shown in Figure 4. In this case, the 2-dimensional hyperplane H containing the
point set {φ(v4(z)) : z ∈ Z6} does not pass the origin. Thus the topology of the
intersection of the polytope {a ∈ Rd : ‖a‖�1 ≤ c} and H does change as c varies.
This is why the distance Dv1→v4 is not a convex distance function.

Theorem 4. An O(n log |S|) query time data structure for the nearest neighbor
search for the site set S on (G, T) can be constructed in O(n2|S| log |S|) time.

Proof. For v ∈ V , let Sv := S ∩ {v(z) : z ∈ Z2}. By N(u, v), we denote the
data structure which answers the nearest vertex in Sv from a given query vertex
in {u(y) : y ∈ Z2}. If we have N(u, v) for all u, v ∈ V , the nearest neighbor
query with respect to the sites S on (G, T) can be dealt with as the follow-
ing. For a given query point u(y), compute the nearest neighbor vertices using
N(u, 1), . . . , N(u, n). The nearest neighbor vertex among them is the nearest
neighbor vertex to u(y) among S. Consider the Voronoi diagram V (u, v) with
respect to the sites Tv := {z ∈ R

2 : v(z) ∈ S} on the plane under Du→v. By

Proximity and Motion Planning on �1-Rigid Planar Periodic Graphs 83

Fig. 2. The tiling (4.6.12) Fig. 3. Dv1→v1 Fig. 4. Dv1→v4

the definition of Du→v, if V (u, v) answers the site z′ ∈ Tv for the query point
y, then the vertex v(z′) ∈ Sv is the nearest site from the query vertex u(y) on
(G, T). Thus V (u, c) can be used as the data structure N(u, v). By Corollary 9
and Theorem 3, N(u, v) can be constructed in O(|S| log |S|) time. ��

Finally, we mention to the application of our data structure to the minimum-
weight bipartite matching. Let D : S × S → R be a distance on the point
set S. Vaidya showed that if an O(log k) query time data structure for the
nearest neighbor search problem with additive weight can be constructed in
O(k log k) time, the minimum-weight bipartite matching of 2m points in S can
be computed in O(m2.5 logm) time [20]. Our construction of the data structure
for periodic graphs is available in the additive weighted case, using additively
weighted Voronoi diagrams. Thus we have the next proposition.

Proposition 5. If the Voronoi diagram with respect to k sites with additive
weights under a convex piecewise linear distance function can be constructed in
O(k log k) time, then the minimum-weight bipartite matching of 2m points in an
�1-rigid planar periodic graph can be computed in O(m2.5 logm) time.

5 Nearest Pair Problem on �1-Embeddable Tilings

In this section we show an O(m2 log(d+1)m) time algorithm for the minimum-
weight bipartite matching problem in d-dimensional �1 normed space by pointing
out that Vaidya’s algorithm for the minimum-weight bipartite matching problem
on the �1 plane can be naturally extended to d-dimensional case.

Definition 9. Let S, T be point sets in d-dimensional space. For each point p in
S ∪ T a non-negative integer weight w(p) is assigned. Denote by shortest[S, T]
the pair of points (s, t) ∈ S × T which minimizes ‖s − t‖�1 − w(s) − w(t). The
nearest pair problem is the problem to find shortest[S, T] for given S and T .

Let S, T be the point sets in d-dimensional �1-space. Vaidya’s O(m2 log3 m)
time algorithm for the minimum-weight bipartite matching in �1-plane [20] sug-
gests that with a data structure which maintains shortest[S, T] such that it can
answer a nearest pair query in O(1) time and a point in S or T can be inserted in

84 N. Fu, A. Hashikura, and H. Imai

(or deleted from) it in O(log(d+1)m) time, we can construct an O(m2 log(d+1) m)
time algorithm for the minimum-weight bipartite matching problem in the d-
dimensional �1 normed space. In the rest, we construct such data structure based
on Vaidya’s construction of the data structure.

For ad ∈ R, let hd(ad) be the hyperplane {(x1, . . . , xd) ∈ Rd : xd = ad} and

by H
(+)
d (ad) and H

(−)
d (ad) denote the two half-spaces defined by hd(ad). For the

nearest pair s ∈ S and t ∈ T , one of the follows holds: (1) s ∈ S ∩H
(+)
d (ad) and

t ∈ T ∩H(+)
d (ad), (2) s ∈ S∩H(−)

d (ad) and t ∈ T ∩H(−)
d (ad), (3) s ∈ S∩H(+)

d (ad)

and t ∈ T ∩H
(−)
d (ad), and (4) s ∈ S ∩H

(−)
d (ad) and t ∈ T ∩H

(+)
d (ad).

By solving the nearest pair problem for all these 4 special cases, we can solve
the original one. Since the case (1) and the case (2) are problems made by
partitioning the space where the point sets exist, it can be solved by divide-
and-conquer method. To solve the case (3) (or the case (4)), let us consider
the projection pd−1 : Rd → Rd−1, (x1, . . . , xd−1, xd) �→ (x1, . . . , xd−1) of the

points in S ∩ H
(+)
d (ad) and T ∩ H

(−)
d (ad). With update of the weights of the

points w(p) := w(p) − d(p) where d(p) is the distance from the point p ∈ Rd to
hd(ad), the case (3) (or the case (4)) can be solved by solving the nearest pair
problem with respect to the projected points, because the distance between two
points are measured by �1-distance and the distance is adjusted by the updates
in the weights. By considering the four problems and the projection to lower
dimensional space recursively, finally we reach the d = 1 case.

In d = 1 case, again the case (1) and the case (2) can be solved recursively. The

case (3) (or the case (4)) can be solved by finding the point s ∈ H
(+)
1 (a1) ⊂ R

which minimizes ‖s − a1‖�1 − w(s) and the point t ∈ H
(−)
1 (a1) ⊂ R which

minimizes ‖t − a1‖�1 − w(t). Corresponding data structure can be made by d
level nested binary trees, and priority queues storing the points in S (resp. T)
with priority ‖s−a1‖�1−w(s) (resp. ‖t−a1‖�1−w(t)) so that it store the nearest
pair at its root node. The addition (or deletion) of a point in this data structure

can be done in O(log(d+1)) time since it takes O(logd n) time for the binary
search of d level nested tree and O(log n) time for the updates of the priority
queue. Note that the space complexity of the data structure is O(n logd−1 n).

Thus we have the next theorem.

Theorem 5. Let S, T be point sets in the d-dimensional �1 normed space, with
|S| = |T | = m. The minimum-weight bipartite matching of S and T can be

computed in O(m2 log(d+1)m) time.

Provided an �1-embedding of a periodic graph, the minimum-weight bipartite
matching of 2m points on the tiling also can be solved in O(m2 log(d+1) m)).

6 Motion Planning Problem on �1-Embeddable
Archimedean Tilings

Consider the following reconfiguration problem on a periodic graph (G, T): let
A and D be n-element subsets of the vertices of (G, T) respectively. The aim of

Proximity and Motion Planning on �1-Rigid Planar Periodic Graphs 85

the reconfiguration problem is moving all atoms in A to their destinations in D
by minimum number of moving, with the rules that we can move an atom to
adjacent site in one move and more than one atom cannot be on the same site.
Using the algorithm shown by Călinescu, Dumitrescu and Pach [9], the size of
the output sequence of moves equals to the sum of the cost of the minimum-
weight bipartite matching between A and B. Our motion planning problem is
the problem of finding a more compact representation of the sequence of moves
which is a solution to the reconfiguration problem, under the assumption that a
minimum-weight bipartite matching between A and D is given.

6.1 1-Dimensional Orthogonal Lattice Case

In this subsection we consider a motion planning problem in the case that all m
atoms and n destinations exist on a path. Karp and Li [2] proved that the match-
ing in which the i-th atom from the left is matched with the i-th destination
from the left is a minimum-weight bipartite matching when m = n. The solution
to the motion planning problem can be described using such minimum-weight
bipartite matching as follows: Move the atom first if the destination assigned to
it is left to it, and move the atom last if the destination assigned to it is right
to it. Karp and Li [2] also showed O(n logn) algorithm for the minimum-weight
bipartite matching on the case m > n. Thus the motion planning problem on a
path can be solved in O(n log n) time.

6.2 2-Dimensional Orthogonal Lattice Case

In this subsection, we consider the motion planning problem in 2-dimensional
orthogonal lattice, which is the most fundamental �1-embeddable tiling using the
result of the 1-dimensional case described above. Our strategy is focusing the
rows where the destinations exist and treating them from top to the bottom.

We attach numbers, beginning with 1, to the rows (the columns) on the lattice
from above (from the left). We denote the atom (the destination) which exists
on the row i and the column j by ai,j (by di,j). We denote the atoms which are
assigned to the destinations on the row i and exist on the lower rows than the
row i by LA(i) and the atoms which are assigned to the destinations on the row
i and be not in LA(i) by UA(i).

Lemma 11. Let M be a minimum-weight bipartite matching between A and
D, and A′ := {ai1,j , ai2,j , . . . , aik,j} be a set of atoms which are on the same
column j (ip < iq if p < q.) And suppose D′ := {ds1,t1 , ds2,t2 , . . . , dsk,tk} a set of
destinations matched to the atoms in A′ (sp ≤ sq if p ≤ q.) Then a new matching
M ′ = (M − A′ × D′) ∪ {(ai1,j , ds1,t1), (ai2,j , ds2,t2), . . . , (aik,j , dsk,tk)} is also a
minimum-weight bipartite matching between A and D.

Proof. We divide the matching cost into horizontal cost and vertical cost. The
horizontal cost in M equals to that of M ′ since the atoms in A′ exist on the
same column. The vertical cost between A′ and D′ in M ′ is minimum from the
Karp and Li’s algorithm. Thus the lemma holds. ��

86 N. Fu, A. Hashikura, and H. Imai

Similarly, the following lemma holds.

Lemma 12. Let M be a minimum-weight bipartite matching between A and D,
and D′ := {di,j1 , di,j2 , . . . , di,jk} be a set of destinations which are on the same
row i (jp < jq if p < q.) And suppose A′ := {as1,t1 , as2,t2 , . . . , ask,tk} a set of
atoms matched to the destinations in D′ (sp ≤ sq if p ≤ q.) Then a new matching
M ′ = (M − A′ × D′) ∪ {(as1,t1 , di,j1), (as2,t2 , di,j2), . . . , (ask,tk , di,jk)} is also a
minimum-weight bipartite matching between A and D.

We show the algorithm for finding a new minimum-weight bipartite matching
between atoms and destinations. The input of the algorithm is an arbitrary
minimum-weight bipartite matching M .

Algorithm ASPO

1. For each column j, M := M ′ where M ′ is the minimum weight
matching obtained in lemma 11 by fixingD′ to the set of destinations
which exist on the column j.

2. For each row i, M := M ′ where M ′ is the minimum weight matching
obtained in lemma 12 by fixing A′ to LA(i).

3. For each row i, M := M ′ where M ′ is the minimum weight matching
obtained in lemma 12 by fixing A′ to UA(i).

Theorem 6. With the minimum-weight bipartite matching obtained by ASPO,
we have a solution to the motion planning problem on the 2-dimensional orthog-
onal lattice.

Proof. We use induction to prove this. Let k be the number of the row where
destinations exist. When k = 1 we can move atoms by moving LA(1) first,
then UA(1). We can move atoms in the manner showed in Section 6.1. If an
atom a meets another atom a′ in its move, we can avoid a collision by leaving
a on the position of a′ and moving a′ to the destination of a instead. When
k > 1 and we assume that the theorem holds for all k′ < k. An atom a′ ∈
A− (LA(1) ∪ · · · ∪ LA(k − 1) ∪ UA(1) ∪ · · · ∪ UA(k − 1)) can disturb the move
of another atom a . However, we can reduce the matching cost by swapping
the destination of a and a′, so it contradicts. We can move UA(1), LA(1), . . . ,
UA(k), LA(k). Thus, the theorem holds for any k ≥ 1. ��

The reassignments performed in each step of ASPO can be computed in
O(n′ logn′) time, where n′ is the number of the atoms we focusing on. Thus
the following lemma holds.

Theorem 7. ASPO is an O(n logn) algorithm.

6.3 General Case

Definition 10. Let C be a disjoint cycle cover of the labeled quotient graph of a
periodic graph. We call C an axis-path when each cycle in C lifts to a geodesic.

Proximity and Motion Planning on �1-Rigid Planar Periodic Graphs 87

By T C we denote the set of all geodesics to which an cycle in an axis-path
C lifts. Since C covers the vertices of the labeled quotient graph, T C covers all
vertices of the periodic graph. We remark that the geodesics in T C are parallel.

Definition 11. Let A = {C1, . . . , Ck} be a finite set of axis-paths on a peri-
odic graph (G, T). A is a primitive axis-path set if A satisfies that (a) for any
two vertices u, v in G a shortest path between them can be made by concatenat-
ing at most two geodesics in T C1 ∪ · · · ∪ T Ck and that (b) Any path made by
concatenating more than two geodesics in T C1∪· · ·∪T Ck is not a shortest path.

If a shortest path is made by a geodesic in T Ci (resp. two geodesics from T Ci

and T Ci), then it is said to be made by Ci (resp. Ci and Cj).

Theorem 8. Let (G, T) be a periodic graph which has a primitive axis-path set.
Given an arbitrary minimum-weight bipartite matching between atoms and des-
tinations and the primitive axis-path set, then a solution to the motion planning
problem on can be constructed in O(n2) time, where n is the number of atoms.

Proof. Let {C1, . . . , Ck} be the primitive axis-path set. Denote the given
minimum-weight bipartitematching by {(a1, d1), . . . , (an, dn)}where {a1, . . . , an}
is the set of the atoms and {d1, . . . , dn} is the set of the destinations. We describe
an algorithm for the motion planning problem and the time complexity of each
step.

First, for each s ∈ {1, . . . , n}, compute the axis-path Ci or the axis-paths Ci

and Cj making the shortest path ps between as and ds. This takes O(n) time.
Next, for all non-ordered pair {i, j} ∈ {1, . . . , k}, let Si,j be the set of the

atoms as such that ps is made by Ci and Cj . Let S be the set of the atoms as
such that the shortest path ps is made by one axis-path. For each as ∈ S, do
the followings: Determine the set T of all t ∈ {1, . . . , n} such that pt is made
by two axis-paths and ps ∩ pt �= ∅. If for all t ∈ T the paths pt are made by
the same two axis-paths Ci and Cj , then add as to Si,j . If not, then for all
t ∈ T , the atoms at is on ps. (Indeed, if at is not on ps for some t ∈ T , taking
t′ ∈ T such that pt′ is made by different axis-paths as those making pt, the
matching cost can be reduced by setting (as, ds) := (as, dt), (at, dt) := (at, dt′)
and (at′ , dt′) := (at′ , ds) because of the definition of the primitive axis-path set.)
Suppose ar (r ∈ T) is the nearest atom from ds and pr is made by Ci and Cj . Set
(as, ds) := (as, dr) and (ar, dr) := (ar, ds), and add as to Si,j . This step takes
O(n2) time and after this step, we can assume that for all s ∈ S, if s ∈ Si,j and
{i′, j′} �= {i, j} then s does not have intersection with any path in Si′,j′ .

Then for all s ∈ {1, . . . , n} \ S, determine the set T ′ of all t ∈ {1, . . . , n} such
that ps∩pt �= ∅. Suppose ps is made by Ci and Cj and let P ∈ T Ci and Q ∈ T Cj

be the geodesics making ps respectively. Then by the definition of the primitive
axis-path set, exactly one of the followings holds: Either (a) pt is made only by
Ci or by Ci and Cj′ and the atom at is on P for all t ∈ T , or (b) pt is made only
by Cj or by Ci′ and Cj and the atom at is on Q for all t ∈ T . If (a) holds, for
each t ∈ T ′ let d′t (resp. d′s) be the end of pt ∩ P (resp. ps ∩ P) and move all at
and as to d′t and d′s by the algorithm for the motion planning problem on the

88 N. Fu, A. Hashikura, and H. Imai

path shown in Section V. A. of [15]. Set at := d′t for each t ∈ T ′. If (b) holds,
do a similar operation. This step takes O(n2) time and after this step we can
assume that for all {i, j} �= {i′, j′}, the paths in Si,j do not have intersections
with the paths in Si′,j′ .

As in the paragraph just before Theorem 7 of [15], by ASP i,j
O′ we denote the

algorithm obtained from ASPO, an algorithm for the motion planning problem
on the orthogonal lattice given in [15], by replacing the “rows” and the “columns”
of the orthogonal lattice by the geodesics in T Ci and T Cj . By running ASP i,j

O′

for S(i,j), the moves of the atoms as ∈ S(i,j) to their destinations ds can be
computed in O(n logn) time. Now, by running ASP i,j

O′ for each {i, j}, we can
output the solution to the motion planning problem. This step takes O(k2n logn)
time. Regarding k as a given constant, the time complexity in the statement is
obtained. ��

We next present an algorithm to determine whether an �1-rigid periodic graph
has the primitive axis-path set. For a directed path P := u0, u1, ..., up on an �1-
embeddable graph with vertex set V and the embedding φ : V → Z

m, define the
set Φ(P) := {φ(ui+1)− φ(ui) ∈ Zd : 0 ≤ i < p}.

Proposition 6. On �1-embeddable graph, the next two are equivalent:

1. An directed path P is a shortest path.

2. For all 1 ≤ i, j ≤ p and 1 ≤ l ≤ m, v
(i)
l v

(j)
l ≥ 0 where Φ(P) = {v(1), . . . , v(p)}.

Proof. Let P = u0, . . . , up, φ be the �1-embedding and λ be the scale of �1-
embedding. For each i ∈ {1, . . . , p}, 1

λ‖φ(ui) − φ(ui−1)‖�1 = 1 by the definition
of �1-embedding. P is a shortest path if and only if 1

λ‖φ(up)−φ(u0)‖�1 = p−1 =∑p
i=1

1
λ‖φ(ui)− φ(ui−1)‖�1 . This equation holds if and only if 2 holds. ��

Let (G, T) be an �1-rigid periodic graph with vertex set V and φ : V → Zm be
the embedding and {C1, . . . , Ck} the primitive axis-path set. Fix two axis-paths
Ci, Cj ∈ {C1, . . . , Ck} and two vertices u and v. Denote by S(i, j, u, v) the set of
(x, y) ∈ Z2 such that the shortest path between u(0, 0) and v(x, y) is made by
Ci and Cj . By some abuse of the notations, for a path p, by φ(p) we denote the
image of the vertices in p by φ.

Proposition 7. On �1-rigid planar periodic graph, S(i, j, u, v) is computable.

Proof. We give a sketch of an algorithm. Let cu ∈ Ci (resp. cv ∈ Cj) be the cycle
containing u (resp. v) and pu (resp. pv) be the geodesic to which cu (resp. cv)
lifts. Let w1 = u(0, 0), . . . , wk (resp. w′

1 = v(x, y), . . . , w′
k′) be a subpath of pu

(resp. pv) such that k (resp. k′) be the length of cu (resp. cv). By Proposition 2,
φ(pu) = {φ(wi)+z(φ(wk)−φ(w1)) : i ∈ {1, . . . , k}, z ∈ Z} and φ(pv) = {φ(w′

i)+
z(φ(w′

k′) − φ(w′
1)) : i ∈ {1, . . . , k′}, z ∈ Z}. By solving linear equations, a com-

mon point of φ(pu) and φ(pv) can be computed as a function of x and y. Thus also

Proximity and Motion Planning on �1-Rigid Planar Periodic Graphs 89

a common vertex r(x′, y′) can be computed as a function of x and y. Using
Proposition 6, we can determine the set of x, y such that the path from u(0, 0)
to v(x, y) via r(x′, y′) along pu and pv is a shortest path. ��

Now we present an algorithm which outputs all the sets of axis-paths on an
�1-rigid periodic graph (G, T) satisfying the condition (a) in Definition 11. Let
Q be the quotient graph. First enumerate all disjoint cycle cover of Q consisting
of simple cycles which can be lifted to geodesics. Denote by A the set of enu-
merated disjoint cycle covers. Let S be the set of all subsets of A. Then for each
{C1, . . . , Ck} ∈ S, check whether ∪i,j∈{1,...,k}S(i, j, u, v) = Z2 holds for all two
vertices u, v ∈ Q. If the result of the check is true, then output {C1, . . . , Ck}.

For a set of vectors H , by −H we denote the set of vectors {−h : h ∈ H}. Let
c be a cycle of length k on the quotient graph which can be lifted to a geodesic p.
For any subpath p′ and p′′ of p with length k, {Φ(p),−Φ(p)} = {Φ(p′),−Φ(p′)}.
We denote this pair of vectors by {Vc,−Vc}. Using the next proposition, we
can determine whether the set of axis-paths output by the previous algorithm
satisfies the condition (b) in Definition 11.

Proposition 8. Let {C1, C2, . . . , Cr} be a set of axis-paths with r ≥ 3. On �1-
rigid periodic graph embeddable into Zm, the followings are equivalent:

1. {C1, C2, . . . , Cr} does not satisfy the condition (b) in Definition 11.

2. For some set of indices I ⊂ {1, . . . , r} with |I| ≥ 3 and cycles ci ∈ Ci where
i ∈ I, there exists a set of vector sets {Ui : Ui ∈ {Vci,−Vci}, i ∈ I} such that

for any two vectors v(1), v(2) ∈ ∪i∈IUi and 1 ≤ j ≤ m, v
(1)
j v

(2)
j ≥ 0.

Using the above two algorithms, we can determine whether an �1-rigid periodic
graph has the primitive axis-path set.

Example 3. The tiling (3.4.6.4) shown in Figure 5 is an �1-rigid periodic graph.
The sets of cycles {Q1, Q2}, {Q3, Q4} and {Q5, Q6} are axis-paths. The set of
axis-paths {{Q1, Q2}, {Q3, Q4}, {Q5, Q6}} is a primitive axis-path set.

Example 4. The tiling (3 − 4.6) has no primitive axis-path set. All axis-paths
of (34.6) are shown in (c), (d), (e) of Figure 6. The bold edges of the labeled
quotient graph in (b) are not covered by the quotient graphs in (c), (d), (e).
This fact shows that (34.6) cannot have a primitive axis-path set because the
shortest path using the bold edges cannot be made by (c), (d), (e).

Finally, we examine whether �1-embeddable tilings have primitive axis-path
sets. The results are shown in Table 1. Each column shows the number of tiling
we assign, the vertex type, the �1-embedding of tilings shown in [11] and whether
each tiling has at least one axis-fibers or not from the left. It is turned out that
24 �1-embeddable tilings have at least one primitive axis-path set. All these 24
tilings are embeddable into Z2, Z3 or 1

2Z
3.

90 N. Fu, A. Hashikura, and H. Imai

Fig. 5. (a) is the tiling (3.4.6.4) and (e)
is its quotient graph. (f), (g), (h) are
axis-paths. Each cycle Qi can be lifted
to the geodesic Fi in (b), (c), (d).

Fig. 6. (a) The tiling (34.6). (b) The
labeled quotient graph of (34.6).
(c)(d)(e) The axis-paths of (34.6)

Table 1. Properties of l1-embeddable tilings

No. the vertex type �1-embeddable [11] has axis-path?

1 (44) Z
2 yes

2 (63) Z
3 yes

3 (36) 1
2
Z

3 yes

4 (4.82) Z
4 no

5 (32.4.3.4) 1
2
Z

4 no

6 (33.42) 1
2
Z

3 yes

7 (3.4.6.4) 1
2
Z

3 yes

8 (4.6.12) Z
6 yes

9 (34.6) 1
2
Z

6 no

10 (34.6; 32.62) 1
2
Z

5 no

11 (33.42; 44)1
1
2
Z

3 yes

12 (36; 32.4.3.4) 1
2
Z

6 no

13 (36; 33.42)1
1
2
Z

3 yes

14 (33.42; 44)2
1
2
Z

3 yes

15 (33.42; 3.4.6.4) 1
2
Z

3 yes

No. the vertex type �1-embeddable [11] has axis-path?

16 (36; 33.42)2
1
2
Z

3 yes

17 (36; 33.42; 44)1
1
2
Z

3 yes

18 (33.42; 44; 44)1
1
2
Z

3 yes

19 (36; 33.42; 44)2
1
2
Z

3 yes

20 (36; 33.42; 44)3
1
2
Z

3 yes

21 (36; 33.42; 33.42)1
1
2
Z

3 yes

22 (33.42; 33.42; 44)1
1
2
Z

3 yes

23 (33.42; 44; 44)2
1
2
Z

3 yes

24 (36; 36; 33.42)1
1
2
Z

3 yes

25 (36; 33.42; 44)4
1
2
Z

3 yes

26 (33.42; 33.42; 44)2
1
2
Z

3 yes

27 (36; 33.42; 33.42)2
1
2
Z

3 yes

28 (36; 33.42; 3.4.6.4) 1
2
Z

3 yes

29 (36; 36; 33.42)2
1
2
Z

3 yes

Acknowledgement. The authors are very grateful to Associate Professor
Masayuki Abe of Osaka University for the lecture on his research in nanotech-
nology. Part of this work was supported by the Grant-in-Aid for Grant-in-Aid
for JSPS Fellows (No. 239267) and by the Grant-in-Aid of MEXT.

Proximity and Motion Planning on �1-Rigid Planar Periodic Graphs 91

References

1. Abe, M., Sugimoto, Y., Namikawa, T., Morita, K., Oyabu, N., Morita, S.: Drift-
compensated data acquisition performed at room temperature with frequecy mod-
ulation atomic force microscopy. Applied Physics Letters 90, 203103 (2007)

2. Karp, R., Li, S.-Y.: Two special cases of the assignment problem. Discrete Math-
ematics 13, 129–142 (1975)

3. Barequet, G., Dickerson, M., Goodrich, M.: Voronoi diagrams for convex polygon-
offset distance functions. Discrete and Computational Geormetry 25(2), 271–291
(2001)

4. Chavey, D.: Tilings by regular polygons – ii: A catalog of tilings. Computers &
Mathematics with Applications 17, 147–165 (1989)

5. Chepoi, V., Deza, M., Grishukhin, V.: Clin d’oeil on L1-embeddable planar graphs.
Discrete Applied Mathematics 80(1), 3–19 (1997)

6. Chew, L.P., Drysdale, R.L.: Voronoi diagrams based on convex distance functions.
In: Proceedings of the First Annual Symposium on Computational Geometry, pp.
235–244 (1985)

7. Chung, S.J., Hahn, T., Klee, W.E.: Nomenclature and generation of three-periodic
nets: The vector method. Acta Crystallographica Section A 40, 42–50 (1984)

8. Cohen, E., Megiddo, N.: Recognizing properties of periodic graphs. Applied Ge-
ometry and Discrete Mathematics 4, 135–146 (1991)

9. Călinescu, G., Dumitrescu, A., Pach, J.: Reconfigurations in graphs and grids.
SIAM Jounal on Discrete Mathematics 22, 124–138 (2008)

10. Delgado-Friedrichs, O., O’Keeffe, M.: Crystal nets as graphs: Terminology and
definitions. Journal of Solid State Chemistry 178, 2480–2485 (2005)

11. Deza, M., Grishukhin, V., Shtogrin, M.: Scale-Isometric Polytopal Graphs in Hy-
percubes and Cubic Lattices, ch.9. World Scientific Publishing Company (2004)

12. Deza, M., Laurent, M.: Geometry of Cuts and Metrics. Springer (1997)
13. Eon, J.-G.: Infinite geodesic paths and fibers, new topological invariants in periodic

graphs. Acta Crystallographica Section A 63, 53–65 (2007)
14. Fu, N.: A strongly polynomial time algorithm for the shortest path problem on

coherent planar periodic graphs. In: Chao, K.-M., Hsu, T.-s., Lee, D.-T. (eds.)
ISAAC 2012. LNCS, vol. 7676, pp. 392–401. Springer, Heidelberg (2012)

15. Fu, N., Hashikura, A., Imai, H.: Proximity and motion planning on l1-embeddable
tilings. In: Proceedings of the Eighth International Symposium on Voronoi Dia-
grams in Science and Engineering, pp. 150–159 (2011)

16. Fu, N., Imai, H., Moriyama, S.: Voronoi diagrams on periodic graphs. In: Proceed-
ings of the Seventh International Symposium on Voronoi Diagrams in Science and
Engineering, pp. 189–198 (2010)

17. Iwano, K., Steiglitz, K.: Optimization of one-bit full adders embedded in regu-
lar structures. IEEE Transaction on Acoustics, Speech and Signal Processing 34,
1289–1300 (1986)

18. Karp, R., Miller, R., Winograd, A.: The organization of computations for uniform
recurrence equiations. Journal of the ACM 14, 563–590 (1967)

19. Klein, R., Wood, D.: Voronoi diagrams based on general metrics in the plane. In:
Cori, R., Wirsing, M. (eds.) STACS 1988. LNCS, vol. 294, pp. 281–291. Springer,
Heidelberg (1988)

20. Vaidya, P.M.: Geometry helps in matching. SIAM Journal on Computing 18,
1201–1225 (1989)

Tunnels and Voids in Molecules

via Voronoi Diagrams and Beta-Complexes

Deok-Soo Kim1,2,�, Youngsong Cho2, Jae-Kwan Kim2, and Kokichi Sugihara3

1 Voronoi Diagram Research Center, Hanyang University, 17 Haengdang-dong,
Seongdong-gu, Seoul 133-791, Korea

dskim@hanyang.ac.kr, {ycho,jkkim}@voronoi.hanyang.ac.kr
2 Department of Industrial Engineering, Hanyang University, 17 Haengdang-dong,

Seongdong-gu, Seoul 133-791, Korea
dskim@hanyang.ac.kr

3 Graduate School of Advanced Mathematical Sciences, Meiji University,
Kawasaki, Japan

kokichis@isc.meiji.ac.jp

Abstract. Molecular external structure is important in understanding
molecular interaction with its solvent environment and is useful in de-
veloping drugs. Important examples of external structures are tunnels,
pockets, caves, clefts, voids, etc. This paper presents algorithms to ex-
tract tunnels and voids from molecular structures. The algorithms are
based on the the Voronoi diagram of atoms in molecules and their time
complexity are both O(m) time in the worst case, where m represents the
number of entities in the Voronoi diagram. The algorithms are mathe-
matically correct, computationally efficient, numerically robust, and easy
to implement.

Keywords: Voronoi diagram of spheres, quasi-triangulation, van der
Waals region, simplexes, bounding state, simplicial complex, union of
spheres, union of disks, molecular structure, external structure, beta-
shape, beta-complex.

1 Introduction

Molecular structure determines molecular function. While the notion of molec-
ular structure frequently applies to molecular internal structure, its external
structure is equally important. Molecular external structure usually implies a
cavity such as a tunnel, void, cave, pocket, cleft (or crevice), etc. and is closely
related with important molecular function. For example, potassium and sodium
ions pass through the channel structure (or also called pore) of proteins in cell
membrane; Water molecules passes through the channel structure of aquaporin
protein in cell membrane; Proteins are synthesized in the tunnel structure of
ribosome; Useless proteins are recycled by disassembled in the tunnel structure

� Corresponding author.

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XX, LNCS 8110, pp. 92–111, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Tunnels and Voids in Molecules via Voronoi Diagrams and Beta-Complexes 93

of proteasome; Drugs function by binding at a pocket, void, or tunnel of a recep-
tor molecule such as protein or ribosome. Therefore, the accurate and efficient
recognition of voids, tunnels, and pockets in biomolecules is important.

From a geometric point of view, a tunnel is a hole (penetrating a molecule)
with two or more openings toward the exterior space. A void is an interior cavity
that is not accessible to bulk solvent and is not connected to the infinity. A void
can be either hydrated or free from a solvent molecule. A cave or pocket is a
blind hole with one opening. A pocket has a wider opening compared to a cave.
A cleft (or crevice) can be regarded as a pocket with a stretched wide opening
such as a valley of the Grand Canyon on molecular boundary. The distinction
between tunnels and pockets (including caves and clefts) is topological whereas
that among pockets, caves, and clefts is rather geometrical. From topological
point of view, we thus use the term “pocket” to denote cave and cleft as well,
unless otherwise stated.

In this paper, we present efficient algorithms to recognize molecular tunnels
and voids of van der Waals molecule using the Voronoi diagram, the beta-
complex, and the quasi-triangulation where molecular structure is given. The
tunnels and voids of the offset of molecule can also be recognized by the pre-
sented algorithms. Despite of simplicity, the algorithms are guaranteed to be
mathematically correct, computationally efficient, and numerically robust pro-
vided that the Voronoi diagram of molecule is available. The efficiency and
correctness of the proposed algorithms have been verified by the developed soft-
wares, BetaTunnel and BetaVoid, which are freely available from the Voronoi
Diagram Research Center website [1]. The presented algorithms take O(m) time
in the worst case where m is the number of entities in the Voronoi diagram. The
preliminary version of this paper was presented in the International Symposium
on Voronoi Diagrams in Science and Engineering 2012 [2].

This paper is organized as follows. Section 2 presents literature review; Sec-
tion 3 summarizes the computational constructs necessary for presenting the
algorithms; Section 4 presents the problem definition and the basic theory for
recognizing tunnels and voids in molecules; Section 5 presents the algorithmic
details; Section 6 presents experimental results with some molecular structure
publicized in the Protein Data Bank (PDB) using the implemented program;
Section 7 presents discussions of the proposed algorithms; Then, the paper
concludes.

2 Literature Review

Efforts for understanding molecular external structure were focused mostly on
pockets. We refer to [3] for the brief history and review on the automatic recogni-
tion of pockets. Despite of its importance, computational recognition of molec-
ular tunnels has received relatively less attention compared to other types of
molecular external structure. One of the important reasons was the absence of
an appropriate computational representation of molecular exterior space.

94 D.-S. Kim et al.

The earliest effort of molecular tunnel recognition that we are aware of was the
study by Smart et al. during mid 90s which developed a computational method
for the pore dimension of ion channels [4]. Given an initial location within a
tunnel and the direction of the tunnel, both specified by user, this approach
used the Monte Carlo simulation to recognize the tunnel. This research was
later developed into the software HOLE [5]. Other studies such as VOIDOO by
Kleywegt and Jones [6] and SURFNET by Laskowski [7], where both were based
on a grid-approach, had a similar function but focused more on pockets.

Most related studies on tunnel recognition were reported relatively recently. In
2006, Voss et al. showed, from biologist’s point of view, that tunnel geometry was
important for ribosomal polypeptide in determining biomolecular functions [8].
In 2006, Petrek et al. reported a grid-based method to extract pockets and cav-
ities and developed a software CAVER [9], as a plug-in to PyMOL [10,11], by
tracing routes from buried active sites to the external solvent. After filling the
convex hull of van der Waals molecule, they computed routes from buried active
site to the external to the convex hull using Dijikstra algorithm among the grid
points located outside the molecule. CAVER was also used for analyzing tunnels
in proteins [12]. In 2007, Petrek et al. improved their earlier method using the
ordinary Voronoi diagram of atom center points and reported another software
MOLE [13]. In this study, they first assigned a weight defined by the edge length
to each Voronoi edge and applied the Dijikstra algorithm to find the paths. While
this approach was an improvement over their previous effort, there were still two
limitations: i) the ordinary Voronoi diagram of atom centers was an approxima-
tion to the true molecule, and ii) the method to assign the weight to each edge
is somewhat arbitrary. In 2007, Medek et al. reported an idea meaningful in two
perspectives for tunnel recognition [14]. First, they proposed to use the Voronoi
diagram of molecular atoms to precisely represent molecular structure. Second,
they proposed to use the dual structure of the Voronoi diagram even if they
mistakenly used the Delaunay triangulation instead of the quasi-triangulation.
In 2007, Kozlikova et al. also reported an idea of tunnel extraction using the
ordinary Voronoi diagram of atom center points and the Delaunay triangula-
tion [15]. In 2008, Yaffe et al. reported a method using the alpha-shape (which is
a derivative structure of the ordinary Voronoi diagram of points) and developed
the software MolAxis [16,17,18] which attempted to reflect the size differences
among different atom types by an approximation with a number of identically
sized balls (thus this approach inevitably produced an approximated solution).
In 2008, Ho and Gruswitz used a grid-based approach to tunnel extraction and
developed a software HOLLOW [19]. In 2009, Coleman and Sharp presented a
software CHUNNEL that requires a heavy computational requirement to detect
tunnels [20]. Recently, in 2011, Hege and colleagues presented an algorithm and
its implementation using the Voronoi diagram of atoms [21]. Even if the void
issue is also important, we more focus the review on previous works on tunnels
except mentioning [22,23].

Tunnels and Voids in Molecules via Voronoi Diagrams and Beta-Complexes 95

3 Voronoi Diagram, Quasi-triangulation, and
Beta-Complex

Let A = {a1, a2, . . . , an} be a set of three-dimensional spherical atoms such
as a molecule where ai = (ci, ri) is an atom with the center ci and radius
ri. Let VD be the Voronoi diagram of A where the distance is defined by the
Euclidean distance from the atom boundaries. VD can be represented as VD =
(V V , EV , FV , CV) where V V is the set of Voronoi vertices, EV is the set of
Voronoi edges, FV is the set of Voronoi faces, and CV is the set of Voronoi cells.
vV ∈ V V corresponds to the center of the sphere tangent to the boundaries of
four nearby atoms; eV ∈ EV corresponds to the locus of the center of the sphere
tangent to the boundaries of three nearby atoms; fV ∈ FV corresponds to the
locus of the center of the sphere tangent to the boundaries of two nearby atoms;
cV ∈ CV corresponds to the center of an atom. The topology among vertices,
edges, faces, and cells in VD are properly maintained. VD is usually called the
additively weighted Voronoi diagram in computational geometry. There are many
properties, particularly topological properties, that makes VD different from
the ordinary Voronoi diagram of points and the power diagram. VD can be
computed in O(n3) time for general spheres in the worst case but takes O(n)
time for molecules on average. For the details of VD, see [24] and for the Voronoi
diagram in general, see [25].

The quasi-triangulation QT is the dual structure of VD and represented as
QT = (V Q, EQ, FQ, CQ) where vQ ∈ V Q is mapped from cV ∈ CV , eQ ∈ EQ

is mapped from fV ∈ FV , fQ ∈ FQ is mapped from eV ∈ EV , and cQ ∈ CQ

is mapped from vV ∈ V V . All mappings are one-to-one. The topology structure
of VD can be different from that of the ordinary Voronoi diagram of points or
power diagram. For example, consider a tiny atom located between two rela-
tively large atoms in R3. Then, the Voronoi edge defined by these three atoms
is an ellipse, possibly without an intersection with other Voronoi edges in the
entire Voronoi diagram of the atom set. In such case, the three atoms define a
degenerate, dangling triangle in QT and is called an anomaly because it makes
the quasi-triangulation different from the ordinary simplicial complex such as the
Delaunay or regular triangulation. There are three types of anomalies inQT [26]:
i) the adjacency anomaly: two cells may share two faces in common (2-adjacency
anomaly), three faces in common (3-adjacency anomaly), or all four faces in com-
mon (4-adjacency anomaly); ii) the inter-world anomaly: the quasi-triangulation
may have more than one face-connected clusters of cells where the clusters are
not face-connected; iii) the dangling-face anomaly: the quasi-triangulation may
have a dangling triangular face which does not have any incident cell. ∂QT is
called the squeezed hull and is usually different from the convex hull of the atom
centers. The conversion between VD and QT can be done in O(m) time in the
worst case where m represents the number of simplexes in QT . For the details
of QT , see [26,27,28,29].

The beta-complex of an atom set A is defined when a real value β is given.
The semantics of β is the radius of a probe that approaches the molecule from
free space. Then, the beta-complex for the given β-value is the subset of the

96 D.-S. Kim et al.

quasi-triangulation where each simplex denotes the proximity among the atoms
corresponding to the simplex. Then, the corresponding beta-shape is the region
of the space bounded by the boundary of the beta-complex. Hence, the boundary
of the beta-shape determines the proximity among the atoms on the boundary
of the molecule. The set of the simplexes of the beta-complex is a subset of the
simplexes of the quasi-triangulation and the set of the simplexes of the beta-
shape is a subset of the set of the simplexes of the beta-complex [30]. Hence,
the beta-shape represents the proximity among the atoms on the boundary of a
molecule and the beta-complex represents the proximity among all atoms within
the molecular boundary. We emphasize here that the beta-complex can be com-
puted very efficiently from the quasi-triangulation by the following three steps:
i) the computation of the Voronoi diagram of a molecule, ii) the conversion from
the Voronoi diagram to the quasi-triangulation, and iii) the simplex query for
the beta-complex. For the details, see [29,30].

The timing for the computation of the quasi-triangulation for molecular struc-
tures in PDB, the Protein Data Bank, is of importance. For most applications
of molecules, a target molecule is usually fixed prior to performing any type
of analysis. In addition, many users around world may need to frequently use
the quasi-triangulation of the same target molecule. Hence, in such cases, it
is convenient to compute the quasi-triangulation in a preprocessing and store
in a database so that the quasi-triangulation file can be downloaded to be in-
put to a user’s application problem. We have computed the quasi-triangulation
of all molecular structures stored in the PDB and created a database called
the quasi-triangulation database (QTDB) [1] which can be freely downloaded
with a document explaining the file format which stores the quasi-triangulation,
the quasi-triangulation file format (QTF). Note that the QTF format is very
straightforward to interpret once the quasi-triangulation theory is understood.
Therefore, if the structure file of a particular molecule exists in PDB, one can
load the corresponding quasi-triangulation file from QTDB. Once a QTF file is
loaded with the corresponding PDB file, the computation of the Voronoi diagram
for the molecule is straightforward and efficient. However, if an input molecular
structure does not exist in PDB because it is a new molecule, then we need to
compute the Voronoi diagram of the molecular structure and transform it into
the quasi-triangulation.

This approach is significant because the quasi-triangulation (and thus the
Voronoi diagram) is used not only for extracting tunnels but also for many other
shape-related problems. Some applications are as follows: the computation of
the Connolly surface [31,32], the docking simulation [33,34], the computation of
the molecular volume [35], the computation of the molecular sphericity [36], etc.
We anticipate that many more shape-related problem that are not known today
will also be solved efficiently using the quasi-triangulation of molecules.

4 Molecular Complement

Suppose that A = {a1, a2, . . . , an} is a molecule where ai = (ci, ri) ∈ A is a
spherical atom with the center ci and the van der Waals radius ri. Let vdW (A)

Tunnels and Voids in Molecules via Voronoi Diagrams and Beta-Complexes 97

be a geometric model, called the van der Waals model (also abbreviated as vdW-
model), of A stored in the boundary-representation [37]. Hence, vdW (A) takes
the region in R3 that is the union of the regions that the atoms in A take and
has an oriented boundary ∂vdW (A). In general, ∂vdW (A) may consist of more
than one oriented shell because vdW (A) may have one or more void: one and
only one for the external boundary and one for the boundary of each internal
void.

∂vdW (A) consists of spherical polygons on the boundary of atoms in A. Let
Conv(A) be the convex hull of vdW (A). Then, ∂Conv(A) consists of planar
triangular faces, spherical polygons, and cylindrical segments. The deficiency

ΔvdW = Conv(A) − vdW (A) (1)

is called the vdW-deficiency that can be used to understand the external struc-
ture of the vdW-molecule. The vdW-model vdW (A) frequently has too detailed
information than necessary for interpreting molecular structure for application
problems and the same observation usually holds for ΔvdW as well.

Let E be the entire three-dimensional Euclidean space, U(∗) ⊆ E the under-
lying space that is occupied by a geometric object “∗”, and U(A) = U(a1) ∪
U(a2)∪ . . .∪U(an). Hence, vdW (A) is the geometric modeling representation of
the molecular space U(A).

Definition 1. U(A) is the molecular space and UC(A) = E−U(A) is the molec-
ular complement.

Biomolecule such as DNA, RNA, or protein consists of a set of atoms which
are connected via covalent bonds. It is well-known that the length of a covalent
bond is shorter than the sum of the radii of the two covalently bonded atoms.
For example, the most frequently used Bondi’s radii of the four most common
atoms in biomolecules are as follows (Å) [38]: H(1.20), C(1.70), N(1.55), C(1.52).
The lengths of some covalent bonds between atom pairs are as follows (Å):
CH(1.06-1.12) and CC(1.20-1.54). This implies that covalent-bonded van der
Waals atoms intersect each other. Thus, the following assumption is reasonable
for biomolecules.

Assumption 1. The van der Waals model vdW (A) is connected.

This assumption implies that vdW (A) is a connected single component and
is valid for all biomolecules because any biomolecule consists of a set of atoms
which are connected via covalent bonds that force related van der Waals atoms
intersect. However, it is necessary to verify whether this assumption holds for
a particular molecular structure data such as those in the PDB because a data
file may be incorrect or incomplete due to technical reasons in determining the
structure using X-ray crystallography or NMR and storing in database. Other
types of chemical interactions such as a hydrogen bond may also result in an
atomic intersection.

If a vdW-model has an interior void, its complementary space U
C(A) is ob-

viously not connected but consists of more than one component: one, and only

98 D.-S. Kim et al.

one, component is unbounded and the others are bounded. Suppose that

U
C(A) = {ξ1, ξ2, . . . , ξm} (2)

where ξi ∈ UC(A) denotes a component. Suppose that ξ1 is unbounded. Then, all
the other components ξi ∈ UC(A), i �= 1, in Eq. (2) are bounded and correspond
to interior voids. The unbounded component ξ1 corresponds to the unbounded
external region. Recall that the Voronoi diagram of molecule is represented by
VD = (V V , EV , FV , CV). Let V or = (V V , EV , FV) be an abstraction of VD
without V-cells. Let

V orC = V or ∩ U
C(A) = V or − U(A) (3)

where “−” denotes the Boolean subtraction. In Eq.(3), we slightly abuse V or
in that it means here the geometric realization (without the notion of topology)
of the Voronoi diagram. Thus, this equation implies that V orC corresponds to
the geometric realization of the Voronoi diagram trimmed off by the molecule.
Hereafter, we will ignore “(A)” in symbols as far as its meaning is clear.

Definition 2. V orC is called the Voronoi complement.

Therefore, the Voronoi complement corresponds to the molecular complement.
The construction of the Voronoi complement is done as follows. Suppose that
V orC = (V C , EC , FC) where V C , EC , and FC are the sets of vertices, edges,
and faces, respectively. V orC can be obtained by trimming the V or as follows.
For all v ∈ V C , if v is contained within any atom a ∈ A, we remove v from
V C . For all e ∈ EC , if e is entirely contained within any atom, we remove e
from EC . If e is partially contained within an atom, we trim off the interior
portion of e. When e is partially trimmed, one (or more) new vertex(es) is
created at the extreme of the remaining part of e and is inserted into V C . This
new vertex is called the phantom Voronoi vertex vphantom. For all f ∈ FC , if f
is entirely contained within any atom, we remove f from FC . If f is partially
contained within an atom, we trim off the interior portion of f . When f is
partially trimmed, a new phantom Voronoi edge(s), say ephantom, is created at
the boundary of the remaining part of f and is inserted into EC . Note that in
this case a new phantom Voronoi vertex(es) is also created and is inserted into
V C , if necessary. The topological consistency is also appropriately maintained.

There are two types of Voronoi edges in V orC : those intersecting molecu-
lar boundary and those non-intersecting molecular boundary. Similarly, there
are two types of Voronoi faces: those intersecting and those non-intersecting
Voronoi faces. There are Voronoi vertices from the Voronoi diagram and there
are (phantom) vertices not belonging to the Voronoi diagram. Similarly, there
are Voronoi edges from the Voronoi diagram and there are (phantom) edges not
belonging to Voronoi diagram.

Lemma 1. Suppose that a face fV is defined by atoms a′ and a′′. Then, fV is
trimmed if, and only if, a′ ∩ a′′ �= ∅.

Tunnels and Voids in Molecules via Voronoi Diagrams and Beta-Complexes 99

Let p be a point in V orC . If p ∈ f ∈ FC , it has two defining atoms. If
p ∈ e ∈ EC is on a V-edge, it has three defining atoms. If p is a phantom vertex,
it is the intersection point among the boundaries of three atoms defining the
edge. If p is a Voronoi vertex, it is equi-distant from four atom boundaries.

Lemma 2. The Voronoi complement V orC can be computed in O(m) time in
the worst case, where m represents the number of entities in the Voronoi diagram.

The following theorem is the basis of this paper.

Theorem 3. The Voronoi complement V orC and the molecular complement UC

are homotopy equivalent.

Proof: V orC is the skeleton of the molecular complement. Thickening a point
q ∈ V orC by an appropriate amount can transform V orC to UC . �

Therefore,V orC andUC have an identical topological property. IfUC consists of
multiple components, so does V orC . Suppose that V orC = {ξV or

1 , ξV or
2 , . . . , ξV or

m }
where a Voronoi component ξV or

i corresponds to ξi ∈ UC(A). Then, ξV or
i , i �= 1,

corresponds to a void and ξV or
1 . Suppose that ξV or

1 corresponds to the external
space containing tunnels, if any.

5 Recognition of Molecular Complement

We want to recognize the molecular complement UC . Due to Theorem 3, we can
do the recognition using the Voronoi components in V orC . Given V orC , we first
classify the Voronoi components corresponding to the unbounded external region
and voids as follows. First, starting with an arbitrary edge e ∈ EC emanating to
infinity, we collect all vertices, edges, and faces in V orC = (V C , EC , FC) con-
nected to e. Then, this collection is unique and becomes the Voronoi component
ξV or
1 and corresponds to the unbounded external region. The vertices, edges, and
faces of ξV or

1 are appropriately removed from the data structure of V orC . Then,
the rest in the data structure is for voids.

Sometimes, the recognition of pockets, caves, and clefts is useful. This recog-
nition can be also facilitated in a similar way. Suppose that we compute ξV or

1 ∩
Conv(A) to result in several components. Then, larger components usually cor-
respond to tunnels whereas the other smaller components correspond to pock-
ets, caves, and clefts. Note that ∂vdW (A) consists of spherical polygons on the
boundary of atoms in a molecule A.

Hence, ignoring other features such as pockets, caves, or crevices, we are
eventually left with two sets of components: Ξ = {ΞTunnel, ΞV oid} for tunnels
and voids, respectively. Note that ΞTunnel has one and only one component.

5.1 Void Recognition

Lemma 4. Let ξV or be a Voronoi component corresponding to a void. Then,
there exists a non-phantom vertex v ∈ V C in ξV or which belongs to the void.
Hence, v is a Voronoi vertex.

100 D.-S. Kim et al.

Proof: There should be at least four atoms to define a void. Each triplet of
the four atoms define a Voronoi edge and these four Voronoi edges must meet
at a Voronoi vertex which is the center of an empty sphere tangent to the four
atoms. �

The following corollary immediately follows because a void is closed.

Corollary 5. The vertex v in Lemma 4 is not connected to ∞.

Thus, we arbitrarily select one vertex v ∈ V C and collect all vertices, edges,
and faces in V orC connected to v. Here, V C is after the vertices in ξV or

1 is
removed. This collection forms one component and corresponds to a void. Those
vertices, edges, and faces connected to v is removed from V C , EC , and FC ,
respectively. Thus, repeating this process until the data structure of V orC is
empty finds all voids.

Let ξ be a Voronoi component corresponding to a void. Being a subset of
V orC , ξ is represented by (V ξ, Eξ, F ξ) for vertices, edges, and faces, respectively.

Suppose that V ξ = (V ξ
phantom, V ξ

VD): V
ξ
VD denotes the set of vertices that are also

the Voronoi vertices in the original Voronoi diagram VD; V ξ
phantom denotes the

set of the new-born phantom vertices (during the trimming process) that are not
the Voronoi vertices but are computed by the intersection among the boundaries
of the three atoms defining the edge where v ∈ V ξ

new lies.
Due to Lemma 4 and Corollary 5, ξ can be easily computed and completely

defines the shape of the corresponding void. Hence, the Euler characteristic of
ξ provides the topology information of the void. A void can have its own han-
dle. However, a void does not have a void of its own because the molecule is
connected.

The computation of mass property is in order. It is easy to see that the
boundary of a void can be found by searching the atoms that correspond to
the vertices in V C

new and this property can be used in the computation of mass
property. We developed a different yet more efficient and better approach called
the Beta-decomposition which was reported very recently [35]. The idea of the
Beta-decomposition is as follows. First, we collect the vertex, edge, face, and
cell simplexes of the quasi-triangulation corresponding to a void. Second, we
compute the volume of all cell simplexes and then appropriately subtract and
add the intersection volumes among some atoms. A variation of this algorithm
can compute correct void volume in the linear time of the number of simplexes
of the void.

5.2 Tunnel Recognition

Let S be a beta-shape and assume that S has one component bounded by one
(external) shell. We can ignore void shells because voids are separately recognized
above. Then, the Euler-Poincare formula for S holds as

χS = |V S | − |ES |+ |FS | = 2(sS − hS). (4)

Tunnels and Voids in Molecules via Voronoi Diagrams and Beta-Complexes 101

where V S is the set of vertices, ES is the set of edges, and FS is the set of faces,
all on ∂S. sS denotes the number of shells and hS denotes the genus (i.e., the
number of handles) of S. sS=1because S has no void. |V S |, |ES |, and |FS | can
be counted from the data structure storing S. Therefore, hS can be computed
from Eq. (4) and provides information about the topological structure of the
entire S. For the details about the Euler-Poincare formula, see [37,39,40].

Let ξ = (V ξ, Eξ, F ξ) be a Voronoi component corresponding to the unbounded
exterior region UC(A). Suppose that the molecule A has m ≥ 0 tunnels. The
Euler characteristic χ = |V ξ| − |Eξ| + |F ξ| is a topological invariant and reveals
the topological property of a geometric model. Note that χ = h0−h1+h2 where
the Betti number h0 corresponds to the number of components, h1 corresponds
to the connectivity number, and h2 corresponds to the orientability of the model.
Note that h0 = 1 because ξ is connected. It is also known that χ = 2(s − g)
where s denotes the number of shells and g denotes the genus of ξ. In ξ, s = 1.
Because | V ξ |, | Eξ |, and | F ξ | can be counted, g can be easily found. For
the details of Euler characteristic of the geometric models, readers are referred
to [37].

A face is called simple (or simply connected) if it is a single component and
does not have any hole inside. A face is called non-simple (or non-simply con-
nected) if it has a hole(s) inside.

Theorem 6. Let f be a face in V orC and suppose that f is simple. Then, f
is homotopy equivalent to a simple curve segment σ′ ∈ f and σ′ is homotopy
equivalent to a point σ′′ ∈ σ′.

Hence, a simple face can contract to an edge and an edge can contract to
a vertex. Thus, based on Theorem 6, V orC can be transformed to a homotopy
equivalent yet more compact, concise, and convenient structure via a contraction
which consists of two kinds: a face contraction and an edge contraction.

Practical consideration on trimming: It is not necessary to perform an explicit
trimming of a Voronoi face f . It is sufficient to determine if f has to be trimmed.
For practical purposes, we simply tag f as “trimmed” if f is to be trimmed and
consider as if it were not there. If we remove f from data structure, it can create
a set of disconnected Voronoi edges which indeed belong to a single, connected
region of the space.

Let f = {e1, e2, . . . , em} ∈ F ξ be an untrimmed simple face in V orC , where
ei ∈ f is an edge. Let deg(e) be the number of untrimmed simple faces incident
to an edge e in the trimmed structure V orC . Hence, deg(ei) ≥ 1, ei ∈ f . A
face contraction is as follows. If deg(ei) ≥ 1, ∀ei ∈ f , we contract f to one
of its edges. During the contraction, some entities may change their shapes,
some entities may disappear, and some entities may have neighbors different
from those before the contraction. The contraction should not affect the Euler
characteristic of ξ. Therefore, we maintain the consistency in both geometry of
and topology among the faces, edges, and vertices so that the Euler characteristic
remains after a contraction. It is also necessary to take care of the non-simple
face case.

102 D.-S. Kim et al.

(a) (b) (c)

Fig. 1. Face contraction. (a) Given Voronoi structure, (b) after one Voronoi face is
contracted, and (c) after the other one is contracted.

Lemma 7. Let f be a face in V orC which has exactly one interior hole. Then,
f is homotopy equivalent to a loop consisting of its edges on one of its two
boundaries.

Suppose that f has m holes inside. Then, we decompose f into a set of m− 1
faces {φ1, φ2, . . . , φm−1} where each φi corresponds to each hole. In other words,
each φi has one hole inside. Then, by Lemma 7, we consider φi as if it were
trimmed meaning that we simply ignore the face from the topology structure;
we keep the edges of φi.

A hole of f in V orC can be made by either one of the following two ways: i) A
Voronoi face fV in VD itself can have a hole, or ii) a hole can be created by the
trimming of fV . In addition, the Voronoi face fV can be a segment of bisector
surface between two atom boundaries. In molecules, there exist cases that fV is
non-simple. From our experience with biomolecular structures, however, we are
only aware of the case that a Voronoi face has one, and only one, interior hole.
In such a case, we can simply ignore the corresponding face from data structure.

After the face contraction, ξ transforms to a graph with vertices and edges,
without any faces. All edges to infinity are hooked up to an infinity vertex v∞.
Then, all edges belong to one of two types: one where each of both vertices has
an incident edge(s) and the other where only one vertex has an incident edge(s).
The second type is called a hairy edge. Fig. 1 shows several hairy edges after face
contraction. Let va be a vertex (called an anchor vertex) of a hairy edge that
is incident to another edge and vf a vertex (called a free vertex) without any
incident edge. We contract each hairy edge to its anchor vertex. After a hairy
edge is contracted, each of its incident edge may or may not become another
hairy edge. This edge contraction repeats until there is no hairy edge left.

The contraction process consisting of these two types of contraction operations
eventually transforms the Voronoi component ξ to a graph G = (V G, EG) from
which tunnels can be recognized. Suppose that a molecule A does not have any
tunnel. Then, ξ eventually contracts to a graph degenerated to a single vertex v∞,
called the infinite vertex implying that the exterior space emanates to infinity.
Suppose that A has a tunnel. Then, ξ contracts to a graph which has both v∞

and edges defining cycles.

Tunnels and Voids in Molecules via Voronoi Diagrams and Beta-Complexes 103

Suppose that a molecule has more than one tunnel which are independent of
each other. The graphG is connected and cannot distinguish distinct tunnels. Let
G∗ be the graph obtained fromG by removing v∞. Then, G∗ is a forest consisting
of trees where each tree corresponds to a distinct tunnel. Each tree may have its
own handles. Mass properties of each tunnel can be computed in a way similar to
voids if tunnel entrances are appropriately defined. Each component, consisting
of vertices and edges only, is called the spine of the corresponding tunnel and
shows tunnel topology. The following lemma follows.

Lemma 8. Given the Voronoi complement V orC , the tunnels and voids can be
recognized in O(m) where m represents the number of entities in the Voronoi
diagram.

6 Experiment

The proposed algorithms have been entirely implemented and tested with several
bimolecular structures available in the protein data bank (PDB) [41]. We have
selected a test set consisting of one hundred structures which are well-distributed
in their sizes. The smallest structure has 268 atoms (PDB accession code: 1c26)
and the largest one has 5071atoms (PDB accession code: 1rf8). The computa-
tional environment was Windows 7 on Inter Core2 Duo CPU E6850 3.0GHz with
2GB RAM.

The genus of a van der Waals molecular structure is usually very high. In
other words, a molecule has usually too many tunnels from the geometric and
topological points of view where most of them are insignificant at all from bio-
logical or biochemical point of view. For example, the genus of a van der Waals
molecule shown in Fig. 2(a) is 526 while there are only very few biologically
meaningful tunnels as shown in Fig. 2(b) and (e). Biologically or biochemically
meaningful tunnels are usually those that allow small molecules such as water or
chemical compound can pass through (for both practical and visualization pur-
poses). Thus, in this experiment, we compute such meaningful tunnels and voids
which are in fact identical to compute the tunnels and voids for offset molecule
that is the union of the enlarged atoms by the probe radius. We emphasize,
however, that the Voronoi diagram of the original van der Waals molecule can
be identically used for this computation because the Voronoi diagrams of both
the van der Waals molecule and the offset molecule are identical. This is one of
the powerful features of the Voronoi diagram of atoms over the power diagram
of the atoms for applications in bimolecular structure.

Fig. 2(a) shows the space-filling model of one of the protein structures in the
test set. This protein is called carbonic anhydrase XII (PDB accession code:
1jd0) and has 4699 atoms (505 residues in 2 chains). Fig. 2(b) shows the recog-
nized tunnels where different colors denote different tunnels; Fig. 2(c) shows the
voids in addition to the tunnels; Fig. 2(d) shows the Voronoi complement cor-
responding to the tunnels; Fig. 2(e) shows one of the tunnels, the green tunnel;
Fig. 2(f) shows the component of the Voronoi complement that corresponds to
the green tunnel.

104 D.-S. Kim et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Tunnel extraction from a protein called carbonic anhydrase XII (PDB accession
code: 1jd0). (a) The Connolly surface with respect to water molecule (the radius: 1.4Å),
(b) the recognized tunnels, (c) the tunnels with voids, (d) the Voronoi complement, (e)
one of the major tunnels, and (f) the Voronoi complement corresponding to the major
tunnel.

Fig. 3 shows the computation time for recognizing tunnels in the test set using
the probe with the radius 1.4Å (corresponding to water molecule). Each data
point corresponds to a molecular structure. The blue diamond shows the com-
putation time taken for computing the Voronoi diagram of each structure: The
curve in general shows a strong linearity with respect to molecular size and it
can be said that approximately one thousand atoms can be processed in a sec-
ond. The lower, red rectangle shows the computation time taken for recognizing
tunnels from the Voronoi diagram. It shows a strong linear behavior and the
tunnels of the largest model can be recognized within a second.

Tunnels and Voids in Molecules via Voronoi Diagrams and Beta-Complexes 105

Fig. 3. The computation time. The blue diamond above is for the Voronoi diagram
and the red rectangle below is the tunnel recognition time after the Voronoi diagram
computation.

Fig. 4(a) shows the structure of an important protein called proteasome (PDB
accession code: 3shj, 50,877 atoms in 7,363 residues forming 28 chains) which
recycles a protein by disassembling into a set of amino acids. Fig. 4(b) shows the
voids in the proteasome structure corresponding to the probe with the radius
1.4Å(corresponding to water molecule) and Fig. 4(c) shows the voids correspond-
ing to a probe with the radius 3.0Å. Note that there exists a huge empty space
inside proteasome.

(a) (b) (c)

Fig. 4. Voids in the proteasome for different probes.. (a) The proteasome, (b) voids
corresponding to water molecule (the radius: 1.4Å), and (c) voids corresponding to a
larger probe (the radius: 3.0Å).

106 D.-S. Kim et al.

Fig. 5(a) shows the tunnels recognized from the proteasome corresponding to
the probe with radius 2.3Å. Note that there are one big tunnel along with several
tiny, insignificant tunnels. Fig. 5(b) shows the biggest tunnel and Fig. 5(c) shows
the tunnel boundary with some transparency so that the tunnel spine is visible.
Note that the tunnel topology in the large region has branches. Fig. 5(d), (e),
and (f) are the case for the probe with radius 2.5Å. Note the difference with
their counterparts in Fig. 5(a), (b), and (c).

The computation of the Voronoi diagram of the proteasome took 100.091 sec
and both the conversion to the quasi-triangulation and the extraction of the
beta-complex took 31.044 sec. Table 1 shows the relationship among the probe
size, the number of tunnels, and the computation time taken to extract tunnels
in the proteasome structure. Fig. 6 is drawn from this table; Fig. 6(a) shows the

(a) (b) (c)

(d) (e) (f)

Fig. 5. Tunnels in the proteasome for different probes. (a) Tunnels corresponding to a
probe π1 with the radius 2.3Å, (b) the largest tunnel for π1, (c) the spine of the largest
tunnel for π1, (d) tunnels corresponding to a probe π2 with the radius 2.5Å, (e) the
largest tunnel for π2, and (f) the spine of the largest tunnel for π2.

Tunnels and Voids in Molecules via Voronoi Diagrams and Beta-Complexes 107

Table 1. The computing time and the number of tunnels in proteasome (PDB accession
code: 3shj) for probes of different sizes. The time is for computing the tunnels after the
Voronoi diagram is available.

probe radius
(β-value)

tunnels time (sec)
probe radius
(β-value)

tunnels time (sec)

1.1 63 56.706 2.1 28 12.402
1.2 43 29.282 2.2 28 11.746
1.3 43 25.818 2.3 19 11.029
1.4 36 22.997 2.4 9 10.498
1.5 40 20.810 2.5 8 9.968
1.6 33 18.907 2.6 7 9.048
1.7 31 16.974 2.7 6 8.798
1.8 37 15.850 2.8 3 8.487
1.9 35 14.524 2.9 9 8.330
2.0 25 13.416 3.0 7 8.080

0
10
20
30
40
50
60
70

1.0 1.5 2.0 2.5 3.0

tu

nn
el

s

probe radius (-value)

(a)

0
10
20
30
40
50
60

0 10 20 30 40 50 60 70

tim
e

(s
ec

)

tunnels

(b)

0
10
20
30
40
50
60

1.0 1.5 2.0 2.5 3.0

tim
e

(s
ec

)

probe radius (-value)

(c)

Fig. 6. Computing time of tunnels in proteasome (PDB accession code: 3shj). (a) the
time vs. the beta-value, (b) the time vs. the number of tunnels, and (c) the number of
tunnels vs. the beta-value.

108 D.-S. Kim et al.

inverse relationship between the number of tunnels and the probe size. Fig. 6(b)
shows an loose linear relationship between the computation time vs. the number
of tunnels; Fig. 6(c) shows the inverse relationship between the computation
time vs. the probe size;

7 Discussions

Given a molecular structure, there can be many questions that biologists want
to find answers. We speculate that possibly all such questions can be correctly,
efficiently, and easily answered using the Voronoi diagram of atoms, its quasi-
triangulation, and the beta-complex corresponding to a probe.

There are many even if we limit the questions for tunnels and voids. For
example, is there any void for water molecule can be placed within molecular
structure? How many such voids are there? What is the volumes of each void?
What is the area of the void boundary?Which atoms in which residues contribute
to the boundary of a particular void? What is the topological and geometric
property of this void?

In addition to the questions similar to the above, there are additional questions
for tunnels. Given a particular tunnel, what is the bottleneck and which atoms
in which residues define the bottleneck? What is the topological structure of a
particular tunnel? What is the entrance of a tunnel? What is the volume of a
particular region in the tunnel?

The answers to some of the questions can be immediately given. For example,
there exists no tunnel if the graph G has nothing but the infinite vertex; Other-
wise, there exists at least one tunnel. The number of components in the graph G
is the number of distinct tunnels. Suppose that the tunnels corresponding to a
probe π1 with the radius ρ1 is recognized. Then, we can easily select the subset
of these tunnels that remain for another probe π2 with the radius ρ2. This can
be done by selecting the tunnels whose bottleneck radius is larger than ρ2 where
the bottleneck can be computed by solving a quadratic equation for the edges
on spine. Tunnel entrance can be similarly found.

8 Conclusion

Tunnels and voids are important features for biomolecules. In this paper, we in-
troduced algorithms to recognize tunnels and voids from molecular structure and
to measure their mass properties such as volumes and boundary areas. The idea
of the algorithms is to compute the Voronoi complement which corresponds to
the skeleton of the molecular complement. Then, tunnels and voids were recog-
nized by analyzing the Voronoi complement. Despite their algorithmic simplicity,
the proposed algorithms extract tunnels and voids correctly, efficiently, and ro-
bustly. The algorithms compute all tunnels and voids in O(m) time in the worst
case, wherem represents the number of geometric entities of the Voronoi diagram
of molecule. The softwares implementing the proposed algorithms, BetaTunnel
and BetaVoid, are freely available from the Voronoi Diagram Research Center
website [1].

Tunnels and Voids in Molecules via Voronoi Diagrams and Beta-Complexes 109

Acknowledgement. The first, second, and third authors are supported by
the National Research Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (No. 2012R1A2A1A05026395) and the fourth author is sup-
ported by the Grant-in-Aid for Scientific Research (No. 24650015, No. 24360039)
of MEXT, Japan.

References

1. Voronoi Diagram Research Center (2011), http://voronoi.hanyang.ac.kr/

2. Kim, D.S., Sugihara, K.: Tunnels and voids in molecules via voronoi diagram. In:
2012 9th International Symposium on Voronoi Diagrams in Science and Engineer-
ing (2012)

3. Kim, D.S., Cho, C.H., Kim, D., Cho, Y.: Recognition of docking sites on a protein
using β-shape based on Voronoi diagram of atoms. Computer-Aided Design 38(5),
431–443 (2006)

4. Smart, O.S., Goodfellow, J.M., Wallace, B.A.: The pore dimensions of gramicidin
a. Biophysical Journal 65(6), 2455–2460 (1993)

5. Smart, O.S., Neduvelil, J.G., Wang, X., Wallace, B.A., Sansom, M.S.P.: HOLE: A
program for the analysis of the pore dimensions of ion channel structural models.
Journal of Molecular Graphics 14, 354–360 (1996)

6. Kleywegt, G.J., Jones, T.A.: Detection, delineation, measurement and display
of cavities in macromolecular structures. Acta Crystallographica Section D 50,
178–185 (1994)

7. Laskowski, R.A.: SURFNET: A program for visualizing molecular surfaces, cavi-
ties, and intermolecular interactions. Journal of Molecular Graphics 13, 323–330
(1995)

8. Voss, N.R., Gerstein, M., Steitz, T.A., Moore, P.B.: The geometry of the ribosomal
polypeptide exit tunnel. Journal of Molecular Biology 260, 893–906 (2006)

9. Petrek, M., Otyepka, M., Banas, P., Kosinova, P., Koca, J., Damborsky, J.:
CAVER: A new tool to explore routes from protein clefts, pockets and cavities.
BMC Bioinformatics 7(316) (2006)

10. DeLano, W.L.: Pymol: An open-source molecular graphics tool. CCP4 Newsletter
(2002)

11. DeLano, W.L.: PyMOL molecular graphics system homepage (2002),
http://pymol.org/

12. Damborský, J., Petřek, M., Banáš, P., Otyepka, M.: Identification of tunnels in
proteins, nucleic acids inorganic materials and molecular ensembles. Biotechnology
Journal 2, 62–67 (2007)

13. Petrek, M., Kosinova, P., Koca, J., Otyepka, M.: MOLE: A Voronoi diagram-based
explorer of molecular channels, pores, and tunnels. Structure 15(11), 1357–1363
(2007)

14. Medek, P., Beneš, P., Sochor, J.: Computation of tunnels in protein molecules using
Delaunay triangulation. Journal of WSCG 15, 107–114 (2007)

15. Kozĺılová, B., Andres, F., Sochor, J.: Visualization of tunnels in protein molecules.
In: AfriGraph 2007, pp. 111–209 (2007)

16. Yaffe, E., Fishelovitch, D., Wolfson, H.J., Halperin, D., Nussinov, R.: MolAxis: a
server for identification of channels in macromolecules. Nucleic Acids Research 36,
W210–W215 (2008)

http://voronoi.hanyang.ac.kr/
http://pymol.org/

110 D.-S. Kim et al.

17. Yaffe, E., Fishelovitch, D., Wolfson, H.J., Halperin, D., Nussinov, R.: MolAxis: Ef-
ficient and accurate identification of channels in macromolecules. Proteins: Struc-
ture, Function, and Bioinformatics 73(1), 72–86 (2008)

18. Yaffe, E., Halperin, D.: Approximating the pathway axis and the persistence dia-
grams for a collection of balls in 3-space. Discrete & Computational Geometry 44,
660–685 (2010)

19. Ho, B.K., Gruswitz, F.: HOLLOW: Generating accurate representations of channel
and interior surfaces in molecular structures. BMC Structural Biology 8(1), 49
(2008)

20. Coleman, R.G., Sharp, K.A.: Finding and characterizing tunnels in macromolecules
with application to ion channels and pores. Biophysical Journal 96, 632–645 (2009)

21. Norbert Lindow, D.B., Hege, H.C., Member, I.: Voronoi-based extraction and vi-
sualization of molecular paths. IEEE Transactions on Visualization and Computer
Graphics 17(12), 2025–2034 (2011)

22. Anikeenko, A.V., Alinchenko, M.G., Voloshin, V.P., Medvedev, N.N., Gavrilova,
M.L., Jedlovszky, P.: Implementation of the voronoi-delaunay method for analysis
of intermolecular voids. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan,
C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3045, pp. 217–226. Springer,
Heidelberg (2004)

23. Goncalves, P.F.B., Stassen, H.: Free energy of solvation from molecular dynamics
simulation applying voronoi-delaunay triangulation to the cavity creation. Journal
of Chemical Physics 123(21), 214109 (2005)

24. Kim, D.S., Cho, Y., Kim, D.: Euclidean Voronoi diagram of 3D balls and its com-
putation via tracing edges. Computer-Aided Design 37(13), 1412–1424 (2005)

25. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams, 2nd edn. John Wiley & Sons, Chichester (1999)

26. Kim, D.S., Cho, Y., Ryu, J., Kim, J.K., Kim, D.: Anomalies in quasi-triangulations
and beta-complexes of spherical atoms in molecules. Computer-Aided Design 45(1),
35–52 (2013)

27. Kim, D.S., Cho, Y., Sugihara, K.: Quasi-worlds and quasi-operators on quasi-
triangulations. Computer-Aided Design 42(10), 874–888 (2010)

28. Kim, D.S., Kim, D., Cho, Y., Sugihara, K.: Quasi-triangulation and interworld
data structure in three dimensions. Computer-Aided Design 38(7), 808–819 (2006)

29. Kim, D.S., Kim, J.K., Cho, Y., Kim, C.M.: Querying simplexes in quasi-
triangulation. Computer-Aided Design 44(2), 85–98 (2012)

30. Kim, D.S., Cho, Y., Sugihara, K., Ryu, J., Kim, D.: Three-dimensional beta-shapes
and beta-complexes via quasi-triangulation. Computer-Aided Design 42(10),
911–929 (2010)

31. Ryu, J., Cho, Y., Kim, D.S.: Triangulation of molecular surfaces. Computer-Aided
Design 41(6), 463–478 (2009)

32. Ryu, J., Park, R., Kim, D.S.: Molecular surfaces on proteins via beta shapes.
Computer-Aided Design 39(12), 1042–1057 (2007)

33. Kim, C.-M., Won, C.-I., Kim, J.-K., Ryu, J., Bhak, J., Kim, D.-S.: Protein-
ligand docking based on beta-shape. In: Gavrilova, M.L., Tan, C.J.K., Anton, F.
(eds.) Transactions on Computational Science IX. LNCS, vol. 6290, pp. 123–138.
Springer, Heidelberg (2010)

34. Kim, D.S., Kim, C.M., Won, C.I., Kim, J.K., Ryu, J., Cho, Y., Lee, C., Bhak,
J.: Betadock: Shape-priority docking method based on beta-complex. Journal of
Biomolecular Structure & Dynamics 29(1), 219–242 (2011)

Tunnels and Voids in Molecules via Voronoi Diagrams and Beta-Complexes 111

35. Kim, D.S., Ryu, J., Shin, H., Cho, Y.: Beta-decomposition for the volume and area
of the union of three-dimensional balls and their offsets. Journal of Computational
Chemistry 12(3), 1225–1283 (2012)

36. Kim, D.S., Kim, J.K., Won, C.I., Kim, C.M., Park, J.Y., Bhak, J.: Sphericity of
a protein via the β-complex. Journal of Molecular Graphics and Modelling 28(7),
636–649 (2010)

37. Lee, K.: Principles of CAD/CAM/CAE Systems. Addison Wesley (1999)
38. Bondi, A.: van der Waals volumes and radii. Journal of Physical Chemistry 68,

441–451 (1964)
39. Boissonnat, J.D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press,

Cambridge (1998)
40. Mäntylä, M.: An Introduction to Solid Modeling. Computer Science Press (1988)
41. RCSB Protein Data Bank (2009), http://www.rcsb.org/pdb/

http://www.rcsb.org/pdb/

On Properties of Forbidden Zones of Polygons

and Polytopes�

Ross Berkowitz1, Bahman Kalantari1, Iraj Kalantari2, and David Menendez1

1 Rutgers, the State University of New Jersey
New Brunswick, NJ, USA

2 Western Illinois University
Macomb, IL, USA

Abstract. Given a region R in a Euclidean space and a distinguished
point p ∈ R, the forbidden zone, F (R,p), is the union of all open balls
with center in R having p as a common boundary point. The notion of
forbidden zone, defined in [2], was shown to be instrumental in the char-
acterization of mollified zone diagrams, a relaxation of zone diagrams,
introduced by Asano, et al. [3], itself a variation of Voronoi diagrams.
For a polygon P , we derive formulas for the area and circumference of
F (P, p) when p is fixed, and for minimum areas and circumferences when
p ranges in P . These optimizations associate interesting new centers to P ,
even when a triangle. We give some extensions to polytopes and bounded
convex sets. We generalize forbidden zones by allowing p to be replaced
by an arbitrary subset, with attention to the case of finite sets. The
corresponding optimization problems, even for two-point sites, and their
characterizations result in many new and challenging open problems.

1 Introduction

The notion of the Voronoi diagram of a finite set of points in a Euclidean space
is a rich concept with numerous applications. For a survey of results on Voronoi
diagrams, see [4]. Voronoi diagrams have given rise to many variations. One of
these, the zone diagram defined by Asano, et al. [3], is a new and rich variation
of the Voronoi diagram for a given finite set of points in the Euclidean plane.
The notion of a zone diagram and its existence was the main motivation behind
defining mollified versions in [2], called territory diagrams and maximal territory
diagrams. However, the study was also motivated by an intriguing relationship
between approximations to Voronoi diagrams and certain regions of attraction
in polynomial root-finding through iterations [5,6].

A mollified zone diagram can be viewed as a relaxation of a zone diagram in
the sense that a zone diagram is a particular instance of the more general notion
of maximal territory diagrams. The notion of a forbidden zone is intrinsic in the
characterization of maximal territory diagrams in general and zone diagrams in

� This paper is an extended version of [1] and is dedicated to the memory of Sergio
de Biasi.

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XX, LNCS 8110, pp. 112–137, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On Properties of Forbidden Zones of Polygons and Polytopes 113

particular. In what follows in this section, we will briefly describe these notions
in Rm.

Given an n-tuple of point P = 〈p1, . . . , pn〉, where pi ∈ Rm, and R =
〈R1, . . . , Rn〉, where Ri ⊆ Rm with pi ∈ Ri, we say (P,R) is a territory dia-
gram if for each i = 1, . . . , n we have

Ri ⊆ dom
(
pi,

⋃
j �=i

Rj

)
, (1)

where for a given set X ⊆ Rm and a point p in Rm, the dominance region of p
with respect to X , dom(p,X), is defined as

dom(p,X) ≡ {z ∈ R
m : d(z, p) ≤ d(z,X)} , (2)

where d(x, y) = ‖x− y‖ is the Euclidean distance between points x and y, and

d(z,X) = inf
x∈X

d(z, x) (3)

In other words, each Ri must be contained in the set of all points that are
closer to pi than to all Rj , j �= i. Given two territory diagrams (P,R) and
(P,S) for the same tuple of sites P , we write (P,R) � (P,S) if Ri ⊆ Si for
all i = 1, . . . , n. Additionally, we define (P,R) ≺ (P,S) if (P,R) � (P,S) but
R �= S.

A territory diagram (P,R) is a maximal territory diagram if it is maximal
with respect to the partial order ≺, i. e. if there exists no territory diagram
(P,S) for the same tuple of sites such that (P,R) ≺ (P,S). The forbidden zone
Fi with region Ri and a given site pi ∈ Ri is the set of all points that are closer
to some point y ∈ Ri than y is to pi, that is:

Fi = {z : d(z, y) < d(y, pi) for some y ∈ Ri}. (4)

In [2] it was shown that any maximal territory diagram (P,R) satisfies

Ri = dom
(
pi,

⋃
j �=i

Rj

)
−

⋃
j �=i

Fj . (5)

We thus see that forbidden zones arise in a natural way in mollified zone di-
agrams. However, one can note that they also arise in the study of Voronoi
diagrams. Given a set of sites P = 〈p1, . . . , pn〉, we note that the Voronoi cell
of each particular site pi, denoted by V (pi), is the largest set containing pi for
which the corresponding forbidden zone does not contain any other site.

In the following sections, we will formally define forbidden zones and state
some of their basic properties. Next, we focus on the forbidden zones of various
convex polygons. We develop formulas for the area, circumference, and particular
regions within the forbidden zone when the site p is fixed in a convex polygon.
Next, we consider optimization of each when p is allowed to range in the polygon.
The optimization problems associate interesting centers to a polygon (even to a

114 R. Berkowitz et al.

triangle), different from its classical sense of center. We extend our formulas for
p �∈ P . We also develop a formula for the area of the intersection of circles having
a common boundary point. Aside from geometric interest, applications could be
described. Finally, we extend some of the above results and optimizations to
arbitrary polytopes and bounded convex sets.

2 Forbidden Zone of a Set with Respect to a Site

Definition 1. The forbidden zone F (R, p) for a region R ⊆ Rm and site p ∈ R
is the set of all points that are closer to some point y ∈ R than y is to p, i.e.,

F (R, p) = {z : d(z, y) < d(y, p) for some y ∈ R}. (6)

For an example, see Figure 1.

F (R,p)

R
p

Fig. 1. The forbidden zone for a hexagonal region and a site

Theorem 1. For a polytope P with vertices vi, i = 1, . . . , n, the forbidden zone
is the union of the open balls centered at each vi with radius d(p, vi). That is:

F (P, p) =

n⋃
i=1

{z : d(z, vi) < d(z, p)}. (7)

Proof. See [2]. ��

The forbidden zone of a convex polygonal region and its site gives rise to
several interesting problems in itself.

Calculating the sum of the areas of the related discs is simple, but the area
of the union of the discs will be less than that sum due to overlap. However,
we do not need to calculate the overlapping areas, because we can partition the
forbidden zone into a set of non-overlapping triangles and regions.

On Properties of Forbidden Zones of Polygons and Polytopes 115

Remark 1. In an recent, independent work on molecular structure, Kim, et al.
[7], consider the more general problem of finding the area of several overlapping
disks. Their approach differs from ours in emphasis: they begin with overlapping
disks and derive an underlying polygon; we begin with a polygon and derive the
overlapping disks based on a site. The structure of the forbidden zone allows us
to simplify the area calculation and to optimize positions for the site based on
different objectives.

2.1 The Forbidden Zone of a Convex Polygon

Consider a polygon P and a site p ∈ P . We will show how to divide the forbidden
zone F (P, p) into almost disjoint1 triangles and sectors whose areas will sum up
to the area of the forbidden zone.

For the following definitions and lemmas, we will assume that the polygon P
has vertices vi and angles θi, i = 1, . . . , n.

We know from Theorem 1 that F (P, p) is the union of open discs centered at
each vertex vi with radius ri = d(p, vi). We will write Ci for the circle centered
at vi with radius ri.

Lemma 1. The boundary of F (P, p) consists of arcs from the circles Ci. Specif-
ically, the boundary of the portion of Ci which is not overlapped by any other
circle Cj, along with the points on the boundary where each Ci intersects with
its neighbors Ci−1 and Ci+1.

We write qi for the point on the boundary where Ci and Ci+1 intersect. In
the case where p lies on the line segment vivi+1, qi = p; otherwise, this qi is the
reflection of p across vivi+1.

Next, we partition F (P, p) by drawing lines connecting qi to vi and to vi+1.
We write Si for the sector of Ci bounded by qivi and qi−1vi. We write Ti for the
triangle formed by qi, vi, and vi+1. (See Figure 2.)

Lemma 2. The sectors Si, triangles Ti, and polygon P almost partition F (P, p)
into non-overlapping regions.

Now draw lines from p to each vertex vi. These will almost partition P into
triangles. We will write T ′

i for the triangle formed by p, vi, and vi+1.

Lemma 3. The triangles Ti and T ′
i are congruent with the same area.

Proof. It is sufficient to show that Ti and T ′
i have corresponding sides of the same

length. Since p and qi both lie on the circles Ci and Ci+1, the corresponding sides
pvi and pvi+1 must have the same length as qivi and qivi+1, respectively. The
remaining side, vivi+1, is shared by the triangles. ��
1 By “almost disjoint” and “almost partition”, we mean that the intersections are only
the edges of a triangle, which have measure zero. Note also that by “triangle” and
“polygon”, we refer to the union of the interior and edges of the same.

116 R. Berkowitz et al.

vi−1

vi

vi+1

p

qi−1

qi

T ′
i

Ti

Si

Ti−1

T ′
i−1

Fig. 2. Three adjacent vertices of a polygon, vi−1, vi, and vi+1; the site p; the reflections
of p across vi−1vi, qi−1, and vivi+1, qi; the triangles Ti−1 and Ti; their reflections inside
P , T ′

i−1 and T ′
i ; and the sector Si of Ci

Lemma 4. The angle of the sector Si is 2π − 2θi.

Proof. Recall that the angle of P at vi is θi. The line segment pvi divides that
angle into two parts, α and β, such that α + β = θi. These two parts are
the angles of the triangles T ′

i−1 and T ′
i at vi. By Lemma 3, the angles of Ti−1

and Ti at vi must be α and β, respectively. These four triangles, along with
the sector Si, all share the vertex vi and share both of their sides with their
neighbors; so the sum of their angles must be 2π. Thus, the angle for Si must
be 2π − 2α− 2β = 2π − 2θi. ��

Now that these definitions are in place, we can calculate |F (P, p)|.

Theorem 2. Given a convex polygon P with vertices vi and interior angles θi,
i = 1, . . . , n, and a site p ∈ P ,

|F (P, p)| = 2|P |+
n∑

i=1

(π − θi)r
2
i , (8)

where ri = d(p, vi).

Proof. We know from Lemma 2 that

|F (P, p)| = |P |+
n∑

i=1

|Ti|+
n∑

i+1

|Si|. (9)

On Properties of Forbidden Zones of Polygons and Polytopes 117

Furthermore, we know from Lemma 3 that |Ti| = |T ′
i |, and therefore

n∑
i=1

|Ti| =
n∑

i=1

|T ′
i | = |P |. (10)

We know that Si is a sector of a disc of radius ri, and from Lemma 4, we
know its angle is 2π − 2θi. Therefore,

|Si| = (π − θi)r
2
i . (11)

Substituting these values into (9) gives (8). ��

We can also use this partition of F (P, p) to determine its circumference,
Circ(F (P, p)).

Theorem 3. Given a convex polygon P with vertices vi and interior angles θi,
i = 1, . . . , n, and a site p ∈ P ,

Circ(F (P, p)) = 2

n∑
i=1

(π − θi)ri. (12)

Proof. From Lemma 1, we can see that the boundary of F (P, p) consists of arcs,
one from each circle Ci. By construction, these arcs must correspond to the
sectors Si, as the triangles Ti and T ′

i can only intersect the boundary of F (P, p)
at a reflected point qi.

From Lemma 4, we know the sector angle of Si is 2π − 2θi, and therefore
its arc must have length (2π − 2θi)ri. Simplifying and summing over all sectors
gives (12). ��

2.2 Moving the Site Outside the Region

The normal definition of a forbidden zone requires the site p to lie within the
region R, but what if we relaxed that condition? We know from [2] that F (S, q),
q ∈ S, is equal to F (conv(S), q), where conv(S) is the convex hull of S. Therefore,
for a region R and a site p �∈ R, we can define F (R, p) to be F (conv(R∪{p}), p).

If R is a polygon P , we can simply take the convex hull of p and the vertices
vi, getting a new convex polygon with vertices v′i, and proceed from there.

3 Optimal Forbidden Zones for a Convex Polygon

Now that we know how to calculate the area and circumference of the forbidden
zone of a convex polygon P and site p ∈ P , we can consider how F (P, p) changes
as we select different positions for p. In particular, we will consider how to choose
p so as to minimize the area or circumference of F (P, p), as well as a few other
measures (see Figure 3 and Table 1)

118 R. Berkowitz et al.

c
p�

p�

m

p◦

p◦

Fig. 3. Several “centers” of a triangle, including its center of mass (c), its Fermat point
(m), and sites which minimize each of the area of the forbidden zone (p�), overlap of
the forbidden zone (p�), the circumference of the forbidden zone (p◦), and the “flower
circumference” (p◦)

Table 1. Quantities Minimized by Various Polygon Centers

Centroid Geometric Median

∑n
i=1 r

2
i

∑n
i=1 ri

Forbidden zone area Forbidden zone circumference

∑n
i=1(π − θi)r

2
i

∑n
i=1(π − θi)ri

Flower area Flower circumference

∑n
i=1 θir

2
i

∑n
i=1 θiri

3.1 Minimal Area

Imagine that we have a set of n radio transmitters, placed one at each of the
vertices of a convex polygon P , and we want to set their strength so that every
point in P will receive a signal from at least one transmitter. Assuming our
transmitters broadcast in all directions up to some distance, ri, and that the
power required to transmit is proportional to r2i , then choosing ri = d(c, vi),
where c is the centroid

c =
1

n

n∑
i=1

vi (13)

will produce a set of ri’s which minimizes the total power,
∑n

i=1 r
2
i . (Note that

we are treating the vertices as vectors here.)
However, total power might not be the appropriate measure to minimize. For

example, we might want to minimize the total area where signal can be received
(assume we are under some constraint to minimize broadcasts outside P). In
this case, we want to choose p ∈ P to minimize the total area of the forbidden
zone.

On Properties of Forbidden Zones of Polygons and Polytopes 119

To do this, we will reformulate that area in terms of the coordinates of the
site p. Let P be a convex polygon with vertices vi = (xi, yi). The area of the
forbidden zone with respect to a site p = (x, y) is:

|F (P, p)| = 2|P |+
n∑

i=1

(π − θi)[(xi − x)2 + (yi − y)2]. (14)

Note that |P | does not depend on the choice of p, so its contribution to the area
can be ignored for this pursuit.

Since P is convex, θi < π, meaning |F (P, p)| is a convex function in p. Its
minimizer is a solution of partial derivatives with respect to x, y set to zero.
This gives,

n∑
i=1

(π − θi)(xi − x) = 0,

n∑
i=1

(π − θi)(yi − y) = 0. (15)

Solving for x, y gives

x =

∑n
i=1(π − θi)xi∑n
i=1(π − θi)

, y =

∑n
i=1(π − θi)yi∑n
i=1(π − θi)

. (16)

We can write these as

x =

n∑
i=1

αixi, y =

n∑
i=1

αiyi, (17)

where

αi =
(π − θi)∑n
j=1(π − θj)

=
π − θi
2π

. (18)

The last equality holds because the sum of the angles of P is (n − 2)π. So we
have,

p� =

n∑
i=1

αivi. (19)

Note that αi > 0 for all i and
∑n

i=1 αi = 1. Hence p� is a convex combination
of vi’s. We call it the forbidden zone center of the polygon. In contrast to the
centroid c, p� takes into account the overlap of the discs and minimizes the area
of their union, rather than their sum.

3.2 Minimal Overlap

As we saw, the centroid c minimizes the area of the discs and the forbidden zone
center p� minimizes the area of the union of the discs. We may also ask which
site minimizes the difference between these areas, which we will call the overlap
or flower (because it often resembles a flower, as in Figure 4).

Extending our radio example, we might want to minimize the overlap be-
tween the broadcast ranges if the transmitters are made directional to avoid

120 R. Berkowitz et al.

Fig. 4. Two hexagonal regions, with the discs for each vertex shaded to show their
overlap, or “flower.” Note that overlaps of four and even five discs occur when the site
is off-center.

broadcasting outside P . Assuming the power needed is proportional to the area
of the broadcast region, the minimal power requirement is one where the broad-
cast regions overlap the least.

Define O(P, p) as the difference between the sum of the areas of the discs
centered at vi with radius ri and the area of the forbidden zone with site p =
(x, y).

O(P, p) =

(
n∑

i=1

πr2i

)
− |F (P, p)|

=

(
n∑

i=1

θir
2
i

)
− 2|P | (20)

Since |P | is independent of p, it is sufficient to minimize
∑n

i=1 θir
2
i . This gives

x =

∑n
i=1 θixi∑n
i=1 θi

, y =

∑n
i=1 θiyi∑n
i=1 θi

. (21)

We can write these as

p� =

n∑
i=1

α′
ivi, (22)

where

α′
i =

θi∑n
j=1 θj

=
θi

(n− 2)π
. (23)

Note that O(P, p) is the difference between the sum of the areas of the discs
and the area of the union of the discs. It is not necessarily the area of the
overlapping region, as subregions where more than two discs intersect will be
counted more than once.

On Properties of Forbidden Zones of Polygons and Polytopes 121

3.3 Minimal Circumference

While |F (P, p)| and O(P, p) can be thought of as weighted centroids, since they
minimize quantities of the form

∑n
i=1 wir

2
i , the circumference of the forbidden

zone depends on ri rather than r2i . This turns out to be an example of a weighted
geometric median [8],

m(X) = argmin
p∈Rk

∑
x∈X

wid(p, x), (24)

where the weights wi are non-negative and sum to one.
In the circumference, the radii are weighed by the sector angle, 2π − 2θi, so

we can produce a set of weights by dividing by their sum, as in (18). This gives
an optimal solution

p◦ ∈ argmin
p∈P

n∑
i=1

π − θi
2π

ri. (25)

In the case where P is a triangle, p◦ is a weighted Fermat point [9], and can
be found using the methods discussed in [10]. More generally, p◦ can be found
using the methods for finding weighed geometric medians given in [11].

3.4 Minimal Flower Circumference

Just as the flower’s area was minimized by p�, we can find a minimizer of the
“flower circumference”:

p◦ ∈ argmin
p∈P

n∑
i=1

θi
(n− 2)π

ri. (26)

4 General Bounds on the Area of the Forbidden Zone

In this section, we find some general bounds on the area of the forbidden zones
of arbitrary regions in the plane. We will assume throughout that our site p is
contained in the region R. Otherwise it is not hard to check that choosing remote
sites will yield arbitrarily large forbidden zones.

A few quick words on notation. For the remainder of this paper, given a set S,
we will use |S| to denote its Lebesgue measure. We will also use B(x, r) to denote
the ball of radius r about the point x with respect to the standard Euclidean
norm.

Theorem 4. For a convex region R ⊆ Rm with site p ∈ Rm,

2m|R| ≤ |F (R, p)|. (27)

Proof. If |R| = 0 or R is infinite, this is obvious.
Otherwise, we assume without loss of generality that our site p is the origin.

For any c ∈ R and x ∈ R, it is clear that d(cx, 0) = cd(x, 0). When 0 < c < 2,
we have d(cx, x) = |c − 1|d(x, 0) < d(x, 0) and therefore cx ∈ F (R, 0). This
means that cR ⊆ F (R, 0) (see Figure 5). Since |cR| = cm|R|, we conclude that
cm|R| ≤ |F (R, 0)|. In the limit as c approaches 2, 2m|R| ≤ |F (R, 0)|. ��

122 R. Berkowitz et al.

p x cxp

R F

Fig. 5. Lower bound of forbidden zone in terms of volume

Corollary 1. The volume of the forbidden zone of a ball is minimized when the
site is the center of the ball.

Proof. First, we show that if we take our site to be the origin and our region to
be R = B(0, r), then F = B(0, 2r). It is clear by the previous argument that
B(0, 2r) ⊆ F . For the other direction, we again recall that F =

⋃
x∈R B(x, ‖x‖).

Therefore, we have that any point z ∈ F must have the form x+ y, where x ∈ R
and ‖y‖ ≤ ‖x‖ < r, and so we have by the triangle inequality that

‖z‖ = ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ≤ 2‖x‖ < 2r. (28)

So we must have that F ⊆ B(0, 2r), completing the argument that B(0, 2r) = F .
Therefore, |F | = 2m|B(0, r)| = 2m|R|, which is minimal by our bound proven
above. ��

Another problem is bounding the minimal possible and maximal possible areas
of the forbidden zone of a fixed region R with respect to choosing a site p ∈ R.
First we recall a definition and then we proceed to prove our result.

Definition 2. The diameter of a set S ⊆ Rm is

δ(S) ≡ sup
x,y∈S

‖x− y‖. (29)

Theorem 5. If F is the forbidden zone of a region R ⊆ Rm with respect to any
site p ∈ R, then

ωm

2m−1
δm(R)m ≤ |F | ≤ ωm2mδm(R), (30)

where ωm is the volume of the unit m-ball.

Proof. For the upper bound, we repeat the fact that F =
⋃

x∈R B(x, ‖x − p‖)
and note that because p ∈ R for any x ∈ R we have ‖x−p‖ < δ(R). So, for each
x ∈ R, we have

B(x, ‖x− p‖) ⊆ B(p, 2‖x− p‖) ⊆ B(p, 2δ(R)). (31)

(See Figure 6.) So we therefore have that F ⊆ B(p, 2δ(R)) and as a consequence,

|F | ≤ |B(p, 2δ(R))| = 2mδm(R)ωm. (32)

On Properties of Forbidden Zones of Polygons and Polytopes 123

R

2δ(R)

p
x

Fig. 6. Upper bound for the forbidden zone in terms of its diameter

For the lower bound, fix ε > 0. By the definition of δ(R) there exist x, y ∈ R
such that ‖x− y‖ ≥ δ(R)− ε. Because we know that the forbidden zone of R is
the same as the forbidden zone of the convex hull of R we may assume that

� = {tx+ (1− t)y : 0 ≤ t ≤ 1} (33)

is contained in R. In particular we have F (R, p) ⊇ F (�, p). So we have reduced
this to the problem of computing the minimal forbidden zone of a line of length
δ(R) (see Figure 7).

x y
R

p

Fig. 7. Lower bound for the forbidden zone in terms of its diameter

To do this we note that for any site p we have, by the triangle inequality, that
‖x− y‖ ≤ ‖x− p‖ + ‖y − p‖. Let Bx = B(x, ‖x − p‖), By = B(y, ‖y − p‖) and
s ∈ (0, 1] such that s(‖x − p‖ + ‖y − p‖) = ‖x − y‖. We have, by the reverse
triangle inequality, that sBx ∩ sBy = ∅.

|F | =
∣∣∣∣∣
⋃
z∈�

B(x, ‖p− z‖)
∣∣∣∣∣

≥ |sBx ∪ sBy|
≥ min

r∈[0,‖x−y‖]
|B(x, r)| + |B(y, ‖x− y‖ − r)|

124 R. Berkowitz et al.

= 2ωm

(
‖x− y‖

2

)m

≥ ωm(δ(R)− ε)m

2m−1
(34)

And since ε > 0 was arbitrary this completes the proof. ��

Corollary 2. Let R be a fixed region in R
m. We have

1

22m−1
≤ minp∈R |F (R, p)|

maxp∈R |F (R, p)| ≤ 1. (35)

We note that both the upper and lower bounds established above could use
considerable improvement. This is especially true for the upper bound. Based
on limited experimental evidence, we suggest the following tighter bound:

Conjecture 1

1

2m−1
≤ minp∈R |F (R, p)|

maxp∈R |F (R, p)| (36)

5 Arbitrary Regions

Up until now our formulas have been generally restricted to regions whose convex
hull is a polytope. However we can extend these results to arbitrary regions by
taking limits of polytopes. To define our limits we recall the following definition:

Definition 3. The Hausdorff distance between two sets X,Y ⊆ Rm is defined
to be

dH(X,Y) ≡ max

{
sup
x∈X

d(x, Y), sup
y∈Y

d(y,X)

}
. (37)

We will say that a sequence of sets Xn ⊆ X converges to a set X if

lim
n→∞ dH(Xn, X) = 0. (38)

We denote this by Xn → X.

A brief word of notation: if S is a set, we will use χS to denote its characteristic
function. We now use this notion of distance to prove the following result on the
convergence of forbidden zones when a convergent sequence of sites is considered.

Theorem 6. Let Xn, X ⊆ Rm such that the sequence Xn → X and pn → p ∈
Rm. We consider the associated sequence of forbidden zones Fn = F (Xn, pn).
The following hold:

1. Fn → F (X, p) = F

2. χFn → χF pointwise.

On Properties of Forbidden Zones of Polygons and Polytopes 125

Proof. For a given ε > 0, pick N large enough so that for n ≥ N we have
dH(Xn, X) < ε and ‖pn − p‖ < ε. Fix such an n ≥ N and let y ∈ F . Because
F =

⋃
x∈X B(x, ‖x − p‖), we know that there must be some x ∈ X such that

‖y−x‖ < ‖x− p‖. Because dH(Xn, X) < ε, we can pick some x′ ∈ Xn such that
‖x− x′‖ < ε. We use the triangle inequality repeatedly to note

‖y − x′‖ ≤ ‖y − x‖+ ‖x− x′‖ < ‖x− p‖+ ε

< ‖x′ − pn‖+ 3ε. (39)

Combining the observation that B(x′, ‖x′ − pn‖) ⊆ Fn with the result above
that y ∈ B(x′, ‖x′ − pn‖ + 3ε), we have that d(y, Fn) < 3ε. Because y ∈ F was
arbitrary, this completes the proof that supy∈F d(y, Fn) < 3ε.

A similar computation will show that supy′∈Fn
d(y′, F) < 3ε. Therefore, we

have shown that dH(Fn, F) < 3ε, and so we have Fn → F .
For the proof of the second statement, fix some y ∈ F and again find x ∈ X

such that ‖y − x‖ < ‖x − p‖. Because this inequality is strict, we can find
a δ > 0 such that ‖y − x‖ < ‖x − p‖ − δ, and therefore we will have that
y ∈ B(x, ‖x − p‖+ δ). Following the argument above, let n be large enough for
ε = δ

3 and pick x′ ∈ Xn such that ‖x′ − x‖ < ε. We then obtain, in the same
fashion, that

‖y − x′‖ ≤ ‖y − x‖ + ‖x− x′‖
< ‖x− p‖ − δ + ε

< ‖x′ − pn‖+ 3ε− δ

= ‖x′ − pn‖. (40)

So we have y ∈ B(x′, pn) ⊆ Fn and therefore y ∈ Fn for n large enough, which
yields χFn → χF pointwise. ��

A few immediate corollaries follow.

Corollary 3. Using the notation introduced above, if we have Xn → X where
X is bounded, then limn→∞ |Fn| = |F |.

Proof. Because X is bounded, we have X ⊆ B(0, r) for some r > 0. Using our
above bounds on the forbidden zone, we therefore have that F ⊆ B(0, 2r) as well.
By Theorem 6, we will also have that, for n large enough, dH(F, Fn) < 1. and
therefore Fn ⊆ B(0, r + 1). So after throwing away finitely many terms we have
that χFn ≤ χB(0,2r+1) is integrable. We also know from the above theorem that
χFn → χF pointwise, so we can apply the Lebesgue Dominated Convergence
Theorem to get

lim
n→∞ |Fn| = lim

n→∞

∫
χFn =

∫
χF = |F |. (41)

��

Corollary 4. The forbidden zone minimizer of a circle is its center, and the
maximizer lies on the boundary.

126 R. Berkowitz et al.

Proof. Let Pn denote the regular n-gon with vertices on the unit circle, S1.
We have shown previously that the forbidden zone maximizer of the polygon
Pn occurs at a vertex, while the minimizer occurs at the center of Pn. Letting
n → ∞ we see that Pn → S1 and therefore applying our theorem above on
the convergence of forbidden zones we will have as a consequence that the for-
bidden zone of S1 is minimized at the origin, and maximized at a point on its
boundary. ��

6 Union and Intersection of Balls Having a Common
Boundary Point

We note that the forbidden zone provides a new way to compute the volume of
the union of m-balls. For two balls with nonempty intersection, take R to be
a triangle with the following vertices: the centers of the balls, and an arbitrary
point in the intersection of the boundaries of the balls. Placing the site at this
intersection vertex (see Figure 8) gives us a forbidden zone equal to the union
of the two balls, since the disc at the vertex of the intersection will have radius
zero.

p

Fig. 8. Finding the area of two intersecting circles as a forbidden zone

For arbitrarily many balls, so long as all of the boundaries of the balls have a
common point of intersection p we can essentially repeat the above construction.
We create a forbidden zone with its region the convex hull of the centers of the
balls along with the intersection point p. We also take the site to be p. The
volume of this forbidden zone will be exactly that of the union of the balls. The
proof of this uses the characterization of the forbidden zone as a union of balls
about the vertices of the convex hull. We state this as a theorem.

Theorem 7. Let {S1, S2, . . . , Sn} be a set of m-balls with centers {v1, . . . , vn} =
V . Assume that there is some point p ∈

⋂n
i=1 ∂Si. Then we have F ({p}∪V, p) =⋃

Si.

We can use our formula for unions of balls, combined with the principle of
inclusion-exclusion to obtain formulas for the intersections of the balls in terms
of forbidden zones.

On Properties of Forbidden Zones of Polygons and Polytopes 127

Theorem 8. Let {S1, S2, . . . , Sn} be a set of m-balls with centers {v1, . . . , vn} =
V such that the intersection of their boundaries contains the point p ∈

⋂
∂Si.

The volume of their intersection can then be expressed as a sum of the volumes
of the associated forbidden zones. Specifically,∣∣∣∣∣

n⋂
i=1

Si

∣∣∣∣∣ =
∑
T⊆V

(−1)#T+1|F ({p} ∪ T, p)|, (42)

where #T is the cardinality of T .

Proof. We will proceed inductively. Let S1, S2 be two balls with centers at v1, v2
respectively, whose boundaries intersect at a point p. By Theorem 7, we can
write S1 ∪S2 = F ({v1, v2, p}, p). It is also easy to see that F ({vi, p}, p) = Si. So
by the principle of inclusion-exclusion we have

|S1 ∩ S2| = |F ({v1, p}, p)|+ |F ({v2, p}, p)| − |F ({v1, v2, p}, p)|. (43)

We now extend this inductively to arbitrarily many balls.
For ease of notation, we write F (X, p) = F (X) in this computation and

assume all forbidden zones are with respect to the site p. We use inclusion-
exclusion and the inductive hypothesis to compute

(−1)n−1

∣∣∣∣∣
n⋂

i=1

Si

∣∣∣∣∣ =
∣∣∣∣∣

n⋃
i=1

Si

∣∣∣∣∣+
∑
T�S

(−1)#T

∣∣∣∣∣
⋂
i∈T

Si

∣∣∣∣∣
= |F (V)|+

∑
T�V

∑
U⊆T

(−1)#T+#U+1|F (U)|. (44)

Reversing summation and gathering terms we obtain

(−1)n−1

∣∣∣∣∣
n⋂

i=1

Si

∣∣∣∣∣ = |F (V)| −
∑
U�V

|F (U)|
∑

U⊆T�V

(−1)#T+#U

= |F (V)| −
∑
U�V

|F (U)|
n−#U−1∑

m=0

(−1)m
(
n−#U

m

)

= |F (V)| −
∑
U�V

|F (U)|
[
(1 − 1)n−#U − (−1)n−#U

]
=

∑
U⊆V

|F (U)|(−1)n+#U . (45)

��

7 General Forbidden Zones

Until now, the forbidden zone has been defined by a region and a distinguished
point, called the site. We can easily generalize that definition to sites which are
arbitrary subsets of the region.

128 R. Berkowitz et al.

Definition 4. The forbidden zone for a region R ⊆ Rm and site S ⊆ R is the
set of all points that are closer to some point y ∈ R than y is to any point in S.
That is:

F (R,S) ≡ {z : d(z, y) < d(y, S) for some y ∈ R}. (46)

Note that our definition refers to the entire set S as the site. However, in
the case where S has multiple, disconnected parts it is reasonable to speak of a
forbidden zone generated by a region and multiple sites.

Many properties of forbidden zones still apply in this more general setting,
but not all. For example, in general F (R,S) �= F (conv(R), S) (see Figure 9).
The work of determining which properties apply under what circumstances is
still ongoing.

Fig. 9. Two forbidden zones with respect to two-point sites. The region on the right
is the convex hull of the region on the left. Note that the forbidden zones are not the
same.

In between the cases of an arbitrary subset S ⊆ R and a single point p ∈ R,
there are several interesting types of site, including convex polytopes, general
polytopes, and closed sets. A site may also comprise several disconnected points,
polytopes, or closed sets. In the case where S has multiple disconnected sub-
sites, we can divide R into subregions dominated by each sub-site and treat each
subregion and sub-site separately. This turns out to be a special case of a more
general theorem about dividing the site into (possibly overlapping) sub-sites.

Definition 5. Given a region R ⊆ Rm and site S ⊆ R and sub-site T ⊆ S, we
write RS(T) for the subset of R which is as close to T as it is to S. That is,

RS(T) = {z ∈ R : d(z, T) = d(z, S)}. (47)

Note that RS(T) can be considered the intersection of R with the closure of
the Voronoi cell for T .

Theorem 9. For a region R ⊆ R
m, site S ⊆ R, and sets T1, T2 such that

T1 ∪ T2 = S,
F (R,S) = F (RS(T1), T1) ∪ F (RS(T2), T2). (48)

On Properties of Forbidden Zones of Polygons and Polytopes 129

Proof. For an arbitrary x ∈ F (R,S), there must be a y ∈ R such that d(x, y) <
d(y, S). Since R1 ∪ R2 = R, y must be in R1, R2, or both. If y ∈ RS(T1), then
d(y, T1) = d(y, S) and therefore x ∈ F (RS(T1), T1). Similarly, if y ∈ RS(T2),
then x ∈ F (RS(T2), T2). Therefore F (R,S) ⊆ F (RS(T1), T1) ∪ F (RS(T2), T2).

For an arbitrary x ∈ F (RS(T1), T1), there must be a y ∈ RS(T1) such
that d(x, y) < d(y, T1). Since y ∈ RS(T1), d(y, T1) = d(y, S) and therefore
x ∈ F (R,S). Similarly, F (RS(T2), T2) ⊆ F (R,S). Therefore F (RS(T1), T1) ∪
F (RS(T2), T2) ⊆ F (R,S). ��

Corollary 5. For a region R ⊆ Rm, site S ⊆ R, and sets T1, . . . , Tk such that
T1 ∪ . . . ∪ Tk = S,

F (R,S) =
k⋃

i=1

F (RS(Ti), Ti). (49)

Proof. By induction. ��

Corollary 6. For a region R ⊆ R
m and site {p1, . . . , pk} ⊆ R,

F (R, {p1, . . . , pk}) =
k⋃

i=1

F (R ∩ V (pi), pi) (50)

where V (pi) is the closure of the Voronoi cell for pi.

Note that in Corollary 6, the sub-regions Ri are the intersection of R and the
closure of the Voronoi cell for pi. Since the sub-sites are now individual points,
this means that we can find the forbidden zone by dividing R along the Voronoi
boundaries and then finding the forbidden zones for each sub-region and point. In
the case where R is a polytope, the resulting sub-regions will also be polytopes,
so the forbidden zone will be the union of balls centered on each vertex, as seen
in Figures 10 and 11.

Fig. 10. The forbidden zone for a square and a two-point site depicted as the union of
overlapping disks. The Voronoi boundary is shown as a dashed line.

130 R. Berkowitz et al.

Fig. 11. Forbidden zones for various polygons and two- or three-point sites depicted
as overlapping disks. The Voronoi boundaries are shown as dashed lines.

Since each subregion contains a single-point site, we can take the convex hull
of the subregions without changing the forbidden zone. That is,

F (R, {p1, . . . , pk}) =
k⋃

i=1

F (conv(R ∩ V (pi)), pi). (51)

In particular, disconnected portions of the region may become connected when
the convex hull of each sub-region is taken, as seen in Figure 12.

Fig. 12. The forbidden zone for a region comprising three disconnected squares and a
two-point site. The Voronoi boundary is shown as a dashed line. The dotted lines show
the additional boundaries of the convex hulls of the sub-regions. Note that the union
of the convex hulls of the subregions is not itself convex.

On Properties of Forbidden Zones of Polygons and Polytopes 131

Fig. 13. The forbidden zone for a triangular region with a three-point site located
outside the region, depicted as four overlapping disks. The dashed lines are the Voronoi
boundaries, and the dotted lines indicate the convex hull of the sub-regions.

This also suggests that the definition of forbidden zones with respect to a
region and a site not in the region from Section 2.2 can also be extended to the
case where the site may contain several points not-necessarily inside the region
(See Figure 13). As before, we first take the union of the region and the site as a
new region, and then find the forbidden zone with respect to that. Equivalently,

F (R, {p1, . . . , pk}) =
k⋃

i=1

F (conv((R ∩ V (pi)) ∪ {pi}), pi). (52)

7.1 Sites Which Generate Similar Forbidden Zones

For a fixed region R ⊆ Rm and points p1, p2 ∈ R, it is clear that F (R, p1) =
F (R, p2) if and only if p1 = p2. When the site is allowed to be an arbitrary subset
of R, we can ask whether there are multiple sites which will produce “the same”
forbidden zone. Naturally, since the forbidden zone excludes the site itself, it is
trivially true that any change to the site will change the forbidden zone, but
we can instead consider the union of the forbidden zone and the region and ask
when that union does not change.

Theorem 10. For a region R ⊆ Rm and site S ⊆ R where ∂S ⊆ R, the portion
of the forbidden zone with respect to R and S excluding R does not depend on
any point in the interior of S. That is, for a set T ⊆ S,

F (R, ∂S) \R = F (R, ∂S ∪ T) \R. (53)

Proof. Consider a point z ∈ F (R, ∂S) \ R. There must be a point y ∈ R such
that d(z, y) < d(y, ∂S). We must have y �∈ S, because y ∈ S and d(z, y) <

132 R. Berkowitz et al.

d(y, ∂S) can only hold if z ∈ S, which contradicts our assumptions. Therefore,
d(y, ∂S) = d(y, ∂S∪T), since T ⊆ S, and z ∈ F (R, ∂S∪T). Thus, F (R, ∂S)\R ⊆
F (R, ∂S ∪ T) \R.

By a similar argument, F (R, ∂S ∪ T) \R = F (R, ∂S) \R. ��

The implication of Theorem 10 is that any point in the interior of a site can
be removed without changing the portion of the forbidden zone which extends
beyond the region. Conversely, any gaps or holes in the site can be filled in with-
out changing the exterior shape of the forbidden zone. Thus, the only differences
between the forbidden zones shown in Figure 14 are the points in the interior of
the site, which are part of the forbidden zone if and only if they are not part of
the site.

Fig. 14. Forbidden zones for square regions with square sites: filled on the left, and
hollow on the right. The sites are shown in white, as they are excluded from the
forbidden zones.

It may also be possible to expand the site outside its boundary without chang-
ing the forbidden zone outside the region. For example, in a U-shaped, it is pos-
sible to expand the site slightly into the bottom of the U without significantly
changing the forbidden zone (see Figure 15). It remains to be seen how large the
site may grow before it significantly changes the forbidden zone.

Fig. 15. A region and U-shaped site. If the area bounded by the dotted line is added
to the site, the forbidden zone will not change outside the region.

On Properties of Forbidden Zones of Polygons and Polytopes 133

7.2 Minimizing the Volume of Forbidden Zones

Allowing sites to be arbitrary subsets of their region greatly simplifies the task of
finding the site which yields the smallest forbidden zone for a particular region:
simply set the site equal to the region, making the forbidden zone empty. A more
interesting problem is to find a k-point site which minimizes the forbidden zone
for some region. As expected, even the area of the forbidden zone with respect
to a polygonal region and k-point site in R2 has proven difficult to express in
terms of the site locations.

There is however one important, if simple, case which we have been able to
resolve.

Theorem 11. Let e1 be the first standard unit basis vector (1, 0, 0, . . . , 0) ∈ Rm.
The problem of minimizing the area of the forbidden zone of the line between
0 and e1 in Rm, m ≥ 2, with k sites is solved by placing the sites at pi =

r∗(1 + 2
m

m−1 (i− 1))e1 for r∗ = 1
2 (1 + (k − 1)2

1
m−1)−1

Proof. First we note that choosing the k sites at points p1 = t1e1, p2 = t2e1,. . . ,
pk = tke1 with t1 ≤ t2 ≤ . . . ,≤ tk yields a forbidden zone given by the union of
k+1 balls: Two centered at the endpoints 0, e1 with radii r0 = t1 and rk = 1−tk
and the rest centered in the middle of two consecutive sites at 1

2 (ti + ti+1) with
radii ri =

1
2 (ti+1 − ti) for i = 1, 2, . . . k − 1 respectively. We note that choosing

these k points on the line is equivalent to choosing the radii of these k + 1 balls
with the restriction that r0 + rk +

∑k−1
i=1 2ri = 1.

Given this restriction the volume we are minimizing is
∑

ωmrmi where ωm is
the volume of the unit ball in Rm. Applying the method of Lagrange multipliers
we find that our minima must be critical points of

Λ(r0, . . . rk, λ) =

(
k∑

i=1

ωmrmi

)
− λ

(
−1 + r0 + rk +

k−1∑
i=1

2ri

)
(54)

Taking partial derivatives with respect to the ri we find that the only critical

point of Λ occurs where r0 = rk = (12)
1

m−1 ri for i = 1, 2, . . . k − 1. From this we

find r0 = 1
2 (1+(k−1)2

1
m−1)−1. We can check that this point is a minimum, and

because our objective function is convex this local minimum must in fact be a
global one. Solving back for pi = tie1 we note that

ti = r0 +

i−1∑
j=1

2rj = r0

(
1 + (2i− 2)2

1
m−1

)
(55)

and so noting r0 = r∗ we have our result. ��

Applying this result, we can calculate that the two-point site which minimizes
the forbidden zone for the line segment [0, 1] × {0} in R2 will be { 1

6e1,
5
6e1},

the minimizing three-point site is
{

1
10e1,

1
2e1,

9
10e1

}
, the minimizing four-point

site is { 1
14e1,

5
14e1,

9
14e1,

13
14e1}, and so forth (see Figure 16). As we move to

134 R. Berkowitz et al.

Fig. 16. Minimal-area forbidden zones with respect to line segments and 2-, 3-, and
4-point sites, in R

2.

higher dimensions, the optimal sites. For R3, the minimizing two-point site is at

{
√
2−1
2 e1,

3−√
2

2 e1}.
We can also consider a given region and site and determine which point will

produce the smallest forbidden zone when added to the site. First, we will note
that adding one or more points to the site will never add points to the forbidden
zone.

Theorem 12. Given a region R ⊆ Rm and site S ⊆ R, the forbidden zone with
respect to R and S will not increase if T ⊆ R is added to the site. That is,

F (R,S ∪ T) ⊆ F (R,S). (56)

Proof. Consider a point z ∈ F (R,S ∪ T). There must be a y ∈ R such that
d(z, y) < d(y, S ∪ T). Since d(x, S ∪ T) ≤ d(x, S) for any x ∈ Rm, we have
d(z, y) < d(y, S) and z ∈ F (R,S). ��

In the case of a line segment and a k-point site, adding an additional point to
the site has the effect of replacing one of the balls with two smaller ones. We can
simply examine each ball to determine how much the area can be reduced by
replacing it, and then replacing the ball with the largest reduction. For an interior
ball with radius r, the minimal replacement would be two balls of radius r

2 , giving
a reduction of 1

2r
2. For an edge ball of radius r, the minimal replacement is an

interior ball of radius r(1 + 2
m

m−1)−1 and an edge ball of radius r(2 + 2
−1

m−1)−1.

7.3 General Bounds on the Volume of Generalized Forbidden Zones

In Theorem 5 we were able to put a lower bound on the volume of the forbidden
zone of an arbitrary region with diameter δ. We did this by noting that the line
segment corresponding to the diameter of the set was, by convexity, contained
in our region. We then applied our lower bound on the forbidden zone of a line.
Here we have an appealing solution to minimizing the forbidden zone of a line

On Properties of Forbidden Zones of Polygons and Polytopes 135

segment with k sites, however we cannot use this directly to achieve a similar
lower bound because we can no longer assume the convexity of our region R.

An easy counterexample would be the case of minimizing the forbidden zone
of R = {0, 1} with respect to placement of 2 sites. Of course we can see that
letting our sites be 0 and 1 themselves yields an empty forbidden zone, far less
than the minimal forbidden zone of the line segment [0, 1].

However, we are able to extend several previous results concerning the stabil-
ity of forbidden zones to our consideration of more general sites. Recalling our
notation that χR denotes the characteristic function of a set R, and Rn → R
denotes Rn converges to R with respect to the Hausdorff distance we have the
following generalization of Theorem 6.

Theorem 13. Let Rn, R, Sn, S ⊂ Rm such that Rn → R and Sn → S. We con-
sider the associated sequence of forbidden zones Fn = F (Rn, Sn). The following
hold

1. Fn → F (R,S) = F
2. χFn → χF pointwise.

We note that the only difference here is that our convergent sequence of sites
has been replaced by a sequence of sets which converge with respect to the
Hausdorff distance. The proof is only a very minor variation of the argument
from the original result. We present only the proof of the first statement, but
the modifications needed for the second half are the same.

Proof. For a given ε > 0, pick N large enough so that for n ≥ N we have
dH(Rn, R) < ε and dH(Sn, S) < ε. Fix such an n ≥ N and let y ∈ F . By the
definition of the forbidden zone we know that there must be some r ∈ R such
that ‖y − r‖ < d(r, S). Because dH(Rn, R) < ε, we can pick some r′ ∈ Rn such
that ‖r−r′‖ < ε. Additionally, because dH(Sn, S) < ε we see that for any points
x, x′ we have d(x, S) < d(x, Sn) + ε < d(x′, Sn) + 2ε and so we can compute

‖y − r′‖ ≤ ‖y − r‖ + ‖r − r′‖
< d(r, S) + ε

< d(r′, Sn) + 3ε. (57)

Combining the observation that B(r′, d(r′, Sn)) ⊆ Fn with the result above
that y ∈ B(x′, d(r′, Sn) + 3ε), we have that d(y, Fn) < 3ε. Because y ∈ F was
arbitrary, this completes the proof that supy∈F d(y, Fn) < 3ε.

A similar computation will show that supy′∈Fn
d(y′, F) < 3ε. Therefore, we

have shown that dH(Fn, F) < 3ε, and so we have Fn → F with respect to the
Hausdorff distance.

��

From this result we also obtain the analogue of Corollary 3 about the volumes
of forbidden zones with respect to multiple sites

Corollary 7. Using the notation introduced above, if we have Rn → R where
R is bounded and Sn → S, then limn→∞ |Fn| = |F |.

136 R. Berkowitz et al.

8 Conclusion

In this article, we have developed many properties of the forbidden zone of a
given region R in a Euclidean space with respect to a specified site p. First, we
assumed that R is a closed, convex polygon and the site p belongs to R. In this
special case we developed formulas for computing the area of the forbidden zone,
for the area of the overlapping of circles, for the circumference of the forbidden
zone, as well as for optimal cases of these as the site is allowed to range in
R. These optimization problems, aside from their theoretical interest, associate
interesting geometric “centers” to a polygon, even in the case of a triangle.

We extended our formulas for the computation of the forbidden zone’s area
to the case when p is outside of the convex hull. In other words, our formula
allows computing the area of the intersection of a set of circles having a common
boundary point.

Aside from geometric interest, practical applications could also be described.
For instance, the minimization of the area or the circumference of the forbidden
zone could be considered as a problem of computing optimal locations of sensors
for communication or security purposes.

It is also possible to define problems with multiple forbidden zones. For in-
stance, consider the case of two given non-overlapping triangles where the objec-
tive is to place two sites, one in each, so that the corresponding forbidden zones
do not intersect. One may even define games of strategy based on forbidden
zones. We will consider these in future work.

In this article, we have also extended some of the above results and optimiza-
tions to arbitrary polytopes and bounded convex sets. From the computational
point of view, or in terms of computing closed formulas, even simple cases in
the three dimensional space become more challenging. For instance, consider the
case of the forbidden zone where our region R is a tetrahedron. Our partition-
ing scheme for a triangle is extendable to a tetrahedron, however the compu-
tational formulas need to be examined. We will study these in future work as
well.

Finally, in this article we have given a considerable generalization and charac-
terization of the forbidden zones by allowing a singleton site to be replaced with
an arbitrary subset of points. In particular, we considered the case when the site
consists of a finite set of points. The corresponding optimization problems, even
for two-point sites, and their characterizations result in many new and challeng-
ing open problems that are interesting from the theoretical and practical points
of view. The results in this article is testimonial to the richness of the notion
of forbidden zone. We anticipate that the results will lead to many new lines of
research.

Acknowledgements. We wish to thank Deok-Soo Kim for bringing his work
on overlapping disks in [7] to our attention (see Remark 1). Additional thanks
to Daniel Reem for suggesting a simplification to our proof of Theorem 4.

On Properties of Forbidden Zones of Polygons and Polytopes 137

References

1. Berkowitz, R., Kalantari, B., Kalantari, I., Menendez, D.: On properties of for-
bidden zones of polygons and polytopes. In: International Symposium on Voronoi
Diagrams, pp. 56–65 (2012)

2. de Biasi, S.C., Kalantari, B., Kalantari, I.: Mollified zone diagrams and their com-
putation. In: Gavrilova, M.L., Tan, C.J.K., Mostafavi, M.A. (eds.) Transactions
on Computational Science XIV. LNCS, vol. 6970, pp. 31–59. Springer, Heidelberg
(2011)

3. Asano, T., Matoušek, J., Tokuyama, T.: Zone diagrams: Existence, uniqueness,
and algorithmic challenge. Society for Industrial and Applied Mathematics 37(4),
1192–1198 (2007)

4. Aurenhammer, F.: Voronoi diagrams—a survery of a fundamental geometric data
structure. ACM Computing Surveys 23(3), 345–405 (1991)

5. Kalantari, B.: Voronoi diagrams and polynomial root-finding. In: International
Symposium on Voronoi Diagrams, pp. 31–40 (June 2009)

6. Kalantari, B.: Polynomial root-finding methods whose basins of attraction approxi-
mate voronoi diagram. Discrete & Computational Geometry 46(1), 187–203 (2011)

7. Kim, D.S., Ryu, J., Shin, H., Cho, Y.: Beta-decomposition for the volume and area
of the union of three-dimensional balls and their offsets. Journal of Computational
Chemistry 33(13), 1252–1273 (2012)

8. Wesolowsky, G.O.: The weber problem: History and perspectives. Computers &
Operations Research 1(1), 5–23 (1993)

9. Coxeter, H.S.M.: Introduction to Geometry, 2nd edn. John Wiley & Sons, New
York (1980)

10. Shen, Y., Tolosa, J.: The weighted fermat triangle problem. International Journal
of Mathematics and Mathematical Sciences (2008)

11. Ostresh Jr., L.M.: On the convergence of a class of iterative methods for solving
the weber location problem. Operations Research 26(4), 597–609 (1978)

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XX, LNCS 8110, pp. 138–157, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Voronoi-Based Medial Axis Approximation
from Samples: Issues and Solutions

Farid Karimipour and Mehran Ghandehari

Department of Surveying and Geomatics Engineering, College of Engineering,
University of Tehran, Iran

{fkarimipr,ghandehary}@ut.ac.ir

Abstract. Continuous curves are approximated by sample points, which carry
the shape information of the curve. If sampling is sufficiently dense, the sample
points can be used to extract the structural properties of the curve (e.g., crust,
medial axis, etc.). This article focuses on approximation of medial axis from
sample points. Especially, we review the methods that approximate the medial
axis using Voronoi diagram. Such methods are extremely sensitive to noise and
boundary perturbations. Thus, a pre- or post-processing step is needed to filter
irrelevant branches of the medial axis, which are introduced in this article. We,
then, propose a new medial axis approximation algorithm that automatically
avoids irrelevant branches through labeling sample points. The results indicate
that our method is stable, easy to implement, robust and able to handle sharp
corners, even in the presence of significant noise and perturbations.

Keywords: Sample points, Medial axis approximation, Pruning, Voronoi diagram,
Delaunay triangulation.

1 Introduction

The Medial Axis (MA) was first introduced by Blum to describe biological shapes,
and it is used as a tool in image analysis [1]. The MA is intuitively defined as follows:
consider starting a fire at the same moment everywhere on the boundary of a shape in
the plane. The fire propagates with homogeneous velocity in all directions. The MA is
the set of points where the front of the fire collides with itself, or other fire front. Al-
ternatively, in mathematical language, the MA is the set of points that are equidistant
from at least two points on the boundary of the shape (Fig. 1).

The MA is used in a variety of applications including pattern analysis and shape
recognition [2, 3], image compression [4], surface fitting [5], font design [6], path
planning [7], solid modeling [8, 9], feature extraction in geometric design [10, 11] and
Geospatial Information System (GIS) [12-14].

The methods proposed for the MA extraction are classified into discrete, semi-
continuous and continuous (exact). In discrete case, the input and output are images.
Different algorithms based on thinning [15], Voronoi diagram [16], distance trans-
form [17] and mathematical morphology [18] are proposed in this class. In semi-
continuous methods, the shape is approximated by a set of sample points on the shape

 Voronoi-Based Medial A

boundary and, then, the MA
tures, say, Voronoi diagram
MA directly depends on the
tinuous shape is known an
problem and so far, the solu

A major issue of the MA
MA is very sensitive to sm
vant branches in the MA co
two very similar shapes can
neous branches is a commo
thods work as a pre-proce
before computation of the
tracted MA in a post-proces

The purpose of the filter
preserve only the meaningf
topological or geometrical s

Fig. 2. Similar shapes may h

This article reviews the
proximate the MA from sam
ly used methods for filterin
issues. This investigation h
that automatically avoids ir
results illustrate that our me
dle sharp corners, even in th

The rest of the article i
geometric definitions, inclu
Voronoi and power diagram

Axis Approximation from Samples: Issues and Solutions

A is extracted using these points based on different str
m of the sample points. The quality of the approxima
e sampling rate. Finally, in continuous algorithms the c

nd the exact MA is extracted. However, this is a comp
ution is known only for some geometrical shapes [19, 20

Fig. 1. The MA of some 2D shapes

A is its inherent instability under small perturbations. T
mall changes of the boundary, which produce many irre
orresponding to non-significant parts of the boundary, so
n have significantly different MAs (Fig. 2). Filtering ex
on solution to handle this issue. Some of the filtering m
ssing step through simplifying (smoothing) the bound
MA; The others prune the irrelevant branches of the

ssing step.
ring methods is to remove irrelevant branches, in orde
ful parts of the MA. In general, however, they may alter
structure of the MA.

have significantly different MA due to boundary perturbations

semi-continuous methods that use Voronoi diagram to
mple points. Furthermore, we introduce the most comm
ng irrelevant branches of the MA, and discuss their m
as led us to proposing a new MA approximation algorit
rrelevant branches through labeling the sample points. T
ethod is stable, easy to implement, robust and able to h
he presence of significant noise and perturbations.
is structured as follows: Section 2 presents some rela
uding the MA, sampling, Delaunay triangulation as wel
ms. In Section 3, the Voronoi-based algorithms proposed

139

ruc-
ated
con-
plex
0].

The
ele-
o as

xtra-
me-
dary
ex-

er to
the

s.

ap-
mon-
main
thm
The
han-

ated
ll as
d in

140 F. Karimipour and M

the literature for the MA a
filtering methods are introd
algorithm for the MA app
Section 6 concludes the arti

2 Geometric Preli

This section represents som
ing sections. It starts by a
related to sampling are then
gram and power diagram a
boundary and S ⊂ ∂ is a d

2.1 Medial Axis

Definition 1. The medial a
least two closest points on t

In 2D, the MA of a plan
gent to curve in two or mo
3.a). This article concentrat
for objects of higher dimen

(a)

Fig. 3. The

The skeleton is a concep
skeleton equivalent to the M
are not equal [23]. In this a
terms and use the terms, int

2.2 Local Feature Size

Continuous curves are app
the sample points carry the
reconstruct the original curv
has a direct effect on curve
to determine the level of de
for curve reconstruction.

M. Ghandehari

approximation are reviewed. Some of the commonly u
duced in Section 4. In Section 5, we introduce our propo
proximation through labeling the sample points. Fina
icle and represents ideas for future work.

iminaries

me geometric definitions that are referred to in the follo
a more detailed description of the MA. Two definiti
n presented. Finally, Delaunay triangulation, Voronoi d
are introduced. In this section, is a 2D object, ∂ is
dense sampling of ∂ .

axis is (the closure of) the set of points in that have
the object’s boundary ∂ [21].

ne curve is the locus of the centers of circles that are t
ore points, where all such circles are contained in (F
tes on the 2D MAs. However, this structure is also defi
sions (Fig. 3.b).

(b)

MA of (a) a curve in R2 and (b) a surface in R3

pt closely related to the MA. Some literatures consider
MA [22], while some others believe they are similar,

article, we consider both the MA and the skeleton as eq
terchangeably.

and r-Sampling

proximated by sampling. If sampling is sufficiently den
e shape information of the curve, i.e., they can be used
ve and approximate its MA. The quality of sample poin
reconstruction. Local feature size is a quantitative meas

etails at a point on a curve, and the sampling density nee

used
osed
ally,

ow-
ions
dia-
s its

e at

tan-
Fig.
ined

the
but

qual

nse,
d to

nts S
sure
eded

 Voronoi-Based Medial A

Definition 2. The local fea
tance from p to the nearest p

Note that LFS(p) is diffe
to curve at p (Fig. 4).

Fig. 4. The local feature size o
of the medial circle touching p

Definition 3. The object ∈ ∂ , there is at least one sa
The value of r is less th

sampling [21]. Fig. 5 show
denser to provide a proper s

Fig. 5. (a) A curv

The r-sampling factor is
construction, but no upper
may not be useful in practic
corners and noisy samples,
reconstruction, which is not

2.3 Delaunay Triangul

Definition 4. Given a poin
unique triangulation (if the
fies the circum-circle prope
other point s ∈ S [27, 28]. F

Axis Approximation from Samples: Issues and Solutions

ature size of a point p ∈ ∂ , denoted as LFS(p), is the d
point m on the MA [21].
erent from radius of the medial circle, which is the tang

of a point p (pm) is not necessarily the same as the smallest rad
p (pm') [24]

is r-sampled by a set of sample points S if for each poin
ample point s ∈ S that ∥ p-s ∥ ≤ r ⋇ LFS(p) [21].
han 1; and usually r=0.4 is considered a reasonably de
ws an example where sample points around the center
sampling.

(a) (b)

ve with its MA; (b) An r-sampling of the curve [24]

s a lower bound for sampling that guarantees a proper
bound was defined. Furthermore, such theoretical crite

ce. For instance, from a theoretical point of view, for sh
 infinite dense sampling is needed to guarantee the pro
t practically possible [25, 26].

ation

nt set S in the plane, the Delaunay triangulation (DT)
points are in general position) of the points in S that sa

erty: the circum-circle of each triangle does not contain
Fig. 6.a illustrates a 2D example.

141

dis-

gent

dius

nt p

ense
are

r re-
eria

harp
oper

is a
atis-
any

142 F. Karimipour and M

2.4 Voronoi Diagram

Definition 5. Let S be a set
as Vp (S), is the set of points

The union of the Vorono
denoted as VD(S):

Fig. 6.b shows the Voron
Delaunay triangulation

circum-circles of Delaunay
adjacent generator points i
(Fig. 6.c) [29].

(a)

Fig. 6. (a) Delaunay triangulat
(c) their duality

For Voronoi diagram of
inner and outer vertices, wh
noi edges are classified int
Voronoi edges), edges betw
between an inner and an ou

A Voronoi ball is center
closest sample point. Agai
depending on type of their c

2.5 Power Diagram

Power diagram is a weighte
pose ball Bc,r as a point c w
and Bc,r is:

{()pV S x=

d

M. Ghandehari

of points in R2. The Voronoi cell of a point p ∈ S, deno
s x ∈ R2 that are closer to p than to any other point in S:

oi cells of all points s ∈ S forms the Voronoi diagram o

noi diagrams of a set of 2D points.
and Voronoi diagram are dual structures: the centers
y triangulation are the Voronoi vertices; and joining
in a Voronoi diagram yields their Delaunay triangulat

(b) (c)

tion and (b) Voronoi diagram of a set of points in the plane;

f sample points S, the Voronoi vertices are classified i
hich lie inside and outside , respectively. Then, the Vo
to three groups: edges between two inner vertices (in
ween two outer vertices (outer Voronoi edges), and ed
uter vertices (mixed Voronoi edges).
red at a Voronoi vertex and its radius is its distance to
in, Voronoi balls are classified into inner and outer b
center points [30].

ed Voronoi diagram introduced by Edelsbrunner [31]. S
with weight r2. The power distance between a point x ∈

}2 , ,x R x p x q q S q p∈ − ≤ − ∈ ≠

() (),pVD S V S p S= ∈

2 2
,(,) = − −pow c rd x B x c r

oted

(1)

of S,

(2)

s of
the

tion

and

into
oro-
nner
dges

the
alls

Sup-∈ R2

(3)

 Voronoi-Based Medial A

Then:

Definition 6. Let S be a se
R2 into cells and each cell o
power distance, to p (Fig. 7

Fig. 7. The power diagram of
ball centered at c with radius r

3 Voronoi-Based A

This section introduces fou
approximate the MA, inclu
crust and skeleton’ algorith

3.1 Voronoi Ball Algor

This algorithm was propos
[32, 33]. Suppose { 1,=B b

is the union of these balls.
arcs, whose intersection po
dual of the union of the ba
(Fig. 8.a), and it is restricte
structure, for every edge in
ponding balls is added, an
diagram, a triangle construc

(a)

Fig. 8. Restricted power diagr
Power diagram restricted to the

Axis Approximation from Samples: Issues and Solutions

t of points in R2. The power diagram is the subdivision
of a point p ∈ S is a set of points x ∈ R2 that are closest
).

four weighted points. A point c with weight r2 is represented b
r [32].

Algorithms for Medial Axis Approximation

ur Voronoi-based algorithms proposed in the literature
uding ‘Voronoi ball’, ‘Voronoi edge‘, ‘crust’ and ‘one-s
ms.

rithm

ed by Amenta et al. for the shape and MA approximat

}2, ,..., nb b is the set of inner Voronoi balls and U=⋃i
n
=

The boundary ∂U of the shape U is composed of circu
oints are referred to as V(U). We also need to construct
alls. For this, the power diagram of the points is compu
ed to the union of the balls (Fig. 8.b). To compute the d

the restricted power diagram, an edge between the corr
nd for every vertex in the corresponding restricted pow
cted by the corresponding balls is created (Fig 8.c).

(b) (c)

ram and its dual: (a) Power diagram of the weighted points;
e union of the balls; (c) Dual of the restricted power diagram

143

n of
t, in

by a

e to
step

tion

1 bi
ular
the

uted
dual
res-
wer

; (b)

144 F. Karimipour and M

The Voronoi ball algorit
ple points (Fig 9.b). Havin
approximate the boundary
power diagram of the inner
weights results in the dual
this dual structure with the
of the shape (Fig 9.g and 9.

(a)

(e)

Fig. 9. The MA approximatio
boundary; (b) Voronoi diagram
inner Voronoi balls, (e) Union
of the union of the balls; (g)
Approximation of the MA of th

This method is very com
floating point arithmetic: A
10.a) and a degenerate posit

(a)

Fig. 10. Floating point arithm
single point and (b) degenerate

IRAN

M. Ghandehari

thm starts by constructing the Voronoi diagram of the sa
ng computed the inner Voronoi balls (Fig 9.d), their un
of the shape (Fig 9.e). On the other hand, constructing
Voronoi vertices by assigning the radius of the balls as
of the union of the balls (Fig 9.f). Finally, intersection
Voronoi diagram of V(U) is an approximation of the M

h).

(b) (c) (d)

(f) (g) (h)

on using Voronoi balls method: (a) Sample points of the sh
m of the sample points; (c) The inner Voronoi vertices; (d)
n of inner Voronoi balls, which approximates the shape, (f) D

Intersection of the dual and the Voronoi diagram of V(U);
he shape.

mputationally expensive. Furthermore, it is very sensitive
A lot of Voronoi balls can intersect in one single point (F

tion in computation destroys the final results (Fig. 10.b)

) (b)

metic problems: (a) A lot of Voronoi balls can intersect in
e position in computation destroy the MA.

am-
nion

the
the

n of
MA

hape
The

Dual
; (h)

e to
Fig.
).

one

 Voronoi-Based Medial A

3.2 Voronoi Edge Algo

Attali and Montanvert [34]
can be interpreted as the M
Voronoi edges of the sam
advantage of this algorithm

Fig. 11

In another similar study
proximation:

1. Compute the Delaun
2. Discard any triangle
3. Compute the center
4. Construct the MA by

boring triangles (Fig. 1

(a)

Fig. 12. The MA approximati
Discarding triangle that are ou
Connecting the centers of the
the MA

3.3 Crust Algorithm

Amenta et al. [21] propos
reconstruct the boundary fro
In this algorithm, the crust i
sample points.

Axis Approximation from Samples: Issues and Solutions

orithm

] has suggested that the union of the inner Voronoi ed
A (Fig. 11). It means that the MA edges are a subset of

mple points (For more details and proofs, see [35]). T
m is that it only needs computing a Voronoi diagram.

. The MA is a subset of the Voronoi edges

y, Tam [36] proposed the following steps for the MA

nay triangulation of the sample points (Fig. 12.a).
s that are outside of the object (Fig. 12.b).
of the circum-circles of remaining triangles (Fig. 12.c).
y connecting the centers of the circum-circles of the nei
12.d).

(b) (c) (d)

ion using Inner Voronoi edges: (a) DT of the sample points;
utside the shape; (c) The circum-circles of remaining triangles
 circum-circles of the neighboring triangles, which approxim

ed a Voronoi-based algorithm (called crust algorithm)
om a set of sample points forming the boundary of a sha
is a subset of the edges of the Delaunay triangulation of

145

dges
f the
The

ap-

igh-

; (b)
; (d)
mate

) to
ape.
f the

146 F. Karimipour and M

To compute the crust, le
noi diagram of the sample p

1. Compute the Voronoi
2. Compute the Delauna
3. The edges of the abo

form the crust, which

This algorithm can also
tracted in step 1 whose dua
(Fig. 13.b).

The crust algorithm is b
crust if e has a circum-circl
of S. It means that a global
and Voronoi vertices respec

(a

Fig. 13. Curve reconstruction a
diagram of the sample points
vertices

3.4 One-Step Crust and

Gold and Snoeyink [13] i
(crust) and the MA (skele
“one-step crust and skeleton

In the one-step crust and
ther part of the crust (Delau
by a simple inCircle test.
triangles (D1D2D3 and D1D
Voronoi edge (V1V2 in Fig.

Suppose two triangles D
Voronoi edge is V1V2. The
spect to the circle passes th
longs to the crust (Fig. 14.
(Fig. 14.c).

M. Ghandehari

et S be the sample points and V be the vertices of the Vo
points. Then:

i diagram of the sample points S (Fig. 13.a).
ay triangulation of S∪V (Fig. 13.b).
ove Delaunay triangulation whose endpoints belong t
is an approximation of the shape (Fig. 13.b).

be used for the MA approximation: the Voronoi edges
al Delaunay edges do not belong to the crust form the M

based on the fact that an edge e of the DT belongs to
le that contains neither sample points nor Voronoi verti
test is needed to check the position of every sample po

ct to this circle.

a) (b)

and the MA approximation using the crust algorithm: (a) Voro
s; (b) Delaunay triangulation of the sample points and Voro

d Skeleton Algorithm

improved the crust algorithm so that both the bound
eton) are extracted, simultaneously; and coined the na
n” for this algorithm.
d skeleton algorithm, every Voronoi/Delaunay edge is
unay) or the skeleton (Voronoi), which can be determi
Each Delaunay edge (D1D2 in Fig. 14.a) belongs to t

D2D4 in Fig. 14.a). For each Delaunay edge, there is a d
14.a).

D1D2D3 and D1D2D4 have a common edge D1D2 whose d
InCircle(D1, D2, V1, V2) determines the position of V2

hrough D1, D2 and V1. If V2 is outside the circle, D1D2
.b). If V2 is inside, however, V1V2 belongs to the skele

oro-

to S

ex-
MA

the
ices
ints

onoi
onoi

dary
ame

s ei-
ned
two
dual

dual
2 re-
be-

eton

 Voronoi-Based Medial A

The value of InCircle(
determinant:

D1D2 belongs to the crus
the skeleton [13, 28, 37, 38]

(a)

Fig. 14. One-step crust and ske
noi diagram of four sample po
and V1, so D1D2 belongs to the
V1V2 belongs to the skeleton.

The pseudo-code of the o

One-step crust and skel
Input : Sample point S
Output: Crust and skelet
1. DT ← Delaunay
2. E ← Edges of D
3. For every e ∈E do
4. S1, S2 ← triangle
5. D1, D2 ← end po
6. V1, V2 ← center
7. H ← InC
8. If H < 0 then D1D2
9. else V1V2 ∈ Skeleton

As mentioned earlier, th
with a local test in the on
nay/Voronoi edges to the c
lead to assigning wrong edg
locally-defined crust becau
Voronoi vertices of its dua
crust because the circle pa
problem is solved by satisfy

Axis Approximation from Samples: Issues and Solutions

(D1, D2, V1, V2) test is calculated using the follow

st if this determinant is negative, otherwise V1V2 belong
].

(b) (c)

eleton extraction algorithm: (a) Delaunay triangulation and V
oints D1 to D4; (b) V2 is outside the circle passes through D1

e crust; (c) V2 is inside the circle passes through D1, D2 and V1

one-step crust and skeleton algorithm is as follows:

leton extraction

ton of the shape approximated by S
Triangulation of S
DT

es that contain e
ints of e
s of the circum-circles of S1 and S2

Circle(D1, D2, V1, V2)
∈ Crust

n

he global circle test used in the crust algorithm is repla
ne-step crust and skeleton algorithm to assign the Del
rust and skeleton. Although it is simpler and faster, it m
ges to the crust. For example, in Fig. 15 the edge e is in
use the circle passes through e does not contain the ot
al Voronoi edge. However, e is not in the globally-defi
sses through e includes some Voronoi vertices [13]. T
ying the sampling conditions (see section 2.2).

147

wing

(4)

gs to

oro-
, D2

1, so

aced
lau-
may
the

ther
ined
This

148 F. Karimipour and M

Fig. 15. The edge e (bold line)
crust [13]

4 Filtering the Ext

As stated, the MA is sensiti
branches in the MA corres
must be filtered out. Such
simplifying (smoothing) th
which eliminates the irrelev

4.1 Simplification

Some of the filtering meth
removing perturbations or
remove unwanted boundary
tion between boundary data
alter the topological structu

4.2 Pruning

The purpose of the pruning
vant branches in order to p
were proposed in such algo
then the branches with the
[16, 43-48]. Typically, thes

Pruning algorithms have
be eliminated entirely. (2)
branches as well. (3) A di
curred. (4) Many of the pru
shape. (5) In some cases, e
determine appropriate thres
not work automatically and

4.2.1 λ-medial Axis
Chazal and Lieutier [45] i
shows, they assign the imp

M. Ghandehari

) is in the locally-defined crust but it is not in the globally-defi

traneous Edges in the Medial Axis

ive to boundary perturbations. It results in many irrelev
sponding to non-significant parts of the boundary, wh
filtering may be applied as a pre-processing step throu
e boundary; or as a post-processing step through pruni

vant branches of the extracted MA.

hods simplify the boundary before computing the MA
boundary noises [39-42]. Although these methods aim

y noise, they may not provide the ideal results: the disti
a with noise could be difficult. In addition, these meth

ure and thus the MA position.

g algorithms, as a post-processing step is to remove irre
preserve only the stable parts of the MA. Different crite
orithms to assign an importance value to each branch,
importance values less than a given threshold are remo
e criteria are based on angle, distance, area, etc.
e some drawbacks; (1) Some irrelevant branches may
Eliminating irrelevant branches usually shorten the m
sconnection in the main structure of the MA may be
uning methods cannot preserve the topology of a comp
even multiple parameters are required and it is difficul
sholds, simultaneously. Finally, most pruning methods

d they require user checks at the end.

introduced the λ-medial axis pruning method. As Fig.
portance values based on the distance between the con

ined

vant
hich
ugh
ing,

A by
m to
inc-

hods

ele-
eria
and
ved

not
main

oc-
plex
lt to
s do

 16
ntact

 Voronoi-Based Medial A

points (i.e., any Voronoi b
that the λ-medial axis pres
proved geometric stability w
threshold and does not adop

Fig. 16. Importa

4.2.2 Angle Filtration
Attali and Montanvert [46]
parameter. This angle is the
points (Fig. 17). They obse
bisector angles. No geomet
and its threshold depends on

Fig. 17. Imp

4.2.3 Discrete Skeleton
Bai and Latecki [47] introd
ing method. The threshold
shape and the shape reconst
considers a weight wi for e
junction point:

Where A is area function
is the shape reconstructed fr

Axis Approximation from Samples: Issues and Solutions

all touches the boundary at contact points). They show
serves topology for a restricted range of values of λ
with respect to small perturbations. However, λ is a glo
pt the local size of the object.

ance values assigned by λ-medial axis method [49]

 proposed an algorithm to prune the MA using an angu
e maximum angle formed by the MA point, and its con
erved that the vertices of irrelevant branches have sma
tric stability guarantee has been presented for this meth
n the distribution of sample points.

portance values assigned by angle filtration [49]

 Evolution
uced the discrete skeleton evolution as an area-based pr
in this method is the difference between the area of ini
tructed from the simplified skeleton (Fig. 18). This meth

each end branch, which is an edge of skeleton that has

n, S is the original skeleton, P(Li) is an end branch and R
rom the skeleton.

1 ((()))

(())
i

i
A R S P L

w
A R S

− −=

149

wed
and

obal

ular
ntact
aller
hod

run-
itial
hod
one

(5)

R(S)

150 F. Karimipour and M

Fig. 18. Shape reconstruction
constructed from the MA [47]

Generally, an end branc
construction, since the are
same as the area of the reco
results of this algorithm for

(a) (b)

Fig. 19. The skeleton evolutio
The original skeleton; (b) to (f

This method shortens the
shold is difficult.

4.2.4 Scale Axis Transf
In the λ-medial axis metho
cause the radius of their cor
the global parameter for th
shape is a solution to deal w

Giesen et al. [48] presen
multiply the radius of all i
consider their union as the
dered as the simplified MA
the Voronoi balls is multip
The Voronoi balls corresp
balls (Fig. 20.c) and therefo
shape keeps the whole mai
may still contain some tiny

(a)

Fig. 20. The steps of the scal
Voronoi balls; (b) The radius
(c) small balls are covered by l

M. Ghandehari

(a) (b)

from the MA: (a) Original shape and its MA; (b) The shape

ch with a small weight has a little influence on the
ea of the reconstruction without this branch is nearly
onstruction with it, so it can be removed [47]. Fig. 19 is
r different thresholds.

(c) (d) (e) (f)

on process results in iterative pruning of the skeleton of a bird
f) The pruned skeletons with different thresholds [47]

e main branches. Furthermore, finding an appropriate th

form
od, some main branches of the MA may be eliminated
rresponding balls are smaller than the threshold. Replac

he whole shape with local parameters for each part of
with this issue.
nted a different method called scale axis transform. T
inner Voronoi balls by a certain simplification factor
grown shape. Then, the MA of the grown shape is con

A. Fig. 20 illustrates the steps of this method. The radius
plied by a coefficient (multiplicative scaling) (Fig. 20
ond to the less important branches are covered by lar
ore small balls are eliminated. Thus, the MA of the gro
n branches (Fig. 20.d). However, the result of this meth
extraneous branches (Fig. 21).

(b) (c) (d)

le axis transform algorithm: (a) The original MA and the in
of Voronoi balls is multiplied by a multiplicative scaling fac
larger balls; (d) The MA of the grown shape [48]

e re-

 re-
the
the

: (a)

hre-

be-
cing

the

They
and
nsi-
s of

0.b).
rger
own
hod

nner
ctor;

 Voronoi-Based Medial A

Fig. 21. Tiny extraneous branc

5 Proposed Appro

In this section we propose
rithm through labeling the
posed approach improves th

Fig. 22.a illustrates the M
ton algorithm. As this figur
parts of the MA, which ar
observed that such extraneo
ple points that lie on the sa
the sample points in order t

Fig. 22. (a) One-step crust and
MA. They are the Voronoi ed
ment of the curve; (b) our prop

We consider the shape b

Inner and outer Vorono
edges do [30]. The same
sample points S are classifi
consecutive points and belo
two non-consecutive poin
vertices lie on the ∂). Not
inner/outer/mixed Delaunay

Axis Approximation from Samples: Issues and Solutions

ches in the MA after using the scale axis transform algorithm [

oach for the Medial Axis Extraction

an improvement to the one-step crust and skeleton al
sample points as a pre-processing; and show how our p
he results [50].
MA of a shape extracted using the one-step crust and ske
re shows, this algorithm detects some extraneous edges
re filtered using simplification or pruning. However,
ous edges are the Voronoi edges created between the sa
ame segment of the curve. It led us to the idea of label
o automatically avoid such edges in the MA (Fig 22.b).

d skeleton algorithm detects some extraneous edges as parts of
dges created between the sample points that lie on the same s
posed method automatically avoid such edges in the MA.

oundary as different curve segments ∂ i and:

oi edges do not intersect with ∂ , but mixed Voro
applied to the Delaunay edges: Delaunay edges of

ied into three classes: Mixed Delaunay edges that join t
ong to the crust; and inner/outer Delaunay edges that j
nts and are completely inside/outside (all Delau
te that the inner/outer/mixed Voronoi edges are dual to
y edges.

1

n

i
i

O O
=

∂ = ∂

151

[48]

lgo-
pro-

ele-
s as
we

am-
ling

f the
seg-

(6)

onoi
the

two
join

unay
the

152 F. Karimipour and M

We observed that the ext
inner Delaunay edges) who
er, the dual of the main MA
launay edges) whose end p
main idea of the proposed a
ing Delaunay vertices lie on

We start with labeling th
unique label; and all of its
are common between two c
unique negative label to dis

Filtering in our proposed
formed simultaneously wit
Delaunay edge passes the I
ponding Delaunay vertices
Delaunay edge is added to
corresponding Delaunay ve

To apply our proposed a
lines 8 and 9 of the pseudo-

8. If H < 0 and lab

Crust
9. else if label(D1) ~=

Fig. 23 compares the re

posed method. As it is ill
strategy: more junctions wil

(a)

Fig. 23. The MA approximatio
proposed method for different

5.1 Stability

Stability is important becau
MA should not be sensitiv
small perturbations in the

M. Ghandehari

traneous MA edges are the inner Voronoi edges (or its d
ose both end points lie on the same curve segment. How
A edges are the inner Voronoi edges (or its dual inner D
points lie on two different curve segment. Therefore,
approach is to remove all the MA edges whose correspo
n the same boundary curve.
he sample points: Each segment of the shape is assigne
sample points are assigned the same label. The points t
curve segments are called junctions, which are assigne

stinguish them from other sample points.
d method is not a pre- or post-processing step, but it is p
th the MA extraction. To extract the crust and MA, e
InCircle test: If the determinant is negative and the corr
s have the same labels or one of them is a junction, t
the crust. Otherwise, if the determinant is positive and

ertices have different labels, its dual is added to the MA.
approach in the one-step crust and skeleton algorithm,
-code presented in section 3.4 are modified as follows:

bel(D1)=label(D2) or label(D1)*label(D2)<0 then D1D2

= label(D2) then V1V2 ∈ Skeleton

sult of one-step crust and skeleton algorithm and our p
lustrated, the resultant MA depends on the segmentat
ll result in a more complicated MA.

(b) (c) (d)

on: (a) One-step crust and skeleton algorithm; (b), (c) and (d)
segmentations: The more junctions, the more complicated MA

use few sources of data are ideal. For stable algorithms,
ve to the small changes of the boundary; in other wor
input data should not lead to large changes in the M

dual
wev-
De-
the

ond-

ed a
that
ed a

per-
each
res-
that
the

the

2 ∈

pro-
tion

 our
A

the
rds,

MA.

 Voronoi-Based Medial A

While existing methods ap
this issue is automatically s
in the MA are inner Delaun
ments. Thus, if the end poi
ment, its dual inner Vorono
the MA. Fig. 24 illustrates t
approach for an example, b
figure shows, the perturbati

(a)

Fig. 24. The MA approximatio
(c) One-step crust and skeleton

5.2 Flexibility

Efficient algorithms for exa
ber of shapes [30]. Flexibili
can be used for the MA co
have any effect on the fin
points.

(a)

Fig. 25. The MA extraction: (a
proposed method

5.3 Accuracy and Prec

The MA computation meth
nuous methods. The accura

Axis Approximation from Samples: Issues and Solutions

pply a filtering process to remove the irrelevant branch
solved in our labeling approach: The dual of proper ed
nay edges whose end points lie on two different curve s
ints of an inner Delaunay edge lie on the same curve s
oi edge will be an irrelevant edge, which does not appea
the results of one-step crust and skeleton algorithm and

before and after addition of boundary perturbations. As
ions do not have any effects on the final results.

(b) (c) (d)

on before and after the addition of boundary perturbations: (a)
n algorithm; (b) and (d) our proposed method

act computation of the MA are only known for a few nu
ity of proposed method increases the variety of shapes t

omputation (Fig. 25). The shape and its complexity do
nal results. This flexibility is due to labeling the sam

(b) (c) (d)

a) and (c) One-step crust and skeleton algorithm; (b) and (d) ou

ision

hods are classified into discrete, semi-continuous and co
acy of semi-continuous methods depends on the density

153

hes,
dges
seg-
seg-
ar in
our
this

and

um-
that
not

mple

ur

onti-
y of

154 F. Karimipour and M

sample points: the more sam
existing methods is their lo
most of the algorithms can
This problem is solved in th

5.4 Complexity

Pruning algorithms are co
which results in high comp
tering in our method is not
computation as a simple ch
Furthermore, complexity o
turbation, while the comple
of sample points.

5.5 Handling Sharp Co

Crust algorithm sometimes
where the MA is very clos
requires infinite density sa
not practically possible (hi
volume and decreasing the
sample points around all co
high volume data.

In our proposed approac
processing step and only th
rearrangement: After comp
junction is counted. If this n
a rearrangement of samplin

Fig. 26. D

6 Conclusion and

This article reviewed the M
approach and improved on
labeling the sample points.
robust to boundary perturbat

M. Ghandehari

mple points, the more exact MA. The disadvantage of m
ow precision. Simplification and pruning which is done
n alter the topological or geometrical structure of the M
he proposed method.

omplex and repetitive, and does not work automatica
plexity and low speed of the MA extraction algorithm.
a pre- or post- processing step, but is integrated in the M
eck and does not affect the running speed of the algorith
f all algorithms depends on the amount of noise and p

exity of our proposed method only depends on the num

orners

s has problems in reconstructing curves at sharp corn
e to the boundary (Fig. 26). Based on sampling criteria

ampling to guarantee the reconstruction process, which
igh density of sample points leads to increasing the d
speed of the algorithm). Another solution is arranging

orners in an appropriate way, which is time-consuming

ch, we detect the problematic shape corners through a po
he sample points around these problematic corners ne
puting the crust, the number of crust lines joined at e
number is less than a predefined threshold (usually 2 or

ng points is needed around this corner [51, 52].

Different states that may occur at sharp angles

Future Work

A approximation methods that use Voronoi diagram in th
e of the Voronoi-based MA extraction algorithms thro
It leads to a solution that is simple and easy to implem
tions, and able to handle sharp corners. The results show

most
e in

MA.

ally,
Fil-
MA
hm.
per-

mber

ners,
a, it
h is
data
the
 for

ost-
eeds
each
r 3),

their
ugh

ment,
that

 Voronoi-Based Medial Axis Approximation from Samples: Issues and Solutions 155

our proposed approach deals elegantly with different cases of sample points and solves
the problems that may occur in other algorithms.

Simplification and pruning which is done in most of the algorithms can alter the
topological or geometrical structure of the MA. The results illustrate that our method
is stable, even in the presence of significant noise and perturbations, and have the
same topology as the original MA.

In the future, we will extend the approach for surface reconstruction and 3D MA
extraction. We will also study in more details the relationship between curve recon-
struction and the MA extraction, as well as their applications in other fields.

References

1. Blum, H., et al.: A Transformation for Extracting New Descriptors of Shape. Models for
the Perception of Speech and Visual Form 19, 362–380 (1967)

2. Blum, H., Nagel, R.N.: Shape Description Using Weighted Symmetric Axis Features. Pat-
tern Recognition 10, 167–180 (1978)

3. Bookstein, F.L.: The Line-Skeleton. Computer Graphics and Image Processing 11, 123–137
(1979)

4. Brandt, J.W., Jain, A.K., Ralph Algazi, V.: Medial Axis Representation and Encoding of
Scanned Documents. Journal of Visual Communication and Image Representation 2, 151–165
(1991)

5. Gross, L.M.: Transfinite Surface Interpolation over Voronoi Diagrams. PhD Thesis, Ari-
zona State University (1995)

6. Chou, J.J.: Numerical Control Milling Machine Tool path Generation for Regions
Bounded by Free Form Curves and Surfaces. PhD Thesis, University of Utah Salt Lake
City, UT, USA (1989)

7. O’rourke, J.: Computational Geometry in C. Cambridge University (1998)
8. Gursoy, H.N., Patrikalakis, N.M.: Automatic Coarse and Fine Surface Mesh Generation

Scheme Based on Medial Axis Transform: Part I Algorithms. Engineering with Computers
(New York) 8, 121–137 (1992)

9. Sherbrooke, E.C., Patrikalakis, N.M., Brisson, E.: An Algorithm for the Medial Axis
Transform of 3d Polyhedral Solids. IEEE Transactions on Visualization and Computer
Graphics 2, 44–61 (1996)

10. Hisada, M., Belyaev, A.G., Kunii, T.L.: A Skeleton-Based Approach for Detection of Per-
ceptually Salient Features on Polygonal Surfaces. Computer Graphics Forum 21, 689–700
(2002)

11. Hoffmann, C.M.: Geometric and Solid Modeling: An Introduction. Morgan Kaufmann
(1989)

12. Gold, C.: Crust and Anti-Crust: A One-Step Boundary and Skeleton Extraction Algorithm.
In: Proceedings of the Fifteenth Annual Symposium on Computational Geometry, pp.
189–196 (1999)

13. Gold, C., Snoeyink, J.: A One-Step Crust and Skeleton Extraction Algorithm. Algorithmi-
ca 30, 144–163 (2001)

14. Gold, C., Dakowicz, M.: The Crust and Skeleton–Applications in GIS. In: Proceedings of
2nd International Symposium on Voronoi Diagrams in Science and Engineering, pp. 33–42
(2005)

156 F. Karimipour and M. Ghandehari

15. Lam, L., Lee, S.W., Suen, C.Y.: Thinning Methodologies-a Comprehensive Survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 869–885 (1992)

16. Ogniewicz, R.L., Kübler, O.: Hierarchic Voronoi Skeletons. Pattern Recognition 28,
343–359 (1995)

17. Borgefors, G.: Centres of Maximal Discs in the 5-7-11 Distance Transform. In: Proceed-
ings of the Scandinavian Conference on Image Analysis, vol. 1, pp. 105–105 (1993)

18. Arcelli, C., Frucci, M.: Reversible Skeletonization by (5, 7, 11)-Erosion. In: Proceedings
of the International Workshop on Visual Form: Analysis and Recognition, pp. 21–28
(1992)

19. Chou, J.J.: Voronoi Diagrams for Planar Shapes. IEEE Computer Graphics and Applica-
tions 15, 52–59 (1995)

20. Ramanathan, M., Gurumoorthy, B.: Constructing Medial Axis Transform of Planar Do-
mains with Curved Boundaries. Computer-Aided Design 35, 619–632 (2003)

21. Amenta, N., Bern, M.W., Eppstein, D.: The Crust and the Beta-Skeleton: Combinatorial
Curve Reconstruction. Graphical Models and Image Processing 60, 125–135 (1998)

22. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Upper Saddle Riv-
er (2002)

23. Russ, J.C.: The Image Processing Handbook. CRC Press (2002)
24. Wenger, R.: Shape and Medial Axis Approximation from Samples. PhD Thesis. The Ohio

State University (2003)
25. Cheng, S.W., Funke, S., Golin, M., Kumar, P., Poon, S.H., Ramos, E.: Curve Reconstruc-

tion from Noisy Samples. Computational Geometry 31, 63–100 (2005)
26. Dey, T.K., Wenger, R.: Fast Reconstruction of Curves with Sharp Corners. International

Journal of Computational Geometry and Applications 12, 353–400 (2002)
27. Ledoux, H.: Modelling Three-Dimensional Fields in Geo-Science with the Voronoi Dia-

gram and Its Dual. Ph.D Thesis. School of Computing, University of Glamorgan, Ponty-
pridd, Wales, UK (2006)

28. Gavrilova, M., Ratschek, H., Rokne, J.G.: Exact Computation of Delaunay and Power Tri-
angulations. Reliable Computing 6, 39–60 (2000)

29. Karimipour, F., Delavar, M.R., Frank, A.U.: A Simplex-Based Approach to Implement Di-
mension Independent Spatial Analyses. Journal of Computer and Geosciences 36, 1123–1134
(2010)

30. Giesen, J., Miklos, B., Pauly, M.: Medial Axis Approximation of Planar Shapes from Un-
ion of Balls: A Simpler and More Robust Algorithm. In: Canad. Conf. Comput. Geom., pp.
105–108 (2007)

31. Edelsbrunner, H.: The Union of Balls and Its Dual Shape. Discrete & Computational
Geometry 13, 415–440 (1995)

32. Amenta, N., Choi, S., Kolluri, R.K.: The Power Crust. In: Proceedings of the Sixth ACM
Symposium on Solid Modeling and Applications, pp. 249–266 (2001)

33. Amenta, N., Kolluri, R.K.: The Medial Axis of a Union of Balls. Computational Geome-
try 20, 25–37 (2001)

34. Attali, D., Montanvert, A.: Computing and Simplifying 2d and 3d Continuous Skeletons.
Computer Vision and Image Understanding 67, 261–273 (1997)

35. Miklos, B., Giesen, J., Pauly, M.: Medial Axis Approximation from Inner Voronoi Balls:
A Demo of the Mesecina Tool. In: Proceedings of the Twenty-third Annual Symposium on
Computational Geometry, pp. 123–124 (2007)

36. Tam, R.C.: Voronoi Ball Models for Computational Shape Applications. PhD thesis, The
University of British Columbia (2004)

 Voronoi-Based Medial Axis Approximation from Samples: Issues and Solutions 157

37. Karimipour, F., Delavar, M.R., Frank, A.U.: A Mathematical Tool to Extend 2D Spatial
Operations to Higher Dimensions. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D.,
Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 153–164.
Springer, Heidelberg (2008)

38. Alliez, P., Devillers, O., Snoeyink, J.: Removing Degeneracies by Perturbing the Problem
or Perturbing the World. Reliable Computing 6, 61–79 (2000)

39. Mokhtarian, F., Mackworth, A.: A Theory of Multiscale, Curvature-Based Shape Repre-
sentation for Planar Curves (Pdf). IEEE Transactions on Pattern Analysis and Machine In-
telligence 14 (1992)

40. Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.W.: Hamilton-Jacobi Skeletons. Inter-
national Journal of Computer Vision 48, 215–231 (2002)

41. Siddiqi, K., Kimia, B.B., Shu, C.W.: Geometric Shock-Capturing Eno Schemes for Sub-
pixel Interpolation, Computation and Curve Evolution. Graphical Models and Image
Processing 59, 278–301 (1997)

42. Attali, D., Montanvert, A.: Modeling Noise for a Better Simplification of Skeletons. In:
Proceedings of the International Conference on Image Processing, vol. 3, pp. 13–16 (1996)

43. Attali, D., di Baja, G., Thiel, E.: Pruning Discrete and Semicontinuous Skeletons. In: Bracci-
ni, C., Vernazza, G., DeFloriani, L. (eds.) ICIAP 1995. LNCS, vol. 974, pp. 488–493.
Springer, Heidelberg (1995)

44. Malandain, G., Fernández-Vidal, S.: Euclidean Skeletons. Image and Vision Compu-
ting 16, 317–327 (1998)

45. Chazal, F., Lieutier, A.: The “Lambda Medial Axis”. Graphical Models 67, 304–331
(2005)

46. Attali, D., Montanvert, A.: Semicontinuous Skeletons of 2d and 3d Shapes. In: Aspects of
Visual Form Processing, pp. 32–41 (1994)

47. Bai, X., Latecki, L.J.: Discrete skeleton evolution. In: Yuille, A.L., Zhu, S.-C., Cremers,
D., Wang, Y. (eds.) EMMCVPR 2007. LNCS, vol. 4679, pp. 362–374. Springer, Heidel-
berg (2007)

48. Giesen, J., Miklos, B., Pauly, M., Wormser, C.: The Scale Axis Transform. In: Proceed-
ings of the 25th Annual Symposium on Computational Geometry, pp. 106–115 (2009)

49. Mesecina: computational geometry you can see,
http://www.balintmiklos.com/mesecina

50. Karimipour, F., Ghandehari, M.: A Stable Voronoi-Based Algorithm for Medial Axis Ex-
traction through Labeling Sample Points. In: Proceedings of the 9th International Sympo-
sium on Voronoi Diagrams in Science and Engineering (ISVD 2012), New Jersey, USA,
pp. 109–114 (2012)

51. Ghandehari, M., Karimipour, F.: Voronoi-Based Curve Reconstruction: Issues and Solu-
tions. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D.,
Apduhan, B.O. (eds.) ICCSA 2012, Part II. LNCS, vol. 7334, pp. 194–207. Springer,
Heidelberg (2012)

52. Karimipour, F., Ghandehari, M., Ledoux, H.: Medial Axis Approximation of River Net-
work for Catchment Area Delineation. In: Proceedings of the International Workshop on
Geoinformation Advances. Lecture Notes in Geoinformation and Cartography (LNG&C),
p. 223. Springer, Johor (2012)

Globally Rigid Ball-Polyhedra in Euclidean

3-Space

Károly Bezdek�

Department of Mathematics and Statistics, University of Calgary, Canada
Department of Mathematics, University of Pannonia, Veszprém, Hungary

bezdek@math.ucalgary.ca

http://math.ucalgary.ca/profiles/karoly-bezdek

Abstract. The rigidity theorems of Alexandrov (1950) and Stoker (1968)
are classical results in the theory of convex polyhedra.We prove analogues
of them for ball-polyhedra, which are intersections of finitely many con-
gruent balls in Euclidean 3-space.

Keywords: Cauchy’s rigidity theorem, Alexandrov’s theorem, Stoker’s
theorem, standard ball-polyhedron, normal ball-polyhedron.

1 Introduction

First, we recall the notation of ball-polyhedra, the central object of study for
this paper. Let E3 denote the 3-dimensional Euclidean space. As in [4] and [5]
a ball-polyhedron is the intersection with non-empty interior of finitely many
closed congruent balls in E3. In fact, one may assume that the closed congruent
3-dimensional balls in question are of unit radius; that is, they are unit balls of
E
3. Also, it is natural to assume that removing any of the unit balls defining

the intersection in question yields the intersection of the remaining unit balls
becoming a larger set. (Equivalently, using the terminology introduced in [5],
whenever we take a ball-polyhedron we always assume that it is generated by a
reduced family of unit balls.) Furthermore, following [4] and [5] one can represent
the boundary of a ball-polyhedron in E3 as the union of vertices, edges, and faces
defined in a rather natural way as follows. A boundary point is called a vertex if
it belongs to at least three of the closed unit balls defining the ball-polyhedron.
A face of the ball-polyhedron is the intersection of one of the generating closed
unit balls with the boundary of the ball-polyhedron. Finally, if the intersection
of two faces is non-empty, then it is the union of (possibly degenerate) circular
arcs. The non-degenerate arcs are called edges of the ball-polyhedron. Obvi-
ously, if a ball-polyhedron in E3 is generated by at least three unit balls, then
it possesses vertices, edges, and faces. Clearly, the vertices, edges and faces of
a ball-polyhedron (including the empty set and the ball-polyhedron itself) are
partially ordered by inclusion forming the vertex-edge-face structure of the given

� Partially supported by a Natural Sciences and Engineering Research Council of
Canada Discovery Grant.

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XX, LNCS 8110, pp. 158–169, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://math.ucalgary.ca/profiles/karoly-bezdek

Globally Rigid Ball-Polyhedra in Euclidean 3-Space 159

ball-polyhedron. It was noted in [5] that the vertex-edge-face structure of a ball-
polyhedron is not necessarily a lattice (i.e., a partially ordered set (also called
a poset) in which any two elements have a unique supremum (the elements’
least upper bound; called their join) and an infimum (greatest lower bound;
called their meet)). Thus, it is natural to define the following fundamental fam-
ily of ball-polyhedra, introduced in [5] under the name standard ball-polyhedra
and investigated in [4] as well without having a particular name for it. Here a
ball-polyhedron in E3 is called a standard ball-polyhedron if its vertex-edge-face
structure is a lattice (with respect to containment). This is the case if, and only
if, the intersection of any two faces is either empty, or one vertex or one edge, and
every two edges share at most one vertex. In this case, we simply call the vertex-
edge-face structure in question the face lattice of the standard ball-polyhedron.
This definition implies among others that any standard ball-polyhedron of E3 is
generated by at least four unit balls. For a number of important properties of
ball-polyhedra we refer the interested reader to [4], [5], and [10].

Second, we state our new results on ball-polyhedra together with some well-
known theorems on convex polyhedra. In fact, those classical theorems on convex
polyhedra have motivated our work on ball-polyhedra a great deal furthermore,
their proofs form the bases of our proofs in this paper. The details are as fol-
lows. One of the best known results on convex polyhedra is Cauchy’s celebrated
rigidity theorem [8]. (For a recent account on Cauchy’s theorem see Chapter 11
of the mathematical bestseller [1] as well as Theorem 26.6 and the discussion
followed in the elegant book [11].) Cauchy’s theorem is often quoted as follows:
If two convex polyhedra P and P′ in E3 are combinatorially equivalent with the
corresponding faces being congruent, then P is congruent to P′. It is immediate
to note that the analogue of Cauchy’s theorem for ball-polyhedra is a rather ob-
vious statement and so, we do not discuss that here. Next, it is natural to recall
Alexandrov’s theorem [3] in particular, because it implies Cauchy’s theorem (see
also Theorem 26.8 and the discussion followed in [11]): if P and P′ are com-
binatorially equivalent convex polyhedra with equal corresponding face angles
in E3, then P and P′ have equal corresponding inner dihedral angles. Some-
what surprisingly, the analogue of Alexandrov’s theorem for ball-polyhedra is
not trivial. Still, one can prove it following the ideas of the original proof of
Alexandrov’s theorem [3]. This was published in [4] (see Claim 5.1 and the dis-
cussion followed). Here, we just state the theorem in question for later use and
in order to do so, we need to recall some additional terminology. To each edge
of a ball-polyhedron in E3 we can assign an inner dihedral angle. Namely, take
any point p in the relative interior of the edge and take the two unit balls that
contain the two faces of the ball-polyhedron meeting along that edge. Now, the
inner dihedral angle along this edge is the angular measure of the intersection of
the two half-spaces supporting the two unit balls at p. The angle in question is
obviously independent of the choice of p. Moreover, at each vertex of a face of a
ball-polyhedron there is a face angle which is the angular measure of the convex
angle formed by the two tangent half-lines of the two edges meeting at the given
vertex. Finally, we say that the standard ball-polyhedra P and P′ in E3 are

160 K. Bezdek

combinatorially equivalent if there is an inclusion (i.e., partial order) preserving
bijection between the face lattices of P and P′. Thus, [4] proves the following
analogue of Alexandrov’s theorem for standard ball-polyhedra: If P and P′ are
two combinatorially equivalent standard ball-polyhedra with equal correspond-
ing face angles in E3, then P and P′ have equal corresponding inner dihedral
angles.

An important close relative of Cauchy’s rigidity theorem is Stoker’s theorem
[14] (see also Theorem 26.9 and the discussion followed in [11]): if P and P′ are
two combinatorially equivalent convex polyhedra with equal corresponding edge
lengths and inner dihedral angles in E3, then P and P′ are congruent. As it turns
out, using the ideas of original proof ([14]) of Stoker’s theorem, one can give a
proof of the following analogue of Stoker’s theorem for standard ball-polyhedra.

Theorem 1. If P and P′ are two combinatorially equivalent standard ball-
polyhedra with equal corresponding edge lengths and inner dihedral angles in E3,
then P and P′ are congruent.

Based on the above mentioned analogue of Alexandrov’s theorem for standard
ball-polyhedra, Theorem 1 implies the following statement in straightforward
way.

Corollary 1. If P and P′ are two combinatorially equivalent standard ball-
polyhedra with equal corresponding edge lengths and face angles in E3, then P
and P′ are congruent.

In order to strengthen the above mentioned analogue of Alexandrov’s theorem
for standard ball-polyhedra, we recall the following notion from [4]. We say
that the standard ball-polyhedron P in E3 is globally rigid with respect to its
face angles (resp., globally rigid with respect to its inner dihedral angles) within
the family of standard ball-polyhedra if the following holds. If P′ is another
standard ball-polyhedron in E3 whose face lattice is combinatorially equivalent
to that of P and whose face angles (resp., inner dihedral angles) are equal to the
corresponding face angles (resp., inner dihedral angles) ofP, then P′ is congruent
to P. We note that in [4], we used the word “rigid” for this notion. We changed
that terminology to “globally rigid” in [6] (p. 62) because also the related but
different term “locally rigid” makes sense to introduce and investigate (for more
details on this see [7]). Furthermore, a ball-polyhedron of E3 is called simplicial if
all its faces are bounded by three edges. It is not hard to see that any simplicial
ball-polyhedron is, in fact, a standard one. Now, recall the following theorem
proved in [4] (see Theorem 0.2): if P is a simplicial ball-polyhedron in E3, then
P is globally rigid with respect to its face angles (within the family of standard
ball-polyhedra). This raises the following question.

Problem 1. Prove or disprove that every standard ball-polyhedron of E3 is glob-
ally rigid with respect to its face angles within the family of standard ball-
polyhedra.

We do not know whether the condition “standard” in Problem 1 is necessary.
However, if the ball-polyhedronQ fails to be a standard ball-polyhedron because

Globally Rigid Ball-Polyhedra in Euclidean 3-Space 161

it possesses a pair of faces sharing more than one edge, then Q is flexible (and
so, it is not globally rigid) as shown in Section 4 of [4].

In this paper we give a positive answer to Problem 1 within the following
subfamily of standard ball-polyhedra. In order to define the new family of ball-
polyhedra in an elementary way, we first take a ball-polyhedron P in E3 with
the property that the center points of its generating unit balls are not on a
plane of E3. (We note that this condition is necessary as well as sufficient for
having at least one vertex in the underlying farthest-point Voronoi tiling of the
center points of the generating unit balls of P. For more details on farthest-
point Voronoi tilings see Section 3 of this paper.) Then we label the union of
the generating unit balls of P by P∪ and call it the flower-polyhedron assigned
to P. Next, we say that a sphere of E3 is a circumscribed sphere of the flower-
polyhedron P∪ if it contains P∪ (i.e., bounds a closed ball containing P∪) and
touches some of the unit balls of P∪ such that there is no other sphere of E3

touching the same collection of unit balls of P∪ and contaning P∪. Finally, we
call P a normal ball-polyhedron if the radius of every circumscribed sphere of the
flower-polyhedron P∪ is less than 2. For the sake of completeness we note that
the above definition of normal ball-polyhedra is equivalent to the following one
introduced in [6] (p. 63): P is a normal ball-polyhedron if and only if P is a ball-
polyhedron in E3 with the property that the non-empty family of the vertices of
the underlying farthest-point Voronoi tiling of the center points of the generating
unit balls of P is a subset of the interior of P. (Actually, the latter condition
is equivalent to the following one: the distance between any center point of the
generating unit balls of P and any of the vertices of the farthest-point Voronoi
cell assigned to the center in question is strictly less than one.) In the proof
of the following theorem we show that every normal ball-polyhedron is in fact,
a standard one. On the other hand, it is easy to see that there are standard
ball-polyhedra that are not normal ones. The following construction is a general
one however, for the sake of simplicity we introduce it here for the case of four
unit balls only: Take four points in convex and generic position in E3. Construct
the farthest-point Voronoi tiling of the four points in E3, and let l be the largest
distance between a vertex of a Voronoi cell and the corresponding point assigned
to the Voronoi cell in question. If 0 < r1 < l < r2 and r1 is sufficiently close to l,
then the intersection of the four balls having radii r1 (resp., r2) centered around
the original four points is a standard (resp., normal) ball-polyhedron apart from
the normalization of the radius r1 (resp., r2). More importantly, the standard
ball-polyhedron obtained in this way is not a normal one. The following theorem
is a stronger version of the relevant theorem announced without proof in [6] (see
(iii) in Theorem 6.5.1), which is stated here as a corollary. We call them the
global rigidity analogues of Alexandrov’s theorem for normal ball-polyhedra.

Theorem 2. Every normal ball-polyhedron of E3 is globally rigid with respect
to its inner dihedral angles within the family of normal ball-polyhedra.

Theorem 2 combined with the above mentioned analogue of Alexandrov’s
theorem for standard ball-polyhedra yields the following

162 K. Bezdek

Corollary 2. Every normal ball-polyhedron of E3 is globally rigid with respect
to its face angles within the family of normal ball-polyhedra.

Theorem 2 leads to a stronger version of Problem 1 as follows. Clearly, a
positive answer to Problem 2 would imply a positive answer to Problem 1 (just
use the above mentioned analogue of Alexandrov’s theorem for standard ball-
polyhedra) , but not necessarily the other way around.

Problem 2. Prove or disprove that every standard ball-polyhedron of E3 is glob-
ally rigid with respect to its inner dihedral angles within the family of standard
ball-polyhedra.

The rest of the paper is organized as follows. In Section 2 we give a proof of
Theorem 1. Section 3 introduces the underlying truncated Delaunay complex of
a ball-polyhedron that plays a central role in our proof of Theorem 2 presented
in Section 4.

2 Proof of Theorem 1

We follow the ideas of the original proof of Stoker’s theorem [14] (see also the
proof of Theorem 26.9 in [11]) with properly adjusting that to the family of
standard ball-polyhedra. The details are as follows.

First, we need to introduce some basic notation and make some simple ob-
servations. In what follows x stands for the notation of a point as well as of its
position vector in E3 with o denoting the origin of E3. Moreover, 〈·, ·〉 denotes
the standard inner product in E3 and so, the corresponding standard norm is la-
belled by ‖ ·‖ satisfying ‖x‖ =

√
〈x,x〉. The closed ball of unit radius (or simply

the unit ball) centered at x is denoted by B[x] := {y ∈ E
3 | ‖x−y‖ ≤ 1} and its

boundary bd(B[x]) := {y ∈ E3 | ‖x− y‖ = 1}, the unit sphere with center x, is

labelled by S(x) := bd(B[x]). LetP := ∩f
k=1B[xk] be a standard ball-polyhedron

generated by the reduced family {B[xk] | 1 ≤ k ≤ f} of f ≥ 4 unit balls. Here,
each unit ball B[xk] gives rise to a face of P namely, to Fk := S(xk)∩bd(P) for
1 ≤ k ≤ f . Clearly, as P is a standard ball-polyhedron, each edge of P is of the
form Fk1 ∩Fk2 for properly chosen 1 ≤ k1, k2 ≤ f and therefore it can be labelled
accordingly with E{k1,k2}. Furthermore, let {E{i,k} | i ∈ Ik ⊂ {1, 2, . . . , f}} be
the family of the edges of Fk. Moreover, let {vj | 1 ≤ j ≤ v} denote the vertices of
P. In particular, let the set of the vertices of Fk be {vj | j ∈ Jk ⊂ {1, 2, . . . , v}}.
Next, let α{k1,k2} (resp., βj,k) denote the inner dihedral angle along the edge
E{k1,k2} of P (resp., the face angle at the vertex vj of the face Fk of P). Finally,
let Ck[z, γ] := {y ∈ S(xk) | 〈z− xk,y− xk〉 ≥ cos γ} denote the closed spherical
cap lying on S(xk) and having angular radius 0 < γ ≤ π with center z ∈ S(xk).
Then it is rather easy to show that

Fk =
⋂
i∈Ik

Ck

[
zi,k,

α{i,k}
2

]
, (1)

Globally Rigid Ball-Polyhedra in Euclidean 3-Space 163

where zi,k := xk + 1
‖xi−xk‖ (xi − xk). As

α{i,k}
2 < π

2 therefore (1) implies that

Fk is a spherically convex subset of S(xk) (meaning that with any two points
of Fk the geodesic arc of S(xk) connecting them lies in Fk). Furthermore, (1)
yields that the edges {E{i,k} | i ∈ Ik} of Fk are circular arcs of Euclidean

radii {sin α{i,k}
2 | i ∈ Ik}. Now, let the tangent cone Tvj of P at the vertex vj

be defined by Tvj := cl (vj + pos{y − vj | y ∈ P}), where cl(·) (resp., pos{·})
stands for the closure (resp., positive hull) of the corresponding set. Then it
is natural to define the (outer) normal cone T∗

vj
of P at the vertex vj via

T∗
vj

:= vj + {y ∈ E3 | 〈y−vj , z−vj〉 ≤ 0 for all z ∈ Tvj}. Clearly, Tvj as well

as T∗
vj

are convex cones of E3 with vj as a common apex. Based on this, it is
immediate to define the vertex figure Tvj := Tvj ∩ S(vj) as well as the normal
image T ∗

vj
:= T∗

vj
∩ S(vj) of P at the vertex vj . Now, it is straightforward

to make the following two observations. The vertex figure Tvj of P at vj is a
spherically convex polygon of S(vj) with side lengths (resp., angles) equal to

{βj,k | vj ∈ Fk} (resp., {α{k1,k2} | vj ∈ E{k1,k2}}) (2)

The normal image T ∗
vj

of P at vj is a spherically convex polygon of S(vj) with
side lengths (resp., angles) equal to

{π − α{k1,k2} | vj ∈ E{k1,k2}} (resp., {π − βj,k | vj ∈ Fk}) (3)

Having discussed all this, we are ready to take the standard ball-polyhedron
P′ := ∩f

k=1B[x′
k] that is combinatorially equivalent to P. The analogues of the

above introduced notations for P′ are as follows: {F ′
k := S(x′

k) ∩ bd(P′) | 1 ≤
k ≤ f}; {E′

{i,k} | i ∈ Ik}; {v′
j | 1 ≤ j ≤ v}; {v′

j | j ∈ Jk}; α′
{k1,k2}; β

′
j,k;

Tv′
j
; T ∗

v′
j
; and C′

k[z
′, γ] := {y′ ∈ S(x′

k) | 〈z′ − x′
k,y

′ − x′
k〉 ≥ cos γ} with z′ ∈

S(x′
k), 0 < γ ≤ π. By assumption, P and P′ have equal inner dihedral angles,

i.e., α{k1,k2} = α′
{k1,k2}. Thus, the analogue of (1) reads as follows:

F ′
k =

⋂
i∈Ik

C′
k

[
z′i,k,

α{i,k}
2

]
, (4)

where z′i,k := x′
k + 1

‖x′
i−x′

k‖ (x
′
i − x′

k). In particular, the normal image T ∗
v′
j
of P′

at v′
j is a spherically convex polygon of S(v′

j) with side lengths (resp., angles)
equal to

{π − α{k1,k2} | vj ∈ E{k1,k2}} (resp., {π − β′
j,k | vj ∈ Fk}) (5)

Second, we need to recall the two main ideas of the original proof of Cauchy’s
rigidity theorem [8]. The following is called the (spherical) Legendre-Cauchy
lemma (see Theorem 22.2 and the discussions followed in [11] as well as [12] for
a recent proof and the history of the statement).

164 K. Bezdek

Lemma 1. Let U and U ′ be two spherically convex polygons (on an open hemi-
sphere) of the unit sphere S2 := {y ∈ E3 | ‖o−y‖ = 1}with verticesu1,u2, . . . ,un,
and u′

1,u
′
2, . . . ,u

′
n (enumerated in some cyclic order) and with equal corresponding

spherical side lengths (or, equivalently, with ‖ui+1 − ui‖ = ‖u′
i+1 − u′

i‖ for all
1 ≤ i ≤ n, where un+1 := u1 and u′

n+1 := u′
1). If γi and γ′

i are the angular
measures of the interior angles ∠ui−1uiui+1 and ∠u′

i−1u
′
iu

′
i+1 of U and U ′ at the

vertices ui and u′
i for 1 ≤ i ≤ n, then either there are at least four sign changes

in the cyclic sequence γ1 − γ′
1, γ2 − γ′

2, . . . , γn − γ′
n (in which we simply ignore the

zeros) or the cyclic sequence consists of zeros only.

The following is called the sign counting lemma (see Lemma 26.5 in [11] as
well as the Proposition in Chapter 10 of [1]). For the purpose of that statement
we recall here that a graph is a pair G := (V,E), where V is the set of vertices,
E is the set of edges, and each edge e ∈ E “connects” two vertices v, w ∈ V . The
graph is called simple if it has no loops (i.e., edges for which both ends coincides)
or parallel edges (that have the same set of end vertices). In particular, a graph
is planar if it can be drawn on S2 (or, equivalently, in E2) without crossing edges.
We talk of a plane graph if such a drawing is already given and fixed.

Lemma 2. Suppose that the edges of a simple plane graph are labeled with 0, +
and − such that around each vertex either all labels are 0 or there are at least
four sign changes (in the cyclic order of the edges around the vertex). Then all
signs are 0.

Now, we are set for the final approach in proving Theorem 1. By assumption
P and P′ are two combinatorially equivalent standard ball-polyhedra with equal
corresponding edge lengths and inner dihedral angles in E3. Thus, α{k1,k2} =
α′
{k1,k2} and (1) implies that the corresponding edges of the families {E{i,k} | i ∈

Ik} and {E′
{i,k} | i ∈ Ik} of the edges of Fk and F ′

k are circular arcs of equal

Euclidean radii (namely, sin
α{i,k}

2) and of equal length (with the latter property
holding by assumption). Hence, in order to complete the proof of Theorem 1 it
is sufficient to show that the corresponding face angles of P and P′ are equal,
i.e., βj,k = β′

j,k. So, let us compare those face angles by taking βj,k − β′
j,k. Now,

applying the Legendre-Cauchy lemma (i.e., Lemma 1) to the normal images T ∗
vj

and T ∗
v′
j
and using (3) as well as (5) we obtain the following result.

Lemma 3. Let vj , 1 ≤ j ≤ v be an arbitrary vertex of the standard ball-
polyhedron P. Then either there are at least four sign changes in the cyclic
sequence of the face angle differences {βj,k − β′

j,k | vj ∈ Fk} around the vertex
vj of P or the cyclic sequence in question consists of zeros only.

According to (1) (resp., (4)) Fk (resp., F ′
k) is a spherically convex subset of the

unit sphere S(xk) (resp., S(x′
k)) for any 1 ≤ k ≤ f and therefore the spherical

convex hull F k (resp., F
′
k) of the vertices {vj | j ∈ Jk} (resp., {v′

j | j ∈ Jk}) of
Fk (resp., F ′

k) on S(xk) (resp., S(x
′
k) clearly possesses the property that F k ⊂ Fk

(resp., F
′
k ⊂ F ′

k). Moreover, if βj,k (resp., β
′
j,k) denotes the angular measure of

Globally Rigid Ball-Polyhedra in Euclidean 3-Space 165

the interior angle of F k (resp., F
′
k) at the vertex vj (resp., v′

j), then (1) and
(4) imply again in a straightforward way that the corresponding side lengths of

F k and F
′
k are equal furthermore, βj,k − β′

j,k = βj,k − β
′
j,k holds for any vertex

vj , j ∈ Jk of Fk. Thus, Lemma 1 applied to F k and F
′
k proves the following

statement.

Lemma 4. Let Fk, 1 ≤ k ≤ f be an arbitrary face of the standard ball-polyhedron
P. Then either there are at least four sign changes in the cyclic sequence of the
face angle differences {βj,k − β′

j,k | vj ∈ Fk} around the face Fk of P or the
cyclic sequence in question consists of zeros only.

Finally, let us take the medial graph G of P with “vertices” corresponding to
the edges of P and with “edges” connecting two “vertices” if the corresponding
two edges of P are adjacent (i.e., share a vertex in common) and lie on the same
face of P. So, if the “edge” of G “connects” the two edges ofP that lie on the face
Fk of P and have the vertex vj in common enclosing the face angle βj,k, then
we label the “edge” in question of G by sign(βj,k − β′

j,k), where sign(δ) is +,−
or 0 depending on whether δ is positive, negative or zero. Thus, using Lemma 3
and Lemma 4, one can apply the sign counting lemma (i.e., Lemma 2) to the
dual graph G∗ of G concluding in a straightforward way that βj,k − β′

j,k = 0.
This finishes the proof of Theorem 1.

3 Underlying Truncated Delaunay Complex of a
Ball-Polyhedron

In this section we introduce some additional notations and tools that are needed
for our proof of Theorem 2.

First, recall that a convex polyhedron of E3 is a bounded intersection of finitely
many closed half-spaces in E3. A polyhedral complex in E3 is a finite family of
convex polyhedra such that any vertex, edge, and face of a member of the family
is again a member of the family, and the intersection of any two members is
empty or a vertex or an edge or a face of both members.

Second, let us recall the so-called truncated Delaunay complex of a ball-
polyhedron, which is going to be the underlying polyhedral complex of the
ball-polyhedra in Theorem 2. The rest of this section is a somewhat shorter
version of the similar section in [7] and it is included here for the convenience of
the reader. (For more details we refer the interested reader to [2], [13], and [9].)

The farthest-point Voronoi tiling corresponding to a finite set C := {c1,
. . . , cn} in E3 is the family V := {V1, . . . ,Vn} of closed convex polyhedral sets
Vi := {x ∈ E3: ‖x− ci‖ ≥ ‖x− cj‖ for all j �= i, 1 ≤ j ≤ n}, 1 ≤ i ≤ n. (Here
a closed convex polyhedral set means a not necessarily bounded intersection of
finitely many closed half-spaces in E3.) We call the elements of V farthest-point
Voronoi cells. In the sequel we omit the words “farthest-point” as we do not use
the other (more popular) Voronoi tiling: the one capturing closest points.

166 K. Bezdek

It is known that V is a tiling of E3. We call the vertices, (possibly unbounded)
edges and (possibly unbounded) faces of the Voronoi cells of V simply the ver-
tices, edges and faces of V .

The truncated Voronoi tiling corresponding to C is the family Vt of the closed
convex sets {V1 ∩B[c1], . . . ,Vn ∩B[cn]}. Clearly, from the definition it follows
that Vt = {V1 ∩ P, . . . ,Vn ∩ P} where P := B[c1] ∩ . . . ∩ B[cn]. We call the
elements of Vt truncated Voronoi cells.

Next, we define the (farthest-point) Delaunay complex D assigned to the finite
set C = {c1, . . . , cn} ⊂ E3. It is a polyhedral complex on the vertex set C. For an
index set I ⊂ {1, . . . , n}, the convex polyhedron conv{ci | i ∈ I} is a member of
D if and only if there is a point p in ∩i∈IVi which is not contained in any other
Voronoi cell, where conv{·} stands for the convex hull of the corresponding set.
In other words, conv{ci | i ∈ I} ∈ D if and only if there is a point p ∈ E3 and
a radius ρ > 0 such that {ci | i ∈ I} ⊂ bd(B(p, ρ)) and {ci | i /∈ I} ⊂ B(p, ρ),
where B(p, ρ) stands for the open ball having radius ρ and center point p in E3.
It is known that D is a polyhedral complex moreover, it is a tiling of conv{c1,
. . . , cn} by convex polyhedra. The more exact connection between the Voronoi
tiling V and the Delaunay complex D is described in the following statement.
(In what follows, dim(·) refers to the dimension of the given set, i.e., dim(·)
stands for the dimension of the smallest dimensional affine subspace containing
the given set.)

Fig. 1. Let us take four points, c1, . . . , c4 as in Fig. 1 of [7]. The bold solid lines bound
the four Voronoi cells, V1, . . . ,V4. The bold dashed circular arcs bound the planar ball-
polyhedron – a disk-polygon. (We note that for the sake of simplicity, the generating
disks of the disk-polygons constructed here are not necessarily of unit radius.) The part
of each Voronoi cell inside the disk-polygon is the corresponding truncated Voronoi cell.
On the first example, the truncated Delaunay complex coincides with the non-truncated
one. On the second example, the Voronoi and the Delaunay complexes are the same as
on the first, but the truncated Voronoi and Delaunay complexes are different.

Lemma 5. Let C = {c1, . . . , cn} ⊂ E3 be a finite set, and V = {V1, . . . , Vn}
be the corresponding Voronoi tiling of E3.

Globally Rigid Ball-Polyhedra in Euclidean 3-Space 167

(V) For any vertex p of V there there exists an index set I ⊂ {1, . . . , n} with
dim({ci | i ∈ I}) = 3 such that conv{ci | i ∈ I} ∈ D and p = ∩i∈IVi. Vica
versa, if I ⊂ {1, . . . , n} with dim({ci | i ∈ I}) = 3 and conv{ci | i ∈ I} ∈ D,
then ∩i∈IVi is a vertex of V.

(E) For any edgeE of V there exists an index set I ⊂ {1, . . . , n} with dim({ci | i ∈
I}) = 2 such that conv{ci | i ∈ I} ∈ D and E = ∩i∈IVi. Vica versa, if
I ⊂ {1, . . . , n} with dim({ci | i ∈ I}) = 2 and conv{ci | i ∈ I} ∈ D, then
∩i∈IVi is an edge of V.

(F) For any face F of V there exists an index set I ⊂ {1, . . . , n} of cardinality
2 such that conv{ci | i ∈ I} ∈ D and F = ∩i∈IVi. Vica versa, if I ⊆
{1, . . . , n} of cardinality 2 and conv{ci | i ∈ I} ∈ D, then ∩i∈IVi is a face
of V.

Finally, we define the truncated Delaunay complex Dt assigned to C similarly
toD. For an index set I ⊂ {1, . . . , n}, the convex polyhedron conv{ci | i ∈ I} ∈ D
is a member of Dt if and only if there is a point p in ∩i∈I (Vi ∩B[ci]) which
is not contained in any other truncated Voronoi cell. Recall that the truncated
Voronoi cells are contained in the ball-polyhedron P = B[c1]∩ . . .∩B[cn]. Thus,
conv{ci | i ∈ I} ∈ Dt if and only if there exists a point p ∈ P and a radius
ρ > 0 such that {ci | i ∈ I} ⊂ bd(B(p, ρ)) and {ci | i /∈ I} ⊂ B(p, ρ). For the
convenience of the reader Fig. 1 gives a summary of the concepts of this section
in the 2-dimensional case.

4 Proof of Theorem 2

Let P := ∩f
k=1B[xk] be an arbitrary normal ball-polyhedron of E3 generated

by the reduced family {B[xk] | 1 ≤ k ≤ f} of f ≥ 4 unit balls. We note that
the condition being reduced implies that the center points {x1, . . . ,xf} are in
(strictly) convex position in E3. Let CP := conv{x1, . . . ,xf} be the center-
polyhedron of P in E3 with the face lattice induced by the Delaunay complex
D assigned to the point set {x1, . . . ,xf}. (Recall that D is a tiling of CP.) The
following is the core part of our proof of Theorem 2.

Lemma 6. Any normal ball-polyhedron P of E3 is a standard ball-polyhedron
with its face lattice being dual to the face lattice of its center-polyhedron CP.

Proof. First, let us take an arbitrary circumscribed sphere say, S(x, δ) of the

flower-polyhedron P∪ = ∪f
k=1B[xk] having center point x and radius δ. By

definition there exists at least one such S(x, δ) moreover, by assumption 0 < δ <
2. Let I ⊂ {1, . . . , f} denote the set of the indices of the unit balls {B[xk] | 1 ≤
k ≤ f} that are tangent to S(x, δ) (with the remaining unit balls lying inside
the circumscribed sphere S(x, δ)). Also, let V and D (resp., Vt and Dt) denote
the Voronoi tiling and the Delaunay complex (resp., the truncated Voronoi tiling
and the truncated Delaunay complex) assigned to the finite set {x1, . . . ,xf}. It
follows from the definition of S(x, δ) in a straightforward way that dim({xi | i ∈
I}) = 3 and conv{xi | i ∈ I} ∈ D. Thus, part (V) of Lemma 5 clearly implies

168 K. Bezdek

that x = ∩i∈IVi is a vertex of V . Furthermore, 0 < δ < 2 yields that x ∈ int(P)
and therefore x is a vertex of Vt as well and conv{xi | i ∈ I} ∈ Dt, where int(·)
stands for the interior of the corresponding set. Second, it is easy to see via part
(V) of Lemma 5 that each vertex x of V is in fact, a center of some circumscribed
sphere of the flower-polyhedronP∪. Thus, we obtain that the vertex sets of V and
Vt are identical (lying in int(P)) and therefore the polyhedral complexes D and
Dt are the same, i.e., D ≡ Dt. Finally, based on this and using Lemma 5 again,
we get that the vertex-edge-face structure of the normal ball-polyhedron P is
dual to the face lattice of the center-polyhedronCP = conv{x1, . . . ,xf} induced
by the polyhedral complex D ≡ Dt. This completes the proof of Lemma 6. �

Now, let P = ∩f
k=1B[xk] and P′ = ∩f

k=1B[x′
k] be two combinatorially equiv-

alent normal ball-polyhedra with equal corresponding inner dihedral angles in
E3. Our goal is to show that P is congruent to P′.

Let CP := conv{x1, . . . ,xf} (resp., CP′ := conv{x′
1, . . . ,x

′
f}) be the center-

polyhedron of P (resp., P′) in E3 with the face lattice induced by the underlying
Delaunay complex D (resp., D′). By Lemma 6 each edge of CP (resp., CP′)
corresponds to an edge of P (resp., P′) furthermore, the length of an edge of
CP (resp., CP′) is determined by the inner dihedral angle of the corresponding
edge of P (resp., P′). Thus, Lemma 6 implies that the face lattices of CP and
CP′ are isomorphic moreover, the corresponding edges of CP and CP′ are of
equal length. As each face of CP (resp., CP′) is a convex polygon inscribed in
a circle, the corresponding faces of CP and CP′ are congruent. Hence, bd(CP)
(resp., bd(CP′)) are convex polyhedral surfaces in E3, which are combinatorially
equivalent with the corresponding faces being congruent. Thus, by the Cauchy–
Alexandrov theorem for polyhedral surfaces (see Theorem 27.6 in [11]) CP is
congruent to CP′ and therefore P is congruent to P′, finishing the proof of
Theorem 2.

References

1. Aigner, M., Ziegler, G.M.: Proofs from The Book, 4th edn. Springer, Berlin (2010)
2. Aurenhammer, F., Klein, R.: Voronoi Diagrams. In: Handbook of Computational

Geometry, pp. 201–290. North-Holland, Amsterdam (2000)
3. Alexandrov, A.D.: Convex Polyhedra. Springer, Berlin (2005)
4. Bezdek, K., Naszódi, M.: Rigidity of Ball-Polyhedra in Euclidean 3-Space. Euro-

pean J. Combin. 27(2), 255–268 (2005)
5. Bezdek, K., Lángi, Z., Naszódi, M., Papez, P.: Ball-Polyhedra. Discrete Comput.

Geom. 38(2), 201–230 (2007)
6. Bezdek, K.: Classical Topics in Discrete Geometry. CMS Books in Mathematics.

Springer, New York (2010)
7. Bezdek, K., Naszódi, M.: Rigid Ball-polyhedra in Euclidean 3-Space. Discrete Com-

put. Geom., 1–14 (to appear)
8. Cauchy, A.L.: Sur les polygones et polyèdres, Second mémoire. J. de l’Ecole

Polythéchnique 9, 87–98 (1813)
9. Edelsbrunner, H., Kirkpatrick, D.G., Seidel, R.: On the Shape of a Set of Points

in the Plane. IEEE Trans. Inform. Theory 29(4), 551–559 (1983)

Globally Rigid Ball-Polyhedra in Euclidean 3-Space 169

10. Kupitz, Y.S., Martini, H., Perles, M.A.: Ball Polytopes and the Vázsonyi Problem.
Acta Math. Hungar. 126(1-2), 99–163 (2010)

11. Pak, I.: Lectures on Discrete and Polyhedral Geometry, 1–440 (2010),
http://www.math.ucla.edu/~pak/geompol8.pdf

12. Sabitov, I.K.: Around the Proof of the Legendre-Cauchy Lemma on Convex Poly-
gons. Siberian Math. J. 45(4), 740–762 (2004)

13. Seidel, R.: Exact Upper Bounds for the Number of Faces in d-Dimensional Voronoi
Diagrams. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., Amer. Math. Soc.,
Applied Geometry and Discrete Mathematics 4, 517–529 (1991)

14. Stoker, J.J.: Geometric Problems Concerning Polyhedra in the Large. Com. Pure
and Applied Math. 21, 119–168 (1968)

http://www.math.ucla.edu/~pak/geompol8.pdf

On Voronoi Diagrams in the Planar Line Space

and Their Generalizations

Dominique Schmitt1 and Kira Vyatkina2

1 Laboratoire LMIA, Université de Haute-Alsace
4, rue des Frères Lumière, 68093 Mulhouse Cedex, France

Dominique.Schmitt@uha.fr
2 Algorithmic Biology Laboratory

Saint Petersburg Academic University
8/3 Khlopina str., St Petersburg 194021, Russia

kira@math.spbu.ru

Abstract. We describe the structure of the Voronoi diagram of lines for
a set of points in the plane, thereby making use of an extra dimension. In
contrast to previous results in this respect, which were based on the dual
representation of the Voronoi diagram under consideration, our approach
applies to the primal plane. We also generalize it to higher-dimensional
hyperplane spaces.

Keywords: generalized Voronoi diagrams, planar line space, higher-
dimensional hyperplane spaces.

1 Introduction

A Voronoi diagram is arguably the most widely known and applied geometric
structure. Much on its history, properties, and applications can be derived from
the survey by Aurenhammer [1] and the book by Okabe et al. [10]. At the same
time, a serious effort is now being put on investigating various kinds of generalized
Voronoi diagrams—see [4] for recent achievements. One of the directions explored
when generalizing the concept of Voronoi diagrams is consideration of novel
underlying spaces. In the present work, we shall follow this very way.

A two-dimensional line space is formed by all the lines in the Euclidean plane.
For a set P of point sites in the plane, its Voronoi diagram in the line space is
defined as a partition of the latter into Voronoi regions, each corresponding to a
distinct site p ∈ P and consisting of the lines being closer to p than to any other
site from P . This kind of Voronoi diagrams was first introduced by Rivière and
Schmitt [12]. In particular, they pointed out that such Voronoi diagrams can be
easily computed and visualized in dual space (where lines map to points), and
subsequently used for processing line localization queries.

One year later, Rivière [13] introduced and examined Voronoi diagrams of
order k in the line space, thereby also exploiting the concept of geometric duality.

Recently, an onion diagram was introduced by Bae and Shin [2], being a
Voronoi-like structure defined in a parametric space associated with the primal

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XX, LNCS 8110, pp. 170–180, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On Voronoi Diagrams in the Planar Line Space and Their Generalizations 171

plane. The onion diagram can be used, in particular, for efficiently processing
nearest-neighbor line queries for weighted points.

In our opinion, though the line space Voronoi diagram obviously cannot be
visualized in the primal plane, it is worth analyzing its primal structure as
well, for two reasons. First, such investigation may highlight some properties
of this Voronoi structure, which are more difficult to observe in the dual plane.
Second, the duality-based approaches do not generalize to higher-dimensional
line spaces, while it would be interesting to understand the respective—rather
sophisticated—Voronoi structures in higher-dimensional spaces as well.

The goal of this work is to provide a description of the structure of a Voronoi
diagram in the primal plane, making use of an extra dimension. We also give an
algorithm to construct and visualize the three-dimensional representation of the
planar line space Voronoi diagram. Finally, we show how to extend our method
to higher-dimensional hyperplane space Voronoi diagrams.

2 Two-Dimensional Case

Let L denote the set of all lines in R
2. Consider a set P of n points in the plane,

to which we shall also refer as to sites. For any p ∈ P , its Voronoi region V (p)
in the Voronoi diagram VorL(P) in L consists of all the lines in the plane being
closer to p than to any other site. Obviously, VorL(P) cannot be visualized in the
plane. However, if we consider a duality transform that maps a point p = (px, py)
to a line p∗ : (y = px ·x+py), and a line l : (y = m ·x+b) to a point l∗ = (m,−b),
then the dual structure of VorL(P) can be easily visualized (in the dual plane).

Despite the lack of a possibility to “see” VorL(P), it will be useful to under-
stand its structure (in the primal plane).

To simplify the exposition, we shall assume that the points from P are in
general position (i.e. no three points lie on the same line and no two lines defined
by the points from P are parallel).

In order to provide a description of VorL(P), we shall need to move from R2 to
a three-dimensional space SL = R2 × [0, π] with a cylindrical topology, meaning
that points (x, y, 0) and (x, y, π) are identified. For any φ ∈ [0, π), the plane
R2

φ = R2×φ will contain the subset Lφ of lines from L forming the angle φ with
the x-axis, and each point p ∈ P with coordinates (px, py) will be mapped to an
interval pSL = (px, py)× [0, π) in SL. For any φ ∈ [0, π), let pφ = pSL ∩R2

φ.

Observe that pSL is perpendicular to any line under consideration. Conse-
quently, for any φ ∈ [0, π) and for any line lφ ∈ Lφ, the distance from lφ to pSL

equals the distance from lφ to pφ.
The Voronoi diagram VorL(P) gets a natural representation VorSL(P) in SL.

For any φ ∈ [0, π), the intersection VorφSL(P) of VorSL(P) with the plane R2
φ

has a fairly simple structure: it represents the Voronoi diagram of the set Pφ =
{pφ|p ∈ P} of points in the space of lines composing Lφ. Unless some two points

from Pφ lie on the same line from Lφ, Vor
φ
SL(P) is formed of n− 1 lines from Lφ

172 D. Schmitt and K. Vyatkina

c)

b)a)

p

q

lpq

p

q

lpq

p

q

lpq

d)

p

q

lpq

p’

q’

p’ p’

q’ q’

lqq’ lp’p

lqq’ lp’p lpq’ lp’q

Fig. 1. The structure of VorφSL(P) for the given set P of points: a) φ = 3π/10, b)
φ = 2π/5, c) φ = π/2, d) φ = 3π/5. While φ increases from 3π/10 to 3π/5, the
sites p and q remain Voronoi neighbors, and the edge incident to their Voronoi cells is
represented by their bisector line lpq in Lφ. In the plane, lpq rotates around the middle
point of the segment pq as φ changes from 3π/10 to 3π/5. When φ = π/2, the line lpq
passes through p and q, and the gray vertical infinite strip is composed of the vertical
lines, for which p and q are the closest neighbors in P .

(Fig. 1a,b,d); in case the line through some two points pφ, qφ ∈ Pφ belongs to Lφ,

VorφSL(P) contains an infinite strip filled by the lines from Lφ, for which both
pφ and qφ are the closest points from Pφ (Fig. 1c).

If we examine the structure of VorSL(P) bottom-up (i.e. starting from φ = 0
and increasing it towards π), and attempt to interpret its evolution in terms
of R2, we shall observe the following. Unless some two points from P fall on
the same horizontal line, Vor0SL(P) is represented in R2 by a set of (horizon-
tal) bisectors of consecutive points from P with respect to their vertical order.
As we move upwards, each line l being a Voronoi edge rotates in R2 counter-
clockwise around the middle point of the segment connecting the two sites, the
Voronoi cells of which l bounds, thereby sweeping a two-dimensional face of
VorSL(P), until one of those lines happens to pass through some two points
p, q ∈ P . Let lpq denote this line, and let lp′p (resp. lqq′) be the other line bound-
ing the Voronoi cell of p (resp. of q), if this line exists (see Fig. 1b). Clearly,
one of lp′p and lqq′ does not exist if and only if pq is an edge of the convex hull
conv(P) of P . None of them exists if n = 2. At that very moment when p, q ∈ lpq,

On Voronoi Diagrams in the Planar Line Space and Their Generalizations 173

two horizontal (i.e. perpendicular to the direction of our movement) faces, each
being an infinite strip bounded on one side by lpq, are introduced in VorSL(P);
thus, lpq represents their common edge. Together those two faces form an infinite
strip containing lpq inside. If lp′p exists, one face is delimited by the line lp′p,
which thus introduces another edge in VorSL(P) (see Fig. 1c). Otherwise, the
respective face is unbounded on one side of lpq. The same happens on the other
side of lpq, depending on the fact whether lqq′ exists or not. Hence, one, two,
or three edges are introduced in VorSL(P) when p, q ∈ lpq. Immediately after
that, the rotating line lpq starts tracing out the next curved two-dimensional face
of VorSL(P). The line lp′p (if it exists) is replaced by the line lp′q that passes
through the midpoint of p′q and will trace out a new face of VorSL(P), and at
this moment, coincides with lp′p (see Fig. 1d). In the same way, lqq′ is replaced
by lpq′ . Every other line l being a Voronoi edge in R2, continues tracing out a
same face of VorSL(P), until some line hits some two points of P . And so on.
In case P contains two points lying on the same horizontal line, Vor0SL(P) will
contain a horizontal infinite strip composed of two horizontal faces sharing an
edge.

Note that in the space SL, the vertical segment representing a point p ∈ P
will intersect the structure VorSL(P) at the horizontal edges corresponding to
the lines through p and each of the points q ∈ P \ {p} (and namely, the edges
contained inside the infinite horizontal strips and splitting those into two faces).
Hence, each such vertical segment will intersect VorSL(P) at precisely n − 1
points (see Fig. 3).

Moreover, observe that if we direct the sweeping lines in such a way that their
angles φ with the x-axis belong to [0, π], then at each moment of the sweeping, we
can sort from right to left the n−1 lines sweeping the curved faces of VorSL(P).
Throughout the process, the lines that occur at the ith place together sweep
a connected set of faces of VorSL(P), thus producing a ruled surface, which is
piecewise helicoidal with vertical axis. The n− 1 surfaces defined that way are
pairwise disjoint. To retrieve the topological structure of the diagram, we shall
need, in particular, to identify the ith line for φ = 0 with the (n − i)th line for
φ = π, thus forming �n/2� annuli.

Now, it is easy to compute the size of VorSL(P), using the above description.
For every φ being an angle between a line through some two points p, q ∈ P and
the x-axis, the plane R2

φ contains exactly two horizontal faces of VorSL(P). Since
all horizontal faces are contained in those planes, there are n(n− 1) such faces.
Each pair of faces is delimited by two or three edges of VorSL(P) depending on
whether pq is an edge of conv(P) or not (here we assume n > 2). Since all the
edges are defined that way, VorSL(P) admits 3(n(n − 1))/2 − n′ edges, where
n′ is the number of vertices of conv(P). These edges split the annular ruled
surfaces into the helicoidal faces of VorSL(P), thus defining 3(n(n− 1))/2− n′

such faces. Finally, we note that the n(n − 1) horizontal faces are the “floors”
and the “ceilings” of the n(n − 1) regions of VorSL(P). Thus, the total size of
VorSL(P) is in Θ(n2).

174 D. Schmitt and K. Vyatkina

3 Algorithm in Two Dimensions

A natural way to construct VorSL(P) consists in simulating the sweeping of the
plane by a set of oriented parallel lines, by varying the angle φ they make with
the x-axis from 0 to π (π left out). The events of the sweeping are the n(n−1)/2
moments when a sweep-line hits two points of P . All the respective ordered pairs
of points (p, q) are first placed in the positions [1, . . . , n(n − 1)/2] of an event-
array E (here, p and q are ordered in such a way that the straight line (pq) is
oriented in the same direction as the sweep-lines). The array E is then sorted
by increasing φ angles, resulting in an O(n2 logn) initialization step.

The algorithm also needs three additional arrays:

– an array T [1, . . . , n] that contains at each moment φ of the sweeping, the
points of P in the order in which they are encountered by an oriented sweep-
line with angle φ moving from right to left. For φ = 0, the points in T are
sorted by increasing y-coordinates. The position of every point of P in T is
also maintained.

– two arrays first[1, . . . , n− 1] and last[1, . . . , n− 1] whose positions i contain
respectively the first and the last edge of VorSL(P) already created on the
ith ruled surface (i.e., the ruled surface swept by the line that constantly
“separates” the cells of the ith and (i+1)th points in T). Initially, all positions
of these arrays are NULL.

Once the four arrays are initialized, the following algorithm then constructs
VorSL(P):

For every e ∈ [1, . . . , n(n− 1)/2]
let (p, q) ←− E[e]
let i be the current position of p in T //here, q is necessarily in T [i+ 1]

if last[i] = NULL
initialize first[i] and last[i] with the line (pq)

else
add a face to VorSL(P) between the lines last[i] and (pq), which is a

helicoidal surface with axis the vertical through the midpoint of pq
last[i] ←− (pq)

endif

if i = 1 // pq is an edge of conv(P)
add a face to VorSL(P), which is the horizontal half-plane on the right

of (pq)
else

let p′ ←− T [i− 1]
let lp′p be the line parallel to (pq) passing through the midpoint of p′p
if last[i− 1] = NULL

initialize first[i− 1] and last[i− 1] with the line lp′p
else

On Voronoi Diagrams in the Planar Line Space and Their Generalizations 175

add a face to VorSL(P) between the lines last[i− 1] and lp′p, which
is a helicoidal surface with axis the vertical through the midpoint
of p′p

last[i− 1] ←− lp′p
endif
add a face to VorSL(P), which is the horizontal strip delimited by the
lines (pq) and lp′p

endif

if i+ 1 = n // pq is an edge of conv(P)
add a face to VorSL(P), which is the horizontal half-plane on the left
of (pq)

else
let q′ ←− T [i+ 2]
let lqq′ be the line parallel to (pq) passing through the midpoint of qq′

if last[i+ 1] = NULL
initialize first[i+ 1] and last[i+ 1] with the line lqq′

else
add a face to VorSL(P) between the lines last[i+ 1] and lqq′ , which
is a helicoidal surface with axis the vertical through the midpoint
of qq′

last[i+ 1] ←− lqq′

endif
add a face to VorSL(P), which is the horizontal strip delimited by the
lines (pq) and lqq′

endif

swap p and q in T
done

For every i ∈ [1, . . . , n− 1]
add a helicoidal face to VorSL(P) between the lines last[i] and first[n− i]

done

Obviously, the complexity of this algorithm is in O(n2), that is, linear in the
size of VorSL(P). Hence, the overall complexity of the construction of VorSL(P)
is dominated by the sorting of the event-array E.

In [12], it has been shown that, in dual space, the line space Voronoi diagram
of a set of points P can be constructed in O(n2) time, by first computing the
arrangement of the dual lines of P . Clearly, this algorithm can be adapted to con-
struct VorSL(P) in O(n2) time. However, if we want to construct the line space
Voronoi diagram in O(n2) time without having to compute the dual line arrange-
ment, we have to use topological sweeping methods like those implemented to
sweep line arrangements [5]. Consider an ordered pair (p, q) of points that are
consecutive in T at a moment φ of the sweeping in our algorithm. Let p′ and q′

be the points that respectively precedes and follows p and q in T (the case when

176 D. Schmitt and K. Vyatkina

one of these points does not exist can be treated in a similar way). Suppose that,
while sweeping by increasing angles, the four points p′, p, q, and q′ remain con-
secutive in this order in T until the moment φ′ when a sweep line passes through
p and q. Clearly, the pair (p, q) can be treated by our algorithm at any moment
between φ and φ′, even if there exist pairs (s, t) making an angle with the x-axis
between φ and φ′. This shows that a topological sweep applies to our algorithm.
However, the usual topological sweeps only respect the following constraint: if
two pairs of points share a common point then the one defining the line making
the smallest angle with the x-axis must be treated first [11]. This constraint
is not sufficient for our algorithm, as shown in Fig. 2. Hence, the problem of
generating a sweeping order in O(n2) time to construct the line space Voronoi
diagram without calculating first the dual line arrangement remains open.

p

q

r
p’

lp’p

Fig. 2. Let φ and φ′ be the respective angles that the lines (rp′) and (pq) make with
the x-axis. In VorSL(P), the ruled surface that contains lp′p is composed, between the
planes R2

0 and R2
φ, by a helicoidal face with axis the vertical through the midpoint of

p′p and, between the planes R2
φ and R2

φ′ , by a helicoidal face with axis the vertical
through the midpoint of rp. If our algorithm treats the pair (p, q) before (r, p′), it
constructs a single helicoidal face containing lp′p between R2

0 and R2
φ′ .

We implemented a procedure for visualizing the Voronoi structure VorSL(P)
in the space SL; two examples of the respective structures representing a Voronoi
diagram VorL(P) in the line space L for a set P of 4 points and 6 points,
respectively, are provided in Fig. 3.

4 Higher-Dimensional Case

In the three-dimensional case, we consider the space H of all planes in R3, and
address the problems of interpreting the Voronoi diagram VorH(P) of a set P
of three-dimensional points in the space H. Again, we assume that the points
from P are in general position, meaning that no four points lie in the same plane.

As in the planar case, VorH(P) can be represented by simpler Voronoi struc-
tures, as described below.

Recall that a direction in R3 can be specified by two angles (Fig. 4). For any
plane h in R3, let us assume that its outer normal n is defined by a pair of angles
(φ, θ), such that φ, θ ∈ [0, π). In what follows, when referring to a normal of a
plane, we shall mean its outer normal.

On Voronoi Diagrams in the Planar Line Space and Their Generalizations 177

Fig. 3. The Voronoi structure VorSL(P) in the space SL = R
2× [0, π] representing the

Voronoi diagram VorL(P) in the line space L for a set P of 4 points (above) and 6 points
(below), restricted to the interior of a cube. The points from P are represented in SL
by vertical segments depicted green; to a point p ∈ P , a segment pSL = (px, py)× [0, π)
corresponds.

Let us fix some φ, θ ∈ [0, π), and consider a subset Hφ,θ of H consisting of all
the planes, the normal of which is defined by the pair (φ, θ). Unless some two

points from P fall in the same plane from Hφ,θ, the Voronoi diagram Vorφ,θH (P)
of P in the subspace Hφ,θ is represented by n − 1 planes, the normal nφ,θ of
each of which is defined by (φ, θ), and which pass through the middle points of
the segments connecting the consecutive points in a sequence obtained from P
by sorting it with respect to the direction nφ,θ. If P does contain two points

178 D. Schmitt and K. Vyatkina

x

y

z

r

Fig. 4. A direction r in three-dimensional space can be specified by two angles φ and θ

p and q belonging to the same plane from Hφ,θ, then Vorφ,θH (P) will contain
an infinite region consisting of the planes from Hφ,θ, for which p and q are the
closest neighbors in P .

Consequently, VorH(P) can be represented in a five-dimensional space SH =
R

3× [0, π]× [0, π], periodic on both “angular” dimensions, in such a way that for
any fixed φ, θ ∈ [0, π), the intersection of VorH(P) with the three-dimensional

subspace of SH defined by φ and θ represents Vorφ,θH (P).
In the general case, we consider the space H of all hyperplanes in Rd, and

are interested in the structure of the Voronoi diagram VorH(P) of a set P of
d-dimensional points in the space H. Here we assume that no d+1 points from P
belong to the same hyperplane.

First, let us recall the formulae defining the generalized polar transform:

x1 = r cosφ1

x2 = r sinφ1 cosφ2

x3 = r sinφ1 sinφ2 cosφ3

. . .

xd−1 = r sinφ1 sinφ2 . . . sinφd−2 cosφd−1

xd = r sinφ1 sinφ2 . . . sinφd−2 sinφd−1.

To a ball x2
1 + x2

2 + · · ·+ x2
d ≤ R2 in the space x1x2 . . . xd, a d-box 0 ≤ r ≤ R,

0 ≤ φ1 ≤ π, 0 ≤ φ2 ≤ π, . . . , 0 ≤ φd−2 ≤ π, 0 ≤ φd−1 ≤ 2π in the space
rφ1φ2 . . . φd−1 corresponds.

A direction in the d-dimensional space can thus be defined by a point on the
sphere x2

1 + x2
2 + · · · + x2

d = 1, or, equivalently, by a (d − 1)-tuple of angles
(φ1, φ2, . . . , φd−1), where 0 ≤ φ1 ≤ π, 0 ≤ φ2 ≤ π, . . . , 0 ≤ φd−2 ≤ π, 0 ≤
φd−1 ≤ 2π.

As in the three-dimensional case, we shall decompose H into sets of hyper-
planes having the same outer normal, thereby assuming that the outer nor-
mal is the one defined by a (d − 1)-tuple of angles (φ1, φ2, . . . , φd−1), where
φ1, φ2, . . . , φd−1 ∈ [0, π).

Let us fix some φ1, φ2, . . . , φd−1 ∈ [0, π) and consider a subsetHφ1,φ2,...,φd−1
of

H consisting of all hyperplanes with the outer normal defined by the (d−1)-tuple
(φ1, φ2, . . . , φd−1). As before, unless two points from P lie in the same hyperplane

On Voronoi Diagrams in the Planar Line Space and Their Generalizations 179

fromHφ1,φ2,...,φd−1
, the Voronoi diagram Vor

φ1,φ2,...,φd−1

H (P) of P in the subspace
Hφ1,φ2,...,φd−1

is represented by d−1 hyperplanes with the outer normal n defined
by (φ1, φ2, . . . , φd−1), which pass through the middle points of the segments
connecting the neighbor points in a sequence obtained from P by ordering it
with respect to the direction n. In case some two points p, q ∈ P happen to
lie in the same hyperplane from Hφ1,φ2,...,φd−1

, the restricted Voronoi diagram

Vor
φ1,φ2,...,φd−1

H (P) will contain an infinite region filled with the hyperplanes from
Hφ1,φ2,...,φd−1

, for which p and q are the closest neighbors in P .
We conclude that the Voronoi diagram VorH(P) of hyperplanes for a set of

points in the d-dimensional space can be represented in a (2d − 1)-dimensional
space SH = Rd × [0, π] × · · · × [0, π], periodic on each of the d − 1 “angular”
dimensions, so that for any fixed set of angles φ1, φ2, . . . , φd−1 ∈ [0, π), the
intersection of VorH(P) with the d-dimensional subspace of SH defined by φ1,

. . . , φd−1 represents Vor
φ1,φ2,...,φd−1

H (P).

5 Conclusion

In this work, we have proposed a new way of interpreting the Voronoi diagram
of a planar set of points in the line space, which allows to visualize its structure
in a three-dimensional space. Our ideas extend to the three-dimensional case, in
which a Voronoi diagram of a set of points in the space of all planes is examined,
and generalize further to higher dimensions. Though these Voronoi structures are
unlikely to allow for a more efficient processing of the nearest neighbor queries
than by the existing methods (see [3,7,9] for two-dimensional case, [8] for three-
dimensional case, and a very recent work [6] for a novel general framework), our
results may help to develop a better intuition in regard of their properties, and
to admire their inherent beauty. We also hope that our approach will help to
study Voronoi diagrams in higher-dimensional line spaces (instead of hyperplane
spaces), where the methods based on the concept of duality do not work.

References

1. Aurenhammer, F.: Voronoi diagram—A survey of a fundamental geometric data
structure. ACM Computing Surveys 23(3), 345–405 (1991)

2. Bae, S.W., Shin, C.-S.: The Onion Diagram: A Voronoi-Like Tessellation of a Planar
Line Space and Its Applications. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.)
ISAAC 2010, Part II. LNCS, vol. 6507, pp. 230–241. Springer, Heidelberg (2010)

3. Cole, R., Yap, C.: Geometric retrieval problems. In: Proc 24th IEEE Symp. Foun-
dation of Computer Science (FOCS), pp. 112–121 (1983)

4. Gavrilova, M. (ed.): Generalized Voronoi Diagram: A Geometry-Based Approach
to Computational Intelligence. SCI, vol. 158. Springer, Heidelberg (2008)

5. Edelsbrunner, H., Guibas, L.J.: Topologically sweeping an arrangement. J. Com-
put. Syst. Sci. 38, 165–194 (1989), Corrigendum in 42, 249–251 (1991)

6. Hruz, T., Schöngens, M.: A Simple Framework for the Generalized Nearest Neigh-
bor Problem. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp.
83–94. Springer, Heidelberg (2012)

180 D. Schmitt and K. Vyatkina

7. Lee, D.T., Chiang, Y.: The power of geometric duality revisited. Inf. Process.
Lett. 21, 117–122 (1985)

8. Mitra, P., Mukhopadhyay, A.: Computing a Closest Point to a Query Hyperplane
in Three and Higher Dimensions. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K.,
L’Ecuyer, P. (eds.) ICCSA 2003, Part III. LNCS, vol. 2669, pp. 787–796. Springer,
Heidelberg (2003)

9. Nandy, S.C., Das, S., Goswami, P.P.: An efficient k nearest neighbors searching
algorithm for a query line. Theor. Comp. Sci. 299, 273–288 (2003)

10. Okabe, A., Boots, A., Sugihara, B., Chui, S.N.: Spatial Tessellations, 2nd edn.
Wiley (2000)

11. Overmars, M.H., Welzl, E.: New methods for computing visibility graphs. In: Proc.
4th Annu. Symp. Comput. Geom (ACM SoCG), pp. 164–171. ACM Press (1988)

12. Rivière, S., Schmitt, D.: Two-dimensional line space Voronoi Diagram. In: Proc.
4th Int. Symp. on Voronoi Diagrams in Science and Engineering (ISVD 2007), pp.
168–175. IEEE CS (2007)

13. Rivière, S.: Two-dimensional order-k line space Voronoi diagram. In: Voronoi’s
Impact on Modern Science, Book 4, Proc. 5th Int. Symp. on Voronoi Diagrams in
Science and Engineering (ISVD 2008), vol. 2, pp. 192–202 (2008)

Author Index

Banerjee, Sandip 22
Berkowitz, Ross 112
Bezdek, Károly 158
Bhattacharya, Bhargab B. 22
Bhattacharya, Priyadarshi 5

Chen, Renjie 39
Cho, Youngsong 92

Das, Sandip 22

Fu, Norie 72

Gavrilova, Marina 5
Geiger, Alfons 56
Ghandehari, Mehran 138
Gotsman, Craig 39

Hashikura, Akihiro 72

Imai, Hiroshi 72

Kalantari, Bahman 1, 112
Kalantari, Iraj 112
Karimipour, Farid 138
Karmakar, Arindam 22
Kim, Alexandra V. 56
Kim, Deok-Soo 92
Kim, Jae-Kwan 92

Maheshwari, Anil 22
Medvedev, Nikolai N. 56
Menendez, David 112

Roy, Sasanka 22

Schmitt, Dominique 170
Sugihara, Kokichi 92

Voloshin, Vladimir P. 56
Vyatkina, Kira 170

	LNCS Transactions on Computational Science
	Editorial
	LNCS Transactions on Computational
	Science – Editorial Board
	Table of Contents
	The State of the Art of Voronoi DiagramResearch
	References

	DT-RANSAC: A Delaunay Triangulation Based Scheme for Improved RANSAC Feature Matching
	1 Introduction
	2 BoW Framework for Finding Similar Images
	2.1 Local Features
	2.2 Feature Descriptor
	2.3 Tf-idf Weighting and Inverted Index
	2.4 Image Matching
	2.5 Geometric Verification

	3 DT-RANSAC Methodology
	4 Datasets and Evaluation
	4.1 mAP vs. Vocabulary Size
	4.2 mAP vs. Top-N Verified Images
	4.3 mAP vs. Maximum Trials
	4.4 Actual Number of Trials
	4.5 Retrieval Results by Landmark Category
	4.6 Processing Time

	5 Conclusion
	References

	On the Construction of Generalized Voronoi Inverse of a Rectangular Tessellation
	1 Introduction
	1.1 Motivation and Problem Definition
	1.2 Notations and Definitions
	1.3 New Results
	1.4 RelatedWorks

	2 Preliminaries
	3 Locating Sites in a Linear Rectangular Tessellation
	4 Locating Sites in a General Rectangular Tessellation
	4.1 Optimum Placement for Some Special Cases

	5 Locating Sites in a General Tessellation
	6 Conclusion
	References

	Localizing the Delaunay Triangulation and Its Parallel Implementation
	1 Introduction
	2 Related Work
	3 Localizing the Delaunay Triangulation
	4 Delaunay Triangulation
	5 Parallel Delaunay Triangulation
	5.1 Avoiding Redundancy
	5.2 Load Balancing

	6 Experimental Results
	7 Conclusion
	References

	Decomposition of a Protein Solution into Voronoi Shells and Delaunay Layers: Calculation of the Volumetric Properties
	1 Introduction
	2 Voronoi-Delaunay Tessellation of a Solution
	3 Voronoi Shells
	3.1 Selection of the Boundary Voronoi Shells
	3.2 Calculation of Subsequent Voronoi Shells

	4 Delaunay Layers
	4.1 Selection of the First (Boundary) Delaunay Layer
	4.2 Calculation of the Subsequent Delaunay Layers

	5 Examination of an Aqueous Solution of the Polypeptide hIAPP
	6 Conclusion
	References

	Proximity and Motion Planningon ℓ_1-Rigid Planar Periodic Graphs
	1 Introduction
	2 Preliminaries
	3 ℓ_1-Embedding of ℓ_1-Rigid Planar Periodic Graphs
	4 Voronoi Diagrams on ℓ_1-Rigid Planar Periodic Graphs
	4.1 Voronoi Diagrams on the Plane under a Convex Piecewise
	4.2 Nearest Neighbor Data Structure on ℓ_1-Rigid Planar Periodic Graphs

	5 Nearest Pair Problem on ℓ_1-Embeddable Tilings
	6 Motion Planning Problem on ℓ_1-EmbeddableArchimedean Tilings
	Embeddable Archimedean Tilings
	6.1 1-Dimensional Orthogonal Lattice Case
	6.2 2-Dimensional Orthogonal Lattice Case
	6.3 General Case

	References

	Tunnels and Voids in Molecules via Voronoi Diagrams and Beta-Complexes
	1 Introduction
	2 Literature Review
	3 Voronoi Diagram, Quasi-triangulation, and Beta-Complex
	4 Molecular Complement
	5 Recognition of Molecular Complement
	5.1 Void Recognition
	5.2 Tunnel Recognition

	6 Experiment
	7 Discussions
	8 Conclusion
	References

	On Properties of Forbidden Zones of Polygons and Polytopes
	1 Introduction
	2 Forbidden Zone of a Set with Respect to a Site
	2.1 The Forbidden Zone of a Convex Polygon
	2.2 Moving the Site Outside the Region

	3 Optimal Forbidden Zones for a Convex Polygon
	3.1 Minimal Area
	3.2 Minimal Overlap
	3.3 Minimal Circumference
	3.4 Minimal Flower Circumference

	4 General Bounds on the Area of the Forbidden Zone
	5 Arbitrary Regions
	6 Union and Intersection of Balls Having a Common Boundary Point
	7 General Forbidden Zones
	7.1 Sites Which Generate Similar Forbidden Zones
	7.2 Minimizing the Volume of Forbidden Zones
	7.3 General Bounds on the Volume of Generalized Forbidden Zones

	8 Conclusion
	References

	Voronoi-Based Medial Axis Approximation from Samples: Issues and Solutions
	1 Introduction
	2 Geometric Preli iminaries
	2.1 Medial Axis
	2.2 Local Feature Size and r-Sampling
	2.3 Delaunay Triangul ation
	2.4 Voronoi Diagram
	2.5 Power Diagram

	3 Voronoi-Based A Algorithms for Medial Axis Approximation
	3.1 Voronoi Ball Algorithm
	3.2 Voronoi Edge Algorithm
	3.3 Crust Algorithm
	3.4 One-Step Crust d and Skeleton Algorithm

	4 Filtering the Ext traneous Edges in the Medial Axis
	4.1 Simplification
	4.2 Pruning

	5 Proposed Appro oach for the Medial Axis Extraction
	5.1 Stability
	5.2 Flexibility
	5.3 Accuracy and Prec ision
	5.4 Complexity
	5.5 Handling Sharp Co orners

	6 Conclusion and Future Work
	References

	Globally Rigid Ball-Polyhedra in Euclidean 3-Space
	1 Introduction
	2 Proof of Theorem 1
	3 Underlying Truncated Delaunay Complex of a Ball-Polyhedron
	4 Proof of Theorem 2
	References

	On Voronoi Diagrams in the Planar Line Spacea nd Their Generalizations
	1 Introduction
	2 Two-Dimensional Case
	3 Algorithm in Two Dimensions
	4 Higher-Dimensional Case
	5 Conclusion
	References

	Author Index

