
Chapter 10
Fitness Landscapes That Depend on Time

Hendrik Richter

Abstract. Landscapes whose fitness values change with time occur in several
contexts. A first is that the evolutionary process takes place in a dynamic envi-
ronment. Dynamics may be connected to optimization problems with changing
objective functions, or generally that conditions apart from the genetic makeup of
the population, but massively influencing the evolutionary outcome, are not con-
stant. Mathematically, such dynamic fitness landscapes can be described either by
static landscapes that are externally driven to change with time, or by spatially ex-
tended dynamical systems which internally and simultaneously define topology and
dynamics of the landscape. Another setting for time–dependent fitness are coevolu-
tionary processes where the fitness of a given individual depends on the fitness and
the genotype of other individuals in a temporal or spatial fashion. This is known
to create coupled, interactive, tunable or deformable landscapes. Such coevolution-
ary processes induce time–dependence that is population–based and produce land-
scapes that are codynamic. In this chapter we intend to give an unified overview
about issues in and problems of time–dependent fitness landscapes and particularly
highlight several types of mathematical descriptions and their properties, similarities
and differences.

10.1 Introduction

For understanding evolutionary dynamics, it is useful to have a notion of how the in-
dividuals’ movements are related to, are partly controlled by, partly directed to and
partly influenced by possible paths of increasing or decreasing fitness. One way to
obtain such a notion is by fitness landscapes. These landscapes are an influential and
important concept in evolutionary biology and evolutionary computation, and recent
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advances in their understanding are the topic of this book. A conventional view on
fitness landscapes is that the fitness of a given point of the landscape is not changing
its value for the time frame of consideration. A time frame of consideration may be a
run of an evolutionary search algorithm, or an interval of evolutionary development
to be observed and studied, or an analysis of the fitness landscape, for instance by a
random walk on the landscape. Thus, such kind of fitness landscapes are essentially
a static concept. However, if looking at the biological reality on the one hand, or the
true nature of optimization problems on the other, we notice that the static view is a
significant restriction in understanding interesting phenomena. In biology, there are
usually several species and several individuals. They can compete or cooperate with
the aim to maximize the share they are getting from limited resources. The outcome
of competition or cooperation (or mixing both in an overall strategy) definitely in-
fluences survival and reproduction processes, and hence fitness in a timely fashion.
Therefore, fitness of a given phenotype is affected by the actions (and therefore by
the fitness) of other phenotypes for any interesting time interval. Moreover, envi-
ronmental conditions are changing frequently and hence bringing timely changes to
the fitness of a given phenotypic makeup. The same is true if we consider to solve
optimization problems using methods of evolutionary computation. Here the objec-
tive function of a multitude of real–world problems is frequently affected by timely
changes, for instance in dynamic vehicle [4, 73] and network [12, 13] routing, or
job scheduling [35].

In recent years we have seen various attempts to describe, model and understand
the phenomena connected to fitness that changes over time [9, 33, 52, 74]. In evo-
lutionary computation this was particularly driven by attempts to design algorithms
that perform and behave well in such dynamic environments. In evolutionary bi-
ology a main interest is in understanding the role changing conditions play in the
overall evolutionary process and in particular what role environmental changes play
in survival and reproduction success [28, 39, 69]. This chapter deals with a land-
scape view on such changing fitness. In particular, we will review in which contexts
dynamic fitness landscapes occur, what mathematical descriptions are suitable to
be implemented in computable models for conducting numerical experiments, and
how the descriptions reflect properties of the underlying dynamic structure. In the
following we will focus on landscape approaches in evolutionary computation. This
means that the landscape’s configuration space is a search space usually originating
from an optimization problem and that the landscape may be populated by individ-
uals of an evolutionary search algorithm. However, almost all the discussion applies
likewise to a more biological context, where the search space is replaced by a geno-
typic space that is inhabited by phenotypic realizations.

Dynamic landscape phenomena may occur in different contexts. A first and most
obvious is that fitness is directly dependent on time and space. This leads to solving
dynamic optimization problems and dynamic fitness landscapes. We will call that
explicit time– or space–dependent and will distinguish between internal dynam-
ics that is proprietary to the mathematical description of the fitness landscape and
external dynamics that is generated by a separate driving system and subsequently
imprinted on the landscape. Another context is that fitness of one individual depends
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on the fitness or the phenotype of others. This is the case for different types of coevo-
lutionary settings and creates coupled fitness landscapes [34] (also sometimes called
interacting fitness landscapes). If it happens within the frame of the time considered,
we also have a situation where fitness is changing with time. This time–dependence
is implicit and will be called population–based dynamics. However, although there
is a substantial amount of work on coevolutionary phenomena, see for instance [49]
and references cited there, how this creates dynamics and how the dynamics affect
the evolutionary search is rarely addressed. One attempt to make the population–
based dynamics in coevolution explicit are deformable fitness landscapes [17, 19].
In the following we aim at giving a unified view about fitness landscapes whose fit-
ness values change with time, and in particular to relate dynamic fitness landscapes
to coupled and deformable ones.

In the next section, we will briefly review the current understanding of dynam-
ics in evolutionary processes. This is followed by defining and discussing dynamic
fitness landscapes and dynamic optimization problems. Section 10.3 deals with co-
evolutionary processes. We recall the main ideas and issues of coevolutionary mod-
els and algorithms and show how coupled and deformable fitness landscapes derive
from them. In particular, we draw connections between these landscapes and the
dynamic fitness landscapes considered before. In the concluding section we provide
a broader view on fitness landscapes that change with time and outline potential
directions of future research.

10.2 Dynamic Fitness Landscapes

10.2.1 Dynamics? What Dynamics?

It seems to be generally acknowledged that every timely change of any given quan-
tity is connected with dynamics. This is in agreement with the word’s origin from the
ancient Greek dynamis (δ ύναμις ), which can be translated as ‘ability’, ‘capacity’,
‘potentia’ or ‘power’ for doing or moving or changing something. However, there
is some confusion as to whether dynamics is the cause, the effect or the process of
changing. In addition, the nature of the changes may differ substantially from case
to case with the result that the changes may or may not affect what we consider in a
particular study. A defining factor to answer this question is how the time frame of
what is considered relates to the time frame of the changes. The relations between
these time frames can be interpreted as to define a relative speed of the changes. If
the speed of the changes is below a certain threshold, it can be neglected as it does
not influence results and outcome. Moreover, sometimes even changes of relevant
speed may not be taken into account as they are (or can be considered as) spatially,
functionally or structurally separated from the object of study. This clearly applies
to studies in natural and artificial evolution. Here, it is frequently of interest what
severity the change has in terms of fitness. However, if evolutionary speed is defined
as the magnitude of the derivative of the evolutionary relevant quantity with respect
to time, severe changes are tantamount to high speed dynamics.
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Two types of dynamics can be distinguished. A first is evolutionary dynamics.
Evolutionary dynamics describes how individuals of an evolutionary search algo-
rithm move in the search space as generations go by [2, 23]. As each point in a
search space has a fitness value, and this fitness value can be seen as proprietary to
the individual, the movement can be pictured as to happen on the fitness landscape’s
surface (also see Chapter 1 of this book). This view remains valid in a more evo-
lutionary biology point of view. Evolutionary dynamics here means the movements
of phenotypic realization through the genotypic space. Most important here is that
evolutionary dynamics is expressed and counted on a generational base. This is in
line with the genetic makeup of an individual being constant during its lifetime. In
this view adaption within the lifetime of the individual such as learning, phenotypic
adaption, plasticity and polymorphism is not directly taken into account. Of course,
such traits may tune the fitness of the individual, but the ability to do so is clearly
fixed in the phenotype. So, in the end only genetically inheritable traits form the
base of fitness, which is considered to be a unique (and therefore constant) value
for the time interval of a generation. This allows the interpretation that fitness of an
individual is a single value of ‘lifetime fitness’, the calculation of which is subject
to all activities within the lifetime. Considering this, it should be clearly pointed out
that evolutionary dynamics as such takes place on a static fitness landscape.

Next to evolutionary dynamics, another type of timely change is of interest here,
which we call environmental dynamics. Under environmental dynamics we sub-
sume changes outside the considered individual that have influence on its fitness.
That might be abiotic changes such as shifts in climate or other physical attributes
of the living space, or biotic changes such as alterations in the food and/or prey
abundance, or predator and/or parasites existence, or interaction between species or
within them. Our interest is in evaluating the effect these environmental changes
have on the fitness of individuals. In other words, we study how environmental dy-
namics relates to evolutionary dynamics. Therefore, it is sensible to relate the time
scale of the environmental changes to the generational time of evolutionary dynam-
ics. As fitness of an individual is a single (constant) value for each generation, there
are two consequences. A first is that changes that occur over the lifetime of an in-
dividual should be considered as to aggregate in their effects in order to result in
a lifetime fitness; a second is that the effects of environmental changes should be
counted at discrete points of time. From these thoughts it also follows that the envi-
ronmental changes are the source for the dynamics in dynamic fitness landscapes.

To summarize we define a fitness landscape to be dynamic if (and only if) its
fitness takes different values for the same search space point over the time frame
of consideration. In our understanding there are many different values over time
(meaning clearly more than one) and the changes are scattered over the time frame.
A most obvious example for that is a fitness landscape that changes frequently over
the run–time of the evolutionary search algorithm. In a more biological context this
relates to substantial environmental dynamics while studying a long series of gener-
ational evolution of a single species. This is in contrast to situations where the fitness
landscape might be subject to some parameters, which can be tuned or adapted for
each time frame of consideration. This is known as tuneable fitness landscape and
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almost always means that fitness values of the landscape are affected, that is tuned,
but only once and before the time frame of consideration. This is particularly rel-
evant in considering NK and NKC landscapes and will be discussed below. The
time frame of consideration may be an evolutionary run, or studying an interval of
an evolutionary development, or a random walk if we design a landscape analysis.
Mathematically, this understanding implies that the fitness is a variable depending
on time, as opposed to fitness as a parameter to be set before a (numerical) experi-
ment.

In evolutionary computation a fitness landscape is often linked to an optimization
problem. We next extend this view to a dynamical setting. We first look at a static
optimization problem. It consists of an objective function (frequently equated with
a fitness function in evolutionary computation) f (x) defined over some search space
S with x ∈ S. We assume that the search space is metric, or that there are some other
arrangements about which search space points are next to each other. Optimization
means to find the lowest (or highest) value of f (x) and its coordinates among all
x ∈ S:

fS = max
x∈S

f (x), (10.1)

with the location xS = arg fS.
The static optimization problem in Equation (10.1) can be thought of as becoming

dynamic by solving it not just once, but somehow modified for a second time. For a
modified fitness function f ∗(x), we may write the modified problem as

f ∗S = max
x∈S

f ∗(x). (10.2)

To rewrite the two static problems in Equations (10.1) and (10.2) as one dynamic
problem, we introduce the time variable k∈N0 (which is nothing other than a count-
ing variable) and define the dynamic fitness function f (x,k), where

f (x,0) = f (x), f (x,1) = f ∗(x).

We may carry on with doing so for the next modification of f (x) to obtain f (x,2),
and so on. Hence, a dynamic optimization problem is

fS(k) = max
x∈S

f (x,k), ∀ k ≥ 0 (10.3)

with the solution trajectory xS(k) = arg fS(k). To define a dynamic optimization
problem in the given way suggests that there might be more than one way to define
a dynamic problem out of a series of static problems, or that we may obtain differ-
ent dynamic problems out of modifying one and the same static problem. The dis-
cussion above may also imply that the modifications alter the problem only lightly.
However, even if the modified fitness function f ∗(x) is fundamentally different from
the function f (x) it is still possible to define both problems such that the one dy-
namically originates from the other. However, such a point of view is rather futile
in terms of usefulness for evolutionary computation. As both problems here have
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hardly any relations to each other, the solution of one of them gives no informa-
tion employable for evolutionary solving the other more efficiently. The best way to
solve them both by evolutionary means is to let the algorithm run independently for
both problems. In other words, to consider a sequence of problems to be dynamic
makes most likely more sense if the problems show some alikeness and relation to
each other. A main assumption here is that similar problems are best solved with
similar algorithms. Moreover, there should be a way to utilize these relations for
equipping the evolutionary search algorithm with favorable settings. These settings
might concern parameters (for instance general parameters such as population size
or diversity management parameters such as hyper–mutation rate or random im-
migrant proportion) or genetic operators (what kind of selection, recombination or
mutation) or collectible information for equipping triggered diversity management
schemes such as memory or anticipation/prediction.

10.2.2 Definition of Dynamic Fitness Landscapes

In the last section we have shown how a series of static problems can create a dy-
namic problem. In the same way we may regard a series of static fitness landscapes
as a dynamic fitness landscape. Next, we will formalize this approach. A static fit-
ness landscape ΛS can be defined by (see e.g. [24, 68])

ΛS = (S,n, f ), (10.4)

where S is the search space with elements x ∈ S, n(x) is a neighborhood function
which orders for every x ∈ S a set of direct and possibly also more distant neighbors
(and hence makes the space at least measurable, if not metric), and f (x) : S → R

is the fitness function giving every search space element a fitness value. The search
space is either the product of a genotype–to–phenotype–to–fitness mapping or con-
structed from encoding and distancing the set of all possible solutions of an opti-
mization problem. Either way it is basically the representation that the evolutionary
algorithm uses (for instance binary, integer, real, tree etc.) and the design of the ge-
netic operators that defines the search space, and also its neighborhood structure.
This is in line with the general understanding that the concept of fitness landscapes
is particularly useful for studying how the evolutionary search algorithm interrelates
with the fitness function [24, 67, 71]. Moreover, as shown in [23], the neighborhood
structure of a fitness landscape may vary with variation of the genetic operators.
Hence, an analysis of the fitness landscape can be helpful for designing genetic op-
erators as it gives insight into which design is more likely than others to belong to the
landscape easiest searchable on average [71]. If the representation is fixed, for in-
stance as real numbers, then the search space frequently has a metric and the neigh-
borhood structure is inherent. The exact design and the parameters of the genetic
operators, for instance the mutation strength, define which points can be reached on
average from a given starting point in the landscape within one generation.

The geometrical interpretation that is central to the intuitive understanding of fit-
ness landscapes is particularly visible if S⊆R

2 (see Figure 10.1). The interpretation
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means that a search space in connection with a neighborhood structure forms a lo-
cation (and hence makes the space measurable) and that fitness can be viewed as a
height over the location. In other words, fitness is a property belonging to the search
space as the space’s orthogonal projection. Therefore, search space points with high
fitness appear as peaks, while low fitness regions are valleys, and points with the
same fitness form plateaus. Solving the corresponding optimization problem hence
means, according to Equation (10.1), to find the highest peak fS = max

x∈S
f (x) and its

location xS = arg fS. The individuals of an evolutionary algorithm used to solve the
given optimization problem can be thought of as to populate the fitness landscape.
The design of the genetic operators (basically selection, recombination, and muta-
tion) is meant to organize such that they (at least in average) perform a climbing of
the hills in the fitness landscape and ideally find the highest one, even in the pres-
ence of other (but smaller) hills. With the movement, the individuals contribute to
the dynamics of the population and hence to the evolutionary dynamics. Note that
in analyzing these processes a distinction can be made between the dynamics gener-
ated by genetic variation (mutation and recombination) and the dynamics generated
by corrective guidance (selection), which is of considerable interest for fine–tuning
the genetic operators.

In order to define a dynamic fitness landscape, there is the need to set how the
elements in Equation (10.4) change over time. With respect to the view of a dy-
namic fitness landscape that is generated by a series of static landscapes, defining
dynamics means to explain how one landscape produces the temporary subsequent
one. All of the landscape’s three defining ingredients (i.e. search space S, fitness
function f (x), and neighborhood structure n(x)) can, at least in principle, be dynam-
ically changing. Hence, we additionally need a time set and mappings that indicate
how S, f (x) and/or n(x) evolve with time [58, 59]. Dynamic optimization problems
considered in the literature so far address all these possibilities of change to some
extend. Whereas a real alteration of the fundamental components of a search space
such as dimensionality or representation (binary, integer, discrete, real, etc.) is re-
ally rare, a change in the feasibility of individuals is another and less substantial
kind of dynamic search space and is discussed within the problem setting of dy-
namic constraints [43, 60, 61]. Next is a changing neighborhood structure which
can partially be found in the context of works on dynamic routing [4, 73]. How-
ever, most of the work so far has been devoted to time–dependent fitness functions
[37, 42, 56, 62, 63, 65, 72, 78]. For these reasons, and to keep the next definition
simple, a dynamically changing search space and neighborhood structure is omitted
in the following, only the fitness function is time–dependent. A definition encom-
passing all three landscape components to be dynamic can be obtained by adding
transition maps for the other quantities.

We define a dynamic fitness landscape as

ΛD = (S,n,K,F,Φ f ). (10.5)

Equivalent to the static landscape of Equation (10.4) the search space S represents
all possible solutions to the optimization problem and the neighborhood function
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Fig. 10.1 A static fitness landscape in 2D: static peaks that may become moving peaks

n(x) gives a set of neighbors to every search space point. The time set K ⊆ Z pro-
vides a scale for measuring and ordering dynamic changes; F is the set of all fit-
ness functions in time k ∈ K and so every f ∈ F with f : S×K → R also depends
on time and gives fitness values to every search space point for any k ∈ K. The
transition map Φ f : F × S×K → F defines how the fitness function changes over
time. The map must satisfy the temporal identity and composition conditions, that is
Φ f ( f ,x,0) = f (x,0) and Φ f ( f ,x,k1 +k2) =Φ f (Φ f ( f ,x,k1),x,k2), ∀ f ∈ F , ∀x ∈ S,
∀k1,k2 ∈ K and the spatial boundary conditions Φ f ( f ,xbound ,k) = f (xbound,k),
∀ f ∈ F , ∀k ∈ K where xbound is the boundary set of search space S. With these
definitions we assume that the changes in the fitness landscape happen (or come
into effect) at discrete points in time and are the result of comparing the landscape
at points in time k to the following points k+1. This is in line with fitness landscapes
being a tool for analyzing the behavior of evolutionary algorithms. A generation of
an evolutionary algorithm can be defined as the time interval between subsequent
fitness function evaluations of the whole population. In other words, a generation
indicates the time between serial and self–contained steps in the solution finding
process. As fitness evaluation in an evolutionary algorithm usually takes place just
once in a generation, a difference in fitness can only be noticed by the algorithm at
discrete points in time. Hence, if we model the changes by a fitness landscape, the
most natural and straightforward time regime is discrete time.

An intuitive geometrical interpretation of a static fitness landscape still holds to
some extend for the dynamic case. The main difference is that the hills and valleys
move within the search space and/or change their topological form. This includes
that hills grow and shrink, valleys deepen or flatten, or the landscape completely or
partially turns inside out. According to Equation (10.3), the corresponding dynamic
optimization problem now reads fS(k) = max

x∈S
f (x,k),∀k ≥ 0 which yields the tem-

porarily highest fitness fS(k) and its solution trajectory xS(k) = arg fS(k),∀k ≥ 0.
As before the individuals of the evolutionary algorithm are meant to climb the

hills, and moreover to follow if they are moving and find hills that dynamically
appear. Even from such a simplifying picture it becomes obvious that the stan-
dard genetic operators (selection, recombination, mutation) might not be sufficient
to perform the task. Indeed, there exists a multitude of modifications to deal with
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the changes induced by a dynamic fitness landscape, for instance different types of
memory [7, 60, 65], random–based diversity enhancement techniques [42, 72] or
anticipation and prediction schemes [5, 62, 66]. Equation (10.3) describes the dy-
namic optimization problem and its solutions. However, for evaluating the perfor-
mance and the behavior of an evolutionary algorithm used to deliver such solutions,
other quantities can be more interesting, meaningful and significant. These quanti-
ties usually generalize the solution trajectory in Equation (10.3) over the run time
and/or runs of the evolutionary algorithm, may include data from the evolving popu-
lation’s fitness and make them statistically evaluable. See [1, 75] but also Chapter 14
and references cited there for an overview about dynamic performance evaluation.

Above, we have argued for dynamic fitness landscapes useful in evolutionary
computation to have a time regime that only allows changes at discrete points in
time. We will end this section with relaxing this kind of modelling and reviewing
the effects this has for mathematical descriptions of dynamic fitness landscapes. At
first it can be noted that the definition in Equation (10.5) is still valid and meaningful
if we consider a real value time set K = R. For not confusing the elements of the
discrete valued time set with the real one, we write t ∈ R. A main consequence of
such a real valued time set is that we can mathematically describe dynamic fitness
landscapes that change continuously in time. Once we have defined a search space
that is metric (or at least measurable) a fitness function can be defined in very gen-
eral terms. Every f : S → R that maps points from the said search space to a scalar
variable can be interpreted as a fitness function. Hence, defining the timely change
of the function f (x, t) defines a dynamic fitness function. If there are a countable
number of possible solutions xi (and it hence is a combinatorial optimization prob-
lem) the dynamics of each of the solutions can be put as depending on the fitness of
the solution xi at time t as well as on the fitness of the μ other solutions

d f (xi, t)
dt

= ψi
(

f (x1, t), . . . , f (xi, t), . . . , f (xμ , t)
)
. (10.6)

With Equation (10.6) we obtain as dynamic fitness landscape a lattice of (nonlinear)
ordinary differential equations (ODEs). There are a considerable number of dynamic
combinatorial optimization problems for which the timely evolution of the fitness
f (xi, t) does not depend on all the μ solutions but only on solutions neighboring xi.
Hence, Equation (10.6) modifies to

d f (xi, t)
dt

= ψ∗
i ( f (xi, t), f (n(xi), t))) . (10.7)

For a non–countable number of possible solutions the dynamics of the fitness f (x, t)
may be expressible by a nonlinear partial differential equation (PDE). If the proper-
ties of the search space allow to define spatial derivatives, we obtain (for phenotypes
described by n–dimensional vectors) the PDE

∂ f
∂ t

= ψ
(

f (x, t),
∂ f
∂x1

, . . .
∂ f
∂xn

, . . . ,
∂ 2 f

∂x2
1

, . . . ,
∂ 2 f

∂x1∂xn
. . .

)
. (10.8)
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With Equation (10.8), we have a description of the changing fitness as a spatially
extended dynamical system. The timely evolution of fitness values specified by the
PDE does not depend on all the other fitness values or an explicitly assignable neigh-
borhood, but on the spatial derivatives ∂ f

∂xi
of first and higher order. Geometrically

interpreted, this means the timely evolution of the fitness of any search space point is
subject to differences in fitness of points laying infinitesimally around that point. To
express it differently, the fitness evolution is a function of the curvature the fitness
creates in the landscape, or how the fitness deforms the landscape spatially.

It could be argued that Equations (10.6), (10.7) and (10.8) are the most basic way
of describing the timely evolution of a fitness landscape as any change in nature
must be a change in physical entities whose dynamics is in continuous time. How-
ever, it is most unlikely that the equations can be directly used as computational
models because they do only in exceptional cases have an analytic formula–like
closed solution. Any computational approach therefore requires to discretize time
for Equations (10.6) and (10.7) and time as well as space for Equation (10.8). At
the end of the process there should be an iterative generation law describing how a
fitness value f (x, t) evolves into f (x, t + δ t), with δ t being a small time increment.
For Equation (10.7) (likewise for Equation (10.6)) we thus end up with

f (xi, t + δ t) =Ψi ( f (xi, t), f (n(xi), t)) (10.9)

and for Equation (10.8) with

f (x, t + δ t) =Ψ ( f (x, t), f (x1 + δx1, t), f (x2 + δx2, t), . . . , f (xn + δxn, t)) (10.10)

where Ψi and Ψ are some generator mappings. With these equations we obtain a
temporal and spatial discretization employable in numerical algorithms for calcu-
lating the evolution of fitness values recursively forward in time. To formalize this
computational approach we go back to the discrete time variable k and introduce
a temporal renormalization. With this, and because xi + δxi imposes a spatial dis-
cretization and can be interpreted as a neighborhood, we may rewrite and generalize
Equations (10.9) and (10.10) as

f (xi,k+ 1) = φi ( f (xi,k), f (n(xi),k)) (10.11)

with φi being a generator mapping.
Note that this neighborhood n(xi) is not necessarily the same neighborhood used

in laying out and distancing the search space according to the definition in Equation
(10.5). There might be one neighborhood that defines which search space points are
next to a given point, and another neighborhood that expresses which fitness values
are influencing the timely evolution of that point. With formulating Equation (10.11)
we argue that this recursive evolution law is not only indispensable in calculating
a dynamic fitness landscape but also an integral part in defining it. Solving Equa-
tion (10.11) yields the transition map Φ f in the definition in Equation (10.5). So, no
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definition of a dynamic fitness landscape is complete without giving such an equa-
tion. The next section reviews some examples of dynamic fitness landscapes and
such equational descriptions are explicitly given.

10.2.3 Examples of Dynamic Fitness Landscapes

As shown in the definition given in Equation (10.4), algebraic equations can be
used to describe static fitness landscapes. As further shown in Equation (10.5), for
dynamic fitness landscapes we need to add a mathematical prescription for evolving
the fitness values forward in time. In principle, there are two ways for doing so. A
first is to take the algebraic description of a static fitness function, select some terms
from these equations, and define how these terms depend on an additional (and
usually external defined) time regime. Geometrically speaking, this means that we
define dynamics laws for how selected topological features in the landscape evolve
with time. This only implicitly results in explaining the landscape’s dynamics in the
whole. On the other hand, this also implies that we have, in fact, dynamics only
for certain elements in the landscape. By changing these elements dynamically, we
implicitly also describe how the neighborhood of the peaks behave with time. We
will call this kind of dynamics generation external.

The easiest and most obvious way for defining such time–dependent landscapes
is to use a static landscape and a set of rules for changing certain features in the
landscape with time. A well–known example is the so–called moving peak bench-
mark [7, 41], which uses as fitness function a static n–dimensional field of peaks

(or cones) on a zero plane f (x) = max
{

0 , max
1≤i≤N

[hi− si‖x− ci‖]
}

(see also Figure

10.1). Here, x ∈ S is an element in search space S ⊂ R
n, ci is the coordinate of the

i–th cone, there are N cones in total, and hi and si are the height and slope, respec-
tively, of the i–th cone. By using the discrete time variable k, we may set dynamic
sequences for coordinates c(k), heights h(k) and slopes s(k) to obtain a dynamic
fitness landscape with moving peaks

f (x,k) = max
{

0 , max
1≤i≤N

[hi(k)− si(k)‖x− ci(k)‖]
}
. (10.12)

For all static landscapes f (x) we may similarly identify topological features in the
the landscape’s mathematical description and change elements of the mathemat-
ical description dynamically. There are other problems such as dynamic sphere,
dynamic Ackley, dynamic Rosenbrook etc., but also dynamic combinatorial opti-
mization problems such a dynamic knapsack, dynamic royal road or dynamic bit–
matching [70] that fit into this category, see e.g [15, 44] for an overview of such
kind of dynamic problems.

If a dynamic fitness landscape relies on external dynamics, the question of how
to generate dynamic sequences arises. A first step is to select terms in the alge-
braic fitness landscape description that are to change with time. For the moving
peak benchmark in Equation (10.12), these are ci(k), hi(k) and si(k). The dynamic
changes are induced by moving sequences
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z = (z(0),z(1), . . . ,z(k),z(k+ 1), . . .) (10.13)

that is
ci(k) = zci(k), hi(k) = zhi(k), si(k) = zsi(k). (10.14)

In principle, the dynamic changes can be of three types:

• regular dynamics
• chaotic dynamics
• random dynamics.

The moving sequences z(k) can be generated according to these types. Regular
changes are usually obtained by analytic coordinate transformations, for instance
cyclic dynamics where each z(k) repeats itself after a certain period of time and
shows recurrence or translatory dynamics where the quantities ascribe a pre–defined
track or tour. The period of the recurrence and the cycle width can be adjusted and
normalized so that moving sequences become comparable. For instance, cyclic dy-
namics can be generated by

zi(k) = gi(k) = sin(ωik+ δi) (10.15)

with ωi and δi appropriate frequencies and phases. Note that an analytic equation
such as Equation (10.15) enjoys the property to be not recursive. The value of z(k)
can be calculated without knowing z(k− 1). This also means a fitness landscape
externally driven by Equation (10.15) has strictly speaking no recursive evolution
law as given in Equation (10.11), but is knowable beforehand for any given point in
time k. It is hence completely predictable.

Chaotic changes can be generated by a discrete–time dynamical system,

z(k+ 1) = g(z(k)), (10.16)

which is recursive. Such systems are known to show chaotic behavior for certain pa-
rameter values and initial states z(0), for instance the generalized Hénon map. Refer
to [55, 56] for details of the generation process. For using these moving sequences
in numerical experiments, there might be the need for preprocessing as (depending
on the dynamical systems used) the amplitudes z(k+ 1) might be not unitary. If so,
a re–normalization should take place. We get random changes if we select that each
ci(k), hi(k), si(k) for each k is an independent realization of, for example, a nor-
mally or uniformly distributed random variable. Again, the statistical properties of
the random variable should guarantee (maybe after renormalization) comparability.
In some sense, also fitness landscapes externally driven by a random process have
no recursive evolution law as given in Equation (10.11). The main difference is here
that the value of z(k− 1) does in no way specify the value of z(k). The evolution
of a random fitness landscape is only statistically describable. A general feature
of the three types of dynamics is that regular dynamics is completely predictable,
chaotic dynamics is short–term predictable, and random dynamics unpredictable.
This property transforms to fitness landscapes externally driven by these dynamics.
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A second example for external drive is the XOR-generator by Yang [77, 78]. This
generator can be used for any binary–encoded static function f (x) as follows. For
each discrete step in landscape time k, a XOR mask M(k) is incrementally calculated
by

M(k) = M(k− 1)⊕T(k), (10.17)

where “⊕” is a bitwise exclusive-or (XOR) operator (i.e., 1⊕ 1 = 0, 1⊕ 0 = 1, and
0⊕ 0 = 0) and T (k) is an intermediate binary template generated for time step k.
T (k) is generated with ρ × l (ρ ∈ (0.0,1.0]) randomly selected bits set to 1 while
the remaining bits are set to 0. For the initial step k = 1, M(0) is set to a zero vector,
i.e., M(0) = 0. The static fitness function f (x) finally becomes dynamic by

f (x,k) = f (x⊕M(k)). (10.18)

The XOR generator is hence a way to externally drive a binary fitness function by
the recursive law in Equation (10.17).

In a second approach to describe dynamic changes, we may formulate a gen-
eral law for the fitness landscape’s time evolution that applies to all fitness val-
ues in the search landscape. Hence, the specification of the timely changes are part
of the mathematical description of the landscape. Thus, the fitness of every point
f (x,k+1) may depend on the fitness one time step before, f (x,k) and the (element–
wise) fitness values of all of its neighbors, f (n(x),k) (see Equation (10.11)). With
such a description we have formulated a dynamic fitness landscape as a spatially
extended dynamical system. To have such description means that the topology and
the dynamics of the fitness landscape are generated simultaneously and by the same
equation. In other words, the dynamics here is internal to the fitness landscapes.
An example for such an evolution law is fitness landscapes constructed from ordi-
nary differential equations (ODE), partial differential equations (PDE) and coupled
map lattices (CML). A special property of this type of dynamic fitness landscape is
that not only is time discrete but also the search space has a countable number of
elements. Such a search space characteristic corresponds strictly speaking to com-
binatorial optimization problems (see [58, 59] for further discussion).

For a two–dimensional real valued search space S, a dynamic fitness landscape
can be viewed as the time evolution of the surface over a 2D plane at point x and
time t. Such a general dynamic 2D fitness landscape that describes the dynamics of
the fitness value f (x1,x2, t) with continuous spatial variables (x1,x2) and continuous
time t can be modelled by the parabolic PDE

∂ f
∂ t

= a1

(
∂ 2 f

∂x2
1

+
∂ 2 f

∂x2
2

)
− a2g1

(
∂ f
∂x1

,
∂ f
∂x2

)
+ g2( f ), (10.19)

where a1,a2 are coefficients and g1,g2 are mappings. The dynamic fitness land-
scape in Equation (10.19) can be interpreted as a reaction–diffusion system with
an additional nonlinear term and is a special case of the general description given
in Equation (10.8). This type of PDE has close resemblance to the Kardar–Parisi–
Zhang (KPZ) equation [27], which has been proposed to model surface growth. The
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main difference is that the KPZ equation includes an explicit stochastic (Gaussian
noise) term. Recently, the KPZ equation has been intensively studied [30, 36, 40],
with the relation to coupled map lattices (CML) as a central question. Clearly, both
are models of extended dynamical systems. Also, and as mentioned before, a nu-
merical solution to a PDE always requires some kind of discretization of space and
time. An alternative strategy to a study by any of the methods for numerically solv-
ing the PDE therefore appears to consist of a study of the corresponding CML and
their mutual dynamical properties.

We will next relate the PDE–based landscape, characterized in Equation (10.19),
to a landscape based on a CML [57, 58]. It has been shown that the CML landscape
can be obtained by a spatial and temporal discretization of the PDE landscape [59].
For the CML, we lay out a lattice grid with I1× I2 equally sized cells, which builds a
2D–structure. For every discrete time step k, k = 0,1,2, . . ., each cell is characterized
by its height

f (x1,x2,k), x1 = 1,2, . . . , I1, x2 = 1,2, . . . , I2, (10.20)

where (x1,x2) denote the spatial indices in vertical and horizontal directions, respec-
tively (refer to Figure 10.2). We interpret this height, f (x1,x2,k), as fitness according
to the geometrical metaphor of a fitness landscape. It is subject to changes over time,
which are described by the two–dimensional CML with nearest–neighbor coupled
interaction [10, 25]:

f (x1,x2,k+ 1)=(1− ε)g( f (x1,x2,k))+
ε
4

[
g( f (x1− 1,x2,k)) + g( f (x1 + 1,x2,k))

+ g( f (x1,x2− 1,k)) +g( f (x1,x2 + 1,k))
]
, (10.21)
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Fig. 10.2 The coupled map lattice (CML) of Equation (10.21) as an example for internal
dynamics in a fitness landscape
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where g( f (x1,x2,k)) is a local mapping function and ε is the diffusion coupling
strength. As local mapping function we use the logistic map,

g( f (x1,x2,k)) = α f (x1,x2,k)(1− f (x1,x2,k)). (10.22)

It is a nonlinear map with the parameter 0 < α < 4, which is defined for the unit
interval f ∈ [0,1]. For some parameter α , the map given by Equation (10.22) ex-
hibits chaotic behavior, for instance in the parameter interval α ∈ [3.57,4]. The lo-
cal chaotic behavior is distributed to other areas of the lattice by coupling. So, it is
the source of spatio–temporal chaos in the extended dynamical system. Finally, we
need to set the period boundary conditions as

f (I1 + 1,x2,k) = f (1,x2,k),

f (x1, I2 + 1,k) = f (x1,1,k). (10.23)

Initialization of the CML is done by initial heights f (x1,x2,0), being realizations
of a random variable uniformly distributed on [0,1]. The spatio–temporal behavior
of the CML depends on the lattice size I1 × I2 and two parameters, the coupling
strength ε and the nonlinear parameter α . The timely evolution of the CML given
in Equation (10.21) also provides the recursive evolution law of the dynamic fitness
landscape of Equation (10.11).

The CML is known to exhibit a rich spatio–temporal behavior, including differ-
ent types of spatio–temporal periodicity and chaos, quasi–periodicity and pattern
formation. The CML is therefore an instructive example for the principle of gen-
erating high–dimensional complex spatio–temporal dynamics by using local chaos
created by a low–dimensional mechanism that is transmitted to a spatial extension
by coupling. The obtained fitness landscape shows a similar complex behavior. Re-
fer to [57, 58, 59] for detailed studies.

10.3 Coevolution, Codynamics and Their Fitness Landscapes

10.3.1 Coevolutionary Dynamics

This section reviews coevolutionary algorithms and their fitness landscapes. This is
done with the aim to provide background for relating coevolutionary fitness land-
scapes, namely coupled and deformable landscapes, in the framework of dynamic
fitness landscapes discussed in the previous section. There is an ongoing debate
about the question whether or not fitness landscapes that originate from coevolu-
tionary processes could (or should) be treated as dynamic and what possible benefits
(if any) such a treatment could have. In the following we will not argue strongly for
either view, but we will demonstrate that such a view is possible.

Coevolutionary algorithms differ structurally from evolutionary algorithms for
several reasons. First, there is usually more than one population. Thus, there is no
longer only one genotypic space populated by individuals of one species, but several
spaces in which the evolutionary dynamics of other species take place. In this view,
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coevolution operates on the level of phenotypes. Anyway, coevolution also has an
impact on the fitness landscape as a whole, that is, on the level of genotypes. For
the dynamic interdependency on this level of the landscape we will introduce the
term codynamics. Coevolution between species results in codynamics between the
respective fitness landscapes. We will restrict ourselves here to coevolution between
two species (and hence the dynamic interaction, that is, codynamics, of two fitness
landscapes). Systems with more than two species can, at least in principle, be treated
along the same mathematical framework.

A second reason is that the fitness of the individuals of both species are inter-
dependent and as a consequence coevolution relies upon an alternative concept of
how the fitness of an individual is generally defined. This is the crucial element of
coevolution. There are some implementations [18] that only use a single popula-
tion to create coevolutionary effects, but these implementations as well as the ones
with multiple populations all share the following property: they use a population–
dependent fitness. This fitness is subject to the progress the search process itself is
making. It therefore is also called a subjective fitness, as opposed to objective fit-
ness in conventional evolutionary computation. As the search process is dynamic,
this necessarily results in dynamic fitness. This is in contrast to fitness evaluation
considered so far. For an evolutionary algorithm (and for static problems) the fitness
value is a property of a search space point (or a given genotype) and is constant for
the entire run–time. So, if in the course of the evolutionary search, the same point
were to be visited again by an individual, it would yield the same fitness value as in
the visit before. In other words, a reevaluation of a specific genotype always gives
the same fitness value. For an evolutionary algorithm and a dynamic problem the
search space points may change their fitness values but this happens because the
landscape is internally or externally changing with time. This takes place indepen-
dently from the evolutionary search process and is hence unconnected to the fitness
values of the population’s individuals. There is no feedback from the evolutionary
search to the landscape.

In coevolutionary algorithms fitness is assigned differently. The fitness of an indi-
vidual is the result of interaction with other individuals. The individuals that serve to
interact with the one for which a fitness value is to be assigned are called evaluators.
The fitness of an individual at a given point in run–time therefore depends on which
individuals are actually selected to interact with, and also on the current fitness of
these evaluators. As a consequence, a given point in search space (a genotype) can
have a completely different fitness value if it were to be reevaluated. Therefore, a
specific genotype frequently has variable, time–dependent fitness where the time–
dependence is induced explicitly by the generational search. This is because in the
reevaluation other individuals may act as evaluators and even if the same individuals
are taken a second time, they might have different fitness values. Only if the eval-
uators remain the same, and their fitness values do not change in the evolutionary
run, we would fall back to the situation where a genotype has a fixed fitness value.
This, of course, would make a pointless coevolutionary algorithm. In addition, there
are even coevolutionary algorithm implementations that deviate from the simple de-
sign principles set out above. Elevators are usually a subset of a population as an
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interaction with all the members of all possible populations, called full mixing or
complete mixing, might be time–consuming and therefore computationally expen-
sive. There are for instance implementations that vary the number of individuals
for interaction or the number of interactions with time, either depending on the
run–time of the algorithm [46] or depending on some internal states of the algo-
rithm [47]. Other implementations use an archive of past solutions to select evalu-
ators from [45, 48, 64]. All these mechanisms for calculating fitness dramatically
complicate and obscure the relationship between fitness and genotype in coevolu-
tionary processes. Clearly these relationships are dynamic but not in the way fitness
landscapes are dynamic as discussed in the previous section.

It should be pointed out that much of the work on coevolutionary algorithms has
been centered on the question of how to select evaluators and how to set the rules of
interaction. A main difference in algorithmic design is drawn between algorithms
that have just one population (single population coevolutionary algorithm) from
which the evaluators are taken, and algorithms that have many populations (multi
population coevolutionary algorithm) with possibly complex rules as to which pop-
ulation may supply evaluators for assigning the fitness of individuals of another pop-
ulation. This may include the case that some populations are only used to provide
evaluators. Another difference frequently discussed is the exact nature of the inter-
action. The main distinctive feature that is used is if the interaction is cooperative or
competitive [53, 64]. Cooperative means that the individual and the evaluators inter-
act and collaborate to solve a problem that is harder or impossible to solve by each
of them alone. The better they perform together the higher the reward and hence the
fitness. This sometimes even means that the same fitness is given to all cooperating
individuals. In competitive interaction the individual is rewarded for out–performing
the evaluators, which sometimes means that the fitness of one individual is increased
at the expense of the others. The terms cooperative and competitive are frequently
used in computer science approaches to coevolution. In the biological and ecological
literature, see for instance [3, 8], these terms are sometimes replaced by mutualistic
coevolution and antagonistic coevolution.

Further issues occur in the case of the fitness of an individual being the subject
of more than one interaction and hence consist of several partial finesses that have
to be aggregated. Another topic is relevant if there are multiple populations and
communication between them needs to be organized. The most common here is to
have a centralized clock that defines the generational time for each population and
also specifies at which points in time exchange of information and interaction takes
place. We will assume this in the discussion to follow. All these questions are impor-
tant for coevolutionary search and deeply influence the behavior and performance
of such algorithms. On the other hand, they only touch on the main question of this
chapter, namely how the fitness landscape describing coevolution relate to dynamics
and creates codynamics.
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10.3.2 Codynamic Fitness Landscapes

Basically, in coevolution there are as many fitness landscapes as there are popu-
lations. Since the focus here is on two coevolving populations, we have, in fact,
two fitness landscapes. They might or might not have the same search space and
neighborhood structure according to the definition set out in Equation (10.4). Let us
assume they have (the case of unequal search spaces would not alter the following
discussion substantially), but for distinguishing them we write Sx for the one, and
Sy for the other. We now consider that the individuals of population P1(k) can take
possible values x ∈ Sx and the population P2(k) may have the values y ∈ Sy. So far
we are still in line with the definitions of static (see Equation (10.4)) and dynamic
(Equation (10.5)) fitness landscapes as given in Section 10.2.2. However, as a con-
sequence of the coevolutionary allocation of fitness values discussed above, we now
face the question of defining fitness values f (x) and f (y), which cannot be done by
considering the search spaces separated from each other. This only becomes possi-
ble by considering the interaction between both populations. As mentioned before,
the fitness here is no longer a constant property of a point in search space; fitness
is generated on–the–fly by the process of coevolution. Hence, we might be able to
formulate a recursive evolution law just as in Equation (10.11).

To illustrate this fact, it is instructive to combine both landscapes into one
shared landscape S = {Sx,Sy}. This may result in a unique (static) landscape for
simple coevolutionary scenarios and is particularly convenient if the coevolving
populations are one–dimensional. Therefore, combining the two one–dimensional
landscapes leads to a shared two–dimensional landscape. This approach has been
followed in previous research on understanding coevolutionary phenomena by fit-
ness landscapes [50, 51]. We use this example to describe the dynamics in coevolv-
ing fitness landscapes. Therefore, we consider the coevolution on simple functions,
for instance ridge functions as suggested in [50, 51]. The simplest function has one
ridge:

f (x,y) = n+ 2min(x,y)−max(x,y) (10.24)

with x,y ∈ R and n is a parameter that sets the size and the hight of the landscape
(see Figure 10.3a). The landscape has a single maximum at f (n,n) = 2n and a ridge
diagonally from f (0,0) = n to f (n,n) that separates two planar surfaces. There are
two minima at f (0,n) = f (n,0) = 0. Equation (10.24) is the fitness function for both
populations P1 and P2 and can be interpreted as the static shared fitness landscape
S = {Sx,Sy} of the coevolution process.

The coevolutionary process we consider works as follows. Both populations
evolve subsequently and alternatively along the conventional evolutionary algo-
rithm’s generational process (fitness evaluation followed by selection, recombina-
tion and possibly mutation); that is, population P1 starts, and after it has finished its
first generation, P2 takes over, then P1 starts again in the second generation and so
on. The main difference to traditional evolutionary computation is how the fitness of
either population is calculated, because the fitness evaluation in P1 is subject to eval-
uators from P2, and vice versa. As the populations take turns in evolving, this creates
a coupling via the (time–dependent) fitness values (or some quantities derived from
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them) of the respective population. As an effect, both populations coevolve, and
the landscapes show codynamics. Let us now look at how this dynamic behavior is
reflected in their fitness landscapes.

We first need to define how the interaction between individuals of one popula-
tion with evaluators from the other is organized, how the solution of the interaction
is calculated, and how the solution translates to (personal or collective) fitness of
the individuals. These questions can be addressed by employing the framework of
interactive domains and solution concepts [49]. We here use a very simple version
of this framework, as suggested in [51]. The interactive domain to calculate the fit-
ness of population P2(k) consists of the individuals in P2 interacting with population
P1 by picking the current best individual xbest(k) of P1(k). The solution concept is
as simple as just taking this value and inserting it in Equation (10.24). For P1 it
is the same but reverse, i.e. take the current best individual ybest(k− 1) and insert
in Equation (10.24) to calculate the fitness of population P1(k). Because the popu-
lations take turns in coevolving with population P1 starting and P2 following, this
calculation has to deal with P2 lagging behind for one generation. We resolve this
by taking a random y = yrand from population P2 in the initial generation at k = 1;
that is ybest(0) := yrand . For k = 2, we take the value ybest(1) and so on.

Interestingly, for this simple example it is still undefined if the given interaction
is either cooperative or competitive. This only depends on the notion of what consti-
tutes the best individual of either population, xbest(k) and ybest(k), respectively. As
shown in [50, 51] a cooperative interaction is imposed if the task for both popula-
tions is the same, that is, both are to find the maximum or minimum of the fitness
function (10.24). A competitive interaction takes place if one population is to search
for the maximum of Equation (10.24), while the other is to find the minimum of
Equation (10.24). Either way, we obtain the same codynamics expressed as a cou-
pled fitness landscape. From the perspective of population P1 the fitness landscape
is dynamic by

f (x,k) = n+ 2min(x,ybest(k− 1))−max(x,ybest(k− 1)), (10.25)

while from the perspective of population P2 we get

f (y,k) = n+ 2min(xbest(k),y)−max(xbest(k),y). (10.26)

From either perspective alone it appears that fitness is calculated on–the–fly while
the coevolutionary algorithm is running. Due to the simplicity of the example the
codynamic fitness landscape can be depicted as a function of time. See Figure 10.3b
as an example of cooperative interaction. This figure can be directly derived from the
shared fitness landscape in Figure 10.3a by looking from the x–axis and considering
the value for y = ybest(k) as slices of the Sx space. For the first and the second
generation the relatively low values of ybest(k) lead to a comparably flat landscape
to be searchable for population P1. Hence, the maximum fitness that can be obtained
is relatively low. The theoretically possible maximum cannot be reached at all; the
dynamic fitness landscape simply does not include it for these generations. After
a certain number of generations, the landscape curves up (due to better values of



284 H. Richter

0

2

4

6

8 0

2

4

6

80

10

20

y
x

f(
x,

y)

0
2

4
6

8
10

0

2

4

6

8
0

5

10

15

20

kx

f(
x,

y b
e
st

(k
))

(a) (b)

Fig. 10.3 (a) The oneRidge function of Equation (10.24) for n= 8. (b) The codynamic fitness
landscape f (x,k), see Equation (10.25), depending on k.

ybest(k)) and the overall maximum becomes finally accessible. It should be noted
that this figure is an illustration, and not a verifiable numerical result. This is the
landscape for one run, another run might produce a landscape that is similar but
different in detail.

These results could have been obtained and presented in this way due to the ex-
treme simplicity of the interaction and the solution concepts of the example. Only
so, there is this unique relationship between the codynamic fitness landscapes of
Equations (10.25) and (10.26) on the one hand, and the static shared landscape of
Equation (10.24) on the other. Even if this simple example would be made more
complicated the clear–cut relationship would cease. For instance, the interaction
could use not only the current best, but past bests, or it could not only take the best,
but a group of high fitness individuals including the best. The solution concept could
entail a comparison or other operations of the fitness of picked individuals from P1

and P2. All these modifications would make the relationships between the cody-
namic landscape more complicated and finally question if the static shared land-
scape like the one given in Equation (10.24) can be uniquely decomposed into co-
dynamic landscapes expressed as Equations (10.25) and (10.26). However, as long
as the interaction produces a phenotypic point as a result and the solution concept
gives it a fitness value that is unique and constant for the coevolutionary run, cody-
namic landscapes can be obtained from the overall landscape. Our conjecture is that
if a fitness function such as Equation (10.24) is used as solution concept, the cody-
namic fitness landscapes are subspaces (for instance slices) of the fitness function
that obtain their dynamics by being spanned every generation. Let us for instance
again consider the example above and assume that the interaction is to pick a cer-
tain number of current best individuals from the other population, compare it with
another number of best individuals from past generations, discard some individu-
als due to their low fitness and save the rest, and calculate as the solution of this
interaction the weighted average of all individuals that were saved. Surely this is
a complicated process, but it again produces a phenotypic point in the end. If the
fitness is assigned by the fitness function in Equation (10.24), the situation is not
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altered significantly. No matter what the interaction yields, the result can finally be
interpreted as an individual (or a group of individuals that can be conflated) and that
can be inserted in a fitness function such as Equation (10.24). In some way, it could
be argued that this kind of coevolution has an objective fitness after all. To general-
ize, for a shared fitness landscape f (x,y) and the operator interact(P1,P2,archive)
describing the interactive domain (possibly supported by an archive), we obtain the
codynamic fitness landscape

f (x,k) = f (x, interact (P1(k),P2(k),archive(k)) . (10.27)

For the variable y describing the coevolution of P2, we obtain a similar mathemat-
ical description. Note that the codynamic landscape of Equation (10.27) implies a
recursive evolution law as given in Equation (10.11) if we observe the evolutionary
dynamics of the populations P1(k) and P2(k) describable by a generation transition
function just as given by Equation (10.32). In line with this view and compatible
with the external and internal drive in dynamic fitness landscapes considered in
Section 10.2, codynamic fitness landscapes have a population–based dynamics.

A considerable number of coevolutionary settings fall into the category for which
codynamic fitness landscapes can be models by Equation (10.27). The defining el-
ement is that a shared fitness landscape f (x,y) serves as the solution concept. This
applies to almost all coevolutionary algorithms used to solve optimization problems
by decomposition, which have been called compositional problems [49]. Examples
of compositional problems are [20, 22, 48, 50, 51]. For these examples, there are
even first promising attempts to measure the resulting codynamic fitness landscapes
and draw useful conclusions from it [29]. However, there is also an important group
of coevolutionary problems that do not have a solution concept expressible as an
equation–like formula known analytically beforehand and generally being know-
able without doing numerical experiments. Consider for instance the case where in
the course of evaluating an individual, there are multiple interactions with other in-
dividuals from the same but also from the other population that have multiple values
attached that are aggregated to the individual’s fitness. This is frequently the case
for so–called test–based problems [11, 16]. For these problems there seems to be no
static shared fitness landscape f (x,y) mapping uniquely the set of all possible values
x versus all possible values y and equipping every pair with a constant fitness value.
To remain with the geographical metaphor of the fitness landscape, we no longer
obtain a closed landscape, that is a surface (which may be rugged or smooth), but
disjunct fitness islands. All we get is a phenotypic landscape but not a genotypic one.
We conjecture that it may generally hold true that compositional problems have a
shared fitness landscape, while test–based problems do not.

10.3.3 Examples of Modelling Coevolutionary Processes

A classical and well–known example of a fitness landscape that has the potential
to be time–dependent, but also offers the ability to model coevolutionary couplings
between different species, are the so–called NK or NKC landscapes introduced by
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Kauffman, collaborating with Levin and Johnsen [31, 32, 34], where NK and NKC
denote the tunable parameter of the landscape. These landscapes use a genotypic
coding with a string of length N over a given alphabet, where in most of the imple-
mentations the alphabet of length 2, A= {0,1} is considered. The number N gives
the number of components that are required to code for each point of the genotypic
space. For the binary alphabet we hence have for each genotype a binary string
x = x0x1 . . .xi . . .xN−1, where xi is the i–th bit. The parameter K in the NK fitness
landscape describes the degree of epistatic interactions between the N components
of each genotype. By tuning K between 0≤K ≤N−1, different degrees of rugged-
ness (that relate to problem hardness) can be adjusted. The epistatic interaction is
modelled by setting K neighbors for each bit xi via a neighborhood function n(xi,K)
and defining a fitness contribution fi(xi,n(xi,K)) for each bit xi and the K neighbors.
In principle, there are two ways to set a neighborhood function n(xi,K). A first is
nearest neighbor interaction, where K

2 bits on either side of xi are considered neigh-
bors. As K

2 must be an integer, this imposed a bias for odd K to the right or left hand
side, and also requires a periodic boundary condition which says that the last and
the first bit in the string are direct neighbors. A second design is random interaction,
where the K neighbors are chosen at random (with no repetition or reciprocity) from
among the remaining N−1 bits. The example considered below demonstrates near-
est neighbor interaction with a right hand side bias. The fitness of each genotype x
is defined by

f (x) =
1
N

N−1

∑
i=0

fi(xi,n(xi,K)). (10.28)

The contributions fi(xi,n(xi,K)) are taken as realizations of a random variable uni-
formly distributed on the interval [0,1] and depend on the interaction parameter
K. As an example, consider the binary alphabet and N = 4, which gives 24 = 16
genotypes in the landscape. If the Hamming distance HD between genotypes next to
each other is HD = 1, a location is obtained from genotypic space and neighborhood
structure, which results in a metric search space as illustrated in Figure 10.4. Tables
10.1 and 10.2 show the calculation of fitness for x = 0110.

In order to model coevolution and coupling between different species (and
thereby obtaining a coupled fitness landscape), the NK landscape is modified.
We next consider the coupling of two species. However, within the given frame-
work the methodology can be straightforwardly extended to an arbitrary number
of species. For two coevolving species, we need to define two genotypic sets,
which (as an extension of the setting above) are described by two binary strings
of length N, x = x0x1 . . .xi . . .xN−1 and y = y0y1 . . .yi . . .yN−1. Apart from the K
epistatic interactions within each genotype (called internal interactions), there are
additionally C epistatic interactions from one genotype to the other (and vice versa),
which are called external interactions. This yields the name NKC landscape. As
before, we can tune 0 ≤ C ≤ N − 1. For describing these two types of interac-
tions we first need to set the K internal neighbors for each bit xi and yi via (usu-
ally identical) internal neighborhood functions n(xi,K) and n(yi,K). Additionally,
C external neighbors in the other genotype need to be specified by an external
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Fig. 10.4 Layout and distancing of the NK landscape defined by Equation (10.28) for N = 4
and neighborhood structure with Hamming distance HD = 1

neighborhood function n(xi,yi,C). This external neighborhood function is (usu-
ally) assumed to be symmetrical, n(xi,yi,C) = n(yi,xi,C). The effect of internal
and external interaction is combined by concatenating both neighborhood func-
tions and results in KC neighborhood functions n(xi,K,C) = n(xi,K)|n(xi,yi,C)
and n(yi,K,C) = n(yi,K)|n(yi,xi,C). Here a|b means string a concatenated with
string b. For these KC neighborhoods fitness contributions fi(xi,n(xi,K,C)) and
fi(yi,n(yi,K,C)) are defined as independent realizations of a uniformly distributed
random variable that superpose internal and external fitness contributions. Hence,
the fitness of each genotype x and y is given by

f (x) =
1
N

N−1

∑
i=0

fi(xi,n(xi,K,C)) (10.29)

and

f (y) =
1
N

N−1

∑
i=0

fi(yi,n(yi,K,C)). (10.30)

Tables 10.3 and 10.4 give an example of calculating the fitness for x = 0110 and
y = 1001.

So far, neither the NK nor the coupled NKC landscape depends on time. The fit-
ness values do not change during the considered time frame, may that be a random
walk on the landscape to calculate some landscape measures or an evolutionary
run. With respect to the discussion of coevolutionary processes above, the NKC
landscapes defined by the Equations (10.29) and (10.30) do not have timely inter-
actions. Of course, they are coupled via shared fitness contributions fi but not dy-
namically. The NK and NKC landscapes can be made dynamic in the same way as
the landscapes considered before: by defining that certain landscape features change
depending on an external source of dynamics. For the NK landscape this means that
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Table 10.1 Example of the NK landscape with N = 4 and 0 ≤ K ≤ 3 and x = 0110. The
neighborhood function n(xi,K) is nearest neighbor interaction with right hand bias, namely
n(xi,0) = xi, n(xi,1) = xixi+1, n(xi,2) = xi−1xixi+1 and n(xi,3) = xi−1xixi+1xi+2 with the
periodic boundary condition xN := x0. The fitness contributions fi(K) := fi(xi,n(xi,K)) are
assigned as realizations of a random variable uniformly distributed on the interval [0,1], refer
to Table 10.2 as an example of a lookup table containing these values. We obtain the fitness
function values f (0110) = 0.4 for K = 0, f (0110) = 0.5 for K = 1, f (0110) = 0.475 for
K = 2, and f (0110) = 0.55 for K = 3.

K =
0

K =
1

x 0 1 1 0 0 1 1 0
i n(xi,0) fi(0) n(xi,1) fi(1)
0 0 0.5 01 0.2
1 1 0.1 11 0.4
2 1 0.7 10 0.9
3 0 0.3 00 0.5

K =
2

K =
3

x 0 1 1 0 0 1 1 0
i n(xi,2) fi(2) n(xi,3) fi(3)
0 001 0.1 0011 0.6
1 011 0.5 0110 0.3
2 110 0.6 1100 0.5
3 100 0.7 1001 0.8

Table 10.2 Example of the lookup table for the NK landscape with N = 4 and K = 2, which
is of dimension N×2K+1

n(xi,2) f0(2) f1(2) f2(2) f3(2)
000 0.6 0.3 0.5 0.1
001 0.1 0.5 0.9 0.4
011 0.8 0.5 0.1 0.3
010 0.5 0.8 0.9 0.7
100 0.6 0.3 0.2 0.7
101 0.7 0.9 0.5 0.6
111 0.1 0.7 0.2 0.6
110 0.5 0.3 0.6 0.9

f (x,k) =
1
N

N−1

∑
i=0

fi(xi,n(xi,K(k)),k). (10.31)

Dynamic NKC landscapes can be formulated by introducing time–dependent K(k)
and/or C(k) in the models given by Equations (10.29) and (10.30). The landscape in
Equation (10.31) also shows that there are two ways for imprinting dynamics on a
NK landscape. A first is to change the parameter K(k) (and/or C(k)); a second is to
change the fitness contributions fi(k). In some ways the former implies the latter as
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a changed K(k) and C(k) entails a recasting of the lookup tables and hence changes
the fitness contributions as well. The main difference between both variants is that
only changing the fi(k) but retaining the K and C somehow restricts the severity
of changes. See for instance [6, 76] for experiments with dynamic NK landscapes.
However, it should also be pointed out that dynamic NKC landscapes formulated in
a similar fashion as the dynamic NK landscape of Equation (10.31) do not directly
model coevolutionary dynamics in the sense of the discussion in Section 10.3.2.
Clearly, they are dynamically coupled (and could be interpreted as codynamics),
but how the coupling modeled here relates to the coupling via interacting popula-
tions is far from being clear. An attempt to clarify such relations are the deformable
landscape considered next.

Table 10.3 Example of the NKC landscape with N = 4, K = 1 and 1 ≤ C ≤ 2 and x =
0110, y = 1001. The KC neighborhood functions n(xi,K,C), n(yi,K,C) are symmetric and
nearest neighbor interaction, namely n(xi,1,1) = n(xi,1)|n(xi,yi,1) = xixi+1|yi, n(xi,1,2) =
xixi+1|yiyi+1, where again the periodic boundary conditions xN := x0. yN := y0 are observed.
Here a|b means string a concatenated with string b. The fitness contributions f x

i (K,C) :=
fi(xi,n(xi,K,C)) and f y

i (K,C) := fi(yi,n(yi,K,C)) are assigned as independent realizations
of a random variable uniformly distributed on the interval [0,1], refer to Table 10.4 as an
example of a lookup table containing these values. We obtain the fitness function values
f x(0110) = 0.4, f y(1001) = 0.375 for K = 1, C = 1 and f x(0110) = 0.4, f y(1001) = 0.5 for
K = 1, C = 2.

K =
1

C =
1

x 0 1 1 0 y 1 0 0 1
i n(xi,1,1) f x

i (1,1) n(yi,1,1) f y
i (1,1)

0 01|1 0.3 10|0 0.6
1 11|0 0.2 00|1 0.3
2 10|0 0.7 01|1 0.1
3 00|1 0.4 11|0 0.5

K =
1

C =
2

x 0 1 1 0 y 1 0 0 1
i n(xi,1,2) f x

i (1,2) n(yi,1,2) f y
i (1,2)

0 01|10 0.1 10|01 0.9
1 11|00 0.5 00|11 0.5
2 10|01 0.3 01|10 0.4
3 00|11 0.7 11|00 0.2

Up to now, we have considered examples where the dynamics of the fitness land-
scape is either externally defined and subsequently imprinted on the landscape, or is
internal due to a mathematical description of the landscape that explicitly depends
on time. A fundamentally different way to initiate dynamics in a fitness landscape is
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Table 10.4 Example of the lookup table for the NKC landscape with N = 4, K = 1 and
C = 1, which is of dimension N×2K+C+1

n(xi,1,1) f x
0 (1,1) f x

1 (1,1) f x
2 (1,1) f x

3 (1,1)
00|0 0.6 0.3 0.5 0.1
01|0 0.1 0.5 0.9 0.4
11|0 0.8 0.2 0.1 0.3
10|0 0.5 0.8 0.7 0.7
10|1 0.6 0.3 0.2 0.7
11|1 0.7 0.9 0.5 0.6
01|1 0.3 0.7 0.2 0.6
00|1 0.5 0.3 0.6 0.4

n(yi,1,1) f y
0 (1,1) f y

1 (1,1) f y
2 (1,1) f y

3 (1,1)
00|0 0.6 0.3 0.5 0.1
01|0 0.1 0.5 0.9 0.4
11|0 0.8 0.5 0.1 0.5
10|0 0.6 0.8 0.9 0.7
10|1 0.6 0.3 0.2 0.7
11|1 0.7 0.9 0.5 0.6
01|1 0.1 0.7 0.1 0.6
00|1 0.5 0.3 0.6 0.9

by the individuals of a population that inhabits it. This can be done by utilizing the
time dependence of the individuals’ fitness and/or the individuals’ phenotype (that
is, a location in the search space), or by using quantities that are derived from fitness
and/or location. In doing so, each individual is considered as to represent a pheno-
typic realization of a genotypic point in the landscape that changes with time. In
other words, we use the evolutionary dynamics and let it interact with the environ-
mental dynamics. Instead of individuals, also whole species that belong to a group
of species can be considered as far as they are described by a single quantity averag-
ing (or otherwise aggregating) the phenotypic variety of the species. Either way, for
describing the evolutionary dynamics of the population (or the group of species) we
need a time scale, which usually is discrete generational time. In the following we
assume that there is a linear relationship between the generational time and the land-
scape time k and to simplify even more we set this linear relationship to equality.
Nevertheless, the discussion that follows applies likewise for any unique relation-
ship between generational time and landscape time. So, we can use the landscape
time to measure generational dynamics. With this time scale we can formulate via a
generation transition function ψ (see e.g. [2], p. 64–65) how a population P(k+ 1)
at generation k+ 1 originates from a population P(k) at generation k:

P(k+ 1) = ψ (P(k)) ,k ≥ 0. (10.32)

These generational dynamics can now be linked to the fitness landscape and also
be considered as to change the topology of the fitness landscape with time. In other
words, the population adapts to the fitness landscape and deforms it.

There are some motivating thoughts for such a model. A first is that the individ-
ual (or the species) utilizes the abilities and features connected to the phenotypic
realization while at the same time interacts and competes with other individuals of
the same or other species. This in turn leads to an adaption process in the interacting
parties, diminishes the species’ fitness and bulges in the fitness landscape for the
given phenotypic realization. As a result, fitness can only be maintained by mov-
ing in the phenotypic space, which is also called the Red Queen effect. This is a
coevolutionary process where the actions of one species interact with the fitness of
another species and vice versa. If both species have separated fitness landscapes they
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are coupled as for instance in the NKC model of the Equations (10.29) and (10.30).
If we describe the actions of both species with a single shared fitness landscape,
we obtain a dynamically deformable landscape. A very simple way to model such a
deformation of the fitness landscapes by the individuals that populate it, is to take a
static fitness landscape f (x) and deduct fitness at points related to the position of the
population. The most straightforward way to do so is to deform the landscape at the
points where the population is in genotypic space. With λ the number of individuals
in the population P(k) = (p1(k), p2(k), . . . , pλ (k)), we can define a dynamic fitness
landscape that is dynamically deformed depending on the individuals’ locations as

f (x,k) = f (x)− 1
λ

λ

∑
i=1

αi pi(x,k), (10.33)

where the αi are some weighting factors. However, such a description has some
serious disadvantages. It only deforms the landscape at exactly the points where the
individuals are situated from generation to generation but not their vicinity. Also,
the deforming process happens at exactly the moment when the individual arrives
at the search space point and is not depleted at any later point in time. For these
reasons it would be desirable to have some smoothening, both in the spatial and
the temporal aspect. These ideas are addressed in the deformable fitness landscapes
studied by Ebner and co–workers [17, 19], see also Chapter 12 of this book. These
works consider fitness landscapes that are populated by several species, but this type
of modelling could also be applied to individuals of a population. For the spatial
smoothing, each individual pi(k) of the population P(k) is surrounded by a negative
Gaussian hill −exp

(−(x−P(k))T A(x−P(k))
)
, that bulges in the landscape. The

positive definite matrix A can be used to adjust the dilation of the spatial deforming.

The temporal smoothing is also modeled by a Gaussian function, exp
(

i−k−τlat
2σ2

)
,

which runs over a temporal counter i and assigns that for the point in landscape
time (k+ τlat) the spatial negative Gaussian hill deforms the landscape maximally
and this effect phases out for smaller and larger times. The τlat is a latency to move
the effect of the deformation forward in time and σ can be used to tune the timely
deforming process. Hence, we have a time–dependent deformable fitness landscape
based on a static landscape f (x) as

f (x,k) = f (x)− 1
α

iend

∑
i=0

exp

(
− (i− k− τlat)

2

2σ2

)
exp

(
−1

2
(x−P(k))T A(x−P(k))

)
,

(10.34)
with α = σ(2π)

n+1
2 det(A)

1
2 and iend the final run time of the landscape. With Equa-

tion (10.34) we have a dynamic fitness landscape whose dynamics is population–
based as f (x,k + 1) only depends on the values of the population P(k+ 1) at this
generation. This closely resembles the codynamic fitness landscape defined by
Equation (10.27).

This population dynamics can follow any law as set out by Equation (10.32)
and may include any genetic operator. A convenient way to generate population
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dynamics for experimenting with the deformable fitness landscape that is simple and
computationally inexpensive is a hill climbing process, which was used in [17, 19].
In these works three types of hill climbing dynamics were considered that led to
the following updating rules. All these updating rules use the landscape’s gradient
in order to model the effect that the population tries to escape regions where the
landscape’s fitness undergoes change. The first rule uses the sign of the landscape’s
gradient, i.e.

P(k+ 1) = α sgn

(
∂ f (x,k)

∂x

∣∣∣∣
x=P(k)

)
·P(k), (10.35)

where sgn is the element–wise sign operator and α a weighting factor. A second
rule sets the movement of the population proportional to the gradient, i.e.

P(k+ 1) = α
∂ f (x,k)

∂x

∣∣∣∣
x=P(k)

·P(k) (10.36)

and a third rule integrates the gradient over time, i.e.

P(k+ 1) =

(
k

∑
i=1

αi
∂ f (x, i)

∂x

∣∣∣∣
x=P(i)

)
·P(k). (10.37)

Detailed experiments with such deformable landscapes are given in Chapter 12 of
this book.

10.4 Conclusions

10.4.1 Hierarchy of Fitness Landscapes

In this chapter we have dealt with landscapes whose fitness values change with
time. It was shown that such time–dependent landscapes may occur in describing
two major evolutionary processes. A first is in treating conditions apart from the
genetic makeup of a population that change with time and massively influence the
evolutionary outcome. Most prominently, this means that fitness of a phenotypic re-
alization is not constant over the time frame of consideration and creates a dynamic
environment in which the evolutionary process takes place. This leads to dynamic
fitness landscapes and may imply solving a dynamic optimization problem. A sec-
ond evolutionary process deals with situations where several populations (or at least
several individuals) interact in a cooperative or competitive way and hence mutu-
ally influence fitness in a timely fashion. This leads to coevolution and creates fitness
landscapes for each population that are codynamic. These landscapes are coupled
via dynamic fitness evaluation and repercussions from the interdependent fitness
allocation can be seen as to deform the landscapes.

In the last two sections, we have studied such landscapes and have seen that
the dynamics may have three sources: internal, external and population–based. The
distinction between external, internal and population–based dynamics has, apart
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from characterizing the source of changes in the fitness landscape, implications
for the specification of the dynamics of neighboring points in the search space.
For internal dynamics, the landscape’s time evolution law of Equation (10.11) states
how the fitness of all points in the search space and all their neighboring points
change with time. In other words, the changes are explained for every search space
point. With external dynamics, we only define changes of selected and character-
istic features in the landscape. Here, the changes are explicitly explained for only
a discrete subset of search space points. Their neighborhood may change too, but
according to the same time regime as the points themselves. Population–based dy-
namics extends to landscapes for each population involved that mutually influence
each other in a codynamic way. This can be interpreted as features of one landscape
that drive other landscapes externally. However, there is no separation between that
what drives and that what is driven because the process alternates between all in-
volved landscapes and the drive is not directed to selected and pre–defined topolog-
ical features of the landscapes.

To put these facts into a wider context, there has been an attempt to draw a con-
nection to spatially extended systems and to establish a hierarchy of fitness land-
scapes [59], which is based on a hierarchy of spatio–temporal dynamics [14, 26]
(see Table 10.5). The hierarchy comes from the different combinations of discretiz-
ing space and time in the fitness landscape. For the landscape being static, the
search space can be either continuous or discrete (binary), which results in prob-
lem classes 1 and 2. If the discrete search space consists additionally of a finite
number of elements, the corresponding optimization problem is a combinatorial
one. Class 3 are discrete fitness functions with discrete dynamics. These dynamics
can be external, as for instance the XOR generator [78], see Equation (10.17), or
dynamic combinatorial optimization problems such a dynamic knapsack, dynamic
royal road or dynamic bit–matching [70]. An example of internal dynamics are fit-
ness landscapes constructed from coupled map lattices (CML). A class 3 problem
with population–based drive would be a combinatorial optimization problem solved
by a coevolutionary algorithm. Continuous fitness functions with discrete dynamics
form class 4. Examples with external dynamics include the moving peak benchmark
defined in Equation (10.12), but also other similar problems such a dynamic sphere,

Table 10.5 Hierarchy of fitness landscapes; S: static, D: discrete, C: continuous; Dynamics:
N: no dynamics, I: internal, E: external, P: population–based

Class Space Time Possible model Dynamics

1 D S Discrete fitness function N
2 C S Continuous fitness function N
3 D D Discrete fitness function with discrete dynamics I, E, P
4 C D Continuous fitness function with discrete dynamics E, P
5 D C Lattice of coupled ordinary differential equation (ODE) I
6 C C Partial differential equation (PDE) I
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dynamic Ackley, dynamic Rosenbrook etc. The coevolutionary problem considered
in Section 10.3.2 as well as decomposition problems with a continuous evaluation
function (see e.g. [79]) fall into class 4 with population–based dynamics. To define
internal dynamics for class 4 problems would mean to have a description as in Equa-
tion (10.11) for a non–countable number of points in the fitness landscape, which
is impractical for any numerical calculation. Therefore, class 4 problems with inter-
nal dynamics do not play a role in the literature. Class 5 and 6 fitness landscapes
have continuous time and discrete or continuous search spaces. Possible models for
such dynamic fitness landscapes are lattices of ODEs or PDEs. The mathematical
formulation involves internal continuous–time dynamics. Such models are suitable
for formulating general fitness landscapes and mainly pervade modeling and study-
ing fundamental properties of evolution, but rarely to be found in studies in evo-
lutionary computation. The reason for this might be that, as mentioned before, the
discrete population dynamics of an evolutionary algorithm is best linked to fitness
landscapes with discrete time characteristics. In addition, both types of mathemati-
cal description do, at least not in general, have an analytic solution. Any numerical
calculation involves a discretization of time and/or space, for instance in numeri-
cal integrating ODEs and PDEs. Hence, both classes can, at least from a numerical
point of view, be reduced to class 3 problems. As coevolutionary algorithm drive the
codynamic landscapes by interacting populations, the resulting population–based
dynamics is always discrete–time. However, codynamics also mean that the land-
scapes for each population are dynamical slices through an overall landscape. As a
consequence, the shared static fitness landscape might, for instance, be of class 2,
but the codynamic landscapes for each population are class 4.

10.4.2 Future Research Directions

Research on fitness landscapes has intensified recently and those advances are the
topic of this book. Research on fitness landscapes that depend on time is an even
younger field and still a considerable step away from maturity. Therefore, it comes
as no surprise that some interesting questions remain unanswered yet. However, this
is also connected with the hope that the present study might serve as a baseline for
further development. Two directions appear to be particularly interesting. A first is
linked to one of the major purposes of fitness landscapes: to provide a notion of
how difficult it is for an evolutionary search algorithm to solve a given optimization
problem. One way to accrue such knowledge is by landscape measures. For static
measures theoretical and practical considerations have let to reliable and applicable
results, see e.g. [24, 67] but also Chapters 4, 5 and 8 of this book. There are some
examples of works on measures for landscapes that depend on time [21, 29, 58, 59].
However, their main focus is on applying measures of static landscapes (that is,
measures for topological features) to the dynamic situation. This somehow masks
the effect the dynamics has on the landscape and hence on problem hardness. It
would be desirable to establish additional measures for dynamic problem hardness.
A second direction is studying landscapes of specific problems and by doing so
closing the gap between theory and application. Again, this is a path that has been
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successfully followed for static landscapes [38, 54, 71]. Hence, this approach seems
to be also promising for dynamic and codynamic landscapes.
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