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Foreword:
Statable and Non—prestatable Fitness
Landscapes

Stuart Kauffman

It is an honor to be asked to write a foreword for this fine book on recent advances in
the theory and application of fitness landscapes. The topic is vast, the book a superb
review of much of its current status. My task is not to present a précis of the book
itself, but, I hope, to place its topics in an even wider context as I, with my own
limited biases, see that context.

Topic 1

The first context is that of this book. We are confronted, typically, with a well for-
mulated continuous or discrete complex combinatorial optimization problem of a
fixed fitness landscape and seek a search algorithm to find good optima or even the
global optima. Here the landscape constitutes a fixed “potential function” whose
peaks or valleys are the desired solutions. Derived from this, as discussed so well
in this book, are co-evolutionary problems in which two or more landscapes are
coupled, agents on each landscape making adaptive moves and thereby deforming
the other landscape. Such systems are general dynamical systems and known to ex-
hibit, as discussed in this book, two modes of behavior, one in which the agents
reach mutually consistent local optima and the system stops changing. In the other,
as agents move, their landscapes deform even more rapidly, resulting in chaotic be-
havior, sometimes called the Red Queen effect. Between these two regimes lies a
“critical” phase transition. In general, these models are a subset of game theory in
which each agent can, typically, only change to neighboring strategies in a genet-
ically encoded strategy space. The mutually consistent local peak solution is the
generalization of pure strategy Nash equilibria from games where any move can be
made in strategy space, to those in which only neighboring moves can be made.
Past work by this author has given initial results that optimal solutions are at least
sometimes found at the critical phase transition [1]. Landscapes can occur without
and with neutrality. The statistical structure of such landscapes is a major topic of
concern, and with it, use of measures of that statistical structure, such as landscape
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correlation lengths, Stadler et al.’s “reachability topology” (as discussed in Chapter
of this book) and others, to attempt to predict how hard learning or adaptation may
be on fixed, or, harder, co-evolving landscapes. Beyond this, in this book are efforts
to consider time varying landscapes that may vary in stochastic or non-stochastic
ways. This latter topic will become of major concern below in this foreword. The
well known no free lunch theorem suggests that averaged over all landscapes, no
search algorithm outperforms any other algorithm. This book contains efforts noted
above to study the structure of a given landscape to choose algorithms that may be
better than average or even very good on a given landscape. The problem is stated
to be insoluble in general, but sometimes good algorithms can be found.

Topic 2

A second fundamental issue, which is outside the scope of this book, is the kinds of
problems, the kinds of systems we or, say evolution, seeks to optimize, to generate
what kinds of landscapes? Here little work, to my knowledge has been done. But it
is of fundamental importance. I present a brief conjecture that some problems are
not solvable by any local search algorithm in less than exponential time. Consider
the shortest algorithm to produce a given output on a universal computer. Let its
(unprovable) length be N. Gregory Chaitin has shown on the N dimensional Boolean
hypercube there is on order of a single vertex that constitutes this program, where the
binary string at that vertex is the program for the computer. Chaitin then shows that if
one considers programs of length N, N+ 1, N+2, ..., N+C, there are in the order of
1,2, 4,...,2€ vertices on the hypercube that satisfy the requirement to be a program
of that length that solves the problem. Now my conjecture, perhaps able to become
a theorem: Take a fixed length input string and choose the single correct vertex
on the N dimensional Boolean hypercube where only that single vertex yields the
proper output on that input. Run the randomly chosen input string on the “correct”
vertex and observe the output string taken as the proper solution. Now choose the
N “one mutant neighboring points” to the “correct” vertex, and run the input string
on each of these to obtain an output string. Use normalized compression distance to
compare the correct output string and the output string of a given 1 mutant neighbor
of the correct vertex. Normalized compression distance, NCD, a universal measure
of, essentially, the mutual information between these two strings. Use 1 — NCD
as a measure of the “fitness” of the program at that one mutant neighbor of the
correct vertex. Do this for all vertices on the N dimensional hypercube to obtain
a “fitness landscape” of the fitness of each program, encoded at each vertex, to
generate an output similar or dissimilar to the correct output. My bet is that for the
minimal length program, length N, the resulting fitness landscape is random. That
is, I bet, to be proven, that the fitness at neighboring vertices are random in value. It
is known that such landscapes have on the order of ]\'2:]] local optima. Thus finding
the global optimum with the correct minimal program is NP hard, requiring search
of the entire space or at least, as the space is exponential in N, a fixed fraction of this
exponentially large space; hence, for large N, not solvable in less than exponential
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time. My further guess is that if one started with a redundant program, longer than
N, i.e. N+C, due to that redundancy, the fitness landscape on the N + C Boolean
hypercube, it would be a correlated landscape whose correlation length increases as
C increases. My further bet is that no procedure can start with an N + C landscape
and evolve to ever smaller C approaching C = 0 to achieve the minimal program,
because as C decreases, the landscape becomes less correlated then uncorrelated.
My guess is that as C decreases, correlations on the landscape may be related such
that the evolving system is led into a region of the N dimensional space close to
the correct vertex, but on the C = 0 random landscape, no local search algorithm
is likely to find the nearby correct solution before wandering off on the random
landscape away from the correct solution. “Likely” may be quantifiable.

Topic 3

This discussion suffices to relate some problems, here finding the shortest algorithm
to solve a problem and the structure of the induced fitness landscape. More it re-
lates to the next issue, for the above problem, in my conjecture, cannot be solved
by mutation and selection alone, and perhaps not by recombination, mutation and
selection together, for recombination does not work on random landscapes [2]. If so,
no evolutionary process in biology can evolve the shortest program. All this needs
to become a set of theorems, relating to the issue of what problems induce what
landscapes and why.

1. Do biological and economic and other evolutionary processes “tune” the very
structure of the fitness landscapes upon which they evolve? This book does not
address this topic. In [IL], T had a first try at the problem, and believe I showed
a model in which, with no group selection, “organisms” co-evolving on land-
scapes and invading one another’s niches could evolve the structure of the fitness
landscapes upon which they evolved. In this model, an invading species, if suc-
cessful in a new niche, carried with it the ruggedness of its own landscape. Thus
landscape ruggedness itself becomes an evolving feature of the total evolving
system, and landscape ruggedness itself can evolve. In this model, the system
evolves from Red Queen, and from the stationary Nash equilibrium regime to the
critical phase transition between the two, and, on average, the life time of species
increases and their fitness increases. These results suggest that an evolutionary
process can, in fact, evolve the very structure and couplings among co-evolving
agents to the long term benefit of all the currently evolving agents. This topic
remains very unexplored but is likely to be of major importance. It suggests that
biological and economic evolution are “tuning” the statistical structure of the
very problems and thus fitness landscapes over which they evolve to become
more “evolvable” and “solvable”. Much remains to be learned.

2. Adaptive evolution in the biosphere and economy and elsewhere is probably
not only occurring on time deforming and stochastically time deforming land-
scapes, it is far worse: Not only can we not characterize the stochastic process by
which landscapes change, we cannot even prestate the possibility space, that is
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the ever changing phase space of these evolutionary processes, hence we can nei-
ther mathematize actual evolution of the biosphere, biosphere and ecology, or the
economy or culture or law. And even if we could write down laws of motion for
this evolution, we would lack foreknowledge of the “niche” boundary conditions
and so could not integrate the equations we do not have anyway. In short, if what
I say with my colleagues, Giuseppe Longo, Mael Montevil, and myself [4, 3], is
correct after careful examination, no laws entail the evolution of the biosphere
or, a fortiori the economy or probably many aspects of life. Not only do we not
know what will happen, we do not even know what can happen. Thus we cannot
formulate a probability distribution over what “can happen” for we do not know
the sample space beforehand. Therefore we cannot formulate a stochastic model
of changing landscapes for, as we will see next, we cannot prestate the variables
that will become relevant, so we do not know the space over which to formulate
a fitness landscape.

Topic 4
I discuss the fourth topic in several sections below.

1. The Non Ergodic Universe Above the Level of Atoms

Has the universe created in its 13.7 billion years all known atoms? Yes. But now
consider proteins made of 20 kinds of amino acids strung together in a linear se-
quence by peptide bonds. A typical biological protein has a length of 300 amino
acids. Consider, then, all possible proteins length 20 amino acids. There are 20°%
or about 10?? such possible proteins. Now the universe has about 108 particles.
Its fastest time scale is the Planck time scale of 10™*3 seconds. Ignoring space—
like separation, if all the universe were doing in the past 13.7 billion years was
constructing, in parallel, different proteins of length 200, it would require the cur-
rent age of the universe raised to the 37th power to construct all possible proteins
of length 200 just once. This has physical meaning. At levels above the atom in
complexity, the universe is on a unique trajectory that cannot become ergodic in
the lifetimes of many universes. Thus, most complex things will never exist, so
those complex things that get to exist have a special status.

2. Kantian Wholes
Kant said that in an “organized being the parts exist for and by means of the
parts”, that is, the whole exists by means of the parts and the parts exist by means
of the whole. He was thinking of organisms.

3. Collectively Autocatalytic Peptide Sets as Minimal Kantian Wholes
Gonen Ashkenasy [6] at the Ben Gurion University, has a set of 9 peptides, each
of which catalyzes the formation of the next peptide by ligating two fragments of
that peptide, around a 9 peptide circle of peptides. The set as a whole is collec-
tively autocatalytic. Note that no peptide catalyzes its own formation; the set as a
whole collectively catalyses its own formation. As a side comment, Ashkenasy’s
results demonstrate conclusively that molecular reproduction does not depend
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upon DNA- or RNA-like template replication. Now, calling catalysis of a reac-
tion a “catalytic task”, the 9 peptide collectively autocatalytic set achieves a task
closure. All the reactions that must be catalyzed from within the set, are catalyzed
from within the set. The system is also an open thermodynamic one deriving food
from the two fragments of each peptide maintained at constant concentration.

Now note that a collectively autocatalytic set is a minimal model of a Kan-
tian Whole, the parts, peptides, exist for and by means of the whole task closure,
and the whole exists by means of the peptide parts. Note next, as an essential
side point, that given the collectively autocatalytic set, we can define the func-
tion of a part by its causal consequences that serve to maintain the collectively
autocatalytic whole; that is, catalyzing the appropriate next ligation reaction, not
wiggling water in the petri plate. So functions that are real in the universe are
a subset of the causal consequences of the parts. So Kantian wholes have parts
with some causal consequences as functions and other causal consequences as
irrelevant side effects in that environment.

4. Task Closure in an Evolving Reproducing Bacterium
A reproducing bacterium achieves a task closure that is much wider than mere
catalysis. Membranes are formed, DNA replicated, chemiosmotic pumps built
and vectored to proper membrane locations, receptors are constructed and located
in membranes all for the bacterium to reproduce.

5. The Uses or Functions of a Screw Driver Cannot be Algorithmically Enumerated
I now jump to a seemingly strange topic. Can you list all the uses of a screw
driver? Screw in a screw, open a paint can, wedge open or closed a door, stab an
assailant, prop up a piece of cardboard....The uses of a screw driver are indefinite
in number. Next, the integers are orderable, 1,2,3,4,..., but are the uses of a
screw driver orderable? Say beyond its “first use” to screw in screws? No. But
this means that there is no effective procedure, or algorithm, to list all the uses of
a screw driver. This is the famous unsolved frame problem of computer science.

6. Evolution Find Unprestatable Uses of Molecular Screw Drivers in Evolving
cells, Then Selected at the Level of the Kantian Whole Cells
In an evolving bacterium in, say a new environment, all that has to happen is that
someone or more molecular or cellular component screw drivers find a use that
enhances the fitness of the evolving cell. Then if there is heritable variation for
that new or improved use, it will be grafted into evolution by Natural Selection.
But we cannot list, hence cannot prestate the new use of the molecular screw
driver selected at the level of the Kantian whole cell. Thus, we cannot prestate
the way the very phase space, the space of possibilities, of evolution changes.
(Note that this is the arrival of the fittest, never solved by the NeoDarwinian
synthesis.)
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7. The Evolution of the Biosphere is Not Mathematizable as Integrable Laws of
Motion
Since we cannot prestate the new functionality of the cellular or molecular screw
driver, we cannot prestate the way the evolving phase space of evolution changes.
Hence we cannot write down equations of motion for this evolution. Nor, since we
lack prestatement of niche boundary conditions, could we integrate those equa-
tions of motion, even if we were to have them!

This implies that the evolution of the biosphere is entailed by no law. If cor-
rect, reductionism end at the watershed of the evolution of life. In turn this im-
plies that we cannot prestate the space of possibilities that constitute the space
over which there is a prestatable fitness landscape. Further, because we cannot
prestate that ever changing phase space, we do not know its sample space, so
we cannot construct a probability measure. In turn, this implies that we cannot
formulate stochastic processes for the changes in the fitness landscape.

8. The Evolving Biosphere, Without Selection “Acting to Achieve It”, Persistently
Creates Its Own Future Possibilities
The last point I wish to make is beyond the subject of fitness landscapes them-
selves, but one which I find to be stunning. If true, as what I shall say appears
to be, it changes our view of the reality we live in in the evolving living world.
I need to define Darwinian Preadaptations. Were we to ask Darwin the function
of the human heart, he would respond that it is to pump blood. But we might
say hearts make heart sounds and jiggle water in the pericardial sac. Why are
these causal consequences of the heart not its function? Darwin would answer
that we have hearts because their pumping blood was of selective significance in
our ancestors. Note that therefore, as with the peptide collectively autocatalytic
set above, the function of the heart is a subset of its causal consequences. More
Darwin is also implicitly answering the question of why a complex organ, the
heart, exists in the non-ergodic universe: Because it plays a role in sustaining
Kantian Whole organisms in existence in the non-ergodic universe.

Next, Darwin noted that a causal consequence of the heart, or other organ, of
no selective significance in the current environment, might have selective signifi-
cance in a new environment and be selected for that new functional significance.
A new function might arise. These are called Darwinian preadaptations, or by
Gould, exaptations.

I give but one example: Some fish have an organ called a swim bladder. The
ratio of air and water in the bladder-sac determines neutral buoyancy in the water
column. Paleontologists believe that the swim bladder evolved from the lungs of
lung fish. Water got into some lung(s), now there were sacs partly filled with air
and water, poised to evolve into swim bladders. Let’s assume the paleontologists
are right.

I now ask three questions: First, did a new function come to exist in the bio-
sphere? Yes, neutral buoyancy in the water column. Note that evolution here
solves the frame problem which algorithmic computer science cannot solve. In
my understanding, the frame problem is that, e.g. for a robot in a room, one
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provides a finite list of “affordances” for objects in the room, e.g. corner of the
room, floor electric plug, where the affordance finite list is of “is a”, “does a”,
“uses a”, “needs a”, etc. Then anything that can be deduced from this finite list
is within the frame yielded by the finite list of affordances. But uses, as in the
screw driver uses, cannot be captured by any finite list in the sense that no ef-
fective procedure can do so. We solve the frame problem as humans all the time.
We find new uses for object and processes. An example: Engineers, the story/fact
says, were trying to invent the tractor. They needed a huge engine block, got one,
mounted it on a series of ever bigger chassis, all of which broke. Finally an en-
gineer said, “You know, the engine block itself is so big and rigid, that we can
use the engine block itself as the chassis, and hang everything else off the engine
block.” And that was the invention of the tractor and how they are made. So too
were formula racing cars. This It use of the engine block’s rigidity for a new
function, is a technological Darwinian preadaptation and could not, in general be
prestated. This is the solving of the frame problem. As I said we do it all the time,
Turing machines cannot, hence I believe human mind is not algorithmic, see my
speculative paper, Answering Descartes: Beyond Turing [3]. So too, I think the
swim bladder solves the frame problem.

Second, did the swim bladder, once it exists, alter the future evolution of the
biosphere? Yes, new species evolved with swim bladders, new proteins evolved.
And particularly important, once the swim bladder exists, a worm or bacterium
or both might evolve to live in swim bladders, so the existing swim bladder is
what I'll call an “Empty Adjacent Possible Niche”. Thus the swim bladder, once
it exists, changes the future possible evolution of the biosphere. I return to this for
it is the main point of this last section. Third, now that you know what preadap-
tations are, can you name all possible Darwinian preadaptations, just for human
evolution in the next 4 million years? We all say NO. Why? Well, how would we
name all possible selective environments? Now that we had listed all those en-
vironments? How would we list all the features of one or several organisms that
might constitute preadaptations? We cannot. And the reason was given above,
“the uses” of a screw driver are indefinite in number and unorderable, so no al-
gorithm can be an effective procedure to list them all. And if we take one use of
a screw driver, say to open a can of paint, the number of other objects/processes
that can open a can of paint is indefinite and unorderable, so again, no effective
procedure or algorithm can list them. Hence our no above. Hence we not only do
not know what will happen, we do not even know what can happen.

Now return to the existing swim bladder as an “Empty Adjacent Possible
Niche” that changes the future possible evolution of the biosphere. Do we think
that natural selection acted on a population of lung fish to “craft” a well function-
ing swim bladder? Yes, of course. The swim bladder is a selected preadaptation,
“achieved” by natural selection. But do we think that natural selection “acted”
in any sense of “act” to “achieve” the swim bladder as a new Adjacent Possi-
ble Empty Niche? NO! Selection was involved in achieving a functioning swim
bladder. But selection was not evolved in creating that swim bladder AS a new
Adjacent Possible Empty Niche. Yet once that niche exists, it alters the future
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possible evolution of the biosphere, for the worm or bacterium really might come
to evolve to live in the swim bladder.

But this means something profound: Without selection “acting” to do so, the
biosphere is persistently creating its own future possibilities! The biosphere, be-
yond selection, persistently creates what it may become. If the above two sections
are right, reductionism fails for the evolution of life and we are beyond Newton
and Schrodinger. If the last section is right, we are beyond even Darwin.

May this fine book add to the growing discussion of all these topics.

Acknowledgements. This work is partially supported by the TEKES FOUNDATION for
my position as a Finland Distinguished Professor.
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Preface

Observing life on Earth, it is hard to ignore its overwhelming abundance, diver-
sity and beauty, its finely—tuned structures and forms, and its imaginative as well as
purposeful behaviors and functions. First and foremost this applies to all forms of
natural life, meaning the molecular, carbon— and protein—based forms of life found
on our planet. Clearly on a smaller scale but nevertheless, also instances and exam-
ples of artificial life forms created in digital computers can exhibit properties that
surprise us in their beauty and complexity. For both cases, arguable for the former
even more so than for the latter, it is as obvious as interesting to ask why life is as it
is and how it came (or comes or will come) into being. It is scientific consensus and
hence tempting to give a rather simple and in some ways self—explaining answer: by
the mechanism of Darwinian evolution. This certainly is true but simply poses other
questions. How is evolution working? How does it enable the development of life
forms? Are evolutionary developments in some ways directed, or even forced and
can be predicted within certain bounds? Or is evolution directionless, open—ended
and indeterminate with respect to possible outcomes? What role does chance and
randomness play in evolution in general? What can be realistically expected to be
the outcome of a certain period of evolutionary development? What is a meaningful
mathematization of evolutionary dynamics? What requirements and preconditions
must be fulfilled for the emergence of complex biological forms and behaviors, may
they be natural or artificial?

Admittedly, answering all these questions conclusively is far beyond the scope
of this book; in fact, it is beyond the current understanding in the sciences in gen-
eral. Nevertheless, we belief that the foundation for answering these questions is
an understanding of evolution as a dynamical process. This goes along with (and is
unthinkable without) describing the driving forces that enable evolutionary dynam-
ics. Addressing the dynamics of evolution is the main scope of this book, and the
approach we use is the framework of fitness landscapes.

Fitness landscapes are an abstract way for describing the relationship between
the genetically possible (genotype), the actually realized (phenotype) and the sur-
vival/reproduction success (fitness). Differences in the fitness over genotypic space
together with the Darwinian imperative to move into the direction of increasing
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fitness (codified by the notion of natural and sexual selection) results into the driv-
ing forces that are behind evolutionary processes. Undeniably, evolution is a defin-
ing feature of natural life. However, we take the view that evolutionary processes
are much more general than biology. In particular, the dynamical processes in evo-
Iutionary computation are in their core and essence as much a manifestation of
evolution as the processes observed in biological systems. For using evolutionary
search algorithms to solve optimization problems, we are interested in basically the
same questions as above. What algorithmic performance can be expected for a given
evolutionary search algorithm and optimization problem (that is a given genotype—
to—fitness map)? How will performance scale if either the algorithm’s parameters or
the setting of the optimization problem, or both, were to change? Also, answering
these questions requires understanding the underlying evolutionary dynamics and
can hence be approached by fitness landscape methods.

In theoretical biology, recent experimental and numerical works involving muta-
tional evolution of molecular functions revealed far—reaching implications on pos-
sible evolutionary paths, which have renewed the interest in fitness landscapes. In
computer science, studies of artificial evolution in the form of artificial life and
evolutionary computation increasingly used fitness landscape methods to describe
evolutionary dynamics. Using these methods is particularly aimed at increasing our
knowledge about the working principles of the algorithm, its expected behavior as
well as some aspects of performance. Both fields, theoretical biology and evolution-
ary computation, to a certain degree experienced a renaissance in using landscape
methods with a significant number of recent works. However, the recent progress
can be found in the literature only in a very decentralized manner. Hence, the moti-
vation to write and edit this book came from two observations: the recent advances
in understanding fitness landscapes in both theoretical biology and computer science
and the lack of a book covering it. We have invited some of the leading researchers
that drove the recent advances in the field to provide their views on various aspects
of fitness landscapes.

One main aspect of the book is that research in fitness landscapes has been sep-
arated into many distinct fields and would benefit from some kind of unification.
This is also to promote communication between the fields and cross—fertilization
of ideas. Consequently, we have encouraged the authors to put emphasis not only
on specific questions and methodological details, but also on fundamental questions
as to what is the inner sense and meaning of the approach, what is the background
and the underlying principles, how is it related to research around it, and where is it
going to (or could it go to). Of course, we were not aiming at compiling a tutorial or
textbook, but we advocated the chapters (in difference to usual journal or proceed-
ings papers) to be able to stand alone and to be understandable in itself by scientists
of roughly related fields not yet working on fitness landscapes. In other words, if it
appeared necessary to compromise between a certain degree of redundancy between
chapters and the stand—alone ability of a chapter, we promoted the former over the
the latter.

The book has in total 20 chapters and a foreword. The chapters are not ordered
by theory and application, as the book title might suggest, but by five groups of
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themes. Almost all chapters address both theoretical and application aspects. We
have divided the chapters that follow into five parts:

Part I: Principles and perspectives

Part II: Topology, measures and problem hardness
Part III: Coevolution and dynamics

Part IV: Visualization and characterization

Part V: Outlook and afterthoughts

Part I: Principles and Perspectives

In this part, we intend to set out basic principles of and different perspectives to
fitness landscapes. Chapter [I] by Hendrik Richter gives an introduction to the book
and an overview of concepts, notions and mathematical descriptions of fitness land-
scapes. The chapter discusses major motivations to use landscape paradigms and
considers how topological features of the landscape give raise to evolutionary dy-
namics. It further introduces examples of computational and empirical landscapes.
Herschel Rabitz, Re-Bing Wu, Tak—San Ho, Katharine Moore Tibbetts and Xiao-
jiang Feng review in Chapter Rl recent developments in considering the landscape’s
input variables as controls. The chapter further specifies three assumptions whose
satisfaction permits a general analysis of the landscape topology and demonstrates
that control landscapes may be devoid of suboptimal critical point traps. The chapter
applies this analysis to control landscapes that arise in quantum mechanics, chem-
ical and material science, and in natural and directed evolution. Takuyo Aita and
Yuzuru Husimi study in Chapter 3 evolutionary processes using the concept of the
information gaining process. As the evolutionary process can be modeled as a walk
on a fitness landscape, the evolving entity collects biomolecular information. Using
this information gaining approach the chapter draws a link between evolutionary
dynamics and thermodynamics, introduces the concept of “free fitness” which is
analogous to free energy, and proposes that evolution is driven in the direction in
which the free fitness increases.

Part II: Topology, Measures and Problem Hardness

Non-trivial fitness landscapes originate from differences in fitness over genotypic
space. These differences in fitness cast the landscape’s topological features, which
in turn shape possible evolutionary paths. This part is devoted to the relationships
between the landscape’s topology and the hardness of locating evolutionary paths.
Crucial links between topology and problem hardness are formed by landscape
measures which quantify the effects the topology has on search paths. Chapter 4]
by Katherine M. Malan and Andries P. Engelbrecht considers metaheuristic search
algorithms and their optimization performance. It focuses on the feasibility of
predicting algorithm performance on unknown real-valued problems based on fit-
ness landscape features. The chapter proposes normalized metrics for quantify-
ing algorithm performance on known problems and shows that fitness landscape
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techniques are useful as a part—predictor of algorithm performance. A related but
slightly different aspect is discussed in Chapter 3l by Guanzhou Lu, Jinlong Li and
Xin Yao, which also deals with problem hardness and evolutionary search algo-
rithms. A problem hardness measure is presented in this chapter which is derived
from a theoretical difficulty measure widely used in complexity theory. It is shown
how the measure can be incorporated with a machine learning algorithm for pa-
rameter tuning and hence contributes to the goal of constructing better suited al-
gorithms for solving problems. In Chapter [6] by Konstantin Klemm, Jing Qin and
Peter F. Stadler another fundamental issue is addressed with considering geomet-
ric notions for describing the structure of landscapes as well as the dynamics of
local search on them. Focusing on discrete, combinatorial landscapes and empha-
sizing the complications arising from local degeneracies, the authors introduce com-
binatorial vector fields as a mathematical tool for understanding landscape features.
Also the coarse graining of landscapes is studied from two perspectives. Chapter[7]
by Kristina Crona resumes with a geometrically oriented study of landscapes and
concentrates on graphs and polytopes. It introduces fitness graphs for describing
coarse properties of landscapes such as mutational trajectories and the number of
peaks. Triangulations of polytopes give raise to shapes that can replace the well
established concepts of positive and negative epistasis for two mutations. Yoshiaki
Katada deals in Chapter |8 with two important topological features of landscapes:
ruggedness and neutrality. As the evolutionary dynamics on a fitness landscape
with neutrality shows special characteristics, ruggedness alone might be insufficient.
In the chapter, a neutrality measure called standard genetic distance is introduced,
which originates from population genetics, for measuring neutrality of fitness land-
scapes. Numerical experiments are reported and demonstrate that genetic distance
is a reliable method for estimating the degree of neutrality of real-world problems.
Chapter [0 by Gabriela Ochoa, Sébastien Verel, Fabio Daolio and Marco Tomassini
gives an overview of local optima networks (LON) which are a recently introduced
network—based model of combinatorial landscapes. The model compresses the in-
formation given by the whole search space into a smaller mathematical object and
yields a new set of metrics to characterize the structure of combinatorial landscapes.
The approach is applied to two well-known combinatorial optimization problems
and the experimental results show that the network features correlate with and even
predict the performance of heuristic search algorithms operating on these problems.

Part I1I: Coevolution and Dynamics

Traditionally, the structure and topology of fitness landscapes are considered to be
static. This part brings together chapters that consider different approaches dealing
with dynamic landscapes, particularly dynamics that is environmental or occurs in
and is caused by coevolution. Chapter [I0] by Hendrik Richter gives an overview
of landscapes whose fitness values change with time. The chapter studies these
time—dependent landscapes in two contexts. One is evolutionary processes that take
place in dynamic environments and result in dynamic fitness landscapes. Another is
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coevolutionary processes where the fitness of a given individual depends on the
fitness and the genotype of other individuals in a temporal or spatial fashion and
results in codynamic landscapes. The chapter gives an overview of issues in and
problems of time—dependent fitness landscapes and particularly highlights several
types of mathematical descriptions and their properties. Ricard V. Solé and Josep
Sardanyés focus in Chapter[I1]on coevolutionary dynamics. The chapter introduces
the Red Queen hypothesis of evolution and comments on some theoretical aspects
and empirical evidence. It further reviews key issues of evolution on simple and
rugged fitness landscapes and presents modeling examples of coevolution on dif-
ferent fitness landscapes at different scales using examples from RNA viruses to
complex ecosystems and macroevolution. Chapter [12] by Richard A. Watson and
Marc Ebner treats another aspect of dynamic landscapes with the interactions of
evolutionary and ecological dynamics. To understand these interactions as coupled
processes leads to eco—evolutionary dynamics that can be modeled by deformable
fitness landscapes. The chapter reports numerical experiments and observes that the
model of deformable landscapes can exhibit either of the two behavioral modes:
evolutionary stasis or continued evolutionary change (also known as Red Queen
dynamics). Wim Hordijk present an overview of a statistical analysis to measure
and express the correlation structure of fitness landscapes in Chapter [13] The cor-
relation analysis is applied to both static and coupled fitness landscapes. The ex-
perimental results presented show that the correlation analysis gives a direct and
useful link to the actual search performance of evolutionary algorithms that use a
coevolutionary approach. Chapter[I4l by Krzysztof Trojanowski concludes this part
with a discussion about dynamic real-valued landscapes and methods of evaluating
the efficiency of (meta—)heuristic optimization algorithms operating on these land-
scapes. The chapter introduces measures for dynamic performance evaluation and
associated measurement methods, gives dynamic benchmarks and different types
for implementing changes, and considers the role of time and uncertainty originat-
ing from the measurement method.

Part IV: Visualization and Characterization

As the structure and topology of a fitness landscape offers to gain insight into evo-
lutionary dynamics, it is vital to have methods and tools for visualizing and char-
acterizing landscape’s properties. The chapters in this part discuss such questions.
Chapter [15] by Ivan Zelinka, Oldrich Zmeskal and Petr Saloun is devoted to fit-
ness landscapes with fractal characteristics. The main topic of this chapter is to use
elements from fractal geometry to measure attributes of fractal landscapes. These at-
tributes are taken to characterize fractal properties of basic artificial test functions as
well as cost functions of real application problems that appear in experimental chaos
control and synchronization. Daniel Ashlock, Justin Schonfeld, Wendy Ashlock and
Colin Lee describe in Chapter[[6]three important tools that were recently suggested
to explore fitness landscapes: agent-case embeddings, fitness morphs, and nonlinear
projection. These techniques are examined using fitness landscapes for a variety of
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discrete problems including finding self avoiding walks, finding features for DNA
sequence classification, the Tartarus Al test problem, locating cellular automata
rules, and a novel real optimization problem connected with the Mandelbrot set.
The results show that the techniques discussed transform information about discrete
fitness into real-valued spaces enabling both analysis and visualization. Another
approach to visualize fitness landscapes is presented in Chapter [[7] by Sebastian
Volke, Simon Bin, Dirk Zeckzer, Martin Middendorf and Gerik Scheuermann. This
approach is applied to the question of how and why changes in the design of a par-
ticle swarm optimization (PSO) algorithm influence its optimization behavior. The
visual approach discussed in the chapter combines a terrain representation of the
fitness landscape topology with configuration-local, time-dependent statistical mea-
sures of PSO runs and is implemented in a visualization tool called dPSO-Vis. It is
demonstrated how dPSO-Vis can be used to analyze and compare the optimization
behavior of PSO algorithms designed for solving the RNA folding problem. Bjgrn
@stman and Christoph Adami finally give in Chapter[I8]a concise overview of the
relationship between visualization of fitness landscapes and potential predictabil-
ity of evolutionary dynamics. To know whether evolution is predominantly taking
paths that move upwards in fitness and along neutral ridges, or else entails a sig-
nificant number of valley crossings, there is the need to visualize these landscapes.
For instance it must be determined whether there are peaks in the landscape, where
these peaks are located with respect to one another, and whether evolutionary paths
can connect them. The chapter focuses on the predictability of evolution on rugged
genetic fitness landscapes and presents numerical results to answer the question of
whether evolutionary trajectories towards the highest peak in the landscape can be
achieved via a series of valley crossings.

Part V: Outlook and Afterthoughts

The final part of this book contains two shorter chapters devoted to the prospects
of fitness landscape research. Possible future issues are discussed in Chapter[19] by
Hendrik Richter. The chapter addresses challenges to fitness landscape approaches
that result from recent experimental and theoretical findings about the information
transfer in biological systems. It further sets out opportunities these results may
open up and speculates about directions that landscape research may take. Chapter
20/ by Edward D. Weinberger concludes the book with afterthoughts and discusses
the past, the present and the future of the topic. In a personal reminiscence fueled
by his involvement in fitness landscape research for over 20 years, he particularly
highlights the need to rethink our concepts of fitness, the relevance of coevolutionary
effects and the importance of information used by biological systems. The chapter
also concludes that a main topic to be addressed by future research is to advance our
understanding of biological evolution as a dynamical process. Landscape methods,
if extended and adapted, have the potential to achieve this.
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It is often said that there are more contributors to a book who should be acknowl-
edged than the people whose names appear on the cover page. This literally applies
to this book. So, our foremost thank goes to the in total 42 authors of the chap-
ters who entrusted their contributions to this book. We are also very thankful for
both the foreword and the afterthoughts. Stuart Kauffman, who moved the topic
of fitness landscapes significantly beyond the scope of evolutionary biology with
his seminal works in the late 1980s, provided a foreword that is rich in substance,
even controversial and discusses limitations of current fitness landscape research as
well as points at possible directions of further development. We are equally grateful
that Edward Weinberger, who similarly and partly collaborating with Stuart Kauff-
man significantly extended the scope of fitness landscapes 20 years ago, provided
afterthoughts.

To edit and write a publication collaboratively seems to be possible even over
large distances nowadays due to communication devices such as email and chat.
This book is also proof of that. Nonetheless, we also noted that some discussion is
much more fruitful and efficient face to face by visiting each other. So, we thank the
HTWK Leipzig University of Applied Sciences for providing a travel grant and the
University of Pretoria for cordial hospitality that enabled this visit. Special thanks
go to Dr. Thomas Ditzinger of Springer-Verlag for his support during the prepara-
tion of this book and to Prof. Ivan Zelinka, the series editor for the Springer Series
Emergence, Complexity and Computation (ECC), for inviting the book to this se-
ries. Also thanks to all the reviewers who have provided very valuable inputs to
improve the quality of the chapters within this book.

Last in order but clearly not in importance, our most heartfelt thanks goes to our
families and friends for their support, love, encouragement and patience.

Leipzig, Germany Hendrik Richter
Pretoria, South Africa Andries P. Engelbrecht
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Chapter 1

Fitness Landscapes: From Evolutionary Biology
to Evolutionary Computation

Hendrik Richter

Abstract. This chapter gives an introduction to the book and an overview of funda-
mental concepts, notions and mathematical descriptions of fitness landscapes. Based
on a brief discussion of the origin of landscape paradigms, major motivations to use
fitness landscapes are presented. It is further considered how topological features of
the landscape give raise to evolutionary dynamics. Also, examples of computational
and empirical landscapes are introduced.

1.1 Introduction

This book is concerned with recent advances in the theory and application of fitness
landscapes and this chapter intends to give an overview of the fundamental con-
cepts and notions. Fitness landscapes are an abstract way to express the relationship
between the genetically possible (genotype), the actual realized traits (phenotype),
and the phenotype’s survival/reproduction success (fitness). This fitness is the main
driving force behind evolutionary processes, and evolution, in turn, is a defining in-
gredient of life. Section[I.1.1] sets out conceptional background and motivation for
using fitness landscapes in studies of natural and artificial evolutionary processes.
For understanding and appreciating the role fitness landscapes play in recent ad-
vances in evolutionary biology and evolutionary computation, it might be in order
to briefly look at the history of using landscape models, which is given in Section
[L1.2] This Introduction is concluded with a more detailed discussion about life, evo-
lution and fitness. Section [[.2] formally introduces fitness landscapes and provides
mathematical notions and concepts. Fitness landscapes originated from evolution-
ary biology. Section[I.3] overviews fitness landscapes for studying how evolutionary
development proceeds and how this may offer clues about predicting evolution-
ary paths in biological systems. The three major sources that fueled this discussion
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are reviewed, namely (i) geometrical intuition and conception, (ii) computational
experiments with designed models of fitness landscapes, and (iii) microbiological
(microbial) experiments which give raise to empirical fitness landscapes. It is also
briefly described how insights from fitness landscapes in evolutionary biology were
received, modified and adapted in evolutionary computation. This chapter only con-
siders fitness landscapes for a single species that are constant over time. However,
changing environments and the coexistence of several species alter the rules for stay-
ing alive. For an introduction of dynamic fitness landscapes and coevolution refer to
Chapter[1Q

1.1.1 Motivation

One of the central research questions of the 21th century is how to advance our
understanding about what life is in itself and what organizational, structural and
developmental principles may be connected with it. Here, life means in the same
way the state of being alive as well as the process of exhibiting life—like properties.
Posing these questions is at least accompanied by, but rather interacts with, is partly
driven by, and partly drives, two other major trends in modern science. One is the
substantial progress in our knowledge about the biochemistry of living structures
on a molecular (microscopic) level. This starts with sequencing whole genomes and
decoding them, goes on with understanding the mechanisms of the transfer of ge-
netic information from the genome to proteins, reaches as far as the dynamics of
protein structuring and folding, and concludes with the functions a protein (or a set
of proteins) has in an organism and how this function might affect reproduction suc-
cess and longevity. Each of these topics has reached a certain degree of maturity and
is more or less solidly based, while at the same time some fundamental questions
still await to be answered. One of the main research questions within this trend is
to establish a sound theoretical understanding of how this chain of topics can be
consistently connected.

The other trend is the ubiquity of computing devices in the form of cheap, re-
liable, fast and increasingly networked digital computers. This is accompanied by
attempts to make more and more structures and processes available for mathemat-
ical and algorithmic description with the general aim to make these structures and
processes computable. This naturally applies to innate fields of scientific comput-
ing, such as physics and chemistry, but also extends (at least partially) to biolog-
ical, neuropsychological and social phenomena. This touches on the question of
what is computable in general, but also what kind of mathematical description is
most suitable for catching the essentials of what is studied, and how this description
can be obtained. It goes on with the question of what is the appropriate compu-
tational environment for the mathematical/algorithmic description of structures and
processes and how to put the description to the computational environment, and con-
cludes with designing, conducting, evaluating, visualizing and interpreting the nu-
merical (computational) experiments. Arguably, for working on detailed questions
in each of these two trends, it might be possible to take little notice of the other one.
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However, some of the most intriguing and fundamental issues exist in the border
territory between both trends, most notably in computational biology and bioinfor-
matics, but also in artificial life and evolutionary computation. Life in itself can be
understood as propagation and transfer of information and hence in its core and
substance is a computational issue [, 2, 98]. It seems to be obvious that this is
the case for all attempts to model and compute life and/or life-like behavior artifi-
cially. However, this explicitly applies to all known forms of natural life, that are the
molecular, carbon— and protein—based forms of living beings on our planet.

The explanatory and predictive power of natural sciences is closely related to the
possibility of meaningful mathematization. Immanuel Kant’s famous dictum that

“any particular natural theory contains only so much true science as it contains
mathematics'{l]

catches the spirit of this thinking as well as gives it a pragmatic outlook at what
is (or even should be) the developmental direction of a branch of science. Partic-
ularly in physics, but also in chemistry, this became the way to proceed after the
dictum was first uttered near the end of the 18th century. The remarkable success in
explaining and predicting natural phenomena of inanimate, non-living matter that
has set in ever since is unthinkable without the powerful mathematical penetration
we find in physics and chemistry. The same is not exactly true for biology and the
study of living matter. It cannot be said that all fields of biology at all times openly
embraced mathematics. There has been (and still is) much argument about biol-
ogy being different from other sciences, particularly from physics and chemistry,
and therefore defying, at least partly, meaningful mathematization. Even thinkers in
biology as influential and progressive as Ernst Mayr sometimes detected in math-
ematics “a harmful influence on the development of biology” [73], p. 304. There
are several reasons for this state of affairs: for the harsh coexistence of potentials
and limitations, of promises and pitfalls that are connected with the fundamental
progress towards algorithmization, computization and mathematization in biology;
see e.g. [19,157, 165, 1106] for some recent discussion. One group of reason surely is
that biological systems exhibit an enormous amount of complexity, inhomogeneity
and diversity that seemingly defies to be harnessed to fundamental, all-compassing
natural laws that can be expressed by rather simple, equation—like mathematical
descriptions [6l, 92]. In physics the presence of simple balance principles such as
conservation of energy/mass or momentum enables expression of fundamental re-
lationships by equations. Frequently, these equation—like mathematical descriptions
of physical laws can be solved analytically (or meaningfully simplified to become
analytically solvable) and give raise to easily calculable and evaluable formulae for
timely evolutions. This property sometimes puzzled even the profoundest thinkers
in physics, and Eugene Wigner even went as far as to acknowledge an “unreason-
able effectiveness of mathematics” [[135] in describing physical reality. Quite the

! The original quotation is: “Ich behaupte aber, daB in jeder besonderen Naturlehre nur so
viel eigentliche Wissenschaft angetroffen werden konne, als darin Mathematik anzutreffen
ist.” [50], Preface, p. XIV.
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contrary seems to be true in biology. Here, complex interactions and interdepen-
dencies on and between many spatial and temporal scales are found, also between
causes and effects, structures and behaviors, forms and functions. All these facts ap-
parently hinder to set up rules and laws that apply to all instances of a well-defined
group of phenomena. In biology, it seems, the occurrence of important exceptions
from an established rule is the only rule without exceptions.

A possible way out of this difficulty occurring in biology might be to put much
more emphasis on case—based, local algorithmization and computization as on the
forms of mathematization frequently found in physics and chemistry. This goes con-
veniently along with the aforementioned trend of computization in other branches of
science. To describe biological phenomena, it appears, an algorithmic and computa-
tional approach is frequently much more suitable than looking for a set of equations
that can explain all. Moreover, to understand the information flow in biological sys-
tems and processes by making it computable appears to be a more promising option
to overcome the limitation of a theorem—and—derived—fundamental-law approach.
Studying living matter most likely will not be based on a small number of funda-
mental laws expressible by rather simple equations.

The quotation mentioned above not only gives programmatic direction for a field
of science, but also defines an axiomatic baseline that is, once accepted, generally
agreed upon without further proof or argument. Also in the life sciences there are
basic convictions forming some foundation for the field. One is expressed by Theo-
dosius Dobzhansky and states:

“Nothing makes sense in biology except in the light of evolution,” [24] p. 449.

Our knowledge about a biological system is only superficial if its evolutionary pro-
cesses are not included and not understood; it could even be said that the degree of
understanding a biological system scales to the understanding of its evolution. So, in
consequence of the discussion above, it becomes natural to seek for a mathematical
or algorithmic or computational framework for describing evolutionary processes.
Because the topic is of considerable significance for biological phenomena, there
are several approaches to it. One is the mathematical theory of population genet-
ics [20, 132, 164], also see [89] for a computational perspective. This theory intends
to treat the Darwinian process of inheritance, genetic drift, variation and selection
by considering allele frequency distributions. This may result in formulae that de-
scribe, for instance, the probability that an allele connected to a particular advantage
goes into fixation, how long that would take, and how different rules of inheritance
would affect these processes.

Another way to describe the dynamics of evolutionary processes is fitness land-
scapes. The conceptional framework of fitness landscapes origins from theoretical
biology and intends to address some of the most intriguing and fundamental ques-
tions in natural and artificial evolution: what way is evolution going, to what extend
is it predictable, what can be realistically expected to be the outcome of a certain pe-
riod of evolutionary development? For approaching these questions it appears to be
useful to have a mathematical notion about how the genetically possible (genotype),
the actual existing biological instance (phenotype) and the survival/reproduction
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success (fitness) relate to each other. This is what a fitness landscape in an abstract
way does. It offers a framework for analyzing and visualizing the relationships be-
tween genotype, phenotype and fitness. Interestingly, addressing these questions by
the framework of fitness landscapes is valuable and well—established practice in both
evolutionary biology and evolutionary computation. Naturally, the above mentioned
fundamental questions take slightly different forms in both fields.

1.1.2 Historical Background

Fitness landscapes were first proposed by Sewall Wright [[140] in the 1930s as a
mapping from a set of genotypes to fitness. The genotypes were countable and
neighboring in such a way that genotypes next to each other can mutate from one
to another. The fitness landscape framework axiomatically assumes that for every
genotype there is (or can be assigned) a fitness valud®fl. This fitness value can be
viewed as an elevation over the genotypic space. In other words, fitness is a property
of the genotype expressed as its orthogonal projection. Based on this convention, the
fitness landscape metaphor becomes apparent: that of a mountainous region with
peaks, valleys, ridges and plateaus (see Figure [[LI). These topological features of
the fitness landscape are critical for understanding the evolutionary dynamics that
is laid out by the landscape’s structure. Using this understanding it becomes ex-
plainable why some genotypes are more often realized as phenotypes than others
as evolutionary time goes by. Also it is explicable how likely it is that one phe-
notypic realization of a genotype origins from another. So, another important part
of the fitness landscape thinking is that of evolutionary paths that are engraved on

2 Wright also advocated a second type of fitness landscape that is conceptually related, but
methodologically different to the one considered in this chapter. In this second type, we
have a mapping from the allele frequency in a given population (replacing genotype)
to the population mean fitness (replacing genotypic fitness). It can been argued that the
population mean fitness is continuous for population size going to infinity. Hence, such
continuous population mean fitness landscapes can be seen as filling the gaps between dis-
crete phenotypes that inevitable occur in granular (discrete) genotypic fitness landscapes
because of this discreteness. Moreover, the genotypic landscape is obtained from the pop-
ulation mean landscape for population size going to unity [[133]. On the other hand, there
has been substantial criticism on population mean fitness landscapes, mainly on the ground
of these landscapes being an entirely geometrical concept inaccessible to computational or
empirical treatment [74]. For the same reason these landscapes are not considered further
in this chapter.

In the literature, next to the term fitness landscape, also adaptive landscape can be found.
Both terms adaptive and fitness landscape are sometimes used synonymously (for in-
stance by Wright himself [140, [142]), which may cause some confusion. More often,
they are taken to discriminate between landscapes that express relations between collective
quantities (allele or phenotype frequencies and mean fitness) and landscapes that express
relations between individual quantities (genotypes, phenotypes and fitness). Adaptive land-
scape refers to the former, while fitness landscape refers to the latter. By this convention, a
population mean fitness landscape is an adaptive landscape. According to the reasons given
in the footnote above, the term fitness landscape is used and promoted in this chapter.

w
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the landscape’s surface. These paths are taken by a succession of phenotypic real-
izations and utilize the population’s genotypic makeup from low—fitness regions to
higher—fitness regions.

The concept of fitness landscapes introduced by Wright [140Q] attracted interest
particularly because it offered an approach to conceptionalize and visualize evo-
Iutionary dynamics in various population genetics modes. The created diagrams
were considerably influential for thinking in an abstracted way about possible paths
evolutionary processes can follow and fostered an appropriate intuition for under-
standing evolutionary dynamics; see e.g. [85, 199, 1108] for more detailed historical
remarks. However, as a conceptualization and visualization tool alone fitness land-
scapes were mainly an illustration of certain settings and stages in the evolutionary
process. In other words, the landscapes were used retrospective to show how a cer-
tain known type of evolutionary dynamics could be explained. In their original form,
fitness landscapes did not allow a computational approach to experiment with pos-
sible evolutionary scenarios.

A first instance for a more computational approach to understand evolutionary
dynamics was proposed by Stuart Kauffman collaborating with Simon Levin [53]
and Edward Weinberger [54], called NK fitness landscape. The NK fitness land-
scape, formally introduced in Equation (I.3) in Section [[.3.2] is a computational
model where the ruggedness (or smoothness) of the landscape can be tuned by pa-
rameters, called N and K. The concept of ruggedness (or smoothness) intend to
generalize the features in the landscape metaphor. The genotypes are coded as a
string of length N over a given alphabet. Each string is attributed with a fitness. Fix-
ing the way a string is built from the alphabet and establishing a distance measure
between strings define which genotypes are sitting next to each other. In addition,
K epistatic interactions modify the fitness such that the fitness of each string is the
sum of contributions from K other strings. This allows tuning between completely
smooth (K = 0) to most rugged (K = N — 1). There exists an extensive and sophis-
ticated body of work, e.g. [26, 54, 155, 128, 131, [132], analyzing various aspects
of this landscape and providing important insight into evolutionary dynamics. In
particular, these studies have shown the importance of the landscape’s topology for
possible evolutionary pathways, and became the starting point for developing nu-
merically evaluable quantities, so called landscape measures, that can be seen as
to define some types of metric for fitness landscapes. These measures quantify a
landscape by (possible a set of) numbers and allow comparison and assessment of
different types of topologies. Furthermore, the studies introduced concepts such as
modality, ruggedness, neutrality, long—path problems. These concepts characterize
different types of evolutionary scenarios. In addition, the works on NK landscapes
triggered and inspired thinking about whether such concepts would also be valuable
for understanding the working principles and behaviors of evolutionary computa-
tion methods such as genetic algorithms, evolutionary programming and evolution
strategies (see e.g. [7,/36] for a brief history of evolutionary algorithms). Referring
explicitly to the works of Kauffman and Weinberger, a first attempt to explain the
working of a genetic algorithm using landscape analysis methods was by Bernard
Manderick and co—workers [[72]. Also here much work has been done between then
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Fig. 1.1 Static fitness land-
scape in R? as a moun-
tainous region with peaks,
valleys, ridges and plateaus
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and now, and particularly the work of Terry Jones [46] turned out to be markedly in-
fluential on applying landscape methods for analyzing, understanding and designing
evolutionary search algorithms.

It appears almost a little surprising that such a rather naive picture as a fitness
landscape has meaning in evolutionary biology and evolutionary computation. Even
more so as there are conceptual similar mathematical constructs in branches of sci-
ences as illustrious as physics and chemistry [38,/110]. In this context they are called
energy landscapes. These energy landscapes occur for instance in the theory of spin
glasses [12,179,1105,1143], in describing plastic dissipation processes in metals [81]],
and surface patterns in alloys and ceramics [126]. In biochemistry the folding and
energy relaxation in proteins [82, 183, [109] and nucleic acids [8, |10, 47] can be
described by energy landscapes. Furthermore, there is a conceptually close relation-
ship to the potential energy surfaces of theoretical chemistry. The main difference
between energy landscapes and fitness landscapes is that the elevation quantity in the
evolutionary context is fitness, which is meant to be maximized, while the energy
that specifies the elevation in energy landscapes is to be minimized. Clearly, this
simple inversion does not alter the intrinsic mathematical meaning and content, but
as the landscape metaphor originates from a geographical conceptualization it also
molds the way we perceive the potential for such an abstraction. Next to the static
topological features in the landscape this particularly applies to any form of dynam-
ics that may occur in or on the landscape. The dynamic behavior can be thought of as
that of motion on the landscape’s surface. In terms of the landscape metaphor, next
to the static mountains and valleys that characterize topology, there are lakes and
flows that are the dynamic consequences of the topology and define potentials for
and actions of movement. Of course, the heuristic value of fitness landscapes does
not stem from such two-dimensional images or picturing two—dimensional surfaces.
The value of the landscape metaphor is what can be mathematically derived from it.

The main motivation to employ a landscape approach is that it offers a
framework for a computational treatment. This treatment becomes geometrically
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interpretable in a meaningful way for the aforementioned simple two—dimensional
case, but not for landscapes with a genotypic space with higher dimension. As any
interesting evolutionary process most likely has genotypes with more than two de-
grees of variation, this poses a serious limitation and a problem to overcome. This
is known since the beginning of employing fitness landscapes to understand evolu-
tionary dynamics. No matter whether the landscapes may originate from modelling
biological processes or computational evolutionary search, the problem is present.
The tension and mixture between intuitive usefulness and apparent limitation is for
instance highlighted by Terry Jones in the aforementioned work laying out the po-
tential of landscape methods for describing computational evolutionary search, [46],
p. 45-46:

“The term ‘landscape’ has something powerfully seductive about it. The imagery it
evokes is so appealing that further thought can be completely suspended. An important
question to ask is why we would want to use such a term. The answer is presumably
that we hope to use the imagery (e.g., peaks, ridges, valleys etc.) to enhance our under-
standing of some process to develop new ideas for exploring spaces and to stimulate
questions about processes operating on these structures. All of this tends to rely rather
heavily on the simple properties that we see in physical three dimensional landscapes.
It is not clear just how many of the ideas scale up to landscapes with tens or thousands
of dimensions.”

Similar remarks can also be found in biological literature on fitness landscapes,
e.g. [99]. However, to overcome the dimensionality issue is one of the major top-
ics in recent advances in the theory and application of fitness landscapes. Two
major directions are employing landscape measures [94, [115] and visualization
schemes [74, [136]. Almost all chapters of this book address these topics to some
extend.

There is an extended body of literature on theoretical and applicational problems
and issues of fitness landscapes in both fields, evolutionary biology and evolution-
ary computation. Particularly notable is the book by Gavrilets [41], who reviews
the state—of—the—art of a computational approach in evolutionary biology and aims
at summarizing and generalizing mathematical models that describe the dynamics
of speciation. A slightly different approach is applied by McGhee [75], who uses
graphic concepts, called theoretical morphospaces, for describing the process of
evolution. Morphospaces are geometrical spaces of both existent and non—existent
biological form.

1.1.3 Life, Evolution, and Fitness

Up to now, there is no final scientific agreement about what exactly defines life,
and it even has been argued that attempts to define life addressing the needs from
different fields of science are all in vain [18, [17, 169]. On the other hand, there is,
in fact, also a certain amount of consensus as to what the defining ingredients of
life are. Naturally, defining life is inextricably intertwined with the aforementioned
task of identifying what life is and how its emergence from the physical world has
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taken (or takes) place. To put it into other words, defining life should be catching
the essence of understanding life. So apart from the fields of evolutionary biology
and artificial life (where fitness landscapes are frequently used and hence are the
focus of this chapter — and this book), the question of defining life also plays a
major role in molecular biology, synthetic biology and astrobiology. Reviewing the
different views in these fields, we generally notice three major components that are
independently necessary and jointly sufficient for defining life: self-reproduction,
metabolism, and evolution. Based on this understanding, a commonly used working
definition of life is [48] “a self—sustained chemical system capable of undergoing
Darwinian evolution”, which has also been adopted by the Exobiology program at
NASA. It appears to be interesting in our context that a paramount importance is put
on Darwinian evolution and its mechanism for understanding life.

Key components of this Darwinian mechanism are that each and every living
being is specified by a genetic code that codes for the individuals’ features and abil-
ities. These features and abilities determine (at least on average) the individuals’
success in survival and reproduction by the process of natural and sexual selec-
tion. To make this distinction even more clear, genetic coding is associated with the
individuals’ genotypes, the abilities and features of the individuals with the pheno-
types. For expressing the (relative) amount of success quantitatively, the concept of
fitness is employed. In general, fitness measures the individual’s viability as the like-
lihood to survive to the age of reproducing and actually reproduce. In other words,
the larger the reproduction success of an individual is, the higher is its fitness. As
the genetic code (or at least snippets of it) is propagated to the next generation by
reproducing, features and abilities become inheritable. On average, this applies dis-
proportionately for features and abilities that enhance fitness.

It should be mentioned that there is occasional criticism on the importance of
Darwinian evolution for defining what life is. This has much to do with the question
of why such a definition is important and what the intended (or possible) use of the
definition is. Some of the fields of science mentioned above, namely artificial life,
synthetic biology and astrobiology, are frequently faced with the following task:
they deal with phenomena (either observed extra—terrestrially as in astrobiology, or
programmed in software, as in artificial life, or bio—chemically set up in wetware, as
in synthetic biology) and are to decide if the phenomena qualify or not as constitut-
ing life or being alive. There are several issues with including Darwinian evolution
in such a definition. A first is in astrobiology, where an in situ search for life on an-
other celestial body is hindered by the need to find evidence for Darwinian evolution
as it may take a considerable period of time to establish such an observation [[16]. In
synthetic biology it is conceivable to have naked RNA molecular life forms, which
would conflate phenotype with genotype and hence violating some principles of
Darwinian evolution [49, 166]. Artificial life models with metabolic properties have
been studied that show chemical and spatio—temporal self—organization similarly
to living entities but forgo evolutionary processes in a strict sense [30, 33, [120].
However, in all these examples the absence of Darwinian evolution is caused by
operational or methodological objections, not as a result of principle considera-
tions. Hence, it is sensible to say that every realistic understanding of life should
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incorporate evolution as a leading and defining factor, and that thinking about life
is incomplete without evolutionary processes. Moreover, understanding the mecha-
nisms and dynamics of evolution is a necessity to explain the emergence of complex
biological systems, may they be natural or artificial.

1.2 Fitness and Fitness Landscapes

A (static) fitness landscape Ag can be expressed by [51,1119]
AS:(Xanaf)a (11)

where X is a configuration space, n(x) is a neighborhood structure that assigns to ev-
ery x € X a set of (more or less distant) neighbors, and f(x) : X — R is a fitness func-
tion that gives to every x € X a proprietary quantity to be interpreted as a ‘quality’
information. In other words, the configuration space in connection with the neigh-
borhood structure expresses a (possibly multi-dimensional) ‘location’, while the
fitness is an orthogonal projection from location, defining an ‘elevation’ or ‘height’
and at the same time giving a location its most important property. Fitness is usu-
ally considered a single parameter but it seems perfectly possible to have a height
measure with several dimensions.

The origin and character of a configuration space, neighborhood structure and
fitness function differ, naturally, in evolutionary biology and evolutionary computa-
tion, and also in different application contexts in each of these fields. Moreover, in
the literature on fitness landscapes in general, and also in the different chapters of
this book, we find additional terms for the space over which the fitness landscape
is defined. Next to the term configuration space, there is also genotypic space, se-
quence space, search space, or representation space. All these terms are synonymous
in that they specify how the location is set out for which the fitness allocated is its
constituting property. The terms differ in the origin and meaning of the location,
and hence of the landscape itself. Configuration space can be seen as the most gen-
eral term. It is made up of a finite or infinite number of configurations the genetic
description of the natural or artificial biological systems can have. For natural bio-
logical systems, the genetic description is associated with the genotype, giving raise
to the genotypic space. Sequence space can often be found in discussions of the re-
lations between genotypes and fitness of (micro-)biological entities whose genetic
specification and coding is based on DNA or RNA sequences, or on strings of their
binary genomic equivalents. Search space is frequently used to underline the aspect
of evolutionary search and evolutionary optimization, and it is hence mainly found
in approaches to employ fitness landscapes to understand evolutionary computation.
Representation space is often employed to characterize the situation where differ-
ent representations of the evolutionary search algorithm redefine the search space
and its neighborhood structure. In this view, the representation space is imposed by
the way the search algorithm codes possible solutions. For the same configuration
space, therefore, we can define several representation spaces.
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In evolutionary biology, the configuration space consists of the genotypes of the
biological system under study [53, [140]. The genotype characterizes the genetic
make—up of a generic individual. It comprises of the sum (or union) of all geneti-
cally possible individuals and hence is the total genetic information. The neighbor-
hood of a genotypic location is defined by which other genotypes are adjacent, near,
close, accessible or reachable. Adjacency, nearness, or closeness and accessibility
or reachability in a genetic context is measured by simple one—step evolutionary
variations. These variations might be asexual, which specifies a mutational neigh-
borhood, or sexual, which leads to a recombinational neighborhood. In a rather static
view, expressed by the terms adjacency, nearness, and closeness, neighborhood im-
plies which genotypes are next to each other. In a more dynamic view, expressed
by the terms accessibility and reachability, neighborhood defines which genotypes
can be explored from a given starting genotype by a possible one—step evolutionary
trajectory. In other words, the dynamic properties intrinsic to evolutionary processes
invoke a collection of possible transitions between genotypes. A succession of evo-
Iutionary transitions is also known as a walk.

Depending on the evolutionary variation considered (asexual or sexual) there
may be a mutational trajectory or a recombinational trajectory. For describing muta-
tional trajectories through genotypic space, Gillespie’s strong selection/weak muta-
tion (SSWM) model [42,133] allows a simple mathematical treatment. This model
assumes that the population is genetically monomorphic and considers that one—
step transitions between genotypes take place as occasional random point mutations.
SSWM further postulates that natural selection and genetic drift instantly lead ei-
ther to fixation or elimination of the mutant genotype. As the configuration space
that codes for natural biological genotypes is made up of strings over a finite al-
phabet, point mutations are flips in the letters of the alphabet at single points on the
string. Hence, a mutational trajectory originates from subsequently executing one of
the several possible single point changes in the string describing the genotype. As
a consequence, the static and dynamic aspects of the genotypic space expressed by
the notion of adjacency and accessibility, respectively, reflect each other.

For defining recombinatorial trajectories, the SSWM model is not suitable. To
begin with, the evolutionary one—step transitions are not longer necessarily random,
as the genetic material that undergoes recombination has been selected because of
the high fitness of parental genotypes [133]. Also, polymorphism is required to gen-
erate recombinatorial evolutionary transitions. However, introducing polymorphism
qualitatively changes the genotypic space and particularly the character of possible
evolutionary transitions. As pointed out above, for mutational trajectories adjacency
and accessibility are equivalent concepts. For recombinatorial trajectories, it is not.
Recombination allows jumps through the genotypic space [133]. Moreover, it has
been shown that for homologous recombination (exchanged between two similar or
identical molecules of DNA) accessibility can be defined topologically similar to the
adjacency of point mutation [43,/117,118], but for non—-homologous recombination
the resulting genotypic space seems to be no longer metric [111, |[114]. For these
reasons, recombinatorial trajectories and hence recombinatorial fitness landscapes
are an open research topic in theoretical biology. In evolutionary computation,
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mutational as well as recombinatorial landscapes have been intensively studied
(see [46], but refer also to Chapter[I3 of this book).

As pointed out above, the neighborhood structure is usually defined by the prop-
erty of which genotypes can mutate from one to another [55] and genotypes are
coded as a string over a finite alphabet. Most faithful to biological reality is the al-
phabet A = (A, T,C,G) of the DNA space or the RNA alphabet A = (A,U,C,G).
Of course, strings using these alphabets can be recoded by using a binary alphabet
A = (0,1). This recasts the genotype as a binary genome and is also known as a
digital genome approach. By fixing the length N of the string (or the number of base
pairs), we obtain the configuration space X = A". A specific position on the string
is called a locus. Each of the alternative values the locus (or several loci) can have is
an allele. An instance of such a binary configuration space over the binary alphabet
is a sequence (or string)

S = (5182, ,8iy--+,85¢), (1.2)

which consist of ¢ loci with two possible alleles (0 or 1) at each locus s;.

Assigning fitness to each element of the genotypic space requires additional con-
siderations. Until recently, the question of what fitness a genotype actually has was
answerable only purely theoretically and also required (and still requires) defining
an intermediate level between genotype and fitness, i. e. the phenotypic space. The
reason for that is that it is complicated or even infeasible to assign a fitness value
to the ‘microscopic’ genotype. Fitness, at least in any sensible (marco—)biological
sense, is connected to longevity and fertility and ultimately to reproduction success
of a specific individual acting in a particular environment. Such a phenotypic in-
dividual can be thought of as an instance of the generic individual specified by a
genotype. Hence, such a fitness landscape Ag is, strictly speaking, the product of
a genotype—to—phenotype—to—fitness mapping and such landscapes have been the
subject of much theoretical work on evolutionary dynamics [53, 1104, 127, [133].
Anyway, assigning fitness to an actual biological (or even microbiological) entity
is a highly debatable matter [137]. Given the understanding that fitness is the phe-
notype’s viability expressed as the fact of surviving to the age of reproduction and
actually reproducing, it can only be assigned after the life time of the individual.
Moreover, if higher fitness not only means a high number of offspring, but also off-
spring that for itself survives and reproduces disproportionally successful, fitness for
a given phenotypic realization can only be accredited after observing a larger time
window of (possibly overlapping) generations, while the environmental conditions
are to remain the same. In short: assigning fitness is controversial. To circumvent
these debates (and equal difficulties of how genotype maps to phenotype), it is stan-
dard in theoretical approaches to evolutionary biology to implicitly define fitness as
an axiomatic property of the landscape.

In evolutionary computation, by contrast, the configuration space is made up by
the search space obtained from encoding all possible solutions of the optimization
problem. The neighborhood structure is a consequence of the search space and
hence the objects to be optimized over, but also of the genetic operators the evo-
Iutionary search employs [51]. If the search space is metric (as for instance if the
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search space elements are real or integer numbers, and the genetic operators act
on these numbers), then the neighborhood structure is inherent by the ordering of
numbers. If the search space is not metric (or can have several different kinds of met-
rics), the neighborhood structure needs to be defined additionally. For examples, the
neighborhood structure of binary coding can be a Hamming distance of different
length, or the neighbors of tree representation are branches that differ by a (smaller
or larger) variation in the subtrees. Fitness in evolutionary computation is usually
also assigned via the associated optimization problem. As genotype codes for a pos-
sible solution, the problem’s objective function for this solution can be calculated.
This calculation may be as easy as inserting a variable into a mathematical formula,
or as complicated as providing several parameters to a complex simulation model
that in turn produces an output which needs to be evaluated. Anyway, at the end of
the process there is a single and unique value that constitutes the genotype’s fitness.
If there is more than one value, they need to be aggregated (or treated as a multi—
objective optimization problem). In case the value changes by being recalculated
the fitness landscape is dynamic.

1.3 Fitness Landscapes in Evolutionary Biology

As considered in the previous sections, fitness landscapes are a geometrically mo-
tivated tool for discussing how the genetically possible (genotype), the actually re-
alized (biological) ‘life-form’ (phenotype) and the survival/reproduction success
(fitness) relate to each other. These relations immediately suggest the question of
how an evolutionary development proceeds and hence evoke asking about the pre-
dictability of evolutionary paths. Up to most recently there were two major sources
that fueled this discussion. A first is geometrical intuition and conception as in
Wright’s landscapes [140], a second is computational experiments with designed
models for fitness landscapes as for instance with Kauffman’s NK landscapes [155];
hence both are, in essence, theoretical. Lately, a third source appeared that is empir-
ical by being based on biochemically altering biomolecular properties of organisms
(or single genes of organisms) and assigning quality information as fitness to these
properties. This approach using microbiological (microbial) experiments gives raise
to empirical fitness landscapes [67, 196, [121]. In this view, empirical fitness land-
scapes connect molecular biology with evolutionary biology. These results have led
to a renewed interest in the framework of fitness landscapes, as for the first time
the question of the predictability of real evolutionary processes became address-
able. Clearly, these three sources interactively drive recent advances in understand-
ing fitness landscapes in evolutionary biology. Nevertheless, they historically and
methodologically appeared in the given order, and are detailed in the following.

1.3.1 Topological Features of Fitness Landscapes

As discussed in the introduction, fitness landscapes are a geometrically motivated
tool to visualize and evaluate how an evolving population may change over time.
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The changes come into effect by one phenotypic realization of the genotype mu-
tating into another phenotypic realization]. Hence, as mentioned before, genotypic
locations in the landscape are distanced by the property that a single mutation leads
from one genotype to another genotype. We (axiomatically or empirically) add that
each genotype has a fitness and observe that the changes are driven by the Darwinian
imperative to move into the direction of increasing fitness, which immediately im-
poses evolutionary dynamics. Note that so far we have a purely geometrical concep-
tion of how topological features of the landscape (the hills, valley, plains and ridges
in the metaphor) result in potential for driving forces and dynamics (the lakes and
flows in the landscape). By assuming that there are differences in fitness over geno-
typic space, the movement goes towards an aim. This defines possible evolutionary
pathways that are directed and produces evolutionary outcomes that are more likely
than others. The question, therefore, is not whether the topology and structure of a
fitness landscape is a predictor of a likely evolutionary path, for on a conceptional
level, the one defines the other. The question is whether the topology and structure
of the fitness landscape at hand really matches the biological reality it supposes to
study.

An important component in addressing this question is to collect which topolog-
ical and structural features in a landscape are possible and allocate them to potential
and observed mechanisms of evolutionary dynamics. For two—dimensional land-
scapes, there are a limited number of features. Figure[[.2] gives a catalog of possible
topological features. The most basic feature is a single smooth peak as in Figure
[[Zh. As discussed in Section[I.2] the landscape’s topology imposes a succession of
mutational transitions, which in turn define an evolutionary path with a correspond-
ing evolutionary process. All paths of increasing fitness in Figure[T.2h go to the top.
Hence, the corresponding process is evolutionary hill climbing. Due to the simi-
larity to the same—named geographical landmark, a landscape with a single smooth
peak as in Figure [[.2h is also known as a Fuji landscape (or Mt. Fuji landscape, or
Fujiyama landscape). As a Fuji landscape consists of only one global optimum (and
no other peaks where the evolutionary path could get stuck and hence trapped), it
can also be consider as trap-free. To obtain a Fuji landscape, accessibility of possible
mutational trajectories requires that the genotype’s fitness increases monotonically
with each mutation. In other words, each in a succession of mutations must be ben-
eficial. It is an interesting question if this is a realistic assumption for a large group
of biological systems.

A landscape with more complicated features has more than one peak and valleys
between them. It is called a rugged landscape, as is shown in Figure [[.2b. A rugged
landscape consists of a number of peaks that can be interpreted as local or global
evolutionary optima. All peaks that are smaller than the largest one are local optima,
which can be interpreted as traps. The degree of ruggedness may vary, usually with
the number and the distribution of the peaks. An interesting question here is whether
the peaks are distributed more or less uniformly in the landscape, or whether they
rather group in distinct regions. The latter case is also known as the massif central

4 For reasons given in Section[I.2] we restrict our discussion on mutational trajectories.
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Fig. 1.2 Geometrical features of fitness landscapes in 2D. (a) Single smooth peak (Mt. Fuji
landscape), (b) Rugged landscape with multiple peaks, (c) Holey landscape, (d) Neutral
landscape with single narrow peak, (e) Barrier landscape, (f) Detour landscape (long path
problem).

hypothesis. While a minimum degree of ruggedness can be defined as a smooth
Fuji landscape, a maximum degree of ruggedness is a landscape where the fitness of
each of the neighbors of each genotype in the landscape is an independent (uncorre-
lated) realization of a random variable. This is known as the house—of—cards model
of landscapes [@, @]. The term comes from the understanding that a mutational
transition from a functional (high—fitness) genotype is comparable to pulling a card
from a house of cards, namely that the outcome is purely random. A single mutation
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may malfunction the phenotypic realization of the genotype (proverbially collapse
the house of cards), and therefore eventuate in a low fitness value, or it may have no
or little effect. Anyway, the result is unpredictable. Hence, fitness over a genotypic
space are independent realizations of a random variable with a given distribution.

A rugged landscape also introduces a hill climbing evolutionary process, but
whether a smaller local optimum is reached or the larger global optimum depends
on the point in genotypic space where the walk starts from. All the genotypic start-
ing points that evoke evolutionary paths going uphill to a local or global optimum
form the optimum’s basin of attraction. This sensitivity of the evolutionary outcome
on starting points immediately poses a much more fundamental question. How can
a walk that is stuck on a hill escape that local optimum every again? As this ap-
parently requires a transition that loses fitness, such evolutionary paths appear to
be unaccessible. The evolutionary process that may allow escaping local optima
is known as valley crossing. The problem of valley crossing is long—standing and
fundamental in evolutionary biology. It could even be said that without convincing
solutions it is difficult to keep fitness landscape arguments alive. There are two types
of approaches to the valley crossing problem. A first tries to construct evolutionary
processes that circumvent the fact that natural selection does not tolerate deleteri-
ous mutations. A second group even questions if there are indeed valleys in relevant
fitness landscapes that need to be crossed.

The first group of arguments for the valley crossing problem has classical roots.
Wright’s shifting balance theory [[139, [141] suggests that the needed process to
cross a valley in a fitness landscape starts with an exploratory phase characterized
by random genetic drift. This leads to population subdivision with the subdivided
small populations (with small genetic variance) randomly exploring neighboring
genotypes. In other words, each of the small populations acts as a scout in genotypic
space. If they encounter superior fitness peaks, they hill climb these peaks. Once es-
tablished on a peak of higher fitness, migrants are send off that cause the other
subpopulations to shift, eventually collecting the whole population on the higher
peak and thus completing the valley crossing. An alternative, equally classical ex-
planation comes from Fisher [34] (also see [[129] for a further discussion). Fisher
argues that valley crossing is mainly unnecessary as ecological and geological fac-
tors would dynamically change environmental conditions frequently, thus regularly
recasting the hills—and—valleys structure of the fitness landscape. In other words, a
population on a local peak could simple sit and wait until the peak becomes the
starting point of an accessible uphill path to higher fitness. If, on the other hand, the
local peak becomes a deep valley, this may simply lead to extinction. In this view,
any realistic fitness landscape is a dynamic fitness landscape.

Next to these classical solutions of the valley crossing problem, there are fur-
ther possible mechanisms. For instance, the crossing could be contrived by com-
pensatory mutations [59, [134)]. The compensation happens by the co—occurring (or
consecutive occurring) of two mutations, each of which is individually deleterious
or neutral, but combined are beneficial enough to bridge the valley. This process
is closely related to sign epistasis [133]. Epistasis in general refers to the effect
that the fitness of a genotype after a mutational transition depends not only on the



1  Fitness Landscapes: From Evolutionary Biology to Evolutionary Computation 19

genotypes before and after the transition, but also on the genetic context in which
this transition takes place. Sign epistasis in particular means that the genetic context
decides whether a mutation is beneficial or deleterious. In other words, sign epistasis
is a property of the fitness landscape and a prerequisite for the landscape’s rugged-
ness [63,97] and hence the need for valley crossing. Compensatory mutations de-
scribe the order of mutations and hence the process by which the landscape’s rugged
features are transversed.

The second type of argument to the valley crossing problem, namely that valley
structures in fitness landscapes are not frequent and therefore crossing is not neces-
sary, decomposes into two further variants. One is to show that fitness landscapes
of relevant biological reality have no valleys as they are trap—free in the sense that
they resemble Fuji landscapes. There is some evidence for trap-freeness from em-
pirical fitness landscapes discussed below and from other applicational fields (see
for instance Chapter [2] for further discussion). The second variant maintains that all
(or at least a large proportion of) high fitness peaks are connected by ridges of equal
(or nearly equal) fitness. Mutational trajectories could evolve along these ridges.
This is known as holey fitness landscapes [40, 41]] (see also Figure [.2k). This
model holds that landscapes, particularity for higher dimensions, are rather holey
than rugged. This assessment relies upon three postulates. Firstly, the landscape is
mostly formed by networks of genotypes with similar high fitnesses. Secondly, po-
tential lower fitness regions are not targeted by mutational transitions because of the
deleterious effects these mutations would have. Thirdly, even higher fitness is hardly
found in the landscape or it is difficult to access, for instance because of barriers or
detours. Both types of regions apart from the network of similarity are hence hardly
traversed and therefore appear as embedded holes. There is some affirmation for
holey landscapes from analytical [41/]] and computational [88] models, but also sub-
stantial criticism. In particular, holey landscape conjectures that for the dimension
of the landscape getting higher, more peaks are connected by ridges, thus reducing
the relative number of peaks. Computational experiments with the NK landscape
have not confirmed this [|84] (also see Chapter [[8). Apart from these mechanisms
to accomplish valley crossings by mutational pathways, there are strong arguments
that sexual genetic variation and recombination give even more meaningful potential
to escape from local optima (see for instance [80, [130] for further discussions).

On a conceptional level, holey landscapes are closely related to neutral fitness
landscapes (see Figure [L2d). Here, almost all fitness values are equal (or nearly
equal). Hence, mutational transitions happen, but have no effect in terms of change
in fitness. This evolutionary process is also called neutral drift. For landscapes over
a configuration space with a finite number of configurations, mutually accessible
genotypes of equal fitness form a neutral network. Evolutionary dynamics takes
place by population drift along these neutral networks. If peaks define aims for
evolutionary developments, drift is seemingly aimless. However, this appears to be
an oversimplification. Experiments with natural and artificial systems have demon-
strated that there are frequently long periods of evolutionary movement that reveal
no or little progress. On the other hand, these periods of drift are interrupted by
sporadic, sudden and substantial increases in fitness. In other words, we have rare
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leaps between one level of neutrality and another. Recent results both in evolution-
ary biology as well as evolutionary computation have shown that neutrality is a
common feature in fitness landscapes [102, [125, [128]. On a theoretical level these
works are for instance Kimura’s neutral theory of molecular evolution [58] or Eigen
und Schuster’s works on molecular quasispecies [27, 28, 29]. Moreover, neutral-
ity plays an important role in RNA structures [[101), [103], but also in evolutionary
robotics [52, 1112, 113] (also see Chapters[Bland[0). Figure [[.2d not only contains a
neutral region, but also another landscape feature that makes finding the optimum
very difficult: a single narrow peak with virtually no surrounding of increasing fit-
ness serving as its basin of attraction. This is also called isolation or a needle—in—
the—haystack—problem. As there is no information guiding the evolutionary process,
there is no advantage compared to a purely random search.

There are further geometrical features of fitness landscapes that can be seen as
obstructions to the hill climbing process. One is barriers (see Figure [.2k). A bar-
rier encloses and separates local or global optima and prevents uphill evolutionary
paths that could connect them [35,[125]. In terms of the geometrical concepts, bar-
riers combine valleys and basins of attraction. In this sense, valleys surround peaks,
which in turn possess basins of attraction and barriers encloses these basins of at-
traction. In other words, barrier partition genotypic space in the peak’s basins of
attraction. Why this is an obstruction to hill climbing becomes understandable by
looking at Figure[I.2k. If the high peak in the center is surrounded by a circular val-
ley and another hill-like toroidal structure, this toroidal structure acts as a barrier for
the high peak for all evolutionary paths that start from outside the barrier. Of course,
some paths starting from the inner valley may be uphill walks to the high peak. On
the other hand, paths beginning from some other points in the inner valley and from
outside the barrier will climb the toroid, which is a local optimum. To now reach the
high peak is difficult as it requires a valley crossing. For potential solutions to the
valley crossing problem, see the discussion above.

Another geometrical feature that hinders uphill paths is a detour landscape [93,
96)], which is also known as the long path problem [43] (see Figure[L.2). The pro-
cess of hill climbing is exacerbated by the path of increasing fitness being small,
exclusive (illustrated in the graph by the Archimedean spiral in genotypic space),
and sensitive to perturbations. For a mutational trajectory, these properties of long
path problems mean that a walk has to find a precise sequence of mutations, which
is difficult or takes a considerable amount of time. In evolutionary computation,
it has been shown [39, [107] that this problem can be tackled by tailored mutation
schemes.

1.3.2 Computational and Empirical Landscapes

Figure [[.2 provides a catalog of possible topological features in fitness landscapes.
These pictures as instructive as they might be, at the same time also clearly show
the limitation of geometrical conceptualization: it is bound to two dimensions. So,
the natural question to ask is if these topological features and the conclusions drawn
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for evolutionary pathways and predictable outcomes will remain valid if the geno-
typic space is higher than two dimensions. From what we know now it seems that
this is not answerable as a yes—no question. It rather appears that the features are
present for all dimensions but increasing dimension may change what the features
mean. This becomes geometrically imaginable by going down in dimension and
considering one-dimensional slices through the two-dimensional genotypic space
in Figure [L2] For instance it is straightforward to see that the concepts of single
peaks, ruggedness and neutrality have the same meaning in one-dimensional geno-
typic spaces as they have for two-dimensional landscapes. The geometrical features
imply the same transitional movements. On the other hand, ridges between high
fitness peaks are not possible in one-dimensional landscapes. The same applies for
long-path problems. So, it makes sense to ask if the two-dimensional picture of a sin-
gle peaked, or hilly and rugged, or flat and neutral landscape is relevant for higher
dimension. Answers to this question can not come form considering what is ge-
ometrically imaginable. We need to observe the geometry of (higher—dimensional)
computationally created landscapes and observe how empirical landscapes extracted
from biological processes with real informational (information—carrying) molecules
and processes look like.

There is a large number of publications with results from experiments with
computationally created fitness landscapes. On the one hand, there are the fitness
landscapes associated with optimization problems, which can be called problem—
induced landscapes. Alternatively, there are artificially designed landscapes. Par-
ticularly for combinatorial optimization, problems-induced fitness landscapes have
been analyzed intensively. Examples are landscapes for the traveling salesman prob-
lem (TSP) [[78,1116], graph partitioning [[76]], graph coloring [l13], quadratic assign-
ment [23, [77], MAX-SAT [100] or the knapsack problem [122]. Although these
studies have the main focus of giving information for evolutionary solving the prob-
lem most effectively, the results also showed a large variety of landscape features
as cataloged in Figure For instance, for the TSP it was demonstrated that the
symmetric TSP (traveling cost from point i to point j are the same as from j to i)
is rather smooth, while the asymmetric TSP is highly rugged [102,115,[116], while
for the quadratic assignment problem we obtain a rather flat landscape with a signif-
icant degree of neutrality [5, 23] (see also Chapter[9). For continuous (real-valued)
problems, similar numerical results were obtained for a wide class of benchmark
problems [14,70] (also see Chapter[)). All these results have shown that usually the
landscape features do not appear as disjunct as in the conceptualization and often
a mix of features can be observed. This mix of features and therefore a blend of
ingredients for search hardness becomes plausible by considering the no free lunch
(NFL) theorem [21,125,,138]. The theorem states that over all search problems, there
is no algorithm that performs better than others. If search hardness is expressed by
landscape features, then over all fitness landscapes, we should have a blend of fea-
tures. Also, for problem-induced landscapes, there is no clear relation between fea-
tures and dimension. For some problems, the features become more prominent as
dimension increases, for others not. This is one reason for attempts to capture the
essence of landscape features and their interplay in so—called landscape measures,
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refer to [71] for a comprehensive recent survey and outlook on open issues. Next to
these problem-induced landscapes, there are specifically designed landscapes.
Most notable and almost predominant among artificially designed computational
landscapes is Kauffman’s NK landscape [53, 154, I55] (also see [4, 184, 123, [128]
and the Chapters [0 and [I8] for discussions of some recent results). The model has
two parameters, N and K. The parameter N is the string length of a string defined
according to Equation (I.2) and hence sets the dimension of the genotypic space.
The parameter K describes the degree of epistatic interactions among the loci s;
of the string S. The epistatic interactions are specified by setting K neighbors for
each loci s; via a neighborhood function n(s;,K) and defining a fitness contribution
fi(si,n(si,K)) for each locus s; and the K neighbors. The fitness f(S) of a genotype

S is calculated by
1 N—1

f8)= %ﬁ(si,n(si,K»- (1.3)

The fitness contributions f;(s;,n(s;,K)) are defined as realizations of a random
variable uniformly distributed on the interval [0, 1] and hence also depend on the
neighborhood and thus on the interaction parameter K. By varying the interaction
parameter K between 0 < K < N — 1, different degrees of ruggedness can be ad-
justed. It can be shown that for K = 0 we obtain a smooth single peaked Fuji like
landscape, while for K = N — 1 we have maximal ruggedness as in a house—of—cards
landscape. The NK landscape can be modified to include neutrality, which is called
NKp landscapes [9]. For the NK landscape there also exists some analytic results
regarding the number of local optima [26,|56].

Another computational model of fitness landscapes is the rough Mt. Fiji (RMF)
model [3, 137, 121]. This model has three parameters: a reference string Sy, a drift
parameter ¢ and a random distribution 1. The fitness f(S) of a genotype S is

f(8) =n(S) —c-du(8,So), (1.4)

where dy (S,Sp) is the Hamming distance between genotype S and reference geno-
type So, and 1(S) is a realization of the random variable 7] that is for each genotype
S in the landscape independent from the realizations of all the other genotypes. If we
set the drift parameter c to zero, we obtain the house—of—cards scenario, where each
fitness is random and independent from and uncorrelated to the fitness of neigh-
boring genotypes. We hence have maximum ruggedness. For values of ¢ becoming
larger, we pass through different degrees of ruggedness which finally leads to a Fuji
landscape with a peak at the reference genotype Sy.

A third alternative artificially designed landscape is the block model [86,90]. It
also considers strings S defined according to Equation (I.2) with length N and as-
sumes that the string is divided into B blocks of equal length u = 11;' and 1 <pu <N.
Each block epistatically interacts with other blocks and delivers a fitness distribution
fi(n),i=1,2,...,B which is independently taken from a random variable uniformly
distributed on some finite interval. The fitness f(S) of the string S is the sum of the
block fitness distributions:
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B
f(8) =" filn). (1.5)
i=1

Similar to the NK landscape of Equation (I.3), the fitness correlation between neigh-
boring strings (and hence the ruggedness) can be tuned; for the block model in
Equation (I.3) by the length u of the blocks. For p = 1, the landscape is maxi-
mally random and has maximum ruggedness. For 4 = N, the landscape is smooth
and has a single global optimum. For intermediate values of u, different degrees of
ruggedness can be composed. Despite the similarity between the block model and
the NK model, it has been pointed out that the block model has an interesting statis-
tical property that the NK model has not [86,90]. Because the NK model calculates
fitness as an average of N contributions, its fitness distribution becomes normal due
to the central limit theorem effect. The variance of this distribution decreases as N
increases. This effect is also observable in the block model for the block number
B growing large, but much weaker than in the NK model. The landscape models
given with Equations (I.3), (I4) and (L.3)) are artificially designed to have the land-
scape features discussed in Section [[.3.1] and even allow tuning important aspects
such as ruggedness and neutrality. This gives raise to tunable fitness landscapes.
Hence, these artificially designed landscapes can be used as theoretical background
and comparison for empirical studies of fitness landscapes.

An empirical approach involves to carry out step—wise mutational evolution of
molecular functions. Hence, molecular evolution allows measuring the fitness effect
that experimentally induced mutations have [67, |68, 96]. For instance, such exper-
iments have been done for catalytic RNA [93], viruses such as HIV-1 [62], bacte-
ria such as methylobacterium extorquens [15], B lactamase (67, 96], escherichia
coli L1, 31}, l61] and escherichia coli lac [87], and fungi such as aspergillus
niger [22,137] and saccharomyces cerevisiae [44,163].

According to a recent survey of empirical fitness landscapes by Szendro et
al. [121]], studies of microbiological evolution can be categorized into three groups.
A first group comprises of studies that focus on establishing local ruggedness of
landscapes by observing the repeatability of adaption in evolution experiments and
a second group intends to detect sign epsistais between mutations to conclude local
ruggedness. In other words, the works in these two groups of publications observe
evolutionary processes and draw conclusions regarding topological features of the
underlying fitness landscape. A third group tries to evaluate the fitness (or a fit-
ness proxy) for all 2¢ combinations of a small set of ¢ mutations. For the fitness
landscapes in the third group, qualitative measures of the landscape were calcu-
lated [121]. These qualitative measures are statistical landscape measures that show
ruggedness and epistasis and are, in principle, suitable to match empirical landscape
to landscape features. The results have shown that only a small number of the empir-
ical landscapes available now allow for some (rather preliminary) conclusions. For
instance, the landscapes of methylobacterium extorquens and B lactamase appear
rather smooth, escherichia coli lac even Fuji-like single peaked, while the land-
scapes for HIV-1, aspergillus niger and saccharomyces cerevisiae are much more
rugged. As pointed out by Szendro et al. [121]], this might be caused by differing
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aims in the underlying studies. Works that studied deleterious mutations tended to
obtain more rugged landscapes, while beneficial mutations yielded smoother land-
scapes.

In conclusion, studies of empirical fitness landscapes still only cover a small frac-
tion of the space of possibilities that the genetic coding of even very simple forms of
life such as viruses, bacteria and fungi offers. One of the reasons for difficulties in
mapping more extended empirical landscapes is that the fitness effect of a mutation
may be subject to epistasis [91]]. Epistasis refers to the fact that the fitness associ-
ated with a mutation depends on the genetic context, that is the presence or absence
of other mutations. Epistasis renders generating empirical fitness landscape com-
binatorially complex as the fitness effect of a mutation on one locus is influenced
by the interaction of (possibly a larger number of) other loci [37]. Measuring these
effects goes to the limits of current capacities in sequencing technology. However,
extending our knowledge about empirical landscapes is not only promising, but also
mandatory for clarifying the value of fitness landscape for providing a framework
to predict evolutionary paths and explain evolutionary development — general scien-
tific understanding is that the value of a theoretical framework can only be decided
by real-world experiments.

1.4 Concluding Remarks

In this chapter, fundamental concepts and notions of fitness landscapes have been
studied. Based on a brief discussion of the origin of landscape paradigms, major
motivations to use fitness landscapes have been presented and mathematical descrip-
tions of fitness landscapes have been introduced. Fitness landscapes bring together
genotype, phenotype and fitness and establish relationships between these three
quantities. Differences in fitness over genotypic or phenotypic space result in non—
trivial fitness landscapes featuring the peaks, valleys, ridges and plateaus known
from two—dimensional visualizations of the landscape metaphor. These topologi-
cal features, in turn, define evolutionary pathways that a succession of evolutionary
transitions (mutational or recombinatorial or otherwise) is likely to follow. Hence,
the structure and topology of a fitness landscape defines potential for evolutionary
dynamics and is a predictor of evolutionary outcomes. In this chapter, it has been
discussed that establishing such predictions is interesting in evolutionary biology as
well as in evolutionary computation. Notably by using computational and empirical
landscapes, questions such as the likelihood of a particular evolutionary process (as
in evolutionary biology) or the expected performance and behavior of an evolution-
ary search algorithm (as in evolutionary computation) become addressable.

Static fitness landscapes as discussed in this chapter and formally introduced by
Equation (L) are a rather straightforward model of the forces underlying evolution-
ary dynamics, but a necessary question is whether the model accurately describes
the relationships between genotypes, phenotypes and fitness in the real world. An-
swering this question is outside the scope of this introductory chapter, which has
been focused on the implications of a given landscape. A first issue is that at least a
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considerable number of realistic fitness landscapes are not static in the sense that the
relationship between genotype, phenotype and fitness is constant over evolutionary
time. Part III of this book in entirely concerned with landscapes that are dynamic,
particularly refer to Chapter[1Ql for an introduction to and overview on dynamic fit-
ness landscapes. A second issue is if the picture of ‘one genotype, one phenotype,
one fitness value’ painted by the static landscape metaphor is really sufficient. Re-
cent experimental and theoretical findings about information transfer in biological
systems indicate otherwise. For a discussion about the second issue and an outlook
to future questions and issues of fitness landscapes refer to Chapter[I9 of this book.
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Chapter 2

Fundamental Principles of Control Landscapes
with Applications to Quantum Mechanics,
Chemistry and Evolution

Herschel Rabitz, Re-Bing Wu, Tak—San Ho, Katharine Moore Tibbetts,
and Xiaojiang Feng

Abstract. The concept of a landscape or response surface naturally arises in ap-
plications widely ranging over the sciences, engineering and other disciplines. A
landscape is the desired output as a function of a set of input variables, often of very
high dimension. The relationship between the features of a landscape and the input
variables is usually unknown a priori and often thought to be highly complex due
to the anticipated intricate interactions involved. This chapter reviews recent devel-
opments in the analysis of landscape topology with the input variables considered
as controls. Taking a control perspective allows for the specification of particular
assumptions whose satisfaction permits a general analysis of the landscape topol-
ogy. Satisfaction of these conditions leads to the conclusion that control landscapes
should be devoid of suboptimal critical point traps, thereby permitting ready ex-
cursions without hindrance to the highest values of the landscape. These principles
are set out in a general framework and then specifically illustrated for applications
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involving control in quantum mechanics, chemical and material science, and in nat-
ural and directed evolution. Perspectives are given on the significance of these find-
ings and potential future directions for additional analysis of landscape principles.

2.1 Introduction

Virtually any quantitative application in the sciences and engineering may be ex-
pressed in terms of a specified set of input variables and an associated observable
system response in the laboratory or in a natural setting. A thorough understand-
ing of the landscape defining such input—output relationships is of fundamental as
well as practical significance, especially when the goal is to find an optimal out-
put. Whether optimization or just a basic understanding of the landscape features
is the ultimate goal, it is natural to consider the landscape in a control framework.
In this fashion, a landscape can be viewed as a function of the control variables
with a prime consideration being identification of the landscape topology. Various
application domains employ distinct terminology when treating input—output rela-
tionships. This chapter will consistently refer to the output as a landscape, which
is a map from the input control variables to the output. Following standard practice
in the literature this chapter will often refer to control landscapes, which should be
understood to mean control-dependent landscapes.

There is a vast literature on landscapes in science and engineering largely devel-
oped independently, likely with consideration that per se, the nature of the landscape
topology should be application specific. This Chapter considers recent research tak-
ing a generic perspective on landscape topology with the aim of establishing whether
a broad foundation may exist transcending any particular application. Importantly,
this research demonstrates that a general assessment may be carried out for con-
trol landscape topology upon satisfaction of three basic physical and mathematical
assumptions set out in Section[2.21 We refer to this overall analysis as Optimal con-
trol in the Sciences (OptiSci). The subsequent sections cover the specific aspects
of these general principles realized in the control of Quantum phenomena (OptiQ
in Section 2.3), Chemical and material science (OptiChem in Section 2.4) and in
natural and directed Evolution (OptiEvo in Section[2.3)). Many mathematical chal-
lenges remain for the analysis of control landscapes, but the basic principles have
been set out. Extensive experimental and simulation evidence for OptiSci supports
the broad validity of the underlying assumptions and their conclusions regarding
landscape topology, and a summary of the supporting evidence for OptiSci is given
in the chapter. Sections[2.2] to[2.3]use terminology and notation particular to control
theory and each type of application. The reader is referred to the cited literature for
further mathematical and scientific details. The specific application domains treated
in this paper (except for natural evolution) are considered in the context of labora-
tory optimization. Natural evolution is an optimization process as well, but carried
out stochastically by Nature. The common landscape topological character found in
all domains of OptiSci in Sections 2.3]to has fundamental and practical signifi-
cance. Finally, concluding remarks are given in Section 2.6
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2.2 Basic Foundations of OptiSci

Many aspects of science and engineering can be expressed in terms of cause and
effect relationships. The field of control is motivated by the desire to exploit such
relationships and alter a system’s outcome. This work will address three classes of
control processes whose general characteristics are listed in Table 2.1k

Table 2.1 Scope of OptiSci

Domain Control Objective Outcome
quantum mechanics electromagnetic field state transformations
(OptiQ)

chemistry & materials reagents, processing conditions synthesis yield, properties
(OptiChem)

natural & directed evolution genes, genotypes fitness

(OptiEvo)

A control landscape is the mapping from the cause (control variables) to the ef-
fect (objective outcome). When the control and the outcome can be quantitatively
described, the landscape is specified as a function of the control variables. The con-
trol landscape can correspond to a natural process (e.g., the fitness landscape in
natural evolution) or a scientific venture willfully executed (e.g., a chemical reac-
tion controlled by shaped laser pulses). Nature utilizes a stochastic search on evo-
Iutionary landscapes seeking the highest fitness for a species population, while in
the laboratory any of a variety of algorithms may be utilized to explore landscapes
for the best control outcome. In all cases the features of the control landscape are of
fundamental importance to understand the complexity of seeking optimization. In
the following, we will introduce the optimization over landscapes in classical and
quantum mechanical frameworks. The control landscape will be defined in the so-
called kinematic and dynamic pictures based on three assumptions, which enable a
complete identification of the topological features of the landscapes.

2.2.1 C(lassical and Quantum Control Landscapes

A large class of physical, chemical and biological phenomena may be expressed
as dynamical control systems. For example, a classical particle is described by its
momentum p and position g, which may be controlled by an external field or force.
More generally, from a statistical perspective, the state of a large ensemble of iden-
tical classical systems or a single classical system driven by stochastic noises can
be described by a (nonnegative) probability distribution function p' over the phase
space of ® = (p,q). The positive distribution function p®, which is governed by a
dynamical equation (e.g., a Fokker-Planck equation [26]), can be taken as a func-
tion of the control ¢ (in some properly defined space %). The average value of an
observable O(w) at time T is then given by
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forming the classical control landscape. The objective is to find a suitable optimal
control ¢* that maximizes J(c).

The quantum mechanical landscape description parallels that of a classical en-
semble. Suppose that the quantum system possesses N discrete levels, correspond-
ing to an N-dimensional Hilbert space .# = CV. The state of an N-level quantum
system is represented by a positive, unit trace N x N density matrix [14], which
belongs to the following set

Dy = {pm e CVN  pd™ >0 Tr(pd™) =1}. (2.2)

Driven by some control ¢ (e.g., a tailored laser field [23]) under the laws of quantum
mechanics (see Equations (2.7) and (2.8) in Section2.3), the density matrix evolves
from some initial state p; " to the final state p;™ (c).

Physical observables in a quantum system are represented by Hermitian operators
O on the system’s Hilbert space 7Z°. A wide range of control problems for quantum
systems can be formulated as maximization of the expectation value of a suitable
target operator O. The goal is to find an optimal control ¢* which maximizes the
expectation value (O)7 = Tr[p;" O] at the final time 7. The corresponding quantum
mechanical objective landscape function J9™ is

J™ () = Tr[pd™(c) 0. 2.3)

A common feature shared by the classical and quantum optimal control formulations
is that the function J depends on the controls through the final state pr(c), either as
pgi(e) or p7™(c). This shared character forms the basis for the following landscape
analysis.

2.2.2 General Features of Control Landscapes

The set of admissible controls form a function space %, which, under more general
circumstances, can be any topological space (e.g., a Boolean space or a differen-
tial manifold). The control landscape is formally defined as the mapping from the
control variable ¢ € ¢ to a (scalar) outcome J(c¢), which is a function(al) of ¢ (see
Figure[2.1)). There are circumstances where competing multiple objectives arise, but
they will not be treated here. Thus, we consider optimal controls as maximizing the
scalar quantity J.

To analyze the landscape properties, we may Taylor expand J in the neighbor-
hood of any c € %":

J(e+8¢) =J(c) + (VJ(c),5c)e + ; (8¢, H,(c)5e)e + O(]|8¢|?), 2.4)
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Fig. 2.1 A schematic illustration of a control landscape with two control variables denoted as
xj and x;. The landscape can be viewed as the (two-dimensional in this case) curved surface in
the (three-dimensional) product space of the yield and the space of control parameters. The
surface forms the graph defined in Equations 2.I) and (2.3). The landscape’s yield J runs
from 0.0 to the maximum value of 1.0. The various classes of extrema A-F reflect differing
ease of discovery and robustness properties. Adapted from ].

where ¢ is a small perturbation and (-, ) refers to a suitable inner product in the
tangent space of € at c. A critical point at ¢ € € is where the gradient VJ(c) = gé
vanishes.

The term quadratic in 8¢ in Equation 2.4) involves the Hessian operator H(c).
Most critical points can be identified as either locally maximal (when all of the Hes-
sian eigenvalues are negative), locally minimal (when all of the Hessian eigenvalues
are positive) or locally a saddle (when positive and negative Hessian eigenvalues
co-exist). For the critical points where there are either only positive, or negative, or
zero eigenvalues (i.e., a semi-definite Hessian), higher-order Taylor expansion terms
may be needed for identifying the type of the critical point) [18].

The optimization procedure can be envisaged as hiking over the landscape (see
Figure[2.T) towards the highest peak, which corresponds to a global maximum point.
An important goal of control landscape analysis is to assess whether local subop-
timal maximum points exist, which could trap a search seeking the best outcome.
Saddle points will not trap the search, but they may hinder the effort to find an op-
timal solution. The existence of traps and saddle points can greatly affect the algo-
rithmic efficiency of finding an optimal solution from a neighboring initial point on
the landscape. Thus, a major goal of landscape analysis is to address the following
questions:

How many locally maximal points exist?

How many globally maximal points exist?

How can knowledge of the landscape topology aid in the design of efficient opti-
mization algorithms?

A full answer to all of these questions is not at hand, but much can be said now
about these issues under certain assumptions discussed below.
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2.2.3 Landscape Mapping

In physical, chemical and biological processes, the landscapes are in general difficult
to analyze due to their dimensions and high nonlinearities. One can facilitate the
analysis by mapping the landscape to another space 2" via ¢ : € — 2 . Denote
J =Jo ¢ as a composition such that J(¢) = J[¢(c)] for any ¢ € €. Going from J(c)
to J(¢) is a landscape mapping induced by ¢ : € — 2.

For example, ¢ is referred to as the end-point map for dynamical systems dis-
cussed in OptiQ. Here J(¢) is called the dynamic control landscape which depends
on the system evolution, while J(¢) is the kinematic control landscape and only de-
pends on the final state. Determining the landscape topology can be difficult in the
dynamic picture, but it is frequently much simpler in the kinematic picture because
J is often linear in 2~ and lower-dimensional. The corresponding critical points are
referred to as dynamic or kinematic.

Here we seek to extract the landscape topology of a complex dynamic control
landscape from the corresponding kinematic landscape. This analysis can be per-
formed through the linkage of the critical points in the two landscapes by the chain

rule: .
i /dJ do
= = 2.
de <dx|"¢<°>’dc> 0 (2-5)

where d¢ /de is the Jacobian of the mapping ¢ at c. If xo = ¢(cp) is a critical point
of J, i.e., gi = 0 at x¢, then the corresponding ¢y € ¥ must also be a critical point
of J because Equation (Z.3) implies that gﬁ = 0 at ¢y. But, the reverse is not neces-
sarily true unless the Jacobian ﬂf at ¢g is non-singular, i.e., the rank is exactly the
dimension of 2. Elements in % that make the Jacobian rank-deficient are called
singular, otherwise they are referred to as regular [69].

Circumstances where regularity applies guarantees consistency between the crit-
ical conditions in the two mapped landscapes. This conclusion can be understood
from the following relationship

o) = (G l) 0 ) 26)

between the Hessian forms in the two pictures, where the right hand side can be
taken as a congruent transformation of H;(¢) when both 2" and € are finite di-
mensional. It can be shown from linear algebra that the eigenvalues of Hj(c) and
H;(¢) have identical signs (not necessarily their magnitudes) when the Jacobian i‘g
is full rank. This implies that the numbers of positive and negative eigenvalues are
preserved when the landscape mapping is regular at a critical point, which deter-
mines the nature of optimality to second-order. Thus, xo = ¢(cg) is a second-order
maximum (minimum or saddle) of J if and only if ¢ is a second-order maximum
(minimum or saddle) of J. The number of zero Hessian eigenvalues is usually dif-
ferent in the two spaces, reflecting the different “size” of the critical set in each
space.
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2.2.4 Requirements for the Existence of Trap-Free Landscapes

In the following application oriented sections of the paper, the mapping described
above will be used to simplify the landscape analyses. For example, in OptiQ, the
mapping from the space of control fields to the state space will be employed.

A landscape mapping from J(c¢) to J(¢) preserves the landscape topology if and
only if the following three assumptions are satisfied:

Assumption (1): The system is controllable such that for every point x € 2, there
must exist some ¢ € € such that ¢(c¢) = x. In a dynamical system, this condition
guarantees that every final state is reachable at some sufficiently long time.

Assumption (2): Every critical point in ¢(%’) that is mapped from % to 2" is regu-
lar, i.e., the Jacobian is full rank. This surjectivity condition implies that locally the
search for optimal controls can be conducted along any direction in 2~ after being
mapped from %. This condition guarantees that every dynamic critical point must
correspond to a kinematic critical point with the same optimality type.

Assumption (3): No restrictions are placed on the control. This (strong) demand
assures full access to reachable points on the landscape.

The detailed assessment of the Assumptions (1), (2) and (3) above and landscape
analyses differs across OptiQ, OptiChem and OptiEvo. The assumptions may be
either difficult or easy to satisfy in practice, depending on the application. In this
regard, the most stringent is Assumption (3), and in practice all of the assumptions
may be relaxed while still finding a favorable landscape topology consistent with
the formal analysis. The practical applications clearly demonstrate this point. Under
satisfaction of the strict assumptions above, we will prove in various ways within the
following sections that, despite the many differences in the applications, all OptiSci
landscapes are trap free, i.e., there are no local suboptima trapping extrema. This
conclusion provides strong support for interpreting the large number of observed
landscapes and successful optimization experiments in quantum control, chemistry
and biological evolution.

2.3 Optimal Control of Quantum Dynamics (OptiQ)
2.3.1 Background

Employing electromagnetic fields to control quantum dynamics is an active area of
research with many potential applications in physics, chemistry, information sci-
ence and biology [7]. Advances in ultrafast laser technology along with flexible
pulse shaping capabilities [62] has enabled successful control of broad varieties of
quantum phenomena. Regardless of the particular quantum control application, a
main goal of Optimal control of Quantum dynamics (OptiQ) is to achieve the best
possible results, while also working with inevitable laboratory constraints. This per-
spective has led to performing Optimal Control Experiments (OCE) as the means
to attain the best outcomes [8].
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The underlying principle for realizing OCE grew out of extensive groundwork
from quantum Optimal Control Theory (OCT) calculations on model systems [30,
43, 156], which continues to serve as an indispensable guide to controlling phys-
ical phenomena. Any successful control in the laboratory must be able to handle
many uncertainties, including insufficient knowledge about typical complex sys-
tem Hamiltonians and the practical difficulty of generally performing high qual-
ity numerical designs for the controls. The implementation of closed-loop learning
control [25] is a practical and effective scheme to carry out OCE under these cir-
cumstances. Such experiments started in 1997 [3, 4] and their number has steadily
grown with various applications [7]. Recent OCT and OCE developments indicate
that there may be a systematic “chemistry” associated with shaped laser pulses act-
ing as “photonic reagents”. Despite having a fleeting existence, photonic reagents
can permanently alter quantum states and transform molecules and condensed phase
materials.

Quantum optimal control seeks to find a field £(z), ¢ € [0,T] to steer a particular
quantum system from an initial state |y(0)) = |y;) (or p(0) in the density matrix
formulation) to some target state |y(7')) (or its density matrix analog p(7')), which
maximizes the expectation value (y(7T)|O|y(T)) (or Tr{p(T)O}) of the chosen
target observable O. The common assumption is that evolution with the free Hamil-
tonian Hy alone can not satisfactorily reach the objective. Thus, the photonic reagent
£(t) is needed to redirect the dynamics described by the time-dependent Schrédinger
equation, which often has the form

lhgt lw(1)) = [Ho — pe(®)lly (1)), lw(0) = |vi), 2.7

where 1 = /—1 and u is the dipole moment operator.

Many OCEs involve highly complex systems with rich Hamiltonian structure that
is not known in quantitative detail. For example, the multidimensional potential en-
ergy surface V(R,r) residing in the Hamiltonian term Hy can depend on both the
nuclear coordinates R and electronic coordinates r when the applied field simul-
taneously controls multiple atoms or electrons. The adaptive feedback OCEs auto-
matically take into consideration all of the relevant potential energy surface details
(and limits on the available lasers) for determining an optimal field. However, these
considerations alone do not explain the observed ease in finding optimal controls
over quantum phenomena.

2.3.2 Basic Assumptions Regarding Quantum Control
Landscapes

The success in readily finding optimal controls of various quantum dynamical pro-
cesses can be understood by consideration of the quantum control landscape [21,
22, 144, 146], which is the expectation value J[e(-)] = (y(T)|O|y(T)) of the ob-
servable O as a function of the control field £(7). In the more general case of the
density matrix, J[e(-)] = Tr{p(T)O}. Extensive research has been carried out to
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understand the properties of quantum control landscapes for the manipulation of
arbitrary N-level quantum systems. Although the energy spectrum of a typical
molecule is composed of both discrete bound rotational-vibrational-electronic en-
ergy levels and continuous ionization/dissociative channels, in practice, it may be
modeled in a finite-dimensional Hilbert space. Thus, we assume that the molecule
under analysis can be adequately represented by a finite number of N energy lev-
els, for example, via proper discretization of continuum states. Despite the fact that
each molecule is uniquely characterized by its Hamiltonian Hy and dipole moment
U, theoretical analysis shows that quantum control landscapes should have a uni-
versal quality that is only determined by the initial state |y/(0)) of the molecule and
the nature of the observable operator O. This result suggests that a broad founda-
tion must be behind the ease of finding effective quantum controls, regardless of the
complexity of the quantum system. The above conclusion rests on satisfaction of
the three basic Assumptions of OptiSci in Section[2.2] expressed here in the context
of OptiQ:

(1) The quantum system is controllable [23, 47, 52, |68]: The quantum system
described by Equation (2.7) evolves on the N X N unitary matrix group U(N)
and is controllable if it can be driven from any initial state |y;) to any desired
final state |yy) in some sufficiently long time. This is possible if the Lie algebra
generated by the field-free Hamiltonian Hy and the dipole moment u via their
nested commutators coincide with the Lie algebra associated with the unitary
matrix group U(N).

(2) The control end-point map is surjective [69]: The functional derivative of the
underlying control end-point map &(-) — |w(T)) (or p(T)), given the initial
state |y(0)) (or p(0)), is of full rank. The resultant end-point map is surjective
and the corresponding control £(¢) is regular. Surjectivity assures free move-
ment around any local end-point on the landscape.

(3) The control field is not constrained [39,45]: The control field £() is allowed
to have an arbitrary form to eliminate artificially introduced constraints on mov-
ing over the landscape.

The satisfaction of Assumption (1) for pure state-to-state N-level optimal control
problems implies that some control exists to reach the target state |y/y) at a suitable
time T from |y(0)) = |y;) at r = 0. Although exceptions to fulfillment of this as-
sumption can be found, mathematical and physical analysis suggests that most finite
dimensional quantum systems are likely to be controllable.

Assumption (2) requires that the rank of the functional derivative 8p(T)/de(r)
be full. For pure state transition probability control problems, this assumption re-
quires that 6p (T)/d¢e(t), with p(T) = |w(T)){w(T)|, possess a rank of 2N — 2. As-
sumption (2) is equivalent to stating that a differential change in the state 6p (T') at
the final time has a corresponding differential control 8&(¢) producing it. Although
this assumption could be violated by so-called singular controls, their occurrence
seems to be rare.
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Assumption (3) assures access to all electromagnetic resources. In practice, how-
ever, the controls only need to be sufficiently unconstrained in order to address all
the necessary transitions to create the desired final state.

Collectively, satisfaction of the Assumptions (1), (2) and (3) provides the condi-
tions for generically assessing the topological nature of quantum control landscapes.
The conclusion of this analysis is that suboptimal local maxima forming traps should
not exist on quantum control landscapes. A trap is a local submaximal value of the
objective J[g(-)], from which it is not possible to climb further on the landscape to a
higher value through small variations of &(r) guided by a myopic algorithm (e.g., a
gradient based procedure). Rigorously establishing that the three assumptions above
are satisfied in any particular case is difficult. But, it is plausible to expect that these
assumptions should be fulfilled, likely including Assumption (3) to a practical de-
gree, in many applications, especially as control resources become richer. Accepting
satisfaction of the assumptions, the resultant conclusion about the trap free nature
of the quantum control landscape topology can be tested in simulations and in the
laboratory.

2.3.3 Quantum Control Landscape Theory

Consider a generic observable (Hermitian operator) O, with the corresponding
N-level quantum dynamical control problem posed as follows: Find a control
field e(r) over period T such that the initial density matrix p(0), Tr{p(0)} =1,
can be transformed by the corresponding propagator U(T,0) to form p(T) =
U(T,0)p(0)UT(T,0) which maximizes the expectation value (O(T))=Tr {p(T)O}.
Here the propagator U (z,0) satisfies the equation

0
ih atU(t,O) = [Ho — ne(r)]U(¢,0), U(0,0) =1 (identity operator). (2.8)
The quantum control landscape [21, 122, 144, 146] is defined as a functional of the
control field £(¢) overt € [0,T]:

J[e()] = (O(T)). 2.9

The essential features of J[g(-)] are its critical points where the first-order functional
derivative (gradient) satisfies

=0, vt €[0,T]. (2.10)

The characterization of a critical point with the field £(¢) is revealed by analyzing
the spectrum of the landscape curvature (Hessian), §2(O(T))/8&(t')Se(t). The crit-
ical points satisfying Equation (2.10) may correspond to global extrema (maxima or
minima) or local (suboptimal) values of J[g(-)], which may be either traps or sad-
dles. Assessment of the latter prospects is of prime interest in OptiQ. The gradient
6(O(T))/de(t) can be written as
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Yoot = 4T p©).0()] k(o). @1

where O(T) = UT(T,0)0U(T,0) and u(t) = U'(¢,0)uU(¢,0), and the Hessian of
the cost functional (O(T)) is

2
5‘1(%;?&) =- hlzTr{[p(OL [OT),u( )] u@)}, ' 20 (2.12)

Here we have introduced the commutator definition [A,B] = AB — BA for any two
operators A and B.

Considering that all three assumptions above are satisfied, then p () in Equation
(2.10) should be a matrix whose elements are linearly independent function of time.
Thus, the dynamic critical point criterion 6(O(T))/8e(¢) = 0 V¢ € [0,T] reduces
to the kinematic one [p(0),0(T)] = 0 [22,169] for a specific unitary transformation
U(T,0). Given the initial density matrix p(0) for an N-level quantum system, a
control is called regular when the rank Rg 0) of the functional derivative

652(({)) - ,;U<T70){[u(t),P(O)]}UT(T,O) (2.13)

of the end-point map (defined in the neighborhood of the control field £(+))
EPOT : g(.) s p(T), &(-) € £2[0,T] (2.14)

is of full rank, otherwise, it is called singular [69]. For pure state-to-state regular
controls, given p(0) = [i)(i| as the initial density matrix, 6p(T)/8€(¢) is of rank
2N — 2, corresponding to the case that the real and imaginary parts of the (N — 1)
dipole matrix elements (i|(¢)]k), 1 < k # i < N, form 2N — 2 independent real
functions of time ¢ € [0,T].

Consider the common case that the initial density matrix describes a mixed state
of the form

N
pO) =Y pili)(il, Y pi=1, pi=pr>-=pn=>0, (2.15)
i=1

where |i)’s are eigenstates of Hy. The rank Rg’(o) of 0p(T)/0e(t) is at most equal
to the dimension Dg ) of the corresponding reachable set &'(p(0)), given the initial
density matrix p(0), i.e. Rg(o) < Dg«)) [69,11]. For example, ng) is at most 2N — 2
when p(0) is a pure state (e.g., p; # 0 and py = --- = py = 0) and at most N> — N
when p (0) is fully non-degenerate (i.e., p; # p; # 0Vi # j). Note that D];;,(O) =2N-2
in the former case and DII;' 0= N? — N in the latter case, respectively.

At kinematic critical points, since p(0) and O(T') commute, we arrive at O(T) =
> Ai(T)|i)(i], where A, (0) > --- > Ay (0) > 0O are eigenvalues of the initial observ-
able O, arranged in a descending order (assuming that O is positive semi-definite
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without loss of generality). The eigenvalues A (T),---,An(T) of O(T) at the kine-
matic critical point are particular permutations of the eigenvalues A;(0),---,Ax(0)
prescribed by the evolution of the system under the control field £(¢). In this fashion
the propagator U(T,0) acts as a permutation matrix that rearranges the ordering of
the eigenvalues of O at time 7. Specifically, we find that (1) U(7T,0) is an N x N
identity matrix at the global maximum, (2) U(T,0) is an anti-diagonal unit matrix
that renders the permutations i — N —i+ 1 foralli=1,2,--- N at the global mini-
mum, and (3) U(T,0) is a particular permutation matrix at each local critical point.
There are at most N! allowed critical-point values of (O(T')) specified by [22]

N
)) = piri(T), (2.16)
i=1

where p; > --+ > py > 0 for the eigenvalues of p(0), and {A;(T)} is appropriately
permuted at each critical point. From Equation (Z.16), the expectation value (O(T))
is bounded by the relation [22,/59]

N N
(O(T)) min = zpikN—H—l(O) <A(O(T)) <(O(T))max = Zpili(o)- (2.17)
=1

i=1

The topology of the control landscape at the kinematic critical points may be an-
alyzed via the corresponding Hessian, which is inherently separable (degenerate)
and possesses a finite number of non-zero eigenvalues, i.e., at most either 2N — 2 or
N? — N, depending on the dimension of the reachable set &(p(0)) associated with
the initial density matrix p(0). The Hessian with respect to the dynamic control at
the kinematic critical points is [22]

52< ( ) _ 2 N N

x {sn () )R] ) + S OS] } 2.18)

where R and 3, respectively, denote the real and imaginary parts of a complex
number. Consequently, we have A;(T) — A;(T) = A;(0) —A4;(0) > 0 Vi < j at the
global maximum and A4;(T) — A;(T) = Ay—i+1(0) — Ay—j3+1(0) <0 Vi < j at the
global minimum. Moreover, since the set { A;(T) — A;(T) | 1 <i < j < N} consists
of both positive and negative numbers, all local suboptimal critical points corre-
spond to saddles (and are trap-free).

2.3.4 Simulated Excursions over Quantum Control Landscapes

Carefully performed numerical studies of controlled quantum dynamics can be valu-
able for assessing the validity of the landscape analyses based on the Assumptions
(1), (2) and (3) discussed above. Recently extensive numerical simulations have
been performed to study this matter, especially, for the control of the state-to-state
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transition probability P, ;(T) = |(f|U(T,0)li) * [39]. The simulation models con-
sidered from 2 to approximately 100 states. Remarkably, controlling complex quan-
tum systems appears to be no more difficult than controlling simple ones, where
the level of difficulty is expressed in terms of the number of iterations required
to converge on the target objective. Using a gradient-based algorithm [S1] these
detailed simulations involved approximately 5000 cases and all tests reached per-
fection for the objective to at least three decimal places upon paying due attention
to numerical details. Similar results were observed for optimization of the control
objective of generating a transformation U(T,0) that matches a target unitary ma-
trix W [35]. This objective may be measured by considering the fidelity function
J = ||W —U(T,0)||%. In the latter study, approximately 20000 tests were performed
on quantum systems with 2 to 16 states, and each optimization converged to a fi-
delity value of J < 107°.

Although more studies are still necessary, these results are consistent with the
three basic assumptions leading to the conclusion that quantum control landscapes
are generally expected to have a trap-free landscape topology. A key limiting fac-
tor is the requirement of Assumption (3) for free access to all essential control re-
sources. While not an issue in computer simulations, there will always be a need for
further control resources in the laboratory, especially when treating complex sys-
tems. In some cases more bandwidth and energy may suffice to meet the control
needs of Assumption (3). But, even subtle resource limitations can become impor-
tant in some circumstances [40].

2.3.5 Experimental Excursions over Quantum Control
Landscapes

While thousands of carefully performed numerical simulations have successfully
reached the highest landscape values with ease, direct exploration of control land-
scapes in the laboratory has only just begun. To this end, it is important to consider
that in the laboratory many factors (e.g., noise, inhomogeneities, and, especially,
constraints on the controls) enter beyond those that arise in simulations. Such con-
straints can have important consequences by possibly imposing artificial boundaries
that limit movement over the control landscape and lead to a reduction of the at-
tainable control yield. For example, Figure 2.2] shows the laboratory data for the
quantum control landscape of a filtered Second Harmonic Generation (SHG) sig-
nal [50]. The results show that the landscape is free of traps provided that constraints
are not placed on the control variables. But, the figure also shows that constrained
paths (i.e., a violation of Assumption (3)) over the landscape can produce artificial
traps.

A particularly important finding from the landscape analysis concerns the rank of
the Hessian 62P;_, 7(T)/8€(t')8&(t) at the top and bottom of the transition probabil-
ity landscape J[g(-)] = P, ¢(T'). The analysis [22,44, 46] shows that there exist at
most 2N — 2 routes off the top of the landscape (i.e., P,-_>f(T) = 1.0) and at most two
routes up from the bottom (i.e., P,—, y(7') = 0.0) for a quantum system with N states.
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a(10'fs?)

Fig. 2.2 Experimental trap-free quantum control landscape for filtered second harmonic
generation signal S(a,¢) as a function of quadratic and quartic chirp control field coefficients,
a and c. The key landscape topological features are preserved by this form of the control field.
Color is used here to accentuate the landscape features, and it maps onto yield in a one-to-
one fashion. Shown are five trajectories i,-- - ,v placed onto the experimental landscape after
acquiring the data. The control landscape possesses a single global optimum that may be
reached monotonically by following the curvilinear channels that slice through the landscape.
Two such curvilinear channels are indicated by the black and orange trajectories (Adopted
from Figure 4 of [@]),

At both landscape extremes the routes are specified by the associated eigenvectors of
the Hessian with non-zero eigenvalues. Importantly, the numbers of non-zero eigen-
values of the Hessian, at the top or bottom of the landscape, does not depend on the
quantitative details of the Hamiltonian, besides the need to fix Assumptions (1) and
(2) of OptiQ. Although the Hessian is infinite dimensional (i.e., time or frequency is
continuous), in practice it would be of finite size through digitization of the control
field in the laboratory. An experimental test of the Hessian spectral predictions at the
top and bottom of the P,_,#(T') landscape was performed in atomic Rb vapor, and
the results were found to be fully consistent with the theoretical predictions 149].
Finally, an additional feature of practical importance is the null Hessian spectrum
at the top of the landscape, which implies an inherent degree of robustness to noise
when controlling quantum phenomena.

2.3.6 Perspective

Understanding the properties of quantum control landscapes is essential for design-
ing successful experiments and to identify promising directions for the future of
OptiQ research as well as practical applications. For example, optimal control sim-
ulations [39, 40] and experiments [49, 50] on a wide range of model quantum sys-
tems have been performed to study the quantum control landscape Hessian spectra
for the identification of the energy levels that are dynamically involved in the pres-
ence of optimal control fields, thus revealing the corresponding control mechanisms.
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The universal trap-free quality of the quantum control landscapes, upon satisfaction
of the three basic OptiQ assumptions, provides very favorable circumstances for
maximizing physical observables. However, many additional issues remain to be
explored. For example, it is important to know how constraints on the controls enter
to limit the attainable yields and introduce landscape traps. Such traps will be “ar-
tificial” due to their constrained control resource origin, although they will appear
to be real in the associated experiment or simulation. Moreover, many experiments
achieve optimal control upon comparison of one observable value to another. Thus,
further study on the structure of control landscapes is needed for multiple observ-
ables, including in the presence of realistic laboratory constraints.

Controls
Explore Explore
molecular/ control
material landscape
landscape Physical Applied features over
features over system electric entire
entire structure field families of
families of related
related electric fields

systems

Explore relationship between
physical system and external
field over landscape

Fig. 2.3 The full prospects for OptiQ. The traditional perspective for controlling quantum
dynamics phenomena in OptiQ is to start with a molecular or material sample and search
through the photonic reagent ‘stockroom’ to find an optimal control field. An enhanced sce-
nario involves simultaneously searching over the chemical/material and photonic reagent
stockrooms to meet demanding objectives, as indicated above. A fully automated machine
of this type may be envisioned for this purpose.

The concept of quantum control landscape in OptiQ can be extended to explore
the full nature of candidate molecules and other systems through their total Hamil-
tonian. In this fashion the stationary part of the Hamiltonian as well as the temporal
control field can simultaneously be considered as overall control variables with the
goal of achieving the highest possible yields. In this most general setting, we may
simultaneously search over the chemical or material stockroom along with the pho-
tonic reagent ‘stockroom’ for an effective field £(¢) (see Figure2.3). A final possi-
bility is to seek control in the absence of the photonic reagents and only utilize the
chemical and material stockroom as well as processing conditions to optimize syn-
thesis yields and properties, which naturally forms the basis of OptiChem discussed
in Section 2.4l
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A long-standing interest in the field of quantum control is the possible exis-
tence of systematic rules for identifying successful controls. In the background,
motivating this goal is the fact that chemical transformations carried out with stan-
dard reagents generally follow well-defined classes of rules and mechanisms. The
prospect that analogous rules may exist for the action of photonic reagents is tanta-
lizing and would surely be related to the favorable landscape topology in OptiQ.

2.4 Optimal Control of Chemical Synthesis and Properties
(OptiChem)

2.4.1 Introduction

Common goals in chemistry include optimizing both synthesis yields and molec-
ular/material properties, which can be expressed as optimal control problems by
specifying a suitable set of variables. Although chemical synthesis and property
discovery are typically not considered in an optimal control framework, recent re-
search shows that employing optimal control concepts can help to explain why it
is surprisingly easy to optimize chemical reaction conditions and properties. In this
case, “easy” refers to the laboratory effort reflected in the number of independent
experiments required for the search/optimization procedure to find optimal values
of the control variables, ignoring the often time-consuming and expensive overhead
involved in setting up experiments. This remark also applies to OptiQ and OptiEvo
laboratory efforts. In particular, widespread evidence shows that solving chemical
optimization is consistently easier than the pessimistic “curse of dimensionality”
[5] would imply. For instance, the application of genetic algorithms (GA) [20] and
other optimal search procedures shows that optimization of both synthesis yield and
properties typically may be achieved by carefully screening a small number of po-
tential combinations of variables, even for nominally highly complex systems. An
extensive review of practical synthesis and property optimizations beating the curse
of dimensionality is given in [37,38]. The origin of these mounting successes is the
key topic addressed in this section.

In analogy to OptiQ in Section 23] optimization in chemistry is considered as a
search over the appropriate control landscape, defined as the measurable objective
value J (e.g., the synthesis yield or property value) as a function of the variables.
This definition is more general than the commonly encountered concept of an energy
landscape, where the objective is defined as minimizing the free energy or potential
energy of the system (e.g., an atomic cluster or protein). Energy landscapes con-
stitute a specific sub-class drawn from the general family of control landscapes in
chemistry because the variables are often highly constrained, for instance, the only
significant variable freedom for protein folding is torsional motion. While energy
landscapes typically have a rugged topology [58], recent studies [37, [38] demon-
strate that control landscapes in chemistry possess a “regular” trap-free topology,
upon satisfaction of Assumptions (1), (2) and (3).
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The mathematical formulation of optimization in chemistry is that of control-
ling an open quantum system, consisting of the target system and the environment
with which it interacts [67]. The topological analysis of the resulting control land-
scape and its practical implications have recently been termed “OptiChem” the-
ory [37,138]. The presence of a trap-free control landscape provides an organizing
principle for explaining why synthesis and property discovery is far easier than the
apparent complexity of such problems would suggest. Importantly, the landscape
analysis underlying OptiChem may be carried out with minimal assumptions about
the specific nature of the control variables employed. OptiChem theory makes gen-
eral predictions about the behavior of synthesis and property optimizations that are
widely confirmed in laboratory studies [38], and also leads to specific algorithmic
suggestions on how to exploit the landscape topology to significantly accelerate lab-
oratory optimization efforts and provide new tools for chemical property prediction.

2.4.2 OptiChem Theory

The following landscape topology analysis is based on a quantum mechanical de-
scription of an open system; a proof of landscape topology for a classical description
of an open system is presented in Section[2.3l The state of an open quantum system
may be represented by a density matrix p, whose properties are given in Equation
2.2 The set of all states can be identified with the set of all density matrices 2.
Analysis of the control landscape topology via OptiChem theory requires the satis-
faction of three physical Assumptions, as a specific case of those set out generally
in Section 2.2

(1) The system is controllable: The objective must be well-posed, such that the
optimal density matrix p* € 2 that maximizes the objective J is a reachable
state of the quantum system.

(2) The control end-point map is surjective: A small change in a state p must
be associated with a corresponding small change in the control, denoted as a
vector of variables c.

(3) No significant constraints are imposed on the control variables: The set
of variables ¢ must be sufficiently flexible to permit free movement on the
landscape.

Assumption (1) states that an ill-posed objective may not be reached by any values
of the variables, where an obvious example would be a target synthetic molecule
that contains an atom with an unattainable valence state. Realistic applications will
be more subtle, and the issue of designing a well-posed problem always deserves
attention. Satisfaction of Assumption (2) is difficult to a priori assess, but nomi-
nally more “complex” systems may afford the added freedom needed to satisfy this
assumption. Assumption (3) may easily be violated for certain highly constrained
objectives, such as optimizing the free energy of a molecule using torsional degrees
of freedom as variables [58]. In general, full access to all possible types and values
of the relevant variables ¢ will not be available, but the key issue for Assumption
(3) is the presence of no significant constraints. The general question is whether
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practical optimization conditions satisfy the assumptions of OptiChem theory and
can take advantage of its features. These matters are assessed below in Section 4.4.
OptiChem theory rests on the ability to describe chemical transformations of
open systems upon satisfaction of the three assumptions above. The general transfor-
mation of an initial state py (i.e., before the chemical transformation has occurred)
to the state p (i.e., the state of the products after the chemical transformation) can be
represented by a function @ such that p = @(py). The transformation described by
@ has the properties of being trace-preserving (i.e., Tr®(pg) =Tr(p) =Tr(pg) = 1)
and completely positive (CP). The trace-preservation property of @ ensures that the
sum over the probabilities of all transformation outcomes is unity. The CP require-
ment ensures satisfaction of the property p > 0 under transformation of py to some
other density matrix p [17, 31]. Such CP, trace preserving functions @ are called
Kraus maps, described by the matrices K. The CP and trace preservation conditions
imply certain constraints on the structure of the Kraus matrices K, which results in
the set of all possible Kraus matrices {K} being a convex set [17].
The objective J is characterized by a suitable quantum mechanical observable O
[54]], such that
J=Tr[pO0], (2.19)

where p is the state of the system after the chemical transformation described by
the Kraus map K. In practice, the initial state py of the system may be transformed
through alteration of the accessible control variables ¢ = [c], ¢3, ...] to specify a
landscape J(p)

J=J(c)=J(K®) = Tr[®Pge(po)O]. (2.20)

In Equation (2.20), the variables ¢ determine the fitness J by acting on the system
through the matrix K¢, where the superscript indicates that the Kraus matrix depends
on the variables c. The explicit relation of K¢ to the variables ¢ will depend on the
particular system and may be complicated, but knowledge of this relationship is
not necessary to establish the landscape topology of J(c¢) for OptiChem theory. The
formal description of chemical transformations using the analysis below in terms of
the set of Kraus matrices {K} is general for all chemical systems and synthesis or
property optimization objectives.

Satisfaction of the assumptions implies that maximization of J is possible and
that any desired set {K} may be generated by some choice of ¢. Combining the
convex property of the set { K} with the inherent linear dependence of J(K) upon K
(i.e., from Equation (2.20)) shows that the resulting landscape J contains no local
minima or maxima (i.e., traps) and that connected optimal solutions of J (i.e., level
sets) may exist on the landscape [37]. This result arises naturally from considering
unconstrained convex optimization theory [6]. Importantly, the landscape topolog-
ical properties hold regardless of the particular nature of the initial density matrix
po or the chemical objective described by the observable operator O. The general
trap-free nature of the landscape can only be shown to hold when {K} is a convex
set; constraints placed on the variables ¢ that limit the attainable Kraus matrices
could make the set {K} non-convex and thereby destroy the trap-free property of
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the control landscape and/or reduce the set of reachable optimal transformations to
isolated set(s) of Kraus matrices.

2.4.3 Predictions of OptiChem Theory

The main conclusions of OptiChem theory are that (i) the control landscape for syn-
thesis and property optimization contains no traps and (ii) the optimal regions of
the control landscape may form connected level sets. Importantly, these conclusions
hold regardless of the particular nature of the objective or variables employed, and
thus generally apply to any chemical optimization application upon satisfaction of
Assumptions (1), (2), and (3) above, in addition to the general consideration that the
objective value is always finite (i.e., the maximum synthesis yield is 100% and phys-
ical or chemical property values are generally finite). When these criteria are met,
OptiChem theory predicts the following characteristics of laboratory optimization
of chemical objectives:

(a) Trap-free landscapes readily enable ‘“easy” optimization: The favorable
control landscape topology predicts that the search effort to find optimal val-
ues of the variables could be less than that implied by the seeming complexity
of the tasks (e.g., based on the curse of dimensionality). In principle, an opti-
mal solution may be found by starting anywhere on the control landscape and
employing an efficient search algorithm. This prediction is consistent with the
findings that chemical objectives can often be optimized in significantly fewer
experiments than implied by the “size” of typical search spaces [38].

(b) Observed trapping indicates constrained variables: The fundamental exis-
tence of trap-free landscapes provides a framework to understand trapping be-
havior when it occurs. Importantly, the landscape J is inherently trap-free upon
satisfaction of the three assumptions, with failure to satisfy Assumption (3)
the most likely breakdown. Traps encountered for this reason are referred to
as “false”, as is typically seen in free energy landscapes [58]. Although Op-
tiChem theory cannot a priori identify the specific limitations on the variables
that cause false traps to arise on the landscape, the theory may be used to iden-
tify when the current choice of variables is insufficient to meet the desired ob-
jective.

(c) Homologous molecules or materials constitute optimal level sets or mul-
tiple solutions: The possible presence of multiple optimal solutions or level
sets on the control landscape is consistent with the common existence of “ho-
mologous” chemical systems. Homologous systems constitute a set of distinct
members that possess the same chemical properties reflected in the value of J.
For example, a large set of chemically related solvents can produce similar high
rates of a particular alkylation reaction [70]; this set of solvents may constitute
an optimal level set or possibly a set of isolated multiple solutions. In other
cases a set of optimal material compositions, solvents, or processing conditions
might have much less obvious structural connections, yet still produce the same
observable J value.
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2.4.4 Illustrations

The degree to which the predictions (a) through (c) of OptiChem theory hold in
laboratory investigations has recently been assessed through examination of the
extensive literature reporting chemical control landscapes, with the overwhelming
finding that reported control landscapes are almost all trap-free 37, 38]. Although
these studies cannot claim to have performed an exhaustive search of the literature,
overall 142 separate control landscapes were identified, with 123 appearing trap-
free and with 19 containing traps (i.e., a clear sub-optimal maximum). In some of
the latter cases, the traps can be attributed to variable constraints explicitly discussed
by the authors; the remaining works make no mention of the presence or absence
of traps. Trap-free landscapes have been reported for the chemical synthesis and
property goals listed in Table 2.2] with the literature references given in [38]. This
collective literature demonstrates wide applicability of the predictions of OptiChem
theory to chemical synthesis and property optimization; a few illustrative studies are
summarized here.

Table 2.2 Optimization goals producing trap-free control landscapes in the chemical litera-
ture [37,138]

type goal
organic compounds
synthesis polymers

material catalytic activity
luminescence intensity/frequency
color
X-ray spectral structure
material properties mechanical constants
dielectric constants
electrical resistivity
binding between molecules/materials
oxidation potential
molecular properties glass transition temperature
NMR and IR spectra
protein binding

Control landscapes for chemical synthesis and property objectives are readily
generated when the control variables are (quasi)-continuous, such as concentra-
tions of reagents or mole fractions of elements composing a material. The first
illustration here considers the mole fractions of three metal components as con-
trol variables c;, i = 1, 2, 3 of a catalytic material, with each component varying
from 0 < ¢; < 1 and subject to the constraint },;c; = 1. The objective was to opti-
mize the catalytic activity of the material for oxidizing isobutane to methacrolein,
isobutene, and CO; [42]. When the elements Mo, V, and Sb were used as variables,
all catalytic oxidation landscapes were trap-free, as shown in Figure 2.4(a) through
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2.4(c). The authors comment that the active regions for formation of methacrolein
in Figure 2.4(a) and CO, in Figure 2.4(c) consist of a “large plateau” [@], which
according to OptiChem theory would be interpreted as a level set of homologous
catalysts. Replacing Sb with Bi as a control variable causes traps to arise on the
isobutene landscape, shown in Figure[2.4(e). Furthermore, the maximal catalytic ac-
tivity on this landscape is only approximately 160% of the reference catalyst, while
the maximal activity from the Mo-V-Sb landscape is over 1200% of the reference
catalyst. This behavior indicates that the choice of Bi instead of Sb produces a sig-
nificant constraint on the variables when the objective is to catalyze the formation
of isobutene, with Bi limiting the maximum objective yield and introducing traps
on the landscape.
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Fig. 2.4 Relative catalytic activity (compared to a fixed reference catalyst) for oxidation of
isobutane to form (a) methacrolein, (b) isobutene, and (c) CO, with Mo, V, and Sb as the
variables, and relative catalytic activity for oxidation of isobutane to form (d) methacrolein,
(e) isobutene, and (f) CO, with Mo, V, and Bi as the variables. When Mo, V, and Sb are the
variables, all landscapes are trap-free, but when Bi replaces Sb, a trap appears in (e) for the
isobutene product. Reprinted from ], (© 2004, with permission from Elsevier

Constructing molecular property landscapes is often more difficult than optimiz-
ing synthesis conditions or material properties because the variables may not be
continuous parameters such as the concentration of reagents, fractional content of
the material components, etc. In order to assess for the existence of a trap-free con-
trol landscape for such cases with discrete variables, a proper ordering O, (i.e., the
proper sequential labeling) of the variables is needed. For a family of molecules in
a “library” built around a fixed molecular scaffold, the variables can be defined in
terms of prescribed integer labels of the chemical moieties on each site. This proce-
dure is illustrated in Figure 2.3 with an example from [@]. The molecular scaffold
is a vinyl group, the variable moieties X and Y may take on the integer values 1
through 15 as labeled in Figure 2.3(a), and the objective “property” is spectral, con-
sisting of the 13C nuclear magnetic resonance (NMR) chemical shift of the indicated
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carbon atom. Plotting the objective property versus the original arbitrarily chosen
integer labels for X and Y will generally produce a rough or even random looking
landscape, as shown in Figure[2.3(a); such randomness is expected for any randomly
ordered landscape, irrespective of any underlying structure. As a result, this initial
random assignment of the integer variable labels can hide the true underlying reg-
ularity of the landscape if such regularity exists. Accepting that the Assumptions
of OptiChem in Section are satisfied, a regular trap-free landscape under cor-
rect ordering of the labels for X and Y is expected, keeping in mind that there will
always be a discrete character to the landscape at some level of resolution.
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Fig. 2.5 An illustration of the process of reordering integer labels for discrete variables to
produce smooth landscapes, in this case for the '3C NMR chemical shift of a vinyl carbon
atom. For a molecular scaffold (here a vinyl group), the moiety variables X and Y are given
arbitrary integer labels as shown in (a). Permuting the order of the labels on the rows and
columns in the landscape (a) results in a the most regular landscape in (b). The white squares
correspond to untested compounds. Adapted from [36].

Various algorithms can reorder the variable labels with the aim of producing a
control landscape that is as smooth as possible [33,134,155]. For the two-dimensional
case with moieties X (rows) and Y (columns), reordering involves permuting the
rows and columns in order to identify an ordering & that reveals the most reg-
ular property landscape, as exemplified by going from Figure 2:3(a) to 2.3(b)
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[33, 134, 136, 155]. In these and other studies, the recovered landscapes were trap-
free. It has been shown that surfaces that inherently contain traps are generally not
transformed into trap-free surfaces under reordering [[1 1], indicating that reordering
cannot artificially transform inherently rugged landscapes into smooth ones. The re-
ordering technique has been applied to a number of molecular property objectives
[12,128,133,134, 136, 55].

An investigation on a family of drug candidate molecules demonstrated how a
search algorithm based on the reordering technique can potentially accelerate the
discovery of molecules with desired properties [34]. The molecular library con-
sisted of a common scaffold with two sites having respectively X =93 and Y = 151
distinct moieties, where the objective was to optimize the inhibition of a protein
by suitable choices of X and Y. Inhibition values were available for 4110 of the
14,043 molecules (29%) [34]. A reordering algorithm revealed a trap-free landscape
to within experimental noise, as shown in Figure 2.6(a). This study also employed
an iterative algorithm to illustrate how to accelerate the discovery of effective com-
pounds by taking advantage of automated reordering combined with the potential
for finding trap-free control landscapes. In the first step of the algorithm, a small
sample of approximately 100 — 250 randomly chosen compounds was reordered to
identify the most regular landscape. Next, an additional sample of approximately 50
compounds in the vicinity of the best inhibitors on the landscape was added to the
existing sampled compounds, and reordering was performed again with the entire
collection of available compounds to identify a new landscape. This cyclic addition
of a few compounds followed by landscape reordering was shown to significantly
reduce the number of syntheses needed to identify the most effective compounds:
the method discovered 70 effective compounds (50% of the total number of effective
compounds in the entire library) with just 650 syntheses, far fewer than the approx-
imately 2000 syntheses needed to identify the same number of effective members
with random screening, as shown in Figure 2.6(b) [34].

2.4.5 Perspective

A generic favorable topology of control landscapes for chemical optimization has
been found to arise upon satisfaction of the three Assumptions set out in Section
2.4.2] The widespread satisfaction of the predictions of OptiChem theory evident
from the numerous landscapes reported in the literature [37, 138] indicates that the
assumptions may be expected to hold under many reasonable experimental con-
ditions and for a wide variety of optimization objectives. The existence of a trap-
free landscape topology provides an organizing principle to help understand why
even complex chemical objectives are often achieved with significantly fewer ex-
periments than would be expected based on the apparent mathematical complexity
of these problems.

OptiChem theory potentially has important practical implications for the opti-
mization of chemical synthesis and property objectives. Recent work showing that
an iterative method can accelerate the identification of optimal molecules or mate-
rials [34] and facilitate accurate NMR spectral peak prediction [36] represents just
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Fig. 2.6 (a) Optimally reordered landscape for the objective of protein binding efficiency
from [34]. 90% of the effective compounds (i.e., with inhibition > 70%) are in the box in
the upper left hand corner of the landscape. (b) The number of effective compounds versus
the total number of “known” compounds. The dash-dot line indicates the expected number of
effective compounds upon random sampling. The red, green, blue, and purple curves corre-
spond to initial samplings of 5%, 10%, 25%, and 50% of the available data, respectively. The
algorithm is most efficient when starting with the smallest initial sampling (red), and iden-
tifies half of the known effective compounds with only 650 syntheses instead of the ~ 2000
expected from random sampling.

the beginning of many potential applications of OptiChem theory. Additionally, the
understanding that a well-posed chemical optimization objective should produce a
trap-free control landscape could be important for designing effective optimization
search algorithms, as well as taking advantage of well-known empirical “rules” of
chemistry [38]. The existence of a trap-free control landscape is of particular impor-
tance for interpreting cases where traps are observed on the landscape. First, land-
scape traps may imply that inadequate control resources are being employed (i.e.,
Assumption (3) is violated), as was observed in Figure 2.4(€) above and discussed
in [42,157]. In such cases, OptiChem theory may be used to prevent the waste of ex-
perimental resources in a suboptimal portion of the available search space. Second,
individual outliers on the landscape may indicate errors in the experimental data, as
was shown in [36], where the outlier nature of the associated data points was only re-
vealed upon applying the landscape principles. Outlier points on the landscape may
also reveal previously hidden distinct physical mechanisms underlying the control
objective, as was found in a study optimizing photoluminescent quantum yield in
transition metal complexes [33]. In these cases, OptiChem theory provides a unique
method to identify when further examination of the outliers may be necessary to
determine the origins of the observed behavior.

OptiChem theory is an organizing principle that provides (a) a basis to explain
why optimization in chemistry is often easier to achieve than expected and (b) a
foundation to predict that many other well-posed control objectives, possibly includ-
ing those previously eschewed as too complex to address, may be attainable goals.
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The promising assessment from the chemical literature indicates that OptiChem the-
ory should find many applications in chemistry, including when the target molecules
are biological, as discussed further in Section2.3] below.

2.5 Biological Fitness Landscapes (OptiEvo)
2.5.1 Background

This section focuses on the application of OptiSci to the fitness landscape topol-
ogy of biological systems. The topology of fitness landscapes has been an important
topic in evolutionary biology since Sewall Wright first introduced the concept in
1932 [66]. In most studies, a genotypic fitness landscape represents the mapping
from an organism’s sequence space to its fitness value. Consequently, natural evo-
lution can be viewed as an excursion over the fitness landscape, whose topology is
critical for determining the outcome and dynamics of evolution.

In recent years, the practical field of directed evolution has become important
for engineering proteins and other bio-molecules and bio-networks [2]. Similar to
the case of natural evolution, a fitness landscape in directed evolution captures the
relationship between the target fitness value and the sequence space for the associ-
ated genes. If the fitness landscape is globally smooth and monotonic, then simple
strategies, possibly including local search algorithms, should be effective in guid-
ing mutations to reach the desired fitness optimum. If the landscape topology is
“rugged” instead, then optimizing the target property can be much more difficult.

Due to the large size of the genome in natural evolution (or the target genes
in directed evolution) and the exponential relationship between the total number
of possible genotypes and the genome/gene size, it has been extremely difficult to
establish the topology of a full genotypic fitness landscape. Since the relationship
between fitness and genotype is nonlinear and highly complex, fitness landscapes
should intuitively contain many local fitness peaks and valleys and fitness conver-
gence should rarely been seen, if at all, in the course of evolution. However, some
laboratory evolution studies have observed fitness convergence in duplicate popula-
tions living in the same environment [[13].

To explain this contradiction, most models reasonably assume a globally rugged
landscape and discuss how organismic populations can escape the fitness val-
leys [27, 63]. The only previous model that seeks to directly deduce the topology
of fitness landscapes in evolution is based on statistics [[19]. This model shows that
fitness peaks in high-dimensional landscapes are statistically likely to be connected
by ridges of similar height, thereby alleviating the problem of population escape
from local peaks in some cases.

Below we summarize recent work utilizing the concepts and mathematical frame-
work of OptiSci to study the topology of fitness landscapes in both natural and
directed evolution, and we refer to the resultant theory as Optimal Landscapes in
Evolution (OptiEvo). In OptiEvo, an organism (or the target gene(s) in directed evo-
Iution) is viewed as a large open system that interacts with its environment, where
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fitness is determined by the set of all relevant nucleotides and the genotype-by-
environment interactions. Here, natural evolution corresponds to a stochastic pro-
cess that seeks the best genotypes to maximize the fitness value. Counter-intuitively,
OptiEvo shows mathematically that the topology of fitness landscapes inherently
should not contain local traps when a proper genetic/genomic flexibility condition
is satisfied that captures the OptiSci assumptions in Section[2.2] We also compared
several OptiEvo predictions with results collected from laboratory evolution exper-
iments, indicating that the sufficient flexibility condition can be satisfied in many
evolutionary processes.

2.5.2 Physical Foundation of OptiEvo Theory

The topological analysis of evolution landscapes can be performed classically or
quantum-mechanically (see Sections[2.2]and 2.4)). Here it is more natural to adopt a
classical treatment. In OptiEvo theory, an organism’s population with N individuals
is represented by a set of variables G = {g1,...,gn}, where gi = (n1,... 1y, ..., 1R;)
is an R;-dimensional vector that defines all the variables (nucleotides, with n,, being
1, 2, 3 or 4) of the i-th individual organism in the population and R; is the genome
length of this individual. The state of a population in a constant environment is
represented by a probability distribution pg(w), where @ is a point (a microscopic
state) in (2, which denotes the “state space” containing all biologically relevant
degrees of freedom for the population. As stated in Section[2.2] the fitness value J
can be viewed as a characteristic physical observable of the population, which can
always be described by the expectation value of the fitness function f(w) defined
over 2 [41]:

J(po) = [ fl@)ps(@)do. (2.21)
Q

Note that this equation is not a model, but a truism from statistical physics, applica-
ble universally to any classical physical observable.

In an individual step of evolution, a change of the population G — G’ occurs (via
gene mutations, deletions, insertions, etc.), leading to a change of the probability
distribution pg — p and the fitness value J(pg) — J(pg’). From an optimization
perspective, the process of evolution aims to find the best variable set(s) G* to max-
imize the objective function J(pg). In Section 2.3.3] we will show that two basic
conclusions can be drawn on the topology of such landscapes [15]: (1) The fitness
function J(p¢) only has global maxima on F, the union of all possible genotypes
G; local maxima do not exist. (2) The set of optimal genotypes G* is a connected
level set with the same fitness value. Very importantly, to reach these conclusions,
no species-specific knowledge of J(pg), 2, f(®), and pg(w) is needed beyond the
generic form in Equation 2.21).

As described in Section[2.2] three basic Assumptions need to be satisfied in or-
der to reach the two OptiEvo conclusions in realistic cases. These assumptions are
presented in a control framework in keeping with the other domains of OptiSci.
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Importantly, in the context of biological evolution the notion of control needs
to be understood as a mathematical formulation to assess the associated fitness
landscapes.

(1) The system is controllable: Biologically, the global fitness optima can be
reached by some genotype.

(2) The control end-point map is surjective: Biologically, a small change in the
population state pg(®) has a small corresponding change in the genotype G.

(3) The controls are fully adequate: Biologically, the physically realizable geno-
type changes G — G’ can provide sufficient coverage of all important local
directions on the fitness landscape J(pg) around pg.

In the case of biological evolution, the Assumptions (1), (2) and (3) above can be
subsumed into a “sufficient flexibility condition”, meaning that the genome struc-
ture, the accessible gene changes, and the genotype-to-environment interactions al-
low for sufficient flexibility, so that the fitness landscape around J can be freely
explored. We need to emphasize that, only when this condition is combined with
the inherent topological properties of Equation (2.21)), can conclusions (1) and (2)
of OptiEvo theory be reached. In particular, violation of the flexibility condition,
due to inherent constraints in gene changes, can create local traps that prevent the
global fitness optima from being reached. It needs to be emphasized that, upon satis-
faction of the flexibility condition, the two OptiEvo conclusions above are inherent
properties of the corresponding genotypic fitness landscapes and are independent of
evolution dynamics (i.e., independent of how an organism moves on a fitness land-
scape). However, the rate that evolution climbs the landscape will depend on the
dynamics. Section 2.3.3] summarizes the mathematical proof leading to the above
OptiEvo conclusions (the full proof is presented in [15]), and Section2.5.4provides
empirical assessments of OptiEvo theory.

2.5.3 Evolutionary Fitness Landscape Analysis

Classical probability space is defined by a triple (2,.%, P), where (2 is a non-empty
set (the phase space), % is a 0-algebra of subsets of 2, and P: % — [0, 1] is a prob-
ability measure [53]. Each classical stochastic system is characterized by some set
of elementary events €2, where any point @ € £2 denotes a specific microscopic state
of the system. In biological systems, such a phase space would be high dimensional
and complex. However, what counts here is the existence of the phase space rather
than its details.

Biologically measurable properties for an evolving organism’s population are
given by average values of an associated random function. If f(®) (@ € Q) is aran-
dom function representing the fitness and if the organism’s population is in a state
with probability distribution pg(®), then the fitness value is determined by Equa-
tion (2.21)) and will be maximized during the course of evolution. Genetic changes
during evolution will produce successive transformations of the genome G — G’
corresponding to a trajectory over the landscape leading to maximization of J(G).
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A probability space (Q,.%, P) should satisfy the following three axioms [29]:

Aj.P(E)>O0forany E € F
(i.e., probability of any event is a non-negative number).

Ay P(0)=0
(here 0 denotes the empty set) and P(Q) = [ p(w)dw = 1 (the assumption of
Q

unit measure states that the probability that some event will occur is 1).
Ajs. For any countable sequence of pairwise disjoint events Ej,E,,--- € .%:
P(E1 UE2U...) :P(E1)+P(E2)—|—...

A subset X C V of a linear space V is a convex set if for any xp,x; € X and any
A €10,1] the point xy, := (1 —A)xp+ Ax; is in X [61]. According to this definition,
the set P, is a convex subset in the linear space ,@5 of all distributions associated
to real-valued signed measures over (Q,.%). Let By and P; be any two probability
measures over 2 with associated probability distributions py(®) and p;(®), and
define Py, = AP, + (1 — A)PR for any 0 < A < 1. With this definition, we can prove
that the set Y, satisfies the three Axioms above and has a convex structure [15].

The fitness function J(p) in Equation 2.21)) is linear in p and is defined on the
convex domain Lq. Since (a) J is a concave functional and (b) a concave func-
tional does not have local maxima over a convex domain [48, /53], the two OptiEvo
conclusions in Section 2.3.2] can be proved [15].

The absence of local maxima for the objective function J(p) means that in a
neighborhood of any p there exists a direction in which the objective J(p) increases
through a change in the genotype G — G’. The sufficient flexibility condition states
that the neighborhood Ug of G covers, on some coarse grained scale, all directions
in the space Y around pg, particularly allowing for movement in the direction
in which J(p) increases. Significant constraints on the available genotypes G (vi-
olating the sufficient flexibility condition), which reduce the domain of probability
distribution functions P to a non-convex set, may introduce traps in the genotypic
landscapes.

2.5.4 Predictions and Empirical Assessments of OptiEvo Theory
in Natural Evolution

Since it is impossible to express the fitness of an organism’s population explicitly
in terms of the genotype, we cannot a priori determine whether the sufficient flex-
ibility condition is satisfied in evolution. However, we can perform assessments by
comparing biological predictions of OptiEvo theory (assuming satisfaction of the
sufficient flexibility condition) with results from evolution experiments.

Four general predictions arise from OptiEvo theory upon consideration of the
sufficient flexibility condition:
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(a) Coexistence of global fitness convergence and genotypic diversity: OptiEvo
theory implies that, given adequate time, evolution of an organism’s population in
a constant homogeneous environment should always converge to the same globally
optimal fitness value.

(b) Connected global optima: The different genotypes at the top of a fitness land-
scape are connected. Thus, evolving between them does not require going through
valley genotypes.

(c) Non-existence of reciprocal sign epistasis: The phenomenon of epistasis (Fig-
ure 2.7) arises when the fitness effect of a mutation depends on its genetic back-
ground [[63]. Certain types of epistasis can slow down the dynamics of evolution
(Figures2.7li and ii). According to OptiEvo theory, however, the only type of epis-
tasis that cannot exist is reciprocal sign epistasis (Figure 2.7liii), which will create
local fitness peaks/traps that prevent the global fitness optima from begin reached.
(d) Condition for the existence of local sub-optimal peaks: Local sub-optimal
fitness peaks or separated global maxima can exist only when the sufficient flexibil-
ity condition is violated, i.e., constraints in the evolutionary changes of the genome
prevent accessing important domains of the fitness landscape. Statistically, such vi-
olations are more likely to occur for smaller genomes.

Below we briefly compare predictions (a)-(d) of OptiEvo theory with results
obtained from laboratory evolution studies [[13]. A summary of these experiments
along with a more detailed discussion of their relationship to OptiEvo theory is
presented in [[15].

A classic well known laboratory evolution experiment has been running over
30,000 generations since 1988 on twelve initially identical Escherichia coli popu-
lations in identical glucose-limited minimal medium [65]. It was observed that the
fitness converged to similar values, while cell morphology, physiology, mutation
rates, and gene sequence had large variations across the populations [32]. While
these results are not easily explainable by most models of fitness landscapes, they
agree well with prediction (a) of OptiEvo theory. Reverse evolution experiments
also show that ancestral fitness values can be recovered given sufficient evolution
time [60]. In addition, compensatory mutations occur more often than back mu-
tations [[10], indicating the existence of multiple evolutionary trajectories. These
results are consistent with OptiEvo theory predictions (a) and (c).

Prediction (b) of OptiEvo theory states that different optimal genotypes should be
fully connected. This prediction is supported by recent experiments on Antirrhinum
[[64] species, showing that phenotypically distinct species well adapted in similar
environments may be adjacent in genotypic space.

In some evolution experiments, convergence of fitness was not observed. A
well-cited experiment involved the RNA bacteriophage ¢6, where two genetically
different virus populations converged to different fitness maxima in the same envi-
ronment [9]. OptiEvo theory provides two possible explanations. First, the evolution
experiment (about 100 generations) may be too short to allow for convergence of the
fitness value. Second, local fitness optima may exist in this system due to a violation
of the flexibility condition. According to prediction (d) above, the small genome of
the virus makes it more susceptible to various genetic constraints and can cause
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Fig. 2.7 Magnitude and sign epistasis for a two-nucleotide, two-allele system. Evolution
starts from the genotype ab and ends with AB. (i): Magnitude epistasis leads to different selec-
tion coefficients for the two pathways (ab—Ab—AB and ab—aB— AB), but both pathways
are evolutionarily accessible because the fitness value always increases in each evolution step.
(ii): Sign epistasis makes the pathway ab— Ab— AB inaccessible, while ab—aB—AB is still
accessible. (iii): Reciprocal sign epistasis makes both pathways inaccessible and isolates the
two genotypes ab and AB, which according to OptiEvo theory is the only type of epistasis
that cannot exist if the sufficient flexibility condition is satisfied. Adopted from Figure 1 of
[15].

some of the transformations G — G’ to be inaccessible, creating local traps in the
corresponding fitness landscape.

2.5.5 Application of OptiEvo Theory to Directed Evolution

In addition to providing topological analysis of fitness landscapes in natural evolu-
tion, OptiEvo theory also has important implications for strategies of directed evo-
Iution of proteins, nucleic acids, and complex biological networks. This section will
summarize these implications and describe a general substituent reordering strat-
egy (whose applicability depends critically on OptiEvo’s conclusions) to facilitate
property optimization (including directed evolution) of biological systems.
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OptiEvo has two main implications for directed evolution:

(1) OptiEvo states that constraints in the mutations G — G’ may introduce local
traps in the evolution steps. In directed evolution, OptiEvo suggests that per-
forming mutations on a large number of nucleotides (corresponding to fewer
constraints) can be more effective in reaching the global fitness optimum,
although possibly at the cost of slower initial fitness increase.

(2) OptiEvo suggests that, if the sufficient flexibility condition is satisfied, the prop-
erty landscape will be globally regular (i.e., trap free). From an optimization
point of view, a regular property landscape will allow for local search /pat-
tern recognition / interpolation methods to efficiently optimize the target prop-
erty. In contrast, if the property landscape is rugged, then these tools will have
little predictive power without detailed knowledge of the structure-property
relationships.

Utilizing the second implication above, we have developed a general and easy-
to-use substituent reordering strategy for property optimization through directed
evolution of proteins and other biosystem components. The same strategy has been
employed for property optimization of chemical compounds and materials in Sec-
tion 2.4l Depending on the requirements of the applications, different algorithms
have been designed to enable optimal performance in guiding directed evolution ex-
periments. The text below will describe one such algorithm most relevant to directed
evolution of biological systems, especially proteins.

A substituent reordering algorithm was designed especially for optimization of
protein properties in focused libraries [16]; also see Section 2.4.4] for like applica-
tions to molecular discovery. The algorithm was evaluated in a proof-of-principle
study to optimize the enatioselectivity (E-value) of the expoxide hydrolase from As-
pergillus niger. To be experimentally manageable, we selected two amino acid po-
sitions from the wild-type enzyme that are known to contribute to its E-value. Each
amino acid on each protein backbone position is assigned a random but unique inte-
ger between 1 and 20, and the total number of possible mutants from the two posi-
tions is 400. We then synthesized a random subset of the 400 mutants and measured
the E-value for each of them. The property landscape for the mutants is irregular
(Figure 2.8l A) due to the random integer assignments to the amino acids and offers
no predictive power. However, using the reordering algorithm, we rearranged (per-
muted) the integer assignments and obtained a smooth property landscape, which
immediately points to the lower right corner of the reordered landscape as the region
with better mutants (Figure 2.81B). Based on the prediction, we then synthesized
45 additional mutants, most of which were then found to be within the predicted
region with high E-values. Figure 2.8lC shows that the algorithm even identified a
laboratory error (a misplaced mutant) based on finding local landscape irregularity.

Importantly, the substituent reordering algorithm does not utilize any structure
information of the target protein; the algorithm operates to identify an optimal inte-
ger assignment to each amino acid, so that a specified landscape regularity measure
is optimized (i.e., the smoothest landscape is identified over the mutant samples). As
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Fig. 2.8 Optimal reordering of the E-value landscapes for an epoxide hydrolase [[16]. (A)
Color heat map for the E-value landscape of 95 randomly sampled mutants plotted with a
random amino acid ordering. Each color square represents one mutant with red indicating
high E-value and blue corresponding to low E-value (see color bar on the far right). White
squares are unsampled proteins. (B) E-value landscape of the 95 mutants using the amino acid
ordering identified by the substituent reordering algorithm. The result predicts that proteins
with high E-values are most likely located in the lower right corner. The mutant at position
[16,20] (circled in red in both (A) and (B)) of the reordered landscape turned out to be the
same as the mutant at position [20,19]; the wrong protein was accidentally placed in this
position in the experiment. (C) E-value landscape for 45 newly sampled mutants, guided by
the ordering in (B). Adopted from Figure 2 of [[16].
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stated in Section[2.4land demonstrated in a computational study [11], if the underly-
ing property landscape contains traps due to violation of the assumptions, it is highly
likely that even the smoothest reordered landscape will remain rugged, giving little
predictive power. Hence, the fact that the substituent reordering algorithm yielded
a smooth property landscape (within data noise) and correctly predicted the region
with the best E-values implies that the sufficient flexibility condition appeared to be
satisfied even in this highly constrained two-dimensional property landscape.

So far, the substituent reordering strategy has been applied mostly to two-
dimensional cases. To improve the performance, especially minimization of sam-
pling in higher-dimensional systems, we have recently integrated the substituent
reordering algorithm with a high-dimensional model representation (HDMR)
method [24]. HDMR decomposes nonlinear high-dimensional functions into a hi-
erarchy of lower-dimensional (but still nonlinear) functions, and substituent re-
ordering can be performed on each lower-dimensional function separately. Very
importantly, HDMR samples all the variables simultaneously (e.g., mutations are
performed on all substitution positions simultaneously) and it enables highly fa-
vorable scalability of the mutant sampling as the dimensionality of the system in-
creases [24]. The capabilities of the HDMR-reordering algorithm was illustrated in
a simulation study with high-dimensional functions [24]. The study showed that,
for a nonlinear, 20-dimensional simulated protein library with 202 members, the
HDMR-reordering algorithm can provide reliable predictions from a very small
number of samples (~ 10%).
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2.5.6 Perspective

The physically-grounded and mathematically based OptiEvo theory was introduced
to analyze the general topology of fitness landscapes in biological evolution [15].
OptiEvo theory views an organism’s population as an open system and natural evo-
lution as a stochastic process of fitness optimization. The theory states that, when
gene changes in evolution can provide sufficient flexibility to adequately access lo-
cal landscape structure, then (1) genotypic fitness landscapes should be free of local
traps and (2) the globally optimal genotypes are connected. The extreme complexity
of biological systems makes it impractical to perform mathematical or model-based
assessment of optiEvo theory and the sufficient flexibility condition. However, a
comparison of several predictions of OptiEvo with empirical evidence from labo-
ratory evolution experiments implies that the sufficient flexibility condition can be
satisfied in many evolutionary processes. Consequently, OptiEvo theory provides a
physical explanation for (a) the apparent contradiction between fitness convergence
and genome complexity in many evolution processes, as well as (b) the potential
cause of local fitness traps (i.e., violation of the sufficient flexibility condition).

OptiEvo theory also has important implications for directed evolution: (1) per-
forming mutations on a larger number of amino acid or nucleic acid positions is
more likely to alleviate the introduction of local traps in evolution, and (2) sat-
isfaction of the sufficient flexibility condition may allow for local search and in-
terpolation methods to effectively guide the property optimization of the target
biomolecules or bionetworks. Building on this foundation, OptiEvo lends itself to a
general substituent reordering strategy for optimizing target properties of complex
biosystems with minimal sampling effort and without requiring explicit information
about the structure-property relationships [[16, 24]. In cases where gene mutations
occur at many sites in the directed evolution experiments, the order of ~ 10° — 10*
samples may be required for reliable prediction. However, with the staggering pace
of developments in high-throughput technologies, we expect that such experiments
can be performed with reasonable overhead in the near future.

In the development of OptiEvo theory and its assessment by empirical data, we
have considered the environment as constant for an organismic population. When
the environment changes, the geometry of the fitness landscape may also change,
thereby altering evolutionary dynamics. However, when the flexibility condition re-
mains satisfied, the trap-free topology of the landscape will in turn remain according
to OptiEvo theory.

2.6 Conclusion

This chapter summarized recent advances in research exploring the topology of con-
trol landscapes. The key finding in these studies is that upon satisfaction of the
assumptions (1), (2) and (3) given in Section 2.2} a mathematical analysis can be
executed drawing general conclusions about the topology of the landscapes. In par-
ticular, under the specified criteria, then the control landscapes should be generically
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free of suboptimal trapping critical points. Considerable quantitative experimental
and simulation evidence over wide-ranging applications summarized in the chapter
demonstrates that the underlying assumptions may often be satisfied providing con-
firmation of the very attractive landscape topological conclusions. The implications
of these findings have fundamental as well as practical importance.

The OptiSci landscape formulation is best referred to as a “principle” rather than
a theory, despite the use of the latter word in the preceding sections. This distinction
is made, as the landscape topological conclusions naturally follow mathematically
upon satisfaction of the three key assumptions. Thus, an observed violation of the
predicted topological character in any particular application would imply that one or
more of the assumptions is not satisfied. This circumstance has important implica-
tions. For example, the observed violation of the predicted topology would provide
an early indication of an ill-designed experiment, which could be especially relevant
in cases of expensive or time-consuming applications. In turn, the identification of
a particular minimal set of control variables that permit trap-free excursions over a
landscape could be viewed as specifying a “rule” for the application. In this regard,
it may be possible to consider the construction of automated apparatuses whose goal
is to identify systematic control rules for particular applications.

Although the landscape topology may be assessed generically upon satisfaction
of the key assumptions, an additional challenge is to understand how partial sat-
isfaction of the assumptions (e.g. a system could be partially controllable regard-
ing Assumption (1)) impacts the landscape topology. Such limitations can lead to
anomalous landscape features, including what may be referred to as “false traps”
when they arise from constraints being present. Some applications may not permit
overcoming the presence of practical constraints, while in other cases knowledge of
the impact of constraints may motivate the extra effort or the gathering of added re-
sources to overcome the constraints in order to reach the best performance through
an unfettered search over the landscapes. A related matter concerns the nature of
the non-topological features on the landscapes (i.e., the “twists and turns” that do
not have critical point character). Although the latter features would not inherently
stop even a local algorithm from reaching optimal locations on the landscape, they
could significantly impact the efficiency of such procedures. A full analysis of non-
topological landscape features remains to be explored.

We hope that the developments reported in this chapter provide the basis for
considering the unification of landscape studies across multiple disciplines. These
cross connections may open up new applications which were heretofore viewed as
unreachable due to the diversity of variables involved or the anticipated complexity
of the landscapes.
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Chapter 3

Biomolecular Information Gained through In
Vitro Evolution on a Fitness Landscape in
Sequence Space

Takuyo Aita and Yuzuru Husimi

Abstract. Biological evolution at the molecular level is conceptually regarded as
the genetic information gaining process. Analyzing the in vitro evolution process,
which is a simplified Darwinian evolution under a well-controlled environment, we
can clarify the concept of the information gaining process. This evolution process
can be modeled as a hill-climbing or adaptive walk on a fitness landscape in se-
quence space. Through the hill-climbing process, the evolving biopolymer (as the
adaptive walker) stores the following two aspects of information: one stems from the
sequences converged in sequence space and the other stems from the fitness incre-
ment on the fitness landscape. In Eigen’s words, the former and latter are described
as the “extent” and “content” of biological information, respectively [25]. In our
approach, these two aspects can be interpreted based on the analogy between evo-
lutionary dynamics and thermodynamics. Several studies introduced the concept of
“free fitness” (which is analogous to free energy) as the Lyapunov function for evo-
lution: Free fitness = Fitness -+ Temperature-like parameter X Entropy. Furthermore,
we focus on the novel quantity of Fitness divided by Temperature-like parameter,
and regard this quantity as the content of information, while we regard Entropy as
the extent of information. The quantity of Free fitness divided by Temperature-like
parameter is a Lyapunov function of the evolution process, and then it should be
called “biomolecular information”, which includes both aspects of information.
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3.1 Introduction

3.1.1 Outline of In Vitro Molecular Evolution

In vitro molecular evolution is an artificial one, conducted in a laboratory and driven
by the Darwinian mechanism. Study into this field began with Spiegelman’s exper-
iment in 1967 [39], and has been further developed [14, 27,129,140, 146,152, 154]. It is
the quest for the principle of emergence of functional biopolymers and is applied to
industry and medicine, e.g. evolutionary (or adaptive) drug design, the first of which
was approved by the Food and Drug Administration (USA). In 2004 [55] reviewed
theoretical studies of in vitro evolution.

As an introductory section, we explain several important terms to comprehend
in vitro evolution theoretically. A quantitative measure of a molecular phenotype,
that is, a certain physicochemical property (such as enzymatic activity or affinity
to a target receptor or replication rate constant) of an evolving molecule is desig-
nated as the “fitness”. The conceptual space of all conceivable base- or amino acid-
sequences (=genotypes) is designated as the “sequence space” (Maynard-Smith,
1970). Each of the conceivable sequences is mapped onto their corresponding points
in the sequence space. A distance between two arbitrary points is measured with the
“Hamming distance” between the two corresponding sequences. The scalar field
constructed by mapping the fitness-value of each sequence into the corresponding
point in the sequence space is designated as the “fitness landscape’ﬂ, which is re-
garded as the evolutionary attribute of the biopolymer [22,123,133]. When the shape
of the fitness landscape is fixed under a constant environment, an evolution pro-
cess of biopolymers is considered as an “adaptive walk” or “hill-climbing” on the
corresponding fitness landscape in sequence space.

In vitro evolution is classified into the following two types: “natural selection
type” and “artificial selection type”. In natural selection type, the fitness is the spe-
cific growth rate of evolving molecules, and the selection is driven by simultaneous
evaluation and amplification by the molecules themselves. An example of this is
self-replicating RNA molecules in a flow reactor. In artificial selection-type, the fit-
ness is one of the physicochemical properties of evolving molecules (e.g. binding
free energy to a target receptor), and the selection process is conducted through a
cycle of evaluation and amplification by the experimenter. Therefore, in vitro evolu-
tion of the artificial selection-type is also called the “directed evolution”. When we
accentuate the aspect of molecular design, in vitro evolution of both types is also
called “evolutionary molecular engineering” [24].

I As an alternative definition, the fitness landscape is defined in the space of allele fre-
quency [20,59]. The mean fitness-value of each allele frequency is mapped into the corre-
sponding point in the space.
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3.1.2 In Vitro Evolution as an Information Gaining Process

The in vitro evolution process have two parts: the “evolving system” that con-
sists of phenotype/genotype molecules as evolving entities and the “surroundings”
(or “environments”) as an experimental setup. For example, we consider a typical
case where one tries to create specific ligand molecules with high binding affin-
ity to target-receptor molecules through in vitro evolution (Figure B.I). The ligand
molecules correspond to the evolving system, while the shape of the receptor molec-
ular surface including distribution of the electric charge on it, and other experimen-
tal conditions of the solvent correspond to the surroundings. In this case, the fitness
should be defined as the logarithm of the association constant between the ligand
and the receptor, i.e. InK,. Using the logarithm of the association constant means
that the fitness is handled at the free-energy level. We must set and control the sur-
roundings properly for correct evaluation of the fitness. The evolving biopolymers
in Figure 3.1l gain a particular sequence of information and a high fitness value from
the surroundings to bind with the target-receptor molecules under given conditions.
Then, we can say that Darwinian evolution is considered as an information gaining
process from the surroundings. In order to simplify the information gaining pro-
cess and treat it physically, we focused on in vitro evolution in a well-controlled
environment as an extremely simplified process of biological evolution [25].

In this simplified system, an evolution process of a biopolymer is considered as
an “adaptive walk” or “hill-climbing” on the corresponding fitness landscape in the
sequence space (Figure[3.2lright). Here, the evolving molecular system gains at least
two kinds of information originating from the converged sequences and the fitness
increment of the evolving biopolymer as the adaptive walker. These two represent
two aspects of the biomolecular information, i.e. extent and content, respectively.
The two are interconnected through physicochemical properties of the biopolymer.
The interconnection may be analyzed based on the analogy between the evolution
process and thermodynamics. Actually, the picture of the adaptive walk on a fitness
landscape is analogous to the conceptual view that the molecular folding process
is considered as a downhill walk on the energy landscape in conformation space
(Figure[3.2) [58]. Therefore, there have been many studies on the analogy between
evolution and thermodynamics.

Extending the interpretation of evolution by thermodynamics-like concepts, we
can clarify a view of the evolution process as an information gaining process from
the surroundings. Eigen raised a question about the “extent” and “content” of infor-
mation in biological evolution [25]. According to him, the extent of information is
related to the constrained volume of the sequence space and can be handled within
the classical information theory [48]. This is comprehended within the framework of
Shannon’s information theory. On the other hand, the content of information means
the meaning or semantic value of information, and is related to the concept of fit-
ness. We must combine these two aspects of information in the same mathematical
framework.
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3.1.3 Basis of Thermodynamic Concepts

Here, we discuss the basis of thermodynamic concepts that are essentially related
with the content in this chapter. First, the “universe” is divided into two parts: the
“system” and the “surroundings”. One focuses on the process including physical
and chemical changes of the system. The second law of thermodynamics states that
the system tends toward the minimal free-energy state at equilibrium. The Gibbs
free energy of the system, G, is defined by G = H —T'S, where H, T and S represent
the enthalpy, thermodynamic temperature and entropy of the system, respectively.
The “chemical potential” G, is equivalent to the molar Gibbs free energy. Under
a constant temperature and constant external pressure, a spontaneous process of
the system gives AG = AH —TAS < 0. The free energy is the Lyapunov function
of the system. Furthermore, this inequality is rewritten as —AG/T = —AH /T +
AS > 0, where —AH /T represents the thermal entropy that the system emits to the
surroundings and —AG/T represents the change in total entropy of the universe. The
above inequality represents that a spontaneous process is driven in the direction in
which the total entropy of the universe increases. Thermodynamics is deeply related
with classical information theory [17, |48]. Particularly, the concept of information
is equivalent with negative entropy.

Evolving system

(initial state)

Evolving system

(final state)

Surroundings

Target receptor

Geg AW _AlnKk,
TnesPHpPL )T, T,

@ eeg Discard 9299
—/ @

Fig. 3.1 Emergence of a specific ligand sequence with high affinity to target-receptor
molecules. Through mutation and selection, the specific ligand sequence “+ —+ — 4" is
found out from among all possible sequences to fit the surface of the target-receptor molecules
“— -+ —+ —". We interpret that the specific ligand sequence absorbs the fitness information
AW /Teyo from the surroundings, where Tiy, represents the evolutionary temperature, while
Tine represents the thermodynamic temperature. Adapted from Aita and Husimi [7].
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3.1.4 Outline of This Chapter

In this chapter, we summarize two typical studies on the evolutionary dynamics
of in vitro evolution, which has been interpreted in terms of thermodynamics-like
concepts leading to both aspects of the information concept, its extent and its con-
tent. One is a theory for a “natural selection-type model”. That is the quasi-species
theory developed by Eigen’s group [22, 23, 25, 156]. The other is a theory of an
“artificial selection-type model”, which was developed by the authors [2, 13, 6, [7].
These studies gave a formulation for the information gaining process from the sur-
roundings. Other studies are also reviewed within the framework of the two typical
studies. In Section 3.2 we describe two different models of in vitro evolution: the
natural selection-type model and the artificial selection-type model. In Section[3.3]
the analogy between evolution and thermodynamics is described: first we review the
previous studies related to this subject, next the results based on the two models. In
Section[3.4] the analogy is developed to the concept of information gained through
in vitro evolution.

‘ Molecular folding ‘ Molecular evolution

Energy
landscape

)

Fitness

landscape
/' %
Emit ! A !
bsorb ! %

+AS >0

AG  AH AG AW
T the T the T evo T evo

Fig. 3.2 An analogy between molecular folding and molecular evolution. In molecular
folding, a folding biopolymer (e.g. protein) descends the energy landscape by emitting the
thermal entropy —AH /Tipe (= ASsyr) to the surroundings. In molecular evolution, we inter-
pret that the evolving sequences climb the fitness landscape by absorbing “fitness informa-
tion” AW /Tevo (= Alfg) as the negative entropy from the surroundings, which is defined in
an experimental setup. Adapted from Aita and Husimi [4, [7].
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3.2 Model of In Vitro Evolution
3.2.1 Natural Selection-Type Model

Eigen proposed the quasi-species model as the natural selection-type model. This
model describes the evolutionary dynamics of the ensemble of simple self-repli-
cators in a flow reactor, such as self-replicating RNA molecules [22, 123, [25]. The
genome sequence of each species of the self-replicators consists of v sites, with
A available symbols at each site. The number of all conceivable sequences is
n = AY. Each species (=sequence) is numbered by using a serial number s (or u)
(s,u=1,2,---,n). Then, each genome sequence is mapped onto the corresponding
point in the A-valued v-dimensional sequence space. In the replication processes,
it is possible to replace each symbol with one of the other A — 1 symbols with a
probability of u, that is the mutation rate y. The mole fraction of a certain species s
at time ¢, denoted by x,(¢), obeys the following differential equation:

dXS(t) - S - = e
a = ug‘]msufuxu(t) D(t)xs(t)  (s=1,2,---,n) (3.1)
d(s,u)
Mgy = (l *Il)v_d“’u) ()“i 1) 5 3.2)

where f; is the fitness of a species s, precisely mi; f5 is the replication rate constant
of s (here we neglect decomposition) and my, (for s # u) is a probability of mutation
from a species u to a species s (note that 3}, mg, = 1 for every u). The d(s,u) is
the Hamming distance between s and u. D(t) is the dilution rate and works to satisfy
>n_ xs(t) =1 atevery time ¢. Then, we can easily derive

D) =3 fixs() = (F), (3.3)
s=1

where (x) represents the population average of a quantity x. It should be noted
that the dilution rate D(¢) is equal to the population average of fitness, (f). Equa-
tions (3.1) and (3.2) mean that any species propagates cooperatively with neighbor
species in the sequence space through mutation.

3.2.2 Artificial Selection-Type Model

3.2.2.1 Fitness Landscape

The evolutionary dynamics of a finite population is dependent on local structures of
fitness landscapes. We supposed the following “NK landscape” [33] in the A-valued
v-dimensional sequence space [3, SP. In this model, an arbitrary site in a sequence
interacts with other k sites. The fitness W for a given sequence “AjA;---A,” is
defined by

2 The validity of using the NK landscape was demonstrated in [3].
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v
W= wi(AjlAj L, Aj, o Ay, (3.4)

j=1
where w; is the “site-fitness,” i.e., a fitness contribution from the jth site, and A;
represents a particular symbol at the jth site. The value of w; is given as a function
of 1+ k symbols at the jth site (A;) and other & sites (Aj,,---,A},). The interacting

k sites {j1,-- -, ji } are randomly chosen from among all of the v — 1 sites except the
Jjthssite. Once a set of symbols {A,,---,A;, } at these k sites is given, the value of w
for an arbitrary symbol A;, w;(A;|Aj,,---,Aj,), is assigned randomly from a given

probability distribution. Here, we adopt a discrete uniform distribution in the range
[—&, €], where ¢ is a positive constant (€ > 0). Let 6 be the variance of the uniform
distribution, then ¢? = &2 /3 for this case. On the whole, the ruggedness of the
landscape is controlled by the parameter k. In the case of k = 0, the resulting fitness
landscape has a smooth surface and a single global peak. As the k-value increases,
the surface of the fitness landscape becomes more rugged and many local optima
appear. We denote the fitness coordinate by W. The frequency distribution of fitness
over all conceivable sequences (of AV) is given approximately by the following
normal distribution:

v 2
QW)= \/;r”f/ exp (—;‘;) for —ev SW < ev, (3.5)

where ¥ is the variance of fitness over all conceivable sequences in the sequence
space and given by ¥ = 6% v. The average of fitness over the whole sequence space
corresponds to the “foot” of the landscape, while regions where W < 0 correspond
to below sea level and are negligible for the adaptive walks that start from random
points, which are likely to be located at the foot of the landscape. Since the fitness
at the global peak takes about €v, the €v corresponds to the height of the landscape
from the foot to the global peak. In this chapter, we focus on the regions from the
foot of the landscape to the global peak: 0 < W < ev.

3.2.2.2 Protocol of Adaptive Walk

In this model, the in vitro evolution process is modeled as an “adaptive walk” or
“hill-climbing” process. Suppose a single parent sequence as the walker on the fit-
ness landscape, where the walker represents the evolving sequence or evolving phe-
notype/genotype molecule. The adaptive walk process is conducted by repetition of
the following mutagenesis and selection processes. Furthermore, two different se-
lection protocols are considered in parallel: one is the “sampling-screening” [2,13, (7]
and the other is the “selective enrichment” [|8].

Case 1. Sampling-screening:  First, a single parent sequence produces N mutant
sequences as offspring. In the reproduction process, d-fold point mutations occur
in each sequence randomly, that is, d (=the number of mutated sites) represents
the Hamming distance between a parent and each of its offspring. Next, the fit-
ness value of each mutant is evaluated, and then the best mutant with the highest
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fitness among the all become a new parent in the next generation. N is the library
size of mutants to be screened in a single generation. The d is interpreted as the
step length of the walker in sequence space.

Case 2. Selective enrichment:  First, a single parent sequence produces all possi-
ble d-fold point mutants. The number of all possible d-fold point mutants derived
from a single sequence is

N, = (;) (A — 1) (3.6)

Each of all the N; mutants has the same occurrence frequency. Here, we assume
the population size is large enough to consider the population dynamics deter-
ministically. The resulting library is called the primary library. Subsequently,
each mutant in the primary library is amplified deterministically. The occurrence
frequency of each mutant with fitness W is multiplied by the

W
amplification factor = exp " , (3.7
kg Tine

where kg is the Boltzmann constant, Ty, represents the thermodynamic tem-
perature (Tihe = 270 ~ 370[K]) and r is the number of rounds of the selective
enrichment (r = 1 ~ 6). The amplification factor (Equation (3.7))) is based on an
affinity selection system such as a ligand-receptor binding syste. In this sys-
tem, W and exp(W /kgTine) correspond to the negative binding-free energy and
association constant, respectively. Equation (3.7) (for r = 1) is also interpreted
as the Malthusian fitness in biology.

Subsequently, an arbitrary mutant is randomly chosen from the resulting popula-
tion and it becomes a new parent in the next generation.

The controllable parameters N, d, Ty and r are constant throughout the adaptive
walk. We assume d(1+k) < v, where d (1 +k) is the mean number of sites affected
by random d-fold point mutations. Based on the NK landscape model, after the
mutations, the d(1 + k) sites update their site-fitness values.

3.3 Analogy between Evolution and Thermodynamics

3.3.1 Overview

Thermodynamic concepts connect the evolution process to information. Here, we
review studies related to the analogy between evolution and thermodynamics from
various viewpoints.

3 Here, we neglect the effects of the non-specific binding and the washing process for
simplicity.
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Some of the previous studies introduced the concept of “free fitness” that is anal-
ogous to free energy, and then proposed that evolution is driven in the direction in
which free fitness increases. In their common scheme, free fitness is defined as

Free fitness = Fitness + Temperature-like parameter X Entropy, 3.8)

where Fitness is sometimes the population average of log fitness or selection co-
efficient. The Temperature-like parameter is dependent on the models. For exam-
ple, concerning the natural evolution with a weak mutational effect, the theories
by Iwasa [32], Berg and Léssig [[13] and Sella and Hirsh [47] were based on the
Markovian process and detailed balance for transition probability, which means a
probability of transition from a homogeneous population occupied with a certain
species to that occupied with another species in sufficient generation time. In their
scheme, the Temperature-like parameter corresponds to the inverse of the double
population size, and the Entropy is the ensemble average of the logarithm of the
occurrence frequency of each species. The special case of and infinite population
corresponds to Fisher’s fundamental theorem of natural selection [28]. Recently,
Barton’s group [11), [12] extended the concept of free fitness to incorporate mu-
tational effects explicitly, based on the stationary distribution of allele frequen-
cies [59]. They reviewed the studies on the relationship between statistical physics
and evolutionary biology [12]. Demetrius [18, [19] discussed the evolutionary dy-
namics of an organismic population in the “age space” in terms of the age-specific
fecundity and mortality. In his scheme, the Temperature-like parameter corresponds
to the inverse of the generation time, while the entropy is defined as a measure of the
uncertainty in the age of the immediate ancestor of a randomly chosen newborn. Ao
presented the relationship between Darwinian evolution and thermodynamics from
the viewpoint of Langevin dynamics [[9]. His theory describes the dynamics on po-
tential surface in “genotype frequency space”, where each coordinate axis represents
the frequency of a genotype. The concept of the free fitness is a key role in this chap-
ter and will be again referred to in the natural selection-type model and the artificial
selection-type model.

Blackburne and Hirst conducted a simulation of population dynamics using sim-
ple lattice model proteins [15]. They also estimated the population using the anal-
ogy with Boltzmann distribution in thermodynamics, in which a temperature-like
parameter was empirically derived as a function of the mutation rate and selection
pressure.

Sato et al. referred to a mathematical relationship between fluctuation V [X], and
response (X)414q — (X)4 in a biological system (where (X), and V[X], are the av-
erage and variance of the variable X at the initial parameter value a), and demon-
strated that the relationship they found, (X), 411, — (X)4 o< V[X], X Aa, is similar to
Einstein’s relation in the fluctuation-dissipation theorem in Brownian motion [43].
They confirmed the relationship through an experimental observation, in which X
represents the logarithm of fluorescence intensity per E. coli. cell including mutant
GFP proteins and Aa represents the synonymous mutation rate of their genes.
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From the viewpoint of molecular imprinting, Pande et al. developed statistical
mechanics of protein folding and design [42], introducing the “design temperature”
T4es, which controls the probability of the occurrence of amino acid sequences with
low energy (designed sequences) in a given canonical ensemble. They obtained a
phase diagram for model heteropolymers in a two dimensional Tges-Tine (Tine i ther-
modynamic temperature) space.

3.3.2 Quasi-species

We summarized the result of the mathematical analysis of the natural selection-type
model (Equation (3.1)). In a special case of no mutations (1 = 0), Equation (3.1)) is
simplified as follows:

dx, (1)

dr :(fS_D(t))xS(t) (S: 1727""’1)’ (3.9

with 3, x4(z) = 1. The solution of Equation (3.9) is obtained as follows:

x5(0) exp(fst)
ZZ:] Xu (0) exp(fut)

Let s* be the fittest species that has the maximal fitness value among all n species.
In the stationary state, we observe

xs(t) = (s=1,2,---,n). (3.10)

. 1, if s=s*
thﬁrgxs(t) o {0, if s#s* G.11)
That is, only the fittest species s* exists in the reactor. Furthermore, according to
Equation (3.9), the first derivative of Equation (3.3)) is given by

dD(z)

v ()= (f)? =0, (3.12)

where (f2) — (f)? represents the population variance of fitness. This means that the
dilution rate D(¢)(= (f)) is the Lyapunov function of the process. In the stationary
state,

lim D(t) = tli_>rr°1°<f) = fy = max{fs}. (3.13)

o0

This situation is the so called “survival of the fittest”. These results correspond to
Fisher’s fundamental theorem of natural selection [28].

In general cases of non-zero mutation rates (¢ > 0), Equation (3.I) must be
transformed in the following manner. Considering the n X n square matrix [mg, fy]
(s and u represent rows and columns, respectively), we denote the gth eigen-
value and eigenvector of this matrix by A, and ry = [rg1,70, - ,rqn]—r (for g =
1,2,---,n), respectively, where ' is the transpose operation. Here, the eigenvec-
tor r, should be determined to satisty Y., rys = 1. By diagonalizing the matrix
[mg.f,] by the n x n square matrix R = [ry,r5,--- ,T,] and its inverse matrix R~!, and
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introducing [y;(¢),y2(¢),-+,yn(£)]" = R [x1(),x2(¢),- -+ ,x,(¢)] ", Equation (3.1)
is transformed to

dygt(t) = (Ag—D(1)) y4(t) (g=1,2,---,n), (3.14)

with ZZ:l y¢(t) = 1, where ¢ is designated as the “quasi-species”. It is remarkable
that Equation (3.14) is the same mathematical form as Equation (3.9). Therefore,
the solution of Equation (3.14)) is the same mathematical form as Equation (3.10):

¥q(0)exp(Aqt)
ZC: 1 Yv (0) exp(Avt)

It is noted that x,(r) > 0 in Equation (3.10), while y,(r) § 0 in Equation (3.13).
Let ¢* be the quasi-species that has the maximal eigenvalue (according to Perron-
Frobenius theorem, Ay« > 0 and ry+; > 0 for every s). In the stationary state, we can
observe

)’q(t): (qzlazaan) (315)

. _JLif g=4q*
Jim y, (1) = {0, if g#q* (3.16)
That is, only the quasi-species g* is realized in the reactor. The x,() in the stationary
state is given by

n
lim x,() = lim q; FasYq(t) = rgvs. (3.17)
The realized eigenvector ry is designated as the “quasi-species distribution”, which
is caused by the mutation-selection balance. Furthermore, the dilution rate is rewrit-
ten by D(t) = X7_; Agyq(t) = (A)y, where (x)y = X7 1 * X y,4(t). According to
Equation (3.14), the first derivative of D(¢) is given by dD(t)/dt = (A?), — (A)g §
0. This means that the dilution rate D(¢)(= (f)) is not necessarily the Lyapunov
function for the quasi-species model. In the stationary state,

tli_)lgD(t) = ,li_>r£1<,<f> = Ay =max{A,}. (3.18)
That is, the population average of fitness, (f), becomes equal to the maximal eigen-
value Agx.

It is important to note that the quasi-species distribution is strongly dependent on
the shape of the fitness landscape ({f;}) and mutation rate (it). For proper land-
scapes, the quasi-species distribution shows a phase transition at several critical
points of the mutation rate. Let m be the species as the master sequence and let
(fs)sm be the mean fitness over all the species except m. When the mutation rate
exceeds a certain critical point called the “error threshold”,

s — In fin — 1\1/1<fs>37ém (for A = 2), (3.19)
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an “error catastrophe” or a localization-delocalization transition occurs. In the delo-
calization state, all species have the identical mole fraction.

An example of a fitness landscape demonstrating a sharp localization-localization
transition is an asymmetric twin peaks consisting of a sharp high peak and a broad
low peak. When u is very small, the quasi-species members localize at the high
peak. When p becomes greater than some critical value (and less than the error
threshold), the quasi-species members become to localize at the broad low peak,
because the population at the broad peak is mutationally robust based on mutational
interconnectedness. The transition is very narrow for y and shows a critical slowing
down phenomenon [30, 45]. Wilke ef al called this situation the “survival of the
flattest” [57].

These results can be interpreted by thermodynamics-like concepts. Mutation
causes the species to diffuse in the sequence space, while selection causes them
to converge on the local area. Therefore, the mutation rate y corresponds to a
temperature-like parameter 7. When p = 0, the fittest s* that has the maximal fitness
[y is realized. This is analogous to the case of T = 0 in thermodynamics, because
the thermodynamic system realizes the minimal energy state. On the other hand,
when p > 0, the quasi-species g* that has the maximal eigenvalue A, is realized.
This is analogous to the case of the thermodynamic system realizing the minimal
free energy state. In the above mentioned asymmetric twin peak case, the localiza-
tion at the broad low peak is an analogous state to an intermediate conformation X
of a protein in the unfolding process (Native <> X <> Denatured). Therefore, the
eigenvalue A, could be called the “free fitness” [30].

In thermodynamics, the phase transition temperature between state A and state B
is given by T,y = AH/AS, where AH and AS are the enthalpy change and entropy
change between A and B, respectively. In Equation (3.19), the numerator means
energy- or enthalpy-like quantity, and the denominator means entropy-like quantity
(v =log,2¥ —log, 1). Therefore, Equation (3.19) is analogous to Ty = AH /AS.

3.3.3 Attractor of Fitness in the Artificial Selection-Type Model

We summarized the result of the statistical analysis of the artificial selection-type
model. Denoting the fitness of the walker (=parent sequence) by W, we focus on
the statistical properties of a time course of W through the hill-climbing process.
Consider that the hill-climbing starts from the foot of the landscape (W = 0). The
walker’s fitness W increases exponentially and tends toward a stationary value de-
noted by W*, which is called the attractor. In the stationary state, the value of W
fluctuates around the attractor W*. As a result, under extreme conditions where A,
v, d, N and kg T, have large valueﬂ the attractor W* is given by:

# The conditions for Equation (3:20) are InN < d(1+k) < vand 1 <N < (})(A—1)¢

(where () (A — 1) is the size of the “d-boundary” of any sequence). The conditions for

Equation (321) is kp Tihe /7 > 01/8/3. The derivations of Equation (3.20) and Equation
(B:21)) are described in [, &].
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YvInN
W* = 2\/d(1 —&I-lk) for sampling-screening (3.20)
w* 7 for selective enrichment (3.21)
= AY . .
kg (Tine/2r)

¥ represents the variance of fitness over all conceivable sequences in the sequence
space (Equation (3.3)). This stationary state is caused by the balance of the effects
of mutation, sampling and selection.

Let J be the expectation of the change in walker’s fitness W after a single step of
walk. For both cases, J (= the climbing rate) is given by

szd(ljk)(wfw*). (3.22)

These results are interpreted in the analogy with thermodynamics.

3.3.4 Evolutionary Boltzmann Constant and Evolutionary
Temperature

In order to interpret the evolutionary dynamics for the artificial selection-type
model, we introduce the following thermodynamics-like functions. First, we intro-
duce the “evolutionary Boltzmann constant,” kg, which is analogous to Boltzmann
constant, kg. Next, based on the global fitness distribution given in Equation (3.3)),
we define the “entropy” S as a function of W as follows:

S(W) = kg x In Q(W), (3.23)
kgW?

= _ . 24

vy + const (3.24)

Following the definition of thermodynamic temperature, we define “evolutionary
temperature” Tey, as follows:

ds oy
e (dW ’WW*) kgW*’ (325)

where W* is the attractor we defined in the previous section. Then, W* is also given
by
/V
W= . (3.26)
kg Tevo
By comparing Equation (3.20) with Equation (3.26) and comparing Equation (3.21)
with Equation (3.26), we obtain
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d
kgTovo = ki, X \/ for sampling-screening (3.27)
41nN

T
kgTeyo = kB X [f;e

for selective enrichment, (3.28)

where ki is defined as
ky=o0V1+k (3.29)

and designated as the “landscape constant”. The meaning of ki is the standard de-
viation of a change in fitness for a unit Hamming distance. Then, ki, indicates the
degree of ruggedness of the landscape.

It should be noted that, for each of the above equations, dividing the right-hand
side into kg and Ty, is not so important in the essence of this scheme and should be
done arbitrarily. However, it is clear that the former parts consist of the natural con-
stants (kp and kg) inherent in the evolving system (including the fitness landscape),
while the latter parts consist of the controllable parameters (d, N, Ty, and r) in the
surroundings. Therefore, we can divide as follows:

d
kge=k., Too= \/ AlnN for sampling-screening (3.30)
T;
kg =kg, Two= 2“:3 for selective enrichment. (3.31)

In Equation (3.30), the d indicates the degree of diffusion in the sequence space
by random mutation, while InN indicates the degree of convergence of sequence
diversity by selection. Tey, is the ratio of these conflicting effects.

According to thermodynamics of protein folding, the most probable energy of a
canonical ensemble is given by an equation similar to Equation (3.28) (e.g. Equa-
tion (11) in Wolynes and Luthey-Schulten [58]). Therefore, we can say that kg and
Teyo are analogous to the Boltzmann constant and thermodynamic temperature of
the thermal bath, respectively. Beyond the analogy, Equation (3.31)) connects the
evolutionary dynamics and thermodynamics in the simple form [42].

3.3.5 Evolutionary Potential, Free Fitness and Evolutionary
Force

We define the “evolutionary potential,” ¢, which is analogous to the chemical po-
tential, as follows:
OW) =W+ Toyo X S(W). (3.32)

When the number of walkers (=parent sequences) is M, we define the “free fit-
ness G’ by G = ¢ x M [7]. By substituting Equation (3.24) into Equation (3:32),

5 In this scheme, the evolutionary potential ¢ plays a more significant and essential role than
the free fitness.
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¢ is rewritten as the following convex function which takes the maximal values at
W =Ww*

kETevo 4 :
W) =— W — t 3.33
o(W) vy < kETev0> + cons (3.33)
kgTevo *\2
- - - 34
vy (W —W*)” + const, (3.34)

(by using Equation (3.26)). Furthermore, the evolutionary potential ¢ and free fit-
ness G is the Lyapunov functions of the evolution process (proof is shown in the
next section). Namely, the in vitro evolution is driven in the direction in which ¢
and G increase. In addition to these quantities, we define the “evolutionary force,”
X, which is analogous to the generalized force, by

d oW
Xw)= (PT(evo) (3.35)
== w-w). (3.36)

Substituting Equation (3.32)) into Equation (3.33), the evolutionary force X is de-
composed into the “fitness force” Xg, and the “entropy force” Xeni: X = Xfi¢ + Xents
where 1 ds(w k
Xi=p and  Xen = d(W) —_— ;W. (3.37)

Xi¢ is caused by a selection event and pushes the walkers upward, while Xep is
caused by a mutation event and pushes the walkers downward. The mutation-
selection-random drift balance occurs when Xg; and Xep cancel each other out.

Based on the definition we mentioned above, we can describe the dynamics of the
adaptive walk as follows (see Figure [3.3). Driven by the evolutionary force X, the
walkers tend to achieve the stationary state with the maximal evolutionary potential
¢, in which the fitness force X5, and the entropy force Xep cancel each other out. The
evolutionary force X depends strongly on the evolutionary temperature T.,,. Here,
consider the walkers are located at the middle point on the landscape. If Ty = oo,
then W* lies at the foot of the landscape and a negative force (X < 0) acts on the
walkers so the walkers are pushed downward. In this case, the maximal entropy state
is realized. As Ty, becomes lower, the W* becomes higher up near the top of the
landscape and a positive force (X > 0) acts on the walkers so the walkers are pushed
upward. In this case, the (nearly) maximal fitness state is realized. If T¢yo = 0, the
walkers cannot move in the sequence space, and evolution does not occur.

3.3.6 Fitness Flux and Einstein’s Relation-Like Formula

We consider the hill-climbing rate for a single step of walk. Let AW be the change
in walker’s fitness W after a single step of walk (top of Figure[3.4). The expectation
of AW is denoted by J (= E[AW]). For both of the two cases (sampling-screening
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Fig. 3.3 Interpretation of evolutionary dynamics by thermodynamics-like concepts. The
solid line represents the entropy S, while the dashed lines represent ¢ /Teyo or G/Tevo, Where
¢ and G are the evolutionary potential and free fitness, respectively. The right blue (left red)
dashed line is for the case of a low (high) evolutionary temperature Teyo. W* represents the
stationary point, in which ¢ and G take the maximum values under the given Ty,. The black
arrow represents the evolutionary force X that acts on the walker with the current fitness W.
Details are described in the text. Adapted from Aita and Husimi [4, [7].

and selective enrichment), J is given by Equation (3.22). By using Equation (3.36),
Equation (3.22)) is rewritten as
J~ILX, L= D, (3.38)
kg
where L is the “linear transport coefficient” and D = kfd is the “diffusion coeffi-
cient” of the walker’s fitness W along the fitness coordinate when the walker per-
forms a random walk in the sequence spacdﬁ. The random walk occurs when N = 1
because of no selection pressure (Xg; = 0). Equation (3.38) is analogous to Einstein’s
relation in Brownian motion [26].
Sato et al. found a similar scheme to Equation (3.38) for the relationship be-
tween fluctuation and response in a biological system [43]. Iguchi has tried to ex-
tend Equation (3.38) to a case of coevolving biopolymers in a similar framework of

6 Consider that all possible d-fold point mutants are generated from a parent sequence. The
variance of the probability density of the fitnesses over all the mutants is approximately
given by k%d (=D).
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the Onsager’s reciprocal relations [31]. The linear relationship shown in Equation
(B.38) is similar to Fisher’s fundamental theorem of natural selection [28], although
the theorem holds in cases of no mutational events. Yang et al. [60] experimentally
tested the theorem through in vitro evolution of Mnt repressor-binding DNA, and
obtained the correlation between evolution speed and sequence diversity.

3.4 Information Gained through In Vitro Evolution

3.4.1 Fitness Fluctuation and Energy Fluctuation

First, we discuss sampling-screening. Since exploration on a fitness landscape is
done by random sampling of finite mutants from among the underlying mutant pop-
ulation, the fitness change AW after a single step of walk is a stochastic quantity
and its probability density is described by the theory of extreme value statistics. Let
X4 be the standard deviation of AW (Zg; = SD[AW)]). kg Teyo is related with X, by

2
kgTevo =~ Zﬁt for sampling-screening. (3.39)

Evolution
— Probability density
Zﬁl 2% kE Tevo ' after a step of walk
| i
W J R Fitness
| |J=LxX,L=D/k;|
| AW S AW
| 2 >| Al =
| \ TCVO
? kE Tevo = OSZﬁt
Thermo-  change in enthalpy
dynamics —AH —AH
> >IAS,, =
\ Tthc

kB Tthe

Fig. 3.4 (Upper) A probability density of the change in walker’s fitness after a single
step of walk from a certain fitness W, as for the case of the sampling-screening. J and
X, represent the expectation and standard deviation of the change, respectively. (Middle)
The fitness-information change, Alg, is the fitness-change digitized by the fluctuation size,
kgTevo = X /2. (Bottom) The concept of thermal entropy, ASsyr = —AH /Teyo, Which is the
enthalpy-change digitized by the fluctuation size of thermal energy per degree of freedom,
kB Tine. Adapted from Aita and Husimi [4, 7].
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Fitness landscape

Sequence space (Entropy .S)

Fig. 3.5 Schematic representation of the fitness information /5, and Shannon informa-
tion Igp,. The circular cone represents a fitness landscape schematically. The height repre-
sents the fitness W divided by Ty, While the area of the cross section represents the entropy
S(W) = kg x In Q(W), where Q(W) is the number of all sequences with a given fitness W.
I (W) is defined as the change of W /Ty, from the foot of the landscape, while Igp, (W) is
defined as the negative change of S from the foot. Al and Alsy, are the changes of these
quantities after a single step of walk. Adapted from Aita and Husimi [4, [7].

This equation shows that kgTey, is approximately equivalent to the “fitness
fluctuation” Xg;.

Next, we discuss selective enrichment. We introduce the molar energy Ey, of an
ensemble of the evolving molecules of Avogadro’s number at a thermodynamic tem-
perature Tip,.. Suppose that all the molecules realize a canonical ensemble, in which
kg Tine is related to the “energy fluctuation”. According to thermo-statistical me-
chanics theory, the standard deviation of Ey,, denoted by Xepe (= SD[En)), is given
by the energy-fluctuation formula . Using this formula combined with Equation

([3.28), we obtain

Eene
rv2f

where f is the degree of freedom of the molecules of Avogadro’s number.

Then we can say that the fitness fluctuation (Xg;) originates from the events that
the evolving sequences (genotypes) move in sequence space, while the energy fluc-
tuation (Xepe) originates from the events that the evolving phenotypic molecules
move in physical space.

7 Zene = kBTthe X \/f/2

kgTovo ~ for selective enrichment, (3.40)
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3.4.2 Biomolecular Information

Suppose an adaptive walk from the foot of the landscape (W = 0) up to the stationary
state (W = W*). Here, using entropy S in Equation (3.23) and evolutionary potential
¢ in Equation (3.32), we introduce the following three quantities as functions of
walker’s fitness W:

In(W) = TW (3.41)
Isna(W) = S(0) —S(W) (3.42)
Lhio(W) = ¢7(::‘:) - d)TS)O) (3.43)

= In(W) — Isna(W), (3.44)

and let Alg;, Alspa and Ay, be the changes in I, Ish, and Iyo, respectively, after
a single step of a walk (Figure 3.3). Since Equation (3.42) means the change in
entropy S between an initial state and a certain state with fitness W (Figure[3.3), Isp,
is interpreted as the “Shannon information” [48].

On the other hand, from Equation and Equation (3.40), the meaning of
Al (= AW [ Teyo) is as follows:

Alﬁt AW

~ x 2 for sampling-screening (3.45)
kg Zit
Al AW
fit ~ X r\/ 2f for selective enrichment. (3.46)
kE Z:ene

As can be seen in the above equations, Alj; is the fitness-change digitized by the
fitness fluctuation size X5, or energy fluctuation size Xy (in the middle of Fig-
ure[3.4). Here, the analog-to-digital conversion is realized as the significant figures
of the fitness-change observed by the walker with the observation error X. This is
analogous to the thermal entropy change in the surroundings, —AH /T, when a
system emits the heat —AH to the surroundings (bottom of Figure 3.4) [10]. Ac-
cording to the analogy with thermodynamics, we can interpret Al (= AW /Tyo) as
the negative entropy that the evolving system absorbs from the surroundings (Fig-
ure[3.2]right). Here, the surroundings mean the experimental setup (e.g. a column of
affinity-chromatography) around the biopolymer as an evolving entity (Figure 3.1).
We designate Iy as the “fitness information”. We can say that the evolving entity
gains the fitness information from the surroundings (Figure[3.1land [3.2)).
The expectation of Al, is given by

E[ALi,) =JX ~ LX* > 0. (3.47)

Equation (3.47) proves the theorem that I;, (or ¢) is a Lyapunov function of the evo-
lution process. Therefore, we conclude that the evolution is driven in the direction in
which I, increases, and then we designate I, as the “biomolecular information”
gained through in vitro evolution.
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3.4.3 Information-Gain Formula

Based on the classical concept of information [17, 48], we consider the information
gained through a single step of the selection process. We denote this information
gain by Al. Al is defined by the following change in classical entropy after a
single step of walk:

AIsel = kElan kElIll = kEInN

for sampling-screening (3.48)

Ny
Al = kg Y, —po(s)Inpo(s) kEz —=pi(s)Inpi(s)
s=1

for selective enrichment, (3.49)

where s (s = 1 ~ N,;) represents an arbitrary mutant among all conceivable d-fold
point mutants of a parent sequence, and N, is given by Equation (3.6)). The pg(s) and
pi(s) represent the occurrence probability of the sequence s in the mutant population
before selective enrichment and that after selective enrichment, respectively, with

1 exp(rW (s)/kp Tine)
_ ; _ , 3.50
po(s) N, and  pi(s) Z]svi] exp(rW (s)/kg Tine) 20

where W (s) is the fitness of the sequence s.
Interestingly, for both cases, the Ig, Ish, and Iy, at the attractor W = W* are
related with Al by

. " I (W*
Lhio(W") = Ispa(W*) = ﬁt(z ) (3.51)
~ 1 x Al (3.52)

2kE evo

where t* represents the mean generation (or mean step number) from the foot of the
landscape up to the stationary state. Precisely, the ¢* is defined as a characteristic
generation that the expectation of the walker’s fitness becomes equal to W* (1 —e™2).
The r* is approximately given by t* ~ 2v/d(1 + k). Equation (3.32) is reasonable in
that h, in the stationary state is approximately equivalent to the sum of the informa-
tion gained by the selection process (A1) over generations (¢*) up to the stationary
state. Figure[3.6shows the relationship among Iy, Ifi¢, Ispa and Al gained through
an adaptive walk process.

The analogy between the concepts in in vitro evolution and those in thermo-
dynamics is compiled in Table 3.l Additionally, in Table 3.2l we show a com-
parison between the two different selection protocols: the sampling-screening and
the selective enrichment. For the description in the two tables, the protocol of the
sampling-screening is more generalized as follows: the adaptive walk is performed
by M walkers as parent sequences, which are selected as the 1st-Mth fittest mutants
from among the N offspring [[7].
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Table 3.1 An analogy between thermodynamics and in vitro evolution

Thermodynamics In vitro Evolution
Number of moles: M Number of walkers: M
Molar energy or enthalpy: En, Hp Mean fitness of walkers: W
Boltzmann constant: kg Evolutionary Boltzmann constant: kg
Molar entropy: Sm = kg InQ Walker’s entropy: S = kgln 2
Temperature: Tpe = dEm/dSm Evolutionary temperature: Tpyo = —dW /dS
Chemical potential: Gy = Hmy — Tipe Sm Evolutionary potential: ¢ =W + Teyo S
Free energy: G = Gy, x M Free fitness: G= ¢ xM
Generalized force: X = d(Gm/Tine ) /dx Evolutionary force: X = d(¢/Tevo)/dW
Generalized flux: J Fitness flux: J/ = E[AW]
J=LX J~LX
Diffusion coefficient: D Diftusion coefficient: D = klz_d /M
Einstein relation: L = MD /kg L=MD/kg
Energy fluctuation: Fitness fluctuation®:
Zene = SD[Ey] o< kpTine Xy =SD[AW] o< kg Tevo
ASsystem/M = ASm Shannon information gain : Algp, = —AS
ASsurroundings/M = —AHm [ Tipe Fitness information gain: Al = AW /Teyo
ASuniverse/M = —AGm /Tine Biomolecular information gain: Ay, = A /Tevo
ASuniverse = ASsurroundings JFASsystem Alpio = Al — Alspa

a): For the case of the sampling-screening. As for the protocol of the sampling-screening,
the adaptive walk is performed by M walkers as parent sequences, which are selected as the
1st-Mth fittest mutants from among the N offspring. Adapted from Aita and Husimi [4, (7].

Table 3.2 A comparison between two different selection protocols: the sampling-screening
and the selective enrichment

Selection scheme Sampling—screeninga> Selective enrichment®
Evolutionary Boltzmann constant: ~ Landscape constant: ~ Boltzmann constant:
ke k=o0V1+k kg
Evolutionary temperature:
Tevo \/d/AIn(N/M) Tihe/2r
Biophysical meaningc) of Fitness fluctuation: Energy fluctuation:
keTevo SD[AW] x (VM +1)/4 SD[E]/rv2f
Alel/kg InN —InM — 33 po(s)Inpo(s)
+30 pi(s)Inpi (s)

a): Random sampling of N mutants from a mutant library and screening of the best M
mutants from among the N mutants. b): Each mutant with fitness W is amplified by the
Boltzmann factor exp(rW /kp Tne ), Where r is the number of rounds of the selective
enrichment.
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3.4.4 Extent and Content of Information

According to Eigen [23], the extent of information is related to the constrained vol-
ume of the sequence space. Therefore, we explicitly define the “extent of informa-
tion” in in vitro evolution in the following. Let p; be the probability (or frequency)
of occurrence of sequence s in a population. The entropy for this state is given by

A’V
§=—) pslog ps, (3.53)

s=1

while the maximum entropy is given by Syax = v1og A, which is for the case where
every sequence in the sequence space occurs with the same probability of p; =
1/AY. Particularly, Smax is called the “source entropy”. The extent of information is
defined as

Lextent = Smax — S (3.54)

(Figure[3.7) [116,[17]. Several concepts of the “amount of genetic information” [35],
“genomic complexity” [1l], Rsequence [34} 441, “functional information” [53], “func-
tional sequence complexity” [21]] and Isp, (Equation (3.42) can be classified to
Iextent- For example, Szostak introduced the “functional information”, which is de-
fined as —log, of the fraction of functional sequences that have fitness values (ac-
tivity of a biopolymer) greater than a specified value [53]. For example, suppose
all possible RNA sequences of 47 and the fraction of functional sequences among
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Fig. 3.6 Information gained through the adaptive walk process. The solid curve and
dashed curve represent the entropy S and ¢ /Teyo as functions of W /Teyo, respectively. Each
short arrow along these curves represents the expected change after a single step of the walk.
Tio(W) =0 (W) /Tevo— 9 (0)/ Tevo- Ispa (W) = S(0) —S(W). I, (W) =W / Toeyo. At the attractor
W*, Iyio = Ispa = If¢ /2. Adapted from Aita and Husimi [2, 8].
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them is 10~ !, the functional information in this case is 37 bit compared with 140
bit to specify a unique 70-mer sequence. He suggested the importance of the activity
- functional information relationship, which affects the evolvability of the biopoly-
mer. In terms of exeent, [7] discussed the energetic cost and entropic cost for the most
efficient search algorithm for several types of fitness landscapes, and concluded that
the sum of the two costs is approximately equal to Smax = V1og A in any cases.

On the other hand, the content of information means the “meaning (=semantic
value) of the message” and the “effectiveness (=pragmatic value) of the message”,
and it is related with the concept of fitness. Weaver commented three levels of com-
munication problems: Level A (technical problem), level B (semantic problem) and
level C (effectiveness problem) [48]. He noticed that Shannon’s communication or
information theory treated only level A, which is independent of value or content of
the messages. This issue is discussed in the following two subsections.

3.4.5 Fitness Information

For adaptation and existence under given conditions, the evolving biopolymers gain
high fitnesses from the surroundings. We interpret that the fitness information I,
defined in Equation (3.4) is a measure of the content of information. For exam-
ple, concerning the emergence of a specific ligand monomeric sequence with high
affinity to target-receptor molecules (see Figure 3.1)), as is mentioned in Section
[B.11 the emerging ligands gain Iy, from the receptor under experimental conditions.
In this case, fitness should be defined as the natural logarithm of the association

Smax = ‘/logﬂ’
=
= A
=
s S, ==>"p,logp,
E‘ = a=1
£l £
3 2
=
3 N §==2 plogp,
=] =} s=1
£ £
x —
3 5
8
[}
E
=
=
Smin =0

Fig. 3.7 Schematic diagram representing the meaning of Shannon’s entropy in its meaning
as “extent” of information. In Sy, pg is the probability of appearance of a symbol of class &
(e.g. amino acid residues); the sum is taken over all A classes of symbols. In S, ps denotes
the probability of appearance of a certain sequence s. Here the sum has to be taken over
all AV possible sequences of length v. S takes into account all possible long-range symbol
interactions. In a protein chain a given symbol might be in interaction with any other symbol
via folding of the chain. Adapted from Eigen [25].
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constant between the ligand and the receptor, i.e. W = InKj. The value of the con-
tent of information is quantified by dividing a fitness change, A InK,, by evolution-
ary temperature T¢y,. For the sampling-screening, it is done by scaling AInK, by
the fitness fluctuation for a single step of walk, SD[A InK,]. By following this oper-
ation, the fitness can be handled within the same level of Shannon information, as
is shown in Equation (3.44).

Similarly, the concept of fitness information can be applied to the genetic-drift
model [13, [32, 47] mentioned in Section 3.3l This model is based on the strong
genetic-drift effect with weak mutational effect in a finite population. In Equation
([B.8), Fitness corresponds to the population average of the selection coefficient,
(selection coefficient), and the Temperature-like parameter corresponds to the in-
verse of the double population size, 1/2N. The 1/4N is known as a critical value of
the selection coefficient between selective neutrality and selective advantage [36].
That is, 1/4N ~ 1/2N can be regarded as a resolving power of the selection coef-
ficient. Therefore, the quantity of (selection coefficient) divided by 1/2N is similar
to the fitness information mentioned above.

In vitro evolution of artificial selection-type (or directed evolution), the functional
property of the evolving biopolymers, that is, its fitness is regarded as a meaning of
the message in a monomeric sequence. Thus, the fitness information is a measure
of the semantic value of information (level B). The pragmatic value of informa-
tion (level C) depends on the utilization of the biopolymers by the experimenter of
directed evolution, and beyond the scope of our analysis.

On the other hand, in vitro evolution of natural selection-type, the fitness is the
reproduction rate constant and the evolving biopolymers effectively reproduce by
themselves. Thus, the pragmatic value of information corresponds to the content of
information (the semantics is in a black box in this case), and the effectiveness of
the messages is measured by the results of reproduction based on the fitnesses. An
example of this measure is introduced in the next subsection.

3.4.6 Pragmatic Information

Assuming that the pragmatic value of information stems from its usefulness in mak-
ing an informed decision, Weinberger proposed “pragmatic information”, which
quantifies the impact of a message on the receiver’s actions [56]. His theory is based
on a communication system consisting of a “decision maker” and an “effector”.
Figure 3.8 shows a conceptual framework for pragmatic information.

Suppose that the decision maker, in some current state ., receives a set of
A messages (m = 1,2,3,---,.#) and chooses a message m among the set with
the probability of ¢,,. Subsequently, based on the practical meaning of the chosen
message m, the effector assigns a probability value to each of the ./ outcomes
(0=1,2,3,---,.4"). The probability of an outcome o without any message is given
by g,, and the conditional probability of an outcome o with a message m is given by
Py The pragmatic information of the message ensemble is defined by
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M N P ol
Iy = 2 Y, P log, ( > . (3.55)
m=1 o=1 qo

Therefore, the pragmatic information is the average of the relative entropy between
{P,m} and {g, } over the message ensemble.

Weinberger demonstrated the pragmatic information is a global Lyapunov func-
tion for the quasi-species model (Section 3.2.1). Here, the environment (= setup of
the flow reactor) effectively decides the fitness of phenotype corresponding to each
given genotype, where a phenotype’s fitness is defined to be its reproduction rate.
At each time ¢, the environment receives “messages” about the fitness of a particu-
lar replicator via the number of copies of that replicator’s genome, where the only
messages received are measurements at various times. In Equation 3.33), .# = 1
and then ¢, = 1, and an outcome o corresponds to a species s. Prior to receipt of
the messages, the initial probability of selecting a species s at random from the sys-
tem is g5 = x;(0). The probability of selecting a species s at subsequent time # is
Py = xs(t). Then, the pragmatic information for the quasi-species model is given
by

Do = sz 10g2< (((t)))> (3.56)

Regardless of the arbitrary initial distribution, {x;(0)}, d/yr/dr > 0 holds for all
finite times. The pragmatic information is generated through the process of evolu-
tion for the quasi-species. In Table we compiled the list of several aspects of
information introduced in this chapter.

Table 3.3 List of several aspects of information introduced in this chapter

Extent of information Content of information ~ Lyapunov

Lextent (= Smax —S) Semantic Pragmatic function
value value
Natural selection-type Textent ? Iora Ipra
Artificial selection-type Isha m ? Ivio (= It — Isha)

The motivation of establishing pragmatic information is very sound, however, we
are uncertain whether Equation (3.36)) reflects the effects of absolute fitness values
on the resulting probability distribution {x;(¢)}. In evolution as the fitness gaining
process, the absolute fitness value that the evolving biopolymer stores seems es-
sential for its pragmatic value. For example, consider two fitness landscapes with
a common shape but different absolute heights and the quasi-species on each land-
scape. We can expect that the resulting probability distribution of the quasi-species
seems to be identical with each other. However, the absolute fitness values that the
quasi-species store are different from each other.
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Fig. 3.8 Conceptual framework for pragmatic information. Adapted from Weinberger [S6]
and Aita Husimi [7].

3.5 Conclusion

As an analogy between in vitro evolution and thermodynamics, some studies intro-
duced the concept of “free fitness” which is analogous to free energy, and then
proposed that evolution is driven in the direction in which the free fitness in-
creases. Although the mathematical definition of the free fitness is slightly dif-
ferent by their evolution models, in their common view, the free fitness is given
as Free fitness = Fitness + Temperature-like parameter x Entropy, where Fitness is
sometimes population average of log fitness or selection coefficient. Particularly, the
Temperature-like parameter is dependent on the models. For example, it is given as
a function of population size in several studies, or given as a function of popula-
tion size (library size) and mutation rate (mutation distance) in other studies. The
mathematical definition of the free fitness remains to be unified.

In a thermodynamic system, a spontaneous process is driven in the direction in
which the total entropy of the universe increases. Namely, under a constant temper-
ature and constant external pressure, —AG/Tipe = —AH /Tipe + AS > 0 (G: Gibbs
free energy of the system; Ti,.: thermodynamic temperature; H: enthalpy of the sys-
tem; S: entropy of the system). The quantities —AH /Tihe and —AG /T, represent
the thermal entropy that the system emits to the surroundings and the change in total
entropy of the universe, respectively. Then, returning to in vitro evolution, we focus
on the novel quantity of Fitness divided by Temperature-like parameter, and regard
this quantity as the content of information, while we regard Entropy as the extent
of information. Namely, the evolving biopolymer stores the extent and content of
information through the evolution process (Table[3.3).

The extent of information is related to the constrained volume of the sequence
space and is defined as Iextent = Smax — S (Equation (3.34). This is comprehended
within the framework of the Shannon’s information theory. Therefore, we des-
ignated Ilexient as the Shannon information Iy, in our mathematical framework

(Equation (3.42))).
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On the other hand, the content of information is a controversial issue. In our the-
ory based on Kauffman’s NK landscape, we introduced the “fitness information” as
a measure of the content of information. The fitness information Iy, is defined by di-
viding the fitness W by evolutionary temperature Tz, (Equation (3.41))). Particularly,
for the sampling-screening type, the quantity kg7evo (kg = the “evolutionary Boltz-
mann constant”) is nearly equal to the fitness fluctuation for a single step of walk,
SD[AW] (= the standard deviation of a fitness change AW for a single step of walk)
(Equation (3.39)). Then, we can interpret that the fitness information represents the
scaled fitness by the fitness fluctuation SD[AW]. Furthermore, the “biomolecular in-
formation” Iy, is defined by dividing the evolutionary potential ¢ (Equation (3.32))
by evolutionary temperature Tey, (Equation (3.43)), and then consists of the con-
tent (Ig,) and extent (Isp,) of information (Equation (3.44) and Figure 3.3). Iy, is a
Lyapunov function of the in vitro evolution process (Equation (3.47)).

From the viewpoint of the effectiveness of messages (=information) on the
receiver’s actions, Weinberger introduced pragmatic information I, (Equation
(3.33)), which is defined as the mean relative entropy between probability distri-
bution of actions without and with messages. The pragmatic information he defined
for the quasi-species model is a Lyapunov function. While the motivation of estab-
lishing the pragmatic information is very sound, we can not properly evaluate the
validity of his definition (Equation (3.36)).

In addition, these concepts should be related with the dissipative structure con-
cept in nonequilibrium thermodynamics, especially, thermodynamic entropy pro-
duction in the evolving system and the surroundings (see Nicolis and Prigogine [41]]
or Smith [49,150,51].
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Part 11

Topology, Measures and Problem
Hardness



Chapter 4

Fitness Landscape Analysis for Metaheuristic
Performance Prediction

Katherine M. Malan and Andries P. Engelbrecht

Abstract. Metaheuristics have become popular for solving complex optimisation
problems where classical techniques are either infeasible or perform poorly. Despite
many success stories, it is well known that metaheuristics sometimes fail and that re-
searchers and practitioners frequently resort to trial and error to find an appropriate
algorithm or setting to solve a given problem. Within the framework of the gen-
eral algorithm selection problem, this chapter addresses the feasibility of predicting
algorithm performance on unknown real-valued problems based on fitness land-
scape features. Normalized metrics are proposed for quantifying algorithm perfor-
mance on known problems to generate suitable training data. Performance metrics
are tested using a standard particle swarm optimisation algorithm and are investi-
gated alongside three existing fitness landscape measures. This preliminary investi-
gation highlights the need for a shift in focus away from predicting general problem
hardness towards characterising problems where each fitness landscape technique
has value as a part-predictor of algorithm performance.

4.1 Introduction

Many real-world scenarios require optimisation; finding the most profitable or least
expensive or most desirable solution to some problem. Traditional mathematical op-
timisation techniques, such as gradient-based techniques, use the derivative of the
objective function to determine the exact maximum or minimum point of a con-
tinuous problem. Many optimisation problems are, however, not able to be solved
using such traditional techniques. For example, multimodal problems where gra-
dient information is not sufficient for finding the global optimum, problems with
discontinuous search spaces that are non-differentiable, or black-box optimisa-
tion problems where there is no objective function in mathematical form to be
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differentiated. For these cases, often the only feasible alternative is to use ap-
proaches that find approximate solutions. Metaheuristics is the name given to such
approximate optimisation techniques that are general, in that they can be applied to
solve any optimisation problem.

There are many different approaches within the field of metaheuristics. Some
metaheuristics perform local search, usually with extensions to enhance exploration
of the search space, such as simulated annealing [6, [31]], iterated local search [35]
and tabu search [16, [17]. Other metaheuristics are population-based in that they
work on a collection of solutions in parallel, such as evolutionary algorithms [3],
ant colony optimisation algorithms [9] and particle swarm optimisation (PSO) algo-
rithms [30]. Many of these population-based metaheuristics are inspired by nature;
the way that nature constructs elegant solutions to problems within extremely com-
plex systems has inspired scientists to capture some of this ‘magic’ in simple forms
within algorithms and the results are often surprisingly good. Talbi [56] provides a
genealogy of metaheuristics as applied to optimisation from the 1940s to the 1990s
containing no less than 24 different kinds of algorithms. Since then many more algo-
rithms have been proposed from more bio-inspired algorithms like firefly [69] and
krill herd [14] algorithms to algorithms inspired by the interaction between mag-
netic particles [57] and even algorithms inspired by the way musicians improvise
(harmony search) [[15]. Given this plethora of algorithms, the challenge of choosing
the most appropriate algorithm for solving a given problem can be a daunting task.

This chapter considers the subset of optimisation problems that involve real-
valued variables. More precisely, the scope of the problems under investigation is
limited to optimisation problems that are static, bound-constrained, multivariate and
continuous and it is assumed that problems are to be minimized. In general such a
problem can be defined as

minf(x),f:R" > R,x€. CR"

where x is an n-dimensional candidate solution vector and .% defines the feasible
subregion of R” as defined by the domains of the variables within x. Considering
only continuous optimisation problems does not simplify the problem of choos-
ing an appropriate algorithm. Although some algorithms were designed for discrete
spaces, there are just as many algorithms that were designed to work in continuous
spaces. Examples include PSO [30], differential evolution [43], evolution strategies
[43, 47] and cuckoo search [7(]. In addition, many metaheuristics originally de-
signed for discrete spaces have been adapted to work in continuous environments
such as real-coded genetic algorithms [24], evolutionary programming [32], ant
colony optimisation algorithms [4]], estimation of distribution algorithms [1]] and
scatter search [23].

Over the last few decades the focus of research in metaheuristics has been largely
on the algorithmic side. Relatively little attention has been paid to the study of the
problems. When a publication introduces a new algorithm or variation on an exist-
ing algorithm, the approach is typically to demonstrate empirically that the algo-
rithm out-performs other algorithms on a number of selected benchmark problems.
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The proposers of a new algorithm will usually neglect to provide any analysis of
problems on which the proposed algorithm will perform poorly and why.

There have been some recent theoretical studies attempting to address this gap in
understanding of algorithm behaviour on problems. These include: analysing which
problems are hard for particular algorithms [(7, 22]; analysing which problems re-
quire smaller population sizes in evolutionary algorithms [|8]; and analysing features
of particular problems that make them hard for particular algorithms [40]. Despite
these advances in understanding, there is still little practical guidance for researchers
and practitioners. Questions such as “Which algorithm will most accurately solve
my problem?’ or ‘Which algorithm will most quickly produce a reasonable answer
to my problem?’ remain unanswered. The most common technique for choosing an
appropriate algorithm for a given problem is by trial and error. If there existed one
algorithm that out-performed all others in solving optimisation problems, then this
‘super-algorithm’ could be used in all cases. It is well known, however, that no such
algorithm can exist as was proved by Wolpert and Macready with their famous ‘No-
Free-Lunch’ theorems for search/optimisation [[66, [67]. The emphasis is therefore
not on finding the best optimisation algorithm in general, but rather on finding the
most appropriate search process for solving a particular problem, whether this is a
particular algorithm with appropriate settings and parameters or a combination of
several different search algorithms.

The focus of this chapter is to propose a way in which the features of a problem,
based on analysis of the fitness landscapes of continuous problems in particular, can
be used to predict the performance of a given metaheuristic. This is not a new prob-
lem or idea. Many have tried to predict problem hardness and many have failed,
leading to the conclusion that no satisfactory problem difficulty measure for search
heuristics has been found [20, 26]. In fact, trying to find a computationally fea-
sible hardness measure is a futile exercise, since He et al. [21] have proved that
a predictive version of such a measure, i.e. that runs in polynomial-time, cannot
exist (unless P=NP or BPPB=NP). Therefore, rather than proposing yet another dif-
ficulty measure, this chapter proposes a framework within which existing approxi-
mate measures can be used together to solve the problem of performance prediction.
There are many proposed measures based on the analysis of fitness landscapes that
show some correlation to algorithm performance. Approximating these measures on
a selection of benchmark problems and combining this data with actual algorithm
performance could form a dataset to be used with one of the many machine learning
algorithms to find a mapping from problem features to performance.

The chapter is organised as follows: In the following section, the general algo-
rithm selection problem and related performance prediction problem are described.
Section 4.3| proposes performance metrics that are suitable for the algorithm selec-
tion framework. Section [£.4] addresses the challenge of feature extraction of con-
tinuous optimisation problems and three possible feature metrics are investigated in
terms of the link to algorithm performance. The chapter is concluded in Section 4.3

I BPP: bounded-error probabilistic, polynomial time [64].
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4.2 The Algorithm Selection Problem

The general problem of selecting an effective or good or best algorithm to solve a
given problem was formulated by Rice in the 1970s [46]. One of the models de-
scribed by Rice is the model where algorithm selection is based on features of the
problem. This model has four main characteristics:

e A set of problem instances (problem space P),

e aset of algorithms for solving the problems (algorithm space A),

e measures for comparing the performance of algorithms on a particular problem
(performance measure space Y), and

e measurable characteristics of the problem instances (feature space G).

The relationship between these components is illustrated in Figure {11 (this diagram
is based on Rice’s Figure 3 [4€] but includes an additional mapping for performance
prediction). A given algorithm a € A can be applied to a problem instance p to pro-
duce performance measure(s) y(a(p)). In a trial-and-error approach to finding the
best algorithm to solve a problem, this process of applying algorithms to a problem
is simply repeated until the best algorithm from a set of algorithms is found, based
on the given performance measures. The algorithm selection problem, however, in-
volves avoiding this trial-and-error approach by achieving the following:

e Feature extraction: devising a mapping from problem space to feature space, so
that any problem instance p can be characterised by features g(p); and

e Algorithm selection: devising a mapping from problem feature space to algo-
rithm space, so that a given problem p, with extracted features g(p), can be
matched to the most appropriate algorithm a, such that performance y(a(p)) is
maximised.

Figure[4.J] also illustrates the related problem of performance prediction, which in-
volves predicting the performance y(a(p)) of a given algorithm a applied to prob-
lem p based on extracted features g(p). If a solution to the algorithm selection /
performance prediction problem is found, it becomes possible to take an unseen
optimisation problem, extract its features, and from these features select the most
appropriate metaheuristic algorithm from a subset of metaheuristics for solving the
problem (the algorithm selection problem) or predict the performance of a given
metaheuristic algorithm on the problem (the performance prediction problem).
Smith-Miles [49] used Rice’s model [46] to address the algorithm selection prob-
lem for a subset of combinatorial optimisation problems, namely quadratic assign-
ment problems. In that study, 28 instances of the problem were used with three
metaheuristics (tabu search, iterated local search and min-max ant system). The fea-
tures of the problem were a combination of measures quantifying the size of the
quadratic assignment problem with fitness-distance metrics based on local search
runs (requiring knowledge of the global optima). A neural network was used to
solve the problem of mapping problem features to performance measures. Although
restricted to a specific class of optimisation problems, the study by Smith-Miles
demonstrated the potential relevance of using such an approach. This chapter pro-
poses how Rice’s model [46] can be applied to continuous optimisation problems
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Fig. 4.1 A framework for describing the general problems of algorithm selection and perfor-
mance prediction based on problem features (based Rice’s model [46])

and algorithms, where the features of the problem are based on the analysis of fit-
ness landscapes. The features should be computable on unseen problems (without
prior knowledge of the problem, such as knowledge of the global optima).

The following are prerequisites to solving the algorithm selection problem [50]
in general:

(1) A large number of problem instances with different levels of difficulty;

(2) A large number of different algorithms for solving these problem instances;

(3) Metrics for evaluating the performance of algorithms; and

(4) The existence of features that can be used to suitably characterise the properties
of problems.

Items[Iland 2] are met, given the extensive range of benchmark optimisation prob-
lems in the literature and the many algorithms for solving continuous problems, as
discussed in Section[4. 1l Requirement[3]is addressed in the next section and require-
ment[is discussed in Section[4.4l

4.3 Performance Metrics

Solving the algorithm selection problem in general requires suitable metrics for
evaluating the performance of algorithms on a given set of known problems. The
performance metrics are used to generate a data set that can be used as the basis
for finding a mapping from feature space to algorithm or performance space, as il-
lustrated in Figure [4.1l For any two problems, the metrics should distinguish the
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relative difficulty of solving the problems by a given algorithm. Equally, given two
algorithms, the metrics should distinguish the relative difficulty of the algorithms
solving the same problem. This section reviews some existing approaches to mea-
suring performance of optimisation algorithms and then proposes the use of three
normalised metrics that can be used for quantifying the performance of algorithms
on different problems.

4.3.1 Existing Approaches to Measuring Performance

The most common way of measuring the performance of an optimisation algorithm
is in terms of the quality of the solution found in comparison to the quality of the
solution found by some other algorithm. Given sufficient independent runs of both
algorithms, it is reported whether there is a statistically significant difference in the
quality of the solutions found by the algorithms. In the case of benchmark prob-
lems with known optimal solutions, the measure of the quality is usually simply the
difference in fitness value between the solution found by the algorithm and the op-
timal solution (sometimes called the fitness error value). To ensure reasonably fair
comparisons between different algorithms, the fitness error value is usually based
on the best or average solution found after a set number of function evaluations by
the algorithm. Using an absolute fitness error value as a measure of performance is
suitable when comparing algorithms on the same problem, but cannot be used when
comparing the performance of algorithms on different problems with varying fitness
ranges. For example, a mean error value of 0.8 on one problem could be regarded
as a high performance result, whereas a mean error value of 0.003 may be regarded
as a low performance result for a different problem.

Another common approach to measuring performance is to quantify the percent-
age of successful runs over a number of runs (frequently called success rate). What
constitutes a ‘successful run’ has to be properly defined. Some arbitrary cutoff like
“within 108 of the global optimum” could be sensible in the case of a problem with
a fitness range of [0, 1], but would not make sense in the case of a problem with a
fitness range of [0, 10°°] (such as with the Schwefel 2.22 benchmark function in 30
dimensions). In some cases a fixed error is specified for each benchmark function
[42,153]. For example, Suganthan et al. [S3] define fixed accuracy levels for each
benchmark function, such as 10~ for F; (Shifted Sphere Function) and 102 for Fg
(Shifted Rosenbrock’s Function). They define a successful run as one during which
“the algorithm achieves the fixed accuracy level within the Max FES for the partic-
ular dimension”[53], where Max FES specifies the maximum number of function
evaluations and is defined as 10000 x D (the dimension of the problem). In this way,
functions with higher dimensions are given more function evaluations to reach the
fixed accuracy level.

Yet another approach to measuring performance is to quantify how quickly an
algorithm is able to find an acceptable solution. For example, the AES measure [12]
is defined as the average number of evaluations to a solution, defined over those runs
that reach a solution to within a given fixed accuracy level.
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4.3.2 Proposed Performance Metrics

This section proposes the use of three normalised algorithm performance measures.
Note that the purpose of these measures is to generate data on known problems
to be used for the training of a predictor or classifier of algorithm performance
on unknown problems. The measures quantify solution quality, rate of success and
speed of reaching a solution and can be used to contrast the performance of a single
algorithm on multiple problems or multiple algorithms on the same problem. All
three measures require knowledge of the range of fitness values of a problem in
order for the measures to be normalised across different problems.

4.3.2.1 Estimating Fitness Range

The range of fitness values for benchmark problems is not always known. In the
case of simple functions like the Spherical function, it is obvious that the maximum
values lie on the boundaries of the search space. The range of fitness values is then
simply the difference between the fitness values on the boundary and the fitness
of the known optimal solution. In the case of many other benchmark problems,
however, the maximum point is somewhere else in the search space. For example,
Figure[4.2lillustrates two common benchmark functions in one dimension. A simple
visual inspection of a plot of the functions in one dimension can be used to estimate
the range of fitness values of the function. However, in higher dimensions it is not
as easy to estimate the fitness range, as the position of the maximum point cannot
be assumed to be at the same x position as for the one dimensional version of the
function.

f(x)
(x)

L L L L L
-400 -200 0 200 400

(a) Rastrigin function (b) Schwefel 2.26 function

Fig. 4.2 Example one-dimensional minimisation benchmark functions

A simple way of estimating the maximum fitness value of a benchmark problem
is to optimise the minimisation problem as a maximisation problem using a suitable
optimisation algorithm. The result of the optimisation is the estimated maximum
fitness value, called f. It is important that during the maximisation, the algorithm
be confined to the bounds of the search space, because many of the benchmark
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functions (like those illustrated in Figure[d.2)) continue increasing outside the bounds
of the problem domain. For a benchmark function, given an estimated maximum
fitness f and a known minimum fitness value, f*, the estimated range of fitness
values is then defined as f — f*.

4.3.2.2 Determining Fixed Accuracy Levels

Measures based on the success rate and speed of an optimisation algorithm are de-
pendent on deciding whether a run is successful or not. Similar to [42] and [53] the
notion of a successful run is dependent on a fixed accuracy level for a function. A
function with a smaller range of fitness values should have a smaller fixed accuracy
level than a function with a larger fitness range. However, rather than using a single
fixed accuracy level for each benchmark function (as in [42,153]), it is proposed that
a fixed accuracy level is defined for each function/dimension combination. If the
range of fitness values of the same benchmark function increases as the dimension
increases, then the fixed accuracy level should also increase. The proposed method
for determining the fixed accuracy level of a given benchmark function and dimen-
sion is as follows:

(1) The estimated fitness range of the problem (f — f*) is rounded down to the
nearest 10" (called the fitness range order), where n is an integer. Rounding the
fitness range down (rather than up) results in a smaller fixed accuracy level and
hence higher requirement in terms of accuracy of solution.

(2) The fixed accuracy level is computed as the fitness range order multiplied by
108, The use of 1078 is specifically chosen to align with error values in other
sources [42,153]. The Spherical benchmark function in one dimension with do-
main [—100,100] would result in a fitness range of 10%. Multiplying this by
108 would result in a fixed accuracy of 107, which is equal to the error value
specified for Sphere in [42] as well as the fixed accuracy level specified for the
Shifted Sphere Function in [53].

Some example benchmark problems with proposed fixed accuracy levels are listed
in Table .1l The definition of these functions is given in Table .2l Notice how
with some functions, such as Ackley, the fixed accuracy levels stays the same as the
dimension increases, but in the case of other functions, such as Griewank, the fitness
range increases with an increase in dimension, resulting in a decrease in the fixed
accuracy level.

4.3.2.3 QMetric

Given a run of an optimisation algorithm on benchmark function f with resulting
best fitness found fmi”, the distance of the best found solution from the optimal
solution is quantified as ™" — f*. This distance is an absolute measure of fitness
error, where 0 is the minimum error and corresponds with the highest possible so-
lution quality. To convert the fitness error into a positive measure of quality, the
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Table 4.1 Some example benchmark problems (defined in Table[.2)) in different dimensions
with estimated maximum fitness (f), known minimum (f*), fitness range order and fixed

accuracy level

Function Dimension f I Fitness Fixed Accu-
Range Order racy Level
Ackley 1 22.31 0 10! 1077
Ackley 15 22.31 0 10! 1077
Ackley 30 22.31 0 10! 1077
Griewank 1 92.00 0 10! 107
Griewank 15 1351.00 0 103 1075
Griewank 30 2701.00 0 10° 1073
Rosenbrock 2 3905.93 0 10° 1073
Rosenbrock 15 54682.97 0 10* 1074
Rosenbrock 30 113271.86 0 10° 1073
Schwefel 2.26 1 41898  -418.98 102 10-6
Schwefel 2.26 15 6284.74 -6284.74 10* 1074
Schwefel 2.26 30 12569.49 -12569.49 10* 10~

Table 4.2 Benchmark Functions (D is the dimension of the problem)

Function

Ackley

Griewank

Quadric

Definition, domain and global optimum (/*)

f1(x) = =20 exp (70.2\/2) Z,'D:HC,Z) fexp( 3P cos(2mx;)) +20+e
W23 =000

HE) = 400 Z21 47 HDI““(?)‘H

x; € [=600,600],  f3=£(0,...,0)=0

f(x) =32 1(23:1"1)2

x €[~100,100],  f=f3(0,...,0)=0

Rana (expanded) fi(x) = X2, x;sin(a )cos(ﬁ)+<x(i+1)mOdD+l> cos(a)sin(ff), D>1,

Rastrigin

Rosenbrock
(generalized)

Salomon

Schwefel 2.26

Spherical

Step

where o = /|xi11 +1—x;
% E[SI2512) fp= (=512,
f5(x) =32, (x2 — 10cos(27x;) + 10)
el 512512} £2 = £5(0,...,0) =0
fo(x) = (100(x,+1—x2)2+(x,-—1)2), D>1
xi€[— 2048 2.048),  fr=foll,...,1) =

fr(x) = —cos (2132 x?) +01\/21 (X241
xi € [=100,100],  f7 =f7(0,...,0)=0

fs) = =32, (xisin(v/xi))

and B = /|xi+xi1 +1]
.., —512)

x; € [—500,500], fg = f3(420.9687,...,420.9687)
fo(x) = Z,Dzl x,'z

x; € [—100,100], f;:fg((),...,O):O

fio(x) =32, (lxi +05)

Xi € [720720]7 f]*():flo(o7 aO) =0



112 K.M. Malan and A.P. Engelbrecht

found solution, f’”i", is subtracted from the estimated maximum, f/* and scaled by
the estimated range of the problem as follows:

min
q= fA f . 4.1)
f=r

The normalized measure ¢ is a value in the range [0, 1] where 1 indicates the highest
quality, where the found solution exactly matches the known optimal solution and 0
indicates the worst possible quality of finding the maximum fitness. In order to better
distinguish between ¢ values closer to 1, the value of g is scaled exponentially to
produce the proposed QMetric measure as follows:

4
QMetric = 27" —1. (4.2)

Figure[d 3lillustrates the relationship between g and QMetric. Given a problem with
a fitness range of [0,1] and a found solution of 1073, the value of QMetric will
be 1.000 (rounded to 3 decimal places), indicating a solution quality that is within
the acceptable error margin of the global optimum. On the other hand, a solution of
1073 would result in a q value of 0.99999 and an associated QMetric value of 0.872,
indicating a lower solution quality. Any solution with fitness 0.001 and larger will
result in a QMetric value of O (rounded to 3 decimal places).

09 |

0.8 |

0.7 |

0.6 |

0.5 |

QMetric
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03 |

0.2 |

0.1 |

0 I I I
0.999 0.9992 0.9994 0.9996 0.9998 1
q

Fig. 4.3 Function used to scale fitness quality measure g to QMetric

4.3.2.4 SRate

To compare the rate of success of different algorithms on different problems, each
problem/algorithm combination is run using a maximum number of function evalua-
tions (MaxFES) as the terminating condition. For all problems, the value of MaxFES
is set to 10000 x D, where D is the dimension of the problem. A PSO algorithm with
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50 particles will therefore run for a maximum of 200 iterations on a one-dimensional
problem. A run is regarded as successful if the run reaches the global optimum
(within the associated fixed accuracy level) before the MaxFES of the problem are
exceeded. The success rate (SRate) is defined as the number of successful runs that
reach a solution within the fixed accuracy level of the global optimum divided by
the total number of runs [53]. Like the QMetric, SRate is a value in the range [0, 1]
where 1 indicates the highest possible rate of success.

4.3.2.5 SSpeed

The number of function evaluations taken to reach the global optimum (within the
fixed accuracy level) for a given run r is known as FES,. A proposed metric called
the success speed of a run r (SSpeed,.) is defined as:

if the run is not successful

0
SSpeedr = { MaxFES—(FES,—1) 3

MaxFES otherwise.

The metric SSpeed, is a value in the range [0, 1]. The highest value for SSpeed, can
only be obtained if the global minimum is reached in the first function evaluation
(if FES; is 1) and this would indicate the highest possible performance in terms of
speed. The success speed (SSpeed) over ns successful runs, is defined as:

37, SSpeed, .
SSpeed = . ifns >0 (4.4)
0 ifns=0.

4.3.3 Performance Metrics for PSO

To illustrate the use of the proposed three performance metrics, Table 2.3 shows the
results of minimizing a number of benchmark functions using a traditional gbest
PSO algorithm [10]. The following parameter values were used: 50 particles, 1.496
for both the cognitive and social acceleration constants and 0.7298 for the inertia
weight [[11]]. All algorithms were implemented using Cllib, an open source library
and framework of computational intelligence al gorithms@ Benchmark functions and
dimensions were selected to illustrate features of the metrics. For each benchmark
function/dimension combination, 30 independent runs of the algorithm were per-
formed. The QMetric values are the means of the 30 runs and the value for MaxFES
was set at 10000 x D, or 200 x D iterations for 50 particles.

In Table [4.3] the easiest function to minimize is the simple unimodal Spheri-
cal function and this is reflected in the high values for all performance metrics.
The PSO algorithm achieved a QMetric mean value of 1 in dimensions 1, 15 and
30, indicating that the average of the best fitness values found was of the highest
possible quality. Similarly, the SRate of 1 indicates that the algorithm found the op-
timal solution (to within the fixed accuracy level) in all 30 runs. The high SSpeed

2 See http://cilib.net/
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Table 4.3 Results of minimizing benchmark problems using a standard PSO algorithm,
based on 30 runs

Function Dimension QMetric SRate SSpeed

Ackley 1 1.000 1.000 0.471
Ackley 15 0.933 0.933 0.855
Ackley 30 0.300 0.300 0.862
Griewank 1 1.000 1.000 0.721
Griewank 10 0.352 0.033 0.019
Griewank 15 0.691 0.100 0.910
Griewank 30 0.902 0.367 0.921
Rosenbrock 2 1.000 1.000 0.843
Rosenbrock 5 0.931 0.067 0.321
Rosenbrock 15 0.888 0.000 0.000
Rosenbrock 30 0.482 0.000 0.000
Salomon 1 1.000 1.000 0.574
Salomon 5 0.000 0.000 0.000
Schwefel 2.26 1 1.000 1.000 0.816
Schwefel 2.26 5 0.400 0.400 0.826
Schwefel 2.26 15 0.000 0.000 0.000
Spherical 1 1.000 1.000 0.845
Spherical 15 1.000 1.000 0.941
Spherical 30 1.000 1.000 0.940

values indicates that the algorithm found the solution quickly (needing relatively few
function evaluations). Recall that the SSpeed metric is a measure of how quickly
the solution is found in relation to the maximum number of function evaluations
(MaxFES), which increases with dimension (MaxFES is set at 10000 x D). For ex-
ample, an SSpeed value of 0.941 for Spherical in 15 dimensions does not imply that
the solution was found in fewer iterations than for 1 dimension (with an SSpeed of
0.845), but rather that the solution was found in a smaller percentage of the maxi-
mum number of iterations allowed for that dimension.

From the results, it can be seen that the Spherical problem did not become harder
for the PSO algorithm as the dimensions increased. In contrast, the PSO algorithm
found it harder to minimize the multimodal Ackley function as the dimensions in-
creased. In 30 dimensions, the algorithm was only able to find the optimal solution
in 9 out of the 30 runs (SRate of 0.3).

In many cases the QMetric and SRate have the same value. This indicates that the
quality of the solutions and the success rate are essentially reflecting the same infor-
mation. If the quality of the solution is low, it will result in a QMetric value of 0 and
this will also be reflected in an unsuccessful run. There are cases, however, where
the QMetric differs from the SRate measure. Consider for example the Rosenbrock
function in 15 dimensions. None of the 30 runs of the PSO algorithm found the op-
timal solution, but a QMetric value of 0.888 indicates that the best solutions found
were still of a relatively good quality (relatively close to the global optimum fitness
value).
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It is interesting to notice how in the case of the Griewank benchmark function, the
performance metrics are high in 1 dimension, decrease in 10 dimensions, but then
increase in 15 dimensions and increase further in 30 dimensions. This indicates that
the problem becomes easier in higher dimensions, which is a known characteristic
of the Griewank benchmark function [34].

The three normalized metrics proposed in this section make it possible to com-
pare data from different benchmarks and algorithms. The following section dis-
cusses the challenge of extracting features of problems with the aim of finding a
mapping from feature to performance space.

4.4 Feature Extraction for Continuous Optimisation Problems

Part of the challenge of solving the algorithm selection / performance prediction
problem for continuous optimisation lies in finding a set of features of problems
that can be used as the basis for mapping from feature space to algorithm perfor-
mance. Given the fitness function of an optimisation problem, the aim is to develop
a problem characteriser blackbox, as illustrated in Figure [£.4] that can produce as
output a number of characteristics of the problem based on analysis of fitness land-
scapes of the problem.

Characteristic 1

% Characteristic 2
Problem
Characteriser > Characteristic 3

N Characteristic n

Fig. 4.4 A problem characteriser blackbox that can take as input a real-encoded fitness func-
tion and produce as output a number of approximate characteristics of the problem, based on
analysis of fitness landscapes

Fitness function
representing the
problem

To be applicable to the algorithm selection problem, each technique within the
problem characteriser should have the following features:

(1) Each technique should measure characteristics that in some way correlate with
performance of algorithms. Without some correlation, a mapping from feature
space to performance space (as illustrated in Figure [4.1)) will not be achievable.

(2) For the technique to be useful on unseen problems, it is assumed that there is no
information on the nature of the problem beforehand other than the fitness func-
tion and the domains of the variables of the problem. For example, a technique
that requires knowledge of the global optima would not be appropriate.

(3) Each technique should be analytical and result in numerical output values to
facilitate automated analysis of generated data.
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(4) The computational work required in executing the technique should be signifi-
cantly less than the computational work required to solve the problem using a
typical search algorithm. In other words, characterising a problem should be less
computationally intensive than solving the problem with multiple algorithms
using a trial and error approach.

Although requirement 4] above states that the numerical effort of probing and char-
acterising a problem in multiple ways should be significantly less than the numerical
effort in using a trial and error approach with multiple algorithms, one could argue
that this is not an essential feature. A trial and error approach to solving an unknown
problem has no guarantee of producing a good solution to the problem. On the other
hand, characterising a problem should lead to a deeper understanding of the problem
and better choices of algorithms and therefore have an increased chance of produc-
ing a solution of higher quality than the uninformed application of multiple search
algorithms.

The following section discusses some of the features of fitness landscapes that
could contribute to problem hardness and in Section .42l three specific techniques
are described as examples of the kinds of measures that could be used to partly
characterise problems.

4.4.1 What Makes an Optimisation Problem Hard?

What are the properties or features of optimisation problems that could determine
the degree of difficulty in solving them? Consider the fitness landscapes of simple
one-dimensional continuous problems as illustrated in Figure[4.3] where x’ is a can-
didate solution found by a search process and x* is the global optimum solution.
A search algorithm would use information from the search space to decide how to
proceed — information such as the gradient of the fitness function, or fitness values
of solutions in the neighbourhood of x’, or a whole population of alternative solu-
tions with associated fitness values. Whichever approach is used, a simple function
such as the one illustrated in Figure[4.3h, clearly provides good information to guide
search towards the global optimum. In contrast, the rugged landscape in Figure[.5b
provides very little useful information to guide search towards the global optimum.
In addition, the vertical gradients in places (e.g. at point x') make it difficult for
some search algorithms, either because the gradient is not defined or because the
same solution can have multiple fitness values. Ruggedness clearly affects problem
difficulty and many studies on problem hardness have focussed on ruggedness as
the main determining factor [33,[39,52]. The ruggedness of a fitness landscape is,
however, not the only factor affecting problem hardness. Consider for example the
problem in Figure B.3k. This landscape would not be regarded as rugged compared
with the landscape in Figure [4.3b, but presents misleading information for a local
search algorithm. Starting at position x’, a local search algorithm would typically be
guided away from the global optimum at x*. Problems such as these that present an
algorithm with misleading information are known as deceptive problems and many
studies on problem hardness have focussed on deception as the main determining
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factor [, 118, 19, 27]. Neutrality is yet another factor that can have an influence
on problem difficulty [59, 60, 163, 155, 41]. This phenomenon is illustrated in Fig-
ure [£.3d, where there is a lack of information around the candidate solution x’ for
guiding search towards the global optimum.

S )

X x* X x x* X

(a) A simple smooth landscape (b) A rugged landscape
1) )

’ '

e x x x* x x
(c) A deceptive landscape d) A neutral landscape

Fig. 4.5 Simple one-dimensional fitness landscapes to be minimised where x’ is a candidate
solution to the problem, f(x’) the fitness of solution x’ and x* the optimal solution

It is important to note that features such as ruggedness, deception or neutrality
are not features of a fitness function, but rather features of a fitness landscape. The
same fitness function can generate many different landscapes depending on the way
in which the function is sampled or explored by a search algorithm. Consider for
example the Step benchmark function in D dimensions:

D

f(x) =3 (|lxi+0.5])%. (4.5)

i=1

The same function in one dimension is plotted in Figure [4.6]at different resolutions,
rendering a seemingly smooth landscape in the case of Figure[4.6h and a landscape
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with high neutrality (many flat sections) in Figure [£.6b. In a similar way, a search
process that samples the Step function by taking bigger step sizes may result in a
smooth landscape, whereas a search process that samples the Step function by tak-
ing smaller steps may result in a landscape with high neutrality. This relationship
between fitness functions and landscapes was highlighted by Jones [28] for combi-
natorial problems where he emphasized that different search operators on the same
problem generate different landscapes. Therefore, viewing a continuous problem at
different levels of granularity, or exploring a multi-dimensional space in different
ways, can lead to very different fitness landscapes and hence potentially different
views on features such as ruggedness, deception or neutrality.

10000 T T T 100

9000 [ B
8000 — 80 [
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6000 q 60 [
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()
f(x)

4000 | g 40
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2000 - — 20 |
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x X

(a) Larger domain b) Smaller domain

Fig. 4.6 One-dimensional Step benchmark function viewed in at different resolutions ren-
dering two different fitness landscapes

This section discussed three commonly used landscape features, namely rugged-
ness, deception and neutrality, as features that can affect problem hardness. This list
is not complete and there are many other features that can affect the hardness of
problems. We know, however, that a complete characterisation of any problem in
terms of hardness is computationally infeasible [21]. The aim is therefore to charac-
terise a problem using as wide a range of features as possible, while still maintaining
a relatively low computational budget.

4.4.2 Possible Techniques for Feature Extraction

There are a large number of proposed techniques for fitness landscape analysis.
Many of these techniques were published in literature as problem hardness mea-
sures and for many of these, subsequent publications can be found providing evi-
dence of counter-examples for which the proposed measure of hardness does not
hold. Although many proposed techniques have therefore been ‘shot down’ as dif-
ficulty measures, it is proposed that some techniques can still be useful if viewed
as measures of particular problem characteristics, rather than of problem difficulty.
With a shift in focus away from predicting hardness, each technique has its own



4  Fitness Landscape Analysis for Metaheuristic Performance Prediction 119

place within a set of techniques for characterising problems. Three possible tech-
niques for characterising continuous optimisation problems are briefly described in
this section and in the next section the features are investigated alongside perfor-
mance metrics for a PSO algorithm.

4.4.2.1 First Entropic Measure of Ruggedness

Weinberger [65] proposed using an autocorrelation method for characterising the
ruggedness of a fitness landscape. His technique, and later variations [25, 139, I51]],
have been widely used to characterise the ruggedness of discrete landscapes, but
have had limited success in predicting problem difficulty because they do not con-
sider neutrality in the landscape [13, 44,163]. An alternative approach to analysing
the ruggedness of landscapes with respect to neutrality using information en-
tropy, called the First Entropic Measure (FEM), was proposed by Vassilev et al.
[62,161),163]. Based on a random walk, a sequence of three-point objects are gener-
ated. These objects are classified as rugged, smooth or neutral, based on the change
in fitness values between neighbouring points. The ruggedness of the landscape is
estimated using a measure of entropy with respect to the probability distribution
of the rugged elements within the sequence. The result is a graph illustrating how
ruggedness changes with an increase in landscape neutrality. Malan and Engelbrecht
[37] proposed adaptations to this approach for continuous domains and defined a
single measure of ruggedness in the range [0, 1] where a higher value is indicative
of more ruggedness in the landscape. This single measure of ruggedness is referred
to as FEM.

4.4.2.2 Fitness Distance Correlation

Jones and Forrest [29] introduced fitness distance correlation (FDC) as a way of
predicting the performance of a genetic algorithm on problems with known global
optima. The basic premise of FDC is that for a landscape to be easy to search, fit-
ness values should increase as distance to the optimum decreases in the case of
maximisation problems and decrease as distance to the optimum decreases in the
case of minimisation problems. In continuous domains, the Euclidean metric can be
used for the calculation of distances. For FDC to be applicable as a feature extrac-
tion technique for the algorithm selection / prediction problem, it must be adapted
to be used without knowledge of the global optima. For this reason, it is proposed
that the calculation of FDC be based on a fittest point from a sample in the place
of a global optimum. Instead of estimating how well or badly the problem guides
search towards the optimum, the modified FDC quantifies how well or badly the
problem guides search towards a place of better fitness. This is equivalent to a shift
in focus from measuring difficulty to measuring evolvability (the concept of evolv-
ability is described in [2, |58]). To emphasize this difference, FDC based on the
fittest point from a sample is referred to as FDC, (FDC evolvability metric). More
formally, given a sample of n points, with associated fitness values for each point
F = f1,..., fn, the fittest point in the sample is determined. Distances D =dj,...,d,
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are calculated from each point in the sample to the fittest point in the sample. FDC,
is calculated as the covariance of F and D divided by the product of the standard
deviation of F' and standard deviation of D:

Cov(F,D)

FDC, = o(F)o(D)

(4.6)

The FDC, measure takes on values from —1 (perfect anti-correlation) to +1 (perfect
correlation), where low values are regarded as desirable for maximisation problems
and high values desirable for minimisation problems.

4.4.2.3 Dispersion Metric

A funnel in a landscape is a global basin shape that consists of clustered local op-
tima [54]. The Rastrigin benchmark function illustrated in Figure[4.2h is an example
of a single funnel landscape, because although the landscape is multimodal, there is
an underlying unimodal global structure. In contrast, Schwefel 2.26 in Figure .2b
is multi-funnelled. Multi-funnel landscapes can present problems for search, partic-
ularly in the case of algorithms that rely on local information, as they may become
trapped in sub-optimal funnels [54, 68]. A technique for estimating the presence of
funnels in a fitness landscape is Lunacek and Whitley’s dispersion metric[36]. Given
a sample of points below a fitness threshold, if a decrease in threshold (assuming a
minimisation problem) results in an increase in the dispersion of the points from
the sample that are below the threshold (in solution space), then this indicates the
presence of multiple funnels in the landscape. More precisely, the approach used in
this chapter to calculate the dispersion metric is as follows:

(1) Draw a uniformly random sample S of 1000 points (position vectors) from the
n-dimensional search space.

(2) Normalise the position vectors in S to produce set ', so that the domain of the
search space is [0, 1] for all n.

(3) Calculate the dispersion of set ', disp(S’), as the average pair-wise distance
between points in S'.

(4) Determine the subset §* of §’, such that §* consists of the fittest 10% of the
points in S’

(5) Calculate disp(S*) as the average pair-wise distance between points in S*.

(6) Calculate the dispersion metric, DM = disp(S*) — disp(S’).

The dispersion metric (referred to as DM) is a single value, where a positive value
indicates the presence of funnels.

4.4.3 Features and Algorithm Performance

This section presents values for feature metrics FEM, FDC, and DM alongside per-
formance metrics (based on a traditional PSO algorithm) for a sample of benchmark
functions and dimensions. The purpose is to show how fitness landscape metrics
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could be analysed alongside performance metrics. Although some preliminary ob-
servations are made regarding the predictive value of the sample metrics for PSO
performance, further investigation is needed before any general conclusions can be
drawn.

4.4.3.1 Benchmark Problems

Data was generated for each benchmark problem listed in Table [4.2] for dimensions
1,2, 5, 15 and 30. These functions cover a range of characteristics. All functions
are multimodal, except for Spherical, Quadric and Rosenbrock for dimensions 1
to 3. (Note that although the Rosenbrock function is widely stated as unimodal, it
has been shown to be multimodal for dimensions of 4 and higher [48].) Functions
Griewank, Quadric, Rana, Rosenbrock and Salomon are non-separable. In addition
Rana and Schwefel 2.26 are multi-funnelled.

4.4.3.2 Experimental Setup

For the FEM measure, the approach described in [37] was used with the total number
of points sampled through random walks equal to 1000 x D. For the FDC, calcula-
tions, uniform random samples of 500 x D were used (reduced to compensate for
the computational load of calculating the distance to the best point for each sampled
solution). The DM measure was based on uniform random samples of 1000 points
with the dispersion difference based on the 100 (10%) fittest solutions from the sam-
ple. For the performance metrics a traditional gbest PSO algorithm [[10] was used to
solve each problem with 50 particles, 1.496 for both the cognitive and social accel-
eration constants and 0.7298 for the inertia weight [[11]. The terminating condition
was the maximum number of function evaluations and was set to 10000 x D, where
D is the dimension of the problem. Note that the computational budget given to solv-
ing a problem is approximately 10 times the computational budget given to probing
the same problem to calculate the FEM and FDC, fitness landscape features. The
computation of the DM metric involves calculating the pairwise distance between
100 points (the pairwise distance between the full sample of 1000 points is not part
of the computational load, as it can be pre-calculated for each dimension, since the
distances are normalised), but does not increase as the dimension increases.

4.4.3.3 Landscape Metric Results

Results are listed in Table [£.4] All fitness landscape metric values are reported as
means of 30 independent runs and the standard deviations are shown in brackets.
The three landscape metrics are discussed briefly in this section in terms of the
predictability and reliability of the results generated.

The FEM metric is an estimation of landscape ruggedness and is a value in the
range [0, 1], where 1 indicates maximal ruggedness. Considering the values of FEM
in Table [£.4] Ackley and Salomon have the highest values, while functions like
Quadric and Rosenbrock have lower values, which is as expected. Note that the
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Table 4.4 Benchmark functions and dimension (D) with feature metrics (FEM, DM, FDC,)
and performance metrics based on a traditional PSO algorithm

Function D FEM DM FDC, QMetric SRate SSpeed
Ackley 1 0.876 (£0.009) -0.296 (£+0.003) 0.793 (£0.008)  1.000 1.000 0.471
Ackley 2 0.854 (£0.008) -0.357 (£0.008) 0.774 (+£0.010)  1.000 1.000 0.634
Ackley 5 0.865 (£0.004) -0.333 (£0.017) 0.701 (+£0.025)  1.000 1.000 0.782
Ackley 15 0.870 (+0.002) -0.288 (+0.018) 0.506 (£0.025)  0.933 0.933 0.855
Ackley 30 0.870 (£0.001) -0.270 (£0.018) 0.431 (£0.018)  0.300 0.300 0.862
Griewank 1 0.786 (£0.011) -0.289 (£0.003) 0.967 (+0.002)  1.000 1.000 0.721
Griewank 2 0.665 (£0.043) -0.358 (£0.011) 0.966 (+£0.007)  0.915 0.767 0.669
Griewank 5 0.479 (£0.042) -0.358 (+£0.012) 0.903 (£0.034) 0.560 0.067 0.211
Griewank 15 0.348 (£0.010) -0.338 (£0.013) 0.653 (+0.024)  0.691 0.100 0.910
Griewank 30 0.292 (+0.007) -0.328 (+0.015) 0.567 (+£0.027)  0.902 0.367 0.921
Quadric 1 0.464 (£0.014) -0.297 (£0.003) 0.968 (+0.002)  1.000 1.000 0.942
Quadric 2 0.505 (£0.058) -0.329 (£0.010) 0.648 (+0.012)  1.000 1.000 0.893
Quadric 5 0.447 (£0.038) -0.213 (£0.019) 0.342 (£0.030) 1.000 1.000 0.906
Quadric 15 0.368 (£0.018) -0.087 (£0.021) 0.115 (+£0.013)  1.000 1.000 0.869
Quadric 30 0.320 (£0.012) -0.058 (+0.021) 0.071 (£0.010)  1.000 1.000 0.711
Rana 2 0.430 (£0.082) 0.051 (£0.014) 0.017 (+£0.063)  0.187 0.000 0.000
Rana 5 0.679 (£0.011) 0.069 (£0.017) 0.012 (+£0.035)  0.000 0.000 0.000
Rana 15 0.711 (£0.006) 0.044 (£0.021) 0.008 (+0.019)  0.000 0.000 0.000
Rana 30 0.741 (£0.003) 0.032 (+0.021) 0.005 (£0.011)  0.000 0.000 0.000
Rastrigin 1 0.540 (£0.012) -0.212 (£0.010) 0.708 (+0.015)  1.000 1.000 0.814
Rastrigin 2 0.588 (£0.027) -0.224 (£0.015) 0.641 (+0.062)  1.000 1.000 0.792
Rastrigin 5 0.601 (£0.012) -0.239 (£0.016) 0.499 (+0.077)  0.533 0.533 0.731
Rastrigin 15 0.601 (£0.008) -0.232 (£0.014) 0.393 (+£0.042)  0.000 0.000 0.000
Rastrigin 30 0.586 (£0.005) -0.227 (+0.016) 0.358 (£0.023)  0.000 0.000 0.000
Rosenbrock 2 0.356 (£0.054) -0.220 (£+0.015) 0.546 (+0.022)  1.000 1.000 0.843
Rosenbrock 5 0.467 (£0.027) -0.311 (+0.014) 0.687 (+0.063)  0.931 0.067 0.321
Rosenbrock 15 0.416 (£0.010) -0.280 (£0.014) 0.555 (+£0.081)  0.888 0.000 0.000
Rosenbrock 30 0.361 (£0.007) -0.273 (+0.014) 0.477 (+£0.074)  0.482 0.000 0.000
Salomon 1 0.887 (£0.008) -0.277 (£0.005) 0.971 (£0.002)  1.000 1.000 0.574
Salomon 2 0.888 (£0.005) -0.346 (£0.007) 0.960 (£0.009)  1.000 1.000 0.592
Salomon 5 0.890 (£0.004) -0.350 (£0.016) 0.872 (+£0.048)  0.000 0.000 0.000
Salomon 15 0.889 (£0.002) -0.324 (£0.011) 0.627 (+£0.037)  0.000 0.000 0.000
Salomon 30 0.886 (£0.001) -0.318 (+0.013) 0.534 (£0.017)  0.000 0.000 0.000
Schwefel 2.26 1 0.483 (£0.013) -0.003 (£0.030) 0.317 (£0.032)  1.000 1.000 0.816
Schwefel 2.26 2 0.539 (£0.028) 0.035 (£0.018) 0.300 (+0.057)  0.967 0.967 0.819
Schwefel 2.26 5 0.567 (£0.018) 0.038 (+£0.017) 0.171 (£0.113)  0.400 0.400 0.826
Schwefel 2.26 15 0.582 (+£0.010) 0.021 (+0.017) 0.080 (+0.078)  0.000 0.000 0.000
Schwefel 2.26 30 0.582 (£0.005) 0.024 (+0.022) 0.065 (+0.043)  0.000 0.000 0.000
Spherical 1 0.466 (+0.014) -0.296 (+£0.002) 0.968 (£0.001)  1.000 1.000 0.845
Spherical 2 0.550 (£0.066) -0.358 (£0.010) 0.971 (+£0.003)  1.000 1.000 0.890
Spherical 5 0.474 (£0.026) -0.355 (£0.011) 0.900 (+£0.031)  1.000 1.000 0.916
Spherical 15 0.350 (£0.009) -0.338 (£0.010) 0.666 (£0.024)  1.000 1.000 0.941
Spherical 30 0.292 (+0.006) -0.328 (+0.014) 0.566 (£0.016)  1.000 1.000 0.940
Step 1 0.516 (£0.007) -0.293 (£0.003) 0.966 (+£0.002)  1.000 1.000 0.994
Step 2 0.698 (£0.025) -0.359 (£0.010) 0.967 (+0.005)  1.000 1.000 0.988
Step 5 0.813 (£0.013) -0.357 (£0.015) 0.894 (+£0.038)  1.000 1.000 0.977
Step 15 0.707 (£0.011) -0.336 (+£0.011) 0.665 (£0.045)  1.000 1.000 0.972
Step 30 0.619 (£0.010) -0.330 (+£0.012) 0.564 (£0.014)  0.924 0.900 0.857
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FEM value for Griewank decreases as the dimension increases, which is consistent
with the explanation that Griewank becomes a ‘simpler’ function with increased
dimension [34]. However, some values of FEM are not quite as expected. For ex-
ample, Spherical in 2 dimensions has an FEM value of 0.550, which is higher than
the FEM value of Schwefel 2.26 in 2 dimensions. For many of the functions, the
standard deviation of the FEM mean is higher in 2 dimensions than in other dimen-
sions. These anomalies affect the reliability of the FEM metric and would need to
be investigated further.

The DM metric is an estimate of the presence of funnels in the fitness landscape.
Negative values for DM indicate a simpler global topology, while larger values (pos-
itive values) are indicative of multi-funnels. All values for DM in Table [d.4] are neg-
ative, except for Rana and Schwefel 2.26 (above 1 dimension), which are the only
multi-funnelled benchmark functions. The metric DM therefore seems to predict
the presence of funnels fairly well. Of concern are the relatively high standard de-
viations in some cases. For example, the standard deviation of the DM measure for
Schwefel 2.26 in 1 dimension implies that the DM measure could very likely result
in a positive value for a different set of 30 runs.

The FDC, metric quantifies how well distances to the fittest solution in a sam-
ple are correlated with fitness values. In the case of a simple smooth landscape,
like Spherical, the fitness values should decrease steadily as the distance to fitter
solutions decrease. FDC, is therefore a measure of evolvability for a local search
algorithm, where higher values indicate better evolvability. The values of FDC, in
Table 4.4l range from values close to 1 for Spherical in low dimensions, to as low as
0.005 for Rana in 30 dimensions. For most functions the value of FDC, decreases as
the dimension increases. This is most probably because the search space increases
exponentially and so distances can also become very large. Further investigation is
needed on whether the FDC, measure is a reasonable predictor of evolvability in
higher dimensions.

Figure [4.7] shows the FDC, values plotted against the DM values for all prob-
lems in Table .4l The scatterplot shows that there is a strong negative correlation
(Spearman correlation coefficient value of -0.789) between the two feature metrics.
This shows that although the two metrics have different focus areas, they are captur-
ing similar information: the presence of funnels (high DM values) seems to imply
lower evolvability (low FDC, values), alternatively, lower evolvabilty could imply
the presence of funnels. Further investigation into this relationship should be done
to provide insight into the metrics and ways in which the approaches to calculating
the metrics can be improved. Figure [4.8 plots the FDC, values against the FEM
ruggedness values, showing a very weak correlation (Spearman correlation coef-
ficient value of 0.169). This seems to indicate that the two metrics are capturing
different information on the problems.

4.4.3.4 Correlation to Performance Metrics

For a feature metric to be useful it should show some correlation (or anti-correlation)
to performance. However, as discussed in Section[4.4.2] no one technique can serve
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as a predictor of hardness. To illustrate this, consider Figure showing a scat-
terplot of the FDC, and associated QMetric values. Recall that for minimization
problems larger values of FDC, are indicative of higher evolvability and larger val-
ues of QMetric are indicative of better performance by the algorithm. Although the
data shows only a moderate correlation (Spearman correlation coefficient value of
0.563), there does seem to be some value in FDC, as a part-predictor of perfor-
mance. On the scatterplot in Figure one group of points on the bottom right
that show no positive correlation, correspond to the Salomon benchmark function
for dimensions 5 and higher. These points have a minimum QMetric value of 0
(indicating the algorithm’s failure), but also have relatively high FDC, values. In
the case of the Salomon function, FDC, is therefore a misleading predictor of dif-
ficulty. The data in Table d.4] however, shows that the FEM ruggedness values of
Salomon are particularly high. In addition, there are other factors that could affect
difficulty that should be considered. For example, the Salomon function has ex-
tremely steep gradients, which could be a factor contributing to the difficulty for a
PSO algorithm [3§].

06 | E

QMetric
[

0.2 e 4

0 0.2 0.4 0.6 0.8 1
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Fig. 4.9 A scatterplot of FDC, and associated QMetric values based on the data shown in
Table[d.4]

The scatterplot in Figure .91 has a large proportion of values at the top and at the
bottom with a few points scattered in between. This is indicative of distinct groups
of problems based on success or failure of the algorithm in solving the problem.
Figure d. 10 shows a different visualisation of the link between FDC, and algorithm
performance, where the problems are plotted by dimension and the performance is
discretised into four groups:
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e Always solved: problems with an SRate of 1, indicating that the solution was
found for all 30 runs of the PSO algorithm.

o Sometimes solved: problems with an SRate less than 1, but greater than 0, indi-
cating that the solution was found for some of the runs.

e Almost solved: problems with an SRate of 0, but a QMetric value greater than 0,
indicating that although none of the runs found the solution to within the required
fixed accuracy level, a solution was sometimes found that was very close to the
optimum.

e Not solved: problems with all performance metric values equal to 0.
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Fig. 4.10 Discretised performance plotted against FDC, values based on the data shown in

Table[d.4]

It can be seen from Figure[£.10|that there is some value in the FDC, metric as a pre-
dictor of PSO performance. Although there are exceptions, in each dimension col-
umn the symbols tend to match the order of the symbols in the legend. For example,
consider the 2D column: with the exception of one high cross, the plus signs (always
solved) are above the cross (sometimes solved) and the square (almost solved). Sim-
ilarly, in 15D and 30D, the circles are lower down in the columns. Figure d.T1]shows
the same discretised performance values against DM values. Note that the legend is
plotted in the opposite order as in Figure since the symbols are expected to
appear in that order if correlated with DM. Similarly to FDC,, there seems to be
some value in the dispersion metric as a predictor of PSO performance. It would
seem, however, that DM is a slightly better predictor in higher dimensions (given
the bigger gap between the circles and plus signs at high values of DM in 15 and 30
dimensions) and that FDC, is a slightly better predictor in lower dimensions.

In Figure [£10 and F.11] it can also be seen that all one-dimensional problems
are always solved by the PSO algorithm. The difference in the performance of the
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Fig. 4.11 Discretised performance plotted against dispersion metric (DM) values based on
the data shown in Table [d.4]

algorithm on these problems is in terms of the speed with which the algorithm finds
the solution. This is captured in the SSpeed metric. It can be shown, however, that
FDC, and DM show no correlation with the SSpeed metric for the given data. The
feature metric which seems to show value in these cases is the FEM ruggedness
measure. Figure .12] shows the relationship between the FEM metric and SSpeed
of the subset of data entries from Table [4.4] that have a SRate value of 1. This figure
shows that in the case of problems for which the PSO algorithm was able to find
the global minimum, the ruggedness seems to have a moderate effect on the speed
with which the PSO algorithm is able to find the optimum (Spearman correlation
coefficient value of -0.4006).

4.4.4 Discussion

The previous section presented results from three techniques for characterising fit-
ness landscapes alongside performance metrics of a traditional PSO algorithm. One
measure (FDC,) focussed on quantifying evolvability for local search, one focussed
on quantifying the ruggedness based on random walks and the third focussed on es-
timating the presence of funnels in the fitness landscape. On their own, these mea-
sures cannot be used to predict PSO performance. Each, however, provides some
information that could form part of a complex multi-dimensional prediction prob-
lem. There are many more characteristics of problems that should be considered,
such as neutrality, steepness of gradients and evolvability in relation to particular
search operators. More work is needed in the design of suitable techniques and the
adaptation of existing techniques for quantifying these and other fitness landscape
characteristics.
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Fig. 4.12 A scatterplot of the FEM ruggedness metric and associated SSpeed values for data
in Table E.4] with SRate values of 1

What remains to be achieved in solving the performance prediction problem is
finding a mapping from feature space to performance space. Given a good data set
for training, this should be achievable using one of the many data mining techniques.
Although it is not possible to measure how good a data set is, a much wider range of
sample benchmark problems would go some of the way to achieving a better train-
ing set. This study considered one PSO algorithm. More work is also needed on
different algorithms and algorithm variations, since a good set of features for pre-
dicting PSO performance might be an inappropriate set of features for some other
algorithm. Solving the performance prediction problem for a range of different algo-
rithms would not only be useful, but could ultimately lead to a better understanding
of the behaviour of the algorithms themselves.

4.5 Conclusion

This chapter discussed the algorithm selection and performance prediction prob-
lems for metaheuristics and continuous optimisation. One of the requirements of
the model is the existence of suitable metrics for evaluating the performance of
algorithms on known problems to generate suitable data for training. New normal-
ized metrics were proposed that can be used to compare performance of algorithms
on problems with vastly different fitness ranges. The model also requires suitable
metrics for characterising the features of problems. Three metrics were investigated
in relation to a traditional PSO algorithm. A number of issues were highlighted
regarding the reliability of measures and the usefulness as predictors of PSO per-
formance. The conclusion is that feature metrics have to be viewed together as a
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multi-dimensional prediction problem and that a wide range of different features
are needed to properly characterise problems.
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Chapter 5

Fitness Landscapes and Problem Difficulty in
Evolutionary Algorithms: From Theory to
Applications

Guanzhou Lu, Jinlong Li, and Xin Yao

Abstract. Above many successes of evolutionary algorithms in solving computa-
tionally hard optimisations problems, a major challenge in practice remains how to
select/construct the best suited algorithm when solving a problem. The well-known
no free lunch theorem rules out the possibility of developing one best algorithm gen-
erally suitable for solving all problems. Within the realm of algorithm selection in
general, the problem becomes how can we characterise problem hardness with ref-
erence to evolutionary algorithms (EAs). For the first time, this chapter rigorously
derives a problem hardness measure from a theoretical difficulty measure widely
used in complexity theory of EAs. Furthermore, the proposed measure is applied
to construct an offline optimisation algorithm and an online optimisation algorithm.
On one hand, the measure is incorporated with a machine learning algorithm for
parameter tuning and achieves powerful performance. On the other hand, an adap-
tive algorithm framework is proposed and shows promising results. We argue that
the proposed measure is general, yet powerful as an indicator of EA-hardness, and
contribute to the goal of constructing better suited algorithms for solving problems.
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5.1 Introduction

How do we determine if a problem is difficult or easy for a given search heuristic?
An answer to this question was sought after in the field of evolutionary computation
(EC) for over a decade. As of yet, no satisfactory answer has been found.

Many practical attempts have been made to define a measure of problem difficulty
for evolutionary algorithms (EAs), for example fitness landscape analysis, fitness-
distance correlation [17], correlation length and operator correlation [27], fitness
variance [33], epistasis variance [§], amongst others. All of these measures aim to
act as a useful difficulty measure generally suitable for all problems. However, they
do not always describe problem difficulty correctly and counter-examples have been
identified.

From theoretical perspectives, He et al. [13] rigorously define difficulty mea-
sures and propose a classification on realisations of difficulty measures. Assuming
a worst-case perspective, for both approximate and exact measures, He et al. [[13]
have proven that realisations of predictive measures, i.e. polynomial-time imple-
mentations, do not exist unless P = NP or BPP = NP. In other words, to find a
useful difficulty measure in general is impossible. However, this does not prevent
us from developing a useful measure to estimate the difficulty for a broad class of
problem instances in practice.

In this chapter, for the first time we rigorously analyse the relationship between
the escape probability and the expected running time, a difficulty measure widely
used in complexity theory of EAs [32]. Based on the concept of escape probability,
we develop the fitness-probability cloud (fpc) and accumulated escape probability
(aep). We argue that aep is the first practical difficulty measure with a solid theo-
retical basis in complexity theory of EAs.

To build upon the existing work on fitness landscapes and problem difficulty
measures, which mostly focus on analysing characteristics of problem structure and
algorithm behaviours, we aim to directly apply the difficulty measure to construct
better suited algorithms for a particular class of instances. Two distinctive classes of
applications (offline and online) are identified for the proposed difficulty measure:
The first is to incorporate the measure with a support vector machine (SVM) learn-
ing algorithm to automate the parameter tuning of EAs for solving the unique input
output sequence problem (UIOP). The second is to build the difficulty measure as
the core decision maker into an adaptive EA for online optimisations.

The remainder of this chapter is organised as follows. Section [5.2] briefly re-
views previous work on fitness landscapes and problem difficulty measures. The
theoretical results on escape probability and expected running time are presented
in Section[3.3 Section[3.4]introduces the concept of a fitness-probability cloud and
accumulated escape probability. Sections and 3.6 present the applications of the
difficulty measure in an offline and an online optimisation algorithm, respectively.
Finally, we conclude in Section[3.7]
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5.2 Background

For over a decade, a considerable amount of research efforts have been devoted to
the studies of problem hardness with reference to EAs. The notion of fitness land-
scapes, originally proposed in [40], underlies a large body of work in the literature.
It is generally agreed that the properties associated with fitness landscapes can in-
dicate problem difficulty. For instance, the problem difficulty with reference to EAs
has been described using concepts of ruggedness, neutrality [38] and information
landscapes [3].

The concept of fitness landscapes provides intuitive explanations of problem
hardness, however, it does not explicitly quantify difficulty as a numerical measure.
Therefore, it is desirable to have one or more algebraic values to capture key charac-
teristics of fitness landscapes. Along this line of consideration, a significant contri-
bution was made by Jones [17] through the introduction of a measure called fitness
distance correlation (fdc), which has been evaluated empirically on a large num-
ber of genetic algorithm (GA) and genetic programming (GP) benchmarks showing
considerable effectiveness. However, fdc still has some drawbacks with the most
severe one being that the global optima have to be known beforehand, preventing
fdc from being applied to real-world problems. This limitation has been overcome
by the introduction of the fitness cloud (fc) [5] and the negative slope coefficient
(nsc) [37] as a measure based on fc. Unfortunately fc also has its own weakness:
experimental analysis has shown that nsc is drastically influenced by the neighbour-
hood sample size K in generating it. In practice, nsc is unable to serve as an accurate
measure unless an appropriate K is selected [24].

5.3 Escape Probability versus Expected Runtime Time

This work aims to address the problem of developing a useful difficulty measure in
both theory and practice. In the context of EAs, a predictive difficulty measure is
thought to be useful if it can discriminate the hardness of a particular problem with
respect to different EAs, which is needed in choosing the best suited algorithm to
solve the problem. Apart from many existing practical measures mentioned above,
there exists a number of studies into problem hardness in complexity theory [32],
a widely used one being the expected running time of the algorithm on the fitness
function, which is usually taken as a measure of difficulty of the fitness function for
the algorithm.

The notion of escape probability (escape rate) was used by Merz [30] in analysing
the use of random walks to escape from the basins of attractions of current local op-
tima. In theoretical runtime analysis of EAs, He and Yao [[14] proposed an analytic
way to estimate the mean first hitting time of an absorbing Markov chain, in which
the transition probability between states were used.

Below we define the concept of the escape probability and carry out a rigorous
analysis of the relationship between the escape probability and the expected running
time. The results show that the escape probability is positively correlated with the
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expected running time and therefore can, in theory, reliably indicate the problem
difficulty. This chapter provides the first study of linking escape probability with the
expected running time.

5.3.1 Preliminaries

We model the evolution of an EA as a time-homogeneous Markov chain. Therefore,
the transition matrix P is the same after each step, the k — step transition probability
can be computed as the k — th power of the transition matrix P. Below is a list of
definitions of notations used in the derivation:

e Running time m;: On a problem instance, m; is the average time cost of an EA to
reach one of the optima when search starts from solution i, i = 1,2,...,n, where
n is the total number of solutions.

e The escape probability,p¢ = ¥ p;;, where F is the fitness function, and i, j =
JFi>F;
1,2,...,n, p?, represents the probability of escaping from solution i to a strictly
better solution;

e Column sum in probability transition matrix, P, ¢; = 2;?:1 pji, where i = 1,2,
X

o LetP® =Pk and ¥ =57 pl¥) wherei,j=1,2,...,n,andk=1,2,3,...

5.3.2 Derivation of the Mathematical Equation between Escape
Probability and Expected Running Time

Equation (5.I) below shows that m; can be computed as the runtime of the search
starting from j by m; times p;; plus one, where i and j are adjacent solutions with
distance one:

n
m; = Zm]p,]Jrl,l:l,Z,,n (51)
j=1
Equation (3.I) can be rewritten as:
n
mi=Y (mj+1)p;j =Y (mj+1)pij+mip; (5.2)
j=1 i

The sum of m; is:
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dmi= 22’"/*1 pu*ZZ (mj+1)pij
i

i=1j
=S Y+ Y Yy (5.3)
i =l =1

zzmjcj+n
J

Equation (3.4) below shows the computation of m; as a time series:

1
m; =1 *pf—l—ijpEj)
Vil

—|—2>k(1—p, —I—Zm]pl]
J#i

+... G4

+k*(1 _pl)k ! e+zm1pu
J#

+...

Summing both sides of Equation (3.4) we obtain the following:

>omi= Zl/p,+2 (X mi( = pl¥y)

k>0 j

=S 1/p+ T 3 =)

i k>0

(5.5)

By solving the system of equations formed by Equations (3.3) and (3.3):

Yimi=3%;1/pf +2;mj 2k>0(05'k> _PE'];)) (5.6)
yimi= ijij-—I-n

The equation between escape probability and expected running time can be
obtained:

Zl/p,*n—z,zmz e P ) (s

k>1 i

As we see from the above equation, on the left is the reciprocal sum of the escape
probabilities minus a constant n. On the right is the expected running time; the
coefficients Y1 Y, m,-(—cl(z) — 053) - cgk) + pl(il) + pl(iz) +... +P§,-k)) constitute
for the weights of m; for computing the expected value of m;, namely, the expected
running time.

According to the relationship between escape probability and the expected run-
ning time established in Equation (3.7)), the larger the reciprocal sum of the escape
probability, the larger the expected running time. In sum, we can use the escape
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probability as an indication of the expected running time, as well as estimating the
expected running time based on values of escape probability.

5.4 Fitness-Probability Cloud

From the results presented in Section the escape probability is a theoretically
reliable difficulty measure derived from the expected running time, a difficulty mea-
sure widely used in complexity theory of EAs. However, the mere definition of the
escape probability is not sufficient for it to be used as an effective difficulty mea-
sure in practice. In this section we build on the definition of escape probability and
propose the fitness-probability cloud and accumulated escape probability as the first
difficulty measure with solid theoretical basis in complexity theory of EAs.

5.4.1 Definition of Fitness-Probability Cloud

5.4.1.1 Escape Probability

F={fo,f1,--»/. | fo<fi<---<fr} denotes the distinctive set of all possible
fitness values of the fitness function. Let us partition the entire set of solutions in the
search space into L+ 1 sets according to their fitness values. For a solution with
fitness value f;, S; denotes the average number of steps required for it to reach a
solution with better fitness. The escape probability P(f;) is defined as follows:

1
P(fi) = S (5.8)
i
The greater the escape probability is for a particular f;, the easier it is to reach a
better fitness from the corresponding fitness level.

5.4.1.2 Fitness-Probability Cloud

We can extend the definition of escape probability to be on a set of fitness values.
P, denotes the average escape probability for individuals of fitness value equal to or
above f; and is defined as:
ij eC; P(f])
P = ;
ICil

where C; = {fj|j > i}. If we take into account all the P; for a given problem, this
would be a good indication of the degree of evolvability of the problem. The fitness-
probability cloud (fpc) is defined as:

fpe={(fo.P),-..,(fL, PL)}- (5.10)

(5.9)
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5.4.1.3 Accumulated Escape Probability

Based on the concept of fpc, a numerical measure called accumulated escape prob-
ability (aep) is defined:

(5.11)

The aep is actually the average value of P; across F. By definition of escape prob-
ability P(f;) and P, it is clear to see that aep can measure the problem hardness in
the following way: the larger the value of aep, the easier the problem is with respect
to the given EA.

5.4.2 Methodology for Generating fpc

Here we describe the methodology in generating the f pc for a given problem and an
operator. The size of the search space is exponentially large and does not allow con-
sideration of all individuals, therefore sampling is required. Since not all solutions
in the search space are equally important, it is preferred to sample the space accord-
ing to a distribution that gives higher weight to individuals of higher fitness values.
In fact, this can be achieved by using a Metropolis method or any other equivalent
method [26]. In our case, we chose to use the Metropolis-Hastings sampling method
described in [36].

For each sampled point, the escape probability is estimated by computing the
proportion of potential better moves out of the entire neighbour set generated by one
application of the genetic operator. The larger the number of neighbours sample, the
more accurate the estimated escape probability would be. Hereinafter we refer to F/
as the set of distinctive fitness values of the sampled individuals obtained with the
Metropolis-Hastings method, and for each f; € F, P, is the estimated average escape
probability computed from the sampled neighbourhood set.

5.4.3 Test Problems

5.4.3.1 Unitation Functions
Three unitation functions: OneMax, Trap, OneMix [29] are used.
Definition 5.1. Let s be a bit string of length 1, the unitation u(s) of s is a function

!
defined as: u(s) = s;.
i=1

OneMax functions are generalisations of the unitation u(s) of a bit string s:
f(s)=d-u(s), where d is 1.

The Trap function [9] is defined as follows:
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f(s)—{?(z_u(s))’ if uls)<z (5.12)

lfz (u(s)—z), otherwise
where a represents a local optimum and b is a global optimum, z is a slope-change
location.

The OneMix function is a mixture of the OneMax function and the ZeroMax
function, which is formally defined as:

)= {(1 +a)(y—ul)+5, if gls) 5.13)

u(s), otherwise

where a represents a constant above zero and g(s) is equal to 1 when u(s) is even
and u(s) < 1.

5.4.3.2 Subset Sum Problem

The Subset Sum problem is a constrained optimisation problem. Given a set of n
items each with an associated weight w, the problem is to select a subset out of n
items, where the weighted sum is maximised and does not exceed the budget W.
Mathematically this problem is formulated as follows:

n
Maximise Z WiXi, (5.14)
i=1
X wi

n
Subject to Zw,-xi <W, x€{0,1}, W= 5

i=1

(5.15)

5.4.4 Experimental Results

Once a measure of problem hardness and the way to compute it have been chosen,
the problem remains to find a means to validate the prediction of the measure with
respect to the problem instance and the algorithm. The easiest way is to use a perfor-
mance measure [31]]. Since the optimal solution to practical problems are unknown,
we use the number of fitness evaluations until a certain stopping criterion is satisfied
as the performance measure.

Then we evaluate the effectiveness of the fitness-probability cloud and the prob-
lem hardness measure accumulated escape probability (aep) on four different test
problems: OneMax, Trap, OneMix and Subset Sum. For each test problem, four
problem instances are generated with problem size varying from 20 to 200. To ex-
perimentally confirm the predictions given by the aep measure, we use the mutation-
based (i + A)EA (u denotes the number of parents, A the number of offspring) with
the following characteristics: mutation operator with flip probability 1/n for each
bit (bitwise mutation), the algorithm stopped if there is no improvement after 500
fitness evaluations. For each problem instance, 100 independent executions were
performed.



5  Fitness Landscapes and Problem Difficulty 141

Fitness-Probability Cloud Fitness-Probability Cloud

Average Escape Probabilty P,

Average Escape Probabilty P,

0.1 02 03 04 05 06 07 08 09 1 o 0.1 02 03 04 05 06 07 08 09 1
Fitness Value Fitness Value

(a) Problem size 20 (b) Problem size 40

Fitness-Probability Cloud Fitness-Probability Cloud

Average Escape Probabilty P,

Average Escape Probabilty P,

—*—trap ooq?00 **
x onemax %,
01 o
—6— subset oé)()
o
0.05 © -~ onemi o b
o o .0 ®
[ D"\ D‘Z D‘B 0‘4 0‘5 D‘G 0‘7 0‘8 0‘9 1 0 0‘1 0‘2 0‘3 0‘4 0‘5 D‘G 0‘7 D‘B D‘Q 1A
Fitness Value Fitness Value
(c) Problem size 80 (d) Problem size 200

Fig. 5.1 Plot of Fitness-Probability Cloud for Four Test Problems of Problem Sizes 20, 40,
80 and 200

We applied the approach described in Section to generate fpc and calculate
the value of the corresponding aep. For each problem instance, 1000 samples were
obtained using the Metropolis-Hastings sampling method. For each sampled point,
the bitwise mutation operator was used to generate 10000 neighbours in order to
estimate the escape probability. Under the above parameter settings, we generate
the fitness-probability clouds for four test problems of problem sizes 20, 40, 80 and
200. The results are illustrated in Figure B.1a)to Figure B.1(d), respectively. With
the fitness-probability cloud generated, we can then apply the method defined in
Section[3.3]to compute the accumulated escape probability (aep). We then contrast
predictions of aep to the performance from actual runs defined above. For the sake
of comparison, we also compute the values of nsc [37]. If nsc = 0, the problem is
easy; if nsc < 0 the problem is difficult and the value of nsc quantifies this difficulty:
the smaller its value, the more difficult the problem. The experimental results are
summarised in Table 3.1}
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Table 5.1 aep Predictions vs. Actual Performance for Four Problems of Size 20, 40, 80 and
200. Column 3 to 5 are the number of fitness evaluations taken by three different (u+24) EAs.

Problem Problem Size (1+1) EA (3+7) EA (7+3) EA aep nsc

OneMax 20 641 1166 1110 0.135 0
Trap 20 627 1158 1105  0.135 0
OneMix 20 745 1375 1330  0.09 -8.1932
Subset Sum 20 548 1009 928 022 -1.1572
OneMax 40 821 1434 1430  0.175 -0.333
Trap 40 829 1422 1438 0.182 0
OneMix 40 1028 1776 1728  0.105 -16.3114
Subset Sum 40 533 1009 928 0.239 -6.818
OneMax 80 1267 2002 2134 0202 -0.5
Trap 80 1273 2004 2115 0.209 -0.25
OneMix 80 1609 2608 2678  0.121 -20.4879
Subset Sum 80 547 1015 936  0.246 -7.5286
OneMax 200 2640 3848 4221 0.225 -3
Trap 200 2590 3860 4242 0.222 0
OneMix 200 3070 4724 4952 0.121 -30.175
Subset Sum 200 534 1021 945 0.252 -8.6169

In terms of the defined performance measure, the relevant problem hardness of
the four test problems remains the same across problem sizes of 20, 40, 80, and 200.
Among different problems, the order of problem difficulty indicated by the perfor-
mance measure is: Subset Sum < OneMax ~ Trap < OneMix. If we look at the
order of problem hardness indicated by the aep measure, by definition of the aep,
the smaller the aep value, the more difficult the problem is, it is clear that aep con-
sistently orders the hardness of the four test problems across all four problem sizes,
with results in qualitative agreement with the actual performance. However, the aep
is unable to quantify the magnitude of the difference in problem hardness among
those problems. In contrast to the correct predictions made by the aep measure, as
we can see from Table 1, the results given by nsc do not correspond to the actual
performance. Consequently, the nsc fails to correctly predict the relevant problem
hardness among OneMax, Trap, OneMix and Subset Sum.

5.5 Parameter Learning Method Using Fitness-Probability
Cloud for the Unique Input OQutput Sequence Problem

This section shows how the difficulty measure aep is incorporated within a machine
learning method to construct an offline algorithm for tuning EAs to solve the unique
input output sequence problem.
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5.5.1 Motivation

Finite state machines (FSMs) have been usually used to model software, communi-
cation protocols and circuits [19]. The unique input output sequence (UIOS) prob-
lem is mostly used for testing finite state machines [11,112]. To determine whether
a given state has an UIOS or not is an NP-hard problem [19]. The UIOS problem
has been reformulated as an optimisation problem, and several EAs have been de-
veloped to tackle it [[1Q, [11].

It is widely acknowledged that good parameter values are essential for good EA
performance, in the meantime, tuning EA parameters stands as one of the persisting
challenges in the field of EC. Previous work revealed that 90% of the time is spent on
fine-tuning algorithm parameter settings [[1]. Most existing approaches for parame-
ter tuning attempt to find one best parameter setting for an EA to solve all instances
of the same problem or at least a class of instances [2,116,128]. Others used problem
dependent features to characterise the problem instances and the feature selection
process relies heavily on the domain knowledge. For example, SATzilla [41] uses
48 features mostly specified to the SAT problem to construct per-instance algorithm
portfolios. A problem-independent feature represented by a behaviour sequence of
a local search procedure is used to perform instance-based automatic parameter tun-
ing [23].

The fitness-probability cloud (fpc) has demonstrated to be an appropriate char-
acterisation of fitness landscapes and does not require any a priori knowledge. We
incorporate the fpc within a support vector machine(SVM) learning algorithm to
automate the parameter tuning of EAs for solving the UIOS problem [22].

5.5.2 Preliminaries

Definition 5.2. (Finite State Machine). A finite state machine (FSM) is a quintuple,
M = (§,X,Y,5,1), where X,Y and S are finite and nonempty sets of input sym-
bols, output symbols, and states, respectively; & : S x X — S is the state transition
function, and A : S x X — Y is the output function.

Definition 5.3. (Unique Input Output Sequence). An unique input output sequence
for a given state s; is an input/output sequence x/y, where x € X*,y € Y*,Vs; # s;,

A(si,x) # A(sj,x) and A (s;,x) = y.

To generate an UIOS using an EA, candidate solutions are represented by input
strings restricted to X" = {0,1}", where n is the number of states of the FSM. In
general, the length of the shortest UIOS is unknown. Assume the objective is to
search for an UIOS of input string length n for state s; in all FSM instances. The
fitness function is defined as a function of the state partition tree [[11,120, [21]].

Definition 5.4. (UIOS fitness function [20, 21]). For a FSM M with n states, the
fitness function f : X" — N is defined as f(x) := n— (s, x), where s is the initial
state for which we want to find an UIOS, and (s, x) := |{t € S|A(s,x) = A(t,x)}|.
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There are |X|" candidate solutions with n — 1 different fitness values. A candidate
solution x* is a global optimum if and only if x* produces an UIOS and f(x*) =
n—1.

5.5.2.1 Target Algorithm and Its Parameters

The (1 + A) — EAs described in Algorithm 1 are employed to solve the UIOP, with
three parameters to tune: population size, neighbourhood operator, and selection
operator. Their candidate settings are listed below:

e Population size: We provide 3 different (1 + A) options: {(4+4),(7+3),(3+
7)}.

e Neighbourhood operator .47, (j = 1,2,...,12): There are 3 types of neighbor-
hood operators with different mutation probabilities:

- M (x) ~ A5(x): Bit-wised mutation, flip each bit with probability p = ¢/n,
where ¢ € {0.5,1,2,n/2,n—1};

— Ag(x) ~ A(x): flip c-th bits, where ¢ = {1,2,n/2,n— 1};

— Mo(x) ~ A2(x): Non-uniform mutation [4], for each bit i, 1 <i < n, flip it
with probability y (i) = ¢/(i+ 1), where ¢ = {0.5,1,2}.

In total 12 neighbourhood operators are used, and then 12 fitness-probability
clouds are generated to characterize an UIOS instance.
e Selection operator .%;, (i = 1,2): Two selection schemes are considered in this

paper:

— Truncation Selection: Sort all individuals in P¥) and Pf,]; ) by their fitness val-
ues, then select u best individuals as the next generation pltl),

— Roulette Wheel Selection: Retain all the best individuals in P®) and PE,]f ) di-
rectly, and the rest of the individuals of the population are selected by roulette
wheel selection.

Algorithm 1. (u + A)- Evolutionary Algorithms

Choose i initial solutions P(0) = {xso) ,xgo), . 7xilo)} uniformly at random from {0, 1}"
k<—0

While termination criterion is not met P «— A;(PW)) %%mutation operator

pktD) ,%(P(k>,P,(,f )) 90 %oselection operator

k+—k+1

For a given UIOS instance, there are 72 different combinations of parameters that
are viewed as 72 different EA parameters settings, and our goal is to find ‘good’
settings for a given UIOS instance. The stopping criterion used in Algorithm 1 is
satisfied when an UIOS has been found.
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5.5.3 fpc-Based Parameter Learning Method

The framework of selecting an EA parameter setting consists of two phases. In
brief, an EA parameter setting predictor is trained using the support vector machine
(SVM) learning algorithm at first. In the second phase, when a new UIOS instance
is fed into the predictor, the features are generated and fed to the predictor in or-
der to find good parameter settings for the instance. This two-phase framework is
illustrated in Figure 3.2

. 1
| Machine Learing 15t phase: Training \
Algorihms: Sampies: UIOs |
| SVM NN etc with FPCs |
|
\
| \
I_ """"""""""" " Predictor- —--—- - —--—--—--—- ‘
|
\
|
| EAseitngsm i ' New UIOs with |
| FPCs |
| 2nd phase: Predicting ‘
77777777777777 |

Fig. 5.2 The two-phase framework in parameters tuning

5.5.3.1 First Phase: Training the Predictor

First of all, the structure of the training data is introduced and denoted by a tuple
D = (F,PC,L). In tuple D, F represents the features of a problem instance. For an
UIOS instance, the features are a vector of aep values [24]. One neighbourhood
operator produces one distinctive fitness landscape as well as a fitness-probability
cloud; the more neighbourhood operators applied to a problem instance, the more
features of it can be generated. This paper adopts 12 mostly used neighbourhood
operators in the literature to generate 12 fitness-probability clouds for characterizing
an UIOS instance.

PC of tuple D denotes the ID of an EA parameter setting. Each problem instance
represented by its features F is solved by the target algorithm with 72 parameter
settings. The performances of these settings are measured by the number of function
evaluations. The number of function evaluations of parameter setting j on problem
instance i is denoted by E;;, j =1,2,...,72.

L is a binary variable, L = {good, bad}. L indicates whether the parameter setting
is good or not, which is determined by a threshold value v. L is good if the number
of function evaluations is below v.
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To generate training data, we randomly select some problem instances at first.
P = {p1,p2,...,pm} denotes the set of m problem instances. For each problem in-
stance, we have a set of neighbourhood operators .4;,i = 1,2, ..., 12 to generate a set
of aep values as its features. L is then instantiated by executing EAs with different
parameter settings on the set of problem instances.

The data sets used are imbalanced and with small sample sizes. In light of these
characteristics, the choice of the machine learning algorithm becomes clear. The
support vector machine is a popular machine learning algorithm which handles
small samples well. It is therefore employed to train the predictor of good EA pa-
rameter setting of the UIOS instances.

5.5.3.2 Second Phase: Predicting Good EA Parameter Settings

When a new UIOS instance comes in, its features (aep;,aep;...,aep;,) are gener-
ated and fed to the predictor to find good EA parameter settings for the correspond-
ing instance.

5.5.4 Experimental Results

In order to test our framework on the UIOP, 24 UIOS instances have been generated
at random. The problem size, n, of all instances is 20. We applied the approach
described in Section[3.3]to generate the training data. In the first phase of the training
predictor, we ran and EA with each parameter setting on each UIOS instance for 100
times and take the average number of function evaluations. The stopping criterion is
when an UIOS is found. For each UIOS instance, 72 training samples are generated
from 72 different parameter settings. In total we have 1728 samples. The 10 x 10-
fold cross validation was adopted to evaluate our method.

We are interested in ‘good” EA parameter settings (GEAPC) for every instance,
and the best EA parameter setting having the smallest fitness evaluations on an
instance was labeled ‘good’ in our experiments, the remaining 71 settings were la-
belled ‘good’ or ‘bad’ depending on the differences between their fitness evaluations
and the threshold value v. We let v = pr x E;, where E; is the mean value of fitness
evaluations on instance i and pr replaces v to regulate the number of gEAPC.

As shown in Table 3.2 the number of gEAPC (2nd column ‘#gEAPC’) in all
1728 samples was decreasing while we were reducing pr. For an UIOS instance
there exists at least one gEAPC, the ideal output of the predictor would be a single
best gEAPC. The number of gEAPC is influenced by the value of pr. If it is large,
almost half of the settings are labelled ‘good’. The smaller the value of pr, the less
gEAPC we will have, but the correct rate of predicting gEAPC, denoted by s, in
Table[5.1] is decreasing when pr is smaller than 0.1. Furthermore, we found out that
more and more instances have no gEAPC predicted when decreasing the value of
pr. The 4th column of Table[5.1lis ‘no’ if there existed any testing instance without
a predicted gEAPC. Table[5.1 shows that the best value of pr was 0.11 and there are
about 267 gEAPC and all instances will have at least one predicted gEAPC.
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Table 5.2 Correct rates of predicting gEAPC with different values of pr. Values of sg in 3rd
column, the average of 10 x 10 fold cross validation, is the proportion of gEAPC that have

been correctly classified.

pr
0.7
0.6
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.18
0.16
0.15
0.14
0.135
0.13
0.125
0.12
0.115
0.11
0.1
0.09
0.08
0.05
0.01

5.5.5 Discussions

#gEAPC

1180
1115
1007
955
874
806
716
604
489
441
391
377
343
328
326
306
299
286
267
237
200
177
71
50

Sg
0.500
0.510
0.709
0.690
0.689
0.685
0.726
0.689
0.653
0.656
0.709
0.694
0.698
0.632
0.687
0.875
0.764
0.903
0.933
0.925
0.861
0.864
0.782
0.620

gEAPC found?

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
no
no
no
no

EA parameters setting significantly affects the performance of the algorithm. The
fpc-based parameter learning method is presented here. The framework is instance-
based, through which the EA can be tuned with good parameter settings for a new
problem instance based on its features characterised by fitness-probability clouds.
On the UIOP the experimental results showed that by properly setting the values of
v or pr, a small set of good settings could be discriminated and for each instance
there exists at least one good parameter setting.

Future work includes to test the proposed method on a wider range of problems,
and to investigate more machine learning algorithms other than the support vector
machine when the training sample is small. Furthermore, an in-depth analysis of the
time cost of the proposed method would be carried out.
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5.6 A fpc-Based Online Adaptive Evolutionary Algorithm

This section proposes to incorporate the difficulty measure aep with adaptive EAs
to perform online optimisation.

5.6.1 Motivation and Background

It has long been acknowledged that the choice of operator settings has a significant
impact upon evolutionary algorithm (EA) performance. However, finding a good
choice is somewhat difficult. In contrast, there is evidence, both empirical and the-
oretical, that the most effective operator settings do vary during the course of an
EA run [35]. The problem of devising such a schedule to adapt the operator set-
tings along the search progress, is almost certainly as hard as finding a good static
set of operator settings. One key problem concerns the criterion used to judge the
performance of candidate operator settings at a given point in the search process.

Looking at the literature, the problem of developing an effective adaptive algo-
rithm has long been recognised. In general, two classes of adaptation methods have
been distinguished [34]:

e Self-adaptation: the values of the operator probabilities are directly encoded in
the representation of the individual solutions.
e Adaptive Rules: the search strategy is dependent on the state of the EA run.

Self-adaptation is particularly applied for numerical optimisation. Adaptive rules
are more interesting as they can be applied to solve combinatorial optimisation prob-
lems as well. Looking at the literature it becomes clear that most of the existing
adaptive rules belong to the probability matching type [6, [13, 33, 39]. Alternative
rules include adaptive pursuit method [34] and the operator selection mechanism
using the multi-armed bandit paradigm [7].

Previous work has seen some success along the years like in [[18]. However, we
have identified three major limitations of the existing approaches: First, they all
work with a static set of candidate operator settings, whilst adapting the probabili-
ties of applying them, therefore limiting the adaptivity that can be provided. Further-
more, the use of the search state information by their decision-making mechanisms
are efficient but not sufficient. Apart from the aforementioned, most previous mech-
anisms assume operators that produced better offspring in the past are supposed to
perform better in the future. This assumption seems to lack sufficient justification
in that past performance does not necessarily reflect the potential of operators to
further improve the fitness quality.

5.6.2 Algorithm Description

In the proposed f pc-based adaptive evolutionary algorithm, we introduce a variable
set of candidate operator settings to allow greater adaptivity. To address other issues
mentioned above, it seems promising to introduce the difficulty measure into the
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algorithm, for the reason that as the search proceeds, the difficulty measure can
exploit the information about the evolutionary progress, and indicate the most suited
operator with respect to the local landscape. Therefore, the fpc-based adaptive rules
are very promising in navigating the adaptation correctly [25].

For the first time, we have incorporated the problem difficulty measure for EAs
with the online optimisation by introducing the fpc into an adaptive evolutionary
algorithm. The proposed algorithm is illustrated in Algorithm 2l

Algorithm 2. fpc-based Online Adaptive Evolutionary Algorithm
Require: Select an initial operator op = opj,; from the candidate set OP
while No improvement of quality of the best solution for G, generations do
while No improvement of quality of the best solution for G;, generations do
Apply the operator op to obtain the new population P
end while
Select a subset of operators from OP
VYop € OP, Vp € P, compute the number of steps K}, o, required to find an improving
move, and record the set of better solutions obtained
Compute the measure m,, and update the operator op with the operator obtain the best
value of the measure. Also update the population P.
end while

5.7 Conclusion

In this chapter, for the first time we have proven the correlation between the escape
probability and the expected running time, a difficulty measure widely used in com-
plexity theory of EAs. Furthermore, we have proposed the fitness-probability cloud
and accumulated escape probability to implement escape probability as a difficulty
measure applicable in practice. Experimental results on unitation functions and the
subset sum problem showed that the proposed measure is able to discriminate the
relevant problem hardness with respect to mutation-based EAs.

More importantly, promising applications of the proposed difficulty measure
have been found in both offline and online optimisations. On one hand, the fpc-
based parameter learning method for UIOS has demonstrated its effectiveness
through the experiments carried out on 24 UIOS instances. On the other hand, we
have proposed the fpc-based adaptive EA with the difficulty measure in its core for
decision-making.

Future work includes further investigation of the correlation between the escape
probability computed theoretically and its estimations in practice on problems with
known structure. Also to analyse the time complexity of the proposed adaptive EAs.
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Software Engineering (DAASE) (No. EP/J017515/1).



150

G. Lu, J. Li, and X. Yao

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

Adenso-Diaz, B., Laguna, M.: Fine-Tuning of Algorithms Using Fractional Experimen-
tal Design and Local Search. Operations Research 54(1), 99-114 (2006)

Birattari, M., Stuzle, T., Paquete, L., Varrentrapp, K.: A Racing Algorithm for Con-
figuring Metaheuristics. In: Proceedings of the 4th Annual Conference on Genetic and
Evolutionary Computation, GECCO 2002, pp. 11-18. Morgan Kaufmann, San Fran-
cisco (2002)

Borenstein, Y., Poli, R.: Information Landscapes and Problem Hardness. In: Proceed-
ings of the 2005 Conference on Genetic and Evolutionary Computation, GECCO 2005,
pp. 1425-1431. ACM, New York (2005)

Cathabard, S., Lehre, PK., Yao, X.: Non-uniform Mutation Rates for Problems with
Unknown Solution Lengths. In: Beyer, H.G., Langdon, W.B. (eds.) Foundations of Ge-
netic Algorithms (FOGA) XI, pp. 173-180. ACM, New York (2011)

Collard, P., Vérel, S., Clergue, M.: Local Search Heuristics: Fitness Cloud versus Fit-
ness Landscape. In: Proceedings of the 16th European Conference on Artificial Intelli-
gence, ECAI pp. 973-974. 10S Press, Amsterdam (2004)

Corne, D.W., Oates, M.J., Kell, D.B.: On Fitness Distributions and Expected Fit-
ness Gain of Mutation Rates in Parallel Evolutionary Algorithms. In: Guervés, J.J.M.,
Adamidis, P.A., Beyer, H.-G., Fernandez-Villacaiias, J.-L., Schwefel, H.-P. (eds.) PPSN
VII 2002. LNCS, vol. 2439, pp. 132-141. Springer, Heidelberg (2002)

DaCosta, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive Operator Selection with
Dynamic Multi-armed Bandits. In: Proceedings of the 10th Annual Conference on Ge-
netic and Evolutionary Computation, GECCO 2008, pp. 913-920. ACM, New York
(2008)

Davidor, Y.: Epistasis Variance: A Viewpoint on GA-hardness. In: Rawlins, G.J.E. (ed.)
Foundations of Genetic Algorithms (FOGA), pp. 23-35. Morgan Kaufmann, San Fran-
cisco (1991)

Deb, K., Goldberg, D.E.: Analyzing Deception in Trap Functions. In: Whitley, L.D.
(ed.) Foundations of Genetic Algorithms (FOGA) II, pp. 93-108. Morgan Kaufmann,
San Francisco (1993)

Derderian, K., Hierons, R.M., Harman, M., Guo, Q.: Automated Unique Input Output
Sequence Generation for Conformance Testing of FSMs. The Computer Journal 49
(2006)

Guo, Q., Hierons, R.M., Harman, M., Derderian, K.: Computing Unique Input/Output
Sequences Using Genetic Algorithms. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003.
LNCS, vol. 2931, pp. 164—-177. Springer, Heidelberg (2004)

Guo, Q., Hierons, R., Harman, M., Derderian, K.: Constructing Multiple Unique
Input/Output Sequences Using Metaheuristic Optimisation Techniques. IET Soft-
ware 152(3), 127-140 (2005)

He, J., Reeves, C., Witt, C., Yao, X.: A Note on Problem Difficulty Measures in Black-
box Optimization: Classification, Realizations and Predictability. Evol. Comput. 15(4),
435-443 (2007)

He, J., Yao, X.: Towards an Analytic Framework for Analysing the Computation Time
of Evolutionary Algorithms. Artificial Intelligence 145, 59-97 (2003)

Hong, T., Wang, H., Chen, W.: Simultaneously Applying Multiple Mutation Operators
in Genetic Algorithms. Journal of Heuristics 6, 439-455 (2000)



5

[16]

[17]

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
(28]
[29]
[30]

[31]

[32]

[33]

Fitness Landscapes and Problem Difficulty 151

Hutter, F., Hoos, H.H., Leyton-brown, K., Stuetzle, T.: ParamILS: An Automatic Al-
gorithm Configuration Framework. Journal of Artificial Intelligence Research 36, 267—
306 (2009)

Jones, T., Forrest, S.: Fitness Distance Correlation as a Measure of Problem Difficulty
for Genetic Algorithms. In: Proceedings of the 6th International Conference on Genetic
Algorithms, pp. 184-192. Morgan Kaufmann, San Francisco (1995),
http://portal.acm.org/citation.cfm?i1d=645514.657929

Jong, K.D.: Parameter Setting in EAs: a 30 Year Perspective, pp. 1-18. Springer (2007)
Lee, D., Yannakakis, M.: Testing Finite-State Machines: State Identification and Verifi-
cation. IEEE Transactions on Computers 43(3), 30-320 (1994)

Lehre, P.X., Yao, X.: Runtime Analysis of (1+1) EA on Computing Unique Input Out-
put Sequences. In: IEEE Congress on Evolutionary Computation, 2007, pp. 1882-1889
(2007)

Lehre, P.K., Yao, X.: Crossover Can Be Constructive When Computing Unique Input
Output Sequences. In: Li, X, et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 595-604.
Springer, Heidelberg (2008)

Li, J., Lu, G., Yao, X.: Fitness Landscape-based Parameter Tuning Method for Evo-
lutionary Algorithms for Computing Unique Input Output Sequences. In: Lu, B.-L.,
Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part II. LNCS, vol. 7063, pp. 453-460.
Springer, Heidelberg (2011)

Lindawati, Lau, H.C., Lo, D.: Instance-Based Parameter Tuning via Search Trajectory
Similarity Clustering. In: Coello, C.A.C. (ed.) LION 5 2011. LNCS, vol. 6683, pp.
131-145. Springer, Heidelberg (2011)

Lu, G., Li, J., Yao, X.: Fitness-probability Cloud and a Measure of Problem Hardness
for Evolutionary Algorithms. In: Hao, J.-K. (ed.) EvoCOP 2011. LNCS, vol. 6622, pp.
108-117. Springer, Heidelberg (2011)

Lu, G, Li, J., Yao, X.: Embrace the New Trend in SBSE with Fitness-Landscape Based
Adaptive Evolutionary Algorithm. In: Fast Abstracts of the 4th Symposium on Search
Based Software Engineering (2012)

Madras, N.: Lectures on Monte Carlo Methods. American Mathematical Society, Rhode
Island (2002)

Manderick, B., Weger, M.K., Spiessens, P.: The Genetic Algorithm and the Structure of
the Fitness Landscape. In: ICGA 1991, pp. 143-150 (1991)

Maturana, J., Lardeux, F., Saubion, F.: Autonomous Operator Management for Evolu-
tionary Algorithms. Journal of Heuristics 16, 881-909 (2010)

Mengshoel, O.J., Goldberg, D.E., Wilkins, D.C.: Deceptive and Other Functions of Uni-
tation as Bayesian Networks. In: Symposium on Genetic Algorithms, SGA (1998)
Merz, P.: Advanced Fitness Landscape Analysis and the Performance of Memetic Al-
gorithms. Evol. Comput. 12, 303-325 (2004)

Naudts, B., Kallel, L.: A Comparison of Predictive Measures of Problem Difficulty in
Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 4(1), 1-15
(2000)

Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Com-
plexity. Dover, Mineola (1998)

Radcliffe, N.J., Surry, P.D.: Fitness Variance of Formae and Performance Prediction.
In: Whitley, L.D., Vose, M.D. (eds.) Foundations of Genetic Algorithms (FOGA) 3, pp.
51-72 (1995)


http://portal.acm.org/citation.cfm?id=645514.657929

152

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

G. Lu, J. Li, and X. Yao

Thierens, D.: Adaptive Strategies for Operator Allocation. In: Lobo, F., Lima, C.,
Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms, vol. 54, pp. 77—
90. Springer, Heidelberg (2007)

Tuson, A., Ross, P.: Adapting Operator Settings in Genetic Algorithms. Evol. Com-
put. 6(2), 161-184 (1998)

Vanneschi, L., Clergue, M., Collard, P., Tomassini, M., Vérel, S.: Fitness Clouds and
Problem Hardness in Genetic Programming. In: Deb, K., Tari, Z. (eds.) GECCO 2004.
LNCS, vol. 3103, pp. 690-701. Springer, Heidelberg (2004)

Vanneschi, L., Tomassini, M., Collard, P., Vérel, S.: Negative Slope Coefficient: A
Measure to Characterize Genetic Programming Fitness Landscapes. In: Collet, P,
Tomassini, M., Ebner, M., Gustafson, S., Ekart, A. (eds.) EuroGP 2006. LNCS,
vol. 3905, pp. 178-189. Springer, Heidelberg (2006)

Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Smoothness, Ruggedness and Neutrality of
Fitness Landscapes: from Theory to Application, pp. 3—44. Springer, New York (2003)
Whitacre, J., Pham, T., Sarker, R.: Credit Assignment in Adaptive Evolutionary Al-
gorithms. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation, GECCO 2006, pp. 1353—-1360. ACM, New York (2006)

Wright, S.: The Roles of Mutation, Inbreeding, Crossbreeding, and Selection in Evolu-
tion. In: Proc. 6th Congr. Genetics, vol. 1, p. 365 (1932)

Xu, L., Hutter, F.,, Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based Algorithm
Selection for SAT. Journal of Artificial Intelligence Research 32, 565-606 (2008)



Chapter 6

Geometry and Coarse-Grained Representations
of Landscapes

Konstantin Klemm, Jing Qin, and Peter F. Stadler

Abstract. Basic geometric notions describing the structure of landscapes as well
as the dynamics of local search on them include basins, saddles, reachability and
funnels. We focus on discrete, combinatorial landscapes and emphasize the com-
plications arising from local degeneracies. Local search in such landscapes is well
described by adaptive walks, which we use to define reachability of a target from an
initial configuration. Reachability introduces a topological structure on the config-
uration space. Combinatorial vector fields (CVFs) provide a more powerful mathe-
matical framework in which the subtleties of local degeneracy can be conveniently
formalized. Stochastic search dynamics has a direct representation as a probability
space over the set of CVFs with the given landscape as a Lyapunov function. This
ensemble of CVFs is amenable to the framework of standard statistical mechanics.
The implications of landscape structure on search dynamics are elucidated further
by the fact that the set of all CVFs on a landscape has a product structure, factoriz-
ing over extended plateaus (so called shelves) of the landscape. Finally, we discuss
the coarse graining of landscapes from two perspectives. Traditionally, a partition-
ing (e.g. by gradient basins) of a given landscape is used to obtain a landscape with
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fewer configurations called macrostates. A reverse, and less investigated, view on
coarse graining considers finer landscapes, with a larger number of configurations
than the original one and a non-injective mapping into the original configuration
space. Such encodings of landscapes, when suitably defined, turn out advantageous
for optimization by adaptive walks.

6.1 Introduction

Combinatorial landscape theory provides a framework for the description of the
thermodynamics and kinetics of a large class of complex systems. It has proven to
be a valuable concept in evolutionary biology, combinatorial optimization and the
physics of disordered systems.

The notion of a “fitness landscape” originated in theoretical biology as a tech-
nique to visualize evolutionary adaption in 1932 [39]. The basic ingredients are a
set of discrete genetic structures, a fitness function used to evaluate every possible
structure and a “mutation” function measuring the feasibility of transitions between
pairs of different structures. Due to the combined effects of mutation and selection, a
population moves uphill/downhill on the landscape, which provides evolutionary in-
formation in the form of accessibility or reachability. The rationale behind this view
of evolution on a landscape gives rise to the inception of evolutionary algorithms
for global search or solving combinatorial optimization tasks such as the traveling
salesman problem. The equivalent notion of “energy landscapes” arose in physics as
a natural description of disordered systems. In spin glasses, for instance, each spin
configuration is assigned an energy describing its Hamiltonian which specifies the
model [1]]. In theoretical chemistry, energy landscapes are viewed as discrete mod-
els to approximate the smooth potential energy surfaces [24l]. In structural biology,
energy landscapes are used to understand the folding of biopolymers such as RNAs
and proteins into their three-dimensional structures [7].

In formal terms, a (combinatorial) landscape consists of a search space or config-
uration space X = (V, ) and a fitness or energy function f : V — R that evaluates
each configuration. In general, .7 denotes a (generalized) topological structure on
V. In this contribution we will restrict ourselves to the simplest case, namely undi-
rected finite graphs G = (V,E) as search spaces. Similarly, we will assume that the
values of f are real numbers. We refer to [9] for some insights into landscapes over
recombination spaces and to [33] for landscapes whose values are elements of a
partially ordered set. For the sake of clarity we adopt the picture of physics and in-
terpret f as an energy function. Optimization thus seeks low energy configurations
by dynamics that tends to minimize f.

In this contribution we focus on geometric and topological features of landscapes,
i.e., on properties that arise from the interplay of the structure of G with the function
f- These are of particular interest for an understanding of processes on combinato-
rial landscapes that are governed by local transitions, including in particular a wide
variety of heuristic optimization algorithms from simulated annealing to genetic al-
gorithms. Although the relationship between dynamical processes on combinatorial
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landscapes and geometric properties of the landscape itself has been a long-standing
research problem, we still lack a satisfactory theory [27]. Some progress has been
made, however, in the analysis of the landscape structure itself. The hierarchical
structure of local minima and the barriers between their basins of attraction plays a
crucial role in this context.

6.2 Two Examples

Before we proceed, let us briefly introduce two famous examples of combinatorial
landscapes:

(A) TSP landscapes. The traveling salesman problem (TSP) is probably the most
frequently studied combinatorial optimization problem. Each potential solution to
the TSP is a cyclic permutation among # cities, each city occurs once. The config-
uration space of the TSP landscape consists of all potential solutions of TSP. Each
configuration is evaluated by the value of the distance of the total route. Two po-
tential solutions are adjacent in the underlying graph of the TSP landscape if their
corresponding permutations can be transformed from each other by exchanging the
positions of two cities.

(B) RNA landscapes. The RNA landscape may serve as a prototype for biophysi-
cally interesting landscapes. An RNA sequence can be viewed as a string over the
alphabet over four bases {A,U,G,C} of length n. Given an RNA sequence s, an
RNA secondary structure is identified as a simple graph with vertex set {1,...,n},
whose edge set consists of the edges {{i,i+ 1}|1 <i <n— 1}, together with a fur-
ther collection of edges P such that if {i, j}, {k,£} € P, with i < j and k < £ then (i)
the particular base combinations at pairing position i and j (k and £) must be AU,
GU, or GC; (ii) i = k if and only if j = ¢; (3) k < j implies that i < k < £ < j. An
edge {i, j} contained in P is called a base pair. Those vertices not contained in a
base pair are called unpaired. Condition (i) implies that each vertex is allowed to
belong to at most one base pair. Condition (ii) excludes the formation of crossing
base pairs, i.e. pseudoknots. For a given RNA sequence, the number of all valid sec-
ondary structures grows exponentially with the sequence length n. Its configuration
space of the RNA folding landscape consists of all the valid secondary structures.
Each secondary structure is called a configuration in the landscape. The energy of
a secondary structure is calculated by RNAeval in the Vienna Package [14]
based on the loop energy model [21]]. Two configurations x,y are adjacent in the
underlying graph, if y can be derived from x by adding or removing a base pair in x
(see Figure[6.1(A)).

6.3 Local Minima, Walks, and Degeneracy

In this section we introduce the basic notations and concepts. Throughout, we con-
sider a landscape (G, f) on a finite, undirected, connected graph G = (V,E) with a
real-valued energy function f : V — R. We reserve calligraphic letters for systems
of subsets of V and set-valued set functions on V, i.e., maps 2V 0V,
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(A)

Fig. 6.1 Energy landscapes. (A) The configuration space G = (V,E) of the RNA sequence
AACCCUU consists of six secondary structures. Two structures x,y € V are adjacent, {x,y} €
E, if x can be obtained from y by adding or removing a single base pair. The folding energy
f(x) of a configuration x is displayed in the box next to the structure. (B) Three types of
walks defined on the landscape: a gradient walk 1 — 9 — 14 — 19 in which 9 is the unique
gradient neighbor of 1, an adaptive walk 1 —+2 — 5 — 12 — 15 and a hill climbing walk
15 — 13 — 6 — 3. The vertical arrow between panels (A) and (B) points in the direction of
increasing energy.

6.3.1 Neighbors and Minima

We write N(x) = {y|{x,y} € E} for the graph-theoretical neighborhood of a vertex
xin G. A vertex x € V is a local minimum of (G, f) if f(x) < f(y) for all y € N(x).
If f(x) < f(y), we call x a strict local minimum . A vertex x is a global minimum,
also called ground state if f(x) < f(y) for all y € V. Since V is finite, a global
minimum exists for all landscapes. It is not necessarily unique, however. The set of
local minima of (G, f) is denoted by M(G, f).

A vertex y € N(x) with f(x) = f(y) is a neutral neighbor of x. We write
N> (x) ={y e Nx)|f(x) > f(y)} and N~ [x] = N~ (x) U{x} and call x a drainage
point if N7 (x) # 0. Otherwise, x is a local minimum. Furthermore, we set N~ (W) =
U.ew N~ (z) for any subset W C V.

We say that y € N(x) is a gradient neighbor of x if f(y) = min{f(z) :z€ N(x)}
and f(z) < f(x). Hence x has a gradient neighbor if and only if it is not a local
minimum. In general, a configuration can have more than one gradient neighbor.

For computational purposes it is desirable to define a unique gradient neighbor
for each non-minimal vertex via introducing a total order L related to the energy
function f on the vertex set V. To be precise, this total order can be interpreted as an
energy sorted list, i.e. a bijective mapping L: {1,2,...,|V|} — V such that f(L(i)) <
S(L(j)) for any i,j with i < j < |V|. Given this total order L, a configuration x €
VA\M(G,f) is assigned the unique gradient neighbor L(i) with i = min{j : L(j) €
N(x)}, being the neighbor of x appearing earliest in this list.



6  Geometry and Coarse-Grained Representations of Landscapes 157

6.3.2 Walks and Paths

An adaptive walk in (G, f) is a sequence of configurations wy,ws, ..., w; such that
{wi_1,wi} €E and f(w;_1) > f(w;) forall 1 <i</{. Adaptive walks are often called
hill-climbing walks in the context of maximization: A walk is a hill-climbing walk
on (G,—f) if and only if it is an adaptive walk on (G, f). Hill climbing walks are
useful as a technical device for minimization problems in Section A gradient
walk is an adaptive walk wi,ws,...,wy such that w; is a gradient neighbor of w;_;
for 1 < i < /. Gradient walks are often called best-improvement or steepest-descent
local search. We illustrate these three types of walks in Figure [6.1(B). A neutral
walk in (G, f) is an adaptive walk such that w; is a neutral neighbor of w;_; for 1 <
i < ¢. Note that by definition every neutral walk is also an adaptive walk. Conversely,
an adaptive walk is neutral if and only if f(w) = f(wy).

A path is a walk in which no two vertices are visited twice. In particular, every
gradient walk is a path. Furthermore, we note that every walk contains a path that
is obtained by removing every part of a walk that leads from a vertex back to itself.
Since G is finite, every path is necessarily finite as well.

6.3.3 Degeneracy, Plateaus, and Shelves

Major technical complications in the analysis of discrete landscapes arise from de-
generacy, i.e., the presence of distinct vertices with the same value of f. A landscape
(G, f) is non-degenerate if f(x) = f(y) implies x = y. This condition is too strong
for most practical applications since many landscape models have symmetries that
lead to degeneracies. For instance, the tours in a TSP can start and end in any city
along the way without changing the travel cost. Figure is an illustration of a
highly degenerate landscape.

Denote by G/ (x) the connected component of the induced subgraph with vertex
set {z € V|f(z) = f(x)} such that x € G/ (x). In the local search literature, G/ (x)
is often called a plateau or neutral network [36]. Every neutral walk with starting
configuration x is by construction confined to G/ (x). The relation x ~ ¢ y defined in
V by x ~;y <y € G/(x) is an equivalence relation and thus IT = {fo(x) |xeV}is
the set of all the equivalence classes in V. Therefore, it forms a partition of V.

A landscape is locally non-degenerate or invertible on edges if the following
three equivalent conditions are satisfied: (i) G/(x) consists of a single vertex for all
x € V; (ii) there are no neutral walks on (G, f); (iii) f(x) = f(y) implies y ¢ N(x).
Clearly, if (G, f) is non-degenerate, then it is locally non-degenerate also. But the
inverse statement is not true.

We note that strict local minima need not exist unless the landscape is locally
non-degenerate. In the general case, therefore, we have to work with non-strict local
minima and to accommodate neutral walks.

Alternatively, one may consider the locally non-degenerate quotient landscape
(G,f)/ ~ obtained from (G, f) by contracting the plateaus G/ (x) to single ver-
tices. Since local neutrality is an important characteristic of many landscapes (as
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in the RNA example, for instance [29]), this simplification may be misleading. We
therefore focus on the general, degenerate case in most of our discussion below.
For a detailed investigation into the structure of adaptive walks, we will need the
neutral components together with their downhill neighbors. To this end, we define
for every subgraph H of G the subgraph H with vertex set V(ﬁ) = Usevimy N~ [x]

and edge set E(ﬁ) =E(H)U{{x,y} €Elx € V(H),y € N (x)}. In the particular
—
case that H = G/ (x), we call a graph G/ (x) a shelf of (G, f). For every shelf A =

G/ (x) of (G, f) we distinguish between the flat surface AT =V (G/ (x)) of the shelf,

i.e., the vertices of the plateau G/(x), and its exit points A~ = {y € N> (X)|¥ €
e

V(G (x))}.

Fig. 6.2 Example of a
small highly degener-
ate landscape. Vertices
of G are arranged
according to the fitness
values  f(x). Con-
nected ~ components
G/(x) are indicated
by dotted boxes. For
one of them, the corre-
mimg shelf-graph
G/ (x) is highlighted in
gray.

Shelves are constructed such that their flat surfaces form the partition of the ver-
tex set of G into the plateaus of (G, f) while their edge sets form a partition of the
edge set of G [31]]. In locally non-degenerate landscapes, the flat surfaces consist of
single points so that each shelf consists of a vertex and its downhill neighbors.

A shelf A is locally minimal if A~ = 0. In this case A~ C M(G, f), i.e., all ver-
tices of locally minimal shelves are local minima. The converse is not true: shelves
with exit points may also contain local minima. All strict local minima, of course,
correspond to locally minimal shelves that consist of a single vertex only.

6.3.4 Reachability

The concept of adaptive walks implies a simple concept of reachability among the
vertices of G: y is reachable from x, x ~~ y, if there is an adaptive walk (and hence
an adaptive path) starting at x that contains y. If A and B are shelves, we say that B is
reachable from A if there is an x € A and a y € B so that x ~» y. Every vertex of the
flat surface of a shelf is reachable from every other vertex of the flat surface. Thus,
if B is reachable from A then every x ~~» y forallx € A and y € B.
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Naturally, one considers the system of sets

C(x) ={yeVix~y} (6.1)

on (G, f). By construction x € % (x) and transitivity of ~~ immediately implies that
€ (y) C € (x) whenever x ~ y. Furthermore, let us consider set-wise reachability

= J % (6.2)

xeW

so that y € € (W) if there is a point z € W such that z ~» y. As shown in [31], the
function % : 2" — 2V satisfies Kuratowski’s closure axioms and hence defines a
reachability topology T4 on V.

Once we decide to consider the finite topological space (V, Ty ) instead of the
graph G we have to clearly distinguish between graph-theoretical properties of G
and topological properties of (V, 74 ). Connectedness of sets, for instance becomes a
property derived from the topology on V. It can be shown that A C V' is connected in
a reachability topology T if and only if any two points x,y € A are connected by a
path x = xg,x,...,x; =y such that x; € € (x;—_1) or x;—; € €(x;) [31]. For the notion
of reachability defined above, however, it is easy to see that topological and graph
theoretical connectedness coincide: If u € €'(v), there is a path in G connecting u
and v, hence the reachable sets are connected in the graph-theoretic sense. A general
result from topology ensures closures of points are topologically connected. Con-
versely, we have u € €'(v) or v € € (u) for adjacent vertices in G by construction of
our notion of reachability. Thus pairs of adjacent vertices form T -connected sets.
Note that this would no longer be true for a more restrictive definition of accessibil-
ity requiring, e.g., strictly adaptive walks or even more extremely, gradient walks.
We will briefly return to this point when discussing combinatorial vector fields in
Section

We remark that the minimal closed sets (w.r.t. set inclusion) in the reachability
topology coincide with the locally minimal shelves and hence with the connected
components of M(G, f).

Let W be a closed connected set. We say that W is a valley (w.r.t. the reacha-
bility topology T#) if there is no connected closed set W’ so that (i) W C W’ and
(ii)) W and W’ contain the same minimal closed sets. In other words, any closed
connected superset W’ of a valley W contain a local minimum not contained in W.
By construction, therefore, we can characterize the valleys of f by the collection
of minimal closed sets (local minima) that they contain (see Figure [6.3). A more
detailed discussion of valleys can be found in [31]].

6.3.5 Mutual Accessibility

We say that x and y are mutually accessible at level h , in symbols x <P " 9= y, if there
is a walk P starting at x ending at y such that f(z) < h for all z € P. It is convenient
to define the sets
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Fig. 6.3 The local minima in this simple f
landscape are labeled 1 through 5. Each ver- 1,2345 12345
tex of (G, f) is annotated with the list of
reachable local minima that are reachable
from it. These labels, i.e., {1}, {2}, {3},
{4, {5}, {1.2}, {2.3}, 4,5}, {3.4,5},
and {1,2,3,4,5} identify the valley. Ver-
tices that connect valleys are highlighted
by circles. The valleys do not form a hier-
archical structure: For instance, Wy, 5y and
W31 share the local minimum 2 but both
1 and 3 are contained in only one of the two
sets.

B(x) ={yeVxer hqs v} (6.3)

for every h > f(x). Trivially, x ~» y implies x <P " 9 y for all & > f(x). Thus we
have € (y) C %y(x) for all x € V, y € B, (x), and h > f(x). The sets B (x) are
therefore closed in the reachability topology. By construction, they are connected.
Hence there is a unique minimal valley W that contains % (x).

The sets %, (x) also have an alternative interpretation: they are the T, -connected
components of the level sets V), :== {x € V| f(x) < h}, which appears to be the much
more natural definition.

6.4 Basins and Saddles

For each local minimum x € M(G, f) we define the gradient basin ¢ (x) as the set of
configurations z € V so that the unique gradient walk with starting point in z ends in
x. Analogously, we write 4 (L) = U,c; ¥ (x) for the gradient basin of the minimal
shelf L. We note for later reference that {¥ (x)|x € M(G, f)} forms a partition of V.

Analogously, we define the adaptive basin <7 (x) = {z € V|z ~ x} for all local
minima x € M(G, f). In contrast to the gradient basins, the adaptive basins form
a covering of V that in general will not be a partition. By construction we have
xX€Y(x) C A (x).

For x,y € M(G, f) and s € V, we say that s is a gradient saddle between x and y
if (i) there are neighbors s’ € N(s)N¥(x) and s” € N(s) NZ (y) with f(5'), f(s") <
f(s); and (ii) s is a configuration with minimal energy fulfilling property (i). In this
case, we set the gradient saddle height GS(x,y) = f(s). We set GS(x,y) = e if x
and y are not connected by a gradient saddle.

A direct saddle is defined analogously involving adaptive basins. We say that
s € V is a direct saddle point between x and y if s is an element of .o/ (x) N <7 (y)
with minimal energy. Equivalently, s is a direct saddle between x and y if (i) x,y €
% (s) and (ii) there is no point s with f(s") < f(s) and x,y € €(s'). For any two
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local minima we define the direct saddle height DS(x,y) = f(s) if a direct saddle s
between x and y exists. Otherwise we set DS(x,y) = oo.

If s is a direct saddle point between two local minima, it is also a gradient sad-
dle for some, but not necessarily the same two local minima. In general we have
DS(x,y) < GS(x.).

The existence of a direct saddle point s between two local minima x and y implies
that there is a path P in G from x to y so that f(v) < f(s) for all v € P. This is not
necessarily the smallest bound on the “peak” of the path, however. The saddle height
between any two vertices is the minimal value of f at which x and y are mutually
reachable, i.e.,

S(x,y) = min{hlx <P " 9y} (6.4)

A configuration s € V is a saddle point between two distinct local minima x,y €
M(G, f) if (i) f(s) = S(x,y) and (ii) there is a path P from x to y passing through s
so that f(s) > f(z) for all z € P. In contrast to gradient saddle points, thus, one can
always find a saddle point since G is assumed to be connected. In the degenerate
case, it is common that the saddle point for two given local minima x and y is not
unique.

It is well known that S is an ultrametric distance measure [26], i.e., for all z

S(x,y) < max{S(x,z),5(y,2)} - (6.5)

Obviously, we have S(x,y) < DS(x,y). We illustrate the differences between direct
saddles, saddles, and gradient saddles in Figure[6.4l We remark that computing sad-
dle heights and saddle points is a difficult task in general. For landscapes of RNA
secondary structure, for instance, the problem is NP-hard [22]. An optimized path
with minimum saddle height can be obtained from the barriers [6,|8] program due
to an exhaustive enumeration of the energy landscape. We will give a more detailed
description about the paradigm of barriers in Section In the particular case of
RNA-landscapes, most existing approaches utilize heuristics that consider only di-
rect (minimal length) paths between two configurations [25]. Direct path heuristics
perform poorly when the two structures are far apart. The algorithm Pathfinder
[[19] solves this problem via constructing intermediate structures between the two
reference structures. Therefore it splits the path construction problem into sub-path
construction problems using the direct path heuristic from [10]. Their additional
constraint on the sum of the Hamming distances between the intermediate struc-
ture and the reference structures allows an adjustable exploration of the underlying
energy landscape.

The connection between direct saddles and saddles is elucidated in more detail by
the following result. Given a path P = (v, vi,...,vp,vpr1) € G, if vg > vy =+ =
vi—1 < vy, then all the configurations v; € L for k+1 < j <[ —1 are called valley
points. Analogously, peak points are the configurations v; with k+1 < j <[ —1if
Ve < Vgy1 =+ =vi_1 >v. Apath P = (x =wo,wy,...,wg,wer| =) 1S a zig-zag
pathon (G, f) if
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A
s
S1 S2 - gradient direct
s1 s3 @ saddle saddle
a c
a b [ d b
(A) (B) (C)

Fig. 6.4 (A) Saddles and direct saddles. Given a landscape in which the configuration space
consists of {a,b,c,d,sy,s2,s3,s}, we have DS[a,d] = f(s) > S[a,d] = f(s1). Therefore, s and
{s1,52,53} is the direct saddle and the equivalent class of saddles between a and d, respec-
tively. Furthermore, there exists a relation between saddle height and direct saddle heights
given by S[a,d] = min{max{DS[a,b],DS[b,c],DS[c,d]},DS[a,d]}. (B) Direct saddles and
gradient saddles. The configurations s; and s, are the direct saddles between a and c, but
there does not exist any gradient saddle between a and c. (C) A set diagram of the sets of
saddles, direct saddles and gradient saddles of a given landscape.

(1) max; f(w;) =S(x,y)

(2) If wg > wgqg =--- =wj_1 <wj then there is a minimal shelf L such that w; € L
fork+1<j<I—1.

(3) If wy <wgpg =---=wj_1 >w; theneach w; withk+1 < j <[ —1is a direct
saddle separating the nearest valley points that the path P passed before and
after w; .

Theorem 6.1. If x,y € V are two configurations so that neither x ~> y nory ~- x then
there is a zig-zag path connecting x and y.

Proof. By construction, x <P S®Y) 95y, hence there is a path @ from x to y whose
height does not exceed S(x,y). Consider the graph G* = G/ ~ derived from G by
contracting any G/ (x) € IT into a vertex of G*. In the meanwhile, we obtain a path
" in G* from o accordingly.

To prove the theorem, all we need is to first construct a zig-zag path P* € G* from
" and then prove the existence of a zig-zag path P € G such that P* is the resulted
graph of P after the contraction. The latter is trivial since by construction, G/ (x) is
connected for any x € G. Therefore the proof reduces to the construction of P* € G*
from g*. This construction is described as follows and illustrated in Figure[6.3]

Let {v;}!_, denote the valley points in &*. From each valley point v;, a gradient
walk is simulated to reach some local minimum ¢;. Without loss of generality, we set
vo =4o =x,vi+1 =¥, =yand assume that all /; are different configurations. In this
context, we observe that there exists a pair of hill-climbing walks from “adjacent”
local minima ¢; and ¢;, to some peak point of &*, denoted by p;. By definition,
f(pi) > DS[¢;,¢;+1]. Depending on whether they are equivalent or not, there are two
cases. In case of f(p;) = DS[¢;,4;11], then we just substitute the pair of sections
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([vi, pil, [Pi,vit1]) in " into the pair of hill-climbing walks from ¢; and ¢;;; to
pi, respectively. Otherwise, by definition, there must exist a configuration d; such
that f(d;) = DS[¢;,4i11] < f(pi). In this case, we substitute the pair of sections
([vi, pil, [Pi,vi+1]) in " into the pair of hill-climbing walks from ¢; and ¢, to d;,
respectively. O

For each saddle point s, the basin below s [8] is the set H(s) := Py (s) of con-
figurations that can be reached from s by a path along which the energy of the con-
figurations on the path never exceeds f(s). An obvious connection between basins
below saddle points and adaptive basins is the following:

B(s) C U o (x) (6.6)
x€PB(s)NM(G.f)

The analogous result for gradient walks holds only in non-degenerate landscapes.

6.5 Barrier Trees

It is not hard to verify that for any two saddles s’ and s” either Z(s") C A(s"),
B(s") C B(s), or B(s")NB(s') = 0 is satisfied, i.e., the basins below saddles of a
landscape give rise to a Hasse diagram with respect to set inclusion order. Given that
the landscape is connected, this Hasse diagram can be naturally interpreted as a tree.
This barrier tree [8,138], denoted by T := (V.z,E4) is defined as follows. Its vertex
set Vg comprises the set of local minima M(G, f) and the equivalence classes of
saddles with respect to the equivalent relation ~sg, i.e. 51 ~g 52 < HB(s1) = B(s2).
As for the edge set E 4, two vertices a and b € Vg are adjacent if #(a) C AB(b) or
PB(b) C B(a). In this case we set B(m) := {m} if m € M(G, f). By construction,
local minima and the equivalent classes of saddles are the leaves and the interior
vertices in the tree, respectively.

Methods to elucidate the basin structure of landscapes by means of barrier trees
have been developed independently in different contexts. For instance, potential en-
ergy surfaces for protein folding [[13,[37], molecular clusters [4] and the kinetics of
RNA landscapes [8].

The barrier tree can by computed by the program barriers [6, I8] using a
flooding algorithm [3Q]. The program barriers takes an energy sorted list of the
K configurations as input. This list may contain either all configurations or only the
configurations below some threshold energy. The only part of barriers thatrelies
on the geometric properties of the configuration space is the routine that generates
all neighbors of each configuration in the list. Therefore, barriers has a time
complexity of O(A x K), where A denotes the maximum number of neighbors for
a configuration in the landscape. To be precise, the program barriers processes
each configuration on the list consecutively. It identifies a local minimum when
it reads one. To identify the saddles, barriers labels each configuration x by
the lowest local minimum ¢ such that £ € %y, (x). Therefore, the configuration s
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Fig. 6.5 Construction of the path (& — #* — P* — P) in the proof of Theorem Bold
lines in grey denote the path in G/(z), z € {p1,41,p3}.

processed earliest in the list K which has two neighbors labeled by different local
minima ¢; and ¢, is exactly the saddle separating ¢; and /5.

In the same process, sets of configurations of equal energy are decomposed into
connected components. The program then checks for each component whether it is
a component of saddle points. For each local minimum ¢ appearing in the barrier
tree, the program also records the number of configurations in adaptive basin <7 (¢)
as well as the associated restricted partition functions.

6.6 Funnels

The presence of a large number of non-global local minima poses a difficulty for
optimization, i.e., identifying movement towards global optima based on purely lo-
cal information about the landscape. Several measures quantify this difficulty [15]
also termed the ruggedness of a landscape. Despite being rugged, natural folding
landscapes of biopolymers (cf. the example in Section[6.2)) allow for fast folding, i.e.
a Markov chain quickly hits the global minimum after a relatively short time. The
picture of a funnel [3] has been used for an arrangement of local minima and saddles
that guide dynamics towards the optimum. In the following, we present a rigorous
definition of a funnel as the set of configurations that reach the global minimum by
iterating exits from gradient basins over the lowest gradient saddle.

Intuitively, we picture a “funneled” dynamics as always taking the lowest transi-
tion to another gradient basin and thereby eventually reaching the basin of a ground
state. Let x,y € M(G,f), r € 9(x) and s € 4(y). If e = {r,s} € E, e is called a
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Fig. 6.6 Funnel digraph
for the folding landscape
of the RNA sequence Xxbix

(CUGCGGCUUUGGCUCUAGCC). 12 920 P2 44 3 10
The funnel of the landscape ‘\\ /
contains the local minima iy
FNM={1,7,11,17,18,27}, //8 2 .
node 1 being the unique 5
ground state. In the funnel / 19 . 4
partition of the landscape, 14 2
the set containing node 2 is -
26
&\ 21

the largest. This is consistent
with the observation that
a large part of the folding
trajectories reach the node
2 whose energy lies 0.8 " 17
kcal above the energy of the

ground state [38]. Figure

reproduced from ref. [[17].

transition between x and y. The height of a transition e is h(e) = max{f(r), f(s)}.
We call T, C E the set of all transitions from x, i.e.,

Li={{ns}€E:re¥9(x),s¢9(x)} (6.7)

We define the funnel digraph with node set M(G, f) and arc set B C (M(G, f))?
follows. An arc from x to y exists, (x,y) € B, if there is a transition e € T, from x to
y with minimal height, i.e., i(e) < h(e’) for all ¢’ € T,. Figure[6.6] shows the funnel
digraph of an RNA folding landscape.

Now if e € T; of minimal height, and e is a transition from x to y, then e contains
a direct saddle s between x and y. In fact, we have

f(s) =min{S(x,2) : € M(G, f)} (6.8)

so s is a lowest saddle for x.

The funnel of the landscape is a set F C V containing those local minima, from
which a directed path to a global minimum exists in (M(G, f),B). Equivalently, the
funnel may be defined recursively [[17] as follows:

(i) F contains all global minima.
(i1) A local minimum x € M belongs to the funnel F if the funnel digraph contains
an edge {x,y} € Bwithy € F.

Thus F N M is the maximal subset of M containing all global minima and fulfilling
for all x,y € M:
X¢FAN(xy)€EB=y¢F (6.9)
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This determines which local minima belong to F. The funnel is completed by in-
cluding in F all nodes in the gradient basins of these minima.

In practice, the funnel digraph may be obtained by Algorithm 3Bl Analogous to
barriers, it scans the landscape from low to high energy. Each node x is assigned
the local minimum ¢(x) reached from x by a gradient walk, where ¢(x) = x in the
case that x is a local minimum itself. A loop over y € N, the neighbors of x prior
in the list, checks for each {x,y} if it is a transition and potentially updates /(c(x))
and h(c(y)), the heights of the lowest exits from the gradient basins. Furthermore, if
the current height f(x) is at the height of a lowest exit from c(x) an arc from c(x) to
¢(y) is included in B; analogously an arc (c(y),c(x)) is included if f(x) is the lowest
exit height from c(y).

Algorithm 3. Computes the arc set B of the funnel digraph

Require: A landscape (G = (V,E), f) with neighborhood function N.
Require: An energy sorted list L: {1,2,...,|V|} = V.
B+ 0
forallic {1,...,|V|} do
x <+ L(i)
N™=NE)N{L@)]i < j}
N” = {y EN(X): f(¥) > F(3)}
if N~ = 0 then
¢(x) < x // x is a local minimum
h(x) <= +oo
else
J¥=min{j <i:L(j) € N"}//index of gradient neighbor of x
¢(x) —e(L("))
end if
forally e N~ do
if ¢(y) # c(x) then
if f(x) < h(c(y)) then
h(c(y)) < F(x)
end if
if f(x) < h(c(x) then
h(c(x)) < F(x)
end if
if f(x) = h(c(y)) then
B BU{(c(y),c(x))}
end if
if f(x) = h(c(x)) then
B BU{(c(x),c(v))}
end if
end if
end for
end for
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After finding the funnel F' of the landscape, one may be interested in the
landscape outside the funnel. Thus the funnel may be removed and the residual
landscape analyzed the same way. Iterating this procedure leads to the funnel par-
titioning of a landscape, being a family F1, F,,. .., F;. Here F1 = F is the funnel of
the landscape itself and, for all 2 < i < k, F; is the funnel of the landscape on the
subgraph induced by V' \ 3-_:1] Fj.

The identification of funnels relies on identification of the lowest saddles. For
applied studies of real landscape instances, exact computation requires enumeration
of all configurations. It is thus restricted to small instances [33]. In larger landscapes,
saddle heights and transition rates between basins may be approximated by efficient
sampling methods [20].

6.7 Landscapes as Combinatorial Vector Fields

6.7.1 Combinatorial Vector Fields on Graphs

Here we consider only the special case of combinatorial vector fields on simple
undirected graphs. For the general case we refer to [[11].

A combinatorial vector field (CVF) on G is amap 1 : V — EU{@} such that,
foralle = {x,y} € E,n7'(e) € {@,{x},{y}}.

It is easy to show that CVFs on G are in one-to-one correspondence with the
relations P C V x V that satisfies

(1) (x,y) € P implies {x,y} € E (consistency with G)
(2) (x,y) € Pand (x,z) € P implies y = z (uniqueness)
(3) (x,y) € Pimplies (y,x) ¢ P (antisymmetry)

The correspondence is established by (x,y) € P if and only if n(x) = {x,y} [31]].
We can therefore interpret a CVF as a subset P of directed edges so that each vertex
has at most one successor. Note that in contrast to the outgoing arc, the number of
incoming arcs is not restricted.

A vertex x € V is a rest point of 1 if n(x) = &, i.e., if x has no successor. The 7-
trajectory of x is the sequence of v;, i > 0, of vertices such x = vy and (v;,v;y1) € P.
Thus a trajectory either ends in a rest point or it has infinite lengths. In the latter case
it contains a finite directed cycle (limit cycle) that is visited infinitely often. The w-
limit oy (x) of a vertex x is either the (unique) rest point y at which the trajectory
starting at x comes to an end, or the limit cycle in which it becomes trapped. Clearly
forall x € V, wy (x) # 0 and a vertex y is a rest point if and only if @y (y) = {y}.

The chain recurrent set %y, of a combinatorial vector field 1) on G is defined as

xeV

i.e., it consists of the rest points and limit cycles.
Let 1 be a combinatorial vector field on G. A function f: VUE — R is a Lya-
punov function for n if
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Jif; VoA

(B)

Fig. 6.7 (A) Example of a small highly degenerate landscape. Vertices of G are arranged
according to the fitness values f(x). Connected components G/ (x) are indicated by dotted
boxes. For one of them, the corresponding shelf-graph G/ () is highlighted in gray. A com-
binatorial vector field 1) (consistent with f) can be visualized as arrows corresponding to the

set Py of oriented edges. (B) Combinatorial vector fields on a single shelf satisfied condition
(Al).

1. f(v) > f(e) > f(V')if n(v) =eand e = {v,v'} and v ¢ Zy.
2. f(v) = f(n(v)) = f(V') if v £+ and V' and v are contained in a cycle.

The basic idea of [31] is now to study adaptive walks in terms of combinato-
rial vector fields on G for which the prescribed energy function f is a Lyapunov
function. It is convenient to introduce the more general compatibility condition

(A1) n(x) = {x,y} implies f(x) > f(y)

and to call a function of satisfying (A1) a weak Lyapunov function for 1. A variety
of additional axioms for the consistency of a CVF 1 on G with a given function f
on G are introduced and discussed in detail [31]. We omit these technical details
here.

From a technical point of view, the crucial result is that the set of all combinatorial
vector fields on G has a product structure: it can be written as the set product of the
sets of combinatorial vector fields on each shelf (see Figure[6.7)). Since consistency
of a CVF with a given (weak) Lyapunov function also boils down to conditions that
only refer to the individual shelves separately (see [31] for the technical details). It
follows that the set CVF(G, f) of combinatorial vector fields consistent with f is
the direct product of the sets CVIF(G, fjx) of combinatorial vector fields consistent
with the restriction f|z of f to the individual shelves. The importance of this result
is the observation that it is sufficient to understand the admissible combinatorial
vector fields on the shelves. In particular, it implies that combinatorial vector fields
on locally non-degenerate landscapes are entirely characterized by their behavior on

the trivial shelves N~ (x
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6.7.2 Reachability in Combinatorial Vector Fields

The ensemble of CVFs that have f as weak Lyaponov function together describe in a
meaningful way all possible adaptive paths on (G, f): every adaptive path alternates
between strictly downhill steps that take it from one shelf to the next and neutral
paths along which it traverses a shelf from its entry point to an exit point.

Given an ensemble of CVFs, it is natural to define reachability in a different way.
We say that y is CVF-reachable from x, x ~>cyr y, if and only if there is a CVF
N € CVF(G, f) so that y is contained in a trajectory starting at x in 1. By construc-
tion CVIF-reachability is a reflexive and transitive, but in general not symmetric,
relation. Just like the adaptive walk reachability discussed earlier, it translates to a
corresponding reachability topology, a notion of connectedness, and <P % relation,
and corresponding concepts of saddle points.

Lemma 6.1. Let CVF consist of all CVF's for which f is a weak Lyapunov function.
Then (adaptive walk) reachability and CVF-reachability are equivalent.

Proof. Given an adaptive walk & connecting x to y construct a CVF 1 by defining
all vertices not in & as rest points of 1. Clearly, x ~»¢ y and f is a weak Lyapunov
function for 1. Conversely, if y lies on a trajectory ¢ starting at x in i and f is weak
Lyapunov function for 1, f is non-increasing along ¢ and hence 7 is an adaptive
walk.

In large shelves, quite complex vector field structures can be consistent with con-
dition (A1) because degenerate fitness functions impose fewer constraints on the
combinatorial vector fields. In particular they admit complex recurrent sets within
individual sets. These can be restricted by a variety of conditions leading to less
inclusive ensembles of CVFs and hence more restricted notions of reachability. We
will not delve into these details here and refer to [31] for a more thorough and formal
discussion. We note, finally, that the plethora of related saddle-point-like concepts
explored in [8] differ primarily in the definition of connected level sets. It has re-
mained unexplored, however, if and how they can be related to variations in the
reachability topology.

6.7.3 Path Probabilities

An edge {x,y} in the search graph G can be weighted by a measure oy, of its
steepness in the landscape. In energy landscapes, vertices are naturally weighted
by their Boltzmann factors exp(—f f(x)), where 8 is the inverse temperature. A
natural choice for the edge weights is thus @y, = exp (B|f(x) — f(v)|). The “inverse
temperature” 3 tunes our emphasis on steepness and allows to interpolate between
adaptive walks and gradient walks. For § = 0, all valid transitions receive the same
weight 1. On the other hand, the steepest edges dominate in each set N~ (x) for
B — . The edge weights carry over to a CVF @(n) = [1(xy)en @y so that CVFs
with more steeper transitions have larger weight. This is formalized by introducing
the discrete probability measure p(1) := @(n)/Z where the normalization constant
Z plays the role of a partition function on CVF(G, f).
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The product structure of CVIF(G, f) implies that @(1n) is the product of weights
for 1 restricted to individual shelves. This implies, for instance, that the probability
p(x,y) of sampling a CVF that contains the prescribed arc (x,y) can be computed by
considering the shelf A that contains (x,y) only. Using this observation one can com-
pute recursively the probability P{x ~» y} to draw a combinatorial vector field that
contains an arbitrary trajectory from x to y, i.e., the probability that y is reachable
from x in CVF(G, f) as detailed in [31]:

Plx~yt= Y P~ z)TZ‘i‘L‘g

eV (G/ ()
P(x~y) = TewouP(u ~ y) 6.11)
ueN> (V(Gf (x)))
T;cwy - 2 Eqitw TW>—>}‘
weDy

Here P(x ~ y) denotes the probability of a path that starts in x and terminates in y
such that the final step is a downward step and T.., is the conditional probability
that a path exits the shelf A, through the vertex z € V(A,)~ given that it starts in
x € Al Analogously, 712 describes the walk from x to a drainage point w on the
plateau of Ay, and T, ,. = ®y./Z,, with Z,, = 2 en>(w) Oy 1s the probability to
reach z given the path passes through the w.

6.8 Coarse Graining, Macrostates, and Folding Kinetics

The simplest type of kinetics on a landscape (G, f) is a Markov process on the
vertex V with transition rates ry, > 0 (for the transition from y to x) along the
edges of G that depend on the energy difference f(x) — f(y). Most commonly
the Metropolis rule ryy o< exp (B min{0, f(y) — f(x)}) [23] or the Kawasaki rule [16]
ray o< exp (5 B(f(y) — f(x))) are used to define the rate constants r,. Both rules have
the Boltzmann distribution exp(—f3 f(x))/Z as stationary distribution.

A partition &2 of the vertex set V induces a coarse graining of the state space G
given by the quotient graph G/ £2. It is not immediately clear, however, how a coarse
grained energy function on G/&? should be defined. In [38], a coarse graining of
the transition rates has been introduced as follows:

rxy =, > ryPlY] (6.12)

xeXyeY

where P[y|Y] is the probability of the process to be in state y given that itisin class Y.
Assuming local equilibrium on Y, this conditional probability can be approximated
by the Boltzmann distribution, yielding the macrostate transition rates

=5 % Y roexp(-BI0) 613

xeXyeY
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where Zy = ¥, cy exp(—B f(»)).
In thermodynamic equilibrium, the probability to be in macrostate X is simply the

sum of the probabilities of the microstates x € X, i.e., [X] = Zx/Z. Thus, a natural
definition of the landscape F on G/ 42 is the Boltzmann average

F(X)=—BIn Y exp(—Bf(x)) (6.14)

xeX

In this way, the thermodynamic properties are preserved.

This quotient landscape, however, does not preserve information on the saddle
points in (G, f) and hence fails to incorporate the energy barriers and the kinetic
properties associated with them. An alternative is to use either the barrier tree or
the graph consisting of the local minima and the direct saddle points between them.
In the context of the barrier trees the transition rates ryy are approximated by the
Arrhenius law [2]

rxy o< exp (=B (S(x,y) = F(¥))) (6.15)

in terms of the saddle height S(x,y) between local minima x and y that determine
the macrostates X and Y. A somewhat better approximation is achieved by defining
rxy via the direct saddles between x and y. A closely related concept is the inherent
structure network 5] which uses gradient saddles only.

As we have seen in the previous sections, states with large energies typically can
reach more than one local minimum by means of adaptive (downhill) walks. Thus it
does not appear to be correct to associate a point only with a single local minimum.
The issue becomes even more obvious, of course, in landscapes where gradient
walks are not unambiguously defined. In [31] it has been proposed, therefore, to al-
low partial membership. More precisely, the idea is to use Y7 (y) P{x ~~ y} to de-
termine the fraction of x that belongs the local minimum represented by y € M(G, f).
This yields e.g. a (typically small) correction to the partition function of the macro
states.

6.9 Encodings

Many optimization problems have a natural landscape representation. For instance,
the landscape of the traveling salesman problem typically has the permutations of
the n cities as the node set and a neighborhood relation based on exchanging two
cities or reverting a part of the tour (cf. Section[6.2)). This natural setting, however,
is not unique, and different representations, even with considerably larger node set
for the same problem instance, sometimes turn out as beneficial for optimization
[18]. We use the term encoding for a reformulation of an optimization problem
by a different landscape in the following sense. Let (G, f) with G = (V,E) be a
landscape, H = (Y,K) a graph and o : Y — V an arbitrary map. Then (H, o) is
called an encoding of (G, f). We say that the encoding is complete if ¢(Y) = X.
The encoding is unbiased if |o.~! (x)| is independent of x € X.
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In the context of fitness landscapes for biological evolution, & has an interpreta-
tion as a genotype phenotype map [34)]. The genotype space H = (Y,K) is obtained
as the set of genetic sequences Y structured by K, the pairs of sequences that differ
by a single mutation. The viability of an individual with a genetic sequence y € Y
depends on its phenotype a(y) € V, i.e., G is the phenotype space to whose elements
fitness is assigned by the function f. Variation and selection work in distinct spaces
H and G, which are linked by the mapping o.

From an encoding (H, &), we obtain a landscape as (H, f o «). If o is unbiased,
we have |o~!(x)| = |¥|/|X| for all x € V. Every unbiased encoding is complete.

If the encoding is not unbiased, we would like to quantify if o preferentially maps
to low-energy solutions. The cumulative densities Qy, Qy : R — [0, 1] are defined as

Ov(n) = {xeV: flx) <n}|/IX] (6.16)
Or(n) = HyeY: foaly) <ni/[Y]. (6.17)

We say that there is enrichment at level 1 € R if Qy(n) > Qy(n). Then, under a
random uniform selection of nodes x € V and y € Y, the probability of encountering
a node with energy below 7 is larger in the encoding than in the original landscape.

Example 6.1. For the traveling salesman problem (cf. Section an encoding by
prepartitioning the set of cities is introduced in [18] as follows. For a problem in-
stance with n cities, let ¥ = [n]" and choose K such that x,y € Y are adjacent if they
differ at exactly one position. A prepartition y € Y assigns each city a relative posi-
tion on the tour. A tour s € V is compatible with y € Y if, for all i, j € [n], y; < y;
implies that city i appears earlier than city j in the tour. For each y € Y, the image
o(y) is obtained by greedily constructing a tour under the constraint that it is com-
patible with y. Two prepartitions y,z € Y are adjacent, {y,z} € K, if there is exactly
one index i such that y; # z;. Thus H = (Y,K) is the Hamming graph H (n,n). The
encoding (Y,K, o) is complete because, for each permutation s € S, the inverse
permutation y = s~! lies in ¥ and fulfills ot(y) = s. The coding is not unbiased for
n>2,because |Y|/|V| = (n")/(n!) is not a natural number. As demonstrated in [[18],
a tour x € V of short length f(x) tends to have a larger pre-image under ¢ than a
long tour. The enrichment is an effect of the greedy choice.

Example 6.2. Ruml. et al. [28] define and numerically analyze several encodings for
the number partitioning problem [12].

Let us now turn to the local effect of encodings, where we consider the closed
neighborhood Ny (x) = {x} U{z € V : {x,z} € E} of a node x of the original land-
scape in relation to a closed neighborhood Ny (y) = {y}U{y € Y : {y,z} € K}
for y € Y of the encoding. The encoding function o : Y — X is continuous if
o(Ny(y)) C Ny (a(y)), for all y € Y and anti-continuous if Ny (o.(y)) C o (Ny (y)).

The definition of continuous maps corresponds to the natural definition of conti-
nuity between finite pre-topological spaces. For details we refer to [32]. The inverse
condition, here termed anti-continuity, apparently has not been investigated in any
detail. Note that (anti-)continuity refers to the map between the configuration spaces
only. It is independent of the fitness function.
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The reachability topologies on ¥ and V, on the other hand, contain a lot of in-
formation on the fitness function. Let Nj (y) be the reachable neighbors of y as de-
fined by adaptive walks (or the CVFs for which f is a weak Lyapunov function).
If ¢ : Y — V is continuous then a(Nj(y)) C Nj,(a(y)). Repeating this argument
for the y' € Ny (y) yields o (Ny (Ny(y))) € Ny, (Nj;(a(y))) and, after finitely many
iterations, a(6y (y)) C 6v(o(y)) and thus a(6y(U)) C 6v(a(U)) foral U C Y.
Hence o : Y — V is also a continuous map w.r.t. to the reachability topologies on
Y and V. It remains to explore whether this is also true for alternative definitions of
reachability arising from CVFs that have stronger requirements than f being a weak
Lyapunov function.

An encoding that is both continuous and anti-continuous in particular preserves
local structures. If the encoding is complete and anti-continuous, then the encoded
landscape has necessarily larger or equal-sized neighborhoods: |Ny (y)| > |N(a(y))|.
For these encodings, we obtain statements about the existence of paths and local
minima, and bounds on saddle heights.

Lemma 6.2. Let f: X — R be an arbitrary landscape, and let o : Y — X be an anti-
continuous encoding. Then: If y € Y is a local minimum of the encoded landscape
(H,foa), then a(y) is a local minimum on G.

Proof. We observe that f(Ny (e.(y))) C f(o(Ny(y))): y is a local minimum in Y if
and only if all function values z € f(ot(Ny (y))) satisfy z < f(o(y)). Clearly, this
implies the same inequality also for the subset f(Ny (c(y))).

Lemma 6.3. Let P = (x1,x3,...,%) be a path in G, and let o0 : X — Y be complete
and anti-continuous. Then there is a path T = (y1,...,y;) in H such that o(y;) = x;
foralliell].

Proof. 1t suffices to consider a single step in the path, say (x1,x;). Since o is com-
plete, there is a y; € Y with ot(y;) = x;. Since « is anti-continuous, ot(N(y;)) con-
tains all neighbors of xi, i.e., Ny (y1) contains in particular a vertex y, that satisfies
o(y2) = xp. We simply have to repeat this argument for x,x3,... to see that a path
in H with the desired property indeed exists.

Since saddles are defined by paths of minimal height, the fact that we find pre-
images of paths under o directly implies the following.

Corollary 6.1. Let (H, o) be a complete and anti-continuous encoding of (G, f)
and x,y € Y. Then the saddle height between x and y on the encoded landscape
is upper bounded by the saddle height between the mapped states on the original
landscape:

S(G,5) (0(x),0(¥)) > S(az,foar) () (6.18)

The landscape obtained from an anti-continuous and complete encoding is in a sense
smoother and easier to search than the original one, because (H, f o ¢t) has fewer
local minima and lower saddles connecting the remaining basins. The cost for this
improvement is a large search space and an increased size of the local neighborhood.
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On the other hand, anti-continuity is not the only property of an encoding that
may enhance search on a landscape. Example[6.Ilabove and other encodings studied
in [18] are not anti-continuous. However, adaptive walks on the encoded landscape
outperform adaptive walks on the original landscape at long times.

6.10 Concluding Remarks

The theory of combinatorial landscapes has emerged as an attempt to devise suitable
mathematical structures for describing the “static” properties of landscapes as well
as their influence on the kinetic dynamics of adaptation. The static point of view
focuses on geometric properties such as basins, barriers, plateaus, CVFs, etc. As
described in Section there exists a close relation between the static properties
and kinetic properties of combinatorial landscapes. This chapter is our attempt to
clarify various geometric concepts that have been introduced in this field and discuss
their relations with the kinetic properties of the landscapes.

Acknowledgements. P.F.S. and K.K. acknowledge financial support from VolkswagenS-
tiftung.
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Chapter 7
Polytopes, Graphs and Fitness Landscapes

Kristina Crona

Abstract. Darwinian evolution can be illustrated as an uphill walk in a landscape,
where the surface consists of genotypes, the height coordinates represent fitness,
and each step corresponds to a point mutation. Epistasis, roughly defined as the de-
pendence between the fitness effects of mutations, is a key concept in the theory of
adaptation. Important recent approaches depend on graphs and polytopes. Fitness
graphs are useful for describing coarse properties of a landscape, such as mutational
trajectories and the number of peaks. The graphs have been used for relating global
and local properties of fitness landscapes. The geometric theory of gene interaction,
or the shape theory, is the most fine-scaled approach to epistasis. Shapes, defined as
triangulations of polytopes for any number of loci, replace the well established con-
cepts of positive and negative epistasis for two mutations. From the shape one can
identify the fittest populations, i.e., populations where allele shuffling (recombina-
tion) will not increase the mean fitness. Shapes and graphs provide complementary
information. The approaches make no structural assumptions about the underlying
fitness landscapes, which make them well suited for empirical work.

7.1 Introduction

The fitness landscape was originally intended as a simple metaphor for an intuitive
understanding of adaptation [38]. Adaptation can be pictured as an uphill walk in
the fitness landscape, where height represents fitness and where each step is between
similar genotypes. The concept of a fitness landscape has been formalized in some-
what different ways [4] and the current theory is extensive. Kaufman’s NK model
[20], block models [24, 28], as well as random (rugged or uncorrelated) fitness land-
scapes [112,119, 121,130, 133] have been especially influential in biology. Early work in
the field was primarily motivated by theoretical considerations, such as the relation
between global and local properties of fitness landscapes. However, it may not be
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clear if the classical models apply in a particular empirical context. The underlying
assumptions, such as a block structure of the fitness landscape, may or may not hold.

Some recent approaches do not make any structural assumptions about the fitness
landscapes. We will consider the geometric theory of gene interactions and fitness
graphs. We define fitness as the logarithm of the expected reproductive success.
There are different definitions of fitness in the literature [25]. Epistasis means that
fitness is not linear. For instance, the combination of two beneficial mutations may
result in a double mutant with much higher fitness, as compared to a linear expec-
tation from the fitness of the wild-type, and the two single mutants. Such positive
epistasis is common for drug resistance mutations, for example antibiotic resistance
mutations [17]. It is not difficult to analyze the two-loci case, but it is less obvious
how to quantify, classify and interpret epistasis for several loci.

The most fine-scaled approach to gene interactions is the recently developed ge-
ometric theory [3]. The theory extends the usual concept of epistasis for two muta-
tions to any number of loci in the strict sense that all gene interactions are reflected.
The shapes, as defined in the geometric theory, has the role of positive and negative
epistasis for two mutations.

In contrast to the sensitive shapes, a fitness graph is determined by the fitness
ranks of the genotypes only. Qualitative information such as if “good+good=better”
or “good+good= not good” for two single mutations are reflected by the fitness
graphs. From the graphs one can immediately understand the coarse properties of
the landscapes, including the number of peaks. We argue that both the geometric
theory and fitness graphs are well suited for empirical work. Moreover, to some
extent shapes and fitness graphs provide complementary information. Shapes are
relevant for recombination and fitness graphs for mutational trajectories.

In many real populations at most two alternative alleles occur at each locus, or a
biallelic assumption is a reasonable simplification. Throughout the chapter, we will
consider biallelic L-loci populations. Let £ = {0, 1} and let £* denote bit strings of
length L. X” represents the genotype space. In particular,

>2=1{00,01,10,11} and => = {000,001,010,011,100,101,110,111}.

The zero-string denotes the string with zero in all L positions, and the /-string de-
notes the string with 1 in all L positions. We define a fitness landscape as a function
w: XL — R, which assigns a fitness value to each genotype. The fitness of the geno-
type g is denoted wg. The metric we consider is the Hamming distance, meaning
that the distance between two genotypes equals the number of positions where the
genotypes differ. In particular, two genotypes are adjacent, or mutational neighbors,
if they differ at exactly one position.

A walk in the fitness landscape corresponds to a Darwinian process in a precise
way. Consider a monomorphic population, i.e., a population where all individuals
have the same genotype, after a recent change in the environment. Such a geno-
type is a called the wild-type. Assume that in the new environment the wild-type
no longer has optimal fitness. Under the assumption of the strong-selection weak-
mutation regime (SSWM), a beneficial mutation will go to fixation in the population
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before the next mutation occurs. It follows that the population is monomorphic for
most of the time. The adaptation process can be described as a sequence of geno-
types, all of which became fixed in the population at some point in time.

For instance, let 00 denote the wild-type, assume that the single mutants 10 an 01
have higher fitness than the wild-type, and that the double mutant 11 has the highest
fitness of the four genotypes. The two possible adaptation scenarios for a population
are

00— 10— 11 and 00 — 01 — 11.

Each scenario corresponds to an uphill walk, which ends at the genotype 11. The
example illustrates that we can think of a Darwinian process as a walk in the fitness
landscape, where each step represents a beneficial mutation going to fixation in the
population. Adaptation is not deterministic, but fitness has to increase by each step.
The described model of adaptation has been widely used and relies on approaches
developed in [[15, 16, 27].

The chapter is structured as follows. The topic for Section [7.2] to is fitness
graphs, where most results depend on [6]. The topic for Section [7.6 to is the
geometric theory of gene interactions, where most results depend on [3], and tri-
angulations of polytopes [19]. Section [Z.11] compares fitness graphs and shapes, as
defined in the geometric theory. Section[Z.12]is a discussion. For more background,
including proofs, we refer to [3, 6, 9].

7.2 Fitness Graphs and Sign Epistasis

With reference to the landscape metaphor, an adaptive step in the fitness landscape
corresponds to a change in exactly one position of a string so that the fitness in-
creases strictly. An adaptive walk is a sequence of adaptive steps. A peak in the
fitness landscape has the property that there are no adaptive steps away from it, i.e.,
a genotype is at a peak if all mutational neighbors have lower fitness as compared
to the genotype. The following concepts are central as well, in particular they are
useful for relating the number of peaks to local observations.

For L > 2, given a string and two positions, exactly four strings can be obtained
which coincide with the original string except (at most) at the two positions. Denote
such a set of four strings

ab,Ab,aB,AB,

according to the two positions of interest, and assume that w,;, is minimal. Sign
epistasis means that
WAB < Wap O Wap < WyB.

Reciprocal sign epistasis interactions means that
wag < wap and wap < Wup.

Figure [Z.1l shows the four possibilities under our assumption that w,, is minimal.
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Fig. 7.1 The arrows point toward the more fit genotype. The graphs represent no sign epista-
sis, two cases with sign epistasis but not reciprocal sign epistasis, and one case with reciprocal
sign epistasis.

Sign epistasis is by no means rare for microbes according to several studies [2,
11,113, 17, 135, 136, 137]. In particular, sign epistasis occurs for antibiotic resistance
mutations, as well as for HIV and malaria. In fact, existing studies suggest that
absence of sign epistasis is exceptional for systems associated with drug resistance
for L > 4.

Sign epistasis is of clinical importance for several reasons. A recent approach for
preventing and managing resistance problems takes advantage of both sign epistasis
and variable selective environments [[17]. Another aspect of managing drug resis-
tance is to find constraints for orders in which mutations accumulate from genotype
data [12,/11]. A constraint could be that a particular mutation is selected for (meaning
that that the mutation is beneficial) only if a different mutation has already occurred.
The existence of constraints implies sign epistasis. Indeed, if a particular mutation
is beneficial regardless of background, then it can occur before or after other mu-
tations. Moreover, sign epistasis is relevant for predictions of how populations will
adapt [37].

Fitness graphs are useful for the empirical problems mentioned, as well as for
more theoretical problems, including the relation between global and local proper-
ties of fitness landscapes (see Section[Z3)). If one can order a set of genotypes by
decreasing fitness, one has determined the fitness ranks. More fine scaled informa-
tion, such as relative fitness values, may not be known. A fitness graph compares
the fitness ranks of mutational neighbors. For simplicity, whenever we use fitness
graphs we assume that wg # wy for any two strings s and s/ which differ in one
position only.

Roughly, consider the zero-string as the starting point (possibly the wild-type),
and each non-zero position of a string as an event, i.e., that a mutation has occurred.
Under these assumptions the fitness graph coincides with the Hasse-diagram of the
power set of events, except that each edge in the Hasse-diagram is replaced with an
arrow toward the string with greater fitness.

For a formal definition, a fitness graph is a directed graph where each node cor-
responds to a string of . The fitness graphs has L+ 1 levels. Each string such
that Y s; = I corresponds to a node on level / in the fitness graph. In particular,
the node representing the zero-string is at the bottom, the nodes representing strings
with exactly one non-zero position, including 10- - -0, are one level above, the nodes
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representing strings with exactly two non-zero positions, including 110---0, are on
the next level, and the 1-string is at the top. Moreover, the nodes are ordered from
left to right according to the lexicographic order where 1 > 0 of the corresponding
strings (see e.g. Figure [Z.3). A directed edge connects each pair of nodes such that
the corresponding strings differ in exactly one position. The edge is directed toward
the node representing the more fit of the two genotypes.

» o«

Remark 1: Unless otherwise stated, the words “level”, “up”, “down” “above”
and “below” refer to fitness graphs. In particular, notice that a higher level does
not imply greater fitness.

For L > 2, given a string and two positions, consider the four strings which coin-
cide with the original string except in (at most) the two positions. We call the strings
a type 2 system if there is reciprocal sign epistasis, a type I system if there is sign
epistasis, but not reciprocal sign epistasis, and a type 0 system if there is no sign
epistasis.

For interpretations of general fitness graphs, it may be helpful to first analyze the
two-loci case shape in some detail. There exist exactly 14 fitness graphs for biallelic
two-loci systems (see Figure[7.2)), where 4 are type O systems, 8 type 1 systems, and
2 type 2 systems. One verifies the following result.

Remark 2: For two-loci, type 0, 1, and 2 systems have the following properties:

(1) A type 0 system can be rotated so that all arrows point up.

(2) A type 1 system differs from a cycle by exactly one arrow.

(3) A type 2 system have two nodes such that all edges are directed toward them,
and two nodes such that no edges are directed toward them.

The observations from the two-loci case should make it easy to identify type O,
1 and 2 systems for general fitness graphs. Figures [Z.3] and [Z.4] show fitness graph
for 3-loci systems. Figure [Z3h has type 0 systems only, Figure [Z.3b type 0 and 2

Dol
Lol ooy
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Fig. 7.2 For a fitness graph, the arrows point toward the genotype of greater fitness. There
exist exactly 14 fitness graphs for biallelic two-loci systems, where the type O systems are on
the first row, the type 1 systems on the second row, and the type 2 systems on the third row.
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Fig. 7.3 A fitness graph shows sign epistasis and the peaks. The graph in Figure [Z3h has
type 0 systems only. The graph in Figure [Z3b has type 0 and type 2 systems, but no type 1
systems.

(@) (b)

Fig. 7.4 The graph in Figure[Z.4h has type 0, type 1 and type 2 systems. The graph in Figure
[Z.4b has type 2 systems only, and the corresponding fitness landscape has four peaks.

systems, Figure [7.Zh type 0, 1 and 2 systems, and Figure [Z4b type 2 systems only.
Figure[Z.3lshows a fitness graph for a 4-loci population, where there are several type
2 systems, including 0001, 0101, 0011, O111.

7.3 Fitness Graphs and Theoretical Results
Fitness graphs have mostly been used in empirical work [10, 13,117, 35]. However,

we will indicate how they can be used in theoretical arguments, and mention some
results where the proofs depend on fitness graphs.
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It is known that one can have 2! peaks in a fitness landscape [18] and this
number is an upper bound. The proof is elementary, and we will not give the details.
However, we will construct fitness landscapes with the maximal number of peaks
using fitness graphs.

Example 1: For any L, consider the fitness graph where the edges are directed up
from level 0 to 1, down from level 1 to 2, up from level 2 to 3, and so on. The fitness
graph in Figure is an example. Notice that the graph corresponds to fitness
landscapes with 4 peaks, i.e., the maximal number of peaks for L = 3. In general,
all nodes at level 1,3,5 ... are at peaks, and such fitness graphs correspond to fitness
landscapes with exactly 2L peaks.

Fig. 7.5 The fitness landscape has peaks at 1100, 0011 and 1111, whereas all triple mutants
(mutants on the third level) have low fitness

Recent work relates global and local properties of fitness landscapes [6, 131, 32].
This topic is of interest, since most empirical studies of fitness landscapes concern
local properties, including sign epistasis. It has been shown that multipeaked fitness
landscapes have type 2 systems [32]. The converse is not true. However, a sufficient
condition for multiple peaks can be phrased in terms of type 1 and 2 systems. More
precisely, the following result was proved using fitness graphs.

Result 1: Crona et al., 2013 [6]

If a fitness landscape has type 2 systems and no type 1 systems, then it has multi-
ple peaks.

It follows that the landscapes corresponding to Figures[Z.3b and[Z.4b have multi-
ple peaks. Fitness graphs are efficient for analyzing mutational trajectories. We will
state a result regarding accessible mutational trajectories from [36]. A brief proof of
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the result using fitness graphs was given in []], but the original proof does not use
fitness graphs.

We call the global maximum of the landscape “the fitness peak”. Moreover, de-
fine a general step similar to “adaptive step”, except that the fitness may decrease.
A general walk, as opposed to an “adaptive walk” is a sequence of general steps. If
a general walk between two nodes has minimal length, we call it a shortest walk.

Result 2: Weinreich et al., 2005 [36]
(1) The following conditions are equivalent for a fitness landscape.

(1) Each general step toward the fitness peak, i.e., a step that decreases the
graph theoretical distance to the peak, is an adaptive step.
(i) Each shortest general walk to the fitness peak is an adaptive walk.
(iii) The fitness landscape has no type 1 or 2 systems.

(2) Ifthe equivalent conditions (i), (ii) and (iii) in (1.) are satisfied, then each adap-
tive walk to the fitness peak is a shortest general walk.

A fitness landscape satisfying the equivalent conditions (i)—(iii) above is referred
to as a fitness landscape lacking genetic constraints on accessible mutational tra-
Jjectories in [36]. For L = 3, the fitness graph in Figure corresponds to this
category of landscapes. Fitness landscapes lacking genetic constraints on accessible
mutational trajectories can be represented by fitness graphs where all arrows are up.
For brevity, we will refer to “all arrows up landscapes”.

It is important to notice that the concept of an all arrows up landscape is biologi-
cally meaningful. Even if a landscape is single peaked, type 1 systems may cause the
adaptation process to be slower since not all shortest general walks to the peak are
adaptive walks. However, for all arrows up landscapes, there are no local obstacles
for the adaptation process.

7.4 Fitness Graphs and Recombination

Recombination can generate new genotypes in a population. Under some circum-
stances, recombination will speed up adaptation. An early hypothesis about the pos-
sible advantage of recombination concerned double mutants of high fitness, where
the corresponding single mutations are deleterious. It was suggested that recombi-
nation could generate such double mutants. In terms of fitness graphs this case can
be described as a type 2 system, where the wild-type is at a fitness peak. However,
the hypothesis was immediately criticized, and described as a “widespread fallacy”
by Muller [8]. The two single mutations being deleterious, it seems unlikely that
the the corresponding genotypes would appear and recombine to the double mutant.
The (current) consensus is that under most circumstances recombination will not be
of any use in the situation described, i.e., for a two-loci type-2 system, where the
wild-type is at a peak (see also [23]). However, using fitness graphs we will argue
that recombination could be an advantage in somewhat related cases where L > 3.
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The topic of recombination is involved with subtle differences between effects
on the population level and the gene level. For instance, it is theoretically possible
that recombination is beneficial for a population and at the same time recombination
suppressors could be selected for (see e.g. [29] for comments and references). We do
not intend to develop new theory, or describe existing knowledge of recombination
in any detail. For an overview of the field, we refer to Otto and Lenormand [29]. Our
goal is to point out mechanisms specific for L > 3 loci which should be considered
for an analysis of the effect of recombination. This is justified since the field is
dominated by work in the two-loci case, or mechanisms which can be reduced to
the two-loci case.

It has been suggested that recombination has an especially strong impact in struc-
tured populations, see e.g. [26]. A populations is structured, as opposed to well
mixed, if the genotype frequencies varies between geographic locations. In partic-
ular, if a population is subdivided into local subpopulations with some migration
between them, then recombination could be advantageous.

We will sketch a model within this framework, which we call a puddles and flood
population. We mainly have microbes in mind, for example bacteria. Assume that
the local subpopulations live in puddles, and the subpopulations are homogeneous
for most of the time. Occasionally, there is a flood where the contents of the local
puddles get thoroughly mixed. After a flood, life proceeds as usual in the puddles
for an extended period, until the next flood. Under these assumptions, genotypically
different subpopulations are likely to mix, so that recombination can generate new
genotypes.

Example 2: Consider the fitness graph in Figure and assume that 0000 is the
wild-type. Both 1100 and 0011 are at peaks, whereas the triple mutants are less
fit as compared to adjacent double mutants. For a puddles and flood population,
recombination of double mutants may result in 1111. In this case recombination
could speed up adaptation

Notice that in the absence of recombination, one could obtain 1111 from 1100,
only if there is a double mutation, since the triple mutants are not fit.

Example 3: Consider the fitness graph in Figure[Z4h. Assume that 000 is the wild-
type. From the fitness graph, the single mutants 100, 010, 001 are at peaks. Under
the assumption that 111 has maximal fitness, recombination could speed up adapta-
tion. However, two recombination events are necessary. For instance, recombination
of 100 and 010 could result in 110. Then recombination of 110 and 001 could result
inlll.

Notice that there is an important difference between Examples 2 and 3. For in-
stance, consider the outcome for a puddles and flood population where no more than
two puddles mix at the time. Then one could obtain 1111 by recombination in Ex-
ample 2. Indeed, if an 1100 population and an 0011 population mix, recombination
could produce the 1111 genotype.

In contrast, consider Example 3 under the same restriction (no more than two
puddles mix). If say an 100 and 010 population mix, one could obtain 110 by
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recombination. However, 110 is selected against so that 111 is unlikely to appear
under most circumstances. (On the other hand, if several puddles mix, one could
get a mixture of the single mutants 100, 010 and 001, and recombination could
resultin 111).

Consider all arrows up fitness landscapes where the 1-string has maximal fitness.
Then one could obtain the 1-string from a sequence of single mutations. However,
for a puddles and flood population, recombination could speed up adaptation. This
is because the process of accumulating L single mutations could be time consuming.

Example 4: For an all arrows up L-loci fitness landscape where considerably more
than L puddles tend to mix during a flood period, one could obtain the I-string
already after one flood period.

The examples described are theoretical constructions. It is not obvious if Exam-
ples 2 and 3, or similar cases, occur frequently enough in nature for having much of
an impact. A first question to ask for a population, is how frequently it happens that
“good+good=not good” for single mutations. This type of problems is the topic for
the next section.

7.5 Fitness Graphs and Other Qualitative Measures

In order to determine if one has a reasonable chance to find fitness graphs of the
types described in the previous sections, the following qualitative concept [[6] may
be useful.

We define B and B), as follows. The set B, consists of all double mutants such
that both corresponding single mutations are beneficial. The set B C B), consists of
all double mutants in B, which are more fit than at least one of the corresponding
single mutants. The qualitative measure of additivity for a fitness landscape is the

ratio &f“ . Notice that \‘zfl| =1 for all arrows up landscapes.
p p
Fitness landscapes are defined as additive if fitness effects of mutations sum. For
example, if

woo — l,Wl() = 1.2,W01 = 1.3,

then additive fitness implies that wy; = 1.5 (since 0.5 = 0.2+ 0.3, so that the fitness
effects of two mutations sum). Notice that fitness is additive exactly if

Wi —wig — wo1 +wpp = 0.

By definition, fitness is additive exactly if there is no epistasis. One may consider
all arrows up landscapes as the qualitative correspondence to additive fitness land-
scapes.

Antibiotic resistance landscapes for a particular 4-loci system and 9 selective
environments were studied in [17]. More precisely, all combination of the TEM-1
mutations L21F, R164S, T265M and E240K were considered. The length of TEM-1
is 287,1i.e., TEM-1 can be represented as a sequence of 287 letters in the 20-letter al-
phabet corresponding to the amino acids. The notation L21F means that the amino
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acid Leucine (L) at position 21 has been replaced by the amino acid Phenylala-

nine (F). The mutations R164S, T265M and E240K are defined similarly, us