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Abstract. In this work we present a system for autonomous discovery of
asteroids, space trash and other moving objects. This system performs as-
tronomical image data reduction based on an image processing pipeline.
The processing steps of the pipeline include astrometric and photometric
reduction, sequence alignment, moving object detection and astronom-
ical analysis, making the system capable of discovering and monitoring
previously unknown moving objects in the night sky.

Keywords: astronomical images, data reduction, moving object
detection.

1 Introduction

One of the goals of modern astronomy is the exhaustive study and mapping of
celestial bodies, in particular the moving bodies of the solar system. In the past,
observations were made and analyzed manually, nowadays we have robotic tele-
scopes with CCD cameras. This allows the development of systems that control
the telescope and automate the data extraction and reduction from astronomi-
cal images. The replacement of rutinary tasks performed by astronomers using
autonomous systems has multiple advantages and enables a continuous and long
exploration (even in hostile environments) resulting in higher probabilities of
achieving astronomical discoveries.

In this work we present a method for autonomous discovery of asteroids, space
trash and other moving objects. This method performs astronomical image data
reduction based on an image processing pipeline to find moving objects in the
night sky and control the telescope for an automated tracking. The processing
steps of the pipeline include astrometric and photometric reduction, sequence
alignment, moving object detection and astronomical analysis, making the sys-
tem capable of discovering and monitoring previously unknown moving objects.
In Figure 1, the pipeline data flow and a sample of an astronomical image are
shown.

Some of the previous related works include IRAF [1] (Image Reduction and
Analysis Facility), a well known system that implements most methods for astro-
nomical data reduction. The main drawback of this system is that it is designed
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Fig. 1. (a) System’s pipeline data flow and (b) sample of astronomical image captured
with Takahashi Mewlon-210 telescope and Apogee Alta F16 CCD camera.

for manual analysis of the data, so it is rather complicated to use as a library
with a programmable interface and, more importantly, has no moving object
detection routines. The purpose of this paper is to address these issues.

The remainder of this paper is organized as follows: Section 2 details the
proposed method, section 3 presents the results and section 4 summarizes our
work.

2 Proposed Method

The images are captured with a CCD camera and stored in the FITS (Flexible
Image Transport System) file format. The images usually contain a few hundred
light sources, depending on the region of the sky and the angular field of the tele-
scope. The profile of each light source can be approximated with a 2D Gaussian
curve (if the camera is in focus). The one-dimensional profile of this Gaussian
curve is characterized in astronomy by the FWHM (Full Width at Half Maxi-
mum) which depends on the dispersing process in the atmosphere and therefore
is approximately constant for all point light sources of the image [2]. These im-
ages also contain background noise that is characterized by an additive and a
multiplicative component. Furthermore, there are spurious detections caused by
defective pixels or cosmic rays that randomly reach the sensor and cause peaks
in the image. Figure 2 shows examples of light sources in astronomical images.

The moving objects we are interested in finding appear in the image with
a very similar profile as the stars and satisfy the following conditions: a) v �
FWHM
Δtexp

, b) Δt � FWHM
v and c) #D

NΔt > v, where v is the velocity of the object,

Δtexp is the exposure time,Δt is the time interval of the sequence, #D is the size
of the captured image D and N is the number of images (frames) in the sequence
(typically N ≥ 4). The time interval between the images of the sequence, Δt, is
chosen according to v.
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Fig. 2. Examples of light sources in a image: (a) bright star, (b) faint star and (c) a
noise artifact (cosmic ray)

Source Extraction. The first step in the image processing pipeline is extract-
ing the location of light sources, including stars and possible moving objects.
In this work we explore two options: SExtractor (Source Extractor library) [3],
which uses neural network algorithm to find point light sources and also other
astronomic features; and DAOPHOT [4] a source extraction method which finds
the location of sources by filtering the image with a gaussian convolution and
then extracting the local maximums which values are above a threshold. A per-
formance comparison between both methods is presented in section 3.

Some of the detected features in the images do not correspond to point light
sources, but are rather artifacts of noise like cosmic rays or defective pixels in the
CCD sensor. To filter out these spurious detections, we analyze each feature’s
roundness and sharpness parameters.

Let N (i0, j0) be a neighborhood around (i0, j0). The sharpness of a feature

centered in (i0, j0) is defined as sharpi0,j0 =
Di0,j0−〈Di,j〉

Hi0,j0
, where 〈Di,j〉 is the

mean of the Di,j , (i, j) ∈ N (i0, j0) − {(i0, j0)} and Hi0,j0 is a filtered version

of Di0,j0 . The roundness parameter is defined as round = 2
hy−hx

hy+hx
where hy

and hx are one-dimensional convolutions of D corresponding to the gaussians:

gx(Δi;σ) = e−
Δi2

σ2 and gy(Δj;σ) = e−
Δj2

σ2 , respectively.
In Figure 3(a) the distribution of sharpness/roundness of detected features in

the images can be seen. Figure 3(b) shows the detected light sources (green) and
the spurious detections (red) filtered by sharpness/roundness parameters.

Photometry. The goal of the photometry reduction is to obtain a light flux
estimation for each detected source, which represents the number of photons
(amount of light) received in an area near the position of the source subtract-
ing the background. This flux is stable over the frames for the same celestial
body so it can be used as a descriptor of the source that distinguishes each
other. Moreover, to eliminate the effect of the atmosphere the air mass has to
be subtracted.
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Fig. 3. (a) Sharpness/roundness distribution of detected features and (b) detected light
sources (green) and the spurious detections (red) filtered by sharpness/roundness

To estimate the background of the whole image we define BG as an erosion
filter of D, BGi0,j0 = min

(i,j)∈N (i0,j0)
Di,j . Then, the light flux of one source placed

in (i0, j0) can be calculated as follows: FLUXi0,j0 =
∑

(i,j)∈N (i0,j0)

(Di,j −BGi,j).

In sparsely populated areas, we can calculate the flux from a source without
estimating the background, taking as reference baseline a ring around the source.
In this case the FLUXi0,j0 can be defined as:

FLUXi0,j0 =
∑

(i,j)∈
circ(i0,j0)

Di,j−
∑

(i,j)∈
ring(i0,j0)

Di,j× #circ(i0,j0)
#ring(i0,j0)

, where circ(i0, j0)

and ring(i0, j0) are circular and a annular regions around (i0, j0), respectively.

Alignment. The sequence of acquired images is obtained under the same sky
coordinates. The robotic telescope corrects for the rotation of the earth as time
passes, but still some mechanical errors accumulate. The result is that the light
sources appear displaced a few pixels in both X and Y coordinates or even
slightly rotated relative one image to another. Then, the sequence of images
need to be aligned. The scale of the images does not change because the focal
length of the telescope is fixed.

Since the misalignment of the images is given in three degrees of freedom
(movement in X , Y and rotation). The problem is reduced to finding a rigid
transformation to bring all images to the same reference system. The method
ICP (Iterative Closest Point) [5] assumes that the features are not very far from
their original position, which can be assumed in our case because we want to
correct alignment errors due to perturbations in the motion of the telescope. The
idea of this method is to establish a correspondence between each feature of an
image with the feature closest to it in the second image. Then the transformation
that fits all correspondances best is computed using RANSAC (Random Sample
and Consensus).

Moving Object Detection. Since the objects of interest move at an approxi-
mately constant speed and the field of vision of the telescope is small (long focal
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length), we can consider that the trajectory of the object describes a straight
line. Then, the problem of finding moving objects is then reduced to detect a se-
quence of features that are collinear and are spacially distributed proportionally
to the time intervals of the frames1. If we think of the features as points in a
three dimensional space with coordinates (x, y, t), we are looking for a sequence
of collinear points in this space (see Figure 4).

Fig. 4. Set of features aligned in space-time coordinates, corresponding to a moving
object along the images sequence of frames.

The first step is discarding the features that appear repeatedly in the same
position (x, y) along the sequence of frames, i.e., corresponding to sources that
do not move (mostly stars). Some of the features that remain correspond to
noise and artifacts that randomly appear in a frame, and some of them might
correspond to a moving object that appears at different positions along the
sequence of frames. The challenge is to find which features are aligned in a
trajectory, in an efficient way.

We also have to keep in mind that we might possibly detect the object only in
a subset of the frames, so we have to search for collinearities in different subsets
of frames. To achieve this we choose three frames (f1, f2, f3) randomly and seek
for triplets of features which are collinear in (x, y, t).

For each pair of features (p1, p2), p1 ∈ f1 and p2 ∈ f2, we calculate the spatial
displacement vector p1 → p2 and estimate where we should find a feature p̂3 ∈ f3
to complete the collinear triplet. Then we compare each estimated p̂3 with each
real p3, ∀ p̂3, p3 ∈ f3, using nearest neighbor matching in high-dimensional spaces
(implemented in the FLANN library [6]), to find which pairs (p1, p2) have a p3
in f3 that completes a space-time collinear triplet.

Once we have these possible traces of three points we calculate the straight
line that joins them. Then, we evaluate the remaining frames to find out whether
they have features on this line. If the moving object is detected in all frames,
a feature in each frame will be found that satisfies the equation of the line.
In practice, it is very difficult to find the same feature in all frames, however,
if a feature is found in a few frames we can be pretty sure that this feature

1 When moving at constant speed, the distance traveled between two frames is pro-
portional to the time difference of these frames.
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corresponds to a moving object. Typically, four frames are enough to have very
good certainty of a positive discovery. We repeat this process a many times
(approximately the total number of frames) with random triplets of frames, and
merge the found traces if they belong to the same object (see Algorithm 1).

Algorithm 1. Pseudocode to find collinear traces of features.

traces ← ∅
for i=0 to #frames do

frame1, frame2, frame3 ← random sample(frames, 3)

factor ← tf3 − tf2
tf2 − tf1

triplets ← get linear triplets(features(frame1), features(frame2),
features(frame3), factor)
foreach triplet ∈ triplets do

line ← fit line(triplet)
trace ← {triplet[1], triplet[2], triplet[3]}
foreach frame ∈ frames \ {frame1, frame2, frame3} do

foreach feature ∈ frame do
if feature ∝ line then

trace ← trace ∪ {feature}
if ∃ trace′ ∈ trace ∼= trace′ then

merge(trace, trace′)

else
traces ← traces ∪ {trace}

return traces

As a result we obtain sets of traces, i.e. features that are aligned in space
and time corresponding to objects moving in a straight line at constant speed.
The equations for finding the line that best fits each trace of feaures form an
overdetermined system, so we use the least squares technique. This line gives an
estimation of the position and the velocity of the moving object.

3 Results

In this section we present some results of this work. First a comparison be-
tween DAOPHOT and SExtractor methods is considered. Figure 5 shows the
performance of each method and the results of the photometry reduction (flux
estimation). Figure 5(a) shows the execution time of each method as a function
of the image size with a constant number of stars (300 aprox.). Figure 5(b) is the
same with constant star density (20 stars for each 100×100 pixels). As can be
seen, if the density of star is constant, the behaviour of the DAOPHOT method
is better than that of SExtractor. Figures 5(c) and 5(d) show the photometry
computation (flux estimation) using DAOPHOT and SExtractor, respectively. In
both cases, flux estimation does not have large variations, allowing the detection
of the point light sources in different frames.
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(a) (b)

(c) (d)

Fig. 5. Execution time comparison between DAOPHOT and SExtractor: (a) for dif-
ferent image size and constant amount of stars, and (b) for different image sizes and
constant star density. Flux estimation using (c) DAOPHOT and (d) SExtractor.

For the case of real images acquired with a telescope, very satisfactory results
are obtained. As test data set, we use image sequences containing moving objects
from the CASLEO Observatory located in the Leoncito, San Juan, Argentina.
Figure 6(b) shows the result of applying our proposed method to an image
sequence within the data set corresponding to an observation of the asteroid
41427. This asteroid was correctly detected and another object (on the left side)
was also found that is virtually imperceptible to the human eye.

To calculate the transformation between image coordinates and sky coordi-
nates we use Astrometry.net [7]. Once we get the sky coordinates of the detected
celestial bodies, we can compare the results with USNO-B1 catalog. In Figure
6(a) the positions of the detected and the catalogued celestial bodies, marked
with circles and crosses, respectively, are plotted. In most cases they coincide,
indicating a good alignment of the image. Then, we can conclude that mobile
objects’ sky coordinates were calculated accuratly.

4 Conclusions

In this work we present a method that automates the detection of moving objects
in the night sky. To extract the locations of the point light sources we analyze
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(a) (b)

Fig. 6. (a) Positions (in sky coordinates) of the detected and the catalogued celestial
bodies, marked with circles and crosses, respectively. (b) Discovered moving objects in
the image sequences from CASLEO data set, one of them is the asteroid 41427.

both DAOPHOT and SExtractor methods and compare them. We propose an
algorithm for moving object detection in image sequences, which operates look-
ing for collinearity in the sets of the detected point sources. Experimentation
with synthetic and real images shows that this method is very effective for the
detection of asteroids and even other faint objects. Morevover, it can be used
with a robotic telescope to achive an autonomous system for astronomical dis-
coveries.
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