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Preface

The 18th Iberoamerican Congress on Pattern Recognition CIARP 2013 (Con-
greso IberoAmericano de Reconocimiento de Patrones) is the yearly event of a
series of pioneer conferences on pattern recognition in the scientific community
active in this field in Iberoamerican countries.

As has been the case for previous editions of the conference, CIARP 2013
hosted worldwide participants with the aim to promote and disseminate ongo-
ing research on mathematical methods and computing techniques for pattern
recognition, in particular in biometrics, computer vision, image analysis, and
speech recognition, as well as their application in a number of diverse areas such
as industry, health, robotics, data mining, entertainment, space exploration,
telecommunications, document analysis, and natural language processing and
recognition. Moreover, CIARP 2013 was a useful forum in which the scientific
community could exchange research experience, share new knowledge and in-
crease cooperation among research groups in pattern recognition and related
areas.

We like to underline that CIARP conferences have significantly contributed
to the birth and growth of national associations for pattern recognition in
Iberoamerican countries that are already members of the International Associ-
ation for Pattern Recognition, IAPR, (Argentina, Brazil, Chile, Cuba, Mexico),
or will soon be applying to become IAPR members (Colombia, Peru, Uruguay).

CIARP 2013 received 262 contributions from 37 countries (12 of which are
Iberoamerican countries). After a rigorous blind reviewing process, where each
submission was reviewed by three highly qualified reviewers, 137 papers by 355
authors from 31 countries were accepted. All the accepted papers have scientific
quality above the overall mean rating.

As has been the case for the most recent editions of the conference, CIARP
2013 was a single-track conference in which 22 papers where selected for presen-
tation in oral sessions, while the remaining 115 papers were selected for poster
presentation with short poster teasers. Following the tradition of CIARP con-
ferences, the selection of the presentation type does not signify at all a quality
grading. CIARP 2013 presentations were grouped into nine sessions: Supervised
and Unsupervised Classification; Feature or Instance Selection for Classification;
Image Analysis and Retrieval; Signals Analysis and Processing; Biometrics; Ap-
plications of Pattern Recognition; Mathematical Theory of Pattern Recognition;
Video Analysis; and Data Mining.

We would like to point out that the reputation of CIARP conferences is in-
creasing, especially since the last 11 editions for which the proceedings have been
published in the Lecture Notes in Computer Science series. Moreover, starting
from CIARP 2008, authors of the best papers presented at the conference (orally
or as posters) have been invited to submit extended versions of their papers to
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well-known journals so as to enhance the visibility of their conference submis-
sions and to stimulate deeper insight into the treated topics. For CIARP 2013
two special issues of the International Journal of Pattern Recognition and Artifi-
cial Intelligence IJPRAI and in Intelligent Data Analysis IDA will be published.
Moreover, a Special Section of Pattern Recognition Letters has been added to
include the two papers of the researchers selected as the winners of the two
prizes given at CIARP 2013, namely the IAPR-CIARP Best Paper Prize and
the Aurora Pons-Porrata Medal, which is a new CIARP-Award.

The IAPR-CIARP Best Paper Prize has the aim of acknowledging and en-
couraging excellence, originality and innovativeness of new models, methods and
techniques with an outstanding theoretical contribution and practical applica-
tion to the field of pattern recognition and/or data mining. The Iberoamerican
CIARP-Award Aurora Pons-Porrata Medal is given to a living woman in recog-
nition of her outstanding technical contribution to the field of pattern recognition
or data mining.

The selection of the winners is based on the wish of the authors to be consid-
ered as possible candidates for the prizes, the evaluation and recommendations
of members of the Program Committee, for the IAPR-CIARP Best Paper Prize,
and the proposal of the national associations on Pattern Recognition, for the
Aurora Pons-Porrata Medal, and the evaluation of the respective Award Com-
mittees. The task of these committees, whose members are carefully chosen to
avoid conflicts of interest, is to evaluate each paper nominated for the IAPR-
CIARP Best Paper Prize by performing a second review process including the
quality of the (poster or oral) presentation, and the recommendations for the
Aurora Pons-Porrata Medal. We express our gratitude to the members of the
two Award Committees: Josef Kittler (Surrey University, UK), Jian Pei (Simon
Fraser University, Canada), Fabio Roli (University of Cagliari, Italy), Tieniu
Tan (National Laboratory on Pattern Recognition of China), Isneri Talavera-
Bustamante (Advanced Technologies Applications Center, CENATAV, Cuba),
Rita Cucchiara (University of Modena-Reggio, Italy), and Rocio González-Dı́az,
(University of Seville, Spain).

Besides the 137 accepted submissions, the scientific program of CIARP 2013
also included the contributions of three outstanding invited speakers, namely,
Jian Pei (Simon Fraser University of Canada), Fabio Roli (University of Cagliari,
Italy) and Tieniu Tan (National Laboratory on Pattern Recognition of China).
The papers of these two last keynotes appear in these proceedings. Furthermore,
the three invited speakers and Gabriella Sanniti di Baja gave four tutorials on
“Mining Uncertain and Probabilistic Data for Big Data Analytics”, “Multiple
Classifier Systems”, “Fundamentals of Iris Recognition”, and “Discrete Methods
to Analyse and Represent 3D Digital Objects,” respectively.

During the conference, the Annual CIARP Steering Committee Meeting was
also held.

CIARP 2013 was organized by the Advanced Technologies Applications Cen-
ter (CENATAV) and the Cuban Association for Pattern Recognition (ACRP)
with the endorsement of the International Association for Pattern Recogni-
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tion (IAPR), and the sponsorship of the Cuban Society for Mathematics and
Computer Sciences (SCMC), the Argentine Society for Pattern Recognition
(SARP-SADIO), the Special Interest Group of the Brazilian Computer Soci-
ety (SIGPR-SBC), the Chilean Association for Pattern Recognition (AChiRP),
the Mexican Association for Computer Vision, Neural Computing and Robotics
(MACVNR), the Spanish Association for Pattern Recognition and Image Analy-
sis (AERFAI), and the Portuguese Association for Pattern Recognition (APRP).
We recognize and appreciate their valuable contributions to the success of CIARP
2013.

We gratefully acknowledge the help of all members of the Organizing Com-
mittee and of the Program Committee for their support and for the rigorous
work in the reviewing process.

We also wish to thank the members of the Local Committee for their unflag-
ging work in the organization of CIARP 2013 that led to an excellent conference
and proceedings.

Special thanks are due to all authors who submitted to CIARP 2013, includ-
ing those of papers that could not be accepted.

Finally, we invite the pattern recognition community to attend CIARP 2014
in Puerto Vallarta, Mexico.

November 2013 José Ruiz-Shulcloper
Gabriella Sanniti di Baja
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Jón Atli Benediktsson University of Iceland
Rafael Berlanga-Llavori Universitat Jaime I Castelló, Spain
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José Ramón Calvo de Lara Advanced Technologies Applications Center,

Cuba
Virginio Cantoni Università di Pavia, Italy
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Ana Lúısa Martins Lihu Xiao
Pedro Martins



Organization XV

Sponsoring Institutions

Advanced Technologies Applications Center (CENATAV)
International Association for Pattern Recognition (IAPR)
Cuban Association for Pattern Recognition (ACRP)
Cuban Society for Mathematics and Computer Sciences (SCMC)
Argentine Society for Pattern Recognition (SARP-SADIO)
Chilean Association for Pattern Recognition (AChiRP)
Mexican Association for Computer Vision, Neural Computing and Robotics

(MACVNR)
Special Interest Group of the Brazilian Computer Society (SIGPR-SBC)
Spanish Association for Pattern Recognition and Image Analysis (AERFAI)
Portuguese Association for Pattern Recognition (APRP)



Table of Contents – Part II

Keynote

Recent Progress on Object Classification and Detection . . . . . . . . . . . . . . . 1
Tieniu Tan, Yongzhen Huang, and Junge Zhang

Applications of Pattern Recognition

Directional Convexity Measure for Binary Tomography . . . . . . . . . . . . . . . 9
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Andrés Marino Álvarez-Meza, and
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César Germán Castellanos-Domı́nguez

Online Matrix Factorization for Space Embedding Multilabel
Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
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Fabŕıcio M. Lopes

CWMA: Circular Window Matching Algorithm . . . . . . . . . . . . . . . . . . . . . . 439
Daniel Miramontes-Jaramillo, Vitaly Kober, and
Vı́ctor Hugo Dı́az-Ramı́rez

A Histogram-Based Approach to Mathematical Line Segmentation . . . . . 447
Mohamed Alkalai and Volker Sorge

Cleaning Up Multiple Detections Caused by Sliding Window Based
Object Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

Arne Ehlers, Björn Scheuermann, Florian Baumann, and
Bodo Rosenhahn



XXX Table of Contents – Part I

A Differential Method for Representing Spinal MRI
for Perceptual-CBIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

Marcelo Ponciano-Silva, Pedro H. Bugatti, Rafael M. Reis,
Paulo M. Azevedo-Marques, Marcello H. Nogueira-Barbosa,
Caetano Traina-Jr., and Agma Juci Machado Traina

Image Segmentation Using Active Contours and Evidential Distance . . . . 472
Foued Derraz, Antonio Pinti, Miloud Boussahla,
Laurent Peyrodie, and Hechmi Toumi

Signals Analysis and Processing

Threshold Estimation in Energy-Based Methods for Segmenting
Birdsong Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
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Fernando E. Valdés-Pérez, Renato Peña-Cabrera, and
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André Lourenço, Samuel Rota Bulò, Carlos Carreiras, Hugo Silva,
Ana L.N. Fred, and Marcello Pelillo



Table of Contents – Part I XXXI

Onset and Peak Pattern Recognition on Photoplethysmographic Signals
Using Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
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Abstract. Object classification and detection are two fundamental prob-
lems in computer vision and pattern recognition. In this paper, we discuss
these two research topics, including their backgrounds, challenges, recent
progress and our solutions which achieve excellent performance in PAS-
CAL VOC competitions on object classification and detection. Moreover,
potential directions are outlined for future research.

Keywords: Object classification, Object detection, PASCAL VOC.

1 Introduction

Object classification and detection are two core problems in computer vision
and pattern recognition. They play fundamental and crucial roles in many ap-
plications, e.g., intelligent visual surveillance, image and video retrieval and web
content analysis. Object classification and detection share some common compo-
nents and face many common challenges (see Fig. 1), e.g., variability in illumina-
tion, rotation and scales, as well as deformation, clutter, occlusion, multi-stability
and large intra-class variations.

Fig. 1. Common challenges in object classification and detection

Despite the above challenges, great progress has been made in the past decades,
and many algorithms have been proposed. In this paper we discuss the general
framework of object classification and detection, and some classic methods in each
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component of the framework. Afterwards, we introduce our work on object classi-
fication and detection, especially our solutions which were ranked among the best
in the PASCAL VOC competition [1,2]. Finally, we point out some potential di-
rections for future work.

2 General Framework and Methods

2.1 General Framework

The general framework of object classification and detection is illustrated in
Fig. 2, where the first and the last module are shared by object classification
and detection. In this subsection, we discuss these two common modules, and
then analyze the other modules in the following two subsections.

Fig. 2. A general framework of object classification and detection

The first module, i.e., feature extraction, usually includes two main steps:
extracting image patches and representing image patches. Extracting image
patches is implemented via sampling local areas of images, usually in a dense or a
sparse manner. Representing image patches is implemented via statistical analy-
sis over pixels of image patches. The representation vectors of image patches are
called local features. Widely used features include: 1) appearance based ones,
e.g., scale-invariant feature transform (SIFT) [19], histogram of oriented gradi-
ents (HOG) [8]; 2) color based ones, e.g., color descriptors [25]; and 3) texture
based ones, e.g., local binary pattern [22] and Gabor filter [18].

The last module, i.e., classification, is a hot topic in machine learning. Many
classic classifiers are used in object classification and detection, e.g., Boosting,
SVM and KNN. Also, kernel tricks, e.g., inter section kernel [3], are often used
to enhance the overall performance.

2.2 Object Classification

In this subsection, we discuss the other modules in object classification, i.e.,
building feature space and describing features with the feature space.
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Building Feature Space. Feature space consists of a group of base vectors.
In particular, in the well-known bag-of-features model, the feature space is com-
posed of a set of dictionaries, which are also called visual codes or codebook.
There are three strategies to build the feature space, explained as follows.

The first one randomly chooses patches from images as the base vectors. This
method is adopted in some biologically inspired models [27,14,13]. It is fast but
does not sufficiently reflect the characteristics of the feature space.

The second one is based on supervised learning, i.e., generating dictionaries via
supervised learning over local features. This scheme builds the relation between
features and image labels, and well reflects the structure of the feature space.
However, it is time-consuming because it needs to iteratively resolve dictionaries.
For more details, readers are referred to the literature [5,20].

The third one is based on unsupervised learning, i.e., obtaining the base vec-
tors via unsupervised learning over local features. This strategy finds a good
balance between accuracy and speed, and is widely used in recent methods.

Describing Features. Describing features is a very important component in
object classification, and greatly influences image classification in both accuracy
and speed. Existing coding strategies can be divided into the following categories:

Voting-based methods [7,12] describe the distribution of local features, reflect-
ing the occurrence information of visual codes.

Fisher coding-based methods [23,24] calculate the distribution of local features
with the Gaussian Mixture Models. Each Gaussian model describes a kind of
local features.

Reconstruction-based methods [32,29] encode a feature by least-square-based
optimization with constraints on the number of codewords for reconstruction.

Local tangent-based methods [33,38] firstly estimate the manifold of the feature
space, based on which an exact description of local features is derived.

Saliency-based methods [15,31] depict a local feature by the saliency degree,
e.g., the ratio of the distances from a local feature to the codewords around it.

For more details of feature coding, readers are referred to our recent paper [16],
which provides a comprehensive study about feature coding.

2.3 Object Detection

A typical object detection system is composed of four major steps: window
search, object representation, machine learning and optimization, and post-
processing. For the sake of space, we only introduce window search and object
representation in this subsection.

Window Search: Most existing approaches follow the sliding-window paradigm
[8,10,28,35,26,9]. In this case, generic object detection is formulated as a binary
classification task. In the detection stage, the detector model evaluates each
sliding window across scales and locations in an image, and then thresholds it
as an object or not. So the simplest method is applying exhaustive search. In
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contrast to exhaustive search, there are several approaches on heuristic window
search for the purpose of narrowing search space and accelerating detection.

Exhaustive search can be found in typical detection methods [8,35,9]. The
advantage of exhaustive search is that it can obtain a relative high recall rate, re-
ducing missing rate. But the large search space makes it intractable for real time
object detection. Motivated by this challenge, heuristic window search methods
have been developed. Lampert et al.,[17] propose efficient subwindow search
(ESS) with branch and bound strategy. This method is based on sparsely de-
tected features. If it is built on densely extracted features, the efficiency of ESS
cannot be guaranteed. We all know that the segmentation and salience informa-
tion provide the prior for object location. Thus, there are also some studies on
heuristic window search based on segmentation and salience analysis [28].

Object Representation: Representation models mainly include part based
models [35,36,26,9,34] and rigid template models [8,28].

Part based representation was firstly proposed by Fischler and Eschlager [11].
In this model, an object is represented by several parts in a flexible and de-
formable configuration [11]. Each part is usually described or represented by a
small rigid template. The spatial relationships between parts are considered by
spring-like connections for structure description [6]. Therefore, part based model
can be considered as a top-down structured model, which is robust to partial oc-
clusion and appearance variations. Recently, excellent part based models [26,9]
have shown their success on many difficult datasets [21]. Due to their robustness
to deformation, occlusion, part based model is regarded as a promising method
for object localization.

The other common representation model is the rigid template model [8,35].
Rigid template model describes an object in a holistic manner, so they cannot
well capture the structure variations of objects. Therefore, they perform well
on well conditioned databases but suffer from those challenging data with de-
formations and occlusions. Besides, both the part based model and the rigid
template model are associated with low-level features. Thus, progress on low-
level features helps the improvement of object representation greatly as well. One
classic feature is histogram of oriented gradients (HOG) [8]. The others include
scale-invariant feature transform (SIFT) [19] based bag-of-words feature, pairs
of adjacent segments (PAS) [10], local binary patterns (LBP) [22],etc.

3 Our Work

In this section, we introduce our solutions to object classification and detection,
which were ranked among the best in the PASCAL VOC competition.

3.1 Object Classification

Our system of object classification is based on the bag-of-features model [7], with
four steps different from traditional ones as illustrated in Fig. 3 and explained
as follows.
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Fig. 3. Our system of object classification in VOC

1. We use different kinds of low level features: SIFT, HOG, LBP, color descrip-
tor and Gabor filters. They play different roles in object description.

2. We apply parts learning from the deformable part-based model [9]. The
learnt parts are augmented as a new set of dictionaries, which is demon-
strated to be discriminative in differentiating objects from different classes.

3. We choose three methods for feature coding: super-vector coding [38], local
constraint liner coding [29] and salient coding [15]. These methods com-
plement each other in feature coding, which helps to improve the overall
performance of object classification.

4. With different feature description and feature coding methods, the final di-
mensionality is very high. For dimensionality of more than a million for each
image, which dimensionality reduction method should we use? We find that
PLS [30] is good choice in this case.

3.2 Object Detection

Our detection system is based on the local structured model. In VOC2010, at the
feature level, we propose Local Structured Descriptor and develop new descrip-
tors from shape and texture information, respectively. Secondly, at the topology
level, we present a local structured part representation with boosted feature se-
lection and fusion scheme. Fig. 4(a) shows the framework we used in VOC2010.

The system includes two parts: building features and training local structured
part detectors. The first part includes extracting local structured descriptors and
feature selection of local structured LBP in a supervised manner. In the second
stage, we firstly train the root model or holistic model using the learnt features
from the first stage, then initialize local structured part appearance models from
the root model. Linear SVM is applied to optimize the parameters. For more
details, we refer readers to our previous papers [35,34].

The method mentioned above has two limitations: the model complexity is
high and the model is still not “deformable” enough. Motivated by these chal-
lenges, we propose a data decomposition and spatial mixture modeling method
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Fig. 4. System framework used in VOC2010 [35] and VOC2011 [36]

[36,37] in VOC2011 as shown in Fig. 4(b). Firstly, data decomposition is devel-
oped for the part based model, which not only largely reduces memory usage
and computational cost but also outperforms other related systems. Secondly, a
spatial mixture modeling method in which part location is described as a mix-
ture distribution learnt from weakly labeled data, is proposed for more flexible
structure description. Thirdly, we unify the spatial mixture model into the data
decomposition framework. To the best of our knowledge, the presented system
achieves the state-of-the-art performance compared with all other related meth-
ods from both the competition and the open literature. Due to limit of space,
we refer readers to [36,37] for details.

4 Future Work and Conclusions

Object classification and detection, despite of decades research, remain two very
active research topics in computer vision and pattern recognition. Every year,
more than one hundred related papers appear in various top conferences and
journals. Also, it should be recognized that there are still many challenges to
be solved as we discussed in Introduction. Based on the analysis in this paper
and our own experience, we think that the following directions deserve more
attention:

– For object classification, the spatial relations of local features and the struc-
ture information of objects are still not well exploited. We believe that the
progress in these two problems will greatly enhance current object classifi-
cation models. Besides, representation learning [4] has shown good potential
and provide new perspective on understanding object classification.

– For object detection, current methods mainly focus on learning structure
parameters from data but ignore jointly learning structure topology and
structure parameters. A potential direction is learning them together from
data. Secondly, big data not only bring challenges but also opportunities for
object detection. How to take advantage of big data with the latest machine
learning techniques and biological observations is also promising.

– In addition, the integration of object classification and detection at the rep-
resentation level is also an interesting direction for future work.
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Abstract. There is an increasing demand for a new measure of con-
vexity for discrete sets for various applications. For example, the well-
known measures for h-, v-, and hv-convexity of discrete sets in binary
tomography pose rigorous criteria to be satisfied. Currently, there is no
commonly accepted, unified view on what type of discrete sets should be
considered nearly hv-convex, or to what extent a given discrete set can
be considered convex, in case it does not satisfy the strict conditions.
We propose a novel directional convexity measure for discrete sets based
on various properties of the configuration of 0s and 1s in the set. It can
be supported by proper theory, is easy to compute, and according to
our experiments, it behaves intuitively. We expect it to become a useful
alternative to other convexity measures in situations where the classical
definitions cannot be used.

Keywords: Binary Tomography, Discrete Geometry, Convexity
Measure.

1 Introduction

Convexity is a crucial geometrical feature of a discrete set, e.g. in binary
tomography[6], where the aim is to reconstruct binary images from their pro-
jections. Several reconstruction methods utilize preliminary information — such
as horizontal (h), vertical (v) or both horizontal and vertical (hv) convexity —
about the set to be reconstructed [2,4,5,7]. However, definitions for convexity
are strict, in the sense that a change in a single pixel of the corresponding bi-
nary image could cause the set to lose its horizontal and/or vertical convexity,

� L.G. Nyúl was supported by the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences. P. Balázs was supported by the OTKA PD100950 grant of the
National Scientific Research Fund. The research of P. Balázs and T.S. Tasi was par-
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European Social Fund under the grant agreement TÁMOP 4.2.4.A/2-11-1-2012-0001
(’National Excellence Program’) and under the grant agreement TÁMOP-4.2.2.A-
11/1/KONV-2012-0073 (’Telemedicine-focused research activities on the field of
Mathematics, Informatics and Medical sciences’).
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thus the previous methods cannot be applied anymore. Instead of providing a
binary property to determine whether a set is convex or not, we prefer to assign
each discrete set a degree of convexity. One could view this as fuzzifying the
set of convex shapes by determining a membership value for each shape. Such
a measure of convexity describes the image better than a binary value, and it
should be more robust to noisy data. Therefore, it can be used to give a more
detailed feature of the image, and even guide the reconstruction, in case such
task is performed.

Various continuous and several discrete convexity measures have been intro-
duced in image processing over the years, most of them belonging to a few,
well-defined categories. Area based measures have been popular for quite some
time [3,11,12], as well as boundary-based ones, like [13]. Other methods use
simplification of the contour [8] to derive a shape hierarchy, or even use a prob-
abilistic approach [9,10] to solve the problem. Our proposed method falls into
the latter category, but takes a different approach. Instead of an approximation
based on random inner points, or on certain pixels on the boundary, it treats all
points equivalently.

The structure of the present paper is the following. In Section 2 we present
the preliminaries for our problem and some basic features of images in binary
tomography. Section 3 introduces our new convexity measure. In Section 4 we
present few experimental results, and finally Section 5 is for the conclusion.

2 Preliminaries

2.1 Definitions and Notation

Let us consider the two-dimensional integer lattice Z2 on the plane. Any finite
subset of this lattice is called a discrete set. A discrete set cannot only be repre-
sented by its elements, but also by a binary matrix or a binary image.

Adjacency in binary tomography is defined as follows: two positions P =
(p1, p2) and Q = (q1, q2) in a discrete set are 4-adjacent if |p1−q1|+ |p2−q2| = 1.
A discrete set F is called 4-connected if for two arbitrary positions P,Q ∈ F ,
there exists a sequence of distinct positions P = P0, P1, . . . , Pl = Q in the set
F , so that Pi is 4-adjacent to Pi−1, respectively, for each i = 1, . . . , l. Sometimes
we also call 4-connected discrete sets polyominoes. A discrete set F is h-convex
if no individual row contains any intervening 0s in the sequence of 1s, v-convex
if no individual column contains any intervening 0s in the sequence of 1s, and
hv-convex if both conditions are met.

Run-length encoding (RLE) is a simple, yet useful form of discrete data repre-
sentation, mainly used for data compression purposes. Instead of storing data as
is, each sequence in which the same data value appears in consecutive elements
is stored as a single data value and a counter. This, of course, is effective only
if there are relatively few, but preferably long runs of identical values in the
data. This representation becomes highly beneficial when calculating convexity
of rows or columns of discrete sets. A token or run is a maximal sequence in
which the same data value occurs in consecutive data elements. The length of a
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given token is the number of occurences of the same data value in that particular
token. A 1-token is a token of 1s and a 0-token is a token of 0s.

Consider, for example the following row of length 15: 001111100011111. We
can represent this row in a more visible way, 02150315, where the superscripts
represent the length of each token (counters). The span of the data in a single row
(column) is the distance between the outermost 1s in that row (column), while
the length of the row (column) is the total number of bits present in that row
(column). Obviously, the length is never smaller than the span. In our example
the span of the row is 13, and its length is 15.

2.2 Basic Properties of a Convexity Measure

From a one-dimensional convexity measure we expect the following desirable,
basic properties, several of which were also considered in [9,10]:

– It should give a value for all discrete sets in the interval [0, 1].
– For the least convex sets in the defined sense, it should give 0.
– It should give 1 if and only if the set is convex in the defined sense.
– It should be invariant under appropriate geometrical transformations.

In discrete geometry, thus in binary tomography the latter should be treated
carefully. The measure is usually expected to be translation invariant, and it
could be invariant with respect to uniform scaling. However, it is not expected
to be rotation invariant, since elements of binary images are arranged in rows
and columns, thus rotation is inherently problematic.

3 Introducing a New Convexity Measure

3.1 Preliminary Experiments

We carried out various early statistical experiments on discrete sets, mostly
on the benchmark sets of [1] with added noise and distortions. We tried several
combinations of the following features that, we believed, could truly describe the
convexity of a sequence of binary digits: number of bit changes in the sequence,
the span of the data, the length of the sequence, the number of 1-tokens in
the sequence, the number of 0-tokens between the outermost 1-tokens in the
sequence, etc. Although some results were promising, we concluded that each of
these ad hoc measures unjustifiably favored some patterns as the most or least
convex sets.

3.2 A Measure for Directional Convexity

To provide a measure that is objective and universally applicable, a theoretical
approach is needed. One should consider the definition of convex shapes in the
continuous domain. A planar shape C is said to be convex if for arbitrary points
A,B ∈ C, all points of the line segment AB belong to C. One could determine



12 T.S. Tasi, L.G. Nyúl, and P. Balázs

the convexity of C by taking all possible pairs of points in C and measuring the
proportion of points in the formed line segments that are not in C (the outer
points). Of course, when C is convex, no line segment connecting points of C will
contain outer points. Unfortunately, even if the shape is discretized, thus there
is only a finite number of points, it is computationally too expensive to calculate
all contributions of outer points in all possible line segments in C. To overcome
this problem possible solutions so far include random sampling of inner points,
randomly choosing points on the boundary only [10,13], or using probabilistic
measures to estimate the convexity of the shape [9].

Instead of limiting our calculations to only a random selection of points, we
consider all pairs of points in the set and the line segments connecting them, but
only in a few number of predefined directions. This approach suits binary tomog-
raphy better, since there are certain fundamental directions for describing and
examining binary images, such as horizontal and vertical. Although throughout
this paper we measure convexity in these two directions only, one could select
any particular direction.

3.3 Calculating Directional Convexity

We compute directional convexity of a row (or column) in the following way. We
split the row (column) into a sequence of 1-tokens and 0-tokens (see Section 2).
From the construction above trivially follows that leading and trailing 0-tokens
do not contribute to the measure, thus hereafter we shall omit them. The rest of
the row (column) can be encoded as 1k10l11k20l2 . . . 1kn , where n is the number
of 1-tokens and k1, l1, k2, l2 . . . , kn > 0. Trivially, taking two 1s from the same
1-token, the line segment connecting them will not contain any 0s and will not
contribute to the convexity measure. Now, let us take two arbitrary 1s from
different 1-tokens, say the ith and jth, such that i < j. The contribution of 0s
(outer points) in the line segment that connects them is

j−1∑
t=i

lt . (1)

For two different 1-tokens (ith and jth), we can form kikj possible pairs of 1s,
by picking one from each. The contribution of this particular 1-token pair is

kikj

j−1∑
t=i

lt . (2)

Finally, to get the contributions for the entire row (column) one has to sum up
(2) for all possible

(
n
2

)
combinations of 1-token pairs:

ϕ =
∑

1≤i<j≤n

kikj

j−1∑
t=i

lt . (3)



Directional Convexity Measure for Binary Tomography 13

Fig. 1. A 4-connected discrete set with the highlighted column 1100100110 (left). For
that particular column ϕ = 2 ·1 ·2+2 ·2 ·4+1 ·2 ·2 = 24. Another 4-connected discrete
set (right), with a line segment in a different direction. The highlighted line segment
to be used for the calculation in this case is 1011000111, with ϕ = 32.

The higher ϕ is, the less convex the row (column) is. Therefore, ϕ actually in-
dicates the directional non-convexity of the row (column), rather than the direc-
tional convexity. Later, we shall describe a way to define a directional convexity
measure based on ϕ.

Figure 1 shows an example discrete set on the left, represented by its binary
image and the calculation of ϕ of its highlighted column. On the right, it shows
a different discrete set and a discrete line segment that connects two of its inner
points, emphasizing on the fact that the same calculations can be made for
arbitrary discrete directions.

3.4 Normalizing Directional Non-convexity

To obtain a normalized measure, it is required to know what is the maximum
value a single row can produce for (3), i.e. which is the least convex row ac-
cording to our measure. Initially we ran simulated annealing to find rows with
such property, but eventually it became clear that such rows have the form of
1K/30K/31K/3, where K is the length of the row and K ≡ 0 (mod 3). (In case
K ≡ 1 (mod 3) is true, then 1�K/3�0�K/3�1�K/3� is the correct form, while if
K ≡ 2 (mod 3) is true, then 1�K/3�0�K/3�1�K/3� is the correct form.) The fol-
lowing two lemmas form the basis of this fact.

Lemma 1. Let a row be given such that 1k10l11k20l2 . . . 1kn , with k1 = l1 =
· · · = kn = K

2n−1 . Then the non-convexity of the row is maximal if n = 2.

Proof. There are n − 1 pairs of 1-tokens having exactly one 0-token between
them, n− 2 pairs of 1-tokens having exactly two 0-tokens between them, and so
on. Finally, there is one pair of 1-tokens having n − 1 0-tokens between them.
For 1-tokens with exactly i 0-tokens between them the non-convexity sum is

(n− i)
( K

2n− 1

)2 iK

2n− 1
. (4)
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Thus, the total non-convexity sum for the row is

ϕn =

n−1∑
i=1

(n− i)
( K

2n− 1

)2 iK

2n− 1
=

=
K3

(2n− 1)3

n−1∑
i=1

i(n− i) = K3

(2n− 1)3

(
n

n−1∑
i=1

i −
n−1∑
i=1

i2

)
=

=
K3

(2n− 1)3

(
n2(n− 1)

2
− (n− 1)n(2n− 1)

6

)
=
K3n(n− 1)(n+ 1)

6(2n− 1)3
.

(5)

Similarly,

ϕn+1 =
K3(n+ 1)n(n+ 2)

6(2n+ 1)3
. (6)

Then, for an arbitrary n ≥ 2

ϕn − ϕn+1 =
K3n(n+ 1)

6

(
(n− 1)(2n+ 1)3 − (n+ 2)(2n− 1)3

(2n− 1)3(2n+ 1)3

)
> 0 (7)

since (n − 1)(2n + 1)3 − (n + 2)(2n − 1)3 = 12n2 − 16n + 1 > 0. Thus, ϕn is
maximal if and only if n = 2. ��

Lemma 2. Let a row be given such that 1a0b1c with a, b, c > 0 and K = a+b+c.
Then the non-convexity of the row is maximal if a = b = c.

Proof. From the definition it follows that ϕ(1a0b1c) = abc = ab(K − a− b). For
the maximality of this expression the derivatives must be equal to 0, i.e.,

bK − 2ba− b2 = 0 and aK − a2 − 2ba = 0 . (8)

Knowing that a, b > 0 we get that

K − 2a− b = 0 and K − a− 2b = 0 , (9)

thus 2K − 3a− 3b = 0 and therefore 2
3K = a+ b. Substituting b = 2

3K − a into
(8) the lemma follows. ��

Hence, the maximum value of non-convexity of a row (column) is (K/3)3,
where K denotes the length of the row (column). Using this, the normalized
non-convexity of a row (column) is

ϕ̂ =
ϕ

(K/3)3
. (10)

3.5 Directional Convexity of a Two-Dimensional Discrete Set

The directional non-convexity of a two-dimensional discrete set can be defined
as the mean of the normalized non-convexity value of all rows (columns). For
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Ψh = 0.97293 Ψh = 0.76725 Ψh = 0.57703 Ψh = 1.00000
Ψv = 0.97698 Ψv = 0.86526 Ψv = 0.61871 Ψv = 0.00000

Ψh = 0.70096 Ψh = 0.65352 Ψh = 0.61404 Ψh = 0.52158
Ψv = 0.97483 Ψv = 0.88247 Ψv = 0.81841 Ψv = 0.69037

Fig. 2. Example binary images of size 50 × 50, with horizontal (Ψh) and vertical (Ψv)
convexity shown. Bottom row: same image without, and with 5%, 10%, and 20% noise.

example, for an entire binary matrix consisting of m rows, the directional non-
convexity is

Φh =

∑m
r=1 ϕ̂r

m
, (11)

where ϕ̂r is the normalized non-convexity of the rth row. From Φh one can
simply derive a directional convexity measure for a discrete set by any monotonic
continuous mapping from [0, 1] to [1, 0], e.g. Ψh = 1−Φh can be considered such
a measure. Analogously we can define the vertical convexity Ψv.

4 Experimental Results

The proposed method for measuring directional convexity of binary images along
a defined direction has been tested thoroughly. Most of the images used were
binary images derived from the 4-connected convex discrete sets of [1] by per-
forming various operations resulting in a wide variety of non-convex images.
Such operations included adding salt and pepper noise, applying morphological,
topological, and set operations. Figure 2 shows a few display examples, along
with the corresponding convexity measures.

We found that our method performs particularly well on noisy images, con-
trary to other methods that we tested that use the convex hull of the object or
the span of each row or column. Another advantage is that the transition of the
measure from convex to concave images is much smoother compared to other
methods. With several other methods we experienced huge declines in function
value caused by only a small distortion or noise in the image, which, we firmly
believe, is unacceptable. Our model does not include any artificially favoured
structure in the image to be considered the least convex.



16 T.S. Tasi, L.G. Nyúl, and P. Balázs

5 Summary and Conclusion

In this paper we propose a new method to measure directional convexity of dis-
crete sets. So far in all experiments we used horizontal and vertical directions,
conventional in binary tomography, but the method works with any predefined
direction as well. We are already working on the generalization to combine sev-
eral directions to build a more global convexity measure for multidimensional
discrete sets. We also have preliminary results on extending this work to measure
convexity of not neccessarily binary discrete images, which may open ways to
explore the connections between representations of binary, discrete, fuzzy, and
continuous properties of shapes in images.
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Abstract. Uterine Cervical Cancer is one of the most common forms
of cancer in women worldwide. Papanicolau smear test is a well-known
screening method of detecting abnormalities in the uterine cervix cells.
In this paper we address the problem of anomaly detection in pap smear
images. Our method avoids modeling the normal pap smear images which
is a very complex task due to the large within class variance of the normal
target appearance patterns. The problem is posed as a Visual Attention
Mechanism. Indeed the human vision system actively seeks interesting
regions in images to reduce the search export in tasks, such as anomaly
detection. In this paper, we develop a new method for identifying salient
regions in pap smear images and compare this to two previously reported
approaches. We then consider how such machine-saliency methods can
be used to improve human performance in a realistic anomaly detection
task.

Keywords: microscopic images, anomaly detection, saliency, SVM
classification.

1 Introduction

In general terms, Anomaly Detection (AD) is the process of discovering data
that are different, in some sense, from the patterns defined by a observed data
set. The main challenge in an AD system is how to define what an anomaly
is, because, normally, we have the descriptions of the regularity of the problem.
For that reason, AD is frequently defined in a negative way: the target is to
determine what is not normal or what does not fill a specific rule.

In the special case of AD in medical image, a lot of works have been re-
ported [1]. AD algorithms have been applied in the detection of tumours [2],
malformations [3], abnormal cells [4], etc.

Cervical cancer, currently associated with the Human Papilloma Virus as one
of the major risk factors, affects thousands of women each year. The Papanico-
laou test (also known as Pap test) is used to detect pre-malignant and malignant
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(a) (b)

Fig. 1. Pap-smear cell images. (a) Dark blue parts (yellow squares) represents the
nuclei. Pale blue and reddish parts (blue boxes) are the cytoplasms. Magenta parts
(orange boxes) are the background. (b) Touching cells (surrounded in yellow). Isolated
cells (surrounded in orange). Noise (surrounded in red).

changes in the cervix [5]. Cervical cancer can be mostly prevented by early de-
tection of abnormal cells in smear tests.

As illustrated in Fig. 1, three classes of regions are considered: nucleus, cyto-
plasm, and regions that include background, noise, and other kinds of cells.

Developing automated algorithms for AD continues to pose interesting chal-
lenges. The goal of the present work is to develop an automated and computa-
tionally efficient algorithm for the detection of anomalies, associated principally
with cancer, in Pap smear images.

Biological vision systems demonstrated a remarkable ability to recognize ob-
jects under adverse conditions, such as highly cluttered scenes. The use of saliency
mechanisms is believed to play an important role in this robustness to clutter.
They make salient locations “pop-out”, driving attention to the appropriate re-
gions of the visual field [6]. Biological vision systems rarely need to perform an
exhaustive scan of a scene in order to detect an object of interest. These saliency
detectors have been widely adopted in computer vision for applications such as
object tracking, recognition and event analysis [7]. In these applications, saliency
is used as a preprocessing step that saves computation and facilitates the design
of subsequent stages.

Generally speaking, the detection of salient regions follows two paradigms: the
object-based approaches [8,9], where the saliency is determined by the distribu-
tion of objects in the image, and the spatial-based approaches [10,11], where the
saliency is determined by the selectivity of spatial locations. Both, object-based
and spatial-based approaches, have drawbacks that one must take into account
in developing biological vision systems. For the object-based approaches, it is
necessary to develop robust mechanism for the detection of the objects in the
image. On the other hand, spatial-based approaches usually fail when scenes are
cluttered, the objects are overlapping, or objects distribution is heterogeneous
or unbalanced. Many object-based saliency estimators have been reported in the
literature. In most of them [12,13,7], the saliency of a region is determined from
region’s contrast, size, shape, and location.

In this work, anomaly detection based on Visual Attention Mechanism is pro-
posed. The paper proposes a visual attention model to (i) first determine salient
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Fig. 2. Framework for detection of anomalies in Pap smear images

areas defined as Region-of-Interest (ROI) where anomalies could lie, and (ii) a
second a saliency measure characterizing abnormal cells for the final anomaly
detection.

The reminder of the paper is organized as follows. Section 2 describes the
framework for the detection of anomalies in Pap smear images. Section 3 presents
and discusses the obtained results. Finally, conclusions are presented in Section 4.

2 Materials and Methods

The general framework for anomalies detection in Pap smear images is shown
in Fig. 2. This process has two main steps: the selection of Region of Interest
(ROI), and the salient regions detection.

Both steps use a segmentation of the image obtained using the Mean-Shift
segmentation algorithm [14]. Mean-shift is a popular method to segment im-
ages and videos. It has been widely used in cell images segmentation with good
results [15,16,17].

2.1 Selection of the ROI

The goal of Region-of-interest (ROI) extraction is to separate the part of the
image that contains the objects of interest (i.e. cells, tissues, parts of cells, can-
cerous cells, anomalies) from the parts that contain unusable information (i.e.
background, small noise areas, dirt particles).

In our approach, ROI detection is based on Visual Attention Mechanism,
using the Selective attention algorithm proposed in [18]. The saliency map is
calculated using a frequency-tuned approach based on low level features of colour
and luminance. For the objects, region saliency value is calculated by averaging
the pixel-based saliency map over the pixels of a region. This method separates
the background and very large cytoplasms from the rest of the segments in
the image (see Fig. 3) . This method, by itself, is not able to detect cells with
abnormal changes.

2.2 Salient Regions Detection

Our method for anomaly detection is based, principally, on the method used by
pathologists to determine some kinds of anomalies. The main characteristic of
an abnormal cell in Pap test are [19]:
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Fig. 3. Extraction of the ROI

– Nuclei are too big with an irregular texture without a clear pattern.
– Cytoplasms are too small.
– Cells are frequently crowded.

Formally, the saliency of a region ri at the segmentation R = {r1, r2, · · · , rn}
is given by:

S(ri) = ζ(ri) ·
1

φ(Pr(ri ∈ Anomalies))

·AreaFactor(ri) ·RelativeAreaFactor(ri)

Compactness(ri)
. (1)

ROI Belonging: Function ζ(ri) controls the belonging to the ROI.

ζ(ri) =

{
0 if ri /∈ ROI
1 if ri ∈ ROI

. (2)

Area Factor: The term AreaFactor(ri) is calculated as:

AreaFactor(ri) =
Area(ri)

Area(r̂i)
(3)

where r̂i is the region in the ROI that contains ri.
Relative Area Factor: The relative area factor of a region is the ratio of the
area of the region and the area formed by the region and its neighbours. Formally,
the relative area factor of a region is given by:

RelativeAreaFactor(ri) =
Area(ri)

Area(ri) +
∑

rj∈ξ(ri)
Area(rj)

(4)

where ξ(ri) is the set of neighbours of the region ri.
Compactness: Compactness function takes its values up to 1 and it measures
the compactness degree of a region where a perfect circle is the most compact
region with compactness equal to 1.

Compactness(ri) =
Perimeter2(ri)

4 · π ·Area(ri)
. (5)
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Potential of Being an Abnormal Cell: Similar to [20], the parameter φ(Pr(ri ∈
Anomalies)), represents the potential of being an abnormal cell, is here defined
as follows:

φ(Pr(ri ∈ Anomalies)) =
1

1 + Pr(ri ∈ Anomalies)
(6)

where Pr(ri ∈ Anomalies) is the probability of ri to be an abnormal cell, given
the feature vector f(ri).

In our approach, Pr(ri ∈ Anomalies) is calculated by using the method of
Platt [21], from the output of a two-class (normal or abnormal) SVM [22] trained
by using as feature vector f(ri), the mean of the L, a, and b channels and the
standard deviation of the L channel of the region in the Lab colour space. SVM
training was carried out using a training set of images.

The parameters of the SVM classifier have been selected as follows. A linear
kernel SVM and Gaussian kernel SVMs (with different values for σ) were trained
by using a 10-fold cross-validation. A grid search method was used to select the
best parameters of the SVM. The penalty parameter of the error C was tested
in C = {2i : i = −1..14,∞}, as well as the parameter of the Gaussian kernel σ
in σ = {2i : i = −3..4}. The best performance was obtained for C = 1024 and a
Gaussian kernel SVM with σ = 1. Finally,

Pr(ri ∈ Anomalies) =
1

1 + exp(A · f +B)
, (7)

where f is the output of the SVM, and the parameters A and B are fitted by
using maximum likelihood estimation [21].

Finally, the detection of anomalies in Pap smear images will be done by the
comparison with a threshold T . Regions with saliency greater that T will be
considered the foci of attention and classified as anomalies. Selection of T was
done empirically and it was fixed as T = max(0.01, p0.9), where p0.9 is the 90%
percentile of the saliencies of all the regions.

3 Results and Discussion

The proposed approach was applied to 40 images taken in the Gynaecological-
Obstetrical Hospital of Santa Clara, Cuba. Pap smears were prepared by quali-
fied technicians. The images were taken at 650x using a 319CU digital microscopy
Camera. Regions that correspond with malignant or pre-malignant formations
(abnormal growing of the nucleus) were manually segmented by experts as illus-
trated in Fig. 4(a) and (b).

The performance of the proposed anomaly detector, denoted as BIAD, has
been evaluated via three classifier quality measures: precision, recall and F-
measure [23]. True positive cases refer to the abnormal cells detected over the
whole image. Abnormal cells that do not belong to the ROI are considered as
false negatives.

In our evaluation, a detected anomaly region is considered as true anomaly if
it intersects a ground truth anomaly region. Fig. 4 shows the anomalies detected
using the proposed method in a typical pathological image.
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(a) (b) (c) (d)

Fig. 4. Example of anomaly detection. (a) Original image. (b) Ground truth. (c) De-
tected anomalies using the proposed method over the original image. (d) Detected
anomalies using the proposed method over the mean-shift smoothed image.

Table 1 shows the obtained results in terms of recall, precision, and F-measure,
along with comparison to existing general purposes region-based focus of atten-
tion schemes, denoted as M1 [12], M2 [13], and M3 [7], respectively. The first
three columns refer to the results using the original images, and the last three
columns refer to the results using smoothed images. The Mean-Shift filter [14]
has been used for image smoothing.

As it can be seen, the best results were obtained using the proposed method.
Indeed, compared to the general purpose state-of-the-art methods, the intro-
duced criteria used in the estimation of the saliency (area factor, relative area
factor, and compactness) well-emulate some of the criteria used by pathologists.
Moreover, the incorporation of a powerful machine learning technique, a SVM,
contributes to the reduction of false negatives.

On the other hand, the results for the filtered images are worse than for the
original images. Abnormal cells frequently lose important characteristics useful
when you want to make an evaluation. This makes difficult to detect abnormal
cell in these images. After this stage, these characteristics are smoothed. The key
point is the delineation of the cytoplasm (Fig. 4). Our method tries to calculate
the ratio between the area of the nucleus and the area of the cytoplasm. If cyto-
plasm is not well-segmented or, in the worst case, it is lost, then the evaluation
of the saliency using our method does not provide good results. Indeed, if the
segmentation method used to determine the regions is prone to oversegmenta-
tion, undersegmentation, or poor delineation of the regions the measure of the
saliency will be widely biased.

Table 1. Results obtained with the proposed method and the comparison with another
methods

No Filtering Mean-Shift Filtering

Recall Precision F-measure Recall Precision F-measure

BIAD 93.36% 63.48% 75.57% 86.53% 61.53% 71.92%

M1 50.52% 21.38% 30.05% 35.71% 18.60% 24.46%
M2 61.87% 37.58% 46.76% 50.38% 32.35% 39.40%
M3 48.62% 20.97% 29.31% 33.94% 16.17% 21.90%
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4 Conclusions

In this work, we introduced a visual attention mechanism for the detection of
anomalies in images of the Papanicolaou test. First, a ROI extraction is per-
formed in order to focus the analysis in suspected areas of the image, avoiding
wasting computational resource in small regions, noise, dirt, etc. In the second
step, we estimate the saliency of every region in the ROI by using a region-
based saliency estimator. We use a supervised approach, via SVM, to estimate
the probability of being an anomaly, in combination with cytological information
of the abnormal cells. Finally, most salient regions (with a saliency greater than
a predefined threshold) are considered as anomalies. As future work, we planned
an extensive evaluation with pathologists.
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Abstract. Noninvasive imaging of unstained living cells allows to study living
specimens without altering them, and is a widely used technique in biotechnol-
ogy for determining biological and biochemical roles of proteins. Fluorescence
and contrast images are both used complementarily for better outcomes. How-
ever, segmentation of contrast images is particularly difficult due to the presence
of lighting/shade-off artifacts, defocused scans, or overlapping. In this work, we
make use of the optical properties intervening during the image formation pro-
cess for cell segmentation. We propose the shear oriented polar snakes, an active
contour model that implicitly involves phase information. Experimental results
confirms the method suitability for cell images segmentation.

Keywords: active contours, image phase estimation, smart markers, image
segmentation.

1 Introduction

Determining biological and biochemical roles of proteins is one of the critical tasks in
biotechnology. Towards this goal, one of the most popular and successful technique is
the noninvasive imaging of unstained living cells, which is mostly based on fluorescence
and contrast imaging, and allows to study living specimens without altering them. Very
often, fluorescence images with expression of (targeted) proteins and contrast images
with individual cells information, are both used complementarily. Their combination
provides better ways to measure the number of individual cells in populations, better
sub-cellular localization of proteins, more precise individual cellular morphology mea-
surements, cells population time-lapse evolution analysis, among other related tasks.

Considering images such as the one illustrated in Fig. 1(a), several approaches could
be considered for segmentation, such as mathematical morphology [1], Level-sets [6]
and active contours [7]. Authors in [4] estimate (restore) the phase information related
to the image in question, and perform a subsequent level-set segmentation over the
artifacts-free restored phase image, obtaining better results than segmenting the origi-
nal phase contrast image. They showed how the resultant estimated image can be bet-
ter segmented, even when using simple automatic thresholding techniques. Despite the
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mentioned improvements several drawbacks are still present. They use a more gen-
eral/complex formulation for the phase estimation, but convexity on the related opti-
mization problem can not be granted. Also, their strategy fails to cope with high-density
overlapping (multilayer) cells cultures, where superposition of lighting/shade-off of in-
dividual cells introduces errors in the recovered phase (see Fig.1). As consequence,
these errors have a high negative impact on the level-set segmentation since they use
the estimated phase for the initialization of the level-set and for the segmentation as
well.

(a) Phase Contrast Image. (b) Estimated Phase.

Fig. 1. Errors on the estimated phase are caused by the superposition of cells in multilayer cultures

Inspired by the work of Yin et al. [4], we estimate the phase using a simple and well
known formulation that grants convergence towards the approximation, and we use a
parametric active contour (snakes) with a novel energy functional.

In this paper we propose the shear oriented polar snakes [8], a parametric active
contour model that: i) implicitly involves phase information on its energy functional
using a provided shear-angle orientation, and ii) use the estimated phase image for the
snakes initialization, but minimize the energy on the original image. The segmentation
process is illustrated in Fig.(2).

Fig. 2. The proposed segmentation process

The reminder of this paper is organized as follows: a review of phase-contrast optics
and active contours models is provided in Section 2, along with the proposed energy
model details. Experimental results are reported and discussed in Section 3, while con-
clusions are given in Section 4.
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2 Oriented Polar Snakes

2.1 Phase Contrast Optics

Phase contrast imaging is used to image phase objects, which are almost transparent
objects but with a refractive index different from their surrounding medium. The differ-
ent optical path length, obtained from two mutually orthogonal light beams shifted by
a vector τ(m, θ), is transformed into intensity variations.

Let’s consider a Point Spread Function (PSF) that represent the finite response of a
focused optical system. Considering diffraction due to the microscope optics, a discrete
PSF can be expressed as:

f(x, y) = (−x cos θ − y sin θ) exp
(
− (x2 + y2)

σ2

)
∀x, y ∈ [−M,M ] (1)

which leads to the image model I involving the PSF and the artifact-free phase image
ϕ, as follows:

I(x, y) = ϕ(x, y)⊗ f(x, y) + η(x, y) . (2)

being ⊗ a convolution operator, and η(.) an additive noise function of unknown distri-
bution.

The phase reconstruction problem consist in finding ϕ from an observed I (inverse
problem). Despite of the simplicity of Eq. (2), its solution is seldom straightforward.
Direct deconvolution is not possible to be performed due to the sensitiveness to noise.

One of the most popular ideas considers to find a ϕ such that ϕ⊗f that is as close as
possible to I , and use the squared residuals as penalization, named least squares. Since
a regularization of ϕ is preferable, the least absolute shrinkage and selection operator
(LASSO) offers an attractive formulation [9]:

min
ϕ
‖I − ϕ⊗ f‖2 + λ‖ϕ‖1 (3)

The main benefit of this formulation is that it enforce sparsity on the solution due
to the �1-norm regularization, while keeping the optimization problem convex. In few
words, it enforce the recovered phase to have as few pixels as possible.

2.2 Active Contour Models

The two main categories of active contours can be used: geometric and parametric
snakes. In geometric snakes, the curve is described from a level set representation, while
in parametric snakes it is described as a discrete collection of points. It is known that
parametric snakes are much faster than geometric snakes, which support our model
selection.

Let’s consider the generic family of curves Cq depending on a n-dimensional param-
eter vector q and defined in the image plane by:
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Cq : x(u) = xc + rq(u)

(
sinu

cosu

)
(4)

where rq(u) is the radius function depending on u ∈ (0, 2π), and xc is a point inside
the contour. Then, the total active contour energy can be defined as:

Eac = α

2π∫
0

∣∣∣∣∂Cq∂u

∣∣∣∣2 du + β

2π∫
0

∣∣∣∣∂2Cq∂2u

∣∣∣∣2 du +

2π∫
0

Eim(Cq)du (5)

The first two terms, named potential energy or internal energy, accounts for elasticity
(or extent) and curvature, respectively. The third term, the image energy, provides a cost
evaluation of the contour according to the image. This terms is discretized as:

2π∫
0

Eim(Cq)du =

N−1∑
k=0

Eim(Cq, uk) . (6)

being uk = 2π
N k (direction of k-th element). The external (image) energy can be defined

in several ways, depending on the characteristics of the problem in question.

2.3 Energy Functional

In this work we propose the following external (image) energy functional:

Eim(Cq, uk) = sin2(uk − θ) |Iμ(Cq(uk))| − cos(uk − θ)Iμ(Cq(uk))− |∇I(Cq(uk))|
(7)

with μ the intensity mean, Iμ(.) = I(.) − μ, ∇I(.) the intensity gradient, and θ the
provided shear (angle) direction information.

The proposed energy enforce low energy values for Eim whenever a lighting/shade-
off effect is found in a parallel direction with respect to the provided shear angle, de-
creased even more if this match with a high gradient value.

2.4 Numerical Implementation

We opted for using a dynamic programming approach [2] to solve Eq.(5) based on
the Bellman’s Principle of Optimality [5], with a discrete-time finite horizon in a one-
dimensional formulation (states related only to rq). Since the initial number of markers
can be considerable big, the use of a lower number of snakes elements (usually between
N = 45 and N = 90) allowed us to find optimal solutions relatively fast. Depending
on the parameters α and β, the execution time varies between 260 and 860 milliseconds
per snake, using a Matlab implementation of the chosen numerical method. It is also
worth noting that each individual snake can be optimized in parallel.
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2.5 Segmentation

After the artifacts-free phase image has been estimated (see Fig. 1(b)), a distance trans-
form is applied on it; then a local maxima points detection provides the set of initial
markers, one point per marker. The set of automatically generated markers will be used
for the initialization of the active contours (see Fig. 3a) as follows: each marker corre-
spond to exactly one snake, that initially starts with radius rq(.) = 1 and centroid xc on
the corresponding marker. Once the snake models has been initialized, the next step is
to optimize them by minimizing the active contour energy Eq.(5).

After all the snakes has been optimized, we expect that for initial markers located on
the same region, their corresponding snakes converges towards the same boundaries.
Then, likewise in [3], we perform a contour evaluation consisting in discarding those
contours (and markers) overlapping in a high percent with another contour of higher
priority, where the priority is given by evaluating the contour using Eq.(7).

3 Experimental Results

3.1 Qualitative Analysis

In order to highlight the benefits of the proposed energy functional of Eq.(7) with re-
spect to the standard gradient-based Eim(Cq, uk) = − |∇I(Cq(uk))|, we used a sim-
ulated phase contrast image of two overlapping cells, and a real phase contrast image
fragment where a cell is out of the focal plane.

The proposed model can find the appropriate contours (see Fig.3c), even without
assuming any curvature in the contour (β ≈ 0 in Eq. 5), while the gradient-based energy
model fail to do so (see Fig.3b), requiring certain specific values of curvature parameter
to find the appropriate contour.

(a) Automatically gener-
ated initial markers.

(b) Gradient-based energy
contours.

(c) Proposed energy con-
tours.

Fig. 3. The proposed energy estimates the contours better than a standard gradient-based energy,
even without assuming any curvature in the contour

We also show how the gradient-based energy model is very sensitive to the
lighting/shade-off artifact, and the contour solution takes the extreme values of the gra-
dient, resulting in a contour shifted in the shear-angle direction. The proposed model
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can better cope with this problem as can be seen in Fig.(4), where the most sensi-
tive snake elements of our proposed solution are those orthogonal to the shear-angle
direction.

(a) Gradient-based en-
ergy contour.

(b) Proposed energy
contour.

Fig. 4. The proposed energy can better cope with lighting/shade-off artifacts

The proposed model can also deal properly with corners and broken lines, as shown
in Fig.(5). In this simulated image with corners and shear angle θ = π

4 , the proposed
energy prevented each contour’s convergence to stop on the boundaries of the other
rectangle, by enforcing high energy values (penalization) on dark boundaries located to
the right of marker A; similarly on bright boundaries located to the left of marker B.

Fig. 5. The proposed energy can cope with other type of objects

3.2 Real Specimen Images

For the experiments on real specimen images, serum-induced cultures of the fungus
Candida albicans were used in this study in order to obtain mixed populations of
different cell morphologies of the fungus. Cells expressing two protein fusions to a
monomeric GFP variant are displayed. Genomic copy tagging of HSP90 and RAS2
loci were performed in wild type strain SC5314. Cells were grown at 37◦C for three
hours and images were acquired by confocal microscopy (Olympus FluoviewTM). Flu-
orescence images were obtained with Alexa Fluor 488 excitation laser.
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The figures 6(a) and (e) depict the obtained images. As expected, the number of auto-
matically generated markers (Fig. 6(c) and (g)) from the estimated phase (Fig. 6(b) and
(f)) was higher than the number of cells in the image. The fact that most of the markers
fall inside cell regions allowed the active contours to converge towards individual cell
boundaries. As illustrated in Fig.(6(d) and (h)), the proposed contour evaluation process
provides almost one contour/marker per individual cell in the image.

(a) Contrast Image. (b) Estimated Phase. (c) Generated Markers. (d) Contour Approxi-
mation.

(e) Contrast Image. (f) Estimated Phase. (g) Generated Markers. (h) Contour Approxi-
mation.

Fig. 6. The estimated phase provides the basis to generate markers for snakes initialization

To assess the effectiveness of the proposed Oriented Polar Snakes, we compared it
to the markers-controlled watershed segmentation. Both segmentation schemes have
been initialized using exactly the same set of markers. As it can be seen from Fig.7,
the proposed method produces well segmented individual cells compared to the over-
segmented watershed. It has to be noted that, subsequent region merging of the obtained
watershed segments is difficult due to the type of contrast image.

4 Conclusions

In this work we presented a segmentation method, based on an active contour model
with a novel energy functional, that takes into account the nature of this type of images.
The method has been developed specifically for contrast microscopy cells images, but
can be easily extended and applied to any other type of phase contrast images. In future
works we will perform a quantitative analysis of the method over different datasets of
phase contrast images. We will also investigate different ways to enhance the initial
marker selection in order to decrease the initial number of snakes.
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(a) Original Contrast Image. (b) Proposed Segmentation. (c) Watershed Segmentation.

Fig. 7. The proposed segmentation provides more accurate individual region/cells than watershed
segmentation, using the same markers for initialization
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Abstract. The problem of detecting chemical activity in drugs from its
molecular description constitutes a challenging and hard learning task.
The corresponding prediction problem can be tackled either as a binary
classification problem (active versus inactive compounds) or as a one
class problem. The first option leads usually to better prediction results
when measured over small and fixed databases while the second could
potentially lead to a much better characterization of the active class
which could be more important in more realistic settings. In this paper, a
comparison of these two options is presented when support vector models
are used as predictors.

1 Introduction

Among supervised learning techniques developed and widely used in recent years,
support vector machines (SVM) have received considerable attention due both
to their success in solving practical problems and their mathematical soundness.
One of the distinguishing trends of SVM is their capability of generalization in
the context of hard learning problems. Consequently, the literature exhibits lots
of classification, clustering or regression problems spanning diverse application
domains that can be very conveniently solved using SVM [1,2,3].

Data domain description, also referred to as one-class classification (OCC)
constitutes a different prediction task which consists of characterizing only one
class of objects (and consequently rejecting the rest). Depending on how the
problem is posed, the differences with regard to two-class classification can be
very subtle. The most important difference is that OCC aims at modeling a
particular class instead of separating objects from two classes which implies
modeling their discriminating boundary. One of the main consequences is the
way in which both approaches treat outliers and novelties [4].

OCC models can be learned either from examples only or both from examples
and counterexamples. In any case, the problem consists of arriving at a decision
function that covers all examples without including any other regions in the
representation space and excluding also all counterexamples, if any.

� Work partially funded by FEDER and Spanish Government through projects
TIN2009-14205-C04-03 and Consolider Ingenio 2010 CSD07-00018.
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In the particular case of support vector based approaches, several formulations
exist. In particular, One-Class Support Vector Machines (OC-SVM) [5] try to
learn a hyperplane in the Reproducing Kernel Hilbert Space (RKHS) that keeps
examples as far as possible from the origin. On the other hand, Support Vector
Data Description (SVDD) [4] consists of obtaining a kernelized hypersphere that
contains all examples. These two formulations have been shown to be equivalent
under certain circumstances [6]. In a recent work, SVDD has been extended by
introducing a separation margin between examples and counterexamples [7]. In
this way, the model not only optimally represents the class of interest but also
robustly separates both types of data at the same time.

The purpose of the present work is to study advanced OCC models on a
particular difficult task in which binary SVM arrive at very good solutions.
The goal consists of assessing possible benefits and disadvantages of using more
complex models to solve these challenging problems.

2 Learning Problem Formulations

Only the SVDD formulation and extensions are to be considered in the present
work. Assume that data belong to a d-dimensional vector space, Rd. There is
also a mapping φ, from Rd to a RKHS, H, which is implicitly given by a Mercer
kernel function, k : Rd × Rd −→ R≥0 in such a way that k(·, ·) = 〈φ(·), φ(·)〉H ,
where 〈·, ·〉H is the inner product in H [6] .

Let us suppose we have a non empty positive training set given by the
examples corresponding to the class of interest, X+ = {x1, . . . , x�1} and a
negative training set which consists of zero or more counterexamples, X− =
{x�1+1, . . . , x�1+�2}. The size of the overall training set, X = X+ ∪ X−, is given
by � = �1+�2. Each object from X has a corresponding label, yi such that yi = 1
if 1 ≤ i ≤ �1 and yi = −1 if �1 < i ≤ �.

When only positive examples are to be used, SVDD tries to enclose all objects
into a minimal hypersphere in the RKHS [4]. The so-called soft formulation
introduces additional slack variables controlled by a penalty term to allow objects
outside the hypersphere.

The formulation of the problem using a ν parameter is

min
R,c,ξ

R2 +
1

ν�1

�1∑
i=1

ξi, (1)

subject to:
(
‖φ (xi)− c‖2 −R2

)
≤ ξi, (2)

ξi ≥ 0. (3)

By introducing a Lagrangemultiplier, αi, for each constraint it is possible to go
from this primal formulation to its corresponding dual in which the optimization
is over a vector, α = (α1, . . . , α�1), which consists of all Lagrange multipliers in
the primal problem.
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max
α

�1∑
i=1

αik (xi, xi)−
�1∑

i,j=1

αiαjk (xi, xj), (4)

subject to 0 ≤ αi ≤
1

ν�1
,∑

i

αi = 1.
(5)

This quadratic problem can be solved using the same methods as for binary
SVMs. Once α has been obtained, the center of the hypersphere, c can be ob-
tained from the additional constraint c =

∑�1
i=1 αiφ(xi). Correspondingly, the

radius, R, can be obtained exactly in the same way as the bias of the linear
function is computed in the case of binary SVMs [5]. The final characterization
of the positive class is then given by the following decision function

f (x) = sgn
(
R2 − ‖φ (x)− c‖2

)
(6)

The basic approach can be extended by introducing negative objects (coun-
terexamples) and the corresponding constraints that keep them outside the hy-
persphere [8]. This introduces a sign (the label yi) in the constraints and a new
summation term in Eq. 1. Both summation terms will be now weighted by γ

ν�

and 1−γ
ν� , respectively. γ is a new parameter that controls the relative importance

of the constraint violations in both positive and negative cases which may be
very important in specific practical problems exhibiting some kind of imbalance.

Apart from keeping positive data inside the hypersphere and negative data
outside, it is possible to impose a (maximal) margin between the negative objects
and the boundary of the hypersphere. This is the rationale of the Small Sphere
and Large Margin (SSLM) approach [7]. The formulation of the corresponding
primal problem in our particular context is:

min
R,c,ρ,ξ

R2 − ηρ2 + γ

ν�

�1∑
i=1

ξi +
1− γ
ν�

�∑
i=�1+1

ξi (7)

subject to ‖φ (xi)− c‖2 ≤ R2 + ξi, 1 ≤ i ≤ �1

‖φ (xi)− c‖2 ≥ R2 + ρ2 − ξi, �1 < i ≤ �

ξi ≥ 0, 1 ≤ i ≤ �

(8)

In this extended formulation, apart from the parameter ν that controls how
strict the characterization must be, and the parameter γ that controls the trade
off between positive and negative outliers, a new parameter η that moderates
the maximization of the margin has been introduced. The margin is represented
by a new variable, ρ.

These three OCC models constitute a family of predictors with increasing
level of complexity. The more complex models need more parameters and the
corresponding tuning gets harder. On the other hand, the more complex models
are able to attain better characterizations with improved separation which will
potentially lead to better generalization abilities.
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3 Drug Activity Prediction from Molecular Structure

The design of new medical drugs with desired chemical properties has a capi-
tal importance for the pharmaceutical industry. Several approaches are used in
drug discovery, which can be grouped in three main categories: random screen-
ing of a large number of compound in a blind way, structural modifications of
lead compounds and rational drug design [9]. Quantitative structure-activity
(structure-property) relationships (QSAR/QSPR) constitute a methodology in
the last category that is based on the fact that some properties of a set of
molecules change with their molecular structure and therefore it is possible to
find a relationship between this structure and the properties that the molecule
exhibits. Once this relationship has been obtained it can be used to predict the
properties of new, perhaps unknown, compounds.

Molecular descriptors used in QSAR can be empirical (derived from experi-
mental data) or nonempirical. Among the nonempirical descriptors, the so-called
topological indices have special relevance [10]. Topological indices are molecu-
lar descriptors derived from information on connectivity and composition of a
molecule and can be easily derived from the hydrogen-suppressed molecular rep-
resentation seen as a graph [11,12]. Some examples of topological indices are
the popular Kier and Hall connectivity index [13] and Balaban index of aver-
age distance sum connectivity [14]. In this work, a set of 116 indices has been
selected from three families considered that we will refer to as topological [15],
the above mentioned Kier-Hall and the electro-topological or charge index[16].
Some experiments have been carried out using a reduced set formed by the 62
topological indices.

To properly assess the different predictors in this context, Receiver Operat-
ing Characteristic (ROC) curves and associate performance measures have been
considered in this work [17]. Given a particular predictor whose output consists
of a continuous value in a specified interval (as in this work), the ROC curve
is defined as the plot of the true positive rate (TP) against false positive rate
(FP) considering the threshold used in the classifier as a parameter. The so-
called ROC space is given by all possible results of such a classifier in the form
(FP,TP). The performance of any classifier (with the corresponding threshold
included) can be represented by a point in the ROC space. ROC curves move
from the “all-inactive” point (0,0) which corresponds to the highest value of
the threshold to the “all-active” point (1,1) given by the lowest value for the
threshold. The straight line between these two trivial points in the ROC space
corresponds to the family of random classifiers with different a priori probabil-
ities for each class. The more a ROC curve separates from this line, the better
the corresponding classification scheme is. As ROC curves move away from this
line, they approach the best possible particular result that corresponds to the
point (0,1) in the ROC space which means no false alarms and highest possible
accuracy in the active class.

The ROC curve is a perfect tool to find the best trade-off between true pos-
itives and false positives and to compare classifiers in a range of different situ-
ations. A common method to compare classifiers is to calculate the area under
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Fig. 1. ROC curves corresponding to the different predictors considered

the ROC curve (AUC). The value of the AUC will always be between 0.5 and
1.0, because random guessing produces the diagonal line between (0,0) and (1,1),
which has an area of 0.5. The AUC has some important statistical properties [17]
and is frequently used as a global measure of predictiveness.

4 Experimental Results

Several comparative experiments have been carried out using a wide range of
settings for the algorithms considered. Two specific datasets containing chemical
compounds have been considered. First, an small dataset of 434 compounds using
62 topological indices and exhibiting (218) or not (216) antibacterial activity
have been considered [2]. Also, a more challenging and realistic dataset with
973 compounds where 111 of them exhibit analgesic properties have been used.
In this second database, all 116 descriptors have been used to represent the
compounds [15]. More details about data and availability are given in previous
referenced works. Moreover, the experimental protocol including coding of all
algorithms closely follows these previous studies.

As the main goal consists of an empirical comparison, a relatively wide range of
settings has been tried for all the algorithms considered. To obtain appropriately
averaged performance measures the n-fold cross validation procedure with n =
10 has been repeated four times. As a performance measure for each fold, the full
ROC curve has been computed along with its AUC measure. Both ROC curves
and AUC measures have been averaged over the different blocks in the cross
validation procedure [17] and are shown in Figure 1 and Table 2, respectively.
Only the results corresponding to the best settings for each algorithm have been
presented. These settings for each particular algorithm and database are specified
in Table 1. For all algorithms, a Gaussian kernel has been used whose parameter
has been fixed as σ = 0.125 according to several previous studies using the same
databases [2].
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By observing the ROC curves obtained with the best settings for the An-
tibacterial database in Figure 1 it can be seen that there is a very significant
difference between the two best algorithms (SVM and SSLM) and the rest. It is
not surprising that the SVDD algorithm gives the worst results because it does
not use negative examples. On the contrary, the poor result corresponding to the
NWSVDD method was relatively unexpected. When considering the Analgesic
database the performance of all algorithms gets significantly lower in all cases.
This is due both to the fact that the problem is considerably more difficult and
also because the database is severely unbalanced. For this database, SVDD and
NWSVDD methods give virtually the same results along the ROC curve and
SVM gives only slightly better results. The SSLM method gives the best results
except for a small range in the curve. The AUC values shown in Table 2 numer-
ically characterize the differences of performance among the different methods
over the two databases. The AUC value corresponding to the LDA method has
also been included as a baseline.

The particular AUC values obtained for each database in each of the 4 times
10 cross validation steps have been put together and a nonparametric Friedman
test followed by a post-hoc Holm test [18] has been performed. Table 3 shows the
obtained average rankings and adjusted p-values when comparing each method
to SSLM. According to this, it can be said that the SSLM gives the best AUC
results at a significance level of α = 0.05.

These results illustrate the fact that OC predictors with enough information
(counterexamples) and flexibility (in particular using a margin to separate ex-
amples from counterexamples) are able to improve on good binary classifiers
(SVM). Nevertheless, the amount of improvement attained is relatively mod-
erate. Apart from this improvement on the overall performance, the one-class
predictors are interesting also because of its ability to adapt to different situa-
tions. In particular, in specific applications as the ones considered in this paper,
it is possible to adapt the predictors to specific operating ranges of the ROC
curve that correspond to specific situations. In other words, instead of looking
for a unique model that gives rise to a good ROC curve, we can learn a specific
model that is good only in a small range in the curve. This capability of the

Table 1. Best parameters for each one of the algorithms on each database

SVM SVDD NWSVDD SSLM

Antibacterial ν = 0.0319 ν = 0.25 ν = 0.0125, γ = 0.25 ν = 0.0001, γ = 0.1, η = 50

Analgesic ν = 0.1194 ν = 0.9 ν = 0.0040, γ = 0.35 ν = 0.001, γ = 0.9, η = 40

Table 2. AUC measure for each algorithm on each database

LDA SVM SVDD NWSVDD SSLM

Antibacterial 0.966 0.976 0.686 0.871 0.985

Analgesic 0.834 0.829 0.732 0.788 0.852
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Table 3. Average rankings and adjusted p-values

Algorithm SSLM SVM LDA NWSVDD SVDD

Ranking 1.669 2.256 2.513 3.825 4.737

Adjusted p-value 0.03755 0.00221 < 10−16 < 10−32
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Fig. 2. Best one-class models (SSLM) obtained for each database by forcing the algo-
rithm to minimize either FP or FN rates by forcing the parameter γ

models has not been fully exploited in this work but Figure 2 shows two specific
models specialized at the different endings of the ROC curve. In these figures
particular predictors obtained at each one of ten runs are shown along with the
corresponding averaged curves. In the case of Antibacterial database, it is pos-
sible to obtain predictors able to minimize one of the two types of errors but
at different rates. In the Analgesic database a similar behavior can be observed.
In both cases, the variability in the false negative rate is higher than the one in
false positive rate.

5 Concluding Remarks

In this work, several different one-class predictors have been applied to a partic-
ular challenging problem related to drug activity characterization. In particular,
recently proposed one-class predictors using counterexamples and a separation
margin have been shown to give very interesting solution for this kind of prob-
lems. The behavior of the different models has been characterized by their corre-
sponding ROC curves and AUC measures. Apart from the overall performance
results it has been shown that the models can be adapted to different specifica-
tions in terms of maximum rates of each type of error. Further work is currently
directed towards the specific problem of obtaining one or several one-class pre-
dictors optimized at different specific error rates.
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Abstract. Urdu Language is written in Nastalique writing style, which is 
highly cursive, context sensitive and is difficult to process as only the last 
character in its ligature resides on the baseline.  This paper focuses on the 
development of OCR using Hidden Markov Model and rule based post-
processor. The recognizer gets the main body (without diacritics) as input and 
recognizes the corresponding ligature. Accuracy of the system is 92.73% for 
printed and then scanned document images at 36 font size. 

Keywords: Nastalique, Urdu OCR, Urdu Segmentation. 

1 Introduction 

Urdu is written using Arabic script in Nastalique writing style. Urdu has an extended 
Arabic character set as given in the figure below [13, 14, and 15]. Urdu characters are 
constituted by a main body with zero or more diacritics for specifying the consonants 
and (optionally) vowels. Nastalique writing style is very cursive with context 
sensitive shaping [9, 10].  The characters join together to form a Ligature . One or 
more ligatures form a word. For example word Pakistan shown in the Figure 1 (b) has 
three ligatures. Moreover, Urdu is bidirectional [3]. 

 

 
 

(a)  (b)  

 

(c)  (d)  

Fig. 1. Different characteristics of Urdu Writing System (a) Urdu character Set [3] (b) Word 
Pakistan written in Natalique (c) Diacritical marks on letter bay (d) Bidirectional Urdu script 
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The character set of Urdu shown in Figure 1 (a) can be sub-categorized into classes 
which contain same base forms (if the dots and marks are ignored).  This 
categorization is given in Table 1, and is the basis of segmentation and recognition.  
Some letters belong to multiple classes because they contain isolated and final forms 
different from initial and medial forms. For example, letter Fay has same initial and 
medial forms as Qaf (e.g. فب بفب compared with قب بقب) but different isolated and 
final forms (e.g. بف ف compared with بق ق).  These letters are listed in the last row, in 
addition to being listed with other classes.  In the rest of the paper we refer to classes 
and not the individual characters. 

Table 1. Classification of Urdu letters based on their shapes  

Member 
Letter(s) 

Class 
Member 
Letter(s) 

Class Member Letter(s) Class 

   

   

     

    

    

  
  

    

     

2 Methodology 

The current system uses HMMs for pattern matching, as it can accurately handle large 
data sets and can be trained to handle noise and distortion to some extent [5, 6, 12, 16, 
17, 18].  The recognition process is shown in the Figure 2. 

The system takes a monochrome scanned image with 150 dpi containing Urdu text 
as input. As the document images are generated by the authors in the lab to test the 
process, there is no pre-processing and it is assumed that the document images are not 
skewed and with minimum noise and distortion. Main bodies are extracted by first 
separating lines of text within the page, then identifying the baseline and finally 
separating the main bodies from diacritics using the baseline [2, 3].   After extracting 
the main body, they are skeletonized using Jang Chin algorithm [4], as shown in 
Figure 3. 
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(a)                                  (b) 

Fig. 2. Flow Charts for (a) Training and (b) Recognition 

 

 
(a) (b) 

Fig. 3. (a) Original Image and (b) Sketetonized Image  

The skeletonized image is then segmented after determining the ending point of the 
ligature. In Nastalique it is very difficult to determine the exact starting point of the 
ligature so instead of that we start with the ending point of the ligature [1] which is 
more deterministic, as shown in Figure 4. 

 
 

 
  

Fig. 4. The Ending Points P1 of the Ligatures are Circled  
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Therefore, as Urdu is written from right to left, the ligatures are traversed from left 
to right. During the traversal the ligatures are segmented at branching points as shown 
in Figure 5 below. This process results in multiple segments from a ligature, obtained 
in the reverse writing order as shown in Table 2. 

 

 

Fig. 5. Segmentation of a ligature using branching points [1] 

Table 2. Segmentation of the Ligatures 

Sr. Segments Ligature Sr. Segments Ligature 

1 

 

3 

  

2 

 

4 

 
 

These skeletonized ligature segments are framed and used to train the HMMs, as 
shown in Figure 6.  The system is tested with non-overlapping frame sizes of 5x5, 
8x8, 9x9, 12x12 and 16x16 pixels. 8x8 is found to give the best results for the 36  
font size. 

 

 

Fig. 6. The Framing of Segmented Word بعد (baad) 

When this pre-processing is complete, before starting training process, the HMM 
parameters are initialized with training data in order to allow convergence of the 
training algorithm. Each segment is considered as a separate HMM. Sixty HMMs 
were extracted from all shapes (isolated, initial, final and medial) of a sub-set of six 
classes of Urdu characters, including Alif, Bay, Dal, Swad, Ain and Yeh classes which 
are given in the Figure 7 (a).  In order to cater variations in the image 100 samples of 
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each shape are collected for training the HMMs. Samples of isolated Bay are given 
below in Figure 7 (b). 

After training the model, the recognition process is performed. In recognition 
process the skeletonized ligature is first segmented and then each segment is fed to 
the HMM for recognition.  

 

 

(a) (b) 

Fig. 7. (a) Segments modeled by HMMs and (b) Variation in training samples used for the 
HMMs 

As the segments are of varied sizes, and the framing window size is fixed, for more 
precisely modeling each segment different number of states are defined for the 
different segments, with some examples illustrated in Table 3.  

Table 3.   HMM State Analysis 

Sr. 
HMM 
Name 

HMM No. of 
Frames 

No. of 
states 

No. of 
samples 

1 h00 3 5 100 

2 h01 2 4 100 

3 h02 3 5 109 

4 h03 3 5 136 

5 h04 3 5 100 

6 h05 3 4 110 

7 h06 3 4 122 

 
 



46 S.T. Javed and S. Hussain 

 

Table 3. (Continued) 

8 h07 10 11 108 

9 h08 2 4 137 

10 h09 2 4 114 
 
After training, the model is developed, the recognition process is performed. In the 

recognition process the skeletonized ligature is first segmented and then each segment is 
sent to the HMM for recognition. Once the constituent segments are recognized, rules 
are applied to order them to form the corresponding ligature, as shown in Table 4. 

Table 4. Rules for Forming Ligatures from Constituent Segments 

Sr. Segments Letter Sr. Segments Letter 

1 

 

4 

  

2 

 

5 

  

3 

 

6 

  

3 Results 

A total of 1692 ligatures, which are formed from the six base forms mentioned above, 
are extracted from the 18600 high frequency words in a corpus-based dictionary [7].  
These classes are used in these ligatures in a variety of contexts.  The Urdu words 
were written in font Noori Nastalique and font size 36. The pages are printed and then 
scanned at 150 DPI. Out of these 1692 ligatures, 1569 ligatures were identified 
correctly giving an accuracy of 92.73%. 

4 Discussion 

The focus of the paper has been to explore segmentation based system capable of 
recognizing Urdu Nastalique font. The results are promising; however, some letters 
are not recognized correctly due to the following problems.  The variation in the 
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images affects the output of the recognizer.  The variation may be introduced due to 
scanning, binarization and thinning processes, giving wrong recognition results, as 
shown in Figure 8. 

 

 

Fig. 8. Variation in the images causing ligature misrecognition 

This problem may be resolved by increasing the number of training samples and by 
giving original segment as HMM input instead of giving skeletonized segment.   

The similarity in the shapes of different characters can also lead to the recognizer 
confusion. For example, the shape of the letter Bay and last stroke in Swad (in Figure 9) 
are similar to each other when written in Noori Nastalique. Diacritics can disambiguate 
such cases.  

 

  
(a) (b) 

Fig. 9. Similarity in Shapes Swad and Bay in Different Contexts 

Inconsistency in font can also cause some variation causing recognition errors. The 
Noori Nastalique font used shows such behavior in some cases, e.g. main bodies of 
ligatures change with change in diacritics as shown in Figure 10.  This variation is 
because the font uses hand written ligatures. 

 

Fig. 10.  Dissimilarity in Shapes of Same Ligature with Different Diacritic Placement 

5 Conclusion 

The Nastalique style used to write Urdu language is complex due to its diagonal, 
context sensitive and cursive nature. In this paper we have presented a technique to 
develop a segmentation based OCR for Nastalique. A ligature is first segmented and 
each segment is recognized using an HMM based recognizer. Then a set of rules are 
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used to identify the ligature corresponding to the sequence of recognized segments. 
The accuracy of system is 92.73% for six base forms using fabricated documented 
images at 36 font size. The technique still needs to be tested on real data and extended 
to cover the entire set of Urdu letters at a variety of font sizes. 
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Abstract. Induction motors are the most common engine used worldwide. When 
they are summited to extensive working journals, e.g. in industry, faults may 
appear, generating a performance reduction on them. Several works have been 
focused on detecting early mechanical and electrical faults before damage appears 
in the motor. However, the main drawback of them is the complexity on the 
motor’s signal mathematical processing. In this paper, a new methodology is 
proposed for detecting misalignment faults in induction motors. Through signal 
vibration and orbital analysis, misalignment faults are studied, generating 
characteristically patterns that are used for fault identification. Artificial Neural 
Networks are evolved with an evolutionary algorithm for misalignment pattern 
recognition, using two databases (training and recovering respectively). The 
results obtained, indicate a good performance of Artificial Neural Networks with 
low confusion rates, using experimental patterns obtained from real situations 
where motors present a certain level of misalignment.   

Keywords: Orbital analysis, patterns recognition, neural networks evolution, 
motor fault, misalignment. 

1 Introduction 

Motor fault analysis is a common industrial practice where machinery is summited to 
extensive working journals. Induction motors are based on different electrical and 
mechanical components that can suffer some kind of wearing down with prolonged 
use [1]. This work has been oriented to electrical induction motors, since they are 
most used in industry worldwide. Historically, some works have been focused to 
detect some faults (most of them commonly identified) avoiding future problems and 
damages if correctly maintenance is early provided [1-3]. Induction motors can be 
mainly classified by size, power, number of phases, etc. However, misalignment in 
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rotor bars is a common fault in all kinds of motors that generates different levels of 
external vibrations [4].   

Several techniques can be used in fault motor analysis such as support vector 
machine [5], Fourier spectrum [6], wavelet filtering [7], among others as [8-11]. 
However, the complexity of the mathematical processing in the motor signal is a 
drawback on them, where the implementation in real systems may be a difficult task. 
Thus, a new technic using orbital analysis is proposed, offering a practical and easy 
way to recognize misalignment faults in induction motors. Orbital analysis in motor 
faults has been used for modeling normal operation [12, 13], and they represent a 
basis of this research. Different motor misalignments levels present a particular 
characteristic vibration orbit, which can be used to determine when a motor presents a 
fault, before a serious damage appears in the machine. The main contribution of this 
work is the development of a new computational model for induction motors fault 
recognition, using artificial intelligence technics as Artificial Neural Networks 
(ANNs). They are evolved with an evolutionary algorithm called FS-EPNet to 
optimize the networks architectures for orbital analysis.  

The rest of the paper is organized as follows: firstly, section 2 presents how 
electrical signals are measured and preprocessed using sensors, and how an orbit is 
created. Section 3 explains the representation of different misalignment faults in 
orbital patterns and the main characteristics over normal and bad orbits. In section 4, 
ANNs and the FS-EPNet algorithm are shown for the recognition of orbital patterns. 
Thus, section 5 shows experimental results using two databases from real measured 
patterns: learning and recalling phases respectively. Finally, section 6 presents the 
conclusions reached about the advantages and disadvantages of the proposed model. 

2 Signal Acquisition and Preprocessing 

This section is aimed to present the procedure of obtaining a characteristic orbit, i.e. 
sampling, positioning and signal preprocessing to extract and separate it from a 
measured signal.  

 
Sampling 
Vibration is a common symptom derived from mechanical faults in induction motors. 
Such vibrations can be measured using a piezoelectric accelerometer sensor, which 
generates an electrical signal that is proportional to the acceleration vibration of a 
seismic mass [14]. As each motor have a different rotation speed, standards as [15] 
and [16] have established sampling frequency rates for motor measuring. According 
to them, this work used a sampling frequency of 50 kHz, being large enough to obtain 
a good quality signal, over tested induction motors. 
 
Positioning  
Orbital patterns are built using two signals that are plotted together. In order to obtain 
those signals, two piezoelectric accelerometers are placed orthogonally and radial to 
the motor chassis bearing (Fig. 1).  
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Fig. 1. Accelerometer placement at 90° over the engine 

Signal Preprocessing 
Accelerometer signals are measured in acceleration units and must be converted to 
displacement units, using a double integration process as follows [14]: 

 (1)

 (2)

where a(t) is acceleration, v(t) is velocity, d(t) is displacement, v0 and d0 are the initial 
velocity and displacement conditions respectively. 

Vibration signals in displacement units are compounded by several harmonics; 
each of them can be related with the normal operation of the engine or with a motor 
fault. Undesirable harmonics can distort the shape of the orbit, changing notably the 
main characteristics of a fault shape. In this sense, those harmonics must be avoided 
in order to have a good quality orbit. A Butterworth passband filter was implemented 
for removing those spurious harmonics according to the following magnitude 
response [17]: | | 11 cosΩ sin  (3) 

where 2 ⁄ ,  is the sampling frequency,  Ω tan 2⁄  and c can be 
expressed as follows: sinsin sin  (4) 

where  2 ⁄ ,  2 ⁄  and ,  is the passband. 

An unfiltered orbit has an irregular form, making no possible fault discovery; 
however, a remarkable shape may be clearly seen in a filtered orbit (Fig. 2). 

Each filtered signal generates continuous orbits with the same shape (Fig. 2); 
nevertheless, just one orbit is required in this work for analyzing its characteristics  
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Fig. 2. Example of the orbital filtering using the Butterworth passband filter, which removes 
spurious harmonics allowing clear orbits 

and detecting whether a misalignment is present.  In this case, we search two points 
into a filtered signal (starting and ending), with a low distance defined by a tolerance. 
This tolerance was obtained computing the average of the distance of all points into 
the signal. There is not a rule for establishing the tolerance; however, this value was 
enough for obtaining good shape orbits. The distance criteria were obtained using the 
Euclidian equation as follows [17]: 

 (5) 

Where d is the distance between points, and (x, y) are the orbit points coordinates 
respectively. Finally, extracted orbits should be normalized due to differences in their 
size. Therefore, all orbits are resized in a [-1, 1] range according with the following 
equation:  

, ,| |, | | , 0, 1, 2, … , 1 (6) 

3 Orbital Analysis 

There is a correspondence between orbit shapes and motor faults, i.e. when an 
induction motor is in good condition (no faults are present), the corresponding orbit is 
a circumference; on the other hand, when a misalignment fault is present in the motor, 
the orbit shape suffers a deformation in one part of the circumference. A 
misalignment may appear in different intensities: a slight misalignment almost 
deforms the circumference; by contrast, a strong misalignment deforms considerably 
the orbit shape, generating a kind of “8” in the circumference. Fig. 3 shows the 
motor’s orbit shapes of different misalignment intensities. 
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Fig. 3. Examples of orbit shapes: a) good motor conditions have perfect circumferences, b) a 
slight misalignment fault is present in the motor and c) an extreme misalignment have a shape 
of an “8” number.  

4 Pattern Recognition 

There are several technics for pattern recognition that can be used for orbits shape 
identification [1–11]. In this work, Artificial Neural Networks (ANN) are used as 
classifiers, because they have proved being a very effective learning model with high 
rates of effectiveness. However, the construction of an ANN is not an easy task; for 
this reason, evolutionary algorithms are used for building ANN architectures, 
establishing criteria for a better selection of the ANN’s parameters. In this sense, the 
final ANN topology chosen by the evolutionary algorithm guarantees the best 
performance of the ANN. Also, connectivity reduction tests help to avoid 
computational burden with a high efficiency of the ANN. This process is known as 
Evolutionary Artificial Neural Networks (EANNs) or Neuroevolution. 
 
Artificial Neural Network  
Evolution of Artificial Neural Networks have been remarkably useful at optimizing 
networks’ parameters during evolution [18-21], also local minima may be avoided 
than using traditional gradient-based search algorithms [18]. 

The Feature Selection EPNet algorithm (FS-EPNet) [19, 21] allows the ANNs’ 
parameter evolution, including the input adaptation of the networks (Feature Selection 
Evolution). The FS-EPNet is a steady-state algorithm based in Lamarkian inheritance, 
where information learned by parents is passed to children; also, no crossover 
operator is used to avoid the permutation problems [18]. In this way, nine different 
mutations are used to carry out the evolution of individuals (ANNs): (1) hybrid 
training, composed of training with the Modified Back Propagation (MBP) algorithm 
and Simulated Annealing (SA); (2) node deletion; (3) connection deletion; (4) input 
deletion; (5) delay deletion; (6) connection addition; (7) node addition; (8) input 
addition; and (9) delay addition. Only one such mutation is performed on the selected 
individual in each generation. The hierarchical order of the mutations permit to 
maintain networks sizes to the minimum; however, if the problem cannot be solved 
more accurately, it will start to add nodes and connections, increasing the average  
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networks sizes over the population. A detailed description of FS-EPNet algorithm 
may be seen in [20, 21]. 
 
Pattern Building 
According with the orbital signal analysis, orbit shapes where used for creating motor 
fault patterns. However, resulting signal orbits are not practical to be used in a neural 
network due to they have different lengths. In order to have uniform patterns, all 
orbits signals were resampled for having 100 points of length, where each one is a 
bidimensional pattern (x, y). A database of 386 patterns was created to be used in the 
learning phase of the ANN (from here, an inside test set is obtained to evolve the 
networks with the FS-EPNet algorithm). Orbit shapes of this database were measured 
from different induction motors, which had different misalignment levels: 275 regular 
misalignment patterns, 106 extreme misalignments patterns and 5 patterns of good 
condition motors. 

5 Experimental Results 

An experimental database was used for validating the performance of the proposed 
system as part of a recovering process. This database was built using different kind of 
motors and with different levels of misalignments. It is important to remark that this 
database was compounded by different motor measurements than those used in the 
database of the learning process. In this case, the size of the database was of 118 
motor fault patterns as follows: 73 regular misalignment patterns, 35 extreme 
misalignments patterns and 10 patterns of good condition motors. From those 
patterns, the final test set was obtained, applied after the evolutionary process has 
finished. Preliminary experiments allow setting up some common parameters in this 
study: population size 30, generations of evolution 100 (stopping criteria), initial 
connection density 100% and 30%. Initial learning rate 0.15, minimum learning rate 
0.01, epochs for learning rate adaptation 5, number of mutated hidden nodes 1, 
number of mutated connections 1-3. The inputs are fixed at 200, where the first half is 
for x-axis and the other half for y-axis. The hidden nodes are initialized between 2 and 
10 nodes randomly. Partial training settle at 100 epochs, whereas 1000 epochs of 
further training at the end of the algorithm. 30 independent runs were performed to 
ensure statistical validity of the results. It was used two test sets to evaluate the 
performance of the algorithm, one inside of the evolutionary algorithm (100 partners 
from the available data to train) and one final test set (experimental database) to 
evaluate the final performance of the algorithm. 

Figure 4 presents the Average Classification error (Fig. 4a), the average error in 
terms of the Normalize Root Mean Squared Error (NRMSE, Fig. 4b), the Average 
connections (Fig. 4c) and the Average hidden nodes (Fig. 4d) for the orbit motor fault 
recognition process over 100 generations of evolution with 100% and 30% of 
connectivity at network initialization. It can be seen in Fig. 4a, that initializing the 
networks with 100% of connectivity allows a perfect classification error in the test set 
inside the FS-EPNet algorithm, using the winner takes all method from the first  
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Fig. 4. Evolved parameters with the FS-EPNet over 100 generations of evolution for initial 
connectivity of 100% and 30% for the orbit motor fault recognition process: a) average 
classification error (winner takes all); b) average error in terms of the NRMSE; c) average 
connections and d) average hidden nodes.  

generation. These results indicate that at the random initialization and initial partial 
training, the networks in the population can solve the problem without any effort; 
however, that is not maintained for the final test set (see final line in Table 1, for the 
final test set). On the other hand, a considerable reduction in the connectivity (30%) 
produces average errors over 0.01 during the first 10 generations (Fig. 4a). Thereafter, 
the networks can solve the problem with the same accuracy, and with fewer numbers 
of connections (Fig. 4c). A similar behaviour is presented using the NRMSE over the 
test set inside the evolutionary algorithm, where both errors started to converge as the 
generation advance. Finally, as it can be seen in Fig. 4d, networks that are initialized 
with a reduce number of connections, started to increase the number of hidden nodes, 
as more resources continue to solve the problems accurately (also connections are 
slightly increased, Fig. 4c). It is clear that in both cases, 100 generations of evolutions 
is enough to achieve perfect classification errors on the test set inside the algorithm.  

Table 1. Orbit motor fault recognition results with 100% and 30% of connectivity with the  
FS-EPNet 

Parameter 100% Connectivity 30% Connectivity 
 Mean Std Dev Min Max Mean Std Dev Min Max 
Number of Inputs 200 0 200 200 200 0 200 200 
Number of Hidden Nodes 5.966 0.999 4 8 6.633 1.325 4 9 
Number of Connections 1830.4 208.01 1419 2256 656.26 93.657 463 822 
Error Test Set EPNet 0.034 0.01 0.018 0.061 0.168 0.084 0.023 0.333 
Classification Error inside  0 0 0 0 0 0 0 0 
Error Final Test Set 4.054 0.207 3.753 4.405 4.281 0.427 3.297 5.054 
Classification Error Final Test Set 6.371 0.987 5.128 8.158 6.736 1.028 4.895 8.624 
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Table 1 presents the results of evolving ANNs with both values of connectivity. 
There is appreciated that classification errors tested during the evolution of the 
networks is perfect, as commented before (over the classification error inside the 
evolutionary algorithm); nevertheless, that is not maintained for the final test set, last 
line of Table 1.  

6 Discussion and Conclusions 

In this work, the use of orbital analysis and evolved Artificial Neural Networks 
(ANNs) for fault recognition in induction motor were proposed. Although several 
methodologies for detecting mechanical faults in induction motor have been 
developed, the proposed model represents a feasible and alternative way for motor 
misalignment fault detection. One disadvantage of this model is the number of 
preprocessing steps implemented before the ANN classification step.  However, a 
misalignment was clearly shown to distort considerably an orbit, having a 
characteristic shape, which can be perfectly identified by classifiers as ANNs 
(designed with the FS-EPNet algorithm). On the other hand, the evolution of 
Artificial Neural Network provides a good topology optimization, avoiding 
computational burden for recovering phase, and giving an accurate assessment in the 
classification of misalignment orbits. It may be worth to say that this paper provides a 
preliminary study of misalignment identification in induction motors using orbital 
pattern analysis, and future works is needed, e.g. including additional patterns from 
different mechanical faults in order to expand the capacities of the system, or use 
lower connectivity values to initialize ANNs (before evolution starts) to generate 
smaller architectures. Anyhow, this model can be used as an important tool for 
preliminaries motor analysis, when the good functioning of the machine is essential in 
critical time production industry.  
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Abstract. In this work we explore the use of computer vision for bus
detection in the context of intelligent transport systems. We propose
a simple and efficient method to detect moving objects using a proba-
bolistic modelling of the scene. For classification of the detected moving
regions we study the use of eigenfaces.

1 Introduction

In recent years there has been an increasing interest on improving public trans-
port services. This is due to both direct and indirect benefits that can be obtained
by cities from a logistical, environmental and social point of view. As a direct
benefit, a well organized and efficient public transport system allows to reduce
travel times, reduce traffic congestion while offering a comfortable alternative to
family cars, and therefore also reduces pollution levels. On the other hand, one
of the indirect benefits is the impact on the economy of the city. Big cities are
increasingly important in the economy of the countries; providing appropriate
logistical infraestructure helps to attract more business and investment. Gov-
ernments recognize this reality and are increasingly investing in infrastructure,
highways, subways, etc.

In order to improve public transport systems the main infrastructure invest-
ment is in exclusive bus corridors. However, the high costs associated with them
make it not feasible to do it in all arteries of the city. Therefore, an alternative
solution is the demarcation of preferential lanes for public transport in already
existing streets and avenues. To be truly effective this solution requires the clas-
sification of vehicles traveling on them to detect buses and give them right of
way at traffic lights.

In recent years the use of Computer Vision has expanded its application in
Intelligent Transportation Systems, in particular for vehicle classification [2,5,3]

In the case of exclusive corridors, the detection of buses can be easily imple-
mented because there is a physical separation between them and private vehicles.
In the case of preferential lanes this is not the case. A computer vision based
system has two major advantages, its cost and its scalability. It is of low cost,
compared to other solutions, because it enables the use of preferential lanes and
reduces the construction cost associated with exclusive lanes. Computer vision

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part II, LNCS 8259, pp. 59–66, 2013.
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it is also an interesting technology that can be used for other purposes such as
vehicle counting, detecting special vehicles, speeding control and surveillance.

In this work we present a system that applying computer vision automatically
detects buses preferential lanes to enable the synchronization of traffic lights on
a main road in order to minimize travel times.

2 Existing Solutions

To solve the problem of vehicle detection a sensor is required. Sensors can be
classified into two types: intrusive and non-intrusive.

Intrusive sensors include inductive loops, piezoelectric cables and magnetome-
ters among others. These are installed directly on the floor, either on it or under
by pipeline as is shown in Figure 1. The operation thereof is generally simple
and well known because they are mature technologies. The major disadvantage
is that they require traffic disruptions for installation and maintenance. They
also have many flaws associated with pavement condition and life depends a lot
on the installation procedures.

On the other hand, non-intrusive sensors may be installed and maintained
with minimal traffic distortion (Figure 1). These sensors include computer vision
based solutions, microwave radar, laser, infrared detection etc. They allow the
supervision of several lanes and are able to provide further information such as
the vehicle type detected.

Fig. 1. Left: Installation of intrusive loops. Right: Computer Vision sensors.

In the case of exclusive corridors, intrusive sensors can be used for bus detec-
tion because there is a physical separation between them and private vehicles.
For preferential lanes (most widespread solutions due to its lower costs) these
sensors can not ensure the correct detection due to private vehicles. Some recent
works that address the problem of sorting vehicles according to their magnetic
signature captured with inductive loops was presented in [1].

The advantage of computer vision solution is the high value that can be
generated due to its greater scalability. Most large scale traffic control systems
use them for a variety of applications. First, they let you have a visual view of the
traffic state, particularly useful when analyzing the causes of accidents that may
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result in roads. They also allow more elaborated statistical data analysis such as
the level of congestion and the use of avenues. This can be obtained by calculating
the occupation times and queues lengths. Computer vision solutions also allow
to calculate the speed of vehicles that can be used for speeding infractions. It
is also possible to do plate recognition, which can be used in shadow tolling,
among other things.

In the next section we review the literature on computer vision based solutions
for intelligent transport systems.

3 Computer Vision for Intelligent Traffic Systems

Although the work presented in [1] it is not based in computer vision it proposes
a pattern recognition approach to classify vehicles by their magnetic signature
obtained using inductive loops. The magnetic signature is a characteristic of each
vehicle which depends on their geometry and distribution of metal parts. One
way to obtain the magnetic signature is via the oscillation frequency versus time
of an oscillator that uses an inductive loop during the time the vehicle passes
over it. The database used is rather small and contains 34 cars, 9 vans and 18
buses. With this database the best classification is obtained with a naive Bayes
classifier in the dissimilarity space with 99,3% of the vehicles correctly classified.
Due to the small size of the database this can be considered as an upper bound
of the classification performance. Nevertheless, the use of inductive loops it is a
very robust method for this problem, and although it is an intrusive method, we
include these results here to use it as comparison of our proposal.

In [2] a real-time vehicle detection based on background learning of the scene
is proposed. The method has two processes running in parallel, one at high level
and another one at low level. The low level process is the estimation of the
background and runs in real time. The high level one runs at a lower frequency
and is responsible of classifying the pixels into categories: lines, pavement or
neither of the aforementioned. For this classification, color and shape features
are considered. The proposed method only detects vehicles but not classifies
them; it obtains a 90% of correct detection rate. We include this work to have a
reference on the detection rate.

The work presented in [5] addresses the real-time vehicle classification based
on eigenfaces [4]. The method implies taking a set of training images to learn the
features of each class of interest: buses, cars, etc. The feature space is calculated
using principal components analysis and then a nearest neighbor classifier is
applied. The published results show a classification rate of 100% but using as
the test set the same set used for the training consisting of 100 images of vehicles
fronts. We apply the same methodology but considering complete images of
the vehicles as shown in Figure 2. We also train and test the algorithm with
independent sets to evaluate different classifiers to understand the potential of
the method in a real scenario.
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Finally in [3] an algorithm for detection and classification of vehicles is pre-
sented. The detection achieves a good detection rate of 90% but the recognition
based on structural features only achieves 70% of correct classification.

Fig. 2. Models uses for trainning

4 Proposed Method

Using a camera conveniently located we are able to capture traffic images that are
processed in real time in order to detect the presence of buses. Before proceeding
we shall mention that we assume the following working conditions: good visibility
and normal weather conditions.

Our system is composed of the following modules: image acquisition, segmen-
tation, feature extraction and classification. The first step of image acquisition
also prepares the image for further processing, for example adding noise filtering
operations. In the segmentation step vehicles in motion are extracted from the
background. For this step we propose a probabilistic approach that facilitates
the typical selection of thresholds for segmentation purposes. Once the regions
of interest are obtained from the segmentation step, each region is expanded in
the feature space given by the eigenfaces method [4]. Finally, based on the cal-
culated features each moving region is assigned to a given class (car, bus, truck,
etc.).

4.1 Segmentation

Given two consecutive frames at times n and n+1, In(x) and In+1(x) we consider
their difference d(x) = |In(x)−In+1(x)| where x indicates the pixel. If we assume
that most of the pixels belong to the background and that differences among
these pixels are assumed to be small, then most of the pixels will exhibit small
values in d(x). If we look at the histogram of d(x) we will find that most of the
pixels are concentrated at small values. If we view the image intensity differences
as a random variable, whose magnitude represents the probability that a pixel



Bus Detection for Intelligent Transport Systems Using Computer Vision 63

belongs or not to a moving object, we can interpret the histogram of d(x) as an
empirical approximation to the density function, f(y). Given a threshold α the
probability that the difference falls in [α, 255] is:

P (α ≤ d ≤ 255) = 1−
α∑

y=0

f(y).

Instead of fixing the threshold α which can vary due to lightning conditions
and shadows, we fix the probability instead. That is, a pixel x is declared as
moving if the probability of its difference d(x) is below a probability threshold
Pα: P (α ≤ d(x) ≤ 255) ≤ Pα. We define the following probabilities image:

IMPn(x) = 1−
α∑

y=0

f(y),

and with it a binary image with objects labeled as one: IMSn(x) = IMPn(x) ≤
Pα. In all the experiments of this paper we choose Pα = 0.08. In Figure 3 the
probability image and the final segmentation mask. Once we have the binary im-
age with detected moving objects we apply mathematical morphology to simplify
the detected regions followed by a labelling process which labels all connected
components and extract their bounding boxes. In Figure 4 we show an image
with all detected regions of interest. All bounding boxes are processed with some
heuristic to join close bounding boxes and remove the ones that dont fulfill basic
requirements of size and shape, see Figure 3. Finally we apply an optimization
procedure to shrink the bounding boxes towards the real boundaries of the vehi-
cles. To do this we use the integral image of IMPn(x) to move the bounding box
inwards to minimize the mean probability inside the bounding box; the bounding
box is reduced until no noticeable reduction is observed. The use of the integral
image allows a fast implementation. Observe that the same procedure must be
applied to each bounding box in the image. See Figure 4 for an example of the
output of this procedure.

Fig. 3. Left: Probabilities image. Right: Segmentation of moving objects.
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Fig. 4. Left: Probabilities image. Right: Segmentation of moving objects.

4.2 Classification

Once we have the bounding boxes of the regions of interest we use a classifier to
decide the class of each of them. Starting from the greyscale values of regions of
interest, see Figure 2, we apply the method of eigenfaces to extract the projection
coefficients and use them as classification features. The method of eigenfaces [4],
originally developed to recognize faces can be applied to our problem of vehicle
recognition. In order to make this article self contained we are going to summarize
the main concepts behind eigenfaces.

The training set of contains M vehicles images of known class scanned in
lexicographical order. We assume that all images are resized to have the same
size N × N and therefore each sample Γk in the training set has N2 elements;
Γ = {Γ1, , ΓM} The eigenfaces method is based on principal component analysis
(PCA). The first step for the application is to remove the mean of the samples:

Φk = Γk −
1

M

M∑
i=1

Γi

Then, the eigenvectors ui of the covariance matrix C of the set {Φ1, ..., ΦM} are
computed. The matrix C is calculated as:

C =
1

M

m∑
i=1

ΦiΦ
t
i =

1

M
AAt,

where A is a matrix with vectors Φk as columns.
Since this matrix C size isN2×N2 we use the same idea of [4] and compute the

eigenvectors of AtA. It can be shown that if vi is an eigenvector of AtA then Avi
is an eigenvector AAt. In this way we obtain M eigenvectors and eigenvalues
of AAt. Once we have the eigenvectors all the data points in the training set
are projected into them to build the feature space. That is, the eigenvectors ui
constitute the base of the feature space and the coordinates on each eigenvector
are the features to be used for classification.

During recognition, each region of interest is resized to size N ×N , the mean
of the training set is removed and then projected to {u1, ..., uL} to obtain its
coordinates in the feature space. In this space we can apply any supervised
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classifier. For this work we tested five standard classifiers to select the one with
best performance and lowest computational cost.

The training set was build using samples for each of the target classes as
shown in Table 1. In Figure 2 we show some of the image samples. As we can
see the sample contain the object of interest but no fine tuning was imposed.

Table 1. Number of samples for each class in the testing set

Class #Samples Class #Samples
Bus 76 Truck 46
4x4 54 School Buses 21
Vans 43 Cars 115
Motorbikes 30

Total 385

5 Classification Results

Five classifiers were trained following the procedure of previous sections and
performance evaluated using 10-fold crossvalidation. Although our main goal
is to detect buses we also evaluated the potential of the approach to correctly
classify all the classes of vehicles contained in the training set. In Table 2 we
show the results for the five selected classifiers.

Table 2. Bus classification performance for different classifiers. The last column con-
tains the correct classification for the seven classes.

Classifier TP Rate FP Rate Precision Recall Global Correct Class.
Naive Bayes 0,855 0,016 0,929 0,855 73,5%
Neural Network 0,895 0,023 0,907 0,895 74,3%
Random Forest 0,868 0,032 0,868 0,868 68,3%
k-NN (k=1) 0,947 0,006 0,973 0,947 80,3%
k-NN (k=3) 1,000 0,010 0,962 1,000 79,2%

If we concentrate ourselves in the correct recognition of buses, that is we
measure the correct classification into two metaclasses buses and non-buses, the
performance of the five classifiers increases. Table 3 we show the percentage of
correctly classified buses.

As we can see the best classifier is k-NN with k = 3; it achieves 100% of true
positives and only 3 false positives. Although, the five classifiers obtain good
classifier results, it is importante to note that the nearest neighbor classifiers
are the ones with best performance in terms of true and false positives. This
is important due to the difference between the number of samples in bus and
non-bus classes.
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Table 3. Classification performance for different classifiers into two classes bus and
non-bus

Classifier Bus/Non-Bus Correct Class. Bus TP Rate Bus FP Rate
Naive Bayes 95,8% 85,5% (65/76) 1,6% (5/309)
Neural Network 96,1% 89,4% (68/76) 1,9% (7/309)
Random Forest 94,8% 86,8% (66/76) 2,9% (9/309)
k-NN (k=1) 98,4% 94,7% (72/76) 0,6% (2/309)
k-NN (k=3) 99,2% 100% (76/76) 0,9% (3/309)

6 Discussion and Conclusions

The complete sistem was tested with a set of videos where 14 buses where cor-
reclty classified among above 100 vehicles and only 1 false positive was produced.
We note that a false positive is tolerable while missing a bus is not. From this
point of view the proposed system achieves good performance in terms of recall
and precission.

If we compare our results with the ones presented in [1] using inductive loops
we can see that we we obtain 81,2 % in the classification in all classes while
in the preovious work the author reports 98,4% over a smaller set consisting
only in cars, vans and buses. If we consider both systems as bus detectors their
performance is equivalent since we reach 100%.

When comparing our results to [5] the first obsevation is that in this work
the authors recognize car categories and therefore a direct comparison is not
posible. We showed that using the same basic algorithm, eigenfaces, buses can
be correctly recognized among other vechiles. This shows the potential of this
solution for real applications in the context of intelligent transport systems.

We also propose a simple and efficient method to detect moving regions based
on the probability of a pixel to be part of the static background. This method
simplifies the threshold selection and auto-adapts its value based on the proba-
bility distribution of the static pixels from the background.
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Abstract. This paper presents a novel approach for automatic music
genre recognition in the visual domain that uses two texture descriptors.
For this, the audio signal is converted into spectrograms and then textu-
ral features are extracted from this visual representation. Gabor filters
and LPQ texture descriptors were used to capture the spectrogram con-
tent. In order to evaluate the performance of local feature extraction,
some different zoning mechanisms were taken into account. The exper-
iments were performed on the Latin Music Database. At the end, we
have shown that the SVM classifier trained with LPQ is able to achieve
a recognition rate above 80%. This rate is among the best results ever
presented in the literature.

Keywords: Music genre, texture, image processing, pattern recognition.

1 Introduction

In recent years, a huge amount of data from different sources has become avail-
able online. In most cases, this information is not organized according to some
predefined pattern. Thus, tasks related to automatic search, retrieval, index-
ing and summarization has become important questions, whose solutions could
support a good and efficient access to this content. For some time, textual an-
notation was used to organize and classify multimedia data. However, this is
not a good way to deal with this content efficiently. Textual annotation requires
a large amount of human labor and, moreover, is subject to human perception
subjectiveness.

Digital music is among the most common types of data distributed through
the internet. There are a number of studies concerning to audio content analysis
using different features and methods. Automatic music genre recognition is a
crucial task for a content based music information retrieval system. As stated
by Tzanetakis and Cook in [1], musical genres are categorical labels created by
humans to characterize pieces of music. A musical genre is characterized by the
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common characteristics shared by its members. These characteristics typically
are related to the instrumentation, rhythmic structure, and harmonic content
of the music. In some studies it was found that genre is an important attribute
which helps users in organizing and retrieving music files.

Costa et al. presented in [2] the first results obtained in music genre clas-
sification using features extracted from spectrograms. Spectrogram is a visual
representation of the spectrum of frequencies in a sound [3]. In the most com-
mon representation, spectrogram is a graph with two geometric dimensions: the
horizontal axis represents time, the vertical axis is frequency; a third dimension
indicating the amplitude of a particular frequency at a particular time is repre-
sented by the intensity or color of each point in the image. As shown in Figure
2, texture is the most noticeable visual content in a spectrogram image. Taking
this into account, we have explored different texture descriptors presented in the
image processing literature in order to capture information to describe this con-
tent. In [2], we used the well-known Gray Level Co-occurrence Matrix (GLCM)
to capture the textural content from the spectrogram images. By analyzing the
spectrogram images, we have noticed that the textures are not uniform, so we
decided to consider a local feature extraction beyond the global feature extrac-
tion. In that work, only one classifier was created even when a zoning strategy
was used in order to preserve local information, and the final decision was done
through majority voting among the results obtained with feature vectors ex-
tracted from different zones. In [4] and [5], the authors have evaluated the Local
Binary Pattern (LBP) texture descriptor trying to capture the spectrogram im-
age content. Furthermore, the authors introduced the creation of one classifier
for each created zone, combining their outputs in order to get the final decision
using fusion rules presented by Kittler et al. [6], like Product, Sum, Max and
Min. The best obtained results on the ISMIR 2004 dataset are comparable to
the best results described in the literature. Regarding LMD dataset, the best
obtained result is the best ever obtained using artist filter.

In this work, we are interested in investigate the performance of LPQ and
Gabor filters texture operators in music genre recognition using spectrogram
images. The reason for choosing Gabor filters is that in our previous works,
there is a lack of experiments using some spectral texture descriptor approach.
With regard to LPQ, the choice was done because this is a novel operator which
has shown good performance in many different works presented in the literature.

This paper is organized as follows: Section 2 describes the feature extraction
performed in this work. Section 3 describes the classification while Section 4
reports the results and discussions about them. Section 5 concludes this work.

2 Feature Extraction

Before proceed the generation of the visual representation, we performed a time
decomposition based on the idea presented by Costa et al. [7] in which an audio
signal S is decomposed into n different sub-signals. Each sub-signal is simply
a projection of S on the interval [p, q] of samples, or Spq =< sp, . . . , sq >.
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In the generic case, one may extract K (overlapping or non-overlapping) sub-
signals and obtain a sequence of spectrograms Υ 1, Υ 2, . . . , ΥK . We have used the
same strategy used in [8], which considers three 10-second segments from the
beginning (Υ beg), middle (Υmid), and end (Υ end) parts of the original music. In
order to avoid segments that do not provide good discrimination among genres,
we decided to ignore the first ten seconds and the last ten seconds of the music
pieces. The rationale behind this strategy is that some common effects present
in these parts of the music signal, like fade in and fade out, and some kinds of
noise, like those produced by the audience, could turn these signal samples less
discriminant than the others.

After the signal decomposition, the next step consists in converting the audio
signal into a spectrogram. The spectrograms were created using a bit rate =
352kbps, audio sample size = 16 bits, one channel, and audio sample rate =
22.05 kHz. Figure 1 depicts the signal segmentation and spectrogram generation.

Fig. 1. Creating spectrograms using time decomposition

Once the spectrograms were generated we proceeded the texture feature ex-
traction from these images. As stated before, the approach proposed in this work
considers that the main visual content present in the spectrogram images is the
texture. With this in mind, we used Gabor filters and LPQ texture operator to
capture the image content.

In this work, before proceeding the feature extraction with Gabor filters, the
spectrogram images were scaled to 64×64 pixels. Once it was done, the Gabor
wavelet transform was applied on the scaled image with 5 different scale levels
and 8 different orientations, which results in 40 subimages. For each subimage,
3 moments are calculated: mean, variance and skewness. So, a 120-dimensional
vector is used for Gabor texture features. More details about Gabor filters can
be found in [9].

Our experiments with LPQ were performed with the original implementa-
tion. The window size used to compute the short-term Fourier Transform was
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empirically adjusted to 7 × 7. Additional mathematical details about LPQ can
be found in [10].

2.1 Global and Local Feature Extraction

The rationale behind the zoning and combining scheme is that music signals
may include similar instruments and similar rhythmic patterns which leads to
similar areas in the spectrogram images. By zoning the images we can extract
local information and try to highlight the specificities of each music genre.

A positive side effect obtained with zoning strategy is that one can create
a specific classifier to deal with the features extracted from each specific zone.
Thus, we can naturally obtain several classifiers. Not by chance, the best results
achieved in previous works were obtained by combining these classifiers outputs.

In order to proceed the local feature extraction, we have evaluated three dif-
ferent number of linear zones (1,5, and 10), which are applied to the spectrogram
image before extracting textural features. Thus, considering that three spectro-
gram images were generated from each music piece, since we extracted three
segments, the number of total zones and consequently the number of classifiers
is 3n, where n is the number of zones per segment. Figure 2 shows a linear zoning
scheme, with n = 10, superimposed over a spectrogram image extracted from 30
seconds signal (three segments of ten seconds).

Fig. 2. Linear zoning used to extract local information

3 Classification

The classifier used in this work is Support Vector Machine (SVM), introduced by
Vapnik in [11]. Normalization was performed by linearly scaling each attribute
to the range [-1,+1]. The Gaussian kernel was used, with parameters C and γ
tuned using a greedy search.
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The classification process is done as follows: as aforementioned, the three 10-
second segments of the music are converted to the spectrograms (Υ beg , Υmid,
and Υ end). Each of them is divided into n zones, according to the values of n
described in subsection 2.1. Then, a 120-dimensional Gabor filters feature vector
and a 256-dimensional LPQ feature vector were extracted from each zone. Next,
each one of these feature vectors is sent to a specific classifier, which assigns a
prediction to each one of the ten possible classes. Training and classification were
carried out using the 3-fold cross-validation. For each specific zoning scheme, we
created 3n classifiers with 600 and 300 feature vectors for training and testing,
respectively. With this amount of classifiers, we used estimation of probabilities
to proceed the combination of outputs in order to get a final decision. In this
situation, is very useful to have a classifier producing a posterior probability
P (class|input). Here, we are interested in estimation of probabilities because we
want to try different fusion strategies like Max, Min, Product, and Sum.

4 Experimental Results and Discussion

Firstly, some details about the music database used in the experiments reported
here are described. The Latin Music Database (LMD) is a digital music database
created for support research in music information retrieval. The database was
presented by Silla et al. [12]. It is composed of 3,227 full-length music samples
in MP3 format originated from music pieces of 501 artists. The database is
uniformly distributed along 10 music genres.

In our experiments we have used the artist filter [13] restriction when splitting
the dataset to create folds. The use of the artist filter does not allow us to
employ the whole dataset since the distribution of music pieces per artist is far
from uniform. Thus, 900 music pieces from the LMD were selected, which are
split into 3 folds of equal size (30 music pieces per class). In order to compare
the results obtained here with those obtained in other works, the folds splitting
taken was exactly the same used by Lopes et al. [14] and by Costa et al. [2] [4]
[5]. The results described here refer to the average recognition rate considering
the three folds aforementioned. In addition, the standard deviation between the
three folds used in classification is presented.

Table 1 reports the results obtained when features extracted with Gabor filters
were used with four different fusion rules and with the three different zoning
configurations mentioned in section 2.1. As in the results presented in [4], the
best result was obtained when five zones were created. Like in that work, one
can see that increasing the number of zones up to a certain point we observe a
noticeable performance improvement.

Table 2 presents results obtained using LPQ texture descriptor. Interestingly,
the best result with LPQ, both in terms of recognition rates and standard de-
viation, were obtained when the global feature extraction (without zoning) was
used. One can notice that the results obtained with global feature extraction
and five linear zones are very close to each other. However, it is important to
contrast that using global feature extraction, only three classifiers are created
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Table 1. Average recognition rates (%) and standard deviation obtained between the
three folds using different number of zones with Gabor filters

Number of zones Maximum rule Minimum rule Product rule Sum rule

1 55.89±9.94 56.67±11.60 59.78±9.91 58.78±9.08
5 66.22±2.22 69.67±2.33 74.67±3.79 74.11±2.69
10 60.56±1.02 65.33±2.85 71.78±1.84 71.00±0.58

whereas 15 are created when five linear zones are created. In addition, the best
result obtained with LPQ is very close to, but sligtly better, the best result
reported in [4], obtained with Local Binary Pattern (LBP) texture descriptor.

Table 2. Average recognition rates (%) and standard deviation obtained between the
three folds using different number of zones with LPQ

Number of zones Maximum rule Minimum rule Product rule Sum rule

1 76.89±2.12 77.22±1.68 80.78±0.77 79.44±1.17
5 74.00±1.91 76.00±1.66 80.67±1.44 80.56±1.10
10 70.11±2.57 73.33±1.25 79.00±0.89 78.00±0.27

4.1 Discussion

Unlike the results obtained with Gabor filters and the texture descriptors used
in [4], i.e. LBP and GLCM, the best result with LPQ was obtained using global
feature extraction, as shown in table 2. This is very interesting, once with global
feature extraction we create a smaller amount of classifiers, which decreases
the overall system complexity. In addition, it is important to notice that the
result obtained with LPQ is the best one ever obtained with linear zoning or
global feature extraction taking into account all the texture descriptors already
experimented on the LMD dataset.

Table 3. Recognition rates (%) with all the texture descriptors used here and in [4]

Texture descriptor Number of zones Best result

GLCM [4] 5 70.78±2.69
LBP [4] 5 80.33±1.67

Gabor filters 5 74.67±3.79
LPQ 1 (no zoning) 80.78±0.77

Table 3 presents the best results obtained with four different texture operators
on the LMD. We have evaluated if there are statistically significant differences
between these results. For this, the Friedman test with post hoc Shaffer’s static
procedure was employed. The multiple camparison statistical test has shown
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that the p value of the statistical test was higher than the critical value in all
cases at 95% confidence level. Thus, we have not found statistically significant
difference between these results. This is favourable to LPQ, once it is the only
one operator which presented the best result using global feature extraction.

Table 4 shows some results recently obtained on the LMD dataset using artist
filter. Some of the works shown in this table refer to results presented in MIREX
(Music Information Retrieval Evaluation eXchange) contest. In [15,16,17] the
authors used acousitc features, extracted directly from the audio signal. One
can see that the best result obtained here is among the best results.

Table 4. Best recognition rates (%) obtained on the LMD with artist filter

Work reference Recognition rate (%)

Lopes et al. [14] 59.67±13.5
MIREX 2008 - LMD [15] 65.17±10.72
MIREX 2009 - LMD [16] 74.67±11.03
MIREX 2010 - LMD [17] 79.86±5.20

LBP (5 zones) [4] 80.33±1.67
LBP (Mel scale zoning) [5] 82.33±1.45

LPQ (this work) 80.78±0.77

On the one hand, one can say that the best recognition rate obtained on
the LMD using visual features is that described in [5]. On the other hand, it is
important to note that in that work a much bigger amount of classifiers (45) was
created, since a nonlinear zoning with much more zones was used.

5 Conclusion

In this work we follow the investigation of the use of features extracted from the
visual representation (spectrogram) of the audio signal in music genre recogni-
tion. We have compared the use of two different texture descriptors to capture
the content of spectrogram images, i.e. Gabor filters and LPQ. We have tried two
different approaches to deal with the intra-class variability of the spectrogram
images, a global feature extraction and a feature extraction taking into account
a linear zoning to obtain local information of the images.

The results obtained with LPQ texture operator are better than those ob-
tained with Gabor filters. Regarding to results obtained with other texture de-
scriptors on the LMD with global feature extraction or linear zoning, the result
obtained with LPQ is the best one ever obtained. Interestingly, the global feature
extraction performed slightly better than zoning with LPQ, unlike with Gabor
filters and the other texture descriptor already investigated in other works.

In future works, we intend to develop experiments using LPQ descriptors
with feature selection. The rationale behind this strategy is that one can reduce
the dimensionality of the features vector and improve the performance either in
terms of recognition rate or in terms of time.
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Abstract. We assess the feasibility of unseen appliance recognition
through the analysis of their electrical signatures recorded using low-
cost smart plugs. By unseen, we stress that our approach focuses on the
identification of appliances that are of different brands or models than
the one in training phase. We follow a strictly defined protocol in order
to provide comparable results to the scientific community. We first evalu-
ate the drop of performance when going from seen to unseen appliances.
We then analyze the results of different machine learning algorithms, as
the k-Nearest Neighbor (k-NN) and Gaussian Mixture Models (GMMs).
Several tunings allow us to achieve 74% correct accuracy using GMMs
which is our current best system.

Keywords: Intrusive Load Monitoring (ILM), appliance recognition,
electric signatures, load identification.

1 Introduction

The automatic recognition of appliances from their electric signatures has several
applications such as energy consumption understanding and appliance manage-
ment for energy consumption optimization [1]. Other applications can also be
envisioned such as an indirect activity detection in houses or monitoring of el-
derly people [2].

Due to the rising price of energy and an increased sensitivity from people to
environmental matters, the field of energy consumption understanding and man-
agement is nowadays rising interests. In US, 51% of the electricity consumption
in homes is due to appliances and lighting [3]. In this context, a system able
to recognize appliance would allow to know which appliance is consuming how
much, giving an explanation on their contribution to the electricity bill. This
will allow householders to optimize their energy consumption. Appliance iden-
tification could also be very useful for Building Management Systems (BMS),
allowing to implement smarter rules and optimizing the local production and
consumption of electric energy.

An electric signature represents the time evolution of the electricity consump-
tion which is summarized by the active and reactive power on AC networks.

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part II, LNCS 8259, pp. 75–82, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Appliances can be categorized into 4 classes [4]: two-states on/off appliances
(e.g. lamps, toasters); multi-states appliances, when a finite number of operat-
ing states exist (e.g. fridges, dishwashers); continuously variable devices, when
the consumption varies continuously (e.g. battery chargers); permanent con-
sumer devices, when the consumption is constant over a long period of time (e.g.
telephone sets, smoke detectors). According to this, a more complex task than
appliance identification could consist of recognizing in which state a given appli-
ance is at a given time, allowing for example to automatically detect stand-by.
Recent studies are estimating this consumption at about 10% of the residential
electricity use [5, 6].

Appliance identification can be done using two approaches: Non-Intrusive
Load Monitoring (NILM) and Intrusive Load Monitoring (ILM) [7]. NILM mon-
itors the total house electricity consumption at the smart meter, while the ILM
refers to a distributed sensing approach, using one or more sensor per appliance.
In the first case, the signals have to be decomposed to identify single appliance,
i.e. performing a disaggregation [4]. NILM approaches are less expensive but
more difficult while ILM approaches are more expensive but more precise [7].
We focus in this paper on ILM approaches.

As detailed in Section 2, several modeling approaches have been proposed for
appliance identification, often based on machine learning principles. Given the
differences among brands and models, a challenge for such approaches is in the
necessity to have large training databases that represent all types of appliances
for a given type, including as many brands and models as possible. In this paper
we address the problem of identification systems that are tested with unseen ap-
pliance, i.e. appliance brands that are not available in the training set. In other
words, we evaluate the generalization capacity of such machine learning systems
when dealing with new appliances that are not yet observed in the training set. In
this direction, the availability of large databases is important (Section 3). System
description, results and discussions are presented in Section 4 and 5.

2 Related Works

Several ILM approaches have been proposed. In the work of F. K. Adeel Ab-
bas Zaidi and P. Palensky [8], machine learning approaches such as Dynamic
Time Warping (DTW) and Hidden Markov Models (HMMs) are presented. Ob-
servations are sampled at 10−1 Hz on different appliances spread into 6 cat-
egories including fridges, microwaves, dishwashers, coffee machines, computers
and printers. From the raw observations, features are extracted such as average
energy consumption, edge counts, percentage energy consumption and discrete
Fourier transform coefficients. The best feature sets are showing results up to
90% for five categories.

In the work of Reinhardt et al. [9], 33 appliance categories are used to build
an identification system showing promising performance up to 95.5% accuracy.
The system samples the current consumption at 1.6 kHz which brings much finer
information on the time evolution. Their approach extracts numerous features
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from the signal leading to 517 feature vector representing the electricity trace.
Different classification algorithms were also analyzed showing the best results
with random committee approaches. Due to a pretty large database of signals,
they could analyze the impact of using different features and types of classifiers.

In the work of Zufferey et al. [10], the objective was to categorize appliances
into 6 categories. The system is based on low-cost smart plugs measuring the
electricity consumption parameters at low frequency every 10 seconds. k-Nearest
Neighbors and Gaussian Mixture Models were compared, showing similar accu-
racies up to 85%. Interestingly, the raw observations were simply normalized and
used directly as features. A continuation of this work was presented by Ridi et
al. in [11] where the signature database ACS-F1 was used, increasing the number
of categories to 10 and showing a tuned up system performance of 93.8%. In the
next Section this database will be presented.

To the best of our knowledge, all these related works have been evaluated on
appliance types and brands that were also seen in the training database, i.e.,
according to so-called intersession protocols where the same appliances are pro-
ducing the training and testing signature materials. In this paper, we investigate
the recognition of categories using unseen appliance protocols, i.e., where the
testing signatures come from new appliances that are not observed in the train-
ing set. The task is expected to be more complex due to the extra inter-brand
and inter-model appliance variability.

3 ACS-F1 Database

We based our work on the Appliance Consumption Signature Fribourg 1 (ACS-
F1) database [12]. This database contains appliance signatures acquired using
low-cost smart plugs capturing the electricity parameters at low frequency with
a sampling rate of 10−1 Hz. A signature is a sequence of raw measurements
O = {o1, . . . , oN} where on is a vector of 6 coefficients including real power
(W), reactive power (var), RMS current (A), RMS voltage (V), frequency (Hz)
and phase of voltage relative to current (ϕ). The database contains for each
appliance two acquisition sessions of one hour. 100 appliances are recorded and
spread uniformly into 10 categories: mobile phone chargers, coffee machines,
computer workstations with monitor, fridges and freezers, Hi-Fi systems, lamp
(CFL), laptops chargers, microwave ovens, printers, and televisions (LCD or
LED).

Two protocols are proposed with the database: the intersession and unseen
instances protocols. In the first protocol all the instances of the first session
constitute the train set, whereas those of second session are used for testing.
With this protocol, all the testing signatures come from appliances already seen
in the training phase. At the time of writing this article, the best performances
on the intersession protocol are reported in [11]. In this work, two classifiers
are compared, namely k-NN and GMM systems showing respectively 88% and
93.8% correct category identification.

The second protocol aims at evaluating unseen instances configurations as
illustrated in Figure 1. The goal is here to classify instances that are not seen
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Fig. 1. Unseen instances protocol of the ACS-F1 database

before by the classifiers. This protocol also proposes to use a 10-cross fold pro-
cedure to smooth the evaluation results. The fold partitions are made available
by the providers of the database. This protocol evaluates the system capability
of generalizing to new brands or models of appliances.

4 System Description

4.1 Feature Extraction

In our procedure and as proposed in [10, 11], we use as baseline coefficients the
raw observation O as part of the features. We analyze here the impact of includ-
ing information about the dynamics of the signal through the computation of
the so-called delta and delta-delta or acceleration coefficients. These coefficients
have been mainly used in speech recognition and have already been successfully
used for appliance identification [11]. As explained in [13], the delta coefficients
are computed with:

Δon =

W∑
w=−W

w × on−w (1)

where K represents the window length. The value W = 2 has been retained
after some tests, which corresponds to a window of 50 seconds. We then perform
a z-normalization of the features, after which the mean is equal to zero and
the variance is equal to one. The normalization is mainly useful for classifiers
based on distance computation such as k-NN with a side effect of balancing
each feature contribution. Our feature sequence X = {x1, . . . , xN} is therefore
constituted of vectors composed of normalized observations and delta coefficients
with xn = [c1n, . . . , c6n, Δc1n, . . . , Δc6n] and with cin the normalized value of the
corresponding oik observation. In a similar way, we also analyzed the extension
of the features including the acceleration coefficients that are computed from the
delta coefficients with:

ΔΔon = Δon+1 −Δon−1 (2)
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In this work, we also evaluate the effect of applying power thresholding, elimi-
nating from the sequence the observations where the value of the active power is
below a given threshold TP . Intuitively, this is related to the fact that appliances
are difficult to discriminate when they are consuming a small quantity of energy,
e.g. when they are off or in stand-by. After some pre-tests, the threshold TP is
set to 0.5W .

4.2 Classification

Two machine learning algorithms are analyzed in this work: k-NN and Gaus-
sian Mixture Models (GMM). A k-NN classifier computes the k closest features
from the train set and then uses the labels of these features to perform the clas-
sification. In our case, we choose the winning class through a simple majority
voting on the labels. In case of a tie, the class having the closest points is elected
as winner. The normalized observation, delta and acceleration coefficients are
representing different type of information. We then propose here to weight the
distance computation with

dist(xts, xtr) = α× d(cts, ctr) + (1− α)× d(Δcts, Δctr) (3)

where d is the euclidean distance, xts a test feature vector and xtr a train feature
vector. The coefficient α is tuned between 0 and 1 to give more or less weight to
the delta versus the plain coefficients.

A GMM is a parametric probability density function estimating the likeli-
hood p(xn|Mj) of a feature vector xn given a category Mj as a weighted sum
of Gaussian component densities. The model can be configured with the num-
ber of mixtures I. In our configuration, we used GMM with diagonal covariance
matrices making the hypothesis of uncorrelated coefficient. This hypothesis is
not true in practice but allows to reduce the number of parameters to estimate
and to speed up the computations. The model is computed using the classical
Expectation-Maximization (EM) algorithm [14]. The initial values of the Gaus-
sian distributions are computed using the k-means algorithm. For testing, the
likelihood p(X |Mj) of an observation sequence X given a model Mj is com-
puted by multiplying the local likelihoods p(xn|Mj) by making the observation
independence hypothesis.

5 Result and Discussion

Influence of the Delta Coefficients. We observe that the inclusion of delta
coefficients is beneficial for both k-NN and GMMmodels. Accuracy rates increase
from 45% to 52.5% for the k-NN model when including the deltas. Similarly,
accuracy rates increase from 62% to 69% for the GMM when including the
deltas1. The dynamic information is bringing significant improvement to both
systems.

1 An optimization of k, the number of neighbors and I the number of Gaussian is
systematically performed in all reported results.
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Fig. 2. Accuracy rate trend for a) k-NN varying the number of neighbors (α = 0.1, with
thresholding), B) GMMs varying the number of Gaussians (using delta and delta-delta
coefficients, without thresholding)

Influence of the Thresholding. We observe that eliminating the feature
vectors that show an active power below the threshold TP is beneficial for the
k-NN system. Accuracy rates increase from 52.5% to 54.5% when applying the
thresholding. This can be intuitively explained considering that close-to-zero
power features are present in most signatures, corresponding to stret-ches of time
where the appliances are not used. The training features corresponding to these
stretches are independent to the categories and lead to noisy neighbors in the k-
NN procedure. Also, as expected, we do not observe a benefit of the thresholding
for the GMM models where the zero power stretches bring equivalent score
contributions in all categories.

Influence of Weighted Distance Computation. We observe the benefit
of applying a weighted distance computation as explained in Eq. 3. The perfor-
mance improved from 54.5% to 57% with the k-NN system using thresholding
and a value of α = 0.1. As illustrated in the top part of Figure 2, we obtain this
performance for an optimal value of k = 11.

Influence of the Delta-Delta Coefficients. Including further the acceler-
ation coefficients, we could achieve an improvement of the GMM system from
69% to 74%. As illustrated on the bottom part of Figure 2, we also observe the
effect of tuning the number of mixtures I, with the best performance obtained
with I = 9 mixtures in the model. A slight improvement of 1.5% is also observed
for the k-NN system by including the delta-delta coefficients.

Table 1 provides more details with the confusion matrix for our best GMM
system. The categories printer, hifi and lamp are showing the largest error rates.
Categories fridge and battery charger are showing the best performances.
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Table 1. GMM Confusion Matrix with I = 9, without thresholding, using delta and
delta-delta coefficients
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Hifi .6 .05 0 0 0 .15 .2 0 0 0
Television 0 .7 0 0 .05 .05 .05 .05 0 .1
Battery C. 0 0 .9 0 0 .05 .05 0 0 0
Coffee M. 0 0 0 .75 0 0 0 0 .25 0
Computer 0 .15 0 0 .7 0 0 .15 0 0
Fridge 0 0 0 0 0 .9 0 .05 0 .05
Lamp 0 .1 .1 0 .15 .05 .55 0 .05 0
Laptop 0 .05 0 0 0 0 .05 .85 0 .05

Microwave 0 0 0 .15 0 0 0 0 .85 0
Printer .05 .05 0 0 0 0 .3 0 0 .6

6 Conclusions

A first objective of this paper was to evaluate the feasibility of equipment identifi-
cation using simple machine learning algorithms fed by low-frequency electricity
consumption measurements. The answer to this question seems positive. We an-
alyzed the performance of different algorithms for the task of identifying unseen
appliance. A large database of electrical signatures was used with a total of 200
appliances. Our first conclusion is about the complexity of recognizing unseen
appliances. When going from a seen appliance protocol to an unseen appliance
protocol using the same database, we observe a drop of performance from 93.8%
to 74% correct classification using the best GMM system for both protocols.
The unseen task still shows acceptable performance but is much more difficult.
Improving the performance could probably be reached by increasing the training
data set which is still limited in the case of the experiments carried on here. A
second conclusion is about the benefit to include dynamic coefficient that are,
in our proposal, computed through simple delta and delta-delta coefficients. A
third conclusion is about the tuning of some parameters including the weight
α used to emphasize the information brought by the delta coefficient in k-NN
systems and the number of Gaussians in the GMM model. Finally, as observed
in previous works, we can also conclude on the superiority of the GMM over
k-NN for signature modeling. Overall, our best accuracy has been raised up to
74% obtained with a GMM model using 9 Gaussians.

As future work, we plan to evaluate the use of state-based models such as
HMMs, which should be particularly suitable for electrical signatures that in-
trinsically show a state nature. HMMs can also be seen as a generalization of
GMMs. Comparison with discriminant approaches such as SVM and ANN will
also be analyzed.
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Abstract. Wind power generation is a green solution to power generation that is 
receiving increasing interest worldwide. Wind speed forecasting is critical for 
this technology to succeed and remains today as a challenge to the research 
community. This paper presents a neural network fusion approach to multi-step-
ahead, short-term forecasting of wind speed time-series. Wind speed forecasts 
are generated using a bank of neural networks that combine predictions from 
three different forecasters. The wind speed forecasters include a naïve model; a 
physical model and a custom designed artificial neural network model. Data used 
in the experiments are telemetric measurements of weather variables from wind 
farms in Eastern Canada, covering the period from November 2011 to October 
2012. Our results show that the combination of three different forecasters leads 
to substantial performance improvements over recommended reference models.  

Keywords: Short-term wind speed forecasting, artificial neural networks,  
forecast combination. 

1 Introduction 

Wind power generation is a green and cost-effective solution to power generation, 
which has grown substantially worldwide. It is among the most competitive renewa-
ble technologies, projected to account for significant shares of the global power mar-
ket in the near future [1]. However, the inherent variability and uncertainty of wind 
can lead to unexpected and sometimes substantial mismatches between scheduled and 
actual wind power [2]. This fact has driven the search for improved wind power fore-
casting methods [1–8].  

Forecasting means that future values of wind power or speed  will be es-
timated as |  by some function , given some predicting variables  up to 
time . A forecasting error |  is introduced and expected to be bounded. The 
target time  is called the forecasting horizon.  

 |  (1) 
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  | | , (2) 

Forecasting horizons for wind power integration and operation span time frames 
ranging from a few seconds to weeks ahead [8]. Accurate short-term forecasts are 
critical for effective power management and receive considerable research attention 
[1, 7, 9–13]. Forecasting methods typically work better when the prediction is focused 
on specific time frames. Complex physical models for example, use numeric weather 
prediction (NWP) and are known to have good performance for horizons beyond 3-6 
hours ahead [10]. The simplest model called persistence offers accurate wind speed 
forecasts for immediate horizons, typically up to around one hour ahead but also de-
pending on weather conditions, can be reliable for up to 6 hours [9, 10]. Statistical 
and machine learning approaches on the other hand, can generate reasonable forecasts 
for less than a day horizon [2, 8].  

Forecast combination offers a way to reduce forecasting errors by combining the 
predictions from a number of forecasters [14–16]. Prediction gains are obtained by 
exploiting diversification if individual forecasters use different models of the underly-
ing process they predict [17]. Combination success depends on how well mixing 
weights can be assigned to individual forecasters. This method is often preferred over 
finding one single best model. For wind speed forecasting, statistical and machine 
learning models are known to automatically reduce systematical errors due to their 
adaptation to the location of the wind farm; however as opposed to NWP, they have 
difficulties predicting rare atmospheric conditions [6, 8, 11]. Combining NWP based, 
statistical and machine learning models could help at getting the most of all methods. 

This paper exploits this approach proposing a fusion method for multi-step-ahead, 
short-term (up to 6 hours ahead) prediction of wind speed. Neural networks (NN) are 
used to determine the best nonlinear combination of three predictors at different time 
leads. The predicting models include persistence, artificial neural network and NWP-
based predictors. Performance is assessed using recommended error measures and 
reference models [1, 9, 10]. 

2 Case Study and Data Description 

The data used in this study come from one-year-long recordings of several measured 
weather variables at four on-shore wind farms in Eastern Canada. The wind farms are 
named herein as WindFarm-1, WindFarm-2, WindFarm-3 and WindFarm-4. The 
observed variables include temperature, wind speed, and wind direction measured at 
the hub heights (80 meters), every five minutes. Table 1 shows mean wind speeds,  
 

Table 1. Wind characteristics during the period under study 

Wind farm Mean Wind Speed (scale, shape of Weibull dist.) Wind Direction 
WindFarm-1 8.35 m/s  (9.43m/s, 2.38) 250o (std=78.5 o) 
WindFarm-2 8      m/s  (9.01m/s, 2.25) 210o (std=100 o) 
WindFarm-3 7.6   m/s  (8.54m/s, 2.57) 220o (std=80 o) 
WindFarm-4 7.6   m/s  (8.60m/s, 2.48) 202o (std=98 o) 
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shape and scale parameters of the fitted Weibull distribution and, mean and standard 
deviation of wind directions of each wind farm. A total of 366 days (105408 sam-
ples), from November 1st 2011 until October 31st 2012, conform the recording period.  

NWP-based forecasts from Environment Canada (EC) were available for all sites, 
offering wind speed estimates at heights H = {10, 40, 120, 216} m.  EC delivers a set 
of forecasts values four times a day. The sets include forecasts for the next 3 to 48 
hours with a 15 minutes time step. Linear interpolation is used to estimate wind speed 
at the hub height (80m). 

WindFarm-1 is presented in this paper to demonstrate the effectiveness of the pro-
posed technique. Fig. 1 shows plots of observed values and monthly averages of wind 
speed along with a windrose diagram of wind directions. It is worth noting that pre-
vailing and strong winds mainly blow from West and North-West with slower winds 
occurring in the summer. Noon and nights exhibit slower wind speeds than early 
morning and evening, which is reported to affect the accuracy of some NWP based 
predictors [18]. These elements will help selecting input features for one of the fore-
casting techniques to be used in the proposed fusion. 

 
 

 

Fig. 1. Measured wind speeds and main wind directions at WindFarm-1 

3 Performance Evaluation 

An effective comparison of forecasting methods is not easily achieved as there are 
various performance criteria used by researchers [1, 9]. Recently, partners of the 
ANEMOS project have proposed a set of recommendations to establish a common 
ground for comparison [9, 10]. Some suggested error criteria include: 

─ mean absolute error (MAE),  

 ∑ | | (3) 
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─ root-mean-squared error (RMSE),  

 ∑  (4) 

─ mean absolute percentage error (MAPE).  

 ∑ | || |  (5) 

N is the size of the sample used to calculate the measure, and |  and 
 are the forecasted and the actual values respectively. MAE and RMSE 

express global errors in terms of wind speed; but RMSE accentuates the effect of 
larger errors. MAPE is a dimensionless, relative measure of global error. Its singulari-
ty problem is avoided here by ensuring the exclusion of zero-valued speeds, which 
have a very low probability of occurrence.  

The recommendations also emphasize to build the models and validate them by us-
ing cross-validation. We reserved a set of data (15%) to test model predictions. Train-
ing (70%) and validation (15%) sets were used to create models and to avoid model to 
adapt too closely to the training sample (overfitting), respectively. Data for each set 
was randomly chosen in order to have training samples from any time of the year.  

Finally, comparing farms with differently variable time series should use a skill 
score SSγ k . This is an objective indicator of the improvement a forecasting model 
has over a reference (ref) model at horizon k, using some metric γ [2]. 

 100% (6) 

4 Individual Wind Speed Forecast Techniques 

4.1 Persistence or Naïve Model  

This is a simplistic model where its k-step-ahead forecast is expressed as: 

 | , (7) 

i.e. future predicted values will be the same as the last observed value. Its accuracy is 
very high at the shortest horizons and cannot be easily outperformed by other, more 
complex models. For this reason it is almost universally used as a benchmark for 
short-term forecasting of less than six hours. Using persistence in combination with 
other models ensures high precision and simplicity at the shortest time leads. 

4.2 The Artificial Neural Network Approach  

Artificial neural networks are amongst the most successful machine learning ap-
proaches to short-term wind speed time-series forecasting. Improvement over other 
machine learning and statistical models has been extensively reported in the literature. 
Although several network architectures have been proposed in forecasting applica-
tions, the feed-forward network is one of the most popular [10–13].  
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In this study, we used a feed-forward multilayer perceptron (MLP) neural network 
architecture using the Levenberg-Marquardt backpropagation (LM) training algorithm. 
The selected training algorithm encompasses the Newton and gradient descent methods 
being one of the fastest algorithms. Mean squared errors (MSE) are minimized, which 
is appropriate for wind speed forecasting where prediction errors are assumed to have a 
Gaussian distribution [6]. For a multi-step-ahead prediction several approaches might 
be followed namely iterative, multi-model, or single-model-multivariate forecasting. 
Iterative forecasting predicts successive look-ahead times by aggregating previous 
forecasts to the input series. This solution might lead to decreasing accuracy as look-
ahead time increases, due to accumulation of errors [12]. Single-model-multivariate 
forecasting uses output layers with as many neurons as the number of look-ahead 
times, leading to very complex systems. Finally we chose the multi-model forecasting. 
This approach builds a set of models for each time step; the individual networks are 
small, faster to train and less likely to be overfitted. A single-neuron linear output layer 
at each kth NN outputs  a t k|t  wind speed estimates.  

Exploratory analysis of the measured weather variables and a bootstrap aggrega-
tion of regression trees helped selecting the set of input features by providing meas-
ures of variable importance [19]. A final selection of eleven features includes lagged 
values of wind speed, wind direction, and temperature averages over the last three 
days prior to the forecasting date and the hour of the day. Having chosen the number 
of inputs, we addressed the problem of identifying an appropriate network topology. 
Two hidden layers with hyperbolic tangent sigmoid transfer functions with 20 neu-
rons each resulted as the best configuration after running a set of trials. Fig. 2 depicts 
a plot of the global MAPE values obtained with these NNs.  

 

 

Fig. 2. Performance of individual forecasters 

4.3 Forecast from a Physical Model Based on NWP 

In order to include NWP-based forecasts as an aggregated approach in the final fore-
cast, we decided to combine concurrent sets of EC’s forecasts. EC’s multi-step-ahead 
forecasts F(T) are delivered every D=6 hours, generating an overlap between current 
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F(T) and previous F(T-nD) forecasts. These overlaps can be used to extend the time 
span of the forecasts below 3 hours and to further improve the predictor’s perfor-
mance; particularly if concurrent forecasts can be properly combined.  

When concurrent forecasts  are comparable, the combination can be reduced to 
simple average of competing forecasts. More complex combinations can also be ex-
ploited using more complex mixing functions. We tested several of these methods 
including simple averaging of concurrent forecasts, linear regression (LR), and NN. 
Simple averaging assigns equal weights to all, present and past, forecasts and does not 
eliminate any bias of the original forecasts. Regression and NN based approaches 
assign weights that act as “forgetting” factors indicating the influence of each pre-
vious forecast in the combined forecast. Fig. 2 graphically shows the improvement 
attained by linear regression and NN-based combinations. This figure also shows 
average MAPE performance for the other two independent forecasters. Individual 
models do not resemble competing models’ forecasts at all k-step-ahead times. As 
expected, persistence performs best for look-ahead times below two hours. The rela-
tive performance between the NN approach and the combination of concurrent NWP-
based forecasts depends on the combination approach employed.  

5 Fusion Forecast Method 

Independent forecasters are combined to generate a final forecast. The proposed com-
bination should generate multi-step-ahead, short-term forecasts from five minutes, up 
to 6:00 hours ahead. The time step between time leads is set to five minutes. As afore-
said, although independent forecasters can be further improved, we decided to assign 
the task of performance improvement to the combination method. For this reason we 
selected simple averaging of concurrent NWP-based forecasts over NN or LR ap-
proaches as an independent model. This decision makes the overall system simpler.  

Artificial neural networks have been successfully applied for forecast combination 
[14–16]. In this paper we investigated a NN architecture that optimizes the assigned  
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weights to each forecaster at each time lead. Again, we decided to build a bank of 
simple neural networks, corresponding with our look-ahead times. Each network was 
designed as feed-forward with one hidden layer of 10 neurons and a hyperbolic tan-
gent sigmoid transfer function. The output layer had only one neuron and a linear 
transfer function to produce one-step-ahead forecasts. The LM algorithm was used for 
training with the MSE distortion measure as the performance function.  

Fig. 3 illustrates the monthly MAPEs for every prediction horizon and mean 
MAPEs are available for two reference models, namely persistence (Pers) and the 
moving average (MA) reference recommended by several authors [9, 10]. Box plots 
are also displayed for the proposed fusion method. From 10 minutes ahead, the pro-
posed method is increasingly better than persistence. Similar behavior stands when 
comparing with the MA reference after 1:45 hours. The box plots show increment of 
error dispersion with increased horizons. The method also shows consistency after 
three hours ahead as error dispersion does not increase. 

Table 2 shows some performance metric values at different horizons. It also shows 
how the proposed method holds significant gains over reference models as look-ahead 
times increase. Skill scores (SS) calculated using different error criteria show from 
35% to more than 50% improvement over persistence, and from 16% to above 30% 
improvement over the recommended MA reference.  

6 Concluding Remarks 

Wind speed forecasting is today an important research topic for a continued increase 
of wind power penetration into the global power market. In this paper, we presented 
an effective fusion-based wind speed prediction method that non-linearly combines 
the results of three different forecasters. Experimental results show that a Neural 
Network combination of forecasts improves performance over individual methods 
used in the combination. Error reductions up to more than 50% with respect to persis-
tence and more than 30 % over the recommended MA reference predictors are ob-
tained with different error measures. Even for horizons where only one independent 
method prevails over the rest, the fusion approach improves performance.  

Although not explicitly shown in the paper, the application of this methodology to 
the other sites listed in Table 1 gave similar results.  

Table 2. Performance metrics and skill scores at different horizons 

Horizon 
MAE 
(m/s) 

SSMAE (%) RMSE 
(m/s) 

SSRMSE (%) MAPE 
(%) 

SSMAPE (%) 

Pers MA  Pers  MA  Pers MA  
0:30 0.543 9.46  -8.31 0.736 11.09 -7.76 7.75 6.89  -9.47  
1:00 0.738 15.86  -8.27 0.978 17.58 -6.73 10.78 13.05  -10.08  
2:00 0.915 28.35  8.08 1.200 29.53 8.44 13.61 25.90  6.20  
3:00 0.984 38.86  17.91 1.266 40.50 19.30 14.79 35.87  15.59  
4:00 1.063 42.95  21.56 1.356 44.45 23.13 15.99 41.09  21.43  
5:00 1.077 48.37  28.02 1.381 49.20 28.66 16.31 46.61  28.61  
6:00 1.082 52.75  31.25 1.386 53.54 32.05 16.24 51.69  32.61  
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We agree with other authors [13] in that better models would be obtained increas-
ing the dataset to more than one year. Adaptation of current models as more data be-
come available is another alternative for improving models.  

Results from this paper can be extended in a number of directions. First, improved 
independent models could be used. This has the advantage of enabling the fusion 
approach to offer a rather good prediction when the other methods fail. Secondly, the 
adaptation to other wind farms should also be investigated without explicitly training 
the combination forecast to each wind farm. Finally, including probabilistic error 
bounds instead of point forecasting should also be investigated. 
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Abstract. The green coverage region is a relevant information to be
extracted from remote sensing agriculture images. Automatic methods
based on threshold and vegetation indices are often applied to address
this task. However, sub-orbital remote sensing images have elements that
can hinder the automatic analysis. Also, supervised methods can suffer
from imbalance since there is often many more green coverage samples
available than regions of gaps, weed and degraded areas. We propose an
anomaly detection approach to deal with these challenges. Parametric
anomaly detection methods using the normal distribution were used and
compared with vegetation indices, unsupervised and supervised learning
methods. The results showed that anomaly detection algorithms can han-
dle better the green coverage detection. The proposed methods showed
similar or better accuracy when compared with the competing meth-
ods. It deals well with different images and with the imbalance problem,
confirming the practical application of the approach.

Keywords: Anomaly, outlier, remote sensing.

1 Introduction

Precision agriculture can help small farmers in the management of plantations.
One of the most important technologies in this context is remote sensing im-
agery. However satellite remote sensing can be expensive, while low-cost sys-
tems that acquire sub-orbital images can benefit developing countries and small
properties[11].

A low-cost remote sensing system was proposed by Martins et al. [7] based
on an image acquisition equipment attached to a balloon. This system acquires
sub-orbital images that can be transmitted via radio frequency or processed off-
line. The advantages of this method includes the height control (often from 10
to 100 meters), the need of one or two persons to operate, and the low cost. The
disadvantages are the limitation in regions with trees and electric wires, and a
low load capability (from 2 to 4 kg).

One of the most relevant information to be extracted from the image is the
green coverage region. By accessing a map of green coverage it is possible to
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locally adjust irrigation, application of fertilizers, and perform better weed con-
trol. To address this task, previous studies includes method based on threshold
Otsu’s method, histograms and vegetation indices such as ExG (excess green) [4]
among others. A combination of vegetation indices and mean-shift segmentation
improved the previous results [9].

Sub-orbital images suffer from illumination variation, shadows and other ele-
ments that can hinder the automatic analysis. For this reason, when using tools
of satellite remote sensing, it is often difficult to improve the results using only
unsupervised methods such as those based on threshold and vegetation indices.
Also, supervised methods can also not perform well since there is often many
more green coverage samples available than regions of soil, weed, gaps and de-
graded areas. Besides, it can be a hard task to label many samples before using
the system. In order to deal with these challenge, we propose an anomaly detec-
tion approach.

Anomalies (or outliers, exceptions or deviations) are patterns with an unex-
pected behavior. Barnett and Lewis [1] defined anomaly as an observation (or
subset of observations) which appears to be inconsistent with the remainder of
that set of data. Due to the nature of the problem, anomalies are often rare
and dealing with it can help on applications such as fault detection, fraud detec-
tion, network intrusion, etc. An anomaly detection (AD) method take as input
a sample or set of samples, and identify whether those samples are “normal” or
“abnormal”, according to what is expected to be found. On most applications
the data is imbalanced, “normal” samples are widely available, while anomalies
are scarce or not available [2].

The motivation to the application is that this approach needs mostly samples
from normal data, that are abundant and easy to label, and few examples (and
sometimes no examples) from anomalous data. We also organized a dataset based
on sub-orbital images, available for download. Our contribution is to look at the
green coverage detection as an anomaly detection process, so that green coverage
will be considered normal behavior, while gaps, soil, degraded areas and others
will be considered to be abnormal.

2 Low-Cost Remote Sensing System

A system built with a helium gas baloon model Skyhook Helikite was used to
acquire the images. A digital camera with a 10 megapixel CCD sensor of size
(1/2.3)-in was attached to the balloon with a radiofrequency controller board. It
was build to provide an inexpensive solution for remote sensing in Brazil [7] [9].

For this study, a total of 12 images of plantations were obtained with an
approximate height of 50 meters, from two different fields of common beans at
63 days after the emergence of the plants, in different days. The images were
cropped to squared parcels, and resampled to 1024× 1024 pixels, resulting in an
approximate resolution of 3.1cm/pixel.

The original images were acquired in RGB color model. Figure 1 shows ver-
sions of six images used in the experiments, converted to grayscale. The difference
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between the two crops was the soil compaction, the second row of images were
obtained from the crop with higher soil compaction.

Due to the different weather conditions, there are images with different con-
trast and bright characteristics, and some of the images have motion blur due
to the balloon movement.

Fig. 1. Examples of images obtained from two different crops of beans (first and second
row of images with different soil compaction) using a low-cost remote sensing system

2.1 Feature Extraction

In order to use the machine learning and anomaly detection methods, it is nec-
essary to extract features from the image in order to build a feature vector. We
selected a texture and a region-based color extractor.

Haralick Texture Features : after converting the image to a grayscale version
using the composition I = 0.2989 · R + 0.587 · G + 0.114 · B, the texture fea-
tures were computed using 6 Haralick features [5] with a (0, 1) co-occurrence
matrix: entropy, maximum probability, homogeneity, uniformity, contrast and
correlation.

CCV Color Features : the Color Coherence Vector method tries do codify how
colors are organized in connected regions. It classifies each pixel as coherent
or incoherent based on whether or not it is part of a large similarly-colored
region [8]. The RGB image was quantized to 64 colors and a threshold of 25 was
used to compute the CCV features.
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3 Green Coverage Detection Methods

3.1 Vegetation Index

Vegetation index techniques uses arithmetic operations on the available bands
(visible light, near-infrared, etc.). The aim is to to enhance some features, ob-
taining an image in which, for example, it is possible to visualize better the
vegetation, with a better contrast between the response models in the available
channels. These indices are often used in order to segment the green vegetation
regions in agriculture remote sensing images. One of the most used ones, when
only the visible light is available is the ExG, computed using ExG = 2G−R−B.
After computing the index, a threshold method such as Otsu method is used to
separate green coverage from other areas in the image, creating a binary im-
age [9]. The user must interpret the results since the images can have zero or
one values both for green coverage and without green coverage regions.

3.2 Unsupervised and Supervised Learning Methods

Any machine learning method can be used to detect regions in remote sens-
ing images. Unsupervised learning methods can separate pixels or sub-images
in groups by using distances between them. In this case there is no previous
knowledge involved, and the user must interpret the results given the output.
Supervised learning methods are able to build a model for each class, e.g. green
coverage and lack of green coverage. For this reason, it is important to have
enough labeled data so that all every model is well built.

In this study we use classic algorithms such as the k-Means, unsupervised
method that minimizes the squared error with respect to samples and clus-
ter centroids, and the Normal Bayes, a supervised probabilistic algorithm that
assumes the data is normally distributed, but does not assumes independent
features.

We also investigated the Optimum-Path Forest classifier, a classifier based on
graph theory, since it obtained good results on imbalanced datasets [10].

3.3 Anomaly Detection

In this paper we used methods that models only the normal data, using few
abnormal samples in order to obtain a threshold for the detector. According to
Hodge and Austing [6], the advantages of these methods are: a) needs mostly data
labeled as normal and just a few labeled as abnormal, b) it is suitable for static
or dynamic data, as it only learns one class, c) most method are incremental, d)
it does not assume any distribution for the abnormal data.

Three methods are proposed to the problem of detecting green coverage re-
gions: the normal univariate and multivariate anomaly detectors [1], and our
algorithm, based on the concatenation of features and detection in a normal
parameter space [3].
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– Normal univariate and multivariate detectors: uses the normal prob-
ability density function in order to learn with the normal data available. It
can use a univariate model, defined in Equation 1, or a multivariate model,
defined in Equation 2, that outputs the likelihood of a sample x belong-
ing to the same law of the samples used to estimate the parameters of the
distribution.

p(x, μ, σ2) =
1

σ
√
2π
e−

1
2 (

x−μ
σ )

2

. (1)

p(x, μ,Σ) =
1

(2π)n/2|Σ|1/2 e
− 1

2 (x−μ)TΣ−1(x−μ). (2)

The methods comprise three steps:
1. Estimate the normal distribution parameters: mean and standard devi-

ation (univariate) or mean vector and covariance matrix (multivariate),
using the data available, i.e. green coverage samples;

2. Find a threshold of anomaly detection: uses samples (normal and abnor-
mal) from a validation set in order to find a threshold T for the likelihood
p that maximizes the accuracy value.

3. Detection: compute its likelihood using the estimated parameters, if the
value is lower than T it is considered an anomaly.

– Parameter space anomaly detector: selects randomly from the training
set M pairs of samples. Concatenates all features of each pair of normal
samples, and computes mean and standard deviation for the whole con-
catenated vector. Each concatenated pair is a point in a parameter space
θ = (μ, σ) ∈ � × �+, forming a point cloud, from which a convex hull is
computed. This convex hull captures the normal behaviour.
The algorithm tries to detect abnormal samples by concatenating them with
normal samples and observing the deviation from the normal point cloud
convex hull. The method comprises the following steps [3]:
1. Select pairs of normal instances, e.g. a and b, concatenate the features

of a and b, and estimate the parameters μ and σ for each pair,
2. Compute a convex hull HN from the 2D point cloud.
3. Find a threshold of anomaly detection: uses samples (normal and abnor-

mal) from a validation set in order to find a threshold P that maximizes
the accuracy value for the perturbation caused by concatenating normal
with abnormal samples, forming a new convex hull HT . The perturba-
tion is the distance of the created point to all points in the convex hull
computer in the previous step.

4. Detection: concatenate each point that contributed to the convex hull
HN with the unknown pattern x. Estimate the parameters μ and σ and
compute a new convex hull HT . If the intersection of HT and HN is
lower than P , consider it an anomaly.

This method captures data similarly to the normal univariate method. How-
ever it has more potential to be incremental, since new samples can be added
in the normal point cloud in constant time.
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4 Experiments

All images were manually labeled by three agronomists. These specialists seg-
mented the images in two disjunct regions: i) green coverage and ii) vegetation
gaps, soil, degraded areas and others. The agreement between the specialists
was of 91.7%±5.2. The images labeled by the agronomist with the higher inter-
agreement was used as ground truth.

For the classic vegetation index methods, each image pixel was used to detect
green coverage since these methods need the whole image to process. In the other
hand, sub-images of 100× 100 pixels, also labeled by the agronomists, are used
as observations for the other methods. The use of sub-images is feasible because
the resolution is high when compared with satellite images. This high resolution
is possible because the images were acquired by a sub-orbital equipment at just
50 meters as described in section 2. The six Haralick descriptors and the CCV
feature vector, described in section 2.1, were computed for each one of the 230
sub-images. The dataset anomaly rate, i.e., the proportion of not normal samples,
is ∼ 9%. The parameters for the CCV methods were found experimentally, after
testing on a separate validation set of 20 images.

The settings for each methods used to detect green coverage are:

– Unsupervised methods :
• Excess Green (ExG) and Mean-shift with Excess Green (MS-ExG): com-
puted in the whole image, using each pixel as observation;
• k-Means: computed using each feature vector extracted from the sub-
images as an observation.

– Supervised learning methods : computed using each feature vector extracted
from the sub-images as an observation. Uses 70% of both normal and abnor-
mal samples for training, and 30% for testing.
• Normal Bayes and Optimum-path Forest (OPF).

– Anomaly detection (AD) methods : computed using each feature vector ex-
tracted from the sub-images as an observation. Uses 55% of normal samples
for training, %15 of both normal and abnormal samples for validation, and
30% for testing.
• Normal univariate, normal multivariate and parameter space AD.

4.1 Evaluation

We used a repeated random sub-sampling validation, each experiment was re-
peated 100 times. The average and standard deviation were computed by these
repetitions. The evaluation was based on the balanced accuracy value that takes
into account the balance between the classes:

Acc = 1−
∑c

i=1[ei,1 + ei,2]

2c
, ei,1 =

FP (i)

N −N(i)
, ei,2 =

FN(i)

N(i)
, i = 1, ..., c,

where c is the number of classes, ei,1 + ei,2] is the partial error of the class
i, FN(i) (false negatives) is the number of samples belonging to i incorrectly
classified as belonging to other classes, and FP (i) (false positives) the samples
j �= i that were assigned to i [9].
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5 Results and Discussion

The average accuracies (in percentages) for each method are presented in Table
1. The anomaly detection methods showed accuracies similar or better than
the best previously proposed methods. Threshold methods used the ExG index,
while the learning methods used texture or color features. The results shows
that texture features have better discriminative potential when compared to the
color features for this application.

Table 1. Average accuracy and standard deviation for the investigated methods

Threshold Methods

ExG 76.5±8.1 —
MS+ExG 81.1±7.3 —

Learning Methods Haralick-8 CCV-64

k-Means 66.0±9.0 59.7±4.7
Normal Bayes 68.7±9.5 62.2±10.2
OPF 60.7±3.7 64.3±13.0
Parameter space AD 79.1±9.1 69.5±9.5
Normal Univariate AD 77.9±8.9 68.7±9.1
Normal Multivariate AD 89.7±6.9 70.1±6.8

The unsupervised methods based on vegetation indices, including the recently
published MS-ExG, performed well, with results comparable with the proposed
methods: parameter space AD and normal univariate AD. However, it is im-
portant to note that the unsupervised results must be interpreted after the al-
gorithm outputs the processed image, while the anomaly detection algorithms
already have a meaningful output.

Due to the scarce anomaly data available, the supervised learning methods
(classifiers) produced mediocre results. The clustering algorithm, that used fea-
ture vectors to produce the results, performed worst than those based on veg-
etation indices. It is probably because the ExG and MS-ExG methods used
each pixel value as an observation, while the k-Means used the feature vector
computed over the 100×100 pixel sub-images.

6 Conclusions

This paper reports results of an anomaly detection methods applied to the green
coverage detection problem. The main reasons for the success of this strategy is
that: it does not assume any given distribution of the abnormal data, and does
not require much abnormal samples to be trained. Besides, this approach car-
ries most advantages of partially supervised algorithms, such as the incremental
capability, in which new samples can be easily added to the model.
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Whilst the multivariate method obtained the best result, the other methods
showed good potential in this application. Future works can explore variations of
the proposed parameter space, including multiple parameters that can capture
correlations, exploring the use of the anomalous data in the training step, and
improving the feature fusion, presently carried out by concatenation.

The experimental evidence showed that the green coverage detection can be
successfully treated as an anomaly detection problem, benefiting applications in
precision agriculture that uses low-cost sub-orbital images.
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Abstract. Physically impaired people may use Surface Electromyography (sEMG) 
signals to control assistive devices in an automatic way. sEMG signals directly 
reflect the human motion intention, they can be used as input information for active 
exoskeleton control. This paper proposes a set of myoelectric algorithms based on 
machine learning for detecting movement intention aimed at controlling an upper 
limb active exoskeleton. The algorithms use a feature extraction stage based on a 
combination of time and frequency domain features (mean absolute value – 
waveform length, and auto-regressive model, respectively). The pattern recognition 
stage uses Linear Discriminant Analysis, K-Nearest Neighbor, Support Vector 
Machine and Bayesian classifiers. Additionally, two post-processing techniques are 
incorporated: majority vote and transition removal. The performance of the 
algorithms is evaluated with parameters of sensitivity, specificity, positive 
predictive value, error rate and active error rate, under typical conditions. These 
evaluations allow identifying pattern recognition algorithms for real-time control of 
an active exoskeleton. 

Keywords: Movement intention detection, myoelectric patterns recognition, 
machine learning, majority vote, surface electromyography, transition removal. 

1 Introduction 

Passive prostheses and orthoses are devices for functional compensation and physical 
rehabilitation of the human motor system. These are used on people suffering 
amputations and muscular disorders, but do not provide an intuitive reaction in its 
control to restore motor functions. On the other hand, active exoskeletons and 
myoelectric prostheses execute these functions in a natural way according to its 
learning process [1]. Surface Electromyography signal is the electrical manifestation 
of the neuromuscular activation associated with a contracting muscle [1]. sEMG 
pattern recognition based on control has emerged as a promising alternative in 
rehabilitation robotic devices [1]. Many studies have evaluated sEMG features in 
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classification algorithms aiming to control active prostheses and robotic exoskeletons 
[2]. Different features extraction methods have been used in pattern recognition 
involving both time domain and time-frequency domain features. Some of these 
include mean absolute value [3], zero crossings (ZC) [3], slope sign changes (SSC) 
[3], auto-regressive (AR) model coefficients [3], cepstrum coefficients [3], waveform 
length (WL) [3] and wavelet packet transform [3].  Numerous studies have been 
proposed to classify the features extracted from the sEMG like Bayesian classifier 
(BYN) [4], linear discriminant analysis (LDA) [5], hidden Markov model [6], multi-
layer perceptron (MLP) [4], fuzzy classifier [7], gaussian mixture model [8] and 
support vector machines (SVM) [9]. Most of the studies have been accomplished in 
health people to verify the feasibility of implemented algorithms for sEMG-based 
pattern recognition in human upper limbs. 

This work is motivated by the ongoing development of a 4-Degree of Freedom (DoF) 
upper limb active exoskeleton for muscular rehabilitation therapies. The first stage of 
this work is related to the performance evaluation in off-line mode of myoelectric 
algorithms to control external devices. Next section describes the methodology utilized 
in the feature extraction methods, the myoelectric pattern classification process and the 
post-processing algorithms, supported on an experimental protocol. Also, the 
quantitative parameters used in the performance evaluation are here described. Later, 
the results and discussions are presented, based on the qualitative and quantitative 
parameters set. Finally, the conclusion about of this work is presented. 

2 Methods 

Figure 1 shows the blocks diagram of the different myoelectric algorithms. First, the 
sEMG data are segmented in windows of 256 ms, overlapped of 32 ms, taking into 
account that delays in myoelectric control must be inferior to 300 ms [1]. Later, each 
data segment is processed through a feature extraction method conformed from a 
combination of parameters in temporal and spectral domains aimed at extracting 
information from sEMG. Linear Discriminant Analysis, Support Vector Machine, K-
Nearest Neighbor (KNN) and Bayesian classifier are employed for pattern recognition 
of seven classes, associated to upper limb movement. Finally, majority vote and 
transition removal algorithms are used to improve the pattern classification results. 

2.1 Experimental Protocol Description 

The stages of training and validation of the proposed algorithms were implemented 
using a set of signals from a sEMG database provided by the University of Carleton, 
Canada [8] from thirty healthy subjects. From this database, six sEMG recordings 
were taken for each subject, in four trials. Acquired recordings on eight channels with 
a sampling frequency of 3 kHz were provided through Ag-AgCl electrodes arranged 
at locations of the upper limb as shown in figure 2. Previous to the classification 
process, data were undersampled to 1 kHz. In each trial, subjects repeated four times, 
and in a random way, the following seven movements: hand open, hand close, wrist 
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flexion, wrist extension, forearm pronation, forearm supination and resting. Each 
movement repetition lasted 3 s. A rest period of 5 s was introduced at beginning and 
ending of each trial, then the whole trial lasted 94 s [7]. The class identifiers for 
different movements are the following: 1- hand open; 2-hand close; 3-wrist flexion; 4-
wrist extension; 5-forearm supination; 6-forearm pronation; 7-resting. 

 

Fig. 1. Block diagram of the proposed myoelectric algorithms 

 

Fig. 2. Position of the bipolar electrodes associated to sEMG channels 

2.2 Feature Extraction Methods 

The feature extraction method includes a combination of time and frequency domain 
parameters. Recent researches have demonstrated that this mixture vectors is a 
functional and efficient configuration [2]. This configuration provides a good 
classification accuracy and, is computationally efficient, which facilitates its 
implementation on embedded systems. Furthermore, it is more robust to the 
displacement of the surface electrodes. In the temporal domain the mean absolute value 
(MAV) and the waveform length (WL) were used. The MAV provides the average 
amplitude of  xi in the segment i that is N samples in length, see equation (1). The WL 
provides the cumulative length of the waveform over the time segment, see equation (2). 
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In the frequency domain, an Auto-Regressive (AR) model was implemented, 
basically expressed by follow expression: 
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where P is the order of the AR model and wi the white noise error. In the sEMG-based 
pattern recognition process, the coefficients of the AR model ap have been used as the 
feature vector. The AR model was based on Levinson–Durbin recursive method. This 
method is efficient at computation level in the calculus of the linear prediction 
coefficients, supported on the autocorrelation matrix [3]. Considering that any one of 
a four-order to six-order auto-regressive model is enough to represent the signal as a 
temporal series for the recursive method, a four-order model to obtain the linear 
prediction coefficients was defined [3]. Finally, in the feature extraction process, a 
concatenation of vectors of several parameters calculated from each sEMG channel 
was obtained: 1 MAV coefficients, 1 WL coefficients and 4 AR coefficients. 

2.3 Myoelectric Pattern Classification 

After extracting feature vectors, four classification methods (classifiers) were applied 
independently, according to the proposal myoelectric algorithms (LDA, SVM, KNN, 
BYN), see figure 2. Each sEMG channel and theirs characteristic vectors were 
concatenated from the first four auto-regressive coefficients, MAV and WL values, 
resulting in 48 coefficients (8 channels x 6 characteristic vectors/channel). Those feature 
vectors are the input to the different classifiers. The output of each classifier represents 
in each time anyone the seven motion class, see figure 2. Linear Discriminant Analysis 
technique [5] maximizes the ratio of between-class variance to the within-class variance 
in any particular data set, thereby guaranteeing maximal separability. This classification 
algorithm does not require iterative training, avoiding the problems with over-training 
that appear in artificial neural networks. Support Vector Machine constructs an optimal 
separating hyperplane in a high-dimension feature space of training data that are 
mapped using a nonlinear kernel function [9]. Therefore, although it uses a linear 
learning machine method with respect to the nonlinear kernel function, it is in effect a 
nonlinear classifier. The high generalization and classifying linearly-inseparable 
patterns with small computational complexity are capabilities of the SVM, which can be 
useful for classifying sEMG signal patterns whose features tend to change with time and 
can allow real-time motion classification, respectively [9]. K-nearest neighbor algorithm 
[10] is a non-parametric method for classifying objects based on closest training 
examples in the feature space. The k-nearest neighbor algorithm is one of the simplest 
of all machine learning algorithms. Bayesian classifier [4] is applied for use when 
features are independent of one another within each class, but it appears to work well in 
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practice even when that independence assumption is not valid. The class-conditional 
independence assumption greatly simplifies the training step since it is possible to 
estimate the one-dimensional class-conditional density for each feature individually. 
The stages of training and validation of proposed algorithms were implemented using 
cross-validation technique evaluating the results based on partitioning the data into 
training and test sets. Specifically, k-fold cross-validation was used based on the 
partition the k samples sub-conjunct. One subset is used as testing data and the rest  (k-
1) as training data. For this evaluation the k value (k = 6) is equal to the number of 
sEMG recordings acquired in one trial. For implementation of the four myoelectric 
pattern classifiers, the information of the classes during the training process was used. 

2.4 Post-processing Techniques 

The post-processing methods are designed to manage excessive outflows in the 
classification process and improve the system performance. The majority vote method 
(MV) uses the current classification result along with the n  previous classification 
(for this case, the eight previous classifications results) and makes a classification 
decision based on the class that appears more often [8]. The resulting effect is a 
smooth operation that removes spurious misclassification. The number of decisions 
that can be used in majority vote depends upon the length of the analysis window, the 
system processing delay, and the total system delay tolerable by the user for the 
exoskeleton control. On the other side, the errors that are present normally occur 
during transitional periods, which are expected as the system is in an undetermined 
state between contractions. Indeed, it is possible to remove them using transition 
removal algorithms [8]. 

3 Results 

Feature extraction and patterns classification algorithms were implemented in an  off-
line mode using functions in Matlab (Mathworks Inc., Natick, MA). The performance 
of the proposed algorithms was evaluated based on quantitative measures that include 
sensitivity (SS), specificity (SP), predictive positive value (PPV), total error rate of 
classification (TER) and active error rate (AER). An active decision is a single output 
class from the classifier resulting in limb motion. Figure 3 presents the scatter plot 
based on the feature vectors and the representative motion class from the proposed 
myoelectric algorithms, for the eight myoelectric channels. From a qualitative 
evaluation, the four classifiers provide a good discrimination of the wrist flexion and 
extension motion class, based on MAV, WL and auto-regressive feature vectors. The 
others motion class (hand open, hand close, supination, pronation and rest) were 
grouped in homogenous and similar way from the four classifiers. Figure 4 shows the 
statistical dispersion based on the total error rate, sensitivity, specificity, active error 
rate and predictive positive value without post-processing techniques (majority vote 
and transition removal). 
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Fig. 3. Scatter plot the feature vectors and the motion class from the proposed myoelectric 
algorithms: a) LDA classifier; b) KNN classifier; c) SVM classifier; and d) BYN classifier 

LDA, KNN and SVM classifiers (Fig.4a, b and c) present a similar performance from 
quantitative parameters. The total and active error rate (TER and AER) in the Bayesian 
classifier (Fig. 4d) is higher respecting to others classifiers, meaning lower accuracy 
during the movement action classification. Additionally, the specificity (SP) accuracy is 
lower, expressing that the movement actions proportion correctly rejected is lower 
respect to the previous classifiers. Therefore, the false positive number is higher during 
the classification process. From the above results and taking as example the Bayesian 
classifier, table 1 shows the confusion matrix from one working section the 
experimental protocol. Rows in the matrix represent the inputs related to classes that are 
required to obtain, and columns represent obtained patterns as classifier outputs. The 
main diagonal in both matrices represents the concordance between the true and 
obtained classes. Shared cells in the confusion matrix of the first table, under the main 
diagonal, present positive falses, i.e., a number of occurrences of motion class with the 
class that should be obtained. This is caused by the dispersion of the feature vectors and 
their relation with the motion class based on the assumption that not always is accurate, 
for Bayesian classifiers, that the predictor variables are independent. The second table 
shows the results obtained with the combinations of the majority vote and transition 
removal technique. The total removing of the positive falses with the combinations of 
these techniques is observed. Nevertheless, a considerable reduction of the motion class 
corrected classified from main diagonal is generated, as well as the motion class 
execution time. This is caused by removing the transition periods at the beginning and 
end of the motion class period while contractions occur. 
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Fig. 4. Statistical results for a representative classification from the proposed myoelectric 
algorithms: a) LDA classifier; b) KNN classifier; c) SVM classifier; and d) BYN classifier. 

Table 1. Confusion matrix of the Bayesian classifier 

Bayesian Classifier without post-processing

Hand Opened Hand Close Wrist Flexion Wrist Extension Forearm Pronation Forearm Supination Rest

Hand Opened 293 2 1 0 1 0 4

Hand Close 2 292 2 0 0 1 0

Wrist Flexion 2 4 287 0 1 1 3

Wrist Extension 7 1 1 287 0 0 0

Forearm Pronation 5 3 14 3 280 0 1

Forearm Supination 5 3 8 1 4 280 3

Rest 3 5 3 1 3 0 506

Bayesian Classifier with majority vote and remove transitions

Hand Opened 29 0 0 0 0 0 0

Hand Close 0 72 0 0 0 0 0

Wrist Flexion 0 0 27 0 0 0 0

Wrist Extension 0 0 0 23 0 0 0

Forearm Pronation 0 0 0 0 57 0 0

Forearm Supination 0 0 0 0 0 7 0

Rest 0 0 0 0 0 0 152  

4 Conclusions 

The control of exoskeletons working as an assistance or rehabilitation tools requires 
special considerations such as robustness, reliability and safe. These are mandatory 
requirements taking into account that the device must identify the user movement 
intention, analyze the information in real-time and compute the mechanical power to 
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release in the right instant. This paper described the obtained results in a comparative 
study of four proposed algorithms to approach the detection of movement 
intentionality. Selected algorithms aim to control a robotic upper limb exoskeleton 
using sEMG signals. LDA, SVM and KNN have presented better accuracy than 
Bayesian classifier. Nevertheless, the execution time during the training and 
evaluation process of the Bayesian classifier (292 ms) is considerably lower than the 
other classifiers (LDA ‒ 1.22 s, SVM ‒ 700 ms and KNN ‒ 428 ms). This result is an 
important parameter to be considered for its implementation in on-line mode. In this 
mode, the performance of the proposal algorithms could be improved using the post-
processing techniques (majority vote and transition removal), but  it is important to 
evaluate the number of decisions that can be used, as well as the length of the analysis 
window, taking into account that delays in myoelectric control. As future work, it is 
required to implement other algorithms and evaluate them under other conditions in 
order to obtain an optimal solution for myoelectric control. 
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An Arabic Optical Character Recognition System
Using Restricted Boltzmann Machines
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Abstract. Most of the state-of-the-art Arabic Optical Character Recog-
nition systems use Hidden Markov Models to model Arabic characters.
Much of the attention is paid to provide the HMM system with new
features, pre-processing, or post-processing modules to improve the per-
formances. In this paper, we present an Arabic OCR system using Re-
stricted Boltzmann Machines (RBMs) to model Arabic characters. The
recently announced ALTEC dataset for typewritten OCR system is used
to train and test the system. The results show a 26% increase in the
average word accuracy rate and 8% increase in the average character
accuracy rate compared to the HMM system.

1 Introduction

Digitizing information sources and making them available for the Internet users
is taking much attention these days in both academic and industrial fields. Unlike
typewritten Latin OCRs, typewritten OCRs for cursive scripted languages (ex.
Arabic, Persian, etc.) still encounter a plethora of unsolved problems. The best
average word accuracy rate achieved for large vocabulary Arabic OCR according
to the rigorous tests done by ALTEC organization on 3 different commercial
OCRs in 2011 was slightly below 75%. Providing a decent solution for recognizing
cursive scripted language will allow millions of books to be available on the
Internet, it will also push Arabic Document Management Systems (DMSs) steps
forward.

There are few papers that tackled the typewritten Arabic OCR problems.
The lack of dataset is one of the main reasons that directed the researchers
away from tackling this problem. In 1999,[1] designed a complete Arabic OCR
system, they used a good dataset to train and test their system. The dataset
however is biased towards magazine documents. They reported a character error
rate of 3.3%, such high accuracy is not only a result of using HMM classifier,
but also because they supported the classifier with strong preprocessing and
postprocessing modules to boost the accuracy. In 2007, [2] designed an Arabic
multi-font OCR system using discrete HMMs along with intensity based features.
Character models were implemented using mono and tri models. He achieved a
character accuracy rate for the Simplified Arabic font of 77.8% using mono-
models. In 2009, [3] introduced new features to use along with discrete HMMs
to model Arabic characters. These features are less sensitive to font size and
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style. They reported character accuracy rate of 99.3% which is very high, such
high accuracy is due to the use of a synthesized and very clean dataset, and using
high quality images scanned at 600dpi. In 2012, [4] developed the previous system
using a practical dataset created by ALTEC. The reported character accuracy
rates for the HMM system using bi-gram and 4-gram character language model
were almost 84% and 88% respectively. The paper introduced also an OCR
system using Pseudo 2D HMM achieving a CER of 94% and gaining more than
6% over using HMM. Most of the work done so far to tackle the problem of
recognizing Arabic letters, and cursive scripted languages in general, lacks either
a good dataset to build a practical model or a good model to come up with a
decent solution. In this work, a good model along with a practical dataset have
been used to overcome the limitations and drawbacks of the previous systems.

In the following sections, Sec. 2 presents the system architecture and the fea-
ture extraction, Sec. 3 presents HMMs and how to apply them on the Arabic
OCR problem, Sec. 4 presents the RBMs and how they can improve the perfor-
mance of the HMM system, experimental results are presented in Sec. 5. The
final conclusions are presented in Sec. 6.

2 System Architecture

Fig. 1. System architecture of the Arabic OCR

The architecture of our OCR system is shown in Fig. 1. In the recognition
phase, first, the printed text pages are scanned and digitized. Lines and words
boundaries are specified automatically using histogram-based algorithm. After
automatically extracting the words, each word is segmented to vertical frames
and features are extracted from each frame. A moving window of width 11 pix-
els and a step size of 1 pixel, is used to extract the features for each frame.
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The use of 11-pixels window size is due to the fact that the average character
width is ~11 pixel. The features are simply the row pixels, the word height is
resized to 20 pixels in order to form a fixed length feature vector. Using a Viterbi
decoder, the most likely characters sequence is obtained using the feature vec-
tors sequence, the classifier model, and n-gram language model probabilities
that were constructed during the training phase. The decoder output is then
processed to obtain the recognized words.

In the training phase, the printed text pages are photocopied using different
photocopiers. Both pages, the original and the photocopied, are scanned and
digitized. Different scanners and photocopiers are used in order to represent
practical noise in the training database. Digitized images follow the same steps
in the recognition mode to extract the frames. Frames are then concatenated
in sequence and stored in order to be used in the parameters estimation. The
extracted features along with the corresponding text are used in the parameters
estimation for the classifier. In this paper, three different classifiers are used
in the system; HMM classifier, neural network trained using backpropagation
algorithm, and neural network pretrianed using RBMs. The power of the RBMs
is that they can model any distribution without making assumptions that the
distribution is Gaussian or discrete as in the classical HMMs. A training scheme
is used to insure a good estimation of the parameters and different experiments
are held to achieve the best performance. On the other hand, a corpus of ~0.5
Giga word is used in estimating the character-level language model. Both the
language model and the classifier model are used in the recognition phase.

3 HMM and Arabic OCR

Fig. 2. The figure shows a five state HMM model of the ’ ’ character and the state
aligment of extracted features. Zeros in the feature vectors represent the dummy seg-
ments inserted in order to form fixed size feature vectors.

First we have to define the number of character models that we want to use.
The advantage of using large number of models is that the system will be able
to distinguish between different shapes easily but that requires having sufficient
number of training examples per each model. One should decide the number of
different models based on the training database. After deciding the number of
models, we have to decide the HMM model per each character. It is common to
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use first order HMM with right-to-left topology as shown in Fig. 2. The number
of hidden states can be either the same for all models or each model can have
different number of hidden states. Because we deal with discrete HMMs in this
work, the feature vectors needs to be quantized.

The vector-quantizer serially maps the feature vectors to quantized observa-
tions. A codebook generated by the codebook maker module during the training
phase is used for such mapping. The codebook size is a key factor that affects
the recognition accuracy and is specified empirically to minimize the WER of
the system.

Using numerous sample text images of the training set of documents evenly
representing the various Arabic characters, the codebook maker creates a code-
book using the LBG vector clustering algorithm. The LBG algorithm is chosen
for its simplicity and relative insensitivity to the randomly chosen initial cen-
troids compared with the basic K-means algorithm.

4 Restricted Boltzmann Machines

We use a Neural Network to replace the discrete distribution for the hidden
HMM states. The Neural Network is first pre-trained as a multilayer genera-
tive model of a window of spectral feature vectors without making use of any
discriminative information. Once the generative pre-training has designed the
features, we perform discriminative fine-tuning using backpropagation to adjust
the features slightly to make them better at predicting a probability distribution
over the states of hidden Markov models.

4.1 Learning the Restricted Boltzmann Machines

As explained in [5], Restricted Boltzmann Machines (RBMs) are used to learn
multi-layers of deep belief networks such that only one layer is learned at a
time. An RBM is single layer and is restricted in the sense that no visible-visible
or hidden-hidden connections are allowed. The learning works in a bottom-up
scheme using a stack of RBM layers. The weights for the first layer are estimated
using the input features, and then we fix the weights of the first layer and use its
latent variables as an input to second layer. In such way, we can learn as many
layers as we like.

In binary RBMs, both the visible and hidden units are binary and stochastic.
The energy function of the binary RBMs is:

E(v, h|θ) = −
V∑
i=1

H∑
j=1

wijvihj −
V∑
i=1

bivi −
H∑
j=1

ajhj

Where θ = (w, a, b) and wij represents the symmetric interaction term be-
tween visible unit i and hidden unit j while bi and aj are their bias terms. V
and H is the number of the visible and hidden units.



112 A.M. Rashwan, M.S. Kamel, and F. Karray

The probability that an RBM assigns to a visible vector v is:

p(v|θ) =
∑

h e
−E(v,h)∑

u

∑
h e

−E(v,h)
(1)

Since there are no hidden-hidden connections and visible-visible connections,
the conditional distribution p(h|v, θ) and p(v|h, θ) can be presented as:

p(hj = 1|v, θ) = σ(aj +

V∑
i=1

wijvi) (2)

p(vi = 1|h, θ) = σ(bi +
H∑
j=1

wijhj) (3)

Using “contrastive divergence” training procedure [6], the weights can be up-
dated using the following update rule:

Δwij ∝< vihi >data − < vihi >reconstruction (4)

4.2 Using RBMs in Arabic OCR

When using HMMs, the commonly used method for sequential data modeling,
the observations are modeled using either discrete models or Gaussian Mixture
Models (GMMs). Although these models are proven to be useful in many ap-
plications, they encounter serious drawbacks and limitations [5,7]. In this work,
Neural Network (NN) will replace the discrete models or GMMs to model the
inner states for the Arabic characters. The recognizer will use the posterior prob-
abilities over the inner states from the NN combined with a Viterbi decoder in
order to recognize an input Arabic word. A well-trained HMM system is used
for state alignment of all training database in which feature vectors are assigned
to states they belong to (Fig. 2). In the pre-training step, the Neural Network
is pre-trained generatively using a stack of RBMs, this is essential for avoiding
over fitting and to ensure a good convergence point in the classification step.
In the classification step, a softmax layer is added to the pre-trained network
then the network is trained using backpropagation algorithm. The trained Neu-
ral Network is used to predicting a probability distribution over the states of the
HMM replacing the Gaussian Mixture Models (GMMs) or the Discrete Models.

5 Experimental Results and Evaluation

The system structure presented in Sec. 2 is trained using part of the ALTEC
dataset [8]. Only 2 fonts, Simplified Arabic 14 and Arabic Transparent 14, are
used to simplify the problem and to compare the RBMs to the HMMs. Around
4500 words scanned at 300dpi resolution are used to train both systems. We
used 151 HMM models to model different Arabic character shapes. HTK toolkit
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is used for models training and recognition [9]. A manually modified version of
the HTK is used to recognize the character sequences using the trained Neural
Network. SRILM toolkit is used to create the character based n-gram language
model [10]. The test database consists of 1790 words, these pages are scanned
on different scanners than the ones used for the training dataset.

We analyzed the RBMs performance by conducting four experiments. The
first experiment aims at testing the effect of using a stack of RBM layers instead
of directly estimating the weights using backpropagation algorithm. The second
expirment tests the effect of varying the number of hidden nodes on the system
performance. The third experiment aims to test the effect of varying number of
hidden layers on the performance. The last experiment compares the RBM-based
system to the HMM-based system in terms of accuracy and speed.

For the HMM system, we used a discrete distribution to model the hidden
states. We used codebook of size 1000, and the HTK toolkit was used for the
training. A forced-alignment on the state level was performed using the HMM
models, then the Neural Network, pre-trained generatively using a of RBMs, was
trained using the state labeling along with the corresponding feature vectors.

5.1 Effect of Pretraining Using RBMs

Table 1. Word accuracy rates for the backpropagation training algorithm and the
neural network pretrained using RBMs

Backpropagation RBM Accuracy
Average WAR 72% 81%

Table 2. Detailed word accuracy rates when varying the number of hidden units

Number of Hidden Units 100 200 500 1000
Average WAR 61% 72% 79% 81%

Table 3. Detailed word accuracy rates when varying the number of hidden layers

1 hidden layer 2 hidden layers
Average WAR 71.7% 72.4%

The goal of these experiments is to test the effect of using RBMs. We con-
structed two neural networks of 1 hidden layer and 1000 hidden nodes. We
trained the first network using backpropagation directly, and we pretrained the
second network using RBMs then we tuned it using backpropagation algorithm.
Table 1 shows the word accuracy rates for both networks, we can clearly see a
9% increase in the accuracy which is very large. Using RBMs is even more useful
when we deal with multi-layer neural networks[11].
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5.2 Varying the Number of Hidden Units

In this experiment, we trained the neural network and varied the number of
hidden units from 100 to 1000. The evaluation is based on the word accuracy
rates. As shown in Table 2, we can see that the word accuracy rate increases
as we increase the number of hidden units. The gain we obtained is not linear
with increasing the number of hidden units, it takes the shape of the log curve
where the accuracy saturates at certain level no matter the number of hidden
units that you add.

5.3 Varying the Number of Hidden Layers

In this experiment, we compared the accuracy using 1 and 2 hidden layers. We
fixed the number of hidden units to 200 and we compared a neural network with
a 200 nodes layer to a neural network with a two stacked hidden layers with 100
hidden nodes each. Fig. 3 shows that we gained ~0.7% accuracy just by using
2-layers without changing the number of nodes. This is useful when we want to
improve the accuracy without increasing the recognition time, we will however
face the difficulties of tuning multi-layer network during the training phase.

5.4 Comparing the RBM and the HMM Based Systems

Table 4. Word and Character Accuracy Rates

HMM Accuracy RBM Accuracy
Average WAR 55% 81%
Average CAR 87% 95.2%

Recognition Time (m.sec) 26 198

In these experiments, we used a discrete HMM-based system with a codebook
of size 1000. We compared the performance of this system to the RBM system
where the number of hidden nodes is also 1000. For both systems we used the
same features and the same bigram language model, and the codebook size for
the HMM system equals to the number of hidden nodes for the Neural Network
system. The system performance is evaluated using word accuracy rate. As shown
in Table 4, the performance of the Neural Network system is much higher than
the HMM system. This is due to the fact that the HMM is a generative model
that tries to maximize the likelihood of the data. On the other hand, the Neural
Network is pretrained using RBMs, then a fine tuning discriminative training
is performed using the backpropagation algorithm. Although the word accuracy
rate is more practical and intuitive, the Character Accuracy Rate (CAR) is also
important and the results are shown in Table 4.

Of course there is something we should pay for such improvement, the com-
putational complexity of the Neural Network based system is higher than the
one for the discrete HMM. The discrete HMM simply stores the probabilities in
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lookup tables, that makes it too fast to evaluate the hidden state distributions.
The Neural Network system has to evaluate the output of the 1000 hidden nodes
plus the output of the 1384 output nodes. The recognition time per character
for both systems is listed in Table. 4.

6 Conclusion and Future Work

Recently, research has been directed to improve the inputs and outputs (ex.
preprocessing, features, and postprocessing) to the HMM model other than to
improve the character modeling. In this paper, we have made use of RBMs to
model Arabic characters. The experimental results looks very promising com-
pared to a baseline HMM system. For future work, using more set of features
can be used instead of the row pixels, also more font sizes and styles will be
involved in the training.
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Abstract. In this work we present a system for autonomous discovery of
asteroids, space trash and other moving objects. This system performs as-
tronomical image data reduction based on an image processing pipeline.
The processing steps of the pipeline include astrometric and photometric
reduction, sequence alignment, moving object detection and astronom-
ical analysis, making the system capable of discovering and monitoring
previously unknown moving objects in the night sky.

Keywords: astronomical images, data reduction, moving object
detection.

1 Introduction

One of the goals of modern astronomy is the exhaustive study and mapping of
celestial bodies, in particular the moving bodies of the solar system. In the past,
observations were made and analyzed manually, nowadays we have robotic tele-
scopes with CCD cameras. This allows the development of systems that control
the telescope and automate the data extraction and reduction from astronomi-
cal images. The replacement of rutinary tasks performed by astronomers using
autonomous systems has multiple advantages and enables a continuous and long
exploration (even in hostile environments) resulting in higher probabilities of
achieving astronomical discoveries.

In this work we present a method for autonomous discovery of asteroids, space
trash and other moving objects. This method performs astronomical image data
reduction based on an image processing pipeline to find moving objects in the
night sky and control the telescope for an automated tracking. The processing
steps of the pipeline include astrometric and photometric reduction, sequence
alignment, moving object detection and astronomical analysis, making the sys-
tem capable of discovering and monitoring previously unknown moving objects.
In Figure 1, the pipeline data flow and a sample of an astronomical image are
shown.

Some of the previous related works include IRAF [1] (Image Reduction and
Analysis Facility), a well known system that implements most methods for astro-
nomical data reduction. The main drawback of this system is that it is designed
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(a) (b)

Fig. 1. (a) System’s pipeline data flow and (b) sample of astronomical image captured
with Takahashi Mewlon-210 telescope and Apogee Alta F16 CCD camera.

for manual analysis of the data, so it is rather complicated to use as a library
with a programmable interface and, more importantly, has no moving object
detection routines. The purpose of this paper is to address these issues.

The remainder of this paper is organized as follows: Section 2 details the
proposed method, section 3 presents the results and section 4 summarizes our
work.

2 Proposed Method

The images are captured with a CCD camera and stored in the FITS (Flexible
Image Transport System) file format. The images usually contain a few hundred
light sources, depending on the region of the sky and the angular field of the tele-
scope. The profile of each light source can be approximated with a 2D Gaussian
curve (if the camera is in focus). The one-dimensional profile of this Gaussian
curve is characterized in astronomy by the FWHM (Full Width at Half Maxi-
mum) which depends on the dispersing process in the atmosphere and therefore
is approximately constant for all point light sources of the image [2]. These im-
ages also contain background noise that is characterized by an additive and a
multiplicative component. Furthermore, there are spurious detections caused by
defective pixels or cosmic rays that randomly reach the sensor and cause peaks
in the image. Figure 2 shows examples of light sources in astronomical images.

The moving objects we are interested in finding appear in the image with
a very similar profile as the stars and satisfy the following conditions: a) v �
FWHM
Δtexp

, b) Δt� FWHM
v and c) #D

NΔt > v, where v is the velocity of the object,

Δtexp is the exposure time,Δt is the time interval of the sequence, #D is the size
of the captured image D and N is the number of images (frames) in the sequence
(typically N ≥ 4). The time interval between the images of the sequence, Δt, is
chosen according to v.
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Fig. 2. Examples of light sources in a image: (a) bright star, (b) faint star and (c) a
noise artifact (cosmic ray)

Source Extraction. The first step in the image processing pipeline is extract-
ing the location of light sources, including stars and possible moving objects.
In this work we explore two options: SExtractor (Source Extractor library) [3],
which uses neural network algorithm to find point light sources and also other
astronomic features; and DAOPHOT [4] a source extraction method which finds
the location of sources by filtering the image with a gaussian convolution and
then extracting the local maximums which values are above a threshold. A per-
formance comparison between both methods is presented in section 3.

Some of the detected features in the images do not correspond to point light
sources, but are rather artifacts of noise like cosmic rays or defective pixels in the
CCD sensor. To filter out these spurious detections, we analyze each feature’s
roundness and sharpness parameters.

Let N (i0, j0) be a neighborhood around (i0, j0). The sharpness of a feature

centered in (i0, j0) is defined as sharpi0,j0 =
Di0,j0−〈Di,j〉

Hi0,j0
, where 〈Di,j〉 is the

mean of the Di,j , (i, j) ∈ N (i0, j0) − {(i0, j0)} and Hi0,j0 is a filtered version

of Di0,j0 . The roundness parameter is defined as round = 2
hy−hx

hy+hx
where hy

and hx are one-dimensional convolutions of D corresponding to the gaussians:

gx(Δi;σ) = e−
Δi2

σ2 and gy(Δj;σ) = e−
Δj2

σ2 , respectively.
In Figure 3(a) the distribution of sharpness/roundness of detected features in

the images can be seen. Figure 3(b) shows the detected light sources (green) and
the spurious detections (red) filtered by sharpness/roundness parameters.

Photometry. The goal of the photometry reduction is to obtain a light flux
estimation for each detected source, which represents the number of photons
(amount of light) received in an area near the position of the source subtract-
ing the background. This flux is stable over the frames for the same celestial
body so it can be used as a descriptor of the source that distinguishes each
other. Moreover, to eliminate the effect of the atmosphere the air mass has to
be subtracted.



Astronomical Image Data Reduction for Moving Object Detection 119

(a) (b)

Fig. 3. (a) Sharpness/roundness distribution of detected features and (b) detected light
sources (green) and the spurious detections (red) filtered by sharpness/roundness

To estimate the background of the whole image we define BG as an erosion
filter of D, BGi0,j0 = min

(i,j)∈N (i0,j0)
Di,j . Then, the light flux of one source placed

in (i0, j0) can be calculated as follows: FLUXi0,j0 =
∑

(i,j)∈N (i0,j0)

(Di,j −BGi,j).

In sparsely populated areas, we can calculate the flux from a source without
estimating the background, taking as reference baseline a ring around the source.
In this case the FLUXi0,j0 can be defined as:

FLUXi0,j0 =
∑

(i,j)∈
circ(i0,j0)

Di,j−
∑

(i,j)∈
ring(i0,j0)

Di,j× #circ(i0,j0)
#ring(i0,j0)

, where circ(i0, j0)

and ring(i0, j0) are circular and a annular regions around (i0, j0), respectively.

Alignment. The sequence of acquired images is obtained under the same sky
coordinates. The robotic telescope corrects for the rotation of the earth as time
passes, but still some mechanical errors accumulate. The result is that the light
sources appear displaced a few pixels in both X and Y coordinates or even
slightly rotated relative one image to another. Then, the sequence of images
need to be aligned. The scale of the images does not change because the focal
length of the telescope is fixed.

Since the misalignment of the images is given in three degrees of freedom
(movement in X , Y and rotation). The problem is reduced to finding a rigid
transformation to bring all images to the same reference system. The method
ICP (Iterative Closest Point) [5] assumes that the features are not very far from
their original position, which can be assumed in our case because we want to
correct alignment errors due to perturbations in the motion of the telescope. The
idea of this method is to establish a correspondence between each feature of an
image with the feature closest to it in the second image. Then the transformation
that fits all correspondances best is computed using RANSAC (Random Sample
and Consensus).

Moving Object Detection. Since the objects of interest move at an approxi-
mately constant speed and the field of vision of the telescope is small (long focal
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length), we can consider that the trajectory of the object describes a straight
line. Then, the problem of finding moving objects is then reduced to detect a se-
quence of features that are collinear and are spacially distributed proportionally
to the time intervals of the frames1. If we think of the features as points in a
three dimensional space with coordinates (x, y, t), we are looking for a sequence
of collinear points in this space (see Figure 4).

Fig. 4. Set of features aligned in space-time coordinates, corresponding to a moving
object along the images sequence of frames.

The first step is discarding the features that appear repeatedly in the same
position (x, y) along the sequence of frames, i.e., corresponding to sources that
do not move (mostly stars). Some of the features that remain correspond to
noise and artifacts that randomly appear in a frame, and some of them might
correspond to a moving object that appears at different positions along the
sequence of frames. The challenge is to find which features are aligned in a
trajectory, in an efficient way.

We also have to keep in mind that we might possibly detect the object only in
a subset of the frames, so we have to search for collinearities in different subsets
of frames. To achieve this we choose three frames (f1, f2, f3) randomly and seek
for triplets of features which are collinear in (x, y, t).

For each pair of features (p1, p2), p1 ∈ f1 and p2 ∈ f2, we calculate the spatial
displacement vector p1 → p2 and estimate where we should find a feature p̂3 ∈ f3
to complete the collinear triplet. Then we compare each estimated p̂3 with each
real p3, ∀ p̂3, p3 ∈ f3, using nearest neighbor matching in high-dimensional spaces
(implemented in the FLANN library [6]), to find which pairs (p1, p2) have a p3
in f3 that completes a space-time collinear triplet.

Once we have these possible traces of three points we calculate the straight
line that joins them. Then, we evaluate the remaining frames to find out whether
they have features on this line. If the moving object is detected in all frames,
a feature in each frame will be found that satisfies the equation of the line.
In practice, it is very difficult to find the same feature in all frames, however,
if a feature is found in a few frames we can be pretty sure that this feature

1 When moving at constant speed, the distance traveled between two frames is pro-
portional to the time difference of these frames.
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corresponds to a moving object. Typically, four frames are enough to have very
good certainty of a positive discovery. We repeat this process a many times
(approximately the total number of frames) with random triplets of frames, and
merge the found traces if they belong to the same object (see Algorithm 1).

Algorithm 1. Pseudocode to find collinear traces of features.

traces ← ∅
for i=0 to #frames do

frame1, frame2, frame3 ← random sample(frames, 3)

factor ← tf3 − tf2
tf2 − tf1

triplets ← get linear triplets(features(frame1), features(frame2),
features(frame3), factor)
foreach triplet ∈ triplets do

line ← fit line(triplet)
trace ← {triplet[1], triplet[2], triplet[3]}
foreach frame ∈ frames \ {frame1, frame2, frame3} do

foreach feature ∈ frame do
if feature ∝ line then

trace ← trace ∪ {feature}
if ∃ trace′ ∈ trace ∼= trace′ then

merge(trace, trace′)

else
traces ← traces ∪ {trace}

return traces

As a result we obtain sets of traces, i.e. features that are aligned in space
and time corresponding to objects moving in a straight line at constant speed.
The equations for finding the line that best fits each trace of feaures form an
overdetermined system, so we use the least squares technique. This line gives an
estimation of the position and the velocity of the moving object.

3 Results

In this section we present some results of this work. First a comparison be-
tween DAOPHOT and SExtractor methods is considered. Figure 5 shows the
performance of each method and the results of the photometry reduction (flux
estimation). Figure 5(a) shows the execution time of each method as a function
of the image size with a constant number of stars (300 aprox.). Figure 5(b) is the
same with constant star density (20 stars for each 100×100 pixels). As can be
seen, if the density of star is constant, the behaviour of the DAOPHOT method
is better than that of SExtractor. Figures 5(c) and 5(d) show the photometry
computation (flux estimation) using DAOPHOT and SExtractor, respectively. In
both cases, flux estimation does not have large variations, allowing the detection
of the point light sources in different frames.
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(a) (b)

(c) (d)

Fig. 5. Execution time comparison between DAOPHOT and SExtractor: (a) for dif-
ferent image size and constant amount of stars, and (b) for different image sizes and
constant star density. Flux estimation using (c) DAOPHOT and (d) SExtractor.

For the case of real images acquired with a telescope, very satisfactory results
are obtained. As test data set, we use image sequences containing moving objects
from the CASLEO Observatory located in the Leoncito, San Juan, Argentina.
Figure 6(b) shows the result of applying our proposed method to an image
sequence within the data set corresponding to an observation of the asteroid
41427. This asteroid was correctly detected and another object (on the left side)
was also found that is virtually imperceptible to the human eye.

To calculate the transformation between image coordinates and sky coordi-
nates we use Astrometry.net [7]. Once we get the sky coordinates of the detected
celestial bodies, we can compare the results with USNO-B1 catalog. In Figure
6(a) the positions of the detected and the catalogued celestial bodies, marked
with circles and crosses, respectively, are plotted. In most cases they coincide,
indicating a good alignment of the image. Then, we can conclude that mobile
objects’ sky coordinates were calculated accuratly.

4 Conclusions

In this work we present a method that automates the detection of moving objects
in the night sky. To extract the locations of the point light sources we analyze
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(a) (b)

Fig. 6. (a) Positions (in sky coordinates) of the detected and the catalogued celestial
bodies, marked with circles and crosses, respectively. (b) Discovered moving objects in
the image sequences from CASLEO data set, one of them is the asteroid 41427.

both DAOPHOT and SExtractor methods and compare them. We propose an
algorithm for moving object detection in image sequences, which operates look-
ing for collinearity in the sets of the detected point sources. Experimentation
with synthetic and real images shows that this method is very effective for the
detection of asteroids and even other faint objects. Morevover, it can be used
with a robotic telescope to achive an autonomous system for astronomical dis-
coveries.
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Abstract. While a number of techniques have been developed for table
recognition in ordinary text documents, very little work has been done
on tables that contain mathematical expressions. The latter problem is
complicated by the fact that mathematical formulae often have a tabular
layout themselves, thus not only blurring the distinction between table
and content structure, but often leading to a number of possible, equally
valid interpretations. However, a reliable understanding of the layout of
a formula is often a necessary prerequisite to further semantic interpre-
tation. In this paper, a graph representation for complex mathematical
table structures is presented. A set of rewriting rules is applied to the
graph allows for reliable re-composition of cells in order to identify several
valid table interpretations. The effectiveness of the technique is demon-
strated by applying it to a set of mathematical tables from standard text
books that has been manually ground-truthed.

1 Introduction

The matrices of cells could be considered as the simplest tables: There are no
spanning cells through columns or through rows. The borders of all the cells
are marked by the ruling lines. This kind of tables is easy to recognise using
the graphic ruling lines. However, due to the lack of standard convention of
composing tables, not all tables follow such a distinction. As for the physical
layout, it can be noted often the presence of cells that spread over several lines
or several columns, and sometimes the borders of neighbouring cells are even
misaligned. Also, in the majority of cases, the borders and the rules of a table
are not marked by the graphic lines.

To characterize the table structure for various domains of documents, a flex-
ible framework representation is necessary. The table’s syntactic layout and the
semantic structure must be depicted. While the information about the physical
layout can contribute to table re-composition, the logical structure can be used
to extract the table’s content for re-use purposes.

Ramel et al. [6] analyse the most two well-known table representation systems
(which are introduced by World Wide Web Consortium (W3C) and Advance-
ment of Structured Information Standards (OASIS)) that are used to represent
tables and find that they share the same deficiencies. First, the representation
of irregular physical layouts are difficult. The poorly aligned borders of cells are
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Fig. 1. Cell identification with tables containing multiline expressions that are taken
from [5]

Fig. 2. Two different interpretations of a single table that is taken from [5]

not allowed and improvised solutions are provided for the spanning cells. Finally,
limited means are supplied for the description of the logical structure of a table.

The aim of this work is to develop a table recognition algorithm that is par-
ticularly good for tables containing mathematical expressions. As the distinction
between tables and complex typeset mathematical formulae spanning multiple
lines is often difficult, the narrow definition of tables is forgone and instead con-
sider a far wider range of expressions as tables as is usually the case in the
literature.

The tabular form in which many mathematical expressions are being presented
can often lead to ambiguities in the interpretation to what essentially constitutes
a table component (i.e., a column, row or cell). While in table understanding of
ordinary text tables [7], [8], the goal is generally to restrict a result to a single
valid interpretation, for mathematical tables these ambiguities can lead to several
possible valid interpretations. Therefore, the aim of the proposed recognition
procedure is to produce as a result the set of possible valid interpretations.

Since, as mentioned above, that there is no standard convention of composing
tables and that there is a need of building table representation framework which
is flexible enough to deals with tables from various domains. Therefore, The
framework that is illustrated in section 3 is constructed based on abstract con-
cepts that allow for producing the maximum cells, columns and rows which can
be extracted from table form. Graph rewriting rules are also introduced in this
framework to selectively utilized for recomposing table’s cells. The nature of the
proposed framework gives the opportunity to used it on different table structures
from various area of sciences like Literacy, Mathematics, Physic, Chemist...etc.

2 Interpretation of Mathematical Tables

While some tables, for example, Cayley tables in abstract algebra, are quite
straight forward to recognise due to their easy tabular composition and some-
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times clear separation of rows and columns with bars, this is generally not the
case. In fact, the common absence of any vertical or horizontal bars as well as the
complexity of formulae often spanning multiple lines make it not only difficult to
identify the cell structure but can lead to a number of different interpretations
for the same table, which are often equally valid.

Figure 1 presents two tables taken from [5] with a fairly conservative column
and row layout. There is indeed a unique ideal interpretation for Table 1, consist-
ing of two columns and three rows, where the cell in the lower right hand corner
contains a math expression spanning two lines. In addition, given the difference
in font weights one could even interpret the first line as a clear header row.

Table 2 on Figure 1 is less straightforward given the overlapping expressions
in the second line. However, one can still come up with a unique interpretation of
five rows and three columns. However, due to the overlap of the formulae which
are effectively in a column of their own, it is difficult to obtain this interpretation
automatically.

Figure 2 presents a clipping from a more complex table also taken from [5].
Here it is possible to see two different interpretations, both with their own merits.
While both interpretations regard the basic table as consisting of four columns,
the first interpretation results in three rows, using the formula names on the
right hand side as header column. The second interpretation on the other hand
uses the enumeration in the first column as header. Obviously there are still more
interpretations: For example, one with three columns with the middle column
containing complex formulae or even one with only two columns, where the right
column contains named multiline formulae that possibly even be considered as
subtables.

This gives not only rise to the problem of finding a method that can yield a
number of possible valid interpretations, but also the need to finding an adequate
grid structure to represent such tables holding the different interpretations and
to give a means to re-compose the recognised cells.

3 Multi-interpretations of Table’s Re-composition

In this section a description of the proposed method is given. The input of the
technique is the bounding box of table cells which are extracted by the method
presented in [1]. Using these cells, the algorithm first produces the maximum
columns and also the maximum cells in each column that can be extracted from
a table. This is further described in the preprocessing steps section below. Then
an initial graph that represents the table grid and the relationship between
their nodes (cells) is defined and built. Also a new set of graph rewriting rules
that are used to produce all possible valid interpretations is illustrated. Finally,
experimental results on 150 tables are shown and evaluated.
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3.1 Preprocessing Steps

Several definitions are given below to formally describe the concepts of how the
maximum columns and cells from tables are extracted. The first definition is for
the Bounding Box of the cell component C:

Definition 1 (Bounding Box). Let c be a cell, then the borders of its bound-
ing box are defined by l(c), r(c), t(c), b(c) representing left, right, top and bottom
limit respectively where l < r and t < b

Before building a graph to represent table structure, all cells C are first sorted
ascendantly using l(c). Then, initial columns are constructed by splitting C on
the cell that does not horizontally overlap with all cells which are above it.

Definition 2 (Initial Columns). Let C = {c1, c2, ....cn} be all cells ordered
such that l(c1) < l(c2) and col be a column of table. Then col = {c1, c2, ....cm}
if one of the set [r(c1), r(c2), r(c3), .....r(cm)] < l(cm+1) where n = 1, 2, ... and
m < n

In case there is an absence of cell which should be beneath or above a cell that
is being checked using the step described above, a virtual cell c′ is added. When
the graph is built later, these virtual cells are represented as nodes. The goals
of adding such nodes to the graph are firstly to avoid the complex relationship
between nodes and secondly to use such nodes to detect actual rows. Some
examples are shown in Figure 3

In order to locate the position of virtual cells, the definition 3 in [1] is recalled
to calculate the borders of lines and then use them to detect if there is an exis-
tence of a line which has no corresponding cell (belong to a particular column)
vertically overlapped with its borders. If so, a virtual cell is added.

Definition 3 (Virtual cells). Let col = {c1, c2, ....cn} be a column and l =
{g1, g2, ....gn} be a line such that if b(c1) =< t′(l1)||t(c1) >= b′(l1) where t′(l1) =
ming∈l1 t(g) and b

′(l1) = maxg∈l1 b(g) then add a virtual cell c′1.

3.2 Tabular Representation Using Graph Model

The total cells which are produced from the above steps are utilized to build
an initial graph that represents the table structure. Each node N in this graph

c7 �� c8 �� c9
�� �� ��
c4 �� c5 �� c6
�� �� ��
c′1 �� c2 �� c3

(a)

c7 �� c8 �� c9
�� �� ��
c4 �� c5 �� c6
�� �� ��
c1 �� c′2 �� c3

(b)

Fig. 3. Examples of virtual cells which their borders appear to be bigger
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G which corresponds to a cell c has four edges E with four directions where
l, r, t and b are labelled left, right, top and bottom edge direction respectively
(an exception is for border nodes which might have only two or three edges).
Also, there must be an existence of all possible first degree connections between
nodes N . The first degree connections mean here the edges that directly connect
a node n with its adjacent nodes.

Definition 4 (Graph Specifications). Let n be a node which represents a cell
c, then the directions of its outgoing edges are defined by l(n), r(n), t(n), b(n)
representing left, right, top and bottom directions respectively. Let n′ be directly
adjacent node to n at any direction such that every l(n) there exists of r(n′) and
likewise for r(n), t(n), b(n).

1) Type of Nodes: When constructing the initial graph, one can divide the
nodes to four types. The classification process is done by checking whether there
is a horizontal overlap between columns or not. Table 1 shows the node types
and how they are treated by the interpretor.

Table 1. Type of nodes

Node
Types Definition

R is a real node which must not be merged with other nodes from other
columns

V is a virtual node which must not be merged with other nodes from
other columns

R∗ is a real node which can be merged with other nodes to form one of the
possible valid table interpretations

V ∗ is a virtual node which can be merged with other nodes to form one of
the possible valid table interpretations

2) Type of Relationships between nodes (Edges): To avoid having
complex relationships between nodes, a graph which represents the maximum
number of nodes for a table is constructed. This provides us with simple rela-
tionship between nodes which are horizontal and vertical edges.

3.3 Construct Initial Graph (Example)

The graph in Figure 4 represents Table 2 in Figure 1 which illustrates one pos-
sibly valid interpretation of the table. As can be seen, the proposed algorithm
succeeded in distinguishing the second column that represents equations from
the misaligned third column that represents the conditions associated with these
equations and eventually splits them to two columns.
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R R∗ V ∗ R∗

R R∗ V ∗ V ∗

V V ∗ R∗ R∗

R R∗ R∗ R∗

R R∗ V ∗ R∗

R R∗ V ∗ V ∗

V V ∗ R∗ R∗

Fig. 4. A graph represents one of the possible interpretations of the table’s columns
shown in table 2 on the right of Fig 1

3.4 Graph Rewriting Rules

Graph rewriting rules are composed to represent structural information of table
form. The graph defined above is used to represent them. Although, in [3] and [2]
the authors have used graph rewriting rules before to analyse table layout, due
to the complex structure of the table domain that are used in the experiments,
new rules are produced.

Let N and E represent a specific set of nodes and a specific set of relation-
ships between nodes called edges respectively. Then, A graph rewriting rule can

�
�

R∗

V ∗

�

�

�

�

� �

� �

6

5

l

l

r

r

b

t

b t

b

t

��
�
�

��

�
�

R∗ V ∗

V ∗ V ∗

� �

� �

b b

t t

l

l

r

r

3

1

4

2

b t b t

� �

� �

Fig. 5. Example of production rule
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1.

V ∗

V ∗

V ∗ V ∗

V ∗ V ∗

2.

R∗

V ∗

R∗ V ∗

V ∗ V ∗

V ∗ R∗

V ∗ V ∗

3.

R∗
2

V ∗

R∗ R∗

V ∗ V ∗

4.

R∗

R∗

R∗ V ∗

R∗ V ∗

V ∗ R∗

V ∗ R∗

5. R∗ R∗ V ∗ V ∗ R∗

6. R∗
2 R∗ R∗

Fig. 6. Full production rules

be represented by the following tuple g = {N,E, P} where P are rewriting pro-
duction rules which has the form lhs→ rhs, this specifies two graphs where the
subgraph rhs in a host graph (G) can be replaced with a graph lhs. The embed-
ding relations ER associated with each rewrite rule lhs → rhs specify how the
new subgraph lhs is connected to the remainder graph of the host graph G, after
rhs is removed. The notation containing four-tuples of the form {(n1,e1,n2,e2):
n1,n2 ∈ N ; e1,e2 ∈ E} is used to represent embedding relations ER. Figure 5
shows an example of production rule.

Embedding rule ER which tells edge label conversion from rhs to lhs for the
production rule showed in Figure 5 is expressed as follows:

ER = ((1V ∗, l, 5V ∗, l), (1V ∗, t, 5V ∗, t), (2V ∗, r, 5V ∗, r),
(2V ∗, t, 5V ∗, t), (1V ∗, b, 5V ∗, b), (3R∗, t, 6R∗, t),
(3R∗, l, 6R∗, l), (4V ∗, r, 6R∗, r), (3R∗, b, 6R∗, b),
(4V ∗, b, 6R∗, b))
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3.5 Full Table Production Rules

A sample of the production rules that are needed to represent all possible ta-
ble interpretations are shown in Figure 6. Due to the pages number limitation,
illustration of all rules which fully cover the different cases of node combina-
tions is not possible. By using these rules, one can produce all possible table
interpretations.

4 Evaluation and Experimental Results

To accomplish the table recognition evaluation, preparing table ground-truthing
is usually needed. In [4] the author stated that, in some cases, the researchers
who are ground-truthing tables might have different opinions about the right
way of ground-truthing a table. Sometimes, several interpretations seem to be
justifiable and appear to be equally valid. Taking into account this fact and for
evaluation purposes, 150 tables were manually ground-truthed, such that, each
table has all possible interpretations that can be extracted from it. To facili-
tate the comparison procedure, a visual technique is designed which allows us
to visually assess the table recognition output. The technique draws rectangles
around table cells. Each column’s cells are given a unique colour to their rect-
angles. Experiments are done using 100 pages taken from [5] which contains 150
tables. Table 2 illustrates concise information about the experimental results. In
this table, the 150 tables are categorised to three groups based on the number of
possible interpretations that can be obtained from a table. This can be accom-
plished using the ground-truth tables. A comparison between outputted table
possible interpretations and the corresponding ground-truth table is then manu-
ally done. The results of this comparison are classified into three categories. This
is determined by observing how far one possible interpretation of the table from
the proposed system matches one possible interpretation of the table according
to the ground truth set. These three categories are: 1) Table interpretations that
completely and correctly extracted. An output table is classified under this cat-
egory if it 100% matches. 2) Table interpretations partially extracted. Here the

Table 2. Results of applying the proposed table interpretation technique on 150 tables

Ground Truth
Table Dataset

Output Table Dataset

No. of
Tables

Number of
Possible Table
Interpretations

No. of Tables
Interpretations
Completely and

Correctly
Extracted

No. of Tables
Interpretations

Partially
Extracted

No. of Tables
Interpretations
That are missed

82 2 124 26 14

65 4 141 56 63

3 7 6 7 8
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matching rate is approximately between 75% and 95%. 3) Tables interpretations
that are missed. In this cases, the matching rate is 0%.

4.1 Analysis of Table Interpretations That Are Partially Extracted
or Missed

Although the experimental results — presented in Table 2 — show already a
promisingly high accuracy rate, there is still a considerable problem with the mis-
clustering of some cells to the wrong column (in the case of table interpretations
that are partially extracted) and the failure of splitting two columns (in the
case of table interpretations that are missed). An analysis of these cases yields
that the majority of mis-clustering and failure cases are due to the preprocessing
step when it fails to assemble the cells into their proper columns. One possible
approach to tackle this kind of problem and eventually improve the accuracy
of the proposed approach is to manually intervene by adding marks on tables
which assist the proposed method in inferring the correct column and as a result,
extract the all possible valid table interpretations. Figure 7 illustrates how adding
marks on tables improves the accuracy rate.

Fig. 7. Example of table re-composition (a) before manual intervention (b) after man-
ual intervention

The Figure 7 shows tables before and after the manual intervention. Each
column in this table is bordered and given a number. By observing table (a)
it can be clearly seen that last cell in the first row is wrongly clustered to the
third column where it should have been gathered with the cells in fourth column.
Table (b) shows a solution of the problem by adding an empty rectangle over the
third column to tell the proposed method that the last cell in the first row is not
overlapped with all cells in third column and therefore, it should be gathered
with cells in fourth column.

5 Conclusion

The proposed framework introduced in this paper was built accordingly upon
the observation of a wide range of tabular forms which occur in many docu-
ments from different domains. The abstract components of this framework can
be used as basis of wide range of other applications of document recognition.
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The technique represented here is able to produce several interpretations of ta-
ble form. Unlike other table representation techniques, the proposed approach
has the capability to deal with misaligned columns that sometimes appear in
tabular mathematical components. Adding virtual nodes to the initial graph
prevents complex relationship between nodes and would contribute in deciding
the actual table’s rows. Using the described production rules allow for producing
more than one possible valid interpretations of table structure. The experiments
in 150 tables show promising results.
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Abstract. The topology of complex brain networks allows efficient dynamic  
interactions between spatially distinct regions. Neuroimaging studies have pro-
vided consistent evidence of dysfunctional connectivity among the cortical cir-
cuitry in Parkinson’s disease; however, little is known about the topological 
properties of brain networks underlying these alterations. This paper introduces 
a methodology to explore aberrant changes in hierarchical patterns of nodal 
centrality through cortical networks, combining graph theoretical analysis and 
morphometric connectivity. The edges in graph were estimated by correlation 
analysis and thresholding between 148 nodes defined by cortical regions. Our 
findings demonstrated that the networks organization was disrupted in the pa-
tients with PD. We found a reconfiguration in hierarchical weighting of high 
degree hubs in structural networks associated with levels of cognitive decline, 
probably related to a system-wide compensatory mechanism. Simulated tar-
geted attack on the network’s nodes as measures of network resilience showed 
greater effects on information flow in advanced stages of disease. 

Keywords: Brain networks, MRI, graph theory, morphometric connectivity. 

1 Introduction 

The human brain is considered to be one of the most complex systems in nature, 
structurally and functionally organized into complex and sparse networks. The topol-
ogy of networks allows efficient dynamic interactions between spatially distinct brain 
regions, which are thought to provide the physiological basis for high-level informa-
tion processing [1]. Efforts to understand its intricate wiring patterns and the way 
these give rise to normal functioning and connectivity abnormalities in neurological 
and psychiatric disorders, is one of the most challenging areas in modern science. 

The mathematical framework of Graph Theory provides powerful tools to deal 
with intrinsic complexity of brain systems, allowing the extraction of global metrics 
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that capture various aspects of the network’s topological organization. However, 
graph theoretical approaches in neurosciences deals with large and complex neural 
systems that have revealed non-random but small-world architectures, providing re-
gional specialization with more efficient rates of information transfer [1-3]. This hy-
pothesis has been supported in structural and functional human brain networks stu-
dies, over a wide range of scales in space and time.  

Small-world networks are characterized by the existence of a small number of 
nodes with higher connectivity degree, referred to as hub-nodes. Hubs are suggested 
to play an important role in the overall network organization and can be defined sev-
eral possible measures of centrality, including degree (number of edges) and bet-
weenness centrality [1]. Detecting hub-regions in a network helps to identify relevant 
structures subserving specific roles such as motor and cognitive processing, thus pro-
viding a link between structure and function [4]. Progress in Graph Theory, combined 
with advanced neuroimaging techniques like Magnetic Resonance Imaging (MRI), 
allow us to quantify topological properties of brain systems like basal ganglia – tha-
lamus – cortical circuitry and disturbed functioning that give rise to movement dis-
orders such as Parkinson’s disease (PD). Previous functional brain network studies 
have demonstrated disruption of several large scale brain systems in PD [5-7]. Up to 
know remains unclear how the affected modular organization of brain network under-
lies motor and cognitive impairment in PD. 

Morphometric-based connectivity has been recently introduced as a measure of 
structural association between brain regions [8-10]. This concept is defined as the 
covariance between two anatomical brain areas. Structural networks can then be con-
structed from morphometric correlations of anatomical metrics like cortical volume, 
thickness, and surface area. In the present study, we constructed structural networks 
using average cortical thickness of atlas-based regions, to explore the characteristics 
of the cortical networks in PD across subgroups at different stages of cognitive im-
pairment, compared to healthy subjects. For the first time we applied graph theoretical 
approaches to investigate alterations in large-scale morphological brain networks, 
nodal centrality and network robustness in this neurological pathology. 

2 Methods 

2.1 Patients and Controls 

This research was approved by the Ethics Committee for Medical Research at the 
Clinica Universidad de Navarra in Spain. All patients provided their written informed 
consent. All the participants underwent a neuro-psychological assessment, including 
the Mini-Mental State Examination (MMSE) for global cognitive functions and 
UPDRS-III scale for motor disabilities. Demographic and clinical data for the study 
groups are given in Table 1. PD patients were classified in three groups according to 
cognitive performance: cognitively normal (PDCN); PD with mild cognitive impair-
ment (PDMCI), based on MCI criteria [11]; and with dementia (PDD), based on the 
DSM-IV-TR manual of mental disorders [12]. 
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Table 1. Demographic and clinical characteristics of the study participants 

 HC PDMCI PDCN PDD test 
No. 20 22 28 18  
Sex (M/F) 11/9 15/7 15/13 7/11 N.Sa 
UPDRS III N.A 32.3±8.5 35.0±12.2 50.0±10.0 P < 0.01b 
MMSE 29.2±1.1 29.0±1.4 26.4±2.6 18.3±3.8 P < 0.001b 

N.S: no significant; aChi-square test; bOneway analysis of variance 

2.2 MRI Acquisition and Cortical Thickness Measurement 

MRI examinations were performed on a 1.5 T Magnetom Symphony scanner (Sie-
mens, Erlangen, Germany). All subjects were investigated with a whole brain T1-
weighted coronal oriented Magnetization Prepared Rapid Gradient Echo (MPRAGE) 
sequence (repetition time TR = 13 ms; echo time TE = 10 ms; inversion time TI= 
1100 ms; flip angle =15; 1 mm isotropic resolution; slice gap = 0 mm). Head motion 
was minimized with restraining foam pads provided by the manufacturer.  

Reformatted T1-weighted MR images were processed using Freesurfer 5.0.0 soft-
ware package (Massachusetts General Hospital, Harvard Medical School; freely 
available at http://surfer.nmr.mgh.harvard.edu). Figure 1 (1 to 4) summarizes Freesur-
fer pipeline, whose technical details have been previously described [13]. After seg-
mentation into gray and white matter, the gray/white and the gray/pial interfaces were 
tessellated and labelled according to Destrieux sulcogyral-based atlas, which includes 
74 regions per brain hemisphere [14]. Cortical thickness, defined as the shortest dis-
tance between white and corresponding pial surfaces, was computed for every region. 
A linear regression was performed at every region to remove the effects of age, gend-
er, age–gender interaction, and mean cortical thickness. The residuals of this regres-
sion were then substituted for the raw cortical thickness values. 

2.3 Graph Theoretical Approaches 

The morphometric network is modeled as an undirected graph, Gbrain = [N, W] (figure 
1.5). N is a set of n=148 nodes determined by the anatomical parcellation and 
represents the voxels having a non-zero probability of belonging to the cortical tissue. 
W is the set of wij edges between each pair of regions i and j. We computed wij values 
as the Pearson's product-moment correlation coefficient in corrected thickness values 
across subjects, removing the influence of all other regions n ≠ (i, j). This resulted in a 
pair of {74 x 74} correlation matrices. Pearson’s correlation was adopted instead of 
partial correlation analysis because the number of nodes exceeds the number of pa-
tients. Unweighted binary graphs were generated by thresholding the wij values based 
upon the significance of the correlations. Bootstrapping samples (Nboot = 300 sam-
ples) of the connectivity matrix were obtained by selecting a random subset of the 
total number of subjects with replacement to compute the correlation coefficient. 
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Fig. 1. Pipeline for morphometric-based graph analysis. 1. Acquisition of T1-weighted high 
resolution MRI; 2. Surface-based segmentation; 3. Atlas-based tessellation and labeling; 4. 
Calculation of corrected cortical thickness; 5. Schematic representation of the brain network in 
the form of a graph; 6 Definition of higher-degree connector hubs. 

2.4 Nodal Centrality and Network Robustness 

The shortest path dij between any two vertices i and j is defined as the number of 
edges along the geodesic length connecting them [3]. Degree centrality of a given 
node n(i) is defined as the number of edges incident to the node. The ‘betweenness 
centrality’ B(i) of a n(i) is a global centrality measure of the influence of a node over 
information flow between other nodes in the network [3]. We measured the norma-
lized betweenness as: 

 B(i) = Σj≠k { njk(i)/ njk }  (1) 

where njk is the number of shortest paths connecting j and k, and njk(i) is the number 
of these paths passing through i. The hubs are the regions with higher values of B(i) as 
seen in figure 1.6. To test differences between groups a nonparametric Kruskal Wallis 
(KW) statistical test was used, with Bonferroni correction for multiple comparisons. 

Small-world networks show a high robustness to random failure of nodes, but are 
known to be vulnerable to target attack on the hubs [1]. A fault in the system is the 
removal of any n nodes and all edges connected to these nodes from Gbrain. To eva-
luate the attack tolerance of each of the four networks, we removed the nodes and 
edges from the graph in decreasing order of their betweenness and then measured the 
changes in the size of the largest connected component. 
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3 Results 

3.1 Nodal Characteristics 

Figure 2 shows the strongest hubs in the four sets of undirected graphs, corresponded 
to healthy volunteers and patients with different levels of cognitive decline. In the 
control group, regions with B(i) > 2 (meaning that these hub regions have at least 2 
times the network’s average betweenness centrality) included right primary sensori-
motor and posterior cingulate areas, and associative temporal regions. Compared with 
controls, the PD patients showed significant centrality decreases in primary motor 
cortex, while increases in associative and limbic frontal and occipito-temporal areas 
are observed (KW test, p<0.01). PDD’s hubs were predominant in the occipital and 
parietal regions, with tendency to lose involvement of fronto-temporal areas. Nomen-
clature of human cortical gyri and sulci can be found in Destrieux et al [14]. Full list 
of anatomical regions with respective betweenness centrality values are available 
under request. 
 

 

Fig. 2. The structural network cores for each group. Size of spheres indicates normalized bet-
weenness centrality values of each region. 

3.2 Reduced Network Robustness in PD 

We find that the deletion of connector hubs have distinctly effects on the small-world 
attributes as a consequence of pathological stages. Figure 3 shows the networks ro-
bustness in response to the targeted attack. PDD group was considerably more vulner-
able to hubs deletion, with reduction of the largest connected component when at least 
15% of the most central nodes and links were removed, and remains noticeably re-
duced for all thresholds. The structural networks of patients without dementia (PDCN 
and PDMCI) were as robust as that of controls until the 57% of the most central nodes 
were attacked. In the range when 57 to approximately 70% of nodes are deleted, these 
three networks show a cross-linked behavior against attacks. Since that sparsity  
threshold, resilience to targeted failures are consistent with cognitive decline  
(HC > PDCN > PDMCI > PDD). 
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Fig. 3. The graph shows the largest component size of the networks for every group as a func-
tion of sparsity threshold. As the proportion of removed nodes increases, the largest component 
sizes of all groups tend to decrease. The arrow indicates the lowest sparsity threshold (15%) in 
which all the networks included all connected nodes. 

4 Discussion 

To our knowledge, this is the first time that graph theory is used to explore the mor-
phological networks in PD and its relation with cognitive decline. We have consi-
dered the hypothesis that these covariation patterns reveal information about the  
dynamics of the brain networks in response to degenerative processes in PD. We have 
also modeled the vulnerability to targeted attack on the network’s hubs in relation to 
cortical thinning and cognitive impairment. 

4.1 Altered Nodal Centrality 

Our results point out the degree and distribution of network’s hubs as possible biolog-
ical markers of deficits in cognitive and behavioral functions in PD. The loss of inte-
grative capacities of the precentral regions may reflect altered output through basal 
ganglia-thalamo-cortical loops, which is consubstantial with PD [15]. The selective 
damage to high-degree hubs in structural networks should have an outsized impact on 
the capacity of the network for efficient high-level processing. This could explain the 
early emergence of motor and cognitive symptoms in the course of PD. During the 
course to more advanced phases of cognitive impairment, clustering of connector 
hubs shift to posterior parietal, temporal and occipital regions, including visual and 
auditory cortices, and to associative and limbic frontal areas (figure 2). This observa-
tion fits with the heavy reliance of PD patients on sensory modalities to guide their 
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actions. Such reconfiguration leads us to speculate that alteration in degree centrality 
across the brain circuitry may be indicative of system wide compensatory mechanism, 
in response to the basal ganglia altered output arising from imbalances of dopamine.  

In terms of network dynamics, the shift in B(i) suggests a reordering in the control 
of flow of information. However, it is difficult to differentiate between changes re-
sulting from the disease itself as opposed to those that arise as part of a compensatory 
response. On the other hand, betweenness only takes into account shortest edges, 
while long range network connections also contribute to global communication pat-
terns. Future studies are necessary to address network-wide integration and its effect 
over network’s efficiency. Our results are in line with recent studies suggesting re-
duced sensorimotor connectivity and increased functional connectivity in associative 
and limbic circuits in PD [5-7, 16].  

4.2 Topological Vulnerability in PD 

Measures of network resilience may be computationally simulated by targeted attack 
on the network highest-degree nodes. The vulnerability of the network in different 
stages of disease may then be quantified by comparing its topological or dynamical 
behavior after the “lesioning”. Our observations suggest that pathological attacks on 
high-centrality nodes have greater effects on information flow in advanced stages of 
PD than attacks on early phases and healthy controls. These results are consistent with 
recent inferences about the association between disease stages and thinning of core 
prefrontal, cingulate, temporal and parieto-occipital regions in PD [17]. More impor-
tantly, graphs corresponding to normal or middle cognitive impairment show a ten-
dency to recover resilience capacity after an attack to a high percent of connector 
hubs, similar to healthy controls. Therefore, this PD related changes in centrality pa-
rameters may reflect a less optimal reconfiguration in hierarchical network topology 
in response to alteration of primary motor and cognitive circuits. Thus, topological 
organization of network’s hubs could provide associations for the understanding of 
the relationship between network topology and neuropathological state of disease. 

5 Conclusions 

In the present paper we have shown that combining graph theory and MRI data allows 
studying the organizational properties of the morphological networks in Parkinson 
Disease at different stages of cognitive decline. This approach should yield more 
comprehensive understanding of how structural disruptions in the brain network ar-
chitecture are associated with functional deficits in PD. Our findings are compatible 
with the notion that cognitive impairment in PD is associated with disruptions in the 
integrity of large-scale interconnected brain systems. The graph theory analysis also 
provides a new way to understand the pathophysiology of specific functional deficits 
and, possibly, to evaluate disease progression. In a near future, the combination of 
functional and morphometric-based connectivity in a graph theory framework could 
explain the nature of dynamical processes taking place on the parkinsonian networks, 
as well as the causality between network topology and network dynamics. 
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Abstract. Currently, material resistance research is looking for bioma-
terials where mechanical properties (like fatigure resistance) and biocom-
patibility are the main characteristics to take into account. To understand
the behavior of materials subject to fatigue, usually we analyze how the
material responds to cyclic forces. Failures due to fatigue are the first cause
of cracks in materials. Normally, failures start with a superficial deficiency
and produce micro cracks, which grow until a total break of the material.
In this work we deal with the early detection of micro cracks on the surface
of bone cement, while they are under fatigue tests, in order to characterize
the material and design better and more resistant materials according to
where they would be applied. The method presented for crack detection
consists in several stages: noise reduction, shadow elimination, image seg-
mentation and path detection for crack analysis. At the end of the analysis
of one image, the number of cracks and the length of each one can be ob-
tained (based on the maximum length of crack candidates). If a video is
analyzed, the evolution of cracks in the material can be observed.

1 Introduction

Tests with new biomaterials like bone cements with monomers of amino group,
should be conducted in similar conditions to the real use; in the case of bone
cements, it is very important because they are used inside the human body
(implants, prosthesis). Particularly important is the analysis of the resistance
of the material, and the study of the material under stress (by external forces
applied on it).

To understand the behavior of materials subject to fatigue, usually we ana-
lyze how the material responds to cyclic forces. Such forces can cause cumulative
damage in the material, and depending on the intrinsic properties of the ma-
terial, as well as to external factors which can be under control in laboratory
experiments, the service life of the material could be reduced.

Fatigue is a kind of failure observed in materials under dynamic and fluctuant
forces. Such failure can be observed even in cases where the force is below the
resistance threshold; they can appear suddenly and can be catastrophic. Failures
due to fatigue are the first cause of cracks in materials.

Normally, failures start with a superficial deficiency and in conditions where
the local force induced is greater than the resistance value of the weaker grain,
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or microstructural barriers. In most cases, the superficial fault results in one or
more micro cracks, which can be observed with a microscope. The micro crack
start growing by discontinuity points in the material, which concentrates the
efforts.

Crack detection and tracking of its growth in materials like bone cements,
gives useful information about early stages in fatigue damage; this kind of dam-
age is similar to the one the bones suffer in daily activities. Such information
can be used to develop better materials (ie. more resistant materials).

Prosthetic bone cement can be used in orthopedics and odontology; it is an
acrylic resin used to fix the prosthesis to the bone [1]. This kind of cement is
used in orthopedics for hip, knee or shoulder surgery (for example, to replace by
a prosthesis), as well as in spinal surgery and dental prosthesis. In such surgery,
the bone cement is used to fill the spaces or holes between the (metal) prosthesis
and the bone cavity where it should be fixed. Currently, we can find commercially
bone cements with different characteristics like viscosity (high, low, extra-low),
or concentration (20g, 40g, 50g, 60g), and we choose among them depending of
the application.

According to the norm ASTM E206 described in [2], fatigue is a structural
and progressive change, located and persistent, which occurs in materials subject
to efforts and fluctuating deformations, which can produce micro-cracks or even
total rupture of the material after a sufficiently large number of fluctuations.
Fatigue can also be described as a progressive fail which occurs due to crack
propagation until they reach an unstable size. For this reason, we should put
attention to the materials used in the bone cement and also to its applications,
particularly if it implies repeated and fluctuating forces. Fatigue causes failures
because of the simultaneous action of cyclic and strain (tension) stress, as well
as plastic deformation.

The goal of the analysis of the growth of (micro) cracks, is to understand
the mechanisms of the beginning and growing of cracks governing early stages
of serious damage in bone cement, which are manufactures with monomers of
amino group in a matrix of methyl methacrylate.

In this work we deal with the early detection of micro cracks on the surface
of bone cements, while they are under fatigue tests, in order to characterize the
material and design better and more resistant materials according to where they
would be applied.

We use a microscope and a conventional camera in order to obtain some
images, which are analyzed to detect crack clusters, identify crack paths, and to
count the number of cracks in the image.

2 Detection of Cracks

We can deal with crack detection by means of several approaches; for exam-
ple, we can use probabilistic or stochastic theory [3,4], continuous models [5] or
deterministic Markov processes [6]. However all of them deal only with crack
detection and does not analyze the growth of the crack, which needs to follow
the crack paths during time.
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Some characteristics of the cracks are their color and their width; cracks have a
darker color than plastic deformations, scratches and grain boundaries. Therefore
the threshold calculated assure that only cracks are detected, also cracks are
wider than grain boundaries so if a grain boundary is detected as a crack, the
difference can be observed as it would be a discontinuous line (dotted line).

The method presented in this paper allows the analysis of crack growing or
crack evolution due to its ability to get not only the crack clusters, but also the
number and lengths of paths in the image. Figure 1 shows the general scheme
of the method.

Fig. 1. General scheme of the method

A low pass frequency filter is used for noise reduction/elimination (Gaussian
low pass filter), together with a median filter for elimination of salt and pepper
noise (if it is present). Once the noise on the image has been reduced, it could
be applied a method to reduce some effect on the boundaries of the images; this
effect is called shadow. The shadows can result in erroneous detection of cracks
on the boundaries of the image. To eliminate shadows, a histogram smoothed by
a Gaussian kernel with bandwidth B can be used to calculate a threshold, and
pixels with gray values over the thresholds are changed for such value.

After the stage of preprocessing the image, we need to classify the image pixel
into regions; that is, we segment the image (assign every pixel to a particular
segment). Given a pixel, we can determine if it belongs to a segment or to other
one by comparing its gray value with a threshold. The threshold value in step 2
is calculated in such a way that the resulting value can minimize the variance of
every segment, and at the same time maximize the variance between segments
[7]; that is, we compute the ratio between the two variances and choose as
the threshold the value which maximizes that ratio. The weighted within-class
variance is given by Eq. (1), while the the class variances are given by Eq. (2),
the class probabilities are given by Eq. (3) and the means are given by Eq. (4).
P (i) is the probability of the gray value i.

σ2
w(t) = q1(t)σ

2
1(t) + q2(t)σ

2
2(t) (1)
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Once we have the segmentation, the crack clusters are detected as neighbor
pixels with values under certain threshold; such pixels are considered as vertex of
a directed graph. The adjacency of two vertex is determined with the adjacency
of the pixels: if they are horizontal or vertical neighbors, they are connected with
an arrow of length 1; if they are diagonal neighbors, they are connected with an
arrow of length sqrt(2) (see fig. 2). Then, the arrow lengths are modified adding
a factor equal to the difference in gray values of the adjacent vertex (connected
pixels). Finally, a method to find minimum length paths is used in order to build
the paths in each crack cluster (considering that the cracks are associated with
the darkest gray values of the pixels).

Fig. 2. Graph creation example. Supose there is a curve (crack pixels) like the blue
one in the rigth image. The length of arrows is first assigned according to adjacency
(yellow arrows are of length 1, while red arrows are of length sqrt(2)).

3 Experimental Results

Figure 3 shows an original image of a section of the surface of the material
subject to strain efforts (obtained with a microscope with 200x of amplification),
as well as the detected cracks. The threshold used in this case for the shadow
elimination was 132 (gray value), which was obtained as the maximum increment
of the blurred histogram of the image, with a bandwidth of B = 30. The number
of cracks detected is 762, and the length of the longest crack is 179.41 pixels.
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Fig. 3. Crack detection in a section of the surface of the material subject to assay
under strain. a) Original image; b) Cracks detected (blue pixels).

Figure 4 shows the results with different bandwidth for the Gaussian filter.
According to our experiments, the best value for the bandwidth of the Gaussian
kernel used is B = 35, because in average it produces a threshold which allows
a better identification of the cracks in the images.

Fig. 4. Results obtained using different bandwidth for the Gaussian kernel used in
filtering. Bandwidth: a) 30, b) 35, c) 40.

The method was applied to a set of 200 images (some of bone cement and oth-
ers of steel). Two methods for removing the shadows in the images were applied.
The first one applies an exponential decreasing value to the pixels of the border
of an image if their mean gray level value is 10 units greater than the mean
gray level value of the inner pixels of the image (this method is called shadow
removal). The second one is the median filter. Figure 4 shows the number and
size of the cracks detected (given in pixels) for a set of 40 images, comparing the
results using the shadow removal method and using a median filter. According
to the results, the median filter gives more accurate detection of cracks, in com-
parison with the crack detection using the shadow remove method instead; on
average, if the shadow remove method is applied, fewer cracks are detected than
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Fig. 5. Results obtained with some bone cement images. Observe that the number of
cracks is bigger with the median filter, and the lengths are bigger with shadow remove
(because some cracks are joined together).

using the median filter but that is because that method sometimes erroneously
joins two or more cracks and because of that larger cracks are detected too.

Figure 6 shows why the median filter was the best option, you can observe
than the median filter almost detect the complete hole in the middle of the image
while shadow remove joins one crack at the left of the image with the crack at
the bottom creating a big crack that goes through the hole. Using the median
filter a threshold of 84 was calculated, 133 cracks were detected and the length of
the largest cracks detected was 56.698. Using shadow remove a threshold of 158
was calculated, 155 were detected and the length of the largest crack detected
was 173.509.

Fig. 6. Left: results using the median filter for removing the shadows (the cracks de-
tected are in red color). Rigth: results using the method shadow remove, that is expo-
nential decreasing gray value assignment (the cracks detected are in green color).
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Fig. 7. Evolution of micro cracks detected in steel assay images

Figure 7 shows the detection of cracks in a steel assay subject to strain efforts;
the method is applied to the set of images taken from the video of the microscope,
and we can track the evolution of the cracks.

4 Conclusion

The method described can detect micro cracks in images of materials like bone
cement under fatigue efforts. To accomplish such task several steps are needed,
from image denoising to crack path calculation. The noise reduction and the
shadow elimination, are of particular importance because otherwise, misclassifi-
cation of pixels occurs.

The method presented has some limitations. One of them is that it cannot
detect cracks in the form of trees because the crack are detected as one continuous
line, and some cracks can be erroneously detected at the begging of the cracking
process because the cracks are not dark enough yet.

Even that in about 93% of the images analized we were able to eliminate
shadows correctly, there are some cases where different cracks are detected as
one crack (they are erroneously joined), and other cases where one crack is
divided into two cracks. We are analyzing how can we improve the accuracy of
the method when detecting cracks by improving the removing of the shadows.
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Another thing to work on, is that grain boundaries are sometimes confused
with cracks; however this can be easily identified because the cracks are small in
length, have a darker gray value and are thicker than grain boundaries; that is,
visually the boundaries can be observed like a discontinuous crack (like a dotted
line).
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Abstract. Mild cognitive impairment (MCI) is common in Parkinson’s
Disease (PD) patients and it is key to predict the development of demen-
tia. There is not report of discriminant accuracy for MCI using based-
surface cortical morphometry. This study used Cortical-Thickness (CT)
combined to Local-Gyrification-Index (LGI) to assess discriminant ac-
curacy for MCI stages in PD. Sixty-four patients with idiopathic PD
and nineteen healthy controls (HC) were analyzed. CT and LGI were
estimated using Freesurfer software. Principal Component Analysis and
Lineal Discriminant Analysis (LDA) assuming a common diagonal co-
variance matrix (or Naive-Bayes classifier) was used with cross-validation
leave-one-subject-out scheme. Accuracy, sensibility and specificity were
reported to different classification analysis. CT combined to LGI limited
revealed the best discrimination with accuracy of 82,98%, sensitivity of
85.71% and specificity of 80.77%. A validation process using indepen-
dent and more heterogeneous data set and further longitudinal studies,
are necessary to confirm our results.

Keywords: Naive-Bayes classifier, PCA, Accuracy, Parkinson’s disease,
MCI, Cortical Thickness, Cortical Folding, LGI, MRI, Surface-based
morphometry.

1 Introduction

In Parkinson’s disease (PD) exist a spectrum of cognitive dysfunction, ranging
from mild cognitive impairment (MCI) to dementia (PDD). MCI is common
in non-demented PD patients and predicts the development of dementia in PD
patients over a long period of time [1,2]. Specific patterns of gray matter at-
rophy occur across all stages of PD and functional and metabolic changes also
are measurable, but it is too early to determine their utility as biomarkers for
cognitive impairment in PD [3,4,5]. Therefore, additional evidence is necessary
and validation of biomarker candidate as an objective method of diagnosis and
prognosis is an active research field nowadays.

Medical imaging is widely used for above purpose and a general approach is
to detect subtle differences in the composition, morphology or other behavior
in organs and relating these differences to clinical phenomena of interest[6]. In
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particular, surface-based morphometry has been used to identify pattern of at-
rophy associated to cognitive decline in PD patients[3]. However, only a few of
then have considered PDMCI stage [7,8]. A recently research found that dis-
ease stage in PD was associated with thinning of the medial frontal region and
discriminant analysis showed that mean cortical thickness and hippocampus vol-
ume have 80% accuracy in identifying PD patients with dementia [8]. However,
it remains unclear how cortical changes is related to cognitive impairment and
disease stage in PD, in addition, as far as we know, not any study report accu-
racy of cortical folding and cortical thickness for identifying PDMCI stage. In
this study we used based-surface morphometry for contributing with additional
evidence about associated cortical regions to cognitive dysfunction and to assess
accuracy of cortical thickness combined with cortical folding for discriminating
PDNC and PDMCI stages.

2 Methods

2.1 Patients and Controls

This study enrolled 64 patients with idiopathic PD and 19 healthy controls
(HC). All the participants underwent an extensive neuropsychological assess-
ment, including the Mini-Mental State Examination (MMSE) and Blessed De-
mentia scale for global cognitive functions. In order to evaluate motor disabil-
ities at PD patients, the motor subset of the Unified Parkinson Disease Rat-
ing Scale (UPDRS-III) and the Hoehn and Yahr scale were applied. Significant
co-morbidity at PD patients and controls were excluded by neurological and
psychiatric evaluation, imaging and laboratory tests. Demographic and clinical
data for the study groups are given in Table 1. PD patients were classified in
three groups according to cognitive performance: cognitively normal PD patients
(PDCN), PD with mild cognitive impairment (PDMCI), based on established
MCI criteria[9] and PD with dementia (PDD); based on the criteria of the Di-
agnostic and Statistical Manual of Mental Disorders (DSM-IV-TR)[10]. All the
participants provided informed consent for the study in accordance with Helsinki
Declaration.

2.2 MRI Acquisition

MRI examinations were performed on a 1.5 T Magnetom Symphony MRI scan-
ner (Siemens, Erlangen, Germany). All subjects were investigated with a whole
brain T1-weighted coronal oriented Magnetization Prepared Rapid Gradient
Echo (MPRAGE) sequence (repetition time TR = 13 ms; echo time TE = 10
ms; inversion time TI= 1100 ms; flip angle =15; 1 mm isotropic resolution; slice
gap = 0 mm). Head motion was minimized with restraining foam pads provided
by the manufacturer.
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2.3 Cortical Variables Estimation

Cortical Thickness (CT) and Local Gyrification Index (LGI) estimation was
performed with Freesurfer software, which is documented and freely available
for download online (http://surfer.nmr.mgh.harvard.edu/). The technical
details of these procedures were described in prior publications. Briefly, this pro-
cessing included, removal of non-brain tissue using a hybrid watershed/surface
deformation procedure[11], automated Talairach transformation, segmentation
of the subcortical white matter and deep gray matter volumetric structures
[12,13], intensity normalization [14], tessellation of the gray matter white matter
boundary, automated topology correction[15,16]. This method used both inten-
sity and continuity information from the entire three dimensional MR volume in
segmentation and deformation procedures to produce representations of cortical
thickness, calculated as the closest distance from the gray/white boundary to
the gray/CSF boundary at each vertex on the tessellated surface[17]. Local Gyri-
fication Index was measured in each vertex as the ratio between areas of pial
surface and an outer smoothed surface tightly wrapping the pial surface[18]
using Matlab toolbox distributed with Freesurfer.

Table 1. Demographic and clinical characteristics of the study participants

HC PDNC PDMCI PDD Differences
No. Subjects 19 21 26 17
Sex (M/F) 15/7 15/13
Age 68.0/3.1 67.0/7.0 71.6/3.8 73.2/7.3 0.001a
Education 2.55/1.0 3.30/1.5 2.52/1.0 2.31/0.8 N.S
Evolution (yr) N.A 12.4/3.6 14.5/6.1 13.9/4.7 N.S
UPDRS III N.A 32.3/8.5 35.0/12.2 50.0/10.0 P < 0.0a
HY N.A 2.54/0.6 2.89/0.7 3.78/0.7 P < 0.001a
MMSE 29.2/1.1 29.0/1.4 26.4/2.6 18.3/3.8 P < 0.001a
N.S: no significant; UPDRS : Unified Parkinson’s Disease Rating Scale; H&Y:
Hoehn and Yahr stage. (a) One way analysis of variance with Fisher LSD post-hoc
comparisons

2.4 Features Extraction and Classification

Using general linear model (GLM) with Age and Gender as covariate nuisance
with Freesurfer module MRI_GLMFIT and MATLAB scripts was investigated
the regional difference patterns of CT and LGI between the different groups in
pairs-wise analysis. Changes were examined with a threshold of p<0.001 (uncor-
rected) on the vertex level and p<0.05 (corrected for multiple comparison using
Montecarlo simulation with 10,000 iterations) on the cluster level. Each one of
the identified clusters expands to several cortical regions, using t-test (p <0.001)
we had determined cortical regions with significant difference in average value
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of each variable using Destrieux Atlas (a 148 regions atlas)[19], once eliminated,
age and gender, confounding. CT was smoothed using a Gaussian kernel of 15
mm FWHM.

All contrast was evaluated to select those that gave us more information
to differentiate between PD and PDMCI in both directions; first, changes at
topographic extension and second on the intensity of variation. Average value of
CT and LGI for each significant region integrated the feature-vector. Principal
Component Analysis (PCA) was used to identify a set of orthogonal modes
that capture the greatest amount of variance expressed spatially by the two
feature-vectors. We proceeded on selecting a number of modes that accounted
to per-model variance of 80%. Lineal Discriminant Analysis (LDA) assuming a
common diagonal covariance matrix (or Naive-Bayes classifier) with same prior
probability to all group and cross-validation was performed, using the leave-
one-subject-out scheme in all analysis. Accuracy, sensibility and specificity was
reported to five different analysis: CT-only/selected-regions, LGI-only/selected-
regions, CT & LGI/selected-regions and CT & LGI/all-cortical-regions and CT
& LGI/selected-regions/random-assigning-group.

3 Results

3.1 Global Analysis

Whole-cortex average CT was 2.44/0.09, 2.35/0.19, 2.19/0.17, 2.0/0.22 in HC,
PDNC, PDMCI and PDD group respectively. ANCOVA revealed a significant
difference between all groups except PDNC vs PDMCI and correlation with
Age (p<0.05, tukey-kramer to compensate for multiple comparisons), no differ-
ence was found in Gender. Whole-cortex average LGI was 2.81/0.11, 2.77/0.15,
2.69/0.11, 2,69/0.12 in HC, PDNC, PDMCI and PDD group respectively, sig-
nificant difference between HC vs PD and HC vs PDD and significant difference
between Gender was revealed (ANOVA, p=0.05, tukey-kramer multiple compar-
isons). To avoid any possible effects of Age and Sex, both variables were included
as covariates in the further analysis. A significant correlation between CT and
LGI was found using four groups data (Pearson r=0,33, p=0.002).

3.2 Regional Analysis

Table 2 shows the number of clusters and regions identified with significant
difference to CT and LGI. CT revealed significant changes to every con-
trast. HC-relative contrasts showed a progressive thinning from PDNC to
PDD con values of 8.29%, 9.11% and 11.95% respectively. Topographic exten-
sion included 4 regions (G_pariet_inf-Supramar_left, S_postcentral_left/right
and S_intrapariet_ and_P_trans_right), 54 and 124 respectively. PDNC-
relative contrast (PDNC vs PDMCI and PDNC vs PDD) revealed relative
changes of 15% and 10.98%, the first one revealed significant different in
G_occipital_superior_left and the last one a number of 30 regions. LGI showed
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only significant clusters for HC-relative contrasts. The principal difference on its
is reflexed by topographic extension, 2 regions in HC vs PDNC (G_cuneus_left_
and S_parieto_occipital_left) compared to 14 and 7 in HC vs PDMCI and HC
vs PDD respectively. In according to above results, we selected 31 regions (11
left and 20 right) provided by PDNC vs PDMCI and PDNC vs PDD contrasts
to form a feature-vector to CT variable . In a similar way a feature-vector to
LGI variable was compound for average value of LGI in 16 regions (11 left and
5 right) provided by HC vs PDNC and HC vs PDMCI contrasts. Figure 1 shows
statistical parametric maps highlighting significant clusters that contains the
selected regions (more details in supplementary material).

Table 2. Number of clusters and regions with significant difference in pairs-wise anal-
ysis for CT and LGI variables

CT LGI
Groups NoC NoR % NoC NoR %
HC vs PDNC 7 4 8.29 2 2 6.72

HCvsPDMCI 18 54 9.11 10 14 6.30

HC vs PDD 6 124 11.95 6 7 6.41

PDNC vs PDMCI 3 1 15.00 0 0
PDNCvsPDD 16 30 10.98 0 0
PDMCI vs PDD 10 11 9.49 0 0
NoC: Number of significant cluster (p=0.05 cluster-wise, p=0.001 to form cluster)
NoR: Number of regions in clusters (Destrieux Atlas 2009, 148 regions) with
significant difference (p=0.001) according to average value.
%: Relative percent of variation between pairs of groups

3.3 Classification

The 80% of variance of feature-vector CT was explained by the first five princi-
pal components. MANOVA discriminated between groups (p<0.05, chisq=15.02,
wilk’s lamda=0.7) using this modes of variations. With feature-vector LGI was
necessary the first four principal components, witch ones discriminate between
groups too (MANOVA, p<0.05, chisq=28.87, wilk’s lamda=0.5). Table 3 sum-
marizes classification results of different analysis. Multivariate classification us-
ing combined modes of CT and LGI limited to selected regions revealed the
best discriminant accuracy with 82,98% compared to remainder analysis. Using
all cortical regions was obtained a accuracy of 72.34%, using CT variable only
65.96% and using LGI variable only the result was of 78.72%. Similar results
showed the sensitivity (85,71%) and specificity (80.77%) values. Using 10 trials
of random assigning to all subjects of the two groups accuracy result was 38.30%.
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Fig. 1. Statistical parametric maps showing significant clusters on the four main con-
trasts selected to classification between PDNC and PDMCI (Freesurfer MRI_GLMFIT
module and GLM, CT smoothed 15 mm FWHM, p=0.001 uncorrected and p=0.05 FWE
cluster-wise, corrected for multiple comparison using Montecarlo simulation with 10,000
iterations.

3.4 Discussion

We assessed cortical thickness combined with cortical folding accuracy for dif-
ferentiate MCI in PD patients. In this first exploratory stage we have used LDA
assuming diagonal covariance matrix or Naive-Bayes classifier on the basis of we
have considered both CT and LGI variables normally distributed and indepen-
dent each other within each group in accordance with the results of previous
study[20], where no significant correlation were found between that variables in
the control’s group; In addition, feature-vector for classification was formed by
first orthogonal modes of variation or principal components. However a com-
parison to a discriminative classifier, such as Logistic Regression or Support
Vector Machine would be advisable to confirm the results. The used approach
for discrimination not only captures univariate relationships of a single region
across all subjects, but also detect multivariate relationships between different
structures in each cortical variable[6]. CT showed a progressive reduction con-
sistent with preview studies ([7,8]) and discriminate PDMCI with 65.96% of
accuracy. In contrast with a recently study [8] and according to a previous one
[20]LGI revealed structural changes between PDNC, PDMCI and PDD relative
to control subjects. Figure 1 illustrate a extension of differences to others regions
that should be associated to cognitive decline, that subtle differences between
PDNC and PDMCI are no detected by univariate analysis, however, multivari-
ate approach revealed difference between PDNC vs PDMCI of LGI with an
accuracy of 78.72%. All classification results exceeded the accuracy obtained by
chance (38.30%). By combining CT and LGI and using proposed regions we ob-
tained the better accuracy (82,98%), similar to reported accuracy to differentiate
dementia[8] . This results endorse the using of selected regions for classification.
However, as the groups used in this study were recruited from a single clinical
center, the results might be less generalizable to other clinical data and a vali-
dation process with more heterogeneous data sets is necessary, other lack is that
we modeled a apparent progression of cognitive impairment using information
relate to different contrasts obtained from cross-sectional design, this fact influ-
ences the results, witch ones should be confirm with longitudinal study fallowing
quality criteria as were recommended recently [3,4] .
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Table 3. Accuracy, sensitivity and specificity values to differentiate PDNC and PDMCI
groups. Five different classification analysis are reported.

Variables/Regions Sensitivity Specificity Accuracy
CT and LGI/selected-regions 85.71% 80.77% 82.98%

CT-only/selected-regions 66.67% 65.38% 65.96%

LGI-only/selected-regions 80.95% 76.92% 78.72%

CT and LGI/all-cortical regions 71.43% 73.08% 72.34%

CT and LGI/selected-
regions/randomly-assigning-group*

28.57% 46.15% 38.30%

Naive-Bayes classifier with cross-validation leave-one-subject-out squeme for all
analysis.
(*) Average value resultant of ten trials of random assignations.

4 Conclusions

Our study supply additional evidence about existent relations between cognitive
impairment and structural changes in brain cortex and reveal the capacity of
cortical thickness and cortical folding to discriminate MCI, specially, when both
features are combined and we use specific cortical regions, PCA and a Naive-
Bayes classifier. A validation process using independent and more heterogeneous
data set and further longitudinal studies are necessary to confirm our results.
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Abstract. Training systems based on virtual reality are used in several areas of 
human activities. In some kinds of training is important to know the trainee's 
skills. It can be done in those systems but requires high-end computers to 
achieve good performance. Recently, the use of embedded systems connected 
to the training system was proposed for training assessment, with the goal of 
decreasing requirements of the main system. However, some questions are still 
open and a deep study of this proposal was not performed. This paper provides 
answers for some of those questions. 

Keywords: Embedded Systems, Virtual Reality, Training Assessment, Fuzzy 
Naive Bayes, Possibility and Necessity Measures. 

1 Introduction 

Continuous learning and improvement of skills for staffs are a demand of several 
areas to guarantee good offer of services. With this purpose, applications based on 
virtual reality (VR) have been developed in order to provide realistic training, particu-
larly in the medical area [3]. In those systems, users are exposed to simulated prob-
lems in 3D environments to practice and get technological and psychological skills to 
perform them in a real condition. Also, VR systems demand integration and synchro-
nizations of routines, hardware and techniques [1], what requires high processing 
rates to provide real time feedback. 

One of the main advantages of training in VR simulators is the possibility of 
monitoring user actions to register their movements. Then, information as force, 
position and acceleration, among others performed with interaction devices (as 
haptics) must be acquired and processed during all the training session. This 
information is used to feed assessment routines that must provide feedback about 
users skills. Thus, an online feedback [3] will demand expressive time of CPU, which 
can compromise the other tasks of the simulator. Moraes and Machado [2] proposed 
an architecture for assessment based on embedded systems. In this architecture, an 
embedded system is connected to the VR simulator to enhance the execution of the 
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assessment tasks and release the CPU for other tasks related to the simulation. 
However, no further studies to analyze the efficiency of the architecture, its 
limitations to provide online assessment and its performance if compared to a CPU 
based approach were identified in the literature. The paper has as goal to provide this 
analysis for two previously proposed online methods based on fuzzy sets: Fuzzy 
Naive Bayes (FNB) [5] and Possibility and Necessity Measures (PMN) [14]. Both 
were implemented in a CPU and also in an embedded system. Monte Carlo 
simulations were used to describe profiles for both methods with increasing size 
databases. 

2 Virtual Reality and Training Assessment 

VR for training of procedures allows simulating real problems in a realistic way, 
avoiding risks and ethical issues [3], as the acquisition of guinea pigs or cadaveric 
bodies. Advantages of the use of VR for training are related to the variability of cases 
that can be simulated, including rare and atypical occurrences, the possibility of repeti-
tion without degradation of materials and the absence of risks for the people involved. 

The use of special devices in VR systems allows reaching high levels of immersion 
and interactivity, providing for users the feeling of presence by the manipulation of  
elements in the virtual environment [8]. Those devices usually explore users´ senses 
as the sight, hearing and touch. The VR system processes all interactions and the 
feedback to be provided. Also, the VR system is responsible by the synchronization of 
all tasks in order to guarantee the sequence and coherence among the several tasks. 
These tasks include the calculus of physical phenomena, lighting and collision 
detection, as examples. Because interaction devices can acquire data with rates that 
start on 30Hz, the amount of information processed in a simulation can be massive, 
depending on the type of interaction. Haptic devices, as example, can capture 
interaction in rates between 500 and 1000 Hz. 

Since VR systems are computational simulations, interaction data of the procedure 
can be collected and used to assess trainees´ performance. This can occur in two 
different ways: offline and online. Offline assessment methods are those that cannot 
provide immediate feedback for users: post-analysis of recorded training [10] sessions 
or questionnaires answered by users [11]. However, users can forget their actions after 
some time, which gives to this type of assessment a lower didactic impact. Online 
assessment methods can provide real-time feedback and trainees can immediately 
repeat the training and try to correct their actions to improve their performance. It is 
important since it can provide a more effective learning process. Several methods for 
online assessment have been proposed for medical simulators based on VR 
[4,5,6,9,14]. 

The calibration of the evaluation system is necessary to acquire and label correct 
and incorrect ways to perform the procedure. It is provided by an expert of the 
simulator subject that executes several times the procedure in different ways in order 
to generate parameters for each execution. A previously defined number for classes of 
performance is used to label each execution. All interaction and environment 
parameters are acquired during this process to be used by the assessment method, 
which is normally based on a pattern recognition technique. As example, a M=3 
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number of classes can refers to 1: “good performance“, 2 - “regular performance“, 3 - 
“bad performance“ [14]. 

3 Assessment Methods and Decision Rule 

3.1 Fuzzy Naive Bayes (FNB) Method 

A fuzzy set A in Ω is defined for each element ω ϵ Ω as a mapping µA, called mem-
bership function, which can associate each element from Ω to [0,1], and is  inter-
preted as the degree of membership of ω in A [7]. Some fuzzy versions for the Naive 
Bayes classifier were proposed. In this work we follow the version proposed by Störr 
[17] and used by [5] as a kernel of an assessment system for training based on VR. 

Formally, let be Ω={1,...,M} the classes of performance in space of decision, where 
M is the total number of classes of performance. Let be wi, i ∈ Ω the class of 
performance for a trainee. It is possible to determine the class of performance most 
probable for this trainee given a data vector X = {X1, X2, ..., Xn} and assuming that 
each Xk, k=1,...,n is a fuzzy variable, with normalized membership functions μi(Xk), 
where i=1,…,M. The method is defined by [5]: 

 P(wi \ X) = (1/S) P(wi) * P(Wi)  ∏ n
k=1  [P(Xk \ wi) μi(X)], i ϵ Ω (1) 

where S is a scale factor which depends on X1, X2, …, Xn. 
The classification rule for Fuzzy Naive Bayes is: select performance class wi for 

the vector X if: 

 P(wi \ X) > P(wj \ X) for all i ≠ j and i, j ∈ Ω (2) 

3.2 Possibility and Necessity Measures (PMN) Method 

Let A be a fuzzy subset of Ω, with its membership function μA, and let X be a variable 
which assumes values ω in Ω. Then, the possibility distribution π is a function asso-
ciated to X and is defined as: 

πX(ω) = μA(ω)                                   (3) 

The possibility measure Π and the necessity measure are defined respectively by: 

Π (A) = sup {π (u) | x ∈ A}   and   N (A) = inf {1 - π (u) | x ∉ A}. 

Other relations between them were provided in [16]: 

Π (∅) =  N (∅) = 0;  Π (Α) =  Ν (Α) = 1; 

max(Π(Α) ,Π(Ā)) = 1; min(N(A), N(Ā)) = 0; 

The possibility and the necessity measures are dual: 

Π(Α) = 1 − Ν(Ā)   and   Ν(Α) = 1 − Π(Ā). 
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Some relations between them can be provided [16]: 

Π(Α) ≥ N(A);   N(A) > 0  Π(Α) = 1;   Π(Α) < 1  N(A) = 0 

Let A and B be fuzzy subsets of Ω, with membership functions μA and μB, 
respectively. Let X be a variable which assumes values ω ∈ Ω. The conditional 
possibility and necessity measures are given by [16]: 

Π (A | B) = max u ∈ X  min (μA (u), πΒ (u)) and 

Ν (A | B) = min u ∈ X  max (μA (u), 1- πΒ (u)).                 (4) 

From equation (4) is possible to construct an interval for the real value of the class 
of performance wi, given each feature Xk , with k={1,...,n}, from the training data X = 
{X1, X2, ..., Xn} from a user [14]: 

μωi (Xj) ∈ [N(ωi | Xk); Π(ωi | Xk)]. 

The domain of membership function for the class of performance ωi is an interval  
where the minimum value is the minimum compatibility and the maximum value is 
the maximum compatibility: 

μωi (X) ∈ [compatmin; compatmax]. 

As the class of performance wi is expressed by a conjunction of features Xj , then 
this aggregation is performed by a t-norm. In this case, the “min” operator preserves 
the semantics of possibility and necessity measures [14]: 

compatmin  = min k (N (ωi | Xk))   and    compatmax  = min k (Π (ωi | Xk)). 

The defuzzification process can be done using, for instance, the centroid method, 
where C [μwi (X)] is the centroid between compatmin and compatmax for the pertinence 
function of class wi, according to X. Then, the decision rule is: select performance 
class wi for the vector X if [14]: 

wi = arg max 1≤i≤M  C [μwi (X)]. 

4 Embedded System 

An embedded system is a combination of hardware and software with additional 
components (mechanical and/or electronic) performing a dedicated function [8]. Its 
hardware is specifically designed to fulfill requirements of a system making it cheap-
er. This kind of device is also characterized by having higher quality, higher reliabili-
ty and lower cost components [8] than other computer systems. Its architecture is 
generally similar to that of a computer system and may be composed by main memo-
ry, secondary memory, processor and buses input and output, such as: USB port, 
VGA port, network adapter and others, according to the task to be performed. 
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Abstract. This work proposes an improvement of the multi-objective
evolutionary method for the protein residue-residue contact prediction
called MECoMaP. This method bases its prediction on physico-
chemical properties of amino acids, structural features and evolutionary
information of the proteins. The evolutionary algorithm produces a set
of decision rules that identifies contacts between amino acids. These
decision rules generated by the algorithm represent a set of conditions to
predict residue-residue contacts. A new encoding used, a fast evaluation
of the examples from the training data set and a treatment of unbalanced
classes of data were considered to improve the the efficiency of the
algorithm.

Keywords: protein structure prediction, residue-residue contact, multi-
objective optimization, evolutionary computation.

1 Introduction

One of the central goals of bioinformatics is the prediction of protein function
and tertiary structure from the linear sequence of amino acids (primary
structure). Determining the three dimensional structure of proteins is necessary
to understand the functions of molecular protein level. On the other hand,
misfolding proteins can be the principal cause of some diseases. Since protein
function is determined by its structure, a misfold implies that a protein can
not fulfill its function correctly. Alzheimer’s disease, cystic fibrosis, bovine
spongiform encephalopathy (mad cow disease) and its human variant are now all
attributed to protein misfolding. The knowledge of the misfolding factors and
understanding the protein folding process, would help in developing cures for
these diseases.

The primary structure, or amino acid sequence, of a protein is much easier to
determine than its tertiary structure. Moreover, the gap between the number of
proteins with known sequence and the number of proteins with known tertiary
structure is rapidly increasing. In order to reduce this gap, there have been
many researches focused on determining the tertiary structure of a protein
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from its sequence [1,2]. The high number of protein sequences whose three-
dimensional structures must be determined, make computational methods for
protein structure prediction (PSP) an essential tool. We believe that EAs well
suited for solving the PSP problem, since PSP can be seen as a search problem
through the space determined by all the possible protein foldings. Moreover, PSP
problem can be considered as a optimization problem with several objectives [3].
The task of finding one or more suboptimal solutions is called Multi-objective
optimization. Our algorithm is based on these approaches.

An useful, and commonly used, representation for protein 3D structure is
the protein contact map, which represents binary proximities (contact or non-
contact) between each pair of amino acids of a protein. Our approach is included
in this category.

The aim of this work consists of improving our proposal MECoMaP (Multi-
objective Evolutionary Contact Map Predictor) [4] in order to increase the
efficiency of the protein contact map prediction. The prediction is based on three
physico-chemical properties: hydrophobicity (H), polarity (P) and charge (C),
structural features: solvent accessibility (SA) and secondary structure (SS) and
evolutionary information in form of Position Specific Scoring Matrix (PSSM). It
is known that amino acid properties play an important role in the PSP problem
[5]. Several PSP methods rely on amino acids properties, e.g., HP models. On
the other hand, a vast majority of PSP algorithms used SS, SA and PSSM as
predictive features.

The remainder of this paper is organized as follows. Our multi-objective
evolutionary approach is described in section 2. Section 3 presents the
experimentation and obtained results. Finally, section 4, includes some
conclusions and possible future works.

2 Methodology

MECoMaP is based on the Strength Pareto Evolutionary Algorithm (SPEA).
Each individual of the population represents a decision rule. In particular, rules
are based on the previously mentioned amino acid properties. Basically rules
specify a set of conditions on each property, that, if satisfied, predict a contact
between two amino acids.

In the following the preparation of data, attribute selection, the encoding, the
fitness function and the genetic operators used by the EA will be presented.

2.1 Preparation of Data

We selected from PDB a protein data set (DS1) that consists of 173 non-
redundant proteins with sequence identity less than 25%, and was obtained from
[6]. The minimum and maximum lengths of proteins are 31 and 753 amino acids,
respectively. DS1 contains 240501 positive examples (contacts) and 5034050
negative examples (non-contacts).

The second data set (DS2), with 53 non-redundant and non-homologous
globulin proteins, is detailed in [7]. The sequence identity of DS2 dataset is
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also lower than 25%. DS2 is formed by a total of 30546 contacts and 356528
non-contacts.

As we can see, the positive and negative classes (contact and non-contacts)
are notably unbalanced. We have performed a resampling of data using 1:1
and 2:1 contact/non-contacts ratios. Using 1:1 ratio we obtain a higher rate
of predicted contacts, however the rate of false positives of the predictor is
increased. Specifically, the accuracy results for both ratios on DS1 and DS2 are
shown in Table 1. As seen in the table, the 2:1 ratio presented better performance.
This is also the case for DS2 data set. The optimization of this parameter also
implies a lower computational cost for the algorithm. Based on the results of the
table, we decided to perform a re-sampling using the 2:1 ratio.

Table 1. Average accuracy results obtained for different contact/non-contacts ratios
for the DS1 and DS2 protein data set

Ratio Data Set Accuracyμ
1:1 DS1 0.21±0.10

2:1 DS1 0.23±0.08

1:1 DS2 0.16±0.13

2:1 DS2 0.20±0.11

2.2 Feature Selection

As stated before, the prediction is based on a set of amino acid properties which
are very important in the folding process. The reason for basing the prediction
on such properties, is that it has been shown that amino acids that are in
contact, are characterized by similar properties [8]. We selected Kyte-Doolittle
hydropathy profile [9], the Grantham profile [10] for polarity and the Klein scale
for net charge [11]. Hydrophobic amino acids are generally found in the inner
of proteins protected from direct contact with water. Inversely, the hydrophilic
amino acids are generally found on the outside of proteins as well as in the active
centers of enzymatically active proteins. The net charge takes into account the
charged groups present in any amino acid, peptide or protein nd the pH of its
environment. In addition to these properties, we also use two structural features
of proteins (SS and SA) and evolutionary information, in form of PSSM.

Secondary structure prediction consists of predicting the location of α-helices,
β-sheets and turns from a sequence of amino acids. The location of these motifs
could be used by approximation algorithms to obtain the tertiary structure of
the protein. We obtain SS predictions using PSIPRED. SA refers to the degree
to which a residue interacts with the solvent molecules. The prediction of SA
value is performed using ICOS Server for the prediction of structural aspects of
protein residues http://cruncher.cs.nott.ac.uk/psp/prediction.
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A PSSM determines the substitution scores between amino acids according to
their positions in the alignment. Each cell of the matrix represents the observed
substitution frequency at a given position divided by the expected substitution
frequency at that position. PSSM is obtained using PSI-BLAST.

H, P and PSSM values were normalized between -1 and 1. C values are
represented with -1, 0 and 1 for negative, neutral and positive charges. SS values
are identified with 1, 2 and 0 for alpha-helices, beta-sheets and random coils,
respectively. SA values are ranging from 0 to 4 according to the exposure level.

The procedure scheme of preproccessing of the data is represented in
Figure 1. We have obtained five different files with the information of the
properties. They constitute the training data of the algorithm.

Fig. 1. Preprocessing procedure scheme

2.3 Encoding

An individual is constituted by six blocks which represent the different properties
of amino acids. Each block indicates the values of a respective property in all
the positions of the residues in the window. We use two windows of ±3 residues
centered around the two target amino acids i and j. Therefore, one window is
relative to amino acids i− 3, i− 2, i− 1, i, i+ 1, i+ 2, i+ 3 and the other one is
relative to amino acids j − 3, j − 2, j − 1, j, j + 1, j + 2, j + 3.

We define each individual as a decision rule Ri,j for amino acids i and j:

Rij = {{Hmin, Hmax}1..n, {Pmin, Pmax}1..n,
C1..n, SS1..n, SA1..n, {PSSMminij , PSSMmaxij}1..20} (1)

where n indicates the total number of amino acids (in this case n = 14). Each
element of Rij must fulfill the following requirements:
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−1 ≤ Hmin < Hmax ≤ 1

−1 ≤ Pmin < Pmax ≤ 1

C ∈ {−1, 0, 1}
SS ∈ {−1, 0, 1, 2}

SA ∈ {−1, 0, 1, 2, 3, 4}
−1 ≤ PSSM1..20

min < PSSM1..20
max ≤ 1 (2)

This decision rule determines whether two amino acids i and j are in contact,
where 1 ≤ i < j ≤ L, being L the sequence length. Our representation consists
in 14×2 attributes for H, 14×2 for P, 14 for C, 14 for SS, 14 for SS and 2×2×20
for PSSM, 178 attributes in total.

2.4 Fitness Function

As stated in [4], we consider two objectives to be optimized: coverage and
accuracy. Coverage represents the number of predicted contacts and accuracy
evaluates the real predicted contacts rate. Therefore, Coverage = C/Ct and
Accuracy = C/Cp, where C is the number of correctly predicted contacts of a
protein, Ct is the total number of contacts of the protein and Cp is the number
of predicted contacts. We aim at finding the best compromise between these two
measures. The fitness of an individual x is given by the number of individuals
that x dominates.

2.5 Genetic Operators

A 2-point crossover operation was employed with a binary tournament selection
and a 0.5 probability. In each tournament, we select the individual which is
located in the better Pareto front.

A first mutation operator follows a Gaussian distribution for a randomly
selected individual. This operator increases or decreases a gene value with a
probability of 0.5 randomly interval. A second mutation operator randomly
selects a gene that is related to a given property, with a 0.1 probability, and
moves the bounds to the maximum or minimum of the domain, making the
property irrelevant in this rule. For example, if the property is the polarity, we
change the range to -1, 1 so the rule does not take into account this property in
this case. After the mutation, we test if the obtained values are in the adequate
ranges for the corresponding property.

The population size is set to 100, and the initial population is randomly
initialized with a 0.6 probability. The maximum number of generations that can
be performed is set to 100. However, if the fitness of the best individual does
not increase over twenty generations, the algorithm is stopped and a solution is
provided. At the end of the execution, repeated or redundant rules are discarded
from the solution set.
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2.6 Efficient Evaluation Structure

In order to reduce the computational time of our method, we have implemented
an AVL tree [12] to order and classify the training examples according to their
property values. This tree organizes the information in such a way that it is
not necessary to process all the examples to evaluate individuals (candidate
decision rules) from the genetic population generated by MECoMaP. The time
of the operations on an AVL tree is O(log n) average, where n is the number
of elements. Each node determines a condition of a property and each leaf
represents a list with the training examples that fulfills all the conditions impose
in the predecesor nodes. Each level of the tree represents a determined property
of a determined position of an amino acid. We consider a tree example in figure
2. Level 1 represents the hydrophobicity of amino acid i and level 2 indicates
the polarity of amino acid j. As example, leaf node N1 stores all the training
examples whose amino acid in position i has a hydrophobicity value lower than
0 and a polarity value in position j is also lower than 0. We achieve a reduction
of the computational cost about 50% by means of a fast evaluation of examples
from the dataset.

Fig. 2. Example of efficient evaluation structure (AVL tree)

3 Experiments and Results

We have built a file in arff format with all the training data information. This
file is constituted by all the protein subsequences of two windows of seven amino
acids encoded with the values of the cited attributes. The positive class (contact)
is represented with 1 and the negative class (non-contact) is represented with 0.
The ratio between the positive and negative classes was set to 2:1 for DS1 and
DS2 data sets. The training data used contained all the possible subsequences
with a minimum separation between contact residues of 7 amino acids for DS1
and a separation 6 amino acids for DS2. We have performed several experiments
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with three Weka classifiers [13]: Näive Bayes (NB), C4.5 classifier tree (J48)
and Nearest Neighbor approach with k = 1 (IB1). The obtained results can be
seen in Table 2 for a 3-fold cross-validation. We appreciate low coverage and
accuracy values in all the cases. This experiment was performed with the aim
of validating our representation and confirms that the new encoding provides
enough information for a good performance of a learning classifier. Moreover,
we can also notice that MECoMaP achieved the best results for this experiment
and improve the results for DS1 and DS2 data set shown in [4].

Table 2. Average results obtained for MECoMaP and different classification Weka
algorithms for the DS1 and DS2 protein data set

Algorithm Data Set Coverageμ±σ Accuracyμ±σ

J48 DS1 0.04±0.07 0.19±0.08

IB1 DS1 0.08±0.05 0.07±0.05

NB DS1 0.15±0.03 0.08±0.02

MECoMaP DS1 0.18±0.13 0.26±0.32

MECoMaP 2.0 DS1 0.20±0.15 0.29±0.11

J48 DS2 0.10±0.02 0.10±0.05

IB1 DS2 0.07±0.10 0.07±0.05

NB DS2 0.10±0.10 0.18±0.10

MECoMaP DS2 0.12±0.01 0.38±0.09

MECoMaP 2.0 DS2 0.18±0.08 0.39±0.07

4 Conclusions and Future Work

In this work, we presented some improvements to a multi-objective optimization
algorithm for the residue-residue contact prediction. Two of these improvements
enhance the efficiency of the algorithm: the introduction of new features based
on evolutionary information (PSSM) for the encoding and a treatment for the
unbalanced classes. An efficient evaluation structure for a fast evaluation of
the training data is also included to reduce the time complexity of the EA.
This algorithm generates rules that predict the necessary conditions for the
contact between two amino acids based on their physico-chemical properties.
The algorithm was tested on two sets of proteins that had been previously
used in the literature and achieved better coverage and accuracy rates than
the predecessor version of the algorithm. As future work, the incorporation of
new evolutionary information such as correlated mutations must be taken into
account. Furthermore, our algorithm must be validated with a higher number of
proteins data set.
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Abstract. Histology images are used to identify biological structures
present in living organisms — cells, tissues, and organs — correctly. The
structure of tissues varies according to the type and purpose of the tissue.
Automatic identification of tissues is an open problem in image process-
ing. In this paper, the identification of loose connective and muscle tissues
based on morphological tissue information is presented.

Image identification is commonly evaluated in isolation. This is done
either by eye or via some other quality measure. Expert criteria — by eye
— are used to evaluate the identification results. Experimental results
show that the proposed approach yields results close to the real results,
according to expert opinion.

1 Introduction

The development of digital technologies has made available, to physicians and
biologists, digital cameras connected to microscopes for image capture in order
to preserve observed samples. Thus, large repositories of images are gathered of
histological samples and allow automatic identification of tissues.

Connective and muscle are two of the four basic body tissues. The connective
tissue is divided into: loose and dense. The dense connective is classified into:
regular and irregular. The muscle tissue is divided into: striated or skeletal,
smooth, striatal heart [6]. In this paper, we focus on identify loose connective
and muscle tissues.

The identification of loose connective and muscle tissues is an open problem
because of the close relation between them and the difficulty to demarcate the
boundaries of each one. This process starts with a segmentation of each of the
tissues and their refinement to eliminate additional information.

Automatic segmentation of the loose connective and muscle tissues involves
several problems: the hard boundary between loose connective and muscle tissues
in areas where they interrelate, the presence of red blood cells in some samples,
the similarity between smooth muscle and dense regular connective tissue, among
others.

In this paper, an automatic segmentation of loose connective and muscle tis-
sue approach based on morphological information is presented. Obtained results
of the largest eigenvalue of structure tensor along with the red and the green
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color channels are combined in the K-means clustering for identifying loose con-
nective tissue and obtaining a first approximation of the identification of muscle
tissue. Finally morphological operations, thresholding, subtraction of images and
thresholds are used to select areas of muscle tissue and refine results of muscle
identification. Experimental results show that the proposed approach identifies
correctly loose connective and muscle tissue in histological images. The rest of
the paper is organised as follows. The proposed segmentation approach is pre-
sented in Section II. Experimental validation is included in Section III. Finally,
conclusions are in Section IV.

2 Proposed Approach

The loose connective tissue is characterised by abundant fluid and tissue basic
substance, dispersed structure and more numerous cells than the fibers. The
smooth muscle is composed of spindle-shaped cells with a central nuclei which
lack transverse striations while exhibiting weak longitudinal grooves. The heart
muscle central nuclei and ramifications and interconnections between the fibers.
The overall muscle tissue is more dense and compact. The example images of
the tissues are illustrated in Fig. 1.

Connective T issue Heart Muscle T issue Smooth Muscle T issue

Fig. 1. Example of loose connective and muscle tissue

Obtained borders with the largest eigenvalue of structure tensor algorithm
along with the red and the green color channels are used as input into the K-
means algorithm in order to obtain loose connective tissues and muscle tissues
segmentation. Morphological operations, thresholding and region thresholds are
used to refine areas of muscle tissue obtained with the K-means.

2.1 Identification of Loose Connective Tissue

Initially, the Structure tensor using the maximum eigenvalues [1], [2] is calcu-
lated. This algorithm allows us to obtain the nuclei of the cells [7]. Finally, the
identification of loose connective is performed using the K-means algorithm.
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Largest Eigenvalue of Structure Tensor. The largest eigenvalue of structure
tensor [5] is described as follows. Given the red color channel of an image, the
red channel is selected since it has the greatest information contains cell nuclei,
the structure tensor J0 is defined as the outer product of the gradient vector
�I:

J0 = �I � IT =

(
I2x IxIy
IxIy I2y

)
, (1)

where IT symbolised the transpose of I. J0 is extended to the linear structure
tensor by a convolution of the components of J0 with a Gaussian kernel Kp

(Gaussian smoothing)in order to consider neighbouring information:

Jρ = J0 ∗Kρ =

(
j11 j12
j12 j22

)
. (2)

The matrix Jp has orthonormal eigenvectors v1 and v2 with v1 parallel to⎛⎝ 2j11

j11 + j22 −
√
j11 − j222 + 4j212

⎞⎠ . (3)

The eigenvalues are given by

μ1 =
1

2

[
j11 + j22 +

√
j11 − j222 + 4j212

]
, (4)

and

μ2 =
1

2

[
j11 + j22 −

√
j11 − j222 + 4j212

]
. (5)

The eigenvalues describe the average contrast in the eigen-directions within
a neighbourhood of size (ρ). The vector v1 indicates the orientation with the
highest red value fluctuations, while v2 gives the preferred local orientation,
the coherence direction. Furthermore, μ1 and μ2 serve as descriptors of local
structure. Isotropic areas are characterised by μ1

∼= μ2, straight edges gives μ1

� μ1 = 0, corner by μ1 ≥ μ2 �0 [5].
The structure tensor of an image is a method of analysing the edge structure

in an image. Eigenvectors point in the direction orthogonal and across the local
edge, with the Eigenvalues indicating the strength of the directional intensity
change. The larger eigenvalue shows the strength of the local image edges, the
corresponding eigenvector points across the edge (in gradient direction). In this
way we get a grayscale image as a result.

The K-means Algorithm. To perform the segmentation of images identifying:
loose connective tissue, muscle tissue and light regions, the K-means algorithm
is used [3]. A psudocode of the K-means algorithm is sketched as follows:
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Begin
Determine k c en t r o i d s randomly
Ca l cu l a t e the d i s tance between each data and the
c en t r o i d s
Ass ign each data to the group r epr e s ented by the
nea r e s t c en t ro id
Reca l cu l a t e c en t r o i d s
While c en t r o i d s do not change

Ca l cu l a t e the d i s tance between each data and
the c en t r o i d s
Ass ign each data to the group r epr e s ented by
the nea r e s t c en t ro id
Reca l cu l a t e c en t r o i d s

End While
End

2.2 Identification of Muscle Tissue

A first segmentation of muscle was performed in the previous step for the K-
means. However, it is necessary to refine the results since it included the loose
connective tissue in some areas and the red blood cells. To improve the segmen-
tation result will apply three steps: first, erosion [8] is performed on the muscle
segmented image. Second, the result of the erosion is subjected to a threshold-
ing, regions under threshold1 are removed. The size of the regions is controlled
by the Flood-fill algorithm [4]. Finally the red blood cells are removed with a
process of thresholding and morphological operation.

Erosion. A problem of the segmented images is the presence of irrelevant details
— from the point of view of size. To eliminate these small islands and bumps
the segmented image is erode [8]. The erosion and morphological operation is
defined as:

I � C = {x ∈ E|Cx ⊆ I}, (6)

Cx = {c+ x|c ∈ C}, ∀x ∈ E, (7)

let E be a Euclidean space Rd or an integer grid Zd. I is a binary image in E.
Cz is the translation of B by the vector z. For erosion to be satisfied that the
set of all points x, such that C forward x, are contained in I.

Threshold. After performing the erosion an image without irrelevant size areas
is obteined, however there are irrelevant areas that are not eliminated since have
a larger size, but are reduced. To eliminate these areas a thresholding process is
performed, then regions under a threshold are removed. The size of the regions is
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controlled by the Flood-fill algorithm [4]. A psudocode of the Flood-fill algorithm
is sketched as follows:

Flood− f i l l ( node , ta rget−co l o r , replacement−c o l o r )
Set Q to the empty queue
Add node to the end o f Q
While Q i s not empty

Set n equa l to the l a s t element o f Q
Remove l a s t element from Q
I f the c o l o r o f n i s equa l to target−c o l o r

Set the c o l o r o f n to replacement−c o l o r
Add the ne ighbors o f cu r r ent po s i ton ( east ,
west , north , south ) to then end o f Q

End I f
End While

End

Removing Red Blood Cells. To remove red blood cells of muscle tissue a
segmentation process is performed similar to the removal of connective tissue.
Initially, a thresholding on the red channel is performed, obtaining a segmen-
tation of the regions belonging to the red blood cells. About thresholding the
result is applied to the morphological operation, erosion, in order not to be part of
muscle tissue. After, regions under a threshold2 are removed to avoid segmented
muscle or connective cells nuclei. Finally, the muscle tissue image is segmented
to subtract the red blood cells from the image, the result of subtracting the
second from the first is:

I − (I ∩B), (8)

let I be the muscle image segmentation. Let B be the red blood cells image
segmentation. The regions under a threshold3 are removed to eliminate irrelevant
regions resulting from the subtraction.

3 Experiments and Analysis of Results

In order to assess the proposed approach, loose connective and muscle tissues
samples were processed with hematoxylin-eosin staining. The K-means algorithm
for this particular case will use a K=3, each of these clusters will recognize: loose
connective tissue, muscle tissue and light regions. The input for the K-means
are: the red and the green color channels along with the tensor values obtained.
Identification is evaluated by eye, evalution of experts. Automatic segmentation
results can be observed in selected images in Fig. 2.
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Original Image Loose Connective Muscle

Fig. 2. Results obtained using automatic technique for identify loose connective and
muscle tissues
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4 Conclusions

During the research process different approaches were evaluated, such as: thresh-
olding, edge detection algorithms, combining information as input to the k-means
algorithm and segmentation algorithms for identifying loose connective and mus-
cle tissue. However, the presented approach provides the closest identification to
the real identification — by eye — according to expert opinion.

The difficulty for identifing the loose connective tissue when is immersed in
muscle tissue — even visually — is solved with the proposed method.

The experimental evaluation shows that the obtained segmentation is very
close to the real one. Additional constrains are required in order to reduce false
positive.
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Abstract. Computer tomographic colonography, combined with
computer-aided detection, is a promising emerging technique for colonic
polyp analysis. We present a complete pipeline for polyp detection, start-
ing with a simple colon segmentation technique that enhances polyps,
followed by an adaptive-scale candidate polyp delineation and classifi-
cation based on new texture and geometric features that consider both
the information in the candidate polyp and its immediate surrounding
area. The proposed system is tested with ground truth data, including
challenging flat and small polyps. For polyps larger than 6mm in size
we achieve 100% sensitivity with just 0.9 false positives per case, and for
polyps larger than 3mm in size we achieve 93% sensitivity with 2.8 false
positives per case.

1 Introduction

Colorectal cancer is nowadays the third leading cause of cancer-related deaths
worldwide. The early detection of polyps is fundamental, allowing to reduce
mortality rates up to 90%. Nowadays, optical colonoscopy (OC) is the most used
detection method due in part to its high performance. However, this technique
is invasive and expensive, making it hard to use in large screening campaigns.

Virtual Colonoscopy (VC) is a promising alternative technique that emerged
in the 90’s, which uses volumetric Computed Tomographic data of the cleansed
and air-distended colon. It is less invasive than optical colonoscopy, and much
more suitable for screening campaigns once its performance is demonstrated.

However, it takes more than 15 minutes for a trained radiologist to complete
a VC study, and the overall performance of OC is still considered better. In
this regard, Computer-Aided Detection (CAD) algorithms can play a key role,
assisting the expert to both reduce the procedure time and improve its accuracy.

Flat polyps (those having < 3mm of elevation above the mucosa) and “small”
polyps are of special interest because these are an important source of false
negatives in VC, and many authors claim that flat polyps are around 10 times
more likely to contain high-grade epithelial dysplasia [1]. The goal of this work is
to exploit VC to automatically flag colon regions with high probability of being
polyps, with special attention to challenging small and flat polyps.

Automatic polyp detection is a very challenging problem, not only because the
polyps can have different shapes and sizes, but also because they can be located
in very different surroundings. Most of the previous work on CAD of colonic

J. Ruiz-ShulcloperandG. Sanniti di Baja (Eds.): CIARP 2013, Part II, LNCS 8259, pp. 181–189, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



182 M. Fiori, P. Musé, and G. Sapiro

polyps consists in a segmentation step followed by a classification stage based
on geometric features, some using additional texture information, but none of
them takes into account the information of the tissues surrounding the polyp.
On the other hand, for the segmentation step, not much work has been done in
comparing the smoothing techniques to see which one is more adapted to polyp
detection. To the best of our knowledge, no algorithm reported in the literature
can detect small polyps properly, and for polyps larger than 6mm in size, no
algorithm can achieve 100% sensitivity with less than one false positive per case.

The proposed system is illustrated in Figure 1, and consists of the following
steps: colon segmentation, an adaptive-scale search of candidates in order to
capture the appropriate size, computation of geometrical and textural features,
and a machine learning algorithm to classify patches as polyps or normal tissue.

Fig. 1. Basic pipeline of the proposed polyp flagging system

2 Summary of the Colon Segmentation Method

The segmentation of the colon surface, which is critical in particular to compute
geometric features, is divided into two parts: a pre-processing stage for dealing
with the air-fluid composition of the colon volume, and a second stage that
consists on smoothing the pre-processed image and obtaining the final colon
surface by thresholding the smoothed volume. More details are available in [2].

Classifying CT Regions
All the database cases have the same preparation, which includes solid-stool
tagging and opacification of luminal fluid. Figure 2 shows a CT slice and its pixel
values over the highlighted vertical profile. There are 3 clearly distinguishable
classes: lowest gray levels correspond to air, highest levels to fluid, and middle
gray values to tissue. However, there are around 6 interface voxels between air
and fluid whose gray values lie within the normal tissue range. Therefore, a näıve
approach is not suitable for tissue classification. We propose to compute a volume
u0 intended to have homogeneous values in the colon interior and exterior, and
a smooth transition between them. To do that, we assign to each voxel the
likelihood of being air, fluid, or air-fluid interface. Air and fluid distributions are
estimated using standard kernel density estimation methods; these functions are
then used to assign air and fluid likelihood values to the voxels.

Note that this assignment fails on the air-fluid and air-fluid-tissue interfaces.
For assigning a value to these voxels, we take advantage of the physics of the
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Fig. 2. CT slice and its differ-
ent gray values for air, fluid and
normal tissue, along the verti-
cal profile

problem: the subject is laid horizontally so the interface between the fluid and the
air is a plane parallel to the floor. The voxels situated on the interface then have
a large gradient in the vertical direction. The implementation of these criteria
is as follows. A cubic neighborhood around each voxel x is considered, and for
each one of the “columns” that result of fixing the x and y coordinates, the air-
likelihoods of the upper voxels and the fluid-likelihoods of the lower voxels are
accumulated. The value IC(x) that represents the confidence level of x being an
interface voxel is then an increasing function of this accumulated measures.

We then assign to the initial segmentation u0 the maximum of these three
values, namely, the air and fluid likelihoods and the interface confidence level.

It is not rare that segmentation algorithms result in “gutter-like” shapes along
the air-fluid-tissue interface. This is a critical point because of the potential of
yielding several FPs in the detection step. If small oscillations occur along the
“gutter” (which is expectable), artifacts with polyp-like shape are produced, thus
degrading the overall performance. We paid special attention to this issue: the
IC computation allows to avoid these artifacts. Figure 2 shows the comparison
of our segmentation with a version of the method without the IC computation.

Fig. 3. Comparison of reduced
artifacts in our segmentation
(left) with a previously tested
more standard version (right)

Smoothing and Colon Surface Computation
In order to eliminate noise and to obtain a smoother colon surface after the
segmentation stage, we proceed to smooth the initial segmentation u0. We derive
a PDE-driven smoothing technique that preserves the shape of the polyps, while
obtaining a smooth enough surface to reliably compute local geometric features.

We concentrate on a family of smoothing PDEs of the form

∂u(x, t)

∂t
= β|∇u| , u(x, 0) = u0(x) , (1)

where the initial volume u0 results form the preprocessing described in the pre-
vious section. After a few iterations of this evolution, the inner colonic wall will
be extracted as a suitable iso-level surface of the resulting 3D image u(x, T ).

We recall that the Level Set Method [3] states that if u(x, t) evolves according
to (1), then its iso-levels (level sets) satisfy ∂S

∂t = βN , where S is any iso-level
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surface and N its unit normal. This geometric view enables to design β to fulfill
a set of requirements we will impose to the surface evolution. In particular, we
are interested in motions driven by the principal curvatures κmax and κmin.

With the mean curvature motion (β = H), and the affine motion ((K+)1/4),
the polyps are flattened too fast [2]. As an alternative, a motion that seems to be
well suited for our problem is the motion by minimal curvature. Indeed, polyps
have a curve of inflection points all around it, separating its upper and lower
sections. Along this curve, the minimal curvature is κmin = 0, and therefore this
part of the polyp does not move (or moves very slowly), so intuitively under
this motion the polyps should persist longer. This PDE already yields very good
results in terms of both surface smoothing and polyp enhancement.

We further derive two modifications that lead us to the proposed PDE. The
first one is inspired by the exponent 1/4 of the affine motions in dimension 3:
∂S
∂t = κ

1/4
minN . Figure 4 shows the result after a few iterations, and Figure 5 ev-

idences the difference between the motions by κmin and κ
1/4
min (gray and orange

respectively) with a comparative image. On the polyp protrusion, the orange
surface is above the gray one, while the opposite is observed in the surround-

ing area, showing that the evolution by κ
1/4
min leads to better polyp enhancement.

Fig. 4. Evolution by κ
1/4
min: original surface and result after 2, 8, 15, 30 and 50 iterations

Fig. 5. Comparison between evo-
lutions. Motion by kmin in light
gray vs. motion by k

1/4
min in dark

gray. Both surfaces are overlaid,
so sections that are not visible are
hidden below the other surface.

The second modification is based on the idea of preserving the polyps qualities
that we later use to identify them. A measure of the local shape of a surface is
the so-called shape index SI, and the complementary curvedness C [4]:

SI := − 2

π
arctan

(
κmax + κmin

κmax − κmin

)
, C :=

2

π
ln

√
κ2max + κ2min

2
.

While the value of SI is scale-invariant and measures the local shape of the
surface, the value of C indicates how pronounced it is. We now include this
information in order to make potential polyps evolve differently than the rest
of the colon surface. We define a function of the shape index that acts as a

multiplying factor to the term κ
1/4
min, making the surface evolve slower at the

interest points. These function should assign low values to shape index near −1,
and values close to unity to other points. A smooth function g(SI) verifying
these constraints is g(SI) = 1

π arctan ((SI − 0.75) · 10) + 1
2 .
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The final evolution keeps all the advantages of the motion by κ
1/4
min and in

addition, polyps are flattened slower:

∂S
∂t

= g(SI)κ
1/4
minN . (2)

The number of iterations can be set by experimentally choosing the value that
maximizes the overall performance of the system, measured in terms of the free-
response ROC curve (FROC). Alternatively, we can consider a sphere of the size
of the CT resolution and compute analytically the number of iterations needed
to make it vanish (see [2]). These two approaches led to the same result, namely
15 iterations, and therefore this is the chosen value for the experiments.

At this point we have a smoothed volume u(x, T ) indicating the volume inside
of the colon. We then extract the surface of the colon as the iso-value surface
of level α ∈ [0, 1]. The choice of the value α can be made by maximizing some
criteria, in order to obtain the most contrasted surface in a given sense.

3 Polyp Delineation, Feature Extraction and
Classification

All the polyp detection methods reported try to classify polyps from properties
defined only within the candidate region. However, it is important to analyze the
spatial context in which the candidate patch is located, not only because different
sections of the colon present different characteristics, but also because polyps can
be situated over different structures such as folds or plain colonic wall. In this
regard, most of the features here described take into account the information of
the area surrounding the candidate patch. This makes the features more robust
to the local phenomena. The normal tissue of different cases may vary, so absolute
thresholds lack meaning; while texture patterns differ from study to study, what
does not vary is the fact that polyps have different properties than normal tissue.

Candidate Detection and Geometrical Features
Consider the shape index as a function SI : S → [−1, 1], and recall that the
polyps’ SI are close to −1. Therefore, a region of the surface corresponding to
a polyp has at least one local minimum of SI. Detection of candidate patches
follows an adaptive-scale search: for each local minimum x0 ∈ S of the function
SI, several level sets of SI (P1 . . .Pn) around x0 are tested, and the level set
Pi that maximizes the distances between the histograms described below, is the
considered candidate patch, denoted by P (Fig. 6). A total of n = 7 level sets
are tested, corresponding to SI values from −0.8 to −0.5 with a 0.05 step. The
following description is given for the final chosen patch P , but the computations
are made for all the level sets Pi in order to select the most appropriate one.

Given a candidate patch P , a ring R around P is computed, in order to
consider geometrical measurements with respect to the area surrounding the
patch. The ring is calculated by dilating the patch P a certain geodesic distance,
such that the areas of P and R are equal, see Figure 7.
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Fig. 6. P1 . . .Pn: different sizes are tested in order to select the most appropriate patch

Fig. 7. Ring, in
blue, surrounding
a candidate polyp
(actually a true
polyp), in orange

Histograms of the shape index values are then computed for the patch P and
the ring R, and two different distances between them are computed: the L1 dis-
tance and the symmetric Kullback-Leibler divergence. If the patch corresponds
to a polyp-like shape then the values of the P histogram will be concentrated
around −1. The histogram of R will be concentrated near 1 in case of a polyp on
a normal colon wall (concave), or around −0.5 if the polyp is on a fold. These two
features give a measure of the geometric local variation of the candidate patch
P . Although these two distances are the most discriminative features, we also
consider the following ones since they help discriminating typical false positives:

– The mean value of the shape index over the patch P .
– The area of the patch.

– The growth rate at the adaptive-size stage, meaning the ratio between the
area of the chosen patch P = Pi and the area of the immediately smaller
patch Pi−1; this feature measures how fast the shape of the patch is changing.

– And finally the shape factor SF = 4π·Area
Perimeter2 , which measures how efficiently

the perimeter is used in order to gain area. It favors circle-like patches (like
the polyp in Fig. 7), avoiding elongated patches (like false positives in folds).

We then end-up with a total of 6 geometric features.

Texture Features
There is evidence that the gray-level of the CT image and its texture can be
very helpful for detecting polyps. This is particularly useful for flat or small
polyps, where geometric information is limited [5]. Some work has been done on
the inclusion of texture features (inside the candidate polyps only), in order to
reduce false positives [6]. We propose both the use of new texture features and
the inclusion of the information on the candidate’s surrounding area.

First, for each polyp candidate P , a volume V1 is computed, containing the
patch P and a portion of the inner tissue bounded by the patch. Volume V1 is
obtained by dilating P (in 3D) towards the inner colon tissue. A second volume
V2 surrounding V1 is computed dilating V1. The tissue in V2 is intended to be
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normal, to be compared with the polyp candidate tissue. The dilation is chosen
as before: several distances are tested, keeping the most discriminative one.

The chosen texture features are a subset of the classical Haralick fea-
tures, namely, entropy, energy, contrast, sumMean, and homogeneity. Seven co-
occurrence matrices are computed with the voxels of V1, and the five features
are averaged over the seven directions. The analogous computation is made for
V2, and the differences between the two volumes, for each texture feature, are
considered. Additionally, the mean gray levels in both volumes is computed, and
their difference is considered as a feature. In this way, six texture features are
considered.

Classification
Once the the candidates detection has been performed, the number of true polyps
was much lower than the number of non-polyps patches, a relation on the order of
500:1, which is a significant problem for the learning stage of the classifier, since
most classifiers are designed to maximize the accuracy, which is not adequate
for imbalanced problems [7]. For instance, if we classify all candidates as “non-
polyps,” we would get an accuracy of 99.8% but without detecting any polyps.
Three techniques were considered to overcome this problem: MetaCost, Cost
Sensitive Learning (CSL), and Synthetic Minority Over-sampling TEchnique
(SMOTE). The best results were obtained with CSL+SVM.

4 Results

A total of 150 patients of the Walter Reed ArmyMedical Center database [8] were
used to test our CAD algorithm. The database contains 134 polyps detected by
OC, including 12 flat polyps. Among these 134 polyps, 86 are larger than 6mm,
and 48 range from 3mm and 6mm. The evaluation was carried out by splitting
the dataset into halves, training and testing. Under this setting, classification
with CSL+SVM yields the FROCs in Fig. 8, which shows the performance for
different polyps sizes. These values are comparable with state-of-the-art results
[6,9], however our study includes very small polyps. A more precise comparison is
not necessarily meaningful, since in general each work considers its own database.
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Fig. 8. FROC of our method for
different polyps sizes: larger than
6mm (solid), smaller than 6mm
(dashed), and all polyps (dotted)

The FROCs in Figure 9 compare the performance of our system when using
different smoothing schemes (Section 2). The chosen one yields the best results.

The FROCs in Fig. 10 compare the influence of absolute and differential
texture features. The classification was performed using all the geometric fea-
tures, and either absolute (computed just for V1) or differential texture features.



188 M. Fiori, P. Musé, and G. Sapiro
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Fig. 9. FROCs comparing different smoothing methods, classifying large (left) and
small polyps (right). The curve for the proposed evolution is shown in solid line, the
results for the evolution by H and κmin are shown in dotted and dashed lines respec-
tively, and the lower curve is the result when no smoothing is performed.

The results show that differential texture features are more discriminative than
the absolute ones. Finally the FROCs in Fig. 11 compare the results of dif-
ferent classification approaches. CSL, SMOTE, and MetaCost were used as a
pre-processing stage for SVM, and C4.5 trees stabilized with AdaBoost. Param-
eters in all classifiers were optimized via cross validation.

Fig. 10. FROCs (95% con-
fidence intervals), comparing
the performance with dif-
ferential (solid) and abso-
lute (dashed) texture fea-
tures, for polyps larger (left)
and smaller (right) than 6mm
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Fig. 11. FROCs comparing the
performances of different classi-
fication approaches. SVM+CSL
(solid), SVM+SMOTE (dashed),
C4.5+AdaBoost (dotted) and
plain SVM (long-dashed).
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5 Conclusion

We introduced a complete pipeline for a Computer Aided Detection algorithm
that flags candidate polyp regions. The segmentation stage is very simple and
fast, and its main novelty is the smoothing PDE which enhances the polyps,
enabling better detection rates. In addition to the incorporation of the Haralick
texture features, the main yet simple novelties of the proposed features and
classification stages are twofold. First, the surrounding area of candidate polyps
are explicitly taken into account. Indeed, the proposed (so-called differential)
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features are computed by comparing properties in the central and surrounding
regions of the polyps. We show that differential features are more discriminative
than the absolute ones, as they emphasize local deviations of geometry and
texture over the colon. The other novelty is an adaptive-scale strategy that test
regions of different sizes and automatically selects the region that best delineates
each candidate polyp. The obtained quantitative results are very promising.
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Abstract. Several antiviral drugs have been approved for treating HIV infected 
patients. These drugs inhibit the function of proteins which are essential in the 
virus life cycle, thus preventing the virus reproduction. However, due to its high 
mutation rate the HIV is capable to develop resistance to administered therapy. 
For this reason, it is important to study the resistance mechanisms of the HIV 
proteins in order to make a better use of existing drugs and design new ones. In 
the last ten years, numerous statistical and machine learning approaches were 
applied for predicting drug resistance from protein genome information. In this 
paper we first review the most relevant techniques reported for addressing this 
problem. Afterward, we describe a Fuzzy Cognitive Map based modeling which 
allows representing the causal interactions among the protein positions and their 
influence on the resistance. Finally, an extended comparison experimentation is 
carried out, which reveals that this model is competitive with well-known 
approaches and notably outperforms other techniques from literature. 

Keywords: HIV proteins, Drug resistance, Prediction, Fuzzy Cognitive Maps. 

1 Introduction 

In the last two decades several antiretroviral (ARV) drugs have been designed for 
treating Human Immunodeficiency Virus (HIV). The main goal of ARV therapies is 
to inhibit the function of essential proteins for the virus life cycle such as protease, 
reverse transcriptase or integrase. For instance, the reverse transcriptase protein 
catalyzes the reverse transcription process, which transforms RNA into DNA and 
incorporates the resulting DNA into the host cell. As a result, the infected cell 
produces viral particles which are maturated by protease protein, cleaving precursor 
proteins and therefore completing the virus replication process. Evidently, inhibiting 
these processes could help on preventing the virus reproduction. Nevertheless, due to 
its high mutation rate, the HIV is capable to develop resistance to administered drugs, 
evading the immune system and causing the therapy failure. 

Consequently, understanding resistance mechanisms is critical for designing more 
effective treatment strategies or even developing new ARV drugs [1]. In general, the 
resistance testing of an observed mutation can be performed by two main approaches: 
the genotypic and the phenotypic tests. The genotypic testing is based on identifying 
drug-resistance mutations (and the combination of them) which have been associated 
to decreased susceptibility of a target drug; while phenotypic testing measures the 
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viral replication in presence of different ARV concentrations. In clinical practice, 
genotype assays are more frequently used than phenotype ones since they are less 
expensive in time and effort; however, they only provide indirect evidence of 
resistance. On the other hand, phenotypic testing is more useful for determining the 
susceptibility of new approved ARV drugs, where patterns on resistance have not yet 
been well described. Phenotype assays are clinically suitable for viruses with complex 
mutational patterns where genotype interpretation becomes really difficult [1]. 

The paired results of such tests, performed for several protein mutations, constitute 
a valuable historical data in order to understand the HIV behavior. Based on this 
knowledge, in the last ten years several statistical and machine learning methods have 
been proposed for predicting the phenotype resistance to a target drug from the 
genotype information (known as virtual phenotype), that is, the resistance degree of a 
mutation (target attribute) given its amino acid sequence (predictive features). In 
some cases these data-driven approaches lead to parsimonious models, but in general 
they are harder to interpret [2].  

In a recent attempt to use more interpretable techniques, in previous works [3, 4] 
the authors proposed a model based on Fuzzy Cognitive Maps (FCM) [5] with the 
goal of discovering knowledge on the causal patterns among the sequence positions 
and the phenotype resistance. Although this research was mainly focused on the 
causality interpretation of learned maps, we observed that the prediction accuracies 
notably outperformed several well-known classifiers. Inspired on this result, we 
propose an extended comparison experiment for measuring the accuracy of this model 
using historical data from several protease and reverse transcriptase inhibitors. 
Before, we first review the most relevant techniques reported in the last ten years for 
addressing this classification problem. In addition, the FCM model is described in 
Section 3, but now it is investigated from the prediction point of view. 

2 Computational Approaches for Drug Resistance Analysis 

Since not only the number of approved ARV drugs is increasing, but also the resistant 
mutations to these treatments, the use of intelligent systems have progressively 
become more important for understanding the resistance phenomena in HIV proteins. 
Actually, in the last years the use of computational methods for prediction or 
interpretation of HIV drug resistance has been growing. In general terms, such models 
constitute a very useful tool for guiding physicians in designing complex individual 
therapies and drug experts in the development of new ARV [1].  

At beginning several rule-based systems were introduced, using the knowledge of 
physicians and also data about mutations previously associated with resistance from 
clinical trials. This is the case of Rega [6], ANRS [7] and VGI systems [8]. In fact, at 
the same time the Stanford HIV Drug Resistance Database project enabled the public 
access to an algorithm known as HIVdb [9]. This approach uses, in addition to rules, a 
drug penalty score for inferring five levels of resistance. Moreover, this project has a 
platform (HIValg) for comparing the output of several drug interpretation algorithms; 
which was used in [10] for determining those relevant mutation patterns responsible 
of observed discordance among the investigated rule-based approaches. 
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Subsequently, more accurate computational techniques such as support vector 
regression were employed in Geno2Pheno [11], which is another web service for drug 
resistance prediction. Also, different types of neural networks were explored [12-14] 
where bidirectional recurrent neural networks [15] reported competitive performance 
in terms of accuracy. Regression models also had been studied; for instance, a 
standard stepwise linear regression [16] outperformed other genotypic interpretation 
algorithms publicly available so far, including decision trees, support vector machine 
and four rule-based algorithms (HIVdb, VGI, ANRS and Rega). Later, in [17] 
Rabinowitz et al. introduced two regression techniques using convex optimization and 
perform a comparison against the most relevant approaches at the moment. 

On the other hand, in the same year Rhee et al. [18] published the results of five 
previously proposed predictors including decision trees, linear regression, linear 
discriminant analysis, neural networks, and support vector regression, using high 
quality filtered knowledge bases. These historical data is publicly available for 
experimental comparisons of new algorithms. More recently, in reference [19] was 
described a linear regression called itemset boosting that works particularly well for 
predicting the resistance of nucleotide reverse transcriptase inhibitors. As well, in 
[20] least-angle regression was performed to identify protease mutations associated 
with reduced susceptibility to at least one protease inhibitor, and least-squares 
regression was employed in order to quantify the contribution of protease mutations 
to reduced susceptibility. Finally, in [21] the author implements a procedure based on 
n-grams to generate sequence attributes; where results are complementary to other 
sequence-based approaches, reporting competitive features in performance. 

3 A Model Based on Fuzzy Cognitive Maps Theory 

In this section we briefly describe the FCM model proposed in [3, 4] which was 
conceived for studying the causal influence of the protease protein positions on the 
resistance when a mutation occurs. Next, we explain the generalization of this model 
for any other HIV protein as a tool for describing the drug resistance activity.  

As a first step each protein position is represented as a map concept, while another 
node for denoting the resistance degree to a specific drug is also defined. Afterwards, 
causal connections among all input concepts are created, representing the interaction 
(causal influence) among all protein positions. Also, connections between each map 
concept and the final resistance concept are established. This topology is supported by 
the fact that there exist relations among not necessarily adjacent positions of the 
sequence due to the three-dimensional structure of the protein; where a change in the 
amino acid of a specific position (i.e. mutation) could be relevant for the drug 
resistance [4]. For better understanding of this scheme, following figure 1 illustrates 
the general conception of the FCM that results from this stage.  

Then, in order to determine the causality among positions and the resistance 
variable, a learning process based on Swarm Intelligence is carried out. This learning 
algorithm uses historical data publicly available for finding a causal matrix that 
minimizes the difference between the reported resistance and the value of the 
resistance concept (map inference), for all mutations reported [3, 4]. 
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Fig. 1. Topology for describing a HIV protein through the FCM theory. Concepts denote 
positions of the sequence, and links stand for causal connection among amino acids. 

It is fair to mention that, with the purpose of reducing the model dimensionality, 
only sequence positions previously associated with resistance are considered. These 
positions are selected from both numerical and biological perspective, as a result of 
available research in this field. As a result, predicting the resistance target from 
descriptors nodes means to solve the related classification/regression problem as 
follow. First, the activation value of each concept is taken as the contact energy [22] 
of corresponding amino acid normalized in the range 0,1 . As a second step, the map 
inference process is triggered and the value of the resistance concept is examined. For 
example, for a regression perspective this value will denote the normalized degree of 
resistance; whereas for a classification perspective, a drug-specific cut-off for 
determining the resistance class (0-susceptible and 1-resistant) should be used.  

It is also remarkable that typical FCM can’t solve classification problems [23]; 
however from empirical simulations we noticed that this model was able to 
outperform other well-known classifiers. In fact, in the following section we carry out 
an extensive set of experiments for fully exploring the prediction ability of this model 
against other classifiers for both protease and reverse transcriptase proteins. 

4 Simulations and Results 

In the present section we study the inference ability of the FCM model for solving the 
bioinformatics problem enunciated before. To do that, we use historical data 
associated with 7 protease inhibitors and 11 reverse transcriptase inhibitors taken 
from [9]. The protease inhibitors used in this work are: Amprenavir (APV), 
Atazanavir (ATV), Indinavir (IDV), Lopinavir (LPV), Nelfinavir (NFV), Ritonavir 
(RTV) and Saquinavir (SQV). While two kinds of reverse transcriptase inhibitors are 
used: nucleoside/nucleotide and nonnucleoside inhibitors. The nucleoside/nucleotide 
ones are: Lamivudine (3TC), Abacavir (ABC), Zidovudine (AZT), Stavudine (D4T), 
Zalcitabine (DDC), Didanosine (DDI), Emtricitabine (FTC) and Tenofovir (TDF); 
whereas nonnucleoside are: Delavirdine (DLV), Efavirenz (EFV) and Nevirapine 
(NVP). Then, we evaluate the FCM model against some approches from literature, for 
solving the related classification problem having two and three classes.  
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4.1 Solving the Sequence Classification Problem for Two Classes   

The idea here is to compare the accuracy of the FCM model against other classifiers 
for solving the binary classification problem (susceptible and resistant). In all cases 
we use the cut-off values reported in [9] as thresholds for determining the class of 
each instance. In addition we use the following parameters settings for the learning 
algorithm [3,4]: 80 particles, five variable neighborhoods, 200 generations, and the 
allowed number of generations without progress is set to 40. For comparison we used 
next methods: Support Vector Machine with linear kernel (SVML), polynomial of 
degree1 (SVM1), degree 2 (SVM2), degree 3 (SVM3), and radial basis (SVMR); in 
addition we used a Multilayer Perceptron (MLP) and a Bidirectional Recurrent Neural 
Network (BRNN), all taken from [15]. To conclude, we consider an Artificial Neural 
Network (ANN) from [14] and a novel ensemble classifier from [24] called Multi-
Expert by Hard Instances (MEHI) which has reported promising accuracies. 

Table 1 shows the accuracy from a 10-fold cross-validation process using data of 
six protease inhibitors, corresponding to the complete unfiltered datasets of the 
Phenosense assay. From these results the following conclusions are drawn: for ATV, 
SQV, LPV and IDV the investigated model notably outperforms other algorithms, 
while for RTV and NFV it reports quite competitive results (where MEHI computes 
the best accuracies). However, it is remarkable that, for ATV the FCM model is able 
to outperform MEHI in 12 percent points, whereas for drugs RTV and NFV the FCM 
model and the MEHI algorithm only differs at most in two percent points. 

In literature, there are few reports concerning to algorithms for solving this binary 
classification problem for reverse transcriptase inhibitors using datasets with 
complete sequence. Despite this inconvenient, in [25] Grau et al. proposed a 
Recurrent Neural Network (RNN) that uses a modified backpropagation through time 
algorithm for dealing with instances of variable length, allowing handling the 
complete sequence. Following Table 2 summarizes the comparison accuracies 
between the FCM model and the RNN approach. Here the FCM model largely 
outperforms the RNN at most inhibitors, which confirm the suitability of FCMs to 
deal with this problem. 

Table 1. Classification accuracy obtained for protease inhibitors (two classes) 

Drug SVML SVM1 SVM2 SVM3 SVMR ANN MLP BRNN MEHI FCM 

ATV 0.78 0.71 0.68 0.72 0.70 - 0.80 0.81 0.84 0.96 
SQV 0.87 0.80 0.69 0.85 0.82 0.91 0.85 0.91 0.85 0.95 
LPV 0.88 0.85 0.85 0.88 0.85 0.92 0.92 0.94 0.93 0.98 
RTV 0.91 0.84 0.79 0.92 0.86 0.96 0.90 0.94 0.99 0.97 
IDV 0.91 0.86 0.83 0.92 0.88 0.95 0.86 0.92 0.97 0.99 
NFV 0.84 0.75 0.70 0.84 0.80 0.95 0.86 0.93 0.96 0.95 

Table 2. Classification accuracy obtained for reverse transcriptase inhibitors (two classes) 

Model 3TC ABC AZT D4T DDC DDI DLV EFV FTC NVP 
RNN 0.70 0.61 0.56 0.89 0.78 0.81 0.58 0.56 0.86 0.65 
FCM 0.96 0.94 0.98 0.93 0.80 0.79 0.92 0.95 0.98 0.95 
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4.2 Solving the Sequence Classification Problem for Three Classes   

In this subsection we extend the experimentation by comparing the FCM approach 
against other classifiers for solving the related classification problem, now using three 
classes (susceptible, intermediate and resistant). Besides, the same parameter setting 
of the FCM learning algorithm used in the above section is adopted. At this moment 
two kind of datasets are studied; the first ones corresponds to the complete unfiltered 
dataset, while the second are high quality filtered datasets both available in [9]. For 
comparison we used following approaches: Random Forest classifier using relative 
frequency approach (RF1) and Random Forest classifier using a counts method 
(RF2), Reduced-Error Pruned Tree with relative frequency procedure (REPT1) and 
Reduced-Error Pruned Tree with counts approach (REPT2), all taken from [21]. Also, 
we consider: Decision Trees (DT), Neural Networks (NN), Least-Squares Regression 
(LSR), Support Vector Regression (SVR) and also Least-Angle Regression (LARS), 
all taken from [18]. Table 3 and 4 show the computed accuracy from a 5-fold cross-
validation process for protease and reverse transcriptase inhibitors. 

Table 3. Classification accuracy obtained for protease inhibitors (three classes) 

 High quality filtered datasets Complete unfiltered datasets 

Drug SVR LSR LARS DT NN FCM REPT1 RF1 REPT2 RF2 FCM 

APV 0.82 0.81 0.81 0.77 0.74 0.61 - - - - - 
ATV 0.69 0.68 0.76 0.71 0.64 0.70 0.74 0.75 0.76 0.76 0.78 
IDV 0.77 0.78 0.77 0.75 0.73 0.78 0.78 0.80 0.75 0.80 0.72 
LPV 0.80 0.79 0.83 0.77 0.76 0.85 0.80 0.82 0.80 0.81 0.78 
NFV 0.79 0.79 0.80 0.76 0.73 0.70 0.80 0.80 0.79 0.82 0.75 
RTV 0.86 0.86 0.88 0.84 0.81 0.80 0.87 0.86 0.87 0.84 0.79 
SQV 0.81 0.81 0.82 0.75 0.76 0.73 0.80 0.79 0.80 0.80 0.74 

Table 4. Classification accuracy obtained for reverse transcriptase inhibitors (three classes) 

 High quality filtered datasets Complete unfiltered datasets 

Drug SVR LSR LARS DT NN FCM REPT1 RF1 REPT2 RF2 FCM 

3TC 0.84 0.83 0.88 0.90 0.90 0.86 0.89 0.87 0.87 0.90 0.83 
ABC 0.65 0.63 0.77 0.69 0.66 0.68 0.68 0.68 0.66 0.67 0.62 
AZT 0.7 0.64 0.76 0.70 0.71 0.83 0.75 0.75 0.73 0.70 0.86 
D4T 0.68 0.66 0.78 0.75 0.72 0.78 0.74 0.79 0.76 0.78 0.72 
DDC - - - - - - 0.80 0.75 0.80 0.76 0.74 

 DDI 0.67 0.61 0.75 0.74 0.71 0.85 0.69 0.73 0.69 0.71 0.74 
DLV 0.78 0.73 0.84 0.84 0.78 0.67 0.76 0.70 0.76 0.71 0.78 
EFV 0.82 0.78 0.87 0.84 0.77 0.63 0.78 0.74 0.76 0.73 0.73 
FTC - - - - - - 0.96 0.83 0.94 0.89 0.98 
NVP 0.78 0.74 0.87 0.91 0.81 0.91 0.84 0.79 0.82 0.77 0.88 
TDF 0.69 0.46 0.70 0.68 0.73 0.66 0.75 0.75 0.68 0.74 0.70 

 



196 I. Grau, G. Nápoles, and M.M. García 

 

From Table 3 and 4 it is observed that the overall performance of all classifiers is 
reduced regarding to the classification problem using two classes. For example, in the 
protease filtered dataset, the studied algorithm reports better accuracies for IDV and 
LPV, whereas for the other drugs it computes competitive results. On the other hand, 
for the reverse transcriptase filtered dataset the FCM model performs better for AZT, 
DDI and NVP; reporting reasonable accuracies for remaining inhibitors, except for 
non-nucleoside drugs DLV and EFV where the percent of correct classified instances 
notably decreases. Though, using the complete reverse transcriptase datasets, FCM is 
able to outperform other classifiers for AZT, DDI, DLV, FTC, and also NVP; 
showing competitive results for remaining inhibitors. The reduction in the 
performance could be due to inconsistency or imbalanced knowledge bases. Future 
work will be focused on improving these results by introducing a new classification 
strategy for FCM which takes into account these issues and uses an alternative 
topology and stability criteria in the inference process. In addition this study will be 
extended for solving the related regression problem.   

5 Conclusions 

Understanding the complex behavior of HIV includes the prediction of resistance 
features to existing drugs. However, predicting phenotype from genotype information 
involves a challenging sequence classification problem, which has been addressed in 
literature by using well-known classifiers, but the prediction accuracies are still 
unsatisfactory. Recently was proposed a model based on Fuzzy Cognitive Maps for 
analyzing causal patterns among positions on protease sequences. While this study 
was oriented to the knowledge discovering, we noticed that reported prediction 
accuracies were promising. In this paper we explored this feature, and next aspects are 
concluded: (i) The FCM model using two prediction classes (susceptible and resistant) 
significantly outperformed other evaluated classifiers for both protease and reverse 
transcriptase datasets, (ii) The FCM model using three prediction classes (susceptible, 
intermediate and resistant) decreased its performance, although it is competitive in 
most cases with respect to other classifiers, therefore complementing reported 
approaches from literature. 
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Universidad Tecnológica de la Mixteca, Km 2.5 Carretera a Acatlima
CP 69000 Huajuapan de León, Oaxaca, México
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Abstract. After pre-processing and segmenting suspicious masses in
mammographies based on the Top-Hat and Markov Random Fields me-
thods, we developed a mass-detection algorithm that uses gray level co-
occurrence matrices, gray level difference statistics, gray level run length
statistics, shape descriptors and intensity parameters as the entry of a
vector support machine classifier. During the classification process we
test up to 63 image features, keeping the 35 most important and obtain-
ing 85% of accuracy score.

Keywords: Breast cancer, CADx, Image features, SVM.

1 Introduction

Breast cancer is a disease in which malignant cells grow in breast tissue. This type
of cancer is more frequent in middle age women (40-49 years-old) [1] and, in Mex-
ico, it is the primary cause of death from malignant tumors among women [7].
Mammography (X-ray picture of the breast) associated with clinical breast exa-
mination is the cheapest and most efficient method for early detection of breast
cancer. Radiologists make a visual examination of mammographies searching for
masses, calcifications, density asymmetries and structure distortions that reveal
the presence of cancer. However, it is very difficult to search for abnormali-
ties because of the small differences in the image densities of breast tissue and
the vast range of possible abnormalities, so the task remains highly subjective
and qualitative, depending mainly on the quality of the mammography and the
training and experience of radiologists [10]. This is a risk, especially in third
level developed countries, where there are no other diagnosis protocols widely
available.

Computer-aided diagnosis (CADx) is a helpful tool that improves diagnostic
accuracy assisting radiologists to make correct mammography interpretation.
The detection sensitivity without CADx is around 80% and with it up to 90%
[6]. The tasks a CADx system should accomplish are:

Pre-processing. Noise in the digitized mammogram is reduced and the general
image quality is improved. Labels, tape and scanning artefacts, and pectoral
muscle are removed.
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Segmentation. Suspicious regions are isolated to be later classified as abnor-
mality (true positive) or tissue (false positive).

Feature Extraction. Several features are obtained from the suspicious regions.
Classification. CADx system declares each detected region as an abnormality

or normal breast tissue. Also, in this stage, if the region is an abnormality,
their malignant or benign class is determined.

Several CADx systems have been developed for research purposes [15], but
there is no report of any commercial system available. We intend to develop
one for detection and diagnosis of masses (in a first version, identifying other
abnormalities later) and make it available to public health institutions. In this
work, we present the last two stages of a CADx system that identifies masses in
mammographies. Masses are subtle areas (2-30 mm in diameter) with smooth
boundaries and high densities and represent the most difficult type of lesion to
detect and characterize.

The paper is organized as follows. In Section 2, we describe several approaches
for automated detection and classification of masses in mammograms. The data
used in our tests is mentioned in Section 3. The different features generated from
suspicious regions are described in Section 4. The classifier and the experimental
results are presented in Section 5. Finally, conclusions and future work are given
in Section 6.

2 Related Work

Several methods have been proposed for mammography mass detection. Excel-
lent state of art reviews are presented in [11] and [2], showing an evaluation
of several methods for enhancement of mammographic images, detection and
classification of masses.

Rojas and Nandi [13] proposed a three stages method to perform mass detec-
tion. The first one is a multilevel adaptative process based on local statistical
measure of the pixel intensities and morphological operators to enhance breast
structures. In the next stage, the images are segmented by applying thresholding
and Gaussian filtering. Finally, the selection of suspicious regions is performed by
means of a ranking system that uses 18 shape and intensity features. The method
was tested on 57 mammographic images of masses from the MIAS database [17],
and achieved a sensitivity of 80% at 2.3 false-positives per image.

An interesting method for reduction of false positives in mass detection is
presented by Llado et al. [9]. The basic idea of their approach is the use of
Local Binary Patterns for texture descriptions of ROIs. Support Vector Machines
(SVM) with a polynomial kernel performed classification of mass and normal
breast tissue. Their approach was evaluated on 1792 ROIs extracted from the
DDSM mamographic database [5], and reported a mean Az value (area under
the ROC curve) of 0.94.

Sampaio et al. [14] proposed a methodology based on Cellular Neural Net-
works, geostatistic functions and Support Vector Machines. In the first step
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of their methodology, the images are pre-processed by using Hough Transform,
K-means and morphological operators. Identification of suspicious regions is per-
formed by segmentation with Cellular Neural Networks. A SVM classifier that
uses shape and texture features is proposed with a sensitivity of 80% at 0.84
false positives per image.

3 Database

Our method was tested on a subset of images extracted from the Mammographic
Image Analysis Society (MIAS) database [17]. This publicly available digitized
database contains left and right breast images in mediolateral oblique (MLO)
view that represent the mammograms of 161 patients with ages between 50 and
65. All images were digitized at a resolution of 1024×1024 pixels and at 8-bit
gray scale level.

The chosen set corresponds to masses annotated as spiculated, circumscribed
or miscellaneous (ill-defined masses). The summary of this dataset by type of
mass and density of breast tissue is shown in Table 1.

Table 1. Summary of MIAS images used

Fatty Fatty-Glandular Dense-Glandular Total

Circumscribed 13 8 3 24
Miscellaneous 8 5 2 15
Spiculated 5 7 7 19

Total 58

For decreasing computational cost, all images were reduced by a factor of
two. Moreover, the 3 × 3 median filter was applied to reduce noise, and labels
and pectoral muscle were manually extracted from the images with help of the
ImageJ program [12]. With the purpose to filter and enhance the contrast of
the possible mass regions, the Top-Hat transform was applied to all images. A
disk was used as structural element to filter suspicious regions. The size of the
disk was iteratively modified from two pixels to the width of breast area. Then,
detection of suspicious regions (ROIs) was done by applying segmentation based
on texture andMarkov Random Fields. A Gaussian observation model with three
texture features of first order: mean, standard deviation, and entropy, was used.
In total, 278 ROIs of different sizes were identified, from which, 50 represent
suspicious masses, while the other 228, normal tissue. These ROIs are the entry
to the classification stage.

4 Features

The following stage of mass detection by CADx systems is the feature extraction
and selection. The feature space is very large and complex, but only some of fea-
tures are significant. After years of intensive research, hundreds of features have
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been proposed. But using many features degrades the performance of the classi-
fiers, so that redundant features should be removed to improve the performance
of the classifier. There are basically three types of features: intensity, geometric
and texture features. After reviewing many feature evaluation initiatives [8], [18],
[20], we chose an important and discriminative subset of 35 features for mass
detection.

4.1 Intensity Features

Three basic statistics of the detected ROIs were used: skewness, kurtosis and
entropy.

4.2 Shape Features

Before the extraction of these features, the detected ROIs are binarized and
processed to identify their boundaries. In Fig. 1 some examples of results for
these processes are shown. Seven features were directly calculated from the pixels
in the boundaries and within area of ROIs: perimeter, area, compactness, and
the first four central invariant moments.

(a) Original MIAS image (b) Binarized ROI (c) ROI shape

Fig. 1. ROI processing for shape features extraction

4.3 Texture Features

Texture is the term used to characterize the surface of a given region, and it is one
of the main features used in identifying ROIs in an image [3]. In general, texture
features can be grouped into three classes based on what they are derived from:
Gray-level co-occurrence matrices, Gray-level difference statistics, and Gray-level
run length statistics.
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Gray-Level Co-occurrence Matrix (GLCM). An element of the GLCM
matrix P (i, j, d, θ) is defined as the joint probability that the gray levels i and
j occur separated by a distance d and along direction θ of the image [2]. Four
GLCM matrices were calculated from each ROI using θ = {0◦, 45◦, 90◦, 135◦}
and d = 1. From these matrices, the six following features were obtained (and
averaged in the four directions): contrast, correlation, variance, energy, entropy
and homogeneity.

Gray-Level Difference Statistics (GLDS). The GLDS vector is the his-
togram of the absolute difference of pixel pairs which are separated by a given
displacement δ [19]. Also, to obtain GLDS features, four forms of the vector δ
were considered: (0, d), (−d, d), (d, 0), and (−d,−d). Three textural features were
measured and averaged (considering d = 1) from these vectors: mean, entropy
and variance.

Gray-Level Run Length Statistics (GRLS). The GRLS method is based
on computing the number of gray-level runs of various lengths [4]. A gray-level
run is a set of consecutive and collinear pixel points having the same gray-level
value. The length of the run is the number of pixels in the run. For an M ×N
run length matrix p(i, j), M is the number of gray levels and N is the maximum
run length. In a study [4], four feature extraction functions following the idea of
joint statistical measure of gray level and run length gave better performance:

1. Short run low gray level emphasis (SRLGE)

SRLGE =
1

nr

M∑
i=1

N∑
j=1

p(i, j)

i2 · j2 (1)

2. Short run high gray level emphasis (SRHGE)

SRHGE =
1

nr

M∑
i=1

N∑
j=1

p(i, j) · i2
j2

(2)

3. Long run low gray level emphasis (LRLGE)

LRLGE =
1

nr

M∑
i=1

N∑
j=1

p(i, j) · j2
i2

(3)

4. Long run high gray level emphasis (LRHGE)

LRHGE =
1

nr

M∑
i=1

N∑
j=1

p(i, j) · i2 · j2 (4)

where nr is the total number of runs.
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These four features were calculated in four positive directions: 0◦, 45◦, 90◦ and
135◦ (16 features) for Test 2. For Test 1 we add seven more features calculated in
four directions (28 features): Short Run Emphasis (SRE), Long Run Emphasis
(LRE), Gray-Level Nonuniformity (GLN), Run Length Nonuniformity (RLN),
Run Percentage (RP), Low Gray-Level Run Emphasis (LGRE), High Gray-Level
Run Emphasis (HGRE).

5 Classification and Experimental Results

5.1 Support Vector Machine (SVM)

SVM classifier [16] is a relative new option for doing classification. It has their
roots in the existence of an optimal (in the sense of quadratic convex optimiza-
tion) hyperplane that separates two classes. Data is projected by means of a
kernel function in a high-dimensional space and, in this space, the hyperplane
is linear, but their projection back in original space is non-linear. In our exper-
iments we use a radial basis function (RBF) kernel. The fit of the hyperplane
to data is controlled by the parameter β of the RBF function and the SVM
parameter C that controls the width of the classifier’s margin.

5.2 Experiments

For the experiments, the set of 278 detected ROIs was randomly divided in
25 masses and 114 normal tissue segments for training, and the equivalent for
testing. In the first experiment (Test 1) we tested the 63 intensity, shape and
texture features described in Section 4; the corresponding results are presented
in Table 2. In other experiments we tested different subsets of texture fea-
tures, and the best results were obtained with the first 35 features mentioned in
Section 4.

Table 2. SVM classification results using a RBF kernel and the full set of 63 features

Parameters Accuracy
in training
set

Number
of support
vectors

Accuracy
in test set

β = 1, C = 2 92.19 % 58 84.18 %
β = 1, C = 10 98.57 % 62 79.86 %
β = 2, C = 2 76.98 % 16 71.95 %
β = 0.5, C = 2 98.57 % 98 84.18 %
β = 1, C = 1 50.4 % 10 52.52 %

SVM classifier gave the best results with β = 1 and C = 2; defining 54 support
vectors (Table 3). Differences in the results represent the compromise between
accuracy in test stage and number of support vectors. We tested different subsets
of texture parameters and different kernels, but we are reporting here the best
scores.
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Table 3. SVM classification results using a RBF kernel and the best 35 features

Parameters Accuracy
in training
set

Number
of support
vectors

Accuracy
in test set

β = 1, C = 2 88.49 % 54 84.18 %
β = 1, C = 10 94.25 % 56 78.5 %
β = 2, C = 2 49.7 % 8 48.3 %
β = 0.5, C = 2 94.25 % 80 84.9 %
β = 1, C = 1 74.2 % 12 71.3 %

6 Conclusions and Future Work

We selected and tested some of the simplest and most discriminant features for
digital processing of mammographies. After pre-processing and segmenting the
ROIs of the MIAS database, SVM classification gives reasonably good accuracy
scores with only 35 well known features.

With this framework we can test more shape and texture features, as well as
classifiers and combinations among them. We are still far away of our purpuse,
but with the future improvement of the different stages, we will be closer to
build a working CADx system available for public service.
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Bogotá, Colombia
{amatehortual,fmartinezc,edromero}@unal.edu.co

http://cimlaboratory.com/

Abstract. This paper presents a novel method that follows the right
ventricle (RV) shape during a whole cardiac cycle in magnetic resonance
sequences (MRC). The proposed approach obtains an initial coarse seg-
mentation by a bidirectional per pixel motion descriptor. Then a refined
segmentation is obtained by fusing the previous segmentation with geo-
metrical observations at each frame. A main advantage of the proposed
approach is a robust MRI heart characterization without any prior infor-
mation. The proposed approach achieves a Dice Score of 0.62 evaluated
over 32 patients.

Keywords: Right Ventricle Segmentation, Cardiac MRI Cine, Local
Motion Models, Structural Information.

1 Introduction

Cardiovascular diseases (CVDs) are world wide one of the principal causes of
death and disability [1]. An accurate quantification of the right ventricular struc-
ture and function has become important to support the diagnosis, prognosis and
evaluation of several cardiac diseases and also to complement the typical analysis
of the left ventricular function [2,3]. Currently, most common methods, for assess-
ing the heart, are based on quantification and characterization of patterns during
a Cardiac Magnetic Resonance Imaging (CMRI) [4]. Such methods are widely
used to analyze, diagnose and even prognose certain heart diseases. Among the
evaluated heart variables, the most common are the ventricular chamber sizes,
volumes and masses at each cardiac phase, ventricular function and correlation
flow [5]. A proper RV analysis demands an accurate 3D temporal segmentation,
specifically endocardial and epicardial contours. Typically such task is carried
out by expert cardiologists who perform manual delineations that may take
18.9 ± 4 min [6] per case, introducing high inter-and-intra observer variabil-
ity [3,7]. Therefore, automatic segmentation methods are appealing to obtain
more accurate RV temporal-segmentation. Nevertheless, several challenges arise
because of the complex RV geometry shape and high non-linear heart motion
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during diastole and systole transition. In addition, RV fuzzy edges and random
acquisition noise make more challenging the RV segmentation [6].

Several state-of-the-art methods have been proposed for automatic RV seg-
mentation, most of them based on the use of strong structural and appearance
priors that adjust the shape w.r.t a set of samples. In this sense, these methods
use mainly statistical shape models, multi-atlas strategies and deformable appro-
ximations [6]. These strategies are strongly dependent on how data is learned
to build up the prior. However, accurate quantification of certain variables like
the ejection fraction depends on the shape changes, particularly important in
pathological cases. In addition, such approaches pay a high price when mapping
the prior to the MR since the metrics is usually noisy because of the dependency
of intensity variations or the pixel spatial distribution to represent the heart,
facts that may lead to inconsistent segmentations [6].

On the other hand, methods with no prior are based on appearance and tem-
poral MRI information. Cocosco et al. [8] describe the segmentation of both the
left ventricle (LV) and right ventricle (RV), by a simple temporal RoI estimation
of major motions and then a voxel classification is performed between RV and
LV using morphological operations. However, the simplicity of the temporal des-
criptor, a simple subtraction between consecutive frames, turns out to be very
noisy. In addition, Wang et al. [9] capture information that is shared during the
sequence and merge it with a spatial within-frame descriptor, based on a cla-
ssical isodata algorithm. Nonetheless, RV segmentation may easily overflow the
actual borders.

The main contribution of this work is a fully automatic method that uses no
prior at all and delineates the RV endocardium contour in 4D MR sequences.
The strategy uses both a heart motion descriptor and an estimation of RV shape
for each frame of the sequence. Firstly a robust per pixel motion model is in-
troduced to highlight the edges with major changes along the sequence, under
the hypothesis that heart is the organ with larger motion. Afterwards, a con-
ventional isodata strategy estimates the heart shape which is superimposed to
the edges computed from the motion estimation. The final delineation is set to
the intersection between those edges and estimated heart shape. The following
section describes the proposed segmentation approach. In section 3, the evalua-
tion and results. Finally in section 4 is presented the discussion on the results
obtained and some conclusions.

2 Methodology

The strategy herein proposed is capable of capturing the temporal RV contours
from a spatio-temporal MRI characterization. As widely acknowledged, heart
motion is the main biomarker in cardiology, allowing by itself an appropriate
assessment of cardiac function [10]. Hence, the approach starts by coding tem-
poral MRI information with a bidirectional per-pixel motion descriptor [11]. A
coarse heart segmentation is initially obtained from that estimated cardiac mo-
tion. This segmentation is corrected using geometrical observations from the
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Fig. 1. The proposed method. A motion descriptor is computed for the whole MRI
cardiac cycle, which is then adjusted to the edged and spatial estimation found at each
frame in the estimated shape.

estimated shape. The pipeline of the proposed approach is illustrated in Figure
1 and described in the following subsections.

2.1 Motion Estimation

The heart is the organ whose vital function amounts to a constant motion. The
proposed strategy starts by estimating the cardiac movement with a bidirectional
local motion descriptor. For doing so, a temporal median sets the elements with
less motion during the sequence by recursively updating the frame median, as
follows Mt(x) = Mt−1(x) + sgn (It(x)−Mt−1(x)), where Mt(x) represent the
median and It(x) the frame at time t for each pixel x. Using such recursive
median, a likelihood measure Δt sets those pixels in movement at each instant t
as Δt = |Mt(x)−It(x)|. This last term is in due turn regularized by a cumulated
variance of the motion history, as: Vt(x) = Vt−1(x)+ sgn(N ×Δt(x)−Vt−1(x)).
This descriptor is highly noise robust and computes the per-pixel temporal varia-
tion that allows to classify the RV. Specifically, At the End of the Diastole, when
the heart is maximally expanded, pixel candidates should meet two conditions:
the pixel motion is larger than an accumulated temporal variance under the
restriction that the movement must span an important percentage of the cardiac
cycle. Such relationship is represented by a simple thresholding as

B̂St

(D)
(x) = Δt(x) ≥ Vt(x). In contrast, at the Systole, the heart contraction is

maximum and the motion is practically null so that this phase constructs a very
steady history of the cardiac flow. After the semilunar valves open, blood flows
out the ventricle with an important change that is very likely detected by the
motion estimation algorithm. The heart edges are thus calculated from pixels
with major motion by comparing the likelihood measure with a learned scalar

parameter τ as: B̂St

(S)
(x) = Δt(x) ≥ τ .
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Classically, local motion descriptors [11] are usually unidirectional recursive
algorithms, but in this case the first iteration yielded a very blurry estimation
of the heart contour at the End-of-Diastole. As the recursive accuracy depends
on the captured motion history, the descriptor is herein bidirectionally run, i.e.,

forward and backward as BSt(x)
(D,S) = αB̂St

(D,S)
(x) + (1−α)B̂SN−t

(D,S)
(x),

where α is an important parameter defined as
t

N
and N is the number of frames.

Once motion has been thresholded, morphological operators groups up pixels
associated with movement [11].

2.2 Shape Feature Extraction by Characterizing Edge and Pixel
Distributions

The previous motion estimation produces a coarse shape segmentation and serves
also to define a Region of Interest (RoI). The aim of this second phase is to
construct another complementary shape approximation, using exclusively spa-
tial observations. A first approximation to such heart shape consisted in finding
a RoI that consistently surrounded the heart, as the spatial region with larger
temporal motion at each time step. Within such RoI, heart ventricles are esti-
mated from two complementary measurements: a global shape clustering and an
edge extraction.

Firstly a global shape description of the ventricles was herein obtained by a
classical isodata algorithm [12] that is used to separate the intensities correspon-
ding to the myocardium and the cardiac chambers. The cardiac wall or myocar-
dial tissue is segmented and therefore the right and left heart chambers serve as
a reference frame of the right and left ventricles.

On the other hand, ventricle edges are estimated from the MRI RoI by using
a conventional Canny filter [13]. In the apical slices however, while the LV is
still differentiable, RV edges are very blurred (as shows Figure 2). Overall, edges
in apical slices are considered as part of the LV. Estimations of RV edges are
performed from the previous motion estimation provided that such edge is not
already part of the previously defined LV edges.

2.3 Fusing Temporal and Spatial Information: RV Shape
Refinement

During certain phases of the cardiac cycle, some boundaries of the heart were
not properly segmented. Two fusion strategies were herein implemented to cope
with such issue: 1) a first approach fused the spatial information obtained from
the temporal information with the edge estimation and the isodata algorithm
2) a second strategy fused the temporal and isodata informations, but using
exclusively the left ventricle isodata information. This second approach was par-
ticularly useful to segment the right ventricle at the apex level. For the first
fusion strategy, the two edge representations are fused by simply summing and
normalizing. The final shape is in this case outlined by intersecting both the RV
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Fig. 2. The variability of the RV shape, from basal (top row) to apical (bottom row),
and from left to right for the whole cardiac cycle, being the first column the End-of-
Diastole and the mid column the End-of-Systole

shape estimated from the isodata information and edges. For the second stra-
tegy, it was applied a simple difference between the temporal heart segmentation
and the spatial LV segmentation obtained by the isodata algorithm so that the
remaining pixels then correspond to the RV. Finally, isolated pixels are always
removed by simple opening and closing operators.

2.4 Data

The evaluation of the proposed approach was performed over a public Cardiac
MRI dataset [3,14] with 32 patients split into two subsets: training and test
data set, which are specified by the authors of the dataset. For evaluation, the
obtained segmentation was submitted to the RVSC [15] which sends back the
results. Training data consisted in a set of 16 cardiac MRI, half split into men
and women, with an average age of 51 ± 12 years. For test data was split into
3 women and 13 men cases, respectively, with and average age of 48± 18 years.
The recorded patients were diagnosed with several cardiac pathologies like myo-
carditis, ischaemic cardiomyopathy, arrhythmogenic right ventricular dysplasia
(ARVD), dilated cardiomyopathy, hypertrophic cardiomyopathy, Aortic steno-
sis, cardiac tumour, left ventricular and ejection fraction assessment. Each MR
sequence was captured in the short-axis with 1.5 Tesla, in a plane resolution
of 1.3 mm and a between-slice distance of 8.4 mm. The epicardium and endo-
cardium of 32 MR sequences were manually delineated by an expert cardiologist.
Trabeculae and papillary muscles were included in the RV cavity.

3 Evaluation and Results

Figure 3 illustrates the good performance of the method in cardiac MRI se-
quences. The green contour corresponds to the result obtained by the presented
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Fig. 3. Example of RV segmentations with several cases, including the End-of-Diastole
(firts row) and End-of-Systole (second row). The ground truth is the red line and the
green line is the automatic segmentation. As expected, better results were observed at
the basal slices (first column).

method, while the ground truth is drawn in red. As expected, failures are mainly
present in apical images because of the fuzzy borders and small RV area.

Quantitative technical evaluation was performed using the most classical me-
trics described in the literature: Dice Score (DSC) measure[16] and Hausdorff dis-

tance (HD)[17]. An overlap DSC measure is defined as: DSC(A,B) =
2(A ∩B)

A+B
,

whereA andB represent the obtained area and the expert ground truth, respecti-
vely. On the other hand, the Hausdorff measureH(A,B) computes the maximum
distance between two sets of points as max(H(A,B), H(B,A)) and

H(A,B) = max
a∈A

min
b∈B
‖a− b‖22. In this case, each set of points represents the or-

gan surface. This measure allows to indirectly assess the compactness of the
segmentation. A clinical performance was also assessed as the ejection fraction
(EF).

Table 1. Performance of the proposed approach for training data using Dice Score
(DSC) and Hausdorff distance (HD) over the Endocardium contour

DSC HD (in mm)
mean (std) mean (std)

End-of-Diastole (ED) 0.66 (0.22) 20.66 (13.00)

End-of-Systole (ES) 0.54 (0.26) 27.72 (23.45)

Quantitative results were only evaluated at End-of-Diastole (ED) and End-
of-Systole (ES) since these two states are the most important to clinical quan-
tification [18]. As baseline it was taken the work proposed by Wan et. al [9],
which until now represents the best strategy to segment the RV without prior.
Table 1 summarizes the obtained performance for training data sequences in ED
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and ES times. The proposed approach clearly outperforms the baseline method
in terms of overlapping and compactness in both cardiac states. As expected a
much better segmentation is obtained at the ED because the MRI frame quality
allows a better quantification. Although, at the ES many times the poor MRI
contrast leads to a quite fuzzy RV edges, the proposed approach outperforms
the state-of-the-art approach. Table 2 summarizes the performance obtained by
our approach over the test data. Although the obtained score errors are slightly
larger for the RV segmentations, the proposed approach properly captures the
shape variability and is easily adapted to new RV shapes since it only depends
on the particular MRI observations.

Table 2. Performance of the our RV segmentation method for the Test data set using
Dice Score (DM) and Hausdorff distance (HD) over the Endocardium contour

Our approach Baseline
DSC HD (in mm) DSC HD (in mm)

mean (std) mean (std) mean (std) mean (std)

ED 0.72 (0.29) 16.17 (16.48) 0.63 (0.32) 22.89 (25.01)

ES 0.51 (0.31) 27.47 (27.96) 0.50 (0.34) 27.99 (24.97)

Finally, it was calculated the mean error for the ejection fraction, defined as
error =

∑N
p=1 EFpauto − EFpmanual, where an error of 0.36 was obtained over

the whole data set (32 patients). Although the error index shows an acceptable
performance, some important noise sources, such as the inter-and-intra high
variability of RV shape, the fuzzy edges and the complex heart motion, are not
properly captured by our method. Nevertheless, the approach herein presented
shows appropiate RV segmentations using an strategy based principally in tem-
poral characterization. This approach outperform state-of-the-art methods that
use only appearance and temporal observations for each sequence [8,9].

4 Conclusions

In this paper it was introduced a new strategy to segment the right ventricle in
MR sequences. The proposed mixed approach uses spatio-temporal observations
and produces reliable RV segmentations. A great advantage of the proposed
approach is its independency of any prior heart shape, facilitating the capture
of dynamic and shape heart variability, which could be associated to specific
cardiac pathology. In future work, the method could extend to 3D processing
and further validation with a larger data set will be performed.
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2 Instituto de Óptica, Spanish National Research Council (CSIC), Serrano 121,
Madrid 28006, Spain

3 INCM, UMR6193, CNRS & Aix-Marseille University, 31 ch. Aiguier,
13402 Marseille Cedex 20, France

4 Brigham and Women’s Hospital, Harvard Medical School,
Boston MA, United States

Abstract. In recent years, with the advent of High-resolution Com-
puted Tomography (HRCT), there has been an increased interest for
diagnosing Chronic Obstructive Pulmonary Disease (COPD), which
is commonly presented as emphysema. Since low-attenuation areas in
HRCT images describe different emphysema patterns, the discrimination
problem should focus on the characterization of both local intensities and
global spatial variations. We propose a novel texture-based classification
framework using complex Gabor filters and local binary patterns. We
also analyzed a set of global and local texture descriptors to character-
ize emphysema morphology. The results have shown the effectiveness of
our proposal and that the combination of descriptors provides robust
features that lead to an improvement in the classification rate.

Keywords: Co-occurrence matrices, Emphysema, Gabor filters, LBP,
Sparsity, Tchebichef, Texture analysis.

1 Introduction

COPD is a progressive and irreversible lung condition, which is characterized
by tissue damage. It hinders air from passing through airpaths and causes that
alveolar sacs lose their elastic quality, increasing the risk of death. COPD can
manifest as either emphysema, bronchitis or both; the former is the most com-
mon manifestation that destroys lung parenchyma [1].

Literature recognizes three types of emphysema: i) Paraseptal (PS) or dis-
tal acinar emphysema, which is characterized by destruction of distal airway
structures, alveolar ducts, and alveolar sacs. The process is localized around the
pleura; ii) Panlobular (PL) or panacinar emphysema destroys uniformly the
entire alveolus, it is predominant in the lower half of the lungs; and iii) Cen-
trilobular (CL) or centriacinar emphysema, which is the most common type
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of emphysema. It begins in the respiratory bronchioli and spreads peripherally,
most damage is usually contained to the upper half of the lungs.

Spirometry is the gold standard criterion to establish a diagnosis of emphy-
sema. It measures the volume of air that a patient is able to expel from lungs
after a maximal inspiration. Nevertheless, this method does not allow to discrim-
inate pathological subphenotypes of emphysema. On the other hand, HRCT is a
minimally invasive imaging technique capable of providing both high-contrast
and high-resolution details of lungs and airways; it has shown its potential
for identifying changes in lung parenchyma and abnormalities associated with
emphysema.

Hayhurst et al. [2] showed that Hounsfield Unit (HU) frequency distributions
in patients who had CL differed significantly from patients with Normal Tis-
sue (NT). Low-attenuation areas in HRCT images have been found to represent
macroscopic and microscopic changes due to emphysema. Such areas are deter-
mined using the density mask method, which measures the amount of emphy-
sematous lung by calculating the percentage of voxels lesser than a threshold;
commonly, the threshold lies somewhere between -910 and -980 HU.

Texture-based classification of lung HRCT images may provide new insights
towards the construction of a reliable computer-aided diagnosis system. New
methods include features extracted using local binary patterns [3]. A simpler
alternative based on kernel density estimation of local histograms has been pro-
posed in [4]. A different approach was proposed in [5] where the authors used
meta-data to label lung samples, whereas in [6], the Riesz transform was used
to obtain textural features in interstitial lung abnormalities but it has not been
tested in analysis of emphysema subtypes. However, researchers have analyzed
texture in HRCT images using simple descriptors. In this work, we claim that
the combination of both global and local descriptors will provide robust features
because global characteristics and local information are encode simultaneously.
Thus, an improvement in the classification rate can be attained.

This paper is organized as follows: the datasets are described in Section 2.
In Section 3 we defined a set of global and local descriptors used in the present
study and provided their mathematical foundations. The results are presented
in Section 4. Finally, our work is summarized in Section 5.

2 Material

We used two datasets labeled by experienced pulmonologists: the Bruijne and
Sørensen dataset (BS) was provided by Prof. Dr. Bruijne and Dr. Sørensen [3].
It consists of 168 non-overlapping annotated ROIs of size 61× 61 pixels and be-
long to three types of patterns: NT=59, CL=50, and PS=59; and Brigham and
Women’s Hospital dataset (BWH). This dataset was provided by researchers
from the Brigham and Women’s Hospital using a subset of the COPDGene
study [4]. 1337 ROIs from 267 CT scans were randomly selected; the distribu-
tion per pattern is: NT=370, PS=184, PL=148. BWH includes three subtypes of
CL patterns (mild, moderate, and severe): CL1=170, CL2=287, and CL3=178
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respectively. The size of the samples was chosen to fit the physical extent of
emphysema within the secondary lobule corresponding to 31× 31 pixels.

3 Methods

We propose the combination of Complex Gabor Filters (CGF) and Local Binary
Patters (LBP) for a better characterization of emphysema; the former are global
descriptors, whereas the latter are local descriptors. Additionally, a wide set of
texture descriptors have been analyzed. To assign a given patch to one of several
emphysema patterns, we used a methodology composed of three stages: i) fea-
ture extraction with global and local descriptors; ii) dimensionality reduction
using Kernel-Fisher Discriminant Analysis (KFDA); and iii) classification with
k -Nearest Neighbors (kNN). In the following paragraphs we summarize the main
characteristics of the descriptors used in the current study.

Complex Gabor Filters [7] are defined as the product of Gaussian func-
tions and complex sinusoids. They are band-pass filters that constitute a com-
plete but non-orthogonal basis set and their shape match with psychophysical
properties of receptive fields [8]. They can be divided into two parts: ge (x, y) =

K exp{− 1
2 (

x̃2+γ2ỹ2

α2 )} cos (2πu0x̃), which is an even filter, whereas go (x, y) =

K exp{− 1
2 (

x̃2+γ2ỹ2

α2 )} sin (2πu0x̃) is an odd filter. K represents a normalizing
constant, u0 is the central frequency, (α, γ) are the constants of the Gaussian
envelope along x and y-axes respectively. x̃ = x cos θ−y sin θ, ỹ = x sin θ+y cos θ,
and θ denotes the orientation. Further filtering parameters were tuned by fol-
lowing the design constraints recommended in [9].

We used a bank made of 24 filters distributed in 4 scales (s) and 6 orientations;
for each of them, we computed E(s,θ) = I(x, y)�ge(s,θ)(x, y) and O(s,θ) = I(x, y)�
go(s,θ)(x, y) where I(x, y) is the given patch and the � indicates convolution.
Then, we extracted the magnitude coefficients (M(s,θ)(x, y)) as:

M(s,θ)(x, y) =
√
E2

(s,θ)(x, y) +O2
(s,θ)(x, y) (1)

Since M(s,θ)(x, y) are considered as random variables, we extracted the mean
(μ), the standard deviation (σ), the skewness (Υ ), and the kurtosis (Ψ) from them
to characterize the response of any image and build a feature vector, fCGF , as
follows:

fCGF =
[
μ(0,0), σ(0,0), Υ(0,0), Ψ(0,0), . . . ,

μ(s−1,θ−1), σ(s−1,θ−1), Υ(s−1,θ−1), Ψ(s−1,θ−1)

] (2)

Log-Gabor Filters (LGF) [10] are defined in frequency domain as Gaussian
functions shifted from the origin; they have a null DC component and can be split

into radial and angular filters: Ĝ(ρ, θ) = exp{− 1
2 [

log( ρ
u0

)

log(
αρ
u0

)
]2} exp{− 1

2 [
(θ−θ0)

αθ
]2},

where (ρ, θ) represent the polar coordinates, u0 is the central frequency, θ0 is
the orientation angle, αρ and αθ determine the scale and the angular bandwidth
respectively. We applied setting recommendations that appear in [9] and com-
puted the feature vectors, fLGF , by convolving a bank of 24 log-Gabor filters
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distributed in 4 scales and 6 orientations with the input images and then we
followed the procedure presented in Eq. (2).

Sparse Gabor Coding (SGC). Gabor filters provide redundant represen-
tations, which may hamper classification tasks. As proposed first by [11], this
problem may be solved using a greedy algorithm. This approach corresponds to
first choosing a single filter, Φi, that best fits the image, I(x, y), along with a
suitable coefficient ai, such that the single source aiΦi is a good match to the

image: i = arg maxj(〈
I(x,y)

‖I(x,y)‖ ,
Φj

‖Φj‖ 〉), where 〈·, ·〉 represents the inner product.

The associated coefficient is the scalar projection: ai = 〈I(x, y), Φi

‖Φi‖2 〉. Know-

ing this choice, the image can be decomposed as: I(x, y) = aiΦi + R where R
is the residual image. We repeat this 2-step process on the residual until some
stopping criterion is met. This procedure is known as the matching pursuit al-
gorithm, which has proven to be a good approximation for natural images [12].
Measuring the ratio of extracted energy in the images, 256 edges were on aver-
age enough to extract 90% of the energy of whitened images on all datasets. We
thus used this set of sparse coefficients as the input vector for the classification
framework.

Gray-level Co-occurrence Matrices (GLCM) were proposed by Haral-
ick [13]. They evaluate spatial relationship among gray levels. Each pixel in an
image I(x, y) is assigned to one of Ng gray levels. The GLCM matrix consist of
a set of {Pij |i, j = 1, . . . , Ng} values. Pij represents the number of occurrences
of two pixels with gray levels i and j separated by a distance d in the direc-
tion of the angle θ. The GLCM’s elements are normalized, providing the relative
frequency of occurrence for a pair of gray levels.

The element p (i, j) denotes the probability of finding the pair of levels (i, j)

in the image, which is obtained as: p(i, j) = Pij(
∑Ng

i,j Pij)
−1. 10 features were

chosen to capture texture properties: energy, contrast, correlation, homogeneity,
entropy, autocorrelation, dissimilarity, cluster shade, cluster prominence, and
maximum probability. In our study, Ng was set to 8 according previous works
focused on texture analysis [14]. d was set to 1 while four different angle values
were assessed: 0, 45, 90, and 135 degrees. Thus, a total of 40 descriptors (10 sta-
tistical features for each of the four orientations) were obtained for each texture.

Discrete Tchebichef Moments (DTM) [15] are computed by projecting
the image I(x, y) onto the set of Tchebichef polynomial kernels. DTM provides a
unique representation of the image in the spanned Tchebichef space. The moment
Tpq (p, q = 0, 1, . . . , N − 1) of order s = p+ q is defined as:

Tpq =
1

ρ̃(p,N)ρ̃(p,N)

N−1∑
x=0

N−1∑
y=0

t̃p(x)t̃q(y)I(x, y) (3)

where t̃p(x) and t̃q(x) are scaled Tchebichef polynomials and ρ(n,N) is its
squared norm. Tpq quantifies the correlation between the image, I(x, y), and
the kernel t̃p(x)t̃q(y). Hence, this magnitude will be higher for images char-
acterized by repetitive patterns occurring at a similar rate to the kernel. The
following feature evaluates the similarity between the image and the varying
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patterns implemented by s-order Tchebichef kernels: T (s) =
∑

p+q=s |Tpq|, (s =
0, 1, . . . , 2N − 2). The analysis based on DTM yields a feature vector of length
2N − 1 to describe texture attributes.

Local Binary Patterns [16] are based on the idea that textural proper-
ties within homogeneous regions can be mapped into patterns, which represent
micro-features. LBP uses a 3 × 3 square mask called “texture spectrum”. The
values in the square mask are compared with the central pixel, those ones lesser
are labeled with “0” otherwise they are labeled with “1”. The labeled pixels are
multiplied by a fixed weighting function according with their positions to form
a chain. Afterward, the values of the eight pixels are summed to obtain a label:
LBPP,R(gc) =

∑P−1
p=0 s(gp − gc)2p, where {gp|p = 0, . . . , P − 1} are the values of

the neighbors. The comparison function s(x) is defined as a Heaviside function:

s(x) =

{
1 if x ≥ 0
0 if x < 0

Uniform Local Binary Patterns (LBPuni
P,R) [17]. Over 90% of LBP patterns

can be described with few spatial transitions, which are the changes (0/1) in a
pattern chain. Ojala introduced the measure U(LBPP,R(gc)) = |s(gp−1 − gc) −
s(g0−gc)|+

∑P−1
p=1 |s(gp − gc)− s(gp−1 − gc)|, which corresponds to the number

of spatial transitions. So that, the uniform LBP (LBPuni
P,R) can be obtained as:

LBPuni
P,R (gc) =

⎧⎪⎨⎪⎩
P−1∑
p=0

s (gp − gc) if U (LBPP,R (gc)) ≤ 2

P + 1 otherwise

(4)

after the process is completed; a labeled image, L (x, y), is generated and the
pixel-wise information is encoded as a histogram, Hi.

3.1 Multi-class Kernel Fisher Discriminant Analysis

It must be considered that the size of a training set should be exponentially in-
creased with the dimensionality of the input space. Since the previous methods
generate high-dimensional feature vectors and a limited dataset is available, we
used KFDA [18], which maps original data into a new feature space prevent-
ing overfitting. Let X1 = {x11, x12, . . . , x1l1}, . . . , X

C = {xC1 , xC2 , . . . , xClC} be
feature vectors from C classes and let K(m,n) be the kernel matrix defined

as K(m,n) = k(Xm, Xn) where X =
⋃C

i=1 X
i. We used the Gaussian kernel,

k(x, y) = exp{− 1
2
‖x−y‖2

a2 }, a = 333.

The “between scatter matrix” is defined by P =
∑C

j=1 lj(μj−μ)(μj−μ)T with

μj = 1
lj

∑
∀n∈Xj K(m,n) and μ = 1

l

∑
∀n K(m,n). The “within class scatter

matrix” is defined by Q = KKT −
∑C

j=1 ljμjμ
T
j ; since Q must be a positive

definite matrix, we used Q = Q + rI to guarantee that Q is positive definite.
Finally, α∗ is built with the C−1 largest eigenvalues ofQ−1P and the projection
can be computed as: y = Kα∗.
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Fig. 1. BS classification rates (Three classes). The first row shows the results using
FDA whereas in the second row, the results using KFDA are shown. Note that in
almost all the cases, the extended methods (Diff), which are built by concatenating
a single descriptor and its corresponding LBPuni

P,R histogram, achieved higher rates.

4 Experiments and Results

Parameter selection is a fundamental step in any classification problem; we used
10-fold cross-validation to estimate global parameters resulting in k = 20 neigh-
bors in the kNN classifier as the best case. Then, we applied leave-one-out cross-
validation to measure Specificity (Sp), Sensitivity (S), and Precision (P). We
carried out a comparison of each method using both Fisher Discriminant Anal-
ysis (FDA) and KFDA, (see Fig. 1 for BS and Fig. 2 for BWH). Since KFDA
generates non-linear boundaries among classes, the classification rates are better
than those achieved with FDA. Furthermore, we compared each method with
its extended version, which is built by concatenating a single descriptor and its
corresponding LBPuni

P,R histogram into a single sequence to represent a mixture
descriptor.

We computed the F1-Score = 2 ∗ P∗S
P+S for each algorithm and measured the

accuracy of the tests. For BS dataset, our proposal, CGF + LBPuni
P,R, achieved

the highest F1-Score with 0.8637. A straightforward comparison with the work
of Bruijne and Sørensen [3] is not possible because they reported a classifica-
tion rate using patches of 31 × 31 pixels as the best case. Here, we used larger
patches, which implies the risk of including different lobes that might have dif-
ferent emphysema and might decrease the classification performance. Using the
BWH dataset, our proposal also achieved the highest F1-Score with 0.6899. Men-
doza et al. [4] reported a F1-Score of 0.6440 using the kernel density estimation
approach.
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Fig. 2. BWH classification rates (Six classes). The first row shows the results using
FDA while in the second row the classification rates using KFDA are shown. The
extended methods, Diff , achieved higher rates than single texture approaches.

5 Conclusions

We proposed a novel approach to quantify emphysema patterns based on global
and local descriptors to form a single sequence that represent any given texture
patch. This approach simultaneously encodes global characteristics with local
information that leads to better classification rates. Additionally, we analyzed six
texture descriptors and compared their performance. Since the size of extended
descriptors increases exponentially, we applied KFDA via the kernel trick to
avoid computing a mapping function. This procedure resulted in an improvement
of the classification rates.
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Abstract. The Papanicolaou test is used for early prediction of cervical cancer. 
Computer vision techniques for automating the microscopy analysis of cervical 
cells in this test have received great attention.   Cell segmentation is needed 
here in order to obtain appropriate features for classification of abnormal cells. 
However, accurate segmentation of the cell cytoplasm is difficult, due to cell 
overlapping and variability of color and intensity. This has determined a grow-
ing interest in classifying cells using only features from the nuclei, which are 
easier to segment. In this work, we classified cells in the pap-smear test using a 
combination of morphometric and Haralick texture features, obtained from the 
nucleus gray-level co-occurrence matrix. A comparison was made among vari-
ous classifiers using these features and data dimensionality reduction through 
PCA. The results obtained showed that this combination can be a promising  
alternative in order to automate the analysis of cervical cells. 

Keywords: Papanicolaou test, features, texture, dimensionality reduction,  
classifiers. 

1 Introduction 

Cervical cancer is, after breast cancer, the most common form of this disease among 
the female population. Early detection of this has contributed to a considerable reduc-
tion of the associated mortality rate. The Papanicolaou test [1] is the standard proce-
dure currently used for early prediction of cervical cancer. In this test, microscopy 
analysis of the so-called pap-smear, a sample of cervical cells appropriately stained, is 
analyzed in a microscope to detect abnormal cells, which can be considered precur-
sors of the disease. However, there are some drawbacks associated to microscopy 
analysis of the pap-smear by human experts: some rate of false negatives appears due 
to subjectivity, routine and tiredness of the analysts. This has determined a growing 
interest in developing automated analysis procedures using computer vision tech-
niques. A typical image from the standard Papanicolaou test is shown in Figure 1. 

The analysis of pap-smears through computer vision requires prior image segmen-
tation, in order to extract appropriate features to classify the cells. A set of 20 mor-
phometric features, half of them related to cells’ cytoplasm have been used to classify  
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Fig. 1. A typical pap-smear image. The nuclei appear as dark spots within the clearer, coloured 
cytoplasm. 

the cervical cells in seven well defined classes, from which a benchmark database has 
been built [2]. Three out of the seven cervical cells classes are considered as normal 
and four of them are abnormal, thus raising two problems:  classification in seven 
classes, and binary classification in normal-abnormal. This work addresses the latter.  

A formal attempt to classify cervical cells using different classifiers and the pre-
viously mentioned features from nuclei and cytoplasm, with feature selection using 
genetic algorithms, is shown in [3]. Other classification approaches can be found in 
[4] and [5], using features that are mostly associated to cells’ morphometry, and  the 
latter using also four textural features, in this case applied to a technique called liquid-
based cervical smears, that differ from the standard pap test to which the present work 
is devoted.  In regard to segmentation, some works address the problem of finding an 
appropriate way to segment the cytoplasm [6], however, it has been found that the cell 
cytoplasm is very difficult to segment with good accuracy, due to overlapping of cells 
and their variability of color and intensity. On the other hand, the cell nuclei usually 
appear better defined in the images, and this allows improving segmentation accuracy. 
Therefore, some works have been devoted to nuclei segmentation in pap-smears [7], 
[8]. This situation has led to conduct research on the possibility of classifying cells 
using only features obtained from their nuclei as in [9], where nine nuclei morphome-
tric features were used. 

In this work, we explore the possibility of improving classification of cells in the 
pap-smear using information from the nuclei only, but additionally including texture 
features. This was motivated by the fact that staining in pap smears makes visible the 
chromatin textural patterns in the nuclei  and this information is used by cytopatholo-
gists to classify the cells [10].   

Here a method using morphological image processing [11] was employed to calcu-
late, from a given nucleus image, its gray-level co-occurrence matrix (GLCM) and the 
associated Haralick features associated to texture [12]. These features were used, 
together with the previously known morphometric ones, to construct a combined fea-
ture matrix. Dimensionality reduction using principal components analysis (PCA) was 
also employed, given the relatively large amount of features obtained. Four classifiers 
were used: linear, Mahalanobis distance, K-nearest-neighbors (KNN) and support 
vector machines (SVM). Comparison among classifiers’ performance was made 
through statistical methods [13] and results showed that using this combination of 
features, the binary classification results can be improved.  
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This article is organized as follows: in section 2, the main characteristics of the 
cells used in the experiments are described, as well as the methods used to calculate 
the texture features and the experiments to test the classifiers' performance.  We 
summarize and discuss the main results in section 3, and conclusions are exposed in 
section 4. 

2 Materials and Methods 

The cervical microscopy cell images used in this work were obtained from the Herlev 
database [2], which contains 917 annotated images, each with a manually segmented 
version that can be used as ground-truth. The different classes to which they belong 
are shown in Table 1.  

Table 1. Cervical cells in the Herlev image database 

Class    Category           Cell type 
Number 
of cells 

  Sub-   
totals 

1 Normal Superficial squamous epithelial  74 
  

2 Normal 
Intermediate squamous 

epithelial 70 
  

3      Normal Columnar squamous epithelial 98 242  

4 Abnormal 
Mild squamous non-keratinizing 

dysplasia 182   

5 Abnormal 
Moderate squamous non-
keratinizing dysplasia 146   

6 Abnormal 
Severe squamous non-

keratinizing dysplasia 197   

7 Abnormal 
Squamous cell carcinoma in situ 

intermediate 150 675  

2.1 Texture Analysis 

The set of features employed for classification is shown in Table 2, which included 
both morphometric and Haralick texture features. In order to obtain the latter, the 
GLCM from the cell nuclei was calculated. Once the nuclei had been segmented (an 
operation that is out of the scope of this paper), an image represented by a square 
matrix containing the texture pattern of the nucleus region was obtained. The problem 
associated to acquiring this matrix was formulated in terms of obtaining the largest x-
y oriented square that can be inscribed in the nucleus region.  This operation was per-
formed through morphological image processing in the following way: 
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1. Obtain a binary mask which represents the location of the segmented nucleus. 
2. Successively erode the nucleus mask with a square structuring element (SE) in-

creasing its side length one pixel per iteration, until the nucleus mask disappears.     
3. Go back one step and obtain the square SE that, when its side is enlarged just one 

pixel, completely erodes the nucleus mask. Using the erosion of the nucleus mask 
with this SE, pick one pixel from the resulting binary image. 

4. With the same SE used in step (3), perform a dilation of this pixel. The result will 
be a largest inscribed square in the selected nucleus.  

5. Use this binary square as a mask and perform an array multiplication with the nuc-
leus image to obtain a square matrix in grayscale containing the nucleus texture. 

6. Expand linearly the intensity of this image to the maximum interval allowed, in or-
der to enhance its contrast. 
 

This process is illustrated in Figure 2. The co-occurrence matrix of this image [12] 
was calculated for three pixel offset values (1, 4, 7) and four spatial orientations (0, 
π/4, π/2, 3π/4), forming a three dimensional array in which the spatial orientation 
corresponds to dimension 3. A final co-occurrence matrix was obtained by selecting 
the maximum along dimension 3, as we are interested in the most significant co-
occurrence values independently of their associated spatial orientation. 

Table 2. Morphometric and texture features  

Nuclei features/morphometric 

Mean intensity Area 

Maximum intensity Perimeter 

Minimum intensity (Area)1/2/Perimeter 

Solidity Entropy (grayscale image) 

Eccentricity  

Nuclei features/Haralick coefficients 

Autocorrelation Sum of squares: Variance 

Contrast Sum average 

Correlation Sum variance 

Cluster prominence Sum entropy 

Cluster shade Difference variance 

Dissimilarity Difference entropy 

Energy Information measure of correlation 1 

Entropy Information measure of correlation 2 

Homogeneity 1 Inverse difference (INV) 

Homogeneity 2 Inverse difference normalized (INN) 

Maximum probability Inverse difference moment norm. 
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Fig. 2. A sample is obtained from a cell’s nucleus. (a) Grayscale image from the Herlev data-
base, (b) the corresponding nucleus mask (red) and the inscribed square (white), (c) the grays-
cale sample obtained using the mask and (d) the sample after enhancing its contrast. 

After this, the set of Haralick features was calculated, finally forming a feature matrix 
of size Nc × (22+9), where Nc is the amount of cells contained in each class in Table 1.  

2.2 Cell Classification 

The cell classification process had two purposes: determining if using texture features 
meant a statistically significant improvement in classification accuracy and comparing 
the performance of various classifiers. Classes 3 and 4 from the Herlev database (see 
Table 1) were used to perform an abridged evaluation. The indexes of classifiers’ 
effectiveness used were: sensitivity (se), specificity (sp), positive and negative predic-
tive values (pp and np) and the F-measure (harmonic mean of se and sp) with empha-
sis in the last two. The classifiers evaluated were: linear, Mahalanobis distance, k 
nearest neighbors (KNN) and (after testing some SVM options), a Gaussian radial 
basis function kernel SVM with σ=2. In all cases, dimensionality reduction (DR) by 
principal components analysis (PCA) was employed. Several values of DR were em-
ployed and the best among them was used when comparing the classifiers. 

An m-fold cross-validation (m=20) was performed in which the indexes of effec-
tiveness were calculated. The series of indexes values were used for determining, 
using the Friedman test [13], if there was a statistically significant difference in two 
situations: (1) among the alternatives of features used: morphometric only, texture 
only or both, with various alternatives of dimensionality reduction, and (2) among the 
various classifier algorithms employed.  

3 Results and Discussion 

3.1 Classification Performance for Different Alternatives of Features  

After performing several tests, we determined the most favorable values for PCA data 
reduction as well as the classifier with best performance. Table 3 shows the values of 
the indexes of effectiveness for the Mahalanobis classifier, with morphometric fea-
tures only, without PCA data reduction and with DR to seven features, as well as 
using texture only and all the features, the latter two with 17 features after DR. Notice 
that the highest pn and F-measure values were obtained using all features with DR to 
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17 features. The Friedman test was realized using results from a 20-fold cross-
validation, with the four data reduction alternatives as related samples. The  result for 
the Mahalanobis classifier is shown in Table 4, in which the higher rank was obtained 
for the all-features case, DR to 17, for the F-measure (p<0.05). Further pair-wise 
analysis using the Wilcoxon signed rank test tended to confirm the superiority of this 
alternative, although this result is somewhat limited due to correlation in the training 
data. Results were similar for the np index, and for the rest of the classifiers, the best 
performance in most cases appeared when using all features with DR to 17, regarding 
F-measure and np. Image resolution and offset values could also affect these results.  

3.2 Determining the Best Classifier 

After performing the previous experiments, we made a comparative evaluation of the 
various classifiers, again with an m-fold cross-validation with m=20, now using the 
best alternative, i. e., both morphometric and texture features with PCA and 17 
features after DR. The Friedman test was used again, for which we made the 
classification using for all the classifiers the same grouping of cells in training and 
test sets in the cross-validation. The corresponding results are shown in Table 5. The 
ranks obtained suggest that the SVM classifier was the best. However, further pair-
wise Wilcoxon test showed that the statistically significant differences are among 
SVM-Mahalanobis and KNN-linear, the former pair being better in comparison to the 
second, with no statistically significant difference between the paired methods. 
However, there is an important difference in terms of computer time, as shown in 
Table 6. A binary classification for the whole Herlev database was made, and its 
results, although inferior, were consistent with those from the abridged experiment.  

Table 3. Results for the Mahalanobis classifier 

 Morphometric 
features 

Texture 
features 

Combined  
features 

  without DR DR to 7 DR to 17   DR to17 

np 0,895 0,823 0,677 0,910 
F_measure 0,916 0,917 0,854 0,971 

 

Table 4. Results of the Friedman test for the for the Mahalanobis classifier, p < 0.05 

Alternative Mean rank, F Mean rank, np 

Morphometric features without DR 2, 80 3,10 

Morphometric,  7 features after DR   2,23 2,03 

Haralick,  17 features after DR   1,00 1,00 

Combining all features, DR to 17 3,98 3,88 
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Table 5. Results of the Friedman test for the F-measure obtained with the different classifiers 
using the combined features with DR, p < 0.05 

Classifier Mean rank, F Mean rank, np 

Linear, combined, DR 2,03 2,33 

Mahalanobis, combined, DR  4,00 3,25 

KNN, morphometric, no DR 1,00 1,00 

SVM, combined, DR 2,98 3,43 

Table 6. Computer time for the various classifiers 

Classifier Time, s 

Linear 0,152 

Mahalanobis  0,151 

SVM 14,619 

KNN 0,155 

4 Conclusions 

In this work, binary classification of cells in the Papanicolaou test was performed 
using features from the cells’ nuclei only. Morphometric features of the nuclei were 
calculated firstly. Then a square sub-image from each cell nucleus was extracted 
using morphological image processing, and its GLCM and the associated Haralick 
features were calculated. These were combined with the morphometric data to build a 
feature matrix, whose  dimensionality was reduced through PCA. An abridged m-fold 
cross-validation experiment using classes 3 and 4 described in Table 1 was made. 
Results showed a more accurate classification in terms of the negative predictive 
value and the F-measure in comparison to using morphometric data only. From the 
classifiers tested: linear, KNN, Mahalanobis and SVM, the latter two showed better 
results. Classification results using the whole database, although inferior compared to 
the abridged experiment, tended to confirm the advantages of using also nuclei texture 
features. Evaluation of the classifiers was made using statistical hypothesis testing.  

The results obtained showed advantages from using also texture features when 
classifying cells in the Papanicolaou test using data from the nuclei only. This 
suggests a number of alternatives to be evaluated in future work, for example: 
exhaustive search for the best offsets in the GLCM, new  methods  to extract texture 
features like morphological granulometry, using kernel PCA or feature selection 
methods for dimensionality reduction, and trying other classifying algorithms. 
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1 University of Fribourg, Fribourg, Switzerland
2 Petru Maior University of T̂ırgu-Mureş, Romania
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Abstract. This study focuses on the effects of artificial cardiac tissue
in the excitation-contraction process of the ventricular muscle. We de-
veloped a spatio-temporal computerized model of the whole heart that
handles half millimeter sized compartments using 1 microsecond time
step. We employed the effect of muscle fiber direction, laminar sheets,
depolarization period and other parameters. The artificial tissue differs
from the normal one in several ways, so their describing parameters are
also modified. In our simulation the depolarization wave (DW) conduc-
tion speed of the artificial tissue was decreased by up to 3 times. In
presence of a two centimeter wide and 2 mm thick artificial tissue slice,
the maximal depolarization delay was 38 msec. Large ventricle size, low
conducting speed and spaciousness of the injured ventricular tissue are
the main generating factors of arrhythmia, while the location of the ar-
tificial tissue has secondary importance.

Keywords: ventricle modeling, geometry estimation, interpolation
techniques.

1 Introduction

In developed countries, cardiac failure induced by myocardial infarction, despite
several decades of research, still represents an important mortality factor. In
spite of the advances in surgical techniques, immune system suppression and
post-operative health-care, the life-saving and -extending effect of cardiac trans-
plantation remains limited by shortage of proper donors and weakened immune
system [1]. The development of proper artificial cardiac tissue (ACT) may elim-
inate both limiting factors [2].

As a first organ transplant substitution method, scientists have developed
cell-based therapies, where special myocardial cells were injected into the tissue
involved in infarction [3]. This approach was hardened by a massive apoptosis
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of the injected cells (about 90%) and the low rate of successfully differentiation
into cardiomyocytes [4].

Nowadays the construction of a properly functioning “bio-artificial human
heart” is still far away, but it became possible to create of three-dimensional (3D)
muscle equivalents that can be useful for cardiac regeneration. As a result of con-
tinuous progress in the last two decades, the transplantation of contractile ACT
and the replacement of degenerated tissue areas represent an important alterna-
tive to the whole organ transplantation [1]. Motivated to develop minimally in-
vasive procedures, physicians’ aim is to create biocompatible, non-immunogenic
heart muscle that has similar morphological and functional properties as healthy
cardiac tissue.

The myocardium, due to the cardiac progenitor cells [5], has a limited abil-
ity to recover after a serious injury, so the artificial tissue has to be surgically
attached to the damaged area [6]. In order to introduce the new tissue in the ordi-
nary work process, physicians have to create a proper capillary network [7]. The
main obstacle of the integration of artificial tissue into the organ represents the
cell apoptosis, caused by insufficient oxygen level in newly introduced tissue [8].
In the presence of this pathological condition, several parts of the artificial tissue
may modify their electrical and mechanical properties that can develop altered
depolarization and repolarization waves, causing rhythm irregularities [9]. The
dysfunction of electrical impulse propagation may develop cardiac arrhythmias
that perturb pump activity [10].

In the last decade several mathematical models and intelligent computational
methods were developed in order to perform real-time computerized simulations
of the whole heart, creating a useful tool to study cardiac dynamics [10,11]. These
simulations have many advantages: they are not perturbed by data acquisition
errors, the simulated values of all internal variables may be visualized, the size
and nature of artificial tissue may be studied before the real intervention and
the simulation may be stopped at any time for further improvements [12].

In the following we present the main benefits and dangers of the artificial
tissue implantation procedure. Our goal is to establish a modeling platform that
can a priori show the expected results of a future implantation. The negative
effects of an eventually inaccurate operations can also a priori analysed.

The main goal of this paper is to model the onset of possible rhythm problems
that can endanger the patient’s life. The rest of the paper is organized as follows:
Section 2 gives a detailed description of the cardiac excitation and contraction
in presence of artificial tissue. Section 3 presents and discusses several aspects
of modified depolarization and cardiac pump functionality, and the results of
simulations. In Section 4, the conclusions are formulated.

2 Materials and Methods

2.1 Modeling Background

In our study we used a multi-level modeling technique that is visualized in Fig.
1. Each modeling level and the main descriptor parameters were described in
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Fig. 1. The hierarchical structure of heart modeling, with all possible levels from in-
dividual cells to whole organ

our earlier work [12]. As described in the above cited paper, the main modeling
levels are: cell (type and state), cell connection, compartments, cardiac tissue
(type, structure and state), component and whole organ.

In our simulation the lowest entity is considered a compartment that has a
homogenous structure. These entities may contain only one cardiac cell type.
Each compartment may be in normal or pathological state, which describes its
electrical and mechanical behavior. All of these modeling units have unique acti-
vation potential function, mechanical contraction rules and a connection model
that determines the propagation of the depolarization wave and the mechanical
contraction of the cells. Moreover, the Purkinje system of the ventricles is also
constituted by such compartments. These Purkinje units are also included in the
connection system of the compartments.

As we move toward integration, we have to define the main properties of each
integration element, such as: tissue, component and whole organ. The basic tissue
parameters, such as fiber direction, anisotropy, depolarization period, laminar
sheets and cell inhomogeneity are determined by its consisting compartments.
The used component models enable us to determine the electrical excitation and
mechanical contraction of the heart chambers, thus supporting the volumetric
analysis and blood flow analysis for the given component or for the whole organ.

2.2 The Main Properties of Artificial Cardiac Tissue

The native cardiac tissue is a mixed structure of cardiac myocytes, fibroblasts,
smooth muscle cells, endothelial cells and macrophages. The population of each
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cell type varies by state, age, gender and tissue’s position. In our model the
ratio and nature of excitable cells is defined in tissue properties, such as: fiber
spatial orientation, level of anisotropy, shape of the activation potential that
determines the depolarization period, laminar sheets, cells and structure inho-
mogeneity [12]. Some biological properties are reflected indirectly in our model,
for example the number and spreading manner of fibroblasts are not expressed
directly but introduced in the level of conduction speed and level of anisotropy.
These simplifications allow a much higher simulation speed, while the most im-
portant biological parameters are not altered notably.

In artificial tissues, the cellular complexity is drastically lower than in normal
cardiac tissue. Several cell types are not present at all, and the overall structure
is more homogeneous. The cellular complexity can be enhanced by using un-
purified cardiac cell populations, but the cell arrangement cannot be controlled
sufficiently. A partially controlled cellular arrangement not always yields better
electro-mechanical properties instead of substantially higher cellular diversifica-
tion.

The mechanical properties of the artificial tissues significantly differ from of
the native ones. They usually are more sensitive to calcium regulation and may
produce a lower absolute force than native cardiac tissue.

Nowadays all engineered cardiac tissues suffer from the absence of vascular-
ization and perfusion. It is known that tumors cannot reach more than 3 mm
diameter without capillarization. In case of cardiac muscle that makes perma-
nent effort during contraction, the presence of sufficient nutrients and oxygen is
imperial, so individual sheets cannot be thicker than 2 mm. These layers can be
partially vascularized after the implantation [13]. The construction of a thicker
tissue layer demands the development of an inter-layer capillary system that
nowadays is a challenging physiological task.

The connection area between the implanted artificial tissue slice and native
myocardial cell allows significantly slower depolarization propagation than both
native and implanted tissue.

2.3 Details of the Simulation

The compartment-based simulation uses an adaptive spatio-temporal resolution,
so a 0.5 mm spatial and 1 μsec temporal resolution is used in case of depolar-
ization, and a significantly lower resolution (up to 5 mm and 1 msec) in resting
phase. The instantaneous resolution, given for each region and time segment
separately, depends on the derivative of the action potential (AP) function, con-
nections of the simulated compartment, nature of studied phenomena and some
restrictions implied by hardware or total simulation time considerations. The
highest spatial and temporal resolution is needed at the depolarization wave’s
front line that propagates in an inhomogeneous and fast conducting tissue due to
the fast voltage rise caused by fast sodium current [14]. The used spatio-temporal
resolution may vary in time due other important factors, such as: simulation of
various pathological cases especially arrhythmias, fragmentation of the depolar-
ization front line and presence of spacious low- or non-conducting isles.
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The above presented compartment-based representation was used to simulate
the electrical and mechanical behavior of all of cardiac cell types. The internal
state of each compartment is modeled separately, which allows their investigation
during the whole simulation. The connections among compartments are a priori
determined, but its properties may vary with both space and time, so we can
properly model the propagation of the depolarization wave and the mechanical
contraction of the compartments in almost all circumstances.

Several time- and state-dependent tissue-related parameters were involved in
our model that greatly influences the behavior of the compartment groups, such
as: fiber direction, level of anisotropy, average depolarization period, laminar
sheets and spontaneous cell inhomogeneity. The above mentioned parameters
were deduced for each compartment separately from the simulation circum-
stances. The study of these parameters enables us to determine the electrical
excitation and mechanical contraction of the cardiac muscle, thus supporting
the volumetric analysis for atria and ventricles.

The tissue level excitation mechanism is based on Fast’s work [15], but their
results were transformed into compartment compatible data, considering each
compartment as a secondary generator element, while the activation potential
applied for ventricular tissue compartments was determined by using the Luo-
Rudy II (LR) ventricular cell model [16,17]. Each compartment may generate
a depolarization wave if any adjacent elements are repolarized; otherwise, the
propagation is swooned [12]. The LR model accounts for dynamic changes of ionic
concentrations, so it can properly handle several pathological cases. Although
it contains few dozens of parameters instead of several hundreds used in newer
ventricular models [11], the propagation of depolarization wave in the artificial
tissue can be simulated properly.

During the simulation of a healthy cardiac activity, we employed the effect
of: muscle fiber direction (the ratio between longitudinal and transversal con-
ductivity varies from 2 to 10), normal and minimal depolarization period (con-
sidered 80-250 msec), laminar sheet effect (in-sheet transversal conduction 2-5
times faster than trans-sheet conduction), and cell inhomogeneity (using conduc-
tion speed differences for base-apex gradient (5%-20%), transmural epicardial-
endocardial gradient (5%-35%), left-right ventricular gradient (5%-15%)).

For pathological cases, normal parameter values were no longer maintained.
In our simulation the depolarization wave (DW) conduction speed of the injured-
but still functioning-tissue was decreased by up to 20 times.

The simulation of various pathological circumstances, of the artificial tissue
region or its barriers was performed using altered parameters [18,19]. For ex-
ample the effect of various anatomical modifications were considered as: mus-
cle fiber direction (the ratio between longitudinal and transversal conductivity
varies from 1 to 3), normal and minimal depolarization period (considered 70-
350 msec), laminar sheet effect (in-sheet transversal conduction 1-2.5 times faster
than trans-sheet conduction), and cell inhomogeneity (using conduction speed
differences for base-apex gradient (0%-25%), transmural epicardial-endocardial
gradient (0%-50%), left-right ventricular gradient (0%-25%)).
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3 Results

Fig. 2(left) presents the depolarization time of the ventricles in presence of a
serious injury, covered by a two millimeter wide slice of artificial tissue. The
injury is situated in the left paraseptal location. The depolarization time was
calculated from the excitation moment of the atrio-ventricular (AV) node-HIS
bundle system. The dark area visualizes the later excited tissue.

Fig. 2. (left) The depolarization time of the ventricles in presence of a 2 mm wide artifi-
cial tissue, implanted in top of the injured region situated in the left anterior paraseptal
location. The depolarization time was determined from the excitation moment of the
AVnode-HIS bundle system, and expressed in msec; (middle and right) The sectional
representation of the depolarization time in ventricles. In the left side a normal ventri-
cle is presented, while in the right side an anatomically similar ventricle had a serious
injury, covered by a two millimeter wide slice of artificial tissue. The depolarization
time was determined from the excitation moment of the AVnode - HIS bundle system.
The sectional representation of the depolarization time in ventricles. In the left side a
normal ventricle is presented, while in the right side an anatomically similar ventricle
had a serious injury, covered by a two millimeter wide slice of artificial tissue. The
depolarization time was determined from the excitation moment of the AVnode - HIS
bundle system.

In the middle and right sections of Fig. 2, we get an insight into the de-
polarization phenomena of the inner ventricular structure, solved by a sectional
representation. As shown in the figure, the depolarization time was counted from
the excitation moment of the AV-node-HIS bundle system. In the middle section
of Fig. 2 a healthy ventricular tissue is presented, while in the right section the
ventricular tissue is seriously damaged, and is covered by a functioning slice of
artificial tissue.

Table 1 presents the simulation results for healthy and injured tissue. The
total depolarization time of the ventricle in presence of a 2 cm wide and 2
mm thick artificial tissue, situated in the right posterior region can reach 109
msec (counted from the excitation moment of the AV-node-HIS bundle system),
while in case of a healthy ventricle the total depolarization time was 77 msec.
The maximal depolarization delay highly depends on the size of the artificial
tissue and slightly from the injured region. The 38 msec maximal delay was
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Table 1. Simulated physiological parameters

Simulation parameters of the ventricles
Case Healthy Injury and
study Studied phenomena tissue artificial tissue

1 Total depolarization time 77 msec 109 msec

2 Maximal depolarization delay 0 msec 38 msec

3 Contractile efficiency 100 % about 65 %

4 Maximal heartbeat rate (beats/min) 300 about 250

determined for a 2 cm wide ACT situated in the posterior region, while the
subjacent tissue was completely isolator. The contractile power of an injured
ventricle with a 2 cm wide infarcted area in best case may reach half of the normal
value. Our simulations show a 15% contractile power increase due the presence
of ACT. Due to the presence of artificial tissue, de maximal heart bit rate was
reduced by 50 beats per minute. It is important to mention that an altered
shape of depolarization and repolarization may induce arrhythmias. As the heart
rate becomes higher, the additional risk may drastically increase. The maximal
heart beat was determined from the increase of the total cardiac depolarization-
repolarization cycle duration. We expected that ACT cells repolarize at least as
fast as the middle (m cells) of the ventricular tissue.

In case of high heart rate the delayed excitation of the ACT may induce
irregular depolarization process that can develop various arrhythmias. The level
of delayed excitation of ACT highly depends on its size and the nature of the
subjacent tissue.

4 Conclusions

We created a simulation environment to show the effects of artificial tissue.
The simulation was performed for a 2 cm wide and 2 mm thick artificial tis-
sue. From the results of this simulation we concluded that the artificial tissue
may enhance the cardiac pumping function, but also may increase the chance to
develop arrhythmias. Numerical calculation confirms that occurring arrhythmia
may develop ventricular fibrillation. This deadly phenomenon is promoted by
diverse factors, such as: inhomogeneity in ventricular tissue, high excitation fre-
quency, presence of accessory pathways, slow depolarization (due to thick walls)
or repolarization and greater than normal ventricular size. Computerized simu-
lation represents a non-invasive visualization tool than helps us understand the
inner cardiac process in normal and pathological cases, and may help to select
the most endangered patients that can enhance the efficiency of health care.
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Abstract. Quantifying concentrations of target molecules near cellular
structures, within cells or tissues, requires identifying the gold particles
in immunogold labelled images. In this paper, we address the problem of
automatically detect them accurately and reliably across multiple scales
and in noisy conditions. For this purpose, we introduce a new contrast
filter, based on an adaptive version of the H-extrema algorithm. The
filtered images are simplified with a geodesic reconstruction to precisely
segment the candidates. Once the images are segmented, we extract clas-
sical features and then classify using the majority vote of multiple clas-
sifiers. We characterize our algorithm on a pilot data and present results
that demonstrate its effectiveness.

Keywords: Adaptive H-extrema, Mathematical morphology, Immuno-
gold particle detection, Pattern recognition.

1 Introduction

Immunogold staining (IGS) is a technique used in electron microscopy (EM) to
localize a molecule of interest – target molecule. This often achieved by attaching
a primary antibody to the molecule of interest, which is then linked to the
immunogold particle through a secondary antibody. After the gold particles are
attached to the target molecules in this manner, the specimen is imaged using
an electron microscope where the gold particles appear as “dark spots” due to
the high electron density (see image 1). The IGS allows indirect visualization of
target proteins and their approximate locations (the distance between primary
antibody and immunogold is in range 15 to 30nm). The immunogold particles
are extremely small and so the IGS is typically employed in studies where cells or
tissues are imaged at high resolution. The high resolution images in such studies
are manually tagged, which is a time consuming process.

In this paper, we describe a new scheme to automatically detect the immuno-
gold particles in high resolution images. We first explain the challenges in this
problem (section 2), and then describe a new adaptive version of H − extrema,
a mathematical morphology algorithm (section 3.1) for accurately detecting the
particles in all conditions. In Section 4, we evaluate our method empirically to
understand its capabilities and limitations and report results.
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2 Problem Description

Immunogold particles appear as dark spots under good imaging conditions. How-
ever, the acquired EM images vary significantly depending on conditions of im-
age acquisition, which are difficult to control precisely. These variations makes
it difficult to detect or locate the immunogold particles in the image. The most
common variation is the magnification of the EM images; figure 1 (left and mid-
dle) shows the same group of golds acquired with two different magnifications.
The change in magnification, not only impacts the scale of the objects in the
view, but also the shape and the intensity profile of the gold. Moreover, as shown
in Figure 1, the intensity of the image is effected by the presence of relatively
larger (dark) structures in the close neighborhood. Another factor that influ-
ences the quality of the image relates to noise or fuzziness, as shown in Figure 1
(right), arising from variations in specimen preparation, image acquisition, clus-
tering of particles in the same location and the nature of organic tissue. The
above mentioned variations can substantially affect the appearance of the gold
particles, making the task of automatic detection challenging.
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Fig. 1. Example of set of golds acquired at different magnifications (top left and mid-
dle), with different contrasts in the same original image (top middle and right), and
their corresponding intensity profiles along the red segments

3 Our Approach

Let f :

{
E → T
x �→ f(x)

be a gray-levels image, where E ⊂ Z2 is the support space

of pixels and the image intensities are discrete values which range in a closed
set T = {t1, t2, ..., tN}, Δt = ti+1 − ti, e.g., for a 8 bits image we have t1 = 1,
N = 256 and Δt = 1. Let us assume also that image f is segmented into its
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J flat zones Rj [f ] (i.e., connected regions of constant value): E = ∪Jj=1Rj [f ],

∩Jj=1Rj [f ] = ∅. The size (surface area) of each region is s(j) = |Rj [f ]| (|.| the
cardinal). Hence, we consider that each zone Rj [f ] has associated a constant
gray-level intensity g(j).

3.1 Review: H-Extrema

H-extrema, a mathematical morphology algorithm [1,2], is a powerful non-linear
filter to detect structures with certain intensity profile. The algorithm is com-
prised of two distinct algorithms – the h-minima and its dual operation the h-
maxima. The h-minima (resp. maxima) detects dark (resp. bright) patterns with
a intensity range of at least h. A constant h is added (resp. subtracted) to the
original image f . The new image with f+h (resp. f−h) is used in an over (resp.
under) geodesic reconstruction, OverRec(f, f + h) (resp. UnderRec(f, f − h)).
In effect, the algorithm erases all dark (resp. bright) patterns with an intensity
range lower than h, retaining all other structures (flat zone with a lower/higher
gray level value than its neighborhood), as illustrated in Figure 2(b). So each
local extremum in the resulting image corresponds to a local extremum in the
original image with at least a dynamic range of h.
The main inconvenience of h-extrema is the fixed value of h that is added to
or subtracted from the entire image. The fixed value doesn’t take into account
any local information, and hence it is not optimal for our task of gold detection.
Figures 2 (b and c) illustrate this weakness. Often, gold particles close to dark
areas are merged with the neighborhood, and thus erased.

3.2 Adaptive H-Extrema

We introduced a simple new adaptive version of h-extrema, which we refer to as
A-Extrema, where for each pixel we adapt the value of the additive parameter h
according to its neighborhood.

First a filter F is applied on the original image f , in order to get a new sim-
plified image Gf , smoothed and containing only (preferably) global variations.
Next, in the case of a-minima, for each pixel x of f , the value added is computed
according to a function A and the corresponding value of x in Gf , A(Gf (x)).
Finally the same over reconstruction is performed, as in h-minima. The algo-
rithm 1 enumerates all the steps:

Data: Image f , filter F , function A
Result: Result image Aminf

begin
Gf ← F(f) ;
Addf ← f +A(Gf ) ; [⇔ ∀x, Addf (x)← f(x) +A(Gf (x))] ;
Aminf ← OverRec(f,Addf ) ;

end
Algorithm 1. A-minima algorithm.

In our application, we chose the filter F to be an alternate sequential filter (ASF,
alternation of openings and closings with structuring elements of increasing sizes
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[1]) because it simplifies the image without being affected by small local patterns.
Moreover, ASF is known for its insensitivity to noise, which is useful in our
application. For the ASF, we use disk type as our structuring elements, whose
maximum radius equal to gold particles sizes so that we can erase them while
computing the global variations.

For the function A, we compute a percentage. Thus, in our adaptive algo-
rithm h is computed as a proportion of the global variation computed from the
neighborhood of each pixel according to F . Thus by design, in dark areas a low
h value is employed, whereas a high h value is employed in bright areas.

)c()b()a(

)f()e()d(

Fig. 2. The original image (a) and the various processes: the 43-minima result (b) and
its local minima in white (c), the ASF result (d), the a-minima result for 43% of the
ASF (e) and its local minima in white (f)

The image 2 e shows the A-minima result. The percentage for the function A
needs to be computed empirically. In our example, we collected the statistics of
contrasts in gold particles and found that the dynamic range was at least 43%.
This is compared with h-minima results using the optimal value, h = 43. The
figure illustrates the advantage of our A −minima algorithm, which preserves
gold particles with higher fidelity in both bright areas with high contrast and
dark areas with low contrast. Thus, the combination of the filter F and the
function A is effective in preserving the gold particles under different image
contrasts.
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Remarks:

– We preferred the ASF to classical mean or Gaussian filters, because it is not
affected by noise and small artifacts.

– This new adaptive method can be adapted for the dual operation, A-maxima,
to detect peaks.

– The function A can be generalized to larger class of functions. For example,
in case of the detection of dark patterns in sub-exposed images, A can be
modified as Addf ← f + Invert(Gf )× p to be more effective.

3.3 Detection of Gold Particles

The A-minima preserves the sufficiently contrasted dark patterns and removes
all other patterns with a lower contrast, thus provides a simplified image Aminf .
On the image Aminf , we apply a new ASF in order to estimate the new global
variations and then we compute the difference between the ASF result and the
simplified image in order to extract all candidates: Cf ← ASF (Aminf )−Aminf .
Each candidate is then isolated and characterized with 17 features:

– Geometrical Features: the surface and 3 radii (maximum, minimum and
average). All these physical measures are ”real“ values estimated according
to measurements on the image and the magnification.

– Texture:
• Intensity Features: the average, the median and the range of intensity.
Note, since the candidates are identified after applying A−minima, their
dynamic range is guaranteed to be more than the minimum specified in
the algorithm. The average and median provides more information about
the intensity and shape.
• Basic moments.
• Contrasts.

– Shape (indexes) [3]:
• Circularity: according to radii and the inscribed disk. Gold particles are
expected to have a circular shape.
• Besicovitch symmetry: Even though the image of gold particles may be
merged, they still respect symmetry along a certain axis. Candidates
with no symmetry are unlikely to be gold particles.
• Gaussian: sigma of the best fitted circular 2D Gaussian and the residual
error of the fit. As illustrated in Figure 1, gold particles can be easily
approximated using Gaussians.

For each candidate, we compute the above features and experimented with
three different types of classifiers for identifying the gold particles.

– Logistic Regression [5] (RL) is a linear regression function particularly
well-suited to binary classification problems, allowing a variety of complex
features.

– Random Forests [6] (RF) is a powerful, state-of-the-art classifier, consisting
of an ensemble of trees.
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– Neural network [7] (NN) is non-linear classifier, whose parameters are learned
using back-propagation to minimize the cost function such as average
squared loss.

These three classifiers have very different strengths, thus we expect different
types of errors. In our approach, we combine the results from all the three clas-
sifiers using majority vote.

4 Experiments and Results

4.1 EM Images

The EM images were acquired from a realistic biological experiment.
SKBR3 breast cancer cells were prepared for immuno-electronmicroscopy using
Tokuyasu’s method as previously described in [4]. Briefly, cells were chemically
fixed in 4% paraformaldehyde in PHEM buffer, washed and embedded in 12%
gelatin. After solidification, cell pellets were cut in small blocks and infiltrated in
2.3M sucrose. Blocks were mounted on specimen pins, frozen in liquid nitrogen
and ultra-thin 80nM sections were cut with Leica cryoultramicrotome. Primary
antibody recognizing protein disulfide isomerase localized in endoplasmic retic-
ulum was selected since it has been previously shown to work in immunogold
labeling for TEM (e.g. shown in [8,9]) and includes incubation with bridging
antibody (rabbit-anti-mouse IgG) and 5 nm protein A gold particles (from Dr.
George Posthuma, UMC-Utrecht, the Netherlands), followed by contrasting in
uranyloxalate and uranylasetate-methylcellulose. Imaging was performed using
iCorr microscope (FEI).

4.2 Results

We evaluate our method using a data set of images where all the immunogold
particles are manually annotated by experts. The data set consisted of 14 images,
containing approximately 8500 gold particles. The evaluation was performed
using a leave one out cross validation: an image is discarded from the data
set, all golds from the remaining images are used to train the classifier, the
discarded image is then processed and the result evaluated. The same process
is performed for all the images, thus for a data set of N images, each image is
used 1 time for validation and N − 1 times for training. The figure 3 left show
the results for all the magnifications available. We can observe that our method
provides particularly good sensitivity (nearly 100%) for magnifications from 1 to
∼ 3nm/pixel, with a comparable specificity, which indicates that false alarms are
minimal, and only gold particles are detected. Moreover, the area under ROC is
equal to 0.9797, which demonstrates that our algorithm is effective in this task.
For magnifications greater than 4nm/pixel, the performances decrease rapidly.
This is because at this magnification, a gold is represented by approximately 4
pixels, too few pixels to extract the relevant information accurately and robustly.
At this resolution, they could easily be confused with noise in the image.
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Fig. 3. The sensitivity/specificity obtained by the classifiers: without noise and accord-
ing to the magnification (left); with artificially added noise and for a fixed magnification
of 3.16nm/pixel (right)

(a) No noise (b) SD = 10 (c) SD = 20 (d) SD = 40

Fig. 4. Examples of detections with additive Gaussian noise at different standard
deviations

But in EM imaging, it is particularly frequent to acquire images altered with
Gaussian noise. In order to evaluate the algorithm’s noise sensitivity, we ar-
tificially added Gaussian noise at different levels with respect to its standard
deviation. These experiments were performed on images with a magnification of
3.16nm/pixel, the current limit of accurate detections of gold particles. The per-
formance of our algorithm is not significantly altered until the noise reaches a
standard deviation of 10. Figure 3 (right) illustrates that from 10 to 20 the
sensitivity decrease but not the specificity in spite of the fact that images
are already extremely degraded1 (see 4). At higher standard deviations, the
specificity starts to decrease and the number of false positive increases.

1 Experts do not analyze images with such quantity of noise.
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5 Conclusions

In this paper, we developed a complete pipeline for automatically detecting im-
munogold particles. First we introduced a new adaptive version of h-extrema
which filters contrasted patterns according to their dynamic and neighborhood: it
preserves contrasted patterns even in really low contrasted neighborhood. Then
this new method was successfully applied to simplify the images and find all
potential candidates. Each candidate was then classified using machine learn-
ing algorithms. The results on a data set of annotated images show that our
method detects immunogold particles in EM images with high accuracy, both
high sensitivity and specificity, even in highly noisy images.
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Abstract. The goal of this research is to use a bionic model to enhance classifi- 
cation of Dysarthria. The model based on the main features of the mammalian 
olfactory system is the initial stage of the recognition process. The bionic mod- 
el aimed to achieve an enhancement in the separation ability of the dysarthric 
features. The recognition performance obtained by four different pattern recog- 
nition algorithms using the bionic model to improve the features is shown and 
discussed. The results indicated that bionic model had clear influence on classi- 
fication performance of well-known techniques using dysarthria database as 
case study. We regard the results of this study as a promising initial step to the 
use of bionic model as a recognition improvement function. 

Keywords: pattern recognition, bionic model, dysarthria. 

1 Introduction  

Nowadays one of the persistent problems in the study of pattern recognition is the 
efficient description of relevant features and the best selection of the artificial intelli-
gent network to the classification tasks. Neural network theory is an old research topic 
that has been widely used in recent years. Computational power developments and 
mathematics of complexity have made the field succeed during the last years, and 
made a significant approach to simulate complex biological systems.  

As one of the most important sensory modalities in the sensory systems of mam-
mals, olfactory nervous systems have attracted many researchers during the last years. 
Some models have been developed to emulate the functions of olfactory nervous  
systems [1, 2]. The olfactory nervous system is relatively simple and well-known 
functionally and morphologically, and is an interesting system for understanding the 
cognitive processes performed in the brain. Even when some brain processes remains 
unclear, many aspects of olfaction, such as the mechanisms of reception and central 
processing or the nature of the stimuli have been fairly extensively studied [3, 4]. 

In helping to understand the olfactory information processing many mathematical 
models that mimic the main feature of the olfactory system have been applied to pat-
tern recognition, often with remarkable results [5–7]. Therefore this is the approach 
followed in this research, where a novel methodology for dysarthria classification is 
designed and implemented.  
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Dysarthria is a term associated with a group of neurological diseases caused by le-
sions in the peripheral or central nervous system. Different speech perturbations are 
associated to the type and location of the lesions, which are correlated with both: the 
kind of dysarthria and the brain damage. The speech is one of the mechanisms that are 
more sensitive to lesions in the nervous system due to the precise coordination and 
timing required for normal speech production. Therefore, the study of the speech in 
patients suffering this pathology can reveal important information for assessment and 
treatment, increasing the reliability and effectiveness of the diagnosis process. 

The goal of the present research is to introduce a bionic model, inspired on the 
mammalian olfactory system, to improve the classification process through enhan-
cement of the data under analysis. The bionic model is formed from a bulbar model 
which mimics the behavior of excitatory mitral and inhibitory granule cells, and a 3-
layered cortical model, which emulates the structure and behavior of the piriform 
cortex [8, 9]. Unsupervised bionic model allows for the weightings of the input acous-
tic measures to be determined on the basis of the inherent nonlinear regularities of the 
input data space. Unsupervised learning is particularly advantageous when no gold 
standard exists for classification. It is hoped that by using a bionic model, which is 
trained using few samples, will provide an upgrading to the data resulting in a better 
classification result. 

2 Bionic Model  

The bionic model emulates the main structural features of the olfactory system mi-
micking two main parts, bulb and cortex, and how they are connected via feed-
forward and feedback channels (Fig. 1). The researchers look for a balance between 
the wish for realism when comparing theoretical and computational results with expe-
riment, and the need for abstraction and simplification of the biological complexity 
for a mathematical analysis and computer simulation.  

The olfactory bulb can be viewed as the first central olfactory relay station extract-
ing specific stimulus features, a function characteristic of the primary sensory areas in 
the brain [10, 11]. The cellular structure of the bulb is well established and in this 
work, the olfactory bulb was modeled using a simple approximation of excitatory 
mitral and inhibitory granule cells. The activity of mitral cells was spatially distri-
buted such that odorants were represented in the bulb model by a distributed pattern 
of mitral cell activity [12, 13]. Mitral cells adjacent to each other project to the same 
or neighboring glomerulus. Among these models, the dynamics of every neural en-
semble is described using a second order differential equation (Eq. (1)), based on 
physiological experiments of the olfactory system [14]: ∑ ,      (1) 

Here i = 1 ,…, N, where N is the number of channels, xi(t) indicates the state varia-
ble of ith neural ensemble, xj(t) represent the state variable of jth neural ensemble, 
which is connected to the ith, Wij represents the connection strength between them. 
Ii(t) is an input function which stands for the external input to the ith channel. ε(t) is 
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noise or spontaneous neural activity. The parameters a and b reflect two rate con-
stants. q(xj(t),gj) is a static nonlinear sigmoid function derived from the Freeman 
model [1] and g represents the maximum asymptote of the sigmoid function, also 
experimentally obtained from biological trials. However, the exact form of these rela-
tions is not essential to the system behavior, as long as the shape is qualitatively con-
served. Since granule cells do not have axons, they are modeled using a larger linear 
range, and thus a less strong nonlinear threshold effect than for mitral cells. 

 
Fig. 1. Bionic model structure consists of two main parts (bulb model and cortex model) and 
their connections 

Basically, the piriform cortex structures belonging to the allocortex are thinner and 
structurally less complex (having three cortical layers) than the neocortex [15, 16]. 
The architecture of the cortical model was based on the 3-layered structure of the 
olfactory piriform cortex, using similar network connectivity, but relatively simple 
model nodes, representing populations of neurons. The two sets of inhibitory nodes 
have two different time constants and slightly different connectivity to the excitatory 
nodes. All connections were modeled with distance dependent time delays for  
signal propagation, corresponding to the geometry and fiber characteristics of the real 
cortex. 

Similar to previously described for bulb model, the time evolution for a cortical 
network of N neural ensemble is given by a set of coupled nonlinear first order diffe-
rential equations for all internal states, u. With external input, coming from the  
bulb, I(t), noise or spontaneous neural activity ε(t), characteristic time constant c,  
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and connection weights Wij between units i and j, separated with a time delay δij, the 
neural activity for each ensemble, ui, is given by: ∑          (2) 

The continuous sigmoid function, qj(uj), represents the input-output transfer func-
tion, experimentally determined by Freeman [1]. With gain parameter gj, determines 
the slope, threshold, and amplitude of the curve for jth ensemble and D a normaliza-
tion constant, qj, is described by: 1   )                                    (3) 

It has been previously shown that the model displays major characteristics of the 
olfactory cortex dynamics. A typical EEG (encephalogram) time series from the cat 
olfactory cortex is shown in Fig. 2, together with a simulated EEG trace using the 
current model. Oscillatory and aperiodic dynamic behavior was shown to improve the 
performance by reducing the recall (convergence) time in associative memory tasks. 

 

 

Fig. 2. Simulated (top) and real (bottom) EEG, showing the complex dynamics of cortical 
structures. The real trace is from cat olfactory bulb (data courtesy of Walter J. Freeman), 
whereas the simulated trace is from a simulation with the current cortical model. The x-axis 
shows milliseconds, and the y-axis is in microvolts. 

While time constants, signal velocities, and other system parameters are deter- 
mined by physiological constraints, the connection weights should be adjusted proper- 
ly for the best performance of the model. The bionic model presents two learning 
processes: Hebbian associative learning and habituation. These learning processes 
exist in a subtle balance and their relative importance changes at various stages of the 
memory process. The memory basins and attractors are formed via Hebbian learning 
under reinforcement, while the impact of environment noise, which includes the 
background inputs without any information, is reduced by habituation.  

The learning processes are applied to the bulb model and to the cortex model. Ac- 
cording to modified Hebbian rule, each pair of nodes co-activated by the stimulus 
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have their lateral connections strengthened. The nodes with activities larger than the 
mean on the layer are considered as activated ones and strengthened with the Hebbian 
coefficient. In contrast, those with activity less than the mean are not considered to be 
activated ones and these connections are decreased by the Habituation coefficient and 
the simulation period. A bias coefficient is defined in the modified Hebbian learning 
rule to avoid the weight space saturation. These processes are applied in bulbar mitral 
layer and middle cortical layer. 

3 Case Study 

This study was carried out using speech datasets that contain records from eight types 
of dysarthria among which are: Spastic Dysarthria, Flaccid Dysarthria, Ataxic Dy-
sarthria, Hyperkinetic Dysarthria (organic voice tremor, chorea and dystonia), Hypo-
kinetic Dysarthria (Parkinson disease) and Mixed Dysarthria (Amyotrophic Lateral 
Sclerosis). For the particular case study analyzed in this research each kind of dy-
sarthria defines one class in the classification task and comprehend an average of 14 
subjects taken from 2 databases corresponding with different levels of the severity of 
the illnesses. The kind of severity of the sickness is annotated in the databases, where 
a total of 38, both perceptual and acoustic features, are also given. The first dataset 
was created including 62 patients [17]. The second dataset was a selection of dy-
sarthric speakers from a database collected by Aronson and colleagues [18]. A total 
of 14 normal subjects were used as control to contrast the differences between the 
pathologic and normal speech. 

The perceptual and acoustical measures contained in both databases were obtained 
from 3 utterances that provide more information about these diseases with less com- 
putational and storage requirements [19]. The utterances consisted of the sustained 
phonation of the vowel /a/, the repetition of the syllable /PA/TA/KA/ and the reading 
of the passage: 'The Grandfather' [20].  

Therefore a total of 127 samples were analyzed to classify subjects into nine dis- 
tinct groups, eight dysarthric groups and a control group. From a total of 38 features, 
36 (25 perceptual and 11 acoustic) were selected to provide information about the 
condition of the speech mechanism of dysarthric patients [21]. However, a multidi- 
mensional analysis of dysarthric speech revealed that not all of the 36 features pro-
vided valuable information about the dysarthric groups [17]. 

From this point of view, some linear analysis techniques (clustering of variables, li-
near discriminant analysis, best first) were applied in order to obtain a reduction in the 
number of features of the data [17, 22]. The resultant number of features was set to 20, 16 
and 12 after dimensionality reduction, following a commonly used rule in pattern recog-
nition that states a ratio of at least 10 cases per input observation. Finally four versions of 
the original databases were created with 36, 20, 16 and 12 features respectively. 

4 Results 

In this paper, we preprocess the four databases with the bionic model prior to the 
classification stage (Fig. 3). The bionic model transforms input features according to 
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its nonlinear dynamics.  This means that original features entering the mitral layer are 
modified inside the bionic model, and delivered by the middle cortical layer to the 
next stage.  
 

Fig. 3. Experimental setup for evaluating the influence of the bionic model performance in the 
final classification results using dysarthria databases 

In the final classification stage four well-known techniques like Support Vector 
Machines (SVM), Bayesian Network (BN), decision trees (J48) and Naive Bayes 
(NB) were applied. These machine learning algorithms are included into the data 
mining software WEKA [23]. The databases are randomly reordered and then split 
into n folds of equal size. The leave-one-out cross-validation method is applied. In our 
case n is equal to the number of examples (n = 127), and in each iteration of the cross- 
validation method, one fold is used for testing and the other n-1 folds is used for train- 
ing the classifier. 

Table 1. Percent of correct clasification of various methods with original and modified 
datasets, along with their corresponding MSSS as an improvement index 

Methods Dataset dimensions 
12  16 20 36 

SVM + original data 79.50 79.10 81.20 80.30 
SVM + modified data  81.10 79.50 79.50 82.80 
MSSS (%) 7.80 1.91 -9.04 12.69 
J48 + original data 66.10 66.00 68.50 62.20 
J48 + modified data 72.40 72.50 70.10 68.50 
MSSS (%) 18.58 19.12 5.08 16.67 
BN + original data 80.20 81.10 81.80 80.10 
BN + modified data 83.50 85.50 81.10 83.30 
MSSS (%) 16.67 23.28 -3.85 16.08 
NB + original data 70.00 71.60 66.10 64.90 
NB + modified data 73.20 72.90 68.50 65.40 
MSSS (%) 10.67 4.58 7.08 1.42 

 
The four datasets containing objective and perceptual judgments were evaluated 

with respect to the percentage of correct classification provided by each classifier 
using bionic model to pre-process the data and without using it. Moreover a skill 
score based on mean squared error (MSSS) is used as an improvement index in order 
to evaluate the impact of the bionic model in the final classification results. MSSS is 
defined as one minus the ratio of the squared error for the classification with modified 
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Classification 
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datasets to the squared error for the classification with original datasets. The result of 
the assessment process revealed that the bionic model allowed an improved classifi-
cation rate over the original databases in almost every trial, as shown in Table 1. 

These results show that the bionic model implementation is appropriate to en-
hance the classification of the dysarthric groups studied, providing a better percen-
tage of correct classification in almost every trial. In only two cases the bionic  
models worsened classification results. Particularly two of the four algorithms take 
significant advantage from the modified features introduced by the bionic model in 
the initial state of the data processing, J48 and BN. In general, modified dataset 
based on the bionic model outperforms the performance of almost every classifica-
tion techniques. 

5 Conclusions  

In this work, a bionic model mimicking the main features of the olfactory system has 
been analyzed, and its performance to improve dysarthric classification was shown. 
Our bionic model is constructed from two principal parts: a bulb model and a cortex 
model. The bulb model is composed of mitral and granule cells, whereas the cortical 
model mimics the 3-layered structure of the mammalian piriform cortex. 

The analyses performed have revealed that the model has the capacity to learn 
complex patterns due to Hebbian modification of the connection strengths of the M-
sets excitatory synapses in the bulb and the excitatory units on the cortical middle 
layer. The improvement in the classification of the dysarthric databases was shown. 

The current digital computers are the bottleneck for the models based on biological 
sensorial systems due to the time required to solve ODE by numerical integration. Nev-
ertheless, even when considering the memory requirements and the computational time 
demanded, the bionic model still cannot compete against conventional classification 
methods. The results obtained with this research have become a promising initial step 
into the use of the bionic model to improve other patter recognition tasks. 
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Abstract. Applying heart rate variability (HRV) analysis on ambulatory ECG 
monitoring is a very useful decision support tool for cardiovascular diagnosis. The 
presence of non-valid beats (artefacts) on the RR interval time-series affects the 
diagnosis accuracy using this technique. Despite the importance of artefacts  
recognition prior to exclusion, no paper was found characterizing quantitatively 
the performance of, on the one hand, the extracted features and, on the other hand, 
the clustering methods on artefacts recognition for HRV analysis. In this paper we 
evaluate the performance of several combinations of three feature extraction 
methods and four clustering methods (based on machine learning techniques) for 
the artefacts beats recognition on the ECG signal. The trade-off between  
performance indexes suggests the use of a non-linear principal component analy-
sis as feature extraction method and a multilayer perceptron (MLP) as clustering 
method, with sensitivity, specificity and positive-predictive-value (PPV) equal to 
respectively 95 %, 95.9 % and 98 %.  

Keywords: ECG, artefact detection, artificial neural networks, feature  
extraction, classifier.  

1 Introduction  

The ambulatory monitoring of electrocardiogram (ECG) during daily activities plays 
an important role in the diagnosis but presents the challenge of information loss due 
to the occurrence of technical and physiological artefacts that distort the ECG signal. 
Typically, more than 80 000 heartbeats per channel are recorded during 24 hours; so 
many computer-based methods for automatic ECG analysis have been studied for a 
long time. ECG recognition is a difficult problem even with the aid of a computer, 
because ECG waveforms may differ significantly even for the same beat type taken 
from the same patient. The architecture for morphological recognition of beats in 
ECG includes several stages as showed in figure 1. The core is the classifier com-
posed by features extraction (FE) and clustering stages, both based on computational 
intelligence techniques.  
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Fig. 1. Stages of an ECG-signal classifier system 

Some FE methods on ECG are based on: 

1. Morphologic features extracted from signal [1], [2]: amplitudes, interval dura-
tions or areas of waves or specific segments. 

2. Statistical parameters in time domain (mean, standard deviation, maximum, 
minimum, self-correlation-coefficients, histogram, etc) as well as in fre-
quency domain (QRS-complex-energy, power spectral density). 

3. The use of mathematical models to represent ECG wave and segments [3], 
like autoregressive models, linear prediction coefficients and curve fitting. 

4. The use of transforms: (a) Principal Component Analysis (PCA) [4], (b) Dis-
crete Cosine Transform (DCT) [5], (c) Wavelet Transform [3], (d) Time-
frequency distributions and (d) Hermite functions, among others. 

 
Several artificial neural networks (ANN) based clustering methods that automati-

cally classify heart beats have been proposed in the last years. Multilayer Perceptron 
(MLP) is one of the most referred [1]. Other clustering methods (in descending order) 
are support vector machine (SVM), learning vector quantization (LVQ) and radial 
basis functions (RBF). 

In order to validate the HRV analysis [6], it should be verified that each detected 
R-point corresponds to a complete beat resulting from sinus node depolarization 
without any type of atrioventricular blockade. Otherwise, the beat will be considered 
as an artefact located in the corresponding positions of the RR time series, and it 
should be excluded of the analysis. The heart beat artefacts can have either a physio-
logical (e.g. arrhythmias) or a technical (e.g. spikes and noise) origin. 

Although there is an extensive diversity of publications about arrhythmia recogni-
tion [7-9], no publication was found characterizing quantitatively the performance of 
the FE and clustering methods for recognition of heart beat artefacts. There is a recent 
work [10] that compares several FE methods according to simplicity, accuracy and 
positive predictive value, but only on the qualitative point of view and not including 
artefacts beats. This paper does not analyze the execution time or other indexes, nei-
ther others FE methods as popular as DCT and linear PCA. 

In a previous work [11], three FE methods were characterized, using an MLP net-
work as a gold standard for clustering. The higher performance corresponded to non-
linear PCA, also named kernel PCA (KPCA). The previous research left the following 
question: will another cluster method exist with a better performance? 

The aim of this work is to validate the performance of three FE methods combined 
with four clustering approaches to detect non-valid beats (artefacts beats) for HRV 
analysis. 
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2 Methodology  

2.1 Data  

The MIT-BIH arrhythmia database is used for training and validation. This database 
consists of 48 30-min two-lead recordings (series 100 and 200) sampled at 360 Hz, 
for a total of 24 hours [12]. The development platform was MATLAB 7.7. 

The beat classes’ global distribution from this database has 110288 beats: 75056 
normal beats and 35232 artefact beats. Thus, around the 70% of the beats were  
classified as normal beats (resulting from sinus node). There are 17 classes of beats 
(ectopic, left and right bundle blocks, and others) that are grouped in a class: artefact 
(ARTF). Every normal beat belongs to the normal (NORM) class. 

Initially, a partial evaluation using 4000 beats (2000 for training and 2000 for vali-
dation) was made in order to find the best clustering method for this sample. Then, a 
global evaluation was made for the entire database using the clustering  method 
found. Of the 4000 beats belonging to different database records, were chosen 2000 
for each class according to the following criteria: from each record with more than 50 
beats of NORM class (40 records), 50 beats were randomly chosen. For the beats of 
the ARTF class the criterion is the following: from each record with more than 375 
beats (25 records) from ARTF class, 80 beats were randomly chosen. 

2.2 Stages of the Classification System Beats  

Preprocessing: To eliminate baseline drift and high frequency noise, a bandpass filter 
is used, consisting of a high-pass filter (Butterworth, zero-phase, 6th order, cutoff 
frequency equal to 0.6 Hz) in cascade with a low-pass filter (Butterworth, zero-phase, 
12th order, cutoff frequency equal to 45 Hz). Subsequently, the average value  
was eliminated so that the signal is converted into a signal of unit variance. This  
standardization is performed to achieve invariance with respect to the amplitude, for 
any beat. 
 
R Peak Detection: Because the R peak detection has been broadly described, no 
further discussion on this subject is pursued in this paper. In [13] there is an extensive 
review of recent approaches for R peak detection. Any R peak detector with  
demonstrated robustness can be used. In this work, R peak annotations were used for 
each beat, which is equivalent to employing an infallible algorithm to estimate the R 
peaks on the ECG signal. Thus, the results depend only on the clustering methods and 
not on the R peak detection approach. 
 
Segmentation: An asymmetric window of fixed size around the R peak was used. 
The length of the window was equal to 235 samples (i.e., the maximum value)  in-
cluding the R peak point. For the selection of the number of samples to the right and 
to the left around the R peak, the mean of the PR/QT is used for minimal and maxima 
values, yielding to 39 % @ 360 Hz, resulting in approximately 39% of the samples 
located on the left (92 samples) and 61% on the right (142 samples). 
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Classifiers: The classifier consist on the combination of three FE algorithms: DCT, 
PCA and KPCA with four types of machine learning techniques (MLP, LVQ, RBF, and 
SVM). From FE stage, it is possible to obtain the following number of components: 

DCT        PCA   KPCA 

LVK ≤≤1    LVK ≤≤1   MK ≤≤1  

Where, VL is the vector length (in samples), M is the vector number and K is the num-
ber of components for FE stage. In this case, VL is equal to 235, M is equal to 2000, 
and K is equal to 10, 15 and 20 components (generating 12 classifiers in total). 

To train the MLP classifiers, a network was created with hidden layer architecture: 
n - 2n - 1, i.e., n input neurons, 2n neurons in the hidden layer and one output neuron 
(architectures: 10 - 20 - 1, 15 - 30 - 1 and 20 - 40 – 1). The activation functions are 
hyperbolic tangent and linear in the hidden and output layers, respectively. 

For the LVQ classifier, n neurons in the input layer and two neurons in the output 
layer (2 classes) are employed while for the RBF classifier uses a simple algorithm to 
search the optimal dispersion parameter in the range (0.1 - 10). Each classifier has n 
radial basis neurons and one linear output neuron. 

The SVM classifier is the only one for which the number of beats (N) is reduced to 
1000 due to high computational cost. Thus, one might expect a lower performance, 
because only a quarter of the available set is employed. 

The performance evaluation for each classifier was carried out by computing three 
indexes: Specificity (Sp), Sensitivity (Se) and Positive Predictive Value (PPV), from 
the confusion table defined for the NORM and ARTF classes (Figure 3):  
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Fig. 2. Confusion matrix for each classifier. TP: true positive, TN: true negative, FP: False posi-
tive, FN: false negative, Se: Sensitivity, Sp: Specificity, PPV: positive predictive value. 

2.3 Validation and Comparation of Classification Methods 

To test whether the differences between classifiers are statistically significant, we 
used the McNemar's Test, based on the calculation of McNemar statistic, defined as 
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Where:  
n01: number of miss-classified samples by A but not by B. 
n10: number of miss-classified by B but not by A. 
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The statistic ⏐z⏐was calculated for all possible combinations of each pair of  
classifiers. The null hypothesis H0 (the classifiers have the same error) can be  
rejected with an error probability of 0.05 if ⏐z⏐> 1.96. The alternative hypothesis H1 
is that the classifiers have different errors, i.e., the differences in performance indexes 
are statistically significant. 

3 Results and Discussion  

3.1 Partial Evaluation 

Tables 1 to 6 show the performance indexes of the four classifiers with 10, 15 and 20 
components (features) both for training and validation.  

Table 1. All Classifiers using DCT (Training) 

Training 

Classifier 
Sp (%) Se (%) PPV (%) 

10 15 20 10 15 20 10 15 20 

DCT+ MLP 97.8 97.1 97.4 97.7 97.8 97.6 97.8 97.1 93.2 

DCT+LVQ 75.8 83.6 79.4 91.6 79.5 95.6 79.5 84.8 76.2 

DCT+RBF 87.2 87.6 90.8 86.6 87.3 93.6 87.3 88.0 84.0 

DCT+SVM 72.8 80.9 82.0 80.1 76.0 81.7 76.0 82.3 73.8 

Table 2. All Classifiers using DCT (Validation) 

Validation 

Classifier 
Sp (%) Se (%) PPV (%) 

10 15 20 10 15 20 10 15 20 

DCT+ MLP 93.3 93.2 94.6 94.2 96.3 96.6 93.2 93.3 94.6 

DCT+LVQ 71.8 80.8 75.2 91.7 88.9 96.2 76.2 82.0 79.2 

DCT+RBF 83.9 82.9 89.9 85.9 89.7 92.5 84.0 83.8 90.0 

DCT+SVM 72.5 77.5 79.8 79.6 81.2 81.0 73.8 77.9 79.6 

Table 3. All Classifiers using PCA (Training) 

Training 

Classifier 
Sp (%) Se (%) PPV (%) 

10 15 20 10 15 20 10 15 20 

PCA+ MLP 96.9 98.6 98.5 97.8 97.7 97.4 97.0 98.6 98.5 

PCA+LVQ 80.2 79.0 84.7 93.8 93.1 95.4 82.8 81.3 86.4 

PCA+RBF 90.1 90.4 93.5 89.4 90.5 93.0 90.2 90.6 93.6 

PCA+SVM 82.8 84.4 84.4 79.2 84.6 85.9 83.2 85.4 85.6 
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Table 4. All Classifiers using PCA (Validation) 

Validation 

Classifier 
Sp (%) Se (%) PPV (%) 

10 15 20 10 15 20 10 15 20 

PCA+ MLP 94.2 95.9 95.9 94.5 96.2 94.9 94.2 95.9 95.8 

PCA+LVQ 78.1 81.9 82.2 91.3 94.1 93.8 80.4 84.1 83.9 

PCA+RBF 89.2 88.9 92.3 88.5 88.5 91.5 89.0 88.7 92.1 

PCA+SVM 81.4 82.5 82.1 81.3 84.7 84.2 81.0 82,6 82.2 

Table 5. All Classifiers using KPCA (Training) 

Training 

Classifier 
Sp (%) Se (%) PPV (%) 

10 15 20 10 15 20 10 15 20 

KPCA+MLP 96.8 98.4 98.3 98.0 98.6 98.8 96.9 98.4 98.3 

KPCA+LVQ 84.4 84.2 93.9 89.1 93.1 90.0 85.3 85.7 90.5 

KPCA+RBF 87.6 91.8 90.1 88.8 88.6 94.9 87.9 91.7 90.7 

KPCA+SVM 79.3 89.8 91.1 84.4 86.7 87.5 81.4 90.2 91.3 

Table 6. All Classifiers using KPCA (Validation) 

Validation 

Classifier 
Sp (%) Se (%) PPV (%) 

10 15 20 10 15 20 10 15 20 

KPCA+MLP 94.0 96.8 96.0 94.9 96.3 95.9 94.0 96.8 96.0 

KPCA+LVQ 83.0 82.9 89.5 88.0 90.4 91.9 83.6 83.9 89.6 

KPCA+RBF 87.0 91.2 88.6 88.3 88.5 92.7 87.0 90.8 88.9 

KPCA+SVM 79.8 88.6 89.2 84.5 87.4 89.0 80.4 88.2 88.9 

 
From the above results, it is evident that the MLP classifier gives the best results 

for all features extraction variants. 

3.2 Global Evaluation  

Table 7 shows the results of the evaluation for the entire database (110192 beats). 
Only, 96 beats were excluded: the first and the last of each record. It is evident that 
for 10 components in the feature vector, the PCA + MLP method outperforms in spe-
cificity and positive predictive value to the other two methods, although it is less  
sensitive than the DCT + MLP and KPCA + MLP, in that order. For 15 and 20 com-
ponents, the KPCA + MLP method is better than DCT + MLP and PCA + MLP, 
showing indexes greater than (or equal to) the best shown by the other two methods. 
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Table 7. All Classifiers using MLP 

Validation 

Classifier 
DCT PCA KPCA 

10 15 20 10 15 20 10 15 20 

Sp (%) 93.9 95.4 96.2 95.4 95.9 96.7 94.6 96.4 96.7 

Se (%) 94.6 95.2 94.7 93.9 94.8 93.9 94.4 95.2 95.4 

PPV (%) 97.1 97.8 98.1 97.8 98.0 98.4 97.4 98.2 98.4 

 
The experiments show that KPCA has a higher performance than PCA and DCT. It 

can be explained by the capability of nonlinear PCA algorithms to capture nonlinear 
correlations between the data. It leads to an excellent trade-off in to preserve the  
biggest information with a minimum number of features. 

The values of statistic ⏐z⏐are shown in Table 8 for all possible combinations  
of each pair of classifiers. The value for each pair of classifiers is obtained by  
intercepting the row and column of the table. In all cases, the null hypothesis has to be 
rejected meaning that differences in the performance indexes for each classifier are 
statistically significant among methods, validating the results. 

Table 8. Results of McNemar's Test for all classifiers and beats the database. The grouping 
method in MLP is all cases. 

 PCA10 PCA15 PCA20 DCT10 DCT15 DCT20 KPCA10 KPCA15 
PCA10         
PCA15 12.5        
PCA20 7.1 5.6       
DCT10 100.8 106.3 104.2      
DCT15 154.7 159.9 158.8 74.3     
DCT20 170.9 176.2 173.7 88.1 28.1    

KPCA10 208.5 210.5 209.6 140.3 80.2 60.9   
KPCA15 218.8 222.3 221.5 151.0 98.5 83.7 25.3  
KPCA20 193.3 197.1 195.5 119.3 53.6 30.6 32.7 58.1 

It was not possible to compare the results with other studies about artefacts recog-
nition, because there are no other publications to our knowledge about this particular 
topic. 

4 Conclusions 

The trade-off between performance indexes suggests the use of the non-linear prin-
cipal component analysis as feature extraction method and a multilayer perceptron as 
clustering method. In spite of its high runtime, it can be implemented with reasonable 
resources taking into account the current computer technologies. The future im-
provement and optimization of KPCA algorithm could ensure its practical application 
with a greater efficiency and speed, for example, using programmable devices to  
accelerate the calculation of principal components. 
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Abstract. In this paper a binary biometric comparator based on Count-
ing Bloom filters is introduced. Within the proposed scheme binary bio-
metric feature vectors are analyzed and appropriate bit sequences are
mapped to Counting Bloom filters. The comparison of resulting sets
of Counting Bloom filters significantly improves the biometric perfor-
mance of the underlying system. The proposed approach is applied to
binary iris-biometric feature vectors, i.e. iris-codes, generated from dif-
ferent feature extractors. Experimental evaluations, which carried out
on the CASIA-v3-Interval iris database, confirm the soundness of the
presented comparator.

1 Introduction

Iris biometric recognition [2] is field-proven as a robust and reliable biometric
technology. The iris’s complex texture and its apparent stability hold tremen-
dous promise for applying iris recognition in diverse application scenarios, such
as border control or forensic investigations [12]. Daugman’s algorithm [3], forms
the basis of the vast majority of today’s iris recognition systems, which report
(true positive) identification rates above 99% and equal error rates less than 1%:
(1) at enrollment an image of a subject’s eye is acquired; (2) in the pre-processing
step the boundary of the pupil and the outer iris are detected and the iris (in
the approximated form of a ring) is “un-rolled” to obtain a normalized rectan-
gular iris texture; (3) feature extraction is applied in order to generate a highly
discriminative binary feature vector called iris-code; (4) at the time of authen-
tication pairs of iris-codes are efficiently compared by calculating the Hamming
distance between them, where template alignment is performed within a sin-
gle dimension, applying a circular shift of iris-codes, to compensate against head
tilts of a certain degree. While most approaches to iris recognition algorithms fo-
cus on extracting highly discriminative iris-codes, potential improvements within
comparators are frequently neglected.

The contribution of this work is the proposal of a binary biometric com-
parator based on Counting Bloom filters (CBFs) [1,5]. In the presented scheme
iris-codes are transformed to sets of CBFs which enables an enhanced biomet-
ric comparison, yielding a significant improvement in biometric performance.
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In addition the generic comparator does not require a re-enrollment of regis-
tered subjects, i.e. it can be integarted to any existing iris recognition system.

This paper is organized as follows: related work is summarized in Sect. 2. The
proposed comparator based on CBFs is described in detail in Sect. 3. Experi-
ments are presented in Sect. 4 and conclusions are drawn in Sect. 5.

2 Template Comparison in Iris Recognition

Focusing on iris recognition, a binary representation of biometric features offers
two major advantages:

1. Rapid authentication (even in identification mode).
2. Compact storage of biometric templates.

Comparisons between binary biometric feature vectors are commonly imple-
mented by the simple Boolean exclusive-OR operator (XOR) applied to a pair
of binary biometric feature vectors, masked (AND’ed) by both of their corre-
sponding mask templates to prevent occlusions caused by eyelids or eyelashes
from influencing comparisons. The XOR operator ⊕ detects disagreement be-
tween any corresponding pair of bits, while the AND operator ∩ ensures that
the compared bits are both deemed to have been uncorrupted by noise. The
norms (|| · ||) of the resulting bit vector and of the AND’ed mask template are
then measured in order to compute a fractional Hamming distance (HD) as a
measure of the (dis-)similarity between pairs of binary feature vectors {codeA,
codeB} and the according mask bit vectors {maskA, maskB} [3]:

HD =
||(codeA⊕ codeB) ∩maskA ∩maskB||

||maskA ∩maskB|| . (1)

Note that for the dis-similarity metrics the score for a genuine comparison
(i.e. both codes stemming from the same source) is expected to be low. Apart
from the fractional Hamming distance several other techniques of how to com-
pare iris-codes have been proposed. To obtain a representative user-specific iris
template during enrollment Davida et al. [4] and Ziauddin and Dailey [13] an-
alyze several iris-codes. Davida et al. propose a majority decoding where the
majority of bits is assigned to according bit positions in order to reduce HDs
between genuine iris-codes. Experimental results are omitted. Ziauddin and Dai-
ley suggest to assign weights to each bit position, defining the stability of bits
at according positions. Hollingsworth et al. [6] examined the consistency of bits
in iris-codes resulting from different parts of the iris texture. The authors sug-
gest to mask out so-called “fragile” bits for each subject, where these bits are
detected from several iris-code samples. In experiments the authors achieve a sig-
nificant performance gain. Obviously, applying more than one enrollment sample
yields better recognition performance, however, commercial applications usually
require single sample enrollment as the operational constraints can not tolerate
an extended capture process duration. Rathgeb et al. [10,11] have demonstrated
that incorporating preliminary comparison scores, which are obtained during the
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alignment process, significantly increases biometric performance. HD scores are
expected to decrease towards an optimal alignment, i.e. the distance between
the lowest and highest score as well as the overall distribution yielded by scores
at different shifting positions, indicates (non-)genuine comparisons. Typically,
minor improvements do not lead to significant performance gain with respect
to accuracy. On the other hand, more complex comparison techniques do not
provide a rapid comparison of biometric templates, yielding a trade-off between
computational effort and recognition accuracy.

3 Counting Bloom Filter-Based Comparator

Basically, a Bloom filter b is a bit array of length n, where initially all bits are
set to 0 [1]. In order to represent a set S a Bloom filter traditionally utilizes k
independent hash functions h1, h2, ..., hk with range [0, n− 1]. For each element
x ∈ S, bits at positions hi(x) of Bloom filter b are set to 1, for 1 ≤ i ≤ k.
To test if an element y is in S, it has to be checked whether all position of
hi(y) in b are set to 1. If this is the case, it is assumed that y is in S with
a certain probability of false positive. If not, clearly y is not a member of S,
hence, traditional Bloom filters are suitable for any application where a distinct
probability of false positive is acceptable. In a Counting Bloom filter cb, which
has first been introduced by Fan et al. [5], the array positions are extended from
being a single bit to being an integer counter.

In the following subsections, the CBF-based transform, which is depicted in
Fig. 1, and the corresponding comparison technique are described in detail.

3.1 Counting Bloom Filter-Based Transform

In the proposed system CBFs are utilized in order to achieve an alignment-free
representation (to a certain degree) of iris-codes. For this purpose the original
concept of CBFs is adapted in two ways:
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Algorithm 1. Construction of CBF-based template.

for j = 0 → K − 1 do  process each block of the feature vector
for i = j ∗ l → j ∗ (l + 1) do  process each codeword within a block

cbj [h(xi)] ← cbj [h(xi)] + 1  increment the CBF at the according position
end for

end for

1. A single trivial transform h is utilized instead of numerous hash function.
2. A fixed number of exactly l elements are inserted into an according CBF.

Generic iris recognition systems [2] extract binary feature vectors based on a
row-wise analysis of normalized iris textures, i.e. iris-codes typically represent
two-dimensional binary feature vectors of width W and height H (see Fig. 2
(e)-(f)). In the proposed scheme W ×H iris-codes are divided into K blocks of
equal size, where each column consists of w ≤ H bits. In case w < H , columns
consist of the w upper most bits, i.e. features originating from outer iris bands,
which are expected to contain less discriminative information, are ignored and
not represented in the CBF. Subsequently, the entire sequence of columns of each
block is successively transformed to according locations within CBFs, that is, a
total number of K separate Bloom filters of length n = 2w form the template of
size K · 2w. The transform is implemented by mapping each column in the iris-
code to the index of its decimal value, which is shown for two different codewords
(=columns) as part of Fig. reffig:system, for each column x ∈ {0, 1}w, the
mapping is defined as,

h(x) =

w−1∑
j=0

xj · 2j. (2)

The entire process of constructing a set of CBFs which represents a distinct
iris-code is described in Algorithm 1. The representation is alignment-free, i.e.
generated templates (=sets of CBFs) do not need to be aligned at the time of
comparison. Equal columns within certain blocks (=codewords) increment iden-
tical indexes within CBFs, i.e. self-propagating errors caused by an inappropriate
alignment of iris-codes are eliminated (radial neighborhoods persist).

3.2 Comparison in Transformed Domain

The dissimilarityDS between two CBFs cb and cb′ of length n,n = 2w, is defined
as the sum of difference at each index of both CBFs,

DS (cb, cb′) =
n∑

j=1

|cbj − cb′j |/2l, (3)

Obviously, DS requires more computational effort compared to HD , however,
DS does not have to be computed at numerous shifting positions. In order to
incorporate masking bits obtained at the time of pre-processing, columns of iris-
codes which are mostly affected by occlusions must not be mapped to Bloom
filters, i.e. a separate storage of bit masks is not required.
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(a) Acquisition (b) Detection

(c) Pre-processed iris texture

(d) Iris-code 1-D Log-Gabor filter

(e) Iris-code Ma et al.

Fig. 2. Iris processing chain: applied pre-processing and feature extraction algorithms

4 Experiments

Performance is estimated in terms of false non-match rate (FNMR) at a tar-
geted false match rate (FMR) and equal error rate (EER). In accordance to
the International Standard ISO/IEC IS 19795-1 [7] the FNMR of a biometric
system defines the proportion of genuine attempt samples falsely declared not
to match the template of the same characteristic from the same user supplying
the sample. By analogy, the FMR defines the proportion of zero-effort impostor
attempt samples falsely declared to match the compared non-self template. As
score distributions overlap EERs are obtained, i.e. the system error rate where
FNMR = FMR.

4.1 Experimental Setup

Experiments are carried out using the CASIA-v3-Interval iris database1. At pre-
processing the iris of a given sample image is detected, un-wrapped to an en-
hanced rectangular texture of 512× 64 pixel, shown in Fig. 2 (a)-(d).

In the feature extraction stage custom implementations2 of two different iris
recognition algorithms are employed where normalized iris textures are divided
into stripes to obtain 10 one-dimensional signals, each one averaged from the

1 The Center of Biometrics and Security Research,
http://www.idealtest.org

2 USIT – University of Salzburg Iris Toolkit v1.0,
http://www.wavelab.at/sources/

http://www.idealtest.org
http://www.wavelab.at/sources/
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Table 1. Original performance (in %) for both feature extractors (HD comparator)

Aligorithm 1-FNMR @ FMR=0.01 EER

1-D Log Gabor 95.03 1.58

Ma et al. 96.16 1.19

Table 2. 1-FNMRs @FMR=0.01 (in %) for different configurations of the comparator

Algorithm
Word size Block size l (bits)
w (bits) 25 26 27 28 29

1D Log Gabor
10 95.75 94.32 88.43 66.24 31.81
9 94.98 94.27 89.36 64.45 –
8 93.65 93.91 87.97 – –

10 98.15 96.11 93.40 82.65 60.71
Ma et al. 9 97.80 94.88 91.30 76.21 –

8 97.08 93.40 87.92 – –

pixels of 5 adjacent rows (the upper 512 × 50 rows are analyzed). The first
feature extraction method follows an implementation by Masek [9] in which
filters obtained from a Log-Gabor function are applied. A row-wise convolution
with a complex Log-Gabor filter is performed on the texture pixels and the
phase angles of resulting complex values are discretized into 2 bits generating a
binary code of 512 × 20 = 10240 bit. The second feature extraction algorithm
was proposed by Ma et al. [8]. Within this algorithm a dyadic wavelet transform
is performed on 10 signals obtained from the according texture stripes. For two
selected subbands minima and maxima above an adequate threshold are located,
and a bit-code of 512×20 = 10240 bits is extracted. Sample iris-codes generated
by both feature extraction methods are shown in Fig. 2 (e)-(f). iris-code are
divided into upper and lower 512× 10 halfs as these represent real and complex
values or minima and maxima extracted from different subbands, respectively.

4.2 Performance Evaluation

The biometric performance of the original systems, in which HD-based iris-code
comparisons are performed at ± 8 circular bit shifts, are shown in Table 1.
The corresponding receiver operation characteristic (ROC) curves are plotted in
Fig. 3 (a). For both feature extraction techniques practical performance rates
are achieved, yielding EERs of 1.58% and 1.19%, respectively. With respect to
the proposed CBF-based comparator, Table 2 and Table 3 summarize obtained
1-FNMRs at target FMRs of 0.01% and EERs for different word sizes w and
block sizes l for both feature extraction algorithms. As can be seen, a choice of
large block sizes implies a greater loss of local information (original positions of
codewords) and causes a drastic decrease in biometric performance. From the
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Table 3. EERs (in %) for different configurations of the proposed comparator

Algorithm
Word size Block size l (bits)
w (bits) 25 26 27 28 29

1D Log Gabor
10 1.21 1.75 2.49 4.54 7.87
9 1.34 1.77 3.02 4.74 –
8 1.42 1.93 3.17 – –

10 0.88 1.56 2.54 4.10 6.90
Ma et al. 9 1.04 1.61 2.70 4.62 –

8 1.09 1.67 3.22 – –
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Fig. 3. ROC curves for (a) the original HD-based comparator and the proposed algo-
rithm for (b) the 1D Log-Gabor feature extractor and (c) the algorithm of Ma et al.
for different settings of block sizes and a word size of w = 10

obtained results it is clear that rotations of ± 8 bits, which significantly affect
original systems, are compensated. For both feature extraction algorithms per-
formance is gained for different configurations, achieving best results at word
size of w = 10 and a block size of l = 32, obtaining EERs of 1.21% and 0.88%,
respectively. The according ROC curves for a word size of w = 10 are depicted in
Fig. 3 (b)-(c). Significant improvement is obtained compared to the original sys-
tem, while the proposed scheme does not require re-enrollment or any adaption
of the original iris-codes. CBFs can be stored in addition to iris-code records or
efficiently calculated at the time of comparison.

5 Conclusions

In this work an advanced binary biometric comparator based on counting Bloom
filters has been introduced. Compared to a conventional, HD-based comparison,
within the proposed approach iris-codes are transformed to sets of CBFs, prior
to comparison. Additional computational effort is limited since the CBF-based
representation enables an alignment-free comparison. The system is evaluated
on a publicly available dataset where it gains biometric performance for dif-
ferent feature extraction techniques, confirming the soundness of the presented
approach.
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Abstract. In this paper, we focus on gender recognition in challenging
large scale scenarios. Firstly, we review the literature results achieved for
the problem in large datasets, and select the currently hardest dataset:
The Images of Groups. Secondly, we study the extraction of features
from the face and its local context to improve the recognition accuracy.
Different descriptors, resolutions and classifiers are studied, overcoming
previous literature results, reaching an accuracy of 89.8%.

Keywords: gender recognition, local context, head and shoulders, LBP,
HOG, in the wild.

1 Introduction

Gender is a valid demographic characteristic for different applications that has
recently attracted commercial attention in the context of audience analysis and
advertisement.

Different approaches have tackled the problem of automatic gender recogni-
tion. Most recent works have basically considered the face pattern to solve the
problem [2,3,14]. Other approaches have made use of non facial features such as
the whole body, the hair or clothing [4,13]. However, those approaches including
non facial features, have rarely considered uncontrolled large datasets, i.e. the
gender recognition in the wild. In this context, the evaluation must tackle more
variability in terms of 1) identities, aging and ethnicity, 2) pose and illumination
control, and 3) low resolution images.

The contributions of this paper rely firstly on the addition to the information
provided by the face, of features extracted from the head local context. Those
features are studied at different resolutions, and their possibilities analyzed as
additional features for the problem. Another main element of this paper is the
use of large databases that are closer to real gender classification scenarios than
those small databases obtained in controlled environments.

� This work was partially funded by the Institute of Intelligent Systems and Numeri-
cal Applications in Engineering (SIANI) and the Computer Science Department at
ULPGC.
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1.1 Previous Work in Large Datasets

Table 1. Gender recognition accuracy in the previous literature. Refer to each reference
for experimental setup details.

Reference Dataset Protocol Accuracy

[19] LFW Subset 7443/13233 94.81%
[20] LFW Subset 7443/13233 98.01%
[7] LFW BEFIT protocol 97.23%
[7] GROUPS Subset 15579/28231 84.55 − 86.61%
[12] GROUPS Subset 22778/28231 86.4%
[5] MORPH Subset 88%
[17] MORPH Subset 97.1%

We argue that small databases are not representative for a real world scenario
where a gender recognizer must cope with thousands of people, like for example a
mall scenario. For that reason, we have reviewed the literature to detect state-of-
the-art accuracies obtained for large public databases that contain many different
identities acquired without controlled conditions. As far as we know, Table 1
presents the best accuracies reported on large datasets in the recent literature.
The datasets studied are The Image of Groups (GROUPS) [10], Labeled Faces
in the Wild (LFW) [11], and MORPH [18].

Observing in detail Table 1, there is not much space for improvement in
datasets such as LFW and MORPH. Certainly, both datasets present a set of
characteristics that might affect the impressive resulting performance. Indeed, in
both datasets the same identity includes multiple samples. Additionally, sample
images of both genders are not equally represented in the set, i.e. the number of
samples corresponding to the male class is significantly larger. On the other side,
the GROUPS dataset presents unrestricted imagery with balanced presence of
both classes, reporting the lowest accuracy in the recent works. For all those
reasons, we have selected to focus on the GROUPS dataset, that represents, in
our opinion, the wildest available dataset for the problem, see Figure 1a.

2 Representation and Classification

Local descriptors have recently attracted the attention of researchers involved in
the facial analysis community [21]. We will focus particularly on Local Binary
Patterns [16] (LBPs) and Histograms of Oriented Gradients [8]. Both descriptors
have already been used successfully for facial analysis [9,15].

Facial analysis with LBP is currently adopted considering a concatenation of
histograms of a predefined grid. This approach was adopted for LBP by Ahonen
et al. [1]. According to that work the face is divided into regions where the LBP
operator is computed and later their corresponding histograms concatenated,
following a Bag of Words scheme [6], into a single histogram. On the other side,
HOG encloses a histogram in its definition. The pattern is scaled to a normalized
resolution, and later a grid is defined.
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(a)

(b)

Fig. 1. a) A GROUPS sample. b) Relative size of the different patterns used including
the local context: respectively 64×64, 32×32 and 16×16 faces with head and shoulders
context. Their respective HOG grid computed is also depicted.

For classification purposes, we will compare two different approaches. The first
one will study the addition of features to an initial feature vector filled exclusively
with features extracted from the face. In this scenario, two well known classifiers
are compared: SVM with linear kernel, and bagging making use of SVM classifiers
based on linear kernels.

In the second scenario, instead of combining features of different nature in
the feature vector, we focus on the combination of the outputs provided by
the different classifiers in a first stage. Their respective scores are combined in
a second classification stage. This combination is compared based on different
known classification techniques such as: SVM (linear kernel), bagging, naive
Bayes, Nearest Neighbor (NN) and C4.5.

3 Results

In the experimental setup, we have adopted a k-fold cross-validation, partitioning
the dataset into k subsets, repeating k times the experiment using a subset to
test the model with the other k−1 subsets. In order to be comparable to previous
works, we made use of the 5-folds defined in the work by Dago et al. [7].

The Uniform LBP descriptor is used only for the face area, at two different
resolutions: 59× 65 and 100 × 110, defining a 5 × 5 grid. When using HOG as
descriptor, the face area is used just with the 59 × 65 resolution, but the head
and shoulders pattern was tested at different resolutions: 16 × 16, 32 × 32 and
64 × 64, see Figure 1b. On each resolution the cell contains 8 × 8 pixels, each
block 2 × 2 cells, the histogram contains 9 bins, and L2-hys as norm for the
normalization stage [8].

3.1 Extending the Feature Vector

Firstly, we performed a comparison using just the facial information, i.e. the
inner face details (Face), and its local context defined by the head and shoulders
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area (HS). Tables 2 and 3 present respectively those results. The face pattern
resolution used in Table 2 was 59 × 65 pixels, with an inter-eye distance of 26
pixels. For comparison with a baseline, we have also included the results achieved
with a classifier trained with the first 100 PCA components.

Table 2. Gender recognition accuracy (in brackets results per class: female/male)
achieved using PCA, HOG or Uniform LBP features extracted from the face pattern.
The table reports the results achieved using the 5-fold cross correlation experiment
defined by Dago et al. SVM linear and Bagging are used for classification.

Test set GROUPS-Dago 5-folds subset
Pattern and SVM linear Bagging
features Acc. AUC Acc. AUC

Face PCA
0.773 0.773 0.7749 0.801

(0.773/0.774) (0.779/0.770)

Face HOG
0.801 0.801 0.822 0.898

(0.797/0.805) (0.84/0.800)

Face LBP
0.838 0.838 0.838 0.910

(0.842/0.834) (0.863/0.814)

Table 3 presents the results using information extracted from the face and
its local context. The head and shoulders were analyzed at different resolutions:
16×16, 32×32 and 64×64, with their respective inter-eye distances of 2.5, 5 and
10 pixels. Observe, that the facial resolution contained in the head and shoulders
pattern is lower up to ten times compared to the results reported in Table 2. Even
though, the best accuracy is rather similar, almost 84% using the 64× 64 head
and shoulders pattern, than exclusively the facial pattern at larger resolution.
Even considering the smallest pattern, with an inter-eye distance under 3 pixels,
the accuracy reaches 66%. That is not a bad result for low resolution images.

Table 3. Gender recognition accuracy (in brackets results per class: female/male)
achieved using HOG features extracted from the head and shoulders (HS) pattern
using different image dimensions. The table reports the results achieved using the 5-
fold cross correlation experiment defined by Dago et al. SVM linear and Bagging are
used for classification.

Test set GROUPS-Dago 5-folds subset
Pattern and SVM linear Bagging
features Acc. AUC Acc. AUC

HS16×16 HOG
0.6608 0.661 0.659 0.687

(0.6538/0.6684) (0.6616/0.6564)

HS32×32 HOG
0.812 0.812 0.8099 0.865

(0.8024/0.8216) (0.8122/0.8076)

HS64×64 HOG
0.8298 0.829 0.8397 0.909

(0.829/0.83) (0.8562/0.8232)
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On a second step, we have considered to fuse in a single feature vector, features
extracted from different cues. Table 4 presents results combining Uniform LBP or
HOG features extracted from the face pattern, with HOG features extracted from
the head and shoulders pattern at different resolutions. Bagging reports better
accuracy for the experimental setup, while the use of Uniform LBP features
seems to work slightly better than HOG. The notorious increase in the face
pattern resolution, does not suggest a large improvement in accuracy. The best
reported accuracy reaches 88.1%, four points better than our previous results,
and 2% better than the literature for the same dataset, see Table 1. These results
suggest the importance of the information contained in the facial local context.

Table 4. Gender recognition accuracy (in brackets results per class: female/male)
achieved using different representation alternatives. The table reports the results
achieved using the 5-fold cross correlation experiment defined by Dago et al. SVM
linear and Bagging are used for classification.

Test set GROUPS-Dago 5-folds subset
SVM linear Bagging

Pattern and face 59 × 65 face 100 × 110 face 59 × 65 face 100 × 110
features Acc. AUC Acc. AUC Acc. AUC Acc. AUC

Face HOG
0.801 0.801 - - 0.822 0.898 - -

(0.797/0.805) (0.84/0.800)

Face LBP
0.827 0.827 0.836 0.836 0.823 0.905 0.84 0.909

(0.835/0.814) (0.836/0.836) (0.856/0.804) (0.862/0.817)

Face HOG and
HS16×16 HOG

0.827 0.827 - - 0.829 0.904 - -
(0.828/0.827) (0.848/0.809)

Face HOG and
HS32×32 HOG

0.852 0.852 - - 0.862 0.93 - -
(0.855/0.85) (0.881/0.843)

Face HOG and
HS64×64 HOG

0.845 0.845 - - 0.875 0.941 - -
(0.851/0.84) (0.893/0.858)

Face LBP and
HS16×16 HOG

0.838 0.838 0.844 0.844 0.838 0.910 0.845 0.915
(0.842/0.834) (0.843/0.846) (0.863/0.814) (0.864/0.826)

Face LBP and
HS32×32 HOG

0.859 0.859 0.862 0862 0.867 0.933 0.869 0.937
(0.86/0.857) (0.861/0.863) (0.889/0.845) (0.864/0.826)

Face LBP and
HS64×64 HOG

0.851 0.851 0.861 0.861 0.879 0.944 0.881 0.946
(0.851/0.85) (0.859/0.864) (0.897/0.862) (0.897/0.866)

3.2 Stacking Classifiers

We went further, and considered an alternative to the inclusion of more features
in the feature vector. Instead, we considered a stacking of classifiers in two stages.
The first stage is composed by the individual 11 feature vectors described in
Tables 3 and 4, and summarized in the following list:

– HOG of the 64× 64 head and shoulders pattern (HSHOG64).
– HOG of the 32× 32 head and shoulders pattern (HSHOG32).
– HOG of the 16× 16 head and shoulders pattern (HSHOG16).
– HOG of the 59× 65 facial pattern (FHOG).
– Concatenated LBP histogram extracted from the 59 × 65 facial pattern

(FLBP).
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– HOG of the 64 × 64 head and shoulders pattern, and HOG of the 59 × 65
face pattern (HSHOG64-FHOG).

– HOG of the 32 × 32 head and shoulders pattern, and HOG of the 59 × 65
face pattern (HSHOG32-FHOG).

– HOG of the 16 × 16 head and shoulders pattern, and HOG of the 59 × 65
face pattern (HSHOG16-FHOG).

– HOG of the 64 × 64 head and shoulders pattern, and concatenated LBP
histogram of the 59× 65 face pattern (HSHOG64-FLBP).

– HOG of the 32 × 32 head and shoulders pattern, and concatenated LBP
histogram of the 59× 65 face pattern (HSHOG32-FLBP).

– HOG of the 16 × 16 head and shoulders pattern, and concatenated LBP
histogram of the 59× 65 face pattern (HSHOG16-FLBP).

Each of the first stage classifier is trained using a SVM with a liner kernel. In
the second stage of the stacking classifier, their respective scores are feed into a
classifier that is in charge of taking the final decision. For this second stage, we
have analyzed the accuracy reported for SVM (linear kernel), Bagging, Naive
Bayes, Nearest Neighbor (NN) and C4.5. The results achieved are reported in
Table 5. They suggest an improvement, reaching with Naive Bayes almost 90%.
The reader may observe, that this accuracy was achieved without using the
classifiers based on the largest face pattern, i.e. an inter-eye distance of 26 pixels.
Compared to Table 4 for similar facial resolution the improvement is almost
2%. Compared to the literature, see Table 1, the improvement is close to 4%
even using a facial pattern that is twice smaller. The benefits introduced by the
descriptors and the face local context are evident.

We have additionally performed a feature selection to reduce the system com-
plexity avoiding the computation of all the classifiers present in the stacking
first stage. After sorting attending to the information gain, the resulting accu-
racy considering as variable the number of classifiers included in the stacking is
presented in Figure 2. With just 4 classifiers in the first stage, the system perfor-
mance achieves an accuracy of 89% beating those results reported in the previous
section and the literature. Those classifiers are: HSHOG64-FLBP, HSHOG32-
FLBP, HSHOG16-FLBP and HSHOG32-FHOG.

Table 5. Gender recognition accuracy achieved using classifiers stacking. The table
reports the results achieved using the 5-fold cross correlation experiment defined by
Dago et al.

Classifier Accuracy

Naive Bayes 0.8978

SVM 0.8736

C4.5 0.8336

NN 0.8662
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Fig. 2. Accuracy achieved adding more classifiers to the stacking

4 Conclusions

In this paper, we have studied gender recognition in large uncontrolled datasets.
For that purpose, we have made use of facial and non facial features, in the large
database that is currently reporting the lowest accuracy in the literature: The
Images of Groups.

The addition of external facial features seem to bring benefits at lower reso-
lution, and the combination with facial features reported better accuracies that
the previous literature.

We have used features based on the Uniform LBP and HOG operators, both
used widely in similar problems. For classification we have considered the used
combination of features in a large dataset, and the stacking of classifiers, each one
focused in a particular family of features. The stacking results are particularly
better than those obtained when the feature vector is increased, reaching almost
90%. This accuracy is notoriously better than those previously reported in the
literature, even if the face pattern considered makes use of a facial resolution at
least twice smaller.

In summary, the performance exhibited at lower resolution, is best suited for
real scenarios. However, the achieved at high resolution beats state of the art
results.
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7. Dago-Casas, P., González-Jiménez, D., Long-Yu, L., Alba-Castro, J.L.: Single- and
cross- database benchmarks for gender classification under unconstrained settings.
In: Proc. First IEEE International Workshop on Benchmarking Facial Image Anal-
ysis Technologies (2011)

8. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
Schmid, C., Soatto, S., Tomasi, C. (eds.) International Conference on Computer
Vision & Pattern Recognition, vol. 2, pp. 886–893. INRIA Rhône-Alpes, ZIRST-
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Abstract. This paper focuses on the analysis of the i-vector paradigm,
a compact representation of spoken utterances that is used by most of
the state of the art speaker verification systems. This work was mainly
motivated by the need to quantify the impact of their steps on the final
performance, especially their ability to model data according to a theo-
retical Gaussian framework. These investigations allow to highlight the
key points of the approach, in particular a core conditioning procedure,
that lead to the success of the i-vector paradigm.

1 Introduction

Recent advances in speaker verification have revealed the discriminant power of
a new representation of spoken utterances, referred as i-vector[1]. Easy to work
with and bringing back the speaker recognition problem to a more traditional
biometric pattern recognition problem, i-vectors are now largely used in the most
recent speaker verification systems. A classical i-vector system can be briefly
decomposed in three stages. First, the acoustic space is structured using the
GMM-UBM approach [2] and each speech utterance is represented by a high-
dimensional representation denoted ”‘supervector”’. Then, a low-dimensional
representation of this supervector is extracted thanks to a factor decomposition
approach. Lastly, a scoring module obtains the final score for a given test, tak-
ing advantages of the compact speech utterance representation. Quite often, an
additional data conditioning procedure is applied before the scoring step.

The goal of this paper is to assess the impact of each of these stages in terms
of global performance. This is important as i-vector approach allows in the past
years a drastic progress in terms of performance. A better understanding of
the origins of these progresses should allow further improvements and/or some
simplification in the quite complex chain of processing. More precisely, we wish
to quantify the role of the optional conditioning procedure as we suspect that
this module plays a more important role than expected in the performance of
i-vector systems.

At all three stages, data modelings have been designed to meet the con-
straints of a parametric approach, based on Gaussian probabilistic assumptions.
The conditioning procedure is also known to help achieve these modeling goals.
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To examine independently each of the stages, we proceed by replacing one by one
these modules by methods based on deterministic or non-parametric approaches.
The gaps of performance are compared with that involved by the conditioning
procedure, then summarized in order to assess the impact of the different ap-
proaches. Moreover, replacing methods by others measures the robustness of
concepts on which they rely. Results of these investigations can thus highlight
the key points in the chain of processing that lead to the success of the i-vector
paradigm.

The paper is organized as follows: Sections 2, 3, 4 describe the i-vector based
speaker verification system on which we focus. Section 5 presents the alternative
methods used at each stage of the system. The experimental results are presented
and commented in Sections 6, 7 and conclusions are drawn in Section 8.

2 GMM Framework and i-Vector Extraction

Speaker information is modeled by using the Gaussian Mixture Model/Universal
Background model (GMM/UBM) paradigm [2] where a weighted sum of Gaus-
sian distributions performs a direct acoustic modeling of the acoustic space. A
model of a given speech segment is represented by the Baum-Welch zero and
first order statistics of its feature vectors, according to UBM prior distribution.
This model is denoted ”‘supervector”’. The i–vector model [3] constrains the
supervector s of a given speech segment to live in a single subspace following the
linear model of a Factor Analysis:

s = m+Tw (1)

where m is the supervector corresponding to the UBM, T is a low-rank rect-
angular matrix with G × F rows and r columns, G and F are the number of
GMM components and feature dimension, respectively. The r columns of T are
vectors spanning the “total variability” space, and w is a random vector of size
r having a standard normal prior distribution. Determination of T by using
EM-ML procedure and explicit formula of the extracted i-vector w can be found
in [1].

3 I-Vector Models and Scorings

The first i-vector based speaker verification systems were based on the LDA–
WCCN approach [1], which performs intersession compensation thanks to Linear
Discriminant Analysis (LDA) [1], where all the i-vectors belonging to the same
speaker are associated with the same class. This technique projects the input
data into a much lower dimensional space with minimal loss of discriminative
ability, as the ratio of between-speaker and within-speaker variations is maxi-
mized. These speaker features are finally normalized by a Within Class Covari-
ance Normalization (WCCN) [4]. The final scores are then computed using a
cosine distance scoring [3].
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A key evolution of i-vector approach was introduced in [5], using the Proba-
bilistic Linear Discriminant Analysis (PLDA) [6]. Two assumptions on the prior
probability distributions of the PLDA variables (speaker, session and residual
factors of eq. 7 in [7]) have been proposed:

– Gaussian PLDA (G-PLDA) assumes that all latent variables are statistically
independent. Standard normal priors are assumed for speaker and session
factors. The residual term is assumed to be Gaussian with zero mean and
diagonal covariance matrix.

– Student’s t-distribution is proposed in [5] as an alternative to the Gaussian
to model the speaker and channel subspaces in the i-vector space. Heavy-
tailed PLDA (HT-PLDA) assumes that all the factors follow an heavy-tailed
distribution, scaled by gamma distribution scalars.

The ML point estimates of the model parameters are obtained from a large
collection of development data using an EM algorithm as in [6].

4 Pre-conditioning

A pre-processing before any i-vector modeling has been introduced in [8][9]. I-
vectors are whitened and length-normalized, in order to make them more Gaus-
sian. The most commonly used whitening technique is a standardization, and
the transformation applied to an i-vector w can be resumed as follows:

w← A− 1
2 (w− μ)∥∥∥A− 1
2 (w− μ)

∥∥∥ (2)

where μ andA are the mean and a variability matrix of a training corpus. Data
are standardized according to a variability matrix A then length-normalized,
confining the i-vectors to the hypersphere of unit radius. Parameters are com-
puted for the i-vectors present in the training corpus and applied to the test
i-vectors. The matrix A can be the total covariance matrix or, as we proposed
in [7], the within-class covariance matrix W defined in eq. 4 of [7].

In [9], it is shown that this technique improves the gaussianity of the i-vectors.
It reduces the gap between the underlying assumptions on the data distribution
and the real distribution and also reduces the dataset shift between development
and trial i-vectors. Moreover, it is shown in [9] that performance of a G-PLDA
system with this pre-conditioning is competitive versus the HT-PLDA, when the
latter is much more complicated. As proposed in [8][7], these two-steps can be
iterated. As a result, i-vectors tend to be simultaneously A-standardized and
length-normalized (magnitude 1), involving a number of properties related to
intersession compensation. Some of them are detailed in [8][7]. Also in [7], we
propose, after W-standardization, a deterministic initialization of PLDA matri-
cial metaparameters Φ and Γ of eq. 7 in [7]. It allows a faster convergence of the
PLDA EM-ML procedure.
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5 Alternative Methods

The state of the art i-vector-based system described below is composed of three
stages: representation of segments by Baum-Welch zero and first order UBM-
statistics, i-vector extraction using Factor Analysis total-variability (FA-total-
var), Gaussian-PLDA modeling and scoring with an optional pre-conditioning.
We present here the alternative methods that we have implemented for each of
these three stages.

5.1 Models and Scorings

To analyze the efficiency of Gaussian-PLDA, we compare this probabilistic mod-
eling with two simplified and deterministic versions. First, the LDA-two-
covariance model [10] reduces the dimensionality by using LDA, then full rank
matrices Φ and Γ of eq.7 in [7] are deterministically estimated (no EM-ML

procedure is performed) by Φ = B
1
2 and Γ = W

1
2 where B and W are the

between- and within-class covariance matrices defined in eq. 3, 4 of [7]. Com-
paring Gaussian-PLDA and LDA-two-covariance model measures the gain of
the probabilistic ML-approach in a generative i-vector modeling. Second, the
LDA-Mahalanobis model, introduced in [8] is a particular case of the previous
two-covariance model which makes no assumption about the speaker factor dis-
tribution (speaker precision matrix B−1 is null). The deterministic Mahalanobis
model is useful to estimate the relevance of a between-speaker modeling.

5.2 I-Vector Extraction

Factor analysis total variability (FA-total-var) is the state of the art factor de-
composition technique used to extract i-vectors. To assess the pertinence of its
probabilistic approach, we compare it with the well-known deterministic prin-
cipal component analysis (PCA). But FA-total-var is based on zero and first
order statistics and applying PCA to extract low dimensional vectors (that we
will also call i-vectors) needs to determine the unique high-dimensional vectorial
representation to compress. Some solutions have been suggested [11]. In order to
fairly compare probabilistic FA-total-var and deterministic PCA, we introduce
an adapted version ŝ of a supervector s, equal to:

ŝ = NX (Σ+NX )
−1

(s− μ) (3)

NX is the GF × GF diagonal matrix composed of F blocks of N
(g)
X I (g =

1, ..., G) where N
(g)
X are the zero–order statistics estimated on the g-th Gaussian

component of the UBM observing the set of feature vectors in the sequence X ,
and μ and Σ are the UBM mean and diagonal covariance matrix.

In the extreme case of a square and full rank identity matrix T (no dimen-
sionality reduction applied), eq. 6 of [1] shows that FA-extraction provides an
i-vector w equal to ŝ.
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The supervector ŝ is an adapted version of s, centered and weighted by
the amount of informations per Gaussian-component and by the variance per
dimension.

5.3 UBM-Based Representation

In [12][13] a new approach for speaker recognition, denoted “Speaker Binary
Key”, was presented. Contrary to classical speaker recognition based on sta-
tistical modeling of the speaker information, this approach proposes to handle
directly each piece of speaker specific information in a binary space. Each co-
efficient of this binary space corresponds to a targeted piece of speaker-specific
information which could be present (the coefficient is equal to 1) or non present
(the coefficient is equal to 0) in a given acoustic frame or acoustic segment. This
new approach allows to exploit temporal or sequential information as a binary
vector is extracted for each acoustic frame. It also focuses on speaker specific in-
formation in a non-parametric way as each coefficient of the binary space models
speaker-specific information. As the binary key representation first ties each in-
put frames with one or several GMM-UBM components (before non-parametric
transformation to a binary space), it constitutes a GMM-UBM-based alternative
to the zero and first order statistics. High-dimensional binary keys provided by
this model are projected onto a PCA subspace (by the lack of a specific Factor
Analysis), and handled as i-vectors for modeling and scoring.

6 Experimental Setup

The feature extraction and the 512-components GMM-UBM functionalities used
in our experiments are described in [8]. For i-vector extraction, the total vari-
ability matrix T is trained using 15660 speech utterances from 1147 speakers
(NIST 2004-05-06, Switchboard II part 1, 2 & 3; Switchboard cellular part 1 &
2, about 14 sessions per speaker). The results are reported with 400-dimensional
i-vectors. The same database is used to estimate the parameters of the i-vector
models and scorings. In PLDA, channel factor is kept full and speaker factor
is varied, as proposed in [5]. Evaluation was performed on the NIST SRE 2008
DET conditions 6 and 7, male only, corresponding to telephone-telephone (all
and English-only respectively) enrollment-verification trials, and on the NIST
SRE 2010 DET extended condition 5, male only, corresponding to telephone-
telephone. A global measurement of performance of a system is given by the
average of the three Equal Error Rates (EER). These three conditions are the
most currently used in the domain and their average EER is a robust perfor-
mance measure of a system.

7 Results

Table 1 shows comparison result of systems applying the different representa-
tions, extractors, models and scorings listed above. The first eight systems use
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Table 1. Comparison of performance, in terms of EER (%), between systems based
on different representations, extractors, models and scorings (without and with pre-
conditioning)

repr. extract. conditioning model and scoring det 7 det 6 det 5 ext average

1 sv FA no LDA-Maha 5.70 9.5 9.73 8.31

2 sv FA no LDA-two-cov 3.23 6.83 5.97 5.34

3 sv FA no G-PLDA 3.39 6.37 6.38 5.38

4 sv FA WCCN-cosine LDA-WCCN-cosine 3.26 6.29 3.69 4.41

5 sv FA LΣ LDA-Maha 1.86 5.06 2.62 3.18

6 sv FA LΣ LDA-two-cov 1.53 4.93 2.36 2.94

7 sv FA LΣ G-PLDA 1.63 4.80 2.45 2.96

8 sv FA LW G-PLDA 1.58 4.80 2.28 2.89

9 BK PCA no G-PLDA 2.84 5.82 4.42 4.36

10 sv PCA no G-PLDA 3.17 6.59 5.80 5.19

11 BK PCA LW G-PLDA 2.16 5.26 2.87 3.43

12 sv PCA LW G-PLDA 1.99 5.24 2.47 3.23

high-dimensional representation by zero and first order UBM statistics (sv for
supervector) and Factor Analysis on total variability (FA) as i-vector extractor.
Performance are given without (no) and with pre-conditioning: LΣ, LW for
standardization according to total Σ or within-class W covariance matrix, or
WCCN-cosine as implicit normalization of LDA-WCCN-cosine scoring. HT-
PLDA scoring has not been carried out, as pre-conditioning and Gaussian-PLDA
are able to match its performance.

The state of the art system (line 8) yields the best result: average EER of
2.89 and best EERs for all the individual conditions. But, first, the gap between
ML (lines 7 and 8) and deterministic approach (line 6) for i-vector modeling
is slight or null (average EER of 2.89 and 2.96 vs 2.94). This observation is
strengthened by the fact that the best system (line 8) deterministically initializes
PLDA metaparameters then requires only 10 EM-ML iterations to converge,
against 100 using the randomly initialized system (line 7). Second, comparison
of systems without and with pre-conditioning shows that the quality of the
modeling is, in a major proportion, the consequence of the conditioning: 5.34
to 2.94 for the best deterministic approach, 5.38 to 2.89 for the probabilistic
approach. It is worth noting that the gap between the less efficient system (LDA-
Mahalanobis) and the others is particularly significant in the absence of pre-
conditioning (8.31 vs 5.34 without, 3.18 vs 2.94 with). This shows that the initial
lack of gaussianity in the extracted i-vectors is mainly due to the within-speaker
distribution.

The four last lines give comparison result between systems using represen-
tation by speaker binary key (BK) or by zero and first order UBM statistics,
all using i-vector extraction techniques by PCA (PCA), each time without and
with pre-conditioning (LW only, since it gives the better performance in the pre-
vious experiments). Comparing the extraction techniques (lines 8 and 12), FA
brings a relative improvement of 10.5% of average EER: 2.89 vs 3.23 with PCA.
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This slight gain recalls that i-vector extraction falls into the family of compres-
sion techniques rather than factor decompositions. Comparing representations
for PCA-based systems (lines 11 and 12), the binary key representation yields a
performance close to that of zero and first order UBM statistics (3.43 vs 3.23)
with, which must be taken into account, a 32 times lower amount of informa-
tion1. But once again, the improvement of performance is mainly due to the
conditioning step. Systems based on different representations and dimensional-
ity reductions are able to provide interesting performance but only if they include
a pre-conditioning procedure.

8 Conclusion

The aim of this work was to assess the benefits of the different steps in a classical
i-vector based speaker verification system. In particular, we quantify the role of
the optional conditioning procedure in the good probabilistic modeling of data.
As all stages of the system try to take into account the constraints of a Gaussian
framework, we replace one by one these modules by a deterministic or non-
parametric method and compare the gap of performance with that involved
by the conditioning procedure. These comparisons also allow to measure the
robustness of concepts involved in the i-vector approach. The results of this
analysis can be summarized by the following key points:

– All the systems presented here rely on the GMM-UBM. Their good perfor-
mance, following however various ways, show the robustness of the GMM-
UBM to structure the acoustic feature space.

– High-dimensional UBM-based representations are stacking a fixed-length set
of vectors from the feature space. The low gaps between systems with various
representations and extractors show that any dimensionality reduction of
stacked vectors built by using UBM, according to the total variability, is able
to capture and summarize correlated behaviors between UBM-components.
As remarked in the introduction of [14], the i-vector random variables can
be viewed as principal components of utterances. The coordinates represent
physical quantities, which are constant for a given utterance but which differ
from one utterance to another.

– Resulting low-dimensional vectors do not match the assumptions of an usual
probabilistic framework. More than FA-total-var or PLDA decompositions,
the conditioning procedure mainly contributes to make vectors compati-
ble with a linear-Gaussian modeling and scoring. WCCN-cosine-scoring can
be decomposed into an inner-product applied to standardized and length-
normalized vectors, as done in eq. 2. A core procedure, composed of standard-
ization according to a target variability, followed by length-normalization

1 In our configuration of 512-components GMM-UBM, 50-dimensional feature space
and, for binary modeling, 100 specificities per component, the size of a binary key is
6.4 KB and the size of double precision zero and first order UBM-statistics is 208.9
KB.
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(which ignores the magnitude to focus on the directional information), turns
out to be decisive in the final performance.

Works about the properties of the conditioning and dimensionality reduction
procedures are presented in [1][9][8][7]. But we are now continuing a thorough
study of their properties, in order to better explain their impact in the perfor-
mance and improve further i-vector based speaker verification systems.
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Abstract. A new method for action recognition is proposed by revisit-
ing LBP-based dynamic texture operators. It captures the similarity of
motion around keypoints tracked by a realtime semi-dense point track-
ing method. The use of self-similarity operator allows to highlight the
geometric shape of rigid parts of foreground object in a video sequence.
Inheriting from the efficient representation of LBP-based methods and
the appearance invariance of patch matching method, the method is well
designed for capturing action primitives in unconstrained videos. Action
recognition experiments, made on several academic action datasets vali-
date the interest of our approach.

Keywords: action recognition, local binary pattern, dynamic texture,. . .

1 Introduction

Human activity recognition has been an active research topic in recent years
due to its interesting application domains such as video surveillance, human
computer interaction, video analysis, and so on. Many approaches have been
introduced using different video features for action representation, we refer to [1]
for a comprehensive survey. However a robust and real time method for action
recognition with unconstrained videos is still a difficult challenge.

An interesting approach is to consider the action as a texture pattern, and to
apply dynamic or static texture based methods to action modelling and recog-
nition. Thanks to the effective properties of Local Binary Patterns (LBP) for
texture representation, several LBP-based methods have also been proposed in
the past for action recognition. Kellokumpu et al. [2] used dynamic texture op-
erator (LBP-TOP) to represent human movement. They also presented another
approach [3] using classical LBP on temporal templates (MEI and MHI im-
ages [4]) that were introduced to describe motion information from images. All
extracted features in the two methods are then modelled using HMM (Hidden
Markov Model). Mattivi and Shao [5] presented a different method using LBP-
TOP to describe cuboids detected by Dollar’s feature detector. Recently, Yeffet

� This work is part of an ITEA2 project, and is supported by french Ministry of
Economy (DGCIS).
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and Wolf proposed LTP (Local Trinary Patterns) [6] that combines the effec-
tive description of LBP with the adaptivity and appearance invariance of patch
matching methods. They capture the motion effect on the local structure of self-
similarities considering 3 neighbourhood circles at a spatial position and different
instants. Kliper-Gross et al. developed this idea by capturing local changes in
motion directions with Motion Interchange Patterns (MIP) [7]. Nanni et al. [8]
improved LBP-TOP using ternary units in the encoding step.

In this paper, we revisit dynamic texture based methods for action recognition.
We are inspired by 2 popular LBP based representation: uniform LBP for texture
coding and LTP for motion coding. We propose a new self-similarity operator
to capture spatial relations in a trajectory beam, by representing the similarity
of motion between the tracked point along its trajectory, and its neighbour-
hood. The semi-dense point tracker computes the displacement of many points
in real time, then we apply self-similarity operator on appearance information
to represent the motion information of a larger zone surrounding the trajectory.
Our method can be seen as a hybrid solution between optical flow methods and
dynamic texture based approaches. The rest is organised as follows. Section 2
briefly presents the basic material. The next section proposes our approach for
action representation. The last sections are experiments and conclusions.

2 Basic Materials

2.1 LBP Based Operators

Uniform LBP. Local Binary Patterns [9] were introduced by Ojala et al. Their
idea is to capture the local structures of texture images using binary patterns ob-
tained by comparing a pixel value with its surrounding neighbours. LBP operator
has two important properties: it is invariant to monotonic gray scale changes,
and its complexity is very low. As a consequence, LBP-based approaches are
suitable for many applications, aside from texture recognition. A LBP is called
uniform if the number of binary transitions (from 0 to 1, from 1 to 0) while
scanning the circle clockwise is at most 2. The uniform pattern coding (LBPu2

n,r,
corresponding to ignoring the non uniform patterns) is widely used in real ap-
plications because it reduces significantly the length of feature vectors while
capturing important texture primitives (see Fig. 1).

Spot Flat Line end Edge Corner

Fig. 1. Texture primitives corresponding to Uniform LBPs [9]
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LTP. Local Trinary Patterns [6] use sum of squared differences (SSD) between
patches centred at different space and time locations. Let SSDΔx

Δt
be the SSD

between the patch centred at pixel x at frame t and the patch centred at pixel
x +Δx at frame t +Δt. One ternary code {−1, 0, 1} is obtained for each shift
direction Δx, by comparing SSDΔx

−Δt
and SSDΔx

+Δt
.

2.2 Motion Representation Using a Beam of Dense Trajectories

Trajectories are compact and rich information source to represent motion in
videos, and have been used already for action recognition [10]. Generally, to ob-
tain reliable trajectories, the spatial information is dramatically reduced to a
small number of keypoints, and then it may be hazardous to compute statistics
on the set of trajectories. In this work we use the semi dense point tracking
method [11] (see also Fig. 2) which is a trade-off between long term tracking and
dense optical flow, and allows the tracking of a high number of weak keypoints
in a video in real time, thanks to its high level of parallelism. Using GPU imple-
mentation, this method can handle 10 000 points per frame at 55 frames/s on
640× 480 videos. In addition, it is robust to sudden camera motion changes.

Boxing Hand clapping Hand waving Jogging Running Walking

Fig. 2. Several actions of KTH dataset and their corresponding beam of trajectories.
Red points represent tracked particles, green curves describe their trajectories.

3 Action Descriptor Using Spatial Motion Patterns

We present now our descriptor for action representation. The input data is the
semi-dense trajectory beam described in Section 2. The classic approach to build
motion information from optical flow is to consider histogram of optical flow
(HOOF). This approach is simple to compute but neglects the spatio-temporal
relation between moving points. One popular but limited solution is to consider
the extracted histograms in different sub-volumes defined by a spatio-temporal
grid. In this section, we introduce a descriptor that addresses more finely this
problem. Briefly, the motion information is exploited at different context levels:
(1) Point level; (2) Local spatio-temporal level; (3) Regional to global spatio-
temporal level. This is detailed hereafter.
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3.1 Point Level

Let −→pt be the 2d displacement of the point between frames t and t + δ. The
first part of the encoding is simply a dartboard quantisation of vector −→pt (see
Fig. 3). In our implementation, we used intervals of π/6 for the angles and 2
pixels for the norm (the last interval being [6,+∞[), resulting in 12 bins for
direction angle, 4 bins for norm.

−→pi

Fig. 3. Dartboard quantisation of
the motion vector

SSD

t + δ

t

P1

P2

Δ(p, t)0

Δ(p, t)1

Δ(p, t + δ)0

Δ(p, t + δ)1

Fig. 4. The SMP descriptor is calculated
at each tracked keypoint, along its tra-
jectory. The consistency of motion in ev-
ery direction is checked by computing
the SSD between the corresponding im-
age patches.

3.2 Local Spatio-temporal Level

At the local spatio-temporal level, we use an LBP-based dynamic texture to
capture the relations between a point and its neighbours. Our idea is to capture
the inter-trajectory relations among a beam of trajectories. We propose to com-
bine the LBP-based self-similarity operator [9] and the appearance invariance
of patch matching method inspired by [6]. This operator, called Spatial Motion
Pattern (SMP), is presented below.

Spatial Motion Patterns
Consider a point p that moves from position P1 at frame t to position P2 at
frame t + δ, provided by the semi dense tracker [11]. The similarity of motion
between this point and its neighbours is obtained by considering the 2×n patches
sampled from circles centred at P1 and P2 in their corresponding frames (see Fig.
4). Every index i ∈ {0, n − 1} represents a direction, which is encoded by 0 if
the motion in this direction is similar to the motion of the centre point, and
by 1 otherwise. Following [6], SSD (sum of square difference) score is used as
similarity measure to check the consistency of motion.
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Let {Δ(p, t)i}n−1
i=0 be the set of n patches surrounding particle p at frame t.

The corresponding SMP codeword (b0, b1, . . . , bn−1) is constructed as follows:

bi =

{
1 If SSD

(
Δ(p, t)i, Δ(p, t+ δ)i

)
≥ τ

0 otherwise

where δ is the time interval between two frames, τ is the SSD threshold.
Our local descriptor differs significantly from LTP in several aspects:

– Encoding process. Unlike [6], our descriptor uses only 2 bits. The encod-
ing of LTP is done by comparing SSD scores between neighbouring patches
of past and future frames, and the centre patch of the middle frame. Our
method estimates the SSD scores between two corresponding patches in two
consecutive frames.

– Neighbouring configuration. LTP used three circles centred at the same po-
sition in 2D space. In our approach, the two neighbouring circles are centred
at the tracked position of each keypoint.

– Interpretation. LTP aims to represent motion information at a given position,
whereas in our case, the motion information is already known, the SMP is
interpreted as a local disparity map of velocities around each trajectory.

Properties of Spatial Motion Patterns
Inheriting from [6, 9], Spatial Motion Patterns have attractive properties:

– Simple computation. They use SSD scores on small image patches. In addi-
tion, the calculation is only applied on tracked keypoints, not on the whole
image, avoiding many irrelevant calculations.

– Appearance invariance. This property is due to: (1) the LBP based encoding
and (2) the basic information which only relates to the trajectory, not to the
appearance.

SMP uniform patterns (SMPu2) captures local primitives action in a similar way
as LBP uniform patterns (LBPu2). They detect the motions between foreground
objects and the background in videos, and more generally, between two rigid
parts of a moving object. We can point out the relation between SMPu2 and
action primitives as follows (see also Fig. 1).

– Spot: A small foreground object move on the background.
– Flat: A big rigid part of a moving object.
– Line end: End of a thin foreground object.
– Edge: Border between two parts of a moving object, or between a foreground

object and the background.
– Corner: A corner of a rigid part of a moving object.

Fig. 5 illustrates the interpretation of SMP uniform patterns (SMPu2).
It is also worth mentioning that, unlike many other methods, the more com-

plex the background, the more efficiently should the SMP describe the rigid parts
of the moving object.
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Fig. 5. SMPu2 configurations allow to de-
termine the shape of the rigid parts of the
moving object around the keypoints (in red
points). In the neighbouring circles, image
patches in green (resp. blue) indicates that
they belong to the same rigid part of the
moving object as the keypoint (resp. an-
other rigid part or the background).

Fig. 6. Action modelling by SMP his-
togram concatenation

3.3 Regional to Global Spatio-temporal Level

In this context, a pyramidal bag of feature (BoF) [12] is used to represent action
by histograms of codewords made of the two previous primitives (motion code
and spatial motion patterns) on spatio-temporal volumes. All histograms are
concatenated into one vector that is then normalised for action representation.
Fig. 6 shows how to construct the action description using three different grids.

4 Experimentation on Human Action Classification

4.1 Classification

To perform action classification, we choose the SVM classifier of Vedaldi et al.
[13] which approximates a large scale support vector machines using an explicit
feature map for the additive class of kernels. Generally, it is much faster than
non linear SVMs and it can be used in large scale problems.

4.2 Experimentation

We evaluate our descriptor on two well-known datasets. The first one (KTH) [14]
is a classic dataset, used to evaluate many action recognition methods. The
second one (UCF Youtube) [15] is a more realistic and challenging dataset.

Parameter Settings. There are several parameters concerning the construction
of SMP. Like [6], we compute SSD score on image patch of size 3 × 3 with
threshold τ = 1000 that represents 0.17% maximal value of SSD. The time
interval δ is set to 1. Because every tracked keypoint already represents a certain
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spatial structure, the radius of SMP must be sufficiently large to better capture
the geometric shape of rigid parts of moving object surrounding the keypoints.
In our implementation, we consider 16 neighbours sampled on a circle of radius
9. In addition, only uniform patterns (SMPu2

16,9) are considered. To construct the
histograms of codewords, we used 3 spatiotemporal grids: 1 × 1 × 1, 2 × 2 × 2
and 3× 3× 3.

Experimentation on KTH Dataset. The dataset contains 25 people for 6
actions (running, walking, jogging, boxing, hand clapping and hand waving) in 4
different scenarios (indoors, outdoors, outdoors with scale change and outdoors
with different clothes). It contains 599 1 videos, of which 399 are used for training,
and the rest for testing. As designed by [14], the test set contains the actions of
9 people, and the training set corresponds to the 16 remaining persons. Table 1
shows the confusion matrix obtained by our method on the KTH dataset. The
ground truth is read by row. The average recognition rate is 93.33 % which is
comparable to the state-of-the-art of LBP-based approaches (see Table 2). We
remark that unlike [2, 3] that work on segmented box, our results are obtained
directly on unsegmented videos. Applying the same pre-processing step would
probably improve our result.

Table 1. Confusion matrix on KTH
dataset

Box. Clap. Wave Jog. Run. Walk.

Boxing 97.5 2.5 0 0 0 0

Clapping 2.5 97.5 0 0 0 0

Waving 2.5 0 97.5 0 0 0

Jogging 0 0 0 95.0 0 5.0

Running 0 0 0 12.5 80.0 7.5

Walking 0 0 0 10.0 0 90.0

Table 2. Comparison on KTH
dataset

Method Result Method Result

Ours 93.33 [6] 90.17

[3] 90.8 [7] 93.0

[5] 88.38 [2] 93.8

Table 3. Comparison on UCF
Youtube

Our method [16] [17] [15]

72.07 64 64 71.2

Experimentation on UCF Youtube Dataset. The UCF Youtube dataset
records 11 categories (basketball shooting, cycling, diving, golf swinging, horse
back riding, soccer juggling, swinging, tennis swinging, trampoline jumping, vol-
leyball spiking and walking with a dog), and contains 1 600 video sequences.
Each category is divided into 25 groups sharing common appearance properties
(actors, background, or other). It is much more challenging than KTH because
of its large variability in terms of viewpoints, backgrounds and camera motions.
Following the experimental protocol proposed by the authors [15], we used 9
groups out of the 25 as test and the 16 remaining groups as training data. Our
mean recognition rate on UCF Youtube dataset is 72.07 % (see Table 3), which
outperforms recent methods.

1 It should contain 600 videos but one is missing.



Revisiting LBP-Based Texture Models for Human Action Recognition 293

5 Conclusions

We have presented a new method for action recognition based on semi-dense
trajectory beam and the LBP philosophy. Its main idea is to capture spatial
relation of moving parts around the tracked keypoints, along their trajectories.
Our descriptor is designed to capture geometric shape of the rigid parts of mov-
ing object in unconstrained videos with complex background. In the future, we
are interested in several perspectives related to this method such as multi-scale
SMPs, and extension to moving backgrounds.
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Abstract. Palmprint identification is still considered as a challenging
research line in Biometrics. Nowadays, the performance of this techniques
highly depends on the quality of the involved palmprints, specially if the
identification is performed in latent palmprints. In this paper, we propose
a new feature model for representing palmprints and dealing with the
problems of missing and spurious minutiae. Moreover, we propose a novel
verification algorithm based in this feature model, which uses a strategy
for finding adaptable local matches between substructures obtained from
images. In experimentation, we show that our proposal achieves highest
scores in latent palmprint matching, improving some of the best results
reported in the literature.

1 Introduction

In the last years, the interest in recognition of persons by their palmprints has
grown. There are some scientific studies that ensure the uniqueness of the palm-
print of a person and the much fancied stability over time or age [1]. In this sense
such technique is much better than others, specially in forensic cases where other
biometric information is not available.

Palmprints are marks produced by the contact of the palm of the hand with
a surface. These marks reflect the different patterns formed by the ridges that
are visible in the epidermis. Most of the verification approaches use minutiae as
basis for representing palmprints and checking mutual matches. However, the
features extraction is still a challenging problem since the possibility of finding
false minutiae always exists [6].

There are not many published articles about the topic, specially in the latent
case since palmprint identification is considered as a challenging problem. Until
today, few works on latent-to-full palmprint matching have been done. One of the
first relevant proposed methods was based on a feature called MinutiaCode [6].
However, this proposal is time consuming and not robust to distortions. An-
other recent works use radial triangulations in order to extract features [9,10].
Even when the use of radial triangulations increase the accuracy, the features
extracted from them are still affected by stretching in the skin. Finally, Jain
et al. [7] proposed a method based on minutiae clustering and minutiae match
propagation.

J. Ruiz-ShulcloperandG. Sanniti di Baja (Eds.): CIARP 2013, Part II, LNCS 8259, pp. 294–301, 2013.
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One of the most relevant contribution of this paper is to present the results of
our palmprint matching algorithm dealing with low quality or distorted palm-
print images. It is important to note that unlike other approaches [6,7,9,10],
our proposal do not uses any enhancement method in the minutiae extraction
process. Our novel matching algorithm uses a representation proposed in litera-
ture [5], called expanded triangle set, which is based on minutia triplets obtained
from Delaunay triangulation and other redundant ones for reducing the nega-
tive effect of structural distortions. Expanded triangle set was previously used
for fingerprint indexing and retrieving tasks [5], whereas it is currently used for
palmprint matching, in our research. In our matching step, we propose a new
strategy to find local matches between substructures formed in the palmprints.

This work is organized as follows. In Section 2 some concepts and definitions
necessary to understand our proposal, are described. The Section 3 is dedicated
to define our palmprint representation and to describe the process of features
extraction. In Section 4, is defined a matching algorithm that uses the features
extracted. In Section 5, some experimental results that validate the accuracy of
our proposal, are shown. Finally, Section 6 contains the conclusions.

2 Background

In this section, we present some basic concepts and a general scheme of palmprint
matching algorithms. Thus, we declare the necessary background for understand-
ing our proposal and the rest of the paper. Finally, we describe the Delaunay
triangulation and its properties, considering that this kind triangulation is used
in many contexts for representing ridges patterns, including our approach.

2.1 The Expanded Triangle Set

In general, a triangulation of a set of points, P = {p1, p2, . . . , pN}, in the plane
is the set of triangles that conforms a maximal planar subdivision whose vertex
set is P . A maximal planar subdivision is a subdivision S such that no edge
connecting two vertices can be added to S without destroying its planarity [2].
Especially, a triangulation of P is a Delaunay triangulation if and only if every
triangle #PiPjPk that belongs to T satisfies that its circumcircle contains no
other point of P [2]. The Delaunay graph of a Delaunay triangulation T is defined
as a tuple G = 〈P,E〉 where P is the set of planar points that originated T , and
E is the set of edges that conforms the triangles of T ; each edge has a single
occurrence in E.

Delaunay triangulations have some theoretical properties, which are very use-
ful for palmprint matching. However, it must be highly affected, when the ex-
traction method fails to find a minutia [5]. For example, in Fig. 1(a), we can
see a Delaunay triangulation of a set of points. In Fig. 1(b), we can appreciate
major structural changes in the same triangulation when removing the vertex
p. In literature there is a proposal that introduces an interesting criterion for
selecting minutia triplets called expanded triangle set [5], which is defined as
follows.
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Definition 1 (Triangular hull). Let pi be a point of P . The set Ni =
{pj|{pi, pj} ∈ E} denoted the point set formed by all the adjacent vertices of
pi in the Delaunay graph G. The triangular hull of pi is defined as the Delaunay
triangulation of the planar point set Ni, and it is denoted by Hi.

Definition 2 (Expanded triangle set). The expanded triangle set of P is
defined as R = T ∪H1 ∪H2 ∪ . . . ∪HN .

The set R includes the triangles in the Delaunay triangulation of P and any
triangle in the triangular hulls of the points in P . Despite the fact that |R| is
greater than |T |, the number of triangles of |R| is still linear with respect to
N [5]. This is very desirable if we consider that the sets R will be used as a
representation for palmprints in verification tasks.

(a) Delaunay
triangulation,

T

(b) Delaunay
triangulation
without pi, Hi

(c) Expanded
triangle set,
R = T ∪Hi

Fig. 1. Triangle set examples

The advantage of the set R is that it contains all of the Delaunay triangles
that are formed when each minutia is eliminated individually. In this way, we
ensure that even when the extraction method fails to find a minutia, some of the
matchings will be found. For example, Fig. 1(c) shows the expanded set of the
points including pi. As we can see, Fig. 1(c) has corresponding triangles with
both, Fig. 1(a) and Fig. 1(b) due to the use of the expanded triangle set. In this
paper, the expanded triangle set of minutiae is used for representing palmprints
in verification tasks.

2.2 Palmprint Matching

In general, we can say that a palmprint matching algorithm compares two palm-
prints and returns either a degree of similarity or a binary decision. Until today,
matching palmprints is still a topic of interest due to the noise and distortions
in palm images that can be produced by scars, creases and cuts.

In our case, the palmprints are described as vectors of minutiae were each one
can have some attributes. The most commonly used attributes are the coordi-
nates, direction and type of minutiae.

More formally, let T1 = {m1,m2, . . . ,mn} and T2 = {m1,m2, . . . ,mm} be
minutia vectors that describe two palmprints, where mi = (xi, yi). In order to
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obtain a similarity score between T1 and T2, the matching algorithms try to es-
tablish similarities between their minutiae. A later step of consolidation consists
on computing a global score based on the matches found among minutiae.

3 Feature Extraction Step

In this section, we propose a new feature model for representing palmprints,
using the expanded triangle set obtained from minutiae, see section 2.1. We are
considering that the minutiae extraction process for full palmprints is carried
out by any algorithm reported in the state-of-the-art and marked manually for
latent palmprints.

Let P = {p1, p2, . . . , pN} be the set containing all the planar points represent-
ing the minutiae in a palmprint F . Let R be the expanded triangle set of P , and
let t ∈ R be a triangle, which represents a minutia triplet. Let m1 = (x1, y1),
m2 = (x2, y2), and m3 = (x3, y3) be the three points of t, with their correspond-
ing planar coordinates, which are sorted in ascending order regarding the length
of the opposite side.

The feature vector associated to t in the palmprint F is denoted by f(t), and
it is defined as follows

f(t) = (st, β1, β2, β3, r1, r2, r3, d1, d2, d3), (1)

where st is the triangle sign, βi are the relative directions of mi with respect to
his opposite side in t, ri are the ridge counter between minutiae and di represent
the length of the sides of the triangle. These components are formally defined as
follows. The twice signed area of t is calculated using the following mathematical
expression

At = x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2). (2)

Using At, we define the triangle sign of t as st = 0 if At < 0; otherwise st = 1.
This feature is invariant to rotation and is included in order to discard possible
correspondences between similar palmprints of different hands (left and right).

We define di as the Euclidean distance between the corresponding minutiae
mj and mk. Finally, the ridge counter ri is defined as the number of ridges
crossed by the segment joining the pair of minutiae. We verify the statistical
behavior presented in [5]; therefore, we also remove from R those triangles with
at least one value outside the interval, 0 ≤ ri < 16.

The feature vectors presented in this section can be represented as a function
f : R → Φ called feature function, where the set Φ = K1 × K3

4 × K3
4 × R3,

assuming Kn = {0, 1, . . . , 2n−1} represents the feature space. Thus, we are able
to define the formal representation of a palmprint F , which is used in this paper.

Definition 3 (The feature model). Let F be a palmprint. The model of F is
defined as a triplet M = 〈P,R, f〉, where P is the planar point set representing
the minutiae of F , R is the expanded triangle set of P , and f is the function
f : R→ Φ, see (1).
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This feature model is used during the matching step for representing the
involved palmprints. The described features, combined with the mechanism de-
fined in section 4 to reduce the negative effects of noise, show a good performance
when they are used in identification tasks, see section 5.

4 Matching Step

In this step, we obtain a similarity value between two models Mp = 〈Pp, Rp, fp〉
and Mq = 〈Pq, Rq, fq〉. In order to do this, we present the following.

Let
f(tl) = (stl, β1l, β2l, β3l, r1l, r2l, r3l, d1l, d2l, d3l)

with l ∈ {q, p}, be the two feature vectors of two triangles tp ∈ Rp and tq ∈ Rq,
we say that tp and tq are corresponding if the following geometric constraints
are fulfilled:

stp = stq,
|βip − βiq| ≤ δβ ,
|rip − riq| ≤ δr,
|dip − diq| ≤ δd,

(3)

for all i ∈ {1, 2, 3}, where δβ, δr, and δd are predefined thresholds empirically
set to 3.

Let tp(m1p,m2p,m3p) and tq(m1q,m2q,m3q) be two corresponding triangles.
We define their correlation tuples as cti = (αi,mipmjp,miqmjq) with j = 1 if
i = 3 and j = i + 1 otherwise; were αi represents the normalized difference
between the i-th interior angles of tp and tq, and mipmjp,miqmjq are segments
of the triangles. Interior angle is defined as the angle inside two adjacent sides
of a triangle.

The process followed to obtain the value of αi, is very similar to that presented
by Chikkerur et al. [3], to obtain the similarity between an edge that connects two
minutiae of an impression and one edge joining two minutiae of other fingerprint.

Let Rp and Rq be two triangles sets, we define the set T (Rp, Rq) =
{ct1, ct2, . . . , ctn} as the union of all the correlation tuples of every corresponding
triangle between Rp and Rq.

In our matching step, we use a reduced set Tr(Rp, Rq) = {ct1, ct2, . . . , ctr}
that contains only the correlation tuples whose value of αi are equal to the
statistic mode in T (Rp, Rq) = {ct1, ct2, . . . , ctn}, for the values of αi of every
cti. The main goal of this process is finding the most probable value of relative
rotation between the matched models and using only the correlation tuples that
are consequent with this.

With the reduced set Tr(Rp, Rq) we construct a similarity graph Gs =
〈V,E, L, s, l〉 where s : E → R is a similarity function that assign a value to
every edge, l : Pi × Pj → L is a labeling function given two vertices and L is a
set of vertex labels. s is a similarity function that represents in fuzzy terms the
grade of closeness between the two segmentsmipmjp andmiqmjq that originated
a edge in Gs. Similar functions had been used in other fingerprint recognition
approaches [3,4].
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In algorithm 1, the generation of Gs is described. For each cti =
(αi,mipmjp,miqmjq) ∈ Tr two vertices that represent the mutual match be-
tween mip ⇐⇒ miq and mjp ⇐⇒ mjq, are generated. If these vertices are not in
V , they are added. Also, a new edge that represents the mutual match between
segments mipmjp and miqmjq is added to E. In this way, we have a graph that
represents matches between points of the models Mp and Mq, weighted with a
similarity function. The graph Gs may be not connected.

Algorithm 1. Generating similarity graph

Input: Tr(Ri, Rj) = {ct1, ct2, . . . , ctr}, l
Output: (V,E) - V and E of similarity graph
foreach cti = (αi,mipmjp,miqmjq) ∈ Tr do

u ← l(mip,miq); - Creating two new vertices
v ← l(mjp,mjq);
if u /∈ V then

V = V ∪ {u}; - Adding u if is not included yet
end
if v /∈ V then

V = V ∪ {v}; - Adding v if is not included yet
end
e ← (u, v); - Creating new edge
E = E ∪ {e}; - Adding new edge

end
return (V,E);

In order to find the spanning tree of every connected components of Gs with
the higher value of similarity in their edges, we applied the Kruskal algorithm to
Gs. This is a well known method to find a minimum (or maximum in our case)
spanning forest of disconnected graphs. Unlike the proposal presented by Zhu
et al. [11] based on the Prim algorithm, our solution is superior and it has not
been reported in previous works.

Let {F1, F2, . . . , Fn} be the set of spanning trees returned by the Kruskal
algorithm, sorted in descending order by the amount of edges. We implement a
strategy to merge F1 and F2 by trying to add a virtual edge ev between then.
This virtual edge must complain with some geometric restrictions. If this process
is successful then F1 = F1 ∪ F2 ∪ {ev}, F2 is eliminated and Fi−1 ← Fi, ∀ i, 3 <
i < n, n← n− 1. This process is repeated while F1 and F2 can be merged.

Finally, the similarity value between between models Mp = 〈Pp, Rp, fp〉 and
Mq = 〈Pq, Rq, fq〉 is given by the following expression:

similarity(Mp,Mq) =
sim× |V |

min(|Pp|, |Pq|)
(4)

where |V | is the number of vertices in the similarity graph Gs, |Pp| and |Pq| are
the cardinalities of Pp and Pq respectively, and sim is the sum of the weights of
every edge of F1.
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5 Experimental Results

In our experiments, a dataset in which some other approaches were
tested [6,9,10], was used. This dataset is conformed by 22 latent palmprints from
real forensic cases and 8680 full palmprints from criminal investigation field, cap-
tured by Beijing Institute of Criminal Technology in China. All the impressions
have a resolution of 500 ppi. In the case of latent palmprints, the minutiae were
manually extracted by forensic chinese experts. On the other hand, the minutiae
of the 8680 full palmprints were extracted automatically using the VeriFinger
4.2 [8], and we did not used any palmprint enhancement process.

Table 1. Comparison results of identification rate

Algorithm
Identification Rate

Rank-1 Rank-10 Rank-20
Jain and Feng [6] 67 % 73 % 80 %
Wang et al. [9] 63 % 68 % 72 %
Wang et al. [10] 69 % 78 % 82 %
Our proposal 77 % 82 % 82 %

0.60

0.65

0.70

0.75

0.80

0.85

0.90

1 3 5 7 9 11 13 15 17 19

Our proposal
Wang et al. 2011
Jain and Feng 2009
Wang et al. 2012

Fig. 2. Comparison of methods using CMC curves

Using the described dataset we compared our latent-to-full palmprint verifi-
cation algorithm with three other proposals found in the state-of-the-art.

Comparison results of identification rate are shown in Table 1. For each iden-
tification rate, the higher reached value is highlighted in bold. As we can see,
in almost every case our method outperforms the other proposals. In Figure 2,
CMC curves of our algorithm and other state-of-the-art methods are shown.
In this graphic, the higher accuracy of our proposal is evidenced,especially for
rank-1, where we have eight percentage points over the best second algorithm.
This same algorithm achieves the 82.2% of identification rate at rank-18, while
our algorithm obtains the same value at rank-3.

6 Conclusions

Many of the reported palmprint matching algorithms are highly affected when
they are used to compare low-quality and distorted images or latent palmprints
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captured at uncontrolled context. The feature model and the novel matching
algorithm, proposed in this paper, can be considered as a promising approach
for palmprint identification in such context, dealing with the problems of miss-
ing and spurious minutiae, and other noises. Experimental results show that
our proposal achieves high accuracy in latent palmprint matching tasks, outper-
forming other state-of-the-art proposals. We did not use any preprocessing or
enhancement method to reduce the number of false minutiae that an automatic
extraction process usually has.
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Abstract. A critical element in multi-biometrics systems, is the rule to fuse the 
information from the different sources. The component sub-systems are often 
designed to further produce indices of input image quality and/or of system re-
liability. These indices can be used as weights assigned to scores (weighted fu-
sion) or as a selection criterion to identify the subset of systems that actually 
take part in a single fusion operation. Many solutions rely on the estimation of 
the joint distributions of conditional probabilities of the scores from the single 
subsystems. The negative counterpart is that such very effective solutions re-
quire training and a high number of training samples, and also assume that 
score distributions are stable over time. In this paper we propose a unified re-
presentation of the score and of the quality/reliability index that simplifies the 
process of fusion, provides performance comparable to those currently offered 
by top performing schemes, yet does not require a prior estimation of score dis-
tributions. This is an interesting feature in highly dynamic systems, where the 
set of relevant subjects may undergo significant variations across time. 

Keywords: Reliability, unified value score-reliability, complex numbers. 

1 Introduction 

Multi-biometric systems [16] are considered as one of the best viable solutions to over-
come limitations of classical single biometrics, since flaws of one sub-system may be 
balanced by strengths of a companion one. Among the most relevant issues raised by 
the combined approach, we mention the need for an effective fusion strategy of the 
results. Information fusion in a biometric system can be performed at feature, score, or 
decision level [6], but most schemes in literature opt for score level fusion [5]. Score 
normalization is one of the important aspects to consider during fusion. Fusion schemes 
may also rely on treating scores as a unified feature vector, which requires a further 
classifier, or on transforming the scores in a posteriori probabilities [10]. A further issue 
is represented by the introduction of quality measures computed for the input samples 
[7][8] and of confidence margins [10]. The former (e.g. sharpness, lighting) allows to 
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possibly discard problematic samples, but can also be exploited after classification, as a 
weight on the final obtained score. The latter can be used after classification to decide 
whether to trust in the system response. Two trends are currently developing, to take 
them into account. In the first one, all subsystems always participate in the fusion, and 
the quality is used to weight their responses. In the second one, only a subset of subsys-
tems takes part from time to time in the fusion, which are selected according to reliabili-
ty of their responses. In both cases, reliability measure is an additional information, and 
mostly handled as a separate value. 

Among the many simple score fusion rules (e.g. sum, weighted sum, product, min, 
max) [10], a number of authors claim that simple sum is the best compromise between 
simplicity and performance. On the other hand, significantly better results can be 
obtained through more complex techniques [1]. Likelihood Ratio (LR) is one of the 
most interesting ones. The authors of [17] discuss how product of Likelihood Ratios 
represents an optimal rule to get the highest Genuine Accept Rate (GAR) for a fixed 
False Accept Rate (FAR) in a multi-biometric system. The main disadvantage of this 
rule of fusion is that it assumes an accurate estimate of the joint distribution (across 
all the subsystems) of the conditional probabilities of the scores achieved by genuine 
and impostors users. This requires a complex modeling phase (in [12] finite Gaussian 
Mixture Model - GMM is used to model the genuine and impostor score densities), 
and a significant number of training samples. Despite such complexity, performance 
of systems whose operational parameters are based on a preliminary estimation of 
score distributions, may degrade if these significantly change along time. Neverthe-
less, given the optimality of LR, it can be considered as an asymptotic limit for which 
to strive when devising a new rule of fusion, while trying to overcome its limitations. 

This work proposes a novel way of assembling the recognition score and the re-
sponse reliability measure into a single complex number, facilitating the fusion in 
identification operations. The technique used in [18] maps the feature vectors from 
two biometric systems into the real and imaginary part of a complex vector. We rather 
use the score and the reliability, associated with an identification result by a single 
subsystem, to derive the module and the anomaly in the exponential representation of 
a complex number. The fusion of results related to the same identity relies on a mod-
ified operation of complex product among the responses from the single subsystems 
returning such identity. Further processing detailed in Section 2 allows to obtain a 
single real value as the final score assigned to a given identity by the global system. 
We use the System Response Reliability (SRR) measure [4], which does not require 
training, and is able to provide reliability information for each single recognition op-
eration, differently from aggregate values like Recognition Rate. 

2 Merging Scores and Reliability Values by Complex Numbers 

There is a major difference between a quality measure for an input sample and a re-
liability measure for the response of a biometric system. The former is generally 
bound to a specific biometrics and to a specific classifier: for instance, a measure 
based on the quality of minutiae only applies to fingerprint recognition, which specif-
ically uses minutiae for classification. Reliability measures devised without any  
reference to a specific biometric trait and/or algorithm can be generally used for any 
recognition system. The biometrics-independent reliability measure that we exploit 
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takes into account the composition of the gallery of the recognition system. From now 
on, we will use the System Response Reliability (SRR) [4] as a measure of reliability. The 
SRR relies on different versions of function ϕ defined in [4], which respectively ex-
ploit the relative distance and the density ratio, as well as a combination of them. All 
three functions measure the amount of “confusion” among possible candidates. We 
assume that the result of an identification operation is the whole gallery ordered by 
distance from the probe. Given a probe p and a system A with gallery G, the first 
function is: 
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where d is a distance function with codomain [0, 1],   is the k-th identity in the 
returned gallery ordering, and |G| is the size of the gallery; distance values falling in a 
different codomain can be suitably normalized. Here we use the Quasi Linear Sig-
moidal (QLS) [4]. It better preserves the original distribution of data, and is robust to a 
missing reliable evaluation for the maximum value. With relative distance if a person 
is genuine, there is a great difference between the distance from the first retrieved 
identity and the immediately closest one. Density ratio is instead defined as: 
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The formula considers the distinct identities returned during identification as a 
cloud centred in p; the higher the density of this cloud, the more unreliable is the an-
swer, as there are many individuals as potential candidates. In this paper we also 
adopt a variation of the density ratio. As one can observe in the definition of Nb in (2), 
the radius of the considered cloud depends on the distance from the probe of the first 
returned identity and from a constant. This function is less sensible to outliers, than 
ϕ1, but it considers narrower clouds when the first retrieved identity is closer to the 
probe. On the contrary, a large distance takes to a wider cloud, which can be expected 
to be more crowded anyway. To further improve ϕ, we define here the term Nc such 
that the cloud radius depends on the difference between the first two distances:  

( ) GNp c /13 −=ϕ ,  

where   
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The new radius increases with the second distance, and with the difference be-
tween the first and the second ones. In practice, the farthest the second returned sub-
ject from the probe, also with respect to the first one, the wider the cloud we inspect. 
However, being all distances in [0,1], we add 1 to both terms to maintain direct pro-
portionality. We also use the appropriate normalization factor since the value of d is 
in [0,1], and the maximum value for the numerator in (3) is 4. 

Once chosen the function ϕ to use, some more steps are required to compute the 

value of SRR for the probe at hand. For each ϕ(p), we identify a value ϕ  fostering a 
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correct separation between genuine and impostor subjects. We also define 

)),(( ϕϕ pS  as the width of the subinterval from ϕ  to the proper extreme of the 

overall [0,1) interval of possible values, depending on the comparison between the 

current ϕ(p) and ϕ : 

( )
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SRR index can finally be defined as: 

)())(( ϕϕϕ SpSRR −= . (5) 

In detail, we measure the distance between ϕ(p) and the “critical” point ϕ , which 

gets higher values for ϕ(p) much higher than ϕ  (genuine), or for ϕ(p) much lower 

than ϕ  (impostors). However, it is also important to take into account how much it is 

significant with respect to the subinterval over which it is measured. SRR gets values 
in [-1, 1]. More details on computation and its motivations can be found in [4]. 

Numbers in the complex field can be represented as a+ib ,or by the exponential re-
presentation z=ρ⋅eiθ, where ρ is the modulus and θ is the anomaly. In our fusion, the 
score and the reliability measure are used to derive the ρ and the θ of this latter repre-
sentation, respectively. We chose this representation because it better adapts to the 
kind of processing for fusion. In fact, the product operation with the real/imaginary 
form, would suffer from misleading cross-influence between heterogeneous parts. 
Given a score s and a reliability value srr, ρ=(1+s)⋅and θ=srr. Since s is in the inter-
val [0,1], and  srr ranges between -1 and 1, then ρ is in the interval [1, 2] and θ is in 
[-1,1]. We take the set of the complex numbers obtained in this way from the values 
returned by the different subsystems voting for the same identity in a multibiometric 
identification. We define a new operation over them that we denote with ⊗, such that: 
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Thanks to the denominators, the final ρ⊗ and θ⊗  are still in the same intervals as 
the initial values. The final composed score will be s⊗ = (ρ⊗ /2) and the final reliability 
will be srr⊗ = θ⊗, and will be respectively in the interval [0,1] and [-1,1]. In the ab-
sence of a reliability measure, its value can be set to 1 for any response. The two val-
ues after fusion can again be used to obtain the exponential form of a complex num-
ber. This can be done for each group of subsystems voting for a same identity, so that 
at the end we will have a complex numbers for each candidate identity. However, we 
have to choose a winning identity, so we would prefer single and easier to compare 
values. To this aim, we first pass to the representation of the complex numbers in real 
and imaginary part z=a+ib, with a,b∈R. The (a, b) pair can be interpreted as a couple 
of coordinates in a two-dimensional space, and as such can be represented in the Ar-
gand-Gauss plane (especially devised to represent complex numbers in this form). 
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Fig. 1 presents an example of the effects of the approach using SRR defined above 
with ϕ1. The values a+ib in the plots refer to the half-plane with positive x-axis (real 
part a, derived from scores). The first three plots represent pairs of points for the same 
classifier on three different biometrics (face, ear and iris). Section 4 reports details on 
datasets and classifiers. We see that genuine scores (red/light circles) are mainly con-
centrated in the first quadrant, while impostor scores (blue/dark squares) mainly lie in 
the fourth quadrant, with some overlap. The last plot is the result of the introduced 
operations over these values. Notice that the values for genuine users are distributed 
in the positive quadrant, while those for the impostors are concentrated in the negative 
one, but the interesting feature to notice is that values are much more sharply divided. 

 

Fig. 1. First three plots: distribution of pairs real/imaginary parts obtained from the responses 
of a correlation based classifier (see below) over face, ear and iris datasets (left-right and top-
bottom); last plot: the distribution after the product. Red/light circles are genuine scores, 
blue/dark squares are impostor scores. 

As coordinates in a 2D space, (a, b) pairs can be further transformed in single val-
ues using Peano keys. Peano rule maps a 2D onto a 1D space such that two close 
points in the starting space, tend to be close also in the final one. However, the rule 
requires integer values, so that it is necessary to consistently map a and b onto integ-
ers with a finite number n of bits. In our implementation the new integers aP and bP 
have n = 16 bits. The associated Peano key KP is obtained by interleaving bits from aP 
and bP, from the least significant to the most significant one, so to obtain a final value 
of 32 bits. Values for different identities can be straightforwardly compared. 

3 Experimental Framework 

The presented framework was tested in a multi-biometric setting (face, ear and iris) 
and compared with the LR discussed in [12], using the same implementation for the 
estimation of the GMM model. The multi-biometric database consists of Chimeric 
users whose biometric traits were taken from three different datasets. It is worth notic-
ing that  it is presently accepted that results obtained in this way are worthy of full 
reliability [9]. The number of subjects in the database is constrained by the size of the 
database of ears, namely 100 subjects in the Notre Dame Ear Database [13]. In order 
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to consider an open set identification setting, i.e. a situation where not all users are 
enrolled and impostors can also occur, the gallery consists of 75 enrolled subjects, for 
which there is a single image, while the probe is made up of 100 subjects, each ac-
companied by a single image. The faces are from a subset of AR-Faces database [14] 
(50 males and 50 females), for which 4 different datasets were considered: gallery 
(normal), Face-2 (smile), Face-5 (left-light) and Face-11 (scarf). The irises were from 
the first 100 subjects in UBIRISv1s1 database [15]. Performance were measured in 
terms of Recognition Rate (RR) and Equal Error Rate (EER) [2]. 

In order to understand the relation between the behavior of the presented frame-
work and the classifier used, we tested it with Principal Component Analysis (PCA), 
Linear Discriminant Analysis (LDA) and the local correlation-based classifier which 
is part of FACE system [3], indicated from now on as FACE for short. Table 1 shows 
the performance on each dataset, which appear quite heterogeneous, as expected. This 
is interesting to understand later how the fusion technique works, not only when all 
classifiers provide optimal results, but also when one or more of them fail. 

Table 1. Performance of single classifiers on each dataset, in terms of RR and EER 

Dataset PCA LDA FACE 
RR EER RR EER RR EER 

Face-2 0.97 0.039 0.94 0.027 0.97 0.052 
Face-5  0.21 0.144 0.61 0.124 0.98 0.013 
Face-11 0.04 0.441 0.05 0.354 0.93 0.053 
Ear  0.65 0.207 0.76 0.091 0.85 0.120 
Iris 0.69 0.092 0.74 0.093 0.62 0.185 

Results in Table 1 show that PCA and LDA are much more sensible to local varia-
tions within a face image. In particular on the Face 11 set, where the lower part is 
completely occluded by a scarf. In combinating with other biometrics, this condition 
may be particularly stressing for the fusion process, making this case very interesting. 
In the first experiment, we tested the best function ϕ. The same classifier was applied 
to the different biometrics and the reliability was measured from time to time by a 
different ϕ. Given the score sj (as an inverse of distance from the probe) from biome-
trics j (F=face, where F2, F5 and F11 indicate the datasets from AR-Faces, E=ear and 
I=iris), and given srrj its reliability value, according to the chosen ϕ, Complex Fusion 
(CF) computes the presented operation for the three (1+sj)ei·srrj. Simple sum rule was 
also tested, and results were comparable to those of complex values with no reliabili-
ty, i.e. with the imaginary part set to 1 (CF none). For sake of space, Table 2 only 
reports the results of FACE, which resulted better than PCA and LDA classifiers. 

Table 2. RR and EER, when different ϕ functions are used in fusion of FACE results 

Method 
F2/E/I F5/E/I F11/E/I 

RR EER RR EER RR EER 
Simp. sum 1.00 0.026 1.00 0.001 1.00 0.067 
Simp. prod 1.00 0.026 1.00 0.001 1.00 0.060 
CF none 1.00 0.046 1.00 0.033 0.97 0.039 
CF ϕ1 1.00 0.020 1.00 0.006 1.00 0.033 
CF ϕ2 1.00 0.246 1.00 0.153 0.99 0.342 
CF ϕ3 0.98 0.039 1.00 0.033 0.94 0.061 
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Table 2 shows that ϕ1 and ϕ3 give the best results and will be used to compare per-
formance of Simple product, Complex fusion e Likelihood ratio. Values in Table 2 
highlight that the simple sum provides acceptable results, when the classifier offers 
good performance for every fused biometrics. However, it was observed that, having 
all biometrics the same weight, if one of them provides poor results this significantly 
influences the overall system performance, as confirmed by the results in Table 3, 
where each fusion technique is evaluated with all classifiers.  

Table 3. Performance when different techniques are used for fusion, in terms of RR and EER 

PCA 
F2/E/I F5/E/I F11/E/I 

RR EER RR EER RR EER 
Simple sum 1.00 0.073 1.00 0.112 1.00 0.278 
Complex Fusion (ϕ1) 0.99 0.420 0.72 0.329 0.65 0.560 
Complex Fusion (ϕ3) 1.00 0.326 0.74 0.333 0.64 0.470 
Likelihood Ratio 1.00 0.033 0.95 0.140 0.85 0.214 

LDA 
F2/E/I F5/E/I F11/E/I 

RR EER RR EER RR EER 
Simple sum 1.00 0.040 0.96 0.120 0.84 0.171 
Complex Fusion (ϕ1) 0.99 0.427 0.86 0.170 0.73 0.359 
Complex Fusion (ϕ3) 0.99 0.118 0.84 0.160 0.77 0.181 
Likelihood Ratio 1.00 0.040 0.99 0.112 0.95 0.171 

FACE 
F2/E/I F5/E/I F11/E/I 

RR EER RR EER RR EER 
Simple sum 1.00 0.026 1.00 0.001 1.00 0.067 
Complex Fusion (ϕ1) 1.00 0.020 1.00 0.006 1.00 0.033 
Complex Fusion (ϕ3) 0.99 0.039 1.00 0.033 0.93 0.061 
Likelihood Ratio 1.00 0.010 1.00 0.000 1.00 0.013 

In Table 2 and Table 3 ϕ1 provides the best results with a classifier robust to varia-
tions, like FACE. On the contrary, e.g., with PCA and partly with LDA, ϕ3 sometimes 
provides better results. Table 3 shows that, in many cases for PCA and LDA, com-
plex fusion performance is below simple sum. This is because these two algorithms 
are both poorly robust to distortions, and provide poorly reliable responses. In fact, 
we would observe a wide overlap between genuine and impostor distributions. With 
FACE classifier we achieve both higher robustness, and higher reliability. The latter 
makes the fusion results with complex numbers better than those with simple sum, 
especially with function ϕ1. The overall interesting aspect is that, using a robust clas-
sifier aligned with the state of the art, the proposed fusion technique is able to provide 
better results that simple sum and only slightly lower that the optimum LR. This is 
very important if we consider that it is simple like the sum, yet does not require any 
preliminary estimation of genuine and impostor score distributions. In other words, at 
the expense of a slightly lower performance, we are able to adopt a strategy which is 
stable over time and delivers results which are congruous for each single probe, we 
avoid an expensive training phase, and save computation even in operational phases. 

4 Conclusions 

This paper has presented a multi-biometric fusion framework based on the joint repre-
sentation in the complex field of score values and reliability measures. The experimental 
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results show that in the case of robust classifiers the performance of the proposed 
framework are comparable to those of LR, which proves to be the best criterion for 
fusion. The product of complex values, however, has the further advantage of not need-
ing an accurate approximation of the distributions of the scores. Future studies will fo-
cus on even better criteria to use the complex representation. 
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Abstract. While combining more than one biometric sample, recog-
nition algorithm, modality or sensor, commonly referred to as multi-
biometrics, is common practice to improve accuracy of biometric systems,
fusion at segmentation level has so far been neglected in literature. This
paper introduces the concept of multi-segmentation fusion for combin-
ing independent iris segmentation results. Fusion at segmentation level
is useful to (1) obtain more robust recognition rates compared to sin-
gle segmentation; (2) avoid additional storage requirements compared to
feature-level fusion, and (3) save processing time compared to employing
parallel chains of feature-extractor dependent segmentation. As proof of
concept, manually labeled segmentation results are combined using the
proposed technique and shown to increase recognition accuracy for rep-
resentative algorithms on the well-known CASIA-V4-Interval dataset.

1 Introduction

Aiming to bridge the performance gap of image-based biometric systems between
highly accurate standardized cooperative applications and less constrained sce-
narios has attracted many researchers to propose algorithms improving prepro-
cessing and segmentation techniques, which are reported to play an important
role due to susceptibility to poor image quality [10]. The human iris is one of the
most unique biometric identifiers, and also selected to be one of two modalities
to be employed in the world’s largest biometric deployment, Aadhaar, targeting
biometric identification of each Indian citizen. It is clear, that such large-scale
applications demand high accuracy to avoid misclassification. Furthermore, the
discrepancy between users aware of the acquisition and the observed decreased
rate when applied in unconstrained scenarios with reported VR (verification
rate) as low as 44.6% [14] versus >99% VR at 0.1% FAR (false acceptance rate)
for a series of iris biometric systems in constrained environments [1] support the
claimed need for higher accuracy in less constrained applications.

A combination of multiple biometric information can increase accuracy at
the cost of additional resources and is traditionally employed at the score or
decision-level [15]. Such fusion rules unfortunately exhibit limitations: (1) many
algorithms conduct the same or similar costly processing steps; (2) segmentation
errors propagate along the biometric processing chain, and; (3) contradicting in-
formation may derogate system performance. This leads to the question: Can

J. Ruiz-ShulcloperandG. Sanniti di Baja (Eds.): CIARP 2013, Part II, LNCS 8259, pp. 310–317, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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fusion at lower levels (segmentation) lead to more accurate (and faster) bio-
metric systems? This paper is dedicated to providing a positive answer to the
feasibility of fusion at segmentation stage, i.e. whether the combination of in-
dependent segmentation results lead to better system performance in terms of
recognition accuracy, independent of the chosen feature extraction and compar-
ison algorithm. Note, that the choice of methods may impact processing time.

The remainder of this paper is organized as follows: Section 2 reviews related
work with respect to multi-biometric fusion. Section 3 formalizes the referred
segmentation model and introduces the concept of fusion at segmentation stage.
Section 4 introduces experimental setup and Section 5 presents an experimental
evaluation of the proposed technique. Finally, Section 6 concludes this work.

2 Multibiometric Fusion

Multibiometric fusion refers to the “use of multiple pieces of evidence in order
to deduce or verify human identity” [18] and can be applied at different stages
in the biometric processing chain [15]:

1. Data/Feature Level : consolidating information from the raw biometric sig-
nal or after feature extraction from individual classifiers into a single high-
dimensional template.

2. Score Level : consolidating comparison scores with density-based (using the
likelihood ratio after modeling genuine and imposter score distributions),
transformation-based and classifier-fusion-based (learning boundaries from
observed data) solutions, this is probably the most-intensively studied type
of fusion leaving other processing modules unaffected.

3. Rank/Decision Level : depending on whether biometric authentication is per-
formed in identification mode (1-to-N comparison with all subjects registered
with the system to determine an identity from a biometric sample) or verifi-
cation mode (1-to-1 comparison to justify the authenticity of an identification
claim as genuine or imposter), this fusion type consolidates the outcome of
individual decision processes, i.e. ranking lists or class decisions.

Due to the development of embedded solutions and with the rise of new biomet-
ric modalities focusing on specific parts and/or scales, the original classification
of fusion scenarios in [15] into (1) multiple sensors, (2) multiple biometrics, (3)
multiple units, (4) multiple snapshots, (5) multiple matchers is less strict and
new scenarios emerge [16]. While an integration at early level is claimed to be
more effective [15], it is more complex to design. The majority of proposed multi-
biometric techniques targeting biometric surveillance (e.g., [19,14,5]) are score-
level fusion approaches. Only few data/feature level fusion techniques exist: [4]
is the first signal-level fusion approach in iris recognition creating a single high-
resolution image from multiple frames in video outperforming score-level fusion
techniques. Their proposed technique is essentially an image fusion of iris images
at the pixel level. Our approach is different in targeting not multiple snapshots
but a single-snapshot only and combining the result of multiple segmentation
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Fig. 1. Basic operation mode of novel proposed iris segmentation fusion

results in order to improve recognition accuracy. This is the first approach on
combining segmentation results for improved iris recognition.

3 Iris Segmentation Fusion

This paper proposes to allow for a combination of multiple segmentation re-
sults S1, S2, . . . Sk of the same input iris image I using multiple segmentation
algorithms, see Fig 1 for an illustration on how iris segmentation fusion can be in-
tegrated into iris processing chains between sensing and normalization. Since not
all iris feature extraction techniques require the same preprocessing tasks, the
proposed fusion technique uses segmentation results by employing Daugman’s
normalization [2], which serves as the basis for most commercial applications
[12]. A good reference work for practices on image segmentation classifier com-
bination is [6].

3.1 Daugman’s Iris Normalization Model

In Daugman’s algorithm [2], binary features are extracted after mapping iris
texture between inner pupillary and outer limbic boundary into a representation
called “Faberge coordinates” applying a rubbersheet transform, see Fig. 2. This
process involves essentially two tasks [12]: (1) iris segmentation detecting the two
(originally circular, but extensible to arbitrarily shaped) boundaries, pupillary
and limbic polar curves P,L : [0, 2π) → [0,m] × [0, n], for the eye instance
in the m × n input image (we assume, that eye detection and quality checks
indicate exactly one such instance is present and of sufficient quality); and (2)
iris normalization, which creates a normalized representation of the iris texture,
invariant under pupillary dilation and facilitating for rotational alignment via
simple pixel-shifts using angular θ and pupil-to-limbic radial r coordinates:

R : [0, 2π)× [0, 1]→ [0,m]× [0, n]. R(θ, r) := (1 − r) · P (θ) + r · L(θ). (1)

Besides the mapping in doubly dimensionless coordinates using R, due to
eyelids and reflections, the resulting rectangular area does not only contain iris
texture, but also areas, which should be masked out during feature extraction
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Fig. 2. Iris rubbersheet transform model with circular P, L and paraboloid Eu, El

and comparison. While [13] shows, that indeed, a reordering of pixels based on
reliability has almost a similar effect like noise masks (and render their use less
effective), traditional processing also creates a binary noise mask as part of the
normalization task, N : [0, 2π) × [0, 1] → {0, 1}, marking areas occluded by
eyelids, eyelashes or reflections. Usually, in order to build this noise mask, upper
and lower eyelids are fitted by paraboloid or polynomial curves Eu, El : [0, 1]→
[0,m]× [0, n] to mask out occluded areas in the noise mask.

3.2 Combination of Segmentation Results

Motivated by the observation, that more generic alignment using Levenshtein
instead of Hamming distance (HD) is able to increase recognition [17], the goal
of the fusion module is to obtain a better pupillary and limbic boundary repre-
sentation for minimizing the effect of mapping deformations due to inaccurately
localized boundaries in the rubbersheet transform. While there are several differ-
ent possibilities to accomplish this task (e.g., for practices on image segmentation
classifier combination see [6]), we exemplary introduce two different techniques:

– Sum-Rule Interpolation: A very natural choice of a fusion rule combining
multiple boundaries B1, B2, . . . Bk : [0, 2π) → [0,m] × [0, n] into a single
boundaryB is, in analogy to the sum rule in score-level-fusion, the arithmetic
mean of sampled boundaries:

Sum Rule : B(θ) :=
1

k

k∑
i=1

Bi(θ) (2)

This interpolation is executed for B = P and B = L separately. The same
method can be applied to interpolate between upper and lower eyelid ap-
proximations Eu, El to derive a common noisemask.

– Augmented-Model Interpolation: in case boundaries are rather different
and/or the curves’ sampling interval [0, 2π] is not “equally spaced”, i.e. for
discretized equidistant samples of arguments x1, . . . xs ∈ [0, 2π] the boundary
polygon B(x1), B(x2), . . . B(xs) has large variation in the length of boundary
line segments, sum rule interpolation may lead to inaccurate results. While in
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this case a re-parametrization of boundary curves may be useful or necessary
for sum-rule interpolation, an alternative approach to the fusion of boundary
curves is fitting a model to the union of sampled edge points:

Aug Rule : B(θ) := ModelFit
( ⋃
1≤i≤k

⋃
1≤j≤s

Bi(xj)
)
(θ) (3)

whereModelFit is a fitting routine taking a set of points and providing a suit-
able shape (closed boundary curve) minimizing a model-error, e.g. Fitzgib-
bon’s ellipse fitting method [3] in case of B = P or B = L. For upper and
lower eyelid curves B = Eu, B = El, input points can be used to fit a polygon
of second order to the input points.

4 Experimental Setup

In order to estimate the usability of the proposed new fusion framework, we
assess its performance on manually segmented iris images. This test is useful,
since (1) any dependencies between segmentation algorithms can be avoided in
this case enabling a fair test of the fusion rule, (2) a positive outcome justifies
its application in building high-confidence fused ground truth for evaluating
segmentation algorithms, (3) manual segmentations are state-of-the-art (e.g. in
the Noisy Iris Challenge Evaluation [11]) to evaluate segmentation techniques
(i.e. considered superior to automated evaluations), therefore if segmentation
fusion is able to improve manual segmentation, it is a positive result for also
automated segmentation techniques, which are continuously improved to achieve
close-to-manual performance.

For experiments we employ the entire CASIA-V4-Interval1 dataset of high
quality NIR illuminated indoor images with 320 × 280 pixel resolution (2639
images, 395 classes). For manual segmentations, a male (Manual 1 ) and female
(Manual 2 ) expert manually labeled boundary points until the fitted elliptic
inner pupillary and outer limbic boundaries sufficiently (according to the opinion
of the expert) approximated the true possibly occluded iris boundary. The same
procedure was also executed for upper and lower boundaries using a polynomial
of order two as the curves’ model. During manual segmentation, the expert could
zoom in/out and see the original and fitted (segmented) image.

As feature extraction algorithms operating on normalized iris textures, three
representative implementations available in USIT2 were employed: Masek [8] is
a feature extraction algorithm extracting phase angles from the row-wise con-
volution of the 1D intensity signals with scaled and oriented Log-Gabor kernels
encoding each phase angle with 2 bits leading to a 10240 bits code. Fractional HD
is employed for comparison. Ma [7] is a feature extraction algorithm tracking the
positions of minima and maxima (switching bit sequences) after executing 1D

1 The Center of Biometrics and Security Research, CASIA Iris Image Database,
http://biometrics.idealtest.org

2 University of Salzburg Iris Toolbox, http://wavelab.at/sources/USIT/

http://biometrics.idealtest.org
http://wavelab.at/sources/USIT/
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wavelet transform on the 10 one-dimensional signals, each one averaged from the
pixels of 5 adjacent rows for each of two subbands. Again, fractional HD is the
comparison criterion. Finally, Monro [9] employs a 1D discrete cosine transform
(DCT) on diamond-shaped image patches using a Hanning window approach to
locally summarize data. The final 2x128 bytes code tracks zero crossings of the
differences between the DCT coefficients of adjacent patch vectors using first
three DCT coefficients for a total of 7 shift positions (0;±4;±8;±12). Also for
the other codes (Masek, Ma) the comparison routine employed 7 bit shifts in
either direction for optimal alignment.

5 Results

We evaluate segmentation accuracy by assessing the impact on verification recog-
nition accuracy, i.e. ROC curves plotting false acceptance rate (FAR) versus
genuine acceptance rate (GAR), given in Figs. 3, 4 and 5. GAR at fixed FAR
(≤ 0.01%) for each of the two manual segmentations as well as fused results are
reported in Table 1.

First, we can see that independent of the employed feature extraction algo-
rithm, both manual segmentations exhibit the same order in performance over
the entire operational ROC range: manual segmentation 2 delivers more accu-
rate results with 97.64% GAR at FAR ≤ 0.01% for Masek, 98.34% for Ma and
95.72% for DCT-based Monro versus 97.46% for Masek, 98.19% for Ma and
93.94% Monro in case of the first manual segmentation. This suggests, that
manual segmentation 2 is more accurate/consistent. Both segmentations needed
approximately 9 working days to segment the dataset.

The second important observation is an algorithm-dependent impact of seg-
mentation on recognition accuracy. While typically, algorithms are compared by
using their own segmentation technique, we can see that the sensitivity against
segmentation among algorithms is quite different and should be considered when
comparing algorithms. While for Masek performance differences are almost invis-
ible (1.17% EERManual 1 vs. 1.15% EERManual 2, but still better performance
for segmentation fused Sum Rule with 1.13% EER and Aug-Rule with 1.12%
EER), differences for Monro are clearly present (1.84% EER Manual 1 vs. 1.62%
EER Manual 2, vs. Sum Rule with 1.52% EER and Aug-Rule with 1.48% EER).

Third, with respect to the targeted feasibility study of segmentation fusion
we can report, that fusion algorithms were able to increase accuracy of both
segmentation results, independent of the chosen feature extraction algorithm - a
result which is not self-evident and justifies its future investigation with existing
segmentation algorithms. Sum Rule Interpolation, which has the advantage of
being fast in computing an averaged segmentation representation, could increase
GAR from 97.46% to 97.84% for Masek, from 98.19 to 98.57% for Ma, and from
93.94% to 96.74% for the Monro implementation, which did not consider noise
masks. Relative performance differences to the Augmented Model Interpolation
were insignificant (97.84% GAR for Masek, 98.51% Ma and 96.8% for Monro),
i.e. both fusion rules performed almost equally well.
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Fig. 5. ROC for the Masek feature

Table 1. Recognition accuracy in Genuine
Acceptance Rate at ≤ 0.01% False Accep-
tance Rate.

Algorithm
GAR at FAR ≤ 0.01%
Masek Ma Monro

Manual 1 97.46 98.19 93.94
Manual 2 97.64 98.34 95.72

Sum-Rule 97.84 98.57 96.74
Aug-Model 97.84 98.51 96.80

6 Conclusion

Recent challenges like the Noisy Iris Challenge Evaluation (NICE) or Multiple
Biometrics Grand Challenge (MBGC) have put a strong focus on the segmen-
tation problem of challenging iris images. But so far, there has been no sys-
tematic framework of combining segmentation results from different algorithms.
We showed, that besides combining outcomes of biometric feature extraction or
comparison algorithms, it may be useful to combine segmentation and normaliza-
tion information from multiple sources. Evaluations using manual segmentation
on CASIA-V4-Interval revealed improvement by segmentation fusion for each of
the employed feature extraction algorithms and fusion rules. Segmentation-fused
recognition was as high as 96.8% GAR at ≤ 0.01% FAR (Aug-Rule) vs. 93.94%
and 95.72% for individual segmentations in case of Monro’s feature. Future work
will focus on automatic segmentation algorithms, more challenging datasets, and
quality-related information assisting fusion rule selection.
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Abstract. Gesture recognition has become a very active research area
with the advent of the Kinect sensor. The most common approaches for
gesture recognition use temporal information and are based on meth-
ods such as Hidden Markov Models (HMM) and Dynamic Time Warp-
ing (DTW). In this paper, we present a novel non-temporal alternative
for gesture recognition using the Microsoft Kinect device. The proposed
approach, Recognition by Characteristic Window (RCW), identifies, us-
ing clustering techniques and a sliding window, distinctive portions of
individual gestures which have low overlapping information with other
gestures. Once a distinctive portion has been identified for each gesture,
all these sub-sequences are used to recognize a new instance. The pro-
posed method was compared against HMM and DTW on a benchmark
gesture’s dataset showing very competitive performance.

Keywords: Machine Learning, Gesture Recognition, Kinect.

1 Introduction

Advances in computer vision technology provide us with a large number of tools
that give us different types of information, making the data manipulation and
extraction easier and more precise. A trending device is the Kinect sensor, a
technology developed by Microsoft mainly for movement recognition and track-
ing. It integrates an RGB camera, a depth sensor consisting of an infrared laser
projector, and a multi-array of microphones. The Kinect sensor has triggered an
increased interest in gesture recognition.

Most gesture recognition systems use temporal information for building their
models and for classifying new gestures. Common techniques include Hidden
Markov Models (HMM) and Dynamic Time Warping (DTW). The rationale is
that taking into account the temporal information from the gesture a better
classifier can be build.

In this paper, we take an alternative approach where we train a classifier
using “static” information. The advantage is that there is a large number of
off-the-shelf robust algorithms that can be directly applied.

Our approach, Recognition by Characteristic Window (RCW), is based on the
idea that for each gesture there is a sub-sequence of frames (window) distinct

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part II, LNCS 8259, pp. 318–325, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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from all other gestures. In this paper, we implement a novel approach that scans a
gesture with a sliding window to find, using clustering, a distinctive sub-sequence
of that gesture. The generated windows for each gesture are used as input to a
classifier to recognize new instances.

We trained different classifiers and compared different classification policies.
Our proposed method was also compared against Dynamic Time Warping
(DTW) and Hidden Markov Models (HMM) on a benchmark dataset. It is shown
that RCW obtained very competitive results when compared against DTW and
HMM models.

The remainder of the paper is organized as follows. Section 2 summarizes
the most relevant related work for this research. Section 3 describes how the
data is pre-processed to obtain new attributes which are robust to translations
and rotations. In Section 4 our method is described, Section 4.1 describes the
clustering phase of the method where the best windows are found for each gesture
and Section 4.2 explains the way the classifier is trained and how the classification
is produced. Section 5 describes the performed experiments and results and
Section 6 provides conclusions and future research directions.

2 Related Work

Several approaches have been recently proposed for gesture recognition using
the Kinect sensor. Kurakin et al. [5] propose a real-time system for hand-gesture
recognition using an action graph which shares similar robust properties with
standard HMM.

Raptis et al. [6] propose a real-time dance gesture recognition system based
on an angular skeleton representation, and a cascaded correlation-based max-
likelihood multivariate classifier that takes into account that dancing adheres
to a canonical time-base to simplify the template matching process. It uses a
space-time contract-expand distance metric to compare the input with an oracle
(the ideal movement).

Biswas and Basu [1] propose a method to recognize human gestures using
the Kinect® depth camera. First they isolate the human figure from the back-
ground and create a region of interest (ROI) by placing a grid on the extracted
foreground, the gesture is parametrized using depth variation and motion infor-
mation content of each cell of the grid.

Wu et al. [4] propose an actionlet ensemble model to represent each action and
to capture the intra-class variance. An actionlet is a particular conjunction of the
features for a subset of the joints that are important for each gesture. They also
add new features called local occupancy pattern (LOP), these features are robust
to noise, invariant to translational and temporal misalignment, and capable of
characterizing both the human motion and the human-object interactions

Yang et al. [7] choose 3-dimensional feature vector for 3D gesture recognition
from consecutive hand coordinates in a spherical coordinate. They propose a
hand tracking algorithm that detects a moving object, if it moves like a wave
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motion the algorithm decides the object is a hand. Gestures are recognized by a
HMM using Baum-Welch algorithm to estimate the parameters.

Carmona and Climent [2] discussed about the best technique for hand gesture
recognition: HMM or DTW using Kinect® skeleton. The first step in gesture
recognition is the selection of the features; usually, these features are location,
orientation and velocity. For HMM they used Baum-Welch algorithm to find
the model that best describes the spatio-temporal dynamics of each gesture, the
probability of the gesture produced by each HMM is evaluated using Viterbi
algorithm. DTW calculates the distance between two signals, thus they used a
k-NN classifier to determine which is the most likely class. They obtained best
results in their dataset using DTW.

Unlike previous approaches, we employ traditional classifiers using a distinc-
tive part of each gesture.

3 Preprocessing
The performance of gestures by a user can be done at different distances and from
different orientation angles. In this paper, we transformed the raw data produced
by the joints of the “skeleton” generated by the Kinect, into a scheme invariant
to translation and rotation. In particular, we simplified the method presented in
[6], that transforms the data from joint points to angles. Our approach computes
the angles between three consecutive joints (e.g. wrist-elbow-shoulder), using the
cosine formula (1). This formula gets the angle between two vectors, in this case
represented by the joints coordinates.

cos θ =
a · b

‖a‖ · ‖b‖ (1)

From the twenty joint coordinates produced by the “skeleton” from the Kinect,
only nine were selected as the most descriptive joints. These selected joints were
used to obtain the relative angles between consecutive joints, reducing then
the attributes from 20 × 3 (points x, y and z of each joint) to 9, producing a
representation invariant to translation and rotation. The attributes are shown
in Figure 1.

4 Recognition by Characteristic Window
Our method, RCW, is divided in two phases, the first (Section 4.1) finds the most
representative section for each gesture and the second (Section 4.2) classifies the
frames and returns a prediction based on the information obtained in the first
phase.

4.1 Clustering
Given a set of gestures G = {g1, g2, ..., gk}, our hypothesis is that for each
gesture there exists a sub-sequence of frames that is different from any sub-
sequence of all the other gestures. We implemented a method to find that sub-
sequence through clustering. The algorithm proceeds as follows: we take a sliding



A Non-temporal Approach for Gesture Recognition Using Microsoft Kinect 321

Fig. 1. Skeleton joints showing the most descriptive angles

window with a predefined size relative to the number of frames (percentage) of
a gesture. Given a particular window (set of instances) of one gesture (gi) and
the complete sequences of all the other gestures, we run k-means with k equal to
the number of classes (different gestures) we want to recognize. If the clustering
method generates a cluster whose elements are mostly samples from the selected
window, this is returned as a sub-sequence that is distinctive enough from the
other gestures. For each sliding window we use the f-score (see Equation (2)) to
evaluate how distinctive is this window with respect to the other gestures.

F 1 = 2 ·
(

precision + recall

precision · recall

)
(2)

4.2 Classification

We trained a classifier using either the complete sequences of the gestures or
using only the distinctive identified windows for all the gestures, with the nine
angles as attributes (Section 3). The trained classifier is used to assign one of
the possible gestures to each frame of a testing gesture.

For testing, we implemented two decision policies:

1. We classify each frame from the testing gesture and return the class of the
longest set of consecutive frames classified equally. We call this policy, longest
sequence (LS).

2. The second policy takes advantage of the positions of the identified windows
in the clustering process. The testing gesture is evaluated only in the windows
that were selected during the clustering phase. For each window we obtain a
percentage of coincidence and return the class belonging to the window with
the highest value. We call this policy window verification (WV).
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Algorithm 1. RCW clustering algorithm, where windowSizes are a pre-defined
set of percentages of windows to tried, step is the percentage of how much a
window is slid each time and currentScore is a temporal variable that stores
the accuracy of the clusterization for an specific window.
Require: G, windowSizes, step ≥ 0
Ensure: bestW indowSize, bestW indowP osition : ∀gi ∈ G
1: for all gi ∈ G do
2: maximumScore ← −1
3: for all size such that size ∈ windowSizes do
4: for position = 0 to position ≤ (100−step) do
5: datasetT oCluster ← (∀frame|frame ∈

window(gi, position, size)
⋃

(∀frame ∈ gk|gk �= gi)
6: currentScore ← eval(kNN(datasetT oCluster))
7: if currentScore > maximumScore then
8: maximumScore ← currentScore
9: bestW indowSize ← size

10: bestW indowP osition ← position
11: end if
12: position ←position + step
13: end for
14: end for
15: end for

Since the windows are selected as percentage of the gesture, its use still works
with longer or shorter gesture instances.

5 Results

We tested RCW on the dataset Microsoft Research Cambridge-12 (MSRC-12)
which consists of 594 sequences of movements of an skeleton characterizing the
human body. These sequences were collected from 30 persons doing 12 gestures
having a total of 6244 instances. The set of files contains the tracking of 20
joints presented as points in the space < x, y, z >; each of these files contains
around ten instances per gesture performed one after the other. The gestures can
be categorized into two abstract categories: Iconic gestures, those that imbue a
correspondence between the gesture and the reference, and Metaphoric gestures,
those that represent an abstract concept. For the experiments we used the subset
of iconic gestures.

– Gesture 2: Crouch or hide [500 instances]
– Gesture 4: Put on night vision goggles [508 instances]
– Gesture 6: Shoot a pistol [511 instances]
– Gesture 8: Throw an object [515 instances]
– Gesture 10: Change weapon [498 instances]
– Gesture 12: Kick [502 instances]
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The accuracy from the clustering and the classification phases were measured
using the f-score (see Equation (2)).

In the training phase, different window sizes and positions were tested for
each gesture. We slid each window 2% of the total gesture each time. For the
evaluation phase we used 10-cross fold validation.

Table 1 shows the different values in terms of window size of the precision
results and the window position for the six gestures. The best results are marked
in bold face. Figure 2 depicts the best windows found for the training data.

Table 1. Best window starting and window length for each gesture, where AC is
Accuracy (%) and WP is Best Window position in percentage

Gesture
Window size

10% 15% 20% 25%
AC WP AC WP AC WP AC WP

Duck 96.96 90 93.44 84 89.77 80 82.03 74
Googles 29.29 6 42.58 4 49.83 2 60.41 0
Shoot 33.22 90 41.80 84 47.65 80 49.91 74
Throw 15.05 76 20.58 74 24.78 70 27.87 68
Change Weapon 14.93 90 20.34 0 32.08 78 27.68 0
Kick 8.04 84 9.75 48 30.12 80 15.64 74

Time

A
ng
le
s

Gesture 1
Gesture 2
Gesture 3
Gesture 4
Gesture 5
Gesture 6

Fig. 2. Graphical representation of the sections found by the clustering phase, the
colored columns represent an example of the most representative part of each gesture

Once the distinctive windows were identified for the gestures, we tried four
different classifiers from Weka: Naïve Bayes, SVM, C4.5 and Random Forest.
After training the classifier, the classification of new gestures was carried out
using longest sequence (LS) and window verification (WV) policies.

We performed tests with two training datasets:

1. Pre-processed dataset (PP-MSRC), which uses the whole transformed se-
quence of frames to train a classifier.

2. Pre-processed dataset which uses only the frames that belong to the window
for each example of gesture (W-MSRC).
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The obtained results are shown in Table 2 using a 10-fold cross-validation; the
best results are marked in bold face. The overall best is marked with an asterisk.

As can be seen from the results, considering only the distinctive window for
evaluation (the WV policy) increases the accuracy in all cases.

Table 2. Obtained results with different classification schemes for each dataset using
Longest Sequence (LS) and Window Verification (WV) policies

Classifier
PP-MSRC W-MSRC

LS WV LS WV
Prec Rec Acc Prec Rec Acc Prec Rec Acc Prec Rec Acc

C4.5 80.13 80.34 80.23 89.35 89.35 89.35 67.48 69.70 69.90 85.51 86.70 86.10
SVM 62.09 63.45 62.76 83.71 83.86 83.78 39.73 61.12 48.15 90.61 91.11 90.86

Naïve Bayes 48.26 58.05 52.74 80.78 82.13 81.45 41.15 62.15 49.52 90.65 91.24 90.94
Rand. Forest 85.79 86.18 85.99 91.82 91.84 91.82* 75.98 77.39 76.67 91.10 91.85 91.47

RCW (WV policy, PP-MSRC dataset and Random Forest classifier) was com-
pared against two typical methods of gesture recognition: DTW and HMM. As
in the previous experiment the accuracy was measured with f-score. The exper-
iment was evaluated using 10-fold cross-validation.

A HMM for each gesture was learned using the Baum-Welch algorithm, then
the probability for the frames sequence is computed using Viterbi algorithm, the
returned prediction is the one with the best predicted probability. We tried with
different number of hidden nodes and report only the best results, that were
obtained using three nodes.

To calculate the most probable gesture using DTW, the distance to a subset of
examples of each of the gestures (50 examples for this experiment) was computed
using the mean of the calculations, the predicted gesture was the one where the
distance was smaller.

The results of these experiments are shown in Table 3. A paired t-test was
carried out to find statistical significance in the results (marked with an arrow).
As can be seen RCW is very competitive against temporal-based approaches
and it is statistically better (with 95% of confidence value) against DTW. Apart
from that, the small difference between HMM and RCW shown in the results
suggests that RCW is a suitable substitute of HMM for this specific problem.

Table 3. Comparing accuracy of RCW against DTW and HMM (percentage)

Overall Duck Googles Shoot Throw Ch. Weapon Kick
DTW 82.74 ↓ 97.11±1.26 71.83±0.89 97.14±0.79 76.89±1.53 75.55±2.17 55.74±2.56
HMM 91.81 97.73±1.42 88.06±1.30 87.45±2.66 90.14±2.41 90.82±0.75 93.95±2.39
RCW 91.82 95.49±1.89 85.25±1.88 93.71±1.43 95.43±1.24 82.07±3.2 97.71±0.75

↓ Statistically inferior result with respect to RCW.
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6 Conclusions

This article described a novel non-temporal approach to classify gestures from
information obtained by a Kinect sensor. RCW identifies distinctive portions of
each gesture using a sliding window and a clustering technique. Each window is
given as input to a classifier and a new gesture is classified using also a window-
based approach. It is shown that our non-temporal approach is very competitive
against standard temporal approaches normally used for gesture recognition. As
future work we would like to perform more tests involving a larger set of gestures.
We would also like to combine more than one discriminatory window for each
gesture to improve performance.
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Abstract. The automatic identification of kinship relations from pairs
of facial images is an emerging research area in pattern analysis with
possible applications in image retrieval and annotation, forensics and his-
torical studies. This work explores the computer identification of pairs
of kins using different facial features, based on geometric and textural
data, and state-of-the-art classifiers. We first analyzed different facial at-
tributes individually, selecting the most effective feature variables with a
two stage feature selection algorithm. Then, these features were combined
together, selecting again the most relevant ones. Experiments shows that
the proposed approach provides a valuable solution to the kinship verifi-
cation problem, as suggested by the comparison with a different method
on the same data and on the same experimental protocol.

Keywords: Kinship verification, SVM, Random Forests, mRMR, SFS.

1 Introduction

The analysis of 2D or 3D facial images is a main research topic in pattern analysis
and computer vision. Automatic Kinship Verification (KV) has recently received
attention from the research community. KV aims at recognizing the degree of
kinship of two individuals from their facial images and has possible applications
in historic and genealogic research, automatic management and labeling of image
databases, forensics and finding missing family members. This is a challenging
problem, which should deal with different degrees of kinship and variations in
age and gender.

Automatic KV was first introduced by Fang et al. [1], who analysed a database
of 150 pairs of parent-child images. Features were extracted for each face with a
simplified Pictorial Structure Model and the best classification achieved 70.69%,
outperforming the 67.19% obtained by a panel of human raters on the same data.
In order to identify parent-child pairs considering the influence of age factor,
Xia et al. [2] proposed an extended Transfer Subspace Learning (TSL), which

� The author is also with the Dept. of Electronics and Systems from the Federal
University of Pernambuco, Brazil.
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is meant to simplify the recognition task by transferring the knowledge learnt
from the similar, but easier task, of recognizing the same parent-child pairs but
using images of parents in youth. Classification based on geometric and textural
features provided a 60% accuracy. Somanath et al. [3] analyzed the multi-class
problem of identifying both parent-child and siblings using Metric Learning,
providing 75% and 80% accuracies for, respectively, siblings and parent-child
pairs. In [4], Lu et al. proposed a new neighborhood repulsed metric learning
(NRML) method for kinship verification. Working on different degrees of kinship,
they obtained an average class accuracy of 76.5%.

Recently, in [5] we presented a work on sibling identification. Different fa-
cial attributes, related to geometric, holistic and textural features, were first
extracted and then combined together. Support Vector Machines (SVM) classi-
fication, with the contribution of a Feature Selection process, outperformed the
recognition capabilities of a panel of human raters.

This paper extends the main ideas of our previous work in order to an-
alyze the capabilities of different facial attributes to recognize other degrees
of kinship and, specifically, of parent-child relationships. The contribution of
this work is twofold. First, identifying the facial attributes more fit to tell
parent-child pairs from unrelated individuals. Second, comparing on these at-
tributes the accuracy of two state-of-the-art classifiers, namely, SVM and
Random Decision Forests (RDF), with previous results in the literature. Our
experiments show that some of the facial attributes, when considered individu-
ally, are indeed able to classify pairs of parent-child images with performances
better than previous works, and, most of all, that the combination of attributes
of different natures improves the performance of the final classifier.

The remaining of the paper is organized as follows, in Section 2, we describe
the database of parent-child images we used in our experiments. Section 3 details
the algorithm we used for tackling the kin verification problem. Results are
presented and discussed in Section 4 and in Section 5 we draw the conclusions.

2 Image Database

The recent interest into the KV problem led to availability of some databases
of facial images of individuals related by different kinship degrees, such as those
used in the papers referenced in the Introduction. They are all composed by
an heterogeneous set of images, mostly collected through the Internet, and are
characterized by non-uniform illumination, background, pose, expression and
different age range and ethnicity of the depicted individuals.

However, some of these databases were not found suitable for our approach.
For instance, the parent-child dataset collected by Jiwen Lu et al. [6] is composed
by faces cropped in a way that precludes the very first step of our method, i.e.
the automatic detection of facial landmarks (see Section 3). The one used in [7]
contains many grayscale images, thus hampering the use of color-based textural
features which have proven to be effective to identify siblings [5]. The database
we found more suited to our work was the one collected by Fang et al. [1]. This
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dataset consists of 288 individuals’ images1 (144 parent-child pairs). The colour
photographs depict several public celebrities with different age, gender and race
in slightly different poses (mostly frontal), illumination conditions and expres-
sions (some neutral but often smiling). The individuals are 50% Caucasians, 40%
Asians and 10% of other ethnicities; 40% of the samples are father-son pairs, 22%
are father-daughter, 13% are mother-son, and 26% are mother-daughter.

3 Algorithm Outline

In the literature, different representations of the information conveyed by faces
have been experimented for different tasks. In our previous work on the auto-
matic identification of siblings [5], we found that the discriminative power of
separate facial attributes, related to geometric, textural and holistic features,
is substantially improved by that of the integration of information of different
nature. Based on this consideration, in our work we first analysed individually
the contribution of different attributes to the parent-child recognition problem,
and then we evaluated different combinations of them.

The outline of the proposed classification algorithm is the following. For each
individual, we normalized his/her image and we extracted different feature vec-
tors, one for each feature extraction technique considered. When an image is
characterized combining different attributes, their corresponding feature vectors
are concatenated. Then we constructed a pair dataset containing all the pos-
itive (kin) and an equal number of randomly chosen negative (non-kin) pairs.
For each attribute (or attribute group) and each pair, a representative vector is
built. Finally, the most relevant pair feature variables were selected and used to
train and test a classifier.

3.1 Image Normalization

Image normalization is aimed at reducing the influence of different illumination,
background and orientation of the faces. First, 76 facial landmarks were auto-
matically identified using the Active Shape Models (ASM) technique [8] (Fig. 1).
Second, the ellipse best fitting the 15 landmarks around the chin was used to
segment the face and discard the image background. Third, images were geomet-
rically aligned by making the external corners of the eyes coincident with two
reference position. Geometric normalization involved translation, rotation and
isotropic scaling of the original images. The size of the final normalized images
is 100 by 100 pixels.

3.2 Features Extraction and Characteristic Vectors

The choice of the facial feature used in this work takes into account the lessons
learned in our previous experience on sibling verification. In particular, we found

1 Although the authors reported the use of 150 pairs, 300 images, the online version
contains only 144 pairs.
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Fig. 1. Examples of parent (1st row) - child (2nd row) pairs. For each individual, we
show the original image, the detected landmarks and the normalized image

that the contribution of holistic attributes and of some of the geometric and
textural attributes experimented in [5] was negligible. Conversely, more discrim-
inative attributes were found in our preliminary experiments on the parent-child
dataset, whose detailed results are not reported here for the sake of brevity. In
the following, we briefly summarize the characteristics of the chosen attributes.

In order to extract geometric attributes, we first created a dense reference
net composed by 184 segments for each face, which was obtained from the
Delaunay Triangulation (DT) of the average position of each ASM landmark
over the database images. Then, we computed the following attributes: SEGS,
the 184 lengths of the DT segments, ANGLES, the 342 angles of the triangles
obtained from DT, and RATIOS, the set of 862 ratios of pairs of DT segments
sharing the same vertex. Each pair is considered only once to compute a ratio,
i.e. when a ratio is computed, its inverse is not considered.

Two image descriptors were used to characterize our samples. The first
(CLID) is based on color local image descriptors. Their general idea is to en-
code, for a reference point, the Scale-Invariant Feature Transform (SIFT) [9]
descriptors computed separately on each image channel. This allows to ob-
tain a representation of the point neighbourhood which is invariant to several
image variations (e.g. ligh intensity change and shift, light color change and
shift; see [10] for details). Among the color descriptors surveyed in [10], we
choose C-SIFT [11] since in our preliminary experiments it performed slightly
and consistently better. To characterize a sample with this attribute, we com-
puted a C-SIFT descriptor (a vector of 384 components) on each of the 76 facial
landmarks.

The second textural attribute is the Weber local Descriptor (WLD) [12] which
is based on the Weber’s law. It states that a just-noticeable difference in a
stimulus is proportional to the magnitude of the original stimulus. Translating
this concept into image intensities, WLD first characterizes a pixel with (i) the
differential excitation, computed from the sum of differences of intensity with
its neighbors later divided by its intensity, and (ii) the orientation of the pixel
gradient. Then, the WLD features, computed using a multi-scale analysis onto
each image pixel of the intensity image, are encoded into a histogram containing
2.880 elements.

Each of the described attributes summarizes a facial image into a character-
istic vector. When more attributes are considered, the characteristic vectors of
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the images are obtained by simply concatenating the different attributes. For
each attribute, or attribute group, the characteristic vector v(ab) for a pair of
individuals a and b is given by the vector of Euclidean distances, in their respec-
tive n-dimensional space, of the corresponding elements of the characteristic
vectors of a and b. Thus, the characteristic vectors of a pair are commutative,
i.e. v(ab) = v(ba).

3.3 Building the Classifiers

In order to assess the capabilities of the different attributes, or attribute groups,
to tell kin from non-kin pairs, we compared two state-of-the-art classifiers,
namely, SVM [13] and Random Decision Forests RDF [14], which are widely
recognized for their classification performances by computer scientists and ma-
chine learning researchers.

Concerning SVM, we used a radial basis kernel, optimizing its parameters by
means of a grid search as suggested in [15]. Before applying SVM, each feature
variable was linearly scaled to the range [0,1]. This avoids the variables in larger
scales to dominate those in smaller ranges and reduces numerical problems in
the computation of the SVM kernels.

Since SVM classifiers are likely to be affected by overfitting, being in most ex-
periments the number of features much greater than the number of samples, we
applied the two-step feature selection (FS) process described in [5]. First, the fea-
tures are ranked for relevance according to the min-Redundancy Max-Relevance
(mRMR) method [16]. Then, the set including the top 50 mRMR features is
further reduced to its optimal size (i.e., that optimizing the SVM classification
accuracy) with a Sequential Forward Selection (SFS) scheme. For feature vec-
tors obtained as combination of different attributes, the FS selection was first
performed separately on each attribute and then repeated on the aggregation of
the selected feature variables.

As for RDF, we first optimized their parameters (e.g., number of trees, tree
depth and so on) with a grid search over the parameter space, choosing the set
with the lowest out of bag error on the training set. Since at each split node a
single feature variable is selected for decision, scaling the feature vectors is not
relevant in this case.

Due to their working mechanism, RDF are relatively unaffected by overfit-
ting. Nevertheless, selecting the most relevant features can improve their overall
accuracy. To this end, once the optimal parameters were found, we sorted the
features according to their Variable Importance [14] and we trained again the
RDF with a subset of these variables. The size of this subset was chosen, heuris-
tically, by iteratively increasing the number of candidates in the feature set until
the global optimum was found.

4 Results and Discussion

In our experiments, we first computed the accuracies based on the classifica-
tion of each individual attribute. Then, we evaluated the accuracies obtained by
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characterizing each facial image with three different groups of attributes: GEO-
METRIC, grouping the geometric attributes, TEXTURE, combining textural
information, and ALL, concatenating all the described attributes. The classifi-
cation results obtained are summarized in Table 1 and organized by attribute, or
attribute group, and by classification algorithm (SVM vs. RDF). Results were
assessed using stratified five-fold cross-validation (CV), and, hence, we report
the average classification rates of each classifier over the different CV rounds.

The following remarks can be drawn:

– concerning the individual attributes, textural features have a higher dis-
criminative power than the geometric ones, with WLD obtaining the best
performances (78.0% with SVM);

– the more heterogeneous the information, the better the accuracies. As a
matter of facts, grouped attributes performed consistently better than their
single components, and the best accuracies were obtained for both algo-
rithms considering all attributes together achieving 81.8% and 77.5% for,
respectively, SVM and RDF;

– as for the classification techniques, SVM, in combination with a proper se-
lection of the most relevant features, provides, in this specific problem, con-
sistently better performances than RDF.

One expected result, not shown in Table 1, is that Feature Selection (FS)
always provides a significant classification improvement (between 6% and 14%,
for SVM, and 1% and 12% for RDF). Concerning the selection process, it is also
interesting to analyse the distribution of features surviving the FS pruning for
composite attributes and different classifiers (see Figure 2), which could provide
some insights into the more relevant facial characteristics to recognize kins.

We can observe the following: (i) RATIOS is the most relevant geometric
attribute, suggesting its good descriptive capabilities; (ii) as for textural features,
WLD is more relevant than CLID in the TEXTURE groups, but CLID features
contribute reasonably when geometric features are added; (iii) when attributes
are grouped, features from all attributes are chosen to compose the final vector;

Table 1. Accuracy results. For each attribute and each classification algorithm, we
show the percentage of correct classifications and, in brackets, the optimal number of
variables selected by the FS process.

SVM RDF

SEGS 68.2 (18) 60.1 (40)
RATIOS 73.1 (13) 59.3 (175)
ANGLES 68.9 (30) 57.2 (100)
CLID 74.1 (14) 66.3 (62)
WLD 78.0 (27) 70.6 (250)

GEOMETRIC 74.3 (8) 65.4 (175)
TEXTURE 80.1 (18) 76.1 (150)
ALL 81.8 (29) 77.5 (150)
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Fig. 2. Feature selection applied to (a) SVM and (b) RDF: distribution of feature
variables per type for different attribute groups

the only exception was the ALL group with SVM where ANGLES were discarded
(which could be expected since they convey an information similar to SEGS);
(iv) when geometric and textural features are combined (ALL group), the latter
are preferably selected to compose the final dataset, in particular with RDF.

Finally, we can asses the quality of our results by comparing the classification
accuracies of our experiments with that obtained on the same dataset by Fang
et al. [1]. The performance of their approach (70.69%) and that of a panel of
human raters on the same data (67.19%) are already improved by that obtained
in our work with several individual attributes, and outperformed by our best
result (81.8%), achieved with the integration of all attributes.

Concluding, the experimental results show that our approach, based on the
integration of geometric and textural features, together with a proper selection of
the feature variables, is indeed a valuable solution to the automatic KV process.

5 Conclusion and Future Work

We presented an approach for automatically identifying pairs of parent-child im-
ages through the extraction and selection of several features from face images.
Different attributes, related to geometry and texture data, have been first anal-
ysed individually and then combined together to provide higher classification
performances.

Simulation results using state-of-the-art classification algorithms show that
our combination of features, together with a proper selection of the feature vari-
ables, is indeed a valuable solution to the automatic KV process, obtaining high
classification accuracies (81.8%) and outperforming previous approaches on the
same data.

As future work, we are planning to address the multi-class problem of identi-
fying the specific degree of kinship (e.g., parent-child, parent-grandchild and so
on), a problem which has not been yet thoroughly investigated. Another inter-
esting point to be considered is how factors such as gender and age influence a
kinship predictor, and possible approaches to alleviate such influences.
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Abstract. Biometric recognition is still a very difficult task in real-
world scenarios wherein unforeseen changes in degradations factors like
noise, occlusion, blurriness and illumination can drastically affect the
extracted features from the biometric signals. Very recently Haar-like
rectangular features which have usually been used for object detection
were introduced for biometric recognition resulting in systems that are
robust against most of the mentioned degradations [9]. The problem with
these features is that one can define many different such features for a
given biometric signal and it is not clear whether all of these features are
required for the actual recognition or not. This is exactly what we are
dealing with in this paper: How can an initial set of Haar-like rectangular
features, that have been used for biometric recognition, be reduced to
a set of most influential features? This paper proposes total sensitivity
analysis about the mean for this purpose for two different biometric
traits, iris and face. Experimental results on multiple public databases
show the superiority of the proposed system, using the found influential
features, compared to state-of-the-art biometric recognition systems.

1 Introduction

Biometric recognition, the identification of people based on their biological
and/or behavioral characteristics like face, ear, iris, fingerprint, finger vein pat-
terns, hand vein pattern, hand geometry, and gait, is nowadays being used in
many real-world applications from security and surveillance systems, to human-
computer interaction systems, to gaming, to name a few. Biometric recognition
is still a challenging task as the acquired biometric signals (visual signals in this
paper) are usually affected by degradation factors like noise corruption, illumi-
nation, blurriness, and occlusion. Furthermore, for contactless biometrics (like
face, iris, and ear) for which there is a distance between the sensor and subject
of interest, the resolution of the acquired image is another important challenge.

Several biometric recognition systems have been developed for dealing with
the aforementioned challenges. These methods can be generally divided into two
groups: appearance based and feature based. The appearance based algorithms
use the grayscale values of the input images directly, while the feature based
systems extract some features from the grayscale values and then use these
extracted features for the actual recognition. In this paper we focus on two
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biometric traits, face and iris, but the discussion can be extended to other traits
easily. Several features based approaches can be found in the literature for the
chosen biometrics. For example for face recognition in [17] local texture features,
in [11] local directional number patterns, and in [10] local gradient information
are used. For feature based iris recognition systems for example in [19] Gabor
filters, in [16] Scale Invariant Feature Transform (SIFT), and in [13] wavelets
have been used. Known appearance based methods include, but not limited to,
Principal Component Analysis (PCA)-based methods, Independent Component
Analysis (ICA) algorithms, Linear Discriminant Analysis (LDA), Support Vector
Machines (SVM), and Neural Networks (NN), to name a few. These classifiers
have been well applied to the chosen biometrics of this paper. For example for
face recognition PCA in [14], LDA in [3], SVM in [5], ICA in [2] and more
recently Sparse Representation (SR) based methods in [8] have been used. For
iris recognition a Probabilistic NN (PNN) in [19] and an LDA classifier in [21]
have been used. The problem with the appearance based algorithms is that they
usually need to register the input images to a fixed frame. This means that these
methods mostly are sensitive to registration errors. The problem with the feature
based methods is that their performance is directly depended on the effectiveness
and robustness of the employed features. Furthermore, the performance of both
groups of algorithms degrades when the input images are noisy, occluded by
some obstacles, of low resolution, and not properly illuminated.

In our very recent work [9] a feature based approach for biometric recognition
has been introduced which is shown to be robust against most degradations and
poor imaging conditions. The employed features in this system [9] are Haar-like
rectangular features that are extracted from integral images. These features are
fed to a PNN classifier in [9] for the final recognition. The Haar-like rectangu-
lar features were first introduced for rapid and robust object detection using a
boosted cascade of simple weak classifiers [15] and have usually been used for
the same purpose in the literature (see [9] for more information). The problem
with Haar-like rectangular features is that one can define many different such
features for a given image, while only few of these features are useful for the
actual recognition and the rest just impose extra computations to the system.
This varies from a biometric trait to another one. Finding proper sets of Haar-
like rectangular features from an initial set of such features is the exact concern
of this paper. To do so, the proposed system introduces the Total Sensitivity
Analysis (TSA) about the mean, which is further explained later in this paper.

The rest of the paper is organized as follows: biometric recognition using the
Haar-like rectangular features of [9] is briefly revisited in the next section, then,
TSA about the mean is explained in section 3, experimental results are discussed
in section 4, and finally the paper is concluded in section 5.

2 Biometric Recognition Using Haar-like Features

The Haar-like rectangular features are obtained by filters composing of two
types of regions: white and black regions (see Figure 1). The common way for
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generating these filters is to consecutively divide the entire area of the filter to 2,
3, ..., N regions [1]. Then, paint these regions to black or white. This can result
in many such filters, which some of them, for N = 20, are shown in Fig. 1.

Fig. 1. The initial set of Haar-like rectangular filters. The index of the top-left filter is
1 and the one in the right-bottom is 115 (those in between change accordingly).

For calculating the value of a specific Haar-like rectangular feature from a
given image, first, the filter is resized to the same size as the input image (without
changing the relative size of its black and white regions). Then, the filter is lied
on the input image such that the four corners of the filter lie on the four corners
of the input image. Then, the summation of those pixel values of the input image
that lie in the black region of the Haar-like rectangular filter is subtracted from
the summation of those pixel values of the input image that lie in the white
region of the filter. To reduce the computational time these features are usually
calculated from the integral counterparts of the input image [15].

Having extracted the Haar-like rectangular features of Fig. 1 from the integral
image of the input biometric, they are fed to a PNN classifier in [9]. PNN per-
forms the recognition by finding the Probability Distribution Functions (PDF)s
of the involved classes using a Parzen window like:

fj(s) =
1

σjnj

nj∑
k=1

W (
||s− skj ||2

σj
) (1)

where fj is the PDF of the jth class, nj is the number of the samples of this
class, σj is a smoothing parameter, skj contains the features of the kth training
sample of the jth class, s contains the features of the unknown sample, and W
is a weighting function. In PNN, W is replaced by an exponential function to
use PDFs of Gaussian form (see [12], and [9] for more information on PNN).

3 Total Sensitivity Analysis about the Mean

Having explained the Haar-like rectangular features and the employed classifier,
in this section TSA is elaborated. Sensitivity analysis is a technique for finding
the importance and the influence of the input features to the system [18]. Let’s
assume that we have a recognition system which takes A features (here all the
features shown in Fig. 1) as input to distinguish between B different classes.
Having trained the recognition system using the training samples (which are
separated from the testing samples), the classical sensitivity analysis about the
mean works as follows: first, all the A features of system are extracted for all
the testing samples. Then, for i = 1...A fix the values of all the features except the
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ith one to their mean values. Then, change the value of the ith feature between
±σ where σ is the standard deviation of this feature. Each time that the value
of the ith feature is changing, a new set of testing samples is generated which
is used for testing the system. During the testing of the system the recognition
rates of the system for each individual class are monitored. If changing the value
of ith feature results in changing the recognition rate of the system for class
b ∈ B , the ith feature is considered as an influential feature for recognition of
this class.

The classical sensitivity analysis measures the sensitivity of each input feature
in recognizing each individual class in a given data. This however can not directly
be used as a measure for monitoring the overall recognition rate of the system
as improving the recognition rate of the system for one specific class may result
in reducing the recognition rate of the system for another class. Therefore, the
proposed system introduces the TSA as follows: for each input feature TSA is
simply obtained by summing up the results of the classical sensitivity analysis
for all the involved classes. It is obvious that TSA of a specific feature increases
if changing the value of this feature results in improvement of the recognition
rate of the system for a larger number of classes.

Having obtained the results of TSA for all the features, a threshold like T can
be found such that any feature with a TSA value larger than T can be considered
as an influential feature. The set of the influential features, F , is a set of features
by which the recognition rate of the system is the same as the recognition rate of
the system with the original set of features. It means the rest of the features that
have TSA values below T are actually non-contributive features. The exact value
of T depends on the employed traits and changes from one trait to another one
and can be found experientially. The set of the sensitive features and T change
also from a trait’s database to another database of the same trait. But there is a
good similarity between the sensitive features of one trait from one database to
another database of the same trait. It is shown in the experimental results that
removing the non-contributive features not only gives higher recognition rates,
but it results in a faster system.

4 Experimental Results

To show the efficiency of the employed TSA method in discarding the non-
contributive features and hence finding the most influential features, multiple
public databases of the two biometric traits, iris and face, have been employed.
The iris database (ID) has been taken from [7]. This database contains 2240 iris
images of 224 subjects each providing 10 grayscale iris images. These images
are of size 320×240 pixels (Fig. 2). Four public databases have been employed
for face recognition: ORL [22], UMIST [24], Faces94 [23], and Extended YaleB
[4]. The number of the images in these databases are 400, 564, 3060, and 16128
images of 40, 20, 153, and 28 subjects, respectively. The sizes of the images
are 92×112, 92×112, 105×120, and 168×192 pixels, respectively. These images
contain variations in head-pose, expression, and illumination conditions (Fig. 2).
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Fig. 2. Some samples of four of the employed databases, from top, clockwise: ID,
UMIST, Extended YaleB, and faces94 databases

The reported results in this section are obtained when the available databases
are divided randomly to three parts for training, cross-validation, and testing.
The sizes of each of these portions are 60%, 15%, and 25% of the entire database,
respectively. The degradation in the performance of the classifier when the sizes
of these three parts change is studied in [9].

The proposed system has gone through three experiments. In the first exper-
iment, for each individual database the recognition rate of the proposed sys-
tem is compared against the state-of-the-art systems when the proposed system
is trained using the entire set of the extracted Haar-like rectangular features
(shown in Fig. 1). The results are shown in Fig. 3. In this figure, the results of
the proposed system (PS) for iris are compared against S1-S4 which are decision
tree-based, appearance based PNN, SVM, and fuzzy binary decision tree-based
classifiers, respectively [6]. The results for face are compared against PCA [14],
LDA [3], SVM [5], ICA [2], Local Binary Patterns (LBP), and some very recent
Sparse Representation (SR) based methods, DDSR, FDDL, RPCA. The results
of these methods on ORL, UMIST, and YaleB are reported in [8]. It should be
mentioned that some of these methods like PCA, ICA and LDA are also based
on feature reduction concept.

Fig. 3. The recognition rate of the proposed system against: (left) state-of-the-art iris
recognition algorithms using ID database and (right) state-of-the-art face recognition
algorithms using ORL, UMIST, Faces94, and Extended YaleB databases

In the second experiment the explained TSA method (section 3) is applied to
the entire feature set to find the most influential features and discard the non-
contributive ones. To do so, for each database we define a set of most influential
features, F , which is initially empty. Having obtained the TSA values of all the
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Haar-like rectangular features, we keep adding features to F based on their TSA
values in a descending order. Every time a new influential feature is added to F ,
the employed PNN is trained and tested (The training and testing samples are
kept separate from each other). This process continues until the recognition rate
of the proposed system using F is the same (within ± 0.005) as the recognition
rate of the proposed system using the entire set of the Haar-like rectangular
features. The results of applying TSA to four of the employed databases using
the initial set of features are shown in Fig. 4. The second experiment reduces
these initial sets of features to the 44, 30, 39, 41, and 44 most influential features
for ID, ORL, UMIST, Faces94, and Extended YaleB databases, respectively. It
means that for each of these databases only these numbers of top influential
features are enough for achieving the same recognition rate as the case where
the entire Haar-like rectangular features are used.

Fig. 4. The normalized results of the employed TSA method applied to the Haar-like
rectangular features obtained from four of the employed databases. The x axis in a)
and b) represents the name of the Haar-like rectangular features from Fig. 1.

The most influential features of the facial databases (the features with highest
TSA value in Fig. 4) change from one database to another one. However, it can
be seen from Fig. 4 that the most influential features of one of the databases
is usually among the top influential features of the other ones. It may seem as
a drawback for the employed TSA method that the most influential features of
these databases are not completely the same. But this actually makes sense as the
images of these databases are captured under very different imaging conditions
(Fig. 2. For example, ORL images are well focused, UMIST images have wide
head poses, Faces94 images are not of good quality in terms of illumination,
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and Extended YaleB images mostly suffer from directional illumination). The
interesting point is that regardless of the content of the database the set of
possible Haar-like rectangular features that can be extracted from the database
can be summarized to a set of influential features like F .

The third and last experiment compares the computational time of the pro-
posed system against the systems of [9]. This timing information is shown in
Fig. 5. It is obvious from this figure and Fig. 3 that beside achieving the same
recognition rates of [9] the proposed system works faster.

Fig. 5. Timing comparison of the proposed system against [9]

5 Conclusion

This paper proposes a biometric recognition system using Haar-like rectangular
features which mostly have been used for object detection. The set of these
features has proved to result in high recognition performance, but the problem
is that this set may contain many different number of features while only few
of them contribute to the actual recognition and the rest of the features are
non-contributive. For finding and discarding the non-contributive features this
paper uses total sensitivity analysis about the mean. Experimental results on
two types of biometric traits, iris and face, show that total sensitivity analysis
can find these most influential features which can result in a fast and reliable
biometric recognition system.
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Abstract. This paper presents a method for classification of imbalanced
splice-site classification problems, the proposed method consists of the
generation of artificial instances that are incorporated to the dataset.
Additionally, the method uses a genetic algorithm to introduce just in-
stances that improve the performance. Experimental results show that
the proposed algorithm obtains a better accuracy to detect splice-sites
than other implementations on skewed data-sets.

Keywords: SVM, Skewed datasets, Classification DNA splice sites.

1 Introduction

Recognizing boundaries of exons and introns is a challenging task in DNA se-
quence analysis. To identify exons into DNA sequences present a computational
challenge due to the genes in many organisms splices of different way. Moreover,
most of gene datasets are imbalanced and the bulk of classifiers generally performs
poorly on imbalanced datasets becausemaking the classifier too specific maymake
it too sensitive to noise and more prone to learn an erroneous hypothesis. More-
over, sometimes an instance can be treated as noise and ignored completely by the
classifier if the dataset is imbalanced. Consequently, an effective detection of splice
sites requires not just to know features, dependencies, relationship of nucleotides
in the splice site surrounding region or an effective encoding method, but also a
good method which tackles the disadvantage of imbalanced in datasets. In this
paper, we use a novel SVM approach to detect splice sites in imbalanced data-
sets. The proposed method generates new synthetic instances in a similar form of
SMOTE [5], the key idea of this model is to introduce artificial instances in the
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region of positive SV, decreasing the skew of the margin and improving the gen-
eralization capacity. The proposed technique not only modifies the margin also
modifies the region of the minority class improving the generalization power of
the classifier. However, to introduce incorrectly new synthetic instances can re-
duce the classifier performance because this is a sensible region to small changes.
To avoid this fundamental issue, we incorporate a Genetic Algorithmwhich guides
the search in the sensible region generating intelligently new synthetic instances.
The proposed algorithm, tackles the disadvantage of imbalanced data-sets with
SVM. The rest of the paper is organized as following: Section 2 shows the SVM
imbalanced problem. Section 3 focuses on explaining themethodology of proposed
SVM classification algorithm. Section 4 shows experimental results. Conclusions
are given in Section 5.

2 Related Work

SVM has received considerable attention due to its optimal solution, discrimina-
tive power and performance. SVM has been applied in many fields, some SVM
algorithms have been used in splice site detection with acceptable accuracies.
There are a lot of works about Splice sites detection with several methods in
the literature. However, the works most representative of splice sites detection
with SVM are [1] [3] [4]. Baten [1] uses SVM with polynomial kernel to ob-
tain an effective detection of splice sites, Cheng [2] uses SVM to predict mRNA
polyadenylation sites [poly(A) sites], the method helps to identify genes, de-
fine gene boundaries, and elucidate regulatory mechanisms, [3] and [4] use SVM
to detect splice-junction (intron-exon or exon-intron) sites in DNA sequences.
In all this works, the accurate splice-site detection is a critical component of
all analytic techniques. However, before mentioned methods do not consider
datasets with high imbalance. Lately has been showed that SVM performance
drops significantly with imbalanced data-sets. Some important algorithms based
on Undersampling, Oversampling or SMOTE techniques[5] had been developed
to tackle this problem. SMOTE over-samples the minority class by taking each
minority class sample and introducing synthetic examples along the line seg-
ments joining any/all of the k minority class nearest neighbors. Depending upon
the amount of over-sampling required, neighbors from the k nearest neighbors
are randomly chosen. The SMOTE technique is better than under-sampling and
over-sampling and a promising technique to tackle this problem. Some other
proposals inspired in SMOTE can be seen in [6].

Methods based on Genetic Algorithms (GA) have also been pursued to tackle
imbalanced problems. Since evolutive methods provide state-of-the-art tech-
niques for many of todays data engineering applications, the use of evolutive
methods to understand imbalanced learning has naturally attracted growing at-
tention recently. Zou et al. [7] use a GA to balance the data-sets. In [8] the
authors propose a classification system using hierarchical fuzzy rule and a ge-
netic algorithm to select the most important rules and to eliminate conflicting
rules or rules which perturb the performance. Garcia et al. [9] implement an al-
gorithm which performs an optimized selection of previously defined generalized
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examples obtained by a heuristic. An excellent state of the art about imbal-
anced classification can be found in [10]. Despite the early proposed methods to
improve the performance, these algorithms use GA’s to balance the data-sets,
obtain rules or to select instances intelligently, but not to generate new instances
as the proposed algorithm. The proposed algorithm permits to create new in-
stances and evaluate the discriminative power of these new instances in the data
set. The region where the instances are created (region of SV) retains valuable
information, but is necessary to use a GA to guide the search of best instances.

3 Methodology

The proposed algorithm is based in the sparse property of SVM, where the
solution is given for a small subset from the original data-set called Support
Vectors (SV). Formally, given a data set {(xi, yi)}ni=1 and separating hyperplane
f(x) = wT

i x + b = 0, the shortest distance from separating hyperplanes to the
closest positive example and closest negative example in the non separable cases
are given by

γ+ = min γi, ∀γi ∈ class+ 1 (1)

γ− = min γi, ∀γi ∈ class− 1 (2)

where γi is given by
yi(w

T
i K 〈xi · xj〉+ bi)

‖w‖ (3)

Margin is the optimal separating hyperplane obtained by training a SVM
and it is given by γ = γ+ + γ−. This algorithm takes advantage of this fact,
the key idea of this model is to introduce artificial instances from positive SV,
It permits not only modify the margin also modify the region of the minority
class and decrease the skew of the margin, but also improve the generalization
capacity. Is clear that, introduce new synthetic instances in this region can affect
negatively the SVM performance by introducing noise in the data-set. However,
in this paper we use a GA to guide the search of the best regions and include
just the best data instances in the margin region. Figure 1 shows the framework
of the proposed method.

   DNA 
Sequence Encoding Undersampling SVM

Classification
New synthetic 

instances

GA
Final  

         Hyperplane  

Fig. 1. Stages of the proposed algorithm
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3.1 DNA Encoding

DNA sequences are given as strings of nucleotides and is necessary to encode
it. Sparse encoding is a widely used encoding schema which represents each
nucleotide with four bits: A → 1000, C → 0100, G → 0010 and T → 0001 [11].
We use 18 additional features with the sparse encoding schema. The first 16
components define the nucleotide pairs into a DNA sequence, which are defined
by β = {(xAA), (xAC), (xAG), (xAT ),. . .,(xTA),(xTC),(xTG),(xTT )}.When some
nucleotide pair is in the sequence, it is marked with 1 and an absence of this
pair is marked with 0. The last two components correspond to the informative
function of each triples in the sequence ranked by their F -value. For each triple,
we specify its location relative (pre and post) and its mean frequency between
exons and decoys μ+

k − μ
−
k respectively.

The F -value criterium is that used by Golub et al [12]. For each triple xk,k =
1, ..., n, we calculated the mean μ+

k (μ
−
k ) and the standard deviation σ+

k (σ
−
k )

using positive and negative examples. The F -value criterium is given by

F (xk) =

∣∣∣∣μ+
k − μ

−
k

σ+
k + σ−

k

∣∣∣∣ (4)

where xk is the k − esime triple, the F -value serves as a simple heuristic for
ranking the triples according to how well they discriminate. The last point in
the vector is represented by the relative presence of each triple of nucleotides.

This encoding schema allows to obtain the nucleotides of each sequence, show-
ing the importance of some pairs in the sequence, and obtaining the importance
of each triple at the begin and at the end of each sequence.

3.2 Classification Algorithm

The first step in the proposed algorithm consists in encode the DNA sequence, we
use the method described early. In the next step, the algorithm obtains subsets
from the entire data-set. To separate input data set, 70% of examples from data
set are selected as training set labeled as tr. We select tr with 70%, tf 15% and
te 15% of input data maintaining almost equal proportion in class distribution
over the data. For instance, if there are two class values (say X− and X+)
in a classification problem P with 1000 examples in total, and the number of
examples of class-types: X− and X+ are respectively 800 and 200. Then, 560
and 140 examples of class-types X−

tr and X+
tr respectively are assumed to be

included into tr by random selection, and X−
tf ,X

+
tf , X

−
te and X+

te with 120, 30,
120 and 30 examples respectively. Figure 1 show the steps of proposed algorithm
which are described in detail in the algorithms 1 and 2. X+

tr and X−
tr are used to

train a SVM and to find an introductory hyperplane H1 (X
+
r , X

−
r ), from H1 we

obtain the SV x−svi and x
+
svi and generate new synthetic examples from it. We use

the SMOTE technique to generate the first population of new synthetic instance
xsvg . which is given by xsvg = x+svi + δ · (x+svi−n − x+svi), where xsvg denotes one

synthetic instance, x+svi−n is the nearest neighbors of x+svi in the positive class,
and δ ∈ [0, 1]. This procedure is repeated for all the positive instances. The initial
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Algorithm 1. General SVM classification procedure

Input: Nucleotides Sequence Output: Improved hyperplane Hf : (X+
te, X

−
te)

1. Encode the nucleotides sequences {xi ∈ X : y = ±1}, i = 1, . . . , n
2. From X+ and X− obtain X+

tr, X
−
tr, X

+
tf , X

−
tf , X

+
te, X

−
te with 70%, 15% and 15%

respectively
3. Train SVM with

(
X+

tr, X
−
tr

) → H1

4. Obtain SVs x−
svi and x+

svi from H1

5. Obtain initial population according to (3.2).
6. Obtain best data points (X+

GA, X
−
GA) using the GA (Algorithm 2)

7. Obtain final hyperplane trainSVM(X+
GA, X

−
GA) → Hf

population is conformed by x−svi ∪ x+svj ∪ xsvg . It is manipulated using several
genetic operators to improve the population in each iteration and optimizing the
solution, i.e. DNA sequences are slightly modified from the DNA sequences with
best discrimination power improving the classifier performance, this process is
obtained by the GA defined in algorithm 2.

Second algorithm describes the functioning of the GA. We used a gray coding
to represent each individual in the population and the fitness function.

Genetic operators can find a solution in a small space by crossover operators,
and explore new areas in the space by mutation operators. The fitness function
ensures the evolution towards optimization by the fitness score for each DNA
sequence with high discriminative power in the population. The process continues
until a predefined termination criterion has been met.

In the proposed technique, we use the F-measure as fitness, it provides a way
to arrive the search solutions, and also controls the selection process. F-measure
is defined by

2× precision× recall
precision+ recall

(5)

where precision = TP
TP+FP and recall = TP

TP+FN , TP represents true positive
rate defined by the fraction of true positives out of the positives and FP false
positive rate defined by the fraction of false positives out of the negatives.

Selection is based in ranking selection with elite preserving. Each individual
survives in the next generation in proportion to the rank of its fitness value. The
best individual in the population is made to remain to the next generation in
order to prevent the best individual from being eliminated by stochastic genetic
drifts.

In the proposed algorithm, we used crossover and mutation operators.
Crossover operator unifies the genetic information of two individuals (parents),
obtained by selection operator, and creates two new individuals (children) called
as offspring. We use two points crossover. A crossover operator permits the fit-
ness function to evolve towards optimization. The mutation operator helps to
find the global optimal solution to the problem. It is called exploration oper-
ator. We use a crossover probability of pc = 0.9, and a mutation probability
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Algorithm 2. GA to generate artificial data of the minority class

Input: Initial population Xsvg = (xsvg1, xsvg2, . . . , xsvgm), Max generation. Output:
Best data instances (X+

GA, X
−
GA)

1. m(k)=m(0)=m
2. for i=1 to m(k)
3. Ha ← trainSVM

(
x−
svi ∪ x−

svi ∪ xsvg(i)
)

4. Obtain fitness from Ha with
(
X+

tf , X
−
tf

)
by (5).

5. end for
6. Generate new population XNsvg by selection, crossover and mutation.
7. Add the best individual in the current population Xsvg to the newly generated

XNsvg to form the next population.
8. m(k) = size of new generation XNsvg

9. Return to 2 if the pre-specified stopping condition is not satisfied.

of pm = 1/n, where n is the string length for Gray coded. Final hyperplane is
obtained until a stop criterion has been met.

Classical methods cannot decide which new instances will improve the SVM
performance in imbalanced data-sets, because the search space is often huge,
complex or poorly understood. GA has the ability to explore large and new
areas. Finding new instances with discriminative power can be considered a
GA search problem. The crossover and mutation operators realize the search
exploratory and exploitative respectively. Thus, to use GA improves the SVM
performance by generating artificial instances. The new instances obtained by
the GA (X+

GA, X
−
GA) contain information with high discriminative power helping

to increase the classifier performance.

4 Experimental Results

We conducted experiments on some imbalanced and balanced intron-exon data-
sets taken from http : //www.raetschlab.org/suppl/MITBookSplice/files/,
www.archive.ics.uci.edu and http : //big.crg.cat/bioinformaticsandgenomics/
Table 1 shows details of these data-sets. We compared our method against:
Under-Sampling, Over-Sampling and SMOTE techniques. The proposed method
and the methods before mentioned are implemented in Matlab. To evaluate
classifiers on skewed data-sets, require to use an adequate metric. We report the
results with True Positive Rate (TPR), False Positive Rate (FPR), Area Under
the Curve (AUC) and F-measure metrics. In all the experiments, we used 10-fold
cross validation.

Table 1, shows data-sets used in experimental results, length of DNA sequence
(ls), imbalance ratio (r) and size of exons, acceptors, donor (positive instances)
and introns, decoys (negative instances).

Table 2, shows the results obtained in our experiments. The first column shows
the data-set used and next columns show the experimental results obtained over
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Table 1. Imbalanced ratio and size of the data-sets used in experimetal results

Dataset ls size r

Nobgrors (No 23) 23 111827 1:1
Nobgrors (No 09) 9 110824 1:1
Nobgrors (Starts) 20 9299 1:1
Nobgrors (Stops) 15 11077 1:1
Acc 23 (Ac 23) 23 124728/374184 2:1
Acc 39 (Ac 39) 39 120000/360000 2:1
Donor 9 (Do 09) 9 120000/360000 2:1
Genbank64 (EI 60) 60 767/2422 3.15:1
Genbank64 (IE 60) 60 768/2421 3.15:1
C. elegans (Ac 60) 60 2785/91546 31:1
C. elegans (Do 60) 60 2785/89163 31:1

the 11 datasets with four different metrics measure methods, as well as the re-
sults obtained using the proposed method, Under-sampling, Over-sampling and
SMOTE approaches. The best result for each classifier is highlighted in bold.
We report the average on 30 runs for the proposed method. In all the cases,
the proposed method got the highest F-measure (we used F-measure as fitness
function in the GA), it suggests that the GA works well as a search engine that
helps to find perfectly what new instances improve the classifier performance.
In experimental results obtained not only F-measure performance is better, but
also sometimes AUC-ROC and TP measures are improved. Moreover, the im-
provement can be carried in balanced data-set (Table 2).

The experimental results show that the proposed algorithm helps to improve
the classification accuracy. The proposed algorithm helps to reduce the false pos-
itive rate (see Table 2 -EI 60, Ac 60, Do 60, Ac 23-) or helps to increase the true
positives rate (IE 60, Do 60, Ac 23, No 09) with by adding artificial data. The
improvement in the performance depends directly of the fitness function used.
To use F-measure as fitness function helps to improve effectively FP rate too,
but sometimes to improve can affect the AUC-ROC and TP rate due to imbal-

Table 2. Comparison of the proposed method (PM) with some measure metrics against
other techniques for imbalanced data-sets

Measure Undersampling Oversampling Smote PM
TP FP ROC Fm TP FP ROC Fm TP FP ROC Fm TP FP ROC Fm

EI 60 0.979 0.097 0.941 0.918 0.992 0.037 0.983 0.968 0.99 0.038 0.99 0.965 0.995 0.009 0.994 0.99
IE 60 0.905 0.015 0.972 0.919 0.939 0.005 0.983 0.929 0.941 0.012 0.978 0.946 0.973 0.029 0.979 0.958
Ac 60 0.958 0.359 0.856 0.96 0.974 0.318 0.917 0.963 0.965 0.142 0.97 0.973 0.969 0.128 0.983 0.973
Do 60 0.952 0.335 0.807 0.953 0.972 0.357 0.861 0.93 0.972 0.323 0.971 0.963 0.976 0.243 0.974 0.977
Ac 23 0.593 0.203 0.802 0.580 0.577 0.212 0.754 0.564 0.589 0.205 0.801 0.573 0.604 0.198 0.788 0.593
Ac 39 0.411 0.245 0.676 0.446 0.42 0.223 0.726 0.451 0.433 0.222 0.732 0.46 0.468 0.25 0.712 0.493
Do 09 0.628 0.187 0.777 0.596 0.614 0.193 0.777 0.610 0.631 0.175 0.812 0.598 0.618 0.171 0.814 0.605
No 23 0.926 0.104 0.926 0.926 0.894 0.107 0.954 0.894 0.914 0.091 0.969 0.91 0.914 0.087 0.969 0.934
No 09 0.925 0.075 0.974 0.925 0.938 0.051 0.970 0.938 0.929 0.071 0.976 0.929 0.943 0.057 0.973 0.942
Starts 0.753 0.247 0.833 0.753 0.752 0.248 0.836 0.752 0.77 0.228 0.850 0.770 0.827 0.230 0.857 0.832
Stops 0.629 0.371 0.629 0.629 0.611 0.389 0.658 0.611 0.63 0.370 0.684 0.630 0.635 0.379 0.688 0.640
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ance ratio. Therefore, to obtain a fitness function that improves the measures
whithout loss in a metric on imbalanced data-sets can be a future research work.

5 Conclusions

In this paper, we present a novel SVM classification approach for detection of
splice sites. The proposed approach obtains new synthetic instances from the
SVs obtained in a first stage and includes just the instances that improve the
SVM performance in the data-set. The algorithm uses a GA to evaluate and
obtain better instances in each iteration. Experiments done with DNA sequences,
show that the information adjoined by the synthetic instances, help to improve
the SVM performance. However, the cost of evaluating each solution in the
population is very high and despite the good accuracy obtained its complexity
is prohibitive in large data sets.
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Abstract. The applications of Support Vector Machines (SVM) in speaker rec-
ognition are mainly related to Gaussian Mixtures and Universal Background 
Model based supervector paradigm. Recently, has been proposed a new ap-
proach that allows represent each acoustic frame in a binary discriminant space. 
Also a representation of a speaker - called accumulative vectors - obtained from 
the binary space has been proposed. In this article we show results obtained us-
ing SVM with the accumulative vectors and Nuisance Attribute Projection 
(NAP) as a method for compensating the session variability. We also introduce 
a new method to counteract the effects of the signal length in the conformation 
of the accumulative vectors to improve the performance of SVM. 

Keywords: speaker recognition, binary values, accumulative vectors, Support 
Vector Machine, Nuisance Attribute Projection. 

1 Introduction 

Currently SVM is one of the most robust and powerful discriminative classifier in 
speaker recognition. The applications of SVM are mainly related to Gaussian Mix-
tures and Universal Background Model (GMM/UBM) based supervector paradigm  
[1, 2]. Generally a supervector is obtained by concatenating the means of the adapted 
GMM models. However, these approaches show limitations associated with the 
GMM/UBM paradigm. First, it is difficult to exploit temporal or sequential informa-
tion. Second, the supervector space don´t allows working directly with discriminant 
aspects of speaker. 

A new approach that attempts to reduce these limitations was proposed in [3]. It 
deals directly with the speaker discriminant information in a discrete and binary 
space. Our method to obtain the binary representation and then the accumulative vec-
tors is similar to [4], it only differs on the normalization process used for reducing the 
susceptibility of the accumulative vectors to the signal length. At this point we intro-
duce a new method for successfully accomplish this task since it shows better perfor-
mance combined with the SVM. 

In this article we used SVM as a classifier to work with the accumulative vectors 
and then we compared the results with those obtained with the GMM/UBM based 
supervector paradigm. We also use Nuisance Attribute Projection (NAP) as a method 
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for compensating the session variability because this algorithm intend to reduce the 
susceptibility of SVM kernel to this problem [5].  

This paper is organized as follows. Section 2 explains the process to obtain the ac-
cumulative vectors presented in [4]. Section 3 briefly describes SVM paradigm and 
NAP algorithm. In Section 4 are introduced the proposals: a new method for scaling 
the accumulative vectors and the use of SVM as a classifier for accumulative vectors. 
Section 5 describes the experimental setup, presents the results obtained and show 
advantages and disadvantages of the proposed approach. Finally, section 6 gives some 
conclusions. 

2 Accumulative Vectors 

The process to obtain the accumulative vectors is mainly composed by three compo-
nents. First, a UBM is trained to divide the acoustic space in acoustic classes. Second, 
a set of Gaussians components is incorporated to each component or acoustic class of 
the UBM. These components are known as “speaker specificities” and the set of those 
as generator model. Finally, for an acoustic frame, each speaker specificity is eva-
luated and it corresponding binary value is established. 

The role of the generator model is to highlight the speaker specificities. As men-
tioned, each acoustic class of the UBM is represented by a set of Gaussian Compo-
nents. Those specificities are obtained from the adapted models of the training set, by 
matching the  components of the adapted models to the  component of the UBM. 
Since the specificities number is assumed to be very large, it is necessary to reduce it, 
selecting the most important [4]. As a result the number of specificities per acoustic 
class could not be the same. 

For obtaining the binary representation of a given speaker, first we took each 
acoustic frame and determine its posterior probability related with each Gaussian 
component of the UBM by a process similar to Maximum a Posteriori (MAP) [6]. 
Then the  components with the highest probability were selected, the specificities of 
these components are the ones represented in the binary vector. We use 3 based 
on previous results presented in [4]. Then for each component is compute the likelih-
ood of each acoustic frame with all the corresponding specificities. The equations for 
determine the posterior probability and the likelihood are detail described in [7]. Fi-
nally a binary vector is created by set in 1 the components of the vector corresponding 
to the specificities with the higher likelihood. These are known as the “active compo-
nents”. After that, a binary vector for each acoustic frame is obtained. Pooling these 
vectors we have a binary matrix that represents a given speaker. The accumulative 
vector is then obtained by setting the component of the vector corresponding to a 
given specificity to the number of activations. 

3 Support Vector Machines 

At the most basic level, SVM is a binary classifier which models the decision boun-
dary between two classes as a separating hyperplane. In the speaker verification, one 
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class is the vector of the target speaker (labeled as +1), and the other class is com-
posed for the vectors of a background population (labeled as -1). Using this informa-
tion, SVM intends to find a separating hyperplane that maximizes the margin of sepa-
ration between these two classes. This is an optimization problem defined by: 

    12 || ||                                                   1  

 .    1 0                              2  
 0                                                                                 3  

 
where  is a orthogonal vector to the separating hyperplane,   is the accumulative 
vector ,  is the class of the vector ,  are the “slack variables” (allows for viola-
tions of the constraints since in practice the data is not linearly separable),  and  
are constants. 

Here ∑  is the penalty or loss function and could be interpreted as a measure of 
“how bad” the violations are. The constant  controls the tradeoff between penalty 
and margin. 

This optimization problem is solved in a space of dimension higher than the origi-
nal space, due to the solution is easier to find in it. To achieve this transformation, 
SVM use a kernel function , . The kernel function should satisfy the Mercer 
condition [8] (The Kernel should be positive semi definite) and therefore can be ex-
pressed as: 

 , ,                            4  
 
were ,  is the inner product of two vectors. Given a test vector  the 
discriminant function of SVM is given by: 

                        5  

 
were  are the support vectors determined in the optimization process and  is the 
number of support vectors. 

4 Proposed Methods 

In order to improve the results obtained with the similarity measure Intersection and 
Symmetric Difference (ISDS) [4] we propose to use SVM as a classifier of the accu-
mulative vectors. We train a model for each target speaker using its accumulative 
vector and a set of background vectors.  
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We first obtained the generator model described in [4] and extracted the accumula-
tive vectors of the target speakers from its corresponding signal. We took a set of 
background speakers and extract the corresponding accumulative vectors to be used 
as impostors in the SVM training process. These background speakers are labeled as  
-1 and are used to train all the target speakers’ models.   

Something that has negative impact in the use of accumulative vectors with SVM 
is their direct dependency with the number of frames of their corresponding signals. 
For that, before feeding accumulative vectors into SVM we transform them by the 
procedure described in 4.1.  

To improve the results obtained with the SVM we use NAP as a technique to com-
pensate the session variability presented in the accumulative vectors. Therefore we 
apply the NAP transformation to the accumulative vectors used for the SVM training 
before starting the training process. We assume that the accumulative vectors holds 
session variability information and we confirm that in the results. The NAP procedure 
is similar to the presented in [5] and is described in section 4.2. Finally we use a stan-
dard linear kernel to train the support vector machines. 

4.1 Scaling the Accumulative Vectors 

As we explain in section 2, a binary vector is obtained from each acoustic frame of a 
given signal. As result the numbers of binary vectors extracted from an acoustic sig-
nal depends on the length of it. Since the accumulative vectors are obtained from 
these binary vectors and their represent the number of times that each specificity was 
activated, the accumulative vectors of two acoustic signals from the same speaker will 
be very different if one signal is bigger than the other.  

To deal with this problem, in [4] each accumulative vector is divided by the sum of 
the accumulative values in it. But we face a problem with this method: the resulting 
accumulative values are too small, and therefore, this phenomenon causes loss of 
significance in the data during the training of SVM. 

To address this trouble we propose to divide each accumulative vector for the 
number of frames of its corresponding signal. As result, each accumulative value will 
be equal to the average that specificity was activated by frame. Then the new accumu-
lative vectors are obtained by: 

                                                                  6  

  
where  is the accumulative vector and  is the number of frames of its corres-
ponding signal. Then the new accumulative values are not too small, and with this 
method we outperform the proposal in [4], using SVM. 

4.2 Nuisance Attribute Projection (NAP) 

Nuisance Attribute Projection is a compensation technique that successfully removes 
the session variability in SVM supervectors [5, 9] and we use it with accumulative 
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vectors. This algorithm is not specific to some kernel and can be applied to any kind 
of supervectors. 

NAP makes the hypothesis that the channel variations tend to lie in a low-
dimensional subspace of a speaker  and projecting out these dimensions, most of the 
speaker-dependent information in   will be unaffected. This transformation is 
achieved by: 

                                                     7  
 

where  is the projection matrix and  is the accumulative vector of a given 
speaker. By orthonormality this transformation is idempotent [9]. This means that it is 
not necessary to transform the test accumulative vectors. 

To obtain the U matrix we need a dataset with several speakers and several sessions 
for each one of them. With this dataset the procedure to obtain U is the following: 

1. Extract an accumulative vector of dimension  for each session of the 
training set. 

2. Scale these accumulative vectors using the method described in 4.1. 
3. For each speaker, calculate the mean accumulative vector and then sub-

tracts this mean from all of its accumulative vectors. Pooling all these ac-
cumulative vectors is obtained a large matrix D. 

4. Now perform a Principal Component Analysis (PCA) on D to obtain the 
 principal eigenvectors.  

5. The result matrix is the projection matrix U. 

In the matrix D most of the speaker variability presented in the accumulative vec-
tors has been removed, however it holds the intersession variability. 

5 Experiments 

For all the signals used in the experiments we extract 19 Linear Frequency Cepstral 
Coefficients (LFCC) with the log energy. We add 20 delta coefficients and 10 delta-
delta coefficients for a total of 50 features. 

A UBM with 512 components was trained using 1661 speakers from NIST SRE 
2005. Using this, we train the generator model as was described in [4] with 2450 mul-
tilingual signals of 124 speakers from NIST SRE 2004. This set of signals also was 
used to estimate the NAP projection matrix. To train the SVM we use a subset of 500 
signals from the ones selected from NIST SRE 2004. 

We use 0.001 as activation threshold to obtain the accumulative vectors. This 
means that a position in a binary vector was set to 1 if its corresponding likelihood is 
bigger than this value.   

For the test we use det7 core condition test of NIST SRE 2008. This test has 1270 
target speakers and 2528 unknown signals. We make 6615 verifications based on  
this test. 
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5.1 Results 

Firstly we conduct a set of experiments without channel compensation to adjust the 
parameter C. The results are shown in Table 1.  

Table 1. Equal Error Rate (EER) and Detection Cost Function (DCF) results for speaker 
verification using SVM without channel compensation to adjust the C parameter 

C EER DCF 
100 10.022% 0.0491 
250 8.428% 0.0441 
500 7.561% 0.0416 
750 7.742% 0.0406 

1000 7.742% 0.0405 
2500 7.289% 0.0407 
5000 7.289% 0.0403 
6000 7.253% 0.0405 
7500 7.061% 0.0399 
8000 7.205% 0.0398 
9000 7.289% 0.0401 
10000 7.289% 0.0395 

For highest values of C we can see a stable behavior in EER. Although the better 
performance was obtained for C = 7500. We choose this value to adjust the dimension 
of the NAP matrix projection. 

Table 2. Equal Error Rate (EER) and Detection Cost Function (DCF) results for speaker 
verification using SVM with channel compensation for different dimension of the NAP 
projection matrix and C=7500 

 EER DCF 
40 6.735% 0.0350 
60 6.378% 0.0355 

100 6.525% 0.0343 
200 6.378% 0.0345 
350 6.169% 0.0325 
450 6.039% 0.0329 
550 6.150% 0.0331 
600 5.975% 0.0337 
700 6.150% 0.0362 

In Table 2 we show that the best result of our system is obtained with the dimen-
sion of NAP projection matrix equal to 600 for C=7500. Therefore the use of NAP 
improves the results of the SVM by about of 1%. It proves that the accumulative vec-
tors holds information related to session variability.  
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Finally for comparison purposes we select and develop two different experiments. 
First an experiment with the similarity measure ISDS [4] was conducted. We apply 
the normalization of the accumulative vectors described in [4] because ISDS is ad-
justed to work with this method.  

At last a set of experiments using the state of art algorithm i-vector [10] with the 
compensation techniques Within Class Covariance Normalization (WCCN) [11] and 
Linear Discriminant Analysis (LDA) [10] was presented. The estimations of the ma-
trixes associated with this experiment uses NIST 2004 speaker set previous described. 
The rank of the i-vector total variability matrix was equal to 400 and the LDA dimen-
sion was set in 390. 

Table 3. Equal Error Rate (EER) and Detection Cost Function (DCF) comparison of our 
proposal with others 

 EER DCF 
SVM C=7500 DNAP 600 5.975% 0.0337 

ISDS 11.690% 0.0486 
i-vector 7.092% 0.0309 

i-vector + LDA 5.828% 0.0290 
i-vector+WCCN 6.655% 0.0286 

i-vector+WCCN+LDA 5.922% 0.0283 

Table 3 shows that our proposal outperforms the similarity measure ISDS and 
therefore the base line of the accumulative vectors. Also the results are very close to 
those obtained with the better techniques of the state of art applied to the GMM/UBM 
based supervector paradigm. Although the experiments only show a slight improve-
ment on a single dataset, the proposed approach seems promising due to that the ac-
cumulative vectors paradigm is relatively new, just like its previously mentioned pos-
sibility of working directly with the discriminative information of a speaker. 

A major drawback of the realized experiments is that we only have one sample of 
each target speaker and therefore we trained his corresponding SVM model with the 
accumulative vector extracted from that signal. The use of more than one sample 
should improve the results obtained. Also the selection of the background signals used 
to train the SVMs is very crucial. Nevertheless the low cost process of training and 
scoring the SVM models, its high discriminative power and the advantages relative to 
the accumulative vectors paradigm, compensate the mentioned disadvantages.  

6 Conclusions and Future Work 

In this paper we introduce a new scaling method of accumulative vectors because we 
obtain better results using SVM with it than with the reported in [4]. The obtained 
results prove that this method successfully removes the effects of signal length in the 
accumulative vectors. We also show that the accumulative vectors hold information 
about the session variability and it can be reduced by applying the NAP compensation 
technique. We demonstrate also that the results obtained with our proposal are much 
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closed to those obtained with the state of art techniques but using a binary representa-
tion of a speaker that allows working directly with it discriminative characteristic and 
temporal information.  

In the future we will try to use others compensation techniques instead on NAP to 
remove the session variability in the accumulative vectors and make a comparison 
with the results obtained, just like, use PLDA instead of LDA for comparison pur-
pose. Also in [4] was proposed a trajectory model that represents the temporal infor-
mation of a speaker and extract more than one accumulative vector, so we intend in 
futures work to exploit the information relative to this model by using SVM. Fur-
thermore we intend to run more experiments in different datasets to enhance the ro-
bustness of our proposal.    
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Abstract. Fusion of several biometric traits has traditionally been re-
garded as more secure than unimodal recognition systems. However, re-
cent research works have proven that this is not always the case. In
the present article we analyse the performance and robustness of several
fusion schemes to indirect attacks. Experiments are carried out on a mul-
timodal system based on face and iris, a user-friendly trait combination,
over the publicly available multimodal Biosecure DB. The tested system
proves to have a high vulnerability to the attack regardless of the fusion
rule considered. However, the experiments prove that not necessarily the
best fusion rule in terms of performance is the most robust to the type
of attack considered.

Keywords: Security, vulnerabilities, multimodality, iris recognition,
face recognition, fusion schemes.

1 Introduction

Being able to automatically recognise people is of the utmost importance for
many applications, such as regulating international border crossings or perform-
ing financial transactions on-line. Traditional security technologies required the
use of PINs or tokens. Biometrics proposes a change of paradigm, from “what
you know” or “what you have” to “who you are”: forget about passwords, you
are your own key [1].

However, as any other security technology, biometrics are exposed to external
attacks which could compromise their integrity [2]. It is therefore essential to
understand the threats to which they are subjected and to analyse their vul-
nerabilities in order to prevent possible attacks and increase their benefits for
the users. External attacks to biometric systems are commonly divided into:
direct attacks (also known as spoofing attacks), carried out against the sensor,
and indirect attacks, directed to some of the inner modules of the system. In the
last recent years important research efforts have been conducted to study the
vulnerabilities of biometric systems to both direct and indirect attacks [3–5].

This new concern which has arisen in the biometric community regarding the
security of biometric systems has led to the appearance of several international
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c© Springer-Verlag Berlin Heidelberg 2013



Multimodal Biometric Fusion: A Study on Vulnerabilities to Indirect Attacks 359

projects, like the European TABULA RASA [6] and BEAT [7], which base their
research on the security through transparency principle: in order to make bio-
metric systems more secure and reliable, their vulnerabilities need to be analysed
and useful countermeasures need to be developed.

In this scenario, biometric multimodality has been regarded as an effective
way of increasing the robustness of biometric-based security systems against
external attacks. Combining the information offered by several traits would force
an eventual intruder to successfully break several unimodal modules instead of
just one. However, it has already been proven that this is not necessarily true
for the case of spoofing attacks [8–10].

But are all fusion schemes equally robust to indirect attacks? If not, are the
system performance and the robustness somehow correlated? In the present work
we try to answer those questions using several score-level fusion schemes and a
multimodal indirect attack already proven to be very successful in [11].

The paper is structured as follows: the attacking algorithm is summarized in
Sect. 2. The system attacked, with the different fusion rules considered, is pre-
sented in Sect. 3, while the experimental protocol followed and the performance
evaluation of the system are described in Sect. 4. The results obtained are shown
in Sect. 5. Finally conclusions are drawn in Sect. 6.

2 Hll-Climbing Attack to Multimodal Recognition
Systems

In order to attack the multimodal verification system using the different fusion
schemes considered, the algorithm detailed in [11] will be used, which may be
summarized as follows. Consider the problem of finding a (K + L)-dimensional
vector x of real (size K) and binary (size L) values which, compared to an un-
known template C (in our case related to a specific client), produces a similarity
score higher than a certain threshold δ, according to some matching function J ,
i.e., J(C,x) > δ.

The problem stated above may be solved by dividing the vector x into its
real-valued (xreal) and binary parts (xbin) and alternately optimizing each of
them. In order to optimize each of the parts, two different sub-algorithms will
be used: i) a hill-climbing based on the uphill simplex to attack the real-valued
segment; and ii) a hill-climbing attack based on a genetic algorithm to break
the binary segment. Thus, the steps followed by the multimodal attack are:

1. Generate a synthetic template (x) randomly initializing the real-valued
(xreal) and binary (xbin) segments, of lengths K and L, respectively. Then
compute the similarity score s = J(C,x), which will be iteratively maximised.

2. Leaving one of the segments unaltered, optimize the other segment of the
template using the appropriate sub-algorithm until one of the stopping cri-
teria of the sub-algorithm is fulfilled.

3. Change the optimization target to the segment which was previously left
unaltered and go back to step 2.
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The algorithm stops when: i) the verification threshold is reached (i.e., ac-
cess to the system is granted), or ii) the total number of iterations exceeds a
previously fixed value (i.e., the attack has failed).

It should be noted that the number of executions of each sub-algorithm is not
fixed, and may vary depending on the user account at hand. That number can
even be zero for one of the sub-algorithms, meaning that optimizing the other
part of the template is enough to break the account.

For further details on the multimodal attack and on each of the two sub-
algoritms, the reader is referred to [11].

Notation. Since the multimodal attack will be tested against a face- and
iris-based multimodal system, we will henceforth denote the number of times
the real-valued hill-climbing is executed as Nface, and the number of times that
the binary-valued hill-climbing is executed as Niris. Similarly, the real-valued
segment of the template x will be denoted as xface, and the binary part as xiris.

3 Multimodal Verification System

The multimodal verification system evaluated in this work is the fusion of two
unimodal systems, namely: i) the iris recognition system developed by L. Masek1

[12], which is widely used in related publications; and ii) an Eigenface-based face
verification system, used, for instance, to present initial face verification results
for the Face Recognition Grand Challenge [13].

Given an input vector x, the multimodal system performs the following tasks
in order to obtain the final score, s:

1. Compute the similarity scores obtained by the face (sface) and iris (siris)
traits, as given by the unimodal matchers.

2. Normalize the scores sk, with k = {face, iris}, using hyperbolic tangent esti-
mators (its robustness and high efficiency are proven in [14]). This way, the
normalised scores s′k lie in the interval [0, 1].

3. Finally, both normalised scores are fused. Several fusion schemes have been
considered [15, 16]:

Sum rule : s = s′face + s′iris Product rule : s = s′face × s′iris
Max rule : s = max{s′face, s′iris} Min rule : s = min{s′face, s′iris}

4 Database and Experimental Protocol

The experiments are carried out on the face and iris subcorpora included in the
Desktop Dataset of the Multimodal Biosecure Database [17], which comprises
voice, fingerprints, face, iris, signature and hand of 210 users, captured in two
time-spaced acquisition sessions. This database was acquired thanks to the joint

1 www.csse.uwa.edu.au/~pk/studentprojects/libor/sourcecode.html

www.csse.uwa.edu.au/~pk/studentprojects/libor/sourcecode.html
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Fig. 1. Typical samples of the face and iris images available in the Desktop Dataset of
the multimodal BioSecure database
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Fig. 2. DET curves for the unimodal systems and the fusion rule with the best per-
formance (left) and for all the fusion rules considered (right), with their corresponding
EER

effort of 11 European institutions and has become one of the standard bench-
marks for biometric performance and security evaluations. It is publicly available
through the BioSecure Association2.

The face subset used in this work includes four frontal images (two per session)
with an homogeneous grey background, and captured with a reflex digital camera
without flash (210 × 4 = 840 face samples), while the iris subset includes four
grey-scale images (two per session as well) per eye, all captured with the Iris
Access EOU3000 sensor from LG. In the experiments only the right eye of each
user has been considered, leading this way as in the face case to 210× 4 = 840
iris samples. Typical samples may be seen in Fig. 1.

4.1 Performance Evaluation

The database is divided into: i) a training set comprising the first three samples
of 170 clients, used as enrolment templates for each sub-system; and ii) an
evaluation set formed by the fourth image of the previous 170 users (used to

2 http://biosecure.it-sudparis.eu/AB

http://biosecure.it-sudparis.eu/AB
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Fig. 3. Genuine and impostor distributions for the face (y axis) and iris (x axis) recog-
nition systems

compute the genuine scores), and all the 4 images of the remaining 40 users
(used to compute the impostor scores). The final score given by the multimodal
system is the average of the scores obtained after matching the input template
x to the three face and iris templates of the client model C.

The attacking algorithm is evaluated at three operating points with FAR =
0.1%, FAR = 0.05%, and FAR = 0.01%, which correspond to a low, medium,
and high security application according to [18].

As described in Sect. 3, several fusion rules are considered in the present
study. The verification performance of the unimodal and multimodal combina-
tions considered are shown in Fig. 2, where the Detection Error Tradeoff (DET)
curves are depicted. As may be observed, the best performance is achieved for
the sum rule (EER = 0.83%), while the worst one is shown for the min rule
(EER = 5.41%).

In Fig. 3, the genuine and impostor distributions are shown.

4.2 Experimental Protocol for the Attacks

The performance of the attack will be evaluated in terms of: i) Success Rate
(SR) which is the expected probability of breaking a given account, indicating
how dangerous the attack is (the higher the SR, the bigger the threat); and ii)
Efficiency (Eff) defined as the inverse of the average number of matchings needed
to break an account, thus giving an estimation of how easy it is for the attack to
break into the system in terms of speed (the higher the Eff, the faster the attack).
The SR is computed as the ratio between the number of broken accounts (AB)
and the total number of accounts attacked (AT = 170): SR = AB/AT , and the
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Table 1. Eff and SR for the different fusion rules considered

FAR
Sum Prod Max Min

SR Eff (×10−4) SR Eff (×10−4) SR Eff (×10−4) SR Eff (×10−4)

0.10% 100% 1.9372 100% 1.9144 100% 1.3231 100% 2.3134
0.05% 100% 1.8218 100% 1.7863 100% 1.2060 100% 2.0602
0.01% 100% 1.3702 100% 1.3616 100% 1.0220 100% 1.7657

Table 2. Number of user accounts broken after attacking each part of the template a
fixed number of times specified by Nface and Niris (see Sect. 2)

FAR
Sum (Nface +Niris) Prod (Nface +Niris)

1 + 0 1 + 1 2 + 1 2 + 2 3 + 2 3 + 3 1 + 0 1 + 1 2 + 1 2 + 2 3 + 2 3 + 3

0.10% 0 153 9 7 0 1 0 161 5 4 0 0
0.05% 0 155 8 7 0 0 0 158 6 6 0 0
0.01% 0 117 27 21 2 3 0 118 27 19 3 3

FAR
Max (Nface +Niris) Min (Nface +Niris)

1 + 0 1 + 1 2 + 1 2 + 2 3 + 2 3 + 3 1 + 0 1 + 1 2 + 1 2 + 2 3 + 2 3 + 3

0.10% 5 118 14 30 1 2 0 127 19 4 13 0
0.05% 2 102 15 36 4 9 0 101 37 7 20 0
0.01% 0 90 5 54 8 10 0 58 53 8 38 0

Eff is computed as Eff = 1/
(∑AB

i=1 ni/AB

)
, where ni is the number of matchings

needed to bypass each of the broken accounts.

5 Results

The experiments have two different goals, namely: i) analyse the robustness
against indirect attacks of different fusion rules, and ii) study to what extent
the vulnerabilities of a multimodal recognition system based on face and iris are
correlated to the verification performance.

5.1 Vulnerabilities Evaluation

In Table 1, the performance of the attack in terms of the SR and the Eff is shown.
Asmay be observed, the SR is 100% in all cases: all accounts are broken, regardless
of the fusion scheme considered. However, not all the fusion schemes are equally
robust in terms of speed: the Eff for the min rule is the highest one, being therefore
the least robust fusion scheme. On the other hand, while the Eff for the sum and
product rules is very similar, for the max rule it is considerably lower. Therefore,
for applications where the robustness to this kind of attacks is more important
than having an optimal performance (EER rises from 0.83% with the sum rule, to
1.17% with the max rule), the max rule should be considered.
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For all the user accounts attacked, each sub-algorithm was executed between
0 and 3 times. Therefore, there are six possible cases regarding the number of
those executions (Nface+Niris). In the particular case whenNiris = 0, the account
was broken after the first execution of the real-valued hill-climbing, therefore not
needing to attack the binary part. The number of accounts that fall into each
category is shown in Table 2. As may be observed, most accounts are broken
after optimizing each part of the template only once.

In Sect. 4.2, Eff was defined as the inverse of the average number of compar-
isons needed to break an account. Therefore, the lower the Eff, the higher the
number of comparisons needed. As could be expected, the lower the FAR at the
operating point tested, the higher the number of users for which more executions
of each sub-algorithm were needed.

However, when we compare the results shown in Table 2, we observe two
different behaviours:

– For the sum, product and max rules, as expected, the lower the Eff, the
higher the number of users for which two or even three executions of each
sub-algorithm were needed.

– For the min rule, which presented the highest Eff for the attack (see Ta-
ble 1), the number of users requiring three executions of the real-valued
sub-algorithm is the highest. This means that the genetic sub-algorithm sat-
urates quickly, and therefore the general attacking scheme starts attacking
the face part of the template: as stated in [11], the genetic sub-algorithm
needs considerably more comparisons than the hill-climbing based on the
uphill simplex, leading this quick change to a higher Eff.

6 Conclusions

In the present article we have analysed the robustness of different multimodal
score-level fusion rules (sum, product, max and min) to indirect attacks. We have
then explored to what extent there is a correlation between the vulnerabilitiy
level and the performance of the multimodal system. A multimodal system based
on face and iris, a trait combination commonly regarded as user-friendly, working
on a publicly available multimodal database, was used in the experiments.

The experiments showed that the multimodal attack achieves a Success Rate
of 100% in all cases, regardless of the operating point or the fusion rule consid-
ered. However, the Efficiency of the algorithm varies, and from that variation
some criteria for choosing a fusion rule for the multimodal system were inferred.

Even though the results presented here are based on simple fusion rules, the
experimental framework can be easily extended to more complex architectures.
Future work considering other biometric modalities and fusion schemes will be
carried out in order to reach a deeper understanding of the behaviour of multi-
modal biometric systems under indirect attacks.

Works such as the one presented here emphasize the importance of developing
appropriate template protection countermeasures that minimize the effects of
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the studied attacks. Some countermeasures have been proposed to counterfeit
spoofing attacks, such as [19]. However, the application of those measures against
indirect attacks is not straightforward, since they work on raw biometric traits
instead of preprocessed templates.
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Abstract. In this paper, a topological approach for gait-based gender
recognition is presented. First, a stack of human silhouettes, extracted
by background subtraction and thresholding, were glued through their
gravity centers, forming a 3D digital image I . Second, different filters
(i.e. particular orders of the simplices) are applied on ∂K(I) (a simplicial
complex obtained from I) which capture relations among the parts of the
human body when walking. Finally, a topological signature is extracted
from the persistence diagram according to each filter. The measure cosine
is used to give a similarity value between topological signatures. The nov-
elty of the paper is a notion of robustness of the provided method (which
is also valid for gait recognition). Three experiments are performed us-
ing all human-camera view angles provided in CASIA-B database 1. The
first one evaluates the named topological signature obtaining 98.3% (lat-
eral view) of correct classification rates, for gender identification. The
second one shows results for different human-camera distances accord-
ing to training and test (i.e. training with a human-camera distance and
test with a different one). The third one shows that upper body is more
discriminative than lower body.

Keywords: gait-based recognition, topology, persistent homology,
gender classification.

1 Introduction

Gender human classification can be obtained based on face [1], voice [2] or gait
[3, 4]. Dynamic features when the people walk give the possibility to identify
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persons and their gender at a distance, without any interaction from the subjects
[5–7]. This fact can improve the performance of surveillance system intelligent,
the analysis of customer information in trade centers, and it can reduce the false
positive rate during reidentification of an individual on a wide network cameras.
People not only observe the global motion properties while human walk, but
they detect motion patterns of local body parts. For instance, females tent to
swing their hips more than their shoulders. On the contrary, males tent to swing
their shoulders more than their hips [8]. Moreover, males have in general wider
shoulders than females [9]. An experiment for human observers to analyze the
contributions of different parts of the human body (lower body, upper body and
whole body) and to study their discriminative power appears in [3]. According
to that experiment, upper body contributes more than lower body to gender
classification. In fact, 94.35% and 67.86% of correct classification rates, for upper
and lower body, respectively, were obtained. In this paper, a modified version
of the topological gait signature given in [10, 11] is presented, which is valid
for gait and also for gender classification. Besides, an important contribution
of the paper are arguments for the robustness of the signature with respect to
small input-data perturbations (i.e., perturbations on the stack of silhouettes)
are presented. We test this topological signature on the CASIA-B database and
compare our method with existing ones for gender recognition.

The rest of the paper is organized as follows. Section 2 is devoted to describe
the method for obtaining the topological signature and arguments for its ro-
bustness. Experimental results are then reported in Section 3. We conclude this
paper and discuss some future work in Section 4.

2 Topological Signature for Gender Classification

In this section, we briefly explain how the topological signature for gait and
gender classification is obtained. As we will see below, the filters (ordering of
simplices) are given by using functions defined on the simplicial complex ∂K(I)
and associated to the given view directions. These functions will be used later for
sketching robustness of the topological signature for gait and gender recognition
with respect to “small” input-data perturbations. Persistent homology obtained
from these filters are represented here in persistence diagram format [12].

2.1 The Simplicial Complex ∂K(I)

First, the foreground (person) is segmented from the background by applying
background modeling and subtraction. The sequence of resulting silhouettes is
analyzed to extract one subsequence of representation, which include at least a
gait cycle [5].

The 3D binary digital picture I = (Z3, B) (where B ⊂ Z3 is the foreground), is
built by stacking silhouettes of a subsequence of representation, aligned by their
gravity centers (gc). See Fig. 1.a and Fig. 1.b. The 3D cubical complex Q(I)
associated to I is constructed as follow: Visit all the points v = (i, j, k) ∈ B
from down to up and from left to right.
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Fig. 1. (a) Silhouettes aligned by their gc. (b) I = (Z3, B) obtained from the silhouettes
(GC is the gravity center of I). (c) The border simplicial complex ∂K(I).

If the 7 neighbors of v, {(i + 1, j, k), (i, j + 1, k), (i, j, k + 1), (i + 1, j + 1, k),
(i+ 1, j, k+ 1), (i, j + 1, k+ 1), (i+ 1, j + 1, k+ 1)}, are also in B then, the unit
cube formed by these 8 vertices together with all its faces (vertices, edges and
squares) are added to Q(I). The simplicial complex ∂K(I) is constructed by
selecting all the squares of Q(I) that are faces of exactly one cube in Q(I) and
subdividing such squares in two triangles. The faces of each triangle (vertices
and edges) are also added to ∂K(I) (see Fig. 1.c). Finally, coordinates of the
vertices of ∂K(I) are normalized to coordinates (x, y, t), where 0 ≤ x, y ≤ 1 and
t is the number of silhouette of the subsequence of representation.

2.2 Filters for ∂K(I)

The topology of ∂K(I) is, in general, very poor. However, in this subsection
we present how, using persistence diagrams, it is possible to get a topological
signature from ∂K(I) that captures relations among the parts of the human
body when walking, and is robust against small input-data perturbations.

When a view direction d is chosen, two filters for ∂K(I) are obtained as fol-
lows. All vertices belonging to ∂K(I) are associated with two filtering functions
f+ and f−. For each vertex v ∈ ∂K(I), f+(v) is the distance between v and the
plane normal to d and passing through the origin of the reference frame, while
f−(v) = −f+(v). Edges and triangles are associated to the smallest value that
f+ (resp. f−) assumes on their vertices. Being the simplices of ∂K(I) finite in
number, we can determine a minimum value for f+, say fmin, and a maximum
one, fmax. It is now possible to induce two filters on ∂K(I) by ordering its sim-
plices according to increasing values of f+ and f−, respectively. Denote these
filters by K[fmin,fmax] = {σ1, . . . , σk} and K[−fmax,−fmin] = {σ′

1, . . . , σ
′
k}.

2.3 Persistence Diagrams and Topological Signatures

Given a simplicial complex K, a filtering function f , and a filter {σ1, . . . , σk}
for K, if σi completes a p−cycle (p is the dimension of σi) when σi is added to
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Ki−1 = {σ1, . . . , σi−1}, then a p−homology class γ is born at time i; otherwise,
a (p − 1)−homology class dies at time i. The difference between the birth and
death time of a homology class is called its index persistence, which quantifies
the significance of a topological attribute. If γ never dies, we set its persistence
as well as its index persistence to infinity. Drawing a point (i, j) for a homology
class that is born at time i and dies at time j, we get the p−persistence diagram
of the filtration, denoted asDgm(f). It represents a p−homology class by a point
whose vertical distance to the diagonal is the persistence. Since always i < j, all
points lie above the diagonal (see [12]).

In this paper, persistence diagrams are first computed for K[fmin,fmax] and
K[−fmax,−fmin]. Then, the diagrams are explored according to a uniform sam-

pling. More precisely, given a positive integer n, compute the integer h = & kn'
representing the width of the “window” we use to analyze the persistence dia-
gram. Indeed, for i = 1, . . . , n, the i−reduced persistence diagram of K[fmin,fmax]

(resp. K[−fmax,−fmin]) show

(a) Homology classes that are born after (i− 1) · h and before i · h. Let � be the
time when such homology class is born. Its reduced life-length is i · h− �.

Having the reduced persistence diagrams on hand, we can now compute two
n−dimensional vectors for K[fmin,fmax] (resp. for K[−fmax,−fmin]) whose i−entry
corresponds to:

1. the sum of the reduced life-lengths for the 0−homology classes sumH0

2. the sum of the reduced life-lengths for the 1−homology classes sumH1.

These two collections of two n−dimensional vectors, represent the topological
signature for a gait subsequence associated with a fixed view direction.

∂K(I)

0 27295 54590 81885 109180 136475
Birth

27295

54590

81885

109180

136475

Death

KA

numH0 = 10
sumH0 = 232575

    reduced
 life-lengths

P 1    2   
P     4   P 5

P  
 3

P  

Fig. 2. An example of computation of the first element of a topological signature

For example, consider KA given in Fig. 2 which consists in 136475 triangles.
We perform n = 5 uniform cuts on the 0−persistence diagram. The sum of the
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reduced life-lengths for the 0−homology classes (numH0 = 10) that were born in
time 54560 ≤ t < 81885 are sumH0 = 232575 (blue lines in Fig. 2). The first ele-
ment of the topological signature: V1 is, {473625, 813786, 232575, 10039, 203958}.

2.4 Comparing Topological Signatures

The topological signatures for two gait subsequences associated with a fixed
view direction, say V = {V1, . . . , V4} and W = {W1, . . . ,W4}, can be compared
according to the following procedure: for every i = {1, . . . , 4} compute:

Si =
Vi ·Wi

‖Vi‖ · ‖Wi‖
. (1)

which is the cosine of the angle between the vectors Vi and Wi. Observe that
0 ≤ Si ≤ 1 since the entries of both vectors are always non-negative. Then, the
total similarity value for two gait subsequences, O1 and O2, considering a fixed
view direction, is the sum of the 4 similarity measures computed before:

S(O1, O2) = S1 + S2 + S3 + S4. (2)

2.5 Robustness

In this subsection, we briefly sketch a notion of robustness for our topological
signature with respect to small input-data perturbations. Fix a view direction
d and an associated filtering function f . The assumption here is that the input-
data perturbations can be modeled as perturbations of the function f . We could
think, for example, of small perturbations in fixing d, as well as noise in the
computation of f . More precisely, consider two functions f, g : ∂K(I)→ R such
that

max
σ∈∂K(I)

|f(σ)− g(σ)| ≤ ε,

with ε being a small positive real number. Let Kf = {σ1, . . . , σk} and Kg =
{σ′

1, . . . , σ
′
k} be the filters associated with the increasing values of f and g,

respectively2. Assume also that all homology classes fulfill either condition (a):
Such an assumption is actually mild, and can be achieved quite easily in practice
(e.g., by slightly perturbing the values of f). Then, the stability of persistence
diagrams [13] implies that the birth- and the death-times, with respect to g, of
each homology class, cannot differ more than ε from those with respect to f .
Therefore, if ε is sufficiently small, it follows that

– If a homology class fulfills condition (a) for Kf , the same occurs for Kg.

Moreover, the same stability result in [13] implies that new homology classes,
living no longer than 2ε, could appear, as well as old classes living shorter than
2ε may vanish. These events could sensibly change the number of homology
classes satisfying condition (a). Nevertheless, considering such classes according
to their reduced life-length, as specified above, guarantees the robustness of our
topological signatures.

2 Similar arguments hold if considering filters associated with the decreasing values of
f and g.
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3 Experimental Results

In this section, we show the performance of the proposed method on gait se-
quences from the CASIA-B database, which contains 124 subjects, 91 males and
31 females. There are 6 walking sequences for each person. CASIA-B database
provides image sequences with background subtraction for each person.

To avoid bias, 31 males were randomly selected. The 62 subjects were then
divided in 31 disjoint sets, each containing 2 subjects (a male and a female).
Only one of these 31 sets was sued to test. The remaining 30 sets were used for
training. The correct classification rate (CCR) is the average of the 31 possible
combinations.

The experimental protocol was made according to [3, 4]. In this experiment,
a subsequence of representation corresponds to the whole sequence, which has
two gait cycle as average. We have fixed n = 24 and used 3 view directions. The
first one is vertical (i.e. parallel to axis y). The second one forms 45 degrees with
axes x and y and 90 degrees with axis t. The third one is parallel to axis t. See
Fig. 3. In each experiment, the results of our method are compared with the
methods presented in [3, 4].

PxtKB

KA

K B

KA

KB

KA
(a) (c)(b)

Pob1 Pob2

Fig. 3. View directions used in the experiments

3.1 Experiment 1

The aim of this experiment is to evaluate the topological signature for gender
classification. Table 1 shows the 31−fold-cross-validation of CCR for the whole
body using the 11 view directions provided by the CASIA-B database. The first
line of the table refers to the camera view angle. This way, 0 degrees means that
the person is in front to the camera and walking to the camera, 90 degrees means
that the person is walking lateral to the camera (lateral view), and 180 degrees
means that the person is back to the camera and walking away the camera. We
can see that the topological signature provides better results for the lateral view.
This agrees with [7].

3.2 Experiment 2

In this experiment we show that our topological signature is robust with re-
spect to scaling. Images form CASIA-B database of size 320× 240 are scaled to
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Table 1. Correct classification rates (CCR in %) for the whole body

Method 0 18 36 54 72 90 108 126 144 162 180 Avg

Avg computer [3] 95.97
Avg human observers [3] 95.45

Gabor + MMI [14] 96.8
MCRF [4] 98.3
Our method 83.6 92.3 92.6 93.0 95.6 98.3 94.3 94.0 92.4 92.5 94.1 93.0

160 × 120. Table 2 shows results considering different scales for training and
test. For example, if images of size 320 × 240 are used for training and images
of size 160× 120 are using for test, then we obtain 98.0% of CCR. Nevertheless,
if images of size 160× 120 are used for training and images of size 320× 240 are
using for test, then we obtain 95.6% of CCR.

Table 2. Correct classification rates (CCR in %) using different sizes of the images for
training and test

Test

320 × 240 images 160 × 120 images
Training 320 × 240 images 98.3 98.00

160 × 120 images 95.6 97.5

3.3 Experiment 3

The aim of this experiment is to compare gender classifications using only upper
or lower body. According to Table 3, our results confirm that upper body con-
tributes more than lower body to gender classification for both original (320x240)
and scaled (160x120) images. This agrees with the results obtained by human
observers in [3].

Table 3. Correct classification rates (CCR in %) for lower and upper body from lateral
view for original (320× 240) and scaled (160 × 120) images

Method CCR (lateral view)

Human observers (lower body) (320 × 240 images) [3] 67.86
Our method (lower body)(320× 240 images) 88.1
Our method (lower body) (160× 120 images) 87.0

Human observers (upper body) (320× 240 images) [3] 94.35
Our method (upper body)(320× 240 images) 96.0
Our method (upper body) (160× 120 images) 95.5
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4 Conclusion and Future Work

In this paper, a representation based on topological invariants, previously used
for gait based human identification at a distance, is used for a gender classifi-
cation task. Arguments for the robustness of the method with respect to small
input-data perturbations are given. It should be noticed that the view direction
should be selected according to the camera view angle to improve the results.
The method has been implemented in C++ and has been tested in real-time
real-life scenery in [11]. Our future work consists in trying to improve our results
for camera view angles different to lateral view selecting the appropriate view
direction, and to adapt our method to occlusions.
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Abstract. With the introduction of template protection techniques,
privacy and security of biometric data have been enforced. Meeting the
required properties of irreversibility, i.e. avoiding a reconstruction of orig-
inal biometric features, and unlinkability among each other, template
protection can enhance security of existing biometric systems in case
tokens are stolen. However, with increasing resolution and number of en-
rolled users in biometric systems, means to compress biometric signals
become an imminent need and practice, raising questions about the im-
pact of image compression on recognition accuracy of template protection
schemes, which are particularly sensitive to any sort of signal degrada-
tion. This paper addresses the important topic of iris-biometric fuzzy
commitment schemes’ robustness with respect to compression noise. Ex-
periments using a fuzzy commitment scheme indicate, that medium com-
pression does not drastically effect key retrieval performance.

1 Introduction

Biometric cryptosystems and cancelable biometrics are classes of template pro-
tection schemes designed to maintain recognition accuracy [10] while protecting
biometric information as standardized in ISO/IEC 24745 in case standard en-
cryption (using AES, etc.) is not an option (e.g., there is no secure hardware
environment). Their two critical properties are referred to as irreversibility (orig-
inal biometric templates can not be retrieved in any way from stored reference
data) and unlinkability (different versions of protected templates can not be
cross-matched against each other), making them - generally - highly sensitive
towards changes in environmental recording conditions and signal degradation
which may be caused by compression algorithms [3].

The contribution of this work is the investigation of the impact of image
compression on the performance of iris fuzzy commitment schemes (FCSs) [11],
biometric cryptosystems which represent instances of biometric key-binding.
We employ a representative selection of lossy image compression standards for
biometric data compression (JPEG, JPEG XR and JPEG 2000), i.e. images
are compressed after sensing and before normalization reflecting, e.g. remote-
processing with mobile data acquisition on low-powered devices. Fig. 1 illustrates
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Fig. 1. Supposed scenario: compressed images are transmitted and applied in a tem-
plate protection system based on the FCS

the processing chain. Experimental studies are carried out on an iris-biometric
database employing different feature extractors to construct FCSs. It is found
that the incorporation of image compression standards to FCSs reveal key re-
trieval rates, comparable to the performance of original recognition algorithms
even at high compression levels. This paper is organized as follows: In Sect. 2
related works regarding FCSs and compression of biometric data are reviewed.
Subsequently, a comprehensive evaluation on the effect of image compression
standards on an iris-biometric FCS is presented in Sect. 3. Finally, a conclusion
is drawn in Sect. 4.

2 Fuzzy Commitment Schemes

A FCS is a bit commitment scheme resilient to noise and proposed in [11].
Given a witness x ∈ {0, 1}n representing a binary biometric feature vector and
a set C of error correcting codewords of length n, a FCS can be modeled as a
function F , applied to commit x with a codeword c ∈ C. Instead of storing the
original feature vector, x is concealed using a hash function h(x). In order to
reconstruct x, an offset δ ∈ {0, 1}n, δ = x− c is calculated: F (c, x) =

(
h(x), x−

c
)
. Since biometric signals x are rarely reproduced exactly in different sensing

operations, it is demanded, that any x′ sufficiently “close” to x according to
an appropriate metric (e.g. Hamming distance), should be able to reconstruct c
using the difference vector δ. If for small fixed threshold t (lower bounded by the
according error correction capacity) the inequality ‖x− x′‖ ≤ t holds, x′ yields
a successful de-commitment of F (c, x) for any c. In order to accomplish this
task, Hadamard codes (for elimination of bit errors originating from the natural
biometric variance) and Reed-Solomon codes (correct burst errors resulting from
distortions) can be applied [8]. Otherwise c can not be reconstructed (h(c) �=
h(c′)) yielding a key error.

FCSs have been applied to several different biometric modalities. Hao et al. [8]
applied FCS to iris biometrics using relatively long (140-bit) keys with Hadamard
and Reed-Solomon error correction codes. Bringer et al. introduce 2D iterative
min-sum decoding for error correction decoding in an iris-based FCS, which gets
close to a theoretical bound. Rathgeb and Uhl [18] present a technique to re-
arrange iris-codes in a way that FCS error correction capacities are exploited
more effectively. Zhang et al. [23] propose a bit masking and code concatena-
tion scheme to improve the accuracy of iris-based FCSs. In [19] a feature level
fusion technique for increasing efficiency in a FCS is presented. Nandakumar
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Table 1. Experimental results of FCSs proposed in literature

Ref. Modality FRR/ FAR Key Bits Remarks

[8]

Iris

0.47/ 0 140 ideal images
[2] 5.62/ 0 42 short key
[18] 4.64/ 0 128 –
[19] 5.56 / ≤0.01 128 fusion

[21]
Fingerprint

0.9/ 0 296 user-specific tokens
[16] 12.6/ 0 327 –

[22]
Face

3.5/ 0.11 58 >1 enroll. sam.
[1] 7.99/ 0.11 >4000 user-specific tokens

[15] Online Sig. EER >9 >100 >1 enroll. sam.

et al. [16] quantize the Fourier phase spectrum of a minutia set to derive a bi-
nary fixed-length representation for a FCS. Teoh et al. [21] apply a non-invertible
projection based on a user-specific token randomized for a FCS based on dynamic
quantization transformation from a multichannel Gabor filter and Reed-Solomon
codes, similar to the approach in Ao and Li [1] based on face biometrics. An-
other face-based FCS is introduced in [22] based on bit selection to detect most
discriminative features from binarized real-valued face features. Maiorana and
Campisi [15] introduce a FCS for on-line signatures. Table 1 lists a summary of
FCSs approaches.

It is important to note, that both, standardization and a variety of inde-
pendent studies deal with compression. Current ISO/ IEC 19794 (“Biometric
Data Interchange Formats”) on standardized image compression in biometrics
(fingerprint, face, and iris image data are covered) defines JPEG 2000 to be
the recommended format for lossy compression (in previous editions also JPEG
compression was supported). ANSI/NIST-ITL 1-2011 (“Data Format for the In-
terchange of Fingerprint, Facial & Other Biometric Information”) supports PNG
and JPEG 2000 for lossless compression and JPEG 2000 only for applications
tolerating lossy compression. While in the biometric community, lossy finger-
print compression attracted most researchers (e.g. [20]), also lossy compression
of face [5] and iris image data has been discussed. For the latter case, [4,6,9,17]
are early works covering an assessment on recognition accuracy for standard ap-
proaches covering different IREX formats (K3 for compression of cropped iris
images, K7 for ROI-masked and cropped images, K16 referring to unsegmented
polar format). In [7,12,13] methods to adapt compression techniques (customiz-
ing quantization tables, ROI-coding) for advanced iris recognition are examined.
The attention of most techniques is focused on lossy compression, since bit-rate
savings are more significant as compared to lossless techniques.

3 Image Compression in Iris-Biometric FCS

3.1 Experimental Setup

Experiments are carried out on CASIA-v3-Interval iris database1. At preprocess-
ing the iris of a given sample image is segmented and normalized to a rectangular

1 CASIA Iris Image Database, http://www.idealtest.org

http://www.idealtest.org
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(a)

(b)

(c)

Fig. 2. Preprocessing and feature extraction: (a) segmented iris image (b) unwrapped
iris texture and (c) preprocessed iris texture after enhancement

(a) JPG-2 (b) JPG-8

(c) J2K-2 (d) J2K-8

(e) JXR-2 (f) JXR-8

Fig. 3. Image Compression: (a)-(l) different levels of JPEG (JPG), JPEG 2000 (J2K),
and JPEG XR (JXR) compression

texture of 512 × 64 pixel, see Fig. 2. In the feature extraction stage we employ
custom implementations2 of two different algorithms extracting a binary iris-code
each: Ma et al. refers to the algorithm described in [14], which employs a dyadic
wavelet transform on a stripified version of the iris texture. A 512 × 20 = 10240
bit code is generated for two fixed subbands encoding positions of all local minima
and maxima.Masek refers to the open-source implementation of a 1D Daugman-
like feature extraction3 using convolution with Log-Gabor filters. By encoding the
phase angle with 2 bits, again a 10240 bit iris-code is generated.

The applied FCS follows the approach in [8]. For both feature extraction
algorithms, Ma et al. and Masek, Hadamard codewords of 128-bit and a Reed-
Solomon code RS(16, 80) are applied, which provided the best experimental re-
sults for a binding of 128-bit cryptographic keys: a 16·8 = 128 bit cryptographic
key R is prepared with a RS(16, 80) Reed-Solomon code (which is capable of
correcting (80 – 16)/2 = 32 block errors). All 80 8-bit blocks are processed by
Hadamard encoding, expanding the length of codewords from length n to 2n−1

(i.e. from 80 128-bit codewords to a 10240-bit bitstream). This way, up to 25%
of bit errors can be detected and corrected. As a result, the bitstream is bound
to the iris-code using the XOR operation and the commitment of the original
key h(R) is calculated using the hash function. At authentication, the key is re-
trieved by XORing an extracted iris-code with the first part of the commitment.

2 USIT - University of Salzburg Iris Toolkit, http://www.wavelab.at/sources/
3 L. Masek: Recognition of Human Iris Patterns for Biometric Identification, Master’s
thesis, University of Western Australia, 2003.

http://www.wavelab.at/sources/
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(b) Ma et al. RP
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(c) Masek
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(d) Masek RP

Fig. 4. Performance rates: (a)-(d) FCSs based on the algorithm of Ma et al. and Masek
without applying image compression

Decoding using Hadamard and Reed-Solomon codes usually correct biometric
variation and burst errors. In case the hashed versions are equal (h(R′) = h(R)),
the correct key R is released, otherwise an error message is returned. Bringer [2]
report, that a random permutation of bits in iris-codes improves key retrieval
rates. We consider two types of FCSs, one in which iris-codes are left unaltered
and one in which a single random permutation is applied to each iris-code of the
database, denoted by FCS RP.

3.2 Image Compression

In the proposed case study image compression is applied to IREX K16 pre-
processed iris textures. After image compression feature extraction is applied
and resulting iris-codes are used to retrieve keys from stored commitments,
where commitments are generated using un-compressed iris textures (see Fig.
1). That is, the proposed scenario provides a fair ground truth, i.e. by applying
image compression to segmented iris textures the obtained key retrieval rates re-
main comparable. Different image compression standards are applied: (1) JPEG
(ISO/IEC 10918): the well-established DCT-based method of compressing im-
ages, (2) JPEG 2000 (ISO/IEC 15444): a wavelet-based image compression stan-
dard, and (3) JPEG XR (ISO/IEC 29199-2): which, like JPEG 2000, generally
provides better quality than JPEG but is more efficient than JPEG-2000, with
respect to computational effort. For each standard, eight different compression
levels with fixed bitrate are considered. In Fig. 3 examples of these compression
levels are illustrated.

3.3 Performance Evaluation

Experimental results for both feature extractors and FCSs according to differ-
ent compression levels are summarized in Table 2, including average PSNRs
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Table 2. Summarized experiments for both feature extraction methods and FCSs
under various JPG, J2K and JXR image compression levels

Ma et al. Masek
Original FCS FCS RP Original FCS FCS RP
FRR at FRR at Corr. FRR at Corr. FRR at FRR at Corr. FRR at Corr.

Comp. ∅ PSNR ∅ Size FAR≤0.01 FAR≤0.01 blocks FAR≤0.01 blocks FAR≤0.01 FAR≤0.01 blocks FAR≤0.01 blocks

None – 1.00 2.54 % 5.90 % 32 3.72 % 31 6.59 % 8.01 % 28 9.15 % 17

JPG-1 42.5 dB 0.63 3.16 % 6.94 % 32 5.01 % 31 8.75 % 10.27 % 27 10.81 % 17
JPG-2 37.2 dB 0.49 3.37 % 6.79 % 32 4.40 % 32 9.11 % 10.11 % 27 10.57 % 17
JPG-3 31.3 dB 0.32 3.57 % 6.75 % 32 4.47 % 32 9.95 % 10.17 % 27 10.11 % 18
JPG-4 28.9 dB 0.26 3.62 % 7.25 % 32 4.41 % 32 9.42 % 10.19 % 27 10.03 % 18
JPG-5 25.8 dB 0.17 3.81 % 6.94 % 32 4.09 % 32 9.83 % 10.89 % 27 9.80 % 19
JPG-6 24.3 dB 0.13 4.50 % 7.56 % 32 4.71 % 32 9.80 % 10.42 % 27 10.73 % 17
JPG-7 22.1 dB 0.08 4.65 % 7.72 % 32 4.63 % 32 9.54 % 10.50 % 27 10.03 % 18
JPG-8 20.2 dB 0.05 5.55 % 8.18 % 32 4.86 % 32 10.93 % 11.58 % 27 11.35 % 18

J2K-1 43.1 dB 0.63 2.94 % 7.43 % 32 4.67 % 32 8.65 % 11.28 % 26 10.25 % 17
J2K-2 39.6 dB 0.49 3.04 % 7.42 % 32 4.27 % 32 8.89 % 9.83 % 27 9.12 % 18
J2K-3 34.6 dB 0.32 3.32 % 6.97 % 32 4.04 % 31 9.29 % 8.77 % 28 8.62 % 20
J2K-4 30.7 dB 0.26 3.71 % 7.02 % 32 4.32 % 32 9.47 % 9.19 % 28 9.59 % 19
J2K-5 28.4 dB 0.17 3.88 % 6.51 % 32 4.36 % 32 9.58 % 10.43 % 27 9.13 % 19
J2K-6 24.9 dB 0.13 3.96 % 7.39 % 32 4.02 % 32 9.94 % 12.41 % 26 9.84 % 20
J2K-7 23.1 dB 0.08 4.21 % 7.28 % 32 4.66 % 32 10.05 % 11.95 % 26 10.02 % 18
J2K-8 21.9 dB 0.05 4.55 % 7.49 % 32 5.21 % 32 10.43 % 10.23 % 27 10.33 % 17

JXR-1 44.3 dB 0.63 2.72 % 6.82 % 32 4.23 % 32 9.75 % 9.83 % 27 9.13 % 18
JXR-2 40.9 dB 0.49 3.09 % 6.95 % 32 3.78 % 32 9.92 % 9.97 % 27 9.64 % 17
JXR-3 34.1 dB 0.32 3.83 % 6.22 % 32 4.12 % 32 10.05 % 10.85 % 26 10.09 % 18
JXR-4 32.9 dB 0.26 4.79 % 6.95 % 32 4.34 % 32 10.13 % 9.55 % 27 9.11 % 19
JXR-5 28.5 dB 0.17 4.92 % 7.58 % 32 4.65 % 32 10.61 % 9.02 % 28 9.08 % 19
JXR-6 25.1 dB 0.13 5.03 % 7.04 % 32 4.70 % 32 10.74 % 11.98 % 26 10.88 % 17
JXR-7 21.7 dB 0.08 5.12 % 8.16 % 32 4.92 % 32 11.48 % 10.44 % 27 10.76 % 18
JXR-8 22.9 dB 0.05 5.18 % 9.44 % 32 5.79 % 32 11.60 % 14.92 % 26 11.96 % 18

caused by image compression, resulting filesizes and the number of corrected
block errors after Hadamard decoding (i.e. error correction capacities may not
handle the optimal amount of occurring errors within intra-class key retrievals).
The FRR of a FCS defines the percentage of incorrect keys returned to genuine
subjects. By analogy, the FAR defines the percentage of correct keys retrieved
by non-genuine subjects. It is assumed that all subjects are registered under
favorable conditions, i.e. commitments constructed using unaltered templates
are de-committed applying degraded templates (i.e. computed from compressed
data). For the recognition algorithm of Ma et al. and Masek FRRs of 2.54% and
6.59% are obtained at a FAR of 0.01% where the Hamming distance is applied
as dis-similarity metric. Focusing on the feature extraction of Ma et al. FCSs
provide FRRs of 5.90% in the original version and 3.72%, in the case case a
random permutation is applied. FRRs are lower bounded by error correction
capacities, i.e. bit-level error correction is applied more effectively if errors are
distributed rather uniformly (see Fig. 4 (a) and (b)). With respect to the feature
extraction of Masek, applying a random permutation does not improve the key
retrieval rate obtaining FRRs of 8.01% and 9.15%, respectively.

For all applied compression standards a continuous significant degradation of
recognition accuracy with respect to applied levels of compression is observed for
both of the original iris recognition algorithms (see Table 2, column “Original
HD”). For the highest compression levels FRRs of 5.55%, 4.55%, and 5.18% are
obtained at FARs less than 0.01% for the JPEG (JPG), JPEG 2000 (J2K), and
JPEG XR (JXR) compression standard for the algorithm of Ma et al.. For the
feature extraction of Masek FRRs of 10.93%, 10.43%, and 11.60% are achieved
at FARs less than 0.01% for the highest compression levels, i.e. recognition
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accuracy is significantly affected for high compression levels, while low compres-
sion levels almost maintain recognition accuracy of the schemes applied without
any compression (e.g. JPG-1, J2K-1, and JXR-1). In contrast, while FCSs based
on both feature extraction methods suffer from degradation in key retrieval rates,
too, performance improves for average compression levels. It is found that incor-
porating image compression, at certain compression levels, improves key retrieval
rates obtaining FRRs of ∼ 4.50% and 10.00% (RP), since, on average, extracted
iris-codes are even more alike, i.e. image compression tends to blur iris textures
(see Fig. 3) which is equivalent to de-noising. FCSs RP partially outperform the
original recognition algorithms at higher compression levels. All types of inves-
tigated FCSs appear rather robust to a certain extent of image compression. As
expected, the JPEG 2000 and JPEG XR compression standards provide higher
image quality at certain file sizes with respect to PSNRs. However, higher quality
according to PSNR values does not coincide with obtained recognition rates nor
with key retrieval rates achieved by the applied FCSs, especially at higher com-
pression levels (e.g. JPG-8 compression leads to better performance than J2K-8
or JXR-8 for the FCS RP of Ma et al., even if JPG-8 provides lower quality in
terms of PSNR). Uncompressed preprocessed iris textures exhibit a file size of
32.4 kB. According to ISO/IEC 19794-6 compressed iris images should reveal
a file size of 25-30 kB in “rectilinear” format (and 2 kB in “polar” format as
suggested in the older standard version, respectively). For the proposed FCSs
acceptable rates are achieved for transferred iris textures of less than 2 kB (see
Table 2), e.g. for J2K at FARs less than 0.01% FRRs of 5.21% and 10.33 % are
obtained for FCSs RP, applying the algorithm of Ma et al. and Masek, where
compressed iris textures exhibit a filesize of 32.4 × 0.05 = 1.62 kB (J2K–7).

4 Conclusion

This work investigated compression effects of IREX K16 iris images in a FCS.
For all tested compression techniques JPEG, JPEG 2000 and JPEG XR, the ap-
plication of compression induced a slight impact on key retrieval in case of high
compression rates. However, in case of medium and slight compression, results
were almost unaffected and at certain levels, compression with its de-noising ef-
fects was found to improve key retrieval. While this behavior is most likely due to
the scenario employed (compression is applied after segmentation), recent stud-
ies highlight the critical impact of compression on segmentation. Nevertheless,
the result illustrates a resilience of FCS for compression artifacts despite being
claimed to be sensitive to noise.
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13. Kostmajer, G.S., Stögner, H., Uhl, A.: Custom JPEG quantization for improved
iris recognition accuracy. In: Gritzalis, D., Lopez, J. (eds.) SEC 2009. IFIP AICT,
vol. 297, pp. 76–86. Springer, Heidelberg (2009)

14. Ma, L., Tan, T., Wang, Y., Zhang, D.: Efficient Iris Recogntion by Characterizing
Key Local Variations. IEEE Trans. on Image Processing 13(6), 739–750 (2004)

15. Maiorana, E., Campisi, P.: Fuzzy commitment for function based signature tem-
plate protection. IEEE Signal Processing Letters 17, 249–252 (2010)

16. Nandakumar, K.: A fingerprint cryptosystem based on minutiae phase spectrum.
In: Proc. of IEEE Workshop on Information Forensics and Security (WIFS) (2010)

17. Rakshit, S., Monro, D.M.: An evaluation of image sampling and compression for
human iris recognition. IEEE Trans. Inf. Forensics and Sec. 2, 605–612 (2007)

18. Rathgeb, C., Uhl, A.: Adaptive fuzzy commitment scheme based on iris-code error
analysis. In: Proc. of the 2nd Europ. Workshop on Visual Inf. Proc. (EUVIP 2010),
pp. 41–44 (2010)

19. Rathgeb, C., Uhl, A., Wild, P.: Reliability-balanced feature level fusion for fuzzy
commitment scheme. In: Int’l Joint Conf. on Biometrics, pp. 1–7 (2011)

20. Sherlock, B.G., Monro, D.M.: Optimized wavelets for fingerprint compression. In:
Proc. of the IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP
1996), Atlanta, GA, USA (May 1996)

21. Teoh, A., Kim, J.: Secure biometric template protection in fuzzy commitment
scheme. IEICE Electron. Express 4(23), 724–730 (2007)

22. Van der Veen, M., Kevenaar, T., Schrijen, G.-J., Akkermans, T.H., Zuo, F.: Face
biometrics with renewable templates. In: SPIE Proc. on Security, Steganography,
and Watermarking of Multimedia Contents, vol. 6072, pp. 205–216 (2006)

23. Zhang, L., Sun, Z., Tan, T., Hu, S.: Robust biometric key extraction based on iris
cryptosystem. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558,
pp. 1060–1069. Springer, Heidelberg (2009)



Person Re-identification Using

Partial Least Squares Appearance Modeling

Gabriel Lorencetti Prado1, William Robson Schwartz2, and Helio Pedrini1

1 Institute of Computing,
University of Campinas, Campinas, Brazil, 13083-852

gabriel.prado@students.ic.unicamp.br, helio@ic.unicamp.br
2 Department of Computer Science,

Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
william@dcc.ufmg.br

Abstract. Due to the large areas covered by surveillance systems, em-
ployed cameras usually lack intersection of field of view, refraining us
from mapping the location of a person in a camera to another one.
Therefore, when a subject appears in a camera, a person re-identification
method is required to discover whether the subject has been previously
identified in a different camera. Even though several approaches have
been proposed in the literature, person re-identification is still a chal-
lenging problem due to appearance variation between cameras, changes
in illumination, pose variation, and low quality data, among others. To
reduce the effect of the aforementioned difficulties, we propose a person
re-identification approach that models the appearance of the subjects
based on multiple samples collected from multiple cameras and employs
person detection and tracking to enhance the robustness of the method.
Experiments conducted on three public available data sets demonstrate
improvements over existing methods.

Keywords: person re-identification, partial least squares, appearance-
based modeling, person detection, object tracking.

1 Introduction

Person re-identification consists on tracking multiple people in a camera network,
registering their trajectories on each camera and assigning them consistent iden-
tifiers across the network. It is still an open problem in the Computer Vision area,
as many challenges are faced when designing a robust re-identification system.

In the single camera case, issues include occlusion, pose variation and lighting
conditions. Besides these difficulties, the major problem in a multi-camera sys-
tem is to maintain a correspondence of the people tracked across cameras and
people re-entering the camera field of view (FOV). When the camera calibration
is not given or there is no overlapping field of views, the solution is even harder
to be found, since homography-based methods such as [1] do not apply.

Several approaches have been proposed to address the re-identification prob-
lem and can be labeled in terms of different features. The classification under
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single or multiple shot methods is the most common and refers to whether the
method considers only one image to create a person representation or a group
of images to perform it. In the following paragraphs, we present a brief review
of works more related to the proposed approach. An extended description and
discussion of person re-identification methods can be found in [2,3].

Some approaches based on a single image are [4,5,6]. In all these methods, the
problem is treated as a classification task. Considering the multiple shot case,
many distinct methods have been proposed. Interest point based approaches
are presented in [7,8]. Some methods using person appearance modeling are
given in [7,9,10]. Other strategies include the use of body regions [11], particle
filtering [12], global descriptors [13], a master-slave approach [14], and finally
a transfer approach to the scenario where only a subset of people is considered
for [15]. Such methods present environmental constraints that limit their usage in
a general condition. Unlike these works, our method introduces an appearance-
based modeling that can be applied in a wider variety of real world scenarios.

This paper proposes a method to tackle the re-identification problem un-
der multiple shot context built upon the work proposed in [5,6]. Similarly to
these methods, appearance models based on Partial Least Squares (PLS) regres-
sions [16] are used to grant the system a powerful discriminative characteristic.
However, in our method, these models are associated to the information ob-
tained from person tracking and detection to enhance the robustness of the
original method. Moreover, we do not require that a person gallery is given, that
is, classes in which people will be classified are not known in advance. Hence, our
approach aims at the general scenario, in which cameras do not need to share
FOV, camera calibration is ignored, and synchronized frames are not required.

The proposed technique is evaluated on three video data sets, which were
also used for the ICPR 2012 Contest - People tracking in wide baseline camera
networks [17]. The approach is compared with the method proposed in [5] to
demonstrate the necessity of a tracking module to achieve better results for the
person re-identification problem.

2 Proposed Method

Our approach to the re-identification problem is based on a full body appearance-
based modeling via PLS regression [16]. The proposed method is composed of five
stages, which are explained in details after a brief description of the Partial Least
Squares regression technique. Figure 1 illustrates an overview of the method.

2.1 Partial Least Squares

In PLS regression, the input consists of a collection of classes in which the
samples are classified and a collection of high dimensional feature vectors for each
class. The method then significantly reduces the dimensionality of the feature
vectors by creating variables (latent variables), which are obtained as linear
combination of the original ones.
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Fig. 1. Visual description of the proposed method. People are first detected
by a pedestrian detector based on Partial Least Squares (PLS), as shown in the top
images.People detected in continuous frames are then grouped into tracklets.These
tracklets are put into partitions, where tracklets known to belong to different people
are put in the same partition. A PLS model is then created for each tracklet in a
one-against-all approach using the remaining tracklets from its partition as counter-
examples. Afterwards, a score matrix is built by evaluating the matching between each
pair of models. Finally, the score matrix is used to discover which models (therefore,
tracklets) belong to the same person by removing the pairs with higher matching scores
and assigning them to the same person.

The dimension reduction is performed in such a way that the covariance be-
tween the classes (subject’s identifiers) and their feature vectors is maximized.
The result is a collection of weight vectors that can be used to reduce the di-
mensionality of new feature vectors and classify them in the low dimensionality
space using a regression-based approach [18].

2.2 Person Re-identification Based on Partial Least Squares

The goal of the first step is to obtain the detection windows for people contained
in each frame of the video sequence. To do so, we first train a person detector
based on a PLS appearance model that works with two classes (positive and
negative person samples) [19]. The training is achieved by cropping the samples
into overlapping blocks and extracting low-level features from each of them.

Detection windows are found by decomposing each frame into samples of
increasing sizes and then extracting the same features from each of them. A non-
maximum suppression is applied in the results to clean up redundant detection
windows in multiple scales. A more detailed description can be found in [19].

The next step is to group detection windows from sequential frames of the
same camera into tracklets. This is performed by tracking each detection window
with a Kalman filter [20]. This approach also allows the tracking to fill in missing
detections when they occur during a small number of frames.

Tracklets from different detections of the same frame naturally correspond
to different people. This information is maintained throughout the method by
keeping a set of tracklet partitions, where each partition contains tracklets that
correspond to different people. A new partition is created whenever a tracklet is
lost due to missing detections or a tracked person walks off the camera range.
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For each tracklet partition, a new PLS appearance model is created for each
tracklet in a one-against-all approach [5], using the remaining tracklets in the
same partition as counter-examples. Then, all tracklets are pairwise matched
against each other using the generated models. The matching results are used
to build a matrix of matching scores between each tracklet pair.

The next step consists on successive removals of the maximum value from the
matrix, marking the corresponding tracklets as belonging to the same person.
Auxiliary maps are used in this stage and are described as follows.

For each tracklet, a similarity map (S) and a distinctivity map (D) are used.
As soon as the tracklet is created, it is inserted into its own similarity map
(Equation 1a). All other tracklets in the same partition (P ) are inserted into its
distinctivity map (Equation 1b). When a matching is found in the score matrix,
both maps for the two involved tracklets are merged (Equations 2a) unless one
tracklet is found in the other distinctivity map. This new similarity map is used
to update each of the distinctivity maps for the tracklets found in the new
distinctivity map (Equation 2b).

Initialization equations:

Si ← i, ∀i ∈ Pp (1a) Di ← j, ∀i, j ∈ Pp | i �= j (1b)

Update equations:

Snew ← Si ∪ Sj Dnew ← Di ∪Dj (2a)

Sk ← Snew, ∀k ∈ Snew Dk ← Dnew, ∀k ∈ Snew

Dk ← Dk ∪ Snew, ∀k ∈ Dnew (2b)

Finally, when no more matrix removals are possible, unique identifiers are
assigned to each tracklet according to the information held in the similarity
maps, in order to obtain the final tracklet-person matching.

3 Experimental Results

In this section, we present the evaluation of our method for the task of person re-
identification using three data sets and its comparison to a baseline method [5].
Experiments were run offline, so the method is not ready for real time usage.

For the detection stage, a full body person detector was trained using cropped
person images from the INRIA Person Dataset [21]. Only person images larger
than 100 pixels were considered. The adopted features for both detection and
modeling stages were histogram of oriented gradients [21] and gray-level co-
occurrence matrices [22] to obtain edge and texture information, respectively.

Our re-identification approach was evaluated on three public video data sets,
described as follows and summarized in Table 1. The first data set was CAT
data set [23], in which people are mainly detected from only one of the cameras
at a time. The second data set was sequence S7 of PETS2006 [24], where there
is a larger number of frames with multiple person detections. The last data set
considered was the Techgate data set. Unlike the previous data sets, cameras on
this one are very close to the subjects.
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Table 1. Summary of the data sets. Frames per camera denotes the number of frames
available per camera; Camera sync indicates if the camera frames are synchronized;
FOV Overlap indicates the amount of overlapping in the camera field of view.

CAT PETS2006 Techgate
Number of cameras 4 4 6
Number of people 4 56 4
Frames per second 15 25 15-30
Frames per camera 710 3401 3037-4415
Camera sync Yes Yes No
FOV Overlap Low High High

For the single camera case, selected metrics were Correct Detected
Track (CDT), Track Detection Failure (TDF), False Alarm Track (FAT), and
Track Fragmentation (TF) [25]. Best results are achieved when CDT is high and
TDF, FAT and TF are low. Results for these metrics are shown in Tables 2-4.

For the multi-camera case, Crossing Fragments (X-Frag), Crossing ID
Switches (X-IDS), Returning Fragments (R-Frag) and Returning ID Switches (R-
IDS) [9] were selected. For all these metrics, lower values indicate better results.
Results for the multi-camera metrics are shown in Table 5.

In Tables 2-5, metrics are displayed in percentages instead of absolute values
and TF is shown as an average measure over all tracks in order to have a more
general view of the results. Tracks shorter than 1 second were discarded, as
suggested in the ICPR 2012 Contest [17] to avoid influence of short tracks.

The method described in [5] is used as baseline. We evaluate both methods
with the same detections described above. Unlike ours, the baseline method
requires a person gallery to classify the detected people. It is also used by the
method to build person models in a one-against-all schema. Therefore, a gallery
was created for each data set using person detections from the respective ground
truth. For each person, 5 samples were randomly selected. To avoid influence
from the training, results are an average of 10 executions with different galleries.

For the CAT data set, the proposed approach achieved accurate results for
the single camera tracking, as it can be seen in Table 2. The CDT metric is quite
high and the others present low values as expected for a good performance.

Table 2. Single camera metrics for each camera Ci of CAT data set

CAT C1 C2 C3 C4

CDT 45.6% 27.2% 10.8% 26.7%
TDF 54.4% 72.8% 89.2% 73.3%
FAT 0.0% 0.0% 0.0% 0.5%
TF 0.3 0.2 0.0 0.0

(a) Baseline Results

CAT C1 C2 C3 C4

CDT 100% 94.4% 76.9% 83.3%
TDF 0.0% 5.6% 23.1% 16.7%
FAT 0.0% 0.6% 7.7% 6.3%
TF 0.5 1.3 0.2 1.2

(b) Proposed Method Results

On the PETS2006 data set results, presented in Table 3, it can also be noted
that the proposed method performance is higher than the baseline method. How-
ever, it was lower than the CAT data set due to the large number of people in
the scene. In the second camera, performance is much lower since this camera is
positioned at a quite higher place. Detections are therefore smaller and, conse-
quently, fewer features can be extracted to perform the appearance modeling.
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Table 3. Single camera metrics for each camera Ci of PETS2006 data set

PETS C1 C2 C3 C4

CDT 5.1% 1.5% 3.0% 0.6%
TDF 94.9% 98.1% 97.0% 99.4%
FAT 0.0% 0.1% 0.0% 0.0%
TF 0.2 0.0 0.1 0.0

(a) Baseline Results

PETS C1 C2 C3 C4

CDT 89.8% 37.3% 83.0% 85.2%
TDF 10.2% 62.7% 17.0% 14.8%
FAT 2.2% 3.3% 1.0% 1.8%
TF 0.6 0.5 1.0 0.4

(b) Proposed Method Results

In Techgate data set, an issue opposite to the found in PETS2006 data set
occurs at some detections. The proximity of some people with the camera does
not allow the full body person detector to find them, also reducing the system
performance. Nevertheless, our method still produces better results.

Table 4. Single camera metrics for each camera Ci of Techgate data set

Tech C1 C2 C3 C4 C5 C6

CDT 12.5% 13.8% 22.9% 9.0% 22.0% 26.4%
TDF 87.5% 86.2% 77.1% 91.0% 78.0% 73.6%
FAT 0.9% 0.4% 0.1% 0.0% 2.3% 0.1%
TF 0.1 0.3 0.1 0.2 0.2 0.5

(a) Baseline Results

Tech C1 C2 C3 C4 C5 C6

CDT 75.0% 92.3% 73.5% 50.0% 60.0% 71.8%
TDF 25.0% 7.7% 26.5% 50.0% 40.0% 28.2%
FAT 5.5% 5.5% 1.3% 1.6% 14.8% 1.5%
TF 1.2 1.3 0.8 0.4 0.0 1.0

(b) Proposed Method Results

Finally, for the multi-camera metric results shown in Table 5, it can be seen
that our method demonstrates superior results for the X-Frag and R-Frag met-
rics. However, it is not as good as the baseline with metrics X-IDS and R-IDS.

Table 5. Multi-camera metrics for each data set

CAT PETS Tech
X-Frag 95.7% 100% 98.3%
X-IDS 0.0% 0.0% 0.1%
R-Frag 94.9% 99.8% 96.9%
R-IDS 0.1% 0.0% 0.1%

(a) Baseline Results

CAT PETS Tech
X-Frag 58.0% 85.4% 73.2%
X-IDS 15.2% 10.1% 10.9%
R-Frag 56.4% 80.8% 71.3%
R-IDS 24.7% 12.5% 12.5%

(b) Proposed Method Results

From the results presented above, it is clear that results for the proposed
approach overcomes the baseline ones in all the considered data sets.

For the CDT metric, results are highly superior due to the addition of tracking
as shown in Tables 2-4. This feature makes our method more robust against
change of ids in the same tracklet, which causes CDT metric to achieve a higher
performance. The same applies for the TDF metric.

Results are also low for the other single camera metrics, pointing out that
not only our method is able to discover more correct tracks, but it also does not
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add false positive tracks to the results. Actually, for both methods, this metric
depends on false positive detections, which are shared by them both.

In the results for the multi-camera tracking metrics X-Frag and R-Frag, it
can also be observed that our method achieves better results when compared
to the baseline, as depicted in Table 5. For the R-IDS and X-IDS metrics, our
method is also able to keep them low, however, higher than the baseline. This
fact can be explained because baseline results are low due to the small amount
of detected tracks, reflected in the CDT and TDF metrics. Furthermore, these
metrics are also highly dependent on the detection results, which were clearly
higher for the CAT data set when compared to the others.

4 Conclusions and Future Work

In this work, we presented a novel appearance-based modeling method for per-
son re-identification across multiple cameras. Our system does not have any
restriction on the camera network configuration, such as calibration, FOV in-
tersection or frame synchronization. Therefore, it is sufficiently general to be
used in many data sets with different characteristics, as demonstrated in the
experiments. Moreover, it can be easily modified to use other low level features.

The feasibility of the proposed approach was demonstrated by its execution on
three different data sets and the obtained results are evaluated in terms of current
state-of-art metrics for both single and multiple camera tracking. Experimental
results demonstrated that it outperforms the baseline method regarding most of
considered metrics for both single and multiple camera cases.

As future work, we plan to investigate how to update PLS models online, as
new person associations are discovered during the matching stage.

Acknowledgements. The authors are grateful to FAPESP, FAPEMIG, CNPq,
and CAPES for the financial support and to the organizers of the ICPR 2012
Contest - People tracking in wide baseline camera networks [17] for providing
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4. Hirzer, M., Beleznai, C., Köstinger, M., Roth, P.M., Bischof, H.: Dense Ap-
pearance Modeling and Efficient Learning of Camera Transitions for Person Re-
Identification. In: International Conference on Image Processing (2012)



Person Re-identification Using Partial Least Squares Appearance Modeling 389

5. Schwartz, W.R., Davis, L.S.: Learning Discriminative Appearance-Based Models
Using Partial Least Squares. In: Brazilian Symposium on Computer Graphics and
Image Processing (2009)

6. Schwartz, W.R.: Scalable People Re-Identification Based on a One-Against-Some
Classification Scheme. In: International Conference on Image Processing (2012)

7. Gheissari, N., Sebastian, T.B., Hartley, R.: Person Reidentification Using Spa-
tiotemporal Appearance. In: Computer Vision and Pattern Recognition (2006)

8. Hamdoun, O., Moutarde, F., Stanciulescu, B., Steux, B.: Person re-identification in
multi-camera system by signature based on interest point descriptors collected on
short video sequences. In: International Conference on Distributed Smart Cameras
(2008)

9. Kuo, C.-H., Huang, C., Nevatia, R.: Inter-camera association of multi-target tracks
by on-line learned appearance affinity models. In: Daniilidis, K., Maragos, P., Para-
gios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 383–396. Springer, Hei-
delberg (2010)

10. Bazzani, L., Cristani, M., Perina, A., Farenzena, M., Murino, V.: Multiple-Shot
Person Re-identification by HPE Signature. In: International Conference on Pat-
tern Recognition (2010)

11. Bazzani, L., Cristani, M., Murino, V.: Symmetry-Driven Accumulation of Local
Features for Human Characterization and Re-identification. Computer Vision and
Image Understanding 117(2), 130–144 (2013)

12. Li, M., Chen, W., Huang, K., Tan, T.: Visual Tracking via Incremental Self-tuning
Particle Filtering on the Affine Group. In: Computer Vision and Pattern Recogni-
tion (2010)
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Abstract. This paper proposes the introduction of annular Zernike poly-
nomials for representing iris images data. This representation offers nota-
bles advantages like representing the images on a continuous domain that
allows the application of Functional Data Analysis techniques, preserving
their original nature. In addition, it provides a significant dimensionality
reduction of the data, while it still has a high discriminative power. The
proposed approach also deals with the occlusion problems that can be
present in this type of images. In order to corroborate the effectiveness
of the introduced approach, identification experiments were carried out.
Iris international databases were used. Some of them are characterized
by the presence of severe occlusion problems. Results have shown high
recognition accuracy.

Keywords: Iris recognition, Functional Data Analysis.

1 Introduction

Eyes texture has practically unrepeatable patterns among human beings, even
twins, which makes the iris a biometric entity usable for people identification
[1]. In iris recognition research area, there are still many open problems that
require of innovative solutions related to the steps of iris recognition(image
capture, eye localization, segmentation, noise detection, normalization, feature
extraction and matching)[2].

Traditionally, iris features have been represented by high-dimensional vec-
tors. However, the fact that digital images data are recorded discretely, though
their nature is continuous is ignored. Therefore, instead of representing these
images by vectors, it might be more appropriate to represent the iris image data
by an underlying continuous function, in a way that this representation can be
closer to the original nature of the data. Using functions for these images rep-
resentation brings many advantages, such as: data is represented as a whole,
the revelation of the dynamic aspects of the original data, the ability of ana-
lyzing some of the most significant features of the function, for example, the
monotony, differentiability and smoothness, and a substantial dimensionality
reduction of the data[3]. An image can be represented as a function f (x,y) over
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a spatial domain [4]. Finding such function that better approximates the dis-
crete observed data is one of the key points of this approach. Using functional
basis expansion is a common issue for this representation. The selection of the
basis set and the estimation of the appropriate number of coefficients must be
performed thinking in obtaining a sufficiently discriminative representation
with a minimum dimension. The proposed solution for the particular case of
iris images, demonstrates the validity of the approach and traces a new general
methodology for analyzing biometric images.

The paper is organized as follows. In Section 2 the iris recognition process is
explained, and our introduced approach is detailed. In Section 3 the performed
experiments and results are described. Conclusions and future research topics
are drawn in Section 4.

2 Iris Recognition Process

Iris recognition process consists on the general steps(image capture, eye local-
ization, segmentation, noise detection, normalization, feature extraction and
matching). Nevertheless, these steps present some peculiarities when Func-
tional Data Analysis(FDA) approach is used. The general diagram presented in
Fig. 1 shows the necessary steps to perform an image recognition task based on
functional data analysis. This helps for a better understanding of the process.

Fig. 1. A general description of the iris image analysis using FDA

2.1 Segmentation and Normalization

The segmentation step is applied to separate the iris region from the other part
of the eye image. The main goal of this step is to extract the region of inter-
est(ROI), containing the maximum amount of pixels with valid information,
and the minimumwith irrelevant information. During the normalization stage,
the isolated region of the iris is reduced to specific dimensions(specified by the
radial and angular resolution) using the coordinates transformation.

For these two steps of the iris recognition process(segmentation and normal-
ization), we used the third module(Iris recognition) of the known Video-based
Automated System for Iris Recognition (VASIR) [5]. This system segments the
iris region using their own segmentation approach. Those regions are then ex-
tracted and normalized based on the known ”rubber-sheet” method. Each point
within the iris region is assigned a pair of real coordinates (r,θ) contained in
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a rectangle where the radius r lies on the unit interval [0,1] and θ is the angle
over [0,2Π].

Before constructing the functional representation, it must be ensured that
it is the least affected by the factors that can be present in the ROI. This fac-
tors could be: dilation, specular reflection, iris resolution, motion blur, camera
diffusion, presence of eyelids, eyelashes, and others[6]. In particular, the occlu-
sion by eyelashes and eyelids significantly affects the behavior of this type of
representation.

Some solutions use binary masks to face these occlusion problems [7]. How-
ever, most of them are based on representations that use local features. Other
solutions have restricted the region of interest of the iris domain[8], by taking
into account its statistical behavior with respect to the presence of occlusions.
This region should be the least affected by occlusions of eyelids and eyelashes.
In our research, we built our representation after selecting different regions of
the iris images, as explained below. In Fig.2(a), half of the iris region was re-

a) b) c)

Fig. 2. Three different regions with different of occlusion levels

moved, keeping the region comprised in [−π/4,+π/4] and [3π/4,5π/4](upper
and bottom sectors indicated with a cross )[7]. In Fig.2(b) it is shown that those
sectors selected in Fig.2 a) were reduced, in order to decrease the incidence of
the eyelids and eyelashes comprised in [−π/4,+π/8] and [7π/8,5π/4]. Finally,
in Fig.2 c), a 1/4 of the rectangular region is selected, minimizing even more the
incidence of occlusion as is proposed in [8]. For each of the selected regions, all
the images were reduced to an specific dimension 32x128, 32x48 and 16*64
respectively.

2.2 Representation

After the image has been normalized, we proceed to the construction of the
functional representation. The method consists in approximating(smoothing)
each image by a linear combination (weighted sum) of basis functions, which
is a common strategy for achieving this type of representation [3].

If (x,y) =
K∑

k=1

ckbk(x,y), (1)
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where {bk(x,y)}k denotes the set of k bases functions and {ck}k represents the
coefficients of the expansion.

Finally, from the discrete observations I(x,y) i.e, the iris normalized images,
a functional representation Îf (x,y), is obtained. Images will now be described
by the coefficients {ck}. It has been demonstrated that working with these coef-
ficients is strictly equivalent to working directly on the bk functions[9].

One important step to consider in this process is to choose the best basis
set to expand the function. There are several criteria for selecting the basis set,
which are explained bellow.

Basis Selection and Determination of the Number of Coefficients. Some of
the principal criteria that are considered for basis selection are: the geometry of
the domain [10], computational complexity, differentiability, periodicity of the
event to model, the ratio of speed of convergence, completeness (understood
as the ability to represent any function with high precision and with enough
terms coefficients). For our selection, we will mainly focus on the geometry of
the domain. Since we are interested in approximating functions of two vari-
ables, we need bivariate basis functions for the expansion. The annular Zernike
polynomials are a basis functions set defined over an unitary annulus, which is
suitable for modeling the iris domain due to its shape.

Any function If (ρ,θ) defined over a two-dimensional space can be approx-
imated using the annular Zernike polynomials bases[11]. Thus, the equation
for expanding a sector of an annular iris region(Îf (ρ,θ,ε)) in terms of annular
polynomials Zm

n (ρ,θ,ε) that are orthonormal over a unit annulus is:

Îf (ρ,θ,ε) =
∞∑

n

n∑

m

Cm
n Zm

n (ρ,θ,ε) (2)

where Cm
n represents the vector of coefficients and Zm

n represents the annu-
lar Zernike polynomials basis functions. The annular Zernike polynomials are
similar to circular Zernike polynomials, except that are orthonormal in an an-
nulus instead of a circle [11]. They are usually defined in polar coordinates
(ρ,θ). The parameter ρ ∈ [0,1], is the radial coordinate, and θ ∈ [0,2π], the
azimuthal component. Annular Zernike polynomials have inner radius ε and
outer radius 1, and thus the coordinate ρ is subject to the restriction 0 ≤ ε ≤ 1.
For the specific case of iris, the value ρ is comprised between the pupillary
boundary and the limbus boundary.

These polynomials are derived from the circular Zernike polynomials by
Gram-Schmidt orthogonalization process[11]. Each Zernike polynomial is a
tensor product of Fourier bases in the angular direction and a special type of
Jacobi polynomials in the radial direction[11]. It consists of 3 components: a
normalization factor, a radial component and one azimuthal component. An-
nular Zernike polynomials are then defined as follows:

Z±mn =

⎧⎪⎪⎨⎪⎪⎩
Nm
n R|m|n (ρ,ε)cos(mθ) if m ≥ 0
−Nm

n R|m|n (ρ,ε)sin(mθ) if m < 0.,
(3)
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For a given radial order or polynomial order n, the azimuthal frequency or
Fourier order m can only take values of −n,−n + 2,−n + 4, ...,n [11]. Nm

n is the
normalization factor

Nm
n =

√
2(n+1)
1+ δm0

, with δm0 =
{
1 if m = 0
0 if m � 0 , (4)

and R|m|n (ρ,ε) is the representation for the Jacobi polynomial, which for the gen-
eral case can be expressed as:

Rm
2j+m(ρ,ε) =

[
1− ε2

2(2j +m+1)hmj

] 1
2

ρmQm
j (ρ

2) (5)

where
{
Qm

j (u)
}
1 is a set of orthogonal polynomials obtained by the orthonor-

malization of the sequence 1,u, . . . ,uj over the interval (ε2,1). It is defined as:

Qm
j (u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

R0
2j (ρ,ε) si m = 0

2(2j+2m−1)
(j+m)(1−ε2)

hm−1j

Qm−1
j (0)

∑j
i=0

Qm−1
i (0)Qm−1

i (u)

hm−1i
e.o.c

(6)

These expressions were taken from [11]. In order to obtain an estimate
Îf (ρ,θ) of If (ρ,θ) for each image I(ρ,θ), we need to estimate the coefficients
in the expansion. This will be done by least squares fitting. Due to the fact that
Zernike polynomials are orthonormal in the unit sphere, i.e.,

1
π(1− ε2)

∫ 1

ε

∫ 2π

0
Zm
n (ρ,θ,ε)Zm′

n′ (ρ,θ,ε)ρdρdθ = δnn′δmm′ (7)

the operations (e.g., inner products and norms) between functions expressed on
this basis, get reduced to operations between their corresponding coefficients,
which makes the computations easier. Thus, as it was explained at the begin-
ning of this section, every analyzed imagewill be represented by the coefficients
obtained from the linear combination of the annular Zernike polynomials, ex-
pressed in Eq.2. There is still one hyperparameter that needs to be established
before doing the least square estimation of the coefficients, and it is the number
of coefficients (or number of basis functions) in the expansion. This parameter
has the role of a smoothing parameter. Statistically, keeping a few coefficients in
the expansion is equivalent to conducting heavy amount of smoothing for the
original data. It also determines the dimensionality reduction achieved with
this representation. One way for determining this parameter is through the
bootstrapping strategy [12].

1 Note that u = ρ2.
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3 Experimental Results

To evaluate the performance of the proposed method, we used the CASIA-
V2[13], UPOL[14], and MMU[15] databases. CASIA database version 2.0 con-
sists of 1200 iris images from 60 different irises (subjects) with a resolution of
640 x 480 pixels. The MMU v1.0 database contains 450 iris images, which were
collected from 45 subjects. There are 10 images from each subject. These are
images of 320 x 240 pixels. This database has images with problems like spec-
ular reflections, off-axis and off-angle, blur, focus, non-uniform illumination,
occlusions such as eyelids, eyelashes, glasses, contact lens, and hair.The UPOL
database contains 384 images of 576 x 768, extracted from both eyes of 64 sub-
jects (three images per eye). In our experiments, we used the VASIR method for
the segmentation and normalization as we explained in Sec.1. Once we have
images normalized, including the selection of the region avoiding the occlu-
sions(explained in Sec.2), we represent them by using FDA, like is explained
below: a) In order to obtain the optimal number of coefficients for the func-
tional representation, we split the data sets in training (80% of the data) and
test (20%). On each training set, a bootstrap method was then applied to find
this optimal number. Results are then given by evaluating the test sets with the
selected number of coefficients. It should be noted, that for the three cases of the
selection of the region, all the resultant subregions have the same size. Taking
this into account, the bootstrap process was applied to the UPOL database, and
the optimal number obtained (48 coefficients) was used for all the databases.

b) The coefficients were estimated by the least squares fitting method on the
annular Zernike polynomial basis using the normalized image. This process
was repeated for the three different regions of interest selected with different
affectations of occlusion.

c) The step b) was applied for every image in the databases, and then per-
formed iris recognition by using an Euclidean distance between the coefficients.
The recognition results were compared with Daugman[1] and Masek[16] rep-
resentations. In Tables 1, 2 and 3, we show the results of the identification ex-
periments with the images represented by the optimal number of coefficients
(48) for each of the selected regions shown in Fig.2. In order to corroborate the
importance of obtaining the optimal number of coefficients for a good represen-
tation, some experiments were carried out using 16 and 32 coefficients too. As
it can be seen, the best results for the 3 databases, were obtained in Table 3

Table 1. Recognition results on CASIA V2, MMU V1 and UPOL databases, with region
of interest represented in Fig.2(a)

Database 16 32 48 Daugman Masek
CASIA2 95.33 96.75 97.42 98.75 98.00
MMU1 94.22 95.56 96.22 97.33 97.56
UPOL 97.22 98.96 99.74 100 100
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Table 2. Recognition results on CASIA V2, MMU V1 and UPOL databases, with region
of interest represented in Fig.2(b)

Database 16 32 48 Daugman Masek
MMU1 94.67 96.89 97.11 97.33 97.56
CASIA2 96.83 98.25 98.75 98.75 98.00
UPOL 99.22 99.48 99.74 100 100

Table 3. Recognition results on CASIA V2, MMU V1 and UPOL databases, with region
of interest represented in Fig.2(c)

Database 16 32 48 Daugman Masek
CASIA2 98 99.25 99.75 98.75 98.00
MMU1 93.56 96.85 97.11 97.33 97.56
UPOL 99.22 99.48 99.74 100 100

(highlighted with black letter). In this case, the upper-right region of the
image was used, according to the Fig.2(c), and then represented with the
optimal number of coefficients. It should be noted that in this case our
method overcomes the results from Daugman and Libor Masek in the Casia2
database(database with severe occlusions), while we achieved a dimensionality
reduction of a 50% and 25% with respect to Daugman and Masek respectively.
In the case of MMU1 and UPOL, although the results did not overcome the
other methods, the achieved values of accuracy were high. The results from
Table 2, representing the images that correspond to the region mentioned in
Fig.2(b), are comparable to those of other methods, but it must still be high-
lighted the low dimensionality of our representation. Finally, analyzing the re-
sults from Table 1, it can be seen that occlusion factors affected slightly the
accuracy results, but they are good overall. In general, it can be seen that our
approach obtained good results with representations of very low dimensional-
ity. It should also be noted that the best results were obtained with the repre-
sentation constructed from the upper-right region of the iris image (Fig.2(c)),
which is the less affected by occlusions. This shows somehow the sensitivity of
the proposed representation to the occlusion problems. Therefore, the need of
dealing with this problem (in this case by selecting the significative regions of
the images) before obtaining the functional representation of the iris. In the 3
experiments, with the different selections of regions, the best accuracy was ob-
tained with the optimal number of coefficients, mainly for those images where
occlusion is present. This shows the importance of finding an optimal number
of coefficients, for a good performance of our method.

4 Conclusions and Future Works

In this paper, we present a new functional iris representation based on
annular Zernike polynomials. The main contributions of this work are: a high
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recognition accuracy in presence of severe occlusion problems while the dimen-
sionality of the data is significantly reduced. It was demonstrated that with the
proposed representation a high recognition rate can be obtained by just ana-
lyzing a small subregion of the iris image. For future work we should perform
more experiments with other iris images databases to corroborate the perfor-
mance of our method. Moreover, we are planning to extend this approach to
other biometric images.
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Abstract. This paper reports an analysis of the benefits of using color informa-
tion on a region-based face recognition system. Three different color spaces are
analysed (RGB, Y CbCr , lαβ) in a very challenging scenario matching good
quality mugshot images against video surveillance images. This scenario is of
special interest for forensics, where examiners carry out a comparison of two
face images using the global information of the faces, but paying special atten-
tion to each individual facial region (eyes, nose, mouth, etc.). This work analyses
the discriminative power of 15 facial regions comparing both the grayscale and
color information. Results show a significant improvement of performance when
fusing several regions of the face compared to just using the whole face image.
A further improvement of performance is achieved when color information is
considered.

Keywords: Face recognition, facial regions, forensics, color information, facial
components, video surveillance, at a distance.

1 Introduction

Automatic face recognition systems are generally designed to match grayscale images
of full faces. However, in practice, the full face is not always available, e.g., due to
occlusions and other variability factors. On the other hand, in forensics, the examiners
usually carry out a manual inspection of the color face images, focussing their attention
not only on the grayscale full face but also on individual traits and color information.
They carry out an exhaustive morphological comparison, analysing the face region by
region (e.g., nose, mouth, eyebrows, etc.), even examining traits such as marks, moles,
wrinkles, etc.

There are some previous works where grayscale facial region-based recognition is
studied [1–3] but non of them focus their attention in the color regions normally con-
sidered by forensic experts. In this work, we have extracted facial components (called
from now on facial regions) following forensic protocols from law enforcement labo-
ratories, allowing us to study individually the different facial regions normally consid-
ered in current practice of forensic examiners. In particular, we address in this paper the
problem of combining the most discriminative areas of the face for recognition using
the available color information on a very challenging video surveillance scenario.
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Fig. 1. Experimental framework diagram description

In contrast to traditional grayscale systems, this paper studies the discriminative
power of each facial region using three color spaces: RGB, Y CbCr, and lαβ. Fig. 1
summarizes the experimental framework followed.

Understanding how different facial regions from different color spaces are combined
on a very challenging scenario has some remarkable benefits, for example: i) allowing
investigators to work only with particular regions of the face in different color spaces,
ii) improving the face recognition performance using all available information from
color images, or iii) preventing that incomplete, noisy, and missing regions degrade the
recognition performance. Further, a better understanding of the combination of facial
regions in different color spaces should facilitate the study of facial regions-based face
recognition. Therefore, the fusion of the different facial regions from different color
spaces is performed achieving significant improvements of performance compared to a
traditional face recognition system based only on the grayscale face as a whole.

The remainder of this paper is organized as follows. In Section 2, we provide an
overview of the automatic facial region extraction procedure and presents the color
spaces analysed. Section 3 describes the experimental protocol followed, the database
and the verification system adopted for the experiments. Section 4 reports an experi-
mental fusion of different facial regions using different color spaces. Finally, Section 5
draws some conclusions of our work.

2 Facial Regions Extraction and Color Methodology

The proposed facial regions extraction framework is described in detail in [4] and ex-
tended in [3]. In this framework, two kinds of regions extraction are defined: i) based on
human facial proportions, and ii) based on facial landmarks. For this work, the second
extractor based on facial landmarks has been adopted. This extractor, based on facial
landmarks manually located, allows to extract the facial regions with high precision.
The final region extraction result is the set of 15 facial regions (see Table 1) based on
forensic laboratories protocols1 as shown in Fig. 2.

1 Spanish Guardia Civil (DGGC), http://www.guardiacivil.es/ and
Netherlands Forensic Institute (NFI), http://www.forensicinstitute.nl

http://www.guardiacivil.es/
http://www.forensicinstitute.nl
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Fig. 2. (Left) Grayscale intensity values of faces for each color space analysed. (Right) Facial
regions extraction based on facial landmarks extractor. The regions are extracted for the 9 color
channels considered here.

Table 1. Facial regions id for each color channel and their sizes for extractor based on facial
landmarks (height × width in pixels)

Color Channel 1 Color Channel 2 Color Channel 3 Facial Facial Region
Id Num. Id Num. Id Num. Region Size (h × w)

1 16 31 Chin 75x181
2 17 32 Left ear 75x51
3 18 33 Right ear 75x51
4 19 34 Left eyebrow 51x75
5 20 35 Right eyebrow 51x75
6 21 36 Both eyebrows 51x151
7 22 37 Left eye 51x51
8 23 38 Right eye 51x51
9 24 39 Both eyes 51x151
10 25 40 Full face 192x168
11 26 41 Forehead 101x151
12 27 42 Left middle face 173x106
13 28 43 Right middle face 173x106
14 29 44 Mouth 51x101
15 30 45 Nose 101x75

There are some previous works where color spaces such as RGB or Y CbCr have
been used for face recognition [5, 6]. But, to the best of our knowledge, this is the first
work where color information is used for face recognition using 15 facial regions.

When dealing with color images, the RGB color space is commonly used. This
color space is composed by three channels (red, green, and blue), which are correlated
among them. The components that form the second color space considered Y CbCr

are as follows: Y , luminance component, Cb, blue component (B − Y ), and Cr , red
component (R− Y ) [7].
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corresponding normalized face for close, medium, and far distances. (Right) The three acquisi-
tions distances: close, medium and far. Acquisition angle of each distance calculated for a subject
with mean height of 1.80 meters.

Both RGB and Y CbCr color spaces have correlated color channels among them.
We also consider the lαβ color space [8], which minimizes the perceptual correlation
among the channels of an image. The parameter l represents the luminance or brightness
of the image and α and β represent the chromatic content, i.e., the color information.
Fig. 2 (left) shows an example of each color channel for these three color spaces con-
sidered in the experiments.

3 Experimental Protocol

Once each facial region has been extracted from each color channel, Principal Compo-
nent Analysis (PCA) is computed obtaining eigen-regions. Then, similarity scores are
computed in this PCA vector space (dimension 200, retaining an average of 98% of
the energy of the original eigen-region space) using a Support Vector Machine (SVM)
classifier with a linear kernel. The experimental protocol followed is described in more
detail in [3].

The database used in our experiments SCface [9], (see Fig. 3 (left)), was divided into
3 subsets based on the subject ID: development (1-43), SVM training (44-87), and test
(88-130). These three subsets were used for training the PCA features, as impostors in
the training of SVMs, and for testing the final system performance, respectively. The
procedure followed is summarized in Table 2.

Fig. 3 (left) shows an example of a mughost image, and the images acquired by one
of the surveillance cameras. As can be seen there is a considerable scenario variation in
terms of quality, pose and illumination. The change in the pose is specially important
due to the different angles between the person and the cameras as shown in Fig. 3 (right).
In this work a very challenge scenario of videosurveillance is studied considering a
common case that a forensic examiner can find in practice: mugshot vs CCTV images.
In addition, three distances between subject and camera typical in practical applications
are analysed: close, medium and far distances (see Fig. 3 (right)).
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Table 2. Partitioning of the SCface DB according to the Mugshot vs CCTV images protocol

SCface DB (130 Subjects) - Mugshot vs CCTV protocol

Subsets 1...43 Subject 44...87 Subject 88...130 Subject
(43 Subjects) (44 Subjects) (43 Subjects)

Mugshot

Development set

SVM Training (Clients)
Cam 1

SVM Training
Test

Cam 2
Cam 3 (PCA subspace) (Impostors)
Cam 4 (Clients/Impostors)
Cam 5

4 Facial Regions Fusion

This section describes the fusion of the 15 forensic facial regions extracted from a
human face in comparison with the performance of the whole face region normally
used in face recognition systems. The fusion is carried out at score–level combining the
facial regions for the color channels considered here.

Before carrying out the fusion, scores of the different facial regions are first normal-
ized to the [0, 1] range using the tanh-estimators described in [10].

For this paper three different experiments were defined in order to analyse the po-
tential of color information in a face recognition system: i) Exp.1 Grayscale baseline
system, where the grayscale facial regions are fused as the traditional face recognition
systems. ii) Exp.2 Fusion of color channels from each color space, (e.g. forRGB color
space, the channels {R,G,B} are fused for each facial region considered). iii) Exp.3
Fusion of all color channels, where all 9 available color channels are fused for each face
region.

4.1 Exp.1 Grayscale (Baseline System)

The fusion is carried out at the score–level for various combinations of grayscale re-
gions. In particular, the 15 facial regions are fused using a parallel fusion approach
based on the sum rule [11], starting from the most discriminative, then fusing this trait
with the rest and keeping the best fusion of two regions, and continuing this process
until all the regions are fused.

The fusion results obtained for the three distances are shown in Table 3 (Exp.1). As
can be seen the system performance improves fusing several facial regions compared to
just using the full face region.

Close and medium distance scenarios combine 7 facial regions to achieve the best
result, but the far scenario needs to combine a total of 10 facial regions to obtain it. It is
interesting to note that in the close scenario the best result is obtained with the fusion of
inner and outer facial traits together with the full face (relative improvement of 56.7%
in the EER with respect to using only the full face).

Similarly, in the two other distances considered, the best fusion includes inner and
outer parts of the face, and relative improvements of over 40% in the EER are obtained
with the fusion of regions compared to using only the full face.
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Table 3. EER results for the score–level fusion obtained for sequential region fusion and the full
face for the color channels of the three color spaces. In brackets is indicated the number of regions
fused.

Color Close Scenario Medium Scenario Far Scenario
Space Fusion (# Regions) – Full face Fusion (# Regions) – Full face Fusion (# Regions) – Full face

Exp.1 Grayscale 14.30% (7) – 33.10% 12.90% (7) – 31.20% 16.80% (10) – 28.90%
RGB 11.58% (12) – 32.19% 10.79% (13) – 30.21% 14.61% (15) – 29.96%

Exp.2 Y CbCr 12.89% (16) – 29.50% 12.65% (8) – 33.35% 16.37% (21) – 31.72%
l α β 10.79% (12) – 31.82% 11.20% (16) – 31.09% 14.50% (18) – 28.93%

Exp.3 ALL 9.03% (27) – 29.96% 10.33% (22) – 30.33% 13.12% (39) – 28.93%

4.2 Exp.2 Fusion of Three Color Channels

For the Exp.2, the score–level fusion is carried out fusing the three channels in a color
space, i.e., 15×3 = 45 facial regions (as Table 1 shows) using a parallel fusion approach
as in the previous experiment.

Table 3 (Exp.2) shows the fusion results for the three distances analysed. Fig. 4
shows the sequential fusion results obtained for the three distances and their corre-
sponding color space with best performance (lαβ for close and far distance, and RGB
for medium distance). Similar to the previous case the system performance improves
fusing several facial regions compared to just using the full face region. It is interesting
to note that the number of regions fused to obtain the best performance increases with
the distance between the subject and the camera.

Comparing the fusion results with the baseline system based on grayscale facial re-
gions, relative improvements of performance of 24.5%, 16.3%, and 13.7% for close,
medium and far distance, are achieved respectively. These results support the utility of
color information using facial regions to improve the performance of traditional face
recognition systems.

4.3 Exp.3 Fusion of All Color Channels

In this case, all facial regions from all color channels are combined following the same
fusion methodology. In this case, we combine the 3 sets of 45 facial regions considered
in the previous experiment, i.e., 135 facial regions in total.

Table 3 (Exp.3) shows the fusion results for this experiment. As can be seen this ex-
periment achieves the best EER results for the three distances compared to the previous
experiment. However this case needs to fuse more facial regions to achieve the best
performance (approximately double than Exp.2), and just around 1% EER of improve-
ment is achieved compared to Exp.2. Again, the increment of the acquisition distance
increases the number of facial regions to be combined to achieve the best performance.

Similarly, in the three distances considered, the best fusion includes inner and outer
parts of the face, and relative improvements of over 66% in the EER are obtained with
the regions fusion compared to only using the full face.
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5 Conclusions

This paper reports an study of the combination of 15 human facial regions extracted
from three different color spaces on a very challenging scenario comparing mugshot
versus CCTV images. The best fused performance of facial regions is compared with
the full face region, which is the normal case in face recognition. Preliminary results
show that a combination of a set of facial regions in different color spaces can signifi-
cantly improve the system performance by a relative average improvement of over 66%
for the three distances considered. The combination of facial regions with color infor-
mation allows to improve the system performance with a relative improvement of over
20% comparing with the traditional face recognition systems using only grayscale in-
formation. The potential of fusion of facial regions on these scenarios has been demon-
strated to significantly improve a traditional full face recognition system performance.
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Abstract. The accurate localization of facial features is an important
task for the face recognition process. One of the most used approaches to
achieve this goal is the Active Shape Models (ASM) method and its dif-
ferent extensions. In this work, a new method is proposed for obtaining
a Local Binary Patterns (LBP) based profile for representing the local
appearance of landmark points of the shape model in ASM. The experi-
mental evaluation, conducted on XM2VTS and BioID databases, shows
the good performance of the proposal.

Keywords: facial landmarks, facial features detection, ASM, LBP.

1 Introduction

A fundamental step in the face recognition process is to model the face shape in
an accurate manner; this allows one to find a correspondence of landmark points
in face images for their posterior normalization or affine warping. However, the
problem of accurately find these landmarks remains an open issue. The Active
Shape Models (ASM) method [1] is one of the main approaches to automatically
detect these points. ASM uses an appearance model to represent the image
appearance around each landmark. In the original approach, this model is based
on the so-called “gray-level profile”, defined by the differences in the intensity
values of adjacent pixels on a line centered at the landmark point. This is very
sensitive to illumination changes and noise, not providing a sufficiently good
description and discrimination of the local appearance.

Some extensions have been proposed in order to improve or replace the gray-
level profile in ASM [2,3,4,5]. The Local Binary Patterns (LBP) operator [6]
is a popular local appearance descriptor that can be considered for this task
[5]. When using LBP, robustness to monotonic illumination changes and noise is
achieved. LBP have been used in [4] and [5] for representing the local appearance
in ASM, obtaining very good results in comparison with the original approach. In
this work we propose a new method that uses LBP with ASM, aiming at better
describing the local appearance of possible locations to which the landmark
can shift. The rest of this paper is organized as follows. Section 2 describes
the original ASM method and some ASM extensions related to this work. In
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Section 3, after a short introduction on LBP, the new proposal named EP-LBP
ASM is presented, as well as some aspects related to its computation. Section 4
presents the experiments followed by concluding remarks in Section 5.

2 Active Shape Models (ASM)

ASM was first introduced by Cootes et al. [1] in 1995. It can be considered a
deformable model that attempts to locate landmark points of known objects in
images using a shape model, which describes the typical variations of the object
shape, and a set of profile models that give a statistical representation of the
image appearance around each point of the model.

Using ASM, the shape of an object in a 2D image is represented by a set of
n landmarks, concatenated into a single vector of dimension 2× n. Then, given
M training samples,M such vectors are generated and aligned to a common co-
ordinate frame before performing the statistical analysis [1]. The aligned shapes
can be then considered to form a distribution in a 2 × n dimensional space,
where the relationships between positions of every point can be modeled and
learned. Finally, Principal Component Analysis (PCA) is used to approximate
each shape in the training set, obtaining the so-called statistical shape model.

Given the statistical shape model, the ASM searches along profiles of each
point the best match to the data in a new image. It is then necessary to have
a model of the local appearance surrounding each landmark. In the original
method proposed by Cootes et al. [1], the gray-level profile is represented by the
normal to the shape boundary, passing through each landmark. This model is
also learned from the training images. For searching and fitting the model in a
new image, the learned mean shape is used as the initial shape. Then, each region
is examined iteratively for searching the best shape and position parameters
which best match the model to the image, until convergence is achieved.

2.1 ASM Extensions

There are several ASM extensions in the literature, most of them try to obtain a
more discriminative and robust representation of landmarks appearance, which
is also the aim of this paper.

The Combined-ASM method [2] is a combination of the original ASM gray-
level profile with SIFT descriptor. Combined-ASM represents the local appear-
ance of inner landmarks of the face using SIFT and uses the gray-level profile
to represent the appearance of face border landmarks. This method provides a
more discriminative description to inner points while maintains a description of
face border that better describes edges. In Reg-ASM [3], regression is used to
describe landmarks local appearance, in order to learn from false displacements
in rectangular regions centered at landmarks. The use of regression allows one
to infer causal relations, but may lead to false relations. Besides, it imposes a
detailed labeling of true and false examples on the training dataset. A multi-
resolution detector based on Multiple Kernel Learning (MKL) is proposed in [7],
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combining kernels from different resolutions in order to use more information.
The Active Appearance Models (AAM) method [8] is another extension of ASM,
which introduces a more detailed description of the appearance. However, ASM
has shown to be more accurate than AAM for locating landmarks [9]. But there
are some recent extensions of AAM, such as CLM [10], SOS [11] and TST [12]
that outperform both AAM and ASM.

An extension of ASM based on the LBP descriptor was first proposed in
[4]. The method, named ELBP-ASM, extracts different radius LBP descrip-
tors [6] over circular subimages (gray scale image and gradient magnitude im-
age) centered at each landmark. In order to retain spatial information, block-
based LBP is used. Later, Marcel et al. [5] propose three LBP-based ASM ap-
proaches: profile-based LBP-ASM, square-based LBP-ASM and divided-square-
based LBP-ASM. The profile-based LBP-ASM approach extracts LBP values
from the normal profile of each landmark. Square-based LBP-ASM builds LBP
histograms from a squared region centered at a given landmark. In divided-
square-based LBP-ASM, the same square is used, but partitioned into four re-
gions from which the LBP histograms are extracted and concatenated into a
single feature histogram. The best results were achieved with the divided-square-
based LBP-ASM [5].

In this work we propose a new Extended Profile LBP-based ASM (EP-LBP
ASM) method, aiming to improve ASM landmark points localization. Although
our proposal is also based on LBP, it differs substantially from previous ap-
proaches. In order to describe the appearance of not only the neighborhood of
each landmark, but of the regions in the face image which define possible fittings
in each iteration, we extract several LBP histograms of squared regions equally
separated over profile normal.

3 ASM Using a New Extended Profile Based on LBP

In this section, we first briefly introduce the LBP operator. Next, we describe
our proposal for modeling and fitting the shape model using a new Extended
Profile based on LBP operator (EP-LBP).

3.1 Local Binary Patterns (LBP)

The LBP operator is a texture descriptor introduced in [6]. The operator and its
different extensions have been widely applied in many computer vision applica-
tions, and particulary for face analysis. The original operator labels each pixel
of an image by thresholding its 3×3 neighborhood with reference to its intensity
value, and considering the result as a binary number. Since the operator only
encodes the ordinal comparison (darker or brighter) between pixels intensities, it
is considered to be invariant to monotonic illumination variations. On the other
hand, when using this operator, the local appearance of an image is usually
represented by histograms of the image regions, which makes the representation
more robust to different kinds of noise in the image.
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3.2 Landmarks Local Appearance Description with EP-LBP

In this paper we propose the EP-LBP as a more distinctive landmarks local
appearance descriptor. Unlike other LBP-based approaches in literature (refer
to Section 2.1) that describe circular or squared regions centered in the landmark
point, we aim at describing those regions of the face image which define possible
landmarks fittings in each iteration.

The profile �(p, k, d) of a landmark point p, is defined as the set of k points over
p normal, centered at p and separated by d pixels. Figure 1 shows an example of
the profile �(p, 5, 2), defined by a set of k = 5 points in the line over p normal,
separated by d = 2 pixels.

Once the profile is defined, for each point �i ∈ �(p, k, d), a LBP histogram,
HLBP�i,m, over a squared sized region of width m and centered at point �i is
extracted. Then, the EP-LBP descriptor of a landmark point p, EP-LBP(p), is
obtained by concatenating these k histograms. In this work we use the original
LBPu2

(8,1), so the number of LBP labels is 59 [6] and then the size of our EP-LBP
descriptor for a given landmark is 59 · k bins.

3.3 Shape Fitting Using EP-LBP

For shape fitting using the proposed EP-LBP descriptor, in each iteration, for
every point p, a set Cp = {c1, c2, . . . , cN} of N candidate points of landmark
point p is determined. Every point ci ∈ Cp is on the line defined by p normal
and it is separated by d pixels from ci−1 and ci+1. Point p corresponds with
candidate point c�N/2�. This is graphically explained in Figure 2.

The descriptor EP-LBP(ci) associated to each candidate point ci ∈ Cp is
calculated and the new point p∗, will be then the candidate point with the
smallest distance between its EP-LBP descriptor and the trained EP-LBP for
its corresponding landmark:

p∗ = argmin
ci

χ2(EP-LBP(ci),EP-LBP(p)), (1)

where χ2 is the Chi-Squared histogram distance and EP-LBP(p) is the mean
EP-LBP for landmark point p obtained in the training step.
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3.4 EP-LBP Efficiency Improvements

In the fitting step, in each iteration, for every landmark point p, due to the
intersection between Cp and �(p, k, d), O(N · k) re-calculations of HLBP�i,m

histograms should be done when obtaining the EP-LBP descriptor for every
candidate point in Cp. In order to avoid unnecessary processing we propose to
compute a single EP-LBP(p) over a profile �(p,N + k − 1, d). Then, the process
of selecting the new point p∗ is simplified to selecting the sub-EP-LBP that
best match the extracted EP-LBP(p). The previously mentioned improvement
reduces the time complexity of this process from O(m ·N · k) to O(m · (N + k)).

In practice, we have realized that when dealing with face frontal images and
faces with little expression variations, the algorithm converges in the first ten
iterations. Based on that fact, we propose another stop criteria for the fitting
stage. The number of points which displacement in the current iteration was less
than 2 pixels is determined and if this number is greater than the 95% of the
total landmarks, the process is stopped.

4 Experimental Evaluation

In this section two experiments are described. First, we determine the best pa-
rameters for our proposal and then compare it with some existing approaches.
Two standard face databases were used for this purpose: the BioID and the
XM2VTS. The BioID Face Database (http://www.bioid.com) consists of 1,521
gray level images from 23 different persons, captured with large variations in
expression, illumination, background and face size. The XM2VTS [13] contains
2,360 images captured during four recordings of 295 subjects over a period of four
months, with different variations in expression, occlusions and appearance. In
both cases the manual annotations of landmark points are given, 20 landmarks
in the case of BioID and 68 for images in the standard sets of XM2VTS.

4.1 Model Parameters

To obtain the model parameters we used BioID, as it contains large variability in
illumination and facial expressions. The images were randomly divided into two
equal parts, one for training and the other for testing. The three different param-
eters were changed in the following way: k = {5, 7, 9, 11, 13},m = {3, 5, 7, 17, 31},
and d = {1, 2, 3, 4}; all combinations of these values were tested.

To measure the quality of the fit we use the mean error in landmarks local-
ization compared to ground-truth, given by:

meP =
1

P ∗ deyes

P∑
j=1

dj , (2)

where P represents the number of points in the model, deyes is the distance
between labeled eyes, and dj is the distance between every detected point and
its corresponding ground-truth position.
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Figure 3 shows the results obtained for each parameter in all conducted ex-
periments. When analyzing the graphics we found that the size of the region
used, m, and the separation, d, are not as important as the number of points
considered in the profile, k. Therefore, when computational time is a critical
issue, minimum values for these parameters (m = 3 and d = 1) can be selected.
Nevertheless, slightly better results were obtained for m = 7, and d = 2, so we
used these values on the rest of our experiments.
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4.2 Facial Landmarks Detection Accuracy and Timing

First, we compare our proposal with other existing ASM extensions based on
LBP [4,5] and with the eyes detector used in [5]. This experiment is conducted on
XM2VTS database, using the configuration I of Laussane Protocol [13]. Under
this configuration, the shape model is trained with the parameters obtained in
Section 4.1 using 3 images of 200 clients. The evaluation is performed on the
standard test set defined in the protocol, as well as on the darkened set, where
the robustness to illumination changes is evaluated. For the standard test set, the
Mean Square Errors of all 68 landmarks is computed. In the case of the darkened
set, similar to [5], we used the Jesorsky’s measure for evaluation, that only takes
into account the error in the center of the eyes points, since the annotations for
all landmarks are not provided. The obtained results are shown in Table 1. As
it can be seen in the table, our method obtained the best results in both, the
standard and darkened sets of the XM2VTS database.

In order to compare the proposed EP-LBP ASM method with previously
reported results of other ASM and AAM extensions described on Section 2.1, we
used only 17 of the 68 landmarks to compute meP following Equation 2. These
landmarks correspond to the inner regions of the face: eyes, nose, eyebrows and

Table 1. Mean and median values of Mean Square Errors for the standard test set of
XM2VTS, and Jesorsky’s error measure for the darkened set

Mean square error for the standard test set Jesorsky’s measure (error) for the darkened set
ASM ELBP Profile Square Divided EP-LBP detector ASM Profile Square Divided EP-LBP

mean 73.0 41.0 71.0 61.0 46.0 21.0 0.11 0.11 0.11 0.09 0.10 0.06
median 32.0 31.0 43.0 41.0 28.0 18.0 0.10 0.09 0.09 0.08 0.07 0.05



Facial Landmarks Detection Using Extended Profile LBP-Based ASMs 413

mouth, which are actually the most difficult for fitting [10]. In Figure 4 a) the
results are shown for our proposed EP-LBP ASM method compared to original
ASM [1], Reg-ASM [3], CLM [10], SOS [11], and TST [12]. It can be seen that
our method outperforms all the other methods.

Most of the above methods have been also tested on BioID database. In this
case, similar to [10], we used the 20% of the images for training and the rest
of them for testing, and the meP with the 17 inner points is computed. The
obtained results for our method compared to ASM [1], Reg-ASM [3], CLM [10]
and MKL-based method [7], are shown on Figure 4 b). It can be seen that also
in this database the results achieved by the proposed EP-LBP are better than
or comparable to the other methods.
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In the case of the Combined-ASM method [2], the results on BioID database
are reported in terms of the Jesorsky’s measure. They reported that about the
86% of the images have less than 0.10 of error, and about the 90% of them an
error less than 0.15. Using this measure we have obtained a 92% of the images
with less than 0.10 of error, and 98% with an error less than 0.15.

In terms of computation time, our approach, on average, needs 320 ms and
the ASM needs 97 ms to detect landmarks in an image. This is comparable to
other extensions [5] that use more information than the original ASM, which are
also 2 or 3 times slower than ASM. The analysis was performed on a 2.5 GHz
with 4 GB of RAM computer.

5 Conclusion and Future Work

In this paper a new Extended Profile based on LBP operator was introduced for
representing the appearance of landmarks regions in the ASM method. The pro-
posal, unlike other LBP-based approaches in the literature that describe circular
or squared regions centered in the landmark point, describes regions of the face
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image which better define possible shape fittings in each iteration. Experimental
results on two well-known databases frequently used for this purpose, showed
the good performance of the method and its superiority with respect to other
state-of-the-art ASM and AAM extensions.

It should be noticed that EP-LBP ASM and the other methods described
in Section 2.1, extend classical ASM by proposing better landmark appearance
representations. However, there are other approaches (e.g. [14]) that improve
ASM by enhancing the shape constraint, i.e. the correlation between landmarks.
Our future work will focus on extending our method by exploiting this idea.
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Abstract. This paper proposes an approach for detecting important parts of faces 
in uncontrolled imaging settings. Regions of special interest in faces of humans 
are eyes and eyebrows, nose and mouth. The approach works by first extracting 
ORB (Oriented FAST and Rotated BRIEF) and SURF (Speeded up robust 
features) features, secondly a supervised learning step with a random subset of 
images is performed using k-means algorithm for devising the clusters' centers of 
the important parts of faces. For the testing set of images the normalized values 
of each new ORB or SURF feature is weighted positively depending on its 
similarity and proximity of a cluster center (a face part). Tests were performed 
using the BioID dataset which consists of 1521 images of 23 different subjects in 
a variety of situations. Results show that the use of ORB features for face parts 
localization is more efficient and more precise than SIFT or SURF features 
alone. Also, the relative spatial weighting of a combination of ORB and SURF 
features enhances the localization of parts of faces.  

Keywords: Face parts localization, ORB features, face detection. 

1 Introduction 

Face detection and related applications have been at the top of approached problems by 
the Computer Vision and Pattern Recognition research community. A step forward to 
be taken is to have more detailed localization of face parts, or facial features as they are 
also called, since identity, sorting and editing face applications are dependent on 
dealing with the face parts in separate. 2D face parts can be considered as facial feature 
points, as specifying for example center of eye, tip of nose, mouth corners, as in [2] [6] 
[5], or as large scale 2D facial parts such as eyes and eyebrows, nose and mouth, as in 
[7] [9]. In this paper we approach the 2D face parts localization problem considering 
four large scale facial parts: eye and eyebrow right, eye and eyebrow left, nose, and 
mouth. Regarding a recent taxonomy of facial features proposed in [11] our work 
explores level 2 features, which are locally derived and can describe structures relevant 
to face recognition. 

Most representative of face fiducial points works are [2], [6], and [5]. In [2] they 
formulate the problem of part localization as Bayesian inference combining local 
detectors and a prior model of face shape. They use a large collection of exemplars, and 
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the part locations are decided on a consensus (RANSAC based) decision to 
disambiguate candidates. They present tests on the BioID database and a proprietary 
one. [6] presented a method to detect face fiducial points based on regression forests. 
13000 images annotated with 10 fiducial points are trained and the ensembles of 
regression trees estimate the positions of the fiducial points.  [5] presented a facial 
landmark (fiducial points) localization method based on Haar features and  gradient 
boosted trees to predict the landmark positions, 9 landmark positions are previously 
defined and results are shown on subsets of BioID and their own image database.  

More related to the approach proposed here are [9] and [7]. [9] investigated detection 
of large scale facial features by using an appearance based feature vector of gaussian 
derivatives of normalized face images. The facial features are defined as salient from 
the face images. Results were presented with 30 images detected eyes, nose, mouth and 
chin as important facial features, and were very dependent on scale, and invariance was 
not considered. [7] proposes to detail and detect facial features (eyes, nose, eyebrows, 
mouth, chin) by constructing appearance vectors of the features, and also of the context 
surrounding the features. A supervised learning discriminative algorithm is then 
applied to classify features and non-features samples. Results were shown for 1200 face 
images with uniform and controlled background with error rates below 5%. Detection 
of facial features on varying lighting and background conditions were not shown. 

In this paper we propose a relative spatial weighting algorithm for localization of 
face parts. One of our motivations is to explore feature detector such as ORB [15] and 
SURF for face parts localization, and to investigate facial feature detection for face 
identification applications. Our main contributions in this work are: 1) provide a 
learning algorithm to select ORB and SURF features for face parts localization; 2) 
results on a benchmark image database for face parts localization. 

2 Invariant Feature Descriptors  

Finding correspondences between different images of the same object, considering a 
variety of lighting, viewing and scaling conditions is a major task in Computer Vision 
and applications.  A large variety of feature descriptors and their respective matching 
algorithms have been proposed in the literature.  One of the most successful is the 
SIFT descriptor (Scale Invariant Feature Transform)[13], although more  recently 
promising invariant feature descriptors have been presented such as SURF (Speeded 
Up Robust Features)[1], and ORB (Oriented FAST and Rotated BRIEF) [15]. 

2.1 SIFT Descriptor  

SIFT is a highly distinctive, scale and rotation invariant descriptor. It is computed in 
four main steps [13]: 1) Extract the keypoints from the image as local extrema (minima 
or maxima) using a Difference of Gaussians (DoG) Pyramid. Each point is compared to 
its 8 neighbors in the same scale, as well as to its 9 neighbors in the upper and lower 
scale; 2) Localize the keypoints, position and scale, by fitting a quadratic polynomial 
and rejecting weak keypoints by a Hessian matrix curvature test. 3) Surrounding a 
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keypoint compute a histogram of gradient directions , and then assign the canonical 
orientation (single or multiple) of the patch as the peak(s) of the smoothed histogram; 
4) The keypoint descriptor is formed by a 128 vector of 16 histograms with 8 
orientations, considered in 16x16 windows with keypoint at center. Matching can be 
performed by comparing two descriptors with a distance function.  

2.2 SURF Descriptor  

SURF has been devised to be a faster and more robust descriptor, and matcher feature 
algorithm, than SIFT [1].  First it approximates the derivatives of Hessian matrix by 
box filters and uses the integral image as basis for computations. The determinant of H 
is also used for keypoint localization which is weighted to obtain a good 
approximation. Orientation assignment is done by evaluating a circular neighborhood 
around the keypoint and computing haar horizontal and vertical responses using the 
integral image also as basis.  The SURF descriptor considers square regions and sum 
the responses (vertical and horizontal) for each subregion separately. A vector of 128 
elements of those sums for keypoint regions is formed as the descriptor. It has been 
reported [15] that SURF is one order of magnitude faster than SIFT, however less 
robust to viewpoint and illumination changes.    

2.3 ORB Descriptor  

ORB descriptor [15], Oriented FAST and Rotated BRIEF, builds on good properties of 
FAST and BRIEF descriptors.  Two main innovations are made on them, first it adds 
to a FAST descriptor an orientation computation by a weighted averaging of pixel 
intensities in the local patch. This centroid operator gives a single dominant orientation. 
Second it uses an ID3 machine learning algorithm for de-correlating BRIEF features 
under rotational invariance, and this is used for sampling point pairs to the descriptor. 
ORB is a binary descriptor, aimed to be an efficient alternative to SIFT or SURF 
descriptors [15].  Matching can be computed by Hamming distance. ORB has been 
reported [15] to be about 10 times faster than SURF, 100 times faster than SIFT, and 
less sensitive to gaussian noise than SIFT. 

3 Face Parts Description and Localization 

Face detection and face recognition are tasks with great interest from the research 
community. One of the most important subtasks of it is the identification and 
localization of important face parts, or facial features, as eyes, eyebrows, nose and 
mouth. Many applications besides recognition of individuals, such as autofocus, white 
balancing, sorting and retrieving face images, semi-automatic editing, depend on the 
localization of the face parts. 

There are two basic different approaches for the localization of face parts: one that 
considers the facial feature points as relevant elements to be identified [2] [5] [6], a 
variation from 5 to 30 points have been reported in the literature as those facial feature 
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points, for example eyes and mouth corners, centers, and middle points of contours and 
nose; and another that considers  large-scale facial parts or the whole   region of 
interest of eyes, nose and mouth as a facial part [7] [9]. The approach     considered in 
this paper is the second one, where the face parts are four main regions: left eye and 
respective eyebrow, right eye and respective eyebrow, nose, and mouth.  Figure.1 
shows an image from the BioID database used as a training image with these four facial 
parts marked on it.  
 
 

 

Fig. 1. One training image from the BioID database with the four proposed face parts shown 

State of the art feature detectors such as SIFT [13], SURF [1], and more recently 
ORB [15] have been applied and demonstrated impressive performance on challenging 
recognition and tracking tasks [14].  However, only in the case of SIFT [12] [3], and 
SURF [8] there had been some attempts to address face identification and recognition 
using it as descriptor. To the best of our knowledge ORB has not been applied on the 
mentioned problems here. It is a hypothesis of this work that face parts localization can 
be addressed by one, or a combination of these feature  detectors, especially the ORB 
since it shows top properties [15] a descriptor is aimed to demonstrate. Figure.2 shows 
a typical frontal face, from a benchmark image database for face identification BioID 
[4], with marked the 50 most salient feature points output by (a) ORB, (b) SIFT, and (c 
) SURF detectors. 

Since one aim is to localize face parts from typical images considering illumination 
variations, relevant backgrounds, and face variations by expressions such as talking, 
smiling, closing eyes, wearing glasses, it can be shown that these three feature detectors 
have different responses from each other.   

This work proposes to learn from a set of images, a supervised training set of the 
closest features (ORB and SURF) to the face parts, and then classify other images for 
face parts by devising a k-means with relative weighting for the trained centroids of the 
parts.  Initial tests had shown that SIFT, besides being the much slower detector, 
picked the farthest from the face parts aimed. It is a hypothesis from this work that ORB 
and SURF features can be used for an efficient face parts localization. A novel 
algorithm for performing such selection and localization is presented next. 
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Fig. 2. Example images from the BioID database with (a) 50 highest ORB features shown; (b) 50 
highest SIFT features shown; (c) 50 highest SURF features shown 

4 Relative Spatial Weighting of Features  

We propose to train and select a subset of features (ORB and SURF) in order to have 
the large scale face parts being localized and sampled for sure. For this we devise the 
following algorithm which positively weights the closest features to the facial parts, 
and negatively the farthest. First, it selects a subset of images for training, label the 
most salient normalized features (up to 30 ORB and SURF) belonging to the face parts; 
Average those feature outputs to each face part and keep its statistics (mean values and 
relative distances of the centroids); For a new image, compute and normalize the 30 
most salient features (ORB and SURF); then for each feature, from the most to the least 
salient, run a k-means having as seeds the trained face parts; if a feature is decided close 
and similar enough (e.g. thresholded by σ deviation of the trained sets) to the face part it 
is selected and added for new statistics, if not it is discarded; select only up to 20 
features for each image. 

5 Results and Evaluation 

BioID [4] provides a free database of face images widely used to benchmark face 
identification and recognition algorithms. It has 1521 images with 23 different subjects 
in a variety of conditions such as talking, smiling, illumination changes, and small 
rotations. For the evaluation it was manually partitioned by us in 7 categories regarding 
frontal and rotation, open and closed eyes, smiling and neutral, wearing glasses. A set 
of 30 images was randomly picked from all the sets and were used as a training set. 
Results were averaged for 10 different rounds of images for training. The category sets 
are not uniform since the purpose of the manual partition was to analyze the particular 
variations on the database. Table.1 gives the exact numbers of images in the partitions, 
as well as the total features detected in the face parts and their average by image.   

In Table.1 it can be seen that in all image partition sets the algorithm proposed 
detected 6 (30%, 6 out of 20 maximum) to 10 (50%, 10 out of 20 maximum), with 
average of 7 (35%, 7 out of 20 maximum) facial features, or face parts. As the images 
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from the database show relevant backgrounds, and the faces are under variations of 
lighting and expressions, by selecting 30% to 50% of relevant points in the face parts is 
a successful achievement for the task since there are only 4 face parts (eye left, eye 
right, nose, mouth) considered, and no training on templates or appearance models was 
done, but a fast feature selection and relative weighting on clustering was proposed. 
Similarly testes were also performed varying the size of the training set for randomly 
10% (152) of the images, 30% (456) and 50% (760), and on average the number of 
detected features per image in the face parts (out of 20 maximum) was  respectively  
7, 7, and 7, keeping the relevance around 35% as shown in Table.1 

Table 1. Results (Cross-validated) showing the number of facial features in sets of  images from 
the BioID database. A random set of images (10%, 30% and 50%) was separated for training,. 
The maximum number of features that could be selected  is 20.  

 
 

Figure.3 shows some output images from the algorithm proposed. The images are 
taken from different partition sets and they show the selected (out of 20 maximum) 
feature points (mixed ORB and SURF) and the marked for reference face parts. Only 
points in the face parts would be 100% success. The variations on illumination, face 
rotation and expressions are illustrated. It can be seen that the selected features are 
concentrated on the faces mostly, and we know that these feature detectors would 
respond strongly to salient regions in the background. However, the concentration on 
the face, and especially on the face parts is the result of the proposed algorithm which 
positively weights points in the face parts and negatively outside. The results on the 
BioID database confirms that the proposed algorithm selects a subset of features from 
ORB and SURF localized mostly in the face, and in the face parts. Also, it has been 
shown that ORB detector responds much better to face features than the others SIFT 
and SURF, and it can be further explored for identity recognition as well.   

���������	
��

�����		��	

�����
	
��	���	

��
����

�����	�����	��	

��������	������
	

��	���	����	����


����	�	���� 

!"�����	�����	��	

��������	������
	���	

�����	��	���	����	����
	

���	��	#$	��%��� 

/��!����	�

������������	���

����#�#�

+��

+��

&-�

���


-�

��

+��

+��

&-�

���


-��

��

+��

+��

&-�

���


-��

��

���������#�+ +
 ++ 1 +�2 -� �- -  

���������#�� 2 &
 �& &+ && ��
 2 +� +�

���������#�� +2- +- +� ++22 2&2 -�
 - - -

���������#�& &�� �&� �&
 ��2 �
� +2
- 1 1 1

#�����+ � �
2 ��� �-+2 ��- +�
 
 
 1

#������ ��& +
& ++1 +��� +��� -1& - - -

�%��+ 
- - &2 -+ &- �&
 1 1 


����� &'() &$(* +(& ),)* ++') **(& + + +



 Relative Spatial Weighting of Features for Localizing Parts of Faces 421 

 

The preference for the ORB and SURF features for this work were twofold: first, 
they were not explored fully yet for face parts, or face identification, as the SIFT 
detector [3] [12]; second their properties of robustness to noise, low computational 
complexity, and localization [15] [10] would favor their use instead of SIFT. Although  
on average the contribution of SURF features in the selected set of points in the face 
parts are around 5% for this database, their computation is one order of magnitude 
faster than SIFT [15], and SURF features would possibly bring more robustness to 
scale variations than ORB for different (although not tested here)  databases. The 
presence of SURF features is constant and important on the final selected features. 
Matching would be done for ORB and SURF features as originally proposed [1] [15], 
although the results presented here open the path for exploring multiple face parts 
localization and hybrid matching schemes for binary and real valued features possibly. 
 

 

Fig. 3. Output images showing the selected features and their positions relative to the face parts 

6 Conclusion and Future Work 

In this paper we have proposed a new algorithm to train and select a subset of ORB and 
SURF features for face parts localization. It has been shown that the selected features 
from the algorithm concentrates on the face, and the facial features as eyes, eyebrows, 
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nose and mouth. The selected features represent 40% on average the regions detected 
on BioID, a benchmark free image database. At least 30% of the points detected were in 
the face parts considering the most challenging partition set. ORB features have been 
demonstrated here to be well suited for face identification, and face parts localization. 
Results are interesting to investigate further the use of combined ORB and SURF 
features for multiple face parts identification and recognition for close to real-time 
applications since those features are one order of magnitude faster than state of the art 
feature detector as SIFT. 

Acknowledgments. This work was partially supported by FAPDF and CIC/UnB.  
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Abstract. We present a novel multi-shot re-identification method, that
merges together two different pattern recognition paradigms for describ-
ing objects: feature-based and relation-based. The former aims at encod-
ing visual properties that characterize the object per se. The latter gives
a relational description of the object considering how the visual proper-
ties are interdependent. The method considers SDALF as feature-based
description: SDALF segregates salient body parts, exploiting symmetry
and asymmetry principles. Afterwards, the parts are described by color,
texture and region-based features. As relation-based description we con-
sider the covariance of features, recently employed for re-identification:
in practice, the parts found by SDALF are additionally encoded as co-
variance matrices, capturing structural properties otherwise missed. The
resulting descriptor, dubbed SDALF+C, is superior to SDALF by about
2% and to the covariance-based description by a 53%, both in terms of
average rank1 probability, considering 5 different multi-shot benchmark
datasets (i-LIDS, ETHZ1,2,3 and CAVIAR4REID).

Keywords: re-identification, SDALF, covariance of features.

1 Introduction

People re-identification (re-id) has definitely become a primary module for the
multi-camera video surveillance systems, allowing to recognize individuals across
different locations and times. The re-id literature can be partitioned in different
ways: direct vs. learning-based, and single-shot vs. multi-shot methods. Direct
approaches [2,1,3] are on-line feature extractors, while learning-based techniques
[11,7,12,10,4] require a training phase prior to work. Single-shot [2,11,7,10,4]
and multi-shot [2,12,1,3] approaches differ for the number of images exploited
to describe each probe or gallery subject: multi-shot strategies employ several
shots (images) for building an individual signature.

In this paper, we present an approach for direct, multi-shot re-identification,
that aims at joining two different ways to represent objects, employing feature-
based and relation-based descriptions. Features serve to encode the tangible as-
pects of an entity, while relation-based descriptions explain how these aspects

J. Ruiz-ShulcloperandG. Sanniti di Baja (Eds.): CIARP 2013, Part II, LNCS 8259, pp. 423–430, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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are inter-related. Both approaches have their pros and cons. Features are intu-
itive to understand and easy to extract, but cannot usually describe structural
information. Relation-based representations are mostly suitable to encode struc-
tural information, but their effectiveness is usually limited to this purpose. In
re-id, most of the descriptors are feature-based, while the sole relation-based
representation is the covariance of features [1].

Our approach aims at joining both paradigms, exploiting SDALF [2] as feature-
based descriptor. SDALF is a symmetry-based description of the human body,
and it is inspired by the well-known principle that natural objects manifest sym-
metry in some form. Using symmetry and asymmetry principles, SDALF isolates
three human body regions, usually corresponding to the head, the torso and
the legs. After that, torso and legs regions are described by heterogeneous fea-
tures, and matched by minimizing a proper distance. Our approach complements
this scheme, by adding relation-based descriptions: essentially, the body regions
found by SDALF are encoded as Mean Riemannian Covariances (MRCs) [1],
which are semidefinite positive descriptors built by fusing multiple covariances
of features, these latter encoding each shot available of an individual. MRCs are
then added to the final descriptions (one for each body region). This produces
a novel method, dubbed here SDALF+C.

In the experiments, we show that SDALF+C is an effective solution for direct
multi-shot re-identification, allowing to get better results than their single com-
ponents, on five different multi-shot benchmark datasets (i-LIDS, ETHZ1,2,3
and CAVIAR4REID).

The rest of the paper is organized as follows. In Sec. 2, SDALF and the Mean
Riemannian Covariance Grid (MRCG [1], from which the MRC descriptor is
extrapolated) are briefly summarized. Sec. 3 details our approach, and Sec. 4
presents the experimental results. Finally, in Sec. 5, conclusions are drawn and
future perspectives are envisaged.

2 Fundamentals

2.1 Symmetry Driven Accumulation of Local Features (SDALF)

Let us suppose to haveM images portraying an individual: the SDALF descriptor
starts by isolating the foreground (the human body) employing the STEL gen-
erative model [9]. After that, SDALF individuates three main body parts (head,
torso, legs) by exploiting horizontal asymmetry principles: the rationale is that the
head and the torso are horizontally asymmetric (with respect to area and color),
and the same applies for the torso and the legs. On the other hand, vertical sym-
metry criteria allow to weightmore those features which are located near the verti-
cal axis of symmetry of the human body, thus pruning out distracting background
clutter that lies on the peripheral portions (see Fig. 1 for some examples).

Given the two regions Regtorso, Reglegs (the head is discarded as only a few
pixels do not contain enough discriminative content), SDALF extracts com-
plementary visual aspects of the human body appearance, highlighting: i) the
global chromatic content by the color histogram (in the multiple-shot case,
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M histograms for each part are considered); ii) the per-region color displace-
ment employing Maximally Stable Colour Regions (MSCR) [6]; iii) the presence
of Recurrent Highly Structured Patches (RHSP), estimated by a per-patch sim-
ilarity analysis. in the multiple-shot case, it is worth noting that 1) the MSCRs
are opportunely distilled from theM images by employing a Gaussian clustering
procedure [5], which automatically selects the number of components keeping the
means, and 2) the RHSP descriptors are extracted considering different frames.

This process applies for all the M individuals of the probe and the gallery
sets, obtaining M different signatures. Each signature of the probe set is then
compared with the gallery set, looking for a match. To this aim, a proper distance
dSDALF is employed. For further details, please refer to [2].

2.2 Mean Riemannian Covariance Grid (MRCG)

Let I be an image and F be a d-dimensional feature image extracted from I,

F = θ(I)

where function θ can be any set of d mappings, such as color, intensity, gradients,
filter responses, etc.. For a given rectangular region Reg ⊂ F , let {fh}h=1,...,n be
the d-dimensional feature points inside Reg (n is the number of feature points,
e.g. the number of pixels). We represent region Reg by the d × d covariance
matrix of the feature points

CReg =
1

n− 1

n∑
h=1

(fh − μ)(fh − μ)ᵀ (1)

where μ is the mean of the feature points.
In the original approach, each of theM images of the subject A is decomposed

in K patches, where each patch has a fixed location in the image plane. For each
patch instance (intended as the patch content of a single image), d dense fea-
tures are extracted, so that a d×d covariance matrix can be built for each patch
instance. To distill a single descriptor for each patch, which takes into account
all the M images of the same subject (i.e., all his patch instances), the Mean
Riemannian Covariance (MRC) is calculated, by computing the Karcher mean
[8] on all the local covariances. In practice, for patch k, a “mean” covariance μA,k

is built, which summarizes all the correspondent patch instances. Then, in order
to weight each MRC, a discriminant index is computed, which considers how
different is a particular patch (i.e., its related MRC), from all the correspondent
patches of all the other probe images that should be taken into account. In prac-
tice, for patch k, a discriminant σA,k is created. The same approach is applied
on the gallery images. At the end of the process, each patch is described by an
MRC, and a discriminant index. To match the probe with a gallery subject B,
a distance is calculated, which has the following form

dMRC(A,B) =
∑

k=1,...,K

σA,k + σB,k

ρ(μA,k, μB,k)
(2)

where ρ is a proper distance between covariance matrices. Minimizing such dis-
tance gives the best match. For further details, please refer to [1].
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3 Our Approach

Our approach wants to combine SDALF and MRC, since the two descriptors are
highly complementary. While SDALF extracts heterogeneous visual properties
from the human appearance, MRC tells how visual properties are related with
each other. For this purpose, SDALF is run in its original version, obtaining
for person A a given descriptor. After that, on the torso and the legs regions
Regtorso, Reglegs found by SDALF, for all theM images of the same individual, d-
dimensional covariances matrices are built, following Eq. 1. The following d = 11
features are taken into account:[

x, y,Rxy;Gxy;Bxy;∇R
xy, θ

R
xy,∇G

xy, θ
G
xy,∇B

xy, θ
B
xy

]
(3)

where x and y are pixel location, Rxy, Gxy, Bxy are RGB channel values and
∇ and θ correspond to gradient magnitude and orientation in each channel,
respectively. We voluntarily exploit the dense features employed in [1], in or-
der to understand the exact added value that the two descriptors bring in the
joint framework. Once the covariances are extracted, the related MRCs (one for
the torso, another for the legs) and the associated discriminants σ described in
Sec. 2.2 are also computed. The two MRCs together with their discriminant in-
dexes compose the relation-based description. After computing the descriptors
on all the probe and gallery subjects into play, the matching can be performed
considering two subjects A and B. To this end, the two distances reported above
for the SDALF and the COV descriptors are joined together in a weighted linear
fashion, as follows:

dSDALF+C(A,B) = αdMRC(A,B) + (1 − α)dSDALF (A,B) (4)

where the α coefficient serves to weight the importance of the single description.
Estimating the value of α giving the maximum performance will help to under-
stand the interplay of the two components. It is important to note that the two
distances are opportunely normalized to sum up to one.

4 Experiments

Experiments have been performed on different multi-shot datasets (i-LIDS for
re-id [11], ETHZ1 1, 2, and 3 , and CAVIAR4REID2), in order to evaluate our
proposal against diverse re-id problems, as explained in the following. As metrics,
we adopt the standard Cumulative Matching Characteristic (CMC) curve, which
represents the probability of finding the correct match in the top n ranks; in
practice, after calculating the distance of a probe individual with all the gallery
subjects, a ranking is made, and the position of the correct match is kept. On the
CMC curve, the rank 1, rank 10 and rank 20 probabilities are usually reported
numerically, as so as the normalized Area Under the Curve (nAUC), which is the
area under the entire CMC curve normalized over the total area of the graph. As

1 http://www.liv.ic.unicamp.br/~wschwartz/datasets.html
2 http://www.lorisbazzani.info/code-datasets/caviar4reid/

http://www.liv.ic.unicamp.br/~wschwartz/datasets.html
http://www.lorisbazzani.info/code-datasets/caviar4reid/
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comparative approaches, we consider SDALF, the MRC part taken alone, and
the MRCG approach [1], when the results are available.

In order to assess how the two components of the approach interact, we per-
form an explorative analysis by mediating the nAUC scores obtained on all the
datasets (for the experimental protocol for each benchmark, see below) with dif-
ferent multi-shot cardinalities, i.e., number of images that compose a signature,
i.e., M = 2, 5.

Fig. 1. Example of partitions obtained
with the SDALF approach (best viewed
in colors)
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Fig. 2. Analysis of the
influence of the α value
on the SDALF+C perfor-
mance: high α means high
weight for the MRC part
of the descriptor (best
viewed in colors)

As visible in Fig. 2, we have forM = 2 the best nAUC for α = 0.2 and the same
happens withM = 5: this witnesses that SDALF plays a primary role, but MRC
furnishes a complementary information which produces the best performance,
independently on the cardinality of the multi-shot signature. Therefore, in all
the next experiments, we report the performance of SDALF+C employing this
α value as fixed parameter. Using this setting, we overcome in all the datasets
the performances of SDALF and MRC. In addition, for each dataset, we report
the performance with αbest, i.e., the alpha value for which SDALF+C gives its
best on that benchmark (that is, the best nAUC): this provides an upper bound
of the SDALF+C performances.

In the following, we discuss the results obtained on each dataset.

i-LIDS for Re-Identification Dataset. The i-LIDS Multiple-Camera
Tracking Scenario dataset is a public video dataset captured at a real airport
arrival hall in the busy times under a multi-camera CCTV network. In [11], i-
LIDS for re-identification dataset has been built from i-LIDS Multiple-Camera
Tracking Scenario. The dataset is composed by 479 images of 119 people. The
images, normalized to 64× 128 pixels, derive from non-overlapping cameras, un-
der quite large illumination changes and subject to occlusions. This dataset a
critical multi-shot scenario because the average number of images per person is
4, and thus some individuals have only two images.
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The signatures are built from M images of the same pedestrian, randomly se-
lected. Due to the average number of images per pedestrian, we tested SDALF+C
with M = 2, running 10 independent trials for each case. It is worth noting that
some of the pedestrians have less than 4 images: therefore, in such a case, we
simply build a multi-shot signature composed by less instances. The results

Table 1. Performances on i-LIDS for re-identification

i-LIDS M=2 rank1 rank5 rank10 rank20 nAUC

SDALF 45.04 69.13 78.30 86.55 93.02
MRC only 9.78 29.46 40.27 52.35 74.43
MRCG [1] 46.25 67.50 76.00 83.75 -
SDALF + C (α = 0.20) 47.40 72.55 80.43 87.66 93.36
SDALF + C (αbest = 0.10) 47.14 72.24 80.13 87.26 93.41

show that SDALF+C gives better performances (in terms of nAUC) of all its
separate components, overcoming also the MRCG approach: this happens either
with the α value kept fixed at 0.2, and with the best value for this dataset, i.e.,
α = 0.1.1

ETHZ Dataset. The data are captured from moving cameras in a crowded
street. The challenges covered by this dataset are illumination changes, occlu-
sions and low resolution (32×64 pixels). This dataset contains three sub-datasets:
ETHZ1 with 83 people (4.857 images), ETHZ2 with 35 people (1.936 images),
and ETHZ3 contains 28 with (1.762 images). Even if this dataset does not mirror
a genuine re-identification scenario (a single camera is employed), it still carries
important challenges not exhibited by other public dataset, as the high number
of images per person. The protocol is the same as the one employed for i-LIDS,
but here we also include M = 5 (as more per-person images are available). As
visible in Table 2, in all the cases the nAUC performances of SDALF+C, both
choosing the best α, or keeping it fixed at α = 0.2, are better that the SDALF
and the MRC ones. Please note that here, being the nAUC scores near 100%, it
is more difficult to get a strong improvement.

CAVIAR for Re-Identification Dataset. CAVIAR4REID dataset con-
tains images of pedestrians extracted from the CAVIAR repository, and consists
of several images captured in a shopping centre in Lisbon. A total of 72 unique
pedestrians have been identified: 50 with both the camera views (20 images
per pedestrian) and 22 with one camera view (10 images per pedestrian). The
challenging features of this dataset are a broad change in the image resolution,
with a minimum and maximum size of 17× 39 and 72× 144, respectively; pose
variations are severe, as so as the illumination changes and the occlusions.

In this case, we took only the 50 individuals for which 20 images are available,
10 per camera: images taken from one camera form the probe set, the other

1 We remember here that as best performance for an approach we consider that one
which gives the best nAUC, irrespective of the other figure of merits.
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Table 2. Performances on ETHZ1 (a), ETHZ2 (b), ETHZ3 (c)

(a) ETHZ1

ETHZ1 M=2 rank1 rank5 rank10 rank20 nAUC

SDALF 74.12 89.20 92.24 95.08 96.68
MRC only 18.48 33.61 44.41 59.13 75.20
SDALF + C (α = 0.20) 73.86 88.39 92.72 95.04 96.71
SDALF + C (αbest = 0.20) 73.86 88.39 92.72 95.04 96.71

ETHZ1 M=5 rank1 rank5 rank10 rank20 nAUC

SDALF 86.36 94.07 95.81 96.60 97.80
MRC only 23.47 43.47 54.87 70.12 81.53
SDALF + C (α = 0.20) 86.70 94.36 95.93 96.80 97.99
SDALF + C (αbest = 0.20) 86.70 94.36 95.93 96.80 97.99

(b) ETHZ2

ETHZ2 M=2 rank1 rank5 rank10 rank20 nAUC

SDALF 83.71 95.77 98.69 99.43 98.11
MRC only 20.00 51.14 72.57 91.77 80.54
SDALF + C (α = 0.20) 84.51 96.17 98.63 99.83 98.36
SDALF + C (αbest = 0.10) 84.91 96.46 98.51 99.71 98.57

ETHZ2 M=5 rank1 rank5 rank10 rank20 nAUC

SDALF 90.97 97.71 99.26 99.43 98.94
MRC only 29.89 66.00 84.29 96.11 86.93
SDALF + C (α = 0.20) 92.57 98.69 99.26 99.83 99.26
SDALF + C (αbest = 0.20) 92.57 98.69 99.26 99.83 99.26

(c) ETHZ3

ETHZ3 M=2 rank1 rank5 rank10 rank20 nAUC

SDALF 88.79 97.86 99.64 100.00 98.86
MRC only 33.29 74.54 86.21 96.07 86.33
SDALF + C (α = 0.20) 92.79 99.50 99.71 100.00 99.40
SDALF + C (αbest = 0.30) 92.14 99.43 100.00 100.00 99.46

ETHZ3 M=5 rank1 rank5 rank10 rank20 nAUC

SDALF 95.14 99.21 100.00 100.00 99.30
MRC only 42.50 82.43 90.79 98.07 90.28
SDALF + C (α = 0.20) 96.43 100.00 100.00 100.00 99.76
SDALF + C (αbest = 0.30) 97.50 100.00 100.00 100.00 99.87

camera individuates the gallery. This way, chromatic dissimilarity between probe
and gallery images is maximized. All the images are resampled at 64× 32 pixels,
and ten independent trials have been run. Results are reported in Table 3. In this
case, the best performances of SDALF+C are obtained exploiting the standard
α = 0.2 (so α and αbest do coincide), overcoming SDALF and the MRC ones.

5 Conclusions

In this paper, we provide a novel hybrid descriptor for re-id, SDALF+C, which
joins together a feature-based and a relation-based description of the human ap-
pearance. The former focuses on characterizing visual properties of the human
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Table 3. Performances on CAVIAR4REID

CAVIAR4REID M=2 rank1 rank5 rank10 rank20 nAUC

SDALF 32.16 57.20 70.64 84.12 83.34
MRC only 8.32 24.88 38.60 58.72 64.75
SDALF + C (α = 0.20) 34.96 60.80 72.68 85.24 84.55
SDALF + C (αbest = 0.20) 34.96 60.80 72.68 85.24 84.55

CAVIAR4REID M=5 rank1 rank5 rank10 rank20 nAUC

SDALF 72.04 89.20 94.28 98.08 96.52
MRC only 15.72 42.04 58.60 78.08 77.30
SDALF + C (α = αbest = 0.20) 74.40 91.32 96.16 96.68 97.42

body, the latter captures how visual properties are interrelated. The experimen-
tal results show that, in terms of nAUC, SDALF+C overcomes the single parts
(visual-based and relation-based) of which it is composed, in a systematic way.
Therefore, our proposal paves the way for further studies, aimed at providing
hybrid solutions for the single-shot re-identification case. In addition, we plan to
embed SDALF+C in a learning framework, in order to automatically infer the
best value for alpha for a given scenario.

References

1. Bak, S., Corvee, E., Bremond, F., Thonnat, M.: Multiple-shot human re-
identification by mean riemannian covariance grid. In: AVSS (2011)

2. Bazzani, L., Cristani, M., Murino, V.: Symmetry-driven accumulation of local
features for human characterization and re-identification. CVIU 117(2), 130–144
(2013)

3. Bazzani, L., Cristani, M., Perina, A., Murino, V.: Multiple-shot person re-
identification by chromatic and epitomic analyses. PRL 33(7), 898–903 (2012)

4. Figueira, D., Bazzani, L., Quang, M.H., Cristani, M., Bernardino, A., Murino, V.:
Semi-supervised multi-feature learning for person re-identification. In: AVSS (2013)

5. Figueiredo, M., Jain, A.K.: Unsupervised learning of finite mixture models.
TPAMI 24(3), 381–396 (2002)

6. Forssen, P.E.: Maximally stable colour regions for recognition and matching. In:
CVPR (2007)

7. Hirzer, M., Roth, P.M., Kostinger, M., Bischof, H.: Relaxed pairwise learned metric
for person re-identification. In: ECCV (2012)

8. Pennec, X., Fillard, P., Ayache, N.: A riemannian framework for tensor computing.
IJCV 66(1), 41–66 (2006)

9. Perina, A., Jojic, N., Cristani, M., Murino, V.: Stel component analysis: Joint
segmentation, modeling and recognition of objects classes. IJCV 100(3), 241–260
(2012)

10. Satta, R., Fumera, G., Roli, F., Cristani, M., Murino, V.: A multiple component
matching framework for person re-identification. In: Maino, G., Foresti, G.L. (eds.)
ICIAP 2011, Part II. LNCS, vol. 6979, pp. 140–149. Springer, Heidelberg (2011)

11. Zheng, W., Gong, S., Xiang, T.: Associating groups of people. In: BMVC (2009)
12. Zheng, W., Gong, S., Xiang, T.: Re-identification by relative distance comparison.

TPAMI (99) (2012)



Multi-sensor Fusion Using Dempster’s Theory
of Evidence for Video Segmentation

Björn Scheuermann, Sotirios Gkoutelitsas, and Bodo Rosenhahn

Institut für Informationsverarbeitung (TNT)
Leibniz Universität Hannover, Germany

{last name}@tnt.uni-hannover.de

Abstract. Segmentation of image sequences is a challenging task in computer
vision. Time-of-Flight cameras provide additional information, namely depth,
that can be integrated as an additional feature in a segmentation approach. Typi-
cally, the depth information is less sensitive to environment changes. Combined
with appearance, this yields a more robust segmentation method. Motivated by
the fact that a simple combination of two information sources might not be the
best solution, we propose a novel scheme based on Dempster’s theory of evi-
dence. In contrast to existing methods, the use of Dempster’s theory of evidence
allows to model inaccuracy and uncertainty. The inaccuracy of the information is
influenced by an adaptive weight, that provides a measurement of how reliable a
certain information might be. We compare our method with others on a publicly
available set of image sequences. We show that the use of our proposed fusion
scheme improves the segmentation.

1 Introduction

Segmentation of foreground objects in video sequences is a fundamental step in many
computer vision applications and has been widely studied in the last years. A popular
application in movie production is the integration of virtual objects into a sequence [1].
Because of many aspects in real-world scenarios video segmentation is a very challeng-
ing task. Illumination changes or background appearance changes, caused by people
walking around, are typical problems that need to be treated.

The segmentation problem can be formulated using probabilistic models like Markov
or conditional random fields. It has been shown, that the maximum a posteriori solution
for these models corresponds to the discrete minimization of an appropriate energy
function [2–4].

Time-of-Flight (ToF) cameras are perfect candidates to simplify the problem of bi-
nary video segmentation. ToF cameras use active sensors to measure the time taken by
infrared light to travel to the object and back to the camera. The travel time corresponds
to a certain depth value. Thus, ToF cameras are able to determine the depth value for
the pixels in an image, which can be seen as additional information for each pixel.

The proposed algorithm is related to many recent works on binary image or video
segmentation [2–7]. In [2–4], the authors use a discrete energy minimizing framework
for interactive image segmentation. The problem of segmentation is transferred on a
graph, where the minimum cut corresponds to the minimum energy state. In [5] and

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part II, LNCS 8259, pp. 431–438, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Example segmentation result by fusing color and depth information using Dempster’s
theory of evidence. The explicit modeling of uncertainty forces the algorithm to segment the
person in the foreground even if the depth information of the person in the background is similar.
Input data taken from [9].

in [7], stereo images where used to estimate the scene depth. They showed that the
combination of estimated depth and color improves the segmentation result. However,
the estimation of the scene depth is a non trivial problem that is prone to errors in
real-world scenarios.

The two most related methods are [8, 9]. In [8], Scheuermann and Rosenhahn pro-
posed to use Dempster’s theory of evidence for energy minimizing segmentation. They
proposed a variational energy functional, including mass functions to fuse color and
texture information, and solved it using level sets. In [9], Wang et al. proposed a very
similar method, the so-called ToFCut algorithm. They combine depth and color cues in
a discrete energy function and weight the information adaptively.

In this paper, we propose a novel method to fuse color and depth information in
a discrete energy function. Therefore we use Dempster’s theory of evidence to com-
bine the different information. Using the proposed feature fusion allows us to explicitly
model inaccuracy and uncertainty. This modeling provides an elegant way to incorpo-
rate the reliability of a feature channel. The information about how reliable a feature
channel might be, can be either defined manually, based on prior information, or using
our proposed adaptive weighting function. The adaptive weighting uses the symmetric
Kulback-Leibler divergence as a measure of reliability. Therefore we compute distances
of foreground and background histograms based on the segmentation result of the pre-
vious frame.

In summary, our main contributions are:

– A novel discrete energy function including Dempster’s theory of evidence for fea-
ture fusion.

– An adjustable mass function, that can either use prior information or an adaptive
weighting function based on the symmetric Kullback-Leibler divergence.

– Improved color and depth models, that are more robust.

In contrast to [9], we propose to use Dempster’s theory of evidence to fuse color and
depth information. We show that the proposed discrete energy function is more intu-
itive then the ToFCut functional. Furthermore, we propose stable functions, based on
the Kulback-Leibler divergence, to adaptively compute the confidence of each sensor.
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The experimental validation on the data set used in [9] shows that the proposed method
outperforms ToFCut.

2 Segmentation by Discrete Energy Minimization

The problem of binary segmenting an image or image sequence can be formalized by
minimization of a discrete energy function E : Ln → R. Usually the energy function
is written as the sum of unary ϕi and pairwise ϕi,j potentials.

E(x) =
∑
i∈V

ϕi(xi) +
∑

(i,j)∈E
ϕi,j(xi, xj) , (1)

where x ∈ Ln is a labeling, V corresponds to the set of all image pixels and E is the
set of all neighboring pixels. In case of binary segmentation, the label set L consists
of foreground (FG) and background (BG) labels. The unary potential ϕi is given as
the negative log-likelihood of a probability measure, e.g. a standard Gaussian mixture
model (GMM) [4]:

ϕi(xi) = − log p(Ii | xi = L) , (2)

where Ii is the feature vector of pixel i, e.g. RGB values. L is either FG or BG and p
is the likelihood. The pairwise potential is usually given by a contrast sensitive Ising
model, defined by

ϕi,j(xi, xj) = γ · dist(i, j)−1 · [xi �= xj ] · exp(−β||Ii − Ij ||2) . (3)

Here γ specifies the impact of the pairwise potential, [·] is the indicator function and
dist(·) is the Euclidean distance between neighboring pixels. The parameter β is defined
as β = (2〈||Ii − Ij ||2〉)−1, where 〈·〉 indicates expectation [10].

In [9], the energy function is extended by means of additional depth information.
Therefore, the unary potential takes the form:

ϕi(xi) = −λc · log pc(Ii | xi = L)− λd · log pd(Di | xi = L) , (4)

where Di is the depth of pixel i. The likelihood pc is a GMM learned using 3D his-
tograms with 83 bins in the RGB color space and the likelihood for depth pd is modeled
by two Gaussian distributions. The parameters λc and λd are used to adaptively weight
the impact of both cues. They are based on the discriminative capabilities of the two
likelihoods. The color confidence is computed using the Kulback-Leibler divergence
(KL) between the grayscale histograms of frames It−1 and It (denoted by δKL

lum) and
the KL divegence between foreground and background color histograms of frame It−1

(δKL
rgb ) . This yields the confidence of the color term

Rc = exp

(
− δ

KL
lum

ηlum

)
·
(
1− exp

(
−
δKL
rgb

ηrgb

))
, (5)

with parameters ηlum and ηrgb. The depth confidence Rd is computed using the dis-
tance between the average depth values for foreground and background in frame It−1
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(Δχ = |(χf + χ′f )− (χb + χ′b)|/2). Here, χf , χ′f , χb and χ′b are the mean values of
the Gaussian distributions pd. This yields

Rd = 1− exp

(
−Δχ
ηd

)
, (6)

with the additional parameter ηd. Finally the adaptive weights are defined as λc =
Rc/(Rc+Rd) and λd = Rd/(Rc+Rd). For more details on the likelihood terms and
the adaptive weighting the reader is referred to [9].

In contrast to ToFCut, we propose to use the symmetric Kulback-Leibler divergence,
since the symmetric distance does not depend on the order of the feature channels. We
also use the symmetric KL divergence to measure the distance between FG and BG
depth histograms in frame It−1, since the given definition using Δχ lacks in precision.

It has been shown that, using the defined unary and pairwise potentials, the energy
(1) is submodular and can hence be represented by a graph G [10]. In this form, the
global minimum of the energy function corresponds to the minimum cut of graph G
that can be computed using standard maximum flow algorithms [11].

2.1 Dempster’s Theory of Evidence

We continue with a brief review of Dempster’s theory of evidence [12, 13], which is
later used to fuse color and depth cues. Several works [8, 14, 15] applied the theory to
image segmentation and showed that it can be superior to classical probability theory.

Dempster’s theory of evidence is a generalization of classical probability theory,
with the ability to jointly represent inaccuracy and uncertainty information. The theory
is build on so-called basic probability assignments (also known as mass functions), that
are defined on a hypotheses set Ω. In our case, the hypotheses set is composed by the
labels FG and BG. The mass function m(A) : ℘(Ω) → [0, 1] is defined on the power
set of Ω.

The quantity m(A) is interpreted as the belief strictly placed on hypothesis A. In
contrast to classical probability theory, this belief is distributed on both simple and
composed classes and models the impossibility to separate several hypotheses. This
characterizes the principal advantage of the evidence theory.

Another particular characteristic of Dempster’s theory, one which differs from clas-
sical probability theory, is: if m(A) < 1, then the remaining mass 1 −m(A) does not
need necessarily refute A (i.e. support its negation). Thus we do not have the so-called
additivity rule p(A) + p(A) = 1.

To fuse mass functions from different feature channels we use Dempster’s rule of
combination, denoted by m = m1 ⊗m2. This rule combines two independent bodies
of evidence, defined on the same hypotheses set Ω, into one body of evidence. Since
Dempster’s rule of combination has shown to be associative, we can combine informa-
tion arising from more than two channels.

3 Feature Fusion Using Dempster’s Theory of Evidence

In this Section we describe the details of our proposed segmentation scheme and show
similarities and differences to existing approaches.
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The unary potential used by ToFCut is defined as a weighted sum of negative log
likelihoods, see Equation (4), and can be reformulated as:

ϕi(xi) = − log
[
pc(Ii|xi = L)λc · pd(Di|xi = L)λd

]
, (7)

which can be interpreted as follows: if the confidence for a channel is near zero, the
likelihood is near one. That means, to ignore a channel we push the corresponding
likelihoods near one. This is a neither intuitive nor elegant solution. Furthermore, this
non-linear solution heavily depends on a good adaptive weighting function.

In contrast to ToFCut our unary potential is defined using Dempster’s basic proba-
bility assignment:

ϕDS
i (xi) = − logm(xi = L) , (8)

where the mass function m = mc ⊗ md fuses the information of color and depth
according to Dempster’s rule of combination. Thus the complete energy function reads:

E(x) =
∑
i∈V

ϕDS
i (xi) +

∑
(i,j)∈E

ϕi,j(xi, xj) , (9)

Using the proposed unary potential ϕDS
i , we can elegantly model the uncertainty of

a channel by defining the corresponding mass functions appropriately. Since we use
Dempster’s rule of combination, that is associative, we can also include additional in-
formation e.g. texture and motion.

3.1 Mass Functions

The most important difference between the proposed method and ToFCut is the fea-
ture fusion using Dempster’s theory of evidence instead of summing up weighted log-
likelihoods. Therefore the main contribution is the definition of appropriate mass func-
tions, that model inaccuracy and uncertainty in an elegant way. The mass functions
modeling color and depth information are defined by:

mc(Ω) =
λd(1− (pc(Ii|xi = FG) + pc(Ii|xi = BG)))

K
,

mc(L) = (1−mc(Ω))
pc(Ii|xi = L)

pc(Ii|xi = FG) + pc(Ii|xi = BG)

(10)

for the color term and

md(Ω) =
λc(1− (pd(Ii|xi = FG) + pd(Ii|xi = BG)))

K
,

md(L) = (1−md(Ω))
pd(Di|xi = L)

pd(Di|xi = FG) + pd(Di|xi = BG)

(11)

for the depth term, where L is either FG or BG. The uncertainty mc(Ω) and md(Ω) of
the models is defined by summing up the likelihoods. This means that the uncertainty
of a model is high, if FG and BG likelihoods are small. The normalization factor K is
chosen so thatmc(Ω)+md(Ω) = 1, which means that the sum of modeled uncertainty
is one. The parameters λd and λc are the adaptive weights coming from the histogram
analysis. They can be used to further increase or decrease the importance of a feature
channel.
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Table 1. Comparison between the proposed method DS and ToFCut obtained on four video se-
quences. The mean percentage error, computed across the whole sequence, is provided. The re-
sults obtained by ToFCut are taken from [9]. The proposed method clearly outperforms ToFCut.

Seq. ID WL MS MC CW

No. Frames 200 400 300 300

Alg. ToFCut DS ToFCut DS ToFCut DS ToFCut DS

% Error (Equal Weight Fusion) 1.37 0.54 0.51 0.23 0.16 0.06 11.68 2.21

% Error (Adaptive Weight Fusion) 1.35 0.51 0.51 0.23 0.15 0.06 0.38 0.26

3.2 Color and Depth Likelihoods

We also use an improved color model, since the one proposed in [9] is sensitive to small
bins and lacks in precision, leading to suboptimal segmentation results. Similarly to [9],
we use two 3D histogram with H = 83 bins in the RGB space for FG and BG. For each
bin we learn a 3D-Gaussian with mean μj

k, covariance matrix Σj
k and weight wj

k, for
k ∈ 1 . . .H and j ∈ {FG, BG}. The conditional probability is now given by:

p(Ii | xi = L) =
∑
i∈N

wL
i G(Ii|μL

i , Σ
L
i ) . (12)

In contrast to ToFCut we omit the normalization term, to make the model more robust.
To model the depth likelihoods we use the conditional probability proposed by Wang

et al. [9], where two Gaussian’s are used for foreground and background. Furthermore
we define a threshold T on the depth map, to exclude pixels from the training of the
Gaussians. This threshold forces pixels with a depth value smaller than T to be seg-
mented as background and improves our FG and BG models. Thus, the single parameter
T is intuitive and easy to adjust.

4 Experimental Results

In this Section, the evaluation of the proposed method is presented. For qualitative and
quantitative analysis we use the ToFCut data set with the corresponding ground truth
data 1. In Table 1 we present the obtained results and compare them to ToFCut by means
of mean percentage error of misclassified pixels [5, 9]. In the experiments we use an
equal weight fusion of color and depth information by setting λc = λd = 0.5 and an
adaptive weight fusion based on histogram analysis. The quantitative results show that
for both systems, equal weight fusion and adaptive weight fusion, the proposed fusion
with Dempster’s theory outperforms ToFCut. Important to notice is, that we only need
to adjust two intuitive parameters: γ, the weighting of neighboring discontinuities and
T , the threshold of the depth map. The parameters ηlum, ηrgb and ηd, controlling the
adaptive weighting, remain constant in all our experiments, while in [9] they have to be
adjusted for each sequence manually. Furthermore, the results show that the proposed

1 http://vis.uky.edu/

http://vis.uky.edu/
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Sequence: WL MS MC CW

Fig. 2. Example segmentation results, on four sample frames from each of the video sequences

fusion works well on many sequences without an adaptive weighting. Qualitative results
for all sequences are presented in Figure 2. They show that the small segmentation error
corresponds to a high-quality segmentation.

Besides video segmentation, interactive image segmentation is a challenging task.
Since there exists no benchmark including depth images, we use the same data set.
Qualitative results are presented in Figure 3. Since color and depth models are learned
from rough user strokes, the models are likely to be incomplete. By using the proposed
fusion based on Dempster’s theory of evidence, this is elegantly modeled in our mass
functions and the segmentation result outperforms ToFCut.

Fig. 3. Example interactive segmentation result. From left to right: Color image with initialization
(FG in blue/BG in red), corresponding depth image, segmentation result using ToFCut with equal
weights, proposed DS fusion with equal weights.
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5 Conclusion

The paper presents a novel video segmentation scheme. It uses Dempster’s theory of
evidence to fuse color and depth information. With Dempster’s theory of evidence we
are able to define the uncertainty of a feature in an elegant way using prior information
or an adaptive weight based on the symmetric Kullback-Leibler divergence. Further-
more, we propose adjusted color and depth models to improve the segmentation results.
The quantitative evaluation shows that the proposed method outperforms ToFCut. In
contrast to ToFCut, the proposed method has less parameters that are more intuitive and
easy to adjust. An additional property of the proposed fusion scheme is the naturally
given possibility to include further information like motion or user priors.
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Abstract. Early gesture recognition consists of recognizing gestures at
their beginning, using incomplete information. Among other applications,
these methods can be used to compensate for the delay of gesture-based
interactive systems. We propose a new approach for early recognition of
full-body gestures based on dynamic time warping (DTW) that uses a sin-
gle example from each category. Our method is based on the comparison
between time sequences obtained from known and unknown gestures. The
classifier provides a response before the unknown gesture finishes. We per-
formed experiments in the MSR-Actions3D benchmark and another data
set we built. Results show that, in average, the classifier is capable of recog-
nizing gestures with 60% of the information, losing only 7.29% of accuracy
with respect to using all of the information.

Keywords: Early gesture recognition, DTW, one-shot learning, Kinect.

1 Introduction

The automated recognition of gestures has many applications in diverse fields,
including video games, sign-language recognition and medical-monitoring sys-
tems, among others [5]. Very effective methods for gesture recognition are avail-
able nowadays, some of which require of specialized and expensive devices to
capture gestures features. The Kinect sensor emerged recently and since then
it has boosted the number of applications that make use of gesture recognition
technology. This is due to the fact that this sensor is cheaper than similar de-
vices, and provides useful data like RGB-D video and position of body joints
(skeleton) in real time [11]. Most of the available methods for gesture recogni-
tion provide an answer once the gesture has finished. However, there are certain
applications where the delay in gesture recognition is critical, e.g. in interac-
tive and security systems. Despite the importance of this problem, called early
gesture recognition, it has been scarcely explored [1,3,6,9].

This paper proposes a new method for early gesture recognition based on
DTW using the Kinect sensor. Input sequences are compared with stored ones by
using DTW, a prediction criterion is proposed to determine when the method is
confident of the identity of the gesture depicted in input sequences. The proposed
method can work under the one-shot learning framework [2], that is, using a

J. Ruiz-ShulcloperandG. Sanniti di Baja (Eds.): CIARP 2013, Part II, LNCS 8259, pp. 439–446, 2013.
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single example of each gesture category to be recognized. This is advantageous for
personalized and dynamic applications, where labeled data is scarce. Our method
is easy to implement, it has no training phase and it is very efficient. We report
results in a data set we built and in the MSR-Actions3D benchmark. Results
show that the method can recognize gestures with 60% of the information, losing
only 7.29% of accuracy with respect to using all of the information.

Early classification of gestures is a relatively young field; the first results were
published in 2006 by Mori et al. [6]. They wanted to use the anticipated time
to compensate the response delay of a robot that imitated their movements.
This method was based on dynamic programming, and their gesture dictionary
was composed by 18 different gestures that involved only the upper body. With
these specifications, they reported up to 1 second anticipation. M. Kawashima
et al. [3] and A. Shimada et al. [9] proposed early classification based on self
organized maps (SOM) where each neuron learns one different posture of the
possible gestures. In [9] the sparse code is extracted from the SOM and then the
classification is done. In [3], while the incoming gesture is performed, initial parts
from the gestures in the dictionary are chosen, with the intention of comparing
similar duration gestures. The comparison of gestures is performed by Hausdorff
distance, the gesture with the smallest distance is selected as the answer. Very
recently, Ellis et al. proposed a method for early recognition that compares
canonical poses (learnt from training data) to test gestures [1]. The authors
report acceptable recognition rates, but it is difficult to assess the anticipation
performance. In all of these works full body gestures are used, nevertheless, in
none of these gestures more than two limbs are moved at the same time.

Differently from previous work, in this paper we recognize no only upper or
lower body-movements but full-body movements. Also, our method is based on
a DTW cumulative algorithm instead of SOM [3,9] or learned poses [1], thus no
training phase is needed as in these alternative works. Furthermore, the proposed
approach can work with only one example of each gesture to be recognized, no
other early gesture-recognition approach can work under this setting.

2 One-Shot Early Recognition of Gestures with DTW

We want to classify full-body gestures made by one person regardless of his/her
weight, height or speed of execution of the gestures, More importantly, we want
to recognize a gesture before the user finishes its execution. This is a very com-
plex problem because we have to classify the gesture with incomplete information
and we do not know its duration beforehand. The problem is further complicated
because of the similarity of gestures in the vocabulary, mainly at their beginning
parts. Additionally we have to deal with noise incorporated by the considered
sensor in the data acquisition process. Therefore, it is complicated to trigger a
timely and correct response. We approach the problem with a DTW-based clas-
sifier and a novel criterion for early recognition. The proposed method comprises
3 main components: feature extraction, generating partial predictions, and trig-
gering the final decision, which are described in detail in the rest of this section.
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2.1 Data Representation

While the user is performing a gesture, a virtual skeleton is generated using
Kinect [11] and OpenNI/NITE libraries1. The skeleton consists of 15 - 3D co-
ordinates corresponding to body joints. The left plot in Figure 1 shows these
points. Data is recorded at a speed of 30 frames per second (fps). For each ges-
ture the user performs, we create a 15 × 3× number-of-frames matrix to save
the raw data, where number-of-frames varies depending on the gesture.

Raw-data collected with the Kinect sensor is represented using a simplified
version of the method presented in [8]. This representation reduces dimension-
ality and makes the data invariant to rotation, translation, and scale. Instead
of using principal component analysis as in [8] to get the torso frame, we pro-

pose the following: (1) obtain a normalized vector −→r from the segment (
−−−→
N, T ),

where N and T are the neck and torso joints respectively. (2) obtain a normal-

ized vector−→u from the segment (
−−−−→
N, RS), where RS is the right-shoulder joint,

adjusting−→r in order to −→u · −→r = 1 and still be a normalized vector, (3) calculate−→
t = −→u ×−→r . Then, we describe the first-degree joints, as in [8], (c.f. Figure 1,
left) with two angles (θ and ϕ) which are calculated relative to the torso frame
and the second-degree joints represented by two angles calculated relative
to the limb to which they are connected. The result of the transformation is a
16-dim. vector per-frame instead of the initial 3× 15 matrix.

Fig. 1. Left: the 15 points of the skeleton we use: first-joints (in red), second-joints (in
blue), green circles are used to calculate the torso frame. Right: (taken from [8]) shows
the torso frame(a), and the angles representing first (b) and second (c) degree joints.

2.2 Early Classification

Let D = {G1, . . . , GR} be the dictionary of gestures after the data transforma-
tion representation process and Gr = {fr(1), . . . , fr(Tr)} be one of the gestures
in the vocabulary for r ∈ {1, . . . , R}. Each Gr is composed of a sequence of
Tr−frames, where each frame is represented by 16 angles as described in the
previous section: f r(tr) = {θ1, . . . , θ8, ϕ1, . . . , ϕ8, }. One should note that we as-
sume we have a single gesture of each particular class, that is, a one-shot learning
scenario [2], thus we have R different classes of gestures.

1 http://www.openni.org/

http:// www. openni. org/
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The new gesture we want to recognize is denoted byGT ={fT (1), . . . , fT (TT )},
thus GT has TT frames. The classifier receives sequentially the frames of the new
gesture at a 30fps rate. In order to avoid having to make predictions every time
a frame is received, the classifier waits until w-frames are accumulated and then
it makes a partial prediction by comparing known gestures with the new one.
If this is not possible, the method waits again to receive another w-frames and
it performs another comparison. This iterative process is repeated several times
until either the gesture is recognized or the end of the new gesture is reached.

For comparing sequences, we estimate the distance between the partial in-
formation of the new gesture and the partial information of all the known
gestures in D. For this, we considered each of the 16 angles in a gesture up
to time tit as follows: Gr(tit) = {Ar,1(tit), . . . , Ar,16(tit)}, where Ar,i(tit) =
{θr,i(1), . . . , θr,i(tit), ϕr,i(1), . . . , ϕr,i(tit)} for 1 ≤ i ≤ 16, are the 16 time se-
quences of the gesture Gr and θr,i(tit), ϕr,i(tit) are, respectively, the first and
second degree angles of gesture Gr until time tit. We used dynamic time warping
(DTW) to compute the distance between sequences because it is one of the most
used methods to compare sequences that may vary in time or speed. To avoid
recalculating the similarity between the partial information of known and new
gestures that was already calculated in previous iterations, we modified DTW
to be accumulative (DTWacc): in each iteration DTWacc receives a new part
of two time sequences to be compared, calculates the similarity between these
parts and adds it to the results of the comparisons of previous iterations, this is
shown in Figure 2. The comparison of two time sequences with DTWacc yields
a distance value. To calculate the distance between the partial information of a
known (Gr) and the new gesture (GT ) within DTW we proceed as follows:

D(Gr, GT , tit) =
∑16

i=1 dist(Gr,i, GT,i, tit)

where dist(Gr,i, GT,i, tit) = DTWacc (Ar,i(tit), AT,i(tit)), and Ar,i(tit), AT,i(tit)
are the sequences of angles of the ith-joint up to time tit for the known (Gr) and
test gestures (GT ). We also incorporated a motion threshold γm to eliminate
those limbs that the user hardly moves, and therefore are useless for recog-
nition; thus, only those time sequences that move more than γm, are taken

Fig. 2. Three iterations of the DTWacc method. In gray we show the part of each
sequence that DTWacc compares; in white are shown the results of previous iterations;
orange circles show how DTWacc aligns the two time sequences.



A One-Shot DTW-Based Method for Early Gesture Recognition 443

into account. For each distance D(Gr, GT , tit) we calculate the normalized score

S(Gr, GT , Tit) =
(D(Gr,GT ,tit))

−1∑
r(D(Gr,GT ,tit))−1 . S(Gr, GT , Tit) can be considered the prob-

ability that the gesture r is the one depicted in the test gesture GT up to time tit.
The gesture with the highest probability will be chosen as a partial prediction
for iteration it. We propose two ways to take a final decision on the identity of
the gesture (i.e., triggering a flag indicating that a gesture has been recognized):
By separation where one of the known gestures is noticeably more similar to
the new gesture. By forced classification where the new gesture is about to
end, according to an estimate on the duration of the gesture.

For decision by separation we consider two aspects: (1) the number of
standard deviations nσ that fit in the difference between the best gesture prob-
ability and the average of the next L best gesture probabilities, and (2) verify
that a certain percentage of the estimated duration of the new gesture has been
already executed. We defined the constant L to discard the R − L + 1 known
gestures with the lower probabilities. With the remaining gestures we calculate
the standard deviation dev and the average avg to calculate nσ. If nσ exceeds a
certain threshold μ, then the classifier throws a final decision.

On forced decision the classifier provides an answer because it is estimated
that more than maxPer (a defined limit percentage very close to 100%) of the
new gesture has been already performed and there was no decision by separation.
We do not know how much the new gesture will last, so we need to do an estimate
to prevent the new gesture of finishing without a prediction from the classifier or
prevent hasty decisions. We consider that the total length of the new gesture is
the minimum duration obtained from the two known gestures with the greatest
probability on the most recent iteration, therefore, this duration is recalculated
in each iteration.

3 Experimental Results

For our experiments we used two data sets. The first one is our Dance data
set that consist of four dancing gestures: up an down arm (A), pointing to the
sky (B), moving arms and feet (C), and cow boy dance (D) (see Figure 3, left),
the gestures were performed by one person ten times each. This data set was
captured with a Kinect at a 30fps rate and a resolution of 640x480. The second
data set is MSR-Action3D [4], it comprises 20 gestures associated to interactive
games (e.g., side-boxing, tennis serve, etc). Each gesture was performed by ten
subjects for at most three times. The data were captured with Kinect at a 15fps
and a resolution of 640x480. For this data set, the skeleton is represented with 20
points, but we only used the 15 available with the OpenNI skeleton. The MSR-
Action3D data set has not been previously used for early gesture recognition,
but we used here due to the lack of a benchmark for this task. Besides this is
one of the most used data sets for action recognition using Kinect data. The
parameters of our method: μ, γm, L and maxPer were fixed empirically in
preliminary experimentation.
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Fig. 3. Depth map generated with Kinect device of the four gestures of the data set
Dance (left). Precision achieved per gesture WA andWoA for the Dance data set(right).

For the experiments with the dance dataset our approach obtained 99% recog-
nition rate without anticipation (WoA, i.e., using 100% of the information for
gestures) and 90% recognition rate with anticipation (WA, i.e., applying our
early recognition technique), see Figure 3. On average, the proposed method
was able to recognize a gesture using only ≈ 60% of the total duration of ges-
tures and the response time for early recognition was below the 33.5ms.

For the MSR-Action3D data set, in a first experiment, we compared between
randomly choosing one example of each gesture and using the half of the gestures
to choose the best example of each category to form the training set and the
rest of the examples for testing. The results are shown in Table 1 (a), where
the column MSR-R shows the results with a random selection and the column
MSR-S shows the results with the best selection of half of gestures. It can be seen
that very similar results are obtained when using a randomly selected example
for each category (MSR-R) and when the best example from the training set is
obtained (MSR-S). This result evidences the robustness of our method to the
selection of good training examples. For the random selection, we gained 2% of
accuracy with anticipation and only needed 55% on average of the total duration
of the new gestures. Although the accuracy is lower than that in the Dance data
set, one must consider that the number of gestures in MSR-Action3D is 5 times
larger than in the Dance data set and that gestures were performed by several
subjects. The best recognition result for this collection is 88% [10], however, we
emphasize that our method works under one-shot learning and it is intended to
run with the gestures of a single subject, as in [2]. Another method based on
DTW obtained 54% of accuracy in this collection [7], which is slightly better
than our proposal, but that method is neither one-shot nor early recognition.
Finally, the anticipation method in [1] achieved rates of up to 65.7% in the
MSR-Action3D data set, but anticipation performance is not reported.

For the rest of the experiments we considered the MSR-Action3D data set
and used the half of the gestures to choose the best example of each category to
form the training set and the rest of the examples for testing.

In order to further evaluate the performance of our method when using ges-
tures from a single subject we performed experiments dividing the examples of
the MSR-Action3D data set by subjects c.f. Table 2. It can be seen that DTW
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Table 1. Results of our method in the MSR-Action3D data set

All subjects Sep. subjects Ref. [4]
MSR-R MSR-S AS1 AS2 AS3 AS1 AS2 AS3 AS1 AS2 AS3

45 50 WoA 42 47 52 97 93 96 72 71 79
47 48 WA 46 44 50 95 89 93 - - -

(a) (b)

is very effective for recognizing gestures when a single subject is considered.
Also, we can see that the proposed method is very effective at anticipating the
recognition of gestures, as accuracy only decreases by 6.5%. Also, the average
per-subject performance under WoA and WA (93.2% and 86.7%, respectively)
is comparable with the best performance reported so far for the MSR-Action3D
data set. As further comparison with other approaches, we divided the gestures
by complexity, as reported in [4], where they form three groups: AS1, AS2 and
AS3. AS1 and AS2 are intended to group gestures with similar movement (diffi-
cult to classify), while AS3 is intended to group very dissimilar actions together.
Table 1 (b) shows the results of these sub-groups, considering all the subjects c.f.
Table 1.b (columns 1-3); considering subjects and groups, c.f. Table 1.b (columns
4-6), and the results reported in [4], c.f. Table 1.b (columns 7-9).

Table 2. Results of the classification by subject

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg.

WoA 95.0 94.4 86.1 87.5 94.7 97.1 97.4 97.5 86.8 95.0 93.2

WA 85.0 69.4 80.6 87.5 94.7 88.2 100.0 90.0 81.6 90.0 86.7

From Table 2 (columns All subjects), we can see that the average performances
(over groups) when considering all of the subjects are of 47% WA and 48% WoA;
thus losing 1% in accuracy but using only the 47% of the duration of gestures.
However, when we evaluate the performance over groups by separating users
we obtained average performances (over groups) of 92.3% and 95.3% for WA
and WoA, respectively (column Sep. subjects in Table 2); for these results only
≈ 50% of the gestures were needed for recognition. When compared with the
74% average accuracy obtained in [4], our method has higher precision using
half of the information. Therefore, the proposed method is very effective for the
classification of gestures when a single-user is considered, even when a single
example is used for training the model.

The time required for the classification depends on the number of gestures.
For 20 known gestures it takes 50.8ms WA and 450.5ms WoA on average to
classify the new gesture. Using only 10 known gestures, it takes 38.9ms WA and
186.8ms WoA. Besides, our method can be parallelized so these response times
can be improved.
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4 Conclusions and Future Work

We proposed a DTW-based method for one-shot early-recognition of gestures.
The proposed method is able to recognize gestures before the user finishes of
executing it. The highest drop in accuracy when making early recognition was
of 7.29% in terms of accuracy, but our savings in recognition response were
between 40%−50%. The features of DTW allowed us to design a method for one-
shot learning, eliminating the training phase and thereof, the number of labeled
gestures needed to generate a model. Also, the method proved to be robust
to the selection of examples for the dictionary, and we show that it produces
better results when a single-subject performs the gestures. The response time
of our method depends directly on the number of known gestures used, in our
experiments the time needed for classification WoA is up to 8 times larger in
average than that required to make classification WA. For future work, we want
to include a segmentation method to the classifier to detect the beginning and
the end of the gestures in order to achieve online classification. Also we want
to parallelize our method to reduce even more the response time. Finally, we
want to automate the learning of the parameters μ, γm, L and maxPer to avoid
setting them empirically.

References

1. Ellis, C., Masood, S.Z., Tappen, M.F., LaViola Jr, J., Sukthankar, R.: Exploring
the trade-off between accuracy and observational latency in action recognition.
International Journal of Computer Vision 101(3), 420–436 (2013)

2. Guyon, I., Athitsos, V., Jangyodsuk, P., Escalante, H.J., Hamner, B.: Results and
analysis of the chaLearn gesture challenge 2012. In: Jiang, X., Bellon, O.R.P.,
Goldgof, D., Oishi, T. (eds.) WDIA 2012. LNCS, vol. 7854, pp. 186–204. Springer,
Heidelberg (2013)

3. Kawashima, M., Shimada, A., Nagahara, H., Taniguchi, R.I.: Adaptive template
method for early recognition of gestures. In: 17th WFCV, pp. 1–6. IEEE (2011)

4. Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of 3d points. In:
CVPRW, pp. 9–14. IEEE (2010)

5. Mitra, S.: Gesture recognition: A survey. Trans. on Syst. Man and Cyb. - C 37,
311–324 (2007)

6. Mori, A., Uchida, S., Kurazume, R., Taniguchi, R.-I., Hasegawa, T., Sakoe, H.:
Early recognition and prediction of gestures. In: ICPR, pp. 560–563 (2006)

7. Muller, M., Roder, T.: Motion templates for automatic classification and retrieval
of motion capture data. In: Proc. SIGGRAPH-SAC, pp. 137–146 (2006)

8. Raptis, M., Kirovski, D., Hoppe, H.: Real-time classification of dance gestures from
skeleton animation. In: SoCA, pp. 147–156. ACM (2011)

9. Shimada, A., Kawashima, M., Taniguchi, R.-I.: Early recognition based on co-
occurrence of gesture patterns. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A.
(eds.) ICONIP 2010, Part II. LNCS, vol. 6444, pp. 431–438. Springer, Heidelberg
(2010)

10. Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining actionlet ensemble for action recogni-
tion with depth cameras. In: CVPR, pp. 1290–1297. IEEE (2012)

11. Zhengyou, Z.: Microsoft kinect and its effect. IEEE MultiMedia 19, 4–10 (2012)



Occlusion Handling in Video-Based Augmented Reality
Using the Kinect Sensor for Indoor Registration
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Abstract. Video-based Augmented Reality (VAR) aims to add 3D virtual objects
(3D VOs) to a real world video sequence, in order to provide additional and useful
information to facilitate some tasks, like computer aided surgery, simulation in a
real environment, satellite positioning, interior design, among others. To achieve
a consistent and convincing augmented scene, it is necessary that the VOs are
properly occluded by real objects (Occlusion Problem in VAR); in this paper, we
present a strategy based on the use of the Kinect sensor to solve this problem. In
the occlusion stage we evaluate distances between real and VOs. Then, the parts
of the VO occluded by a real object are calculated and removed. We found that
the Kinect sensor is appropriate to be used for handling occlusions in indoor en-
vironments, dynamic scenarios and real-time applications. Experiments showed
comparable results with the state of the art in both issues: occlusion handling and
processing time.

Keywords: occlusion handling, video based augmented reality, hidden surface
removal, kinect.

1 Introduction

Augmented Reality (AR) could be the answer for the growing demand of new user
interfaces, in which space is not restricted to a screen and controls become unnecessary.
AR adds 3D virtual objects (3D VOs) to a real scene, allowing the superposition of
computer-generated graphics on real world scenes, in such a way that both look as a part
of the same 3D scene [6]. In this way, a user can receive useful information in real time
and in the most adequate place (real environment) and be guided in a determined task.
Nowadays several applications in areas such as medicine, entertainment, education,
architecture, among others, use AR; soon, even more areas will benefith from it.

An important task in order to create a synthetic realistic scene, is to align virtual
and real objects in two ways: geometrical (spatial precision) and semantical (graphic
credibility) [4]. Spatial precision requires the 3D VOs to be appropriately registered in
the real world, which means that they always must be in the right position and orien-
tation with respect to the world. On the other hand, graphic credibility refers to the
scene realism, i.e., the illusion of both elements, virtual and real, coexisting at the same
spatiotemporal place. Graphic credibility has two main branches: the photo-realism,
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wich deals with illumination effects such as shadows and reflections, and occlusion
handling, which requires that the 3D VOs are correctly occluded by real-world elements.

The occlusion problem consists of determining which objects, real or virtual, are
visible from a given vision angle and, based on that, hiding certain elements from the
user view, all of this considering a 3D environment. Occlusion occurs when an object
close to the user hides a further object on the same vision line.

According to some of the most recent works in the literature [3], [1], the use of depth
information about the real world has lead to better results in the occlusion handling
in AR. In this approach several stereo vision systems and 3D cameras have been used
to calculate the distances in the real world. Despite leading to better results, the use
of these technologies brings some problems: the intensity image and the depth map
are not aligned and have low resolution, some stereo vision systems require excesive
processing time and are inadequate to be used in real time, equipment is expensive and
unaccesible to most users and, finally, some systems rely on big hardware and are not
adequate to mobile configurations.

In this work we propose a strategy based on depth information and visual markers
tracking. Our method combines the well known framework ARToolKit with the Kinect
sensor to deal with, respectively, the positioning and AR occlusion issues. Moreover,
we add a processing stage to correct the depth map and present our related conclusions.

This work improves the existent related works in the following aspects: 1) the use of
the Kinect sensor allows us to work in real time environments and mobile configu-
rations with resolutions above 640 × 480 pxs; 2) the tracking of visual markers a-
llows correct registration of virtual objects (position and orientation); and 3) the parallel
implementation (tracking and depth improvement) makes possible to work in real-time
applications.

The rest of this work is organized as follows: section 2 shows a summary of re-
lated work, section 3 introduces our method and each of its parts, section 4 decribes
the methodology we used to perform experiments and the obtained results; finally,
section 5 presents our conclusions and future work.

2 Related Work

The first efforts to solve the occlusion problem in AR are focused on the segmentation of
images. The main idea of this approach is to segment the real object that must occlude
the VO; then, the VO is drawn on the real scene and, finally, the previously segmented
region is put on top, in such a way that the real object occludes the VO. Some works
that use this approach are [6] and [7].

In recent years, with the emergence of stereo vision systems and TOF cameras, the
use of depth information has become the dominant approach to occlusion handling. A
method to solve the occlusion problem in VAR is proposed in [2]. The authors use stereo
vision and contour matching to calculate the depth of the objects in the foreground
(user hands). Due to the high processing cost, this work focuses in the particular case
in which the user hands must occlude the VO and viceversa. In addition, as a result of
the approach used to segment the user hands, the method is not appropiate to work with
occlusive objects with different color and texture.



Occlusion Handling in Video-Based Augmented Reality 449

Zhu et al. [3] propose a probabilistic approach to handle occlusion in AR using depth
information obtained from a stereo vision system. Instead of using only the estimated
depth, their method combines depth, color and neighborhood information, therefore
reducing the noise inherent to the stereo pair. In order to accelerate the matching pro-
cess between images, the authors incorporate a color quantization method; they also
introduce Mixed Gaussian Kernels to describe objects of interest and to background
subtraction. Finally, the estimated depth is used, together with a color addition method
and neighborhood information, to establish occlusion relations between the objects of
interest (only in the forefront). Due to the high computational cost of this approach,
the authors focus on handling occlusions by certain pre-defined objects of interest, thus
disabling the proposed method to work on dynamic scenarios.

Dong et al. [1] propose an algorithm for occlusion handling using depth obtained by
a high-resolution TOF camera (PMD CamCube 3.0) and technology based on hardware
to supress the background illumination. The authors add a second camera in order to
obtain a RGB image; the first task performed is the alignment of both images. Then, to
handle the occlusion, they use the principle of hidden surfaces removal to draw on the
scene only the parts of the VO that are not occluded by a real object. The main drawback
of this work is the alignment stage between the RGB image and the depth map, which
produces over-occluding VOs leaving blank gaps around the occlusor real objects. Fur-
thermore, the use of a specialized high-cost camera makes this work inaccessible to
most users.

3 Occlusion Handling

Considering the drawbacks of the works described in the previous section, we focus
on a method that covers differents cases: the ability of handling occlusion relationships
between several objects despite their shape, size or color; dynamic cases in which the
scene changes over time; and the use of technologies accessible to the majority of users.
Furthermore, we consider both, geometrical and semantic, aspects. In the former, we use
visual marker tracking to align the VO; in the later, we handle occlusion in real time.

In this section we describe the three main stages of our proposed method. It is im-
portant to point out that the first two stages take place in a parallel way, speeding up the
processing time and making our method suitable for real-time applications.

3.1 Markers Recognition

The stage of markers tracking makes use of the framework ARToolKit1, with modifi-
cations that include the integration of Kinect as the video input device, and the
implementation of the function Automatic thresholding based on ARToolKitPlus 2. The
tracker is initialized through a calibration file for Kinect, obtained in previous offline
calibration stage and feeded with the RGB image delivered by Kinect. In the final recog-
nition stage, the view model matrix is obtained and applied to the VO when this is
rendered.

1 http://www.hitl.washington.edu/artoolkit/
2 http://handheldar.icg.tugraz.at/artoolkitplus.php

http://www.hitl.washington.edu/artoolkit/
http://handheldar.icg.tugraz.at/artoolkitplus.php
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3.2 Depth Improvement Stage

The method we propose to handle occlusion is based on the evaluation of distances
between real and virtual objects; for this reason, a precise depth map is required. Fig.
1(a) y (b) shows the original images delivered by the Kinect sensor. As we can see in
1(b), the depth map is contamined with noise. These black pixels represent blind spots
to the sensor, in which it was not able to estimate the distance to the real objects; later,
in the experiments section, we show the negative impact of this issue on the occlusion
handling.

During the correction stage we evaluated different methods based on an inpaiting
technique to correct the depth map. Fig. 1(c) shows the results obtained with the in-
painting telea algorithm [5], which was the one with the best results when the corrected
depth map was used for occlusion handling. In general, the methods based on inpaint-
ing techniques estimate the missing data using the neighborhood’s information by ex-
panding regions and they do not take into account the RGB image. Therefore, as shown
in Fig. 1(c), the expanded regions in the depth map do not correspond to the original
RGB image and there is a gap if both images are superimposed (we show this in the
first experiment, in the section 4).

(a) RGB image (b) Original depth map (c) Corrected depth map

Fig. 1. Correction of the depth map: this figure shows the original images delivered by the sensor
(Fig. 1(a) and 1(b)) and the depth map corrected by using the inpainting telea algorithm (Fig.
1(c)). Note that the black holes in (b), are calculated in (c) by using neighborhood information
(with radius equal to 5).

After the black holes in the depth map are calculated, we can still appreciate a lack
of alignment between the RGB image (Fig. 1(a)) and the depth map (Fig. 1(c)). In Fig.
3(b) the result in occlusion handling is shown when using the corrected map. We can
see that the lack of alignment between the images is more evident when the scene is
augmented. Analyzing the previous images we conclude that the main problem in the
depth map is the effect we call shadow effect, which can be seen in Fig. 2(a). In this
image there is a separation between the projector and the IR camera, and this results in
a blind point between what is projected and what is seen. As a consequence, a black
hole appears in object 2 that looks like a shadow of the object 1.

Taking into account this situation, we want to supress the shadow effect, since it
belongs to object 2 (the furthermost object) and, therefore, it should not affect in an
occlusion by object 1 (object in the foreground). Fig. 2(b) shows the depth map once
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(a) Shadow effect explanation (b) Shadow effect suppression

Fig. 2. Shadow effect generated by the Kinect sensor

the black holes have been removed (they go from being in the foreground to being in
the background). Fig. 3(c) shows the occlusion handling method using this idea.

3.3 Depth Buffering

Occlusion handling is performed applying the technique known as hidden-surface re-
moval, which consists on removing object parts that are obscured by a closer object.

The distances obtained through the Kinect are in the range of [0 − N ] mm. Con-
sidering that the optimal range for the correct Kinect operation is between 50 and
4000mm, all the values that exceed 4000mm are scalated. Before they are written in the
depth buffer, the vertices are transformed to the clip coordinates through the equation

cc =
rd ∗ (f + n)

f − n − 2 ∗ f ∗ n
f − n , (1)

then, they are normalized ndc = cc
rd and forced to be in the range [−1, 1]. Finally, the

values are transformed to the range [0 − 1] by fd = ndc+1
2 . Where rd is the distance

obtained using the Kinect sensor (raw data), n and f are, respectively, the near and far
plane projections, cc is the clip coordinates after the projection matrix, ndc represents
the normalized device coordinates and fd is the final depth written on the depth buffer.

These distances are stored in the depth buffer and represent the distances of the real
scene. When a new object is drawn on the screen, its depth is compared against the
depth previously stored in the depth buffer, and only if the new object’s depth is less,
the VO is actually drawn.

4 Experiments

To perform our experiments, we built a system that integrates the acquisition, processing
and display of an image. The experiments were performed inside a room (indoor con-
figuration), where a user moved freely across the room and interacted with the virtual
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content. All the experiments have the purpose of evaluating the robustness of the pro-
posed strategy to solve occlusion relationships in VAR, and the impact of the quality of
the depth map on the occlusion handling.

Experiment 1: Impact of the Depth Map. Fig. 3 shows the results of the stage of the
depth map correction. Despite correcting the depth map, when VO occlusion is handled
there is a lack of alignment with the RGB image; this translates into a poor occlusion
(Fig. 3(b)). Fig. 3(c) shows the results of removing the shadow effect from the depth
map; this technique gave better results.

(a) Original depth map (b) Depth map improved by in-
painting

(c) Shadow effect removed

Fig. 3. Impact of the depth map on occlusion handling: (a) occlusion handling using the depth
map delivered by the sensor, without processing; (b) occlusion handling using the depth map
corrected by the inpainting telea algorithm; (c) occlusion handling with supression of the shadow
effect

Experiment 2: Variant Lighting Conditions. In Fig. 4 we observe the handling oc-
clusion under three scenaries with different lighting. In the three scenes we can see
that the marker was recognized and the VO was correctly drawn over the marker and
occluded by the user hand.

(a) Ideal lighting (b) Moderate lighting (c) Poor lighting

Fig. 4. Occlusion handling under variant lighting conditions
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Experiment 3: Multiple and Deformable Objects. In this experiment, we worked
with multiple and deformable objects. Fig. 5(a) shows the results of the proposed method
when working with multiple VOs. In the image we can see the user interacting with vir-
tual content and how the user’s arm is occluded by VOs that are closer and occluding
VOs elements located further away. Also, in this experiment we used more realistic
VOs, with a bigger size and undefined shapes. Fig. 5(b) shows how the virtual elements
are correctly (partially) occluded by the user.

(a) Multiple VOs (b) Deformable VOs

Fig. 5. Occlusion of multiple and deformable virtual objects. Image on the left shows that multiple
virtual objects can be added to the scene and the proposed method is able to solve the occlusion
relationships between them and the real objects. Image on the right shows partial occlusion of
deformable virtual objects.

4.1 Discussion of the Results

The experiments showed that our proposed method can handle occlusion of deformable
objects, multiple objects (occlusive and occluded) and work under different lighting
conditions. It was also shown that the method is appropiate to work in environments
demanding real-time response; the performed experiments reached a processing rate
over 30 f/s.

Some of the drawbacks found in the use of the Kinect sensor are (1) the inability to
handle occlusion with transparent or refracting objects, due to the fact that the sensor
is not able to solve the object distance; and (2) a great sensibility to sun light, therefore
the method is only appropiate for indoor configurations.

5 Conclusions

We have explored the use of a motion sensing input device, the Kinect sensor, in an
Augmented Reality task. The experiments showed the feasibility of this method to
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build augmented scenes properly occluded under indoor configurations and real-time;
this could lead to new tasks for mobile robots, for example, by including AR in their
navigation tasks. Furthermore, the obtained results are comparable to those of other
works in the state of the art that use stereo vision systems and depth cameras with high
economical and computational cost.

In our future work we are interested in exploring the use of algorithms that take into
account the RGB image to correct the depth map, in such a way that the map can attain
higher precision while maintaining the real-time requirement, and the removal of visual
markers by calculating, instead, flat surfaces like tables, floors, walls, etc. Moreover, we
would like to investigate the construction of a 3D model of the environment, so that we
can keep virtual objects registered even when the camera angle changes.

Considering that we obtained good quality results, in different scenarios, with a low
computational cost, we can say that the Kinect sensor is suitable for handling occlusions
in AR applications.

Acknowledgments. This work was done under partial support of CONACyT-Mexico
(scholarship 301754).
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Abstract. A reliable system for recognition and tracking of a moving
target in nonuniformly illuminated scenes is presented. The system em-
ploys a filter bank of space-variant correlation filters adapted to local
statistical parameters of the observed scene in each frame. When a scene
frame is captured, a fragment of interest is constructed in the frame
around predicted location of the target based on a kinematic model.
The fragment is firstly pointwise processed to correct the illumination.
Afterwards, the state of the target is estimated from the restored frag-
ment by employing a bank of space-variant correlation filters. The perfor-
mance of the proposed system in terms of object recognition and tracking
is tested with nonuniformly illuminated and noisy scenes. The results
are compared with those of common techniques based on correlation
filtering.

1 Introduction

Nowadays, object recognition attracts research interests due to the need of de-
veloping imaging systems to improve activities such as video surveillance, ve-
hicle navigation, object tracking, among others. Object recognition consists in
identification of the target within a observed scene and in estimation of the
target’s exact coordinates. When a target moves across an environment, the ap-
pearance of the target with respect to the observer varies with time. Actually,
target tracking consists in estimation of the target trajectory in the observed
scene while the object moves. Target tracking can be solved by detecting the
object in successive frames and by finding the correspondence between object
states across scene frames. Commonly target tracking is performed by employ-
ing feature-based methods and state-space models. This approach yields good
results when the target suffers from occlusions and geometrical modifications
such as rotation and scaling. However, when the target exits and reenters to the
observed scene and when the scene is degraded by additive and high cluttering
background noise feature-based methods face some difficulties. A detailed re-
view of tracking algorithms can be found in [1]. An attractive option for target
recognition is given by correlation filtering. Correlation filters possess a good
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mathematical background, and they can be implemented by exploiting massive
parallelism either in hybrid opto-digital correlators [2,3] or in digital hardware
such as graphic processing units (GPU) [4]. A correlation filter is a linear system
where the coordinates of the system output maximum are estimates of the target
coordinates in the observed scene [5,6]. Correlation filters can recognize objects
in cluttered and noisy environments, even when targets suffer from geometrical
distortions [7]. In this sense, the problem of target tracking can be addressed by
applying correlation filters to multiple frames. Recently, several proposals have
been suggested to perform target tracking with the help of correlation filters [3].
In this work, we propose a reliable system for recognition and tracking of a mov-
ing target in nonuniformly illuminated scenes using a filter bank of space-variant
correlation filters. The frequency response of the filters are varied accordingly to
local statistical parameters of the input signal in each frame. First, the proposed
system performs a pointwise illumination correction to the input frame. Next,
the target is detected from the restored frame by analyzing the correlation peaks
obtained at the outputs of the filter bank. Then, the system predicts the state of
the target for subsequent frame, and based on the prediction creates a fragment
of interest in the input frame and modifies the number of filters in the bank
using predicted orientation of the target in the current frame. Both location
and orientation predictions are calculated by analyzing current and past state
estimates and by taking into account a two-dimensional motion model. The re-
sultant system is able to track a moving target in nonuniform illumination with
reduced false alarms probabilities by focusing the processing only on a small
fragment. The paper is organized as follows. Section 2 presents the approach
used for target recognition in nonuniformly illuminated and noisy scenes. Sec-
tion 3, explains the system proposed for object recognition and tracking. Section
4 presents the results obtained with the proposed system by testing its perfor-
mance in nonuniformly illuminated scenes. Finally, section 5 summarizes our
conclusions.

2 Recognition of a Target in Nonuniformly Illuminated
and Noisy Scenes

Let f(x, y) be an input scene composed by a target t(x, y) located at unknown
coordinates (α, β) and embedded into a disjoint background b(x, y). The scene
is assumed to be corrupted by a nonuniform illumination function d(x, y) and
with zero-mean additive noise n(x, y). The input scene is expressed by

f(x, y) = [t(x− α, y − β) + w̄(x− α, y − β)b(x, y)] d(x, y) + n(x, y), (1)

where w̄(x) is the inverse region of support of the target given by unity outside
the target area and zero elsewhere. We assume that d(x, y) is a slow varying
function, which is approximately constant in a small region (for instance, the
region of support of the target w(x, y)). Note that this is the case of Lambertian
surfaces. In order to correct the illumination of the input frame we perform the
following pointwise processing

f̂(x, y) = rx,yf(x, y) + sx,y, (2)
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where rx,y and sx,y represent unknown restoration coefficients. The mean squared
error (MSE) between the restored frame f̂(x, y) and the reference image of the
target t(x, y), is given by

MSEα,β =
∑∑
x,y∈w

(rα,βf(x+ α, y + β) + sα,β − t(x, y))2 . (3)

By minimization of the MSEα,β, we get

sα,β = μt − rα,βμf (α, β), (4)

and

rα,β =

1
Nw

∑∑
x,y∈w

t(x, y)f(x+ α, y + β)− μtμf (α, β)

μf2(α, β)− μ2
f (α, β)

, (5)

where Nw is the number of signal elements inside w(x, y), μt = 1
Nw

∑∑
x,y∈w

t(x, y),

μf (α, β) = 1
Nw

∑∑
x,y∈w

f(x + α, y + β) and μf2(α, β) = 1
Nw

∑∑
x,y∈w

f2(x + α, y + β). Note

that f̂(x, y) in Eq. (2) represents the input frame with approximately uniform
illumination, i.e.,

f̂(x, y) ≈ t(x− α, y − β) + w̄(x− α, y − β)b(x, y) + ñ(x, y), (6)

where ñ(x, y) is a nonstationary noise process.

Recognition of a Target in Additive and Nonoverlapping Noise

Here the goal is to recognize and to precisely estimate the location of the target
from the nonoverlapping signal model of Eq. (6). In this case, the optimum filter
with respect to the signal to noise ratio (SNR) and to the minimum variance
of target’s location error (LE) is the Generalized Matched Filter (GMF), whose
frequency response is given by [8,6]

H∗(μ, ν) =
T (μ, ν) + μbW̄ (μ, ν)

Sb0(μ, ν)⊗
∣∣W̄ (μ, ν)

∣∣2 + Sn(μ, ν)
. (7)

In Eq. (7), μb and Sb0(μ, ν) represent the mean value of the background b(x, y)
and the power spectral density of b0(x, y) = b(x, y)−μb, respectively. The terms
T (μ, ν), W̄ (μ, ν) and Sn(μ, ν) are the Fourier transform of the target, the Fourier
transform of w̄(x, y) and the power spectral density of n(x, y), respectively. It is
important to realize that for real applications the terms T (μ, ν) and W̄ (μ, ν) are
a-priori known. Nevertheless, the terms μb, Sb0(μ, ν) and Sn(μ, ν) are generally
unknown and must be estimated.

Estimation of Nonoverlapping Noise Parameters

Assume that the target t(x, y) is located inside a small fragment f̂r(x, y) of the
input frame and is embedded into the background br(x, y). The mean value of
the scene fragment can be computed as μf̂r

= 1
N

f̂r

∑∑
x,y∈f̂r

f̂r(x, y), where Nf̂r
is the
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number of pixels in the fragment. Since the target is known and is contained in
the fragment, the mean value of the background br(x, y) can be estimated as

μ̂br =
μf̂r

Nf̂r
− μtNw

Nf̂r
−Nw

. (8)

The sample variance of br(x, y) can be computed by σ2
br = 1

Nbr

∑∑
x,y∈br

b2r(x, y)− μ̂2
br .

By noticing that for the disjoint model
∑∑
x,y∈br

b2r(x, y) =
∑∑
x,y∈f̂r

f̂2
r (x, y)−

∑∑
x,y∈w

t2(x, y),

and with the help of Eq. (8) the local variance of the background is estimated
by

σ̂2
br =

1

Nf̂r
−Nw

⎛
⎝∑∑

x,y∈f̂r

f̂2
r (x, y)−

∑∑
x,y∈w

t2(x, y)

⎞
⎠−

(
μf̂r

Nf̂r
− μtNw

Nf̂r
−Nw

)2

. (9)

The parameters μ̂br and σ̂2
br

are used to estimate the power spectral density
Sb0(μ, ν) required in Eq. (7). This is done by a separable exponential model of
the covariance function, as follows:

Ŝb0(μ, ν) =
∑∑
x,y∈f̂r

σ̂2
brρ

|x|
x ρ|y|y exp

[
−i2π (μx+ νy) /Nf̂r

]
, (10)

where ρx and ρy are the correlation coefficients of the background function in x
and y directions.

Estimation of Additive Noise Parameters

Consider that the fragment fr(x, y) is corrupted by zero-mean additive white
Gaussian noise nr(x, y). Assume that fr(x, y) and nr(x, y) are independent. The
autocorrelation function of the noisy fragment can be approximated by R(x, y) ≈
Rfr (x, y) +Rn(x, y), where Rn(x, y) = σ2

nδ(x, y) is the autocorrelation function
of the noise, and Rfr (x, y) is the autocorrelation function of the fragment. Note
that the noise variance σ2

n can be estimated by σ̂2
n = R(0, 0)−Rfr (0, 0), where

Rfr (0, 0) is unknown. We see that Rn(x, y) = 0, ∀ (x, y) �= 0. Thus, the values
{R(x, y)|(x, y) �= 0} can be used as estimates of Rfr (x, y). To estimate the noise
variance σ2

n we can calculate Rfr (0, 0) by means of a extrapolation of the values
of R(x, y) close to the origin. In this manner, the power spectral density of the
noise can be approximated by Sn(μ, ν) = σ̂2

n.

3 Proposed System for Object Recognition and Tracking
in Nonuniform Illumination

Now we describe the proposed system for object recognition and tracking in
nonuniform illumination. Let us consider the optical setup shown in Fig. 1 in
where a target moves in horizontal direction of the two-dimensional plane, and it
is under the influence of a illumination source. At time tk, the camera captures
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Fig. 1. Optical setup for target tracking in nonuniform illumination

a scene-frame containing the target with a orientation angle θk. The target is
embedded into the background at the coordinates (αk, βk). Next at time tk+1 the
target moves to a new position with coordinates (αk+1, βk+1) and the orientation
angle has changed from θk to θk+1. We want to estimate the sequence of target
positions (αk, βk) and orientation angles θk (sequence of states) as a function
of time {tk = kΔt|k = 1, 2, . . . }, where Δt is the sampling interval. The state
of the target in time tk is represented by a state vector sk = [αk, βk, θk]

T . The
operation steps of the proposed tracking system are summarized below.

– Step 1: Read a scene frame fk(x, y) from the input observed sequence.
– Step 2: Correct illumination of the frame using Eqs. (2), (4) and (5).
– Step 3: Estimate noise parameters (see Eqs. (8) and (10)) and design a filter

bank using Eq. (7).
– Step 4: Process the corrected frame with the filter bank and find the corre-

lation plane c(x, y) with the highest discrimination capability (DC). The DC
is the ability of a filter to distinguish among a target and unwanted objects;
it is defined by [6]

DC = 1−
∣∣cb∣∣2
|ct|2 , (11)

where cb is the value of the maximum correlation sidelobe in the background
area and ct is the value of the correlation peak due to the target.

– Step 5: Estimate the target coordinates as
(
α̂k, β̂k

)
= argmaxx,y

{|c(x, y)|2},

and the orientation angle as θ̂k = 2 (r − 1), where r is the index of the filter
in the bank which detects the target with the highest DC. Set the current
state of the target as ŝk =

[
α̂k, β̂k, θ̂

]T
.

– Step 6: Predict subsequent state vector ŝk+1 =
[
α̂p, β̂p, θ̂p

]T
from ŝk by char-

acterization of the motion behavior of the target. This behavior is charac-
terized by the following kinematic equations [9]:
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Target

(a) frame 5

Target

(b) frame 30

Target

(c) frame 55

Target

(d) frame 80

Target

(e) frame 105

Target

(f) frame 130

Fig. 2. Examples of nonuniformly illuminated scene frames corrupted with 20 dB SNR
additive noise

αk+1 = αk +
sin (ωkΔt)

ωk
α̇k − 1− cos (ωkΔt)

ωk
β̇k + aα,k

Δ2
t

2
,

βk+1 = βk +
1− cos (ωkΔt)

ωk
α̇k +

sin (ωkΔt)

ωk
β̇k + aβ,k

Δ2
t

2
,

α̇k+1 = cos (ωkΔt) α̇k − sin (ωkΔt) β̇k + aα,kΔt,

β̇k+1 = sin (ωkΔt) α̇k − cos (ωkΔt) β̇k + aβ,kΔt,

ωk+1 = ωk + aω,k. (12)

The variables αk and βk denote the position of the target in Cartesian co-
ordinates, α̇k and β̇k are velocity components in α and β directions, and
ωk is the target’s angular rate. Furthermore, aα,k and aβ,k are random vari-
ables representing acceleration components (due to turbulence) in α and β
directions and aω,k is the angular acceleration. The position of the target
in a subsequent time, is predicted by substitution of the estimated position(
α̂k, β̂k

)
, the estimated velocity components

(
ˆ̇αk,

ˆ̇βk

)
, and the estimated turn

rate ω̂k (calculated from current and past frames) into the state space model
in Eq. (12), and then by taking the expected value.

– Step 7: Read a new frame fk(x, y) from the scene and create a fragment of
interest according to state prediction. Go to STEP 2.

4 Results

Here, results obtained with the proposed system for target tracking in nonuni-
formly illuminated scenes are presented. The results are given in terms of
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Fig. 3. Performance of tracking systems with 95% confidence in terms of: (a) DC, (b)
LE, and (c) OE

recognition performance and tracking accuracy. The obtained results are com-
pared with those obtained with a system based on binary phase-only (BPO)
filters [3]. The recognition performance is measured in terms of the DC, whereas
tracking accuracy is characterized by the precision of estimates carried out for
the target state across scene frames. The accuracy in location estimation is char-
acterized by the LE, which is given by [6]

LE =
[(
xq − x̂q

)2
+

(
yq − ŷq

)2]1/2

, (13)

were (xq, yq) and
(
x̂q, ŷq

)
are the exact and estimated coordinates of location of

the target, respectively. The accuracy of estimation of the orientation angle is
characterized by the orientation error (OE), defined by

OE =
∣∣∣φq − φ̂q

∣∣∣ , (14)

where φq and φ̂q are the true and estimated orientation angles, respectively.
The units for LE and OE metrics are pixles and degrees, respectively. In our
experiments we use a sequence of 200 nonuniformly illuminated scene frames with
800×600 pixels. Figure 2 shows examples of various scene frames in environment
of 20 dB SNR additive noise. The target is an airplane which can move and
rotate freely in the horizontal plane. With 95% confidence, the results for 200
scene frames obtained with proposed and BPO systems are presented in Fig.
3. We can see that the proposed system yields the best results in all the cases.
Observe from Fig. 3(a) that the proposed system yields DC values close to unity
even in highly noisy conditions of 10 dB SNR. Furthermore, we see that the

Table 1. Detection performance of tracking systems in 200 scene frames

Additive Noise SNR
Decision 50dB 30dB 20dB 10dB 50dB 30dB 20dB 10dB
detected 200 200 198 187 200 180 136 104

not detected 0 0 2 13 0 20 64 96
% of error 0% 0% 1% 6.5% 0% 10% 32% 48%

Proposed system BPO system
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proposed system can estimate with a good precision the location of the target in
noisy conditions of 50 dB, 30 dB, and 20 dB SNR (see Fig. 3(b)). Additionally,
from Fig. 3(c) we see that the proposed system estimates with a good accuracy
the orientation angle of the target even in highly noisy conditions. The BPO
system, yields good results in terms of the DC for 50 dB, 30 dB, and 20 dB
SNR. Furthermore, this system yields high LE and OE values for 20 dB and
10 dB SNR. Table 1 shows the recognition performance of the tracking systems
in 200 scene frames. The proposed system yields no detection errors for 50 dB
and 30 dB SNR, and yields only two false detections for 20 dB SNR, and yields
thirteen false detections for highly noisy conditions of 10 dB SNR. The BPO
system yields good results for 50 dB SNR, however when the SNR decreases the
number of false detections increases.

5 Conclusions

A tracking system for nonuniformly illuminated scenes was presented. The sys-
tem employs a filter bank of time variant correlation filters to estimate the state
trajectory of a moving target in a sequence of images. By incorporation of a
prediction stage the system creates a fragment of interest in the observed frame
and modify the number of required filters in the bank to estimate the state of
the target in current frame. By means of computer simulations we showed that
the proposed system yields a superior performance in terms of tracking accuracy
comparing with recent state of the art tracking systems based on correlation
filtering.
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Abstract. In this work we propose an algorithm for film restoration
aimed at reducing the flicker effect while preserving the original overall
illumination of the film. We also present a comparative study of the per-
formance of this algorithm implemented following a sequential approach
on a CPU and following a parallel approach on a GPU using OpenCL.

1 Introduction

Visual flicker is one of the most common consequences of degradation in old films.
It is the result of global intensity fluctuations between consecutive frames. In
some cases flicker can be a local effect too, with regions of the frame experiencing
local intensity variations between consecutive frames. Although it may seem a
simple problem that could be addressed with traditional intensity normalization
techniques, usually this approach is not able to remove the distortion completely.

When film is digitalized by capturing its projection with a digital camera
flicker is introduced as a consequence of temporal mismatch between the capture
and projection system (the acquisition of frames is unsynchronized with the
projectors shutter). Aging is also an important cause of flicker. Not all the frames
of a film suffer the same degradation along the time and therefore unintended
variations in mean illumination may be encountered. When removing flicker
through digital image processing the effects due to digitalization and aging have
to be removed while preserving the flicker caused by the mechanical limitations
of the equipment originally used to capture the content.

In order to avoid the introduction of new structures as a consequence of the
restoration process usually the flicker reduction algorithms use histogram correc-
tions that preserve the geometry of the frames. Also, since flicker is a temporal
distortion affecting a sequence of frames, restoration processes aimed at reducing
it need to consider multiple frames in order to capture the temporal intensity
variations.

2 Previous Work

The works in the literature of flicker reduction can be categorized in two types:
the ones that apply local methods and the ones that apply global methods.
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In this work we concentrate in algorithms that apply global methods to modify
the histogram of each frame of the film in order to smooth the intensity varia-
tions across time. The first approach for global intensity modification is based
in the use of affine transformations. The corrected frame at time t, Î(x; t), is
transformed with the equation Î(x; t) = a(t)I(x; t) + b(t) where parameters a(t)
and b(t) are selected to match the input dynamic range to a desired one. Since
flicker varies with time both parameters are time dependent. The values of a(t)
and b(t) are selected to reduce the mean intensity variations within the dynamic
range. The main difficulty with this solution is that the desired output dynamic
range has to be manually given to the algorithm.

Another option for applying global changes to the frames is using histogram
modifications (not only affine as in the first case). This allows more general in-
tensity modifications between frames. In [5] the authors proposed matching the
histogram of a given frame I(x; t) to the mean histogram in a window centered at
time t. In [3,2] Delon analyzed the algorithm from [5] and proposed an improve-
ment. The main observation made by Delon is the following: if the histograms of
two frames that differ only in a constant are averaged, two unimodal histograms
may produce a bimodal one. This simple observation shows the limitations of the
algorithm proposed in [5]. To deal with this problem Delon proposed to average
the inverse of the cumulative histograms.

For trasforming two images I1 and I2 to have the same histogram both images
are transformed with continuous and strictly increasing functions gi : [0, 255]→
[0, N ]. Assuming continuous images the cumulative histograms are defined as:
Hi(q) =

∫ q

0 hi(λ)dλ, where hi(q) is the histogram of the image Ii. In [2] Delon
shows that the following transformations produce images with the same cumu-

lative histogram: g1 =
H−1

1 +H−1
1

2 ◦H2, g2 =
H−1

1 +H−1
1

2 ◦H1 In this way the final

cumulative histogram of each image is: Hi ◦ g−1
i =

(
H−1

1 +H−1
1

2

)−1

. This method

was also presented in the discrete case by Cox in [1].
In this work we use this idea but using a weighted average of frames within

a temporal window following the ideas discussed in [3]. Given a set of N frames
in a given window the inverse average is defined as:

Ha =

(
N∑
i=1

wiH
−1
i

)−1

.

To remove the flicker each frame is transformed with a function gi = Ha ◦Hi.
Using a weighted inverse average inside a window permits to smoothy correct

the flicker while allowing variations (in the temporal axis). In that way global
brightness variations that could be part of the original material and not the result
of any degradation process are preserved. Using the average of all the frames of
the scene is not recommended because it will destroy the original content of the
scene forcing all frames to have equal histograms. With the proposed approach
the temporal variations of the intensity are smoothed and discontinuities avoided
while respecting the original variations of the film.
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3 GPUs and OpenCL

Modern GPUs are very efficient in parallel processing of computer graphics data
but also with any other type of data that can take advantage of the parallel
nature of the GPUs. At the same time they are very competitive in terms of price.
NVIDIA was the first company to introduce a general-purpose programming
model with the release of CUDA and recently other companies joined efforts
around the OpenCL standard. Although CUDA is widely extended OpenCL has
the attractiveness of being a standard supported by many companies. In fact
NVIDIA also supports OpenCL just like ATI which is another big player in the
field.

One of the goals of this work was to explore the use of OpenCL for image
processing. The research group has been working with CUDA so we took this
project as a test case to evaluate the suitability of OpenCL for this kind of prob-
lem. The development was done using Windows 7, Visual Studio and OpenCL
and tested in a ATI Radeon 5650 GPU.

4 Algorithm Implementation

Histogram Computation: The first stage of the algorithm computes the his-
togram of the N frames within the temporal window that will be considered in
the flicker reduction process. For comparison purposes we implemented a CPU
routine using C++ and another one based on the GPU using OpenCL. Since
sequential computation of histograms presents no difficulties we will focus on
the GPU-based routine.

An OpenCL application consists of two main parts: the host program and the
kernels. Initially the host program defines a context (in this work the context
consists of a CPU and a GPU). Then it defines a command queue in which
commands issued by the CPU are scheduled for execution on the GPU. Subse-
quently, the host program loads a kernel file and creates a kernel object from the
code in that file (in this case the set of instructions that calculate the histogram
of an image). Finally, it transfers the arguments to the GPU (input image and
empty array in which to return the calculated histogram) and enqueues the ex-
ecution of the kernel. Once the execution finishes the host program reads the
results back into a result buffer.

Each kernel execution processes in parallel every pixel within a subregion
of the input image called work-group which dimensions are defined by the user
before queuing the execution. The kernel gets the gray level of every pixel within
a work-group and increases the value of the corresponding bins of the histogram.
Notice that with a parallel approach as the one being described when two pixels
of the same work-group have the same gray level, two threads will try to write
to the same memory location simultaneously (the same bin of the histogram).
To preserve data integrity in such cases it is necessary to use atomic operations,
which implies a decrease in performance. See the following code:
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if(x < image_width && y < image_height){

color = read_imagef(inputImage, sampler, coordinates);

atomic_inc(&histogram[color]);

}

Cumulative Histogram: Computing the cumulative histogram of an image
consists in adding the values of all the bins of its histogram, hence it is inherently
a sequential operation which isn’t likely to be parallelized. For this reason this
stage of the algorithm was implemented on the CPU. This routine takes as
argument a structure containing the histograms of the N frames of the window
being considered for restoration and returns another structure containing the N
corresponding cumulative histograms.

Weighted Average of Cumulative Histograms: We define a symmetric
time window of N frames centered at the frame that is being processed (input
frame) and compute the weighted average of the cumulative histograms within
this window. The weight assigned to each frame of the window is determined
through a normal distribution centered in the input frame. This way the coef-
ficient corresponding to each cumulative histogram considered in the weighted
average is calculated in terms of its proximity in time respect to the input frame

using weights: wi = exp(− (i−N/2)2

2σ2 )
The standard deviation must be defined in terms of the number of frames that

comprise time window. During the tests performed in this study it was found
that using σ2 = 2N allows flicker reduction while still respecting the intensity
variations that are part of the film’s content.

When the first frame of the sequence is being processed the system does not
have information from previous frames, therefore the initial weighted average
considers only subsequent frames. Once the first frame has been restored pre-
vious frames become available and the routine progressively incorporates their
cumulative histograms to the computation of the weighted average. The opposite
case is presented while reaching the last frame of the sequence.

Midway Equalization: Once the average cumulative histogram is computed
the algorithm proceeds to equalize the histogram of the input frame. For this we
implemented the method proposed in [4]. The routine defines a transformation
that assigns to each pixel of the input image the gray level of the element of the
average cumulative histogram which has the same rank as the considered pixel.

First the routine determines the rank of each gray level in the input image
using its cumulative histogram (Hinput): Hinput(λi) = ki(rank)

Then it calculates the gray level that corresponds to that rank through the
inverse of the weighted average cumulative histogram: H−1

a (ki) = λ′i

for(i=0; i<256; i++){

//find the rank of each gray level of the input image

rank = input_cummulative_histogram[i];

//find the gray level that has the same rank

r = 0;

while(input_cummulative_histogram [r] < rank){

r++;
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}

//write the corespondent gray level to the transformation array

transform[i] = r;

}

Image Transformation: The routine that applies the transformation to the
input image was implemented on an OpenCL kernel. The routine takes as ar-
guments the input image, an array describing the transformation and a blank
image to which the result will be written to. Each execution of the kernel reads
in parallel the gray level of a section of 16 x 16 pixels (one work-group) and
writes the new gray level to the output image (according to the transformation
described by the array).

if(x < image_width && y < image_height){

input_color = read_imagef(input_image, sampler, coordinates);

output_color = transform[input_color];

}

write_imageuf(output_image, coordinates, output_color);

5 Results and Discussion

In order to quantify the effectiveness of the flicker reduction algorithm imple-
mented in this work several films with different degrees of flicker were processed
and their mean gray level was compared before and after processing. The per-
formance of CPU based and GPU based implementations of the algorithm was
also measured during these tests.

Performace Results: Three films with different frame sizes were processed
in order to compare the time it takes to compute the histograms and to apply
the transformation using a sequential routine implemented in the CPU and a
routine implemented in the GPU.

Fig. 1. Histogram computation performance

The results presented in Figure 1 shows that in all three cases the computation
of histograms runs faster on the CPU than on the GPU. Two possible reasons
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for the GPUs poor performance on the computation of image histograms are the
following:

– In order to compute the histogram of an image on the GPU the input image
and a buffer (where to write the histogram to) must be transferred from the
CPU to the GPU. After the computation the result must be read from the
GPU and this involves transferring the buffer back to the CPU.

– To preserve the integrity of data during simultaneous attempts to writing to
the same memory location atomic operations must be used (preventing the
execution of parallel instructions).

Figure 2 presents a comparison between the time it takes to apply the trans-
formation to each frame of the sequence using a routine running on the GPU
and a routine running on the CPU. These results show that for an image of
720 × 756 pixels both routines achieve similar performances. When processing
larger frames (1920× 816 and 4096× 2304) the routine runs faster on the GPU
than on the CPU.

Fig. 2. Transformation computation performance

As in the computation of histograms before applying the transformation in
the GPU it is necessary to transfer the input data from the CPU to the CPU. In
this case the parameters that must be transferred are the input image, an array
in which the transformation is defined and a blank image on which the result
will be written to. For small frames (less than 1 MP) the time it takes to the
CPU and the GPU to apply the transformation is similar, thus the additional
delay of the data transfer is not justified. For frames larger than 1 MP pixel
the transformation runs faster enough on the GPU over the CPU to justify the
computational cost of the data transfer and therefore the total processing time
of the GPU is less than the total processing time of the CPU.

Flicker Reduction: This section presents the results of three tests aimed
at measuring the ability of the algorithm for the reduction of film flicker. The
results arise from the comparison of the mean gray level of each frame of a
flickering film before and after being processed. Figure 3 shows in blue the mean
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Fig. 3. Film flicker reduction. Left: Sample Frame. Right: original mean luminance
(blue), restored mean luminance using average (red) and restored mean luminance
usong wiegthed average (magenta).
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gray level of the first 100 frames of the films. In all three films the mean gray
level of the original frames experience significant variations between consecutive
frames and several discontinuities along the temporal axis indicating that the
films have flicker.

In order to preserve the original content of the scene, it is desirable that
the flicker reduction algorithm removes the discontinuities that cause the flicker
effect while preserving the intensity variations that are part of the content of the
film and not part of any degradation process.

Figure 3 shows that using an average of the cumulative histograms results
in an almost constant mean gray level along the stream. This indicates that
while this approach will reduce the flicker it will not preserve the original in-
tensity variations of the original content of the film. On the other hand, the
mean gray level values that result from using a weighted average of the cumula-
tive histograms within a temporal window show that although rapid transitions
and discontinuities were removed, slow transitions remain. This suggests that
with this approach the global brightness variations of the original content are
preserved.

6 Conclusions

This work proposes a way of preserving the original global intensity variations
of a film when applying a flicker reduction algorithm based on the computation
of the inverse weighted average of the cumulative histograms within a time win-
dow. The performance results obtained in this study lead to the conclusion that
using OpenCL for computing image histograms on a GPU fails to achieve better
performance than the computation of image histograms on a CPU. Regarding
the transformation process that reduces the flicker it was observed that the extra
time required to transfer data to and from GPU is not justified unless the frames
being processed are larger than 1 MP. In such cases running histogram calcu-
lation on the CPU and applying the transformation on the GPU can achieve a
better performance of the flicker reduction algorithm than if it runs entirely on
the CPU.
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Abstract. Most of the action recognition methods presented in the lit-
erature cannot be applied to real life situations. Some of them demand
expensive feature extraction or classification processes, some require pre-
vious knowledge about starting and ending action times, others are just
not scalable. In this paper, we present a real time action recognition
method that uses information about the variation of the silhouette shape,
which can be extracted and processed with little computational effort,
and we apply a fast configuration of lightweight classifiers. The experi-
ments are conducted on the Weizmann dataset and show that our method
achieves the state-of-the-art accuracy in real time and can be scaled to
work on different conditions and be applied several times simultaneously.

1 Introduction

The recent advances in technology have made computers faster, data storage
cheaper and video capture more available. This provided extensive usage of ap-
plications of automatic human action recognition in video. They can be seen
in surveillance systems, cell phones, cars and video games for various pur-
poses. However, researchers face the efficiency-speed trade-off dilemma, seen in
many computational problems, which hampers the implementation of real time
solutions.

Over the last decade, numerous works have addressed video action recogni-
tion, aiming to achieve better classification rates. Eventually, the rates on some
datasets have already reached around 100% – some examples are [5, 10, 13].
Hence, more recently, some works have consisted of making the techniques ap-
plicable to real life situations, even at the cost of reducing the classification rate.
Some researches have addressed real time recognition [2, 8] and studied recog-
nition of multiple actions simultaneously or in sequence [18]. The classification
rate reduction in some recent works can be seen in Table 1.

Several methods presented in the literature, such as [10, 14], extract interest
points from the video and describe them using solely appearance information. A
Bag-of-Word approach is often used to unite all the local features, thus loosing
their spatio-temporal distribution. These methods usually have a slow training
phase and have limited application. Bregonzio et al. [1] developed a method in
which the geometric information is preserved, obtaining better accuracy results,
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but still not solving these limitations. Another common approach is to use sil-
houettes; there are simple and fast ways to obtain them. One challenge of these
approaches is to find a suitable form of representation; Yi and Krim [17] used an
homotopy function to describe a space-time volume formed by silhouettes over
time.

The work proposed by Guo et al. [6] have achieved an impressive success
rate, however, it uses a dense set of feature vectors and covariance matrices.
With some optimization, it can operate in real time, but is not scalable. Other
methods, such as [15], work in real time, but have room for improvement in the
correct classification rate and in the capability of recognizing multiple actions in
space and time. Frequently, the reason why a method cannot be applied in real
time is that the used features represent the entire action, therefore, the sequence
must be acquired in order to call the classifier. Table 1 summarizes some related
works, their accuracy and a short description of their techniques.

This paper proposes a lightweight action recognition method that is capable of
identifying actions using only a small number of frames. The method is based on
the shape variation of the motion silhouette, thus the features can be extracted
on-the-fly and quickly be used to classify the action. For these characteristics, it
can be readily applied to work with multiple simultaneous actions and actions
in sequence.

Table 1. A summary of related works for the Weizmann dataset

Work Weizmann
rate (%) Techniques

Fathi and Mori (2008) [5] 100 Combination of low-level features with
AdaBoost

Niebles, Wang and Fei-fei
(2008) [10] 90 Bag-of-Words + pLSA

Sun, Bhen and Hauptmann
(2009) [13] 97.8 Zernike moments + Bag-of-Words +

SVM
Ta et al. (2010) [14] 94.5 Bag-of-Words + SVM

Hsieh, Huang and Tang
(2011) [7] 98.3 Silhouette histogram in polar coordi-

nates + Nearest Neighbor
Wang, Huang and Tan

(2009) [15] 93.3 Optical Flow + AdaBoost

Bregonzio, Xiang and
Gong (2012) [1] 96.7 Bag-of-Words + Clouds of Points + Mul-

tiple Kernel Learning
Junejo and Aghbari

(2012) [8] 88.6 SAX + Nearest Neighbor

Zhang and Tao (2012) [18] 93.9 Slow Feature Analysis
Chaaroui and

Climent-Pérez (2013) [2] 90.3 Silhouette clustering into key poses +
Nearest Neighbor

Guo, Ishwar and Konrad
(2013) [6] 100 Covariance matrix of spatio-temporal

descriptors
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This paper is organized as follows. Section 2 defines the proposed methodology
for this work. Section 3 presents and discusses some of the results obtained with
the proposed method. Section 4 concludes the paper and includes some future
work suggestions for improving the proposed method.

2 Methodology

The proposed method for identifying different actions is initialized with a video
stream that contains an action, according to Figure 1. The first step is to acquire
the motion silhouette by using the difference between consecutive frames; this
step is fast to be applied and is responsible for the real time application.

Fig. 1. Diagram with the main stages of the proposed method

An action can be represented in the video stream with distinct number of
frames. Some of these frames do not represent significant information to classify
and can contain some outliers, due to the low robustness and fast speed method
for acquiring the points. To overcome this weakness, the algorithm select frames
to acquire the points with relevant information. Among the frames selected, a
fixed number is sampled and will be used in the subsequent steps.

The extracted silhouettes are used in two distinct processes. The first one
is the usage of a bounding box containing the entire silhouette. The bounding
box contains some control points; the number of control points is parametrically
defined and is equally divided into the four bounding box sides and equally
spaced. The control points are used to choose the silhouette interest points; the
selected points are those which the distance to each control point is the shortest;
Figure 2 illustrates some control points and the selected points in a bounding
box.

While the first step is applied to each silhouette separately, the second con-
siders the silhouette point displacement in the same stream (Figure 3). The
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Fig. 2. Points of interest are chosen by their distance to the grid points

displacement is measured by using the Euclidean distance on the same points in
different frames. Particularly, the displacement in the horizontal axis is used to
differentiate static action from dynamic actions. While static actions start and
end in the same place, dynamic actions start and end in different places. This
information is used to create two hyperplanes, the first for static actions and
the second for dynamic actions. Thus, any static action can be identified as a
dynamic action and vice versa.

Fig. 3. Displacement of interest points in an action sequence

After the intra and inter silhouette process, the resulting parameters are com-
bined into a unique descriptor and submitted to a classifier, which identifies the
actions performed on the video stream. There are two viable classifier options:
Support Vector Machine (SVM) [3] and k-Nearest Neighbors (KNN) [4].

SVM is originally a binary classifier. The training consists of finding a high-
dimensional hyperplane that optimally separates the features of two classes.
Multiclass classification is usually achieved by the use of several binary SVMs.
Two common approaches are the one-versus-all and one-versus-one. In the first,
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each class is trained against all others together, and the classifier with the best
output function gives the result. In the second, every class is trained against all
others, one by one, and the result is given by a voting strategy.

KNN is a multiclass classifier. No training step is required, since the classi-
fication step uses the training vectors directly. It works by searching the space
for k nearest vectors from the testing instance. If k is 1, it becomes a nearest
neighbor classification.

The KNN classifier was chosen since it properly handles multiclasses and
works very well in the coordinate system used in the proposed method, once
the action classes tend to be organized into clusters. Also, uncorrelated classes
usually do not weight in the classification, because only the surroundings of the
test vector are considered.

3 Experimental Results

In this section, we evaluate our method on public datasets and present the re-
sults, as well as details of each method step, such as the tools and the parameters
employed.

The experiments presented were conducted on the Weizmann human action
dataset [16]. It consists of 10 classes of actions: walking, bending, jumping jack,
jumping, jumping in place, running, side walking, skipping, waving one hand
and waving two hands. Each action class is performed by 9 people, three of
those classes have one person with two sequences recorded. Figure 4 shows some
examples of actions from the dataset.

Fig. 4. Frames extracted from the Weizmann dataset [16]

To demonstrate the robustness of our method, we performed leave-one-out
cross-reference tests. Table 2 shows the results obtained with the Weizmann
dataset. It can be seen that 60% of the misclassification happens to the skipping
class, as also reported by [2, 12], because it has a large intra class variation
and is normally confused with side walking and jumping. The overall correct
classification rate is 94.62%. This result shows that it is possible to achieve
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high rates of classification using simple descriptors, such as the proposed motion
silhouette that allowed to perform real time data extraction and classification.

The processing time for a frame sequence is smaller than the video duration.
The Weizmann dataset has 93 video sequences with an average duration of 2.45
seconds. The extraction of the features of each video took, in average, 0.135
seconds, and the average time to classify the videos is less than 1 millisecond.
The ratio of the average video duration to the average processing time is 18.14.
The experiments were conducted in a 2.4GHz Intel i7 processor using no par-
allelism. It shows that our method works in real time with room for inserting
improvements, without making it slow.

Table 2. Confusion matrix of the results for the Weizmann dataset

walk bend jack jump pjump run side skip wave1 wave2
walk 1 0 0 0 0 0 0 0 0 0
bend 0 1 0 0 0 0 0 0 0 0
jack 0 0 0.77 0 0.22 0 0 0 0 0

jump 0 0 0 1 0 0 0 0 0 0
pjump 0 0 0 0 1 0 0 0 0 0

run 0 0 0 0 0 1 0 0 0 0
side 0 0 0 0 0 0 1 0 0 0
skip 0 0 0 0.2 0 0 0.1 0.7 0 0

wave1 0 0 0 0 0 0 0 0 1 0
wave2 0 0 0 0 0 0 0 0 0 1

The classification results also show that not all video frames are necessary to
identify the action correctly. After some tests using different number of frames,
fifteen frames were used in the final algorithm. For tests using more than fifteen
frames, no significant gain was observed.

Sixteen interest points were selected in the silhouettes (the number must be
a power of two), resulting in a large number of final descriptor dimensions. The
tests using more than sixteen points did not improve the identification process
and the tests using less than sixteen showed a weak representation. To reduce
the number of dimensions in the final descriptor, the PCA algorithm [11] was
applied. Several dimensions were tested and the best value acquired was 30 to
classify the video stream.

The KNN classifier allows a parameter to set a number of neighbors to be
considered in the classification process. The best parameter observed in this case
was one. It is because the used data set contains a short number of videos to train
the classifier. In larger databases, this parameter could possibly be increased for
a best classification.

Tests were also conducted on the KTH dataset [9], however, the method
turned out to be ineffective on it since some videos have constant zooming and
camera motion, which causes the detection of untrue displacement. This makes
the displacement detection step that separates static from dynamic actions more
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difficult. The best recognition rate, reached by tunning the parameters, was
58.34%.

4 Conclusions

This paper introduced and discussed a new real time motion silhouette-based
method for human action recognition. The most onerous part for any action
recognition system is usually the descriptor extraction. In this work, we used a
simple point selection that considers the relative point position for the control
points fixed in a bounding box. This allows a fast silhouette representation and it
is possible to recognize an action performed in a video stream correctly through
a movement measure. The action sequence is described by the displacements of
these points in time.

When using a silhouette-based algorithm, its robustness depends on the sam-
pling adopted. In this step, the amount of points and which of them must be
used are critical decisions for achieving high classification rates. To improve the
results, our algorithm is capable of sampling a number of points based on the
video resolution. For the Weizmann dataset, only sixteen control points were
used, corresponding to sixteen interest point coordinates.

Unlike [1, 5, 6], the performance of our algorithm is more than necessary for
real time requirements. Nevertheless, our classifier proved to be accurate and
even better than other works of literature (Table 1) on the Weizmann dataset
with an accuracy of 94.62%.

A motion-based algorithm is not indicated for videos containing camera mo-
tion, for instance the KTH dataset, since the method interprets a camera motion
as movement, not segmenting correctly the action performed. A possible strat-
egy is to use sophisticated tracking techniques such as [2], which, on the other
hand, slow down the method performance.

The solution employed the proposed method is lightweight and easily scalable
to work with multiple action instances on a single video sequence, because it is
applied on each movement instance separately. Our approach achieves state-of-
the-art 94.62% accuracy on the Weizmann dataset.

As future directions, we suggest to the proposed method for extracting and
tracking silhouettes in the presence of more complex background, and also apply
our method to different types of datasets, such as surveillance videos, videos with
camera movements, or videos with other camera angles. It is possible that the
descriptor developed in this work is suitable with other classifiers besides KNN.
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Abstract. The constant increase in the availability of digital videos has
demanded the development of techniques capable of managing these data
in a faster and more efficient way, especially concerning the content anal-
ysis. One of the research areas that have recently evolved significantly at
this point is video summarization, which consists of generating a short
version of a certain video, such that the users can grasp the central
message transmitted by the original video. Many of the video summa-
rization approaches make use of clustering algorithms, with the goal of
extracting the most important frames of the videos to compose the final
summary. However, special clustering algorithms based on a spectral ap-
proach have obtained superior results than those obtained with classical
clustering algorithms, not only in video summarization techniques but
also in other fields, such as machine learning, pattern recognition, and
data mining. This work proposes a method for summarization of videos,
regardless of their genre, using spectral clustering algorithms. Possibili-
ties of algorithm parallelization for the purpose of optimizing the general
performance of the proposed methodology are also discussed.

1 Introduction

Due to the great increase in the generation of digital videos in the last years, there
is an increasingly need to develop techniques that are capable of manipulating
these data in an automatic, efficient and accurate way, concerning the issues
of searching, browsing, retrieval and content analysis. Among these techniques
is the video summarization, which consists of deriving a short version from a
given video, preserving as much relevant information as possible, such that the
users can grasp the message transmitted by the original video. The generated
summaries can then be integrated into many applications, such as interactive
searching and browsing systems, making both management and access to video
content more accurate [14].

Nevertheless, defining what is important or not in video summarization is
an open problem, especially because there is a variety of video genres, such as
sports, movies, news programs, documentaries, and home movies in general. Even
to humans, it is hard to reach a consensus to know how good a summary is, since
what is relevant to ones may not be to others. Thus, the main challenge of the
video summarization field is in how to make a system to take the best decisions
to choose the most important parts of a video. This is usually done by analyzing
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high level features (e.g. semantic content, time, space) or low level features (e.g.
color histograms, texture, subtitles, audio, shape and motion descriptors).

Among the various approaches to the video summarization problem are those
which make use of clustering algorithms, that are also objects of study in fields
such as data mining, machine learning, and statistics. The idea beyond these
approaches is to split the frames of a given video into different groups such
that frames that belong to the same group are more similar among themselves.
Then, a set of keyframes is extracted from these groups, i.e., the frames that
best represent both the belonging groups and the essence of the original video
content. Later, the final summary is generated from these keyframes.

A clustering technique that has been increasingly growing recently is the spec-
tral clustering [13], due to the fact that it can generate more satisfactory results
than those obtained by classic clustering algorithms. In the case of video summa-
rization, even though there are many approaches that use clustering algorithms,
little has been produced with spectral clustering algorithms so far.

The objective of this work is to propose and analyze a new method for video
summarization of any genre using spectral clustering algorithms. A qualitative
analysis of the generated summaries with different feature descriptors is con-
ducted, comparing the results with a specific database, which includes summaries
from other approaches.

The main contributions of this work include the creation and implementation
of a method that can be integrated into many video processing environments
and a performance and accuracy analysis of the proposed method, considering
the variety of existing video genres.

This paper is organized as follows: Section 2 describes the main concepts
about video summarization and spectral clustering, as well as works related to
both topics; Section 3 defines the proposed methodology for this work; Section 4
presents and discusses some of the obtained results with the proposed method;
Section 5 includes the general conclusions about the discussed topic and some
future work suggestions in order to improve the proposed method.

2 Concepts and Related Work

This section describes general concepts about video summarization, together
with related works and spectral clustering algorithms, and how they are applied
to the video summarization context.

2.1 Video Summarization

A digital video can be defined as a collection of images that have the same
dimensions, grouped according to a temporal sequence. Each of these images is
known as frame, which corresponds to the smallest structural unit of a video,
representing a picture captured by a camera in a given time instant of the video.
The frames can be grouped into shots, which are sequences of frames, captured
in a contiguous way, and that represent a continuous action in time or space.
Finally, a group of shots that are semantically correlated constitutes a scene.
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Video summarization techniques can be divided into static and dynamic. In
the first category, the summary is generated as a collection of still images de-
nominated keyframes [16], that represent the content of a video in the form of
a storyboard. The advantage of this approach is in its simplicity and efficiency,
usually being free of redundancies, but it may not preserve the temporal order
of the selected keyframes. In the second category, many segments of the video
are chosen, which are then organized such that the temporal order of the video
is preserved [21]. Dynamic summarization has the main advantage of generating
summaries which a higher richness of details, but it is more expensive than static
summarization approaches, besides the possible generation of redundancies.

Another challenge in the video summarization field is the definition of stan-
dard metrics to evaluate the quality of the results. At the moment, there is no
consistent platform to evaluate summaries. Thus, each work has its own eval-
uation method and, in most cases, it does not compare the results with other
existing methods [20].

2.2 Spectral Clustering

Spectral clustering [13] has become one of the most popular clustering techniques
lately, being an important research object in fields such as pattern recognition,
machine learning, and signal processing. It provides better results than those
from classic clustering algorithms (such as K-means) and it can be easily imple-
mented by means of numeric computation platforms. In the video summarization
context, spectral clustering can be used in tasks such as keyframe extraction [7]
and shot boundary detection [8].

Given a set of n points, located at an l-dimensional space, to be divided into k
distinct subsets, where n, l and k are positive integers, an affinity matrix An×n

is constructed such that each element A(i, j) corresponds to a similarity measure
sij ≥ 0 that represents the likelihood degree between a pair of points i and j of
the set, with A(i, i) = 0. Thus, the bigger the value of A(i, j), the higher is the
similarity between the points i and j and vice-versa.

Later, the diagonal matrix Dn×n is defined, where D(i, i) =
n∑

j=1

A(i, j). From

A and D, the Laplacian matrix L = I − (D−1/2AD−1/2) is constructed, where
In×n is the identity matrix. In the next step, the k largest eigenvectors of L are
calculated, forming the matrix X = [x1x2...xk] by stacking these eigenvectors in
k columns. After that, the matrix Y is created from X by normalizing the rows
of X such that each one has unitary length. Finally, the rows of Y are separated
into k groups by the K-means algorithm (or any other clustering algorithm, such
as the ones described in [9]), assigning the point i of the initial set to group j if,
and only if, the row i of matrix Y is assigned to cluster j.

The choices of the similarity measure to be used and the number of clusters
in which the dataset is split are not trivial tasks, once that they are subject to
the application domain of this set. First of all, it must be assured that the data
considered as “very similar” by the chosen similarity measure have a very close
relationship in the application domain as well [13]. Furthermore, in most of the
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cases, there is not a “correct” number of groups. In this situation, it is common
to use strategies that find this number in an automatic way [18].

Usually, the matrices computed by the spectral clustering algorithms are very
large, demanding a large storage space, especially when working with digital
videos, composed of a considerable number of frames. In order to guarantee
the efficiency on the implementation of these algorithms, it is necessary that the
Laplacian matrix related to the similarity graph be sparse, simplifying the task of
calculating the k largest eigenvectors. To do this, graphs such as ε-neighborhood
and k-nearest neighbors are used, eliminating the computation of the similarity
measures between every single pair of points.

3 Methodology

The methodology of this work will be focused on a new method for digital video
summarization of any genre using spectral clustering to obtain summaries with
a better quality than those found in the state-of-the-art. A comparative analysis
of the generated summaries of some methods of the literature with the ones
generated by the proposed method is conducted. A general flowchart of the
methodology stages is shown in Figure 1.

Fig. 1. Flowchart of the main stages of the proposed method for video summarization

From a given digital video, the feature extraction stage will primarily make a
sampling of this video in frames. To optimize the performance of the application,
only 5 frames per second are used in this stage. From these frames, both the vi-
sual rhythm by histogram (VRH) [11] and image descriptors for each frame are
calculated. In this process, many image descriptors that encompass spatial and
temporal features are evaluated, such as SIFT (Scale-Invariant Feature Trans-
form) [12], SURF (Speeded Up Robust Features) [5] and ORB (Oriented FAST
and Rotated BRIEF1) [17].

In the shot detection stage, the estimation of the number of video shots is
started, which will be the number k of clusters used in the next stage. From the
VRH image, the shot boundaries are detected by using the local adaptive thresh-
old technique described in [19], which produces more accurate results rather than

1 Acronym that stands for Binary Robust Independent Elementary Features [6].
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using a fixed threshold to detect the boundaries. Starting with k = 1, every time
a shot boundary is detected, k is incremented by 1.

After estimating k, a spectral clustering algorithm is executed for the keyframe
extraction stage. Using descriptor feature vectors, an affinity matrix A is con-
structed, as defined in Section 2.2, where the element A(i, j) corresponds to the
distance between the feature vectors of frame i and the one of frame j. After
the calculation of the normalized eigenvectors, the K-means algorithm is run to
cluster the frames according to the shots to which they are associated, where
the number of clusters corresponds to k.

Finally, the keyframes of each cluster are extracted based on the centroids cal-
culated by K-means (one keyframe per cluster) and preserving their temporal or-
der. The selected keyframes correspond to the ones that are closest to their respec-
tive cluster centroids. Before the summary generation process, a post-processing is
performed to eliminate redundant frames. This is done by computing the sums of
pairwise pixel distances between the columns of the VRH image (generated in the
feature extraction stage) related to two consecutive keyframes. After that, these
values are compared to a distance threshold Td. If the distance between keyframe
i and keyframe i + 1, where 1 ≤ i ≤ k − 1, is less than Td, the keyframe i will
be considered as redundant and, therefore, will not be included in the final sum-
mary. The threshold value was empirically defined as Td = (μd + σd)/4, where
μd and σd are the mean and the standard deviation of all distances, respectively.
This approach performs well with most of the generated redundant frames from
the videos used in the tests, but it may fail at detecting redundant frames with
high luminosity differences (brightness and contrast), since their columns in the
VRH image are very distant from each other.

From the remaining keyframes, the final summary is then created, which can
be done in a static way, generating a storyboard, or in a dynamic way, taking a
certain amount of frames around each keyframe in the original video, such that
the total number of selected keyframes correspond to a percentage of the total
number of frames of the original video.

The advantage of this method is that every stage is executed in an unsuper-
vised way, such that the number of shots does not need to be known a priori.
However, the whole summarization process is still expensive, because of the
spectral clustering, even though it leads to more accurate results than standard
clustering approaches.

4 Experimental Results

The tests were done using an AMD Phenom II X6 3.2 GHz processor and 4 GB of
memory. The methodology described in Section 3 was implemented with OpenCV
platform [1]. A collection of 50 videos of several genres from Open Video Project
(OVP) [2], available at the VSUMM database [3] (provided by the authors of the
approachdescribed in [4]), were used in the tests, together with the respective sum-
maries produced by different video summarization methods, which include Delau-
nay Triangulation (DT) [15], STIMO (STIll and MOving Video Storyboards) [10],
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as well as the OVP summaries and the ones provided by VSUMM. All of the videos
have, together, approximately a total duration of 75 minutes and 150,000 frames
(352 × 240 pixels). After the execution of the implementation of the proposed
method for each descriptor and using all videos, it was observed that SIFT pro-
vided the fastest execution time, with a total execution time of 1.10 hours, followed
by ORB (4.04 hours) and SURF (7.59 hours).

Fig. 2. Summarization results for The Great Web of Water, Segment 02 ) video (upper
image) and Hurricane Force - A Coastal Perspective, Segment 03 (lower image). For
each descriptor, redundant frames are represented as greyscale images.

To evaluate the quality of the summaries, only two videos are analyzed due to
space limitation in the paper: The Great Web of Water, Segment 02, which has 5
shots, and Hurricane Force - A Coastal Perspective, Segment 03, with 12 shots.
Figure 2 shows the respective results, together with the summaries generated
by different approaches, as well as the one provided by the OVP database. For
the first video, it can be seen that the proposed method generated summaries
with 6 keyframes, one more than the number of shots, which means that the
shot boundary detection process performed very well for this video. Also, the
redundant frames (represented as greyscale images) were properly detected and
eliminated for the final summary, once that the respective contents of the de-
tected redundant frames are similar to their consecutive frames, leaving only the
colored ones. With respect to the quality of the summaries, the SURF summary
was the only descriptor that included the contents of all shots, being the closest
to the OVP summary. Furthermore, the SIFT summary included two keyframes
of a same shot (1st and 2nd frames), and the ORB summary was the one that
generated more redundant frames (2nd and 4th frames) than the other descrip-
tors. Comparing to other approaches, SURF performed slightly better than both
STIMO and VSUMM, which produced the best summaries among the other ap-
proaches. This happens because STIMO included more than one frame of a shot,
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even though it included at least one frame of every shot, and VSUMM missed
the last shot.

For the second video, all of the summaries of each descriptor contain 11
keyframes, one less than the number of video shots. In the redundancy elim-
ination process, it can be noticed that three frames were discarded in the ORB
summary (1st, 6th and 7th frames), whereas SIFT summary had two discarded
frames (1st and 8th frames) and only one for the SURF summary (7th frame).
However, all of the eliminated frames (except for the 7th one of the ORB sum-
mary) have a little more information than the remaining consecutive frames of
the respective final summaries. Concerning the summary content, SURF selected
most of the different shots not only among the descriptors but also the other ap-
proaches as well. On the other hand, comparing the summaries of the proposed
method to the OVP summary, none of them was able to select a frame from the
first shot, as occurred both in DT and VSUMM summaries.

Despite this analysis, it is hard to evaluate how the misdetection of a shot
(i.e., when a frame of a shot is not included in the final summary) affects the
comprehension of the central message transmitted by a video. For that, a more
subjective evaluation must be made, once it requires a deeper content analysis
and a general consensus about the degree of relevance of each shot. In other
words, even though the summaries produced by each descriptor have more dif-
ferent shots than the ones of other approaches (including the OVP), all of them
may have the same relevance in particular situations.

5 Conclusions

This paper described a method for video summarization from any genre using
a spectral clustering algorithm. Different image descriptors were used to extract
features from the video frames, as well as the normalized eigenvectors of the
respective affinity matrices. The K-means algorithm was used to cluster video
frames according to the number of shots detected by a previous procedure that
uses a visual rhythm by histogram image to identify shot boundaries. Redundant
frames are then discarded to produce the final summaries, which were compared
against summaries produced by different video summarization approaches (DT,
STIMO, VSUMM and the ground-truth provided by the OVP database).

Despite the slowest processing time, the summaries produced by SURF were
the best among the tested descriptors, once they detected most of the different
shots and generated less redundant frames than SIFT and ORB. Comparing
SURF to other approaches, the results were very close in most cases, although
SURF produced more complete summaries. Furthermore, both the shot bound-
ary detection and the redundancy elimination procedures performed well in the
analyzed videos, yet they still need some adjustments to improve their accuracy.
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Abstract. We present an approach for motion estimation from videos
captured by depth-sensing cameras. Our method uses the technique of
graph matching to find groups of pixels that move to the same direction in
subsequent frames. In order to choose the best matching for each patch,
we minimize a cost function that accounts for distances on RGB and XYZ
spaces. Our application runs at real-time rates for low resolution images
and has shown to be a convenient framework to deal with input data
generated by the new depth-sensing devices. The results show clearly
the advantage obtained in the use of RGB-D images over RGB images.

Keywords: motion estimation, graph matching, RGB-D images.

1 Introduction

With the advent of devices like Kinect™ (from Microsoft®) and Xtion™ (from
ASUS®) that capture texture and depth images from a scene, there are many
new challenges and problems to be faced. One of the main applications for data
captured by such equipments is generally concerned with natural interaction.
These applications typically use anthropometric algorithms to estimate pose,
skeleton and the number of users in front of the device. Some systems have
specialized algorithms to recognize its users, even if there is identical twins among
them [1]. Gesture recognition using Kinect™ has been used as a control to other
devices, aiming an easier or more natural interaction and allowing the use of
computers with great accessibility [2].

1.1 Objective and Motivation

This work aims to show the benefits of using the additional information given
by the depth image registered with a texture image, presenting an algorithm,
based on graph matching, that detects the direction of movement at real-time
rates. The developed procedure shows, with labels identified by colors or, op-
tionally, with the use of arrows, to which direction each group of pixels (rectan-
gular areas, called patches, arranged in a regular grid on the image) is moving.
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Fig. 1. Input data is a video sequence of texture and depth map images per frame,
providing the RGB and (x, y, z) values of each pixel

Depth data, when added to the traditional RGB values and texture coordinates,
help the delimitation of objects of interest and makes results substantially better
when considered as a descriptive feature for each pixel. This characteristic is an
advantage with respect to methods that depend on the presence of a well defined
pattern on texture, like checkerboard sequences [3].

The technique developed on this paper may be useful on general applications,
such as 3D scene reconstruction and augmented reality. Our approach is also an
intermediary step to identify the rigid components of an articulated object [4].

Given a video sequence, such as the example shown at Figure 1, the application
builds a graph for each frame and compare them subsequently, finding a matching
based on distances at RGB and XYZ spaces.

2 Related Work

The evolving technology regarding depth-sensing devices was initially created to
provide natural interaction to video-games. However, recent Computer Vision
and Graphics research has shown a lot of other interesting uses.

The Kinect Identity technology [1] explores a set of three independent identifi-
cation techniques: face recognition, clothing color tracking and height estimation.
These techniques were selected from a major set and demonstrated to be the best
ones that, at the same time, were robust, non-CPU and memory intensive and as
independent as possible from each other. Such choice indicates the importance
of the development of tracking algorithms that uses both kinds of data: texture
and depth map.

The lack of a better treatment of the depth data in conjunction with the RGB
data and, consequently, the use of them on motion estimation algorithms is felt
even by developers of software specialized in gesture recognition, like FAAST, the
Flexible Action and Articulated Skeleton Toolkit [5]. They have demonstrated
interest in developing real-time head tracking and estimation of the twist of the
user’s arm. None of these are provided by the middle-ware OpenNI™ and the
solutions to these problems certainly involves Computer Vision techniques to be
applied to both input data.
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Fig. 2. Data flow representing the implemented method

In the present work, we use graph matching to find a correspondence be-
tween two point sets. This approach has been used to solve many Computer
Vision problems such as interactive natural image segmentation [6], computer-
assisted colorization [7] and point matching for non-rigid registration [8], among
others [9].

3 Methodology

Our method is a kind of discrete optimization for determining optical flow. The
data processing occurs according to a specific pipeline that is composed of the
following steps: data acquisition; texture filters; depth map filters; graph algo-
rithms; data visualization. The data flow is schematized in Figure 2.

3.1 Graph Based Approach

In order to find a matching, we have to consider relevant features that describe
the points and to have a way to compare such features. Thus, each frame gen-
erates a graph whose vertices are derived from patches properties. We used six
values for each pixel on the input data: RGB data, extracted from color chan-
nels, and (x, y, z) data, with x and y being texture coordinates and z being the
distance to the capturing device. The frame representation is given by an at-
tributed relational graph (ARG), allowing storage and comparison of structural,
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temporal and quantitative information. The recognition of the direction of the
movement is done through an inexact graph matching. This approach allows
differences between model and input graph [10]. In the present paper, each pair
of subsequent frames generates the model and input graphs.

An ARG is a graph whose vertices represent objects while edges denote rela-
tions among them. Objects can be characterized by a finite number of attributes
(numerical or symbolic), such as area, perimeter, color and shape. The relations
often correspond to distances and relative orientation between objects, although
more rich spatial relations may be adopted. With the contents of each frame
being represented by an ARG, motion estimation resumes to a graph matching,
consisting of a determination of a mapping of the vertex set of an ARG to the
vertex set of another one.

Each graph is treated as a complete graph, in the sense that every vertex is
connected to all the other vertices. We compute a cost function (see Section 3.3)
involving the distance between the RGB and depth values of each pair of vertices:
(vm, vi), where vm and vi are vertices from the model and the input graphs,
respectively. The pair that minimizes this cost function is added to the matching
set.

While graph vertices store point sets, including position information about
these points, structural relations are stored at graph edges.

3.2 Graph Generation

The model and the input graph are built from consecutive pairs of texture and
depth map input frames. Thus, at the beginning of the acquisition procedure,
we can build just one graph. As the subsequent frames are captured, the input
graph relative to the immediate past frame is assigned to the model graph and
a new input graph is built from the new data acquired.

In order to build the graph, we consider the representation of the input images
(texture and depth map) composed by patches. Given an image and the patches’
parameters, we can compute how much patches compose the new representation,
being sufficient to make a division between the number of rows and columns of
each one. Thus, patches’ dimensions are directly related with the size of the
graphs that are created, highly influencing the performance of the application.

Each patch is a candidate to have a vertex representing it on the graph, being
elected based on its z (depth) value. A new vertex is created and inserted on
the graph only if its z value do not belong to shadow areas on depth map or if
it is not too close nor too far of the capturing device. This perspective treats
the depth map as a valid mask to texture pixels and allows easy background
elimination based on a predefined threshold.

3.3 Graph Matching

The matching is done between two graphs: model and input. The model graph
represents the last pair of frames (texture and depth images), captured before
the current one, which is represented by the input graph.
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A matching is an ordered pair of vertex descriptors, the first one referring to
a model graph vertex and the second one relative to an input graph vertex.

For each vertex belonging to the model graph, we find the vertex on the input
graph that minimizes the cost function. Eventually, the matched vertices have
the same (x, y) texture coordinates, indicating that no movement has occurred
at that location between the two pairs of frames.

The cost function c is given by a convex combination of two distances, dRGB

and dXY Z :
c = α · dRGB + (1− α) · dXY Z . (1)

The dRGB value measures the distance of the color of the patches being compared
on RGB space, while the dXY Z value measures the distance between the (x, y)
texture coordinates and between the z depth values. As it can be seen, the
parameter α controls how much each distance is considered at the final value of
the cost function.

When calculating the cost function, we need to decide about which distance
function to use. Two different distances have been implemented, the city block
(Manhattan):

dRGB =
∣∣vMR − vIR∣∣ + ∣∣vMG − vIG∣∣+ ∣∣vMB − vIB∣∣ , (2)

and the Euclidean distance:

dRGB =
∥∥vMRGB − vIRGB

∥∥
2

=
∥∥(vMR − vIR, vMG − vIG, vMB − vIB)∥∥2 , (3)

where the raised indexes M and I indicate if the vertex belongs to the model or
input graph, respectively, while the sub-indexes R, G and B indicate the channel
color being considered. The same formulas are applied to the (x, y, z) depth map
values. Best results were achieved with the use of Euclidean distance.

4 Results and Discussion

The present section illustrates the results produced by the system with some real
cases. All the examples were captured at 30 fps, with VGA resolution (640×480)
and run in an Intel Core 2 duo computer. Figure 3 shows the captured depth of
two subjects walking at opposite directions, with occlusion occurring between
them and also between their respective legs. The image at Figure 3(b) shows the
same depth at Figure 3(a) after background elimination filtering. Figure 3(c)
shows the texture for the same scene. Note that the depth is already registered
with the texture. Finally, Figure 3(d) shows the detected motion represented as
color labels, with the colors red, green and blue representing movement to right,
up and left directions, respectively. As we can see, the method accounts for the
effects of occlusion. This experiment shows the identification of motion present
on the scene. The leftmost subject is more distant to the capturing device, as
indicated by the gray levels in the depth map; it is walking from left to right.
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(a) (b)

(c) (d)

Fig. 3. Result obtained at a scene where two subjects are walking at opposite di-
rections. This also exemplifies a case of occlusion between moving objects. (a) Depth
image. (b) The same depth at image (a) after filtering for background elimination. (c)
Texture image for the same scene shown at (a). (d) Detected motion represented as
color labels.

The other subject, closer to the capturing device, executes a movement from
right to left. Note the correct classification of both movements, even on the
region where they intercept each other. The green pixels that arise on Figure 3(d)
were identified as moving up, a reasonable result, except for the green blob that
appears at left-bottom corner: it appears due to error on depth capturing. This
same experiment is also an example of how our method gets successful results
even in the presence of occlusion of moving objects. Note how a leg is partially
occluded by another and still has its motion correctly identified.

Figure 4 shows two RGB-D frames on which a couple of dancers executes a
movement to right with a subtle motion of the arms to up. The images at the
bottom of the figure show the output obtained for patches of dimension 4 × 6
when the parameter α takes the values 0.00, 0.25, 0.50, 0.75 and 1.00. The best
result was obtained for α = 0.50. Black pixels indicate absence of motion.

For the input shown at left of Figure 5, we obtained the output shown at
right of the same figure. This experiment shows the nice visual appealing of the
matchings provided by the arrows. Instead of color labels, arrows with circled
tips are used to indicate the motion.

Various values of the parameter α together with different patches sizes have
been evaluated. As expected, our motion estimation achieved better results with
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Fig. 4. Varying the values of parameter α

Fig. 5. Video sequence with a subject moving his arm. Matchings are shown as arrows,
indicating that the arm is moving up and to the right direction.

intermediate values of α. For values close to the extremes of the valid range (0
and 1), the results were poor, indicating matchings that were not consistent with
the observed movement.

4.1 Conclusions and Future Works

Our algorithm takes as input a sequence of pairs of registered RGB texture and
depth map. Since the acquired input depth map is already registered to the
texture image, there is no need for using knowledge about intrinsic or extrinsic
calibration parameters between the infra-red light receptor and the camera.

The developed system has shown to be a convenient framework to deal with
input data generated by the new depth-sensing devices. The application is ca-
pable of doing image processing and execute computer vision algorithms, thus
allowing easy evaluation of results at real-time rates.
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There are many features that may be considered to improve the results and
the performance:

– Enforce coherence in the motion of nearby patches, which often present sim-
ilar motions, turning the technique less sensitive to image noise and ambigu-
ous results.

– The direction of the movement of the patches is calculated on 3D space but
the visualization of the results is done only in the plane that is determined
by texture coordinates. The development of a 3D visualization have already
been started.

– It is possible to apply this method to detect the rigid parts of an articulated
object.

– Compare our results with other 3D motion segmentation algorithms [3].

Our ongoing work include all these possibilities and new advances will be re-
ported in due time.
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Abstract. A methodology for automatic segmentation and classifica-
tion of multi-channel data related to motion capture (MoCap) videos
of cyclic activities are presented. Regarding this, a kernel approach is
employed to obtain a time representation, which captures the cyclic be-
havior of a given multi-channel data. Moreover, we calculate a mapping
based on kernel principal component analysis, in order to obtain a low-
dimensional space that encodes the main cyclic behaviors. From such,
low-dimensional space the main segments of the studied activity are in-
ferred. Then, a distance based classifier is used to classified each MoCap
video segment. A well-known MoCap database is tested which contains
different activities performed by humans. Attained results shows how
our approach is a simple alternative to obtain a suitable classification
performance in comparison to complex methods for MoCap analysis.

Keywords: Multi-channel data, kernel methods, MoCap, human activ-
ity recognition.

1 Introduction

Human action recognition from video data are a growing area of study in the
computer vision field. For a correct recognizing, it is necessary to develop a
system that allows to identify and classify characteristic patterns from the in-
put data [1] [2]. In real life, there are some human activities involving a cyclic
behavior along the time, such as: walking, running, swimming, among others.
Commonly, it is important to identify the main cyclic behavior that describes
each action to find relevant information about the process [3]. For such purpose,
it is necessary to develop three main stages: preprocessing, segmentation, and
classification. However, the segmentation stage is not always developed in an
automatic way, which can lead to unstable results and low classification perfor-
mances. Moreover, when the data segmentation stage is fixed manually, it could
lead in a time demanding process for the user. Then, it is necessary to develop
an automatic segmentation stage that allows to obtain a suitable data analysis.
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There are some works in the state-of-the-art related to the analysis of Motion
Capture - MoCap data for human activity recognition. In [4], it is used a well-
known MoCap database and the dynamics of each action class is modeled by a
Bayesian based approach using Hidden Markov Models - HMM. The achieved
accuracy classification results are over the 90%, however, the system requires
that the multi-channel data is previously segmented, such that each segment
contains a whole course of one action. Moreover, a complex classifier is employed
to train the data, which requires a high computational load. Other approaches
that require a manual MoCap data segmentation can be found in [5].

Here, a methodology for automatic segmentation and classification of multi-
channel data is proposed. In this sense, a kernel function is employed to dis-
cover the time relationships among multi-channel data. Our aim is to highlight
the cyclic behavior of the studied process, which is assumed to be hidden into
the input samples. Indeed, an eigen-based decomposition is used to find a low-
dimensional space that allows to segment the cyclic segments of the input data.
Thus, proposed methodology is able to capture cyclic behaviors hidden into
multi-channel data, avoiding the need of a manual segmentation that could lead
in biased and unstable results. A well-known MoCap database is tested, which
contains different activities executed by humans. Furthermore, two classification
alternatives are studied: by considering each MoCap frame as an unique sample,
and by considering a set of frames.

The remainder of this work is organized as follow. Section 2 introduces the
proposed methodology for automatic segmentation and recognition of multi-
channel data using kernel based methods. In Sections 3 and 4, the experimental
results are described and discussed, respectively. Finally, in Section 5, the work
conclusions are presented.

2 Kernel Based Multi-channel Data Representation

Let X ∈ )N×P be a multi-channel input matrix, with P channels and N sam-
ples, where xi ∈ )1 × P is a row vector containing the information of all the
provided channels at different time instants, with i ∈ {1, . . . , N}. Our aim is to
identify the main relationships that the channels share along the time to high-
light hidden cyclic patterns into the studied process. For such purpose, a kernel
function is employed to discover such relationships taking into account a non-
linear mapping ϕ : )N×p → H, where H is a Reproducing Kernel Hilbert Space
- RKHS [6]. Thus, the kernel based representation allows to deal with nonlinear
structures that can not be directly estimated by traditional operators, such as,
the linear correlation function. Regarding this, the inner product between two
samples (xi,xj) is computed in RKHS as κ (xi,xj) = 〈ϕ (xi) , ϕ (xj)〉H, being
κ (·, ·) a Mercer’s kernel [6]. Taking advantage of the so-called kernel trick, the
kernel function can be computed directly fromX. Here, the well-known Gaussian
kernel is considered, which can be defined as

κ (xi,xj) = exp

(
−
‖xi − xj‖22

2σ2

)
, (1)



MoCap Data Segmentation and Classification 497

being σ ∈ )+ the kernel band-width. Then, from equation (1) the similarity
matrix S ∈ )N×N can be estimated as Si,j = κ (xi,xj). It is important to
note that other kind of kernels could be used, e.g. linear, polynomial, Laplacian,
tangential, among others. However, due to the smooth nature of the input data
and considering the universal approximating capability, the Gaussian kernel is
used [7]. Each application task could be adapted or not to each kernel function
according to the prior knowledge about the input data (see [6,8]). In this sense,
S encodes the temporal dynamics of the multi-channel input data. Analyzing the
pair similarities information into S, it is possible to cluster (segment) samples
that are related to a cyclic behavior of the studied process. Note that, the above
mentioned kernel representation assumes that the multi-channel data shares an
unique cyclic behavior. In case that the input data is composed by different
processes, or when the multi-channel data is non-stationary, an unique kernel
function could be not enough to deal with such changes along the time, not
mentioning the need to consider the time structure of such kind of processes.

2.1 Automatic Multi-channel Data Segmentation

From the above mentioned kernel based multi-channel representation, and in or-
der to find out the cyclic behavior into X, we propose to use an eigen-based
decomposition of S to calculate a low-dimensional space Y ∈ )N×m, with
m < P , which reveals the main components of X. Therefore, the well-known
Kernel Principal Components Analysis - KPCA algorithm is performed over S.
KPCA is a nonlinear generalization of PCA in the sense that it performs PCA
in H, which can be viewed as a feature space of arbitrarily large dimension-
ality [6]. Before applying KPCA, a Laplacian based normalization is employed
to avoid the effect of outliers, thus, the matrix LM ∈ )N×N is computed as
LM = D−1/2SD−1/2, where D ∈ )N×N is a diagonal matrix with elements
dii =

∑n
i=1 Sij . Afterwards, the low-dimension KPCA mapping is obtained as

Y = LMV , where V ∈ )P×m is a matrix containing the first m eigenvectors
of LM , after discarding the first one as trivial solution.

As a result, we obtain a low-dimensional representation that contains the
main cyclic components of X. Hence, we find the local maxima or peaks vector
ρ ∈ )B, where B indicates the number of found peaks into the first coordinate
(column vector) y of Y . Note that, each column vector of Y could be related
to a different cyclic component of X. However, for complex dynamics and/or
non-stationary environments, such components can mix more than one cyclic
behavior. As a first approach, here, we assume that the given multi-channel
data encodes an unique cyclic dynamic. Besides, the signal to noise ratio is high
enough to ensure stable performances. Then, each element of ρ is estimated
as follows. We compare each element yi against its two nearest neighbors yi−1

and yi+1. If yi value is higher than the value of its neighbors, so, yi is labeled
as a local peak and ρb = i, with b ∈ {1, . . . , B}. After that, we compute the
differences between adjacent elements of ρ and finally, take into account the
amount of peaks found B, we obtain B − 1 segments of X. Fig. 1 illustrates
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Fig. 1. Proposed methodology for multi-channel data segmentation

the proposed approach for automatic multi-channel segmentation using a kernel
based representation (a motion capture video analysis example is described).

3 Experimental Set-up and Results

We test our automatic segmentation and classification methodology for multi-
channel data analysis, using a well-known Motion Capture Database - MoCap
database, with the purpose to find the main cyclic patterns of human motion
activities. In this sense, the CMU MoCap is used1. Such data were recorded in
a MoCap lab at Carnegie Mellon University, which contains 12 Vicon infrared
MX-40 cameras, each of which is capable of recording 120 Hz with images of
4 mega pixel resolution. The cameras are placed around a rectangular area, of
approximately 3m× 8m, in the center of the room. Subjects wear a black jump
suit and have 57 markers taped on, and the Vicon cameras see the markers
in infra-red. The images that the various cameras pick up are triangulated to
get 3D data representation. The subjects are asked to perform several human
motions activities, which are captured by the MoCap system. Then, a video in
BVH format for each motion activity by a given subject is recorded. Thus, 146
videos of 31 different subjects are considered for 11 different activities: jump,
walk, run, marching, salsa dance, golf, boxing, swimming, yoga, monkey (human
subject) and chicken (human subject). For each video, an input multi-channel
matrix X ∈ )N×P is obtained, where P = 57 × 3 = 171 corresponds to the 57
joints in 3D coordinates, and N represents the number of frames in the BVH file.
As seen from Fig. 2, it is possible to notice some examples from the database
used on this work.

In order to avoid the bias effect due to the subject translation along the 3-D
space when performing a human activity, e.g. walking and running, a prepro-
cessing stage is carried out, where each input frame is normalized with respect
to the Hips joint 3-D coordinates. Thus is, this joint will be always centered at
the (0, 0, 0) position for every time instant. After that, we compute the kernel
matrix as shown in equation 1, where σ is computed according to the empiri-
cal estimation of the Gaussian kernel band-width by the Sylverman’s rule [9].
From such kernel based representation, we estimate the different segments for

1 http://mocap.cs.cmu.edu/

http://mocap.cs.cmu.edu/
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Fig. 2. Some MoCap human activities representative frames

each video as described in subsection 2.1, fixing m = 1. Table 1 describes the
amount of segments found automatically for each activity with our approach.
Such segments contain the main cycles of the dynamics for the different consid-
ered activities. As result we found 910 different segments that represent 112045
frames. The main stages for the proposed automatic segmentation approach are
presented in Fig. 3 for two MoCap videos examples.

Furthermore, given the computed segments, the generalization abilities for the
provided experimental conditions are tested by using a 10-fold cross-validation
scheme. Regarding this, a k -nearest neighbors (KNN) classifier is used to recog-
nize automatically different activities. The number of neighbors for this classifier
is optimized with respect to the leave-one-out error of the training set. In this
case, two kind of experiments are provided. First, each frame is employed as
an unique sample. Second, for a given video segment, its class membership is
estimated as the mode of the labels of the frames within the segment. In Tables
2 and 3 the mean confusion matrices for the above mentioned classification con-
ditions are presented. Finally, at the bottom of the Table 3, the performance of
the proposed methodology is compared against the results obtained in [4].

4 Discussion

At the top of the Fig. 3, it is possible to see the main segmentation results by
using the proposed approach to analyze a walk MoCap video. Particularly, Fig. 3
(b) shows the computed kernel matrix, which properly identifies the cyclic simi-
larities (green circles) into the video. Now, Fig. 3 (c) describes how our method

Table 1. Number of identified segments per each human activity

Activity Found Segments Activity Found Segments

jump 68 golf 23
walk 127 boxing 36
run 78 swimming 41

marching 81 yoga 86
salsa dance 114 monkey(HS) 135
chicken(HS) 121

Total: 910 Segments
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Fig. 3. Some automatic segmentation results - Main stages

Table 2. Mean confusion matrix - frames classification results

Jump Walk Run Marching Salsa dance Chicken (HS) Golf Boxing Swimming Yoga Monkey (HS)

Jump 92,94 0,16 1,75 0,52 0,96 0,00 0,60 0,00 0,33 1,97 0,46
Walk 1,06 98,22 6,00 0,84 0,52 0,00 0,70 0,00 0,08 0,10 0,00
Run 0,70 1,06 79,84 3,25 1,24 0,00 0,58 0,00 1,93 0,63 0,00

Marching 0,37 0,42 5,16 94,34 0,95 0,00 0,21 0,00 1,47 0,84 0,00
Salsa dance 0,69 0,05 3,38 0,89 93,13 0,00 1,50 0,00 0,39 2,86 0,00
Chicken (HS) 0,00 0,00 0,00 0,00 0,08 100,00 0,00 0,00 0,00 0,14 0,00

Golf 0,09 0,00 0,62 0,00 0,97 0,00 92,28 1,47 0,00 0,80 0,00
Boxing 0,22 0,00 0,00 0,00 0,21 0,00 2,75 97,73 0,00 0,98 0,00

Swimming 0,00 0,09 2,40 0,00 0,12 0,00 0,39 0,10 95,80 0,00 0,00
Yoga 3,83 0,00 0,34 0,15 1,38 0,00 0,77 0,44 0,00 90,02 0,62

Monkey (HS) 0,10 0,00 0,52 0,00 0,45 0,00 0,23 0,27 0,00 1,64 98,92

Table 3. Mean confusion matrix - video segments classification results

Jump Walk Run Marching Salsa dance Chicken (HS) Golf Boxing Swimming Yoga Monkey (HS)

Jump 98,57 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,83
Walk 0,00 100,00 2,50 0,00 0,91 0,00 0,00 0,00 0,00 0,00 0,00
Run 0,00 0,00 93,75 1,25 0,00 0,00 0,00 0,00 2,36 0,00 0,00

Marching 0,00 0,00 0,00 98,75 0,00 0,00 0,00 0,00 2,50 0,71 0,00
Salsa dance 0,00 0,00 2,50 0,00 99,09 0,00 0,00 0,00 0,00 1,48 0,00
Chicken (HS) 0,00 0,00 0,00 0,00 0,00 100,00 0,00 0,00 0,00 0,00 0,00

Golf 0,00 0,00 0,00 0,00 0,00 0,00 97,50 2,00 0,00 0,00 0,00
Boxing 0,00 0,00 0,00 0,00 0,00 0,00 2,50 98,00 0,00 0,00 0,00

Swimming 0,00 0,00 1,25 0,00 0,00 0,00 0,00 0,00 95,14 0,00 0,00
Yoga 1,43 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 96,32 0,00

Monkey (HS) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,48 99,17

Simple Activities Complex Activities
Benchmark [4] Kernel Multi-Channel Benchmark [4] Kernel Multi-Channel

Mean accuracy 91.96% 97.77% 92.14% 97.88%

models, in one-dimensional coordinate, the main relationships among frames. In
this case, due to walking is a slow motion with smooth changes between adjacent
frames, the KPCA mapping can be related to a sin function. Now, from Fig. 3
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(d) 3 peaks are calculated (red circles), which properly identify the 2 gait cycles
performed by the subject. Analogously, at the bottom of the Fig. 3, we have
the main segmentation results for a jump MoCap video. Note that, even when
jumping is a cyclic activity with a stronger dynamic of change than walking,
our approach is able to infer such behaviors. As seen in Fig. 3 (f) the computed
kernel matrix highlights 2 set of frames that share a strong similarity into them.
Such segments can be identified in the first KPCA coordinate as presented in
Fig. 3 (g). Again, note that how our approach is able to track the activity cyclic
behavior, even when S1 is smoother and longer than S2.

Regarding to the classification results, as can be seen in Table 2, the mean
confusion matrix for the frame based classification scheme demonstrates how our
approach obtains a suitable recognition accuracy. Overall, performances over the
90% are attained for all the provided classes. The worst result is obtained for
run, where the system is confused with walk andmarch classes. Above drawback
is expected considering that run is the class with lowest number of segmented
sequences (see Table 1). Moreover, a frame based classification could not be
the best alternative to differentiate between activities that share many MoCap
poses, e.g., run and walk. Thus is, such video segments are conformed by some
frames where the spatial position of the human body joints are similar for both
activities. It is important to note that our method, in most of the cases, obtains
a better frame based classification performance in comparison to a closed work
presented in [4]. Moreover, our approach is a simple solution that includes both,
data segmentation and classification.

Now, taking into account the segment based classification scheme results pre-
sented in Table 3, it is possible to see how such alternative is more stable than
the frame based classification. Attained results describe an average accuracy over
the 95%. Particularly, the worst frame based classification performance (run) is
improved from 79, 84% to 93, 75%. Above system behavior can be explained by
the fact that a segment classification decision considers the mode of the frame
labels as the segment membership. So, the mode function can be viewed as a
filter that is robust against wrong decisions due to pose mistakes (human body
joint similarities). Finally, at the bottom of the Table 3, the performance of the
proposed methodology is compared against the results obtained [4]. The clas-
sification success of our method lies in the automatic segmentation approach,
which suitable identifies the main dynamic cycles of the process.

5 Conclusions

A methodology for automatic segmentation and classification of multi-channel
data was presented. In this sense, a kernel based representation is employed to
find out the time relationships among channels. Then, a KPCAmapping is calcu-
lated to highlight the main dynamics of the studied process in a low-dimensional
space. From such low-dimensional space, a local minimum based method is used
to cluster different time segments that share a common behavior. Therefore,
our approach is able to capture cyclic behaviors hidden into multi-channel data.
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A well-known MoCap database was tested, which contains different activities ex-
ecuted by humans. For concrete testing, proposed approach is used to segment
automatically the video data. Such segments are employed to train a k-nearest
neighbors (KNN) classifier for recognizing automatically different activities. Be-
sides, two kind of classify experiments are carried out: by considering each frame
as an unique sample, and by considering a set of frames (video segment). The
attained results showed that our approach is a simple but efficient alternative
to obtain a suitable classification performance in comparison to other complex
state of the art methods related to MoCap data classification. Besides, state art
methods employs, in most of the cases, a manually video segmentation, which
can lead to subjectively results and inefficient real-world implementations. As
future work, we are interested in test our methodology in other kind of human
activities that involve different cyclic patterns and non-stationary environments
by coupling the proposed method with an online based adaptive filter scheme.
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gadores e Innovadores - 2012, and a Ph.D. scholarship funded by Colciencias.
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Abstract. Graph models offer high representational power and useful
structural cues. Unfortunately, tracking objects by matching graphs over
time is in general NP-hard. Simple appearance-based trackers are able to
find temporal correspondences fast and efficient, but often fail to over-
come challenging situations like occlusions, distractors and noise. This
paper proposes an approach, where an attributed graph is used to rep-
resent the structure of the target object and multiple, simple trackers
in combination with structural cues replace the costly graph matching.
Thus, the strengths of both methodologies are combined to overcome
their weaknesses. Experiments based on synthetic videos are used to
evaluate two possible structural cues. Results show the superiority of the
cue based on barycentric coordinates and the potential of the proposed
tracking approach in challenging situations.

1 Introduction

Even though there exists a vast amount of approaches for video tracking [1,2],
this field of research still has some open problems and challenges. The aim of
this paper is to show, which challenges can be overcome by choosing a graph-
based representation for the target object and by employing structural cues
deduced from this representation in tracking. We will study the following chal-
lenges from [1]: (1) Distractors: neighboring objects with similar appearance as
the target object; (2) Occlusions: varying degrees of partial occlusions; (3) Vary-
ing object pose: translation and rotation in 2D and global scaling; (4) Noise:
Gaussian white noise and Salt & Pepper.

The concept of the proposed approach is to represent the target object by
a graph, where its vertices represent salient features describing the target ob-
ject and its edges encode their spatial relationships. Instead of graph matching,
appearance-based trackers are employed to find the temporal correspondences
of the vertices with the help of structural cues deduced from the graph repre-
sentation. Hence, the proposed approach is able to benefit from the strengths of
graph-based representations to overcome challenges during tracking (see Tab. 1).
In this paper, two structural cues are compared: edge cue and triangle cue. The
contributions of this paper are:

1. A novel structural cue based on barycentric coordinates (triangles);

J. Ruiz-ShulcloperandG. Sanniti di Baja (Eds.): CIARP 2013, Part II, LNCS 8259, pp. 503–511, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Table 1. Strength ⊕ and weaknesses � of simple trackers and graph-based trackers

Simple tracker Graph-based tracker
⊕ fast correspondence finding � costly graph matching
� sensitive against partial occlusions ⊕ robust against partial occlusions
� sensitive against noise ⊕ robust against noise
� sensitive against distractors ⊕ robust against distractors

2. Comparison of performance of two structural cues (edges and triangles);
3. Evaluation of structural cues under challenges;
4. Analysis of the influence of different parameters on the proposed method.

The edge cue is related to pictorial structures introduced in 1973 by Fischler
et al., where the target object is described by a set of parts in a deformable
configuration. Felzenszwalb et al. [3] continued and improved the ideas of Fis-
chler et al. to do part-based object recognition for faces and articulated objects.
Ramanan et al. apply in [4] the ideas from [3] in tracking people. In comparison
to the related work, the edge cue in this paper can be calculated from arbi-
trary graphs and instead of using structure to verify statistical hypothesis, the
proposed structural cues emerge from the underlying structure.

The triangle cue in this paper is determined from barycentric coordinates,
which were introduced by August Ferdinand Möbius in 1827. Barycentric coor-
dinates are particularly important in computer graphics, but are also used in
computer vision. Salzmann et al. [5] represent surfaces as triangulated meshes
and try to recover their 3D shape from 2D correspondences. Barycentric coor-
dinates are used to describe the surface coordinates of each pixel through the
triangle inside which they lie. In [6], Dornaika et al. track faces in a particle filter
based framework using a statistical facial appearance model. After a general 3D
face model is adapted to the face in the input video, barycentric coordinates
are used to describe the position of each pixel within its associated triangle. In
comparison to [5] and [6], we calculate the barycentric coordinates of vertices
outside of triangles (see Fig. 1).

Overview of Paper. Sec. 2 describes the proposed graph model. Sec. 3 shortly
presents the appearance-based tracker. Sec. 4 introduces the edge cue and Sec. 5
the novel triangle cue. In Sec. 6 the combined iterative tracking is described.
Sec. 7 covers the evaluation of the proposed structural cues. Conclusions are
given in Sec. 8.

2 Structural Model: Attributed Graph

An attributed graphG consists of a set of verticesV, which are connected via a set
of edges E. The edges E are inserted following the rules of theDelaunay triangula-
tion. Hence, there is also a set of trianglesF, where c : F �→ V 3; c(f) = {v1, v2, v3}
and {e1(v1, v2), e2(v2, v3), e3(v3, v1)} ∈ E are the corresponding edges. The model
stores attributes with vertices, edges and triangles.
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Attributes of Vertices. Each vertex v ∈ V stores a set of attributes {p,B, a}.

p : V × T �→ R2;p(v, t) = (x, y)T is the 2D position of vertex v at time t ∈ T .
These coordinates are updated in every iteration of the tracking algorithm.

B : V × F′ �→ R3;B(v,F′) is a set of barycentric coordinates of vertex v for each
triangle f ∈ F′, where F′ = {f ∈ F|v /∈ c(f)}. The barycentric coordinates
are determined during initialization and are constant over time (see Sec. 5).

a : V �→ Rn; a(v) delivers features for vertex v from an image window In×n

centered at position of p(v, 0). It is calculated during initialization and is
constant over time. Any arbitrary feature can be employed in the model.

Attribute of Edges. For each edge e = (v, w) ∈ E the length l : E × T �→
R; l(e, t) = ||p(v, t)−p(w, t)||2 is the Euclidean distance of the vertices v and w
at time t. These lengths are updated at each frame to deal with global scaling.

Attribute of Triangles. Each triangle f ∈ F stores the ratios of its edge

lengths r : F × T �→ R3, where r(f, t) = { l(e1,t)l(e2,t)
, l(e1,t)l(e3,t)

, l(e2,t)l(e3,t)
} = {rt12, rt13, rt23}

are their ratios at time t. These ratios are updated at each frame.

3 Appearance-Based Tracker

Mean Shift [7] is employed as appearance-based tracker to associate the vertices
of the graph over time. In each frame, it finds the locally optimal position p for
each vertex v. This is achieved in an iterative process, where starting from the
position from the last frame, Mean Shift searches in a local neighborhood for a
position which maximizes the similarity A : Rn×Rn �→ [0, 1] to the appearance
a(v) of the model. Similarity in appearance is determined as follows:

A(a(v), I(p(v, ti))) = 1− δ(a(v), I(p(v, ti))), (1)

where I : R2 �→ Rn extracts a feature vector around position p(v, ti). δ can
be any distance metric suitable for the employed features. In this paper, it is
the Bhattacharyya distance as described in [7]. The offset generated at time ti
points to the position maximizing A: p(v, ti) = p(v, ti−1) +m(v, ti).

4 Structural Cue Based on Edges

Under the assumption that the target object is rigid and its motion is limited to
the image plane, the length of edges does not change over time. Fig. 1 visualizes
the idea behind the edge cue. This cue has already been presented in a similar
form in [8], but has been improved and simplified for this paper.

The edge cue is determined several times during the iterative process (see
Sec. 6) in each frame of a video. ti indicates a point in time within the current
frame starting at time t0. For each vertex v ∈ V an edge cue can be determined
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Fig. 1. Structural cues. Left: edge cue; Right: triangle cue.

based on the local, spatial deformation of graph G. The local (deformation)
energy E in vertex v at time ti can be quantified as follows:

E : V × T �→ R; E(v, ti) = min

⎛⎝1,
∑

e=(v,w)∈E

∣∣∣1− ||p(v,ti)−p(w,ti)||2
l(e,t0)

∣∣∣
⎞⎠ . (2)

E is a weight used to calculate the edge cue d : V × T �→ R2:

d(v, ti) =
∑

e=(v,w)∈E

E(w, ti) · | ||p(v, ti)− p(w, ti)||2 − l(e, t0)| · p(v,ti)−p(w,ti)
||p(v,ti)−p(w,ti)||2 ,

(3)
which is an offset vector pointing towards the structurally optimal position.

5 Structural Cue Based on Triangles

Triangles are 2D entities, which are able to describe the geometry of planar
objects and approximate curved objects (triangle mesh). By knowing the corre-
spondence of three points at two time instances, it is possible to estimate their
affine transformation in and out of the image plane.

Barycentric coordinates are an elegant way to transfer the motion information
of a triangle to the neighboring vertices in a graph. The position of a vertex v
can be calculated with the help of the barycentric coordinates {β1, β2, β3} of the
three corners c(f) of any triangle f ∈ F. Figure 1 illustrates this concept.

During the intra-frame, iterative process, the triangle cue for a vertex is de-
termined from the barycentric coordinates of a triangle f∗ ∈ F′. Let f∗ be the
triangle with the highest confidence F : F′ × T �→ R. F(f, ti) is based on two
properties of triangles: change of shape R : F × T �→ R and similarity in ap-
pearance A in their corners c(f) (see (1)). Change in ratios R is determined

as R(f, ti) = min(|1 − r12(ti)
r12(t0)

| + |1 − r13(ti)
r13(t0)

| + |1 − r23(ti)
r23(t0)

|, 1). From this, the

confidence is calculated as follows:

F(f, ti) =
1−R(f, ti) + min

v∈c(f)
(A(a(vj), I(p(vj , ti)))

2
(4)
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Algorithm 1. Combined, iterative tracking within one frame.
IterativeTracking

εi, εA, εE thresholds for iterations, similarity, energy
i ← 1 � iteration counter
while i < εi ∧ (argmin

v∈V
(A(a(v), I(p(v, ti)))) < εA ∨ argmax

v∈V
(E(v, ti)) > εE ) do

sort V � for more details see Sec. 7
for each vertex v ∈ V do

determine appearance cue m(v, ti) using Mean Shift
if i > 1 then � first iteration is Mean Shift only

determine structural cue s(v, ti)
combine cues p(v, ti) = p(v, ti−1) + (ω · m(v, ti) + (1 − ω) · s(v, ti))

else
Mean Shift only p(v, ti) = p(v, ti−1) + m(v, ti)

end if
end for
update: A(a(v), I(p(v, ti))), E and V of v ∈ V, F of f ∈ F
i ← i+ 1

end while
end
update: l of e ∈ E and r of f ∈ F

The most stable f∗(ti) is selected by f∗(ti) = argmax
f∈F′

(F(f, ti)). Finally, the

triangle cue b : F′ × T ×B �→ R2 is calculated from B(v, f∗):

b(c(f∗), ti,B(v, f∗)) = (x, y, 1)T = (β1, β2, β3) ·

⎛⎝p(v1, ti)
T , 1

p(v2, ti)
T , 1

p(v3, ti)
T , 1

⎞⎠ (5)

6 Combined, Iterative Tracking

The following combined, iterative tracking integrates structural cues into the
mode seeking process of Mean Shift (see Sec. 3). By combining the appearance
cue m(v, ti) with the structural cue s(v, ti) (either d(v, ti) or b(v, ti)−p(v, ti−1))
the proposed approach finds a position, which not only maximizes the similarity
in appearance, but also the similarity in structure (shape).

During the intra-frame iterations, s and m are re-calculated and combined
for each vertex v until a position p(v, ti) is found where E(v, ti) < εE (see (2))
and A(a(v), I(p(v, ti))) > εA (see (1)). p(v, ti) = p(v, ti−1)+ (ω ·m(v, ti)+ (1−
ω) · s(v, ti)), where ω is a weight defining the influence of appearance m and
structure s on the new position.

There are three ways to come up with ω: (i) similarity in appearanceA (see 1),
(ii) energy in a vertex (1 − E) (see 2) or (iii) confidence in a vertex V (see 6).
The confidence V of vertex is determined by combining similarity and energy:

V : V × T �→ R;V(v, ti) =
A(a(v), I(p(v, ti))) + (1− E(v, ti))

2
, (6)

In Alg. 1, there are two categories of updates: intra-frame and inter-frame.
The intra-frame updates on A, E , V and F are necessary for the combined,
iterative process, and the inter-frame updates on the lengths l and ratios r
are necessary to adjust the model to global scaling.
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Regular-sized triangulation Irregular-size triangulation

p(v1, 0) = (10, 50)T

p(v2, 0) = (40, 50)T

p(v3, 0) = (70, 50)T

p(v4, 0) = (40, 10)T

p(v5, 0) = (40, 90)T

p(v6, 0) = (25, 30)T

p(v7, 0) = (55, 30)T

p(v8, 0) = (25, 70)T

p(v9, 0) = (55, 70)T

p(v1, 0) = (60, 20)T

p(v2, 0) = (30, 80)T

p(v3, 0) = (100, 90)T

p(v4, 0) = (65, 100)T

p(v5, 0) = (10, 125)T

p(v6, 0) = (105, 45)T

p(v7, 0) = (130, 75)T

p(v8, 0) = (130, 110)T

p(v9, 0) = (10, 80)T

Fig. 2. Graphs of synthetic sequences with their vertices at time t = 0. Please note
that the proposed approaches is not limited to graphs with 9 vertices.

Table 2. Videos used in evaluation are made up of every possible combination in this
table. T = Translation; R = Rotation; S = Scaling; D = Distractors; O = Occlusion

Layout of G 2D Transformations in each frame Challenges

regular-sized T = (5, 4)T D
9 vertices D; O: 1 vertex

T = (7, 5)T ; R =
( cos(10◦) sin(10◦)

− sin(10◦) cos(10◦)

)
D; O: 3 vertices

irregular-sized D; O: 6 vertices

9 vertices T = (2, 1)T ; R =
( cos(5◦) sin(5◦)

− sin(5◦) cos(5◦)

)
; D; Gaussian white noise

S =
(

1.02 0
0 1.02

)
D; Salt & Pepper 10 %

7 Evaluation of Structural Cues

Tab. 2 shows information about the 36 synthetic videos (size = 400 × 600)
which are used for this evaluation. Fig. 2 visualizes the two graphs used in the
synthetic videos. All vertices have the same appearance a(v), which makes it
difficult for trackers to distinguish between them (challenge: distractors). As
a feature, we extracted weighted color histograms around the position of each
vertex in a 11 × 11 neighborhood. Three different choices for ω are evaluated:
0 = A; 1 = (1 − E); 2 = V . Additionally, three different orderings of v ∈ V
are studied: 0 = fixed ordering; 1 = ascending by V ; 2 = descending by V . This
results in nine different sets of parameters {00, 01, 02, 10, 11, 12, 20, 21, 22} and
324 (36 · 9) test cases for each cue.

The results can be seen in Fig. 3 and 4, where the curves visualize the mean
error (Euclidean distance from ground truth position averaged over all vertices
in graph) in a vertex at each frame. For both structural cues, the choice of ω and
the ordering of V have a noticeable influence on the results. For all test cases,
the best result of the triangle cue is superior against the best result of the edge
cue. The best parameter set for the triangle cue is {20} and the worst is {00}.
For the edge cue the best is {00} and the worst {10}. The best parameters for
the triangle cue are able to achieve a total error (summed over all test cases) of
only ≈ 345, whereas the best edge cue results in ≈ 1994.
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Results based on 3 videos: all transformations + D
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Results based on 9 videos: all transformations + D + all O
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Results based on 6 videos: all transformations + D + both noises
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Fig. 3. Results with regular-sized triangulation. Left: edge cue; Right: triangle cue.
Vertical axis: error; Horizontal axis: frame. MS = Mean Shift (baseline approach).

There are several drawbacks to the edge cue: The quality of this structural
cue highly depends on the layout of the edges in the graph. Furthermore, as
edges are a one dimensional entity, they are only capable of providing distance
information. As this cue is local, there is no direct influence from vertices further
away in the graph. Information propagates throughout the whole graph, but in
challenging cases this can be problematic.

8 Conclusions and Future Work

In this paper, we studied the potential of structural cues in 2D tracking of
multiple targets. An attributed graph acted as a model describing the structure
of the target object. Iterative tracking combined hypotheses of the appearance-
based trackers with the structural cues deduced from the model to establish
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Results based on 3 videos: all transformations + D
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Results based on 6 videos: all transformations + D + both noises
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Fig. 4. Results with irregular-sized triangulation. Left: edge cue; Right: triangle cue.
Vertical axis: error; Horizontal axis: frame. MS = Mean Shift (baseline approach).

temporal correspondences. This paper evaluated two different structural cues:
edge cue and triangle cue. The results of the evaluation showed the superiority
of the triangle cue. In the future, we plan to apply the triangle cue in tracking
articulated objects and extend this approach to 3D.
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Abstract. In video-conference and distance learning videos, the mo-
ment that someone makes a hand-raising gesture is relevant to be in-
cluded in the video annotation. However, gesture recognition can be
challenging in such scenarios. We propose a system to detect faces, the
hand-raising gesture and annotate the video. The Lienhart-Maydt ob-
ject detection method is used, in which each frame is classified. Then,
the gesture is detected by analyzing intervals of frames. Our approach
was tested in videos with several characteristics. The results show that
our method can deal with illumination and background variations, is able
to detect multiple gestures and it is robust to confusing gestures. Besides
it allow the use of moving cameras.

Keywords: Video processing, gesture detection, video annotation.

1 Introduction

Gesture recognition is a challenging task that is often addressed with complex
sensors and methods, such as the use of depth sensors and multiple classifier
systems, under controlled acquisition conditions [8]. Simpler methods, on the
other hand, are not useful to specific applications since there is a lower concern
about false positives and false negatives minimization. When the problem of
gesture is more specific, it is possible to find more viable solutions. It is the
case of hand-rising detection, applied to video-conference and distance learning
videos to facilitate the annotation task.

In order to help the video annotation, we propose a system to detect faces and
the hand raising gesture, i.e. an open hand raised, with the palm of the hand fac-
ing forward. A study is presented to investigate the robustness of already existing
methods under several conditions and resolutions. A combination of methods is
used, in special the improved Viola-Jones or Lienhart-Maydt method [6].

Kölsch e Turk [4],[5] showed that the object visual detector proposed by Viola
and Jones [10], originally proposed to detect faces, could be used to detect hand
poses. Later, Lienhart e Maydt [6] developed a more efficient method, based on
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the Viola-Jones original method, not used by Kölsch e Turk [4],[5] to evaluate
their experiments.

We believe this investigation can shed a light about the use of this kind of
method under conditions such as camera alternation, filming with a moving
camera, and illumination changing such as when someone turn on/off the lights.
The contributions of our study can be summarized in three parts: i) a method
for a hand-raising gesture detection, ii) the study of the limitations of
the Lienhart-Maydt method for this application, iii) and a new dataset of
images to detect an open hand gesture.

2 Related Work

Among related work that specifically address this problem, Yao and Cooper-
stock [11] assumed that the heads of people in an audience are captured by the
camera in a single horizontal line. It looks for movement and human skin in
regions above the heads. When such events occur, a straight line is fitted using
average points, if the slope of the line is between 45 and 135 degrees, a hand
raising gesture is considered to be detected.

Duan and Liu [2] address the problem using indoor human silhouette analysis.
It is able to work with moving people and groups. However the camera should
remain still. The general pipeline of the method is foreground detection, followed
by blob detection, candidate regions extraction (connected components located
above the silhouettes), feature extraction using an R-transform and, finally a
classification that looks for an arm or raising hand.

This study aims to improve the issues on those related work. We studied
different acquisition conditions, including camera movement, changing in illumi-
nation, background and partial occlusion.

3 Viola-Jones and the Improved Lienhart-Maydt Method

The Viola-Jones method uses integral images and Haar-like operators to obtain
several features. A boosting approach [3] is used to select a reduced number of
visual descriptors to handle the problem. Finally, it uses a combination of clas-
sifiers in cascade, with increasing complexity. This cascade approach eliminates
regions of low similarity, dedicating more effort on the classification of regions
that are similar to the object of interest. Lienhart and Maydt [6] introduced two
changes in the original algorithm: i) a new set of rotated Haar-like features [7] and
ii) an improvement on the cascade classifiers based on a stage post-optimization
scheme. The authors indicate an increase of 23.8% in the overall performance.

The Lienhart-Maydt [6] version of the object detector proposed by Viola and
Jones [10] is used in this study to detect faces and hands in video frames, so that
we can calculate the relative position between faces and hands and then detect
a hand raising gesture, as described in next section.
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4 Gesture Detection and Video Annotation

4.1 Method

Using the Lienhart-Maydt method, we look for both faces and hands on each
video frame. If it detects both faces and hands, we compute the relative position
between them, to check if it is compatible with a hand raising gesture.

We consider a hand-raising gesture when a person raises his/her hand open
next to his/her face. For this reason, the height of the hand should be at least
in the line of shoulders. Thus, for each face the algorithm search for a hand sur-
rounding the face. In order to reduce the search space, only a region proportional
to two and a half (2.5) faces is considered to search for a hand in the horizontal
direction, both right and left. In the vertical direction, the region proportional
to three (3) faces above and half (0.5) face below. Those choices are explained
by the average size of proportions face and arm in human beings, as depicted in
Figure 1.

(a) (b)

Fig. 1. Gesture search space: (a) face detected is showed using a red rectangle and the
search space in a green rectangle; (b) hand detected is showed inside a red rectangle
and the blue rectangle show the relation between hand and face.

Since the algorithm must detect both right and left hands, it should be trained
with both right and left examples. In order to avoid this we trained only with left
hands. To detect the right hands, we flip the image and than perform a second
search.

A frame labeled as positive is those in which at least one pair face-hand
satisfies the conditions cited before, otherwise it is considered negative. The
Algorithm 1 summarizes the steps for the whole procedure.

After all frames are classified, we look for an interval of hand-face detections.
A hand-raising gesture is detected inside a time interval when:

1. The duration of the gesture is at least 1 second;

2. The first and last frames are considered positive;

3. Between the first and last frames there are at least 80% of positive frames;

4. There are no sequences of negative frames with duration of more than 1
second of video.
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Algorithm 1. Hand-raising gesture detection

1: for each video frame do
2: detect faces
3: detect left hands
4: flip the image
5: detect right hands
6: for each face detected do
7: if hand is detected in the search space then
8: label the frame as positive
9: end if

10: end for
11: end for

4.2 New Training Hand Dataset and Implementation

We used the OpenCV library version 2.1 [1] was used to implement the detector.
This library has cascade classifiers trained to detect faces, available in XML files.
It is also possible to create new cascade classifiers using positive and negative
examples, and also store it in a XML file.

The face detection was performed using the already available classifier. To
detect hands, we used 905 images of open left hands with different backgrounds,
illumination variations, and changing finger positions (open and close). We also
collected 1000 negative examples, both RGB and grayscale images (most of
grayscale images were collected from [9]). In Figure 2 negative and positive
examples are shown. The image dataset and the XML files are available in the
project webpage 1.

(a) (b) (c) (d)

Fig. 2. Examples of images collected: (a-b) positive examples (c-d) negative examples

5 Experiments

A total of 16 videos were produced in order to test the method. The Table 1 sum-
marizes the characteristics of each video. Three of those videos were recorded
in a distance learning context (# 5, 6 and 16), and the remaining in video-
conferencing context. The resolutions indicated are: (A) 720x480, (B) 640x480,

1 http://www.icmc.usp.br/~moacir/project/VideoProcessing/

http://www.icmc.usp.br/~moacir/project/VideoProcessing/
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(C) 1280x720. In order to check the robustness of the method, some situations
were included in the videos, as indicated in Table 1:

1. Artificial illumination variation during the video (switching lights on and
off, open a window, etc.);

2. Confusing gestures (scratch the head, spreading the arms, holding the head
with an open hand, etc.);

3. External (natural) illumination;
4. Camera movement;
5. Multiple gestures (two or more people raising their hands simultaneously);
6. Partial occlusion of the hand and/or face;
7. Two or more people in different distances to the camera;
8. Variation of hand position (scale) in the same gesture;

Table 1. Characteristics of each video

Video ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

# Persons 1 1 2 1 2 2 1 1 1 1 1 1 1 1 1 13
Tests 1 2 1,2 3,4 5,6 5 6,2 6,2 6 6,2 6,2 6 1,2,6 1,8 2 4,5,7

Resolution A A A A A A B B B B B B B B B C
FPS 29 29 29 29 29 29 24 25 24 24 24 24 25 15 30 29

(a) (b) (c)

Fig. 3. Neighbor frames with sudden change in ambient lighting and camera movement
(a) starting illumination condition (b) lights turned off (c) natural illumination and
camera movement

Sudden changes in the illumination during the video are tested in videos #1
and #3. It significantly modifies the pixel values, which often is an issue in
movement-based gesture detection [2]. An example of such change (lights turned
off and natural illumination), as well as camera movement is shown in Figure 3.

Another issue is the false detection of gestures that are close to a raising hand.
During a class or videoconference a person might spread the arms, scratch the
face or head, or do something that can be confused with a raising hand gesture.
It happens in some videos such as in the examples of Figure 4. Besides, the
most difficult problem to overcome when using the Lienhart-Maydt method is
the occlusion and partial occlusion. Some examples are shown also in Figure 4.

In both videoconferencing and classroom contexts, there are often multiple
gestures and people positioned in different distances in relation to the camera.
The videos #3, #5, #6 e #16 include such scenarios as depicted in Figure 5.
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(a) (b) (c) (d)

Fig. 4. Examples of confusing gestures (a) and (c), and partial occlusion (b) and (d)

(a) (b) (c)

Fig. 5. Detected frames with multiple simultaneous gestures

6 Results and Discussion

The Table 2 shows, for each video, TP: true positive rate, FP: false positive
rate, FN: false negative rate, TN: true negative rate, FPS: frames per second,
precision, accuracy and running time (seconds).

All processing is performed offline, after the video is recorded, and the video
annotated for future search.

The proposed method achieved the following robustness results:

– Illumination changes: did not affected the performance, including when
the change occur during a gesture.

– Confusing gestures: did not affected the performance, the method seems
to be very good on discharging false or confusing hand gestures.

– Occlusion: the method cannot handle partial occlusion in the external bor-
ders of the frame, since the detector cannot center a rectangle in the region.
This is the reason why the videos #7–13 have lower accuracy and precision
values. For partial occlusion inside the frame, of both hands and faces, we
observed that the method could not handle more than 15% of occlusion.

– Multiple gestures and scale variation: the method handle well multiple
gestures, as indicates the results for videos #5, #6 and #16. The scale is
also not an issue if well managed. A case of failure is the video #16 in which
gestures are not detected when people are too far from the camera, as shown
in Figure 5. For this reason, it is important to control the audience position
in order to assure a good result.

– Camera movement: it did not affected the results, all gestures were de-
tected under moderate movement.
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Table 2. Results

ID# TP FP FN TN FPS Precision Accuracy Running Time (s.)

1 838 4 10 811 29 0.9952 0.9915 545
2 401 7 6 887 29 0.9828 0.9900 291
3 1103 28 1 815 29 0.9752 0.9851 739
4 699 11 7 403 29 0.9845 0.9839 707
5 973 54 84 418 29 0.9474 0.9097 831
6 429 29 18 363 29 0.9366 0.9439 348
7 2 5 91 454 24 0.2857 0.8260 299
8 68 8 355 712 25 0.8947 0.6824 627
9 42 2 180 339 25 0.9545 0.6767 268
10 112 0 182 254 24 1.0000 0.6678 151
11 167 25 162 369 24 0.8697 0.7413 226
12 35 1 223 167 24 0.9722 0.4741 179
13 159 115 76 460 24 0.5802 0.7641 243
14 234 0 55 69 15 1.0000 0.8463 128
15 645 52 286 618 30 0.9253 0.7888 892
16 168 27 94 114 29 0.8615 0.6997 805

7 Conclusion

The Lienhart-Maydt method, used as basis for our method, was able to overcome
many issues of previous works that tried to detect the same gesture, since it
is robust to scale and illumination changes. The frame-by-frame analysis and
the smoothness of the gesture detection in intervals is probably the cause of
the success in other conditions such as camera movement and multiple gestures.
Our method is not dependent on a specific camera or pose, can handle variations
in illumination even during the gesture, is able to detect gestures with moving
cameras, and work with different backgrounds and groups of people.

The drawbacks of the method include failure of detecting faces and hand with
partial occlusion, and the necessity of filming the audience facing front, i.e.,
towards the camera, with small tolerance for angles (up to 15, as tested by video
#16). Also, the detector runs three times, to detect faces, right and left hands,
hindering the possibility of online processing. For annotation purposes it is not
an issue since it is often performed after the recording.

It is important to note that the method has flexibility to detect different
objects, so it can be a good choice to help on semi-automatic annotation systems.
To improve the running time, we suggest the use of GPUs to implement the
detector. Also, a better occlusion treatment is a matter of future studies.

Acknowledgment. The authors are grateful to CNPq for the student scolarship
and FAPESP (proc. n. 2011/16411-4) for supporting the project.
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Abstract. We show that the way people observe video sequences, other
than what they observe, is important for the understanding and the pre-
diction of human activities. In this study, we consider 36 surveillance
videos, organized in four categories (confront, nothing, fight, play): the
videos are observed by 19 people, ten of them are experienced opera-
tors and the other nine are novices, and the gaze trajectories of both
populations are recorded by an eye tracking device. Due to the proved
superior ability of experienced operators in predicting violence in surveil-
lance footage, our aim is to distinguish the two classes of people, high-
lighting in which respect expert operators differ from novices. Extracting
spatio-temporal features from the eye tracking data, and training stan-
dard machine learning classifiers, we are able to discriminate the two
groups of subjects with an average accuracy of 80.26%. The idea is that
expert operators are more focused on few regions of the scene, sampling
them with high frequency and low predictability. This can be thought
as a first step toward the advanced automated analysis of video surveil-
lance footage, where machines imitate as best as possible the attentive
mechanisms of humans.

Keywords: surveillance, gaze control, eye movement analysis, activity
recognition, eye tracking.

1 Introduction

The study of eye movements is an innovative way of assessing the skill in moni-
toring of Closed Circuit Television (CCTV) recording, in which a comparison of
the eye movement strategies between experienced operators and novice observers
may show important differences that could be used in training an automatic
monitoring system. Generally, when we are looking at a video, we consciously or
unconsciously focus only on a fraction of the total information that we could po-
tentially process, in other words we perform a perceptual selection process called
attention. Visually, this is most commonly done by moving our eyes from one
place of the visual field to another; this process is often referred to as a change
in overt attention - our gaze follows our attention shift. The process of selecting
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visual information is crucial for the subsequent activity understanding, where
internal mental representations are built for categorizing the observed events
and starting to reason on them, for example to predict future actions.

In this paper, we focus on extracting the spatio-temporal eye patterns which
regulate the attentive processes of experienced operators, looking if they sub-
stantially differ from those of novice people. Due to the higher ability of expe-
rienced operators in predicting violence in surveillance footage [12], we argue
that understanding the way visual information is processed can be important
for automated video surveillance.

Our approach aims at individuating where the focus of attention is located
on the scene and the dynamics of this process. Considering gaze trajectories and
modeling them in diverse fashions (e.g., encoding local curvatures, feeding them
into heterogeneous classifiers as [6], etc.) did not reveal in our experiments sig-
nificant differences between experts and novices. Therefore, we follow another
strategy, which focuses on two different logical layers, spatial and temporal. Spa-
tial analysis is performed by analyzing the zones of the screen considered most
of the time: partitioning the image into cells and counting how many times they
have been watched, indicates strongly different patterns among the two classes
of observers. For the temporal characterization, we analyze the unpredictability
of the movement patterns by adopting entropic measures, capturing in practice
the irregularity of the eye trajectories. Spatial and temporal analyses are car-
ried out with standard classifiers (SVM and kNN, respectively), and the fusion of
the classification results allows one to consistently separate experts from novices,
with an accuracy of 80.26%. In particular, we find that experts are characterized
by a spatially more focused analysis (they know where to look) with a high level
of unpredictability (basically, they switch continuously among different spatial
cells), while novices tend to show more regularity in the analysis, considering a
larger area of analysis, with a lower speed in accessing the data.

The rest of the paper is organized as follows. In Sec. 2, a review of the related
literature is presented, and Sec. 3 details the proposed approach. Experiments
are reported in Sec. 4, and, finally, Sec. 5 draws some conclusions and future
perspectives.

2 Related Work

The selection of good CCTV operators is essential for effective CCTV system
functioning. The study of gaze control mechanism is an intriguing way for eval-
uating the skills of entry level CCTV operators. Indeed, how gaze control op-
erates over complex real-world scenes has recently become of central concern in
several core cognitive science disciplines including cognitive psychology, visual
neuroscience, and machine vision. For example, an application of psychological
principles to Aviation Safety and Welfare (ASW) is suggested in [8], which ana-
lyzes the eye movements of expert and novice pilots while performing landings in
a flight simulator. They found that expert pilots had significantly shorter dwells,
more total fixations and they observe a specific place of interest in the visual
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scene. Experts were also found to have better defined eye-scanning patterns. In
[11], authors conducted a comparison of the eye movement strategies between
expert surgeons and novices, while performing a task on a computer-based la-
paroscopic surgery simulator: the results from eye gaze analysis showed that
experts tended to maintain eye gaze on the target, whereas novices were more
varied in their behaviours. In general, gaze control differs during complex and
well-learned activities such as reading [14], tea and sandwich making [9], and
driving [10].

Going back to surveillance, an ongoing research programme is investigating
the ability of humans to detect whether or not an individual, captured on CCTV,
is carrying weapons [5]. In [2], trained CCTV operators and lay people viewed
footage material and were asked to indicate whether or not they thought the
surveillance target was carrying a firearm. Our work is in line with this type of
research.

3 Our Approach

Our approach partitions the screen in a set of 5 × 5 non-overlapped squared
cells, of size 288 × 180 pixels each. From this support, we calculate two sets
of features: the former models explicitly where the attention of the subject has
been driven during the monitoring activity, and we call it spatial feature set. The
latter indicates how the attentional analysis has been performed by the subjects,
and we call it temporal feature set.

The spatial feature set is composed by one feature, which is the Cell Count-
ing (Count): a counting matrix, where the ith cell records exactly how many
times a participant has been watching the ith cell of the grid. In practice, each
videosequence can be summarized by a 25-dim count vector.

In the temporal feature set, the features have been designed upon three tem-
poral basic cues that we will present below. The idea is that eye movement
information is recorded, storing for each i-th cell a number f(i) of basic cue val-
ues, where f(i) indicates the number of times the i-th cell has been intercepted
by an eye trajectory.

Three are the temporal basic cues:

– Fixation Duration (FIXd): a fixation is the state of the eyes during which
gaze is held upon a specific region. Humans typically alternate saccadic eye
movements and fixations. The term “fixation” can also be referred to as the
time between two saccades, during which the eyes are relatively stationary
[7,16]. In our experiments, for each video analyzed by a subject, the time
spent for each fixation in a particular cell has been recorded, expressed in
ms. Therefore, for each cell we have a sequence of fixation duration values.

– Saccades Velocity (SACv): the eyes do not remain still when viewing a
visual scene; they have to move constantly to build up a mental “map” from
interesting parts of the scene. The main reason for this is that only a small
central region of the retina, the fovea, is able to perceive with high acuity.
The simultaneous movement of both eyes is called a saccade. The duration
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of a saccade depends on the angular distance the eyes travel during this
movement, the so-called saccade amplitude. A saccade is individuated as a
movement exceeding the threshold of τ = 30◦/sec starting after the fixation,
lasting at least 20 ms [15,1]. For each cell we record all the saccades′ related
speed values calculated over it, measured in degrees/seconds.

– Smooth Pursuit Velocity (PURv): smooth pursuit is the eye movement
that results from visually tracking a moving object. Generally, this kind of
eye movement has a speed lower than 30◦/sec [13,16]. The PURv is measured
in degrees/seconds and the values are stored as for the previous cues.

In practice, as description of the whole monitoring analysis performed on a video
sequence by a subject, we obtain three different cue volumes, each related to the
FIXd, SACv and PURv feature. In the i−th entry of each volume we have all
the f(i) feature values collected in the i−th cell (i.e., depending on how many
times that cell has been visited). At this point, to obtain a unique cue value for
each i−th entry, we applied the mean operator. As a result, we obtained the
5× 5 maps μx, where x stands for FIXd, SACv and PURv.

At the end, in order to distill a single measure from each map, we calcu-
late its entropy: this way, we obtained three entropic values for each analyzed
videosequence, dubbed EFIXd, ESACv and EPURv . The underlying rationale of
choosing entropic measures consists in the fact that the entropy gives a mea-
sure for assessing how unpredictable is the behavior of the subject: high entropy
means that in the whole sequence the subject behaved in a very dynamic fash-
ion, for example steadily focusing on some scene details, then suddenly moving
the focus of attention toward distant screen locations. Viceversa, low entropy
indicates that the subject kept repeated attentional patterns, patrolling in a
mechanical fashion the screen.

Spatial and temporal features become the signature of the attentive behaviour
of a single subject: given a pool of subjects belonging to the same class, our ap-
proach learns a classifier by employing linear Support Vector Machines (SVM)
on the 25-dimensional spatial features, while the 3-dimensional temporal features
are processed by kNN classifiers. The choice of the classification machinery sup-
ported us with satisfying results, as witnessed in the next section.

4 Experiments

In the experiments, we apply our approach to a recent video dataset provided
by the University of Glasgow, whose content is detailed in the following.

4.1 The Dataset

The dataset has been taken from tens of urban surveillance cameras, highlighting
“hot zones”, that is, crossroads near pubs and discotheque areas. In particular,
thirty-six 16-second CCTV clips were used. These videos have been grouped in
four categories (see Table 1), each composed by 9 videos: in the “Fight” category,
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behaviours leading up to a violent incident are shown; in the “Confront” cate-
gory, a sequence of behaviours similar to the fight clip are shown, although no
violent/harmful incident occurred; the “Play” category shows people interacting
in a playful manner; finally, the “Nothing” category includes a variety of scenes
where no violent/harmful behaviour occurs and they were taken from similar
locations and with similar camera views. Please note that in the experiments,
videos of the Fight category have been truncated, so that fights are not visible:
this design was necessary to highlight solely the attentional behavior needed to
understand the situation and predict the outcome, and not to analyze the out-
come itself. The eye tracking experiment was attended by 19 participants, 10
CCTV operators (3 female, 7 male) aged 21-53 years (μage = 36.3, σage = 10.1);
and 9 novices (2 female, 7 male) aged 28-43 years (μage = 33.8, σage = 6.0). All
participants were native English speakers, näıve to the goals of the experiment
and had not participated in eye tracking experiments in the past. All the partic-
ipants had normal binocular (Titmus Test) and colour vision (CUCV Test) and
corrected binocular visual vision acuity of 6/9 or better. Three of the partici-
pants wore eye glasses during the experiment, and two wore contact lenses. The
device was an ASL Eye-Trac6 remote eye tracking device, located directly below
the display screen and 0.65 meters from the participant’s eye. A chin rest was
used to minimise head movement and to maintain viewing distance. The video
were displayed on a 19 inch LCD monitor with a set resolution of 1440 × 900
pixels which described a 37◦ × 23◦ field of view.

Table 1. Categories of CCTV clips. A violent incident was defined as an aggressive
physical contact with intent to harm, such as a slap, shove, punch, or kick.

Fight clip Behaviours leading up to a violent incident.

Confront clip Confronts which did not lead to a fight.

Play clip People interacting and some playful encounter happens.

Nothing clip Scenes where no violent/harmful behaviour
occurs, taken from similar locations and with similar camera pans.

As preliminary analysis of the dataset, basic statistical analysis on standard
features has been carried out. In particular, we consider themean fixation time as
the percentage of time a subject spends fixating when viewing the clip, the mean
fixation duration as average duration of all the fixations on a given video and the
mean saccade rate as the average number of saccades made per second. A main
difference among clip categories was observed for the eye movement measures of
gazing time and fixation duration. It indicates that there were significant differ-
ences in participants′ gazing time and fixation duration when viewing different
types of clips. In particular:

– Participants exhibited significantly longer gazing time for clips in the matched
confront clip category (μ = 80.08, σ = 3.66), when compared to fight clips
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(μ = 78.31, σ = 3.99, p = 0.008), to play clips (μ = 74.54, σ = 4.78, p <
0.001) and to nothing clips (μ = 76.37, σ = 4.34, p < 0.001).

– Although not statistically significant, a trend was found that CCTV opera-
tors spent lower proportion of time making fixations (μ = 76.16, σ = 4.19)
when compared to novice participants (μ = 78.5, σ = 4.8). This may suggest
that CCTV operators spent more time engaged in saccades and/or smooth
pursuit tracking during the clip than novices.

– The mean fixation duration data revealed that CCTV operators exhibited a
shorter mean fixation duration (μ = 0.34, σ = 0.02) in comparison to novice
participants (μ = 0.36, σ = 0.04), even if this difference was not statistically
significant.

– A third test was conducted to investigate if there were any significant dif-
ferences in the mean rate of saccades due to participant experience. This
analysis found no main effect of experience.

These results highlight differences between the two groups but do not explain
what was observed by the subjects and in what way this happened.

4.2 Results

The goal of the classification was to divide novice people from expert operators
and this was performed in the following way. First of all, we separate the analysis
carried out on the spatial and the temporal features, to assess the contribute of
each group of cues. In all the cases, Leave-One-Out cross validation was per-
formed, considering a particular subject as test element, keeping the others as
training samples, and exploring all the possible training/test partitions, aver-
aging the classification values at the end. Since each subject watched 9 videos,
we build 9 classifiers, i.e., one for each video. Given a test subject, we evaluate
its “novice” or “expert” label by majority vote, considering the results of the
9 classifiers. For the Count spatial feature, we employ linear SVM as classifier,
while for the entropic temporal features EFIXd, ESACv and EPURv we adopt
the kNN algorithm. The choice of these classifiers gave us the best performances,
and their parameters have been chosen by cross-validation.

In the spatial analysis, some Count counting matrices have been reported in
Fig. 1. Qualitatively, one can see that expert operators are more focused on a
central smaller area (which collected the highest number of votes) while novices
are more spread over the entire image plane. It is worth noting that these areas
were populated by human subjects1. The quantitative results are reported in
Tab. 2.

In the case of the entropic temporal features, for each subject we considered 9
kNN classifiers, one for each video. The results were quite higher than the spatial
counterpart (Tab. 2). For evaluating the effect of including both the spatial and
temporal features in the classification process, the majority vote was applied
to the all the 18 classifiers, 9 for the spatial features and 9 for the temporal
features. We do the same strategy for all the 19 subjects, averaging at the end

1 The footage cannot be shown for ethical and privacy issues.
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Fig. 1. Spatial analysis of the Count matrices. The figure shows that the CCTV oper-
ators focus on smaller areas than the novices.

Table 2. Classification rates while considering Temporal and Spatial cues separately
and jointly (third column)

Activity/Features Temporal Spatial Joint

Fight 78.9% 68.4% 84.2%

Play 63.1% 73.7% 63.2%

Nothing 84.2% 78.9% 84.2%

Confront 73.7% 68.4% 89.5%

Average 75.0% 72.3% 80.3%

the accuracy scores obtained for each person. The results are shown in Table 2.
We noted that:

– In general (apart from the Play class), temporal features were more effective
in separating the two classes;

– In general (apart from the Play class), the fusion of spatial and temporal
features was no worse than the single classifiers, showing a certain comple-
mentarity between the two different modeling schemes.

5 Conclusions

In this paper we presented an analysis which considers eye tracking data on
video surveillance sequences. Our goal was to understand how expert CCTV op-
erators analyze such videos, and if there is a difference with novice participants.
Extracting spatio-temporal features, and training SVM and kNN classifiers, we
have been able to discriminate the two groups of subjects with an average accu-
racy of 80.26%: the idea is that expert operators are more focused on few regions
of the scene portraying the humans, sampling them with high frequency. This
study follows the recent trend of applying a social signal processing perspective
to surveillance [3,4], where psychological analyses are exploited to inspire more
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effective monitoring strategies. In particular, this can be thought as a first step
toward the advanced automated analysis of video surveillance footage, where
machines imitate as best as possible the attentive mechanisms of humans: in
this case, the take-home message is that the dynamics with which people are ob-
served is highly unpredictable but highly focused on them. Even if these results
may appear intuitive, they have been obtained by a solid experimental analysis,
for the first time.
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sventura@uco.es

Abstract. In the last years, the learning from multi-label data has at-
tracted significant attention from a lot of researchers, motivated from
an increasing number of modern applications that contain this type of
data. Several methods have been proposed for solving this problem, how-
ever how to make feature weighting on multi-label data is still lacking
in the literature. In multi-label data, each data point can be attributed
to multiple labels simultaneously, thus a major difficulty lies in the de-
terminations of the features useful for all multi-label concepts. In this
paper, a new method for feature weighting in multi-label learning area is
presented, based on the principles of the well-known ReliefF algorithm.
The experimental stage shows the effectiveness of the proposal.

Keywords: multi-label learning, feature weighting, ReliefF algorithm.

1 Introduction

The multi-label problems have been actively studied in the last years. This is
because it has been found that in many applications the multi-label data is a
more natural and appropriate form of problem formulation and representation.
Particular examples of such applications include text categorization [1], emo-
tions evoked by music [2] and semantic annotation of images [3]. In all of these
applications an instance space is typically represented by hundreds or thousands
of features, therefore commonly there are features more relevant than others,
and this situation affect the effectiveness of the machine learning algorithms.

Several supervised learning methods have been proposed to multi-label clas-
sification, however feature weighting and selection methods on multi-label data
are less researched problems. How to make feature weighting on multi-label data
is still lacking in the literature, furthermore multi-label feature weighting is still
a challenging problem.

In this work, a filter-based feature weighting method called ReliefF-ML is
proposed. ReliefF-ML is based on the principles of the well-known ReliefF algo-
rithm [4]. Some properties of ReliefF-ML method are that it can be applied to
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both continuous and discrete problems, it includes interaction among features,
and take into account the label dependences.

Due to the fact that lazy learning algorithms use a similarity or distance
function based in feature space, these types of algorithms can be easily used
to prove the effectiveness of feature weighting methods [5]. In this work, the
approach ReliefF-ML was used as a feature weighting, not as a multi-label feature
selection method; therefore the comparison with the existent multi-label feature
selection methods in the literature was not carried out.

To evaluate the performance of ReliefF-ML, the accuracy of 3 multi-label
lazy ranking algorithms using the feature weights provided by ReliefF-ML on 11
multi-label datasets from several fields were compared, showing the effectiveness
of the proposal for multi-label problems.

This paper is organized as follows. In section 2, a formal definition of the
multi-label learning task and related works on feature weighting methods to
multi-label data is presented. In section 3, the ReliefF-ML approach is described.
The experimental set up is described in section 4. An analysis of the experiment
results appears in section 5. Finally, in section 6 the conclusion of this work are
presented.

2 Background

2.1 Multi-label Learning

The multi-label learning is concerned with learning from examples, where each
example is associated with multiple labels. In multi-label learning there can
be distinguished two types of tasks: multi-label classification (MLC) and label
ranking (LR). In the case of MLC, the goal is to construct a predictive model
that will provide a list of relevant labels for a given test instance. On the other
hand, the goal in LR is to construct a predictive model that will provide an
ordering of the labels according to their relevance for a given test instance.
The generalization of these two problems has been called multi-label ranking
(MLR). [6]. In general, a multi-label dataset can be defined as follows:
-A feature space F that consists of tuples of values of primitive data types
(discrete or continuos) ∀xi ∈ F , xi = (xi1, xi2, . . . , xiD), where D is the number
of descriptive attributes. xi is the vector of features values for the instance i,
where xif represents the value of f -th attribute for the instance i.
-A label space L with a cardinality equal to Q, where Q is the number of labels
in the dataset.
-A set of instances (examples) E = {(xi, yi)|xi ∈ F , yi ⊆ L, 1 ≤ i ≤ N}, where
N is the number of instances and yi is the set of relevant labels for the instance
i. A label l is relevant for an instance i if the instance belongs to the class l, a
label l is irrelevant for an instance i otherwise.

2.2 Related Works

The feature weighting process is a more general method than the feature selection
task, in which the features are multiplied by a weight value proportional to the
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ability of the feature to distinguish pattern classes, whereas the feature selection
problem assigns a weight restricted to the binary values 0 or 1 to a feature.

ReliefF [4] is a classical method for feature estimation. ReliefF is able to
deal with incomplete and noisy data and can be used for evaluating the feature
quality in multi-class problems. Commonly the ReliefF algorithm is used as a
feature selection method, however it is a feature weighting method. The feature
weighting is an important component of any lazy learning scheme. ReliefF was
tested as feature weighting method in [5] and was found to be very useful to
improve the performance of lazy algorithms.

In [7] was proposed a feature weighting method that learns a similarity metric
to improve the performance of multi-label ranking lazy algorithms. The search
process of the best weight vector was performed using a genetic algorithm (GA).
This method can be very expensive in complex multi-label datasets.

An approximation of ReliefF algorithm to multi-label data was presented in
[8]. The authors decompose the multi-label problem into a set of pairwise multi-
label 2-class problems. The algorithm excludes those examples that fall into Hits
and Misses neighbors at the same time. The authors expose that the occurrence
of these cases is very small, and therefore the exclusion of these instances will
not affect the results significantly. However, this reasoning was done because
the two specific datasets used in the experiment present this characteristic. In
multi-label datasets a very high number of examples can fall into Hit and Misses
neighbors at the same time, therefore excluding these examples can affect the
results significantly.

In [9] other adaptation of ReliefF algorihtm to multi-label data was presented.
It uses the standard ReliefF for single-label, where is measured the contribution
of each feature according to each label. Afterwards, the average of the score
of each feature across all labels is considered, and features with an averaged
score greater than a threshold are selected. This approach use the Binary Rel-
evance [10] approach to decompose the multi-label problem into several binary
classification problems, therefore it does not consider label correlations.

3 The ReliefF-ML Algorithm

The biggest problem for the multi-label feature weighting process is that an
instance is assigned to multiple labels simultaneously, therefore nearest Hits
and Misses cannot be used in a strict sense as in classic ReliefF algorithm.
Given a multi-label dataset, the prior probability of a label l is computed as
follows:

Pl =
Cl + s

N + 2s
(1)

, where Cl is the number of instances in the dataset that belong to label l and
s is the smoothing parameter controlling the strength of uniform prior (s = 1
yields the Laplace smoothing).
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Given the instances i and j, the distance between the sets of labels of i and
j is calculated by the Hamming Distance (see equation 2). The distance dL
represents a measure of how much differ the sets of labels of two instances.

dL(i, j) =
| yi�yj |

Q
(2)

ReliefF-ML uses the HEOM distance(Heterogeneous Euclidean Overlap Met-
ric) [11](equation 3) to retrieve the k -nearest neighbors of an instance i according
to the feature space.

dF (i, j) =

√ ∑
∀f∈F

δ(xif , xjf )2 (3)

δ(xif , xjf ) =

⎧⎪⎪⎨
⎪⎪⎩

1

0
|xif−xjf |

max(f)−min(f)

discrete, xif �= xjf
discrete, xif = xjf

continuous

(4)

For each relevant and irrelevant label of an instance i a group of k-nearest
neighbors is defined. Therefore, the following groups of Hits (H l

i) and Misses
(M l

i ) respect to an instance i are defined:
-H l

i : k-nearest neighbors that have the relevant label l of i as relevant label
-M l

i : k-nearest neighbors that have the irrelevant label l of i as relevant label
Based in the defined groups of Hits and Misses the following ”probability”

was defined, it is modelled with the distance between the sets of labels of two
learning instances.

PGl
i
=

∑
∀j∈Gl

i
dL(i, j)

k
(5)

, where:
-PHl

i
: is the probability that two nearest instances that share the label l as

relevant, belong to different set of labels.
-PMl

i
: is the probability that two nearest instances belong to different set of

labels, where i has the label l as irrelevant and the k-nearest neighbors have the
label l as relevant.

In ReliefF-ML the dependence among labels is taken into account through
the calculus of PHl

i
and PMl

i
for each relevant and irrelevant label respectively

of a sampling instance. Each feature weight reflects its ability to distinguish
class labels, thus a high weight indicates that there is differentiation in this
attribute among instances with very different sets of labels and has similar values
for instances with similar sets of labels otherwise. The weight updating of an
attribute f uses the equation (6).

Wf = Wf −
∑

l∈yi

(
Pl∑

q∈yi
Pq

1 − P
Hl

i

1 + P
Hl

i

∑

j∈Hl
i

δ(xif , xjf )

mk
) +

∑

l/∈yi

(
Pl∑

q/∈yi
Pq

P
Ml

i

∑

j∈Ml
i

δ(xif , xjf )

mk
) (6)

The contributions of each relevant and irrelevant label are weighted by the

factors Pl∑
q∈yi

Pq
,

1−P
Hl

i

1+P
Hl

i

and Pl∑
q/∈yi

Pq
, PMl

i
respectively.
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Algorithm 1. Pseudocode of ReliefF-ML algorithm

Input: E: learning multi-label instances, m: sampling parameter, k: number of nearest
neighbors to retrieve
Output: weight vector W
1: for each l ∈ L do Calculate Pl end for;
2: for each f ∈ F do Set Wf = 0 end for;
3: for n = 1 to m do
4: Pick randomly an instance i from E
5: for each relevant label l ∈ yi do
6: Get k-nearest Hits H l

i

7: Calculate PHl
i

8: end for
9: for each irrelevant label l /∈ yi do
10: Get k -nearest Misses M l

i

11: Calculate PMl
i

12: end for
13: for each attribute f ∈ F do
14: Calculate Wf by expression (6)
15: end for
16:end for
17:Scale the weights in the range [0..1]

ReliefF-ML picks randomly a predefined number of instances (m) from the E
set to estimate the feature weights. It uses the whole training set to retrieve the
k nearest neighbors of a selected instance. To fix the number of instances to be
selected to estimate the feature weights the following rules were used:
1.if (|E| ≤ 5000) then (m=0.1× |E|)
2.if (|E| > 5000 and | E |≤ 10000) then (m=0.05× |E|)
3.if (|E| > 10000) then (m=0.01× |E|)

4 Experimental Section

In [12] a lazy algorithm named ML-kNN was proposed, it uses the maximum
a posteriori principle (MAP) in order to determine the set of labels of a query
instance. DML-kNN [13] can be considered a generalization of the ML-kNN
based approach where the dependencies among labels are considered. MLC-
WkNN appears in [14], the author constructs a weighted kNN version for multi-
label learning according to the Bayesian theorem.

To prove the effectiveness of the proposal, each lazy algorithm using the
weights reached by ReliefF-ML were tested, and then the results were compared
with the original methods. The modified algorithms were named ML-kNN-WF,
DML-kNN-WF and MLC-WkNN-WF to differentiate them from the original
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methods. In the adapted lazy algorithms the function used originally to retrieve
the k -nearest neighbors was replaced by the Weighted HEOM distance version,
which takes into account the feature weights.

ReliefF-ML and the lazy algorithms were implemented on MULAN [15], that
is a Java library which contains several methods for multi-label learning. For
each possible combination of algorithms and datasets a stratified 10-fold cross
validation strategy was used. For each fold in the training phase, ReliefF-ML
finds the weight vector by picking randomly the sampling instances from the
training set. The lazy learning algorithms use the weight vector in the distance
functions to retrieve the k nearest neighbors of an instance. The best value for
the parameter k used by ReliefF-ML and the lazy algorithms on each dataset
was determined. As for comparison between the originals and adapted methods,
the Wilcoxon signed ranks test was used as proposed in [16].

The algorithms were tested with 11 multi-label datasets from different do-
mains. Selection was made in order to understand the behaviour of our approach
in datasets with diverse characteristics. All datasets are available for download
at the web page http://mlkd.csd.auth.gr/multilabel.html. In order to verify the
effectiveness of the proposal, 4 evaluation measures that have been suggested for
MLR problems in [10] were used. The Hamming Loss (HL) reports how many
times on average, the relevance of an example to a class label is incorrectly pre-
dicted. Accuracy (Acc) returns the proportion of the predicted correct labels
to the total number (predicted and actual) of labels for that instance, over all
instances. One Error (OE) measures how many times the top ranked predicted
label is not in the set of true labels of the instances. Ranking Loss (RL) evaluates
the average proportion of label pairs that are incorrectly ordered for an instance.

5 Results and Dicussion

The performance of the ReliefF-ML was evaluated through comparisons of the
algorithms ML-kNN, DML-kNN and MLC-WkNN, and their respective exten-
sions ML-kNN-WF, DML-kNN-WF and MLC-WkNN-WF. In all cases the best
results are highlighted in bold typeface in the tables. Tables 1 to 4 show the
results of HL, Acc, OE and RL on the 3 selected algorithms.

The results shows that the adapted algorithms perform better than the origi-
nal algorithms in almost all datasets with the 4 measures used in the experiment.
Table 5 shows Wilcoxon’s signed rank test; it summarizes the positive (R+) and
negative (R−) ranks, ties and if the hypothesis is rejected (R) or not (NR) with
a significance α equals to 0.01.

The evidences suggest that ML-kNN-WF, DML-kNN-WF and MLC-WkNN-
WF are statistically better than the original algorithms in all the measures used.
The results obtained show that the proposed approach is robust, it does well
in datasets with different characteristics. Furthermore, the proposed method to
multi-label feature weighting improves the performance of multi-label lazy learn-
ing algorithms.



534 O.G. Reyes Pupo, C. Morell, and S. Ventura Soto

Table 1. HL results

Dataset
ML-kNN DML-kNN MLC-WkNN
- WF - WF - WF

Emotions 0.1963 0.1812 0.1965 0.1840 0.1884 0.1800
Yeast 0.1925 0.1915 0.1924 0.1910 0.1935 0.1915
Scene 0.0868 0.0865 0.0872 0.0859 0.0846 0.0840
Cal500 0.1387 0.1382 0.1377 0.1373 0.1472 0.1472
Genbase 0.0043 0.0036 0.0046 0.0043 0.0012 0.0009
Medical 0.0151 0.0136 0.0157 0.0145 0.0146 0.0137
Enron 0.0526 0.0525 0.0520 0.0518 0.0558 0.0557

TMC2007-500 0.0649 0.0620 0.0646 0.0620 0.0380 0.0366
Mediamill 0.0281 0.0279 0.0282 0.0280 0.0246 0.0245
Corel5k 0.0094 0.0094 0.0094 0.0094 0.0096 0.0096
Corel16k 0.0175 0.0175 0.0175 0.0175 0.0181 0.0180

Table 2. Acc results

ML-kNN DML-kNN MLC-WkNN
- WF - WF - WF

0.5344 0.5645 0.5352 0.5645 0.5518 0.5789
0.5201 0.5188 0.5196 0.5196 0.5268 0.5359
0.6665 0.6784 0.6665 0.6800 0.6879 0.6878
0.1954 0.1998 0.1914 0.1959 0.2216 0.2217
0.9499 0.9618 0.9453 0.9501 0.9894 0.9895
0.5828 0.6412 0.5288 0.5858 0.5815 0.6198
0.3032 0.3046 0.2978 0.3025 0.3162 0.3168
0.5296 0.5567 0.5285 0.5559 0.7264 0.7351
0.4727 0.4728 0.4700 0.4691 0.5517 0.5521
0.0148 0.0170 0.0026 0.0039 0.0344 0.0378
0.0076 0.0083 0.0043 0.0053 0.0339 0.0360

Table 3. OE results

Dataset
ML-kNN DML-kNN MLC-WkNN
- WF - WF - WF

Emotions 0.2680 0.2296 0.2646 0.2300 0.2462 0.2385
Yeast 0.2272 0.2150 0.2263 0.2162 0.2325 0.2271
Scene 0.2244 0.2255 0.2252 0.2294 0.2285 0.2232
Cal500 0.1168 0.1147 0.1147 0.1147 0.2264 0.1920
Genbase 0.0151 0.0084 0.0166 0.0085 0.0030 0.0022
Medical 0.2239 0.1975 0.2393 0.2042 0.2198 0.1949
Enron 0.3111 0.3100 0.3093 0.3012 0.3732 0.3782

TMC2007-500 0.2313 0.2131 0.2315 0.2020 0.1412 0.1352
Mediamill 0.1554 0.1486 0.1536 0.1521 0.1321 0.1312
Corel5k 0.7288 0.7170 0.7314 0.7248 0.7824 0.7640
Corel16k 0.7396 0.7320 0.7401 0.7301 0.7760 0.7660

Table 4. RL results

ML-kNN DML-kNN MLC-WkNN
- WF - WF - WF

0.1596 0.1500 0.1558 0.1484 0.1641 0.1565
0.1658 0.1630 0.1646 0.1631 0.1739 0.1726
0.0801 0.0801 0.0777 0.0770 0.0834 0.0819
0.1812 0.1807 0.1992 0.1787 0.2482 0.2473
0.0071 0.0063 0.0070 0.0059 0.0038 0.0037
0.0363 0.0341 0.0353 0.0322 0.0438 0.0427
0.0898 0.0898 0.0894 0.0892 0.1857 0.1857
0.0584 0.0520 0.0563 0.0498 0.0510 0.0490
0.0369 0.0363 0.0360 0.0360 0.0608 0.0613
0.1300 0.1292 0.1306 0.1302 0.4731 0.4656
0.1641 0.1635 0.1647 0.1642 0.3086 0.3060

Table 5. Wilcoxon’s signed rank test

Measures R+ R− Ties p − value Hypothesis

ML-kNN-FW vs ML-kNN
HL 0 9 2 0.008 R
Acc 1 10 0 0.008 R
OE 1 10 0 0.005 R
RL 0 9 2 0.008 R

DML-kNN-FW vs DML-kNN
HL 0 9 2 0.008 R
Acc 1 9 1 0.007 R
OE 1 9 1 0.009 R
RL 0 10 1 0.005 R

MLC-WkNN-FW vs MLC-WkNN
HL 0 9 2 0.007 R
Acc 1 10 0 0.006 R
OE 1 10 0 0.008 R
RL 1 9 1 0.009 R

6 Conclusions

The attention given to the study of feature weighting methods in multi-label
learning has been negligible. In this paper, a filter feature weighting method
called ReliefF-ML to deal with multi-label problems was proposed. The proposed
method has significant advantages; it is a preprocessing step that is completely
independent of the choice of particular multi-label algorithm. Also, it uses the
given representation of the original datasets (handles multi-label data directly),
it learns a single set of weights that are employed globally over the entire instance
space, it takes into account the label correlations in the estimation of feature
weights and does not employ domain specific knowledge to set feature weights.
The algorithm ReliefF-ML is a generalization of the classic ReliefF algorithm.
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The experiments aimed to measure the performance of multi-label lazy algo-
rithms in conjunction with the proposed method for feature weighting. Results
from the statistical tests show that the proposed method has significant advan-
tages, which indicate that the approach is robust for MLR problems.
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Abstract. This paper presents an annotation tool that detects entities
in the biomedical domain. By enriching the lexica of the Freeling analyzer
with bio-medical terms extracted from dictionaries and ontologies as
SNOMED CT, the system is able to automatically detect medical terms
in texts. An evaluation has been performed against a manually tagged
corpus focusing on entities referring to pharmaceutical drug-names, sub-
stances and diseases. The obtained results show that a good annotation
tool would help to leverage subsequent processes as data mining or pat-
tern recognition tasks in the biomedical domain.

Index Terms: development of linguistic tools, annotation, medical
domain.

1 Introduction

Syntactic and semantic annotation has been used in many applications such
as data mining and pattern recognition. There are a variety of supervised and
semi-supervised training algorithms that require to be boosted from annotated
data sets. The aim of this paper is to automatically annotate different types of
entities in the biomedical domain.

Over the last years Spanish health care services are storing most of the in-
formation concerning patients in electronic medical records. These clinical texts
constitute a rich source of information about diseases, allergies, and any infor-
mation that the sanitary personnel is interested in. Access to this information
is of great interest and value for clinical research. Many current methods for ac-
cessing information are based on statistical and machine learning methods, that
need annotated data. However, the annotation process is time-consuming and
expensive to be performed manually. Biomedicine is an area where the corpora
have a confidential nature, hence, open resources are scarce and when comparing
it to other fields it does not seem an eligible task for exploiting publicly available
resources such as the semantic web, althouh there are some publicly available
resources such as parallel corpora in various languages [1,2]. Besides, the anno-
tators’ expertise is crucial, and thus, it is not an option for crowd sourcing or
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social annotation as it was done in other tasks like language model adaptation [3].
Making this an automatic process would allow to save work and money.

The Pharmaceutical Service of the Galdakao’s Hospital performs the task
of manually detecting Adverse Drug Reactions (ADRs). The aim of the tool
presented in this paper is to automatically annotate medical texts with brand-
name drugs, disease names and substance names, opening the way for the future
automatic detection of ADRs.

Figure 1 shows a fragment of a clinical note with annotations for diseases,
substances and drugs as well as allergies and adverse drug effects, obtained by
means of Brat [4], a tool for text annotation. This tool allows not only to highlight
such events but also to detail cause-effect relations. Note that while the figure
shows a manual annotation provided by medical experts, the aim of this work is
to produce the annotation automatically. As a result, reading a clinical note (or
conversely, supervising a dictated note) would be easier, since this tool would
allow to draw the attention to specific items.

Fig. 1. Medical record manually annotated with the Brat toolkit

The core element of the proposed automatic annotation toolkit lies in cre-
ating a syntactic and semantic analyzer for Spanish in the specific domain of
biomedicine. In this paper, we will focus on the description of the adaptation
of the linguistic analyzer Freeling [5] to the domain of medicine. The annota-
tions provided by the presented domain-adapted analyzer will be evaluated with
respect to annotations provided by human experts. The benefits of having an
automatic analyzer are twofold: (1) automatic annotation is much faster and
cheaper (2) the annotated data will serve for developing advanced information
extraction and data mining systems.

There are only a few publically accesible analyzers adapted to the clinical
domain in the Spanish language. For English, the GENIA tagger [6] is specif-
ically tuned for biomedical texts. Patrick et al. [7] introduce a new method to
automatically identify medical concepts from the Systematized Nomenclature of
Medicine-Clinical Texts (SNOMED CT) in English free text. MetaMap Transfer
(MMTx) [8] is a program to map biomedical text to the UMLS1 Metathesaurus
or, equivalently, to discover concepts from the Metathesaurus in texts. In [9] the

1 http://www.nlm.nih.gov/research/umls/

http://www.nlm.nih.gov/research/umls/
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authors present a first simple approach to the Spanish MetaMap, using Google
Translator to obtain an English version of the text and then applying English
MMTx to extract the concepts. In [10] a system for the automated identification
of biomedical concepts in Spanish-language clinical notes is presented.

The rest of the paper is arranged as follows: Section 2 delves into the adap-
tation and enrichment of the linguistic analyzer. Section 3 is devoted to the
experimental evaluation of the tool against a set of manually annotated texts.
Finally, conclusions and future work are given in section 4.

2 Automatic Analysis of Electronic Medical Records

For the initial processing of medical records, we have made use of a basic Natural
Language Processing toolkit, Freeling2, together with several available medical
ontologies and dictionaries. Freeling is an open-source multilingual language pro-
cessing library providing a wide range of language analyzers for several languages
[5]. In this work, we used the tools for Spanish morphological analysis provided
by Freeling. The linguistic resources (lexica, grammars, . . . ) in Freeling can be
modified, so we took advantage of this flexibility by extending the linguistic data
files with large-scale resources containing medical information.

As it is a standard approach in Natural Language Processing, where there is
a distinction between morphology and syntax on one side and semantics on the
other, we will distinguish two levels of processing. In our case, during morphosyn-
tactic processing, our system will only categorize word-forms using their basic
part-of-speech (POS) categories (explained in section 2.1), while the semantic
distinctions will be dealt with in a second stage (see section 2.2). Following this
approach, if the term that we want to insert already existed in Freeling’s stan-
dard Spanish dictionary, e.g. bar as common noun (bar or pub), the entries with
medical meanings will not be added to the lexicon, e.g. bar or bacilo acidorre-
sistente (acid-fast rod) because this term also corresponds to a common noun.
The medical meanings are added in a later semantic tagging phase. This solution
helps to avoid an explosion of ambiguity in the morphosyntactic analysis and
enables a clear separation between morphosyntax and semantics.

2.1 Enriching Dictionaries in Freeling

In order to extend the standard Freeling analyzer in Spanish to the medical do-
main, we enriched two dictionaries: a basic dictionary of terms consisting of a
unique word, and a multiword-term dictionary. The former should be enriched
with terms such as enteroplastia (repair of intestine), and the latter with com-
posed terms as, for example, canal vertebral lumbar (lumbar spinal canal).

As we previously explained, to keep the distinction between morphosyntactic
and semantic ambiguity in the lexica is essential for us. We decided to add a
term to the files with POS information in Freeling only if it did not exist before.

2 http://nlp.lsi.upc.edu/freeling/

http://nlp.lsi.upc.edu/freeling/
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For example, xilosuria (xylosuria) or Zofenil (pharmaceutical product) will be
new entries applying this principle. The first row in Table 1 shows the number
of entries of the standard lexica for Spanish within the Freeling 2.2. standard
package. The medical resources used to enhance them are the following:

Medical Abbreviations. Yetano and Alberola [11] gathered the abbrevia-
tions used in some hospitals to develop a dictionary of medical abbreviations and
acronyms for Spanish. After a manual examination, we obtained a list of 3,196 en-
tries. Some of them were ambiguous, e.g. ADR meaning adrenalina (adrenalin),
or adriamicina (adriamycin), while others were not, e.g. HTA (Hipertensión ar-
terial for “high blood pressure”). Table 1 shows the number of abbreviations
already contained in the standard lexica (first row in Table 1), and the number
of new abbreviations. The majority of the abbreviations are new entries in the
Freeling lexica because they correspond specifically to the medical language (e.g.
vvz extended virus varicela zoster). All the abbreviated chemical elements (e.g.
as, bi), measure units (e.g. kg, cm . . . ) were already in the lexica.

SNOMED CT Terms. SNOMED CT is a comprehensive clinical terminology
that provides clinical content and expressivity for clinical documentation and re-
porting. SNOMED CT is based on concepts, that is, units of thought or clinical
ideas, coded by means of alphanumeric identifiers (e.g. 106190000 refers to al-
lergy). Concept-descriptions are classified into Fully Specified Name in which the
hierarchy the term belongs to is indicated (body part, procedure. . . ), Preferred
Terms and Synonyms. We have added the preferred terms and the synonyms of
the 31th of October 2011 release to the lexica in Freeling.

The Unified Medical Language System (UMLS), is a set of files and software
that brings together many health and biomedical vocabularies and standards
to enable interoperability between computer systems. SNOMED CT is part of
the Metathesaurus knowledge source in UMLS. We tagged the terms in Spanish
with their corresponding SNOMED CT identifiers but also with their UMLS
identifiers (see figure 2). In this way we will have the option of accesing the
other ontologies in UMLS and of getting additional medical information.

Table 1 shows that 94.1% of the terms from SNOMED CT have more than
one word and 94% of them were new in the multiword-term file. This fact gives
an idea of the complexity of the terms used in SNOMED CT. In proportion, the
number of single word terms already in the dictionaries, 9,302 out of 23,399, is
relatively high, compared to the number of locutions or multiword terms.

Bot PLUS. Bot PLUS is a database of sanitary knowledge distributed by the
General Council of Spanish Pharmacologists3. Bot PLUS stores the names of all
the medicines that are commercialized in Spain. The knowledge stored in the Bot
PLUS database makes up for the lack of this kind of information in SNOMED
CT. For the work presented in this paper, we have obtained the following lists:

3 http://www.portalfarma.com

http://www.portalfarma.com
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i) brand names or pharmaceutical drug names and ii) substances. Table 1 shows
the lexical entries incorporated to Freeling, having Bot PLUS as a basis.

Regarding the insertion of medicine brand-names in the lexica, it is worth
remarking that from 9,984 names, 9,902 entries are new in the lexica and only
82 existed already (e.g. rizan from the verb “to curl”). In the case of substance-
names with a unique token, there are more terms already in the dictionaries
(1,590) than those entered as new ones (1,406) because they have their place in
SNOMED CT, and they were already in the lexica.

Table 1. Number of entries in the lexica of Freeling and added resources

Unique word terms Multiword terms Total
FreeLing Standard 556,212 1,480 557,692

Abbreviations
In dictionary 369 4 373
New 2,654 169 2,823
Total 3,023 173 3,196

SNOMED CT
In dictionary 9,302 125 9,427
New 23,399 521,973 545,372
Total 32,701 522,098 554,799

Bot PLUS

Medicine brand-names
In dictionary 61 21 82
New 3,746 6,156 9,902
Subtotal 3,807 6,177 9,984

Substances
In dictionary 1,590 158 1,748
New 1,406 1,072 2,478
Subtotal 2,996 1,230 4,226
Total 6,803 7,380 14,210

ICD-9
In dictionary 530 1,029 1,559
New 268 17,950 18,218
Total 798 18,979 19,777

ICD-9. The International Statistical Classification of Diseases is a medical clas-
sification list compiled by the World Health Organization (WHO). All the med-
ical records from the Basque Health System should be tagged with a code in-
dicating the medical diagnosis of the patient, following the 9th version of this
classification (ICD-9). Table 1 shows the data about the integration of these
terms in Freeling’s lexica and the complexity of the terms in ICD-9.

The four lexica have been integrated in Freeling in their order of appearance
in the paper, that is, abbreviations first, and then SNOMED CT, Bot PLUS
and ICD-9. We decided to give priority to SNOMED CT against Bot PLUS and
ICD-9, because it is a well structured and extensive clinical terminology. The
expansion of the abbreviations first is essential if we want to add meanings, e.g.
from SNOMED CT, to the expanded lemmas.

2.2 Semantic Postprocess

With the augmented lexica, Freeling performs tokenization, morphological anal-
ysis, POS tagging, lemmatization, shallow parsing and dependency parsing. The
medical records are analyzed with linguistic information at all these levels but at
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the present work we will make use of information about terms, which gives access
to all information levels except syntactic dependencies. All the entries described
in section 2 have been inserted as nouns in the lexica, but also indicating the
source of information of each entry.

In case of an ambiguity of meanings, that ambiguity would correspond to the
semantic level. Being this the case, we insert this medical information and, in
consequence, ambiguity in the analysis. The example in figure 2 shows that the
word Estreptomicina was already in Freeling as a common noun feminine singular
(tag NCFS000). For medical information extraction tasks, it is important to
know that this is a substance or product, so we will insert this information as
an External Reference (extRef ). In the extRef we include information about
the resource (Snomed CT in Spanish version of the date 31 October 2011), the
SNOMED CT Concept Identifier in the reference attribute and the reftype, in
our case corresponding to the semantic tag of the term in SNOMED CT (product
and substance). For future works we aim to access the entire UMLS, this is why
we have also inserted the UMLS’s Concept Unique Identifier in the analysis.

Overall, the enhancement process of the lexical resources adds 47,132 stan-
dard entries and 554,807 locutions, taking an outstanding step ahead in text
processing of the biomedical domain.

<term lemma=”estreptomicina” pos=”N.NCFS000” tid=”t56” >
<extRefs>
<extRef resource=”SCT 20111031” reference=”40877002” reftype=”producto”>
<extRef resource=”UMLS-2010AB” reference=”C0038425”/>

</extRef>
<extRef resource=”SCT 20111031” reference=”387223008” reftype=”sustancia”>
<extRef resource=”UMLS-2010AB” reference=”C0038425”/>

</extRef>
</extRefs>

</term>

Fig. 2. Analysis with augmented information

3 Evaluation

Although our adapted linguistic analyzer is able to detect terms from the 19
content hierarchies of SNOMED CT (i.e. organisms, procedures,. . . ), one of the
first uses of the analyzer will be to detect adverse drug events. This is the
reason for focusing our first evaluation in the detection of drug-names, diseases
and substances. We distinguish between brand-name drugs (e.g. Nolotil) and
substances that could be active ingredients (e.g. Metamizol) or any substance
that could create an adverse drug reaction (e.g. polen meaning pollen).

We did not found any publicly avalaible corpus composed of electronic medical
records in Spanish, so after several meetings with the legal advice services of the
University and the Hospital, and after signing the corresponding confidentiality
agreement, we obtained a corpus of patient records. Having a “private” corpus,
our results are not comparable to others, as in other related works [10].

A corpus of 100 medical records was collected from the outpatient consul-
tations of the Galdakao Hospital and it was manually tagged by doctors and
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pharmacologists. The corpus is composed of 51,061 words and the experts have
manually tagged 690 drug names, 891 diseases and 735 substances. The per-
formance of the analyzer was assessed using the manually tagged corpus. These
data samples were shuffled and randomly split into three disjoint sets for training
(60 documents), development (20 documents) and test purposes (20 documents).

The system is assessed by means of the F-Measure that compares the human
annotation with the output of the analyzer by combining precision and recall. In
order to set out if two elements are equal, an approximate correctness criteria was
applied: two elements are considered to be equivalent if an element given by the
system is entirely contained within an extension of a manually tagged element by
six positions both to the left and to the right. This follows the standard approach
of allowing an approximate boundary matching, as in the BioNLP Shared Task
[12]. Table 2 shows the number of drugs, substances and diseases in the test
set, also presenting the number of True Positives (TP), False Negatives (FN)
and False Positives (FP) returned by the system for each category of elements.
Precision (PR), recall (RE) and F-Measure (F-M) are calculated for each type
of element. The results are encouraging, with an F-Measure of 0.90, and imply
that the designed analyzer can automatically generate reliable annotated corpus
with morphosyntatic and medical-concept tags.

Table 2. Results achieved by the automatic tagger on the test set

Manual TP FN FP PR RE F-M

Diseases 211 354 88 12 0.97 0.80 0.88

Drugs 180 175 8 0 1.00 0.96 0.98

Substances 184 357 27 65 0.84 0.92 0.88

Total 575 886 123 77 0.92 0.88 0.90

4 Conclusions

The goal of this work was to create an analyzer for clinical texts in Spanish that
identifies medical entities. To attain this goal we have added medical informa-
tion to a standard linguistic analyzer for Spanish. The incorporated information
was extracted from different sources such as ontologies, a medical abbreviation
dictionary and a pharmaceutical drug element database. The system is robust
enough to deal with electronic medical records in which abbreviations and errors
are very common. We think that in the same way, it is able to analyze other
types of texts within the medical domain (journal papers, books. . . ).

The contributions of this work are threefold: 1) the enhancement of standard
Spanish dictionaries for the biomedical domain in the FreeLing toolkit; 2) the
development of a system based on FreeLing to automatically annotate medical
records providing an F-Measure of 0.90; 3) the compilation of a corpus of medical
documents tagged with medical concepts in Spanish.

In the near future, we aim to improve the system by adding, as external
references, the missing information about abbreviations, drug names from Bot
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PLUS and diseases from ICD. This will produce an increase in the semantic
ambiguity of the terms. For that reason, we want to use UKB [13], a tool for
graph-based word sense disambiguation to select the adequate medical sense.
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5. Padró, L., Reese, S., Agirre, E., Soroa, A.: Semantic Services in Freeling 2.1: Word-
Net and UKB. In: Global Wordnet Conference, Mumbai, India (2010)

6. Tsuruoka, Y., Tateishi, Y., Kim, J., Ohta, T., McNaught, J., Ananiadou, S., Tsu-
jii, J.: Developing a Robust Part-of-Speech Tagger for Biomedical Text. In: 10th
Panhellenic Conference on Informatics (2005)

7. Patrick, J., Wang, Y., Budd, P.: An Automated System for Conversion of Clinical
Notes into SNOMED Clinical Terminology. In: Proc. Australasian symposium on
ACSW frontiers, ACSW 2007, vol. 68, pp. 219–226 (2007)

8. Aronson, A.: Effective Mapping of Biomedical Text to the UMLS Metathesaurus:
the MetaMap program. In: Proc. of AMIAS, pp. 17–21 (2001)
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Abstract. In this work we propose the intensive use of embedded mem-
ory blocks and logic blocks of the FPGA device for signature matching.
In our approach we arrange signatures in memory arrays (MA) of em-
bedded memory blocks, so that every signature is matched in one clock
cycle. The matching logic is shared among all the signatures in one MA.
In addition, we propose a character recodification method that allows
memory bits savings, leading to a low byte/character cost. For fast mem-
ory addressing we employ the unique substring detection, in doing so we
process four bytes per clock cycle while hardware replication is signifi-
cantly reduced.

Keywords: NIDS, string matching, content scanning, FPGA, unique
substrings.

1 Introduction

Network Intrusion Detection Systems (NIDS) are designated to protect net-
works and services against attacks executed by insiders or outsiders. There are
three kinds of NIDS: Signature-based, Misuse-based and Anomaly-based [1]. In
Signature-based data flow is scrutinized in the search of attacks with signa-
tures known beforehand. In Misuse-based signatures are automatically discov-
ered through Supervised Learning methods. Finally, Anomaly-based, assumes
that intrusions are, by nature, deviations from normal behavior. Of the three,
only Anomaly-based intrusion detection is capable of detecting unknown
attacks [1].

Although much progress has been made in Anomaly and Misuse-based detec-
tion, a fast and efficient signatures detection is still needed. The reason is that
the types of NIDs exposed before, represent the natural mechanics of learning.
This is, the unknown knowledge is perceived, then is characterized, and finally
it becomes part of the current knowledge. In this integration, signature-based
detection becomes into the first line of defense, because it makes, or helps to
make decisions based on the current knowledge, as fast as possible [2].

J. Ruiz-ShulcloperandG. Sanniti di Baja (Eds.): CIARP 2013, Part II, LNCS 8259, pp. 544–551, 2013.
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Since the speed of data streams will continue to grow for the next years, and
fast responses to attacks are necessary in high security environments, signature
matching is an active field of research. This demanding environment requires
hardware solutions. In that direction, we propose a memory and logic based ar-
chitecture where signatures are compressed and stored in memory arrays. Our
matching logic allows the comparison of one signature per clock cycle. The en-
tire signature set is partitioned. From each one of resulting subsets, only one
signature is selected at each clock to be matched with the data flow. This is
carried out by a predetection step. In order to store the entire signature set in
memory we propose character recodification. In doing so the resulting architec-
ture presents a better balance in the use of memory and logic, regarding other
multi-character architectures.

The rest of the document is as follows. In the section two, we analyze the
related works, paying special attention to those multi-character architectures. In
the section three, the employed partitioning method is explained. In the section
four, the architecture is presented. Section five is dedicated to experiments and
comparisons with other works. Finally, conclusions are presented.

2 Related Works

Baker and Prassana in [3] proposed partitioning scheme that allows resource
sharing in a logic-based architecture. Hardware implementation of the well-
known string matching Shift-or algorithm is proposed in [4]. In [5], the well-
known Aho-Corassick (AC) automaton structure is shared among several string
matching modules in a time multiplexed access scheme. In [6], AC states with
similar transitions are merged. The authors propose a mechanism to efficiently
rectify the functional errors caused by the states merging. In doing so a reduction
of 24% in the cost is achieved. Guinde and Ziavras [7] proposed a compression
method for the string set where the required memory for storing the set is signif-
icantly reduced. In [11], they propose MIN-MAX algorithm for solving ambigu-
ity and overlapped matching for Character Classes with Constraint Repetitions
based Regular Expressions. A previous work was presented in [9] where the use
of unique subsequences is introduced for reducing the hardware replication. In
[8], a binary search tree state-of-the-art architecture is proposed, achieving the
lowest memory cost per character but with a limited throughput.

3 Partitioning Methods

The present work is based on the partitioning methodology presented in [9] and
then extended in [10]. Firstly, the initial signature set is partitioned into several
sets denoted as u-sets. The partitioning criterion is that, every signature in a
u-set must contain, at least, one unique substring. This is, a substring that is
not contained in any other signature of that set. This substring is named unique
substring, u-substring for short.
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This partitioning allows that in a u-set, every signature can be mapped one-to-
one with its corresponding u-substring. Therefore to find a u-substring in some
data flow location, implies that its container signature, and no other, likely exist
in that section of data stream, so there is no need to match any other signature.
The likely-present signature is called candidate signature (CSig). This is fetched
from memory every time its corresponding u-substring is detected. The section of
data stream where the signature is expected to reside is named region of interest
(RoI). A match occurs when CSig match character by character with the data
stream, in a RoI. When extended to multi-character, it may happen that several
u-substrings match in the same clock period. In order to avoid malfunctioning, a
second partitioning is applied [10]. This is called security threshold partitioning.
The output of this matching module is the signature ID, which is the signature
address in the SMA, and a match enable output, signalling when a match occurs.

The first step in the construction of our architecture is to partition the sig-
nature set according to [9] and [10]. By using these methods, we guarantee only
one possible signature match per clock cycle, for a u-set. The main contribu-
tions of this paper regarding ours previous works consist in: a) the use memory
instead of logic, for storing signatures; b) the proposition of a character reconfig-
uration method which reduce, on average, the amount of memory bits required
per character; and c) a different efficient masking solution, allowing to match
non-uniform length signatures, using uniform hardware logic.

4 Architecture

Our method starts by representing every u-set as a matrix, with one character
per cell and one signature per row. The signatures in this matrix are displaced,
so that all u-substring first characters fall in the same column. In figure 2(a)
there are three matrices. In the signature matrix, the top one, each row contains
a signature where u-substrings are “bb”, “lb” and “tl”, respectively. The column
where all substrings begin is called aligning-column, because it works as pivot
for the Aligning. The dashed line in the figure2(a) marks the boundary between
the head, i. e., the prefix up to Aligning Column, and the tail, which is the rest
of the signature.

Since a signature matrix column, may contain repeated characters, the number
of distinct characters in a column is lower, or equal, to the alphabet size. We
build a second matrix called character matrix, the middle one in figure 2(a). This
matrix collects only distinct characters in columns from the signature matrix.
In real signature sets, the size of the character matrix columns tends to be
lower than 256. This makes possible to reencode the characters in order to save
memory. Let p be the number of characters in a character matrix column, the
number of bits required to encode the signature characters is log2(p). This is
what we have called character-recodification.

The bottom array of the figure 2(a) shows the bits that are required to store
per column. Note that some columns have 0 bits, meaning that, we do not need
to save this characters in memory. In these columns, the selected character is
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Fig. 1. General architecture view

always the same for any signature, so these characters lines can be hard-wired
in the matching module, consuming no memory resources.

Figure 2(b) shows a histogram where bars represent the columns count with
a specific width in bits. For a signature matrix with 1024 signatures extracted
from the Snort rule database [12], there is a reduction of at least one bit in
relation to the original character size. Note that 43 columns are six-bit wide,
saving 43 ∗ 2 = 86 bits of memory. The matrix has 136 columns, without re-
encoding 136∗8 = 1088 bits per row are required, while with re-encoding, this is
reduced to 688, leading to a reduction of 36%. In terms of memory blocks, each
of these contains 36 bits per entry, so *1088/36+ = 31 are originally required,
while with our method this is reduced to *688/36+ = 20. This implies that the
length of the memory entry can be shortened, making feasible the concatenation
of embedded memory blocks, storing one signature per entry.

Each signature matrix is stored in an array of memories, called Signature
Memory Array (SMA), occupying one entry per signature. The amount of entries
of a MA is restricted to 1024. Therefore, the same u-set can require several SMAs.
A Signature Matching Unit, SMU, is the basic component of our architecture,
and its objective is to match the signatures contained in one MA. In figure 1,
all but the input pipeline and the input character decoders, are components
of the SMU. It performs five main tasks. First, match u-substrings from the
data flow (Carried out by Unique Substring Detector). Second, fetch the Csig
from the SMA corresponding to a matched u-substrings (Carried out by Unique
Substring Detector and SMA). Third, align the Csig with the RoI (Carried out
by SMA, Alignment Detection Component and Character Matrix Component).
Four, execute the matching between the RoI and de Csig, comparing character
by character (Carried out by Character Decoder component, Matching logic
Component). Five, provide the match result, and the unique identifier of the
recognized signature (Carried out by Matching Logic Component).
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(a) (b)

Fig. 2. (a)Signature Matrix example (b) Counting of columns at every width

As shown in figure 1, the architecture processes four characters per clock
cycle. These characters are decoded into bit lines, and passed through a pipeline
of register, denoted as i-pipeline. Every step in the i-pipeline, is divided into
four sections, corresponding to four characters, resulting in a total of 256 ∗ 4 bit
lines per step. The i-pipeline can be seen as a serial to parallel buffer, where the
parallel outputs feed the SMUs inputs. The input of the SMU is called Matching
window (MW). In the MW, every column of the signature matrix is related
to four consecutive sections since a RoI can present four different alignments
regarding to CSig. Therefore, the MW width, in number of sections, is the same
as the signature matrix width, multiplied by four. One of the principal tasks of
the SMU is to align the RoI with CSig in the MW, this is the process that we
have called Aligning.

The module in charge of addressing the candidate signature from the MA
is the The Unique Substrings Detector component. In this module, brute force
detection is performed to find out u-substrings in the data flow. Meaning that
every u-substring is detected by four matchers, one for each possible shift of the
signature. Since the u-substrings are of short length, the matchers consumes few
resources. The alignment detection component function is to find out the current
RoI alignment. This is carried out by finding the location of the u-substring first
character in the MW. Recall that these characters are contained in the aligning
column. Character Matrix component is consistent with the character matrix
representation as depicted figure 2. In this, a four-to-one multiplexor per matrix
cell is deployed. Once the alignment of the RoI is known, this is used to control
the array of multiplexers that performs the alignment.

The Character Decode Component receives a RoI aligned with the CSig. In
this component, the characters of the CSig are decoded and compared against
those of the RoI. There is one multiplexor per column controlled by the cur-
rent column value (CSig re-encoded character). A character match occurs when
the selected input of the multiplexor is asserted, meaning that the re-encoded
character and the character in the RoI are equal. The output of the Character
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Fig. 3. Matching logic component

Decoder component is a bit vector named raw matching vector, rm-vector for
short, and its length is equal to the signature matrix width. Each bit in this
vector represents a match in the corresponding column. The central idea is to
count the number of consecutive one’s in the range of bits occupied by the candi-
date signature in the rm-vector, and signal a match result, when this number is
equal to the signature size. This is performed by the Matching Logic Component
presented in figure 3. The typical way of performing this operation is by saving
a bit mask per signature with all ones out of the signature range and all zeroes
in the signature range, then perform a typical masking operation when needed.

Reconsider the example with the signature matrix width of 136 columns, an
equal number of bits would be needed to store at every memory entry, leading to
an increment of *136/36 = 4+ additional memory blocks. We propose a different
approach in the architecture presented in figure 3. In this, the number of mask
bits required for the same example is reduced to only seventeen bits. The rm-
vector is split into slices. Each slice takes six consecutive bits from the rm-vector.
In the first step of the pipeline, the inner most slice of each section i.e. the closest
to the dashed line, are processed. It continues with the next slice, and so on,
until the outer most slice. The slice processing at each pipeline step is carried
out by the Matching Units (MU) located at both sides of the pipeline.

The MUs also conform a pipeline of four signals, these are: stage, index,
continuity, and match. We propose a bit mask composed by two pairs of stage
and index values, one for the head section, and one for the tail section, these are
h-stage, h-index, t-stage and t-index, respectively. These are stored in the entry
together with the signature. Stage represents the outer most slice of the rm-
vector occupied by signature, while index is a bit mask with all ones in the bits
allowed by the signature in that slice. For example, a signature with rm-vector
depicted in fig 3, whose signature has 15 characters in the head and 9 characters
in the tail, his corresponding stage and index values are: h-stage = 2, h-index =
“000111”, t-stage = 1 and t-index = “111000”. The number of bits required for
the h-stage and t-stage together is equal to the rm-vector width divided by six,
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Table 1. Signature Matcher implementation

Virtex5FX100T implementation
Signatures Characters SMUs Frec. Thput. BRAMs LUTs LUTs/char Bit/char

3,739 112,431 7 150MHz 4.8Gbps 60 35,508 0.32 20

Table 2. Comparisons with previous works

Comparison with previous works
Arch. device Input width chars. LE/chars bit/char Thput.

Gbps

Our approach VirtexFX100T 32 112,431 0.32 20 4.8

Baker and Prasanna [3] Virtex2P100 32 19,508 0.65 0 7.3

Hwang et. al. [4] StratixERS140 32 3,028 1.5 0 11.6

Serrano et. al. [9] VirtexFX100T 32 5,024 1.62 0 5.69

Kennedy et. al. [5] Stratix 16 109,467 0.63 61 7.4

Prasanna and Le. [8] VirtexFX200T 16 217,680 n/a 11 3.2

Lin and Chang. [6] n/a 8 36,359 n/a 32 4

Guinde and Ziavras. [7] virtex2P70 8 105,763 0.052 17.7 2.4

and the indexes sum twelve bits. For the example exposed before, the overall
bits required are seventeen, compared with the original 139 bits required, this
means a reduction of 86.3%.

5 Experiments and Results

Table 1 shows the results of the architecture implementation for a signature set
of 3,739 signatures from Snort database [12]. For the Virtex-5 FX100T device
containing 64,000 logic elements (LE) and 200 embedded memory blocks, the
overall architecture occupies 60% of the resources. Table 2 shows the compari-
son against previous works. Our architecture presents the best logic cost regard-
ing to others 32-bit-width architectures. The best memory cost is presented by
Prasanna and Le [8]. However their throughput of 3.2 Gbps is achieved by using
the double port memory feature of embedded memory blocks. By applying the
same strategy, our architecture would double the throughput to 9.6 Gbps while
maintaining the same memory cost. The largest Virtex5 device has 207,360 LE,
the same architecture can be replicated up to 5 times in this device, achieving an
aggregated throughput of 24 Gbps. Likewise, we estimate a character capacity
of more than 500K characters.

6 Conclusions

We have presented a multi-character architecture which exploits intensively both,
memory and logic resources. The replication of hardware is significantly reduced,
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which leads to a better use of resources, lowering the cost per character compared
to others multi-character architectures. Our character re-codification method al-
lows storing one signature in a memory entry. Therefore we can compare the
entire signature in one clock cycle. In addition, we have presented a uniform ar-
chitecture capable of matching non-uniform signatures. If the double port access
feature of embedded memory blocks is used the throughput can be doubled, tak-
ing into account the capacity of larger FPGA devices, a similar implementation
as the one presented here can be replicated up to five times on a Virtex5-330T
device.
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Abstract. We cast the problem of discovering the community structure
in networks as the composition of community candidates, obtained from
several community detection base algorithms, into a coherent structure.
In turn, this composition can be cast into a maximum-weight clique
problem, and we propose an ant colony optimization algorithm to solve
it. Our results show that the proposed method is able to discover better
community structures, according to several evaluation criteria, than the
ones obtained with the base algorithms. It also outperforms, both in
quality and in speed, the recently introduced FG-Tiling algorithm.

1 Introduction

Networks are frequently used to describe many real-life scenarios were units inter-
act with each other (e.g., see [1,2] and references therein). A seemingly common
property to many networks is community structure, i.e., that is, networks can
be divided into groups such that intra-group connections are denser than inter-
group ones. The ability to find and analyze these communities sheds light on
important characteristics of a network. However, the best way to establish the
community structure is still disputed. Addressing this is the topic of this work.

Let G = (U , E) be the graph to analyze, where U is the set of nodes and E
is the set of edges (in the following we indistinguishably use the terms graph
and network). Generically, we consider that a community-detection algorithm
provides a set X of candidate communities (X can be a partition of the node set
U or a hierarchy of subsets in U , from which the best partition may latter be
extracted). Let us consider that a pool of C such algorithms provides a universe of

candidates V =
⋃C

i=1 Xi. We build a new graph G = (V,E, ω), where (u, v) ∈ E
if and only if communities u, v ∈ V do not overlap, and ∀u ∈ V ω(u) is a measure
associated with the quality of partition u. In this work, we do not address the
case in which communities overlap, while our technique could be considered for
this as well.

We formulate the problem of finding the best community structure in a net-
work as a patchwork algorithm: instead of building a community set X from
scratch, we browse through V and build a new solution by combining the best

� Work partially supported by NSF, ONR, NGA, ARO, DARPA, and NSSEFF. Work
partially done while the authors were with the Department of Electrical and Com-
puter Engineering, University of Minnesota.
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communities in V in such a way that no overlap exists among them. In other
words, the proposed meta algorithm selects the set of communities with max-
imum total weight among the ones that are fully interconnected by E. This is
a maximum-weight clique problem on the graph G. This type of formulation
was simultaneously introduced in [3,4] for image segmentation. In this work, we
propose to follow and extend this approach for community structure discovery.1

Let us first formally pose the maximum-weight clique (MWC) problem. Let
G = (V,E, ω) be a weighted graph where V is a set of nodes, E ⊆ V ×V is a set
of edges (no self-loops are allowed, that is ∀u ∈ V, (u, u) /∈ E), and ω : V → R+ is
a node weighting function. For convenience, given a set C ⊆ V we write ω(C) =∑

u∈C ω(u). A clique C ⊆ V is a set such that ∀u, v ∈ C, u �= v, (u, v) ∈ E. The
maximum clique problem is to find a clique of maximum cardinality in G. The
MWC problem is to find a clique C of maximum weight ω(C). Both problems are
known to be NP-Hard.

A popular approach for solving hard discrete combinatorial problems such
as MWC is the use of metaheuristics. Ant Colony Optimization (ACO) is a
variant of swarm intelligence in which the system is made of a population of
simple agents interacting locally with one another and with their environment.
Although each agent builds a solution following an extremely simple set of rules,
cooperation among the population leads to the emergence of intelligent behavior.
When looking for food, real ants deposit pheromones on the ground; then, the
probability that other ants follow a particular path is proportional to the level
of pheromones in that path. Similarly, the solution construction process in ACO
is stochastic and is biased by a “pheromone” model. Specifically, artificial ants
will explore more thoroughly regions of the solution space where good solutions
were previously found.

In this work we propose an ACO algorithm for the MWC problem and, as
already discussed, we apply it to the problem of selecting the best community
structure from a set of community candidates. We propose then a double collab-
oration structure, where multiple algorithms collaborate to propose community
structures, and the ants collaborate to find the best one from all the possibilities.
The algorithm presents a good balance between the amount of exploration and
computational efficiency. We provide experiments that show the pertinence of
the proposed method.

The remainder of the work is organized as follows. In Section 2 we present our
ACO algorithm for the MWC problem. In Section 3 we discuss the experimental
results and finally we provide some closing remarks in Section 4.

2 ACO for the MWC Problem

A few variants of ACO have been proposed for the maximum clique problem [6,7].
We adapt Solnon and Fenet’s algorithm [7] for solving the MWC problem. Being
a metaheuristic, the change is minimal: instead of searching for the clique with
maximum cardinality, we seek the clique with maximum weight.

1 An approach based on metaheuristics was indepently and simultaneously developed
for clustering in [5], solving the related maximum-weight independent set problem
using simulated annealing.
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We associate a pheromone level τ(v) to each node v ∈ V , and use an ACO vari-
ant, called Max-Min Ant System (MMAS), where pheromone levels are bounded,
that is ∀v ∈ V, τ(v) ∈ [τmin, τmax]. These bounds ensure that no region in the
solution space will be excessively over or under sampled.

Given a clique C, we define the set of possible additions to C as

PA(C) = {u | u ∈ (V � C) ∧ ∀v ∈ C, (u, v) ∈ E} . (1)

That is, given a clique C, ∀u ∈ PA(C), C ∪ {u} is also a clique.
The overall ACO procedure is described by Algorithm 1. In each iteration, a

certain number K of ants explore the solution space. Each ant builds a random-
ized solution, favoring nodes with higher pheromone levels.

The ACO algorithm regulates its overall behavior through pheromone trails:
cooperation between ants rises from the optimality of previous experiences.
When adding a new node to a partial solution, the pheromone level in each
node is used to bias the election, i.e., the higher τ(v), the more probably a node
v will be chosen. An ant then selects a node v with probability

pα(v | C) = [τ(v)]α
(∑

u∈PA(C)[τ(u)]
α
)−1

, (2)

where α is a parameter of the algorithm.
As in every ACO algorithm, pheromones evaporate over time. This ensures

that exploration will not get stuck around good previous solutions and will di-
versify over time. We set the evaporation rule

∀u ∈ V, τ(u) = max(τmin , ρ · τ(u)), (3)

where ρ is a parameter of the algorithm.
As previously stated, pheromone levels must be increased for those nodes that

belong to good solutions. Let C∗ be the best solution in the current iteration and
let Cbest be the best solution in all previous iterations, including the current one.
We only update those nodes that belong to C∗, according to the rule

τ(u) = min
(
τmax , τ(u) + [1 + ω(Cbest)− ω(C∗)]−1

)
. (4)

2.1 Local Search

The ACO algorithm uses local search as a post-processing to improve the best
solution found by the ants. Adding this intelligence to every ant would be com-
putationally costly and would hinder the stochastic search. Notice that the ACO
algorithm uses the local search method as a black box and, as such, any suitable
technique can be employed. Many local search schemes have been proposed for
the maximum clique problem. Their goal is to avoid local minima by exploring
the neighborhood (in the solution space) of an initial solution.

Katayama et al. [8] propose to examine the k-opt neighborhood of an initial
solution, defined as the set of neighbors that can be obtained by a sequence of
several add and drop moves that are adaptively changed in the feasible search
space. For this task, they introduce an efficient algorithm called k-opt local search
(KLS). KLS has proven capable of finding satisfactory cliques with reasonable
running times. In this work, we extend KLS for the MWC problem. Pseudocode
of the weighted-KLS is presented in Algorithm 2.
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Algorithm 1:ACO algorithm for the
MWC problem.

Cbest ← ∅; ∀u ∈ V, τ (u) ← τmax;
while number of iterations is lower
than T do
for ant k such that 1 ≤ k ≤ K do
Choose a seed uk ∈ V at random;
Ck ← {uk};
while PA(Ck) �= ∅ do
Choose a vertex v ∈ PA(Ck) with
probability pα(v | Ck);
Ck ← Ck ∪ {v};

Cmax ← argmaxCk
ω(Ck);

C∗ ← improve solution Cmax using
local search (see Sec. 2.1 and
Algorithm 2);
if ω(C∗) > ω(Cbest) then Cbest ← C∗;
Evaporate pheromone levels (Eq. (3));
Update pheromone levels of vertices in
C∗ (Eq. (4));

return Cbest

Algorithm 2: Local search.

repeat
P ← V ; Cprev ← C; D ← C;
g ← 0; gmax ← 0;
while D �= ∅ do
if PA(C)∩ P �= ∅ then // add phase
v∗ ← argmax

v∈PA(C)
inputω(C, v);

C ← C ∪ {v∗}; g ← g + ω(v∗);
P ← P � {v∗};
if g > gmax then
gmax ← g; Cbest ← C

else // drop phase
v∗ ← argmax

v∈(C∩P )

ω(PA(C � {v}));
C ← C � {v∗}; P ← P � {v∗};
g ← g − ω(v∗);
if v∗ ∈ Cprev then D ← D� {v∗}

until gmax > 0;
return C

KLS is a greedy algorithm, each decision of adding or removing a node from
the current solution is made by maximizing the immediately obtained reward:

– When adding a node, the most desirable candidate in PA(C) is picked. In
the unweighted case, the desirability of a node is given by its degree; in the
weighted case, we define it as

∀u ∈ PA(C), inputω(C, u) = ω(u) +
∑

v∈PA(C) ω(v). (5)

– When removing a node, we pick the node whose removal will produce the
most desirable set of candidates PA(C) for future additions. In the absence of
weights, the appeal of PA(C) is determined by its size |PA(C)|; when weights
are present, the appeal is defined by ω(PA(C)).

KLS uses the set P as a mechanism to avoid incurring in loops of addition/
removal of the same set of nodes. Also note that the functions PA and inputω
can be computed and updated very efficiently [9], and do not present a significant
computational overhead.
Complexity. Let us begin by analyzing the KLS algorithm. Due to its param-
eterless nature, computing its time complexity is not an easy task. We estimate
the overall complexity as O(Ln2h), where n = |V |, h is the size of the initial
(input) clique, and L is the number of executions of the outer cycle, although a
more realistic practical bound would be O(h). In the ACO algorithm, each ant k
can build its own solution in O(deg(uk)

2), where deg(uk) denotes the degree of
seed uk. Thus the total complexity of the proposed algorithm is O(T (Kd2+h)),
where d = maxu∈V deg(u), if we use the aforementioned O(h) for KLS.

The complexity of the ACO algorithm is extremely lower than the O(Nd3) of
FG-Tiling [4]. This can be observed in practice, where our algorithm
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systematically outperformed FG-Tiling in running-time. Notice that FG-Tiling
is deterministic, thus its worst case complexity provides a tight bound.
Community Quality Measures. Many different measures have been used for
assessing the quality of a given community structure. We work with the standard
modularity [2] and a new measure called surprise [10]. Our method is of course
completely agnostic to the measure’s nature and it can directly profit from any
improvement in this respect.

Modularity is by far the most popular measure for assessing the quality of
a partition. We will denote by Q(P) the modularity of partition P . Because of
space constraints, we do not provide its formal definition.

The surprise S of partition P is defined [10] as S(P) = − logH(F,N,m, b),
where H is the tail of the hypergeometric distribution, F = n(n − 1)/2, N =∑

P∈P |P |(|P | − 1)/2, and b =
∑

P∈P eP . This represents the probability of
obtaining b intra-community edges in m draws, without replacement, from a
finite population of size F containing N successes. We can use surprise in our
framework assuming that the subsets in a random partition are i.i.d., that is,
S(P) ≈

∑
P∈P − logH(F,NP ,m, eP ), where NP = |P |(|P | − 1)/2.

3 Experimental Results

In this section we evaluate the community structure discovery results of the pro-
posed ACO algorithm for the MWC problem. We use two different base algo-
rithms for community detection: Walktrap [11] and Jerarca [1]. Both algorithms
provide a hierarchy of communities and then globally threshold the hierarchy at
different levels, thus obtaining a partition per level, and finally select the best
partition among them. Let HW and HJ be the hierarchies provided by Walktrap
and Jerarca, respectively. As already explained, we create the graph G = (V,E),
where V =

(⋃
C∈HW

C
)
∪
(⋃

C∈HJ
C
)
and (C,C′) ∈ E if and only if C ∩C′ = ∅.

We then look for the MWC in G. We compare our results with FG-Tiling [4],
a recently introduced and successful MWC solver in the context of image seg-
mentation. For all experiments, unless specifically indicated, we set the ACO
parameters to α = 1, τmin = 0.01, τmin = 10, ρ = 0.98, K = 100, and T = 1000.

In Table 1 we show the community structure discovery results on different
networks used in the literature. We first observe that the proposed approach,
finding an approximate solution of the MWC problem, outperforms the hierar-
chical approach. Indeed, FG-Tiling and ACO outperform Jerarca and Walktrap.
Of course, this comes at the cost of extended running times, Jerarca and Walk-
trap being very fast algorithms. On a finer observation level, ACO consistently
obtains better solutions than the deterministic FG-Tiling, confirming in practice
the ability of adaptive stochastic algorithms for exploring the solution space. We
provide graph plots in Fig. 1 to show that the differences in the measures shown
in Table 1 actually correspond to different community structures. Note that in
no experiment we judge the quality of the obtained partition from the graph
plots, the assessment is solely based on the selected standard measure.

Table 2 presents running-time examples of both algorithms (implemented in
Python). Note that all of our current implementations can be further optimized.
These times do not reflect the best times that can be achieved with these meth-
ods, but they serve to corroborate the previously presented complexity bounds.
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Table 1. Modularity Q(P) and surprise S(P) values of the best partition P found by
each tested method on different networks (WT stands for Walktrap)

Modularity Surprise
Jerarca WT FG-Tiling ACO Jerarca WT FG-Tiling ACO

1dc.641 0.212 0.251 0.251 0.251 148.65 146.06 156.4 158.95
Les Misérables [12] 0.490 0.403 0.497 0.512 361.14 325.98 378.91 378.91
Chesapeake [13] 0.356 0.102 0.339 0.356 41.26 14.16 45.59 46.00
Dolphins [14] 0.246 0.445 0.434 0.461 144.40 90.00 122.55 152.79
Aegean34 [15] 0.529 0.571 0.571 0.571 130.97 126.78 134.18 134.18
1 http://www2.research.att.com/~njas/doc/graphs.html

Table 2. Running time (in seconds) of FG-Tiling and ACO for different networks

Aegean34 Chesapeake Les Misérables 1dc.64
FG-Tiling 975 1200 37790 48630
ACO 109 130 748 930

We also ran an experiment comparing three different versions of the proposed
ACO algorithm: one that disallows cooperation and uses local search, ones that
allows cooperation but does not use local search, and the proposed one which
allows cooperation and uses local search. The emergence of cooperation can be
prevented by setting α = 0, see Eq. (2). We ran this comparison on a random
graph G where all edges are i.i.d. and belong to G with a fixed probability. In
average there should be no communities in G, and hence no trivial solution can
be prematurely found. This is observed in practice since all modularity values
are close to zero. The results are shown in Fig. 2. Clearly, the version that allows
both collaboration and local search outperforms the other variants.

To show the generality of the proposed approach, we include some basic results
on image segmentation in Fig. 3. Briefly, each region in a segmentation can be
viewed as a “community” and we compute its weight using a basic and untuned
version of the method in [3]. LetHUCM be the hierarchy produced by the state-of-
the-art UCM image segmentation algorithm [16]. We select the global threshold
on HUCM such that the resulting partition has maximum total weight. When G
is built from HUCM in our framework, the proposed algorithm is able to improve
the segmentation, obtaining a partition with higher total weight. More tuned
or sophisticated weighting functions would further improve the obtained results,
these are obtained directly from the proposed general technique.

4 Conclusions

We proposed an algorithm for community structure discovery. Instead of building
our own custom community structure from scratch, we take the output of several
community detection algorithms (they can be the same algorithm executed with
different parameters, and also provide hierarchies or partitions), and compose
a new structure by combining the best communities in each. In this way, we
can make use of multiple algorithms that provide globally suboptimal solutions
which contain some optimal communities. The combination of these optimal
communities leads to the creation of a new and globally better solution.

http://www2.research.att.com/~njas/doc/graphs.html
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Fig. 1. Different communities are represented by nodes of different colors and shapes.
All singleton communities (composed of one node) are depicted with white circles.
Differences in the quality measure (see Table 1) create different community structures.

Fig. 2. The proposed algorithm
benefits from both the collabora-
tive nature of ACO and the local
search (weighted KLS). It outper-
forms the non-cooperative ACO al-
gorithm (α = 0) and a version that
does not use local search (termed
“w/o LS”). Weights correspond to
modularity values.

Image UCM ACO

2.037 2.075

1.497 1.528

1.842 1.879

Fig. 3. Image segmentation results. We show the
weight of the obtained partition. The proposed
method is able to compose a better result by
searching through the UCM hierarchy.
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We showed results that confirm in practice the theoretical benefits of the
proposed algorithm. Namely, the stochastic nature of ACO helps in handling the
non-convex nature of the MWC problem’s solution space, by exploring it “fairly.”
The collaborative aspect of ACO, ensures that “fairness” is distributed smartly:
potentially appealing zones of the solution space attract more attention and are
thus explored more thoroughly. We further strengthen the ACO algorithm by
using a local search heuristic. We adapt the KLS algorithm to handle weighted
graphs, obtaining both efficient and solid performances.

As future work, we plan on adding support for weighted edges in the model,
which could be used to model relationships between communities. We also plan
to extend our current model to the case of overlapping communities, for which
suitable quality measures are needed. Additionally, a C++ implementation will
allow to analyze larger networks. Furthermore, the ant exploration phase in the
proposed ACO algorithm can be parallelized with ease.
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Abstract. Computing the minimum spanning tree (MST) is a common
task in the pattern recognition and the computer vision fields. However,
little work has been done on efficient general methods for solving the
problem on large datasets where graphs are complete and edge weights
are given implicitly by a distance between vertex attributes. In this work
we propose a generic algorithm that extends the classical Boruvka’s al-
gorithm by using nearest neighbors search structures to significantly re-
duce time and memory consumption. The algorithm can also compute in
a straightforward way approximate MSTs thus further improving speed.
Experiments show that the proposed method outperforms classical algo-
rithms on large low-dimensional datasets by several orders of magnitude.

1 Introduction

The computation of the minimum spanning tree (MST) is a classical problem
in computer science. For an undirected weighted graph, it can be simply stated
as finding a tree that covers all vertices, called a spanning tree, with minimum
total edge cost. It is taught in every course of algorithms and data structure as
an example where greedy strategies are successful and it is regarded as one of
the first historical foundations of operations research.

Maybe the two most widely known algorithms to compute the MST are Prim’s
and Kruskal’s [1]. There is a third classical algorithm by Boruvka [1] that mys-
teriously remained shadowed by the other two. This fact is emphasized by the
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fact that Boruvka’s algorithm is also known as Sollin’s algorithm, despite the
fact that Sollin re-discovered it independently years later.

The MST is particularly interesting for many data analysis tasks in computer
vision and pattern recognition. A clear example is clustering, where the classical
single-linkage hierarchical algorithm [2] can be proven equivalent to computing
the MST. In a seminal work, Zahn [3] studied the benefits of using the MST
for clustering. More recently, the MST received attention due to the growth
in the size of clustering datasets, e.g., [4,5]. The approximate MST (AMST),
suboptimal but faster, also received attention for the same reasons [6].

We now slightly change the definition of the problem to a form more suitable
for data analysis (e.g., clustering). Let M be a set and d : M × M → R+ a
distance function. Then d and the pair (M,d) are said to be a metric on M and
a metric space, respectively. Given a data set X ⊆M , the MST of X is defined
as the MST of the weighted undirected graph G = (V,E) where each vi ∈ V is
identified with a feature xi ∈ X , E = V × V (the graph is complete), and the
graph’s weighting function ω : E → R is defined as ω((vi, vj)) = d(xi, xj).

The problem is classically addressed by using metric spaces with exploitable
specific characteristics like the Euclidean space, e.g., the Euclidean MST is con-
tained in the Delaunay triangulation of X [7]. Recent work has aimed at building
an AMST [6] through a clever use of space-filling curves.

Nearest neighbors (NNs) search structures have been used to compute the
MST [8]. The approach proved successful; moreover, using such structures al-
lows in addition to compute the AMST in a natural and straightforward way.
A revision of this approach is needed, in the light of novel NNs techniques and
increasing computational power. More recently, Leibe et al. [9] used NNs tech-
niques for hierarchical clustering using the average-link criterion. Although they
improved the method’s performance, their algorithm is not suitable for extremely
large datasets.

Classical algorithms for computing the MST run in O(n2 logn), where n =
|X |. However, one must compute all n(n− 1)/2 distances and thus a double-sided
problem appears: (1) storing all n(n− 1)/2 results for n ≥ 105 is prohibitive; (2)
even if results are not stored, for n ≥ 105 the overall running-time is also pro-
hibitive. Keep in mind that, in modern pattern recognition applications, feature
sets of 105 or more points are becoming common [10]. In this work we address
the MST problem without computing all distances in E. We build on Boruvka’s
approach [1] by an appropriate use of NNs search techniques.

The rest of the paper is structured as follows. In Section 2 we propose a
general approach to compute the MST using NNs search structures. Section 3
shows empirical results of the proposed approach on a synthetic dataset. Finally,
some final remarks and future work are presented in Section 4.

2 A Nearest Neighbors Approach

First let us explain Boruvka’s algorithm: it creates a forest (i.e., a set of trees)
where each isolated edge is a tree and gradually merges these trees by adding
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Algorithm 1: Computation of the MST T = (V,ET ) of feature set X .

1 ET ← ∅;
2 while |ET | < |V | − 1 do
3 E′ ← ∅;
4 foreach connected component C of T do
5 (um, vm) ← argmin

u∈C, v/∈C

d(u, v);

6 δm ← d(um, vm);
7 E′ ← E′ ∪ {(um, vm, δm)};
8 while E′ �= ∅ do
9 (um, vm, δm) ← argmin

(u,v,δ)∈E′
δ;

10 E′ ← E′ � {(um, vm, δm)};
11 if ET ∪ {(um, vm, δm)} does not contain cycles then
12 ET ← ET ∪ {(um, vm, δm)}

the smallest edge whose endpoints lie on different trees (see Algorithm 1). We
propose to express the term in line 4 of Algorithm 1 in terms of finding NNs in
the set V � C:

um = argmin
u∈C

d(u,NNd(V � C, u)), (1)

vm = NNd(V � C, um), (2)

where NNd(A, b) returns the NN a ∈ A of b using metric d. We also modify the
function NNd(A, b) by adding an additional constraint function ρ : X → {0, 1}
on the returned element. We denote it by NNd,ρ(A, b). It returns the NN a ∈ A
of b using metric d such that ρ(a) = 1. By setting ρ(v) = (v /∈ C) we have

NNd(V � C, u) = NNd,ρ(V, u). (3)

This kind of problem is sometimes referred to as Foreign NNs in the literature.
We are sure that the desired node vm is among the k NNs of u where k =

|C|+ 1. Therefore in the worst case, using a naive approach, NNd,ρ amounts to
perform a k-NNs search and then a simple check among them by using ρ. Note
that k is a dynamic (growing) quantity and it is not possible to fix it in advance.
The problem is thus of a different nature than finding the MST in a constrained
degree graph. Of course, there is no need to compute that many NNs, since the
constraint can be directly incorporated in the NN technique.

Priority queues can be used to prune the number of NNs searches performed
during the algorithm [8]. We propose to use several priority queues, one for each
connected component in a partial (i.e., already computed) MST. The nodes ui
of a partial MST are stored, with their foreign NNs uj, in a priority queue where
the priority of a node is the inverse of d(xi, xj). The use of a priority queue
is indeed interesting in this context, as the next edges to add to the MST are
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at the top of the priority queues. The top of the queues are removed and the
top-priority foreign NNs are added to the MST. After merging two connected
components, their priority queues are also merged.

Additionally, the priority queue must be updated, since disjoint connected
components are merged and some foreign NNs might not be foreigners anymore.
Note that it may not be necessary to update the entire priority queue. This
is because the current priority of each of these nodes (the priority before the
insertion in the MST) serves as an upper bound of its real priority (the priority
after the insertion in the MST). The real priority of a node needs only to be
computed when its current priority is on the top of the queue.

We omit the pseudocode of the resulting algorithm because of space con-
straints, see [11] for further details. Note that the space complexity is still O(n).
In the first iteration, there are n queues, each of length 1. In the second iteration
there are roughly n/2 queues, each of length 2, and so on.

2.1 Approximate MST

If we simply relax the search by finding approximate NNs we end up with an
AMST algorithm. Approximate NNs queries are much faster than exact ones,
specially in high-dimensional spaces.

Typically, ANNd(X, u, η) ensures that, if the true NN is at distance δ, the
approximate NN is at a distance lower than δ(1+ η). Note that AMSTs can also
be obtained by using a probability bound on the NN distance [12].

Lai et al. [6] have previously studied AMSTs. Their approximation is obtained
by using space-filling structures, i.e., Hilbert curves. Their work differs from ours
in two central points. First, our algorithm allows to combine MSTs and AMSTs
in a single framework, in which the only difference between them is a relaxation
parameter. Their work is restricted to AMSTs. Second, Hilbert curves are fractal
and the space-filling accuracy follows an exponential scale. It relies on a scale
parameter that has a non-intuitive meaning and which is difficult to choose. It
is not straightforward to set automatically a suitable scale for a given point set
configuration. The relaxation parameter in our method has a clear interpretation
and it is easy to monitor its effect.

3 Experimental Results

For the NN computations, choose the list-of-clusters (LOC) structure [13,14]. It
is reported to be very efficient and resistant to the intrinsic dimensionality of
the data set. It can also be implemented in primary and in secondary memory.
See [11] for further details on how to adapt the structure for our specific purposes.

As distance computations are the dominating speed factor, we measure perfor-
mance and complexity as a function of them. We sample points from a uniform
distribution in the unit hyper-cube. We tested with four different dimensional-
ities R2, R5, R10 and R20. We compared the following methods (see Table 1):
Bvka: the classical Boruvka’s algorithm, where all distances are precomputed
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Table 1. The methods compared in this work. s stands for average number of distance
operations needed to complete a NNs search.

Method Solution
Number of distances Space Search
computed stored complexity speed

Bvka MST n(n− 1)/2 all O(n2) —
Bvka-O MST O(n2 log n) none O(1) linear
Bvka-LOC MST O(sn log n) none O(n) sub-linear
Bvka-PQ-LOC MST O(sn log n) n− 1 O(n) sub-linear
Bvka-A η AMST O(sn log n) n− 1 O(n) sub-linear

and stored in memory; Bvka-O: the proposed algorithm where an online linear
search is used to compute NNs; Bvka-LOC: the proposed algorithm where NNs
are computed online by using LOC; Bvka-PQ-LOC: the proposed algorithm
where NNs are computed online by using LOC and priority queues; Bvka-A
η: Bvka-PQ-LOC modified to compute the AMST by using approximate NNs.
Note that the reduced memory complexity of the algorithm guarantees that we
will be able to treat large datasets without memory issues.

Comparisons were made for relatively small feature sets (|X | ≤ 104) to be able
to compare with a classical MST implementation. A summary of our results is
shown in Figure 1. Our method exhibits a very strong performance improvement
in low dimensions (Fig. 1, top row). Bvka-LOC and Bvka-PQ-LOC in both cases
outperforms Bvka several orders of magnitude. We can also notice a strong per-
formance degradation of Bvka-LOC with the increase of dimensionality (Fig. 1,
bottom row). The only cause is the NNs search structure. It is a well known
fact that the performance of NNs search structures tends to become linear in
high-dimensions. In any case, our method is generic: any NN structure can be
used. Another structure may provide better results in high dimensions and we
plan to explore these issues in future work.

Table 2a summarizes the results from Figure 1 by analyzing the slope of the
different curves. The proposed approach lowers in practice the number of distance
computations needed to solve the problem. The quadratic profiles of Bvka and
Bvka-O are reduced to supralinear (e.g., n1.6 approximately) by Bvka-LOC and
Bvka-PQ-LOC. As stated, the latter shows a computational cost which is less
sensitive to an increase in dimensionality.

We provide a simple example of the incidence of using the AMST, shown in
Figure 2a. We use X uniformly distributed on the square [0, 1]2 and Euclidean
distance. Computing the MST required 9613 distance computations with our
algorithm, while taking 9155, 8705 and 7840 with η = 0.1, η = 0.2, η = 0.5 re-
spectively. There is an important improvement in performance while the number
of topology changes is small. Moreover, when carefully inspected, these changes
are reasonable. It is a well known fact that (even little) jitter noise in the dataset
greatly affects the topology of the MST [4]: computing the AMST can be seen as
perturbing the dataset with such a noise. Usually η is chosen to be quite small,
and its use has more meaning in large and high-dimensional datasets. In our toy
example, keeping η small does not introduce changes in the topology of the tree.
We exaggerated η to show actual topology changes.
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Fig. 1. Comparison in the number of distance computations as |X| grows. From left
to right: top row, X ⊂ R2 and X ⊂ R5; bottom row, X ⊂ R10 and X ⊂ R20. The radii
in the list-of-clusters were chosen such that each bucket has

√|X|/2 internal elements.
Both scales are logarithmic.

(a)

(b)

Fig. 2. (a) Comparison of the MST (using Bvka) vs the AMST (using Bvka-A η)
for several levels of relaxation η. From left to right: MST, AMST (η = 0.1), AMST
(η = 0.2), AMST (η = 0.5). (b) Comparison in the number of distance computations
of the MST and the AMST algorithms for η = 0.1 and η = 0.2 with X ⊂ R20.
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Table 2. (a) Slopes of the different curves in Figure 1 in a log-log scale. In low dimen-
sions, Bvka-LOC is better than any classical algorithm while Bvka-PQ-LOC resists
better the dimensionality increase. (b) Running times (in seconds) on an Intel Core 2
Duo at 2.2 GHz for 105 uniformly distributed points using Euclidean distance.

(a)

Method R2 R5 R10 R20

Bvka 2 2 2 2
Bvka-O 2.14 2.12 2.13 2.15
Bvka-LOC 1.58 1.66 1.92 2.15
Bvka-PQ-LOC 1.61 1.6 1.87 2.03

(b)

Dim. Bvka-PQ-LOC Bvka-A 0.1 Bvka-A 0.2

R2 32 27 23
R5 85 63 48

A performance comparison between MSTs and AMSTs is shown in Figure 2b.
We use X uniformly distributed in the hyper-cube [0, 1]20 and Euclidean dis-
tance. As argued before Bvka-LOC’s performance tends to Bvka-O’s in high-
dimensions. Bvka-A greatly improves the performance: it is 1.7 and 1.62 times
faster than Bvka-O and Bvka-LOC respectively when |X | = 104.

Computing the MST for |X | = 105 is not possible with classical algorithms
on standard computers, since approximately 5 · 109 distances must be computed
and stored. This means more than 18.6 GB if we use 32 bits to store each
computed distance. Using minimum memory (less than 20 MB), we were able to
compute the MST using Euclidean distance, without, explicitly nor implicitly,
exploiting the nature of the Euclidean space (i.e., without relying on Delaunay
triangulations). Table 2b presents the resulting running times for all considered
algorithms. Again, these results can be improved, as we did not perform any
tuning of the list-of-clusters.

Finally, more efficient search algorithms can be implemented for a given NNs
structure that might increase the performance of the proposed algorithms, such
as the best-bin-first or an optimized depth-first [15].

4 Final Remarks

The dominating factor when computing the MST of a feature setX is the number
of distance computations to be performed. We presented a method for computing
the MST based on a clever use of NNs search structures. It has O(n2) and O(n)
time and space complexities respectively. However, in practice it outperforms
classical algorithms for large, and low dimensional, datasets.

The same algorithm with a slight modification can also be used to compute the
AMST: instead of finding NNs, one finds approximate NNs. In high-dimensional
datasets, we showed the performance increase that results from using AMSTs.
Moreover, the computed AMSTs exhibit a stable behavior.
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There are three conceptual main lines for future work. The first consists on
performing an experimental evaluation of NNs search structures and their in-
cidence on the performance of the proposed algorithm. This includes the eval-
uation of different criteria in list-of-clusters for selecting the centers and the
radii. Second, we did not explore other search algorithms [15] which may reduce
the number of distance computations per query. Finally, when using AMSTs, the
trade-off between enhanced speed and accuracy must be explored more carefully.

Last, from the implementation point of view, the proposed algorithms can be
parallelized without any reformulation. Moreover, in list-of-clusters, the exhaus-
tive search within a bucket can be implemented using vectorial processors as the
bucket size is fixed.
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Arevalillo-Herráez, Miguel I-359
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II-50
Carballo, Maylen II-134, II-150
Cardenas-Barrera, Julian L. II-83
Carrasco-Ochoa, Jesús Ariel I-206,
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Mejail, Marta II-116, II-560
Melie, Lester II-134
Melita, Mario II-116
Méndez, Nelson II-407
Méndez-Vázquez, Heydi II-407
Mendiola-Lau, Victor II-391
Meng, Julian II-83
Miramontes-Jaramillo, Daniel I-439
Miranda, Rosebet II-198
Moeslund, Thomas B. II-334

Montalvo, Ana I-551
Montero, Fidel Ernesto Hernández

I-488
Moraes, Ronei M. I-165, II-158
Morales, Eduardo F. I-198, II-318,

II-439
Morales, Juan-Miguel II-134, II-150
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