
Implementation of Non Local Means Filter

in GPUs�

Adrián Márques and Alvaro Pardo

Universidad Catolica del Uruguay, Montevideo 11600, Uruguay
adrian.marques@gmail.com, apardo@ucu.edu.uy

Abstract. In this paper, we review some alternatives to reduce the com-
putational complexity of the Non-Local Means image filter and present a
CUDA-based implementation of it for GPUs, comparing its performance
on different GPUs and with respect to reference CPU implementations.
Starting from a naive CUDA implementation, we describe different as-
pects of CUDA and the algorithm itself that can be leveraged to decrease
the execution time. Our GPU implementation achieved speedups of up to
35.8x with respect to our reduced-complexity reference implementation
on the CPU, and more than 700x over a plain CPU implementation.

Keywords: Image denoising, Non-Local Means, GPU, CUDA.

1 Introduction

In this work we focus on the implementation in GPU of the Non-Local Means
(NLM) image filter[3] which proposes to compute the output pixels as a weighted
average of all pixels in the image (in practice for all pixels inside a given search
region). The weights reflect the similarity between pixels and the novelty of the
method is that this similarity is based on the distance between patches centered
at pixels being processed. If I(x) is the value of the input image at pixel x and
Sx is a rectangular search region centered at pixel x the output of the NLM

filter is computed with the following equation: Î(x) =
∑

y∈Sx
w(x,y)I(y)

∑
y∈Sx

w(x,y) where the

weights w(x, y) measure the similarity between patches Nx and Ny of size (2W+
1)× (2W + 1) centered at x and y respectively. This similarity is computed as:
w(x, y) = exp(−||Nx −Ny||22/h2) with h a parameter that controls the aperture
of the weighting function. We assume a search region with range [−S, S]2. The
computational cost of a naive implementation of NLM is O(N2(2S + 1)2(2W +
1)2)) where N is the size of the image (N rows and columns), (2S + 1)2 is the
number of pixels in Sx and (2W+1)2 is the number patch pixels. To alleviate the
computational cost of the NLM filter several authors proposed different strategies
to speed up the algorithm. These strategies can be classified into two categories.
On the one hand the ones that propose approximations to the original NLM

� ANII FMV200913042 and SticAmsud MMVPSCV. Thanks to P. Ezzatti and E.
Dufrechou from Univ. de la Republica for discussions and running our code on their
machines.

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part I, LNCS 8258, pp. 407–414, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

408 A. Márques and A. Pardo

that allow the reduction of the computation cost [8,7]. On the other hand, there
are solutions that reduce the computational cost while implementing the same
filter [5,4]. Here, we review these references that inspired our work for the GPU
implementation.

In [4] Condat proposes an elegant solution to lower the computational cost us-
ing convolutions. The first observation is the following. If the pixel y is expressed
using a displacement vector starting from pixel x as y = x+dx then the weights
fulfill w(x, x + dx) = w(y, y − dx). Therefore, there is no need to compute both
weights. The second modification involves swapping the loops in x and dx and
dividing the computation of the weights in two steps. First, compute an image
with square differences: u(x; dx) = (I(x)− I(x+ dx))2 Second, using the image
u(x; dx), the weights are expressed using convolutions as:

w(x, x + dx) = exp(−v(x)/h2), v(dx) =
∑

x∈N

u(x; dx) = u(x; dx) ∗ g

where g is a square kernel of size (2W + 1)2. Condat’s algorithm is:

Î(.), C(.) = 0
for all dx in halved search region

compute the image u(x) = (I(x) − I(x+ dx))2

compute the exponents v(x) = u(x) ∗ g
for all pixels x

w(x + dx) = exp(−v(x)/h2)
Î(x) + = w(x + dx)I(x + dx); Î(x+ dx) + = w(x + dx)I(x)
C(x) + = w(x + dx); C(x+ dx) + = w(x + dx)

for all pixels x
Î(x) = Î(x)/C(x)

The computational cost of this algorithm is O(N2(2S + 1)2(2W + 1)) which
implies a reduction of (2W +1). If the convolution with g is implemented with a
IIR filter this cost can be further reduced to O(N2(2S+1)2). A similar solution
was presented in [5] by Darbon et. al., where they also express the differences
between patches as a convolution and calculate them using integral images. This
alternative has a computational cost O(4N2S2) which is independent of the
patch size (does not depend on W).

In this work we evaluate a GPU implementation of Condat’s algorithm and
study different optimizations at the GPU level. For comparison purposes we also
implemented CPU versions of Condat’s and Darbon’s proposals.

2 GPUs

Modern GPUs are very efficient in parallel processing of computer graphics data
but also with any other type of data that can take advantage of the parallel
nature of the GPUs. The manufacturers of the GPUs realized the power of this
technology in fields beyond computer graphics and introduced programming

Implementation of Non Local Means Filter in GPUs 409

models that transform the GPU units into more general computing devices.
Image and video processing are two examples where the application of GPUs
gives many benefits and great reductions in computational time. Since GPUs are
basically consumer electronics products they are very competitive in terms of
price. The programming models provided by the manufacturers are transparent
to the hardware specifications to allow the end user to upgrade the hardware to
increase computational power without the need to modify the software. NVIDIA
was the first company to introduce a general-purpose programming model with
the release of CUDA and recently other companies joined efforts around the
OpenCL standard.

Several authors have proposed NLM implementations for GPUs. In [2] the au-
thors divide the image in blocks and calculate weights only for the central pixel,
assigning that weight to all pixels within the block. Although their proposed
method does reduce the computational complexity of the algorithm, it does so
by sacrificing denoising performance, since this coarse weight approximation can
introduce artifacts at the edges in the image. This same implementation is eval-
uated in [9].

In [10], a CUDA implementation of NLM for CT scans is presented that takes
no steps to reduce the computational complexity of the algorithm. The authors’
main contribution towards runtime optimization is exploiting the shared memory
space to prefetch and then access the image data rather than reading from global
memory multiple times, since the former can be accessed much faster than the
latter. However, shared memory is a limited resource that restricts the number
of thread blocks that can be run concurrently on a streaming multiprocessor,
and the proposed approach does not extend well when processing color images
or video. In [6], the authors present a DirectX implementation that, just as
Condat’s and Darbon’s, exploits the fact that the differences between patches
can be calculated as a convolution.

3 Proposed Implementation

There are many resources available to learn CUDA programming, and coding
an initial version of a parallel application can be very easy. However, to get
the most of the GPU, a deeper understanding of the underlying architecture
is usually required and at this point the learning curve grows steeper. In this
article we describe each of these improvements so that they may serve as an
introductory guide to others that may be getting started with implementing
image processing applications in CUDA.

Naive Implementation: This consists in a straightforward implementation of
Condat’s algorithm. Host code controls the iteration through the search region
while GPU kernel functions are invoked for displaced image subtraction, separa-
ble convolution, addition of weighted pixel contribution and finally division of the
contributions by the total summed weights. The pseudo code for this approach
is described below. For the separable convolution, we used the CUDA Toolkit

410 A. Márques and A. Pardo

sample code described in [1]. The other kernels are straightforward implementa-
tions of their CPU counterparts. The only addition is that, since a thread with
linearized index x updates Î(x) and C(x) as well as Î(x + dx) and C(x + dx),
we introduced another pair of accumulation and summed weight images Îsym
and Csym to store the symmetric contributions and thus eliminate concurrency
overwrite issues between threads.

Î(x), Î sym = 0, C, C sym = 0
for all dx in halved search region

u = displaced image substraction kernel(I, dx)
v = separable convolution kernel(u)
(Î , Î sym, C, C sym) + = add weighted pixel contributions kernel(I, v, dx)

Î(x) = weight normalization kernel(Î(x), Î sym, C(x), C sym)

Coalescing Memory Access: On many GPU applications, memory access can
have a great impact on performance. Reads and writes to global memory can be
coalesced (meaning grouped into a single transaction) when the threads in a warp
access the memory addresses in predefined patterns. These patterns can vary
depending on the CUDA architecture, with 1.0 and 1.1 being the most restrictive
and relaxing into more permissive models from 1.2 to 2.x and 3.x versions. In
CUDA 1.0 and 1.1, successive threads in a half-warp must access consecutive 4,
8, or 16-byte words, with the first word located in a memory address aligned to
the size of the transaction. In order to coalesce most global memory reads, we
allocated the memory for our images using the function cudaMallocP itch() and
cudaMemcpy2D() rather than cudaMalloc() and cudaMemcpy(). The former
pads (if necessary) the allocation to ensure that the addresses of the rows of 2D
arrays will meet the alignment requirements for coalescing. Since we replicate
the border of the processed images, we also had to make sure that the size of
the replicated border was a multiple of 16 for our card with CUDA 1.1 and of
32 for our cards with CUDA 2.0 or higher, in order to assure memory alignment
when working within the border. After coalescing global memory access in this
manner, a speedup of 1.5x over the naive GPU implementation was obtained.

Using 2D Textures for Remaining Unaligned Reads: After the modifica-
tions described above, all reads and writes of threads with linearized index x to
pixels with the same index will be coalesced. However, the kernels that compute
image subtraction and addition of weighted pixel contributions also perform ac-
cesses that remain uncoalesced to pixels indexed as x+dx. We therefore explored
using textures to accelerate these read operations. The texture memory space
is read-only and resides in device memory but is cached, so a texture fetch will
cost one memory read from the texture cache rather than global memory unless
a cache miss occurs, in which case the cost will then be a read from global mem-
ory. Since this cache is optimized for 2D spatial locality, higher bandwidth can
be achieved by using textures if memory reads by threads in the same warp do
not follow the access patterns required for memory transaction coalescing but
the read addresses are close together in 2D. By using textures to read displaced
pixel values, the speedup factor over the previous implementation was of 1.2x.

Implementation of Non Local Means Filter in GPUs 411

As an alternative to texture fetches for unaligned memory access, we experi-
mented with prefetching the data to shared memory using a coalesced memory
access pattern to then operate on the data in shared memory. However, due
to the overhead introduced by the prefetching code and that we only used the
prefetched data once per kernel, using textures remained the faster option.

Coalescing Remaining Write Operations: At this point, writes of the con-
tributions and weights of displaced pixels to Îsym(x+dx) and Csym(x+dx) still
remained uncoalesced. However, if instead of each thread using w(x) to update
indexes x and x+dx we change to updating only x using w(x) and w(x−dx) as
noted in [6], all writes can be coalesced. Furthermore, the need for a second set
of images to keep track of symmetric weighted contributions and weights diss-
apears as well, since each thread will now update a single image index. Under
this strategy, in order to avoid reevaluations of the exponential function, the
convolution kernel has to be trivially modified to calculate the weights of each
pixel as a last step. This modification resulted in a further speedup factor of
2.3x.

4 Results

All of the reported NLM implementations operate on color float images. Table
1 details the execution times and speedups obtained for each of the GPU im-
plementation variants mentioned in section 3, with 4.1x being the final speedup
factor obtained over the naive GPU implementation. These results were obtained
on a Quadro FX 770M card with compute capability 1.1. Following CUDA ver-
sions introduced global memory caching that may provide a higher bandwidth
than texture fetches if the accessed elements are present on the cache, which
may yield different speedup factors than these.

Table 2 lists execution times for the different algorithm variants we imple-
mented on the CPU and our current GPU version. Since the purpose of the
CPU implementations was to provide easily reproducible and comparable base-
line execution times, straightforward implementations with no particular code
optimizations were employed. The fastest implementation on the CPU was Con-
dat’s alternative, which represented a 11.8x improvement over the implementa-
tion that only exploits weight symmetry. In turn, the GPU version was 32.4x
faster than its CPU counterpart (Condat) and an impressive 717.9x faster than
the naive CPU implementation, but the latter is hardly a fair comparison.

We experimented with running the algorithm on different cards, obtaining the
same execution times for a Quadro FX 770M and a GT 430, in spite of the lat-
ter having 3 times as many cores as the former. This is caused by the algorithm
being bandwidth-bound rather than compute-bound and both cards having the
same memory bandwidth of 25.6 GB/sec. For the GTX 480, with 133.9 GB/sec,
and the GTX 680, with 192.2 GB/sec, execution times were 8.7x and 10.7x re-
spectively faster than with the previous cards. Thread block dimensions were
set to maximize occupancy. In order to comply with memory access coalescing

412 A. Márques and A. Pardo

Table 1. Execution times and speedup factors over the naive GPU implementation
for all tested GPU implementation alternatives. Listed results correspond to 512x512
images with a 21x21 search window and 9x9 patches.

GPU implementation Execution Speedup vs.
alternative Time (sec) Naive Implementation

Naive Implementation 3.09 1x
Coalescing memory access 2.06 1.5x
Using 2D textures for unaligned reads 1.72 1.8x
Coalescing remaining write operations 0.73 4.1x

Table 2. Execution times and speedup factors for a 720x480 image with a 21x21 search
window and 9x9 patches. The CPU used was an Intel Core Intel Core i7 2600 CPU @
3.40GHz. The GPU implementation was run on a NVIDIA GeForce GTX 680 card.

NLM implementation Execution Speedup vs.
alternative Time (ms) Naive Implementation

CPU 1: Naive Implementation 63,180 1x
CPU 2: Using symmetric weights 33,688 1.9x
CPU 3: Darbon (integral images) 4,789 13.2x
CPU 4: Condat (separable convolution) 2,851 22.2x
GPU Final implementation 88 717.9x

Fig. 1. Left: Execution times per image pixels for different GPUs on images of size
512x512, 720x480, 1200x720 and 1920x1080. Right: GPU speedup factor over an Intel
Core i7 2600 @ 3.40GHz CPU for the different test image sizes.

patterns, the block width was set to 16 for the Quadro FX 770M, which has
compute capability 1.1, and to 32 for the other cards.

Figure 1 (left) illustrates execution times for NLM running on images of dif-
ferent sizes over the different GPU cards. For these image sizes and the best two
cards, the speedup factor obtained over the CPU implementation of Condat’s
method is plotted on the right. The speedup factor increases with image size,
leveling off for larger images, and varies between 24.5x and 30.7x for the GTX
480 and between 30.6x and 35.8x for the GTX 680.

Implementation of Non Local Means Filter in GPUs 413

Fig. 2. Execution times per pixels in search window for windows of size 5x5, 7x7, 11x11
and 21x21. Image size remained fixed at 720x480 and patch size at 9x9.

Figure 2 illustrates the execution times when varying the search window’s size.
Since the algorithm calculates the differences between patches using a separable
convolution, changing the patch size hardly affects execution time. The execution
times reported in [6] for their DirectX-based implementation, which also exploits
the use of a convolution to calculate the distances between image patches, are
included among the results presented in figure 2. A more direct comparison was
not possible, but when adjusting for the maximum memory bandwidth of the
cards, the results in 2 seem to be up to 2x faster than our current implementation.
The difference may lie in that they mention computing the convolution as a
moving average, whereas we compute the separable convolution. We will evaluate
whether we can improve on this point.

5 Conclusions

In this paper we have presented a CUDA-based GPU implementation of NLM
that reduces its computational complexity by calculating the differences between
images patches as a separable convolution. This variant still produces the same
result as the original algorithm, as opposed to the CUDA implementation pro-
posed in [2], which calculates weights for only a subset of image pixels and assigns
the same weight within image blocks. It is also faster than the alternative de-
scribed in [10], since in that case the authors do not reduce the algorithm’s com-
putational complexity. The implementation that can be more closely compared
to our work is the DirectX-based one presented in [6], which seems to suggest
that we could still improve upon our convolution computation to achieve higher
speedups.

With respect to our CPU reference implementation, a speedup factor of 3.5x
was obtained with the Quadro FX 770M and GeForce GT 430 cards, and up to
30x and 35x speedups were obtained with the comparatively more powerful GTX

414 A. Márques and A. Pardo

480 and GTX 680. The main reason behind the difference in performance be-
tween cards is the memory bandwidth of each, since the algorithm is bandwidth-
limited. The final speedup factor with respect to a naive CPU implementation
was of 718x.

One of the contributions we have tried to make with this paper has been to
report each step we have taken while optimizing our implementation, starting
from the most basic, so that it may serve as a quick reference for people that
are just starting to port their image processing algorithms to CUDA.

It should be noted that we have not explored yet all concepts that we be-
lieve may lead to further efficiency improvements. In particular, our access to
the better-performing cards reported in this work has been recent, and further
exploring implementation alternatives on them can probably yield additional
optimizations. As future work, we plan to explore these remaining promising
modifications and write a revised version of this article more focused on serving
as an quick introduction to CUDA optimization for image processing tasks based
on the NLM case study.

References

1. Podlozhnyuk, V., Kharlamov, A.: Image convolution with CUDA. Technical report.
NVIDIA, Inc., Santa Clara (2007)

2. Podlozhnyuk, V., Kharlamov, A.: Image denoising. Technical report. NVIDIA, Inc.,
Santa Clara (2007)

3. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In:
CVPR, pp. 60–65 (2005)

4. Condat, L.: A simple trick to speed up the non-local means. Technical report
5. Darbon, J., Cunha, A., Chan, T., Osher, S., Jensen, G.: Fast nonlocal filtering

applied to electron cryomicroscopy. In: ISBI, pp. 1331–1334 (2008)
6. Goossens, B., Luong, H., Aelterman, J., Pižurica, A., Philips, W.: A GPU-

accelerated real-time NLMeans algorithm for denoising color video sequences. In:
Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS
2010, Part II. LNCS, vol. 6475, pp. 46–57. Springer, Heidelberg (2010)

7. Orchard, J., Ebrahimi, M., Wong, A.: Efficient nonlocal-means denoising using the
SVD. In: ICIP, pp. 1732–1735 (2008)

8. Tasdizen, T.: Principal neighborhood dictionaries for nonlocal means image de-
noising. IEEE Trans. on Image Process. 18(12), 2649–2660 (2009)

9. Wu, H., Zhang, W.-H., Gao, D.-Z., Yin, X.-D., Chen, Y., Wang, W.-D.: Fast CT
image processing using parallelized non-local means. Journal of Medical and Bio-
logical Eng. 31(6), 437–441 (2011)

10. Mueller, K., Zheng, Z., Xu, W.: Performance tuning for CUDA-accelerated neigh-
borhood denoising filters. In: Workshop on High Performance Image Reconstruc-
tion (July 2011)

	Implementation of Non Local Means Filter
in GPUs
	1 Introduction
	2 GPUs
	3 Proposed Implementation
	4 Results
	5 Conclusions
	References

