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Abstract. Spectral clustering techniques have shown their capability
to identify the data relationships using graph analysis, achieving better
accuracy than traditional algorithms as k -means. Here, we propose a
methodology to build automatically a graph representation over the in-
put data for spectral clustering based approaches by taking into account
the local and global sample structure. Regarding this, both the Euclidean
and the geodesic distances are used to identify the main relationships be-
tween a given point and neighboring samples around it. Then, given the
information about the local data structure, we estimate an affinity ma-
trix by means of Gaussian kernel. Synthetic and real-world datasets are
tested. Attained results show how our approach outperforms, in most of
the cases, benchmark methods.
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1 Introduction

Clustering techniques are widely used to explore data patterns and they pro-
vide the advantage to work with unlabeled data. These techniques have been
addressed in many disciplines as data mining, image segmentation, and pat-
tern classification [1, 2]. Although, well-known algorithms, such as k -means, are
employed in clustering applications, however, they only consider similarity val-
ues from instances to a fixed number of centers. Moreover, they require extra
information about cluster shape, which is not always available.

Therefore, two approaches have emerged as an alternative to analyze clusters
that are non-linearly separable, namely, kernel k-means and spectral clustering.
Spectral techniques seek data representation as a graph, with a set of nodes
and an affinity matrix capturing relationships among samples [1]. In addition,
using an affinity matrix allows to employ powerful operators such as kernel
functions, in order to reveal the main data structures. Regarding this, fixing
kernel operators is crucial for the clustering performance. In [3], a local scaling
parameter is introduced to identify a suitable kernel function considering the
neighborhood relationships. Nonetheless, it requires to fix a free parameter that
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is not always a straightforward task. Moreover, due to the fact that the method
considers a different local scaling for a given sample, the obtained representation
does not correspond to conventional kernel function class satisfying the Mercer
conditions [4]. Though some applications are discussed on this matter [5–7],
this method can not longer be framed as a suitable kernel based representation.
Moreover, as shown in our experiments, it is not always a good alternative to
build the graph for spectral clustering.

We propose a new alternative to construct automatically the graph repre-
sentation in spectral clustering approaches. Particularly, inspired by a previous
method that allows to identify the local and global data structures for mani-
fold learning tasks [8], two different operators (namely, the Euclidean and the
geodesic distances) are used to highlight the main relationships between a given
point and the neighboring samples. To this end, a neighborhood size is calculated
for each sample, looking for the largest patch that allows to model each neighbor-
hood as locally linear. Provided that local data structure information is encoded
into neighborhood sizes, we estimate an affinity matrix by means of a Gaussian
kernel fixing the band-width parameter as a function of the found neighbor-
hoods. For the sake of assessing the proposed methodology performance, some
experiments are done over synthetic and real-world datasets. Obtained results
are compare against state of the art approaches [3, 5, 6].

2 Methods

2.1 Spectral Clustering Main Concepts

Let X∈R
n×p be an input data matrix holding n samples and p features. To dis-

cover the input data structure, relationships among samples can be highlighted
by means of a complete, weighted, undirected graph representation G (V ,Ω),
which contains a set of nodes V = {v1, . . . ,vn} corresponding to the n sam-
ples. Edge weights for connecting nodes i and j (i �= j) are defined through an
affinity matrix Ω ∈ R

n×n, with Ωij = κ(xi,xj), being κ(·, ·) a kernel function,
mostly, the Gaussian kernel [1]. Using a kernel function ensures an stable spectral
decomposition, due to it must satisfy the Mercer conditions. The goal of clus-
tering approaches is to decompose V into C disjoint subsets as V = ∪C

c=1Vc,
with Vl ∩ Vc = ∅ ∀l �= c. To this end, spectral information and orthogonal
mappings from Ω are employed to represent suitably inputs [2]. Thus, using
spectral concepts of graph analysis, the so-called Laplacian matrix is estimated
as L = D− 1

2ΩD− 1
2 , where D ∈ R

n×n is a diagonal matrix whose elements
dii =

∑n
i=1 Ωij are the degree of the nodes in G. Spectral decomposition of L

gives useful information about graph properties, being able to cluster together
similar patterns [1]. Therefore, spectral clustering methods find a new represen-
tation of patterns from the first C eigenvectors of graph Laplacian L. Then,
given a matrix Z ∈ R

n×C whose column vectors stack the found eigenvectors,
each of them with unit length, a clustering algorithm, such as K-means, is em-
ployed to minimize distortion. Note that the Z matrix can be viewed as a data
mapping into a unit hypersphere, where a traditional clustering approach is used
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to estimate the disjoint subsets Vc and the label vector y ∈ R
n×1 containing the

subset membership yi ∈ {1, . . . , C} for each xi.

2.2 Local Data Analysis for Automatic Graph Building - AGB

Computation of affinity matrix Ω is a crucial step in spectral clustering, since
it models both local and global data properties. Commonly, the relationships
among samples are identified by means of a Gaussian kernel, defined as Ωij =
exp

(−||xi − xj ||22/2σ2
)
. However, the question arises as how to select the kernel

band-width σ ∈ R
+ for revealing the real data structure. In [3], as an alternative

solution, a local scaling is introduced that finds a different band-width for each
pair of points, namely, Ωij = exp

(−||xi − xj ||22/2σiσj

)
, where σi = ||xi−xh||22,

being xh the h-th neighbor of xi according to the Euclidean distance. Nonethe-
less, selection of h is not a straightforward task. In [3,5], h is empirically fixed as
7, but as shown in our experiments, it is not always a suitable value. Moreover,
taking into account that a kernel representation induces a nonlinear mapping
ϕ : Rn×p → H, where H is a Reproducing Kernel Hilbert Space - RKHS, choos-
ing a different kernel generates a different RKHS for each pair of nodes (i, j).
Therefore, variation of Gaussian kernel band-width, as the product σiσj , gen-
erates a different RKHS for each input sample. Hence, matrix Ω should not
correspond to a kernel representation satisfying Mercer conditions [4]. Certainly,
the above mentioned procedure is often carried out in practice, but it can no
longer be framed as a suitable kernel based representation.

In this work, we propose an alternative solution to build the graph G in spec-
tral clustering based approaches, considering both the density and the linearity
of each sample neighborhood. Inspired by a previous approach for fixing the
neighborhood size of each sample xi in manifold learning related tasks [8], the
local data structure is studied using two main distance operators: the Euclidean
and the geodesic distances. The main idea is to construct patches, i.e., neighbor-
hoods, as large as possible, in order to conserve the global data properties, but
ensuring that any data point and its nearest neighbors can be modeled as locally
linear, preserving the local data structure. For each point, the nonlinear proper-
ties of its neighboring region are highlighted comparing the neighborhood found
by the Euclidean distance against the neighborhood found by the geodesic dis-
tance. If the region around a point is linear and dense, the Euclidean and geodesic
distances should obtain a similar set of nearest neighbors for each xi. Otherwise,
the neighborhood computed using Euclidean distance should contain short cir-
cuits, while geodesic distance will be able to correctly identify the neighbors of
each sample avoiding such short circuits, because it is able to model nonlinear
data structures. Mainly, the algorithm to find each neighborhood size can be
summarized as follow.

Firstly, to conserve the global data properties, a set of possible neighborhood
size values k are calculated, where a lower bound is computed as the minimum k
that allows to construct a connected graph G over X. Second, varying the patch
size two kind of neighbor sets are obtained according to each distance operator.
Then, the vector k ∈ R

n×1 that holds the size of each computed neighborhood
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is calculated, where ki is fixed as the largest neighborhood size that shares the
maximum percentage of neighbors between the two kind of sets. Finally, vector
k is refined by an outlier detection stage to avoid the influence of noisy samples.
For a complete description about the algorithm, see [8].

Given a vector k holding information about the local data structure, our goal
is to estimate an affinity matrix by means of a kernel function that allows to
model properly the data. In this regard, to fix the Gaussian kernel band-width
parameter, a σ†

i value is computed for each sample as σ†
i = ‖xi − xki‖2, where

xki is the ki-th nearest neighbor of xi. Note that σ
†
i provides information about

the data dispersion into the largest local linear patch around each node in the
graph. Afterwards, the kernel band-width value is computed as σ̂ = E{σ†

i },
where E {·} stands for expectation operator. Finally, the graph G is built over
X using the σ̂ value to estimate Ω. Fig. 1 presents the general scheme of the
proposed approach, termed Automatic Graph Building - AGB.

Data structure

analysis

Band-width

estimation

Graph

building

Fig. 1. Automatic graph building general scheme

3 Experimental Set-Up and Results

To test the capability of the proposed approach AGB for finding a suitable
graph representation in spectral clustering based methods, some synthetic and
real-world dataset are used. AGB is employed to compute the affinity matrix
Ω building a graph G over the input data. Then, a spectral clustering method
is employed to estimate the label vector y. Firstly, three well-known synthetic
datasets are studied: four Gaussians, elongated groups, and happy face [3]. All
datasets encode complex structures and are commonly used to test the capa-
bility of clustering algorithms. For concrete testing, the number of groups C is
manually fixed as 4, 4, and 3, respectively, as detailed in [3]. Synthetic data
clustering results are depicted in Fig. 2, which can be visually evaluated.

Regarding to real-world datasets experiments, some well-known images for seg-
mentation tasks are employed. More precisely, several samples of the free access
BerkeleySegmentationdataset are studied 1. It is importantnoting that thedataset
also provides hand-labeled segmentations. In our experiments, randomly selected
images identified as 100075-bears, 113044-horses, 12003-starfish, 388016-woman,
56028-wall, and 124084-flowers are studied. Again, AGB is employed to represent
properly relationships among samples, taking into account the RGB color space
and the 2Dposition of each pixel as an input sample. However, due to limitations in
memory usage, images are resized at 15%.Furthermore, a closed approach, termed

1 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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Fig. 2. AGB clustering results over synthetic data

7-Nearest Neighbor Spectral Clustering - 7-NNSC, is tested. 7-NNSC is based on
a local scaling analysis to buildG, as discussed in section 2.2 (for details see [3,5]).
Besides, an index, called Normalized Probabilistic Rand - NPR, is computed to
quantify the image segmentation performance, since it allows to compare a test seg-
mentationwithmultiple hand-labeled ground-truth images [9]. NPR can be seen as
a function φ (S,H) , which compares a test segmentation S with a multiple hand-
labeled ground truth images H , through soft nonuniform weighting of pixel pairs
as function of the variability in the ground-truth set [9]. Fig. 3 shows images seg-
mentation results.

Finally, some classification experiments are developed to verify the advan-
tages of our AGB approach for highlighting the main data structures. Thus, the
UCR time-series dataset is used 2. This repository contains contributed labeled
time-series datasets from different fields, such as: shape identification on images,
time-series extracted from physical process, or even synthetic data. All datasets
contain different number of classes, observations, and lengths. Moreover, it is
assumed to be used on both classification and clustering tasks. As recommended
in UCR, we test the 1-Nearest Neighbor - 1-NN classifier using the Euclidean
distance as benchmark. UCR databases are divided into training and testing
sets. In this case, AGB is employed to compute the affinity matrix Ω over the
training set, which is employed as features in the 1-NN classifier. So, given a
new sample xnew (testing set), the similarity among xnew and the training set is
calculated using the AGB kernel band-width. Then, the 1-NN estimated testing
set labels are used to compute the system performance. Also, 7-NNSC approach
is used to compare the performance of the proposed algorithm. The attained
time-series classification results are presented in Table 1.

4 Discussion

Taking into account the synthetic clustering results, from Fig. 2 it can be seen
how the proposed AGB methodology is able to find a suitable kernel function,
i.e. Gaussian kernel band-width, which allows to build the graph G over the
input data, identifying the complex synthetic dataset structures. Note that, even
when some dataset are composed by disjoints data structures, with different
properties, our algorithm allows to find a complete graph that encodes the main

2 http://www.cs.ucr.edu/~eamonn/time_series_data/

http://www.cs.ucr.edu/~eamonn/time_series_data/
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Original Hand-labeled 7-NNSC AGB

(a) Bears (b) (c) NPR = 0.63 (d) NPR = 0.69

(e) Horses (f) (g) NPR = 0.63 (h) NPR = 0.71

(i) Starfish (j) (k) NPR = 0.78 (l) NPR = 0.75

(m) Woman (n) (o) NPR = 0.76 (p) NPR = 0.58

(q) Wall (r) (s) NPR = 0.65 (t) NPR = 0.68

(u) Flowers (v) (w) NPR = 0.72 (x) NPR = 0.77

Fig. 3. Images segmentation results
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Table 1. Time-series classification results - testing set accuracy percentage

Dataset Benchmark 7-NNSC AGB Dataset Benchmark 7-NNSC AGB

synthetic control 88.00 99.33 98.33 OSULeaf 51.65 47.52 54.55
Gun Point 91.33 66.67 86.00 50words 63.08 51.87 63.52
ECG200 88.00 79.00 88.00 Trace 76.00 53.00 77.00
FaceAll 71.36 35.50 67.28 wafer 99.55 32.17 99.43

SwedishLeaf 78.88 71.04 81.44 Lighting2 75.41 67.21 75.41
CBF 85.22 57.00 91.67 Lighting7 57.53 42.47 63.01
Coffee 75.00 50.00 71.43 Adiac 61.13 37.85 56.27
OliveOil 86.67 73.33 80.00 FISH 78.29 58.86 72.00

Two Patterns 90.67 48.25 90.47 Beef 53.33 36.67 46.67
yoga 83.03 52.37 79.47 FaceFour 78.41 37.50 80.68

relationships among samples, as can be visually corroborated in Figs. 2(a), 2(b),
and 2(c). Namely, Fig. 2(b) and Fig. 2(c) describes how AGB performance is in
agreement with a benchmark approach presented in [3].

Regarding to the images segmentation results described in Fig. 3, overall,
our algorithm obtains a better performance in comparison with the benchmark
method 7-NNSC. Particularly, for Bears, Horses, Wall, and Flowers AGB is able
to find the local and global relationships among samples, highlighting the main
details of each cluster. Due to each pixel is modeled with the largest linear
neighborhood around it, the whole image structure is properly revealed by the
estimated graph representation. However, for Starfish and Woman AGB obtains
a lower performance than 7-NNSC, which can be explained by the fact that such
images contain many details, that could be hand-labeled subjectively. For exam-
ple, the Woman image AGB segmentation is smoother than the 7-NNSC, which
is biased by abrupt changes. Even though the NPR values are higher for the
Woman and Starfish 7-NNSC segmentations, the obtained AGB results are vi-
sually acceptable. In addition, because of 7-NNSC employs a fixed neighborhood
size for all the samples, it is sensitive to outliers, thus is, noisy data structures.
Moreover, 7-NNSC can no longer be framed as a suitable kernel based represen-
tation from a theoretical view, as explained in section 2.2. In these experiments,
we also demonstrated that such drawback is also revealed in practice.

Finally, from the time-series classification results (Table 1), even though AGB
based approach does not overcome the baseline results for all the provided
datasets, it achieves competitive results. For example, for synthetic control,
ECG200, SwedishLeaf, CBG, OSULeaf, 50words, Trace, Lighting2, Lighting7,
and FaceFour dataset our approach attained the best performance. Again, the
AGB local and global analysis encoded into the neighborhood size estimation
allows to deal with the complex relationships among time-series. Now, 7-NNSC
based classification is not able to unfold the complex data structures, because
such technique assumes an unique neighborhood size. It is important to note
that some of the time-series datasets are composed for many classes, which can
not be suitable modeled by one kernel function, being necessary to extend the
data structure analysis considering different affinity matrices.
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5 Conclusions

A methodology to build automatically a graph representation over the input data
for spectral clustering based approaches was proposed. For such purpose, a data
structure analysis is performed using the Euclidean and geodesic distances to
identify the linear and density properties of each sample neighborhood. Thus, the
local and global properties of the data are revealed to estimate a suitable kernel
function, which is used to construct a data graph representation. Our approach,
AGB, was tested over synthetic and real-world data. Attained results showed
how our approach achieved good results for clustering, image segmentation, and
even classification tasks. A benchmark approach 7-NNSC, which aims to make
a local scaling analysis to build the graph, was also tested. However, 7-NNSC
is not able to unfold complex data structures in many cases. Such issues were
demonstrated from both theoretic and experiments. As future work, it would
be interesting to deal with multi-kernel methods for finding a suitable graph
representation that allows to deal with non-stationary signals. Furthermore, it
would be interesting to test different data model for building the graph and other
association measures could be tested to highlight different data properties, e.g.,
entropy and rank based correlations.
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