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Abstract. The text below describes a short introduction to extreme
learning machines (ELM) enlightened by new developed applications. It
also includes an introduction to deep belief networks (DBN), noticeably
tuned into the pattern recognition problems. Essentially, the deep belief
networks learn to extract invariant characteristics of an object or, in other
words, an DBN shows the ability to simulate how the brain recognizes
patterns by the contrastive divergence algorithm. Moreover, it contains
a strategy based on both the kernel (and neural) extreme learning of the
deep features. Finally, it shows that the DBN-ELM recognition rate is
competitive (and often better) than other successful approaches in well-
known benchmarks. The results also show that the method is extremely
fast when the neural based ELM is used.

Keywords: Extreme Learning Machines, Deep learning, Neural
Networks.

1 Introduction

Since the ability of pattern recognition systems to correctly recognize objects in
real time with high accuracy is of primary concern, in this paper, we will consider
the performance of machine learning-based systems with respect to classification
accuracy. In particular we will focus on neural networks approaches. First, on
Extreme Learning Machines (ELM) which are shallow architectures with high
potential in regression and classification problems [6]; second, on deep neural
networks more precisely on Deep Belief Networks (DBNs) which seek to learn
concepts instead of recognizing objects. In fact, motivated by the extreme effi-
ciency of the visual recognition system recent studies in brain science show that
this is largely due to the expressive deep architecture employed by human vi-
sual cortex systems [I4]. Deep architectures transform inputs through multiple
layers of nonlinear processing. This nonlinearity is in parametric form such that
they can learn deep concepts and be adapted through training. Both method-
ologies have gained popularity in recent years and many successful applications
have been reported [I3JTT129]. Finally, we empirically show that by designing
an extreme learning classifier over deep concepts learned in pattern recognition
benchmark problems will enhance the performance as compared to the baseline
approaches. More concisely, in both cases of kernel (and neural) based ELM over
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extracted learned features from deep belief networks, respectively, on Convex,
Rectangles and HHreco image datasets the approach is shown to be competitive
and extremely fast for the neural based ELM. The paper is organised as follows.
Section [Z] presents the basic principles of extreme learning machine. Section [3]
illustrates the rationale behind deep belief networks. In section [l we describe the
proposal of the extreme learning classifier of deep concepts. In section [ the ex-
perimental set up and the benchmarks are described, and the results discussed.
Finally, in section [f] conclusions and future work are presented.

2 Extreme Learning Machines

There has been a raising interest in Extreme Learning Machines (ELM) since
the original work of Huang et al. [5]. The ELM randomly chooses the hidden-
unit weights and analytically determines the output weights of single hidden-
layer feedforward network (SLFN). Since then many applications have spread
in various fields of pattern recognition. Extreme learning machine is a simple
learning algorithm for (SLFN) with attractive properties such as fast learning
speed, no need for tuning of parameters, universal function approximation and
good generalization [6].

2.1 Basic Form of Extreme Learning Network

Suppose we are given NN instances of training data. Each instance consists of a
(xi,t;) pair where x; € R? is a vector containing d attributes of the instance
i, and t; € {+1,—1} is the correspondent class label. The method uses input-
output training pairs from D = {(xi, t;)eX C RixT:1<i< N} such that
the ELM classifies correctly unobserved data (x,t). In its basic form ELM with
L hidden nodes are mathematically modeled as:

L
fu=">_Bihi(x) =h(x)8 (1)

i=1
where 3 = [B1,- -+, 81]7 is the output weight vector connecting the hidden nodes
and the output node, and h(x) = [hy,- -, hp] is the vector with the outputs of

the L hidden nodes with respect to the vector x. The model above h(x) with L
hidden nodes maps the N data samples from the d-dimensional input space to
the feature hidden space H. The ELM minimizes the training errors as well as
the norm of the output weights to achieve better generalization [5l6] according
to:

N
Minimize: Y [[h(x;)8 — ti| (2)

i=1

The solution is given by:
B=H'T, (3)
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where HT is the Moore-Penrose generalized inverse of matrix H. The singular
value decomposition (SVD) method can be used to calculate the generalized
Moore-Penrose generalized inverse of matrix H:

h(x;)

H= :
h(xy)

2.2 Kernel Based Extreme Learning Machine

The equality constrained optimization method is proposed in [4] to solve the
optimization problem in eq. (). With the universal approximation capability as
shown in [6] this classification problem can be formulated as:

N
o L e 1 2
Minimize: Lpgpy = 2”5” JF)‘Q;f
Subject to: h(x;)3 =1t; — & (4)

where X is the regularization constant and & are the slack variables. By solving
the above equations the output of the ELM classifier is ([B)); if the feature mapping
h(x) is unknown, Mercer’s conditions apply [4] and the kernel matrix Qg can
be constructed; the final form is shown in (@l):

-1

fr(x) = h(x)8 = h(x)HT (i + HHT) T (5)
K(val) -1
K(x,xn)

3 Deep Belief Networks

DBNs were proposed by Hinton who showed how to carry out unsupervised
greedy learning with Contrastive Divergence (CD) [3]. This algorithm learns a
generative model from the data distribution. With the proviso that by combin-
ing Restricted Boltzmann Machines (RBMs) learning in DBNs is sequentially
achieved [3], the approach represents an efficient way of accomplishing tasks
that would otherwise be out of reach. Figure [0l illustrates this process.

Each RBM has a layer of visible units v that represent the data and a layer
of hidden units h that learn to represent features that capture higher-order
correlations in the data. Given an energy function E(v,h) on the whole set of
visible and hidden units, the joint probability is p(v,h) = E_E;v’h) where Z is a
normalizing partition function.

The two layers are connected by a matrix of symmetrically weighted con-
nections, W, and there are no connections within a layer. Given conditionally
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Fig. 1. Training process of a Deep Belief Network (DBN) with one input layer, v, and
three hidden layers hi, h2, ha. From left to right, trained layers are drawn with lighter
color, otherwise layers are with darker color.

independence it is easy to sample from the factorial posterior distribution over
hidden vectors p(h|v, W) and from the factorial posterior distribution over vis-
ible units p(v/h, W). By starting with the data vector on the visible units and
alternating several times between sampling from p(h|v, W) and p(v|h, W), it is
easy to get the learning weights W.

4 Proposed Approach

Most of the problems in pattern recognition fall in the category of classification
where objects are represented by a set of features (or attributes) usually ex-
tracted manually. Very often the challenging nature of many problems lie on the
difficulty of extracting features such as behavioral characteristics like mood, fa-
tigue, energy, etc.. This is a very hard task for manual extraction of features. The
unsupervised training of the DBNs allows to learn complex functions by mapping
the input to the output directly from data, without depending on human-crafted
features [1]. The process works as follows. The first layers are expected to ex-
tract low-level features from the input data while the upper layers are expected
to gradually refine previously learnt concepts, therefore producing more abstract
ones [7]. Now the output of the higher DBN layer can easily be functioning as
the input to a supervised classifier [2J10]. The idea is to use an extreme learn-
ing machine (ELM) as the classifier of the deep concepts. Notwithstanding the
training cost of DBNs, however, our recent work with an adaptive learning rate
technique and Graphics Processing Units (GPU implementation of DBNs [§]
has highlighted the way to circumvent these pitfalls which appear to favor (deep)
architectures. The inputs to the (shallow) ELM are thus the extracted features
from the top DBN layer and its output are the classes of the target pattern
problem.

!http://gpumlib.sourceforge.net/
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Fig. 2. From left to right examples of the Convex, Rectangles and HHreco multi-
stroke images datasets. Each square figure contains a symbol while each row contains
images of each data set. The first two top rows correspond to training samples of the
three data sets w.r.t. the order above (e.g. the upper right first two rows correspond to
Convex images); the second two rows correspond to the test samples. The corresponding
reconstruction for train and test data is in the middle row-range. The DBNs were
trained with two and three layers and the best configuration chosen. The local receptive
fields (weights of the hidden neurons) which play an important role in visual tasks are
illustrated in the last row-range.

Table 1. DBN-ELM and DBN-SVM Fl-measure versus the baseline (DBN-MLP)

Datasets Sampling Methods
Images Training Testing Classes DBN-SVM DBN-ELM DBN-MLP
Data samples samples  Nr. C=1,v A=1~=01 F1 ng =100

Convex 8000 50000 2 98.32 (y=10) 7758  73.85 (10—1)
Rectangles 1200 50000 2 89.90 (y=05) 92.55 9101 (10— 1)
HHreco 650 7141 13 8893 (y=0.05) 91.33  80.37 (10— 13)
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5 Results and Discussion

5.1 Experimental Setup and Dataset Benchmarks

In our testbed experiments we have used HHreco images, Convex and Rectangles
datasets. Figure 2] presents examples of the three datasets. The first two bench-
marks are purely synthetic data setdd. The task in Convex is to classify a single
white region that appears in each image as convex or non-convex. The task in
Rectangles is to classify a single rectangle that appears in each image as tall or
wide. Finally, the HHreco databaseﬁ, contains a total of 7,791 samples gener-
ated by 19 different persons, and contains a total of 13 different symbol classes.
Each user created at least 30 multi-stroke images per class, which means that for
each symbol there are at least 19 x 30 = 570 samples. We converted the original
HHreco vector strokes into a 28 x 28 = 784 raster pixel image, maintaining the
aspect ratio of the images. Moreover, the resulting images have been binarized
and no further pre-processing was done. Since we are interested in evaluating
the capacity of the DBNs for extracting information from the original (images)
raw data, we discarded both the number of strokes and time span information.

5.2 Experiments and Results

The performance of kernel (and neural) based ELM, SVM and MLP classifiers
were tested on the output of the DBN which learned well the features for im-
age representation as demonstrated through the reconstruction obtained in the
previous step (see Figure [2]). For all the datasets the input data have been nor-
malized into {—1, +1}. Note that the patterns in Rectangles and Convex datasets
involve abstract, shape-based features that cannot be computed directly from
raw pixel inputs, but rather seem to require many layers of processing. The pos-
itive and negative examples also exhibit tremendous variability, making these
problems difficult for template-based approaches (e.g., SVMs with RBF ker-
nels). For the kernel based ELM, SVM and MLP classifiers the generalization
performance depends on the setting of parameters. Specifically, for SVM clas-
sifiers the combination of C cost parameter and -y kernel parameter have to be
carefully chosen to get the best results. In our simulations, we have carried the
parameter selection based on the F1 measure. Its computation for binary class
is given by F-measure = 2 X g::i:jiigi::ig% where precision and recall are de-
termined from the confusion matrix as the rate of true positives (tp) from all
retrieved positives given by the algorithm while the recall gives the rate of tp
from all the positives in the dataset. For multi-class, let tp. be the number of
samples belonging to class ¢ that were correctly classified. Let fp. be the number
of samples that were incorrectly classified as being of class ¢ when in fact they
belong to a different class (i # ¢). Let fn. be the number of samples that were

?nttp://www.iro.umontreal.ca/ 1lisa/twiki/bin/view.cgi/
Public/PublicDatasets
3http://embedded.eecs.berkeley.edu/research/hhreco/
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F1 Performance Measure
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Fig. 3. DBN-ELM performance for datasets (a) Rectangles and (b) HHreco. In (a) the
various plots for several values of the kernel parameter v and regularization constant
A are shown. Notice in (b) the standard deviation for train and test data.

incorrectly classified as belonging to class ¢ # ¢ when in fact they belong to class
c. Assuming that there are C' different classes the macro-average precision and

. S e _ 1 C tpe
macro-average recall can be computed as follows: precision = £ > ., tpet Foe

and recall = é ZCC=1 tpctj_’}nc. The macro-average F-measure can be now com-
puted as indicated above.

For each specific training set we search the optimal cost parameter from
the following settings: Parameters v = {0.01,0.05,0.1,0.5,1,10,100} e A\,C =
{0.001, 1, 10,100, 1000,10000}. The kernels chosen for both SVM and kernel-
based ELM were RBF and Linear. The results are presented in Table . The
kernel based ELM can achieve better results than both the SVM and the base-
line MLP as highlighted in the Table [ for the Rectangles and HHreco datasets.
However, for the Convex data set the SVM is better while ELM still outperforms
MLP. This might be due to an DBN not properly tuned into this difficult dataset
and as such it deserves further study. Figure [J] plots the parameters sensitivity
for the rectangles and HHreco datasets. For the sake of comparison we also
tested neural-based ELM with neurons in the range {10,100, 1000,5000} and
activation functions sigmoid, hardlim and radbas and sin. We observed that
F1 obtains the best value for sigmoid activation function on the convex dataset
and decreases, respectively, by 12.6%, 5.19% and 1.98% for hardlim, radbas and
sin. Regarding the training and testing times the neural-based ELM network is
extremely fast compared to kernel-based ELM (with similar parameters settings)
by a factor ca. 270. This is expected since in the former an L x L matrix must
be inverted while in the second the matrix is N x N where L (number of hidden
units) < N (number of data points).

4 Due to paper space restrictions, larger tables with more results are not presented.
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6 Conclusions and Future Work

We explored extreme learning machines (ELM) in the classification stage of
features constructed by nonlinear processing in deep architectures (DBN) on
leading benchmarks. Comparison of the DBN-ELM with previous approaches
show that they uphold competitive accuracies. When it comes to training times
they are extremely fast when the shallow neural ELM is used. This might be due
to the fact that there is no need to tune weights and bias in the final classification
step which allows us to harness the advantages of extreme learning of deep
concepts in visual tasks. While the paper focus on extreme learning classifier with
deep concepts for model construction, future work envisaging hybrid methods
will be pursued to deal with unbalanced data and their geometric distribution
in the feature space.
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