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Abstract. A new constraint acquisition method for parwise-constrained
data clustering based on user-feedback is proposed. The method searches
for non-redundant intra-cluster and inter-cluster query-candidates, ranks
the candidates by decreasing order of interest and, finally, prompts the
user the most relevant query-candidates. A comparison between using
the original data representation and using a learned representation (ob-
tained from the combination of the pairwise constraints and the original
data representation) is also performed. Experimental results shown that
the proposed constraint acquisition method and the data representation
learning methodology lead to clustering performance improvements.
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1 Introduction

Data clustering is an unsupervised learning technique which aims to find struc-
ture in data. Domain objects are grouped into clusters such that objects that
are alike are placed in the same cluster while dissimilar objects are assigned to
different clusters [1]. Due to its unsupervised nature, a data clustering algorithm
only has access to features that describe the objects or to (dis)similarities be-
tween pairs of objects, and the clustering solution is obtained by optimizing the
same objective-function, irrespectively the application.

In many situations, the data analyst may have extra information for a partic-
ular application, or may want to express his preferences or conditions to guide
data clustering. To accomplish it, the data representation can be manipulated
(e.g.: by adding, removing or modifying data features) although it can be very
difficult or impractical. A simpler and more intuitive way of doing it consists
of using constraints in data clustering. Constrained data clustering algorithms
[2–4] use a priori knowledge about the data, mapped in form of constraints, to
produce more useful clustering solutions. The constraints can be set at a general
level by defining rules which are applied to the entire data set, such as data
clustering with obstacles [5]; at an intermediate level, where clustering is guided
by rules involving the data features [6] or the groups’ characteristics, such as,
the minimum and maximum capacity [7]; or at a more particular level, where
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the constraints are applied to the domain objects, by using some labeled data
[3] or defining relations between pairs of objects [2]. Relations between pairs of
objects, usually represented as must-link and cannot-link constraints, have been
the most studied due to their versatility. Many constraints on more general levels
can be transformed into must-link and cannot-link constraints.

It would be expected that the use of constraints should always improve, or at
least not to worsen, the quality of data clustering. However, it was demonstrated
that the use of constraints may in fact harm clustering performance, even when
the set of constraints is not noisy [8]. Therefore, the acquisition of constraint
sets that effectively improve clustering performance is a very important topic in
constrained clustering. Some active learning algorithms for constraint acquisition
have already been proposed regarding the search of labels for some data [9, 10]
and the identification of relations between pairs of objects [2, 11].

It is known that learning distance metrics can improve the performance of
classification and clustering. Typically, distance learning algorithms can be cat-
egorized into the supervised and unsupervised categories, depending on the exis-
tence of class labels for the objects. Nonetheless, some methods [12–14] can use
the pairwise constraints to learn a new distance function or data representation.

In this work, we propose a new method for acquiring useful pairwise con-
straints. Our method tries to identify relevant query candidates for a given clus-
tering algorithm, ranks the candidates according to their importance, and then
selects the top candidates to query the user. We compare the proposed method
with the random acquisition of constraints and the Explore-Consolidate [11]
approach. We also evaluate the effectiveness of using distance metric learning
in constrained clustering, the effect of the constraint acquisition methods in the
distance learning, and the corresponding impact in the quality of data clustering.

The rest of the paper is organized as follows. In section 2 we briefly present
some related work on constrained clustering and distance metric learning with
constraints. A new approach for selecting pairwise constraints is presented in
section 3. The performance of the proposed method is evaluated in section 4.
The conclusions and future work is presented in section 5.

2 Related Work

Let X = {x1, · · · ,xn} be a data set composed of n domain objects xi, R=

the set of must-link constraints which contains pairs of objects (xi,xj) that
should belong to the same cluster, and R�= the set of cannot-link constraints
containing pairs of objects that should belong to different clusters. The goal of a
constrained clustering algorithm consists of dividing X into K clusters regarding
both the data representation (e.g. vectorial and (dis)similarity representations)
and the constraints expressed in R= and R�=, resulting in a data partition P =
{C1, · · · , CK} where Ck represents an individual cluster.

The Constrained Average-Link (CAL) [15] is based on the agglomerative
hierarchical clustering algorithm Average-Link [16]. The algorithm works as
follows. It starts with n clusters, one for each domain object xi. Then, at



110 J.M.M. Duarte, A.L.N. Fred, and F.J.F. Duarte

each step, the two closest clusters, according to a distance measure between
clusters, are merged. The process iterates until some stopping criteria is met
(e.g. a predefined number of clusters K is reached) or all objects belong to
same cluster. The distance between clusters measures the average distance be-
tween all pairs of objects belonging to different clusters plus a penalization for
each constraint that is not satisfied. This distance is defined as d(Ck, Cl) =

1
|Ck||Cl|(

∑|Ck|
i=1

∑|Cl|
j=1 dist(xi,xj)− I=(xi,xj) + I �=(xi,xj)), where Ia(xi,xj) = p

if (xi,xj) ∈ Ra and 0 otherwise. p ≥ 0 is a user parameter that influences the
“softness” of the constraints. In our experiments we defined p as the maximum
distance between objects in a data set.

An easy but naive way to generate pairwise constraints is the Random Ac-
quisition of Constraints (RAC) and consists of randomly selecting, iteratively,
two objects (xi,xj) ∈ X that were not previously tested and ask the user (or
some oracle) if both objects should be assigned to the same group. If the answer
is “Yes”, a must-link constraint is added to the set of must-link constraints,
R= = R= ∪ {(xi,xj)}. If the answer is “No” a cannot-link constraint is added
to the set of cannot-link constraints R�= = R�= ∪ {(xi,xj)}. If the user cannot
decide, simply skip to the next iteration. The process repeats until a predefined
number of constraints is achieved.

The Explore-Consolidate [11] is another method for constraint acquisition
and consists of two phases: the Explore phase, where the algorithm identifies a
neighborhood Nk for each cluster in the data set which defines a skeleton of the
clusters’ structure; and the Consolidate phase, where objects not attributed to
any neighborhood are assigned to one of them. The Explore algorithm starts by
selecting a random object which forms the first neighborhood. Then, while the
maximum number of queries is not reached and until K disjoint neighborhoods
are not found, the farthest object x from all the existing neighborhoods is se-
lected. Queries between x and a random object belonging to each neighborhood
are posed. If x does not belong to any neighborhood, a new one is formed with
x. The Consolidate algorithm first computes the centroids xk of each neighbor-
hood Nk. Then, while the maximum number of queries is not reached, an object
x that does not belong to any neighborhood is randomly selected. Queries are
posed between x and each neighborhood by increasing order of its distance to
the centroids xk until a must-link is obtained. After the Explore and Consolidate
phases, the pairwise constraint sets are formed by adding a must-link constraint
for each pair of objects that belong to the same neighborhood, and a cannot link
constraint for each pair of objects belonging to different neighborhoods.

There may be contradictions between the relations of objects in the orig-
inal representation of the data and sets of constraints. We are interested to
find out how learning a new data space representation, which simultaneously
represents both the original data and the clustering preferences, influences the
performance of data clustering. The Discriminant Component Analysis (DCA)
[14] is a distance metric learning algorithm capable of learning a new data rep-
resentation from the original data and a set of constraints. The DCA builds a
set of chunklets Q = {Q1, · · · , Qq}, i.e. groups of domain objects connected by



A Constraint Acquisition Method for Data Clustering 111

must-link constraints, and a set of discriminative chunklets S = {S1, · · · , Sq},
one for each chunklet Qi. Each element of the discriminative chunklet Si in-
dicates the chunklets that have at least one cannot-link constraint connecting
a object in Qi. Then DCA learns a data transformation which minimizes the
variance between domain objects in the same chunklet Qi and maximizes the
variance between discriminative data chunklets Si. The covariance matrices, Cb

and Cw, store the total variance between domain objects in each Si ∈ S and
the total variance within domain objects in the same chunklets ∀Qi ∈ Q. These
matrices are computed as Cb = 1∑q

i=1 |Si|
∑q

i=1

∑
i∈Sj

(mj − mi)(mj − mi)
�

and Cw = 1
q

∑q
j=1

1
|Qj |

∑
xi∈Qj

(xi −mj)(xi −mj)
�, respectively, where mj is

the mean vector of Qj . The optimal transformation matrix A is obtained by

optimizing J(A) = argmaxA
|A�CbA|
|A�CwA| .

3 A New Method for Acquiring Pairwise Constraints

The idea of our method is to identify good intra- and inter-cluster query-
candidates given a data partition, and select the q most relevant candidates
to prompt the user. The motivation for using a data partition as input relates
to the importance of finding constraints sets with high informativeness, i.e.,
with high level of information that the clustering algorithm cannot determine
on its own [8]. We also want to avoid performing redundant queries, i.e., queries
involving similar pairs of objects. The details of the methods are given below.
The proposed (dis)similarity-based constraint acquisition method consists of four
phases:

1. Identify intra-cluster candidates. Pairs of objects which are far from
each other have higher probability of having different labels than pairs of objects
which are close. Therefore, the proposed method selects as candidates intra-
cluster pairs of objects which are far apart. Given a distance matrix D, c candi-
dates Ql are selected for each cluster Ck ∈ P (more detail on defining c will be
given later). Iteratively, the most distant pair of objects (xi,xj) in Ck according
to D is selected as candidate, i.e., (xi,xj) = argmaxxi∈Ck,xj∈Ck

D(i, j), and is
added to the set of query-candidates Q = Q ∪ Ql, Ql = {(xi,xj)}. Then, D is
updated such the distance between the objects belonging to the neighborhoods
of xi and xj become 0, i.e., D(q, r) = 0, D(r, q) = 0, ∀xq ∈ Ni, ∀xr ∈ Nj where
Nl corresponds to the set of the mth closest objects to xl in Ck (including itself).
The neighborhood size 1 ≤ m ≤ |Ck| is a parameter that should be defined as a
compromise between selecting redundant (values close to 1) and non-interesting
(values close to |Ck|) query-candidates. Note the Ni and Nj are computed using
the original distance matrix. The process repeats until c candidates are found.

2. Identify inter-cluster candidates. Two objects in different clusters
which are nearby have higher probability of belonging to the same natural cluster
than objects which are distant. Hence, the algorithm selects as query-candidates
pairs of objects in different clusters which are close. For each pair of clusters
(Cl, Co), Cl ∈ P , Co ∈ P , l < o, c query-candidates are selected the following
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way. First, the closest pair of objects (xi,xj) in different clusters are selected,
i.e., (xi,xj) = argminxi∈Cl,xj∈Co

D(i, j), and is added to Q. Next, the neighbor-

hoods Ni and Nj are computed as the sets of the mth
i and mth

j closest objects
to xi in C1 and xj in Cl, and the distances between objects in distinct neigh-
borhoods are set to ∞, i.e., D(q, r) = ∞, D(r, q) = ∞, ∀xq ∈ Ni, ∀xr ∈ Nj .
Again, this will restrict the algorithm from choosing identical query-candidates.
The procedure goes on until the desired number of candidates c is reached.

3. Rank candidates. This phase consists in ranking the candidates in de-
scending order of interest. For this purpose a score is calculated for each can-
didate taking into account two situations: if the candidate has been obtained
during the intra-cluster phase, the shorter the distance between one of its ob-
jects with any object from another cluster the more interesting the candidate is
considered; if the candidate has been selected during the inter-cluster phase, the
smaller the distance between the two objects of the query-candidate the higher
the interest. Thus, the score Sl for each candidate Ql ∈ Q, (xi,xj) = Ql is com-
puted as Sl = minm:xm∈X\CPi

min [D(i,m),D(j,m)] if Ql is an intra-candidate

and Sl = D(i, j) otherwise. The sorted set of candidates Qsorted is obtained by

sorting the candidates according to their scores {Si}|i=1Q| in ascending order.
4. Query the user. Finally, the set of must-link and cannot-link constraints

are obtained by querying the user if a pair of objects in a sorted query-candidate
should belong to the same cluster, starting from the first query-candidateQsorted

1

and stopping when the predefined number of queries q is obtained.
In this work, the number of candidates c for each intra- and inter-cluster

search is the same (but it is not required). To ensure that at least q candidates
are obtained (the number of candidates must be equal or higher than the num-

ber of desired queries) the following inequality must hold: q ≤ ck + ck(k−1)
2 ,

where k is the number of clusters. Thereby, c ≥ � 2q
k2+k	. It is usually helpful to

generate more candidates that the strictly required because some clusters are
more interesting than others (e.g. touching clusters). By doing so, candidates
from non-interesting regions will naturally be ruled out in the ranking phase.

The obtained constraint set can be used by a constrained clustering algo-
rithm using the original data representation to partition the data. However, we
hypothesize that using a learned space which represents both the original data
and the constraints (e.g. DCA) can further enhance clustering quality.

4 Experimental Results

In our experiments, 5 synthetic data sets (shown in figure 1) and 5 real data
sets taken from the UCI ML repository (http://archive.ics.uci.edu/ml/) were
used to assess the performance of the constraint acquisition approach. A brief
description for each real data set is given next. The Iris data set consists of 50
objects from each of three species of Iris flowers (setosa, virginica and versicolor)
characterized by four features. The Breast Cancer data set is composed of 683
domain objects characterized by nine features and divided into two clusters:
benign and malignant. The Optdigits is a subset of Handwritten Digits data set
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(a) Bars (b) Cigar (c) D1 (d) D2 (e) Half Rings

Fig. 1. Synthetic data sets

containing only the first 100 objects of each digit, from a total of 3823 domain
objects characterized by 64 attributes. The House Votes data set is composed of
two clusters of votes for each of the U.S. House of Representatives Congressmen
on the 16 key votes identified by the Congressional Quarterly Almanac (125
democrats and 107 republicans). The Wine data set consists of the results of a
chemical analysis of wines divided into three clusters with 59, 71 and 48 objects,
described by 13 features.

Table 1 shows the average accuracy and standard deviation of the partitions
obtained using CAL algorithm (K was set as the real number of clusters) us-
ing no constraints, constraints acquired using RAC, Explore-Consolidate and
the proposed method, with the original data representation and a learned data
representation obtained using DCA (identified with “+L”). The average values
were computed over 50 repetitions using data resampling with replacement (the
size of the samples corresponds to the original size of the data sets). Constraints
sets were obtained by performing 10, 20, 30, 40 and 50 queries. Answers were
given using ground-truth information. The number of clusters was defined as the
“natural” number of cluster for each data set. The number of candidates for each
intra-cluster and inter-cluster searches was defined as c = �2 × 2q

k2+k 	, and the
size of the neighborhood of an object xi ∈ Ck was set to m = �0.35|Ck|	. The
partitions obtained using the original data representation with constraints were
usually (not always) better than the ones produced without constraints. Also,
the average accuracy (percent of correctly clustered objects) of the proposed
method and the Explore-Consolidate were generally superior than the accuracy
achieved by the RAC method. However, by comparing our method with the
Explore-Consolidate no method was clearly a winner. The results achieved by
using a learned data representation representing both the constraint sets and
the original data representation were usually superior than the results obtained
using the original representation. The distance learning algorithm obtained bet-
ter data representations with the proposed and Explore-consolidate approaches
than the random acquisition of constraints, since the corresponding partitions
are more accurate.
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Table 1. Accuracy for CAL using no constraints, the constraints acquired by RAC,
Explore-Consolidate and the proposed method, with the original and learned represen-
tations

Data set
Acquisition Number of queries

Method 10 20 30 40 50

Bars

No const 97.48 (2.98)
Random 97.64 (2.76) 97.78 (2.70) 97.94 (2.28) 98.03 (2.36) 98.76 (1.25)

Expl.Consol. 97.28 (3.07) 97.83 (2.70) 98.07 (2.25) 98.10 (2.28) 98.52 (1.59)
Proposed 97.66 (2.79) 97.83 (2.81) 98.03 (2.76) 98.09 (2.70) 98.23 (2.53)

Random+L 95.10 (8.38) 97.28 (2.40) 97.59 (2.30) 98.02 (1.87) 97.99 (1.98)
Expl.Consol.+L 96.36 (3.58) 97.45 (3.17) 98.06 (2.44) 98.09 (2.54) 98.56 (1.74)

Proposed+L 97.52 (2.96) 98.01 (2.34) 98.04 (2.48) 98.11 (2.60) 98.17 (2.37)

Half Rings

No const 83.08 (5.78)
Random 82.26 (6.32) 82.23 (5.60) 82.62 (5.76) 81.65 (6.24) 81.79 (5.86)

Expl.Consol. 82.86 (6.34) 81.98 (5.16) 82.93 (6.60) 86.13 (6.58) 86.39 (7.53)
Proposed 82.59 (6.23) 83.47 (6.03) 82.05 (5.65) 82.29 (5.52) 83.53 (5.90)

Random+L 84.15 (7.08) 86.84 (6.05) 89.67 (5.32) 89.07 (4.50) 88.93 (5.10)
Expl.Consol.+L 81.21 (4.27) 82.14 (3.17) 83.01 (3.41) 83.44 (3.15) 84.61 (2.70)

Proposed+L 85.96 (6.90) 89.01 (3.69) 89.45 (3.44) 89.58 (3.90) 89.87 (2.77)

Cigar

No const 75.06 (14.09)
Random 75.48 (14.13) 75.87 (14.56) 78.32 (14.14) 77.30 (14.10) 78.90 (13.46)

Expl.Consol. 74.77 (15.12) 79.52 (12.59) 79.68 (13.25) 83.96 (10.21) 87.18 (10.07)
Proposed 75.63 (13.31) 78.23 (12.67) 81.51 (11.77) 82.11 (10.79) 84.96 (8.70)

Random+L 91.67 (11.00) 94.90 (6.04) 93.07 (6.96) 94.79 (5.89) 97.05 (4.88)
Expl.Consol.+L 86.11 (7.66) 94.02 (7.25) 96.69 (4.83) 98.11 (3.92) 98.22 (2.99)

Proposed+L 91.58 (9.46) 96.02 (5.72) 98.02 (3.82) 98.67 (3.10) 99.17 (1.93)

D1

No const 68.78 (13.56)
Random 68.99 (14.45) 73.60 (14.27) 77.47 (15.15) 79.48 (14.34) 85.21 (13.41)

Expl.Consol. 72.94 (14.36) 75.72 (13.60) 82.46 (11.96) 80.34 (12.22) 82.74 (12.46)
Proposed 71.42 (14.37) 70.81 (14.50) 72.79 (14.51) 76.60 (13.90) 76.70 (13.09)

Random+L 67.82 (8.58) 71.82 (10.93) 74.79 (12.10) 78.65 (15.57) 81.11 (14.38)
Expl.Consol.+L 69.55 (11.13) 76.53 (10.39) 78.58 (11.14) 81.98 (10.44) 82.73 (10.22)

Proposed+L 63.13 (12.83) 70.29 (10.40) 72.45 (14.33) 74.52 (12.43) 77.33 (12.94)

D2

No const 55.12 (6.84)
Random 53.45 (6.19) 53.67 (6.02) 53.60 (4.73) 54.04 (4.70) 53.90 (4.43)

Expl.Consol. 53.64 (5.14) 52.00 (5.13) 54.96 (8.15) 52.77 (7.17) 55.15 (8.10)
Proposed 55.50 (7.14) 55.63 (7.14) 56.09 (7.69) 56.71 (8.26) 57.18 (7.97)

Random+L 52.83 (6.38) 53.47 (5.85) 50.88 (5.53) 53.08 (4.63) 53.29 (5.11)
Expl.Consol.+L 53.11 (4.74) 52.91 (5.32) 53.54 (5.90) 53.82 (6.07) 58.19 (8.46)

Proposed+L 55.16 (7.29) 55.43 (7.05) 56.48 (7.99) 57.60 (7.96) 58.02 (7.60)

Crabs

No const 53.08 (2.31)
Random 52.85 (2.20) 53.57 (2.89) 53.43 (2.45) 53.12 (2.11) 53.47 (2.88)

Expl.Consol. 53.53 (2.74) 54.03 (2.71) 54.59 (3.15) 56.17 (3.56) 59.04 (3.94)
Proposed 53.70 (2.50) 53.91 (2.98) 53.26 (2.14) 54.00 (2.84) 54.14 (3.26)

Random+L 65.74 (14.95) 65.69 (16.10) 72.01 (17.14) 68.74 (18.14) 72.62 (18.83)
Expl.Consol.+L 54.20 (3.22) 54.78 (4.13) 57.59 (7.72) 59.46 (5.71) 60.98 (5.62)

Proposed+L 62.24 (12.98) 70.12 (14.51) 70.14 (16.45) 72.64 (17.06) 66.75 (17.36)

House Votes

No const 89.22 (2.49)
Random 89.41 (2.92) 89.16 (2.84) 90.07 (2.98) 89.55 (3.34) 90.32 (3.26)

Expl.Consol. 89.32 (2.64) 89.73 (2.41) 90.51 (2.35) 90.47 (2.35) 90.92 (2.06)
Proposed 89.62 (2.55) 90.03 (2.45) 90.38 (2.73) 90.48 (2.84) 90.78 (2.56)

Random+L 67.36 (15.42) 67.71 (16.53) 66.97 (18.10) 65.34 (18.37) 63.58 (18.67)
Expl.Consol.+L 89.02 (2.42) 89.47 (2.53) 90.09 (2.25) 90.45 (2.38) 90.51 (1.91)

Proposed+L 69.14 (17.32) 75.77 (18.10) 74.78 (20.03) 80.68 (18.84) 82.22 (19.95)

Wine

No const 60.98 (5.87)
Random 60.96 (5.94) 62.04 (5.94) 62.37 (6.41) 62.36 (5.23) 63.63 (5.44)

Expl.Consol. 59.94 (5.80) 60.99 (5.58) 61.51 (5.57) 63.34 (5.75) 65.11 (6.12)
Proposed 60.82 (5.67) 62.54 (6.05) 63.76 (5.60) 64.47 (5.12) 64.47 (4.73)

Random+L 51.17 (11.51) 47.09 (8.54) 49.28 (10.92) 54.97 (14.03) 58.47 (12.91)
Expl.Consol.+L 59.30 (12.05) 63.54 (7.75) 68.42 (7.27) 69.06 (6.39) 72.13 (8.90)

Proposed+L 60.53 (11.75) 57.24 (11.55) 58.22 (11.66) 59.74 (9.68) 58.78 (11.66)

Iris

No const 78.40 (10.18)
Random 78.16 (9.92) 78.15 (9.94) 79.60 (10.42) 79.04 (10.89) 82.11 (10.78)

Expl.Consol. 80.73 (10.05) 87.12 (8.48) 90.15 (7.44) 92.03 (5.27) 93.24 (3.21)
Proposed 81.99 (9.72) 83.61 (9.82) 85.27 (8.44) 87.56 (8.27) 87.87 (7.70)

Random+L 61.69 (22.48) 77.41 (18.44) 82.65 (12.52) 85.67 (13.60) 85.97 (13.33)
Expl.Consol.+L 81.01 (13.43) 82.53 (12.41) 90.45 (9.45) 93.65 (5.15) 94.64 (3.21)

Proposed+L 85.43 (13.58) 89.45 (11.51) 93.23 (8.60) 94.39 (8.37) 96.49 (4.75)

Breast Cancer

No const 95.36 (1.48)
Random 95.07 (1.61) 95.41 (1.48) 95.43 (1.56) 95.45 (1.48) 95.58 (1.53)

Expl.Consol. 95.17 (1.57) 95.53 (1.57) 95.32 (1.62) 95.54 (1.26) 95.67 (1.47)
Proposed 95.53 (1.53) 95.70 (1.44) 95.80 (1.44) 95.75 (1.42) 95.76 (1.56)

Random+L 80.52 (12.61) 74.54 (9.27) 72.98 (8.57) 71.23 (8.21) 69.09 (5.94)
Expl.Consol.+L 95.80 (4.84) 96.24 (1.66) 95.84 (1.94) 96.37 (1.48) 96.18 (1.50)

Proposed+L 76.40 (11.91) 74.87 (12.18) 76.03 (12.74) 76.13 (13.28) 76.50 (13.81)
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5 Conclusions

We proposed a new constraint acquisition method for constrained data cluster-
ing which identifies intra- and inter-cluster query-candidates, ranks them by de-
creasing order of relevance and uses the most interesting candidates to query the
user. We assessed the proposed method against not using constraints at all, using
random constraints, and using the Explore-Consolidate approach. Results shown
the use of constraints obtained using the proposed and the Explore-Consolidate
methods both results in better partitions than using random constraints or not
using constraints at all. The use of data representations obtained from the set of
constraints and the original data usually increases the clustering performance.
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