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Preface

The 18th Iberoamerican Congress on Pattern Recognition CIARP 2013 (Con-
greso IberoAmericano de Reconocimiento de Patrones) is the yearly event of a
series of pioneer conferences on pattern recognition in the scientific community
active in this field in Iberoamerican countries.

As has been the case for previous editions of the conference, CIARP 2013
hosted worldwide participants with the aim to promote and disseminate ongo-
ing research on mathematical methods and computing techniques for pattern
recognition, in particular in biometrics, computer vision, image analysis, and
speech recognition, as well as their application in a number of diverse areas such
as industry, health, robotics, data mining, entertainment, space exploration,
telecommunications, document analysis, and natural language processing and
recognition. Moreover, CIARP 2013 was a useful forum in which the scientific
community could exchange research experience, share new knowledge and in-
crease cooperation among research groups in pattern recognition and related
areas.

We like to underline that CIARP conferences have significantly contributed
to the birth and growth of national associations for pattern recognition in
Iberoamerican countries that are already members of the International Associ-
ation for Pattern Recognition, IAPR, (Argentina, Brazil, Chile, Cuba, Mexico),
or will soon be applying to become IAPR members (Colombia, Peru, Uruguay).

CIARP 2013 received 262 contributions from 37 countries (12 of which are
Iberoamerican countries). After a rigorous blind reviewing process, where each
submission was reviewed by three highly qualified reviewers, 137 papers by 355
authors from 31 countries were accepted. All the accepted papers have scientific
quality above the overall mean rating.

As has been the case for the most recent editions of the conference, CIARP
2013 was a single-track conference in which 22 papers where selected for presen-
tation in oral sessions, while the remaining 115 papers were selected for poster
presentation with short poster teasers. Following the tradition of CIARP con-
ferences, the selection of the presentation type does not signify at all a quality
grading. CIARP 2013 presentations were grouped into nine sessions: Supervised
and Unsupervised Classification; Feature or Instance Selection for Classification;
Image Analysis and Retrieval; Signals Analysis and Processing; Biometrics; Ap-
plications of Pattern Recognition; Mathematical Theory of Pattern Recognition;
Video Analysis; and Data Mining.

We would like to point out that the reputation of CIARP conferences is in-
creasing, especially since the last 11 editions for which the proceedings have been
published in the Lecture Notes in Computer Science series. Moreover, starting
from CIARP 2008, authors of the best papers presented at the conference (orally
or as posters) have been invited to submit extended versions of their papers to
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well-known journals so as to enhance the visibility of their conference submis-
sions and to stimulate deeper insight into the treated topics. For CIARP 2013
two special issues of the International Journal of Pattern Recognition and Artifi-
cial Intelligence IJPRAI and in Intelligent Data Analysis IDA will be published.
Moreover, a Special Section of Pattern Recognition Letters has been added to
include the two papers of the researchers selected as the winners of the two
prizes given at CIARP 2013, namely the IAPR-CIARP Best Paper Prize and
the Aurora Pons-Porrata Medal, which is a new CIARP-Award.

The IAPR-CIARP Best Paper Prize has the aim of acknowledging and en-
couraging excellence, originality and innovativeness of new models, methods and
techniques with an outstanding theoretical contribution and practical applica-
tion to the field of pattern recognition and/or data mining. The Iberoamerican
CIARP-Award Aurora Pons-Porrata Medal is given to a living woman in recog-
nition of her outstanding technical contribution to the field of pattern recognition
or data mining.

The selection of the winners is based on the wish of the authors to be consid-
ered as possible candidates for the prizes, the evaluation and recommendations
of members of the Program Committee, for the IAPR-CIARP Best Paper Prize,
and the proposal of the national associations on Pattern Recognition, for the
Aurora Pons-Porrata Medal, and the evaluation of the respective Award Com-
mittees. The task of these committees, whose members are carefully chosen to
avoid conflicts of interest, is to evaluate each paper nominated for the IAPR-
CIARP Best Paper Prize by performing a second review process including the
quality of the (poster or oral) presentation, and the recommendations for the
Aurora Pons-Porrata Medal. We express our gratitude to the members of the
two Award Committees: Josef Kittler (Surrey University, UK), Jian Pei (Simon
Fraser University, Canada), Fabio Roli (University of Cagliari, Italy), Tieniu
Tan (National Laboratory on Pattern Recognition of China), Isneri Talavera-
Bustamante (Advanced Technologies Applications Center, CENATAV, Cuba),
Rita Cucchiara (University of Modena-Reggio, Italy), and Rocio González-Dı́az,
(University of Seville, Spain).

Besides the 137 accepted submissions, the scientific program of CIARP 2013
also included the contributions of three outstanding invited speakers, namely,
Jian Pei (Simon Fraser University of Canada), Fabio Roli (University of Cagliari,
Italy) and Tieniu Tan (National Laboratory on Pattern Recognition of China).
The papers of these two last keynotes appear in these proceedings. Furthermore,
the three invited speakers and Gabriella Sanniti di Baja gave four tutorials on
“Mining Uncertain and Probabilistic Data for Big Data Analytics”, “Multiple
Classifier Systems”, “Fundamentals of Iris Recognition”, and “Discrete Methods
to Analyse and Represent 3D Digital Objects,” respectively.

During the conference, the Annual CIARP Steering Committee Meeting was
also held.

CIARP 2013 was organized by the Advanced Technologies Applications Cen-
ter (CENATAV) and the Cuban Association for Pattern Recognition (ACRP)
with the endorsement of the International Association for Pattern Recogni-
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tion (IAPR), and the sponsorship of the Cuban Society for Mathematics and
Computer Sciences (SCMC), the Argentine Society for Pattern Recognition
(SARP-SADIO), the Special Interest Group of the Brazilian Computer Soci-
ety (SIGPR-SBC), the Chilean Association for Pattern Recognition (AChiRP),
the Mexican Association for Computer Vision, Neural Computing and Robotics
(MACVNR), the Spanish Association for Pattern Recognition and Image Analy-
sis (AERFAI), and the Portuguese Association for Pattern Recognition (APRP).
We recognize and appreciate their valuable contributions to the success of CIARP
2013.

We gratefully acknowledge the help of all members of the Organizing Com-
mittee and of the Program Committee for their support and for the rigorous
work in the reviewing process.

We also wish to thank the members of the Local Committee for their unflag-
ging work in the organization of CIARP 2013 that led to an excellent conference
and proceedings.

Special thanks are due to all authors who submitted to CIARP 2013, includ-
ing those of papers that could not be accepted.

Finally, we invite the pattern recognition community to attend CIARP 2014
in Puerto Vallarta, Mexico.

November 2013 José Ruiz-Shulcloper
Gabriella Sanniti di Baja
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José Hernández-Palancar

Rainer Laŕın-Fonseca
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Jesús Ariel Carrasco-Ochoa Inst. Nac. Astronomı́a, Óptica Electrónica,
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Jacques Facon Pontificia Universidade Católica do Paraná,
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Lev Goldfarb University of New Brunswick, Fredericton,

Canada
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Alberto Muñoz, Gabriel Martos, and Javier González
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Fernando E. Valdés-Pérez, Renato Peña-Cabrera, and
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Biologically Inspired Anomaly Detection in Pap-Smear Images . . . . . . . . . 17
Maykel Orozco-Monteagudo, Alberto Taboada-Crispi, and
Hichem Sahli

Oriented Polar Snakes for Phase Contrast Cell Images Segmentation . . . 25
Mitchel Alioscha-Perez, Ronnie Willaert, Helene Tournu,
Patrick Van Dijck, and Hichem Sahli

Drug Activity Characterization Using One-Class Support Vector
Machines with Counterexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Alicia Hurtado-Cortegana, Francesc J. Ferri,
Wladimiro Diaz-Villanueva, and Carlos Morell

Segmentation Based Urdu Nastalique OCR . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Sobia Tariq Javed and Sarmad Hussain

Misalignment Identification in Induction Motors Using Orbital Pattern
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
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Mariano Tepper, Pablo Musé, Andrés Almansa, and Marta Mejail

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569



Pattern Recognition Systems under Attack

Fabio Roli, Battista Biggio, and Giorgio Fumera

Dept. of Electrical and Electronic Engineering, University of Cagliari,
Piazza d’Armi, 09123 Cagliari, Italy

{roli,battista.biggio,fumera}@diee.unica.it
http://pralab.diee.unica.it/

Abstract. Pattern recognition systems have been increasingly used in
security applications, although it is known that carefully crafted attacks
can compromise their security. We advocate that simulating a proactive
arms race is crucial to identify the most relevant vulnerabilities of pat-
tern recognition systems, and to develop countermeasures in advance,
thus improving system security. We summarize a framework we recently
proposed for designing proactive secure pattern recognition systems and
review its application to assess the security of biometric recognition sys-
tems against poisoning attacks.

Keywords: adversarial pattern recognition, biometric authentication,
poisoning attacks.

1 Introduction

Pattern recognition systems have been widely deployed in security-sensitive ap-
plications like spam filtering, malware detection, and biometric authentication
[10,6]. Such scenarios exhibit an intrinsic adversarial nature that fully violates
data stationarity usually assumed for design of pattern recognition systems. Ac-
cordingly, a different design procedure is required to explicitly deal with the arms
race existing in security settings between system designers and adversaries. We
advocate that design should be based on a what-if analysis simulating a proac-
tive arms race, for improving system security. We further argue that evaluating
security properties through simulations of different, potential attack scenarios is
a crucial step in this arms race for identifying the most relevant vulnerabilities
and for suggesting how to potentially counter them. In Sect. 2 we briefly review
an example of a reactive arms race occurred in spam filtering, and discuss dif-
ferences with proactive approaches. In Sect. 3 we summarize a framework we
recently proposed for designing proactive secure pattern recognition systems,
and review its application to assess the security of biometric recognition systems
against poisoning attacks. In Sect. 4 we try to be proactive by outlining three
attacks that may emerge in the near future. Conclusions and future research
lines are highlighted in Sect. 5.

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part I, LNCS 8258, pp. 1–8, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. A schematic representation of the reactive (left) and proactive (right) arms
races incurring in security applications involving pattern recognition systems

2 The Arms Race in Pattern Recognition

As a typical example of arms race in pattern recognition we summarize in
Sect. 2.1 the story of image-based spam. It also allows us to introduce the con-
cepts of reactive and proactive security, that are explained in Sect. 2.2.

2.1 The Story of Image-Based Spam

Since the 90s, computer viruses and attack threats have evolved towards an in-
creased level of variability and sophistication in response to an increase of the
complexity and number of vulnerable attack points of modern security systems.
Together with the fact that automatic tools for designing novel variants of at-
tacks can be easily obtained and exploited by not very skilled attackers, and that
a flourishing underground economy strongly motivates them, an exponential pro-
liferation of malware and other threats has been recently observed. To cope with
such a large amount of malicious data exhibiting both an increasing variabil-
ity and number of never-before-seen attacks, machine-learning approaches have
been increasingly adopted to complement the earlier rule-based systems (e.g.,
signature-based systems based on string-matching techniques): the latter offer
fast and lightweight filtering of most known attacks, while the former can process
the remaining (unfiltered) samples and identify novel attacks.

A recent example of arms race in pattern recognition is the so-called image-
based spam (or image spam, for short) [5,1]. This technique consists of rendering
the spam message into attached images to evade the textual-based analysis per-
formed by most of the modern anti-spam filters. Due to the massive volume of
image spam sent in 2006 and 2007, researchers and companies developed coun-
termeasures, like generating signatures to filter known spam images, or analyzing
suspect images by OCR tools to extract text for standard spam detection. This
started an arms race between designers and spammers. Spammers reacted by
randomly obfuscating images with adversarial noise, both to to evade signature-
based detection, and to make OCR-based detection ineffective. Researchers re-
sponded with (fast) approaches mainly based on machine-learning techniques
using visual features extracted from images, aimed at discriminating between
images attached to spam and to legitimate e-mails. Image spam volumes have
since declined, although the exact cause is debatable: these countermeasures may
have played a deterrent role, or image spam became too costly in terms of time
to generate and bandwidth to deliver.
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2.2 Reactive and Proactive Security

As highlighted by the image spam story, security problems are often cast as a
long-lasting reactive arms race between the system designer and the adversary,
in which each player attempts to achieve his goal by reacting to the changing
behavior of his opponent, i.e., basically learning from the past. This arms race
can be modeled as the following cycle [6]. First, the adversary analyzes the exist-
ing pattern recognition system and manipulates data to violate system security
(e.g., to evade detection). For instance, a spammer may gather some knowledge
of the words used by the targeted anti-spam filter to block spam, and then ma-
nipulate the textual content of spam emails accordingly; e.g., words like “cheap”
that are indicative of spam can be misspelled as “che4p”. Second, the pattern
recognition system designer reacts by analyzing the novel attack samples and
updating the system consequently; e.g., by retraining the classifier on the newly
collected samples, and/or by adding features that can better detect the novel
attacks. In the previous spam example, this amounts to retraining the filter on
the newly collected spam and, thus, to adding novel words into the filter’s dic-
tionary (e.g., “che4p” may be now learned as a spammy word). This reactive
arms race continues in perpetuity as illustrated in the left plot in Fig. 1.

However, reactive approaches to this arms race do not anticipate the next
generation of security vulnerabilities, i.e., they do not attempt to forecast fu-
ture attacks, and thus, the system potentially remains vulnerable to new at-
tacks. Computer security guidelines accordingly advocate a proactive approach
in which the designer should also attempt to anticipate the adversary’s strategy
by (i) identifying the most relevant threats, (ii) designing proper countermea-
sures for his system, when required, and (iii) repeating this process for his new
design before deploying the pattern recognition system. This can be accom-
plished by modeling the adversary (based on knowledge of the adversary’s goals
and capabilities) and using this model to simulate attacks, to complement the
reactive arms race, as shown in Fig. 1 (right). While such an approach does not
account for unknown or changing aspects of the adversary, it can improve the
level of security by delaying each step of the reactive arms race, as it should
reasonably force the adversary to exert greater effort (in terms of time, skills,
and resources) to find new vulnerabilities. Accordingly, pattern recognition sys-
tems that are properly designed according to the reactive and proactive security
paradigms should remain useful for a longer time, with less frequent supervision
or human intervention and with less severe vulnerabilities.

Although the approach of proactive security has been implicitly followed in
most of previous work, it has only recently been formalized within a more general
framework for the empirical evaluation of pattern classifier’s security [6], which
we summarize in the next section.

3 Security Evaluation of Pattern Recognition Systems

We summarize our proactive security evaluation framework [6], and its applica-
tion to assess the security of adaptive biometric recognition systems.



4 F. Roli, B. Biggio, and G. Fumera

DATA 
ACQUISITION / 

PRE-PROCESSING 

FEATURE 
EXTRACTION 

MODEL 
SELECTION  

CLASSIFIER 
TRAINING 

CLASSIFICATION / 
POST-PROCESSING 

Fig. 2. Main design steps for deploying a pattern recognition system

3.1 Proactive Security Evaluation Framework

Our framework [6] systematizes and unifies previous work. It aims at empirically
evaluating the security of a pattern recognition system under design, through
simulations of different, potential attack scenarios, i.e., by a systematic what-if
analysis. Our framework addresses the first three steps of the proactive arms race
(Fig. 1, right), overcoming the shortcomings of reactive security: identifying po-
tential attack scenarios, devising the corresponding attacks, and systematically
evaluating their impact. This may also suggest countermeasures to the hypoth-
esized attacks, whose implementation is however to be addressed separately in
an application-specific manner.

Our framework focuses on attacks consisting of manipulating the data pro-
cessed by a pattern recognition system to subvert the results. It does not consider
attacks to the system’s physical infrastructures (e.g., the sensors). It exploits the
taxonomy of potential attacks against learning-based pattern classifiers of [2,10],
which consists of three main features: (1) the kind of influence of attacks on the
classifier, either causative or exploratory, respectively aimed at undermine
the learning and the classification phase; (2) the kind of security violation: ei-
ther integrity (to gain unauthorized access to the system), availability (to
generate many classification errors to compromise the normal system opera-
tion), or privacy (to obtain confidential information from the classifier); (3) the
specificity of an attack, ranging continuously from targeted (focused on a few
specific samples) to indiscriminate (e.g., affecting all malicious samples).

We describe our framework for the case of supervised pattern classifiers (for
different tasks like unsupervised clustering, see [8]). Their classical design steps
[9], that do not take adversarial settings into account, are summarized in Fig. 2.
In adversarial settings, each design step can be subject to attacks. To evaluate
their impact, we model the adversary in terms of specific assumptions about
(i) her goal, (ii) knowledge of the system, and (iii) capability to modify the
data distribution by manipulating samples; this allows one to (iv) develop op-
timal attack strategies, and to guide the design of resilient classifiers. (i) The
adversary’s goal is based on the kind of anticipated security violation, on the
attack’s specificity, and of an objective function that the adversary is willing
to maximize, which allows for a formal characterization of the optimal attack
strategy. (ii) The adversary’s knowledge ranges from no information to com-
plete information, and it is defined for each design step of Fig. 2: the training
set, the feature representation, the learning algorithm and its decision function,
the learned classifier’s parameters, and the feedback from the deployed classifier.
Assuming perfect knowledge of the targeted classifier is a usual worst-case set-
ting, which provides a lower bound on the classifier performance under attack.
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A more realistic limited knowledge setting can also be considered; however, it
would be contingent on security through obscurity, which strongly relies upon se-
crets that must be kept unknown to the adversary. This is complementary to the
former setting, that is related to security by design, which advocates that systems
should be designed from the ground-up to be secure, and secrets, if any, must be
well-justified. Accordingly, the knowledge of at least the learning algorithm and
feature representation is often assumed. (iii) The adversary’s capability is de-
fined according to the attack taxonomy, and can incorporate application-specific
constraints. Since training and test data may follow different distributions when
they are manipulated by the adversary, one should specify: whether the attack
manipulates training (TR) and/or testing (TS) data (i.e., the attack influence);
whether and to what extent it affects the class priors for TR and TS; which
and how many samples can be modified in each class; which features can be
modified and how can their values be altered. To perform security evaluation
according to the hypothesized attack scenario, the collected data and generated
attack samples should be resampled according to the above distributions to pro-
duce suitable training and test set pairs [6]. (iv) Assumptions (i)–(iii) allow one
to compute the optimal attack strategy (i.e., the adversary model), by solv-
ing the optimization problem defined by the adversary’s goal, under constraints
corresponding to her knowledge and capabilities. The attack samples needed to
evaluate the classifier’s security are produced using the attack strategy.

The above procedure must be repeated for different levels of adversary’s
knowledge and/or capabilities, if necessary, and for each different hypothesized
attack. In the next section we give a specific example of the application of our
framework to a biometric identity recognition system.

3.2 Poisoning Attacks to Compromise Biometric Templates

The application of our framework led us to highlight a novel vulnerability of
adaptive face recognition systems [7,4]. They aim at dealing with natural tem-
poral variations of the clients’ faces, by exploiting biometric data acquired over
time during system operation. Template self-update is the simplest approach,
inspired by semi-supervised learning techniques. It consists of periodically up-
dating a user’s template gallery using samples assigned with high confidence to
the corresponding identity during operation. Although adaptation may allow a
face recognition system to maintain a good performance over time, an attacker
may exploit it to compromise the stored templates. This can be achieved by
submitting a suitable sequence of fake faces to the camera while claiming the
identity of a victim user (poisoning attack). The fake (or spoofed) faces can be
obtained by printing a face image on paper [3]. This may eventually compro-
mise the victim’s templates by replacing some of them with other desired face
images, that may either be sufficiently different from the victim’s templates, to
deny access to him; or they may include attacker’s images, to allow her to im-
personate the victim without eventually using any fake trait. In [7,4] we have
derived optimal poisoning attacks against adaptive face verification systems, i.e.,
attacks that minimize the number of fake faces to present to the camera, under
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both perfect and limited knowledge of the attacked system. A simple example
of attack is detailed in the following, according to our framework of Sect. 3.1.

We consider a face verification system based on Principal Component Analy-
sis (PCA), where each client is authenticated by comparing the submitted face
image with the stored template belonging to the claimed identity, in the feature
space induced by PCA. If the similarity score exceeds a pre-defined acceptance
threshold, then the claimed identity is authenticated as genuine, otherwise it
is rejected as an impostor attempt. The unique template of each client is ob-
tained by averaging n = 5 distinct face images of the same user acquired during
enrollment, and it is thus referred to as centroid. It is self-updated during oper-
ation using face images that satisfy the update condition, i.e., if the similarity
score with the stored template is greater than a pre-defined update threshold,
which is typically more restrictive (i.e., higher) than the acceptance threshold.
The centroid is updated as the average of the latest n images that have sat-
isfied the update condition (moving average update rule with a fixed window
size). Adversary’s goal: we assume she aims to impersonate the victim with-
out eventually using any fake trait, by replacing his template while minimizing
the number of submitted fake faces (queries). Adversary’s knowledge: we
consider both perfect and limited knowledge. In the former case, the attacker
knows the victim’s templates, the feature representation, the verification and
update algorithm, and their acceptance and update thresholds. In the latter,
more realistic case, the attacker does not know the victim’s template, but is able
to get a similar enough image (e.g., from social networks) such that the update
condition is met and the poisoning attack can successfully start. Adversary’s
capability: she can submit a number of fake faces to get access to the victim’s
template gallery, i.e., to a portion of the training data.

We refer the reader to [7,4] for the computation of the optimal attack. Figs. 3
and 4 show some experimental results for a specific attacker-victim pair. Fig. 3
shows how the victim’s template is updated by the attack under limited knowl-
edge. Fig. 4 shows the behaviour of the False Acceptance Rate (FAR, the prob-
ability of the attacker accessing the system impersonating the victim) and the
Genuine Acceptance Rate (GAR, the probability of the victim correctly access-
ing the system), for both perfect and limited knowledge. In the perfect knowledge
case less queries are required to replace the victim’s template with the attacker’s
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desired image, which is coherent with theoretical bounds [11]. In both cases, the
attacker can violate the victim’s account with high probability even when the
template is only partially compromised, as shown by the significantly high FAR
value after half of the queries. Notably, the GAR also quickly decreases, meaning
that the victim can not correctly access the system: this is a side-effect, which
can be mitigated by using multiple templates per client [4].

4 Where Do Adversaries Attack Next Time?

Attacks against pattern recognition systems emerged only recently as the ap-
plication and popularity of these technologies generated sufficient incentives for
attackers. Nowadays, we have many reported spoofing attacks against biomet-
ric recognition systems based on fake biometric traits, e.g., a printed picture is
used to fool a facial recognition system.1 Besides face and fingerprint recogni-
tion, the European project TABULA RASA demonstrated successful spoofing
attacks against systems using speech and gait.2 Therefore, additional biomet-
ric systems could be the next targets soon. Another little-known type of attack
likely to emerge in the near future is an evasion attack against biometric video
surveillance systems used to recognize targeted individuals (e.g., individuals on
a watch-list). To date this avenue of attack has received little attention because
evading a face recognition system is still quite easy (wearing hats or glasses
is often sufficient to evade it). However, the arms race to evade these pattern
recognition systems has already begun as is evident in the creative CV Dazzle
project that proposes new facial makeup and hair styling to evade face recogni-
tion systems.3 Finally, another potential class of attacks that may emerge in the
near future involves data clustering, one of the key technologies for the commer-
cial exploitation of massive volumes of both structured and unstructured data
(now called big data). Clustering algorithms have been increasingly adopted in
security applications to spot dangerous or illicit activities. However, they have
not been originally devised to deal with deliberate attack attempts that may
aim to subvert the clustering process itself. We have recently demonstrated that
an attacker may significantly subvert the whole clustering process by adding a
relatively small percentage of attack samples to the input data [8]. The market
trend of big data makes very likely that clustering algorithms used in commercial
and security applications will be soon the target of attacks.

5 Conclusions and Future Work

In this work we pointed out some of the issues related to the adoption of pat-
tern recognition systems in security-sensitive settings, and advocated a proactive
approach to security evaluation that can be exploited complementarily to the

1 An example of a spoofing attack: http://www.youtube.com/watch?v=2fKGXSgOFYc
2 http://www.tabularasa-euproject.org
3 http://cvdazzle.com

http://www.youtube.com/watch?v=2fKGXSgOFYc
http://www.tabularasa-euproject.org
http://cvdazzle.com
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well-known reactive paradigm to understand their security guarantees. Think-
ing proactively, we also discussed some novel potential sources of vulnerabilities,
such as data clustering algorithms. For the same reason, one may also think of
attackers that combine carefully crafted attacks against specific system compo-
nents (e.g., data clustering, feature selection, and classifier training) to develop
more complex, stealthy attacks. These multiple attacks may be indeed more dif-
ficult to spot as they may only slightly affect each of the system’s components
involved, although eventually compromising the overall system security to a large
extent. Finally, although the proactive security evaluation of pattern recognition
systems advocated in this paper may suggest specific countermeasures, design-
ing general-purpose secure classifiers remains an open problem that should be
specifically addressed in the future.
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by Regione Autonoma della Sardegna. The opinions expressed in this paper are
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Abstract. The ensemble classification paradigm is an effective way to
improve the performance and stability of individual predictors. Many
ways to build ensembles have been proposed so far, most notably bag-
ging and boosting based techniques. Evolutionary algorithms (EAs) also
have been widely used to generate ensembles. In the context of hetero-
geneous ensembles EAs have been successfully used to adjust weights
of base classifiers or to select ensemble members. Usually, a weighted
sum is used for combining classifiers outputs in both classical and evo-
lutionary approaches. This study proposes a novel genetic program that
learns a fusion function for combining heterogeneous-classifiers outputs.
It evolves a population of fusion functions in order to maximize the clas-
sification accuracy. Highly non-linear functions are obtained with the
proposed method, subsuming the existing weighted-sum formulations.
Experimental results show the effectiveness of the proposed approach,
which can be used not only with heterogeneous classifiers but also with
homogeneous-classifiers and under bagging/boosting based formulations.

Keywords: Heterogeneous ensembles, Genetic programming.

1 Introduction

Committee-based classifiers have been studied for a considerable time within
pattern recognition and machine learning [1]. The effectiveness of ensemble clas-
sifiers is widely known, in fact, the combination of experts’ outputs has also
been adopted in other tasks like feature selection and clustering. The underly-
ing ensembles’ principle is that by combining the outputs of (effective-enough)
weak-learners that make uncorrelated mistakes, predictive models that outper-
form any of the individual ones can be obtained [1, 2]. Traditional models for
this formulation are boosting (Adaboost [3]), and bagging (random forest [4]).

Heterogeneous ensembles are a type of committee classifiers that combine
predictions of weak-learners from different nature (e.g., decision tree, neural

� Corresponding authors.

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part I, LNCS 8258, pp. 9–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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networks) [5]. Intuitively, the goal is to build committee classifiers by exploiting
the biases of different classifiers. Acceptable performance has been achieved by
these ensembles, comparable or even better than by classical techniques [5]. The
main problem of these methods is the effective selection of classification models
that results in uncorrelated errors. Moreover, output normalization is a problem
because different classifiers return predictions in distinct scales, e.g., having a
probabilistic method and a support vector machine (SVM).

Independently of its type (homogeneous or heterogeneous), in most ensem-
ble classification models, either a voting strategy or a linear combination of
the outputs of individual classifiers is used to fuse decisions of individual clas-
sifiers [3–10]. Despite being effective, this is not necessarily the best criterion
for outputs combination. For instance, a non-linear function may be preferred
for complex decision surfaces. Besides, alternative fusion functions may better
exploit classifiers’ diversity and accuracy. Thus, regardless of individual mod-
els effectiveness/diversity, ensemble methods performance can be improved by
learning the appropriate fusion function.

This paper proposes an evolutionary algorithm that aims to learn a function
for combining ensemble members outputs in such a way that classification perfor-
mance is maximized. A genetic program (GP) is proposed such that a population
of fusion functions is evolved. Each function combines the outputs of a subset
of individual classifiers. The classical linear combination approach is subsumed
by this proposal. The proposed GP can automatically deal with variations in
the predictions scale and can weight different classifiers outputs. Empirical re-
sults are reported using an object recognition data set. The obtained results are
encouraging: the proposed method outperforms weighted and unweighted lin-
ear combination approaches. Furthermore, to the best of our knowledge, these
results are the best so far obtained for the considered data set.

1.1 Problem Statement

Let D = (xi, yi){1,...,N} be a data set with N pairs of instances (xi) and their
labels (yi) associated to a supervised classification problem. Without loss of
generality1 it is assumed xi ∈ Rd and yi ∈ {−1, 1}, that is a binary classification
problem with numeric attributes. We denote by gk(xi) ∈ [−1, 1] the output of
classifier gk for instance xi, this value is associated to the confidence that gk has
about the class of xi. Every gk term can be thought as a function gk : Rd →
[−1, 1], where the predicted class for xi, denoted by ŷi, is obtained as follows:
ŷi = sign(gk(xi)).

Let f(g1(xi), . . . , gL(xi)) be the ensemble fusion function combining L classi-
fiers outputs g{1,...,L}(xi) for instance xi. The most used fusion function is:

f(g1(xi), . . . , gL(xi)) =
1

L

L∑
k=1

wk · gk(xi) (1)

1 Multiclass classification problems can be approached with multiple binary classifiers
as described in Section 3.
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where wk is the weight associated to classifier k. For Adaboost wk is iteratively
obtained and it is related to the individual performance of weak learner gk [3]. In
random forest and other ensembles wk is often 1 [4]. In majority vote strategies
wk = 1 and gk(xi) = sign(gk(xi)). This paper tackles the problem of learning a
fusion function f∗(g1(x), . . . , gL(x)), such that its classification performance (in
an unseen data set) is as highest as possible. A GP is proposed to search the
functions space that is generated by using a combination of a predefined set of
arithmetic operators, constants and classifiers’ outputs.

2 Related Work

Evolutionary and bio-inspired algorithms have been widely used to support the
construction of ensemble classifiers under both homogeneous and heterogeneous
alternatives [6–9, 11]. The most tackled problems from the evolutionary per-
spective are those of (i) selecting ensemble members and (ii) adjusting weights
in a linear combination approach. (i) is a combinatoric problem, where given
a set of models it is decided which one include/exclude in the ensemble [6, 7];
thus Equation (1) is reduced to find w1,...,L with wk ∈ {0, 1}. Problem (ii) is a
real-function optimization to find optimal weights for base classifiers [8, 9]; thus
Equation (1) is reduced to determine w1,...,L with wk ∈ R. Methods addressing
(ii) subsume those approaching (i). Other evolutionary methods for ensemble
learning optimize base learners that compose the ensemble [12]. Although ef-
fective models are obtained through previous approaches, the fusion function
is always static. The main aim in this paper is to evolve an improved fusion
function.

GP has been used for ensemble learning, see [11] for a recent and comprehen-
sive survey. Usually classifiers based on GP are used to build an ensemble [13].
Although satisfactory results have been obtained with those methods, they are
limited to work with evolutionary-based classifiers, which are very often outper-
formed by standard classifiers from pattern recognition (e.g., SVM). A notable
exception, closely related to this study proposal, is the work by Langdon et al.
c.f. [10] and references therein, where authors use GP to learn ensembles (of en-
sembles) of binary classifiers. However, that method cannot be applied directly
to multiclass problems, it uses a large number of classifiers (up to 90) and only
considers two classification methods; more importantly, models structure has
huge capacity; thus being highly prone to overfitting.

3 Genetic Programming of Ensembles

This section describes the proposed approach to learn fusion functions to com-
bine heterogeneous classifiers outputs. First, the multiclass problem’s version is
formulated and second the proposed genetic program (GP) is described.
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3.1 Learning a Fusion Function for Ensembles

Using notation introduced in Section 1.1, a general fusion function for multiclass
problems is stated as follows:

fm(h1(xi), . . . , hL(xi)) =
1

L

L∑
k=1

wk · hk(xi) (2)

where hk(xi) is the multiclass classifier output. For a problem with Q−classes,
C1, . . . , CQ, each classifier returns a confidence vector per class, hk(xi) =

〈h1
k(xi), . . . , h

Q
k (xi)〉. Estimates hj

k(xi) can be obtained in different ways, e.g.,
the probability (resp. similarity) for the class j given instance xi according to a
näıve Bayes (resp. KNN) classifier. In this work a general methodology is adopted
to be used with any classifier: one-vs-rest classifiers. Thus, a binary classifier is
trained per class where the jth− classifier uses as positive the training examples
from class j and as negative the rest. In this case, hj

k(xi) is the confidence that
the jth binary classifier on that label for instance xi is Cj .

Hence we seek for the fusion function f∗
m that maximizes the classification

performance on unseen data (obtained from the same distribution as the training
data set). The aim of the proposed GP is to determine f∗

m among the set of
functions that can be built by combining the outputs of multiclass classifiers
(h1(xi), . . . , hL(xi)).

3.2 Genetic Programming of Fusion Functions

GP is an evolutionary technique in which the solutions are encoded in data struc-
tures more complex than binary or real-valued vectors, as in standard genetic
algorithms [14]. A population of individuals (solutions) is randomly generated,
and an iterative process begins in which solutions are recombined, mutated and
evaluated. Next, a subset of the best solutions are kept for the next generation.
The best solution found through the iterative process is returned.

Obtaining a fusion function for heterogeneous ensemble learning via GP re-
quires the codification of a combination function (a solution) as a tree where leaf
nodes correspond to classification models outputs augmented with constants (to
incorporate a weighting factor). Non-leaf nodes are taken from the following
operators: {+,−,×,÷,2 ,√, log10}, these are the ones typically used in GP. An
individual is shown in Figure 1.

The GP input is the predictions set obtained by the considered classifiers
(h1(xi), . . . , hL(xi)) in a training data set D. Specifically, every instance is clas-
sified in D via 10-fold cross-validation with each classifier, and these are the GP
inputs; that is, we have a single value for each instance and classifier obtained
when the instance belongs to the test partition in 10−fold cross-validation. We
proceed in this way because we wanted to avoid overfitting as much as possible.
The following classifiers are taken from the CLOP toolbox: random forest, SVM,
klogistic, linear-kridge, non-linear kridge, 1NN, 3NN, näıve Bayes, gkridge, and
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Genetic program

Feature vectors

0.2 0.1 1 0 0.9
0.1 0 0.7 0.8 1
1 1 0 0.6 0.9 0
……….

Representation

…Classifier 1

Classifier 2

Classifier n

…

Fusion function
(F(x1,…,Xn))

New objects to be 
classified

[0.2 1 0.5 0.6 …]
…

[1 0.5 0 0.2 …]

Classification
results

Fig. 1. GP ensemble: Individual sample (left), general scheme (right)

neural network. The GP evolves and returns a fusion function (f∗
m) that is eval-

uated on (unseen) test data. The general diagram of the proposed approach is
shown at the right in Figure 1. During the search process, the fitness value of
every function fm is calculated by evaluating the performance of the tree’s in-
duced function: first, the predicted class per instance xi is calculated as follows:
ŷi = argmaxQ fm(h1(xi), . . . , hL(xi)), which is simply the index of the class
with the maximum confidence; next, fm predictive performance is assessed with
standard measures to determine its fitness.

Two fitness functions are used: (1) accuracy, and (2) f1-measure. The latter
computes the balance between precision and recall per class; f1-measure’s av-
erage among classes is herein used. f1 is more informative when data sets are
imbalanced. The GP is implemented on the GPLAP2 framework. Standard cross-
over and mutation operators are adopted. The population is initialized with the
ramped-half-and-half formulation.

4 Experiments and Results

For experimentation the SCEF data set is used, it is associated to an object
recognition problem. This data set is challenging and has been previously used
for evaluating heterogeneous ensemble selection methods [12]. The data set com-
prises 6244 image-regions represented by 737 attributes each (MPEG7/wavelet
descriptors) and 10 classes. The data set is divided in two subsets: 3615 images
for testing, and 2629 for training. Table 1 (left) shows the distribution of training
and testing examples per class.

Empirical results of two GP settings, called EGSP and EGG, are reported.
In EGSP only the sum operator is used, whereas in EGG all previously de-
scribed operators are used. Thus, EGSP resembles the standard approach to
learn weights and select ensemble members [7–9]. Results obtained by a stan-
dard ensemble (EVP) are also presented, i.e., the fusion function from Equation
(2) with wk = 1. For the three ensembles, results obtained by the GP are also
reported when using only the top 5 classifiers with better performance in the
training data; in order to determine how the accuracy of individual members
affects GP-based ensembles performance.

2 http://gplab.sourceforge.net/

http://gplab.sourceforge.net/
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Table 1. Left: Description of the data set used for experimentation. Right: Results
obtained by individual classifiers in terms of accuracy/f − 1 measure.

Data set description Perf. individual classifiers.
Class Train Test Class Train Test Model Acc. f1 Model Acc. f1

Building 280 450 Foliage 506 581 RF 90.7% 79.3% SVM 55.1% 49.9%
Mountain 203 349 Person 43 129 Klogistic 70.6% 62.8% Kridge-l 13.64% 2.4%

Road 89 127 Sand 208 273 Kridge-n 74.7% 63.1% 1NN 69.3% 60.1%
Sea 325 338 Sky 461 664 3NN 69.1% 57.4% N.Bayes 26.5% 21.6%
Snow 43 129 SailingBoat 39 70 Gkridge 20.6% 3.421% Neural N. 55.8% 37.7%

Table 1 (right) shows the performance obtained by individual classifiers in
terms of accuracy and f1-measure. Random forest significantly outperforms other
classifiers. Thus, it is expected that the GP selects the best fusion function from
individual classifiers. Table 2 shows the average and standard deviation after 10
runs obtained by the three GP ensemble variants, using 50 individuals and 100
generations per execution. The proposed ensemble variants outperform signifi-
cantly the raw-fusion function (EVP) in terms of both measures with differences
between 40− 50%. GP-ensembles even outperformed EVP when using the top-5
models. This shows the limitations of the raw fusion function for heterogeneous
ensembles.

All GP ensembles outperform the best individual classifier. The improvement
for both performance metrics is small for all methods but for EGG. Improve-
ments of more than 1.5% and 6% are obtained by EGG with respect to the
best individual classifier, in terms of accuracy and f1 measure, respectively.
EGG is able to find very effective fusion functions for heterogeneous classifiers,
even when most models performance is low. Moreover, a 6% improvement in
f1-measure is significant when persists across classes, because it focuses on the
average performance over classes.

The best results are obtained by the EGG ensemble, i.e., using all operators
and classifiers. Using more operators in the GP might allow to obtain better
fusion functions. Moreover, the GP has more selection options because it uses
all classifiers, which explains the improvement over EGG-Top 5.

The best result in Table 2 improves by more than 10% previously reported
accuracy for the same data set (81.49%) [12]. In [12], authors did not optimize the
decision threshold thus the ROC curve area (AUC) is also reported. Comparing
the best individual AUC (98.44) with the best result reported in [12] (94.05), an
improvement of more than 4% is still achieved. These results, to the best of our
knowledge, are the best ones so far reported for the SCEF data set.

The EGG performance is evaluated using different population sizes and num-
ber of generations. Figure 3 reports the average and standard deviation after
10 runs for different population sizes and 100 generations (left) and different
number of generations and 50 individuals (right). Every measure’s performance
is higher when optimizes itself (e.g., accuracy when optimizing accuracy). Our
proposal is somewhat robust to parameters variations, performance differences
by distinct settings are very closed to each other. The number of generations
seems to have a slightly higher impact in EGG performance than the population
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Table 2. Different strategies performance when optimizing accuracy (top) and f1
(bottom). EVP: raw fusion; EGSP: GP using only sums; EGG: proposed GP.

Results obtained when optimizing accuracy.
EVP EVP-Top5 EGSP EGSP-Top5 EGG EGG-Top5

Acc. 31.5% 81.4% 90.8%(0.001) 91.1% (0.002) 92.3% (0.002) 91.2% (0.001)
f1. 27.2% 71.9% 80.3%(0.007) 80.4% (0.006) 85.2% (0.004) 80.7% (0.001)

Results obtained when optimizing f1 (macro-average).
EVP EVP-Top5 EGSP EGSP-Top5 EGG EGG-Top5

Acc. 31.5% 81.4% 90.8% (0.005) 90.8% (0.005) 92.0% (0.001) 91.267% (0.001)
f1 27.2% 71.9% 80.4% (0.001) 80.4% (0.001) 85.3% (0.003) 80.545% (0.003)

80,00%
81,00%
82,00%
83,00%
84,00%
85,00%
86,00%
87,00%
88,00%
89,00%
90,00%

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

17
6

18
3

19
0

19
7

F-m
ea

su
re

 (m
ac

ro
-av

er
ag

e)

Number of genera�ons

Train Test

-

/

-
/

X1+

*

X5log
10

X18

X9

*

X6log
10

X9

X17

*

log
10

-
/

/

-
/

X1

*

X5log
10

X2

+

X9

*

X6log
10

X4

X17

X17

*

/

-
/

X1 X1

*

log
10

*

log
10 X5

X9

X6

X17

^2

*

log
10

/

X8X10

X12

X1

^2

Fig. 2. EGG’s best f1 training and test values per generation (left). Evolved fusion
function, shaded nodes represent classifiers’ outputs (right).
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Fig. 3. Parameter selection results varying: the number of individuals (left), the number
of generations (right)

size. The best configuration in terms of both performance metrics is 200 individ-
uals and 100 generations (92.385% and 85.57%). A small number of iterations is
preferred because a large number would overfit solutions. For example, Figure 2
shows the training and test performance of EGG for the best solution every
generation for 200 individuals during 200 generations. After ≈ 30 iterations the
GP starts overfitting, and although the fitness performance keeps improving (f1
in this case), test set performance no longer improves and even degrades. The
resultant individual after 200 generations is fairly complex (Figure 2, right).
Therefore, special attention must be paid to avoid EGG overfitting.
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5 Conclusions

A novel GP approach to learn fusion functions for heterogeneous ensembles was
proposed. Its main objective is to search the fusion-functions space generated
through an arithmetic operators set. Empirical results on a challenging data
set were presented and significant performance improvement over previous work
(10%) was achieved. The proposed GP outperformed the best individual model,
a raw-ensemble and other variants which optimize models selection and weights.
Several research directions were identified: a full experimental study on bench-
mark data considering parameter selection; adapting the proposed GP to homo-
geneous ensembles; analytical comparison to other GP-based ensembles.
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Abstract. A reduction operator transforms a binary picture only by
changing some black points to white ones, which is referred to as deletion.
Sequential reductions may delete just one point at a time, while parallel
reductions can alter a set of points simultaneously. Two reductions are
called equivalent if they produce the same result for each input picture.
This work lays a bridge between the parallel and the sequential strategies.
A class of deletion rules are proposed that provide 2D parallel reductions
being equivalent to sequential reductions. Some new sufficient conditions
for topology-preserving parallel reductions are also reported.

Keywords: Discrete Geometry, Digital Topology, Topology-Preserving
Reductions.

1 Introduction

A binary picture on the 2-dimensional digital space Z2 is a mapping that assigns
a color of black or white to each point of Z2 [6]. A reduction (or reductive [3])
operator transforms a binary picture only by changing some black points to
white ones, which is referred to as the deletion of 1s. Reductions play important
role in various topological algorithms, e.g., thinning [2,7,11] or shrinking [3].

Parallel reductions can alter a set of points simultaneously, while sequential
reductions may delete just one black point at a time. Parallel reductions and
sequential reductions strategies are illustrated by Algorithm 1 and Algorithm 2,
respectively.

By comparing the two approaches, we can state that in the parallel case (see
Algorithm 1) the initial set of black points is considered when the deletion rule is
evaluated for each elements of the set of interesting points X . On the contrary,
the set of black points is dynamically altered during the sequential reduction
(see Algorithm 2).

Algorithms 1 and 2 consider a set of interesting points X and its complemen-
tary C that is called a constraint set. Constraint sets may contain some types of
border points in subiteration-based (or directional) algorithms or points that are
not in the activated subfields in the case of subfield-based algorithms [2]. In addi-
tion, endpoints (i.e., some points that provide important geometrical information

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part I, LNCS 8258, pp. 17–24, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Algorithm 1. parallel reduction

Input: set of black points B, constraint set C(⊆ B), and deletion rule R
Output: set of black points P
X = B \ C
D = ∅
foreach p ∈ X do

if R(p,B) = true then
D = D ∪ {p}

P = B \D

Algorithm 2. sequential reduction

Input: set of black points B, constraint set C(⊆ B), and deletion rule R
Output: set of black points S
X = B \ C
S = B
foreach p ∈ X do

if R(p, S) = true then
S = S \ {p}

relative to the shape of the objects [2]) or isthmuses (i.e., some curve/surface
interior points [1] can also be accumulated in C.

Two reductions are said to be equivalent if they produce the same result for
each input binary picture. A deletion rule is called equivalent if it yields a pair
of equivalent parallel and sequential reductions.

The rule R(p, Y ) says that a point p in question is deletable or not in a set of
black points Y . Note that elements in C are omitted when the deletion rule R
is evaluated.

The sequential approach suffers from the drawback that different visiting order
of interesting points may yield various results. Order-independent sequential
reductions can produce the same result for any visiting order of the elements
in X [4,9]. It is clear that only order-independent sequential reductions can be
equivalent to parallel ones.

In this paper we establish some conditions for deletion rules that provide
equivalent parallel and sequential reductions. Some new sufficient conditions for
topology-preserving parallel reductions are also proposed.

2 Basic Notions and Results

In this paper, we use the fundamental concepts of digital topology as reviewed
by Kong and Rosenfeld [6].

Let p be a point in the 2-dimensional digital space Z2. Let us denote Nm(p) the
set of points that are m-adjacent to p and let N∗

m(p) = Nm(p) \ {p} (m = 4, 8),
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• N •
W p E

• S •

Fig. 1. The considered adjacency relations in Z2. The set N4(p) contains point p and
the four points marked “N”, “E”, “S”, and “W”. The set N8(p) contains N4(p) and
the additional four points marked “•”.

see Fig. 1. Note that, throughout this paper, all figures are depicted on the
square grid that is dual to Z2.

The equivalence classes relative to the m-connectivity relation (i.e., the re-
flexive and transitive closure of the m-adjacency) are the m-components of a set
of points X ⊆ Z2.

A (8, 4) digital picture P is a quadruple (Z2, 8, 4, B). Each element of Z2 is
said to be a point of P . Each point in B ⊆ Z2 is called a black point . Each point
in Z2 \B is said to be a white point . An object is an 8–component of B, while a
white component is a 4–component of Z2 \B.

A picture (Z2, 8, 4, B) is called finite if the set B contains finitely many points.
In a finite picture there is a unique infinite white component, which is called the
background . A finite white component is said to be a cavity.

A black point is called a border point in a (8, 4) picture if it is 4–adjacent to
at least one white point. A border point p is said to be an N–border point if
the point marked “N” in Fig. 1 is white. We can define E–, S–, and W–border
points in the same way. A black point in a picture is called an interior point if
it is not a border point.

A 2D reduction is not topology-preserving if any object in the input picture is
split (into several ones) or is completely deleted, any cavity in the input picture
is merged with the background or another cavity, or a cavity is created where
there was none in the input picture [5].

A black point is simple in a picture if and only if its deletion is a topology-
preserving reduction [6]. We state now the following characterization of simple
points of (8, 4) pictures:

Theorem 1. [6] Black point p is simple in a picture (Z2, 8, 4, B) if and only if
all of the following conditions hold:

1. The set N∗
4 (p) ∩B contains exactly one 8–component.

2. N4(p) \B 
= ∅.

Condition 2 of Theorem 1 means that only borders points may be simple
points. Hence interior points are not simple points.

Reductions generally delete a set of black points and not just a single simple
point. Hence we need to consider what is meant by topology preservation when
a number of black points are deleted simultaneously. Various authors proposed
some sufficient conditions for reductions to preserve topology [5,8,10].
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3 Conditions for Equivalent Deletion Rules

Recall that a deletion rule is equivalent if it determines equivalent parallel and
(order-independent) sequential reductions (see Algorithms 1 and 2). In this sec-
tion some sufficient conditions for equivalent deletion rules are introduced.

Definition 1. Let R be the deletion rule. Let (Z2, 8, 4, B) be an arbitrary pic-
ture, and let q ∈ B be any point that is deleted from that picture by R. Deletion
rule R is general if the following conditions hold:

1. If p can be deleted from picture (Z2, 8, 4, B) by R, then p can be deleted from
picture (Z2, 8, 4, B \ {q}) by R.

2. If p cannot be deleted from picture (Z2, 8, 4, B) by R, then p cannot be deleted
from picture (Z2, 8, 4, B \ {q}) by R.

Let us state some useful properties of general deletion rules.

Lemma 1. Each sequential reduction with a general deletion rule is order-in-
dependent.

Proof. Assume that a sequential reduction with a general deletion rule R pro-
duces different results for distinct visiting orders of the set X with k elements.
It is obvious that k ≥ 2 holds. All permutations of the elements of X can be get
by swapping a pair of successive points. (Recall the bubble sort algorithm.) Let
us consider the following two permutations

Π1(X) = 〈 x1, . . . , xi−1, p, q, xi+2, . . . , xk 〉 and
Π2(X) = 〈 x1, . . . , xi−1, q, p, xi+2, . . . , xk 〉 ,

such that different results are produced.
Let (Z2, 8, 4, S) be the interim picture when point p is visited according to

Π1(X) (i.e., when q is investigated by Π2(X)). (Note that both p and q are black
points in that picture.)

Then we need to take the following two points into consideration:

1. Point p can be deleted from picture (Z2, 8, 4, S) by R, but p cannot be deleted
from picture (Z2, 8, 4, S \ {q}) by R.

2. Point p cannot be deleted from picture (Z2, 8, 4, S) by R, but p can be deleted
from picture (Z2, 8, 4, S \ {q}) by R.

Note that q can be deleted from picture (Z2, 8, 4, S) by R.
Since R is general, in both cases we arrived at contradictions. Hence deletion

rule R produces the same result for any visiting orders. �

Lemma 2. Let R be a general deletion rule. Then the parallel and the sequential
reductions with R are equivalent.
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Proof. We need to show that both cases produce the same result for any input
picture. In other words, P = S when Algorithms 1 and 2 terminate.

Let p ∈ X ∩P (i.e., R(p,B) = false). Since the sequential reduction is order-
independent by Lemma 1, we can assume that point p is visited first. Then
deletability of p is evaluated in the initial set of black points S = B. In this case
p ∈ X ∩ S since R(p, S) = R(p,B) = false. p ∈ S ∩ (B \ X) stands for each
p ∈ P ∩ (B \X), thus P ⊆ S.

Conversely, S ⊆ P can be seen in the same way. Hence P = S. �

We are ready to state a condition for equivalent deletion rules as an easy
consequence of Lemma 2.

Theorem 2. A deletion rule is equivalent if it is general.

The following theorem provides some new sufficient conditions for topology-
preserving reductions.

Theorem 3. A (parallel) reduction R is topology-preserving if the following
conditions hold:

1. The deletion rule R associated with R is general.

2. R deletes only simple points.

Proof. If the deletion rule of a sequential reduction may delete a simple point,
then the entire sequential reduction with the same rule is topology-preserving.
Since R is general, the sequential reduction is equivalent to R by Theorem 2.
Hence R is topology-preserving. �

Figure 2 presents an example of a non-general deletion rule.

(a) (b) (c) (d) (e)

Fig. 2. Example of a non-general deletion rule that removes interior points. We can
state that the parallel and the sequential reductions with that rule cannot produce the
same result for the original object (a). The result produced by the parallel reduction
(b). Three of the possible results produced by the sequential reduction with various
visiting orders (c)–(e).
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4 Example of an Equivalent Deletion Rule

In this section a general and topology-preserving reduction is presented. Hence
it is equivalent to a (topology-preserving and order-independent) sequential re-
duction.

Consider the deletion rule R that is given by the set of 9 matching templates
T depicted in Fig. 3. A black point is deleted by R if at least one template in
T matches it. The constraint set C (see Algorithms 1 and 2) assigned to R is
defined as follows:

C = { p | p is not an N–border point in B } .

� ♥ �

� p �

� ♦ �

� ♥ �

� p �

� ♦ �

� ♥ �

� p �

� ♦ �

� ♥ �

� p �

� ♦ �

� ♥ �

♦ p ♦
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� ♦ �

� ♥ �

� p ♦

� ♦ �

� ♥ �

♦ p �

� ♦ �

� ♥ �

♦ p �

� ♦ �

Fig. 3. The set of 9 matching templates T associated with the deletion rule R. The
central point p is matched by a template if each black position matches a black point
and each white element matches a white point. The template position depicted in grey
matches either a black or a white point.

Let us state some properties of R.

Proposition 1. Each deletable point is an N–border point and not an S–border
point.

Proposition 2. If we alter any position marked “ �” in a template in T , we
get a template in T .

Proposition 3. If we alter a position marked “ ♥” or “ �” in a template in T ,
we do not get a template in T .

Propositions 1–3 are obvious by careful examination of the templates in T .

Proposition 4. Black points marked “♦” cannot be deleted by R (see Fig. 3).

It is obvious by Proposition 1 since those points are not N–border points.
Note that all those points are in the constraint set C.

Proposition 5. All non-central black and grey positions are marked “♦” or
“ �” in each template in T .
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Proposition 6. Simple points are deleted by R.

It is easy to see that both conditions of Theorem 1 hold for each point that
is matched by a template in T .

We are ready to state the following theorem.

Theorem 4. Deletion rule R with respect to the constraint set C is general.

Proof. Let (Z2, 8, 4, B) be an arbitrary picture. To prove this theorem we must
show that the following two conditions are satisfied for any point q ∈ B that is
deleted by R:

1. If p can be deleted from picture (Z2, 8, 4, B) by R, then p can be deleted
from picture (Z2, 8, 4, B \ {q}) by R.

2. If p cannot be deleted from picture (Z2, 8, 4, B) by R, then p cannot be
deleted from picture (Z2, 8, 4, B \ {q}) by R.

Since R is defined by 3× 3 templates, there is nothing to prove if q 
∈ N∗
8 (p).

Assume that p can be deleted from picture (Z2, 8, 4, B) by R. Then at least one
template in T matches it and point q ∈ N∗

8 (p) is an element depicted in black
or grey in that template. Since q can be deleted, it cannot be marked “♦” by
Proposition 4. Then q is marked “�” by Proposition 5. Hence p can be deleted
from picture (Z2, 8, 4, B \ {q}) by Proposition 2.

To verify the second case, assume that p cannot be deleted from picture
(Z2, 8, 4, B). Then p is matched by a template T ′ 
∈ T . It is easy to see that
T ′ can be derived from a template T ∈ T by altering a white position marked
“♥” or “�” by Proposition 3.

– If a white position marked “♥” is altered in template T , then point p is not
an N–border point in picture (Z2, 8, 4, B). Hence p ∈ C and it cannot be
deleted by R.

– If a white position marked “�” is altered in template T , then point q cannot
be deleted by Proposition 1. Since q is deleted by R, we arrived at a contra-
diction. �

Theorems 2 and 4 together imply that the deletion rule R is equivalent. In
addition the (parallel) reduction associated with R is topology-preserving by
Proposition 6 and Theorem 3.

Note that R may be the base rule of a 4-subiteration 2D parallel thinning
algorithm. The deletion rules of the remaining three subiterations are the rotated
versions of the rule associated with the deletion direction N.

5 Conclusions

This work lays a bridge between the parallel and the sequential reductions.
A class of deletion rules are proposed to determine equivalent 2D parallel and
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order-independent sequential reductions. A new sufficient condition for topology-
preserving reductions is also reported. It provides a method of verifying that a
parallel algorithm always preserves topology.

We are going to extend this work to the case of 3D (26, 6) pictures, and find
3D deletion rules for equivalent parallel and sequential reductions. We also plan
to construct subiteration-based and subfield-based parallel thinning algorithms
that produce the same result for any order of deletion directions and subfields.

Acknowledgements. This work was supported by the European Union and
co-funded by the European Social Fund. Project title: “Telemedicine-focused re-
search activities on the field of Mathematics, Informatics and Medical sciences.”
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Abstract. A 3D object decomposition method is presented, based on the 
polygonal approximation of the distance labeled curve skeleton. Polygonal 
approximation is accomplished to divide each skeleton branch into a number of 
segments along which no significant changes exist as regards curvature or 
distance label. Each segment is interpreted as the spine of a simple region, 
which is characterized by i) absence of significant curvature changes along its 
boundary and ii) thickness that is either constant or evolves linearly along the 
region. Quantitative information on shape, size, position and orientation of a 
simple region can be easily derived from spatial coordinates and distance labels 
of the extremes of the associated spine. Simple regions associated to spines 
sharing a common extreme partially overlap with each other. Object 
decomposition into disjoint regions is obtained by suitably dividing each 
overlapping region among the simple regions including it.  

Keywords: Object decomposition, curve skeleton, distance information, 
polygonal approximation. 

1 Introduction 

Decomposition is of interest for 3D object recognition, especially when the structural 
approach is followed. A 3D object having complex shape can be first decomposed 
into parts characterized by simpler shape. Then, the description of the object, leading 
to its recognition, can be given in terms of the descriptions of the obtained parts and 
of the spatial relationships among them. 

Different approaches to object decomposition have been suggested in the literature. 
For example, decomposition can be achieved by identifying in the object a priori 
defined shape primitives, such as balls, cylinders, cones, prisms and so on. 
Alternatively, if the object is represented by its boundary surface, the parts can be 
achieved by using cutting planes passing through curvature minima suitably identified 
along the boundary surface. Finally, if the object is represented by its skeleton object 
decomposition can be obtained by decomposing the skeleton in such a way that each 
part of the decomposed skeleton corresponds to a part of the object.  

The skeleton of a 3D digital object consists of the voxels that are placed 
symmetrically within the object. If objects have tubular shape, symmetry points  
are mainly aligned along symmetry axes, so that the skeleton is a set of curves.  
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For objects with general shape, symmetry points are placed along axes and planes, so 
that the skeleton is union of surfaces and curves. In this work, we consider objects 
that can be reasonably represented by curve skeletons, i.e., skeletons exclusively 
consisting of curves. 

Each branch of the skeleton is in correspondence with a part of the object.  If the 
skeleton branch includes an end point, i.e., a voxel having only one neighbor in the 
skeleton, the branch is a peripheral branch and corresponds to a limb of the object. 
Otherwise, the branch is an internal branch and is in correspondence with a part of the 
object, here called core, from which limbs protrude. 

The curve skeleton is homotopic to the object and, if its voxels are labeled with 
their distance from the complement of the object, the object can be recovered by the 
envelope of the balls centered on the skeleton voxels and having radii equal to the 
distance values assigned to the skeleton voxels. Actually, a difference exists between 
an input object and the recovered object. Such a difference is negligible only when the 
skeleton includes almost all the symmetry points. In all other cases, only a sketched 
version of the input object can be recovered by the skeleton. As an example, Fig. 1 
shows from left to right an object, its curve skeleton and the object recovered by the 
skeleton. In this case, about 74% of input object voxels are recovered by the skeleton. 
Thus, the recovered object, which is faithfully represented by the curve skeleton, is a 
reasonable sketched version of the input object. 
 

     

Fig. 1. An object, left, its curve skeleton, middle, and the recovered object, right 

The curve skeleton can provide a representation of the input object at different 
levels of detail by using pruning or polygonal approximation. Pruning can be used to 
trim skeleton branches corresponding to limbs interpreted as object regions having 
scarce perceptual relevance. If a suitable parameter is introduced to measure 
perceptual relevance of object regions via the analysis of the skeleton branches 
mapped into those regions, skeleton pruning can originate different results by using 
different thresholds for the parameter. In this way, different recovered objects can be 
obtained, which are sketches at different levels of detail of the input object. In 
particular, recovered objects differ from each other for the presence/absence of some 
peripheral regions. Alternatively, each branch of the skeleton can be divided into a 
number of segments by means of polygonal approximation. In this case, each segment 
can be seen as the spine of a region of the object, whose boundary is rid of significant 
curvature changes in the limits of the adopted tolerance. By using different thresholds 
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for the polygonal approximation, different representations of the object are obtained: 
no object’s limbs are lost, while the geometry of each object part is represented in a 
more or less faithful manner. 

In this paper, we continue our work concerning 3D object decomposition via 
skeleton processing [1]. Here, we decompose 3D objects by decomposing their curve 
skeletons. We use the 3D skeletonization algorithm described in [2], which is based 
on the extraction of the curve skeleton from the <3,4,5>-distance transform of the 
object. We divide the skeleton into its constituting branches, identify only the 
branches corresponding to meaningful object parts, and perform polygonal 
approximation on such branches so as to divide them into segments. The regions 
whose spines are the so obtained segments are sketched versions of the regions into 
which the object can be interpreted as decomposed.  

2 Preliminaries 

Let us consider a binary voxel image in a cubic grid, where the object A consists of 
the voxels with value 1, while the background B consists of the voxels with value 0.  
The 3×3×3 neighborhood of a voxel p includes the six face- the twelve edge- and the 
eight vertex-neighbors of p.  

The <3,4,5>-distance between two voxels p and q is given by the length of a 
minimal path from p to q, where the three weights 3, 4 and 5 are respectively used to 
measure the unit moves from p towards a face-, edge- and vertex-neighbor along the 
path [3].  

The <3,4,5>-distance transform of A is a replica of A, where the voxels are labeled 
with their <3,4,5>-distance from B. 

The curve skeleton S of A is homotopic to A, consists of curves centered in A, and 
its voxels are labeled with their distance from B. A voxel p of S having in S only one 
neighbor, exactly two neighbors, and more than two neighbors is respectively termed 
end point, normal point, and branch point.  

Any connected subset of S entirely consisting of normal points, except for the two 
extremes that are end points or branch points is termed skeleton branch. The skeleton 
branch is an internal branch if both extremes are branch points, and is a peripheral 
branch otherwise. 

The reverse distance transform of S is the envelope of the balls centered on the 
voxels of S and having radii equal to the corresponding distance values [4]. We use 
the <3,4,5>-distance also to compute the reverse distance transform of S. 
 

              

Fig. 2. Left, a skeleton (green) with a zone of influence (gray) including two branch points 
(red). Right, the centroid (red), common to the four meaningful branches (green). 
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Let us consider the balls associated with the branch points of S. Each connected 
component of balls is called zone of influence of the branch points it includes. Branch 
points that are neighbors of each other or are closer to each other than the sum of their 
associated radii are included in the same zone of influence. Actually, these close 
branch points of S can be understood as corresponding to a unique branch point 
configuration in an ideal skeleton of the object, and the short skeleton branches 
linking close branch points can be interpreted as non perceptually meaningful. 
Accordingly, in the following we replace all the voxels of S that are included in the 
same zone of influence by their centroid. The centroid plays the role of an ideal 
branch point, where skeleton branches of the ideal skeleton meet. We regard as 
meaningful skeleton branches of S the sets consisting only of the skeleton voxels 
outside the zones of influence plus the corresponding centroids. See Fig. 2. 

We use the algorithm [5] to compute the polygonal approximation of skeleton 
branches. The process is as follows. The extremes of the current digital curve are 
taken as vertices; the Euclidean distance of all points of the curve from the straight 
line joining the two extremes is computed; the point with the largest distance is taken 
as a new vertex, provided that such a distance overcomes an a priori fixed threshold θ 
(to be set depending on the desired approximation quality). Any detected vertex 
divides the curve into two subsets, to each of which the above process is applied. The 
splitting process is repeated as far as new vertices are detected. When recursion is 
completed, the curve is represented by the ordered sequence of the detected vertices. 

3 The Decomposition Method 

Generally speaking, S includes a number of meaningful branches. For the sake of 
simplicity, let us describe our method by referring to a simple case where the skeleton 
consists of a single branch. See Fig. 3. We observe that curvature changes along S 
correspond to bendings of the object. Then, polygonal approximation can divide S 
into straight line segments, each of which can be seen as the spine of a region rid of 
bendings. 
 

                 

Fig. 3. An object, left, and its skeleton, right. Colors of skeleton voxels denote distance values. 

We also note that the different radii of the balls associated with the skeleton voxels 
take into account the changes in width of the object. Let us consider the 2D 
representation of S obtained by plotting S in the Cartesian plane as a function of the 
radius associated to its voxels. If polygonal approximation is there performed, vertices 
are detected wherever the radii fail to be aligned in the limits of the adopted tolerance. 
Thus, the skeleton can be divided in such a way that the radii of the voxels in each 



 Decomposing and Sketching 3D Objects by Curve Skeleton Processing 29 

 

segment are either constant, or change in a linear manner. Each segment can be 
interpreted as the spine of a region characterized by either constant or linearly 
increasing/decreasing thickness. 

By considering at the same time changes along S in geometry and in distance 
values, the polygonal approximation can divide S into segments characterized by 
linearity both in geometry and in the distribution of distance values. Each segment of 
S is the spine of a simple region characterized by the following two properties: 1) 
absence of significant bendings, and 2) thickness that either is constant or is linearly 
increasing/decreasing. In other words, a simple region is shaped as a cylinder or a 
cone, delimited by the two balls centered on the extremes of its spine. See Fig. 4. 
 

          

Fig. 4. Straight line skeleton segments and their corresponding simple regions. Colors of 
skeletal voxels denote distance values. 

To reach the above goal, S is represented in a 4D space, where the four coordinates 
are the three Cartesian coordinates and the radius of the voxels of S. To compute in 
such a space the polygonal approximation of S, we need to evaluate the Euclidean 
distance d of any point c of S from the straight line joining the two extremes v and w 
of S. This is done by using the following expression: 

 
d2 = ||vc||2 – Pvwc * Pvwc / ||vw||2 

 
where ||vw|| is the norm of the vector vw, and Pvwc is the scalar product between 
vectors vw and vc.  If the point c is the one at maximal distance from the straight line 
joining v and w, c is taken as a vertex of the polygonal approximation provided that its 
distance d satisfies the condition d>θ.  

The vertices detected in the 4D space are used to identify in the 3D space the 
corresponding voxels of the skeleton. Accordingly, S can be efficiently represented by 
orderly giving only the spatial coordinates and radii of these voxels.  

When S consists of more than one single branch, polygonal approximation has to 
be applied to all meaningful skeleton branches, so originating an approximated 
version of the entire skeleton.  

An approximate evaluation of shape, size, position and orientation of the simple 
regions having the segments of S as spines is readily available without the need of 
building the regions themselves. In fact, the shape of a simple region depends on 
whether the extremes of the spine are equally distance labeled (in this case the simple 
region is shaped as a cylinder, whose bases pass through the two extremes of the 
spine and are perpendicular to the spine) or have different values (in this case the 
simple region is shaped as a truncated cone, whose bases pass through the two 
extremes of the spine and are perpendicular to the spine). Of course, in both cases the 
shape of the simple region is completed by two semi-spheres placed on the bases of 
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the cylinder or the truncated cone, where the radii are the distance labels of the 
extremes of the spine. Size can be measured by taking into account the length of the 
spine and the radii assigned to the extremes. Position and orientation are obviously 
related to the spatial coordinates of the extremes and to the orientation of the spine. 
The angle between two spines sharing a common extreme accounts for the bending of 
the two corresponding simple regions, where these overlap with each other. 

To obtain more precise quantitative information on the features of the object’s 
decomposition parts, we do the following two processes: i) construction of the 
approximated skeleton S* starting from the available information, i.e., the ordered 
sequence of spatial coordinates and radii of the vertices, and ii) recovery of the object 
starting from S*. To build a given segment of S*, the absolute values of the 
differences between homologous Cartesian coordinates of the two corresponding 
extremes of the segment are computed. These are used for: 1) computing the number 
of unit moves necessary to link the two extremes by means of a digital straight line 
segment, 2) establishing how many of these moves are towards face-, edge- and 
vertex- neighbors and 3) establishing the proper way to alternate different moves. To 
linearly distribute distance values among the voxels in the obtained digital segment, 
we use the number of voxels in the segment and the absolute value of the difference 
between the radii of the two extremes. As an example, see Fig. 5 left, showing the 
approximated skeleton of the skeleton in Fig. 1 middle. The value θ=8 has been used 
for polygonal approximation. Different colors are used to denote different segments. 
Centroids and vertices found during polygonal approximation are shown in black. 
 

                     

Fig. 5. Approximated skeleton (θ = 8), left, and corresponding object decomposition, right 

Once S* has been built, recovery of the simple regions having as spines the 
segments of S* can be accomplished by applying the reverse distance transformation 
to the spines. Actually, any two simple regions whose corresponding spines share a 
common vertex, called hinge, partially overlap. The overlapping region is the ball 
centered on the hinge. Also simple regions associated to three or more spines sharing 
the same centroid partially overlap. In this case, the overlapping region is the ball 
centered on the centroid. 

To obtain a decomposition of the object into disjoint components, the overlapping 
regions (balls centered on the hinges and the centroids) have to be suitably divided 
among the simple regions sharing them. To reach this goal, we start by applying the 
reverse distance transformation to S*. The obtained distance labeled recovered object 
is used to order the voxels recovered by S* in decreasing distance order (i.e., from 
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those closer to S* to those farther from it), so as to decide on their assignment to the 
proper object’s decomposition component. To this aim, each segment of S* is 
assigned a different identity label, while all centroids and hinges are assigned a 
unique common special label. The identity labels of the neighbors of the current 
recovered object voxel p are checked. If all neighbors of p have the same identity 
label, also p is assigned that label. Otherwise, p is assigned the special label. Once all 
recovered voxels have been analyzed, object’s components result to labeled with the 
identity label of their corresponding spines, while surfaces separating adjacent 
object’s components result to be labeled with the special label. Obviously, voxels in 
the separating surfaces can be assigned to any of the adjacent components. See Fig. 5 
right, where voxels with the special label are shown in black. 

Depending on whether a meaningful skeleton branch is internal or peripheral, the 
corresponding region will be a core or a limb. Limbs and cores are elongated regions 
along which bendings and thickness variations are possible and result to be divided 
into simple regions. 

Differently approximated skeletons can be obtained by using different values for 
the threshold θ. If the threshold increases, the approximated skeleton represents a 
rougher version of the object. As an example compare Fig. 5 and Fig. 6. In Fig. 6, the 
approximated skeleton has been computed by setting θ=12 during polygonal 
approximation. We may observe that a different number of decomposition 
components is obtained and that the object in Fig. 6 right is a more schematic 
representation of the input object. 
 

                     

Fig. 6. Approximated skeleton (θ=12), left, and corresponding object decomposition, right 

The decomposition method has been implemented on an Intel Core i7 (3.5 GHz, 8 GB 
RAM) personal computer and tested on a large set of images taken from publicly 
available shape repositories, e.g., [6], obtaining in general satisfactory results. The 
method is computationally advantageous, especially if the approximate evaluation of 
the features of the simple regions is regarded as sufficient for the specific task. In fact, 
in this case the part of the process dealing with the construction of the digital 
segments constituting the approximated skeleton and with the recovery process based 
on reverse distance transformation and identity label assignment is not necessary.  

Two more examples to illustrate the performance of the decomposition method are 
given in Fig. 7, showing the input objects, the skeletons, the approximated skeletons 
with θ=8, and the corresponding object decompositions. 
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Fig. 7. Each line shows from left to right the input object, the skeleton, the approximated 
skeleton, and the resulting object decomposition. 

4 Conclusion 

In this paper, decomposition of the curve skeleton of a 3D object has been used to 
decompose the object itself. The skeleton is first divided into its constituting 
branches. Meaningful skeleton branches are detected by using the zones of influence 
of the branch points. Polygonal approximation in 4D is done so as to divide 
meaningful skeleton branches into rectilinear segments along which radii change in a 
linear manner. The regions whose spines are the so obtained segments of the skeleton 
are sketched versions of the regions into which the object can be interpreted as 
decomposed. Quantitative information on shape, size, position and orientation of the 
regions is readily available.  
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Abstract. We present a new approach to image analysis in temporal
sequence of images (data cube). Our method is based on high-order sta-
tistical moments (skewness and kurtosis) giving interesting information
about a dynamic event in the temporal sequence. The moments enable
precise determination of the ”turning points” in the temporal sequence of
images. The moment’s curves are analyzed by continuous complex Mor-
let wavelet that leads to the description of quasi-periodic processes in the
investigated event as a time sequence of local spectra. These local spec-
tra are compared with Fourier spectrum. We experimentally illustrate
the performance on the real data from astronomical observations.

Keywords: Statistical moments, Frequency analysis, Fourier and wavelet
transformations, Dynamic processes.

1 Introduction

Random variables can be characterized for application purposes by considera-
tion of quantities called ”moments”. Since simple and widely known statistical
moments about the origin - EX (mean value μ, the first order moment) via the
central moments of second order E(X −EX)2 (variance σ2) and its square root
S =

√
E(X − EX)2 (standard deviation σ), we ascend to the third and higher

orders. In pattern recognition these moments are used as the regional descriptors
for structural shape of regions, boundary determination, texture analysis, etc.
The practical use of moments in statistics is e.g. in [1].

The third order moment m3 is called the ”skewness” of the distribution of
random variable X . It is defined: m3 = E(X − EX)3/S3. The skewness is a
measure of reflection symmetry, i.e. if the distribution of X is symmetric, then
m3 = 0. If the distribution is steeped in left (right) of μ, it is denoted skewed
to the right (left), respectively. The fourth moment called ”kurtosis” is defined
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similarly: m4 = E(X − EX)4/S4. It expresses the peakedness, in other words
it is a measure of how ”heavy” the tails of distribution are. The distribution
is said to be leptokurtic (narrower than Gaussian), platykurtic (broader than
Gaussian), or mesokurtic (as Gaussian). The Gaussian distribution has m4 = 3,
therefore the value m̂4 = m4 − 3 is sometimes used.

Each plane of data cube in the temporal sequence of images consists of pixels
of different brightnesses. It can be statistically described by their distribution as
well as by the high-order statistical moments. These moments have applications
in signal and image processing. A detailed study of the statistical moments
in pattern recognition is in [2]. In astronomical applications they are used for
example in the investigation of statistical system behavior, mass-density field
distribution, statistical studies of the interstellar medium [3], [4]. Pattern analysis
of cosmic structure formation is in [5], statistical modeling of lines in atomic
spectra [6], detection of non-Gaussianity deviations [7], etc. The generalized
spectral-kurtosis estimator and its statistics is in [8] and [9]. Another type of
statistical moments applied in the UV spectral range was described in [10].

Our contribution deals with an analysis of the dynamical temporal sequences
obtained by the ground-based astronomical observations in optical range. By our
methodology we reliably identify the ”turning point” where the dynamic event
starts. Determination of this point leads to the specification of temporal intervals
for further analysis. In these selected sections the periodicity of signals has been
searched and results by Fourier and wavelet analysis have been compared. The
next section introduces the typical behavior of moments during an observed
temporal sequence where a dynamical event appears. The following sections
present results of frequency analysis and conclusions.

2 Dynamical Event Diagnostic by Statistical Moments

An example of the observed temporal sequence is in Fig. 1. It is monospectral
observation of the Sun surface - solar chromosphere (λ = 656.3 nm).

Fig. 1. Patterns of the data cube planes: the light parts in the image represent an
active region with arising flare. From left to the right: the beginning of the sequence,
the second pattern is from the ”trigger area” and gradually up to the fully developed
flare.

The dimensionless third and fourth moments are computed from the image
histogram. In this sense the skewness of one image is estimated as the third
moment normalized to scaling by the standard deviation
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s =
1

σ3

1

N

N−1∑
i=0

(xi − μ)3 (1)

and similarly the normalized fourth moment - kurtosis

k =
1

σ4

1

N

N−1∑
i=0

(xi − μ)4, (2)

where xi is the ith realization of the random variable X . In our case xi is the
brightness of the ith pixel of a region of interest, where N is the total number
of pixels in the area. The simplified flowchart of this part of processing follows:

1. Observational sequence (data cube) of active-region images covering the time
of a dynamical event ( e.g. solar flares).

2. Computation of the high-order moments [si, ki] of each image in the whole
data sequence to obtain their temporal evolution.

3. Determination of the starting point of the flare (time or corresponding plane
number) and selection of the time interval for consecutive frequency analysis.

The typical evolution of m3 and m4 during the flare development is in Fig. 2. It
is very interesting to see a fast increase of moments, the temporal curves of m3

bears resemblance to the m4 and both unambiguously enable determination of
the starting point. As a matter of interest the temporal curve of μ (called the light
curve) of the same sequence does not provide any relevant information about
the position of ”trigger area”, see Fig. 2b. The dynamic phenomenon causes
both lighter and darker regions with respect to the quiet state, the densities are
averaged and the light curve cannot intercept any change of trend.

(a) (b)

Fig. 2. Temporal characteristic of (a) skewness and (b) kurtosis during solar flare
development. Temporal evolution of mean μ has been drawn for comparison (b, dotted).
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3 Frequency Analysis

For an automatic searching of significant points (times) in the temporal mo-
ment’s curves we decided for filtering by the Laplacian, the significant points
= maxima of the Laplacian. Since the observation is often distorted by high-
frequency noise, a combination of appropriate filters would be suitable. The
Gaussian and Laplacian can be combined into one filter, proposed in 2D by [11].
The 1D version is

gli =

(
i2

σ2
g

− 1

)
1

σ3
g

√
2π

e
− i2

2σ2
g , i = −ng,−ng + 1, . . . ng. (3)

Application of convolution filter (3) enables an automatic identification of
changes in the noisy moment curve. The absolute maximum of the Marr-filtered
curve then determines the precise position of the main ”fault” assigned as the
flare starting time (ST). Likewise the subsidiary maxima also give useful infor-
mation, especially the period of maxima. See Fig. 3a.
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(a) (b)

Fig. 3. (a) Significant and start (ST) point searching in the moment curve (black)
and Marr filter convolution, (red dotted, mask size 59), (b) The Morlet wavelet in its
effective support [-4,4].

For the frequency analysis the moment’s curve can be basically divided into
two parts: pre-flare time interval, i.e. the time interval before the flare start time
ST (located in the trigger area and determined by an analysis of the moment
evolution), and the time interval after this start time.

To get an information about the pre-flare time interval we need to analyze
the frequencies of a quasi-periodic sequence. The analysis is usually done by
comparison with some pattern wave that is used as the kernel function of the
integral transformation. We can use either a global wave passing through the
whole sequence, typically the sinusoidal signal exp(−2πix) of Fourier transfor-
mation, or some local wave, typically wavelet. There are several wavelet families,
some continuous wavelet is suitable for this type of frequency analysis. In our
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experiments we used the real part of Morlet wavelet cos(σx) exp(−x2/2) with
the most usual parameter σ = 5 that yields good compromise between time and
frequency resolution, see Fig. 3b and e.g. [12].

The real data experiments consist of seven various events from the two differ-
ent ground-based telescopes. We introduce two cases illustrative for each type of
data, see Fig. 4a (the sampling period is 5 s) and Fig. 5a (the sampling period
is 6 s). The left part of the second signal was interpolated from the sampling
period 60 s to 6 s. The results of the frequency analysis by Morlet wavelets are
in Figs. 4b and 5b. They show absolute value of its real part: in a row, there is
the significance of a specific frequency; in a column, there is the local spectrum.

The period of the oscillation is related to the length of the sequence. If there
are 210 samples in the first sequence, then the part from -0.5 to 0.5 of the
wavelet with length 1 from Fig. 3b was mapped onto the whole sequence in the
first row of Fig. 4b. If we are interested in the response of the whole wavelet
from Fig. 3b with the length 8, we have to look at the row 210/8 ≈ 26 of Fig. 4b
and 225/8 ≈ 28 of Fig. 5b.

The Fourier spectra are in Figs. 4c and 5c. To be comparable as most as
possible, we use the real parts of the spectra and the same frequencies as in the
case of the wavelets. The most significant maxima (i.e. those with the highest
absolute value) are summarized in Tab. 1. Both times and periods are expressed
in sample numbers, i.e. if the first sequence has 5 s per sample, then 140 samples
represent 140 × 5 = 700 s. The Fourier transformation yields frequencies pre-
vailing in the whole sequence, while the wavelet transformation yields an idea
about the significant frequencies in the individual samples.

Table 1. Wavelet and Fourier analysis – sample numbers, periods (in the samples) and
sizes of the most significant maxima

Sequence from Fig. 4a Sequence from Fig. 5a
Wavelets Fourier Wavelets Fourier

Sample Period Size Period Size Sample Period Size Period Size
140 210 1.76 169 12.56 119 225 7.62 186 79.6

1 210 1.28 94 7.88 116 124 7.55 130 58.1
174 117 1.05 121 7.01 193 124 7.51 101 44.2
101 117 0.77 58 6.76 38 127 7.11 82 40.2
202 37 0.73 50 5.16 202 78 5.06 60 27.9
178 38 0.61 45 4.44 26 75 4.13 69 27.6
58 61 0.59 37 4.07 158 73 3.67 53 20.8
22 60 0.57 76 3.92 70 72 3.08 43 19.86

The comparison of the lowest frequencies is difficult, because the difference
of the wave form over whole sequence is too significant. So, the wavelet periods
210 and 225 samples does not correspond to the Fourier maxima 169 and 186
samples. The precise wave form is less important in the higher frequencies, we
can see the oscillations with period 117 samples detected by wavelets have good
counterpart in the 121 samples of the Fourier spectrum in the case of the first
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Fig. 4. The analyzed data, (a) the sequence with the sampling period 5 s, (b) the
wavelet analysis and (c) Fourier amplitude spectrum

sequence. Similarly 37-38 correspond to 37 samples and 60-61 correspond to 58
samples. In the case of the second sequence, 124-127 samples correspond to 130
samples and 72-78 correspond to 69-82 samples. In both Fourier spectra, there
are local maxima without direct counterpart in the wavelet analysis (94, 76, 50
and 45 samples in the first case and 101 and 60 samples in the second case, 53
and 43 samples have weak counterparts). They are not significant in any local
time, while their sum over the whole sequence is significant.



Analysis of Dynamic Processes by Statistical Moments of High Orders 39

0 200 400 600 800 1000 1200
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Time [s]

m
3

(a)

Wavelet analysis

Sample number

P
er

io
d 

[×
6s

]

50 100 150 200
  1
 13
 25
 37
 49
 61
 73
 85
 97

109
121
133
145
157
169
181
193
205
217

Fourier

P
er

io
d 

[×
6s

]

  1
 13
 25
 37
 49
 61
 73
 85
 97

109
121
133
145
157
169
181
193
205
217

(b) (c)

Fig. 5. The analyzed data, (a) the sequence with the sampling period 6 s, (b) the
wavelet analysis and (c) Fourier amplitude spectrum

4 Conclusion

The moment curves express evolution of a dynamic process in a new way. Our
experiments proved the moments of high orders are sensitive to changes in the
image brightness during the initial phase. Determination of the starting point
is of great importance for astrophysical interpretation as well as the oscilla-
tion analysis in the pre-flare times. It can give more information about the
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mechanism of flare formation, magnetic field configurations, cosmic weather pre-
diction, etc. Particularly, the comparison of the found frequencies from the oscil-
lation analysis (both wavelet and Fourier) with the model of arising flare leads
to its improvement.

The advantage of suggested method is its unusual robustness, it is possible to
apply the method to the raw data files, neither preprocessing nor calibration is
needed. For the future we intend to design special algorithms to be included into
the astronomical observation pipeline. We are collecting data for other exper-
iments in the future: temporal sequences for the meteoritic swarms searching,
automatic determination of flashes of gamma lighting and applications in remote
sensing.
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Abstract. The Distance Transform (DT) is one of the classical operators
in image processing, and can be used in Pattern Recognition and Data
Mining, and there is currently a great demand for efficient parallel imple-
mentations on graphics cards, known as GPU. This paper presents simple
and effective ways to implement the DT using decompositions of erosions
with structuring functions implemented on GPU. The DT is equivalent
to a morphological erosion of the binary image by a specific structuring
function. However, this erosion can be decomposed by a sequence of ero-
sions using small structuring functions. Classical and efficient algorithms
of the DT are implemented on CPU. New 1D and 2D algorithms are imple-
mented onGPU, using decomposition of structuring functions, inspired by
implementations of convolution filters. All the GPU implementations used
in this paper are known as brute-force, and even then present excellent re-
sults, comparable to the best CPU algorithms, which might contribute to
future applications in image processing.

Keywords: Distance Transform, Mathematical Morphology, GPU.

1 Introduction

The Distance Transform (DT) [12,2] is an important algorithm in image pro-
cessing because it can be used in many other transformations, such as dilation,
erosion, the shortest path between two pixels, skeleton, SKIZ (Skeleton of Influ-
ence Zone), Voronoi diagram, Delaunay triangulation, Grabriel Graph, pattern
matching, image compression, etc. [4,18,11,14,5]. Besides being a basic operator
in image processing, it helps in the study of other similar algorithms, such as
watershed [17] and IFT (Image Floresting Transform) [6]. Thus, improving the
efficiency of DT makes it possible to improve the efficiency of similar operators.
The DT can also be computed by a sequence of local operations, using 3× 3 or
one-dimensional neighborhoods, making the algorithms simpler and faster.

DT implementations can be classified by the method it employs to raster of the
pixels in the image. Sequential algorithms perform very well, but it is not possible
to calculate the Euclidean DT (EDT) using only this type of algorithm [12,2,16].
Parallel algorithms for the DT can be implemented using parallel architectures,
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and are the most intuitive form of implementation. Such parallel algorithms
are also able to compute the EDT [12,2,16,8,15], but usually perform poorly
on single processor architectures. It is also possible to calculate the EDT using
propagation algorithms, which use queue structures to store the pixels that might
have their values changed in a given iteration. Such pixels are called boundary
pixels [16,20,9].

Mathematical Morphology is an area based on set theory. This theory is heavily
applied in image processing, with the basic operators of dilation and erosion, in
which the neighborhood can be defined by structuring functions [1].

There is a relationship between EDT and Mathematical Morphology, and the
goal of this paper is to study this relationship using parallel programming on
GPU (Graphics Processing Unit), exploring several implementations of EDT.
Furthermore, comparisons are made with the most efficient CPU algorithms
with a parallel version of the algorithm defined in Lotufo and Zampirolli [9].

Previous works have focused in accelerating the computation of EDT using
GPUs, achieving good results, as in Schneider et al. [13]. However, their work
still uses DirectX, a computer graphics API, to implement the algorithm, in-
stead of a proper GPU computing framework. Also, their approach does not use
Mathematical Morphology to define the EDT.

2 Methods

A two-dimensional binary image is a function f that maps the elements (or
pixels) of a space E in {0, k}, where E is usually a matrix. The position of a
pixel is given by their position in the array. Thus, the line x and column y of the
pixel is associated with point (x, y) of the Cartesian plane. Then, any distance
function defined on the Cartesian plane induces a distance function in the field
of the image [3]. For a given distance function, the Distance Transform (DT)
assigns to each pixel of an object from a binary image the smallest distance
between these pixels and background pixels. Consider any two finite and non-
empty sets E and K. A ψ operator of E and K is defined as a mapping of E
in K and denoted ψ : E → K or ψ ∈ KE . A digital image, or simply image, is
defined as a function of the KE lattice. Thus, if f is an image then f ∈ KE .
Consider E the domain of the image, which is one-dimensional if E ⊂ Z, where
Z is the set of the integers, and two-dimensional if E ⊂ Z2.

2.1 Decomposition of the Structuring Function

Some properties of Minkowski operators produce a method for the decomposition
of a structuring element [19]. For example, one dilation by a 3 × 3 structuring
element is equivalent to perform two uni-dimensional dilations, one 1 × 3 and
one 3×1. The result of a decomposition is a generalized Minkowski sum, defined
as BG = B1 ⊕ · · · ⊕ Bk, where {B1, · · · , Bk} are the elements in which BG can
be decomposed. Thus,

εBG(f) = εBk
(· · · (εB1(f)) · · ·). (1)
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These procedures of decomposition are useful for implementations of erosion
and dilation [7] and will be addressed in this paper. To illustrate the following
equation of erosion, an erosion algorithm is defined by ∀x ∈ E,

εb(f)(x) = min{f(y) −̇ b(y − x) : y ∈ Bx ∩ E}, (2)

where b is a structuring function defined on B with b : B → Z. If the elements of
b are nonzero, b is called a non-flat structuring function or non-planar structuring
function. Let v ∈ Z, we define t→ t−̇v inK [7]. For the Equation 2, with an input
image with a domainE of dimensions h×w, the algorithm performs the erosion in
Θ(hw) time. By Huang and Mitchell [8], considering Equations 1 and 2, applying
the erosion several times using varying structuring functions, as the one shown in
Equation 3, the EDT is computed. This process is defined in Algorithm 1.

bi =

⎡⎣−4i+ 2 −2i+ 1 −4i+ 2
−2i+ 1 0 −2i+ 1
−4i+ 2 −2i+ 1 −4i+ 2

⎤⎦ , (3)

where the origin, at the center, is bold and i ∈ {1, 2, . . .}.

Algorithm 1: Euclidean DT: g = EDT (f)

1: Calculates the EDT of f
2: i = 1;
3: while f 
= g do
4: bi is defined by Equation 3;
5: g = f ;
6: f = ero(g, bi}; by Equation 2.
7: i++;
8: end while

The convergence of Algorithm 1 occurs due to the idempotent property of
the erosion when considering these particular structuring functions. In this al-
gorithm, the structuring function changes with each iteration, at line 4. If no
pixel has its value changed, then the algorithm has converged. Depending on the
image, the amount of necessary erosions to achieve convergence may vary. In the
worst case, an image with a single 0 value at one end of one of its diagonals,√
h2 + w2 erosions are necessary, where h the image height and w the width.

Knowing that the erosion runs in Θ(hw) time, once again considering a small
neighborhood of b size, the EDT has O(hw

√
h2 + w2) complexity. Assuming

h = w, we can simplify and say that the complexity is O(h3).

2.2 Separable Convolution Using Shared Memory Using the GPU

Graphics Processing Units (GPUs) are coprocessors specialized in generating
computer graphics. For several years, their graphics pipelines only allowed the
use of fixed functions to render a set of primitives, such as lines and triangles,
to create computer graphics. More recently, however, to allow for more realistic
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graphics, several parts of that pipeline have become programmable. With such
programmable pipelines, it became possible, with small changes to GPU archi-
tectures, to use the rapidly increasing processing power within them to solve
general computing problems. To allow for that General Purpose GPU comput-
ing (GPGPU Computing), technologies such as the CUDA architecture and the
OpenCL API were created. This work focuses in the use of the CUDA architec-
ture, through the CUDA C library for ANSI C, on nVidia GPUs to create new
implementations for the EDT.

In a GPU, consider a 16 × 16 block that can be stored on a block of
shared memory, a much faster kind of memory. A (x, y) pixel within an im-
age can be accessed through the following conversion of the thread and block
indexes, provided as built-in variables by the CUDA API: x = threadIdx.x +
blockIdx.x∗ blockDim.x and y = threadIdx.y+ blockIdx.y ∗ blockDim.y, where
(threadIdx.x, threadIdx.y) represents a pixel within the block, indexed by the
values blockIdx.x ∗ blockDim.x and blockIdx.y ∗ blockDim.y. Thus, if an image
processing problem can be solved by analyzing a neighborhood stored on a por-
tion of shared memory, the (x, y) pixels are transferred from the global memory
to this efficient memory. In this example, the image must be subdivided in sub-
images of 16× 16 size. These divisions increase the complexity of implementing
algorithms that rely on access to neighbor pixels. The problem becomes even
worse when dealing with global problems, such as the EDT or labeling.

Most of that extra difficulty introduced when using the shared memory comes
from the fact that, for each block of threads, there is a separate portion of this
memory. Pixels on the border of a shared memory block will have neighbors
stored on another block, which are inaccessible to the thread assigned to the
current pixel. There might even be missing neighbors if the pixel is not only
on the border of a block, but also on the border of the image. Convolution
filters and morphological operators share several similarities. For example, the
decomposition of strucutirng functions based on the presented Minkowski sum
is similar to the problem of convolution separability. Taking these similarities
into account, it is interesting to analyze existing GPU implementations for the
convolution filter, in order to learn from their shared memory management and
try to improve the performance of the EDT implementations.

An algorithm for the separable bi-dimensional convolution will be presented
as a two-step uni-dimensional algorithm. The code for this algorithm can be
found in the CUDA SDK library. The convolution filter is an image processing
technique that is mostly used for pre-processing, in order to remove noise and ob-
tain a smoother image. In addition, it can be used for edge detection in objects.
As the convolution and morphological operators work with neighborhoods, the
border processing on blocks need special treatment. To minimize these border
operations, this border must be as small as possible. Thus, it is more efficient
to have a border with a thickness of one pixel. For a convolution, the border
is initialized with the 0 (zero) value. For an erosion, as the operation is per-
formed using the neighboring minimum, this border must be initialized with the
maximum value supported by the used image type. The separable convolution
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implemented in [10] has two steps: In the first, the load phase, data from the
global memory is transferred to shared memory. The second step performs fil-
tering and writes the results back to the global memory. The filtering step also
occurs in two stages, filtering the lines first, and then filtering the columns.

3 Results

3.1 EDT on the GPU Using Erosions and Shared Memory

In the same way as the Algorithm 1 for EDT, and the Equation 2, the EDT
is implemented using successive erosions by varying structuring functions using
shared memory on GPU. In this first algorithm, each thread copies a pixel and its
neighbors from the global memory to their corresponding places in the space of
shared memory of the thread’s block. This way, each 16×16 image block is stored
in a 18×18 block of shared memory (in the case of a 3×3 structuring function).
The calculation of the minimum value in this pixel is done in Algorithm 2,
making this algorithm inefficient. One solution would be to calculate the erosion
for all pixels in a block. We have also found that an erosion in 16×16 blocks can
be implemented using two 16× 1 and 1× 16 erosions, requiring less operations.

Algorithm 2: Erosion using shared memory: g(x) = εb(f)(x), where x =
[x0][y0] and [tx][ty] is the offset in a block

1: tx = threadIdx.x; ty = threadIdx.y; // offset in block
2: x0 = blockIdx.x*blockDim.x+ tx;
3: y0 = blockIdx.y*blockDim.y+ ty; // offset in image
4: data[18][18]; // allocates shared memory define data[x][y] of f[x0][y0]
5: if border block[tx][ty] then
6: if border f[x0][y0] then
7: data[x][y] = MAX;
8: else
9: data[x][y] = f[x0][y0];

10: end if
11: end if
12: data[tx+1][ty+1] = f[x0][y0];
13: g[x0][y0] = erosion in data[tx+1][ty+1];
14: ...

3.2 EDT on the GPU Using 1D Erosions on Shared Memory

The algorithm presented in this section computes the EDT in two steps. In the
first one, the EDT is calculated for the columns using a sequential algorithm, on
the CPU. On the second step, the EDT is computed for the lines, using a brute
force algorithm on the GPU until convergence.

In the second part, the GPU’s shared memory is used, in a similar fashion to
the 1D convolution found in the SDK, convolutionSeparable 1. This algorithm

1 Source: http://developer.nvidia.com/cuda-toolkit-sdk

http://developer.nvidia.com/cuda-toolkit-sdk
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was inspired by the LZ algorithm [9]. By Equation 3, bi can be decomposed into
four structuring functions of one dimension, two vertical North (bNi) and South
(bSi), and two horizontal East (bEi) and West (bWi):

bNi =

[
−2i+ 1

0

]
, bEi =

[
0 −2i+ 1

]
, bSi =

[
0

−2i+ 1

]
, bWi =

[
−2i+ 1 0

]
.

(4)
This part of the algorithm is calculated through successive erosions by the

structuring functions bE1, bE2, . . ., and bW1, bW2, . . . until stabilization, due to
the idempotence property. The LZ implementation uses queue structures to store
the pixels that could be altered in an erosion, minimizing the necessary opera-
tions. In order to efficiently use the shared memory, the algorithm to compute
the successive erosions for the lines uses structuring functions that have the same
dimension as the thread blocks. Thus, using blocks with a 16×16 dimension and
considering erosions in a single dimension, the structuring function to be used
will have a 1 × 16 dimension. Consider bli = [−2i+ 1 0 − 2i+ 1] where the
origin, at the center, is bold and i ∈ {1, 2, . . .}. It is possible to define bG1 of
1× 16 dimension, as bG1 = bl1 ⊕ · · · ⊕ bl8 . To generalize this equation, consider
bGk

= bl8(k−1)+1
⊕· · ·⊕ bl8(k−1)+8

, where k ∈ {1, 2, . . .}. The bG1 structuring func-
tion will be used on the first iteration of the 1D erosion on the columns. On the
second iteration, the bG2 structuring function, also of 1 × 16 dimension, will be
used, and so on. Refer to Figure 1.

Fig. 1. Illustration of the structuring functions bG1 , bG2 , bG3 e bG4

The second algorithm (as in Algorithm 1) computes successive erosions on
the GPU, with varying structuring functions bG1 , bG2 , . . ., using the sequential
erosion as its input image f . With this 1× 16 structuring function, each thread
performs erosion on eight pixels, instead of a single one, as in Algorithm 2,
improving the efficiency of the algorithm.

4 Conclusions

The algorithms presented in this paper were compiled and executed on the fol-
lowing computer: MacBook OS X - v.10.6.5 - 1.26GHz Intel Core 2 Duo, with
2GB RAM, and a NVIDIA GeForce 9400M GPU.
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The table 1 shows the performance of the algorithms presented in this paper
when applied to three images, as shown in Figure 2. The classic and efficient
Eggers-CPU algorithm runs on the CPU [5]. The 1D-LZ-CPU algorithm runs on
the CPU and was described in [9]. The 2D-GPU, 1D-GPU and 1D-LZ-GPU algo-
rithms presented in this paper compute the EDT using the GPU and its shared
memory. The 2D-GPU algorithm considers a 3 × 3 neighborhood. The 1D-GPU

algorithm decomposes the structuring function in 1× 16 and 16× 1 dimensions.
The 1D-LZ-GPU version computes the EDT for the image lines using a sequential
algorithm running on the CPU, while its second part uses the GPU to compute
the EDT for the columns.

Table 1. Execution times of several algorithms applied to different images (time in
seconds)

512× 512 1024 × 1024

img1 img2 img3 img1 img2 img3

Eggers− CPU 0.051 0.018 0.022 0.201 0.095 0.095

1D − LZ − CPU 0.014 0.012 0.303 0.138 0.077 2.494

2D −GPU 0.012 0.625 0.626 0.048 4.903 4.905

1D −GPU 0.018 0.152 0.224 0.063 1.148 1.717

1D − LZ −GPU 0.013 0.083 0.088 0.057 0.614 0.654

Analyzing this table we observe good performance on the GPU implementa-
tions for the image img1, Figure 2. This is due to the low number of iterations
(erosions) since the objects for computation of the EDT are small. As for the
images img2 and img3, the number of required erosions to compute the EDT
is high, and these GPU implementations need improvement and/or the use of
machines with increased processing power, such as the TESLA GPUs. Even
so, the 1D-LZ-GPU implementation already performs comparatively well against
Eggers-CPU. It should also be noted that all the GPU implementations used in
this paper are known as brute-force, and even then have results comparable to
the best CPU algorithms for some kinds of images.

EDT(img1) EDT(img2) EDT(img3)

Fig. 2. EDT obtained from input images: img1, img2 and img3 (refer to the text)
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Abstract. Single-Gaussian and Gaussian-Mixture Models are utilized in vari-
ous pattern recognition tasks. The model parameters are estimated usually via
Maximum Likelihood Estimation (MLE) with respect to available training data.
However, if only small amount of training data is available, the resulting model
will not generalize well. Loosely speaking, classification performance given an
unseen test set may be poor. In this paper, we propose a novel estimation tech-
nique of the model variances. Once the variances were estimated using MLE,
they are multiplied by a scaling factor, which reflects the amount of uncertainty
present in the limited sample set. The optimal value of the scaling factor is based
on the Kullback-Leibler criterion and on the assumption that the training and test
sets are sampled from the same source distribution. In addition, in the case of
GMM, the proper number of components can be determined.

Keywords: Maximum Likelihood Estimation, Gaussian Mixture Model,
Kullback-Leibler Divergence, Variance, Scaling.

1 Introduction

In this article the estimation of parameters of a single Gaussian and Gaussian Mixture
Models (GMMs) is investigated. Gaussian models are often used in pattern recognition
in order to classify or represent the data. An input training set is given and the task is
to extract relevant information in a form of a statistical model. The training set is often
limited, thus it is difficult, sometimes even impossible, to capture the true/source data
distribution with high accuracy. Moreover, in extreme cases the estimation can produce
numerically unstable estimates of unknown model parameters. In order to estimate the
model parameters often Maximum Likelihood Estimation (MLE) is used. MLE focuses
just on the training set [1], not respecting the representativeness of the true/source dis-
tribution from which the given data were sampled. However, in the pattern recognition,
the performance of a system on unseen data is crucial.

Methods proposed in this article are based on a reasonable assumption that the source
distribution of the training and test set are the same. Therefore, the proposed criterion
focuses on the similarity of the true data distribution and estimated model parameters.
For this purpose we use the Kullback-Leibler Divergence (KLD) [2] and we integrate
over the entire parameter space. We investigate the case where at first the model pa-
rameters are estimated via MLE, and subsequently only the variance parameters are
modified. Indeed, the variance does reflect the uncertainty of the model.

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part I, LNCS 8258, pp. 49–56, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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At first, the situation with single Gaussian models is examined. Further, the conclu-
sions are extended to the case of Gaussian mixture models. The proposed method is
able to determine a proper number of GMM components, which is often set empirically
(several data-driven approaches were already studied, see [3–5]).

We demonstrate on a sequence of experiments that the log-likelihood of the modi-
fied model given an unseen test set increases, mainly in situations when the number of
training data is low.

2 Estimation of Parameters of a Single-Gaussian Model

Assume a random data set X = {x1, x2, . . . , xn}, which is iid (independent and identi-
cally distributed), and sampled from univariate normal distributionN (0, 1). The sample
mean μ̂ and sample variance σ̂2 are given by the formulas:

μ̂ =
1

n

n∑
i=1

xi, σ̂2 =
1

n− 1

n∑
i=1

(xi − μ̂)2. (1)

From Central Limit Theorem, it can be derived that the estimate of the sample mean μ̂
has normal distributionN (0, 1

n ), and the estimate of the sample variance (n−1)σ̂2 has
a Chi-square distribution χ2(n− 1) with n− 1 degrees of freedom and variance equal
to 2n − 2 [6]. Note that both the distributions of sample mean and sample variance
depend only on the number of samples n. Estimates (1) give the best log-likelihood on
the training set, but since MLE does not involve any relation to the source distribution
of the data, these estimates do not achieve the highest value of the log-likelihood for
unseen data generated from the source distributionN (0, 1).

Since maximization of the log-likelihood of the model given data sampled from the
source distribution is strongly related to the minimization of a KLD [7], we propose a
new criterion based on KLD:

J(α, n) = Eμ̂,σ̂2

{
DKL(N (0, 1)‖N (μ̂, ασ̂2))

}
, (2)

μ̂ ∼ N (0, 1/n), (n− 1)σ̂2 ∼ χ2(n− 1)

J(α, n) =

∫∫
DKL(N (0, 1)‖N (μ̂, ασ̂2))pμ̂pσ̂2dμ̂dσ̂2, (3)

where Eμ̂,σ̂2{} denotes the expectation computed over parameters μ̂, σ̂2; α is the un-
known scaling factor of the sample variance, and pμ̂, pσ̂2 are the prior distributions
(normal and scaled χ2) of sample mean and sample variance, respectively. Thus, we
measure how much information is lost when the source distribution N (0, 1) is approx-
imated by the estimated modelN (μ̂, ασ̂2). The task is to find an optimal scaling factor
α, which depends on the number of samples n and provides the best match of the sample
model and the source distribution.

Given the assumptions above the KLD is equal to:

DKL(N (0, 1)‖N (μ̂, ασ̂2)) =
1

2

(
μ̂2

ασ̂2
+

1

ασ̂2
+ ln α+ ln σ̂2 − 1

)
(4)



Single-Gaussian and Gaussian-Mixture Models Estimation for Pattern Recognition 51

Before the derivation of the solution of (3), let us define:

Q(n) =

∫ ∞

0

1

σ̂2
pσ̂2dσ̂2 = G(n)

∫ ∞

0

1

σ̂2
(σ̂2)n/2−1exp

(
−1

2
σ̂2

)
dσ̂2, (5)

G(n) = (2n/2Γ (n/2))−1, (6)

where G(n) is the normalization term guaranteeing that the χ2 probability distribution
function integrates to one. In order to get an analytical solution for Q(n) let us use the
integration by substitution, where the substitution δ = 1/σ̂2 is used. Then, it is easy to
show that [6]:

Q(n) = G(n)

∫ ∞

0

δ

[
δ−n/2−1exp

(
− 1

2δ

)]
dδ

=

∫ ∞

0

δ pδ dδ =
1

n− 2
, n > 2, (7)

where pδ is the Inv-χ2(n) distribution with n degrees of freedom, therefore (7) is in fact
the mean of this distribution.

Now, substituting for KLD in (3) from (4) and utilizing (7) we get:

J(α, n) = const +
1

2

(
1

α

∫ ∞

−∞
μ̂2pμ̂dμ̂

∫ ∞

0

1

σ̂2
pσ̂2dσ̂2 +

1

α

∫ ∞

0

1

σ̂2
pσ̂2dσ̂2 + ln α

)
= const +

1

2

(
n− 1

nα
Q(n− 1) +

n− 1

α
Q(n− 1) + ln α

)
= const +

(n+ 1)(n− 1)

2nα
Q(n− 1) +

1

2
ln α, (8)

where const represents the part of the criterion independent of α. To find the minimum
of (8), the partial derivative is taken with respect to the unknown parameter α. Setting
the derivative to zero yields:

∂J

∂α
= 0 =⇒ 1

2α
− (n2 − 1)

2nα2
Q(n− 1) = 0, (9)

αn =
n2 − 1

n
Q(n− 1) =

n2 − 1

n(n− 3)
. (10)

It should be stated that Q(n − 1) given in (7) has no solution for n < 4. However,
sometimes also models for a low amount of samples may be requested (such situation
may occur quite often when estimating GMM parameters, see Section 3). Therefore,
we extrapolated the α values in order to get the solution for n > 1. The function used
for extrapolation was a rational one, what is in agreement with the solution given in
(10). Moreover, we request that the first derivative and the value at the point n = 3.5
(this point was taken to match the experimental values for n < 4 reported below) of the
extrapolation function and function given by equation (10) are equal. The form of the
extrapolation function is:

αn =
66.83

n− 1
− 20.31, (11)

which goes to infinity at the point n = 1.
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To support the analytically derived values we performed several experiments. At
first we draw a large amount of n-tuples for a specific value of n, and computed sample
mean and sample variance of samples in each tuple. Next, we took each sample mean
and sample variance computed in the previous step, multiplied the sample variance
by one specific value of α, evaluated the KLD (4) for each sample mean and scaled
sample variance, and computed the mean mKLD

α,n across all the obtained KLDs. This was
repeated for various values of α. Finally, the optimal value α∗ was the one which gave
minimal mKLD

α,n , thus α∗ = arg minα mKLD
α,n . The process was repeated several times,

hence the optimal value of α was a random variable. The graph of optimal variance
scaling factors α∗ obtained analytically and experimentally is depicted in Figure 1,
note that for increasing n the value of α∗ converges to 1.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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Fig. 1. Dependence of the optimal value of variance scaling factor α on the number of samples.
The solid line represents the optimal values given by the analytical solution (10), the dotted line
represents the extrapolation (11). The edges of the boxes represent the 25th and 75th percentile
of the optimal α∗ computed using the Monte Carlo simulations described in the text, and the line
inside the box is the median value.

2.1 Additional Notes

– When deriving the multiplication factor α, for simplicity the source distribution
was assumed standard normalN (0, 1). Without any loss of generality the solution
is valid also for the more general case of the source distribution N (μ, σ2), but the
derivations would involve additional shifting and scaling.

– The solutions (10) and (11) can be used also for non-integer values, e.g. in the
estimation process of GMM discussed below.

– As illustrated in Figure 1 and from the fact that for n < 4 analytical solution for α
is not defined, models estimated from such a low amount of samples are unreliable.
Hence, a careful consideration should precede before they are used.
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– By now, only a univariate case was assumed. In the multivariate case with a diago-
nal covariance matrix, individual dimensions are mutually independent. Therefore,
the scaling factor α can be applied on each diagonal element of the covariance
matrix separately (recall that α depends only on the number of training data).

– Dealing with multivariate normal distributions with full covariance matrices is con-
siderably more difficult. A method based on two multiplicative constants, one for
diagonal and one for non-diagonal elements of the covariance matrix, was proposed
in [8].

3 Robust Estimation of Parameters of a GMM

In the case of a Gaussian mixture model with diagonal covariance matrix, the conclu-
sions made in the previous section may be used. Thus, variance of individual Gaussians
is multiplied by the scaling factor αn in dependence on the number of samples ac-
counted for this Gaussian. However, rather than an exact number of samples accounted
for each Gaussian, a soft count ns

m is given for each Gaussian m = 1, . . . ,M :

ns
m =

n∑
t=1

γmt, γmt =
ωmN (xt;μm,Cm)∑M
i=1 ωiN (xt;μi,Ci)

(12)

where γmt is the a-posterior probability of feature vector xt occupying m-th Gaussian
in the GMM, n is the overall number of samples, ωm is the weight of the m-th Gaussian.
Now, new ML estimates of mean vectors μ̂m and diagonal covariance matrices Ĉm of
a GMM are computed as:

μ̂m =
1

ns
m

n∑
t=1

γmtxt, (13)

Ĉm = diag

(
1

ns
m

n∑
t=1

γmt(xt − μ̂m)(xt − μ̂m)T

)
, (14)

where the function diag() zeros the non-diagonal elements.
As discussed in Section 2, the distribution of diagonal elements of sample covariance

matrix Ĉm is the scaled χ2(ne
m − 1) distribution with variance ne

m − 1, but note that
ne
m does not equal ns

m. The value of ne
m will depend on a-posteriors γmt, and in order

to derive the correct value we will proceed as follows.
Given two sample sets Xa of size na and Xb of size nb drawn from N (0, 1), the

variance of the sample mean of each set will be 1/na and 1/nb. Note that the variance
of the total sum of sample sets Xa, Xb is:

var

(∑
x∈Xa

x

)
= na, var

(∑
x∈Xb

x

)
= nb. (15)

Now, let all the samples in the set Xa be weighted by a scalar a and the samples in Xb

by a scalar b. The variance of the total sum of sample sets Xa, Xb changes to:

var

(∑
x∈Xa

ax

)
= a2na, var

(∑
x∈Xb

bx

)
= b2nb. (16)
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Let Xc be the set constructed from all of the weighted samples from both Xa and Xb.
The weighted sample mean and the variance of the total sum of samples in Xc are given
by formulas:

μ̂c =

∑
x∈Xa

ax+
∑

x∈Xb
bx

ana + bnb
, (17)

var

(∑
x∈Xa

ax+
∑
x∈Xb

bx

)
= a2na + b2nb, (18)

respectively, and therefore for the variance of the weighted sample mean μ̂c we get:

var(μ̂c) =
a2na + b2nb

(ana + bnb)2
. (19)

In the case, where each sample in the set Xc is weighted by a different weight ci,
equation (19) changes to:

var(μ̂c) =

∑nc

i=1 c2i

(
∑nc

i=1 ci)
2 . (20)

Comparing the variance of weighted and unweighted sample mean, the equivalent num-
ber of unweighted samples ne can be derived:

1

ne
=

∑nc

i=1 c2i

(
∑nc

i=1 ci)
2 , ne =

(
∑nc

i=1 ci)
2∑nc

i=1 c2i
. (21)

Hence, in the case of mth Gaussian in the GMM the value of ne
m is given as:

ne
m =

(
∑n

t=1 γmt)
2∑n

t=1 γ2
mt

. (22)

Note that the value of ne
m is a real number, but this is not a problem since both (10) and

(11) are defined also for non-integer values.

3.1 Robust Update of GMM Variances

According to equations derived above, the robust estimation of GMM consists of steps:

1. Compute new maximum likelihood estimate of means (13)
and covariances (14) of the GMM.

2. Evaluate the value of ne
m given in (22) for each m = 1, . . . ,M .

3. Compute the scaling factor αm,ne
m

for each Gaussian m = 1, . . . ,M
given the respective ne

m.
4. Multiply diagonal elements of each covariance matrix Ĉm by αm,ne

m
.

We performed simple experiments, which demonstrate the effect of the proposed proce-
dure. Results are given in Figure 2. Note that when the GMM components with ne

m < 4
are discarded during the estimation process, the log-likelihood of the test (unseen) sam-
ples is higher. Since the training of a GMM is an iterative procedure, the number of
equivalent samples ne

m is determined in each iteration for each GMM component m.
Thus, the number of GMM components is controlled through the entire estimation.
Hence, a GMM with a proper number of components is obtained at the end of the esti-
mation.
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Fig. 2. Dependence of the log-likelihood of a GMM given a large number of samples generated
from the source distrubtion on the number of samples used to train the GMM. The source dis-
tribution of samples is represented by a GMM with 2 components, from which limited amount
of data is sampled. In common, 3 GMMs with 2 components were trained, but only from the
limited number of samples (x-axis) generated from the source distribution. Dotted line represents
the baseline (GMM trained via MLE, no variance adjustments); in the case of the solid line MLE
estimates of the GMM’s variance were multiplied by the optimal scaling factor α; in the case of
the dashed line the scaling factor α was used and GMM components with ne

m < 4 were dis-
carded during the estimation process (only a single Gaussian model was used). The experiment
was run a large number of times, and for each number of training samples (x-axis) the mean value
of log-likelihood, obtained in each run of the experiment, was computed.

4 Conclusions

The paper investigated the estimation of parameters of Gaussian models in cases with
low amount of training data. It was shown that the model trained via MLE does not
generalize well to unseen data. We have demonstrated how to adjust the parameters if
the source distribution of test and training data is identical. The method is based on the
Kullback-Leibler divergence, we adjust the variance of the model multiplying it by a
scaling factor α, which depends only on the number of samples.

Through the paper a crucial assumption was made that the samples are mutually
independent. However, this is often not the case in real applications (e.g. time series
of a measurement), where instead of number of given samples one should estimate the
number of independent samples. I.e. the information content present in a set of mutually
dependent samples is lower than the information content in a sample set of the same size
containing independent samples. Therefore, the estimated number of independent sam-
ples should be lower. Technique aimed to estimate the independent number of samples
was investigated in [8].

The proposed estimation updates were incorporated into the GMM estimation soft-
ware implemented at the Faculty of Applied Sciences, University of West Bohemia,
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Czech Republic. The GMM estimator supports both diagonal and full covariance ma-
trices, and it is well suited for processing of large datasets. Moreover, it supports also
acceleration provided by GPU [9], [10] and multi-threaded SSE instructions. The li-
cense is free for academic use. More information are available at http://www.kky.
zcu.cz/en/sw/gmm-estimator.
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Set Distance Functions

for 3D Object Recognition�
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Abstract. One of the key steps in 3D object recognition is the match-
ing between an input cloud and a cloud in a database of known objects.
This is usually done using a distance function between sets of descrip-
tors. In this paper we propose to study how several distance functions
(some already available and other new proposals) behave experimentally
using a large freely available household object database containing 1421
point clouds from 48 objects and 10 categories. We present experiments
illustrating the accuracy of the distances both for object and category
recognition and find that simple distances give competitive results both
in terms of accuracy and speed.

1 Introduction

There is a growing interest in the use of 3D point cloud images for many tasks,
since the recent introduction of cheap sensors that produce RGB plus depth
images, such as the Microsoft Kinect or the Asus Xtion.

One of the most challenging tasks to be achieved with such data is to recognize
objects in a scene. An important part of the process of recognition is to be able
to compare the representations of the input (test or probe) data against stored
(train or gallery) data. The objects are usually represented by sets of descriptors.
Several distances exist that are able to work with sets of descriptors, notably the
Pyramid Match Kernel [1], for object recognition from images.

It is important to obtain a quantitative notion of the performance of such
distance functions. In this paper we present a comparison between 8 distance
functions for 3D object recognition from point clouds. Two types of descriptors
are used and the relative distance performance is similar in both cases. We
show both the object and category accuracies that can be obtained from these
distances and also the computational cost in terms of the time it takes to process
the test set used. From the experiments we conclude that good performance can
be obtained using quite simple distance functions, both in terms of accuracy and
speed.

The rest of the paper is organized as follows: the next section presents an
overview of the 3D object recognition pipeline used in this paper, the follow-
ing section explains the descriptors used; section 4 presents the distances that
are evaluated; section 5 contains the experiments and the paper ends with the
conclusions in section 6.
� We acknowledge the financial support of project PEst-OE/EEI/LA0008/2013.
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2 The 3D Object Recognition Pipeline

The input cloud goes through a keypoint extraction algorithm, the Harris3D
keypoint detector implemented in PCL [2]. The covariance matrix of the surface
normals on a point neighborhood is used to find the point’s response to the
detector. Then descriptors are obtained on the extracted keypoints and these
form a set that is used to represent the input cloud. This set is matched against
sets already present in the object database and the one with largest similarity
(smallest distance) is considered the match for the input cloud.

3 Descriptors

In this paper we use the two descriptors that produced the best results in the
comparative evaluation performed in [3]. They both use color information.

The first one is the Point Feature Histograms (PFH) [4]. This descriptor’s
goal is to generalize both the surface normals and the curvature estimates.

Given two points, p and q, a fixed reference frame, consisting of the three
unit vectors (u, v, w), is built centered on p using the following procedure: 1) the
vector u is the surface normal at p; 2) v = u× p−q

d 3)w = u×v; where d = ‖p−q‖2.
Using this reference frame, the difference between the normals at p (np) and q
(nq), can be represented by : 1) α = arccos(v · nq); 2) φ = arccos(u · (p− q)/d);
3) θ = arctan(w · np, u · np).

The angles α, φ, θ and the distance d are computed for all pairs in the k-
neighborhood of point p. In fact, usually the distance d is dropped as it changes
with the viewpoint, keeping only the 3 angles. These are binned into an 125-bin
histogram by considering that each of them can fall into 5 distinct bins, and the
final histogram encodes in each bin a unique combination of the distinct values
for each of the angles. One of these 125-bin histograms is produced for each input
point.

The version of PFH used in this paper includes color information and is called
PFHRGB. This variant includes three additional histograms, one for the ratio
between each color channel of p and the same channel of q. These histograms
are binned as the 3 angles of PFH and hence produce another 125 float values,
giving the total size of 250 values for the PFHRGB descriptor.

The second descriptor used is the SHOTCOLOR [5]. This descriptor is based
on the SHOT descriptor [6], that obtains a repeatable local reference frame
using the eigenvalue decomposition around an input point. Given this reference
frame, a spherical grid centered on the point divides the neighborhood so that
in each grid bin a weighted histogram of normals is obtained. The descriptor
concatenates all such histograms into the final signature. It uses 9 values to
encode the reference frame and the authors propose the use of 11 shape bins
and 32 divisions of the spherical grid, which gives an additional 352 values. The
descriptor is normalized to sum 1. The SHOTCOLOR adds color information
(based on the CIELab color space) to the SHOT descriptor. It uses 31 bins each
with 32 divisions yielding 992 values, plus the 352 from the SHOT which gives
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the total of 1344 values (plus 9 values to describe the local reference frame).
The histograms in this case store the L1 distance between the CIELab color of
a point and the color of its neighbors.

4 Set Distances

The focus of this paper is on the distance function that should be used when
comparing two point clouds that are represented by sets of descriptors. Note that
the word “distance” should be interpreted loosely since some of the functions
presented below do not verify all the conditions of a norm (for instance, D4 and
D5 can produce a value of zero even if the two input clouds are not the same).

A descriptor can be seen as a point inX ⊂ Rn. We investigate the performance
of functions that receive two sets of descriptors, A ⊆ X and B ⊆ X , with a
possible different number of elements, |A| 
= |B|, and return a (distance) value
in R.

We will use below the following distances between descriptors (not sets) x, y ∈
X :

Lp(x, y) =

(
n∑

i=1

| x(i)− y(i) |p
)1/p

, p = 1, 2

dχ2 (x, y) =
1

2

n∑
i=1

(x(i)− y(i))2

x(i) + y(i)
.

We will assign a code to each set distance in the form Dz, where z is an integer
to make it easier to refer to the several distances throughout the paper.

4.1 Hausdorff Distance

Consider S(X) to be the set of subsets of X that are closed, bounded and non-
empty. Let A,B ∈ S(X). The Hausdorff distance, D1, between sets A and B is
defined as

D1(A,B) = max{sup{d(a,B) | a ∈ A}, sup{d(b, A) | b ∈ B}}

where d(a,B) is a distance between a point a and a set B, defined by

d(a,B) = min{d(a, bi), i = 1, . . . , |B|}

and d(a, bi) is the distance between two points a and bi in Rn. In our case we
use the L1 distance between two points.

4.2 Pyramid Match Kernel

The pyramid match kernel (D2) [1] uses a hierarchical approach to matching the
sets. It finds the similarity between two sets as the weighted sum of the number
of feature matchings found at each level of a pyramid.
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Consider the input space X of sets of n-dimensional vectors bounded by a
sphere of diameter D. The feature extraction function is

Ψ(x) = [H−1(x), H0(x), . . . , HL(x)]

where L = �log2 D�+ 1, x ∈ X , Hi(x) is a histogram vector formed over data x
using n-dimensional bins of side length 2i. Then, the pyramid referred above is
given by:

KΔ(Ψ(y), Ψ(z)) =

L∑
i=0

Ni/2
i

where Ni is the number of newly matched pairs at level i. A new match at level
i is defined as a pair of features that were not in correspondence at an finer level
(j < i) became in correspondence at level i. To become in correspondence means
that both fall in the same histogram bin.

4.3 Other Set Distances

We propose to evaluate also the following set distances, that are all variations
around the same theme: use statistical measures like the mean, standard varia-
tion, maximum and minimum of the points in each set to develop simple repre-
sentations for the set. The goal is to search for a simple set distance that produces
accurate results and at the same time is fast, such that, other things permitting
(the time the keypoints take to be detected plus the time the descriptor takes
to extract) would allow for real time cloud processing.

Below we use aj(i) to refer to the coordinate i of the descriptor j.
The distance D3 is obtained by finding the minimum and maximum values

for each coordinate in each set and sum the L1 distances between them

D3 = L1(minA,minB) + L1(maxA,maxB)

where
minA(i) = min

j=1,...,|A|
{aj(i)}, i = 1, . . . , n

and
maxA(i) = max

j=1,...,|A|
{aj(i)}, i = 1, . . . , n

and likewise for minB(i) and maxB(i).
The next two distances are simply the distance between the centroids of each

set, cA and cB respectively, using the descriptor distances L1 and L2:

D4 = L1(cA, cB) and D5 = L2(cA, cB) .

Distance D6 is the sum of D4 with the L1 distance between the standard
deviation for each dimension (coordinate) of each set:

D6 = D4 + L1(stdA, stdB)
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where

stdA(i) =

√√√√ 1

|A| − 1

|A|∑
j=1

(aj(i)− cA(i))2, i = 1, . . . , n

and likewise for stdB.
Distance D7 is similar to D6 but instead of using the L1 distance uses the dχ2

distance between two vectors:

D7 = dχ2(cA, cB) + dχ2 (stdA, stdB) .

The final distance to be evaluated consists on the average L1 distance between
all points in one set to all the points in the other (the normalized average linkage
set distance):

D8 =
1

|A||B|

|A|∑
i=1

|B|∑
j=1

L1(ai, bj) .

5 Experiments

5.1 Dataset

We used a subset of the large dataset of 3D point clouds from [7]. The original
dataset contains 300 objects from 51 different categories captured on a turntable
from 3 different camera poses. We used 48 objects representing 10 categories. The
training data contain clouds captured from two different camera views, and the
test data contains clouds captured using a third different view. The training set
has a total of 946 clouds while the test set contains 475 clouds. Since for each
test cloud we do an exhaustive search through the complete training set to find
the best match, this amounts to a total of 449.350 cloud comparisons for each
of the evaluated descriptors and each of the distance functions used.

5.2 Setup

The code used in the experiments was developed in C++ using the PCL library
[2] on a linux machine. The code used for D2 was from [8]. We used the Uni-

formPyramidMaker with the following parameters obtained from experiments
with a 10% subset of the one used in the final evaluation: finest_side_length
= (1/250, 10−4), discretize_order=(3, 3) and side_length_factor=(2, 2)
for (PFHRGB, SHOTCOLOR), respectively. To make a fair comparison between
the distances, all steps in the pipeline are equal.

The descriptors are found on the keypoints obtained using the Harris3D key-
point detector with the following parameters: the radius for normal estimation
and non-maxima supression (Radius) was set to 0.01 and the sphere radius that
is to be used for determining the nearest neighbors used for the keypoint detec-
tion (RadiusSearch) was also set to 0.01.

The only parameter needed for the descriptor calculation is the sphere radius
that is to be used for determining the nearest neighbors used in its calculation.
It was set at 0.05 for both descriptors.
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Table 1. Category and object recognition accuracy and the time used for evaluating
the test set in seconds, for the different distances and descriptors

PFHRGB SHOTCOLOR
Accuracy[%] Accuracy[%]

Distance Category Object Time[s] Category Object Time[s]

D1 91.14 70.04 1914 67.72 44.09 175
D2 63.92 42.19 2197 26.58 17.93 1510
D3 88.82 67.93 1889 88.82 67.72 132
D4 90.93 75.95 1876 87.97 69.20 137
D5 82.70 67.72 1886 79.75 55.49 134
D6 93.88 78.06 1891 87.76 65.82 134
D7 94.73 79.96 1894 88.19 65.82 127
D8 77.64 60.13 1914 71.73 41.35 174

5.3 Results

Table 1 and figure 1 contain the results of the experiments done.
An object is considered to be recognized when an input cloud is matched

by one of the views of the same object in the database, whereas a category is
considered to be recognized when the input cloud is matched to a view of any
of the objects that are in the same category as the input object. So, category
recognition is an easier task than that of object recognition, since in the latter
case the system needs to distinguish between the (similar) objects within a given
category. That category recognition is easier than object recognition can be seen
in table 1. For all distance functions, category accuracy is always higher than
object recognition.

Regarding the accuracies obtained, these results show the importance of choos-
ing a good distance function. For a given descriptor there are considerable vari-
ations in terms of accuracy: in terms of object recognition the results for the
PFHRGB vary from around 42% to almost 80% whereas for the SHOTCOLOR
descriptor the results vary from around 18% to over 69%.

The best results are obtained for the PFHRGB with distance D7 and for
the SHOTCOLOR with distance D3 for category recognition and D4 for object
recognition.

From the recall × (1-precision) curves in figure 1, we note that the results can
be grouped into three sets: the best results for both descriptors, and with similar
curves, are obtained with distances D4, D6 and D7 (for SHOTCOLOR, D3 is
also on this first group). The second group contains the distances D1, D5 and D8

(D3 is in this second group for PFHRGB) that show a decrease in performance
when compared with the first group. The difference in performance from group 1
to group 2 is larger with SHOTCOLOR than with PFHRGB. This might have to
do with the fact that SHOTCOLOR works on a much higher dimensional space
(1344) than PFHRGB (250). Distance D2 is the sole member of the third group
with a poor performance. We believe this might have to do with a poor choice of
parameters. But having to choose 3 parameters for a distance that is very heavy
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Fig. 1. Recall × (1-Precision) curves for the object recognition experiments using the
PFHRGB (top) and SHOTCOLOR (bottom) descriptors (best viewed in color)

from a computational point of view is not an easy task and we might needed to
spent more time searching for the optimal parameters to obtain a better result.

Distance D4 is better than D5 (these are simply the L1 and L2 distances
between cloud centroids) for both descriptors, confirming the fact that the Eu-
clidian distance is not appropriate for these high dimensional spaces.

The fifth and seventh columns of table 1 contain the time in seconds that took
to run the evaluation (test set) on a 12 thread version using a i7-3930K@3.2GHz



64 L.A. Alexandre

CPU on Fedora 17. The PFHRGB is much more demanding in terms of compu-
tational complexity than the SHOTCOLOR, hence the time it takes is around
10 times more than the time used by the SHOTCOLOR. In terms of time taken
to complete the tests, D2 is much slower than the rest. Given its time overhead,
D2 should only be used if it could provide an improved accuracy when compared
to the remaining distances, but that was not the case.

6 Conclusions

An important part of a 3D object recognition setup is the distance function
used to compare input data against stored data. Since there are many possible
distance functions that can be used in this scenario, the user is faced with a
tough decision regarding which distance to choose. The obvious way is to make
experiments comparing these functions for their particular descriptor and data,
but this can be a time consuming task.

This paper presents an evaluation of 8 distance functions on a large point
cloud dataset using two descriptors. From the results of the experiments made
we conclude that simple distances (such as D3, D4, D6 and D7) can be a good
choice since their performance both in terms of accuracy as in terms of speed
surpasses other more common used ones such asD1 andD2. The former distances
also benefit by not requiring the adjustment of parameters.
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Abstract. In recent years, Evolutionary Algorithms (EAs) have been re-
markably useful to improve the robustness of Artificial Neural Networks 
(ANNs). This study introduces an experimental analysis using an EAs aimed to 
evolve ANNs architectures (the FS-EPNet algorithm) to understand how neural 
networks are evolved with a steady-state algorithm and compare the Single-
step-ahead (SSP) and Multiple-step-ahead (MSP) methods for prediction tasks 
over two test sets. It was decided to test an inside-set during evolution and an 
outside-set after the whole evolutionary process has been completed to validate 
the generalization performance with the same method (SSP or MSP). Thus, the 
networks may not be correctly evaluated (misleading fitness) if the single SSP 
is used during evolution (inside-set) and then the MSP at the end of it (outside-
set). The results show that the same prediction method should be used in both 
evaluation sets providing smaller errors on average. 

Keywords: evolutionary algorithms, artificial neural networks, EANNs, single-
step-ahead prediction, multi-step-ahead prediction. 

1 Introduction 

Artificial Neural Networks (ANNs) are mathematical models inspired by the 
structural and functional organization of biological neural networks. They are 
characterized by having input, hidden and output units with interconnection between 
them, where each connection has an associated weight which is updated during the 
training phase to allow the network to learn a given task. Since their origin, they have 
been used to solve control [1], classification [2, 3] and prediction [4] tasks, showing a 
performance and adaptability superior to those of conventional mathematical models. 
Even though neural networks have proved to be a robust method for solving different 
kinds of problem, they involve several different parameters that need to be chosen 
appropriately to obtain a functional network. Early studies used to select many of 
those parameters by trial and error [5]. Another difficulty is that some of these 
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parameters may change over time, and thus more elaborate methods are needed to 
adjust them. On the other hand, ANNs and Evolutionary Algorithms (EAs) have been 
widely inspired by biological organisms, usually giving them superior performance 
when both are applied together to solve a problem than when they are applied in 
separate stages. Thus, Evolutionary Artificial Neural Networks (EANN), have been 
remarkably useful at adapting the ANNs’ parameters during evolution [2, 6, 7]. This 
work uses the FS-EPNet algorithm [8], which is based on the EPNet algorithm [3], 
with the difference that the input Feature Selection is performed, i.e. the FS-EPNet 
algorithm evolves the inputs of ANNs. 

The usage of EAs over ANNs requires an extra error-evaluation (inside-set to test), 
because during evolution several ANNs are evaluated (fitness assignment). Note that 
hand design ANNs (HDANNs), usually require one test set to measure the 
generalization performance. Therefore, there may be different evaluation sets within 
an EANN: validation set to discover overtraining; inside-set to obtain the fitness of an 
individual during evolution, and a final test set called outside-set to evaluate the 
generalization performance after the evolution has finished. In this way, inside and 
outside terms are used to make reference to performance evaluation, during and after 
the evolutionary process has been completed. Besides test sets, a prediction method is 
needed; e.g. the Single-step-ahead (SSP) and Multiple-step-ahead (MSP) prediction 
methods. It may be worth to remark that those methods have been previously used in 
econometrics [17]; nevertheless, they have not been used before with EANNs, as in 
this work. 

Thus, this paper is aimed to compare SSP and MSP procedures over both test sets 
(inside and outside) to forecast two chaotic time series (TS): Lorenz and Mackey-
Glass, usually tested in prediction tasks. Thus, the networks (evolved with the FS-
EPNet algorithm) may not be correctly evaluated (misleading fitness) if the single 
SSP is used during evolution (inside-set) and then the MSP at the end of it (outside-
set), i.e. both evaluations may be performed in the same terms. Moreover, no previous 
studies have been found explaining such scenario, which should be tested empirically.  

2 FS-EPNet Algorithm 

The FS-EPNet algorithm [8] is based upon the standard Evolutionary Programming 
(EP) approach, aimed at evolving ANN architectures and weights at the same time as 
obtaining smaller network topologies. The original algorithm (EPNet) [3] does not 
tackle the feature evolution; i.e. input adaptation in the same evolutionary process. 
However, further improvements consider their evolution [8]; i.e. Feature Selection 
EPNet algorithm (FS-EPNet), being the algorithm used during this empirical study. 
The FS-EPNet algorithm emphasizes the evolution of ANN behaviors by EP, like 
node-splitting, which maintains the behavioral (i.e. functional) link between the 
parent and its offspring. It does not have a crossover operator, nor a genotype to 
represent the individuals. Instead it carries out the evolutionary process by performing 
only nine different mutation operations directly on the phenotype as shown in Fig. 1: 
(1) hybrid training composed of training with the Modified Back Propagation (MBP) 
algorithm and Simulated Annealing (SA); (2) node deletion; (3) connection deletion; 
(4) input deletion; (5) delay deletion; (6) connection addition; (7) node addition; (8) 
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input addition; and (9) delay addition. The algorithm performs only one such mutation 
on the selected individual in each generation. The training in the EPNet algorithm is 
only a partial training; i.e. the networks are not trained until they converge. This is 
motivated by computational efficiency, which lets the evolution advance faster, with 
the individuals improving their fitness through the generations. For a more detailed 
description of the EPNet algorithm see [3, 8]. 
 

 

 
(a) (b)

Fig. 1. Feature Selection EPNet algorithm (FS-EPNet); a) general procedure and b) FS-EPNet 
mutations 

3 Time Series Prediction  

For the Time Series (TS) prediction problem with ANNs, it is common to try to use a 
small subset of recent TS information to perform the prediction. Therefore, we are 
aiming to obtain accurate predictions using only a finite segment of previous values 
up to the point to be predicted. Thus we have:  , , , … ,  (1)

where d is the number of inputs, k is the time delay and f is the method or algorithm 
that performs the prediction (the network for this work). There is one condition that 
needs to be satisfied: given an attractor of dimension D, we must have d ≥ 2D + 1 [9]. 
There are two general ways to perform the prediction of TS in terms of the desired 
number of values to be forecast. Thus, assume the TS X is [x1, x2, ..., xt], the number 
of points ahead to predict is n, the test set is [xt+1, xt+2 ,..., xt+n], and the forecast in the 
same interval is [yt+1, yt+2, ..., yt+n]. In the following examples (Table 1), we are 
assuming that the number of inputs (past information) is 3, delays are set at 1 and the 
prediction step is Δt =1.  
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3.1 Single-Step-Ahead Prediction (SSP)  

The simplest method is just to predict a value in the future, and we may call this 
method One-step or Open-loop or Single-step-ahead prediction (SSP). It is called 
Open-loop forecasting because a pattern is used to predict a value and no feedback is 
used to continue the predictions as in an autoregressive method. Table 1b shows the 
single-step prediction method. A sample of previous works that have used (SSP) are 
[10–13], where [10, 11] predict the Lorenz TS and [12, 13] the Mackey-Glass TS.  

3.2 Multi-Step-Ahead Prediction (MSP) 

Another interesting prediction method is the Multi-step-ahead prediction (MSP) 
which uses closed-loop forecasting through an autoregressive method as shown in 
Table 1a.  

Table 1. a) Multiple-step-ahead and b) Single step-ahead prediction methods 

a) Forecasting        inputs      b) Forecasting             inputs 
 , ,    , ,  
 , ,   , ,  
 , ,    , ,  
 , ,    , ,  

 
Note that in Table 1 the predictions are used as input values in subsequent 

predictions; i.e. it is repeated one-step prediction several times, using the actual 
prediction to predict the next value. The input vector from the SSP (Table 1b) and 
MSP (Table 1a) methods may be seen as a window of d values with k delays that is 
moved one position ahead every time a value is predicted, to be ready to predict the 
next value. The real difference between both methods is that the SSP moves the 
window input vector over the original data available, meanwhile the MSP starts with 
the original data, overlap original and predicted data, and finish with predicted values 
in the window input vector. Previous publications that used the MSP method are [3, 
14, 15], where [14, 15] are focused on the Lorenz TS and [3] predicting the Mackey-
Glass TS.  

3.3 MSP and SSP Comparison  

For the previous section, it can be said that prediction tasks with SSP are similar to 
classification tasks as one input vector produce one output vector and there is no 
feedback in the output as in MSP. Having said that, a standard procedure in the 
literature is to evaluate an inside-set with the SSP method for classification and 
prediction tasks to obtain the itness of individuals. Moreover, any publication has 
been found so far that uses MSP over the inside-set, that kind of evaluation is never 
said and it may be assumed to be SSP as it is the standard.  
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4 Experimental Set-Up and Data Sets  

As previously remarked, it was decided to use an extra test set during evolution as 
tasks solved with MSP require to test the fitness of individuals with the same method 
(MSP) when the evolution finish. Thus, the networks may not be correctly evaluated 
(misleading fitness) if the single SSP is used during evolution and then the MSP at the 
end of it. For example, it can be assumed that SSP method is easier than MSP by the 
feedback in the later, therefore, if a prediction task requiring MSP is evaluated with 
SSP during evolution (inside-set), it will probably produce a different fitness than if 
the MSP is used in the same inside-set, which could produce a bias in the selection 
process with networks not so fit. For that reason it was needed to use an extra test set 
in prediction tasks, so the validation set is used mainly to evolve the learning rate and 
the inside-set to measure the fitness as it were a real prediction. However, it may be 
expected to obtain a smaller fitness error during evolution with SSP than MSP. 
Besides these two sets, the training set was subdivided again (30 patterns) to have a 
validation set to avoid overtraining (Early Stopping) and provides the maximum 
generalization performance for the selected architecture. In this way the training may 
be stopped if over fitting is occurring. As validation set is independent of the task at 
hand, or the prediction method, it was used the SSP approach to introduce it after each 
epoch of the training process, as the standard in the literature. 

There are some common parameters that were fixed for the experiments 
throughout this study: population size 30, generations of evolution 3000, initial 
connection density 30%, initial learning rate 0.15, minimum learning rate 0.01, 
epochs for learning rate adaptation 5, number of mutated hidden nodes 1, number of 
mutated connections 1-3, temperatures in SA 5, iterations per temperature in SA 100, 
1500 epochs of training inside the FS-EPNet, and 2000 of further training at the end 
of the algorithm. The only stopping criterion was the number of generations. For all 
the experiments, 30 independent runs were performed to ensure statistical validity of 
the results. The inside-set was setup with 30 patterns to perform the prediction and the 
MSP is performed on the outside-set in all TS tested. Thus, from al data available, the 
last 100 patterns were taken for the final test set (outside-set) and the next 30 patterns 
for the inside-set to obtain the fitness of individuals, the rest of the data (from the 
beginning) was taken for the training set. All these parameters were set at convenient 
traditional values and are not intended to be optimal. Therefore, it is worth to say that 
those parameters were set up after some preliminary experiments and they have not 
been studied thoroughly to say they are the best. Further studies may optimize them. 

Two chaotic TS were used to test the insights presented in this study: a) the first 
one is the Lorenz TS [16] generated with the fourth order Runge-Kutta method as 
done in [14], i.e. the following values are used to generate the TS: Δt = 1, σ = 10, r = 
28, β = 8/3 and time step = 0.05 using 1000 values to train and 100 to test (outside-
test); and b) the Mackey− Glass TS usually generated with fourth order Runge-Kutta 
method as Lorenz TS, where the parameters used here to generate it are: x(0) = 1.2, τ 
= 17, α = 0.2 and β = −0.1 as done in [3] using 500 values to train and 500 to test 
(outside-set). Therefore, the outside-set for Lorenz TS was set to 100 and for 
Mackey− Glass to 500 patterns, where the last part of the training set was subdivided 
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into the inside-set as commented above. Note that in this work, the same parameters 
as the literature were replicated to have a fair comparison in the experimental results. 
Moreover, the FS-EPNet algorithm uses less patterns that in the literature to train the 
networks (as the inside-set is used), thus a drawback is induced, instead of giving an 
advantage. The Normalized Root Mean Squared Error (NRMSE) is used to measure 
the error in the inside and outside sets. 

5 Experimental Results  

This section presents the results from a set of experiments developed to determine if 
the usage of SSP in the inside-set may degrade the performance of task requiring 
MSP on the outside-set. To illustrate this, consider Fig. 2 for the best predictions 
found for the Lorenz with MSP (Fig. 2a and 2b) and SSP (Fig. 2c and 2d) on the 
inside-set during evolution and using MSP on the outside-set. Interestingly to note 
(and as previously expected), the average fitness of the networks evaluated with SSP 
on the inside-set have a lower error during all the evolutionary process than the fitness 
obtained from the MSP as can be seen in Fig. 3. The best prediction error on the 
inside-set at the end of the 3000 generations of evolution were smaller with the SSP 
than with the MSP as expected too (Table 2, NRMSE Inside-set row). It was also 
obtained a smaller error with the SSP on the average fitness over all independent trials 
as shown at the end of generations in Fig. 3. At the end of the evolution, even the 
network that uses MSP have a bigger fitness error in the inside-set, it obtained the 
smallest generalization error, with statistical significant having a p-value < 0.01 (Fig. 
2a), because the selection mechanism during evolution was in the same terms as the 
generalization measurement. 
 

 

Fig. 2. Best predictions for Lorenz TS after 3000 generations, inside-set with MSP (Fig. 2a and 
2b) and inside-set with SSP (Fig. 2c and 2d). Figs. 2b and 2d present the error in terms of Yi(t)− 
Zi(t), where Yi(t) is the prediction at time t and Zi(t) is the original data to be predicted (outside-set)  
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Table 2 presents the individual parameters evolved for the Lorenz TS, showing 
how the NRMSE over the inside-set is smaller when the SSP is used during evolution 
than MSP, but the generalization performance is smaller when the MSP is used in 
both test sets. Also note that using SSP produces the convergence of delays as it is 
easier to predict with SSP than MSP for the feedback in the latter as previously 
remarked. 

Table 2. Lorenz time series individual results 

Parameter  MSP – MSP  SSP − MSP  
 Mean       Std Dev    Min  Max  Mean   Std Dev Min  Max 

Number of Inputs  6.70000  1.91455 3 10  6.13333 1.79526 3 9 
Number of Delays  2.46666  0.93710 1 4  1 0 1 1 
Number of Hidden Nodes  13.3333  4.25346 5 26  12.8 3.28423 6 18 
Number of Connections  108.466  56.1989 39 351  92.9333 35.5614 43 172 
NRMSE Validation Error  0.02475  0.02848 0.00062 0.12563 0.00145 0.00104 0.00035 0.00447 
NRMSE Inside-set  0.01657  0.00775 0.00676 0.03480 0.00189 0.00084 0.00123 0.00477 
NRMSE Outside-set  0.52301  0.26162 0.09834 0.92639 0.73256 0.23340 0.34431 1.20320 

 

 

Fig. 3. Average fitness value of Lorenz TS with MSP and SSP over the inside-set  

Comparing these results against results found in the literature, Dudul [14] obtain a 
NRMSE for the best individual with a State-space 8th order of NRMSE = 0.1822 and 
a NRMSE = 0.7325 with a Regularized ANN-ARMA, while the FS-EPNet obtain a 
NRMSE = 0.09834 (Table3) for the best individual found. To finalize the results of 
this work for the Mackey-Glass TS are similar for those presented for the previous 
case, nevertheless there was no statistically significance in the results. They are no 
presented here for space reasons. 

6 Discussion and Conclusions 

This work compares two prediction methods: Single step-ahead (SSP) and Multi-step-
ahead, during the evolution of Artificial Neural Networks (ANNs) for time series (TS) 
prediction. The experiments were carried out using the FS-EPNet algorithm designed 
to evolve ANNs architectures and weights simultaneously through a steady-state 
procedure. From two chaotic TS tested (Lorenz and Mackey-Glass), it was 
determined that tasks that use SSP will use SSP for the fitness during evolution and to 
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evaluate the generalization performance. Contrary, tasks that use MSP will use the 
same MSP method in both parts of the process. Further research is required to test a 
broad range of TS to generalize these results. 
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Abstract. This work presents a new method to apply the Hough Trans-
form to 2D and 3D cloud points using the conformal geometric algebra
framework. The objective is to detect geometric entities, with the use of
simple parametric equations and the properties of the geometric algebra.
We show with real images and RGB-D data that this new method is very
useful to detect lines and circles in 2D and planes and spheres in 3D.

1 Introduction

The Hough transform is an algorithm for feature extraction used in image anal-
ysis, computer vision, and digital image processing [4]. This technique collects
imperfect instances of objects within a certain class of shapes by a voting proce-
dure in accumulators or cells. This voting scheme is carried out in a parameter
space, where candidate objects are obtained as local maximas in the accumula-
tor space. The selection of the maxima of possible clusters are identified by a
type of K-means algorithm. The Hough transform was developed for the identi-
fication of lines in the image [1], but later works extended the Hough transform
to identifying positions of different shapes, for example circles or ellipses[2][3].

In this work, using the conformal geometric framework, we extend the ran-
domized Hough transform to detect lines and circles in 2D cloud points of images
and lines, planes, circles and spheres in 3D cloud points, obtained by 3D scanners
and RGB-D sensors. We show the efficiency of our algorithm using real images
and data of a RGB-D sensor.

This paper is organized as follows: Section II explains the Randomized Hough
Transform. Section III presents a short introduction to geometric algebra and
the operations that will be used in this work. Section IV outlines the conformal
geometric algebra and the concepts used in the algorithm. Section V includes a
description of the algorithm, and section VI discusses some algorithmic details.
Section VII presents some experimental results. Finally section VIII is devoted
to the conclusions.

2 Randomized Hough Transform

This work is an extension of the Randomized Hough Transform, RHT, [9]. The
RHT is an algorithm proposed to solve the problems of the Hough Transform,
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c© Springer-Verlag Berlin Heidelberg 2013
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HT. In the HT algorithm for each image pixel not only the cells of the possible
entities are increased, but also of many other. This creates a problem to find
the local maxima. Also the accumulator array is predefined by windowing and
sampling the parameter space. For the correct detection of the entities we need
a good parameter resolution. For this we need a big array that takes too much
storage and computing time. Without some previous knownledge of the image
is very hard to determine the size of the accumulator array. A bad accumulator
array can lead to the next problems: a failure to detect some specific entities,
difficulties in finding local maxima, low accuarcy, large storage and low speed.

The RHT solves these problems using parametric equations to only compute
the posible entities and a dynamic accumulator array to solve the problems with
the storage. By doing this the storage space is greatly reduced. Other concept
added is a scalar δ used as tolerance for similitude. When the difference between
two computed entities is smaller than δ, then we consider that the two are the
same. This scalar is used to set the resolution of the accumulator array. If we
increase δ the resolution and storage space will be lower.

The steps of the algorithm are:
1) Randomly take n points from the set, being n the number of points needed

to define the entity.
2) Solve the parametric equations to get a candidate.
3) Search for the candidate in the dinamyc accumulator array. If the candidate

is found increase the accumulator by one. Otherwise add a new cell for the
candidate and set its accumulator to one.

4) If an accumulator surpasses a threshold, we check if the entity exists in the
image. If it exists, we add it to a list of detected entities and delete from the set
all the points that belong to it.

Finally, we must note that the RHT is a stochastic method which its perfor-
mace depends on the selection of δ and the randomized selection of the points.

3 Geometric Algebra

Geometric algebra is a coordinate-free approach to geometry based on the alge-
bras of Grassmann and Clifford [5][6][7].

Let V be a vector space of dimension n. We will define an algebra Gn, called
a geometric algebra. Let e1, e2, ...en be a set of basis vectors of Vn.

The product, called the geometric product, of 2 basis vectors is anticommu-
tative, ejek = −ekej, ∀j 
= k . These basis vectors must square to 1 or -1;
this means that there are positive integers, p and q, such that n = p + q and
e2i = 1, i = 1...p, e2i = −1, i = p+ 1, ...n.

The product of elements of the basis of Gn will simply be denoted by jux-
taposition. In this way, from any two basis vectors, ej and ek, a new element
of the algebra is obtained, and denoted as ejek = ejk. This introduces the con-
cep of grade. The product of n non-equal basis vectors will result in a new
generator of grade n. An algebra with n basis vectors will have 2n generators
{1, e1, ...en, e12, ...e(n−1)n, ...e1...n}. The generator of grade n is called the unit
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pseudoscalar of the algebra, and is generally denoted by the letter I. The Gn is
a direct sum of the linear subspaces of grades 0,1,2,...n.

Gn =

0∧
Vn ⊕

1∧
Vn ⊕

2∧
Vn ⊕ ...

n∧
Vn (1)

A multivector A ⊂ Gn is separated in its blade elements of grade r as:

A = 〈A〉0 + 〈A〉1 + 〈A〉2 + ...+ 〈A〉n =
n∑

r=0

〈A〉r (2)

The most commons operations in geometric algebra are

– Geometric product
C = AB (3)

It is associative, and distributive with respect to addition
For each A ∈ Gn it may exist an element A−1 which is called the multiplica-
tive inverse of A and it is defined as follows:

AA−1 = 1 (4)

A−1 =
A

A2
(5)

– Inner product, also known as dot product

〈A〉r · 〈B〉s = 〈AB〉|r−s| (6)

A ·B =
∑
r

∑
s

〈A〉r · 〈B〉s (7)

If r or s are 0, the result is 0. This is a grade decreasing operation.
– Outer product, also known as wedge product

〈A〉r ∧ 〈B〉s = 〈AB〉r+s (8)

A ∧B =
∑
r

∑
s

〈A〉r ∧ 〈B〉s (9)

This is a grade increasing operation. If a and b are blades of grade 1 then
a ∧ b = −b ∧ a. This means that the wedge product of two vectors is anti-
commutative.

– Reverse and Norm

The reverse operation is denoted by †. As its name suggests, it reverse the
order of the elements of a k-blade, e.g. the reverse of e123 is e321, also e321 =
−e123, so to compute the reverse of a k-blade, we must count the number of
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signs caused by the interchange of elements. This can be computed whit the
next formula

〈A〉†r = (−1)(r(r−1)/2)〈A〉r (10)

The norm of a multivector is computed as follows

|A| =
√
A†A (11)

This operation is defined to be applied in euclidean spaces, where all the
basis square to 1. In this work, all the equations that involve the norm in
conformal space are written as |A| =

√
AA.

4 Conformal Geometric Algebra

Conformal geometric albebra is a representation of the vector space as presented
in [8]. The objective is to expand the vector space Rn with the Minkowski space
R1,1. The algebra of the Minkowski space has an orthonormal basis {e+, e−}
with the properties:

e2+ = 1, e2− = −1 (12)

e+ · e− = 0 (13)

A null basis, formed by {e∞, e0}, is used to represent the point at infinity and
the origin of a projective space and they can be defined as:

e∞ = e− − e+ e0 =
e− + e+

2
(14)

The vectors of the null basis have the properties:

e2∞ = e20 = 0 e∞ · e0 = −1 (15)

The Minkowski Plane E is the unit pseudoscalar of this space and is defined
as:

E = e+ ∧ e− = e∞ ∧ e0 (16)

G3 is the algebra of the 3D space. The orthonormal basis of this algebra is
defined as {e1, e2, e3}. A point in this algebra is called an euclidean point, and
is denoted by xE .

xE = Xe1 + Y e2 + Ze3 (17)

The unit pseudoscalar of this algebra is denoted by IE and is defined as

IE = e1 ∧ e2 ∧ e3 (18)

Conformal geometric algebra can be defined as:

G4,1 = G3 ⊕G1,1 (19)
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The unit pseudoscalar of this algebra is Ic and is defined as

Ic = e1 ∧ e2 ∧ e3 ∧ e∞ ∧ e0 = IE ∧ E (20)

The sphere is the basic unit of calculus in G4,1. The sphere is defined as a set
of points that are at the same distance (radius) from one point called center. If
this definition is applied to Rn the entity that fulfills it changex in each vector
space, i.e. in R0 this entity is the point, in R1 it is the point pair, in R2 it is
the circle, in R3 it is the sphere and in R4 and higher dimensions is called a
hypersphere.

Fig. 1. Projection of the point xE ∈ G1 into the conformal space G2,1 (which is a
circle)

In CGA the Euclidean space is embedded in a higher dimension. Because G2,1

is posible to visualize, we use it to exemplify this process, see figure 1. First the
basis e+ expand the space by one dimension. In this dimension we can draw a
unitary sphere centered in the origin. The basis e− allows us to lift the bottom
of the sphere to the origin of the space. Now we make a line from the top of the
sphere to the euclidean point xE . The intersection of this line with the sphere is
the conformal point xc. The conformal point xc can be obtained with:

xc = xE +
xE · xE

2
+ e0 = Xe1 + Y e2 + Ze3 +

X2 + Y 2 + Z2

2
e∞ + e0 (21)

Now a sphere in R0, a point, is a blade of grade 1. As defined before, the wedge
product is a grade increasing operation. If we take 2 spheres of grade 1, points,
the result is a sphere of grade 2, a point pair. Therefore the wedge product of 3
points is the circle and with 4 points we get a sphere.

There exist 2 special cases to consider: the first one occurs when the points
are not in general position (GP ), this means that there are 3 collinear points
or 4 coplanar points. In this case the result will be a line with 3 points and a
plane with 4 points. The line and plane are a circle and a sphere respectively
with infinite radius. The other is known as the dual property of the conformal
space: The result of the wedge product between an entity and a point will be 0
if the point lies on the entity.
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The combination of the wedge product results and the dual property give us
the Outer Product Null Space, OPNS, representation. A visualization of this is
presented in the figure 2.

Entity Notation OPNS representation Grade

Point xc xE +
x2
E

2 e∞ + e0 1
Point Pair ON(PP ) xc1 ∧ xc2 2
Circle ON(Z) xc1 ∧ xc2 ∧ xc3; in GP 3
Line ON(L) xc1 ∧ xc2 ∧ xc3 3
Sphere ON(S) xc1 ∧ xc2 ∧ xc3 ∧ xc4; in GP 4
Plane ON(P ) xc1 ∧ xc2 ∧ xc3 ∧ xc4 4

Fig. 2. OPNS represen-
tation

In G4,1 there exist an alternate representation. This representation is called
the Inner Product Null Space, IPNS. To change from OPNS to IPNS represen-
tations one multiply by the unit pseudoscalar Ic. This multiplication is called
the dual operation. Because I2c = −1 its inverse is −Ic, so to return to OPNS we
multiply by −Ic. This is done to avoid a change of sign between both represen-
tations.

ON(X)(Ic) = IN(X) IN(X)(−Ic) = ON(X) (22)

A special case is the point representation xc. The OPNS representation of the
conformal point is also valid in IPNS.

The combinations of these two representations allow us to obtain the infor-
mation of the blades that define the geometric entities, as it is shown next along
with the equations to obtain the parameters.

– Sphere

IN(S) = ±α(Cc −
r2

2
e∞) (23)

Where Cc is the conformal point of the center CE , r is its radius and α is
some scale. Because of the fact that the blade e0 can only be equal to 1 in
the sphere case, the scale can be obtained as:

±α = −IN(S) · e∞ (24)

The equations to compute the parameters of the normalized sphere are

CE = (IN(S) · (−IE))IE (25)

r2 = IN(S)2 (26)
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– Plane

IN(P ) = ±α(nE + de∞) (27)

Where nE is the normal of the plane, d is the distance to the origin and α
is a scale factor equal to |nE |. The equations to compute the parameters of
the normalized plane are:

nE = (IN(P ) · (−IE))IE (28)

d = −IN(P ) · e0 (29)

– Circle
To obtain the plane in which the circle lies we use:

ON(P ) = e∞ ∧ON(Z) (30)

The norm of ON(Z) is the same of ON(P ). The sphere with the same center
and radius as the circle is obtained by:

IN(S) = ON(Z) ·ON(P )−1 (31)

– Line

α =
√
ON(L) ·ON(L) (32)

where α is the scale of factor used to normalize the line. Once we have
normalized the line we can get its direction dE , momentum m and closes
point to the origin OE .

dE = ON(L) ·E (33)

m = (0.5e∞ − e0) · IN(L) (34)

OE = −dE ·mIE (35)

5 Conformal Geometric Hough Transform

The steps for the algorithm are the same as the RHT. These steps can be de-
scribed as follows:

1) Transform the euclidean points in the cloud to conformal points. Then
randomly take sets of 4 points, xci.

2) Do the wedge product between the first 3 points to get a circle ON(Z). Do
ON(S) = ON(Z) ∧ xc4.

2.1) If ON(S) is 0 then xc4 lies on ON(Z). Do the wedge product between
ON(Z) and e∞. If the result is 0, ON(Z) is a line, otherwise a circle.

2.2) If ON(S) is not 0 then do the wedge product between ON(S) and e∞. If
the result is 0, ON(S) is a plane, otherwise a sphere.
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3) After we detect the entity that the points xci form, we must eliminate two
ambiguities. The first one is the scale factor and the second is a variant sign caused
by the anticommutative behavior of the wedge product between 2 vectors. To elim-
inate these ambiguities we work in IPNS for the sphere and plane. A division by
the ±α obtained in equation 24, solves both ambiguities for the sphere. For the
plane we can get α = |nE | to solve the scale factor. For the variant sign we use the
function atan2 with nE , because it can distinguish between diametrically opposite
directions. The function atan2 has the interval [-π, π], so the sign of the angle ob-
tained is used to eliminate the variant sign. In the only exception to this method,
where X = Y = 0, we use the sign of Z. To eliminate these ambiguities we work
in OPNS for the line and circle. For the line we get α with equation 32. We also
solve the varaint sign with the function atan2 and its direction dE . The circle can
be converted to a plane and use the same steps.

Once we have discarded the ambiguities we search for the candidate in its
correspodig dinamyc accumulator array. If the candidate is found increase the
accumulator by one. Otherwise add a new cell for the candidate and set its
accumulator to one.

4)If an accumulator surpasses a threshold k we check if it exists in the cloud.
If it exist we added it to a list of detected entities and delete all the points that
belong to it from the set. To eliminate those points we comput their distance to
the entity to see if they are close enough with the next formulas:

D = ||CE − xE | − r| (36) D = |xC · IN(P )| (37)

Equation 37 is also valid for the line. With the circle we use both.
There are some minimal changes to apply this algorithm in the planar case.

The first one is that we only detect lines and circles, so we take sets of 3 points
instead of 4. We only have 2 coordinates, X and Y , so Z is set to 0 by default.
The elimination of the ambiguities of the circle will be diferent, because all the
circles lie on the image plane IN(Pimg) = 0e1+0e2+ e3+0e∞. If we obtain the
plane of the circle this will be like IN(P ) = ±αe3, then both ambiguities can be
discarded with a division by ±α.

6 Analysis

One good reason to use CGA to attack this problem is the parametric equations.
They are more simple than the regular equations. For example the equations used
for circles in 2D with center (a, b) and radius r with 3 given points are:

ma =
y2 − y1
x2 − x1

(38) mb =
y3 − y2
x3 − x2

(39)

a = (ma(mb(y1−y3))+mb(x1+x2)−
ma(x2 + x3)

2(mb −ma)
(40)

b =
−a

ma
+

x1 + x2

2ma
+

y1 + y2
2
(41)

r =
√
(x− a)2 + (y − b)2 (42)
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These equations are more complicated than the equation used to represent a
circle in OPNS. Other advantage is that the OPNS representations are related
between them. For instance, the equations of the circle and line are the same, the
result only depends of the position of the points, this also occurs with the sphere
and plane. Also the result of the equation with tree points partially solves the
one with four. As has been stated in other works [10], to maintain this advantage
we need an optimal way to implement the equations in CGA. For this purpose
we use GAALOP [11]. GAALOP is a precompiler for C/C++ and OpenCL. This
tool allows to make an efficient implemenation. It reduces the storage space by
using only the space needed to store the nonzero coefficients of the multivectors,
and also ignores all the unnecessary operations.

In the worst case scenario this algorithm has a computational complexity of
O(
(
n
s

)
), where n is the numbers of points in the cloud, and s is the number of

points in each set, 4 for 3D cloud points and 3 in the planar case. For comparison
this is similar to O(ns) but discarding permutations and repetitions. This is
reduced by only taking a sample of the points from the cloud and eliminate
those that already has been detected. In the 3D case other viable option will be
to use a deep segmentation and then apply the algorithm to each zone.

7 Experimental Results

For the first experiments we used 2D images. In the first we take the picture of
a candy, see figure 3a, to detect the circle shaped candy and its stick. We first
apply a gaussian filter to reduce noise and then the Canny [12] algorithm to
detect borders and then our algorithm. In the figure 3b, we observe the detected
circle in color green and the stick lines in color red.

For the next image we use the picture of a bycicle, see figure 3c. The original
image shows a bicicle in a white background. The algorithm was able to detect
the 2 weels and 3 lines that form the frame.

Fig. 3. Experiments with the candy and bicicle images. Detected lines are in red and
circles in green.

In the last experiment, we used a RGB-D sensor, see figure 4.
As proposed in the analysis section, we use depth segmentation to reduce

the computational cost, see figure 5. We also use the Canny algorithm in the
RGB image to reduce the number of points, see figure 5. By doing this we have
been able to detect a sphere, the ball, and two planes, the table and the wall.
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Fig. 4. (left) The RGB image obtained with the sensor. (right) the depth image.

To delimite the table, the quality of the points were not enough to detect a circle,
but by using the parameters of the detected plane and the points that are close
to it as constrains, we can get an aproximation. The final result is visualized
using the sofware Webots [13], see figure 5.

Fig. 5. Depth segmentation and edge image used for the detection process

Although the aproximation of the table is good, we observe that it overlaps
with the wall and ball. We can correct this with the use of conformal transfor-
mations. In order to do this we construct a translator

T = 1 +
λ

2
nEe∞ (43)

Where nE is the direction of the translation, in this case the norm of the
planes, and λ is the overlaping distance. We can see the result in figure 6.

Fig. 6. (Left)Detection of the gemetric entities. (Middle)Angle used to show the error
in the aproximation of the table. (Right)Rectification of the table.

8 Conclusion

In this work we have presented the advantages of use CGA to implement the
Hough Transform. This mathematical framework let us detect different kind
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of shapes with very simple equations even in 3D. We must remark the repre-
sentations of the entities are vectors an also have an algebraic and geometric
interpretations that can be used for detection algorithms at higher levels of
complexity.

Future development of the algorithm will be focused in solving the high com-
putational cost. Other extension to be developed is to work in higher dimension
algebras to detect more complex entities, e.g. G6,3 to detect ellipses.
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Abstract. Recently, the sieve bootstrap method has been successfully
used in prediction of nonlinear time series. In this work we study the per-
formance of the prediction intervals based on the sieve bootstrap tech-
nique, which does not require the distributional assumption of normality
as most techniques that are found in the literature. The construction of
prediction intervals in the presence of patchy outliers are not robust from
a distributional point of view, leading to an undesirable increase in the
length of the prediction intervals.

In the analysis of financial time series it is common to have irregular
observations that have different types of outliers, isolated and in groups.
For this reason we propose the construction of prediction intervals for
returns based in the winsorized residual and bootstrap techniques for fi-
nancial time series. We propose a novel, simple, efficient and distribution
free resampling technique for developing robust prediction intervals for
returns and volatilities for TGARCH models. The proposed procedure is
illustrated by an application to known synthetic time series.

Keywords: Sieve bootstrap, Time series, Financial prediction intervals,
Forecasting in time series, Winsorized filter, GARCH, TGARCH models,
Volatility.

1 Introduction

The construction of prediction intervals in time series models with a finite number
of parameters and with known innovative processes, have been widely discussed
in the literature and it is known that these intervals are extremely sensitive to the
presence of innovation outliers [16].

Moreover, in the last two decades several free distribution models have been
proposed as an alternative for the construction of prediction intervals [15]. This
alternative consists in using a resampling technique commonly known as boot-
strap. Given that the realization of a time series does not satisfy the assumption
of being a succession of independent and identically distributed random vari-
ables, and given the highly dependent structure which characterizes the data,
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the authors [4,13,8] propose a bootstrap procedure based on the resampling of
the residuals, which provides good results in the context of time series in com-
parison with other alternatives. The first proposals based on bootstrap were
applied to linear ARMA(p, q) models, and then extended to other nonlinear
models, like GARCH(p, q), were the prediction intervals, were not only focused
in future observations of the series, in this case returns, but also in the volatility.

For linear models, the sieve bootstrap approach proposed by [1] is widely
used in non-parametric time series models, because of its effectiveness, com-
putational efficiency and for being constraint-free [13,8,9,3,11]. The idea of the
Sieve bootstrap method is to approximate the observed process by a high-order
autorregresive linear model, AR(∞), and generate new realizations from the
resampling of the residuals [3]. The first application of bootstrap to nonlinear
ARCH/GARCH models was proposed by Miguel and Olave [10]. The proposal
consisted in the construction of prediction intervals of returns and volatilities
by directly adding resampled residuals from an ARCH model to the respective
point forecasts. In 2005 an extension of this proposal was presented, by taking
into account the variability of the estimation of the parameters of the ARCH
model, by adding an additional step, that consisted in re-estimating the ARCH
parameters for each bootstrap realization of the returns [14]. Pascual et al. (2006)
[12] combined and extended these procedures by developing prediction intervals
for both returns and volatilities from GARCH models, and the obtained predic-
tion intervals were found to be well-calibrated, i.e., the number of observed data
falling within a prediction interval coincides with the declared coverage. In 2011
Chen et. al. proposed an alternative bootstrap method that was less demanding
in terms of computational cost [5]. The proposal was based in a Sieve bootstrap
procedure used in linear models, because ARCH/GARCH models can handle
the AR/ARMA Box-Jenkins family of linear models representation. The linear
representation is possible because the square of the ARCH/GARCH returns is a
linear process represented by AR/ARMA models [17,7]. However, if the original
data has innovative outliers, the classic and free distribution approaches that in-
clude the Sieve bootstrap procedure are affected by them, producing inflations in
the length of the prediction interval, which is unwanted. In the present work we
propose a methodology based on a winsorized filter for the residuals to mitigate
the inflation in the length of the prediction interval of Sieve bootstrap algorithms
proposed in 2011 [5] for ARCH/GARCH non-linear models. We show a compar-
ative study between the prediction interval length and its coverage with respect
to other proposals in the literature. The study was performed over the predic-
tion intervals of future values of returns and volatility. The paper is presented
as follows: In the next section we present the methodology used in this work. In
section 3 we show some simulation results. In the last section we present some
concluding remarks.

2 Methodology

The proposed method is an extension of the Sieve bootstrap method for
ARCH/GARCH models proposed in 2011 [5]. It consists in adding a stage in the
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algorithm, specifically step 4, which consists in computing the winsorized filter
for the estimated residuals. The algorithm is described below.

2.1 Winsorized Sieve Bootstrap Procedure of ARCH/GARCH
Process

The ARCH processes (Autoregressive Conditional Heteroskedastic) introduced
by Engle in 1982 [6], allow to model the variance or volatility dynamic as a
function of past observations of a return series. In 1986 [2] Bollerslev proposed an
extension of the ARCH models, incorporating available information on previous
volatilities in the Generalized ARCH or GARCH models.

GARCH(p,q) model [2]:

yt = σtεt (1)

σ2
t = α0 +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjσ
2
t−j (2)

where there is a restriction over its parameters α0 ≥ 0, αi ≥ 0 and βj ≥ 0, for i =
1, . . . , p and j = 1, . . . q, with a gaussian white noise process εt ∼ i.i.d.(0, 1). For

this process to be weakly stationary

max (p,q)∑
i=1

(αi + βj) < 1 must hold, implying

that V ar[yt] ≥ 0 is satisfied.
As mentioned in section 1 the use of Sieve bootstrap in ARCH/GARCH mod-

els is possible, because the square of the returns can be represented as linear
AR/ARMA models

y2t = α0 +

m∑
i=1

(αi + βi)y
2
t−i + νt −

q∑
j=1

βjνt−j (3)

where {νt}Tt=1 is the innovation process of y2t and m = max(p, q).
The algorithm with the winsorized step is described below

Winsorized Sieve Bootstrap Prediction Intervals for ARCH/GARCH
(WSB)

1. Estimate the ARMA coefficients α̂0, (α̂1 + β1), . . . , ( ̂αm + βm), β̂1, . . . , β̂q,

by means of Least Squares. Then estimate α̂i = (α̂1 + β1) − β̂i for i =
1, . . . , p.

2. Estimate the residuals {ν̂t}Tt=m+1
by means of

ν̂t = y2t − α̂0 −
m∑
i=1

(α̂i + βi)y
2
t−i +

q∑
j=1

β̂jνt−j for t = m+ 1, · · · , T (4)
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3. Center the estimated residuals by means of

ν̃t =

(
ν̂t −

1

T −m

T∑
t=m+1

ν̂t

)
(5)

where the empirical distribution is

F̂ν,T (y) =
T∑

m+1

1{ν̃t≤y} (6)

4. Apply the winsorized filters of order k to the residuals

ν̃
(t)

=

⎧⎨⎩
ν̃
(p+k+1)

if t < p+ k + 1

ν̃
(t)

if p+ k + 1 ≤ t ≤ T − k

ν̃
(T−k)

if t > T − k
(7)

5. Generate a resample {ν∗
t }Tt=1

from F̂ν,T (y).
6. Generate a Bootstrap sample of the squared returns {y2∗t }Tt=1

with

y2∗t = α̂0 +

m∑
i=1

(α̂i + βi)y
2∗
t−i + ν∗

t −
q∑

j=1

β̂jν
∗
t−j (8)

where y2∗k = α̂0

1−∑m
i=1(α̂i+βi)

and ν∗
k = 0 for k ≤ 0

7. Given {y2∗t }Tt=1
from step 6, estimate the coefficients α̂∗

0, (α̂1 + β1)
∗, . . . ,

( ̂αm + βm)∗, β̂∗
1 , . . . , β̂

∗
q , α̂

∗
i = (α̂1 + β1)

∗ − β̂∗
i for i = 1, . . . , p. The Boot-

strap sample of the volatility {σ2∗
t }Tt=1

is obtained with

σ2∗
t = α̂∗

0 +

p∑
i=1

α̂∗
i y

2∗
t−i +

q∑
j=1

β̂∗
j σ

2∗
t−j for t = m+ 1, · · · , T (9)

with σ2∗
t = α̂0

1−∑
m
i=1(α̂i+β̂i)

, for t = 1, · · · ,m.

8. Sample with replacement from F̂ν,T (y) to obtain the Bootstrap prediction
error process {ν∗

t+h}sh=1
where s ≥ 1.

9. Be y∗T+h = yT+h, ν
∗
T+h = ν̃T+h y σ2∗

T+h = σ2∗
T+h for h ≤ 0

y2∗T+h = α̂∗
0 +

m∑
i=1

(α̂i + βi)
∗y2∗T+h−i + ν∗

T+h −
q∑

j=1

β̂∗
j ν

∗
T+h−j (10)

σ2∗
T+h = α̂∗

0 +

p∑
i=1

α̂∗
i y

2∗
T+h−i +

q∑
j=1

β̂∗
j σ

2∗
T+h−j for h = 1, . . . , s (11)

10. Repeat steps 4 to 8, B times.
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11. Finally, prediction intervals are obtained (1− α)% for yT+h y σ2
T+h using

F̂ ∗
y2∗
T+h

and F̂ ∗
σ2∗
T+h

.

– For yT+h: [
−
√

H∗
(1−α),

√
H∗

(1−α)

]
, h = 1, · · · , s (12)

where H∗
(1−α) is the quantile 1− α of F̂ ∗

y2∗
T+h

– For σ2
T+h: [

0,K∗
(1−α)

]
, h = 1, · · · , s (13)

where K∗
(1−α) is the quantile 1− α of F̂ ∗

σ2∗
T+h

3 Simulation Results

In this section we compared our proposal (WSB) with state of the art models
applied to nonlinear time series models (GARCH).

The following tables show the results of the comparison of the models regard-
ing coverage and length of the intervals, in addition of the combined metric CQM
proposed in [1], which depends of the theoretical coverage and length, and the
empirical values obtained with the bootstrap prediction intervals. This metric is
a discrepancy metric between the theorical aim and the empirical performance,
for that, a smaller value obtained in this metric indicates a better performance
of the prediction interval.

3.1 Simulation for Nonlinear ARCH/GARCH Models

We compared the proposed method (WSB) with the proposal [5] for prediction
intervals of future values and volatility.

The parameters of the simulation were: B = 1000 resamples of X∗
T+h and

σ2∗
T+h, R = 1000 future values XT+h and σ2

T+h were simulated for each h = 1, 5
and 10 step-ahead. S = 1000 simulated the ARCH(2) process

yt = σt · εt (14)

σ2
t = 0.1 + 0.2y2t−1 + 0.15y2t−2 (15)

with the two different distributions for the innovation process {εt}t∈Z given by

Fεt = N(0, 1) (16)

and
Fεt = (1− ζ)N(0, 1) + ζN(0, 100) (17)

where (17) is the contaminated innovations process generated with the convex
linear distribution

Fεt = (1− ζ)N(0, 1) + ζN(0, σ2) (18)

where σ2 = 100 with a ζ = 0.05 level of contamination.
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For each simulated series the same procedure described in subsection 2.1 was
performed.

In tables 1 and 2 we present the results of the comparison of the prediction
interval for h = 1, 5 and 10 steps-ahead of the two methods with respect to their
average coverage, length of the intervals and the combined measure CQM.

In Table 1 we observe the results of the simulation of the innovative process
without contamination (16). We observe that algorithm (SB) and the proposed
(WSB) with different orders k, have similar results in terms of coverage and
empirical length, and that taking the residuals out of the extremes, decreases a
bit the performance, because the CQM value increases its magnitude. The 1-step
ahead predictions of volatility given by (11) are constant, so the CQM value can
not be calculated.

It is observed that under the presence of contamination in the innovative
process the prediction intervals of the algorithm (SB) are clearly affected by the
coverture of the returns and volatility, and also the increment in the length of
them. This can be seen in Table 2 by comparing the coverture and length of the
prediction intervals of the proposed method (SB) with the empirical coverture
and length. Also it is observed that the method (WSB) has a positive impact in
the performance of the prediction intervals of the returns and volatility. As the
order k of the proposed method is increased, the magnitude of the measure CQM
decreases for the returns and the volatility, thus diminishing the inflation of the
prediction intervals and average covertures. It seems that if the filter order of
algorithm WSB increases, the covertures and lengths of the prediction intervals
converge to the theoretical covertures and lengths.

Table 1. Results of the simulation of model ARCH(2) with an innovation process
N(0, 1)

h k Method Coverture Length CQM Coverture Length CQM
return (d.e.) return (d.e.) return volatility (d.e.) volatility (d.e.) volatility

h=1 - EMP 95% 1.52 - 95% 0.00 -
- SB 94.71 (3.23) 1.52 (0.12) 0.005 88.9 (31.41) 0.17 (0.08) –
1 WSB 94.70 (3.23) 1.52 (0.12) 0.005 88.00 (32.50) 0.17 (0.08) –
2 WSB 94.69 (3.24) 1.52 (0.12) 0.006 87.90 (32.61) 0.17 (0.08) –
3 WSB 94.69 (3.24) 1.52 (0.12) 0.006 86.90 (33.74) 0.17 (0.08) –

h=5 - EMP 95% 1.55 - 95% 0.23 -
- SB 94.77 (1.37) 1.54 (0.08) 0.008 93.77 (3.72) 0.27 (0.05) 0.211
1 WSB 94.72 (1.37) 1.54 (0.08) 0.008 93.70 (3.73) 0.27 (0.05) 0.207
2 WSB 94.70 (1.37) 1.53 (0.08) 0.012 93.63 (3.79) 0.27 (0.05) 0.204
3 WSB 94.67 (1.37) 1.53 (0.08) 0.014 93.53 (3.81) 0.27 (0.05) 0.200

h=10 - EMP 95% 1.55 - 95% 0.23 -
- SB 94.74 (1.33) 1.54 (0.08) 0.009 93.74 (3.72) 0.27 (0.05) 0.214
1 WSB 94.71 (1.34) 1.53 (0.08) 0.011 93.67 (3.75) 0.27 (0.05) 0.210
2 WSB 94.67 (1.33) 1.53 (0.08) 0.013 93.60 (3.78) 0.27 (0.05) 0.206
3 WSB 94.67 (1.33) 1.53 (0.08) 0.015 93.53 (3.80) 0.27 (0.05) 0.202
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Table 2. Results of the simulation of model ARCH(2) with an innovation process
Fεt = (1− ζ)N(0, 1) + ζN(0, 100)

h k Method Coverture Length CQM Coverture Length CQM
return (d.e.) return (d.e.) return volatility (d.e.) volatility (d.e.) volatility

h=1 - EMP 95% 2.44 - 95% – -
- SB 98.34 (6.11) 7.86 (15.71) 2.248 98.40 (12.55) 112.43 (1236.36) –
1 WSB 97.33 (8.24) 4.57 (3.59) 0.898 97.90 (14.34) 14.85 (81.14) –
2 WSB 96.52 (9.76) 2.94 (2.59) 0.647 97.80 (14.67) 7.74 (34.23) –
3 WSB 96.26 (9.78) 3.71 (2.04) 0.544 97.70 (14.99) 4.99 (15.92) –

h=5 - EMP 95% 1.78 - 95% 0.94 -
- SB 99.73 (0.84) 10.55 (18.51) 4.969 99.74 (1.31) 144.36 (1537.29) 152.633
1 WSB 99.51 (2.51) 6.99 (4.95) 2.970 99.62 (1.97) 20.85 (107.61) 21.186
2 WSB 99.52 (1.83) 6.35 (3.71) 2.616 99.57 (2.16) 11.44 (56.02) 11.292
3 WSB 99.48 (2.10) 5.97 (2.65) 2.397 99.52 (2.34) 7.28 (16.23) 6.792

h=10 - EMP 95% 1.61 - 95% 0.29 -
- SB 99.83 (0.18) 10.89 (18.87) 5.803 99.89 (0.17) 149.95 (1579.38) 507.893
1 WSB 99.77 (0.34) 7.38 (5.49) 3.627 99.84 (0.21) 23.06 (113.41) 77.270
2 WSB 99.55 (3.24) 6.67 (4.36) 3.187 99.82 (0.23) 13.56 (67.12) 45.054
3 WSB 99.51 (3.03) 6.25 (3.35) 2.92 99.79 (0.25) 8.79 (19.69) 28.800

4 Conclusion

In [1] and [5] the authors show that the Sieve bootstrap procedures obtains
better results than state of the art models for coverage and length of prediction
intervals and combined metric CQM.

In this work we show the effects of the presence of innovation outliers in
prediction intervals, which extend their length and coverage. We also show how
to mitigate these effects by applying a winsorized filter to the residual estimates.

The proposed method generates prediction intervals that are more accurate
in coverage terms and with shorter length. These improvements are reflected in
a lower value of the CQM metric.

As future work we propose the search for a method to identify the optimal
order k of the filter and we plan to test our proposal with real nonlinear time
series with outliers in order to perform a comparative study.
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tial support was also received from Mecesup FSM 0707.

References

1. Alonso, A., Peña, D., Romo, J.: Forecasting time series with sieve bootstrap. Jour-
nal of Statistical Planning and Inference 100, 1–11 (2002)

2. Bollerslev, T.: Generalized autorregressive conditional heteroskedasticity. Journal
of Econometrics 31, 307–327 (1986)
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Abstract. In this paper we propose a new descriptor for 3D point clouds that is
fast when compared to others with similar performance and its parameters are set
using a genetic algorithm. The idea is to obtain a descriptor that can be used in
simple computational devices, that have no GPUs or high computational capa-
bilities and also avoid the usual time-consuming task of determining the optimal
parameters for the descriptor. Our proposal is compared with other similar algo-
rithms in a public available point cloud library (PCL [1]). We perform a compara-
tive evaluation on 3D point clouds using both the object and category recognition
performance. Our proposal presents a comparable performance with other similar
algorithms but is much faster and requires less disk space.

1 Introduction

The current cheap depth+RGB cameras like the Kinect and the Xtion have increased
the interest in 3D point cloud acquisition and processing. One of the key steps when
processing this type of data are the descriptors, that enable a compact representation
of a region of a point cloud. Although there are already several available descriptors
[1,2], the motivation for this work was two-fold: first, many of the available descriptors
are computationally demanding, and make it difficult to use them in computationally
restricted devices; second, all the descriptors require the adjustment of one or more
parameters, which is usually done using a grid search or other similar process, which
can be a lengthy process.

The aim of this work is to design a descriptor that is computationally simple and
hence fast and that has its parameters obtained using a genetic algorithm (GA), so as to
address the two points raised above.

Section 2 presents the pipeline used in this work, from the input clouds to the match-
ing stage. Section 3 explains the ideas behind the proposed descriptor. The following
section describes the use of the GA with our descriptor. Section 5 illustrates the results
of the new descriptor and compares it to similar available descriptors. The final section
contains the conclusion and possible future work.

2 3D Object Recognition Pipeline

In this work the proposed descriptor uses both shape and color information. In order to
represent this information histograms were used.
� We acknowledge the financial support of project PEst-OE/EEI/LA0008/2013.
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First keypoints are extracted from the input clouds in order to reduce the cost of com-
puting the histograms. The keypoint cloud represents the input cloud by containing only
a subset of the original cloud such that an increased processing speed can be achieved.

After computing the keypoints we find the normals of both, the input and the key-
point clouds. The normals are used in the calculation of the shape histograms that will
be part of the final descriptor, as described below. The keypoint cloud is obtained from
the input cloud using a VoxelGrid [1] with leaf size of 2 cm.

The second part of the descriptor consists in adding color information. For this pur-
pose the RGB colors are transformed into HSV. This model is used because with the
HSV color space we can use only the H and S channels and obtain illumination in-
variance in terms of color representation. We create another histogram for the color
component using the hue and saturation channels. For the matching process the input
cloud descriptor is compared against the stored descriptors of known objects, using a
set distance function. The object recognition pipeline used is presented in figure 1.

Keypoint Extraction

Input Cloud

Object Database

Normals Extraction Color Extraction

Descriptor Extraction

Matching

Fig. 1. Object recognition pipeline

3 Descriptor

3.1 Regions around the Keypoints

The descriptor contains two parts: one to represent the shape and another to represent
the color. The data used are collected from two regions around the keypoints, the first is
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a disk with radius R1 and the second is a ring obtained by removing the first disk from
the one obtained using radius R2. This approach was proposed in [3]. These regions are
illustrated in figure 2.

2

R1

R

Keypoint

Region 1

Region 2

Fig. 2. The two concentric regions used to collect data around a keypoint: a disk (region 1) and a
ring (region 2)

The advantage of using this disk and ring regions is that it makes it possible to ana-
lyze two areas around the keypoint to create the histograms. They separate the informa-
tion between points that are very close to the keypoint and the points that further away
from it, yielding a better representation of the region around the keypoints.

3.2 Shape Information

After computing the keypoint clouds and all normals, for each keypoint we search all
of its neighbors inside region 1. This search is done in the original input cloud and for
this task the PCL utility KdTreeFLANN [1] is used.
The next step consists in finding the angle between the normal of this neighbor and the
normal of the keypoint. This will give us information regarding the object’s shape in
the keypoint’s neighborhood. Equation 1 shows how to calculate the angle.

angle = arccos

(
Normalkeypoint ·Normalneighbor

||Normalkeypoint|| · ||Normalneighbor ||

)
(1)

The angle is used in degrees.
We use an histogram to count the occurrences of the angles in the keypoint’s neigh-

borhood. The incremented bin is found using equation 2, where shapebins is the total
number of histogram bins.

bin =
angle · (shapebins − 1)

360
(2)

After we have found all angle for the points in a keypoint’s neighborhood, the his-
togram is normalized to sum 1.
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The process just described is done also for the region 2 and a second shape histogram
is obtained, at the same keypoint.

3.3 Color Information

The color histogram contains the saturation and hue information.
Again we look at the neighbors of a keypoint for their hue, H , and saturation, S,

values and select a binh and a bins, using the equations (3 and 4), where the total
number of bins is m2.

binh =
H ·m
360

(3)

bins =
S ·m
100

(4)

Now to find the correct colorbin to be incremented in the color histogram, we use
the coordinates (binh, bins) in the equation 5.

colorbin = m · binh + bins (5)

The color histogram is normalized to sum 1.
As we did in the case of the shape information, the process is repeated for region 2,

yielding a second normalized color histogram.
The two histograms for regions 1 and 2 are concatenated yielding a single color

histogram with a total number of bins equal to 2m2.

3.4 Cloud Distance

To find the matching objects we need to compute the distances between two clouds.
In order to get the distances between shape histograms from two clouds first we

compute the centroid of the shape histograms of each cloud (c1 and c2), then using the
chi-squared distance [4] (equation 6) we get the distance between the two centroids.

dcent =
∑
i

(c1[i]− c2[i])
2

2(c1[i] + c2[i])
(6)

Then we do a similar step but instead of using the centroids we use the standard
deviation of the histograms of each cloud. Equation 7, shows how to find this value for
cloud 1, and a similar calculation should be done for the second cloud to be compared.
h1 is the shape histogram, while c1 is the centroid and N1 is the number of keypoints in
this cloud. We use the same process (equation 6) to get the distance, dstd, between these
standard deviations histograms (std1 and std2) as we used for the centroid histograms
(c1 and c2).

std1 =

√∑
i(h1[i]− c1[i])2

N1 − 1
(7)
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Finally we sum the centroid distance, dcent, with the standard deviation distance
dstd, [2] for the final shape distance: dsh = dcent + dstd. The same process is used to
compute the color histogram distance, dcl.

Equation 8 shows how we compute the final distance (dfinal) between two clouds,
where dsh is the shape distance between two histograms and dcl is the color distance
between the same histograms. We use the weight w to represent the relative importance
of the shape and color information regarding the final distance.

dfinal = dsh · w + dcl · (1− w) (8)

The next step is to find which test cloud fits best to each training cloud, this means
the one with the smallest distance. The results of the matching of all test point clouds
are used to produce the final result of the dataset.

4 Genetic Algorithm

In this work a genetic algorithm [5], tries to find the optimal parameters for the 3D cloud
descriptor. The chromosomes encode the following 5 descriptor parameters: Shapebins,
m, R1, R2 and w (which is in fact used in the distance between the descriptors, and not
in the descriptors themselves).

The role of each of these parameters in the creation of the descriptor was explained
in the previous section.

The GA has some restrictions, which are the intervals in which the parameters lie.
The parameter Shapebins is set between 8 and 64. The parameter m is set between 3
and 8. The parameter R1 is set between 0.5 and 2.0 cm and R2 is set between 2.1 and
5.0 cm. The R2 has the maximal value possible set to 5.0 cm as the other descriptors
used to compare with our descriptor also use this value. The last parameter optimized
by the GA is the weight w, that is allowed to vary between 0 and 1.

The chromosomes are binary encoded. The initial population is set randomly. The
population used consisted of 10 chromosomes. This small value was chosen in order to
avoid the generations taking too much time to compute. The object error represents the
percentage of correctly matched point clouds from the training set 1 among the point
clouds from training set 2 and is used as the fitness of the chromosome (training set 1
and training set 2 that are explained in the experiments section). The elitism selection
[6] and the roulette-wheel selection [6] were used in order to make the selection. The
used crossover technique is the uniform crossover [6]. Mutation makes it possible to
search a wide area of solutions in order to find the optimal solution. The mutation used
is the in-order mutation [6]. The mutation probability is set to 40% in the first generation
and decreases exponentially after each successive generation.

The GA needs to be able to stop the evolution when the goal is achieved. The stop-
ping criterion is set to either the number of generations reaching 200 generations, or if
no better solution in 40 consecutive generations is found, or if a solution with 100% of
correct object matches is found.

After each generation we measure the validation error of the best chromosome.
This way we avoid the overfitting of the descriptor that could lead to the loss of the
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ability that the descriptor has to recognize point clouds. For this purpose we check in
a validation subset of point clouds (apart from the clouds used by GA to determine
the best parameters for the descriptor) for the validation error of the best chromosome.
When this error begins to rise, we stop the AG and consider that we have found the best
descriptor.

5 Experiments

5.1 Dataset

A subset of the large dataset1 of 3D point clouds [7] was used to perform experiments.
The clouds were divided into four subsets, constituted by two training subsets, one
validation subset and one test set. The testclouds subset is composed by 475 different
views of 10 objects and is used to calculate the final performance of the descriptor using
943 training clouds as possible match. The validationclouds subset has 239 clouds and
is used to avoid the overfitting of the descriptor. We calculate the validation error of the
best chromosome of each generation when making use of the GA. For this purpose we
check how many clouds from the validationclouds are correctly matched, using 704
training clouds as the matching clouds. On the other hand these 704 training clouds are
divided into training1 and training2 subsets. Those two training subsets were used
by the GA to get the object error of the chromosomes (both training1 and training2
subsets contain 352 clouds).

5.2 Results

The code used to implement our descriptor can be downloaded online2.
The best chromosome optimized by the GA has 60 shape bins, m = 8, R1 = 1.3 cm,

R2 = 3.6 cm and w = 0.67. After the matches are done, we check how many of the
475 test clouds were correctly matched to the 943 training clouds. The best descriptor
uses 248 bins to represent the point cloud. This descriptor has an accuracy of 72.47%
in matching the cloud to the correct object (from the 474 test clouds 344 were correctly
matched – one of the test clouds was not used since it had less than 10 points) and
89.66% in matching the cloud to the correct category.

In the paper [2] some available descriptors were tested to get their performance and
computational time. Table 1 shows the performance of those descriptors, that were ex-
tracted using the same point clouds as the ones used to evaluate the descriptor proposed
in this paper. The column time refers to the necessary time to match the 475 test clouds
using 943 point clouds as the training set. The column size refers to the number of real
values required to store one descriptor.

As we can see the SHOTCOLOR takes 178 s to compute, while our descriptor takes
only 72 s using the same machine. Although we have a slightly lower accuracy, the
temporal advantage can be important in real time applications. The PFHRGB has the
best accuracy, however it takes 2992 s to compute. In terms of size, we can see that our

1 http://www.cs.washington.edu/node/4229/
2 http://www.di.ubi.pt/˜lfbaa

http://www.cs.washington.edu/node/4229/
http://www.di.ubi.pt/~lfbaa
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Table 1. Descriptors performance: test errors for the object and category recognition tasks along
with time and size requirements

Descriptor Object (%) Category (%) Time (s) Size
PFHRGB 20.25 5.27 2992 250

SHOTCOLOR 26.58 9.28 178 1353
Our 27.43 10.34 72 248
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Fig. 3. Recall × (1-precision) curves for the object recognition experiments

descriptor uses only 248 real values that is significantly less than the SHOTCOLOR’s
1353 and still less than the 250 values per descriptor that PFHRGB uses. Figure 3
contains the recall × (1-precision) curves for the object recognition experiments.

Although the PFHRGB curve is better than ours, we can see that our curve is close to
the SHOTCOLOR curve and when we have a recall larger than 0.35 our curve is better
than the SHOTCOLOR’s.

6 Conclusion

In this paper we presented a new descriptor for 3D point clouds that takes advantage of
a genetic algorithm to find good parameters. It presents a performance similar to other
existing descriptors, but is faster to compute and uses less space to store the extracted
descriptors.
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Our descriptor when compared to the SHOTCOLOR presents a slightly higher error
(27.43% versus 26.58% object recognition error) but it is much faster (uses 40% of the
time needed by the SHOTCOLOR) and occupies less space. When compared to the
PFHRGB, it is substantially faster (uses only 2.5% of the time needed by PFHRGB),
uses the same space but has higher error (27.43% error versus 20.25%). So our proposal
can be used to replace these descriptors, when extraction speed is important.

A possible way to improve the quality of the descriptor is to let the GA optimize not
only the values of the parameters, but also the entire structure of the descriptor (types
of angles used, their number, types of regions to consider and their shapes).
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Abstract. Enumeration and reconstruction of certain types of polyomi-
noes, according to several parameters, are frequently studied problems
in combinatorial image processing. Polyominoes with fixed projections
play an important role in discrete tomography. In this paper, we provide
a linear-time algorithm for reconstructing hv-convex polyominoes with
minimal number of columns satisfying a given horizontal projection. The
method can be easily modified to get solutions with any given number of
columns. We also describe a direct formula for calculating the number of
solutions with any number of columns, and a recursive formula for fixed
number of columns.

Keywords: discrete tomography, reconstruction, enumeration, polyomino,
hv-convexity.

1 Introduction

Projections of binary images are fundamental shape descriptors that are widely
used in tasks of pattern recognition and image processing (see, e.g., [1, 10, 11],
and the references given there). In binary tomography [8, 9], projections are used
to reconstruct binary images from them. Several theoretical results are known,
regarding the efficient reconstruction and the number of solutions, using just the
horizontal and vertical projections. From theoretical point of view, hv-convex
polyominoes form an extensively studied class of binary images. Although, we
know quite a lot about the reconstruction complexity and the number of solutions
in this class when the horizontal and vertical projections are available [2, 3, 5],
surprisingly, those problems have not yet been investigated if only one projection
is given. In this paper, we fill this gap by describing a linear-time reconstruction
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algorithm and providing formulas for the number of solutions with minimal and
with any given number of columns.

The paper is structured as follows. In Section 2 we give some preliminaries. In
Section 3, we provide a linear-time algorithm for reconstructing hv-convex poly-
ominoes from the horizontal projection. Section 4 describes formulas for enu-
merating hv-convex polyominoes with given horizontal projection, for arbitrary,
and also for fixed number of columns. The conclusions are given in Section 5.

2 Preliminaries

A binary image is a digital image where each pixel is either black or white. Binary
images having m rows and n columns can be represented by binary matrices of
size m× n, where the value in the position of the matrix is 1 (respectively, 0) if
the corresponding pixel in the image is black (respectively, white).

The horizontal projection of a binary image F is a vector representing the
number of black pixels in each row of F . Using the matrix representation, it is
the vector H(F ) = (h1, . . . , hm), where

hi =
n∑

j=1

fij (i = 1, . . . ,m) .

The vertical projection of the image can be defined analogously. Throughout the
paper, without loss of generality, we assume that each projection component of
the binary image is positive.

Two positions P = (p1, p2) and Q = (q1, q2) in a binary image are said to be
4-adjacent if |p1 − q1| + |p2 − q2| = 1. The positions P and Q are 4-connected
if there is a sequence of distinct black pixels P0 = P, . . . , Pk = Q in the binary
image such that Pl is 4-adjacent to Pl−1, respectively, for each l = 1, . . . , k. A
binary image F is 4-connected if any two points in F are 4-connected. The 4-
connected binary images are also called polyominoes [7]. The binary image F is
horizontally and vertically convex, or shortly hv-convex if the black pixels are
consecutive in each row and column of the image (see the polyomino T in Fig. 1).
Upper stack polyominoes are special hv-convex polyominoes which contain the
two bottom corners of their minimal bounding rectangles. Similarly, lower stack
polyominoes are hv-convex polyominoes that contain the two top corners of their
minimal bounding rectangles. Finally, parallelogram polyominoes are hv-convex
polyominoes that contain both their top left and bottom right, or both their
top right and bottom left corners of their minimal bounding rectangles. Any hv-
convex polyomino can be constructed (not necessarily uniquely) from an upper
stack, a parallelogram and a lower stack polyomino. Figure 1 shows examples
for the special types of polyominoes, and such a construction.

3 Reconstruction from the Horizontal Projection

Let H = (h1, . . . , hm) ∈ Nm be a vector of size m. We first give an algorithm,
called GreedyRec which constructs an F binary image with m rows and the
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Fig. 1. An hv-convex polyomino T composed of an upper stack S, a parallelogram P ,
and a lower stack S polyomino

minimal possible number of columns. Due to h-convexity, the 1s are consecutive
in each row of the binary image to reconstruct. We will refer to them as the i-th
strip of the image (i = 1, . . . ,m). The sketch of the algorithm is the following
(Fig. 3a shows an example result of the algorithm).

1. The first strip must be aligned to the left.
2. The position of the i-th strip of F depends on the position of the (i− 1)-th

strip (i = 2, . . . ,m):
(a) if hi = hi−1, then the i-th strip is just below the (i − 1)-th strip (see

Fig. 2a),
(b) if hi < hi−1, then the i-th strip is aligned to the right of the (i − 1)-th

strip (see Fig. 2b),
(c) if hi > hi−1, then the i-th strip is aligned to the left of the (i − 1)-th

strip (see Fig. 2c).

(a) (b) (c)

Fig. 2. Steps of GreedyRec with the (i− 1)-th and the i-th rows. Cases: (a) hi = hi−1,
(b) hi < hi−1, and (c) hi > hi−1

Theorem 1. GreedyRec constructs an hv-convex polyomino satisfying the hor-
izontal projection with minimal number of columns, in O(m) time.

Proof. It is clear that the resulted image is an hv-convex polyomino with the
required horizontal projection. We prove by induction that no solution exists
with less number of columns.
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(a) (b)

Fig. 3. (a) The minimum-size output of GreedyRec for H = (2, 3, 5, 3, 3, 7, 5, 1) with 9
columns, and (b) another solution with 13 columns

Let n
(k)
o be the number of columns in a minimal-column solution of the prob-

lem (i.e., an hv-convex polyomino satisfying the projections with minimal num-
ber of columns), considering only the first k components of the input (h1, . . . , hk)

(k ≤ m). Similarly, let n
(k)
g be the number of columns in the result of GreedyRec

for the first k components of the input. For k = 1, n
(1)
g = n

(1)
o = h1, so GreedyRec

is optimal. For k > 1 assume that n
(k−1)
g = n

(k−1)
o .

If hk ≤ hk−1, then n
(k)
g = n

(k−1)
g (Cases 2(a) and 2(b) of GreedyRec), therefore

the number of columns does not change. Since n
(k)
o ≥ n

(k−1)
o , therefore n

(k)
g =

n
(k)
o , and GreedyRec is still optimal.

If hk > hk−1, then n
(k)
g = n

(k−1)
g + hk − hk−1 (Case 2(c) of GreedyRec).

Assume to the contrary that an arbitrary optimal algorithm provides a better

result, hence n
(k)
o < n

(k−1)
o + hk − hk−1.

For a further analysis, let us call a column k-simple if its (k− 1)-th element is
0 and its k-th element is 1. The number of k-simple columns is at least hk−hk−1,
and due to vertical convexity, in a k-simple column there can be no 1s above the

k-th row. Therefore, the first k−1 number of strips must fit into n
(k)
o −(hk−hk−1)

number of non-k-simple columns at most. Due to h-convexity and connectivity,
non-k-simple-columns must be successive. Therefore, the first k − 1 number of

strips fit into a matrix with a column number of n
(k)
o − (hk − hk−1) < n

(k−1)
o +

hk − hk−1 − (hk − hk−1) = n
(k−1)
o , which is a contradiction to the minimality of

n
(k−1)
o . Hence, GreedyRec is still optimal.
The complexity of the algorithm is straightforward, if the polyomino is rep-

resented by the first positions of its strips. �

One can easily modify the output of GreedyRec to expand it to have a prede-
fined number of columns (if possible) by moving the k-th, (k + 1)-st, . . . , m-th
strips further to the right, if the previous strip allows it (i.e., when the image
remains hv-convex and 4-connected). The smallest possible number of columns
(provided by GreedyRec) is Nmin = Nm, where

Ni =

⎧⎨⎩hi if i = 1 ,
Ni−1 if hi ≤ hi−1 ,
Ni−1 + hi − hi−1 if hi > hi−1 .

(1)
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This formula can be easily derived from the steps of the algorithm GreedyRec.
The biggest possible number of columns is

Nmax =

m∑
i=1

hi −m + 1 , (2)

where every strip is connected with the previous and the next strips through
only one element. The modified GreedyRec can construct any solution between
Nmin and Nmax in linear time. An example result of the modified algorithm is
given in Fig. 3b.

4 Enumerating hv-Convex Polyominoes with Fixed
Horizontal Projection

Enumeration of polyominoes according to several parameters (e.g., area, perime-
ter, size of the bounding rectangle, etc.) is an extensively studied field of com-
binatorial geometry. Regarding the number of hv-convex polyominoes satisfying
two projections, in [2–5] several results have been published. In [6] a method
was proposed to determine the number of hv-convex polyominoes that fit into
discrete rectangle of given size. In this section, we provide formulas to enumerate
hv-convex polyominoes satisfying the given horizontal projection.

4.1 Arbitrary Number of Columns

We first give a formula to calculate the number of hv-convex polyominoes with
a given horizontal projection H = (h1, . . . , hm), if there is no restriction on the
number of colums of the resulted image.

Given an hv-convex polyomino, the smallest integer k for which fk1 = 1
is called the smallest left anchor position. Similarly, the greatest right anchor
position is the greatest integer l for which fln = 1. Furthermore, let K denote
the greatest integer for which h1 ≤ h2 ≤ · · · ≤ hK . Similarly, let L be the
smallest integer for which hL ≥ hL+1 ≥ · · · ≥ hm. Figure 4 illustrates these
definitions.

First, assume that K < L. Then, K < k, l < L cannot hold, due to v-
convexity. Also note that for every k < l solution, a vertically mirrored image
is also a solution with l < k, and vice versa. For this reason, we only count the
cases with k < l (i.e., 1 ≤ k ≤ K and L ≤ l ≤ m), and multiply the result by 2.

Let Sk(H) denote the number of upper stack polyominoes having the hori-
zontal projection (h1, . . . , hk). Similarly, let Sl(H) denote the number of lower
stack polyominoes having the horizontal projection (hl, . . . , hm). Furthermore,
let Pk,l(H) denote the number of parallelogram polyominoes with the horizon-
tal projection (hk, . . . , hl), having the smallest left anchor position k and the
greatest right anchor position l.

Lemma 1. S1(H) = 1, and Sk(H) =
∏k

i=2(hi−hi−1+1) (k ≥ 2). Sm(H) = 1,

and Sl(H) =
∏m−1

i=l (hi − hi+1 + 1) (l < m).
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Fig. 4. An hv-convex polyomino with H = (1, 2, 4, 6, 6, 2, 5, 4, 4, 3, 2), where K = 5,
and L = 7. The smallest left anchor position is k = 3, the greatest right anchor position
is l = 9. The (k − 1)-th strip can be placed on the top of the k-th strip in 2 different
ways, and cannot occupy the position marked by ×, since the k-th strip must be the
leftmost strip

Proof. The formula S1(H) = 1 is trivial. If k ≥ 2, then the (k−1)-th strip can be
placed on the top of the k-th strip in hk−hk−1+1 different ways. Similarly, the
(k−2)-th strip can be placed on the top of the (k−1)-th strip, in hk−1−hk−2+1
different ways. And so on. Finally, the first strip can be placed in h2 − h1 + 1
ways on the top of the second strip. The formula for the lower stack polyominoes
can be proven analogously. �

Lemma 2. Pk,l(H) =
∏l−1

i=k min{hi, hi+1}.

Proof. The k-th strip is fixed (it is in the leftmost position), and we can place
the (k + 1)-th strip under the k-th strip in min{hk, hk+1} ways. The (k + 2)-th
strip can be placed under the (k + 1)-th strip in min{hk+1, hk+2} ways. And so
on. Finally the l-th strip can be placed under the (l−1)-th strip in min{hl−1, hl}
ways. �

In the rest of the paper, we will use the convention that empty (non-defined)
factors of a product will be always 1.

Theorem 2. Let H ∈ Nm. If K < L then the number of hv-convex polyominoes
with the horizontal projection H is

PK<L(H) = 2 ·
K∑
k=1

m∑
l=L

(
Sk−1(H) · (hk−hk−1) ·Pk,l(H) · (hl−hl+1) ·Sl+1(H)

)
.

(3)
If K ≥ L, then the number of solutions is

PK≥L(H) = PK<L(H)− SL(H) · SK(H) . (4)

Proof. We observe that an hv-convex polyomino with the smallest left anchor
position k and the greatest right anchor position l can be uniquely decomposed
into a (possibly empty) upper stack polyomino consisting of the first k−1 rows, a
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(possibly empty) lower stack polyomino of consisting of the last rows from l+1 to
m, and a parallelogram polyomino consisiting of the k-th, k+1-th, ..., l-th rows.
If k is the smallest left anchor position, then the (k − 1)-th strip (the bottom
strip of the upper stack polyomino) cannot reach the leftmost position (see the
position marked by ×, in Fig. 4), therefore the upper stack can be connected to
the parallelogram in (hk−hk−1) ways. With a similar argument, the lower stack
can be connected to the bottom row of the parallelogram in (hl − hl+1) ways.
Thus, using lemmas 1 and 2, for fixed k and l the number of possible solutions is
Sk−1(H) ·(hk−hk−1) ·Pk,l(H) ·(hl−hl+1) ·Sl+1(H). Including also the mirrored
cases we get (3).

IfK ≥ L, then the same formula as in (3) can be applied. However, in this case,
it counts some of the solutions twice through symmetry (where the parallelogram
poliominoes are rectangular). Note that the longest strips in H are hL = hL+1 =
· · · = hK , and (3) counts all the cases twice when these strips are right under each
other. Regarding that the L-th strip is the bottom of the upper stack polyomino,
and the K-th strip is the uppermost row of the lower stack polyomino, the
number of cases counted twice is SL(H) · SK(H), using Lemma 1. �

4.2 Fixed Number of Columns

Now, we give a recursive formula to calculate the number Pn(H) of hv-convex
polyominoes having the horizontal projection H = (h1, . . . , hm), when the num-
ber of columns is fixed to n. First, assume again that K < L. Let r ≥ 1
and P (p1, . . . , pr, n) denote the number of parallelogram polyominoes with n
columns, having the horizontal projection (p1, . . . , pr).

Lemma 3. P (p1, n) = 1 if p1 = n. P (p1, n) = 0 if p1 
= n. Furthermore, for
r > 1 we have the following recursion

P (p1, . . . , pr, n) =

⎧⎨⎩
∑p1

i=1 P (p2, . . . , pr, n− i+ 1) if p1 ≤ p2 ,∑p2

i=1 P (p2, . . . , pr, n− (p1 − p2)− i+ 1) if p1 > p2 .

Proof. If r = 1, then either the strip itself of length p1 occupies n number of
columns (and should be counted as a solution) or not. If r > 1 and p1 ≤ p2, then
we count recursively every possible solution where the second strip is shifted to
the right under the first strip, and the number of remaining columns decreases
proportionately. If r > 1 and p1 > p2, then additionally, we have to substract the
difference from the number of required columns, since the second strip must be
shifted with at least p1− p2 positions to the right, relatively to the first position
of the first strip. �
Therefore, including the possible stack polyominoes and the mirrored cases, the
number of solutions for a fixed n is

Pn(H) = 2·
K∑

k=1

m∑
l=L

(
Sk−1(H)·(hk−hk−1)·P (hk, . . . , hl, n)·(hl−hl+1)·Sl+1(H)

)
,

where P (hk, . . . , hl, n) = 0 if k > l.
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If K ≥ L then we have to substract some of the solutions in the same way
as in (4). Note that this concerns only PNmin(H) (where n is minimal), since for
every other case a mirrored solution is truly a different solution.

Pn(H) also provides a different formula for calculating the number of solu-
tions, if the size of the polyomino can be arbitrary, namely

Nmax∑
n=Nmin

Pn(H) ,

where Nmin and Nmax is given by (1) and (2), respectively.

5 Conclusion

In this paper, we showed how to reconstruct hv-convex polyominoes from a
given horizontal projection with minimal number of columns in linear time. This
algorithm can easily be extended to give a solution with any required number of
columns, if such a solution exists. We also gave formulas for counting all possible
solutions, one for any number of columns, and another one for fixed number of
columns. The results can be used in various fields of pattern recognition, image
processing, and especially, in binary tomography.
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Abstract. A new constraint acquisition method for parwise-constrained
data clustering based on user-feedback is proposed. The method searches
for non-redundant intra-cluster and inter-cluster query-candidates, ranks
the candidates by decreasing order of interest and, finally, prompts the
user the most relevant query-candidates. A comparison between using
the original data representation and using a learned representation (ob-
tained from the combination of the pairwise constraints and the original
data representation) is also performed. Experimental results shown that
the proposed constraint acquisition method and the data representation
learning methodology lead to clustering performance improvements.

Keywords: Constraint Acquisition, Constrained Data Clustering.

1 Introduction

Data clustering is an unsupervised learning technique which aims to find struc-
ture in data. Domain objects are grouped into clusters such that objects that
are alike are placed in the same cluster while dissimilar objects are assigned to
different clusters [1]. Due to its unsupervised nature, a data clustering algorithm
only has access to features that describe the objects or to (dis)similarities be-
tween pairs of objects, and the clustering solution is obtained by optimizing the
same objective-function, irrespectively the application.

In many situations, the data analyst may have extra information for a partic-
ular application, or may want to express his preferences or conditions to guide
data clustering. To accomplish it, the data representation can be manipulated
(e.g.: by adding, removing or modifying data features) although it can be very
difficult or impractical. A simpler and more intuitive way of doing it consists
of using constraints in data clustering. Constrained data clustering algorithms
[2–4] use a priori knowledge about the data, mapped in form of constraints, to
produce more useful clustering solutions. The constraints can be set at a general
level by defining rules which are applied to the entire data set, such as data
clustering with obstacles [5]; at an intermediate level, where clustering is guided
by rules involving the data features [6] or the groups’ characteristics, such as,
the minimum and maximum capacity [7]; or at a more particular level, where
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the constraints are applied to the domain objects, by using some labeled data
[3] or defining relations between pairs of objects [2]. Relations between pairs of
objects, usually represented as must-link and cannot-link constraints, have been
the most studied due to their versatility. Many constraints on more general levels
can be transformed into must-link and cannot-link constraints.

It would be expected that the use of constraints should always improve, or at
least not to worsen, the quality of data clustering. However, it was demonstrated
that the use of constraints may in fact harm clustering performance, even when
the set of constraints is not noisy [8]. Therefore, the acquisition of constraint
sets that effectively improve clustering performance is a very important topic in
constrained clustering. Some active learning algorithms for constraint acquisition
have already been proposed regarding the search of labels for some data [9, 10]
and the identification of relations between pairs of objects [2, 11].

It is known that learning distance metrics can improve the performance of
classification and clustering. Typically, distance learning algorithms can be cat-
egorized into the supervised and unsupervised categories, depending on the exis-
tence of class labels for the objects. Nonetheless, some methods [12–14] can use
the pairwise constraints to learn a new distance function or data representation.

In this work, we propose a new method for acquiring useful pairwise con-
straints. Our method tries to identify relevant query candidates for a given clus-
tering algorithm, ranks the candidates according to their importance, and then
selects the top candidates to query the user. We compare the proposed method
with the random acquisition of constraints and the Explore-Consolidate [11]
approach. We also evaluate the effectiveness of using distance metric learning
in constrained clustering, the effect of the constraint acquisition methods in the
distance learning, and the corresponding impact in the quality of data clustering.

The rest of the paper is organized as follows. In section 2 we briefly present
some related work on constrained clustering and distance metric learning with
constraints. A new approach for selecting pairwise constraints is presented in
section 3. The performance of the proposed method is evaluated in section 4.
The conclusions and future work is presented in section 5.

2 Related Work

Let X = {x1, · · · ,xn} be a data set composed of n domain objects xi, R=

the set of must-link constraints which contains pairs of objects (xi,xj) that
should belong to the same cluster, and R	= the set of cannot-link constraints
containing pairs of objects that should belong to different clusters. The goal of a
constrained clustering algorithm consists of dividing X into K clusters regarding
both the data representation (e.g. vectorial and (dis)similarity representations)
and the constraints expressed in R= and R	=, resulting in a data partition P =
{C1, · · · , CK} where Ck represents an individual cluster.

The Constrained Average-Link (CAL) [15] is based on the agglomerative
hierarchical clustering algorithm Average-Link [16]. The algorithm works as
follows. It starts with n clusters, one for each domain object xi. Then, at
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each step, the two closest clusters, according to a distance measure between
clusters, are merged. The process iterates until some stopping criteria is met
(e.g. a predefined number of clusters K is reached) or all objects belong to
same cluster. The distance between clusters measures the average distance be-
tween all pairs of objects belonging to different clusters plus a penalization for
each constraint that is not satisfied. This distance is defined as d(Ck, Cl) =

1
|Ck||Cl|(

∑|Ck|
i=1

∑|Cl|
j=1 dist(xi,xj)− I=(xi,xj) + I 	=(xi,xj)), where Ia(xi,xj) = p

if (xi,xj) ∈ Ra and 0 otherwise. p ≥ 0 is a user parameter that influences the
“softness” of the constraints. In our experiments we defined p as the maximum
distance between objects in a data set.

An easy but naive way to generate pairwise constraints is the Random Ac-
quisition of Constraints (RAC) and consists of randomly selecting, iteratively,
two objects (xi,xj) ∈ X that were not previously tested and ask the user (or
some oracle) if both objects should be assigned to the same group. If the answer
is “Yes”, a must-link constraint is added to the set of must-link constraints,
R= = R= ∪ {(xi,xj)}. If the answer is “No” a cannot-link constraint is added
to the set of cannot-link constraints R	= = R	= ∪ {(xi,xj)}. If the user cannot
decide, simply skip to the next iteration. The process repeats until a predefined
number of constraints is achieved.

The Explore-Consolidate [11] is another method for constraint acquisition
and consists of two phases: the Explore phase, where the algorithm identifies a
neighborhood Nk for each cluster in the data set which defines a skeleton of the
clusters’ structure; and the Consolidate phase, where objects not attributed to
any neighborhood are assigned to one of them. The Explore algorithm starts by
selecting a random object which forms the first neighborhood. Then, while the
maximum number of queries is not reached and until K disjoint neighborhoods
are not found, the farthest object x from all the existing neighborhoods is se-
lected. Queries between x and a random object belonging to each neighborhood
are posed. If x does not belong to any neighborhood, a new one is formed with
x. The Consolidate algorithm first computes the centroids xk of each neighbor-
hood Nk. Then, while the maximum number of queries is not reached, an object
x that does not belong to any neighborhood is randomly selected. Queries are
posed between x and each neighborhood by increasing order of its distance to
the centroids xk until a must-link is obtained. After the Explore and Consolidate
phases, the pairwise constraint sets are formed by adding a must-link constraint
for each pair of objects that belong to the same neighborhood, and a cannot link
constraint for each pair of objects belonging to different neighborhoods.

There may be contradictions between the relations of objects in the orig-
inal representation of the data and sets of constraints. We are interested to
find out how learning a new data space representation, which simultaneously
represents both the original data and the clustering preferences, influences the
performance of data clustering. The Discriminant Component Analysis (DCA)
[14] is a distance metric learning algorithm capable of learning a new data rep-
resentation from the original data and a set of constraints. The DCA builds a
set of chunklets Q = {Q1, · · · , Qq}, i.e. groups of domain objects connected by
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must-link constraints, and a set of discriminative chunklets S = {S1, · · · , Sq},
one for each chunklet Qi. Each element of the discriminative chunklet Si in-
dicates the chunklets that have at least one cannot-link constraint connecting
a object in Qi. Then DCA learns a data transformation which minimizes the
variance between domain objects in the same chunklet Qi and maximizes the
variance between discriminative data chunklets Si. The covariance matrices, Cb

and Cw, store the total variance between domain objects in each Si ∈ S and
the total variance within domain objects in the same chunklets ∀Qi ∈ Q. These
matrices are computed as Cb = 1∑q

i=1 |Si|
∑q

i=1

∑
i∈Sj

(mj − mi)(mj − mi)



and Cw = 1
q

∑q
j=1

1
|Qj |
∑

xi∈Qj
(xi −mj)(xi −mj)


, respectively, where mj is

the mean vector of Qj . The optimal transformation matrix A is obtained by

optimizing J(A) = argmaxA
|A�CbA|
|A�CwA| .

3 A New Method for Acquiring Pairwise Constraints

The idea of our method is to identify good intra- and inter-cluster query-
candidates given a data partition, and select the q most relevant candidates
to prompt the user. The motivation for using a data partition as input relates
to the importance of finding constraints sets with high informativeness, i.e.,
with high level of information that the clustering algorithm cannot determine
on its own [8]. We also want to avoid performing redundant queries, i.e., queries
involving similar pairs of objects. The details of the methods are given below.
The proposed (dis)similarity-based constraint acquisition method consists of four
phases:

1. Identify intra-cluster candidates. Pairs of objects which are far from
each other have higher probability of having different labels than pairs of objects
which are close. Therefore, the proposed method selects as candidates intra-
cluster pairs of objects which are far apart. Given a distance matrix D, c candi-
dates Ql are selected for each cluster Ck ∈ P (more detail on defining c will be
given later). Iteratively, the most distant pair of objects (xi,xj) in Ck according
to D is selected as candidate, i.e., (xi,xj) = argmaxxi∈Ck,xj∈Ck

D(i, j), and is
added to the set of query-candidates Q = Q ∪ Ql, Ql = {(xi,xj)}. Then, D is
updated such the distance between the objects belonging to the neighborhoods
of xi and xj become 0, i.e., D(q, r) = 0, D(r, q) = 0, ∀xq ∈ Ni, ∀xr ∈ Nj where
Nl corresponds to the set of the mth closest objects to xl in Ck (including itself).
The neighborhood size 1 ≤ m ≤ |Ck| is a parameter that should be defined as a
compromise between selecting redundant (values close to 1) and non-interesting
(values close to |Ck|) query-candidates. Note the Ni and Nj are computed using
the original distance matrix. The process repeats until c candidates are found.

2. Identify inter-cluster candidates. Two objects in different clusters
which are nearby have higher probability of belonging to the same natural cluster
than objects which are distant. Hence, the algorithm selects as query-candidates
pairs of objects in different clusters which are close. For each pair of clusters
(Cl, Co), Cl ∈ P , Co ∈ P , l < o, c query-candidates are selected the following



112 J.M.M. Duarte, A.L.N. Fred, and F.J.F. Duarte

way. First, the closest pair of objects (xi,xj) in different clusters are selected,
i.e., (xi,xj) = argminxi∈Cl,xj∈Co

D(i, j), and is added to Q. Next, the neighbor-

hoods Ni and Nj are computed as the sets of the mth
i and mth

j closest objects
to xi in C1 and xj in Cl, and the distances between objects in distinct neigh-
borhoods are set to ∞, i.e., D(q, r) = ∞, D(r, q) = ∞, ∀xq ∈ Ni, ∀xr ∈ Nj .
Again, this will restrict the algorithm from choosing identical query-candidates.
The procedure goes on until the desired number of candidates c is reached.

3. Rank candidates. This phase consists in ranking the candidates in de-
scending order of interest. For this purpose a score is calculated for each can-
didate taking into account two situations: if the candidate has been obtained
during the intra-cluster phase, the shorter the distance between one of its ob-
jects with any object from another cluster the more interesting the candidate is
considered; if the candidate has been selected during the inter-cluster phase, the
smaller the distance between the two objects of the query-candidate the higher
the interest. Thus, the score Sl for each candidate Ql ∈ Q, (xi,xj) = Ql is com-
puted as Sl = minm:xm∈X\CPi

min [D(i,m),D(j,m)] if Ql is an intra-candidate

and Sl = D(i, j) otherwise. The sorted set of candidates Qsorted is obtained by

sorting the candidates according to their scores {Si}|i=1Q| in ascending order.
4. Query the user. Finally, the set of must-link and cannot-link constraints

are obtained by querying the user if a pair of objects in a sorted query-candidate
should belong to the same cluster, starting from the first query-candidate Qsorted

1

and stopping when the predefined number of queries q is obtained.
In this work, the number of candidates c for each intra- and inter-cluster

search is the same (but it is not required). To ensure that at least q candidates
are obtained (the number of candidates must be equal or higher than the num-

ber of desired queries) the following inequality must hold: q ≤ ck + ck(k−1)
2 ,

where k is the number of clusters. Thereby, c ≥ � 2q
k2+k�. It is usually helpful to

generate more candidates that the strictly required because some clusters are
more interesting than others (e.g. touching clusters). By doing so, candidates
from non-interesting regions will naturally be ruled out in the ranking phase.

The obtained constraint set can be used by a constrained clustering algo-
rithm using the original data representation to partition the data. However, we
hypothesize that using a learned space which represents both the original data
and the constraints (e.g. DCA) can further enhance clustering quality.

4 Experimental Results

In our experiments, 5 synthetic data sets (shown in figure 1) and 5 real data
sets taken from the UCI ML repository (http://archive.ics.uci.edu/ml/) were
used to assess the performance of the constraint acquisition approach. A brief
description for each real data set is given next. The Iris data set consists of 50
objects from each of three species of Iris flowers (setosa, virginica and versicolor)
characterized by four features. The Breast Cancer data set is composed of 683
domain objects characterized by nine features and divided into two clusters:
benign and malignant. The Optdigits is a subset of Handwritten Digits data set
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(a) Bars (b) Cigar (c) D1 (d) D2 (e) Half Rings

Fig. 1. Synthetic data sets

containing only the first 100 objects of each digit, from a total of 3823 domain
objects characterized by 64 attributes. The House Votes data set is composed of
two clusters of votes for each of the U.S. House of Representatives Congressmen
on the 16 key votes identified by the Congressional Quarterly Almanac (125
democrats and 107 republicans). The Wine data set consists of the results of a
chemical analysis of wines divided into three clusters with 59, 71 and 48 objects,
described by 13 features.

Table 1 shows the average accuracy and standard deviation of the partitions
obtained using CAL algorithm (K was set as the real number of clusters) us-
ing no constraints, constraints acquired using RAC, Explore-Consolidate and
the proposed method, with the original data representation and a learned data
representation obtained using DCA (identified with “+L”). The average values
were computed over 50 repetitions using data resampling with replacement (the
size of the samples corresponds to the original size of the data sets). Constraints
sets were obtained by performing 10, 20, 30, 40 and 50 queries. Answers were
given using ground-truth information. The number of clusters was defined as the
“natural” number of cluster for each data set. The number of candidates for each
intra-cluster and inter-cluster searches was defined as c = �2 × 2q

k2+k �, and the
size of the neighborhood of an object xi ∈ Ck was set to m = �0.35|Ck|�. The
partitions obtained using the original data representation with constraints were
usually (not always) better than the ones produced without constraints. Also,
the average accuracy (percent of correctly clustered objects) of the proposed
method and the Explore-Consolidate were generally superior than the accuracy
achieved by the RAC method. However, by comparing our method with the
Explore-Consolidate no method was clearly a winner. The results achieved by
using a learned data representation representing both the constraint sets and
the original data representation were usually superior than the results obtained
using the original representation. The distance learning algorithm obtained bet-
ter data representations with the proposed and Explore-consolidate approaches
than the random acquisition of constraints, since the corresponding partitions
are more accurate.
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Table 1. Accuracy for CAL using no constraints, the constraints acquired by RAC,
Explore-Consolidate and the proposed method, with the original and learned represen-
tations

Data set
Acquisition Number of queries

Method 10 20 30 40 50

Bars

No const 97.48 (2.98)
Random 97.64 (2.76) 97.78 (2.70) 97.94 (2.28) 98.03 (2.36) 98.76 (1.25)

Expl.Consol. 97.28 (3.07) 97.83 (2.70) 98.07 (2.25) 98.10 (2.28) 98.52 (1.59)
Proposed 97.66 (2.79) 97.83 (2.81) 98.03 (2.76) 98.09 (2.70) 98.23 (2.53)

Random+L 95.10 (8.38) 97.28 (2.40) 97.59 (2.30) 98.02 (1.87) 97.99 (1.98)
Expl.Consol.+L 96.36 (3.58) 97.45 (3.17) 98.06 (2.44) 98.09 (2.54) 98.56 (1.74)

Proposed+L 97.52 (2.96) 98.01 (2.34) 98.04 (2.48) 98.11 (2.60) 98.17 (2.37)

Half Rings

No const 83.08 (5.78)
Random 82.26 (6.32) 82.23 (5.60) 82.62 (5.76) 81.65 (6.24) 81.79 (5.86)

Expl.Consol. 82.86 (6.34) 81.98 (5.16) 82.93 (6.60) 86.13 (6.58) 86.39 (7.53)
Proposed 82.59 (6.23) 83.47 (6.03) 82.05 (5.65) 82.29 (5.52) 83.53 (5.90)

Random+L 84.15 (7.08) 86.84 (6.05) 89.67 (5.32) 89.07 (4.50) 88.93 (5.10)
Expl.Consol.+L 81.21 (4.27) 82.14 (3.17) 83.01 (3.41) 83.44 (3.15) 84.61 (2.70)

Proposed+L 85.96 (6.90) 89.01 (3.69) 89.45 (3.44) 89.58 (3.90) 89.87 (2.77)

Cigar

No const 75.06 (14.09)
Random 75.48 (14.13) 75.87 (14.56) 78.32 (14.14) 77.30 (14.10) 78.90 (13.46)

Expl.Consol. 74.77 (15.12) 79.52 (12.59) 79.68 (13.25) 83.96 (10.21) 87.18 (10.07)
Proposed 75.63 (13.31) 78.23 (12.67) 81.51 (11.77) 82.11 (10.79) 84.96 (8.70)

Random+L 91.67 (11.00) 94.90 (6.04) 93.07 (6.96) 94.79 (5.89) 97.05 (4.88)
Expl.Consol.+L 86.11 (7.66) 94.02 (7.25) 96.69 (4.83) 98.11 (3.92) 98.22 (2.99)

Proposed+L 91.58 (9.46) 96.02 (5.72) 98.02 (3.82) 98.67 (3.10) 99.17 (1.93)

D1

No const 68.78 (13.56)
Random 68.99 (14.45) 73.60 (14.27) 77.47 (15.15) 79.48 (14.34) 85.21 (13.41)

Expl.Consol. 72.94 (14.36) 75.72 (13.60) 82.46 (11.96) 80.34 (12.22) 82.74 (12.46)
Proposed 71.42 (14.37) 70.81 (14.50) 72.79 (14.51) 76.60 (13.90) 76.70 (13.09)

Random+L 67.82 (8.58) 71.82 (10.93) 74.79 (12.10) 78.65 (15.57) 81.11 (14.38)
Expl.Consol.+L 69.55 (11.13) 76.53 (10.39) 78.58 (11.14) 81.98 (10.44) 82.73 (10.22)

Proposed+L 63.13 (12.83) 70.29 (10.40) 72.45 (14.33) 74.52 (12.43) 77.33 (12.94)

D2

No const 55.12 (6.84)
Random 53.45 (6.19) 53.67 (6.02) 53.60 (4.73) 54.04 (4.70) 53.90 (4.43)

Expl.Consol. 53.64 (5.14) 52.00 (5.13) 54.96 (8.15) 52.77 (7.17) 55.15 (8.10)
Proposed 55.50 (7.14) 55.63 (7.14) 56.09 (7.69) 56.71 (8.26) 57.18 (7.97)

Random+L 52.83 (6.38) 53.47 (5.85) 50.88 (5.53) 53.08 (4.63) 53.29 (5.11)
Expl.Consol.+L 53.11 (4.74) 52.91 (5.32) 53.54 (5.90) 53.82 (6.07) 58.19 (8.46)

Proposed+L 55.16 (7.29) 55.43 (7.05) 56.48 (7.99) 57.60 (7.96) 58.02 (7.60)

Crabs

No const 53.08 (2.31)
Random 52.85 (2.20) 53.57 (2.89) 53.43 (2.45) 53.12 (2.11) 53.47 (2.88)

Expl.Consol. 53.53 (2.74) 54.03 (2.71) 54.59 (3.15) 56.17 (3.56) 59.04 (3.94)
Proposed 53.70 (2.50) 53.91 (2.98) 53.26 (2.14) 54.00 (2.84) 54.14 (3.26)

Random+L 65.74 (14.95) 65.69 (16.10) 72.01 (17.14) 68.74 (18.14) 72.62 (18.83)
Expl.Consol.+L 54.20 (3.22) 54.78 (4.13) 57.59 (7.72) 59.46 (5.71) 60.98 (5.62)

Proposed+L 62.24 (12.98) 70.12 (14.51) 70.14 (16.45) 72.64 (17.06) 66.75 (17.36)

House Votes

No const 89.22 (2.49)
Random 89.41 (2.92) 89.16 (2.84) 90.07 (2.98) 89.55 (3.34) 90.32 (3.26)

Expl.Consol. 89.32 (2.64) 89.73 (2.41) 90.51 (2.35) 90.47 (2.35) 90.92 (2.06)
Proposed 89.62 (2.55) 90.03 (2.45) 90.38 (2.73) 90.48 (2.84) 90.78 (2.56)

Random+L 67.36 (15.42) 67.71 (16.53) 66.97 (18.10) 65.34 (18.37) 63.58 (18.67)
Expl.Consol.+L 89.02 (2.42) 89.47 (2.53) 90.09 (2.25) 90.45 (2.38) 90.51 (1.91)

Proposed+L 69.14 (17.32) 75.77 (18.10) 74.78 (20.03) 80.68 (18.84) 82.22 (19.95)

Wine

No const 60.98 (5.87)
Random 60.96 (5.94) 62.04 (5.94) 62.37 (6.41) 62.36 (5.23) 63.63 (5.44)

Expl.Consol. 59.94 (5.80) 60.99 (5.58) 61.51 (5.57) 63.34 (5.75) 65.11 (6.12)
Proposed 60.82 (5.67) 62.54 (6.05) 63.76 (5.60) 64.47 (5.12) 64.47 (4.73)

Random+L 51.17 (11.51) 47.09 (8.54) 49.28 (10.92) 54.97 (14.03) 58.47 (12.91)
Expl.Consol.+L 59.30 (12.05) 63.54 (7.75) 68.42 (7.27) 69.06 (6.39) 72.13 (8.90)

Proposed+L 60.53 (11.75) 57.24 (11.55) 58.22 (11.66) 59.74 (9.68) 58.78 (11.66)

Iris

No const 78.40 (10.18)
Random 78.16 (9.92) 78.15 (9.94) 79.60 (10.42) 79.04 (10.89) 82.11 (10.78)

Expl.Consol. 80.73 (10.05) 87.12 (8.48) 90.15 (7.44) 92.03 (5.27) 93.24 (3.21)
Proposed 81.99 (9.72) 83.61 (9.82) 85.27 (8.44) 87.56 (8.27) 87.87 (7.70)

Random+L 61.69 (22.48) 77.41 (18.44) 82.65 (12.52) 85.67 (13.60) 85.97 (13.33)
Expl.Consol.+L 81.01 (13.43) 82.53 (12.41) 90.45 (9.45) 93.65 (5.15) 94.64 (3.21)

Proposed+L 85.43 (13.58) 89.45 (11.51) 93.23 (8.60) 94.39 (8.37) 96.49 (4.75)

Breast Cancer

No const 95.36 (1.48)
Random 95.07 (1.61) 95.41 (1.48) 95.43 (1.56) 95.45 (1.48) 95.58 (1.53)

Expl.Consol. 95.17 (1.57) 95.53 (1.57) 95.32 (1.62) 95.54 (1.26) 95.67 (1.47)
Proposed 95.53 (1.53) 95.70 (1.44) 95.80 (1.44) 95.75 (1.42) 95.76 (1.56)

Random+L 80.52 (12.61) 74.54 (9.27) 72.98 (8.57) 71.23 (8.21) 69.09 (5.94)
Expl.Consol.+L 95.80 (4.84) 96.24 (1.66) 95.84 (1.94) 96.37 (1.48) 96.18 (1.50)

Proposed+L 76.40 (11.91) 74.87 (12.18) 76.03 (12.74) 76.13 (13.28) 76.50 (13.81)
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5 Conclusions

We proposed a new constraint acquisition method for constrained data cluster-
ing which identifies intra- and inter-cluster query-candidates, ranks them by de-
creasing order of relevance and uses the most interesting candidates to query the
user. We assessed the proposed method against not using constraints at all, using
random constraints, and using the Explore-Consolidate approach. Results shown
the use of constraints obtained using the proposed and the Explore-Consolidate
methods both results in better partitions than using random constraints or not
using constraints at all. The use of data representations obtained from the set of
constraints and the original data usually increases the clustering performance.

Acknowledgements. This work is supported by FCT “Fundação para a Ciência
e a Tecnologia” under the project “LearningS” - PTDC/EEI-SII/2312/2012.
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Abstract. Linear or non-linear data transformations are widely used
processing techniques in clustering. Usually, they are beneficial to en-
hancing data representation. However, if data have a complex structure,
these techniques would be unsatisfying for clustering. In this paper, based
on the auto-encoder network, which can learn a highly non-linear map-
ping function, we propose a new clustering method. Via simultaneously
considering data reconstruction and compactness, our method can obtain
stable and effective clustering. Experiments on three databases show that
the proposed clustering model achieves excellent performance in terms
of both accuracy and normalized mutual information.

Keywords: Clustering, Auto-encoder, Non-linear transformation.

1 Introduction

Data clustering [4] is a basic problem in pattern recognition, whose goal is group-
ing similar data into the same cluster. It attracts much attention and various
clustering methods have been presented, most of which either deal with the
original data, e.g., K-means [10], its linear transformation, e.g., spectral cluster-
ing [7], or its simple non-linear transformation, e.g., kernel K-means [2]. However,
if original data are not well distributed due to large intra-variance as shown in
the left part of Figure 1, it would be difficult for traditional clustering algorithms
to achieve satisfying performance.

To address the above problem, we attempt to map original data space to a
new space which is more suitable for clustering. The auto-encoder network [1]
is a good candidate to handle this problem. It provides a non-linear mapping
function by iteratively learning the encoder and the decoder. The encoder is ac-
tually the non-linear mapping function, and the decoder demands accurate data
reconstruction from the representation generated by the encoder. This process
is iterative, which guarantees that the mapping function is stable and effective
to represent the original data. Different from kernel K-means [2], which also in-
troduces non-linear transformations with fixed kernel functions, the non-linear
function in auto-encoder is learned by optimizing an objective function.

The auto-encoder network is originally designed for data representation, and
it aims to minimize the reconstruction error. However, to the best of our knowl-
edge, though widely used, the auto-encoder network has not been utilized for

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part I, LNCS 8258, pp. 117–124, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Non-linear 
 Mapping 

Fig. 1. Left: Original distribution of data. Due to large intra-variance, it is difficult
to classify them correctly. Right: By applying a non-linear transformation, the data
become compact with respect to their corresponding cluster centers in the new space.

clustering tasks. To make it suitable for clustering, we propose a new objective
function embedded into the auto-encoder model. It contains two parts: the re-
construction error and the distance between data and their corresponding cluster
centers in the new space. During optimization, data representation and clustering
centers are updated iteratively, from which a stable performance of clustering is
achieved and the new representation is more compact with respect to the cluster
centers. The right part of Figure 1 illustrates such an example. To evaluate the
effectiveness of this model, we conduct a series of experiments in three widely
used databases for clustering. The experimental results show that our method
performs much better than traditional clustering algorithms.

The rest of the paper is organized as follows: firstly we propose our method
in Section 2, then experimental settings and results are provided in Section 3.
Finally, Section 4 concludes the paper and discusses future work.

2 Proposed Model

In this section, we explain the proposed clustering model in details. As shown
in Figure 2, the data layer (e.g., the pixel representation) of an image is firstly
mapped to the code layer, which is then used to reconstruct the data layer.
The objective is minimizing the reconstruction error as well as the distance
between data points and corresponding clusters in the code layer. This process
is implemented via a four-layer auto-encoder network, in which a non-linear
mapping is resolved to enhance data representation in the data layer. For clarity,
in the next subsections, we firstly introduce the auto-encoder network, and then
explain how to use it for clustering.

2.1 Auto-encoders

Without loss of generality, we take an one-layer auto-encoder network as an
example. It consists of an encoder and a decoder. The encoder maps an input xi

to its hidden representation hi. The mapping function is usually non-linear and
the following is a common form:

hi = f(xi) =
1

1 + exp(−(W1xi + b1))
, (1)

where W1 is the encoding weight, b1 is the corresponding bias vector.
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Fig. 2. Framework of the proposed method

The decoder seeks to reconstruct the input xi from its hidden representation
hi. The transformation function has a similar formulation:

x′
i = g(hi) =

1

1 + exp(−(W2hi + b2))
, (2)

where W2, b2 are the decoding weight and the decoding bias vector respectively.
The auto-encoder model aims to learn a useful hidden representation by mini-
mizing the reconstruction error. Thus, given N training samples, the parameters
W1, W2, b1 and b2 can be resolved by the following optimization problem:

min
1

N

N∑
i=1

‖xi − x′
i‖2. (3)

Generally, an auto-encoder network is constructed by stacking multiple one-
layer auto-encoders. That is, the hidden representation of the previous one-layer
auto-encoder is fed as the input of the next one. For more details of the auto-
encoder network and its optimization, readers are referred to [1].

2.2 Clustering Based on Auto-encoder

Auto-encoder is a powerful model to train a mapping function, which ensures the
minimum reconstruction error from the code layer to the data layer. Usually, the
code layer has less dimensionality than the data layer. Therefore, auto-encoder
can learn an effective representation in a low dimensional space, and it can
be considered as a non-linear mapping model, performing much better than
PCA [3]. However, auto-encoder contributes little to clustering because it does
not pursue that similar input data obtain the same representations in the code
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layer, which is the nature of clustering. To solve this problem, we propose a new
objective function and embed it into the auto-encoder model:

min
W,b

1

N

N∑
i=1

‖xi − x′
i‖2 − λ ·

N∑
i=1

‖f t(xi)− c∗i ‖2 (4)

c∗i = argmin
ct−1
j

‖f t(xi)− ct−1
j ‖2, (5)

where N is the number of samples in the dataset; f t(·) is the non-linear mapping
function at the tth iteration; ct−1

j is the jth cluster center computed at the (t−1)th
iteration1; and c∗i is the closest cluster center of the ith sample in the code layer.
This objective ensures that the data representations in the code layer are close
to their corresponding cluster centers, and meanwhile the reconstruction error
is still under control, which is important to obtain stable non-linear mapping.

Two components need to be optimized: the mapping function f(·) and the
cluster centers c. To solve this problem, an alternate optimization method is
proposed, which firstly optimizes f(·) while keeps c fixed, and then updates the
cluster center:

ctj =

∑
xi∈Ct−1

j
f t(xi)

|Ct−1
j |

, (6)

where Ct−1
j is the set of samples belonging to the jth cluster at the (t − 1)th

iteration and |Cj | is the number of samples in this cluster. The sample assignment
computed in the last iteration is used to update the cluster centers of the current
iteration. Note that sample assignment at the first iteration C0 is initialized
randomly. For clarity, we conclude our method in Algorithm 1.

Algorithm 1. Auto-encoder based data clustering algorithm

1: Input: Dataset X , the number of clusters K, hyper-parameter λ,
the maximum number of iterations T .

2: Initialize sample assignment C0 randomly.
3: Set t to 1.
4: repeat
5: Update the mapping network by minimizing Eqn. (4) with sto-

chastic gradient descent for one epoch.
6: Update cluster center ct via Eqn. (6).
7: Partition X into K clusters and update the sample assignment

Ct via Eqn. (5).
8: t = t+ 1.
9: until t > T

10: Output: Final sample assignment C.

1 We use stochastic gradient descent (SGD) [5] to optimize the parameters of auto-
encoder.
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3 Experiments

3.1 Experimental Setups

Database. All algorithms are tested on 3 databases: MNIST2, USPS3 and
YaleB4. They are widely used for evaluating clustering algorithms.

1. MNIST contains 60,000 handwritten digits images (0∼9) with the resolu-
tion of 28× 28.

2. USPS consists of 4,649 handwritten digits images (0∼9) with the resolution
of 16× 16.

3. YaleB is composed of 5,850 faces image over ten categories, and each image
has 1200 pixels.

Parameters. Our clustering model is based on a four-layers auto-encoder net-
work with the structure of 1000-250-50-10. The parameter λ in Eqn. (4) is set by
cross validation. That is 0.1 on MNIST, 0.6 on USPS and YaleB. The weights W
in the auto-encoder network are initialized via a standard restricted Boltzmann
machine (RBM) pre-training [3].

Baseline Algorithms. To demonstrate the effectiveness of our method, we
compare our method with three classic and widely used clustering algorithms:
K-means [10], spectral clustering [7] and N-cut [9].

Evaluation Criterion. Two metrics are used to evaluate experimental results
explained as follows.

1. Accuracy (ACC) [11]. Given an image xi, let ci be the resolved cluster label

and ri be the ground truth label. ACC is defined as
∑N

i=1 δ(ri,map(ci))/N ,
where N is the number of instances in the dataset and δ(x, y) is the delta
function that equals one if x = y and zero otherwise. Map(ci) is the function
that maps each cluster label ci to the equivalent label from the datasets. The
best mapping can be found by using the Kuhn-Munkres algorithm [8].

2. Normalized mutual information (NMI) [6]. Let R denote the label ob-
tained from the ground truth and C be the label obtained by clustering. The
NMI is defined as MI(R,C)/max(H(R), H(C)), where H(X) is the entropies
of X , and MI(X ,Y ) is the mutual information of X and Y .

3.2 Quantitative Results

In this subsection, we firstly evaluate the influence of the iteration number in our
algorithm. Figure 3 shows the change of NMI and ACC as the iteration number
increases on three databases.

It can be found that the performance is enhanced fast in the first ten iterations,
which demonstrates that our method is effective and efficient. After dozens of

2 http://yann.lecun.com/exdb/mnist/
3 http://www.gaussianprocess.org/gpml/data/
4 http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html

http://yann.lecun.com/exdb/mnist/
http://www.gaussianprocess.org/gpml/data/
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
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Fig. 3. Influence of the iteration number on three databases

Table 1. Performance comparison of clustering algorithms on three databases

Datasets MNIST USPS YaleB
Criterion NMI ACC NMI ACC NMI ACC
K-means 0.494 0.535 0.615 0.674 0.866 0.793
Spectral 0.482 0.556 0.662 0.693 0.881 0.851
N-cut 0.507 0.543 0.657 0.696 0.883 0.821
Proposed 0.669 0.760 0.651 0.715 0.923 0.902

iteration, e.g., 40∼60, both NMI and ACC become very stable. Thus, in the rest
of experiments, we report the results after 50 iterations. The performances of
the different methods on three datasets are shown in Table 1. Apparently that
our method is better than or at least comparable to their best cases.

3.3 Visualization

In this subsection, the visualized results on MNIST are shown to provide an in-
depth analysis. We draw in Figure 4 the distribution of ten categories of digits
obtained by our method. Most of histograms in Figure 4 are single-peak distri-
butions, demonstrating the compactness of data representation. Admittedly, the
cases of digits 4 and 9 are not so good. We will discuss possible solutions to this
problem in Section 4. The small digital images in subfigures are the reconstructed
results of cluster centers in the code layer.

For comparison, we also show the average data representations over all clusters
by K-means in Figure 5. The result is much worse, and can be easily understood
with the motivation of our method. Generally, K-means uses a similar iteration
procedure as ours in Algorithm 1 except that it is performed in the original
pixel space. That is, the iteration of K-means is performed in the data layer,
whereas ours in the code layer, which is mapped from the data layer with a
highly non-linear function, learned by exploiting the hidden structure of data
with the auto-encoder network.

3.4 Difference of Spaces

In this subsection, we analyze the difference of three spaces, i.e., the original data
space, the space learned via non-linear mapping with original auto-encoder, and
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Fig. 4. Distribution of data over ten clusters and the visualized images of cluster centers
after reconstruction with the learned decoder
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Fig. 5. Distribution of digits over 10 classes and the visualized images of 10 cluster
centers generated by K-means
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Auto-encoder 0.66 0.63
Proposed 0.77 0.69
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Fig. 6. Performance comparison in three different spaces

the one learned by our method. Correspondingly, we apply K-means clustering
in these spaces. Their clustering results are shown in Figure 6. Obviously, the
clustering performance in the space of auto-encoder is much better than the one
in the original space, and much worse than the one proposed by us. This result
justifies two viewpoints: 1) Non-linear mapping by auto-encoder can greatly
improve the representation of data for clustering; 2) Our proposed objective
function, defined in Eqn. (4)∼(6), is effective to further enhance clustering due
to the design of increasing data compactness as analyzed in Section 2.2.
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4 Conclusions

In this paper, we have proposed a new clustering method based on the auto-
encoder network. By well designing the constraint of the distance between data
and cluster centers, we obtain a stable and compact representation, which is more
suitable for clustering. To the best of our knowledge, this is the first attempt
to develop auto-encode for clustering. As this deep architecture can learn a
powerful non-linear mapping, the data can be well partitioned in the transformed
space. The experimental results have also demonstrated the effectiveness of the
proposed model. However, as is shown in Figure 4, some data are still mixed. This
problem might be resolved by maximizing the difference among cluster centers
in the code layer. Besides, a probability-based model in assigning data to their
corresponding cluster centers may be a potential direction in future work, which
can decrease the possibility of local optimal solution.
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search Program of China (2012CB316300), National Natural Science Foundation
of China (61175003, 61135002, 61203252), Tsinghua National Laboratory for In-
formation Science and Technology Cross-discipline Foundation, and Hundred
Talents Program of CAS.

References

1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new
perspectives. arXiv preprint arXiv:1206.5538 (2012)

2. Dhillon, I.S., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normal-
ized cuts. In: ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (2004)

3. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-
ral networks. Science 313(5786) (2006)

4. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing
Surveys 31(3), 264–323 (1999)

5. LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backProp. In: Mon-
tavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade,
2nd edn. LNCS, vol. 7700, pp. 9–48. Springer, Heidelberg (2012)

6. Li, Z., Yang, Y., Liu, J., Zhou, X., Lu, H.: Unsupervised feature selection using
nonnegative spectral analysis. In: AAAI Conference on Artificial Intelligence (2012)

7. Ng, A.Y., Jordan, M.I., Weiss, Y., et al.: On spectral clustering: Analysis and an
algorithm. Advances in Neural Information Processing Systems 2, 849–856 (2002)

8. Plummer, M., Lovász, L.: Matching theory, vol. 121. North Holland (1986)
9. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence 22(8) (2000)
10. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained k-means clustering

with background knowledge. In: International Conference on Machine Learning,
pp. 577–584 (2001)

11. Xu, W., Liu, X., Gong, Y.: Document clustering based on non-negative matrix
factorization. In: ACM SIGIR Conference on Research and Development in Infor-
maion Retrieval (2003)



On the Generalization

of the Mahalanobis Distance

Gabriel Martos1, Alberto Muñoz1, and Javier González2
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Abstract. The Mahalanobis distance (MD) is a widely used measure in
Statistics and Pattern Recognition. Interestingly, assuming that the data
are generated from a Gaussian distribution, it considers the covariance
matrix to evaluate the distance between a data point and the distribution
mean. In this work, we generalize MD for distributions in the exponential
family, providing both, a definition in terms of the data density function
and a computable version. We show its performance on several artificial
and real data scenarios.

1 Introduction

The Mahalanobis distance (MD) [5], widely used in Statistics and Machine
Learning for classification and outlier detection tasks, is a scale-invariant metric
that provides a measure of distance between two points taking into account the
correlation between the variables. It can be seen as the composition of the linear

transformation TM : x
TM−−→ x′ = Σ− 1

2x, where Σ is the covariance matrix of a
vector of random variables x, plus the computation of the ordinary Euclidean
distance (ED) between the transformed data. This is illustrated in Fig. 1 for two
data points from a bivariate Gaussian distribution. The distance in probability
(dM ) from B to the mean μ is larger than the distance from A to μ, which is
correctly detected by the MD, but not by the ED (dE).

The Mahalanobis distance is a particular case of the Bregman Divergence
(see Def. 1), a generalization of the concept of distance. We will show that
this connection allows us to generalize the concept of distance from a point
to the center of a distribution (the densest point) for density functions in the
exponential family, a quite general case. The rest of this paper is organized as
follows. In Section 2 we introduce the new distance, in terms of the data density
function and then we provide a computable version of the distance. In Section
3 we show the performance of the generalized MD for outlier detection and
classification problems.
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Fig. 1. The effect of the Mahalanobis transformation TM

2 A Generalized Mahalanobis Bregman Divergence

Our goal in this section is to define a Generalized Mahalanobis distance to the
center of a general Probability Measure (distribution), that is, a distance for
distributions non necessarily Gaussian.

Consider a measure space (X ,F , μ), where X is a sample space (here a com-
pact set of a real vector space), F a σ-algebra of measurable subsets of X and
μ : F → IR+ the ambient σ-additive measure, the Lebesgue measure. A prob-
ability measure P is a σ-additive finite measure absolutely continuous w.r.t. μ
that satisfies the three Kolmogorov axioms. By Radon-Nikodym theorem, there
exists a measurable function f : X → IR+ (the density function) such that
P (A) =

∫
A fdμ, and f = dP

dμ is the Radon-Nikodym derivative.

In the Multivariate Gaussian case, say f = Nd(μ,Σ) where μ ∈ Rd and
Σ ∈ Rd×d are respectively the mean vector and the covariance matrix, it holds
that for x ∈ Rd, f(x|μ,Σ) ∝ e−

1
2d

2
M (x,μ) and MD is defined by:

dM (x, μ) =
√
(x− μ)TΣ−1(x− μ).

Next we show that MD is as a particular case of the Bregman Divergence:

Definition 1. (Bregman Divergence): Let X ⊂ Rd be a compact domain and
ξ a strictly convex and differentiable function ξ : X → R. Define the Bregman
Divergence (BD) for a pair of points (x,y) ∈ X as follows

BDξ(x,y) = ξ(x) − ξ(y)− 〈x − y,∇ξ(y)〉, (1)

where ∇ξ(y) is the gradient vector evaluated at the point y. Taking ξ(x) =
xTΣ−1x, it is immediate to verify that BD is the square of MD.

In general, there exists a bijective correspondence between Bregman diver-
gences and the class of (regular) exponential distributions [1,3]. An example is
the mentioned Normal distribution whose corresponding BD is the square of the
MD. However, the square of the MD can be expressed in an alternative and
interesting way as follows:

f(x) ∝ e−
1
2 d

2
M(x,μ) =⇒ d2M (x, μ) ∝ log

(
1

f(x)

)
, (2)
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Now, if f belongs to the regular exponential family, f can be expressed by
f(x) ∝ e−

1
2BDξ(x,μ) for appropriate ξ [1,3] and, thus:

f(x) ∝ e−
1
2BDξ(x,μ) =⇒ BDξ(x, μ) ∝ log

(
1

f(x)

)
, (3)

which gives us the hint to generalize the MD to any distribution in the expo-
nential family.

Definition 2. (GeneralizedMahalanobisDistance):Givena (d-dimensional)
distribution f in the exponential family and denote by mo the mode of f , that is,
f(mo) = maxx f(x), we define the Generalized Mahalanobis distance (GM) be-
tween x ∈ X and the mode (mo) of f by

d2GM (x,mo) = log

(
f(mo)

f(x)

)
. (4)

When x = mo, d
2
GM (x,mo) = log(1) = 0, and d2GM (x,mo) increases when x

moves off from the mode mo. What is the connection between BD and GM? As
already told, BD is only defined for distributions on the exponential family. In
the important case of the normal distribution1, BDξ(x,mo) = 2d2GM (x,mo). In
the case of the gamma distribution1 with shape parameter α, BDξ(x,mo) =
α

α−1d
2
GM (x,mo) (provided that there exist a mode: α > 1). Thus, BD and

GM are “formally” equivalent for distributions in the exponential family. The
advantage of the GM are two: First, it is always defined for any continuous
regular distribution, but BD is not out of the exponential family. Second, it is
possible to derive a sample version of the GM by just providing an estimator of
f(x).

From a practical point of view, we are interested in the GM to solve classifi-
cation and outlier detection problems. Thus the relevant information here is not
the exact value of the distance, but the relative order among the distances from
data points to the center of the distribution (the densest point). Therefore, we do
not need to know f(x), but given x and y, it is enough to know if f(x) < f(y)
or f(x) > f(y). To this aim, we just need to estimate the α-level sets of f :
Given a probability measure P with density function fP, the minimum volume
sets (or α-level sets) are defined by Sα(fP) = {x ∈ X| fP(x) ≥ α}, such that
P (Sα(fP)) = 1 − ν , where 0 < ν < 1. If we consider an ordered sequence α1 <
. . . < αm, then Sαi+1(fP) ⊆ Sαi(fP). Let us define Ai(P) = Sαi(fP)− Sαi+1(fP),
i ∈ {1, . . . ,m − 1}. We can choose α1 � 0 and αm ≥ maxx∈X fP(x) (which
exists, given that X is compact and fP continuous). If the {αi}mi=1 sequence is
long enough, we can assume constant density for the points contained in Ai(P),
that is, they have the same value f(x).

If x ∈ Ai(P), and because of the definition of Ai(P), then f(x) ≈ αi and thus:

d2GM (x,mo) = log

(
f(mo)

f(x)

)
≈ log

(
f(mo)

αi

)
. (5)

Next we introduce the algorithm to estimate the Ai(P) sets.

1 Proof is omitted for lack of space.
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Table 1. Algorithmic formulation of Theorem 1

Obtention of Rn = Ŝα(f):

1 Choose a constant ν ∈ [0, 1].
2 Consider the order induced in the sample sn by the sparsity measure gn(x), that is,
gn(x(1)) ≤ · · · ≤ gn(x(n)), where x(i) denotes the ith sample, ordered after g.

3 Consider the value ρ∗n = g(x(νn)) if νn ∈ N, ρ∗n = gn(x([νn]+1)) otherwise, where [x]
stands for the largest integer not greater than x.

4 Define hn(x) = sign(ρ∗n − gn(x)).

2.1 Level Set Estimation

Usually the available data are given as a finite sample. We will consider an
iid sample sn(P) = {xi}ni=1 drawn from the density function fP. To estimate

level sets from a data sample (useful to obtain Ŝα(fP)) we present the following
definitions and theorems, concerning the One-Class Neighbor Machine [7,8].

Definition 3 (Neighbourhood Measures). Consider a random variable X
with density function f(x) defined on IRd. Let Sn denote the set of random
independent identically distributed (iid) samples of size n (drawn from f). The
elements of Sn take the form sn = (x1, · · · ,xn), where xi ∈ IRd. Let M :
IRd×Sn −→ IR be a real-valued function defined for all n ∈ IN. (a) If f(x) < f(y)
implies lim

n→∞P (M(x, sn) > M(y, sn)) = 1, then M is a sparsity measure.

(b) If f(x) < f(y) implies lim
n→∞P (M(x, sn) < M(y, sn)) = 1, then M is a

concentration measure.

The Support Neighbour Machine [7,8] solves the following optimization problem:

max
ρ,ξ

νnρ−
n∑

i=1

ξi

s.t. g(xi) ≥ ρ− ξi ,
ξi ≥ 0, i = 1, . . . , n ,

(6)

where g(x) = M(x, sn) is a sparsity measure, ν ∈ [0, 1], ξi with i = 1, . . . , n are
slack variables and ρ is a threshold induced by the sparsity measure.

Theorem 1. The set Rn = {x : hn(x) = sign(ρ∗n − gn(x)) ≥ 0} converges to a
region of the form Sα(f) = {x|f(x) ≥ α}, such that P (Sα(f)) = 1− ν.

Therefore, the Support Neighbour Machine estimates a density contour cluster
Sα(f) (around the mode). Theorem 1 [7,8] can be expressed in algorithmic form
as in Table 1: Hence, we take Âi(P) = Ŝαi(fP) − Ŝαi+1(fP), where Ŝαi(fP) is
estimated by Rn defined above (for further details on the estimation refers to
[7,8]). Whit the estimation of level sets and the relation presented in Equation
2, we will test with some experiment the performance of the proposed distance.
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3 Experimental Section

To demonstrate the capability of the proposed distance, we test it in one artificial
and two real data experiments.

Artificial Experiments

The goal of the first experiment is to demonstrate that the GM adequately cap-
tures a significant amount of outliers in non-Gaussian scenarios. We keep the
distribution simple and visually tractable in this example. We simulate 1000
points from a bimodal and asymmetric bi-logistic distribution [9], with param-
eters BL(α = 0.5, β = 0.9). The values of the parameters α = 0.5 and β = 0.9
where selected in order to obtain a bi-modal distribution in the sampled data.
We replace some of these observations with contaminated observations (noise)
normally distributed with parameters Nd(μ = (3, 3),Σ = 5I2×2). The simula-
tion process was: first we generate a vector u of size 1000, uniformly distributed
in [0, 1]. Then for each value of u ≤ .95 we generate a data point from the
BL(α = .5, β = .9) distribution, in the other case we generate a data from a
Nd(μ = (3, 3),Σ = 5I2×2).

Table 2. Outlier detection performance

Metric/Technique % of: Outliers False-positives False-negatives
captured (Type I error) (Type II error)

pc-Outlier[2] 36.5% 23.2% 65.8%
sign-Outlier[2] 23.1% 7.4% 76.9%
locoutPercent[2] 13.4% 7.3% 86.4%
Percentile 5% Euclidean Distance 3.8% 10.7% 96.1%
Percentile 5% Mah. Distance 23.1% 10.4% 76.9%
Percentile 5% Gen. Mah. Distance 38.5% 10.3% 65.4%

We use a battery of different algorithms [2,10] to identify contaminated points
(outliers) for the simulated data. The results are summarized in Table 2. Our
metric outperforms the other metrics in the detection of the contaminated points.
We also get the lowest rate of unidentified outliers (false-negatives rate) and
a very competitive rate of false identification of outliers (false-positives rate)
compared to other more sophisticated techniques. In Figure 2, we present the
points revealed as contaminated points in all the considered cases. The GM
adequately capture those points that are far apart from the “center” of the
bimodal and asymmetric sampled distribution.

Real Data Experiments

For the first real example, we consider a collection of 1774 documents (corre-
sponding to 13 topics) extracted from three bibliographic data bases (LISA,
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pc−Outlier

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

sign−Outlier

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

locuPercent

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

Euclidean Dist.

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●
●

●
●●

●●

●

●

●

Maha. Dist.

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Gen. Mah. Dist.

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Fig. 2. Contaminated points detected for each of the method/metric

Table 3. Classification percentage errors for a three-class text database and four clas-
sification procedures. In parenthesis the St. Error on test samples are shown.

Method % of: Train Error Test Error

SVM 0.000% 0.005% (0.000)
LDA 6.100% 7.035% (0.007)
QDA (Mahalanobis) 6.426% 6.960% (0.001)
Generalized Mahalanobis 2.553% 2.761% (0.002)

INSPEC and Sociological Abstracts). Each document is converted into a vector
into the Latent Semantic Space using the Singular Value Decomposition. We
considers 3 classes of similar topics: “dimensionality reduction” and “feature se-
lection” (311 documents), “optical cables” and “power semiconductor devices”
(384 documents) and “rural areas” and “retirement communities” (165 docu-
ments). In order to implement the classification we divide the 860 documents
into a training sample (516 documents, 60% of the data) and a test sample
(the remaining 344 documents). In order to give a robust classification result we
repeat the experiment 100 times. We report in Table 3 the average error rate
on the test sample and the standard error for each classifier. We can see that
our metric clearly outperforms Mahalanobis distance. This is explained because
we are dealing with highly dimensional data and few observations, therefore it
is difficult to estimate an appropriate covariance matrix in order to adequately
compute the Mahalanobis distance to the centers. Our distance does not suffer
this inconvenience and is capable to approximate the classification performance
of a variety of very sophisticated classification methods.
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Fig. 3. Textures images: a) blanket, b) canvas, c) seat, d) linseeds and e) stone

Table 4. Outlier detection performance

Metric/Technique % of: Outliers False-positives False-negatives
captured (Type I error) (Type II error)

pc-Outlier[2] 60% 13.23% 28.65%
sign-Outlier[2] 40% 5.13% 37.75%
locoutPercent[2] 35% 2.80% 39.39%
Percentile 5% Euclidean Distance 25% 4.00% 42.85%
Percentile 5% Mah. Distance 35% 3.60% 39.39%
Percentile 5% Gen. Mah. Distance 100% 5.10% 0.00%

The second real data example considers the detection of outliers in sample
of texture images. We consider the texture images from the Kylberg texture
database [4]. We use 500 texture images with a resolution of 576 × 576 pixels.
The first 480 texture images are very similar textures (Fig. 3 a) to c)). We
also consider 20 “outliers” images with different textures (Fig. 3 d) and e)). We
represent each image using the 32 parameters of the wavelet coefficient histogram
proposed in [6]. We report the results in Table 4. Only the proposed distance
is able to capture all the outliers in the sample. We also get an acceptable
performance regarding the Type I Error rate (with 5.1%).

Future Work: The list of tasks for next future include an exhaustive simulation
study of the performance of the proposedmetric (some of this work is not included
because the lack of space), the generalization of the proposed metric to define a
Generalized “inter-point” Mahalanobis distance, and the study of properties of
the proposed metric and its relations with the strictly convex and differentiable
function ξ that originates the definition of the Bregman Divergences.
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Abstract. Encoding an object essence in terms of self-similarities be-
tween its parts is becoming a popular strategy in Computer Vision. In
this paper, a new similarity-based descriptor, dubbed Structural Simi-
larity Cross-Covariance Tensor is proposed, aimed to encode relations
among different regions of an image in terms of cross-covariance matri-
ces. The latter are calculated between low-level feature vectors extracted
from pairs of regions. The new descriptor retains the advantages of the
widely used covariance matrix descriptors [1], extending their expres-
siveness from local similarities inside a region to structural similarities
across multiple regions. The new descriptor, applied on top of HOG, is
tested on object and scene classification tasks with three datasets. The
proposed method always outclasses baseline HOG and yields significant
improvement over a recently proposed self-similarity descriptor in the
two most challenging datasets.

Keywords: object recognition, scene classification, covariance.

1 Introduction

In pattern recognition, the representation of an entity can be addressed following
two complementary paradigms: feature-based and similarity-based. In the first
case the characteristics of the entity, or of parts of it, are encoded by descriptors
concerning for example shape and color. Most descriptors (e.g. SIFT [4], LBP
histograms [5], HOG [6]) are enclosed in this class. In the latter case the focus
is on a similarity measure allowing to relate new entity to a set reference ones.

Whenever an entity can be structurally represented by its parts, the similarity
philosophy can be applied to the internal relationship among parts, each one
represented in terms of features. In other words, a self-similarity descriptor can be
constructed on top of feature descriptors related to different entity parts, joining
the advantages of the two approaches. An example of this strategy, applied to
the pedestrian detection task, can be found in [7]: each image is subdivided in
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Fig. 1. Building process of the SS-CCT: each region is described by a set of local feature
descriptors; the pairwise similarity among two regions is encoded by a cross-covariance
matrix of the feature descriptors.

regions from which HOG are extracted; similarity among these regions are then
encoded by Euclidean pairwise distances among HOG descriptors. This approach
is effective and computationally efficient but has some drawbacks, which are
shared by all the similarity-based approaches relying on point-wise distances.
In particular, if entities to be detected are not aligned, i.e. the entity’s parts
do not occupy the same image regions across the images, point-wise distance
approaches are not statistically robust, as the single distance may undergo too
much variability in the same entity class. Moreover, all the information on the
similarity among two descriptors (i.e. two vectors) collapses in a single scalar
value, potentially obscuring discriminative relations between single elements of
the descriptor (e.g. the single bins of an HOG).

In order to overcome these limitations a different self-similarity approach is
here proposed: the key idea is to provide a rich and, at the same time, statisti-
cally robust notion of similarity among different regions of an image, exploiting
covariance measures among couples of low-level features across different regions.

Covariances of low-level features, in the form of covariance matrices, bear sev-
eral advantages when used as single region descriptors, as pointed out in [1,2,3].
The representation provides a natural way of fusing multiple features that might
be correlated. The single pixel noise is largely filtered out with the average op-
eration intrinsic to the covariance calculation. In comparison to other statistical
descriptors, such as multi-dimensional histograms, covariances are intrinsically
low-dimensional as their size is only O(N2), with N being the number of fea-
tures. Since covariance matrix is invariant with respect to pixels position inside
the region, the descriptor has also some degree of robustness against pose change
and object rotation.

Till now covariances of low-level features have been employed essentially as a
single region descriptors [1,2,3]. What we propose here is to employ covariances
as a measure of similarity across different regions. Thus, covariance matrices
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have to be generalized with the Cross-Covariance matrices, which capture the
covariance among two generally different feature vectors, in our case related to
two different regions. In particular, a Structural Similarity Cross-Covariance
Tensor (SS-CCT) is here proposed, which encodes all the pairwise similarities
among regions by means of Cross-Covariance matrices, each one encoding all the
pairwise relationships between the single features extracted in a given couple of
regions. Any region descriptor can be ideally adopted (e.g. HOG [6], SIFT [4],
LBP [5]).

As a proof of concept and for computational reasons, the proposed method
is applied to the well-known HOG feature descriptor, implemented according
to [6], and tested on two different classification tasks: objects and scenes. The
classification results show significant performance improvements with respect to
both the simple feature-based descriptors and the point-wise similarity based
approach in [7].

The remaining of the paper is organized as follows: in Section 2 the SS-CCT
descriptor is introduced; in Section 3 some information on the object model is
provided; in Section 4 the SS-CCT performance on Caltech 101 [8], Caltech-256
[9] and SenseCam ([10]) datasets is displayed and compared with two literature
methods; finally, in Section 4 some conclusions are drawn.

2 Proposed Method

Given an image I, we define R regions each one of size W ×H pixels (see Fig.
1). Each region is divided into M patches and, for each patch, a given feature
descriptor is applied, obtaining M feature vectors of size N .

The global Feature Level descriptor (FL) of the image I is obtained stacking
together the feature vectors for all the regions and all the patches as follows:

FL = [zT1,1 . . . zTr,m . . . zTR,M ] (1)

where zr,m is the feature vector obtained applying the descriptor to the patch
m in the region r.

The proposed Similarity Level structural descriptor is built on top of FL,
encoding the similarity among each couple of regions. In order to achieve a
statistically robust and highly invariant description of this similarity, we calculate
the covariance among each couple of features, using the patches of the two regions
as spatial samples (Fig. 1).

In detail, given two regions r1 and r2, we calculate the N×N cross-covariance
matrix Ccovr1,r2 among the feature vectors zr,m in the following way:

Ccovr1,r2 =
1

M − 1

M∑
m=1

(zr1,m − z̄r1)(zr2,m − z̄r2)
T , (2)

where z̄r1 and z̄r2 are the mean of the feature vectors inside regions r1 and r2,
respectively. In practice the i, j-th element of Ccovr1,r2 is the spatial covariance
of feature i in region r1 and feature j in region r2. Notice that Cross-Covariance
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matrices do not share the same properties of covariance matrices. In particu-
lar, Ccovr1,r2 are not symmetric and, consequently, not semi-definite positive.
Therefore cross-covariance matrices do not live on the Riemannian manifold
defined by the set of semi-definite positive matrices [1], and the only known
modality to use these descriptors in a machine learning framework is to vector-
ize them.

Calculating Eq. (2) across all the possible region pairs, we define a block
matrix CcovBlock of size NR×NR as follows:

CcovBlock(I) =

⎡⎢⎣Ccov1,1 · · · Ccov1,R

...
. . .

...
CcovR,1 · · · CcovR,R

⎤⎥⎦ . (3)

It can be noticed from Eq. (3) that this matrix is block-symmetric, i.e.
Ccovr1,r2 = Ccovr2,r1 . Therefore the final structural descriptor, named
Structural-Similarity Cross Covariance Tensor (SS-CCT), is built vectorizing
CcovBlock(I) in the following manner:

SS-CCT = [Vec(Ccov1,1) Vec(Ccov1,2) . . . (4)

Vec(Ccov1,R) Vec(Ccov2,2) . . . Vec(CcovR,R)].

where Vec is the standard vectorization operator.
The length of the SS-CCT descriptor is therefore (R+ 1)(R/2)N2. The final

descriptor is obtained joining together the Feature Level (Eq. 1) and the Similar-
ity Level (Eq. 4) descriptors, with a final length equal to (R+1)(R/2)N2+RMN .

3 Object Model

The adopted object model is dependent on the size of the images considered
and on the general characteristics of the dataset. In general, given an image
I, containing the object of interest, we calculate the low-level descriptor on a
uniformly sampled set of MR patches, of size w × w, whose overlap is w/2
in both x and y dimensions. For every patch, we encoded the appearance of
an object through the use of Histograms of Oriented Gradients descriptor, as
defined in [6]. We adopted this descriptor since it is relatively fast to compute
and still considered one of the most expressive one.

After that, we defined a set of R regions, subdividing the MR patches in
R corresponding subsets of size M . The region size is defined considering the
following criteria: 1) each region should contain a number of patches sufficient to
yield a significant statistics in the cross-covariance matrix calculus; 2) the patch
size should be sufficiently large so as to retain the descriptor expressiveness; 3)
finally, the region size should match the size of significant parts of the objects
to be detected or classified.

In this way, we calculate the SS-CCT descriptor evaluating the cross-covariance
between all the couples of regions as formalized in Eq. 3 and Eq. 4. The final de-
scriptor, here dubbed SS-CCT(HOG), is given by the concatenation of SS-CCT
and the HOG descriptors.
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4 Experiments

In this section, we report experimental results obtained on two different tasks,
using three datasets: object classification (Caltech-101 [8] and Caltech-256 [9]),
and scene classification (SenseCam Dataset [10]). In all the experiments, we
employ a multiclass one-vs-all linear Support Vector Machine classifier [11].

The comparisons are carried out with the HOG baseline descriptor [6] and
the Self-Similarity Tensor described in [7]. The latter, named SST(HOG), is
built joining together the HOG descriptor and the pairwise Euclidean distances
between all the patches, sharing the mixed feature-based and similarity-based
philosophy of SS-CCT.

4.1 Object Classification

In the object classification community, Caltech-101 [8] dataset represents an im-
portant benchmark. It consists of 102 classes (101 object categories plus back-
ground) with a number of images per class ranging from 31 to 800. Despite its
importance, Caltech-101 has some cues, notably the presence of strongly aligned
object classes, which significantly ease the classification process. To overcome
such limitation, the larger Caltech-256 dataset was subsequently introduced. It
consists of 256 classes (256 + Clutter class) with a minimum of 80 images per
class and a total number of images equal to 30607. In Caltech-256 objects po-
sition inside the image is significantly varying for a lot of classes, as can be
seen observing the average images for the 256 classes in Fig. 2, so making the
classification task more challenging with respect to Caltech-101.

To test our descriptor, the object model introduced in Sec. 3 is adopted. The
HOG descriptor is calculated on dense patches of size 32 × 32 with an overlap
of 16 pixels. The number of regions R is set to 9, 3 along both the horizontal
and vertical image direction. For Caltech-101 we considered 15 images per class
for training and 15 images per class for testing, repeating the experiments with
five different splits according to a standard procedure [12]. The same was done
for Caltech-256 except for the number of training images which ranged from 5
to 30 with a step of 5.

Experimental results on the Caltech-101 are displayed in Tab. 1. As can be
seen both SS-CCT(HOG) and SST(HOG) outperform the baseline HOG with
a 6% increment in the overall accuracy. On the other hand, SS-CCT(HOG)
and SST(HOG) yield roughly the same performance: this is easily explainable
considering that in Caltech-101 images are strongly aligned, reducing the need
for robustness against position variation.

Results on the Caltech-256 in terms of accuracy vs the number of training
images per class, are displayed in Fig. 3. As figure shows, our method outperforms
both HOG and SST(HOG) in all the cases and the gap between our method and
the others increases with the increase of the training set size. Differently from the
Caltech-101 case, the higher complexity of the dataset highlights the superiority
of our method with respect to SST(HOG).
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Table 1. Classification results on the Caltech-101 dataset

HOG SST(HOG) SS-CCT(HOG)

Accuracy % 41.3 47.6 47.77

Fig. 2. Average of the images of the Caltech-256 dataset

4.2 Scene Classification

In the second experiment, the proposed framework is tested on the SenseCam
Dataset [10]. This dataset consists of images acquired with a SenseCam, a wear-
able camera which automatically shoots a photo every 20 secs. It consists of
912 images labeled according to 32 classes (e.g. Bathroom Home, Car, Garage
Home, Biking...). The images are divided into 479 images for training and 433
for testing. The dataset is challenging because most images present dramatic
viewing angle, translational camera motions and large variations in illumination
and scale: Fig. 4 shows four images belonging to two classes extracted from the
dataset.

The HOG descriptor has been calculated on dense patches of size 32×32 with
an overlap of 16 pixels. The number of regions was set to 15 : 5 along the x axis
and 3 along the y axis. Experimental results are displayed in Tab. 2.

Our method outperforms both HOG and SST(HOG) with a difference in
accuracy of about 8% and 3% respectively, so confirming its effectiveness in
classifying images containing objects with an high degree of position variability.
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Fig. 3. Results obtained on the Caltech-256 dataset

Table 2. Classification results for the SenseCam dataset

HOG SST(HOG) SS-CCT(HOG)

Accuracy % 36.72 41.10 44.12

(a)

(b)

Fig. 4. Four images extracted from the SenseCam Dataset: (a) Bathroom Home and
(b) Kitchen

5 Conclusions and Future Works

This paper proposes a novel similarity-based descriptor for image classification
purposes. The idea is to encode similarities among different image regions by
means of cross-covariance matrices calculated on low level feature vectors, ob-
taining a robust and compact representation of structural (dis)similarities of a
given entity. The final descriptor, obtained joining together the low-level features
(HOG in our case) and their structural similarities, has proven to outperform
baseline HOG, on all the datasets tested, and a recent literature similarity-based
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method [7], on the two most challenging datasets. This is a seminal work, and,
despite the encouraging results obtained, needs further study for setting the
best object model (number, shape and displacement of the parts) and the best
features in a given context. This will allow the comparison with popular state-
of-the-art approaches for detection and classification.
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Abstract. In this paper, we propose a novel satisfaction mechanism,
named “Dynamic K”, which could be introduced in any Class Asso-
ciation Rules (CAR) based classifier, to determine the class of unseen
transactions. Experiments over several datasets show that the new sat-
isfaction mechanism has better performance than the main satisfaction
mechanism reported (“Best Rule”, “Best K Rules” and “All Rules”).
Additionally, the experiments show that “Dynamic K” obtains the best
results independent of the CAR-based classifier used.

Keywords: Supervised classification, Satisfaction mechanisms, Class
association rules.

1 Introduction

The Classification Association Rule Mining (CARM) or associative classification,
introduced in [2], integrates Classification Rule Mining (CRM) and Association
Rule Mining (ARM). This integration involves mining a special subset of associ-
ation rules, called Class Association Rules (CARs), using some quality measure
(QM) to evaluate them. A classifier based on this approach usually consists of
an ordered CAR list l, and a satisfaction mechanism for classifying unseen trans-
actions using l [2,3,5]. Associative classification has been applied to many tasks
including automatic error detection [19], detection of breast cancer [15], pre-
diction of consumer behavior [17] and prediction of protein-protein interaction
types [16], among others.

In associative classification, similar to ARM, a set of items I = {i1, . . . , in}, a
set of classes C, and a set of labeled transactions D, are given. Each transaction
in D is represented by a set of items X ⊆ I and a class c ∈ C. A lexicographic
order among the items of I is assumed. The Support of an itemset X ⊆ I is
the fraction of transactions in D containing X . A CAR is an implication of the
form X ⇒ c where X ⊆ I and c ∈ C. The most commonly used QM to evaluate
CARs is the Confidence. The rule X ⇒ c is held in D with certain Support
s and Confidence α, where s is the fraction of transactions in D that contains
X ∪ {c}, and α is the probability of finding c in transactions that also contain
X . A CAR X ⇒ c covers a transaction t if X ⊆ t.
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In general, CAR-based classifiers could be divided in two groups according
to the strategy used for computing the set of CARs: (1) Two Stage classifiers -
in a first stage, all CARs satisfying the Support and Confidence are mined and
later, in a second stage, a classifier is built by selecting a small subset of CARs
that fully covers the training set [2,3] and (2) Integrated classifiers - in these
classifiers a small subset of CARs is directly generated [5,7,13].

Regardless of the strategy used for computing the set of CARs, in order to
build the classifier we need to sort the CARs. In the literature, there are six
main strategies for ordering CARs:

a) CSA (Confidence - Support - Antecedent size): First, the rules are sorted in
a descending order according to their Confidence. In case of ties, the tied
CARs are sorted in a descending order according to their Support, and if
the tie persist, CSA sorts the rules in ascending order according to the size
of their rule antecedent [2].

b) ACS (Antecedent size - Confidence - Support): This strategy is a variation
of CSA, but it takes into account the size of the rule antecedent as first
ordering criterion followed by Confidence and Support [7].

c) SrQM (Specific rules - QM): First, the rules are sorted in a descending order
according to the size of the CARs and in case of tie, the tied CARs are sorted
in a descending order according to their quality measure [18].

d) WRA (Weighted Relative Accuracy): The WRA rule ordering strategy as-
signs to each CAR a weight and then sorts the set of CARs in a descending
order according to the assigned weights [12,14].

e) LAP (Laplace Expected Error Estimate): LAP was introduced by Clark and
Boswell [1] and it has been used to order CARs in CPAR classifier [5].

f) χ2 (Chi-Square): The χ2 rule ordering strategy is a well known technique in
statistics, which is used to determine whether two variables are independent
or related. After computing an additive χ2 value for each CAR, this value is
used to sort the CARs in a descending order in the CMAR classifier [3].

Once the classifier has been built, we need to select a satisfaction mechanism
for classifying unseen transactions. Three main satisfaction mechanisms have
been reported in previous works [2,3,14]:

1. Best Rule: This mechanism selects the first (“best”) rule in the order that
satisfies the transaction to be classified, and then the class associated to the
selected rule is assigned to this transaction [2].

2. Best K Rules: This mechanism selects the best K rules (per each class)
that satisfy the transaction to be classified and then the class is determined
using these K rules, according to different criteria [14].

3. All Rules: This mechanism selects all rules that satisfy the transaction to
be classified and use them to determine the class of the new transaction [3].

Classifiers following the “Best Rule” mechanism could suffer biased classifica-
tion or overfitting since the classification is based on only one rule. On the other
hand, the “All Rules” mechanism includes rules with low ranking for classifi-
cation and this could affect the accuracy of the classifier. The “Best K Rules”
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mechanism has been the most used satisfaction mechanism for CAR-based clas-
sifiers, reporting the best results. However, the classification accuracy could be
affected when most of the best K rules were obtained extending the same item,
or when there is an imbalance among the numbers of CARs with high Confidence
(or another QM) values, per each class, that cover the new transaction.

In this paper, we propose a novel satisfaction mechanism, named “Dynamic
K”, to determine the class of unseen transactions. “Dynamic K” obtains better
performance than the main satisfaction mechanism mentioned above and it could
be introduced in any CAR-based classifier. This paper is organized as follows:
The next section describes our proposal. In the third section the experimental
results are shown. Finally, the conclusions are given in section four.

2 Our Proposal

As we mentioned above, the three satisfaction mechanisms reported have limita-
tions that can affect the classification accuracy. In general, the “Best K Rules”
mechanism has been the most widely used for CAR-based classifiers, reporting
the best results [11]. However, using this mechanism could affect the classifica-
tion accuracy. Ever more when most of the best K rules were obtained extending
the same item, or when there is an imbalance among the numbers of CARs with
high QM values, per each class, that cover the new transaction (see examples 1
and 2, respectively).

Example 1. Given the set of CARs shown in Tables 1(a) and 1(b). Suppose that
you would like to classifier the transaction {i1, i2, i3, i4, i5, i6} using the “Best K
Rules” mechanism with K = 5, value commonly used in previous works. First,
the CARs are sorted with SrQM rule ordering strategy (see Tables 1(c) and 1(d)).
Then, for each class, the top five rules covering the transaction {i1, i2, i3, i4, i5, i6}
are selected. The average of those top five rules QM values (delimited by a line in
Tables 1(c) and 1(d)), are 0.93 and 0.91, respectively; which means that c1 would
be assigned. Note that all antecedents of the selected CARs, belonging to class
c1, are subsets of {i1, i2, i3, i4} (almost all rules were obtained from extensions
of {i1} ⇒ c1). On the other hand, the antecedents of the top five rules in class
c2 (see Table 1(d)) involve a higher number of different items, resulting more
intuitive to assign the class c2.

Example 2. Given the set of CARs shown in the Tables 2(a) and 2(b). Suppose
that you would like to classifier the transaction {i1, i2, i3, i4} using the “Best
K Rules” mechanism with K = 5. First, the CARs are sorted with SrQM rule
ordering strategy (see Tables 2(c) and 2(d)). Then, for each class, the top five
rules covering the transaction {i1, i2, i3, i4} are selected. The average of those
top five rules QM values, delimited by a line in Tables 2(c) and 2(d), are 0.90
and 0.92 respectively; which means that c2 would be assigned. However, note
if you only consider the top three CARs of each class, you would obtain the
averages 0.95 and 0.92, respectively; which means that c1 would be assigned.
That happens because the class c2 has more rules with QM greater than 0.90
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than class c1; and the “Best K Rules” mechanism does not take into account
the imbalance among the number of CARs with high QM values, for each class,
covering the new transaction.

Table 1. Example of two set of rules ((a) and (b)) and the result of sort them using
the SrQM rule ordering strategy ((c) and (d))

(a) (b)
# CAR QM # CAR QM
1 {i1} ⇒ c1 0.91 1 {i2} ⇒ c2 0.86
2 {i1, i2} ⇒ c1 0.96 2 {i2, i3} ⇒ c2 0.87
3 {i1, i2, i3} ⇒ c1 0.96 3 {i2, i3, i4} ⇒ c2 0.93
4 {i1, i2, i3, i4} ⇒ c1 0.96 4 {i2, i4} ⇒ c2 0.85
5 {i1, i3} ⇒ c1 0.92 5 {i2, i4, i5} ⇒ c2 0.96
6 {i2} ⇒ c1 0.84 6 {i3} ⇒ c2 0.88
7 {i2, i3} ⇒ c1 0.84 7 {i3, i5} ⇒ c2 0.88
8 {i2, i3, i4} ⇒ c1 0.85 8 {i3, i5, i6} ⇒ c2 0.90
9 {i3} ⇒ c1 0.81 9 {i4} ⇒ c2 0.87
10 {i3, i4} ⇒ c1 0.83 10 {i4, i5} ⇒ c2 0.89

(c) (d)
# CAR QM # CAR QM
1 {i1, i2, i3, i4} ⇒ c1 0.96 1 {i2, i4, i5} ⇒ c2 0.96
2 {i1, i2, i3} ⇒ c1 0.96 2 {i2, i3, i4} ⇒ c2 0.93
3 {i2, i3, i4} ⇒ c1 0.85 3 {i3, i5, i6} ⇒ c2 0.90
4 {i1, i2} ⇒ c1 0.96 4 {i4, i5} ⇒ c2 0.89
5 {i1, i3} ⇒ c1 0.92 5 {i3, i5} ⇒ c2 0.88
6 {i2, i3} ⇒ c1 0.84 6 {i2, i3} ⇒ c2 0.87
7 {i3, i4} ⇒ c1 0.83 7 {i2, i4} ⇒ c2 0.85
8 {i1} ⇒ c1 0.91 8 {i3} ⇒ c2 0.88
9 {i2} ⇒ c1 0.84 9 {i4} ⇒ c2 0.87
10 {i3} ⇒ c1 0.81 10 {i2} ⇒ c2 0.86

Table 2. Example of two set of rules ((a) and (b)) and the result of sort them using
the SrQM rule ordering strategy ((c) and (d))

(a) (b)
# CAR QM # CAR QM
1 {i1} ⇒ c1 0.80 1 {i1} ⇒ c2 0.80
2 {i1, i2} ⇒ c1 0.82 2 {i2} ⇒ c2 0.83
3 {i1, i2, i3} ⇒ c1 0.95 3 {i2, i3} ⇒ c2 0.92
4 {i2} ⇒ c1 0.83 4 {i2, i3, i4} ⇒ c2 0.92
5 {i2, i3} ⇒ c1 0.94 5 {i3} ⇒ c2 0.91
6 {i3} ⇒ c1 0.84 6 {i3, i4} ⇒ c2 0.92
7 {i3, i4} ⇒ c1 0.96 7 {i4} ⇒ c2 0.91

(c) (d)
# CAR QM # CAR QM
1 {i1, i2, i3} ⇒ c1 0.95 1 {i2, i3, i4} ⇒ c2 0.92
2 {i3, i4} ⇒ c1 0.96 2 {i2, i3} ⇒ c2 0.92
3 {i2, i3} ⇒ c1 0.94 3 {i3, i4} ⇒ c2 0.92
4 {i1, i2} ⇒ c1 0.82 4 {i3} ⇒ c2 0.91
5 {i3} ⇒ c1 0.84 5 {i4} ⇒ c2 0.91
6 {i2} ⇒ c1 0.83 6 {i2} ⇒ c2 0.83
7 {i1} ⇒ c1 0.80 7 {i1} ⇒ c2 0.80

In this paper, in order to overcome the drawbacks of the existing satisfaction
mechanisms, we propose the “Dynamic K” mechanism. First, “Dynamic K”
sorts the CARs using the SrQM rule ordering strategy. Later, “Dynamic K”
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selects, for each class c ∈ C, the set of rules X ⇒ c covering the new transaction
t and satisfying the following conditions:

– X ⇒ c is a maximal rule.
– for all i ∈ I, with i lexicographically greater than all items of X ,

QM(X ∪ {i} ⇒ c) < QM(X ⇒ c) holds.

Thereby we included more large rules with high QM values in the classi-
fication, avoiding redundancies and including more different items in the an-
tecedents of the selected CARs. For example, Tables 3 and 4 show the rules of
examples 1 and 2 that were selected for “Dynamic K” and cover transactions
{i1, i2, i3, i4, i5, i6} and {i1, i2, i3, i4}, respectively;

Table 3. Rules of Example 1 that were selected by “Dynamic K” and cover transaction
{i1, i2, i3, i4, i5, i6}

(a) (b)
# CAR QM # CAR QM
1 {i1, i2, i3, i4} ⇒ c1 0.96 1 {i2, i4, i5} ⇒ c2 0.96
2 {i2, i3, i4} ⇒ c1 0.85 2 {i2, i3, i4} ⇒ c2 0.93
3 {i1, i3} ⇒ c1 0.92 3 {i3, i5, i6} ⇒ c2 0.90
4 {i3, i4} ⇒ c1 0.83 4 {i4, i5} ⇒ c2 0.89
Average 0.89 Average 0.92

Table 4. Rules of Example 2 that were selected by “Dynamic K” and cover transaction
{i1, i2, i3, i4}

(a) (b)
# CAR QM # CAR QM
1 {i1, i2, i3} ⇒ c1 0.95 1 {i2, i3, i4} ⇒ c2 0.92
2 {i3, i4} ⇒ c1 0.96 2 {i3, i4} ⇒ c2 0.92
3 {i2, i3} ⇒ c1 0.94 3 {i4} ⇒ c2 0.91

4 {i1} ⇒ c2 0.80
Average 0.95 Average 0.92

Let Ni be the set of maximal CARs of class ci that were selected for “Dynamic
K” mechanism. After selecting all Ni (for i = 1 to |C|), “Dynamic K” assigns
the class cj such that the QM average of all rules of Nj is greater than the QM
average of the top |Nj | rules of each Ni, with i 
= j and |Ni| ≥ |Nj|. In case of
tie among classes with different number of CARs, the class with less number of
CARs is preferred because the CARs are sorted in descendent order according
to their sizes (SrQM rule ordering strategy); in case of tie among classes with
equals number of CARs, the class with greater Support is selected, if the tie
persist the class is selected randomly.

If in examples 1 and 2, we applied the “Dynamic K” mechanism to classify
the transactions {i1, i2, i3, i4, i5, i6} and {i1, i2, i3, i4}, respectively, we will obtain
the class c2 in the first example (see Table 3) and the class c1 in the second one
(see Table 4).
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The “Dynamic K” mechanism does not have the drawbacks of the other
existent mechanisms since:

– It selects the maximal rules with high QM values, avoiding redundancies
and allowing the inclusion of more different items in the antecedents of the
selected CARs, thereby CARs of low quality are not included for classifying.

– The result is not affected when there is an imbalance among the numbers of
CARs with high QM values, for each class, that cover the new transaction,
this happens because to classify a new transaction, “Dynamic K” considers
the average of the same amount of CARs.

– It considers all good quality CARs that cover the new transaction and not
only the best one. Thereby, “Dynamic K” does not fall on the mistake of
assuming that the best rule is going to classify correctly all transactions that
it covers.

3 Experimental Results

In this section, we present the results of our experimental comparison among
“Dynamic K” and the main satisfaction mechanisms reported in the literature:
“Best rule” [2], “Best K rules” [14] and “All rules” [3].

For the experiment showed in Table 5, the four satisfaction mechanisms were
implemented inside the CAR-IC classifier [18], using the Confidence threshold
set to 0.5 and the Support threshold set to 0.01, as it was reported in other
works [3,5,7,14,20]. All our experiments were done using ten-fold cross-validation
reporting the average over the ten folds. All the tests were performed on a PC
with an Intel Core 2 Duo at 1.86 GHz CPU with 1 GB DDR2 RAM. Similar to
other works [2,3,6,13,20], we used several datasets, specifically 20. The chosen
datasets were originally taken from the UCI Machine Learning Repository [10],
and their numerical attributes were discretized by Frans Coenen using the LUCS-
KDD [4] discretized/normalized CARM Data Library.

For the experiment showed in Table 6, the codes of CBA, CMAR,
CPAR and TFPC were downloaded from the Frans Coenen’s homepage
(http://www.csc.liv.ac.uk/∼frans) and the codes of DDPMine and CAR-IC was
provided by their authors. For CBA, CMAR, CPAR, TFPC and CAR-IC classi-
fiers we used the Confidence threshold set to 0.5 and the Support threshold set
to 0.01, as their authors suggested.

InTable 5, the results show that “DynamicK” yields an average accuracy higher
than all other evaluated mechanisms, having a difference of 0.92% with respect to
the mechanism in the second place (“BestK rules” withK set to 5, the same value
used in other works [5,11,12,14]). Additionally, “Dynamic K” wins in 16 of the 20
datasets and ties in the other four. In Table 6, we show that “DynamicK” obtains
the best results independent of the CAR-based classifier used, being CAR-IC the
most benefited with the new mechanism (see rows 3 and 4 of Table 6).

Finally, in order to determine if the results shown in Table 5 are statistically
significant, we performed a pairwise comparison between “Dynamic K” and
the other satisfaction mechanisms. Each cell in Table 7 contains the number of
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Table 5. Classification accuracy of CAR-IC using the different satisfaction mechanisms

Dataset Best rule All rules Best K rules Dynamic K

adult 82.14 81.09 82.61 82.85
anneal 91.77 90.95 92.73 93.26
breast 84.45 83.52 90.03 90.46
connect4 55.98 55.01 56.02 57.24
dermatology 78.45 77.22 80.16 83.93
ecoli 82.04 80.46 82.06 82.16
flare 86.00 85.38 85.98 86.45
glass 68.10 67.29 68.95 71.12
heart 53.23 52.14 54.35 56.48
hepatitis 84.54 83.66 84.62 84.62
horseColic 82.48 81.75 82.47 84.54
ionosphere 84.06 83.02 86.10 86.24
iris 96.07 95.98 96.67 97.91
led7 72.70 71.43 73.02 73.02
letRecog 73.17 72.50 73.14 75.23
mushroom 98.51 97.86 98.54 98.54
pageBlocks 91.85 91.13 92.26 92.59
penDigits 77.83 76.42 81.93 82.78
pima 75.35 74.59 76.01 76.01
waveform 73.14 72.24 74.39 75.06

Average 79.59 78.68 80.60 81.52

Table 6. Average accuracy of other classifiers over the tested datasets, for different
satisfaction mechanisms

Dataset CBA CMAR CPAR TFPC DDPMine CAR-IC

All rules 70.03 75.28 74.39 73.08 77.81 78.68
Best rule 71.81 76.49 75.64 74.21 78.88 79.59
Best K rules 72.71 77.99 76.86 75.76 79.72 80.60
Dynamic K 73.28 78.53 77.32 76.21 80.16 81.52

Table 7. Pairwise comparison between “Dynamic K” and the other satisfaction mech-
anism, using CAR-IC classifier. Each cell shows the number of times “Dynamic K”
Win/Lose with respect to the corresponding mechanism over the 20 selected datasets.

All rules Best rule Best K rules Dynamic K

All rules 0/6 0/14 0/19
Best rule 6/0 0/5 0/10
Best K rules 14/0 5/0 0/7
Dynamic K 19/0 10/0 7/0

datasets where “Dynamic K” significantly Win/Lose to each other mechanism.
We detected ties using a one-tailed T-Test [8] with significance level of 0.05. The
results in the pairwise comparison reveal that the “Dynamic K” mechanism
beats all other evaluated mechanisms over most of the tested datasets.

4 Conclusions

In this paper, a new satisfaction mechanism, called “DynamicK”, was presented.
“Dynamic K” overcomes the drawbacks of the existing satisfaction mechanisms
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and it could be introduced in any CAR-based classifier. Experimental results
show that “Dynamic K” obtains a classification accuracy higher than all other
evaluated mechanisms, independent of the CAR-based classifier used.
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Abstract. A weighted näıve Bayes classifier using Renyi entropy is pro-
posed. Such a weighted näıve Bayes classifier has been studied so far,
aiming at improving the prediction performance or at reducing the num-
ber of features. Among those studies, weighting with Shannon entropy
has succeeded in improving the performance. However, the reasons of the
success was not well revealed. In this paper, the original classifier is ex-
tended using Renyi entropy with parameter α. The classifier includes the
regular näıve Bayes classifier in one end (α = 0.0) and näıve Bayes classi-
fier weighted by the marginal Bayes errors in the other end (α = ∞). The
optimal setting of α has been discussed analytically and experimentally.

1 Introduction and Related Studies

In the field of pattern recognition, there are various kinds of large-scale datasets.
The features expressing an object may be continuous, discrete or categorical, and
sometimes all these kinds of features appear at the same time. Such a feature
set containing more than one kind of features is called a mixed feature set. In
a large-scale dataset with mixed features, we have to solve two problems: 1)
how we deal with mixed features consistently and effectively and 2) how we
suppress the bad effect due to many features useless for classification (feature
selection). Especially, feature selection for large-scale datasets is desired to have
a low computational complexity, e.g., linear or less in the number of features.

The authors had proposed a weighted näıve Bayes classifiers in which every
continuous/ordered feature was converted into categorical one, coping with the
first issue, and feature weights were introduced to reduce the effective number of
features, coping with the second issue. In the weighting, the degree of importance
of each feature was measured by a Shannon entropy of data and the computa-
tion cost was linear in the number of features. The proposed classifier, indeed,
succeeded to reduce a large number of features without a large degradation of
performance [1]. However, in the viewpoint of performance improvement, it was
not satisfactory. It was better in only a few cases compared with the näıve Bayes
classifiers. This is probably because the way of using Shannon entropy was not
optimal. Therefore, we examine the validity to use a more general Renyi entropy
and analyze the property in the same framework.
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c© Springer-Verlag Berlin Heidelberg 2013



150 T. Endo and M. Kudo

The studies related to weighted näıve Bayes classifiers are mainly divided
into two groups. One group aims at choosing a small number of features or
at shrinking weights of useless features [2,3]. Another group aims at improving
the performance by controlling the weights appropriately [4,5]. For example, by
regarding each term as a new feature and the weight as a coefficient, we can
control these coefficients as in the same way of linear classifiers or of linear
support vector machines.

Some of these studies, however, suffer from the large computation cost [3,4].
The others could not improved the performance as expected or could not deal
with mixed features appropriately. Therefore, we proposed another way [1] in
which all features were converted into categorical features and the weights were
derived from the Shannon entropy or mutual information of each feature.

After we proposed the method, we noticed a very similar study by Chang-
Hwan Lee et al. [6]. In their method, the weights are derived from a different
formulation via Kullback-Leibler divergence, but the resultant weights coincide
with ours. They showed the effectiveness of their approach as well as ours. The
difference is that they normalized the weights within a finite range while we left
them as they were, preferring two extreme values of zero and infinity.

2 Weighted Näıve Bayes and Proposed Methods

The näıve Bayes classifier is a Bayes classifier simplified by the assumption
of independence between features in each class. It assigns a class label c∗ ∈
{1, 2, . . . ,K} for a class-unknown sample x = (x1, x2, . . . , xD) by the rule:

c∗ = argmax
c

P (c | x) (maximum posterior method)

= argmax
c

P (x | c)P (c) (Bayes rule)

= argmax
c

P (c)

D∏
d=1

P (xd | c) (Independence assumption)

= argmax
c

{
logP (c) +

D∑
d=1

logP (xd | c)
}

= argmax
c

{
logP (c) +

D∑
d=1

log
P (c | xd)P (xd)

P (c)

}

= argmax
c

{
logP (c) +

D∑
d=1

log
P (c | xd)

P (c)

}
.

We have derived the last two formulae because it is more natural to use P (c | xd)
than P (xd | c) when xd is one value of a categorical feature. Indeed, we can
estimate the probability by counting the number of samples taking the value xd

class-wisely without a special assumption of distribution necessary for estimation
of P (xd | c). Here, we use the base 2 for log through the paper.
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Referring to this assignment rule, we consider the following discriminant func-
tions to be maximized by c∗:

δc(x) = w0 log
P (c)

P0(c)
+

D∑
d=1

wd log
P (c|xd)

P (c)
, P0(c) = 1/K. (1)

This is different from many studies including our previous study in the point
that is includes w0 and P0(c). These modifications are made for two reasons:
1) to control the degree of affection by the prior probability by w0, e.g., make
w0 = 0 if P (c) = 1/K and 2) to bring consistency and interpretability to every

term as pieces of evidence to support class c, e.g., a positive log-odds log P (c|xd)
P (c) ,

i.e., P (c|xd) > P (c), gives a positive piece of evidence to support class c by
knowing the value of xd and a negative odds gives a negative piece of evidence.

In this study, we convert continuous and discrete features into categorical ones
to enable a unified treatment of mixed features. This is because it is hard to give
a reasonable metric between categorical values, e.g. people’s names. Conversely,
discretizing a continuous value does not always mean a loss of significant infor-
mation. Discretization sometimes even improves the performance of classifiers
[7]. In this paper, we simply use, equally-spaced bins within the minimum and
maximum values of training samples because our objective is to investigate the
effect of the proposed weighting method. The number of bins is in common set
to logN where N is the number of samples.

3 Extension by Renyi Entropies

When we introduce a weight on each term in the discrimination function, we have
to determine two things: 1) how we measure the importance of each feature and
2) how we connect the degree of importance to the corresponding weight.

For the second issue, we use a monotonically decreasing function w(h) of en-
tropy h such that w(h) → 0 as h → logK and w(h) → ∞ as h → 0. This
property is required to achive 1) features having no or less information for clas-
sification should be given zero or a smaller value of weight and 2) a feature
having a “perfect” information for classification, if any, should govern the other
features by taking a very large value of weight. In this study, we use a class of
functions:

w(h) =
e−ah − e−ac0

1− e−ah
, where h = H(C|X), c0 = H(C), a ≥ 0, (2)

where H(C|X) is the conditioned entropy given a feature X. Since w(h)→ (c0 −
h)/h as a → 0, this weight function includes our previous one [1]. For avoiding
many parameters included, we use a = 1 in this paper.

As a measure of importance on the first issue, we use Renyi entropy that is a
general entropy taking a value in [0, logK], where K is the number of possible
events. The formal definition with a random variable C is given by

Hα(C) =
1

1− α
log

K∑
i=1

pαi α ≥ 0, α 
= 1. (3)
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This includes Shannon entropy as a special case of when α → 0. The other
two special cases are H0(C) = log#{pi > 0} (= logK in most cases), and
H∞(C) = − logmaxi pi = −maxi log pi. The following monotonicity holds:
logK = H0 ≥ H1 = H ≥ H2 ≥ · · · ≥ H∞.

3.1 Bounds by the Prediction Error

Next, let us make clear the relationship between a conditional Renyi entropy and
a Bayes error. In the following, we will first show lower and upper bounds of Renyi
entropy Hα(C|X = x) by a prediction error ε(x) = 1 −maxc P (C = c|X = x) at
a point x. Here C is a random variable for class and X is a random variable for
one feature.

For Hα = 1
1−α log

∑K
i=1 pαi and ε = 1 − maxi pi on a probability distribution

p = (p1, p2, . . . , pK), we have derived lower bounds φα(ε) and upper bounds Φα(ε)
of Hα defined by φα(ε) =

1
1−α log {i(1− ε)α − (K − 1) (iε− i+ 1)

α} , i−1
i ≤ ε <

i
i+1 , i = 1, 2, . . . ,K and Φα(ε) =

1
1−α log

{
(1− ε)α − (K − 1)

(
ε

K−1

)α}
, In par-

ticular, φ∞(ε) = Φ∞(ε) = − log(1− ε). These bounds are shown in Fig. 1. These
bounds are extensions of a known result for Shannon entropy [8]. The derivation
is easily understood by considering two extreme distributions attaining the min-
imum and maximum. Since both φα(ε) and Φα(ε) are monotonically increasing
in ε, we may regard Renyi entropy as a measure of importance of knowing the
value x.

Now let us show the relationship between the Bayes error εBayes =
∑

x P (x)ε(x)
and the conditional Renyi entropy Hα(C|X) =

∑
x P (x)Hα(C|X = x). Since

the point (εBayes, Hα(C|X)) is given by averaging similar points at X = x as∑
x P (x)(ε(x), Hα(C|X = x)), the point is included in the convex region bounded

by φα(ε), Φα(ε) and two special functions: φ∗(ε) = lines connecting (0, 0),
(1/2, log 2), . . ., ((K − 1)/K, logK) and Φ∗(ε) = K logK

K−1 ε (Fig. 1). Then we
have the lower and upperbound as:

{φ∗(εBayes), φ∞(εBayes), φ∞(εBayes)} ≤ Hα(C|X) ≤ {Φα(εBayes), Φ1(εBayes), Φ∗(εBayes)},

where {A,B,C} corresponds to three cases {α ≤ 1, 1 < α < ∞, α = ∞}. We
inverted relationships with Φ−1

α or φ−1
α from their strict monotonicity. Note in

Fig. 1 that H∞(C|X) is close to − log(1− εBayes) for small values of εBayes.

3.2 Weights with H0, H∞ and Hα

We will show that 1) a weighted näıve Bayes classifier with H0 simulates the
original näıve Bayes classifier without weights and 2) weights with H∞ reflect
the marginal Bayes errors.

When we concentrate on a feature represented by X, for example, dth feature,
our weight wd with Renyi entropy becomes

wd = wα(h) =
e−h − e−c0

1− e−h
, where h = Hα(C|X), c0 = Hα(C). (4)
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Fig. 1. Lower bound φα and upper bound Φα of Renyi entropy Hα by the prediction
error ε for K = 4. Left: those for α = 1.0, 0.1, 0.0 ; Right: those for α = 1.0, 5.0,+∞.
The definition of φ∗, Φ∗ and φ∞ are given in the text.

Hereafter, we will not mention to w0 for simplicity, but a similar process is
applied to w0, e.g., above values are replaced with h = Hα(C) and c0 = Hα(C0).

When α→ 0, e−h and e−c0 approach to e− logK in most cases, but wα(h)/wα(h
′)

(h′ is for a different feature) converges to a different value other than one de-
pending on the underlying distributions. Thus, we introduce a small value δ in
the weight function so as to converge into a common value:

wα(h) =
e−h − e−c0 + δ

1− e−h
→ δ

1 + logK
as α→ 0. (5)

With this modification, we can guarantee that α = 0 achieves the original näıve
Bayes classifier, because a constant multiplication does not change the ranking
of discriminant functions.

When α =∞, our weighted näıve Bayes classifier is connected to the marginal
Bayes errors. Here, we call the error of Bayes classifier constructed on a subset
of features a marginal Bayes error . From the monotonicity of Bayes error on
feature subsets, the Bayes error is less than or equal to marginal Bayes errors.
When we denote by εdBayes the marginal Bayes error on dth feature only, it holds

that εBayes ≤ εdBayes, ∀d ∈ {1, 2, . . . , D}. Since, as described, for α =∞ and small

values of εBayes, we may assume that εdBayes = 1 − exp(−H∞(C|Xd)). Therefore
we have

wd = w∞(h) �
1− εdBayes − e−c0 + δ

εdBayes

�
εpriorBayes − εdBayes

εdBayes

≤
εpriorBayes − εBayes

εBayes
,

where εprior = 1−maxc P (c), that is, the error on the basis of prior probabilities.
The second approximation holds because c0 = H∞(C) = − logmaxc P (c). This
relationship means that weightwd is inversely proportional to the marginal Bayes
error εdBayes and upper-bounded by Bayes error εBayes in the same function.

When a middle value of α is taken, the corresponding weights and classifier
have a neutral nature between two extreme cases.
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4 Experiment

We conducted experiments on 17 real-life datasets taken from the UCI machine
learning repository [9]. Missing values were removed beforehand. We converted a
numerical value to a discrete value by equally-spaced intervals. We used 10-fold
cross validation for accuracy calculation. We compared the original näıve Bayes
with our weighted näıve Bayes with some values of α and δ = 0.01. We also
compared with a support vector machine (SVM) with a radial basis function of
default values and a decision tree (C4.5) for reference.

To compensate the lack of samples, we used Laplace estimator to estimate the
probability P (c|x): P̂ (c|x) = nx,c+1

nx+K , where nx is the number of samples taking
value x and nx,c is the number of samples belonging to class c among them. This
works especially for when nx,c is close to zero. We used this Laplace modification
for the other probabilities as well.

4.1 Result

The result is shown in Table 1. It includes also the number of selected features
whose weights are more than 10% of the maximum weight.

The optimal value of α varies over datasets. In summary, 1) a larger value of
α accelerates feature selection at the expense of a small amount of performance
degradation (about a half of features is removed at α = 10.0) , 2) a smaller value
of α is useful for improving the performance while keeping almost all features
(in 8 cases of 17 cases, α = 0.1 achieved the best performance), and 3) a small
value of α is effective for problems with many classes (e.g., dermatology). In
these senses, changing the value of α from the Shannon settling (α = 1) is worth
considering. It is also noted that the weighted näıve Bayes outperforms C4.5
and SVM in datasets whose features are almost all categorical (e.g., splice and
dermatology have only categorical features).

A better performance seems to be obtained for a smaller value of α. Indeed,
we confirmed that a better rate of 99.20% can be obtained for α = 0.01 in
mushroom. However, it does not mean that the smaller value of α, the better.
This is obvious from the recognition rate of 97.39% attained by the original näıve
Bayes classifier for which α = 0.0. The weights in mushroom are shown in Fig. 2
at α = 0.01 and α = 10. Although no feature selection was made at α = 0.01,
the difference of weights contributed to the increase of performance.

5 Discussion

We have analyzed the weighted näıve Bayes classifier using Renyi entropy Hα.
It inherits the merit and demerit from the original näıve Bayes classifier without
weights. It cannot show a satisfactory performance if the classification problem
needs combinations of features in essence. However, it can often beat the curse of
dimensionality by the virtue of the simplicity. Weighting on features suppresses
useless features and improves the performance.
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Table 1. Recognition rate estimated by 10-fold CV on 17 datasets taken from UCI.
Here, D is the number of features, N is the number of samples and K is the number
of classes. The proposed method (Weighted NB :α = 0.1, 1.0, 10.0) are compared with
Näıve Bayes (NB), C4.5 and linear SVM. A recognition rate is represented at percent
and a number in parentheses is the number of selected features. In the last two rows,
#wins is the number of victories in the näıve Bayes family and “Reduction” is the
average of reduction rate of features. The best classifier is underlined.

NB Weighted NB C4.5 SVM
Dataset D N K α = 0.1 α = 1 α = 10

haberman 3 306 2 74.83 72.89(3) 73.22(3) 73.22(1) 72.22 71.90
breast-c 9 277 2 74.39 73.94(9) 74.83(9) 71.87(8) 75.09 71.84
tic 9 958 2 69.93 70.42(9) 68.98(9) 65.62(1) 84.55 98.33
heart-c 13 296 2 83.46 83.34(13) 84.71(13) 84.72(11) 77.70 84.12
credit-a 15 653 2 85.60 86.85(15) 86.39(4) 86.39(5) 85.14 85.60
hepatitis 19 80 2 82.50 82.50(19) 87.50(9) 83.75(1) 86.25 82.50
credit-g 20 1000 2 74.80 74.90(20) 74.20(20) 70.00(2) 71.10 74.40
mushroom 22 5644 2 97.39 98.47(15) 98.44(4) 98.44(2) 100.0 100.0
leukemia 7129 72 2 73.49 80.31(7129) 82.85(2240) 84.28(1210) 83.33 98.61
iris 4 150 3 93.33 94.66(4) 94.66(4) 94.66(3) 95.33 96.00
tae 5 151 3 55.54 56.25(5) 54.29(5) 53.00(5) 51.65 52.32
cmc 9 1473 3 49.29 48.95(9) 49.83(9) 52.47(9) 51.53 47.72
splice 60 3190 3 95.36 95.23(60) 94.54(30) 94.20(7) 94.26 92.98
car 6 1728 4 85.64 85.02(6) 70.02(4) 70.02(1) 92.47 93.23
lymph 18 148 4 56.62 80.06(18) 78.89(10) 79.35(11) 77.70 84.46
glass 9 214 6 49.39 49.39(9) 52.25(9) 47.01(9) 66.35 57.47
dermatology 34 366 6 97.62 97.62(34) 97.62(34) 95.95(32) 93.71 96.72

#wins 4 8 5 4
Reduction(%) (0%) (1.87%) (23.77%) (49.93%)
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Fig. 2. The weights of features in mushroom for two extreme values of α. Here, feature
#5 is “odor”, #20 is “spore-print-color.” The task is to predict the edibility.
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It is not easy to find an optimal value of parameter α in the proposed method,
because it depends on the problems, e.g., the number of features and the number
of classes. Our analysis gave just a simple guideline: choose a smaller value, say
α = 0.1, if you put a priority on improving the performance; choose a larger
value, say α = 10.0, if you need to reduce the feature set size; otherwise α = 1
as an acceptable compromise.

As predicted from our analysis, a very small value of α made the classifier
be close to the the original Bayes classifier. A large value of α emphasizes on
the marginal Bayes errors. Note that Bayes error does not tell anything about
classes except for the class with the largest probability. This may explain why
larger values of α did not bring better results for problems with many classes.

6 Conclusion

We have extended a weighted näıve Bayes classifier using Renyi entropy Hα from
the Shannon entropy version and analyzed its property. It becomes the regular
näıve Bayes classify in one end with α = 0 and a näıve Bayes classifier of which
wights are inversely proportional to the marginal Bayes errors using individual
features in the other end with α =∞. It is not so easy to find the optimal value
of α depending on dataset at hand, but we gave a rough guideline for selection.
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Abstract. The evaluation of clustering algorithms is a field of Pattern
Recognition still open to extensive debate. Most quality measures found
in the literature have been conceived to evaluate non-overlapping cluste-
rings, even when most real-life problems are better modeled using over-
lapping clustering algorithms. A number of desirable conditions to be
satisfied by quality measures used to evaluate clustering algorithms have
been proposed, but measures fulfilling all conditions still fail to ade-
quately handle several phenomena arising in overlapping clustering. In
this paper, we focus on a particular case of such desirable conditions,
which existing measures that fulfill previously enunciated conditions fail
to satisfy. We propose a new evaluation measure that correctly handles
the studied phenomenon for the case of overlapping clusterings, while
still satisfying the previously existing conditions.

1 Introduction

Clustering is one of the most widely investigated problems in Pattern Recogni-
tion. It consists on separating an object collection into a set of clusters, generally
attempting to place similar objects in a common cluster and dissimilar objects
in distinct clusters. Partitional clustering algorithms split the collection into a
set of disjoint clusters, in such a way that an object may belong to only one
cluster. On the other hand, overlapping clustering algorithms allow objects to
belong to multiple clusters.

Evaluating the quality of the outcomes of clustering algorithms is a neces-
sary, yet challenging task, for which a large number of evaluation measures have
been proposed. In the literature, evaluation measures are divided into external,
relative or internal. Some authors refer to external measures as extrinsic and to
internal measures as intrinsic, respectively. Internal measures asses the quality of
a clustering by analyzing intra- and inter-cluster properties, without considering
any external knowledge. Relative measures compare the results of multiple runs
of a clustering algorithm, such runs differring in the parameter combinations
used. On the other hand, external measures compare candidate clusterings to a
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gold standard, i.e. a handcrafted set of known clusters built by human experts
taking into account the characteristics of the collection. In this work, we focus
on external evaluation measures.

Due to the abundance of evaluation measures, some authors have devoted a
considerable effort to enunciate desirable conditions that evaluation measures
are expected to satisfy. While these conditions are inherently intuitive, and no
universal consensus is likely to be obtained regarding their validity, extensive ar-
gumentation has been offered regarding their usefulness for providing criteria to
consider when choosing an evaluation measure to assess the quality of clustering
algorithms under different real-life and laboratory conditions.

Generally, most existing conditions have been enunciated for the particular
case of partitional clustering, hinting to their extensibility to overlapping cluster-
ing. However, situations arrive when evaluation measures that have been proved
to fulfill a wide range of conditions for partitional clusterings behave in an un-
desired manner when applied to overlapping clusterings. In this work, we take
as starting point the work by Amigó et al. [1], who enunciate four conditions,
prove them to cover all previously enunciated conditions, and show that BCubed
Fα [2] is the sole to fulfill all four conditions. Amigó et al. propose Extended
BCubed as an extension to BCubed for the case of overlapping clusterings. Here,
we target a specific problem that is inadequately handled by Extended BCubed,
namely that of assigning the optimum score to clusterings that are not identi-
cal to the gold standard. We formalize this desired behavior as a condition and
propose CICE BCubed, a new extension to Extended BCubed, that satisfies
the new condition while maintaining the established good characteristics of its
predecessor.

The remainder of this paper is organized as follows. In Section 2 we briefly
review existing work, focusing on the sets of conditions that have been previously
enunciated, as well as the Extended BCubed family of evaluation measures.
We describe our proposals in Section 3, and, finally, present our conclusions in
Section 4.

2 Previous Work

Several authors have enunciated sets of conditions aiming to assess the conve-
nience of using specific evaluation measures. Meila [3] enunciated twelve proper-
ties that were satisfied by the evaluation measure Variation Information. Later
on, other authors used these properties as a set of conditions to be satisfied by
other quality measures. Dom [4] proposed a distinct set of five conditions, which
were later extended to seven by Rosenberg [5].

Amigó et al. [1], after conducting an extensive survey of existing conditions,
summarized them into a set of four conditions and proved that all previous
conditions were covered by these.

All of the four conditions proposed by Amigó et al. are expressed as situations
under which a clustering D1, which is considered to be worse than a clustering
D2, is expected to be given a worse score. An evaluation measure is considered
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to satisfy the condition if it behaves in this expected manner for all cases where
such a situation arises. The conditions proposed by Amigó et al. are enunciated
as follows:

– Homogeneity: Let D1 be a clustering where one cluster Gk contains objects
belonging to two classes1: Ci and Cj . Let D2 be a clustering identical to D1,
except for the fact that instead of the cluster Gk, it contains two clusters G′

k1

and G′
k2
, one of them containing only objects belonging to Ci and the other

containing only objects belonging to Cj . An evaluation measure satisfying
the homogeneity condition should score D1 worse than D2.

– Completeness : Let D1 be a clustering where two clusters G1 and G2 contain
only objects belonging to one class Ck. Let D2 be a clustering identical to
D1, except for the fact that instead of the clusters G1 and G2, it contains
one cluster G1,2, which is the union of G1 and G2. An evaluation measure
satisfying the completeness condition should score D1 worse than D2.

– Rag Bag: Let D1 be a clustering where one cluster Gclean contains n objects
belonging to one class Ci plus one object belonging to a different class Cj

and one cluster Gnoise contains n objects belonging to n distinct classes. Let
D2 be a clustering identical to D1, except for the fact that the object in
Gclean that does not belong to the same class as all other objects is placed
instead in Gnoise. An evaluation measure satisfying the rag bag condition
should score D1 worse than D2.

– Clusters size versus quantity: Let D be a clustering where one cluster Glarge

contains n+ 1 objects belonging to one class C1 and n clusters G1, G2, . . . ,
Gn, contain each on two objects belonging to the same class. Let D1 be a
clustering identical to D, except for the fact that instead of the two-object
clusters G1, G2, . . . , Gn, it contains 2n unary clusters containing the corre-
sponding objects. Let D2 be a clustering identical to D, except for the fact
that instead of the cluster Glarge, it contains one cluster of size n and one
cluster of size 1. An evaluation measure satisfying the clusters size versus
quantity condition should score D1 worse than D2.

Upon the presentation of their four conditions, Amigó et al. conducted an
extensive study on a large number of existing evaluation measures to determine
the extent to which they satisfy the proposed conditions. They concluded that
the BCubed Fα measure [2] is the sole evaluation measure that satisfies all four
conditions. Since BCubed is defined for non-overlapping clustering, Amigó et
al. propose Extended BCubed, an extension of BCubed suited for evaluating
overlapping clusterings, which contains BCubed as an special case when zero
overlapping is present.

1 Amigó et al. and other authors refer to the clusters of the gold standard clustering as
classes or categories. Here, we will follow this terminology convention for simplicity.
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The Extended BCubed family builds on the traditional Information Retrieval
triad of evaluation measures Precision, Recall, F-measure [6]. Unlike these, the
Extended BCubed measures do not rely on directly calculating the amount of
set-matching between classes and candidate clusters. Instead, they analyze the
set of object pairs and consider the decisions of placing pairs together or not, with
respect to the gold standard. Extended BCubed precision evaluates the amount
to which the decisions made by the evaluated algorithm of placing pairs of objects
together in one or several clusters are correct, whereas Extended BCubed Recall
evaluates the amount to which the evaluated algorithm is capable of putting
together the pairs of objects that co-occur in classes of the gold standard. As
in the case of the traditional IR measures, the Extended BCubed F-measure
provides a trade-off between Extended BCubed precision and Extended BCubed
recall.

The Extended BCubed precision is defined as

P =
1

|U |
∑
o∈U

1

|
⋃

g∈G(o) g|
∑

o′∈E(o,G)

min(|G(o) ∩G(o′)|, |C(o) ∩ C(o′)|)
|G(o) ∩G(o′)| (1)

where U represents the collection, G stands for the candidate clustering, C for
the gold standard, G(o) represents the set of candidate clusters containing object
o, C(o) is the set of classes of the gold standard containing o, E(o,G) is the set
of objects co-occurring with o in at least one candidate cluster, and E(o, C) is
the set of objects co-occurring with o in at least one class of the gold standard.
The sets of objects yielded by E(o,G) and E(o, C) contain object o itself.

In a similar manner, Extended BCubed recall is defined as

R =
1

|U |
∑
o∈U

1

|
⋃

g∈C(o) g|
∑

o′∈E(o,C)

min(|G(o) ∩G(o′)|, |C(o) ∩ C(o′)|)
|C(o) ∩ C(o′)| (2)

whereas the Extended BCubed F-measure is defined as

Fα(P,R) =
1

α( 1
P ) + (1 − α)( 1

R )
(3)

The authors propose to use α = 0.5 so Fα behaves as the harmonic mean
between precision and recall. The original BCubed measures analyze the fact that
pairs of objects are placed together or not in clusters and/or classes. To adjust
to the overlapping clustering case, the Extended BCubed measures additionally
analyze the number of clusters and/or classes in which pairs of documents are
placed together.

3 Our Proposal

Starting from the premise that the four conditions proposed by Amigó et al. are
the most complete set of conditions, and the fact that the Extended BCubed
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family is the overlapping clustering-oriented extension of the BCubed family, out
of which BCubed Fα was proved to be the sole that satisfies all three conditions,
we take Extended BCubed as the basis for further amelioration.

Here, we focus on a problem pointed out by Amigó et al., namely the fact that
the maximum Extended BCubed Fα score may be obtained when evaluating a
candidate clustering that is not identical to the gold standard, as shown in the
following example:

Candidate Gold
C1 : 1, 2, 4 G1 : 1, 3, 4
C2 : 1, 3 G2 : 1, 2
C3 : 4, 3 G3 : 4, 2
C4 : 2, 5 G4 : 3, 5
C5 : 3, 5, 6 G5 : 2, 5, 6
C6 : 2, 6 G6 : 3, 6

The reason why Extended BCubed Fα yields the maximum score for these
cases is that it only checks for the number of clusters and/or classes where
object pairs co-occur, but at no point attempt to establish a mapping between
the set of candidate clusters and the set of classes. Such mapping would allow
to determine whether the set of clusters where an object pair co-occurr in the
candidate clustering is equivalent to the set of classes where they co-occurr in
the gold standard.

We will treat this desired behavior as a supplementary condition, which we
will refer to as the Perfect match condition, and is formally enunciated as follows:

Perfect match condition: an evaluation measure must yield the maximum
score for a candidate clustering if and only if it is identical to the gold
standard.

When evaluating non-overlapping clusterings, most of the existing evaluation
measures satisfy the perfect match condition. However, when overlapping cluste-
rings are involved, it is a challenge for a measure to fulfill that condition. Being
Extended BCubed Fα the sole measure that satisfies the initial four conditions,
we take it as a starting point to propose a new extension that, while maintain-
ing the desirable characteristics of Extended BCubed, also satisfies the perfect
match condition.

We propose a new family of evaluation measures: Cluster-Identity-Checking
Extended BCubed (CICE-BCubed for short). Analogous to the BCubed and the
Extended BCubed families, CICE-BCubed consists in a new way to calculate
precision, recall and the F-measure.

Being an extension of Extended BCubed, CICE-BCubed works by analyzing
the object pairs that co-occur in clusters and/or classes. Unlike its predecessor,
the measures of the CICE-BCubed family establish a mapping between the set
of candidate clusters and the classes of the gold standard, in such a way that
the candidate clustering’s respect of that matching is evaluated along with the
number of co-occurrences of object pairs. To do so, we introduce the Cluster
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Identity Index (CII for short), a factor Φ(o1, o2, A,B) that yields values in the
interval [0, 1]. For a pair of objects, the CII estimates the degree of similarity
of all the clusters in A to their most similar class in B containing the pair. To
define the CII, we use the auxiliary function ψB(Ai) that determines the cluster
Bj ∈ B that best matches Ai, as follows:

ψB(Ai) = Bj ∈ B such that

[
sim(Ai, Bj) = max

k
sim(Ai, Bk)

]
(4)

where sim represents some function that calculates how similar two clusters are.
Here, we calculate cluster similarity using Jaccard’s index [7], which is defined
as:

Jaccard(Ai, Bj) =
|Ai ∩Bj |
|Ai ∪Bj |

(5)

We chose Jaccard’s index because it only yields the maximum score for two
identical clusters. Other functions displaying the same behavior may as well be
used, e.g. Rand’s coefficient or the traditional IR F -measure.

When comparing a candidate clustering A to the gold standard B, for a pair of
objects belonging to A, the CII averages the similarity values of clusters Ai ∈ A
that contain the pair to their best matching classes Bj ∈ B. Considering A(o, o′)
as the set of all the clusters in A that contain the pair of objects (o, o′), the CII
is defined as

Φ(o, o′, A,B) =
1

|A(o, o′)|
∑

Ai∈A(o,o′)

sim(Ai, ψB(Ai)) (6)

The CII will yield the maximal value only if the best matching classes for
every cluster in Ai ∈ A are identical to their corresponding clusters. The afore-
mentioned auxiliary functions are used for defining the measures of the CICE-
BCubed family. CICE-BCubed precision is defined as

P̂ =
1

|U |
∑
o∈U

1

|
⋃

g∈G(o) g|
∑

o′∈E(o,G)

min(|G(o) ∩G(o′)|, |C(o) ∩ C(o′)|) · Φ(o, o′, G,C)

|G(o) ∩G(o′)|
(7)

whereas CICE-BCubed recall is defined as

R̂ =
1

|U |
∑
o∈U

1

|
⋃

g∈C(o) g|
∑

o′∈E(o,C)

min(|G(o) ∩G(o′)|, |C(o) ∩ C(o′)|) · Φ(o, o′, C,G)

|C(o) ∩ C(o′)|
(8)

and the CICE-BCubed F-measure is defined as

F̂α(P̂ , R̂) =
1

α( 1
P̂
) + (1− α)( 1

R̂
)

(9)

In order to keep the desirable characteristics of Extended BCubed Fα, both
CICE-BCubed precision and recall maintain the terms from their Extended
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BCubed homologous, but in both cases the terms in the numerators are multi-
plied by the factor CII, which prevents them from yielding optimal values for
candidate clusterings that are not identical to the gold standard.

We will now analyze the behavior of the CICE-BCubed family of evaluation
measures. Firstly, it is straightforward that CICE-BCubed precision and recall
always obtain a maximum score for a candidate clustering which is identical to
the gold standard. In this case, when calculating the CII, every cluster is always
mapped to the class of the gold standard that is identical to it, thus always
yielding the maximum value. Since the portions of Equations 7 and 8 inherited
from Extended BCubed also contribute a maximum score, both CICE-BCubed
precision and recall yield the maximum score and, consequently, so does the
CICE-BCubed F-measure.

Secondly, we will demonstrate, using proof by contrapositive, that the fact of
obtaining a maximal score of CICE-BCubed precision and recall implies that the
candidate clustering is identical to the gold standard. Let A be a candidate clus-
tering, which is not identical to the gold standard B. Under this condition, there
must be at least one cluster Ai ∈ A whose best matching class is not identical to
it. For object pairs occurring in such cluster Ai, the CII will not yield the maxi-
mum score, thus preventing CICE-BCubed precision and CICE-BCubed recall,
as defined in Equations 7 and 8, from yielding the maximum score. If CICE-
BCubed precision and recall do not yield the maximum score, neither does the
CICE-BCubed F-measure. Thus, we have proven that evaluating a candidate
clustering which is not identical to the gold standard yields non-maximal CICE-
BCubed precision, recall and F-measure, which, in turn, demonstrates that ob-
taining maximal CICE-BCubed precision, recall and F-measure implies that the
evaluated candidate clustering is identical to the gold standard.

As a consequence of the previous proofs, we may conclude that CICE-BCubed
Fα satisfies the perfect match condition. Additionally, it inherits from Extended
BCubed Fα the behavior that satisfies the original four conditions enunciated by
Amigó et al., which is not modified by the CII factor. This factor, while always
causing the measure to yield values that are at most equal to the equivalent
Extended BCubed Fα, does not alter the orientation of the inequalities that
prove that Extended BCubed Fα satisfies the four conditions [1].

The measures of the CICE-BCubed family have a considerably high worst-case
time complexity, O(n3 logn), where n is the number of objects in the collection,
for the case where the candidate clustering has n clusters, each containing n− 1
objects. However, taking into account that evaluation is generally performed as
an offline task during the process of tuning an algorithm for practical application,
we consider that this time complexity is affordable given the benefits of relying
on more robust evaluation measures.

4 Conclusions

We have proposed CICE-BCubed, a new family of evaluation measures for clus-
tering algorithms, which correctly handle phenomena arising in the evaluation
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of overlapping clusterings that are inconveniently handled by previously existing
measures.

We took as a starting point the four conditions enunciated by Amigó et al.,
as well as the Extended BCubed Fα measure, which is reported to be the sole
measure that satisfies the initial four conditions, and attacked one of the known
problems that it faces when used for overlapping clusterings, namely that of
assigning the maximum score to candidate clusterings that are not identical to
the gold standard. We prove that our proposed counterpart, CICE-BCubed Fα,
does handle this situation adequately, while continuing to satisfy the previous
four conditions.

It should be noted nonetheless that the four conditions proposed by Amigó
et al., as well as any other set of conditions, do not necessarily enjoy universal
acceptation. Because of that, absolute statements regarding whether a particular
evaluation measure should be considered better than others may not be appro-
priate. However, we consider that the existing conditions, as well as the new
condition we treated in this paper, do reflect desirable characteristics of cluster-
ing evaluation measures, thus supporting the strength of the proposed measures
and the convenience of their use.

References
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Abstract. The notion of homogeneous logical proportions has been re-
cently introduced in close relation with the idea of analogical proportion.
The four homogeneous proportions have intuitive meanings, which can
be related with classification tasks. In this paper, we proposed a su-
pervised classification algorithm using homogeneous logical proportions
and provide results for all. A final comparison with previous works using
similar methodologies and with other classifiers is provided.

Keywords: supervised classification, analogical proportion, analogical
dissimilarity.

1 Introduction

Numerical as well as analogical proportions are used since the ancient Greeks.
However, this is only recently that logical models for analogical proportions
were laid bare [14]. Analogical proportion was proposed first and reverse analog-
ical proportion and paralogical proportion came after (proposed for Boolean [10]
and multiple-valued [12] features). The last logical proportion we consider here,
named inverse paralogical proportion, and the characterization of those four pro-
portions as homogeneous logical proportions were presented recently [14] for the
Boolean case.

A particular instance of analogical reasoning is based on the notion of ana-
logical proportion (or analogy, or for short A) linking four situations or items
a, b, c, d. It focuses on the differences between a and b and between c and d
that are the same. The reverse analogical proportion (or reverse analogy, or for
short R) does the same, but reverses the directions of changes, i.e. differences
between a and b, are the same as between d and c. The paralogical proportion
(or paralogy, or for short P) focuses on similarities, unlike previous proportions.
It points out that similarities between a and b and between c and d are the same.
The inverse paralogical proportion (or inverse paralogy, or for short I) focuses
on similarities also, and expresses that what a and b have in common, c and
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d do not have it, and vice versa. Those proportions have intuitive meanings,
which can be related with classification tasks. However, in the recent literature,
only one (analogical proportion) was studied for classification tasks and has
been shown as a competitive supervised classifier [7], which, from descriptions
of known objects (their features and classes), classifies another object, whose
class is unknown. This reasoning is similar to the one used by k-NN classifiers
[3] or in case-based reasoning [5]. For instance, in general pattern recognition
terms, and using analogical proportions, from three objects (obj1, obj2, obj3),
whose descriptions are made of a finite number of features (desc1, desc2, desc3),
we want to classify a fourth object (obj4), with description desc4. Then, if an
analogical proportion A(desc1, desc2, desc3, desc4) holds, it may be possible to
suggest a class for obj4. Besides, an analogical dissimilarity (AD) measure was
proposed by [2], which can be used on Boolean and also multi-valued features.
This measure is able to assess the truthfulness of an analogical proportion [7].

In this paper, using a modified version of analogical dissimilarity, we provide
some relations among analogy, reverse analogy, paralogy and inverse paralogy. It
is shown that, using those relations, all those proportions can be computed in a
simplified way and an algorithm for supervised classification is provided. More-
over, we present some results for binary and/or nominal classification tasks, using
databases from UCI repository and also a comparison with other methodologies.

2 Characterization of Homogeneous Proportions

Analogy, reverse analogy, paralogy and inverse paralogy are formal relations T in-
volving 4 items a, b, c and d. In this study, T is a Boolean proportion. This means
that a, b, c, d are Boolean variables and can be pointwisely generalized by vectors
of Boolean variables. A detailed investigation with respect to the basic semantics
has been done in [10] [11] [14]. They obey different characteristic postulated [12].
For a, b, c, d ∈ {0, 1} the considered properties are: a) Reflexivity, which validates
the proportion T (a, b, a, b); b) Reverse reflexivity, which validates the proportion
T (a, b, b, a); c) Identity, which validates the proportion T (a, a, b, b); d) Full iden-
tity, which validates the proportion T (a, a, a, a); e) Symmetry, which requires the
equivalence between T (a, b, c, d) ⇔ T (c, d, a, b); f) Central permutation, which
requires the equivalence between T (a, b, c, d) ⇔ T (a, c, b, d); g) Code indepen-
dency, which requires the equivalence between T (a, b, c, d)⇔ T (¬a,¬b,¬c,¬d).
It should be noted that all homogeneous proportions satisfy the symmetry and
code independency properties [14]. However, some of the other properties are
not satisfied by all four proportions (see Table 1). As shown in [13], there is
close relation among three of those proportions:

Proposition 1: R(a, b, c, d) is a reverse analogy if and only if A(a, b, d, c) is
an analogy, i. e. R(a, b, c, d)⇔ A(a, b, d, c); P (a, b, c, d) is a paralogy if and only
if A(a, d, c, b) is an analogy, i. e. P (a, b, c, d)⇔ A(a, d, c, b).
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Prade and Richard [14] established further relations among those four pro-
portions, with respect to analogy, through permutations and negation:

Proposition 2: R(a, b, c, d) is a reverse analogy if and only if A(a, b,¬c,¬d)
is an analogy, i. e. R(a, b, c, d)⇔ A(a, b,¬c,¬d); P (a, b, c, d) is a paralogy if and
only if A(a,¬b, c,¬d) is an analogy, i. e. P (a, b, c, d)⇔ A(a,¬b, c,¬d); I(a, b, c, d)
is an inverse paralogy if and only ifA(a,¬b,¬c, d) is an analogy, i. e. I(a, b, c, d)⇔
A(a,¬b,¬c, d).

Table 1. Homogeneous proportions and their properties

Properties A R P I

Reflexivity � − � −
Reverse reflexivity − � � −

Identity � � − −
Full identity � � � −
Symmetry � � � �

Central permutation � − − �
Code independency � � � �

To introduce formally the four proportions, let us consider the items a, b, c, d
as described by sets of binary features, which belong to the universe X , i. e. each
item is viewed as a subset of X . An analogical proportion, denoted by A(a, b, c, d)
focuses on the differences and should hold when the differences between a and
b, and c and d are the same [8]:

a ∧ ¬b = c ∧ ¬d and ¬a ∧ b = ¬c ∧ d (1)

Reverse analogy, denoted by R(a, b, c, d) exchanges c and d, with respect to
analogy and expresses that the changes from a to b in relation to c to d (if any)
are now in opposite directions:

a ∧ ¬b = ¬c ∧ d and ¬a ∧ b = c ∧ ¬d (2)

If instead of differences, we focus on similarities, we have a different propor-
tion, denoted by P (a, b, c, d) and named paralogy, which expresses that a and b
have in common, c and d have it too:

a ∧ b = c ∧ d and ¬a ∧ ¬b = ¬c ∧ ¬d (3)

The inverse paralogy [14], denoted by I(a, b, c, d) focuses on similarities also
and expresses a and b have in common, c and d do not have it, and vice versa:

a ∧ b = ¬c ∧ ¬d and ¬a ∧ ¬b = c ∧ d (4)

Table 2 presents the Boolean truth table for each logical proportion presented
above. We can note that there are only 6 situations in which the logical value
is true for each proportion. Observing this Table, it is easy to see that there is
no situation where analogy, reverse analogy, paralogy and inverse paralogy hold
true together. However, there are some cases in which all proportions hold false.
These relations will be discussed in details in Section 4, after we provide some
relevant details about the measure of analogical dissimilarity.
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Table 2. Boolean truth tables for Proportions: A, R, P and I:

A R P I

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0
1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1
0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1
1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0

These four logical proportions are called homogeneous proportions because
they are true only for patterns having an even number of 1 (and thus an even
number of 0), due to the fact they are strongly linked together by the relations:

A(a, b, c, d) ≡ R(a, b, d, c) ≡ P (a, d, c, b) ≡ I(a, b, c, d), (5)

Their semantical properties have been extensively investigated in [14].

3 Analogical Dissimilarity Measure and an
Approximation Function

An analogical dissimilarity (AD) measure was proposed by [6] for binary and by
[2][7] for nominal data, using a binary encoding. So, for both cases the binary
definition is appropriate and for this reason we present the definition for AD
only for this case.

Definition 1. The analogical dissimilarity among four binary values (u, v, w,
x ∈ {0, 1}) is given by the following truth table [7]:

u 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
v 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
w 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

AD(u, v, w, x) 0 1 1 0 1 0 2 1 1 2 0 1 0 1 1 0

As can be seen, AD is a function whose domain is {0, 1}4, but its range
is {0, 1, 2}. This is not completely in agreement with the homogeneous logical
proportions, whose domains and ranges are Boolean. However, AD is consistent
with the analogical proportion when we have AD(u, v, w, x) = 0 [6].

Definition 2. The AD measure among four objects (u, v, w, t ∈ {0, 1}n) of a
finite set X defined by binary features is the sum of the values of analogical
dissimilarities for each feature [7].

Using the Definition 2 and encoding nominal variables as binary ones, it is
possible to use AD for nominal variables as well. In [6][7] procedures to compute
binary analogical proportions on Rn and on sequences, are presented. However,
in order to obtain an efficient algorithm for AD computing that fits with all
the homogeneous proportions mentioned in Section 2, it is necessary to use
a mathematical function which approximates and replaces the AD definition.
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The algorithm should also use the relationships given above in order to provide
the values of all proportions from the values given by computing an approxima-
tion function for AD for each one. Thus, let the function AD∗ : {0, 1}4 ⇒ {0, 1}:

AD∗(a, b, c, d) =
[
(a− b− c + d)2

]1/2
, for a, b, c, d ∈ {0, 1} (6)

be an approximation for computing the function AD, according to Definition
1. Obviously, AD∗ can also be written: AD∗(a, b, c, d) = |a − b − c + d|. That
function has interesting properties: The codomain for AD∗ is {0, 1}. Using the
binary values {0, 1} as truth values, the function AD∗ given by (6) is able to
provide exact estimation for 14 values among 16 values of the AD table for the
binary case. The exceptions are the cases in which AD = 2. Moreover, even if
AD∗ is less discriminating, it is closely related to the value of the proportions.

4 Relations

As mentioned before, each logical proportion holds true in only 6 situations,
which can be seen in the Table 2. However, they are not true in the same situ-
ations. As pointed out by [13], in the Boolean interpretation and according to
their intuitive meaning, the pattern T (a, b, b, a) is false for analogy; T (a, b, a, b)
is false for reverse analogy, T(a,a,b,b) is false for paralogy and T (a, a, a, a) is
false for inverse paralogy. For any of these proportions in the binary case, it is
possible to find a relationship between the values provided by the proportions
and the value provided by AD measure. In the case of Analogy and AD, it was
announced as a property of AD [6]. More precisely, we have AD = 0⇔ AD∗ = 0
and AD ∈ {1, 2} ⇔ AD∗ = 1, and besides, we have the relationship with respect
to analogical proportion:

A(a, b, c, d) = 1−AD∗(a, b, c, d) (7)

For the Reverse Analogy and Paralogy we use Proposition 1 for finding the
following relations:

R(a, b, c, d) = 1−AD∗(a, b, d, c) (8)

P (a, b, c, d) = 1−AD∗(a, d, c, b) (9)

The same can be done for Inverse Paralogy, using Proposition 2:

I(a, b, c, d) = 1−AD∗(a,¬b,¬c, d) (10)

These relations allow us to implement an algorithm using AD∗ for computing
to what extent the four proportions hold, in a new and simpler way than in [2].

5 Algorithm for Supervised Classification Using AD∗

The algorithm presented in this paper partly relies on a previous work [2]. The
first difference of what is proposed here is the possibility to use any of the four
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proportions mentioned above. The second one is a change the ordering of exe-
cution of the steps of the previous algorithm, in order to take advantage of AD∗

and to avoid the step of sorting the partial results. It improves the computa-
tional performance of the proposed classifier, with respect to [2]. It is important
to remark that the algorithm proposed by [2] uses AD to implement analogical
proportion only. The task is to classify m objects (obji), whose descriptions are
made in terms of a finite number Nf of binary features (desci), where i = 1, ...,m,
using AD∗, into a finite and known number of classes in set C. A collection S
of such objects is available, with their descriptions and respective classes in C,
for the training of the classifier. Let x be a new object, not belonging to set
S, and for which we desire to assign a class. The algorithm depends on a pa-
rameter p, with 0 ≤ p ≤ Nf , which means that for each 4-tuple of description
vectors analyzed, we accept that the proportion is false for at most p features. In
other words, among the total number of features Nf , it is intended that for each
4-tuple (triple in S3 and x) analyzed, at least (Nf − p) features yield perfect
proportions. We call this rule “Rule of maximum p dissimilar 4-tuples”. The
algorithm consists in the following steps:

Step 1: Given a vector x, find all triples in S3 which satisfies the sum of
AD∗≤p and 0≤p≤Nf . Store those n triplets (aj , bj, cj), with j = 1, ..., n < m).

Step 2: Solve the proportion equations (for A, R, P or I) on the label of the
class of x and the n triples. Compute the solution as a vote for a class c ∈ C,
obtained by solving the logical proportion on the classes (when there is solution,
which means that the objects corresponding to a triple should belong to 1 or 2
classes only in order to have a useful triple for predicting the class).

Step 3: Assign the winner of votes among the n results, as the class for x.
It is worth noting when using AD∗ and changing one step in the algorithm of

[2], that it is no longer necessary to sort partial results anymore. So, the param-
eter k used in the algorithm in [2] does not have any role here. A new parameter
p was added in the Step 1 to control the maximum number of dissimilar 4-tuples
which the user can accept in each processing.

6 Results

In order to analyze the behaviour of the proposed algorithm, we applied it to
some databases from UCI Repository [1]. These databases were used also by
[7] and for this reason are used here to provide a comparison with the results
obtained in this paper: The SPECT (SP.) database is related to heart data,
with 22 binary features and contained with 80 samples for training and 187 for
test. The databases MONK 1,2 and 3 (MO.1, MO.2 and MO.3) are related to
classification problems with six nominal features. The databases contains 124,
169 and 122 samples for training, respectively and all of them 432 samples for
test. The MO.3 database is corrupted with noise. All three MONK databases
were binarized using standard techniques, i. e., replacing a nominal feature with
n different values with n binary features. The results are summarized in Table
3. The first five lines give some characteristics of the databases used. In the
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following we indicate the best percentage of correct classification obtained for
each proportion and for which value of p this is obtained. The last line shows
the best results presented by [7] for comparison. It is worth noting in Table 3, all
results for A, R and P are the same for all databases and all of them using the
same value for p. In fact this is due to a property of three of the homogeneous
proportions (A, P and R) which can be seen in equation (5). The difference
among them is just a permutation of the elements in the 4-tuple. So, any of
these three proportions proportions can be used for classification and it provides
the same final results. However, this is not valid for proportion I, because beyond
the permutation of elements, it is necessary also to perform negation for two of
them [9].

Table 3. Results

SP. MO.1 MO.2 MO.3

number of nominal attributes 22 7 7 7

number of binary attributes 22 15 15 15

number of training instances 80 169 122 124

number of test instances 172 432 432 432

number. of class 2 2 2 2

Best results (%)

Analogy (A): 58(p = 5) 98(p = 2) 100(p = 1) 98(p = 3)

Reverse Analogy (R): 58(p = 5) 98(p = 2) 100(p = 1) 98(p = 3)

Paralogy (P): 58(p = 5) 98(p = 2) 100(p = 1) 98(p = 3)

Inverse Paralogy (I): 11(p = 8) 79(p = 8) 62(p = 6) 83(p = 6)

Comparisons (%)

Miclet et al. [7] 58(k = 100) 98(k = 100) 100(k = 100) 96(k = 100)

Decision Table 72 98 67 98

PART 82 93 75 99

Multilayer Perceptron 73 100 100 94

IBk (k=1) 59 91 69 89

Naive Bayes 75 72 61 98

J48 (C4.5) 76 100 71 100

It is possible to see in Table 3, that proportion I achieved results of lower
quality than the other proportions and with values of p higher. In comparison
with results provided by [7], for three among the four databases, the results
obtained by the new algorithm were the same. However, the new algorithm pro-
vided better results for the MO.3 database, which is corrupted by noise. We
made some comparisons with classifiers found in the literature and we used the
Weka package [4] with default values. It is possible to note the Multilayer Percep-
tron provides best classification for MO.1 and MO.2. J48 Decesion Tree achieved
the complete accuracy for MO.1 and MO.3. PART provides best classification
for SP. However, our algorithm provides competitive results for three of those
databases.
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7 Conclusion and Future Works

This paper proposes a new algorithm for supervised classification using homo-
geneous logical proportions. The algorithm was presented and we provided a
short discussion in relation to the previous one proposed by [2], which imple-
mented only one of those proportions. Implementation results are presented for
all homogeneous proportions, as well as a final comparison with a previous pa-
per using similar methodologies and other classifiers too. The results achieved
showed that proportions A, R and P provide the same results when it is used
with the same value for p. This way, they yielded the same best results in com-
parison with results reported in [7] (which used AD and analogical proportion).
The new algorithm provides results as good as the previous one or better, as it
was the case of MO.3 (which is a database corrupted with noise).

As future works, we intent to improve comparisons using other classifiers and
by considering more databases in order to extend our study about the relative
performance of our approach with respect to other classifiers. Another issue is
to determine how value p influences classification results.
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Abstract. Precise segmentation of bone cancer is an important step for
several applications. However, the achievement of this task has proven
problematic due to lack of contrast and the non homogeneous intensities
in many modalities such as MRI and CT-scans. In this paper we inves-
tigate this line of research by introducing a new method for segmenting
bone cancer. Our segmentation process involves different steps: a regis-
tration step of different image modalities, a fuzzy-possibilistic classifica-
tion (FPCM) step and a final segmentation step based on a variational
model. The registration and the FPCM algorithms are used to locate and
to initialize accurately the deformable model that will evolve smoothly
to delineate the expected tumor boundaries. Preliminary results show
accurate and promising detection of the cancer region.

Keywords: Multimodality image fusion, non-rigid registration, fuzzy
classification variational model.

1 Introduction

Accurate segmentation of bone cancer is an important task for several medical
applications. For example, it can be helpful for therapy evaluation, treatment
planning, modeling of pathological bones, etc. However, this task is a challenging
problem because there is a large class of tumor types which vary greatly in size
and position, have a variety of shape and appearance properties, have intensities
overlapping with normal bone areas, and may deform and defect the surround-
ing structures. Moreover, the majority of images modalities may contain various
amounts of noise and artifacts. Traditionally, bone cancers segmentation is per-
formed manually by marking the tumor regions by a human expert. This process
is time-consuming, impractical and non- reproducible. So, a semi or a fully au-
tomatic and robust segmentation is highly required in order to generate quickly
satisfactory segmentation results. In general, a single medical image modality
cannot provide comprehensive and accurate information, so considering more
than one acquisition protocols can provide much more useful information about
the bone tumor and this can be achieved through image fusion process. Such pro-
cess is used to derive useful information in order to enhance and taking account
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the image content by fusing for example computer tomography (CT) image and
magnetic resonance imaging (MRI).

Recently, various promising works have studied medical image segmentation,
offering a diversity of methods and evaluation criteria [1–5]. However, to the best
of our knowledge, only few approaches were proposed in the literature for bone
tumor segmentation. Indeed, Frangi et al. in [6] proposed to segment a bone
tumor in MR images using a neural network-based classifier approach. Authors
used a pharmacokinetic model of the tissue perfusion which can reduce the MR
image sequence into three parametric images. A neural network classifier is used
to combine temporal and spatial information to determine the tumor region. In
[1], a semi-automatic method for gross cancer volume delineation was proposed.
It is based on the fusion of pixel intensity from both X-ray, CT and MRI scans.
The segmentation process was initialized manually by a physician expert. Sta-
tistical shape model has been used also in [3]. In their paper, author proposed
an automatic process to segment the Human pelvic bones from CT datasets.
Another recently work was proposed in [4] for bone and cartilage segmentation
in MRI images of the knee. Their procedure is based mainly on the using of ac-
tive appearance models (AAM) which is a statistical model of the target shape
constructed from manually segmented examples of the Osteoarthritis. Schmid
et al. [5] developed a method based on deformable models approach with shape
priors to address the segmentation issue of bone structure in MRI. They exploit
both prior knowledge and image information for better efficiency. In addition,
global shape variation was defined by PCA analysis and local deformation was
defined though Markov Random Field (MRF) method.

According to this study, we think that statistical classification, image fusion
and active contours are often complementary segmentation strategies. For ex-
ample, statistical classification can be often successfully applied for a global
classification of major anatomical structures, and active contours have been suc-
cessfully applied to delineate locally the boundary of a particular region. Based
on this assumption, we suggest in this paper a new method for bone cancer de-
tection in 2D digitized MRI and CT-scans. This paper is organized as follows.
In section 2, we describe the different steps involved in the building of our pro-
posed method for bone cancer segmentation. In section 3, we present and discuss
obtained results on different images. Finally, we conclude our paper and point
out future research directions.

2 Bone Cancer Segmentation Procedure

We propose a method which operates on MRI and CT scans to segment bone
cancer. First, input images are co-registered with a non-rigid deformation al-
gorithm into the same coordinate system, so that we can fuse them properly
in the next step. Then, a step of determining a coarse region of the cancer is
performed using a fuzzy possibilistic classification method. Finally, a variational
model is performed to delineate accurately the bone cancer region. The overall
computational steps are illustrated in figure 1.
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Fig. 1. Proposed method for bone cancer detection

2.1 Non-rigid Multimodal Image Registration

Image registration is the process of aligning two images by computing a geo-
metrical transformation that can match the first image to the second one. Such
transformation can be affine, rigid or non-rigid. In this paper, we investigate this
line of research by exploiting information of different modalities through a non
rigid registration step which is more suitable in our case to match both MRI and
CT scans. Over recent years, a number of non-rigid registration techniques have
been proposed. Looking at non-linear multi-modal image registration, we choose
to apply the registration algorithm proposed in [7, 8] which is based on free-form
deformations and cubic B-spline. It has shown to be very robust for multi-modal
images even on low quality. More details can be found in their publication.

2.2 Initial Segmentation Using FPCM

Fuzzy classification algorithms have been widely used in medical image analysis
due to its ability to model the uncertainty. It is a process of grouping pixels into a
fuzzy set [9]. One of the widely used fuzzy algorithms is Fuzzy C-Means (FCM).
Indeed, unlike hard clustering algorithms which force pixels to belong to only
one class, FCM allows pixels to belong to multiple classes. However, FCM fails
to deal with main properties in images given that neighbor pixels are strongly
correlated, which results in poor segmentation. To address this problem and to
improve the performance of the FCM algorithm in noisy environment, the pos-
sibilistic c-means (PCM) clustering [10], has been shown to be more robust as
compared with FCM. Nevertheless, PCM also has the disadvantages in its sen-
sitivity to initialization and easily leading to coincident clustering. To overcome
this problem, a new mixed Fuzzy Possibilistic C-Means Algorithm (FPCM) was
proposed [11]. By combining FCM and PCM, PFCM can simultaneously produce
membership, possibilities and the cluster centers for each cluster. It can provide
a better insight into how regions are distributed. Moreover, it can solve the
noise sensitivity defect of Fuzzy C-Means algorithm and overcomes the problem
of coincident clusters of possibilistic C-means algorithm. These desirable prop-
erties of FPCM make it suitable to be a basic model of our entire procedure.
So, we adopt in our study FPCM in order to classify the target image into ap-
propriate classes. According to Pal et al. [11] that he proposed to use membership
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values, as well as typicality values, looking for a better clustering algorithm, this
problem is equivalent to an optimization objective function given as follows:

FPCM =

C∑
i=1

N∑
k=1

(aμm
ik + btnik) ∗ ‖zk − υi‖2 +

c∑
i=1

ri

N∑
k=1

(1− tik)
n

Subject to the constraints
∑C

i=1 μik= 1 ∀ k; μik ≥ 0, tik ≤ 1 and the con-
stants a, b>0 and n>1.

The parameters a and b define the relative importance between the member-
ship values and the typicality values. μik defines the absolutes importance of the
membership values and tik defines the absolutes importance of the typicality
values. While detailed proofs are not included, the interested reader can refer to
citations and detailed descriptions in the publication [11].

Based on the possibility theory, input images (MRI and CT) are fused in
three steps. First, information are modeled in order to manage ambiguous and
imperfection information. Second, these information are combined and aggre-
gated though a fusion operator. Such operator must avoid the redundancies and
exploit the complementarities between the MR and CT images. Third, a decision
step in which the resulted image is classified by taken into account a decision
rule such as the maximum of possibility. In other word, each pixel is assigned to
an appropriate tissue/structure according to its greatest membership (maximum
of possibility). The fusion procedure can be summarized as follows:

1. Information modeling:
For each pixel in {MRI, CT}:
We compute the FPCM (for this pixel), i.e the membership degree for both
images (MRI and CT).

2. Possibilistic fusion:
Through FOP operator, we aggregate each class of MRI with the same one
of CT.

3. Decision :
Image is finally classified based on the maximum of possibility rule.

2.3 Variational Model for Cancer Region Detection

Although the FPCM algorithm has been proposed as robust when estimating the
cluster center of the image and yields good results when we have high contrast
between soft tissues, it fails to segment complex medical images and results
in ”poor” segmentation when more noise are involved. For these reasons, we
propose to perform our developed variational level-set model which is applied
successfully in our previous works for 3D brain segmentation [2, 12]. We present
in the following briefly this model.

Unlike the traditional parametric active contours-based methods, geometric
level set-based methods are considered an appropriate framework for merging
heterogeneous information that provide a consistent geometrical representation
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suitable for image analysis. Moreover, level-sets do not depend on the parame-
terizations of the contour/surface and have become popular thanks to its ability
to handle complex geometries and topological changes. These advantages make
level-set very attractive and flexible in shape modeling and image segmenta-
tion. According to Sethian [13], the implicit level set function can be evolved by
solving the following PDE (partial differential equations):

∂φ

∂t
= F.|∇φ| (1)

Where F is a scalar velocity (speed) function depending on the local geometric
properties (i.e. curvature) and on the external parameters related to the input
data (i.e. image gradient). The construction of a speed function is crucial in ap-
plying the level set method. Our intention in this work is to exploit the advantage
of the cooperation of different information in the same evolution equation. So,
we propose basically to constrain our variational model by both boundary and
regional information. Recently, we have proposed a new formulation [2, 12] for
the evolution of the variational model which is expressed as:

∂ψ

∂t
= [αrFregion(I) + αbFboundary(I)]|∇ψ| (2)

Fboundary causes the evolving of the front to be more strongly attracted to
image edges. It is expressed as :

Fboundary(I) = sign(Fboundary).
c+ k

1 + |∇I| (3)

sign(Fboundary) =

{
+1 if Fregion < 0
−1 otherwise

(4)

Fregion controls the evolution of the model and segments the cancer region
based on the following equation:

Fregion(I) =

{
I − (mT − εT ) if I < mT

(mT + εT )− I otherwise
(5)

Where εT is a constant parameter, and mT is the mean value of the bone
cancer region. This value is calculated on the estimated region after the classifi-
cation step. εT controls the brightness of the region to be segmented and define
a range of greyscale values that could be considered inside the expected region
of interest. More technical details are found in the papers [2, 12].

3 Experimental Results

We focus in this work only on the detection of the bon tumor boundaries from
2D images (CT and MRI). We have validated qualitatively the performance of
the proposed method on several couple of MRI and CT scan images. Figures 2 c,
3 c, 4 c, and 5 c show the result of the non-rigid registration. In this study, images
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(a) (b) (c) (d) (e)

Fig. 2. (a) T2 weighted MR image of lower leg , (b) CT image of lower leg, (c)
registered image (d) initial region of the tumor region (PFCM classification result), (e)
Final segmented tumor region

(a) (b) (c) (d) (e)

Fig. 3. (a) T1 weighted MR image of the left shoulder, (b) CT image for lower leg,
(c) registered image (d) initial region of the tumor region (PFCM classification result),
(e) Final segmented tumor region

(a) (b) (c) (d) (e)

Fig. 4. (a) T1 weighted MR image of pelvic, (b) CT image of pelvic, (c) registered
image (d) initial region of the tumor region (PFCM classification result), (e) Final
segmented tumor region

(a) (b) (c) (d) (e)

Fig. 5. (a) T1 weighted MR image of osteosarcoma-femur, (b) CT image of
osteosarcoma-femur, (c) registered image (d) initial region of the tumor region (PFCM
classification result), (e) Final segmented tumor region
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are classified into four classes and one of them is assigned for the bone cancer
region. This classification is performed using PFCM algorithm which provides
an initial coarse pathological region presented in figures 2 d, 3 d, 4 d, and 5
d. Finally, our variational model is performed on the previous output to give a
final segmented region shown in the last result for each row in same figures. Once
isolated, the detected cancer can be further processed for example for surface
measurement. According to obtained preliminary results, we found our method
is able to give acceptable results. This is due principally to the potential use
of both FPCM-based clustering, data fusion process and variational model for
segmentation of multimodal images.

4 Conclusion and Future Work

We have presented a method for 2D bone cancer segmentation using multimodal
images possibilistic fuzzy classification and active contour model. The entire
process of our method is automatic except the selection of one pixel after the
classification step which is needed to extract the initial tumor area. According
to the obtained encouraging results, the main conclusion of this work is that the
combination of the possibilistic fuzzy classification and the variational model in
a sequential manner is suitable for such problem. Our future research in bone
cancer segmentation consists in the quantitative evaluation of our results against
a ground truth. It would be also very interesting to investigate a prior knowledge
to improve results and to make the process fully automatic. Moreover, we will
concentrate on the detection of three-dimensionally (3D) bone cancer.
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Abstract. The text below describes a short introduction to extreme
learning machines (ELM) enlightened by new developed applications. It
also includes an introduction to deep belief networks (DBN), noticeably
tuned into the pattern recognition problems. Essentially, the deep belief
networks learn to extract invariant characteristics of an object or, in other
words, an DBN shows the ability to simulate how the brain recognizes
patterns by the contrastive divergence algorithm. Moreover, it contains
a strategy based on both the kernel (and neural) extreme learning of the
deep features. Finally, it shows that the DBN-ELM recognition rate is
competitive (and often better) than other successful approaches in well-
known benchmarks. The results also show that the method is extremely
fast when the neural based ELM is used.

Keywords: Extreme Learning Machines, Deep learning, Neural
Networks.

1 Introduction

Since the ability of pattern recognition systems to correctly recognize objects in
real time with high accuracy is of primary concern, in this paper, we will consider
the performance of machine learning-based systems with respect to classification
accuracy. In particular we will focus on neural networks approaches. First, on
Extreme Learning Machines (ELM) which are shallow architectures with high
potential in regression and classification problems [6]; second, on deep neural
networks more precisely on Deep Belief Networks (DBNs) which seek to learn
concepts instead of recognizing objects. In fact, motivated by the extreme effi-
ciency of the visual recognition system recent studies in brain science show that
this is largely due to the expressive deep architecture employed by human vi-
sual cortex systems [14]. Deep architectures transform inputs through multiple
layers of nonlinear processing. This nonlinearity is in parametric form such that
they can learn deep concepts and be adapted through training. Both method-
ologies have gained popularity in recent years and many successful applications
have been reported [13,11,12,9]. Finally, we empirically show that by designing
an extreme learning classifier over deep concepts learned in pattern recognition
benchmark problems will enhance the performance as compared to the baseline
approaches. More concisely, in both cases of kernel (and neural) based ELM over
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extracted learned features from deep belief networks, respectively, on Convex,
Rectangles and HHreco image datasets the approach is shown to be competitive
and extremely fast for the neural based ELM. The paper is organised as follows.
Section 2 presents the basic principles of extreme learning machine. Section 3
illustrates the rationale behind deep belief networks. In section 4 we describe the
proposal of the extreme learning classifier of deep concepts. In section 5 the ex-
perimental set up and the benchmarks are described, and the results discussed.
Finally, in section 6 conclusions and future work are presented.

2 Extreme Learning Machines

There has been a raising interest in Extreme Learning Machines (ELM) since
the original work of Huang et al. [5]. The ELM randomly chooses the hidden-
unit weights and analytically determines the output weights of single hidden-
layer feedforward network (SLFN). Since then many applications have spread
in various fields of pattern recognition. Extreme learning machine is a simple
learning algorithm for (SLFN) with attractive properties such as fast learning
speed, no need for tuning of parameters, universal function approximation and
good generalization [6].

2.1 Basic Form of Extreme Learning Network

Suppose we are given N instances of training data. Each instance consists of a
(xi, ti) pair where xi ∈ IRd is a vector containing d attributes of the instance
i, and ti ∈ {+1,−1} is the correspondent class label. The method uses input-

output training pairs from D =
{
(xi, ti) ∈ X ⊆ IRd × T : 1 ≤ i ≤ N

}
such that

the ELM classifies correctly unobserved data (x, t). In its basic form ELM with
L hidden nodes are mathematically modeled as:

fL =
L∑

i=1

βihi(x) = h(x)β (1)

where β = [β1, · · · , βL]
T is the output weight vector connecting the hidden nodes

and the output node, and h(x) = [h1, · · · , hL] is the vector with the outputs of
the L hidden nodes with respect to the vector x. The model above h(x) with L
hidden nodes maps the N data samples from the d-dimensional input space to
the feature hidden space H . The ELM minimizes the training errors as well as
the norm of the output weights to achieve better generalization [5,6] according
to:

Minimize:
N∑
i=1

||h(xi)β − ti|| (2)

The solution is given by:
β = H†T, (3)
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where H† is the Moore-Penrose generalized inverse of matrix H. The singular
value decomposition (SVD) method can be used to calculate the generalized
Moore-Penrose generalized inverse of matrix H:

H =

⎡⎢⎣ h(x1)
...

h(xN )

⎤⎥⎦ .

2.2 Kernel Based Extreme Learning Machine

The equality constrained optimization method is proposed in [4] to solve the
optimization problem in eq. (2). With the universal approximation capability as
shown in [6] this classification problem can be formulated as:

Minimize: LPELM =
1

2
||β||2 + λ

1

2

N∑
i=1

ξ2

Subject to: h(xi)β = ti − ξi (4)

where λ is the regularization constant and ξ are the slack variables. By solving
the above equations the output of the ELM classifier is (5); if the feature mapping
h(x) is unknown, Mercer’s conditions apply [4] and the kernel matrix ΩELM can
be constructed; the final form is shown in (6):

fL(x) = h(x)β = h(x)HT

(
I

λ
+HHT

)−1

T (5)

=

⎡⎢⎣ K(x,x1)
...

K(x,xN )

⎤⎥⎦( I

λ
+ΩELM

)−1

T (6)

3 Deep Belief Networks

DBNs were proposed by Hinton who showed how to carry out unsupervised
greedy learning with Contrastive Divergence (CD) [3]. This algorithm learns a
generative model from the data distribution. With the proviso that by combin-
ing Restricted Boltzmann Machines (RBMs) learning in DBNs is sequentially
achieved [3], the approach represents an efficient way of accomplishing tasks
that would otherwise be out of reach. Figure 1 illustrates this process.

Each RBM has a layer of visible units v that represent the data and a layer
of hidden units h that learn to represent features that capture higher-order
correlations in the data. Given an energy function E(v,h) on the whole set of

visible and hidden units, the joint probability is p(v,h) = e−E(v,h)

Z where Z is a
normalizing partition function.

The two layers are connected by a matrix of symmetrically weighted con-
nections, W, and there are no connections within a layer. Given conditionally
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v· · ·

h1· · ·

p(v|h1)p(h1|v)

v· · ·

h1· · ·

h2· · ·

p(v|h1)p(h1|v)

p(h1|h2)p(h2|h1)

v· · ·

h1· · ·

h2· · ·

h3· · ·

p(v|h1)p(h1|v)

p(h1|h2)p(h2|h1)

p(h2|h3)p(h3|h2)

Fig. 1. Training process of a Deep Belief Network (DBN) with one input layer, v, and
three hidden layers h1, h2, h3. From left to right, trained layers are drawn with lighter
color, otherwise layers are with darker color.

independence it is easy to sample from the factorial posterior distribution over
hidden vectors p(h|v,W) and from the factorial posterior distribution over vis-
ible units p(v|h,W). By starting with the data vector on the visible units and
alternating several times between sampling from p(h|v,W) and p(v|h,W), it is
easy to get the learning weights W.

4 Proposed Approach

Most of the problems in pattern recognition fall in the category of classification
where objects are represented by a set of features (or attributes) usually ex-
tracted manually. Very often the challenging nature of many problems lie on the
difficulty of extracting features such as behavioral characteristics like mood, fa-
tigue, energy, etc.. This is a very hard task for manual extraction of features. The
unsupervised training of the DBNs allows to learn complex functions by mapping
the input to the output directly from data, without depending on human-crafted
features [1]. The process works as follows. The first layers are expected to ex-
tract low-level features from the input data while the upper layers are expected
to gradually refine previously learnt concepts, therefore producing more abstract
ones [7]. Now the output of the higher DBN layer can easily be functioning as
the input to a supervised classifier [2,10]. The idea is to use an extreme learn-
ing machine (ELM) as the classifier of the deep concepts. Notwithstanding the
training cost of DBNs, however, our recent work with an adaptive learning rate
technique and Graphics Processing Units (GPU)1 implementation of DBNs [8]
has highlighted the way to circumvent these pitfalls which appear to favor (deep)
architectures. The inputs to the (shallow) ELM are thus the extracted features
from the top DBN layer and its output are the classes of the target pattern
problem.

1 http://gpumlib.sourceforge.net/

http://gpumlib.sourceforge.net/
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Fig. 2. From left to right examples of the Convex, Rectangles and HHreco multi-
stroke images datasets. Each square figure contains a symbol while each row contains
images of each data set. The first two top rows correspond to training samples of the
three data sets w.r.t. the order above (e.g. the upper right first two rows correspond to
Convex images); the second two rows correspond to the test samples. The corresponding
reconstruction for train and test data is in the middle row-range. The DBNs were
trained with two and three layers and the best configuration chosen. The local receptive
fields (weights of the hidden neurons) which play an important role in visual tasks are
illustrated in the last row-range.

Table 1. DBN-ELM and DBN-SVM F1-measure versus the baseline (DBN-MLP)

Datasets Sampling Methods

Images Training Testing Classes DBN-SVM DBN-ELM DBN-MLP

Data samples samples Nr. C = 1, γ λ = 1 γ = 0.1 F1 nH = 100

Convex 8000 50000 2 98.32 (γ = 10) 77.58 73.85 (10− 1)

Rectangles 1200 50000 2 89.90 (γ = 0.5) 92.55 91.01 (10− 1)

HHreco 650 7141 13 88.93 (γ = 0.05) 91.33 80.37 (10− 13)
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5 Results and Discussion

5.1 Experimental Setup and Dataset Benchmarks

In our testbed experiments we have used HHreco images, Convex and Rectangles
datasets. Figure 2 presents examples of the three datasets. The first two bench-
marks are purely synthetic data sets2. The task in Convex is to classify a single
white region that appears in each image as convex or non-convex. The task in
Rectangles is to classify a single rectangle that appears in each image as tall or
wide. Finally, the HHreco database3, contains a total of 7, 791 samples gener-
ated by 19 different persons, and contains a total of 13 different symbol classes.
Each user created at least 30 multi-stroke images per class, which means that for
each symbol there are at least 19× 30 = 570 samples. We converted the original
HHreco vector strokes into a 28× 28 = 784 raster pixel image, maintaining the
aspect ratio of the images. Moreover, the resulting images have been binarized
and no further pre-processing was done. Since we are interested in evaluating
the capacity of the DBNs for extracting information from the original (images)
raw data, we discarded both the number of strokes and time span information.

5.2 Experiments and Results

The performance of kernel (and neural) based ELM, SVM and MLP classifiers
were tested on the output of the DBN which learned well the features for im-
age representation as demonstrated through the reconstruction obtained in the
previous step (see Figure 2). For all the datasets the input data have been nor-
malized into {−1,+1}. Note that the patterns in Rectangles and Convex datasets
involve abstract, shape-based features that cannot be computed directly from
raw pixel inputs, but rather seem to require many layers of processing. The pos-
itive and negative examples also exhibit tremendous variability, making these
problems difficult for template-based approaches (e.g., SVMs with RBF ker-
nels). For the kernel based ELM, SVM and MLP classifiers the generalization
performance depends on the setting of parameters. Specifically, for SVM clas-
sifiers the combination of C cost parameter and γ kernel parameter have to be
carefully chosen to get the best results. In our simulations, we have carried the
parameter selection based on the F1 measure. Its computation for binary class
is given by F -measure = 2 × precision×recall

precision+recall where precision and recall are de-

termined from the confusion matrix as the rate of true positives (tp) from all
retrieved positives given by the algorithm while the recall gives the rate of tp
from all the positives in the dataset. For multi-class, let tpc be the number of
samples belonging to class c that were correctly classified. Let fpc be the number
of samples that were incorrectly classified as being of class c when in fact they
belong to a different class (i 
= c). Let fnc be the number of samples that were

2 http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/

Public/PublicDatasets
3 http://embedded.eecs.berkeley.edu/research/hhreco/

http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/PublicDatasets
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/PublicDatasets
http://embedded.eecs.berkeley.edu/research/hhreco/
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Fig. 3. DBN-ELM performance for datasets (a) Rectangles and (b) HHreco. In (a) the
various plots for several values of the kernel parameter γ and regularization constant
λ are shown. Notice in (b) the standard deviation for train and test data.

incorrectly classified as belonging to class i 
= c when in fact they belong to class
c. Assuming that there are C different classes the macro-average precision and
macro-average recall can be computed as follows: precision = 1

C

∑C
c=1

tpc

tpc+fpc

and recall = 1
C

∑C
c=1

tpc

tpc+fnc
. The macro-average F-measure can be now com-

puted as indicated above.
For each specific training set we search the optimal cost parameter from

the following settings: Parameters γ = {0.01, 0.05, 0.1, 0.5, 1, 10, 100} e λ,C =
{0.001, 1, 10, 100, 1000, 10000}. The kernels chosen for both SVM and kernel-
based ELM were RBF and Linear. The results are presented in Table 14. The
kernel based ELM can achieve better results than both the SVM and the base-
line MLP as highlighted in the Table 1 for the Rectangles and HHreco datasets.
However, for the Convex data set the SVM is better while ELM still outperforms
MLP. This might be due to an DBN not properly tuned into this difficult dataset
and as such it deserves further study. Figure 3 plots the parameters sensitivity
for the rectangles and HHreco datasets. For the sake of comparison we also
tested neural-based ELM with neurons in the range {10, 100, 1000, 5000} and
activation functions sigmoid, hardlim and radbas and sin. We observed that
F1 obtains the best value for sigmoid activation function on the convex dataset
and decreases, respectively, by 12.6%, 5.19% and 1.98% for hardlim, radbas and
sin. Regarding the training and testing times the neural-based ELM network is
extremely fast compared to kernel-based ELM (with similar parameters settings)
by a factor ca. 270. This is expected since in the former an L × L matrix must
be inverted while in the second the matrix is N ×N where L (number of hidden
units) < N (number of data points).

4 Due to paper space restrictions, larger tables with more results are not presented.
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6 Conclusions and Future Work

We explored extreme learning machines (ELM) in the classification stage of
features constructed by nonlinear processing in deep architectures (DBN) on
leading benchmarks. Comparison of the DBN-ELM with previous approaches
show that they uphold competitive accuracies. When it comes to training times
they are extremely fast when the shallow neural ELM is used. This might be due
to the fact that there is no need to tune weights and bias in the final classification
step which allows us to harness the advantages of extreme learning of deep
concepts in visual tasks. While the paper focus on extreme learning classifier with
deep concepts for model construction, future work envisaging hybrid methods
will be pursued to deal with unbalanced data and their geometric distribution
in the feature space.
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Abstract. Spectral clustering techniques have shown their capability
to identify the data relationships using graph analysis, achieving better
accuracy than traditional algorithms as k -means. Here, we propose a
methodology to build automatically a graph representation over the in-
put data for spectral clustering based approaches by taking into account
the local and global sample structure. Regarding this, both the Euclidean
and the geodesic distances are used to identify the main relationships be-
tween a given point and neighboring samples around it. Then, given the
information about the local data structure, we estimate an affinity ma-
trix by means of Gaussian kernel. Synthetic and real-world datasets are
tested. Attained results show how our approach outperforms, in most of
the cases, benchmark methods.

Keywords: Graph analysis, kernel function, spectral clustering.

1 Introduction

Clustering techniques are widely used to explore data patterns and they pro-
vide the advantage to work with unlabeled data. These techniques have been
addressed in many disciplines as data mining, image segmentation, and pat-
tern classification [1, 2]. Although, well-known algorithms, such as k -means, are
employed in clustering applications, however, they only consider similarity val-
ues from instances to a fixed number of centers. Moreover, they require extra
information about cluster shape, which is not always available.

Therefore, two approaches have emerged as an alternative to analyze clusters
that are non-linearly separable, namely, kernel k-means and spectral clustering.
Spectral techniques seek data representation as a graph, with a set of nodes
and an affinity matrix capturing relationships among samples [1]. In addition,
using an affinity matrix allows to employ powerful operators such as kernel
functions, in order to reveal the main data structures. Regarding this, fixing
kernel operators is crucial for the clustering performance. In [3], a local scaling
parameter is introduced to identify a suitable kernel function considering the
neighborhood relationships. Nonetheless, it requires to fix a free parameter that

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part I, LNCS 8258, pp. 190–197, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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is not always a straightforward task. Moreover, due to the fact that the method
considers a different local scaling for a given sample, the obtained representation
does not correspond to conventional kernel function class satisfying the Mercer
conditions [4]. Though some applications are discussed on this matter [5–7],
this method can not longer be framed as a suitable kernel based representation.
Moreover, as shown in our experiments, it is not always a good alternative to
build the graph for spectral clustering.

We propose a new alternative to construct automatically the graph repre-
sentation in spectral clustering approaches. Particularly, inspired by a previous
method that allows to identify the local and global data structures for mani-
fold learning tasks [8], two different operators (namely, the Euclidean and the
geodesic distances) are used to highlight the main relationships between a given
point and the neighboring samples. To this end, a neighborhood size is calculated
for each sample, looking for the largest patch that allows to model each neighbor-
hood as locally linear. Provided that local data structure information is encoded
into neighborhood sizes, we estimate an affinity matrix by means of a Gaussian
kernel fixing the band-width parameter as a function of the found neighbor-
hoods. For the sake of assessing the proposed methodology performance, some
experiments are done over synthetic and real-world datasets. Obtained results
are compare against state of the art approaches [3, 5, 6].

2 Methods

2.1 Spectral Clustering Main Concepts

Let X∈Rn×p be an input data matrix holding n samples and p features. To dis-
cover the input data structure, relationships among samples can be highlighted
by means of a complete, weighted, undirected graph representation G (V ,Ω),
which contains a set of nodes V = {v1, . . . ,vn} corresponding to the n sam-
ples. Edge weights for connecting nodes i and j (i 
= j) are defined through an
affinity matrix Ω ∈ Rn×n, with Ωij = κ(xi,xj), being κ(·, ·) a kernel function,
mostly, the Gaussian kernel [1]. Using a kernel function ensures an stable spectral
decomposition, due to it must satisfy the Mercer conditions. The goal of clus-
tering approaches is to decompose V into C disjoint subsets as V = ∪C

c=1Vc,
with Vl ∩ Vc = ∅ ∀l 
= c. To this end, spectral information and orthogonal
mappings from Ω are employed to represent suitably inputs [2]. Thus, using
spectral concepts of graph analysis, the so-called Laplacian matrix is estimated
as L = D− 1

2ΩD− 1
2 , where D ∈ Rn×n is a diagonal matrix whose elements

dii =
∑n

i=1 Ωij are the degree of the nodes in G. Spectral decomposition of L
gives useful information about graph properties, being able to cluster together
similar patterns [1]. Therefore, spectral clustering methods find a new represen-
tation of patterns from the first C eigenvectors of graph Laplacian L. Then,
given a matrix Z ∈ Rn×C whose column vectors stack the found eigenvectors,
each of them with unit length, a clustering algorithm, such as K-means, is em-
ployed to minimize distortion. Note that the Z matrix can be viewed as a data
mapping into a unit hypersphere, where a traditional clustering approach is used
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to estimate the disjoint subsets Vc and the label vector y ∈ Rn×1 containing the
subset membership yi ∈ {1, . . . , C} for each xi.

2.2 Local Data Analysis for Automatic Graph Building - AGB

Computation of affinity matrix Ω is a crucial step in spectral clustering, since
it models both local and global data properties. Commonly, the relationships
among samples are identified by means of a Gaussian kernel, defined as Ωij =
exp
(
−||xi − xj ||22/2σ2

)
. However, the question arises as how to select the kernel

band-width σ ∈ R+ for revealing the real data structure. In [3], as an alternative
solution, a local scaling is introduced that finds a different band-width for each
pair of points, namely, Ωij = exp

(
−||xi − xj ||22/2σiσj

)
, where σi = ||xi−xh||22,

being xh the h-th neighbor of xi according to the Euclidean distance. Nonethe-
less, selection of h is not a straightforward task. In [3,5], h is empirically fixed as
7, but as shown in our experiments, it is not always a suitable value. Moreover,
taking into account that a kernel representation induces a nonlinear mapping
ϕ : Rn×p → H, where H is a Reproducing Kernel Hilbert Space - RKHS, choos-
ing a different kernel generates a different RKHS for each pair of nodes (i, j).
Therefore, variation of Gaussian kernel band-width, as the product σiσj , gen-
erates a different RKHS for each input sample. Hence, matrix Ω should not
correspond to a kernel representation satisfying Mercer conditions [4]. Certainly,
the above mentioned procedure is often carried out in practice, but it can no
longer be framed as a suitable kernel based representation.

In this work, we propose an alternative solution to build the graph G in spec-
tral clustering based approaches, considering both the density and the linearity
of each sample neighborhood. Inspired by a previous approach for fixing the
neighborhood size of each sample xi in manifold learning related tasks [8], the
local data structure is studied using two main distance operators: the Euclidean
and the geodesic distances. The main idea is to construct patches, i.e., neighbor-
hoods, as large as possible, in order to conserve the global data properties, but
ensuring that any data point and its nearest neighbors can be modeled as locally
linear, preserving the local data structure. For each point, the nonlinear proper-
ties of its neighboring region are highlighted comparing the neighborhood found
by the Euclidean distance against the neighborhood found by the geodesic dis-
tance. If the region around a point is linear and dense, the Euclidean and geodesic
distances should obtain a similar set of nearest neighbors for each xi. Otherwise,
the neighborhood computed using Euclidean distance should contain short cir-
cuits, while geodesic distance will be able to correctly identify the neighbors of
each sample avoiding such short circuits, because it is able to model nonlinear
data structures. Mainly, the algorithm to find each neighborhood size can be
summarized as follow.

Firstly, to conserve the global data properties, a set of possible neighborhood
size values k are calculated, where a lower bound is computed as the minimum k
that allows to construct a connected graph G over X. Second, varying the patch
size two kind of neighbor sets are obtained according to each distance operator.
Then, the vector k ∈ Rn×1 that holds the size of each computed neighborhood
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is calculated, where ki is fixed as the largest neighborhood size that shares the
maximum percentage of neighbors between the two kind of sets. Finally, vector
k is refined by an outlier detection stage to avoid the influence of noisy samples.
For a complete description about the algorithm, see [8].

Given a vector k holding information about the local data structure, our goal
is to estimate an affinity matrix by means of a kernel function that allows to
model properly the data. In this regard, to fix the Gaussian kernel band-width
parameter, a σ†

i value is computed for each sample as σ†
i = ‖xi − xki‖2, where

xki is the ki-th nearest neighbor of xi. Note that σ†
i provides information about

the data dispersion into the largest local linear patch around each node in the
graph. Afterwards, the kernel band-width value is computed as σ̂ = E{σ†

i },
where E {·} stands for expectation operator. Finally, the graph G is built over
X using the σ̂ value to estimate Ω. Fig. 1 presents the general scheme of the
proposed approach, termed Automatic Graph Building - AGB.

Data structure

analysis

Band-width

estimation

Graph

building

Fig. 1. Automatic graph building general scheme

3 Experimental Set-Up and Results

To test the capability of the proposed approach AGB for finding a suitable
graph representation in spectral clustering based methods, some synthetic and
real-world dataset are used. AGB is employed to compute the affinity matrix
Ω building a graph G over the input data. Then, a spectral clustering method
is employed to estimate the label vector y. Firstly, three well-known synthetic
datasets are studied: four Gaussians, elongated groups, and happy face [3]. All
datasets encode complex structures and are commonly used to test the capa-
bility of clustering algorithms. For concrete testing, the number of groups C is
manually fixed as 4, 4, and 3, respectively, as detailed in [3]. Synthetic data
clustering results are depicted in Fig. 2, which can be visually evaluated.

Regarding to real-world datasets experiments, some well-known images for seg-
mentation tasks are employed. More precisely, several samples of the free access
BerkeleySegmentationdataset are studied 1. It is importantnoting that thedataset
also provides hand-labeled segmentations. In our experiments, randomly selected
images identified as 100075-bears, 113044-horses, 12003-starfish, 388016-woman,
56028-wall, and 124084-flowers are studied. Again, AGB is employed to represent
properly relationships among samples, taking into account the RGB color space
and the 2Dposition of each pixel as an input sample. However, due to limitations in
memory usage, images are resized at 15%.Furthermore, a closed approach, termed

1 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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Fig. 2. AGB clustering results over synthetic data

7-Nearest Neighbor Spectral Clustering - 7-NNSC, is tested. 7-NNSC is based on
a local scaling analysis to buildG, as discussed in section 2.2 (for details see [3,5]).
Besides, an index, called Normalized Probabilistic Rand - NPR, is computed to
quantify the image segmentation performance, since it allows to compare a test seg-
mentationwithmultiple hand-labeled ground-truth images [9]. NPR can be seen as
a function φ (S,H) , which compares a test segmentation S with a multiple hand-
labeled ground truth images H , through soft nonuniform weighting of pixel pairs
as function of the variability in the ground-truth set [9]. Fig. 3 shows images seg-
mentation results.

Finally, some classification experiments are developed to verify the advan-
tages of our AGB approach for highlighting the main data structures. Thus, the
UCR time-series dataset is used 2. This repository contains contributed labeled
time-series datasets from different fields, such as: shape identification on images,
time-series extracted from physical process, or even synthetic data. All datasets
contain different number of classes, observations, and lengths. Moreover, it is
assumed to be used on both classification and clustering tasks. As recommended
in UCR, we test the 1-Nearest Neighbor - 1-NN classifier using the Euclidean
distance as benchmark. UCR databases are divided into training and testing
sets. In this case, AGB is employed to compute the affinity matrix Ω over the
training set, which is employed as features in the 1-NN classifier. So, given a
new sample xnew (testing set), the similarity among xnew and the training set is
calculated using the AGB kernel band-width. Then, the 1-NN estimated testing
set labels are used to compute the system performance. Also, 7-NNSC approach
is used to compare the performance of the proposed algorithm. The attained
time-series classification results are presented in Table 1.

4 Discussion

Taking into account the synthetic clustering results, from Fig. 2 it can be seen
how the proposed AGB methodology is able to find a suitable kernel function,
i.e. Gaussian kernel band-width, which allows to build the graph G over the
input data, identifying the complex synthetic dataset structures. Note that, even
when some dataset are composed by disjoints data structures, with different
properties, our algorithm allows to find a complete graph that encodes the main

2 http://www.cs.ucr.edu/~eamonn/time_series_data/

http://www.cs.ucr.edu/~eamonn/time_series_data/
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Original Hand-labeled 7-NNSC AGB

(a) Bears (b) (c) NPR = 0.63 (d) NPR = 0.69

(e) Horses (f) (g) NPR = 0.63 (h) NPR = 0.71

(i) Starfish (j) (k) NPR = 0.78 (l) NPR = 0.75

(m) Woman (n) (o) NPR = 0.76 (p) NPR = 0.58

(q) Wall (r) (s) NPR = 0.65 (t) NPR = 0.68

(u) Flowers (v) (w) NPR = 0.72 (x) NPR = 0.77

Fig. 3. Images segmentation results
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Table 1. Time-series classification results - testing set accuracy percentage

Dataset Benchmark 7-NNSC AGB Dataset Benchmark 7-NNSC AGB

synthetic control 88.00 99.33 98.33 OSULeaf 51.65 47.52 54.55
Gun Point 91.33 66.67 86.00 50words 63.08 51.87 63.52
ECG200 88.00 79.00 88.00 Trace 76.00 53.00 77.00
FaceAll 71.36 35.50 67.28 wafer 99.55 32.17 99.43

SwedishLeaf 78.88 71.04 81.44 Lighting2 75.41 67.21 75.41
CBF 85.22 57.00 91.67 Lighting7 57.53 42.47 63.01
Coffee 75.00 50.00 71.43 Adiac 61.13 37.85 56.27
OliveOil 86.67 73.33 80.00 FISH 78.29 58.86 72.00

Two Patterns 90.67 48.25 90.47 Beef 53.33 36.67 46.67
yoga 83.03 52.37 79.47 FaceFour 78.41 37.50 80.68

relationships among samples, as can be visually corroborated in Figs. 2(a), 2(b),
and 2(c). Namely, Fig. 2(b) and Fig. 2(c) describes how AGB performance is in
agreement with a benchmark approach presented in [3].

Regarding to the images segmentation results described in Fig. 3, overall,
our algorithm obtains a better performance in comparison with the benchmark
method 7-NNSC. Particularly, for Bears, Horses, Wall, and Flowers AGB is able
to find the local and global relationships among samples, highlighting the main
details of each cluster. Due to each pixel is modeled with the largest linear
neighborhood around it, the whole image structure is properly revealed by the
estimated graph representation. However, for Starfish and Woman AGB obtains
a lower performance than 7-NNSC, which can be explained by the fact that such
images contain many details, that could be hand-labeled subjectively. For exam-
ple, the Woman image AGB segmentation is smoother than the 7-NNSC, which
is biased by abrupt changes. Even though the NPR values are higher for the
Woman and Starfish 7-NNSC segmentations, the obtained AGB results are vi-
sually acceptable. In addition, because of 7-NNSC employs a fixed neighborhood
size for all the samples, it is sensitive to outliers, thus is, noisy data structures.
Moreover, 7-NNSC can no longer be framed as a suitable kernel based represen-
tation from a theoretical view, as explained in section 2.2. In these experiments,
we also demonstrated that such drawback is also revealed in practice.

Finally, from the time-series classification results (Table 1), even though AGB
based approach does not overcome the baseline results for all the provided
datasets, it achieves competitive results. For example, for synthetic control,
ECG200, SwedishLeaf, CBG, OSULeaf, 50words, Trace, Lighting2, Lighting7,
and FaceFour dataset our approach attained the best performance. Again, the
AGB local and global analysis encoded into the neighborhood size estimation
allows to deal with the complex relationships among time-series. Now, 7-NNSC
based classification is not able to unfold the complex data structures, because
such technique assumes an unique neighborhood size. It is important to note
that some of the time-series datasets are composed for many classes, which can
not be suitable modeled by one kernel function, being necessary to extend the
data structure analysis considering different affinity matrices.
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5 Conclusions

A methodology to build automatically a graph representation over the input data
for spectral clustering based approaches was proposed. For such purpose, a data
structure analysis is performed using the Euclidean and geodesic distances to
identify the linear and density properties of each sample neighborhood. Thus, the
local and global properties of the data are revealed to estimate a suitable kernel
function, which is used to construct a data graph representation. Our approach,
AGB, was tested over synthetic and real-world data. Attained results showed
how our approach achieved good results for clustering, image segmentation, and
even classification tasks. A benchmark approach 7-NNSC, which aims to make
a local scaling analysis to build the graph, was also tested. However, 7-NNSC
is not able to unfold complex data structures in many cases. Such issues were
demonstrated from both theoretic and experiments. As future work, it would
be interesting to deal with multi-kernel methods for finding a suitable graph
representation that allows to deal with non-stationary signals. Furthermore, it
would be interesting to test different data model for building the graph and other
association measures could be tested to highlight different data properties, e.g.,
entropy and rank based correlations.
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Abstract. In this work we present a novel approach to transfer knowl-
edge between reinforcement learning tasks with continuous states and
actions, where the transition and policy functions are approximated by
Gaussian Processes (GPs). The novelty in the proposed approach lies in
the idea of transferring qualitative knowledge between tasks, we do so
by using the GPs’ hyper-parameters used to represent the state transi-
tion function in the source task, which represents qualitative knowledge
about the type of transition function that the target task might have.
We show that the proposed technique constrains the search space, which
accelerates the learning process. We performed experiments varying the
relevance of transferring the hyper-parameters from the source task into
the target task and show, in general, a clear improvement in the overall
performance of the system when compared to a state of the art reinforce-
ment learning algorithm for continuous state and action spaces without
transfer.

Keywords: Transfer learning, Reinforcement learning, Gaussian Pro-
cesses, Hyper-parameters.

1 Introduction

The objective in reinforcement learning (RL) is to find a sequence of actions that
maximizes a long-term cumulative reward. An RL algorithm achieves such an
objective by exploring the world and collecting information about it in order to
determine such sequence of actions [16]. RL algorithms provide mechanisms to
learn solutions without the need of human experience. However, when these are
applied to real world problems, two major problems arise: (i) a large number of
samples or interaction time with the environment is needed to learn an optimal
solution, and (ii) after an agent has learned to solve a task, if it is required to
solve a different (although similar) task, the learning process must be restarted.

Typically, RL is used on discrete state-action spaces, despite the fact that,
most real-world problems involve continuous domains and discretizations of the
domain variables may lead to very large discrete state-action spaces or imprecise
policy functions that may harm the learning process [7,3]. Several approaches
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have been proposed to deal with continuous domains, (e.g., [9,8,11,7,2]), most
of them use function approximators. In particular, Gaussian Processes (GPs)
have been used to represent value functions [6,5,14,1], and more recently, to
represent transition function models with very promising results [12,13,4,3,2]. In
this paper, we use GPs to represent policy and state transition functions.

A common approach to lessen the problem of learning a new, although similar
task is use transfer learning (TL). Several approaches have been proposed where
the source and target tasks may have different transition functions, state spaces,
start or goal states, reward functions or action sets [18]. In this paper, we assume
that there is only one source task and that the source and target tasks have the
same variables.

Most of the TL methods for RL that use the same assumptions as us, focus
on discrete tasks and model-free learning methods. In [10] and [17] model-based
learning methods are proposed to transfer samples (tuples or instances of the
form < s, a, r, s′ >) from the source task to the target task. Contrary to pre-
vious approaches, in this paper, we are interested in transferring information
about the transition function. In particular, we propose a batch learning method
which transfers information from the GP hyper-parameters of the state transi-
tion function to represent prior distributions of functions over the state transition
function of the target task. We will show that by providing a family of functions
as prior information about the underlying state transition function, significant
reductions can be obtained in the convergence of the algorithm. Our proposal
gradually incorporates the information from the target task producing a more
stable process and faster convergence times. The proposed methodology also uses
the source task policy function to initialize the policy in the target task. This
creates more informative initial traces in the target task and a further boost
to the convergence of the algorithm. The main contribution of this paper is a
relatively simple, yet very effective approach for transfer learning in continuous
state and action spaces, based on two intuitive ideas: (i) Within similar domains,
you can expect similar properties on the state transition functions. This is im-
plemented with a gradual transit between the hyper-parameters of the source
task to those of the target task. (ii) Without any prior knowledge, your best ini-
tial trial is obtained using the policy learned in the source task. We performed
experiments on the inverted pendulum under different conditions and show a
significant improvement in the learning process.

2 Background

RL problems are typically formalized as MDPs, defined by 〈S,A, P,R〉, where S
is the set of states, A is the set of possible actions that the agent may execute,
P : S×A×S → [0, 1] is the state transition probability function, describing the
task dynamics, R : S×A→ R is the reward function measuring the performance
of the agent. A policy π : S → A is defined as a probability distribution over
state action pairs. In the case of continuous tasks, S and A are continuous spaces
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and functions approximators have to be used to represent the functions P and
π, in this work we use GPs.

A Gaussian Process is a generalization of the Gaussian probability distribu-
tion. Given a set of input vectors xi arranged as a matrix X = [x1, . . . ,xn] and a
vector of training observations y = [y1, . . . , yn]


, Gaussian Process methods for
regression problems assume that the observations are generated as yi = h(xi)+ε,
ε ∼ N (0, σ2

ε ). Thus the objective is to infer a model of the function h that gen-
erates the data. Similar to a Gaussian distribution, which is fully specified by a
mean vector and a covariance matrix, a GP is specified by a mean function m(·)
and a covariance function k(·, ·), also called a kernel.

Given a GP model of the latent function h ∼ GP(m, k), it is possible to
predict function values for an arbitrary input x∗.

The covariance function k commonly used is the squared exponential kernel:

k(x̃, x̃′) = α2 exp(−1

2
(x̃ − x̃′)
Λ−1(x̃− x̃′)) + δx̃x̃′σ2

ε (1)

where x̃ = [x
u
]
, α2 is the variance of the transition function f , Λ =
diag([ 21, . . . ,  

2
D]), which depends on length-scales  i, and δx̃x̃′ denotes the Kro-

necker delta.
The hyper-parameters α2,  , σ2

ε describe the shape of the functions in the
prior distribution (e.g., smoothness, noise tolerance).

These hyper-parameters are often optimized by evidence maximization (see
[15] for further details).

The unknown transition function P can be described as xt = f (xt−1, at−1) ,
f ∼ GP(m, k), where xt ∈ S is the state of the agent at time t, with continuous-
valued states x ∈ RD and actions a ∈ A, A = RF . Following [2], the transition
model f is distributed as a Gaussian Process with mean function m and covari-
ance function k, with sample tuples of the form (xt−1, at−1) ∈ RD+F as inputs
and corresponding Δt = xt − xt−1 + ε ∈ RD, ε ∼ N (0, Σε), as training targets.

The objective in RL is to find a policy π: RD !→ RF that minimizes the
expected accumulative cost given as:

V π(x0) =

T∑
t=0

E [c(xt)],x0 ∼ N (μ0, Σ0) (2)

which is the sum of expected cost c(xt) of a trace (x0, . . . ,xT ), T steps ahead,
where π is a continuous function approximated by π̃, using some set of parame-
ters ψ.

The state transition function can be learned as a GP, using available data,
going from a prior distribution of transition functions to a posterior one [15]. The
learned transition model can then be used to simulate the system and speculate
about the long-term behavior without the need of interaction (batch learning).
The policy is then optimized according to these simulations and then used to
get more tuples (state, action, successor state).
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3 Qualitative Transfer Learning

The problem that we study is one where the source and target tasks have the
same state variables and are variants of the same task. For instance, the source
task could be to learn how to drive a car while the target task could be to learn
how to drive a small truck. We expect, that at least “qualitatively”, the behavior
of both task should be the same. Following these ideas, we transfer information
from the hyper-parameters of the transition function of the source task to the
target task. With the samples from the source task, we learn the state transition
function using GPs with a squared exponential kernel k as defined in the previous
section.

In GP learning however, when no expert knowledge is available about the
function properties, kernel hyper-parameters are often adjusted taking data into
account and optimizing the logmarginal likelihood (see [15] for more detail). That
is the case of PILCO [2], where hyper-parameters are adjusted each time new
data is added. Hyper-parameters are learned given the tuples X̃ = [x̃1, . . . , x̃n]
and their corresponding y = [Δ1, . . . , Δn] acquired during the interaction with
the environment.

In our approach, we do not let the evidence maximization process to take
control of the hyper-parameters values in the target task, instead, we adjust the
hyper-parameters using a forgetting factor. Let θ = [α2,  , σ2

ε ]

 denote the vector

of hyper-parameters. Let θ(s) denote the hyper-parameters transferred from the
source task, θi the hyper-parameters used in the kernel for the target task at

episode i, θ
(p)
i the hyper-parameters learned by evidence maximization in target

task at episode i. We calculate the values of the hyper-parameters in the target
task as follows:

θ0 = θ(s) (3)

θi = γθi−1 + (1− γ)θ
(p)
i , i > 0 (4)

where γ ∈ [0, 1] is the ratio in which previous episode hyper-parameters are
being incorporated into the kernel function.

Interaction with the environment when it is completely unknown requires an
exploration phase where actions are chosen randomly. However, it is reasonable
to believe that more accurate action heuristics exist when one has already learned
a policy in a related task. For this reason, we also transfer the learned policy
function from the source task and use it only in the first interaction with the
environment for the target task.

4 Experiments

In this section we show experimental results in the well known inverted-pendulum
task, commonly used as benchmark to compare reinforcement learning algo-
rithms. We compare the performance of the proposed learning approach, QTL-
PILCO, against PILCO [2] under different conditions.
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Algorithm 1. Qualitative Transfer Learning

Require: θ(s), ψ(s)

1: π̃ ← π(ψ(s))
2: θ ← θ(s)

3: Interact with environment, apply π̃ to obtain tuples.
4: repeat
5: Infer transition function distribution f from tuples and hyper-parameters θ.
6: repeat
7: Evaluate policy π̃ over f . Get V π̃

8: Improve π̃ � Updating parameters ψ
9: until convergence
10: π̃ ← π(ψ)
11: Interact with environment, apply π̃ to obtain more tuples.
12: Learn θ(p) from all tuples.
13: θ ← γθ + (1− γ)θ(p)

14: until task learned

In the experiments, an inverted pendulum has to be swung up and then bal-
anced. The pendulum is attached to a cart that moves along one axis when
an external force is applied (action). The inverted pendulum problem involves
applying actions that temporarily move the pendulum away from the target
state, and the agent has to apply two different control criteria, one to swing the
pendulum up and the other to balance it, thus it is non trivial to solve.

In the continuous scenario, a state x is represented by the position x of the
cart, its velocity ẋ, the angle θ of the pendulum, and its angular velocity θ̇.
The cost function is expressed as c(x) = 1 − exp(− 1

2a × d2), where a is a
scale constant of the cost function (set to 0.25 in the experiments) and d is
the Euclidean distance between the current and desired states, expressed as
d (x,xtarget)

2
= x2 + 2xl sin θ + 2l2 + 2l2 cos θ. In the current setup, the reward

remains close to zero if the distance of the pendulum tip to the target is greater
than l = 0.6m.

The source task consists of swinging a pendulum of mass 0.5 Kg. while in the
target tasks the pendulums weights are changed to 0.8, 1.0, 1.5, and 2.0 Kg., re-
spectively. Even when tasks have the same state and action spaces, their dynamics
vary significantly and transferring the learned policy from the source task does not
improve over learning from scratch and may even lead to negative transfer.

In our experiments, the source task was learned using PILCO. From that
learning process, we transferred the hyper-parameters of the transition function
and used the policy function for the first trial of the target task.

We repeated the procedure 5 times, randomly drawing the initial state x ∼
N (μs0, Σ0), the learning curves were averaged and plotted with their corre-
sponding standard deviation. For PILCO, the Kernel hyper-parameters in the
source task were initialized with heuristic values, as proposed in [2]. The initial
training set for the transition function was generated by applying actions drawn
uniformly from [−amax, amax]. For policy transfer, the whole policy learned in
the source task was used as initial policy in the target task instead of a random



Qualitative Transfer for Reinforcement Learning 203

policy to obtain initial samples, followed by QTL-PILCO (see Algorithm 1) to
refine the policy.

In our proposed methodology, 8 hyper-parameters for each of the kernels Ki,
are taken from the source task, so 32 free variables are considered (considering
the four variables for this domain). Those hyper-parameters are used as initial
ones in the target tasks, and after the first episode, they are updated via evidence
maximization from the samples and a weighted history of the original values, as
described in Eq. 4. We performed experiments with different values for γ, from
γ = 0, which is equivalent to learning with PILCO, to γ = 0.9 which provides
more “inertia” to the hyper-parameters found in the source task.

A comparison of the learning curves for target tasks is showed in Figure 1,
where we plot PILCO and QTL-PILCO with different values of γ. The horizontal
axis shows the number of episodes (interactions with the environment) while the
vertical axis shows the total reward, which is computed as the cumulative count
of 1− c(x) at every step.
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Fig. 1. Learning curves for target tasks 0.8Kg, 1.0Kg, 1.5Kg and 2.0Kg learned from
0.5Kg source task. Error bars represent ±1 standard deviation.

As can be appreciated from the figures, the proposed transfer learning ap-
proach can significantly reduce the learning process. When the target task is
quite similar to the source task (in this case, with a similar mass), QTL-PILCO
shows a clear improvement over learning without transfer. When the target task
is less similar (larger mass) the improvement is much more noticeable.
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The values of the hyper-parameters learned by evidence maximization can
change drastically during the first iterations of the learning process due to poor
samples. This is illustrated in the top graph of Figure 2(a). On the other hand,
it can be seen in the lower graph of this figure, that with QTL-PILCO the values
of the hyper-parameters are more stable and help to learn faster an adequate
policy.
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Fig. 2. Hyper-parameters convergence for the 0.8 Kg. task. PILCO oscillates more
while QTL-PILCO leads to steadier values.

Our weighting technique provides a more suitable way to approximate target’s
hyper-parameters, provided that their values are expected to be not too different
from those of the source task. This significantly reduces the expected oscillations
that their values take with the initial trials and focuses the learning process in
finding a policy with good priors on the expected values of the hyper-parameters
of the transition function.

5 Conclusions

In this paper we have presented a transfer learning approach for reinforcement
learning with continuous state and action spaces. The proposed approach is
simple, yet very effective for transferring knowledge between related tasks. It
is based on two general ideas for transfer learning. The first one is based on
the idea that if you are going to transfer knowledge between similar tasks you
can expect them to have similar general behaviors. We implemented this idea
by starting with the hyper-parameters learned in the source task and gradually
incorporating information from the learned hyper-parameters of the target task.
The second idea is based on starting the new task with your “best guess”. In
this case, we used as starting policy the policy learned in the source task.

As future work, we would like to know the limits of our approach as the
source and target tasks become less similar. We would also like to explore how
to transfer knowledge from several source tasks. Finally, we would like to perform
experiments in other more challenging domains.
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Abstract. Optimal Subsequence Bijection (OSB) is a method that allows  
comparing two sequences of endnodes of two skeleton graphs which represent 
articulated shapes of 2D images. The OSB dissimilarity function uses a constant 
penalty cost for all endnodes not matching between two skeleton graphs; this 
can be a problem, especially in those cases where there is a big amount of not 
matching endnodes. In this paper, a new penalty scheme for OSB, assigning va-
riable penalties on endnodes not matching between two skeleton graphs, is pro-
posed. The experimental results show that the new penalty scheme improves the 
results on supervised classification, compared with the original OSB. 

Keywords: skeleton graph, classification, matching. 

1 Introduction 

In object recognition, the use of shape similarity based on skeleton matching usually 
performs better for articulated shape recognition than contour or other shape descrip-
tors in the presence of partial occlusion and articulation of parts [1-4]. The skeleton 
integrates geometrical and topological features of an object, which makes it a good 
descriptor. Moreover, skeleton-based recognition methods compared with contour 
matching or other methods have lower sensitivity to articulation or rearrangement  
of parts [5]. 

In this work, we develop a method based on the work proposed in [5], which   
computes a dissimilarity value between skeleton graphs that represent articulated 
shapes. The dissimilarity value is computed from the distances between the shortest 
paths for each pair of endnodes in the skeleton graph, calculated by applying the OSB 
method, but unlike [6] where the same penalty cost is assigned for those not matching 
endnodes; in our proposal we include a variable penalty cost for all not matching 
endnodes.  

Maintaining a fixed penalty, as proposed in the original OSB method, could have a 
negative effect in those cases where the penalty is a small value and the number of not    
matching nodes is big.  

This paper is organized as follow:  In the section 2 we review the related work. In 
the section 3 we explain the proposed modification to the OSB method. The section 4 
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The vector containing the radius of the maximal disk centered in the  equidistant 
points in ,  is denoted as: 
 , , , ,…, , , … ,    (1) 

 
Definition 5. The shape dissimilarity between two skeleton paths is called a path 
distance. If  and  denote the vectors of radii of two shape paths ,  and  , , respectively, the path distance is defined as: 
 , , , ∑    (2) 

 
Where  y  are the lengths of ,  and ,  and  is a weight factor. 

The OSB method is scale invariant since both the path length and radii are norma-
lized. 

The Optimal Subsequence Bijection (OSB) method works over two sequences of       
different lengths  and . The OSB method uses two finite sequences of endnodes of 
two skeletons , … ,  and , …  respectively. The aim is to find     
subsequences  of  and  of  such that  best matches . 

2.1 Dissimilarity between Two Endnodes 

Let  and  be two skeleton graphs to be matched, with endnodes 0,1, … ,  and  0,1, … ,  respectively and .  The dissimilarity be-
tween the two endnodes and  is estimated by computing all path distances that 
emerge from nodes  in  and in , obtaining in this way a matrix of size   . 

The matrix in (3) contains the path distances (computed using 2 ) that emerge 
from  in  and  in : 
 

, , , , … , , ,, , , … , , ,…, , , … , , ,   (3)  

 
In the order to obtain the dissimilarity value between two endnodes, the OSB me-

thod is applied to the matrix (3), obtaining the matrix 4  of size                       1   1 . 
 

, , … ,, … ,, … ,                         (4) 
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For ensuring consistence in the matching between pairs of endnodes and to obtain 
the dissimilarity value between two shapes, which are represented by graphs, we  
applied OSB to the matrix ,  (4), as in [6]. 

In [6], at applying OSB in ,  the penalty for not matching endnodes is  
constant as proposed in the original method. In this case, we maintain the conditions 
that allow the link between the endnodes of skeletons, but, unlike the original OSB 
we apply a variable penalty cost on those not matching endnodes. 

2.2 Optimal Subsequence Bijection 

OSB works over two finite sequences of skeleton endnodes , … ,  and , , … ,  for | | | |. The main property of OSB is that some endnodes 
that form part of the sequences  and  can be jumped if it is necessary. However,  
excluding too many endnodes could influence in the dissimilarity value obtained. 
Each time that one endnode is jumped, a penalty is added. The cost of jumping some 
elements is called jumpcost. In [6] the jumpcost is constant when two specific  
sequences are compared and it is computed as: 

  , ,                   (5) 

 
Where ,  is the dissimilarity value computed between two elements of  

 and . In this paper, the distance  is the path distance  defined in equation (2). 
For computing the optimal correspondence between the sequences  and  we 

must enforce the following conditions: 
 ,  is matched to ,  if and only if:  1 and   
 
Respecting the matching conditions and applying the penalty over not matching 

endnodes, we can define the matching cost as: 
 , , , ,  1   1  .  1   1∞                      (6) 

3 Variable Penalty 

Unlike [5], we propose to use variable penalty for all not matching endnodes, in   
dependence of each element jumped in the sequence . 

Applying a variable penalty over not matching endnodes, allows that the penalty     
depends on the currently jumped endnode. If the distance computed from the jumped 
endnode to all the endnodes in the other skeleton graph is big, the penalty cost will be 
big and vice versa. The above, allow us to obtain a dissimilarity value smaller or  
bigger, depending on the amount and the kind of jumped endnodes between two    
sub-sequences. 
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Maintaining matching conditions of the original method and applying variable pe-
nalty cost over not matching endnodes, we can define the matching cost as: 

 

(7)

In this way, the total dissimilarity between skeleton paths or skeleton endnodes is 
given by the sum of the matching cost , , , . 

4 Experiments 

We built two databases for our experiments. The first database contains 36 shapes and 
9 classes (4 shapes by class): elephant, fork, heart, horse, human, L-star, star, tortoise 
and whale (Fig. 2.). In this case we try to build a similar dataset to that one used in [6] 
which unfortunately is not available online. 

The second database contains 32 shapes and 4 classes (8 shapes by class):          
butterfly, cat, dolphin and fish (Fig. 3.). 

The shapes were obtained from different sources and the skeletons were            
semi-automatically constructed. First we compute an approximation to the skeleton of 
each figure, we used the source code by Bai1 which uses Discrete Skeleton Evolution 
[14]. The skeleton achieved by this method allows us obtain an approximation to axis 
medial (or skeleton) of shapes, by means of the radii of maximal disk inside the 
shapes. Later, some branches were manually pruned, connected and/or added in order 
to ensure that the skeleton is simple and connected. Notice that this does not affect the 
modification proposed to the OSB method, since our method, in the same way as the 
original one, computes the dissimilarity between skeleton graphs once they have been 
built. 

For our experiments on classification the  with 1, the proposed OSB 
with variable penalty and leave-one-out cross validation were used. 
 

 

Fig. 2. Database containing 36 shapes and 9 classes 

                                                           
1 https://sites.google.com/site/xiangbai/ 
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Fig. 3. Database containing 32 shapes and 4 classes 

In Fig. 2 and Fig. 3, the errors obtained by applying OSB with constant penalty 
cost correspond to shapes labeled whit a circle and shapes marked with squares are 
errors with variable penalty, which is proposed in this paper. In the table 1 we can 
observe the obtained accuracy. 

Table 1. Accuracy obtained for two databases with the original OSB and the proposed 
modification 

 Database Fig. 2 Database Fig.3 

OSB with constant penalty cost 77.7% 90.62% 

OSB with variable penalty cost 88.8% 93.7% 
 

In both databases, the new penalty scheme for OSB obtains better results than the 
original OSB. 

In order to explain why we get better results with the new penalty scheme, let us 
consider the shapes in Fig. 4.  
 

 
 

 

Fig. 4. The shape  is correctly classified with the proposed penalty scheme for OSB obtain-
ing the smallest dissimilarity value with the shape  

The matrix 8  contains the dissimilarity values between endnodes for this shapes. 
In this matrix a complete correspondence is obtained (values marked) and therefore 
the total dissimilarity value between shapes  and (  from Fig. 3. is 9,04 no mat-
ter if the original or the proposed OSB is applied.  

 

(8)
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Nevertheless, if we consider the shapes in Fig. 5, the original OSB method would 
obtain a smaller dissimilarity value than the dissimilarity value obtained by the     
proposed variable penalty scheme, it will produce a mistake at classification stage. 
This is because, in the original OSB the for each node jumped in the matrix 9  is 1,40. In this matrix, three endnodes are jumped and three endnodes are linked 
(values marked). Therefore the total value of dissimilarity for this matrix using the 
original OSB is 9.04. 

 

  
 

Fig. 5. The shape  is erroneously classified into class of star with the original OSB method, 
obtaining the smallest dissimilarity value with the shape . 

 

(9)

However, using the proposed variable penalty scheme the three nodes jumped in 
the matrix 9  have a total jump cost of 9,11 and the total dissimilarity between 
shapes  and  from Fig. 5. is 13,95. Since the last value is bigger than the value 
obtained with the original OSB, the new scheme allows to correctly classify the shape 

 from Fig. 5. 

5 Conclusions and Future Work 

Building skeletons is a technique that allows representing and catching structural 
information of shapes. In this work, we proposed a variable penalty scheme for the 
OSB comparison method. The experimental results show that using the proposed 
penalty scheme allows to get better classification results that those results obtained by 
the original OSB. 

As future work, we propose, to include in the description of the skeletons other 
characteristics, in order to distinguish important segments inside the figures, which 
would allow to get better classification results. 
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Diana Porro-Muñoz2, Robert P.W. Duin2, and Isneri Talavera1

1 Advanced Technologies Application Center (CENATAV), Cuba
2 Pattern Recognition Lab, TU Delft, The Netherlands

dporro@gmail.com, r.duin@ieee.org, italavera@cenatav.co.cu

Abstract. Missing values can occur frequently in many real world sit-
uations. Such is the case of multi-way data applications, where objects
are usually represented by arrays of 2 or more dimensions e.g. biomedical
signals that can be represented as time-frequency matrices. This lack of
attributes tends to influence the analysis of the data. In classification
tasks for example, the performance of classifiers is usually deteriorated.
Therefore, it is necessary to address this problem before classifiers are
built. Although the absence of values is common in these types of data
sets, there are just a few studies to tackle this problem for classifica-
tion purposes. In this paper, we study two approaches to overcome the
missing values problem in dissimilarity-based classification of multi-way
data. Namely, imputation by factorization, and a modification of the
previously proposed Continuous Multi-way Shape measure for compar-
ing multi-way objects.

Keywords: missing values, multi-way data, dissimilarity representation.

1 Introduction

Classification problems are very common in most research areas, and a suitable
representation of objects plays an important role in this task. However, even
when this representation is found, problems like the absence of values for some
of the measured features can affect the accuracy of classifiers. There can be
several reasons for data to be missing. Namely, equipments malfunctioning, data
were not entered correctly or data just do not exist for some objects, etc. In other
cases, missing values are not actually present in the obtained data. Nonetheless,
they are inserted as a postprocessing in order to make the data more appropriate
to be described for some specific models [1, 2].

For many applications e.g. neuroinformatics, chemometrics, data sets can have
a multi-dimensional structure e.g. objects× frequencies× time, instead of the
simple vector representation. These structures are often richer in information,
thus advantageous for many purposes as classification. Therefore, it is important
to employ proper tools in order to analyze them. As in the two-dimensional case,
these types of data may be affected by the presence of missing values. For multi-
way data, different behaviors for missing data can be observed [3, 4]. The simplest
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case is when missing values are random without any pattern, denoted as RMV
in [3]. Another common pattern is when complete fibers i.e. rows or tubes are
missing at random (RMF). A third pattern is when missing values are systematic
for all objects (SMV) i.e. the same values are missing for all objects. In contrast
with the two-way case, there is just a limited research addressing the problem
of missing values in multi-way data. Most of the related studies are dedicated to
the robustness of factorization methods. Examples of the most common methods
are PARAFAC algorithms based on Expectation Maximization - Alternating
Least Squares [3] and based on the Levenberg - Marquadt method known as
INDAFAC [3]. A more recent development is the CP-WOPT algorithm [5]. Other
extensions of the multi-way methods, like TUCKER3, for dealing with missing
values can be found in [6, 7, 4]. However, these methods are based on seeking
accuracy in the obtained factor.

In this paper, we make a study on how to deal with missing values with the
aim of minimizing the error function in the classification of multi-way data. We
will use the Dissimilarity Representation (DR) [8] approach recently extended
for the classification of multi-way data [9]. Roughly speaking, in this approach,
(dis) similarities between objects are used as new features to describe them in
a new space. Classifiers can be used in this space as in the traditional feature
space. One of the approaches to deal with missing data in this case could be to
reconstruct the data by a factorization method before the computation of the
dissimilarity matrix. Another variant for dealing with missing data, particularly
for the DR approach, consists in modifying the dissimilarity measure. With this
purpose, we introduce a modification of the dissimilarity measure that will be
used here such that it can deal with missing values.

The paper is organized as follows. The DR approach is briefly explained in
Section 2. A description and comparative analysis of the studied approaches is
presented in Section 3. Section 4 is dedicated to the experiments and discussion.
Conclusions are presented in Section 5.

2 Dissimilarity Representation

The Dissimilarity Representation (DR) [8] approach has been introduced for
classification purposes. It consists in a representation of objects by their (dis)
similarities to a set of prototypes of each class identified in the problem at hand.
One of the advantages of this approach is that it can be obtained from any repre-
sentation of objects e.g. graphs, multi-dimensional objects, as long as a suitable
measure is used. Moreover, this approach allows introducing discriminative con-
text information that helps for a better discrimination of objects.

Let us define the Dissimilarity Space (DS) approach, given a t-way array
Y∈ RI1×I2×...×It where each object is represented by a (t-1)-dimensional array,
a representation set R(R1, ...,Rh) where h is the number of prototypes, and a
dissimilarity measure d [8, 9]. A mapping φ(·,R) : RI1×I2×...×It−1 → Rh is done,
such that every object φ(Yi,R) = [d(Yi,R1), d(Yi,R2), ..., d(Yi,Rh)] is associated
by its dissimilarities to all objects in R. Hence, a dissimilarity matrix D(Y,R)
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is obtained, which is used to build a classifier in the correspondent dissimilarity
space of dimension h. The prototypes are usually the most representative ob-
jects of each class, R⊆ Y or Y itself. Any traditional classifier can be built in
the dissimilarity space as in the feature space. Few work has been done to treat
missing data in the DR approach. In [10], two alternatives for dealing with miss-
ing values in the dissimilarity representation-based classification are proposed.
However, this work is only based on 2D data, where objects are represented
by vectors in the feature space. It does not fit multi-way data. In this paper,
we study two alternatives for classifying incomplete multi-way data by using
the DR. The first approach is based on completing the multi-way data with a
factorization method before computing the dissimilarity matrix (See Section 3).
The second alternative consists in adapting the dissimilarity measure, such that
dissimilarities between objects are obtained from the available information only.

The data sets to be studied here have a continuous nature. The characteristic
shape of the surfaces for each class of objects is an important discriminative
property of these type of data. Moreover, the information from the multi-way
structure should be taken into account. Recently, the Continuous Multi-way
Shape (CMS) [11] was introduced with this purpose. It consists in the com-
parison of multi-way objects based on the differences of their multi-way shape,
considering the connectivity that exists between the neighboring points in the
different directions. Differences between the gradients of the surfaces of these
objects are computed, based on the application of linear filters by convolution.
Thus, given Ya, Yb two multi-way objects from a multi-way data set Y , the
dissimilarity measure CMS can be defined as:

dG(Ya, Yb) =

∥∥∥∥∥
f∑

i=1

Ya ∗Gσ ∗Hi − Yb ∗Gσ ∗Hi

∥∥∥∥∥
F

(1)

where ‖ · ‖
F
is the Frobenius norm for tensors [12], ∗ is the convolution opera-

tor [13], Gσ∈ RI1×I2×...×It−1 a Gaussian convolution kernel to smooth the data,
Hi∈ RI1×I2×...×It−1 is a partial derivative kernel and f is the number of partial
derivatives in the different directions to obtain the gradient. The modification
of the CMS measure for missing values will be given in the next Section.

3 Dealing with Missing Values in Multi-way Data

3.1 Factorization-Based Estimation

Factorization methods are very common for the analysis of multi-way data. They
are used to extract and model their underlying structure. These methods are
affected by the missing values, as data can be improperly analyzed. Therefore,
creating robust methods to missing data has been one of the main tasks in the
development of factorization methods [4]. Such is the case of the PARAFAC [3,
4], which is one of the most used methods for multi-way data analysis.

Given the three-way arrayY of dimensions I×J×K, the PARAFACmodel (de-
composition) [14, 7] can be expressedby the factormatricesA(I×F ),B(J×F ) and
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C(K×F ), such that y
ijk

=
∑F

f=1 aifbjf ckf , where i = 1, 2, . . . , I, j = 1, 2, . . . , J ,

k = 1, 2, . . . ,K and F is the number of selected factors. In principle, factorization
methods handle missing data with the aim of obtaining the most accurate data
model. However, once the factorization has been computed, the resulting factor
matrices can be used to reconstruct the original data and missing values are then
estimated. Thus, a multi-way without missing values Ŷ ≈ Y can be obtained, us-
ing the information from the whole multi-way structure.

PARAFAC-Alternating Least Squares (ALS) [3] and CANDECOMP/
PARAFAC Weighted OPTimization (CP-WOPT) [5] are two of the main algo-
rithms for fitting the PARAFACmodel with missing data. PARAFAC-ALS works
well for small amounts of missing data and it is very simple and fast. However, it
may suffer of slow/no convergence as the amount of missing values increases [3]. It
also depends on the patterns of the missing values. CP-WOPT is a scalable algo-
rithm, which is based on direct non-linear optimization to solve the least squares
problem. This algorithm has shown to work well even with 70% of missing data
and it is fast. Both algorithms will be used here as means of estimation of missing
values for the classification of incomplete multi-way data sets.

3.2 Ignoring Missing Values in DR: Adjustment of CMS Measure

An alternative for dealing with missing values in the DR approach is to com-
pute proximities on available data only. However, this approach depends on the
measure to be used i.e. the definition of each measure has to be adapted for this
purpose, which is not always straightforward. In this paper, the adaptation of
the CMS measure will be explained. Although the CMS measure was proposed
for multi-way data in general, in this paper we will focus on three-way data only.

In this measure, missing values will be treated in the first step i.e. Gaussian
filter. The idea is to use a filter that will only process the non-missing values in
the analyzed window. In practice, if we have a matrix Y and a 2D filter kernel
G, the result of applying the filter G (or any other filter) at each position of
matrix Y is defined as:

Y′(u, v) =
P∑

k=−P

P∑
l=−P

Y(u − k, v − l) ·G(k, l)

where 2P +1 is the size of the filter in both the horizontal and vertical directions
of the convolution kernel G. So, suppose we are analyzing a part of the data
with q missing values. The filter is only applied to the (2P +1)2− q non-missing
values. In such case, as the number of summed values are less, the filtering
result S for the analyzed position will not correspond to that if the data was
complete. Therefore, a normalization like S′ = S

(2P+1)2−q · (2P + 1)2 should

be applied. If S′ is used as the filtering result, instead of S, we are doing an
implicit estimation of the missing values. That is, we are assuming that each
missing value contributes in the filtering result S′ with a value of S

(2P+1)2−q .

However, this can be considered a drawback, since the implicit estimation of the
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missing value can change according to the position of the filter on the 2D matrix.
When the amount of missing values is large, it could happen that all values in
the window of the analyzed point are missing. In such situation, the previous
adaptation does not work, it assigns NaN to the analyzed point. In this case,
the idea is then to omit these points when objects are compared.

4 Experimental Setup and Discussion

The main goal of the experiments is to evaluate how the factorization methods
and the adaptation of the CMS measure contribute to the DR-based classifica-
tion of incomplete multi-way data. With this purpose, 2 three-way continuous
data sets are used. The first data set is private and it comes from 1200 patches
of 1024× 1024 pixels of 36 colon tissue slides from Atrium hospital in Heerlen,
The Netherlands. Patches were filtered with Laplace filters in 90 different scales
using σ = 2.ˆ[0.1 : 0.1 : 9]. The log-squares of the results are summarized in 60
bin normalized histograms with bin centers [−50 : 1 : 9]. Thus, a 90 × 60 array
is obtained for every patch, leading to a three-way array of 1200× 90× 60. The
patches are labeled in two classes: Normal and Tumor. The second data set con-
sists in metabolite data containing HPLC measurements of commercial extract
of St. John’s wort [15]. HPLC-PDA (HPLC with photo-diodo array detection)
profiles were obtained from 24 different examples of St. Johns’ wort from several
continents: Africa (8 objects), Asia (6 objects), Europe (45 objects) and North
America (30 objects). The final three-way data has a size of 89× 97× 549.

In the two data sets there are no missing values originally, but these were
generated artificially to test the methods. For each of them, 10 new data sets were
first created by inserting various amounts (1 − 5, 10, 20, 30, 50, 70%) of missing
values in the whole data set. Thus, all objects have the same probability of
having missing values and the amount per object is completely random. This
procedure was done for RMV and RMF patterns. Hence, we have generated in
total 30 new data sets from the original ones. To avoid that results are influenced
by a specific random pattern, we repeated the previous configurations 5 times
for each of the two data sets.

The imputation by factorization and the modified CMS measure explained
in Section 3 are evaluated on all data sets. There are different methods for the
selection of the number of components in the factorization-based methods [7].
However, as in our case the interest is to reconstruct the original data as good
as possible, we will use the residuals evaluation criteria. This consists on try-
ing to find a minimum sum of squares of errors in the approximation of the
non-missing values. In all cases, classifiers performed better for those models
that fulfilled the previous criteria. Results are given in terms of classification
error. The Regularized linear discriminant classifier was used on the dissimi-
larity space [8]. To find the regularization parameters of RLDC, an automatic
regularization (optimization over training set by cross-validation) process was
done. For the different data sets, experiments were carried out differently. For
small data sets (St John’s), classification errors were obtained in a 10 times
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k-fold cross-validation (CV). In the case of Colon data, 10 different training
(90%) and test (10%) sets were randomly chosen and the error values were
averaged. Experiments for the 5 repetitions of each of the configurations were
averaged.

In the DR approach, for the small data set, the representation set has the same
size of the training set obtained in each fold of the cross-validation procedure.
For the Colon data set, a representation set of 550 prototypes was randomly
chosen for each generated training set.

Table 1. Classification errors of Colon Cancer and St John’s data sets after treatment
of missing values. Results for different percents and patterns of missing data are shown.
The baseline errors with the complete data are 0.095 and 0.02 respectively.

Colon Cancer data set
Random missing values (%)

Methods 1 2 3 4 5 10 20 30 50 70

PARAFAC 0.27 0.3 0.32 0.32 0.32 0.33 0.34 0.32 0.36 0.39
CP-WOPT 0.18 0.2 0.22 0.22 0.26 0.26 0.28 0.28 0.36 0.36

Adapted CMS 0.12 0.13 0.14 0.14 0.14 0.17 0.19 0.21 0.28 0.30

Complete tubes missing(%)
PARAFAC 0.30 0.30 0.31 0.31 0.31 0.31 0.31 0.32 0.33 0.40
CP-WOPT 0.2 0.2 0.2 0.26 0.22 0.24 0.24 0.26 0.28 0.36

Adapted CMS 0.14 0.14 0.14 0.14 0.13 0.16 0.17 0.19 0.24 0.29

Complete rows missing(%)
PARAFAC 0.31 0.31 0.31 0.32 0.32 0.32 0.32 0.34 0.38 0.4
CP-WOPT 0.19 0.24 0.2 0.22 0.24 0.22 0.22 0.28 0.28 0.34

Adapted CMS 0.14 0.15 0.15 0.15 0.15 0.14 0.15 0.18 0.19 0.25

St John’s data set
Random missing values (%)

Methods 1 2 3 4 5 10 20 30 50 70

PARAFAC 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
CP-WOPT 0.03 0.03 0.03 0.03 0.04 0.04 0.10 0.10 0.10 0.12

Adapted CMS 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.07 0.17 0.26

Complete tubes missing (%)
PARAFAC 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.06
CP-WOPT 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05

Adapted CMS 0.03 0.03 0.03 0.04 0.03 0.03 0.04 0.08 0.24 0.41

Complete rows missing (%)
PARAFAC 0.05 0.05 0.05 0.04 0.05 0.06 0.07 0.11 0.13 0.23
CP-WOPT 0.04 0.04 0.04 0.04 0.05 0.07 0.07 0.09 0.12 0.19

Adapted CMS 0.02 0.03 0.03 0.03 0.03 0.06 0.13 0.22 0.32 0.46

Table 1 summarizes the classification errors of the two data sets after re-
constructing the data. The classification errors on the complete data sets are
used as a baseline for the comparison. Factorization-based methods work well in
general when they converge, like in the case of St John’s. However, this is not
the case when convergence is not reached. It can be observed in Colon data set
that performance of the classifier is bad for all patterns of missing values. It is
actually the worst result. In this case, both algorithms took long to converge
and for large amounts of missing data convergence was never reached. There is
a slight improvement of CP-WOPT based results over those of PARAFAC-ALS,
specially for large amounts of missing data, as expected. It has to be noticed that
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for large amounts of missing values these methods are stable. Nonetheless, even
when the stability of these methods (when they converge) for different amounts
of missing data is very attractive, their slow/no convergence problem is a strong
drawback when comparing methods to reconstruct the missing data.

Let us analyze the adapted CMS measure directly applied on the incomplete
data. It has to be remarked that for small amounts of missing data (1 − 5%),
classifiers performance is comparable with the baseline classification error. In
fact, for St John’s data set, the baseline classification error is reached. A very
attractive characteristic of the modified measure is that without a preprocess-
ing step i.e. imputation, approximation, it has shown to work well with small
amounts of missing data. Therefore, it can be a good option for these types of
problems. Good performances can be obtained without the need of the extra
computational cost of the imputation process. However, when the amount of
missing values is large (usually above 10%), the classifier seems to loose stability
and the performance gets drastically worse the more missing values are added.
This could be explained by the fact that when there are many contiguous win-
dows missing, the Gaussian filter cannot deal with it, too much information is
lost and the idea of derivatives is kind of pointless. In these cases, the use of an
imputation method e.g. interpolation is recommended. In general, for the two
analyzed patterns of missing values, that is RMV and RMF, all methods be-
haved similar. It can be observed that the type of pattern of the missing points
did not have a strong influence in the performance of the methods. The main
disturbing factor was the amount of missing values.

5 Conclusions

We have investigated two main approaches with the aim of dealing with the
problem of missing values for the classification of multi-way data. The study was
based on the Dissimilarity Representation approach, which consists in building
classifiers on a space where objects are represented by their dissimilarities. As
a first attempt, factorization techniques were applied to reconstruct the data
before dissimilarities were computed. Their performance was good for small and
large amounts of missing values, except in the cases where convergence could not
be reached. Moreover, they imply an extra computational cost. Therefore, we
studied as a second approach, the possibility of computing dissimilarities with the
available data only. In this paper, as we experimented on continuous multi-way
data, a modification of the Continuous Multi-way Shape measure was introduced
in order to deal with missing attributes. This approach, has shown to work well
for RMV and RMF patterns of missing values, it works well when they are
present in small amounts(up to 10%). From that point on, classifiers performance
deteriorates increasingly. We can then conclude that this approach is suitable
for small amounts of missing data. However, the factorization approach should
be more reliable for large amounts of missing values. Although experiments were
carried out on three-way data only, the presented approaches can be extended
to higher-order representations of objects.
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Abstract. In this paper we define distance functions for data sets in
a reproduncing kernel Hilbert space (RKHS) context. To this aim we
introduce kernels for data sets that provide a metrization of the power
set. The proposed distances take into account the underlying generat-
ing probability distributions. In particular, we propose kernel distances
that rely on the estimation of density level sets of the underlying data
distributions, and that can be extended from data sets to probability
measures. The performance of the proposed distances is tested on sev-
eral simulated and real data sets.

1 Introduction

The study of distances between data sets lies at the core of many methods of
analysis in image processing [9], genetics [1], time series [7], etc. In this paper
we define distances between data sets that take into account the underlying
data distribution. To this aim we will focus on the study of distances between
probability measures (PM), also known as distributions. Classical examples of
application of distances between PMs in Statistics are homogeneity tests, inde-
pendence tests and goodness of fit test problems. These problems can be solved
by choosing an appropriate distance between PM e.g. the χ2 or L1 distance.
Other examples of distances between PM can also be founded in Clustering,
Image Analysis, Time Series Analysis, etc. For a review of interesting distances
between probability distributions and theoretical results, see for instance [4].
In many practical situations the size of the available sample is small, and the
use of purely non parametric estimators often results in a poor performance.
Another important drawback in non-parametric density estimation is the high
computation time and huge storage required. This motivates the need of seeking
metrics for probability distributions that do not explicitly rely on the estimation
of the corresponding distribution functions. In this work we elaborate on the
idea of considering a kernel function for data points with reference to a distribu-
tion function, that will be extended to a kernel (and therefore to a distance) for
data sets. This paper is organized as follows: In Section 2 we introduce kernel
functions for data sets with uniform distributions. Section 3 introduces a new
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metric for general data sets based on the estimation of density level sets. Section
4 shows the performance of the proposed metric on simulated and real data sets.

2 A Kernel for Data Sets with Reference to a Distribution

Consider a measure space (X ,F , μ), where X is the sample space (a compact
set of a real vector space in this work), F is a σ-algebra of measurable subsets
of X and μ : F → IR+ is the ambient σ-finite measure, the Lebesgue measure. A
probability measure (PM) P is a σ-additive finite measure absolutely contin-
uous w.r.t. μ that satisfies the three Kolmogorov axioms. By Radon-Nikodym
theorem, there exists a measurable function fP : X → IR+ (the density func-
tion) such that P (A) =

∫
A
fPdμ, and fP = dP

dμ is the Radon-Nikodym derivative.

From now on we focus on data sets generated from (unknown) PM. In Section
3 we will discuss the corresponding distributional distance measures. Consider
two iid samples A = sn(P) = {xi}ni=1 ∈ P (X ), where P (X ) denotes the set of
all subsets of X including the empty set and itself (the power set of X ), and
B = sm(Q) = {yj}mj=1 ∈ P (X ), generated from the density functions fP and fQ,
respectively and defined on the same measure space. Define rA = min d(xl, xs),
where xl, xs ∈ A. Then rA gives the minimum resolution for data set A: If a
point z ∈ X is located at a distance smaller than rA from a point x ∈ A then,
taken P as reference measure, it is impossible to differentiate z from x. That
is, it is not possible to reject the null hypothesis that z is generated from P,
given that z is closer to x than any other point from the same distribution. This
suggests the following definition.

Definition 1. Indistinguishability with respect to a distribution. Let x ∈
A, where A denotes a set of points generated from the probability measure P, and
y ∈ X . We say that y is indistinguishable from x with respect to the measure
P in the set A when d(x, y) ≤ rA = min d(xl, xs), where xl, xs ∈ A. We will

denote this relationship as: y
A(P)
= x.

Given the sets A = sn(P) and B = sm(Q), we want to build kernel functions

K : X × X → [0, 1], such that K(x, y) = 1 when y
A(P)
= x or x

B(Q)
= y, and

K(x, y) = 0 if y
A(P)


= x and x
B(Q)


= y. For this purpose we consider the following
smooth indicator functions.

Definition 2. Smooth indicator functions. Let r > 0 and γ > 0, define a
family of smooth indicator functions with center in x as:

fx,r,γ(y) =

{
e
− 1

(‖x−y‖γ−rγ )2
+ 1

r2γ
2 if ‖x− y‖ < r

0 otherwise.
(1)

Of course, other definitions of fx,r,γ are possible. The smooth function fx,r,γ(y)
act as a bump function with center in the coordinate point given by x: fx,r,γ(y) ≈
1 for y ∈ Br(x), and fx,r,γ(y) decays to zero out of Br(x), depending on the shape
parameter γ (see Fig. 1).
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Fig. 1. Illustration of the
A(P)
= and

B(Q)
= relationship using smooth indicator functions

Definition 3. Distributional indicator kernel. Given A = sn(P) and B =
sm(Q), define KA,B : X × X → [0, 1] by:

KA,B(x, y) = fx,rA,γ(y) + fy,rB,γ(x)− fx,rA,γ(y)fy,rB ,γ(x), (2)

where rA = min d(xl, xs), with xl, xs ∈ A, rB = min d(yl, ys), with yl, ys ∈ B
and γ it is a shape parameter. Now, if d(x, y) > rA and d(x, y) > rB (Fig.
1, top) then KA,B(x, y) = 0: x ∈ A\B w.r.t. Q and y ∈ B\A w.r.t. P. If

d(x, y) > rA but d(x, y) < rB, then y ∈ B\A w.r.t. P, but x
B(Q)
= y at radius

rB and KA,B(x, y) = 1. If d(x, y) < rA but d(x, y) > rB, then x ∈ A\B w.r.t.

Q, but y
A(P)
= x at radius rA and KA,B(x, y) = 1 (Fig. 1, center). Finally, if

d(x, y) < rA and d(x, y) < rB , then KA,B(x, y) = 1 and y
A(P)
= x at radius rA

and x
B(Q)
= y at radius rB (Fig. 1, bottom).

Definition 4. Kernel for data sets. Given A = sn(P) and B = sm(Q), we
consider kernels K : P (X )×P (X )→ [0, 1], where P (X ) denotes the power set
of X , and for C and D in P (X ), define:

K(C,D) =
∑
x∈C

∑
y∈D

KA,B(x, y). (3)

When C = A and D = B, we can interpret K(A,B) as a measure for A ∩ B

by counting, using as equality operators
A(P)
= and

B(Q)
= , the points ‘in common’:
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μKA,B (A∩B) = K(A,B). Given the identity A∪B =

AΔB︷ ︸︸ ︷
(A−B) ∪ (B −A) ∪(A∩

B), we will define μKA,B (A ∪ B) = N , where N = n + m = #(A ∪ B), is the
counting measure of the set A∪B. Therefore μKA,B (AΔB) = N−μKA,B(A∩B),
and we can take this expression (dividing by N) as a definition for the distance
between the sets A and B.

In the general case, K(C,D) can be interpreted as a measure for C ∩ D by

counting, using as equality operators
A(P)
= and

B(Q)
= , the points ‘in common’:

μKA,B (C ∩D) = K(C,D). Therefore the respective distance between C and D
obtained with the use of K(C,D), is conditioned to a “resolution” level deter-
mined by the sets A and B (this is rA and rB).

Definition 5. Distance between data sets. Given A = sn(P) and B =
sm(Q), we define the kernels distance for C and D in P (X ):

dK(C,D) = 1− K(C,D)

N
, (4)

where N = nC + nD = #(C ∪D) and represent the measure of the set C ∪D.

It is straightforward to check that dK(C,D) is a semi-metric (using the equal-

ity operators y
A(P)
= x or y

B(Q)
= x where it corresponds). When C = A and D = B

and the size of both sets increases, then: μKA,B (A ∩ B)
n,m→∞→ μ(A ∩ B) and

μKA,B (A ∪ B)
n,m→∞→ μ(A ∪ B), therefore limn,m→∞ dK(A,B) = 1 − μ(A∩B)

μ(A∪B) ,

that is the Jaccard distance for data sets.

3 AMetric for Data Sets Based on Estimation of Level Sets

Using constant radii in Eq. (1) to determine the “distinguishability” relationship
between points is only adequate if we are working with the uniform PM. In this
section we propose a solution to this problem by splitting each data set in density
level sets, and then considering difference sets between consecutive density levels,
for which density is approximately constant.

Consider the α-level sets defined by Sα(fP) = {x ∈ X | fP(x) ≥ α}, where
P (Sα(fP)) = 1 − ν , where fP is the density function and 0 < ν < 1. If we
consider an ordered sequence α1 < . . . < αk, then Sαi+1(fP) ⊆ Sαi(fP).

Let us define Ai(P) = Sαi(fP) − Sαi+1(fP), i ∈ {1, . . . , k − 1}. We can choose
α1�0 and αk ≥ min{maxx∈X fP(x),maxx∈X fQ(x)}; then

⋃
i Ai(P)�Supp(P) =

{x ∈ X | fP(x) 
= 0}. Note that given the definition of the Ai, if Ai(P) = Bi(Q)
for every i when (n,m, k)→ ∞, then P = Q. Given the definition of the Ai-level
set, both P and Q are approximately constant on Ai and Bi level sets, respec-
tively. Therefore the use of a constant radii is again adequate when we compare
the distance between the sets Ai and Bi. To estimate level sets Ŝαi(fP) from a
data sample in this work we use the algorithm introduced in [5]. Next we take
Âi(P) = Ŝαi+1(fP)− Ŝαi(fP), where Ŝαi(fP) is estimated by Rn defined above.

Definition 6. Weighted level-set distance. Consider data sets A = sn(P)
and B = sm(Q), generated from PMs P and Q, respectively. Choose a partition
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α1 < α2 < . . . < αk, αi ∈ (0,min{maxx∈X fP(x),maxx∈X fQ(x)}). Then we
define the weighted α-level set distances between the sets A and B by

d(A,B) =
k−1∑
i=1

widK(Ai, Bi), w1, . . . , wk−1 ∈ R+ (5)

In the practice to compute the distance in Eq. (5), we have to use: Âi(P) =
Ŝαi+1(fP)− Ŝαi(fP) the estimation of Ai = Sαi+1(fP)− Sαi(fP) based on set A;

and the respective estimation for B̂i(Q). In this paper we choose the weights by

wi =
1

k

nÂi(P)∑
x∈sÂi(P)

nB̂i(Q)∑
y∈sB̂i(Q)

(
1− IrÂi(P)

,rB̂i(Q)
(x, y)

)
‖ x− y ‖2

(sB̂i(Q) − Âi(P)) ∪ (sÂi(P)
− B̂i(Q))

, (6)

where sP and sQ are the data samples corresponding to set of points/PMs A(P)
and B(Q) respectively, sÂi(P)

and sB̂i(Q) denote the data samples that esti-

mate Ai(P) and Bi(Q), respectively. Âi(P) = ∪x∈sÂi(P)
B(x, rÂi(P)

), and B̂i(Q) =

∪y∈sB̂i(Q)
B(y, rB̂i(Q)) are the covering estimations of the sets Ai(P) and Bi(Q)

respectively, and IrÂi(P)
,rB̂i(Q)

(x, y) is an indicator function that takes value 1

when y belongs to the covering estimation of the set Ai(P), x belongs to the
covering estimation of the set Bi(Q) or both events happen, and value 0 oth-
erwise. Note that the weight wi is a weighted average of distances between a
point of sÂi(P)

and a point of sB̂i(Q) where ‖x− y‖2 is taken into account only

when IrÂi(P)
,rB̂i(Q)

(x, y) = 0. Other definitions of wi are possible and give rise to

different distance measures.

4 Experimental Work

The proposed distances are intrinsically non-parametric, so no tuning parameters
have to be fixed or evaluated via simulation. The strategy to test the Weighted
level-set distance (WLS) will be to compare it to other classical PM distances for
some well known (and parametrized) distributions and for real data problems.
We consider distances belonging to the main types of PMs metrics: Kullback-
Leibler (KL) divergence [6] (f -divergence and also Bregman divergence), t-test
(T) measure (Hotelling test in the multivariate case) and Energy distance [12].
For further details on the sample versions of the above distance functions and
their computational subtleties see [6,11,12].

4.1 Synthetically Generated Data

Case I: Discrimination between Gaussian distributed sets of points with equal
covariance structure

We quantify the ability of the considered set/PM distances to discriminate
between multivariate normal distributed sets of points. To this end, we generate
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Table 1. δ∗
√
d for a 5% type I and 10% type II errors

Metric d: 1 2 3 4 5 10 15 20 50 100

KL .870 .636 .433 .430 .402 .474 .542 .536 .495 .470
T .490 .297 .286 .256 .246 .231 .201 .212 .193 .110
Energy .460 .283 .284 .250 .257 .234 .213 .223 .198 .141
WLS .490 .354 .277 .220 .224 .221 .174 .178 .134 .106

a data sample of size 100d from a N(0, Id) where d stands for dimension and
then we generate 1000 iid data samples of size 100d from the same N(0, Id)
distribution. Next we calculate the distances between each of these 1000 iid data
samples and the first data sample to obtain the 95% distance percentile.

Now define δ = δ1 = δ(1, . . . , 1) ∈ Rd and increase δ by small amounts
(starting from 0). For each δ we generate a data sample of size 100d from a
N(0 + δ, Id) distribution. If the distance under consideration for the displaced
distribution data sample to the original data sample is larger than the 95%
percentile we conclude that the present distance is able to discriminate between
both populations and this is the value δ∗ referenced in Table 1. To take into
account the randomness in the experiment we repeat this process 100 times and
fix δ∗ to the present δ value if the distance is above the percentile in 90% of
the cases. Thus we calculate the minimal value δ∗ required for each metric in
order to discriminate between populations with a 95% confidence level (type I
error = 5%) and a 90% sensitivity level (type II error = 10%). In Table 1 we
report the minimum distance (δ∗

√
d) between distributions centers required to

discriminate for each metric in several alternative dimensions, where small values
implies better results. In the case of the T -distance for normal distributions we
can use the Hotelling test to compute a p-value to fix the δ∗ value.

The data chosen for this experiment are ideal for the use of the T statistics
that, in fact, outperforms KL (results in Table 1). However, Energy distance
works even better than T distance in dimensions 1 to 4 and WLS performs
similarly (slightly better) to T (except for dimension 2) in dimensions upon 3.

Case II: Discrimination between Gaussian distributed sets of points with different
covariance structure

In this experiment we consider again normal populations but different variance-
covariance matrices. Define as expansion factor σ ∈ R, which we gradually in-
crease (starting from 0) in order to determine the smallest σ∗ required for each
metric in order to discriminate between the 100d sampled data points generated
for the two distributions: N(0, Id) and N(0, (1+σ)Id). If the distance under con-
sideration for the displaced distribution data sample to the original data sample
is larger than the 95% percentile we conclude that the present distance is able
to discriminate between both populations and this is the value (1+σ∗) reported
in Table 2. To take into account the randomness in the experiment we repeat
it 100 times and fix σ∗ to the present σ value if the distance is above the 90%
percentile of the cases, as it was done in the previous experiment.
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Table 2. (1 + σ∗) for a 5% type I and 10% type II errors

Metric dim: 1 2 3 4 5 10 15 20 50 100

KL 3.000 1.700 1.250 1.180 1.175 1.075 1.055 1.045 1.030 1.014
T − − − − − − − − − −
Energy 1.900 1.600 1.450 1.320 1.300 1.160 1.150 1.110 1.090 1.030
WLS 1.700 1.350 1.150 1.120 1.080 1.050 1.033 1.025 1.015 1.009

Fig. 2. Real image and sampled image of a leaf in the Tree Leaf Database

We can see here again that the proposed metric WLS is better than the
competitors in all dimensions considered. There are no entries in Table 2 for
the T distance because it was not able to distinguish between the considered
populations in the considered dimensions.

4.2 Real Case-Study: Shape Classification

As an application of the preceding theory to the field of pattern recognition we
consider a problem of shape classification, using the Tree Leaf Database [3]. We
represent each leaf by a cloud of points in R2, as an example of the treatment
given to a leaf consider the Fig. 2. For each image i of size Ni×Mi, we generate a
sample of size Ni×Mi from a uniform distribution and retain only those points
which fall into the white region (image body) whose intensity gray level are
larger than a fixed threshold (.99). This yield a representation of the leaf with
around one thousand and two thousand points depending on the image. After
rescaling and centering, we computed the 10 × 10 distance matrix (using the
WLS distance and the Energy distance in this case) and the Multidimensional
Scaling (MDS) plot in Fig. 3. It is clear that the WLS distance is able to better
account for differences in shapes.

Future Work: Given a positive definite function K : P (X) × P (X) → [0, 1],
as it is defined in Eq. (5), by Mercer’s theorem there exists an Euclidean space
H and a lifting map Φ : P (X) → H such that K(A,B) = 〈Φ(A), Φ(B)〉 with
A, B ∈ P (X) [8,10]. The study of the lifting map Φ : P (X)→ H is the object
of our immediate research, in order to understand the geometry induced by the
proposed metric and the asymptotic properties of the developed distances.
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Fig. 3. MDS representation for leaf database based on WLS (a); Energy distance (b)
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Abstract. Bi-clustering, or co-clustering, refers to the task of finding
sub-matrices (indexed by a group of columns and a group of rows) within
a matrix such that the elements of each sub-matrix are related in some
way, for example, that they are similar under some metric. As in tra-
ditional clustering, a crucial parameter in bi-clustering methods is the
number of groups that one expects to find in the data, something which
is not always available or easy to guess. The present paper proposes a
novel method for performing bi-clustering based on the concept of low-
rank sparse non-negative matrix factorization (S-NMF), with the addi-
tional benefit that the optimum rank k is chosen automatically using
a minimum description length (MDL) selection procedure, which favors
models which can represent the data with fewer bits. This MDL pro-
cedure is tested in combination with three different S-NMF algorithms,
two of which are novel, on a simulated example in order to assess the
validity of the procedure.

1 Introduction

Given a set of data vectors arranged as columns (rows) of a matrix, traditional
data clustering corresponds to the task of finding groups of similar columns
(rows) within that matrix. Bi-clustering, or co-clustering, refers to the task of
finding sub-matrices (indexed by a group of columns and a group of rows) within
a matrix such that the elements of each sub-matrix are related in some way.
This idea has been widely applied in the last ten years as a powerful tool to
analyze data of many kinds, a notorious example being micro-array analysis,
where correlations between groups of genes and expression patterns are sought.

Finding the clusters usually involves identifying subsets of row and column
indexes so that the indexed sub-matrices exhibit some regularity, for example,
that their elements have a constant value, or that their rows, or columns, are
identical. As examples of other measures of regularity, the reader can refer to
[1]. As a more general problem (that applies to traditional clustering as well),
the very number of clusters present in the data may not be known, or assumed,
a priori.

The present work presents a method to perform bi-clustering under the hy-
pothesis that each sub-matrix is a rank-1 component of the assignment matrix.
Assuming that such components are non-negative, something usually required

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part I, LNCS 8258, pp. 230–237, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Bi-clustering via MDL-Based Matrix Factorization 231

for the resulting models to have physical interpretability, leads to the well known
concept of non-negative matrix factorization (NMF) [2]. Further assuming that
the sub-matrices have a small number of non-zero elements leads to a sparse
NMF model (S-NMF) [3].

The technique presented here combines S-NMF with a model selection tech-
nique, MDL [4], to automatically infer the proper number of groups from the data,
an idea that has already been proposed for model selection in bi-clustering, albeit
using a different formulation, in [5]. To perform S-NMF, we resort to two vari-
ants of the well known sparse dictionary learning paradigm [6,7], which is based
on penalized regression subproblems to impose sparsity on the colums/rows of
U/V, and the sparse SVD technique employed in [8]. We demonstrate the perfor-
mance of the three resulting methods on a simulated experiment from computer
vision [8].

Details on the involved techniques, as well as the formalization of the problem,
and the relationship to prior art, are given in Section 2. We then develop our
main contribution on Section 3, and show the performance of the developed
technique on Section 4, leavning the conclusions to Section 5.

2 Background and Prior Art

Consider a data matrix X ∈ Rm×n. We define I = {1, 2, . . . ,m} and J =
{1, d, . . . , n} as the sets of row and column indexes of X respectively. Given
I ⊆ I and J ⊆ J , we define a bi-cluster as the set G = I×J , the Cartesian
product of those two sets, and refer to the associated sub-matrix of X indexed
by G, X[G] = {xij}i∈I,j∈J . We define by C = {G1, G2, . . . , Gc} , Gk = Ik×Jk

the set of bi-clusters defined by some method. Note that {Ik : k = 1, . . . , c},
{Jk : 1, . . . c} and C need not be partitions of, respectively, I, J and I×J ; that
is, bi-clusters may overlap.

Several techniques have been developed for performing bi-clustering. The dif-
ferences among them being primarily the assumptions made about the data. We
refer the reader to the recent surveys [1] for details on them. A number of them
are based on the NMF idea [2], that is, that the data matrix X is the product
of two other matrices U ∈ Rm×p and V ∈ Rp×n plus some perturbation E,
X = UV+E. In the context of NMF-based bi-clustering, one usually associates
each k-th cluster to a corresponding pair of column uk and row vk vectors (ob-
serve the indexing notation), so that the NMF decomposition is expressed as

X =

c∑
k=1

ukv
k +E (1)

The use of the general NMF model (1) stretches well beyond bi-clustering, so
that the above formulation does not help in identifying the clusters, but only
rank-1 components (each ukv

k). In order to obtain a useful bi-clustering, one
needs to further assume that only a few elements in uk and vk are non-zero, so
that the support of such vectors define the index subsets, Ik = supp(u)k and
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Jk = supp(vk). This leads to the idea of S-NMF, which admits several variants.
One of them is the so-called sparse modeling one, where V is assumed column-
sparse. The Sparse Principal Component Analysis (SPCA) technique developed
in [9] belongs to this category. In the context of bi-clustering, the “all-sparse”
technique developed in [3] has been applied for example in [10] with significant
success. Finally, on the same line of work of this paper, [8] propose a multi-
stage sparse SVD for bi-clustering with multi-model estimation as the target
application.

In [3,10], sparsity is measured (and controlled) via a sparseness statistic which
measures, indirectly, the number of non-zero entries in a data vector. The factor-
ization problem is then expressed as an optimization problem constrained on the
sparseness of the columns and rows of U and V. The advantage of this approach
is that sparsity is controlled in an indirect way that does not provide any types
of guarantees regarding the recovery of correct sparse components in situations
where those can be assumed to exist. Also, the degree of sparsity, as well as the
number c of factors involved in the decomposition, are parameters which have
a great impact on the effectiveness of the solution, and at the same time are
challenging to tune.

3 Proposed Method

The main contribution of this work is an MDL-based method for selecting the
optimum number of factors in an S-NMF decomposition which is guided by an
objective criterion: to obtain a representation which yields the most compressed
representation of the data. The method is similar in spirit to the also MDL-
based [5], but uses exact codelengths for the data type at hand rather than an
approximate expression for large sample sizes.

Our method is applied to three different numerical S-NMF techniques: the
sparse SVD [11] used in [8], and two penalized regression-based dictionary learn-
ing methods, one using a  0 penalty, the other using a  1 regularizer. These are
described next.

3.1 Sparse Matrix Factorization

Sparse SVD The standard SVD decomposition of a matrix Y ∈ Rm×n is given
byY = USVᵀ, whereU andV are orthonormal basis of Rm and Rn respectively,
and S is a diagonal matrix of non-zero singular values. The sparse SVD [11] is
a modification of the aforementioned decomposition where each column and
row of U and V are forced to be sparse. This is a non-convex problem which
is approximated by greedily extracting each i-th rank one component of Y as
uiv

ᵀ
i via the following formulation

(ui,vi) = argmin
α,β

1

2
‖Ri − αβᵀ‖2 +λu ‖α‖1 +λv ‖β‖1 ,Ri = Y−

i−1∑
l=1

ulv
ᵀ
l , (2)

that is, the i-th rank one pair is obtained from the residual of Y after having
extracted the previous i− 1 components.
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Penalized Regression. Contrary to [3], and inspired by recent developments
in sparse signal recovery (see [12] for a comprehensive review), we obtain sparse
factors U and V by means of  ρ regularization,

(Û, V̂) = arg min
(U,V)

1

2
‖X−UV‖2F + λu ‖U‖ρ + λv ‖V‖ρ

s.t. uik ≥ 0, vkj ≥ 0 ∀ i, j, k, (3)

where ‖·‖F denotes Frobenius norm, and ‖·‖ρ denotes the  ρ norm of the vec-
torized matrix argument (that is, the sum of absolute values of the matrix). The
problem (3) is non-convex in (U,V); but it is convex in U or V when the other
is kept fixed when ρ ≥ 1. As such, a common strategy to obtain a local minimum
of (3) is to perform an alternate minimization between U and V.

V(t + 1) = argmin
V

1

2
‖X−U(t)V‖2F + λv ‖V‖ρ s.t. vkj ≥ 0 (4)

U(t + 1) = argmin
U

1

2
‖X−UV(t + 1)‖2F + λv ‖U‖ρ s.t. uik ≥ 0. (5)

Note that the form of (5) is a transposed version of (4), so that both steps can be
solved with exactly the same method. Note also that, in both cases, the problem
is separable in the columns of V (rows of U), which can greatly simplify the
computations. For the case ρ = 1, we apply the Fast Iterative Soft Thresholding
Algorithm (FISTA) [13] to each column of V (row of U). For the case ρ = 0, we
apply the Orthogonal Matching Pursuit (OMP) algorithm [14] to a constrained
variant of (3) (and their corresponding alternate minimizations:

(Û, V̂) = arg min
(U,V)

1

2
‖X−UV‖2F

s.t. ‖U‖ρ ≤ λu ‖V‖ρ ≤ λv, uik ≥ 0, vkj ≥ 0 , ∀ i, j, k, (6)

3.2 Model Selection

As given above, all formulations (2) through (6) have three critical parameters
to be dealt with: λu, λv and c, the number of factors (columns of U, rows
of V). We select such values by posing the following model selection prob-
lem. (For simplicity of exposition, here we will consider λu = λv = λ, but in
practice we optimize them independently). For a given pair of values (c, λ) we
define a (local) solution to (3) as (U(c, λ),V(c, λ),E(c, λ)). We then pose an
hypothetical compression problem where the task is to describe X losslessly
(that is, exactly) in terms of (V,U,E). The model selection procedure then
computes (U(c, λ),V(c, λ),E(c, λ)) for different values of (c, λ) and keeps those
that minimize the combined codelenghts (in bits) of those three components,
L(X) = L(V) + L(U) + L(E)..

From a modeling perspective, the bulk of the work at this point is to obtain
expressions for the codelengths L(· · · ) of each component. This is clearly a very
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data-dependent task. Here we will focus on the simple case ofX being the binary
assignment matrix used in the example of Section 4.

A first observation is that, since X is binary, the only error values that can
occur are also binary, so that E will also be binary. More specifically, by denoting
by [[·]] the element-wise binarization function that sets [[a]] = 0 if a < 0.5 and
[[a]] = 1 otherwise, we can write E = X⊕ [[UV]]. Under the usual assumption
that the residual E is decorrelated, we then have that E can be described as
a (one dimensional) IID Bernoulli sequence of values, which in turn can be
efficiently described using an enumerative code [15].

As for U and V, they may not be binary, but they are sparse. Furthermore,
since their product will be binarized (thresholded) to produce an approximation
to X, we only need to describe them up to a precision q which suffices to preserve
their binarized product. Therefore, we represent U (and V) in two steps: first,
the locations of the non-zero entries are encoded using the same enumerative
code used for E, and then the values of the non-zero entries are encoded using
a uniform distribution between the integers 0 and Qu (Qv), where Qu (Qv) is
the largest integer so that qQu ≥ maxU (same for Qv). Denoting by ‖·‖0 the
pseudo-norm that counts the number of non-zero elements in the argument, we
then have a total cost function for the model selection problem:

L(X) = log2

(
‖E‖0
mn

)
+ log2 mc + log2 cn

log2

(
‖U‖0
mc

)
+ log2(‖U‖0 Qu) + log2

(
‖V‖0
cn

)
+ log2(‖V‖0 Qv) (7)

The total problem now involves the minimization of L(X) in terms of three
parameters: c, λ and q. The search for the best parameters is done in a nested
fashion. Following a standard model selection approach, the order of the model
(the number of clusters) c is the outermost loop, starting from c = 0, and in-
creasing by one. For each fixed c, a solution is sought by optimizing for various
values of λ and q. This part, in turn, is done by first obtaining a set of unquan-
tized factors V and U for each candidate λ, and then evaluating (7) for different
values of q. The innermost loop in q, and the evaluation of (7) are very fast op-
erations. The real computational cost of the method comes from obtaining the
unquantized pair (U,V) for each λ, which involves the alternating minimization
algorithm (4)-(5), which are costly steps.

4 Experimental Results

Here we report on one of the simulated computer vision problems described in [8].
The task here is to find sets of aligned points which are mixed in a background
of randomly scattered points. The ground truth consists of 11 line segments
which are sampled (plus a small perturbation) 50 times, together with randomly
sampled points, all within the 2D square [−1, 1]× [−1, 1]. The total number of
data points is 1100; those are shown in Fig. 1(b).
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(a)

(b) (c)

(d) (e)

Fig. 1. Results for the line segment search problem. (a) Assignment data matrix, (b)
data points, (c,d,e) final bi-clustering obtained using, respectively, �1, �0 and S-SVD:
each color corresponds to one of the c = 11 blocks found by the algorithm. Each blocks
groups together similar models (lines) which explain approximately the same points.
Note that c = 11 is the correct number of total blocks as per the simulation. Here
�0 (d) and S-SVD (e) give the best result, the latter yielding the correct number of
clusters but including a few outliers, the former over-estimating the number of groups
by c = 13 but doing a better job at rejecting outliers.

Each column j of the assignment matrix X (Figure 1(a)) is computed by
selecting two points at random from the dataset, and setting xij to 1 or 0 if the
i-th datapoint is respectively close (distance smaller than a given threshold τ)
to the segment formed by those two points or not. This is performed n = 5000
times. A statistical tests is performed to remove all segments (columns of X)
for which the number of points assigned to them is too low (see [8] for details),
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Fig. 2. Codelength vs rank for the sparse SVD case. Notice how the optimum achieves
a balance between the bits saved by removing redundancy from Y (this is, L(E)) and
the ones added by including U and V (L(U) and L(V )) in the description.

and then the proposed algorithms are executed. Figures 1(c,d,e) are then drawn
by plotting the points corresponding to the non-zero entries of each column of the
matrix U obtained using, respectively, the  1 regression,  0 regression, and the
sparse SVD methods, using the parameters which yield the shortest codelength
in each case. Figure 2 shows the rank vs. codelength graphs obtained for the
SVD case (the others are similar). For this example, both penalized regression
methods yielded the correct number of groups in the original data (11), but
had a tendency to add outliers, as can be seen in Figs. 2(c,d). In the case of
S-SVD, the number of groups was over-estimated to 13 instead of 11, but the
point assignments was better. As per the execution time, the different methods
vary dramatically. The  0-based method took less than 1 second to perform the
model selection for all possible ranges (all methods stop when increasing the
range does not decrease the codelength), whereas the S-SVD method required
about 30 seconds, and the  1 one required over an hour. The difference in speed
here is due to  1-based optimization being much more expensive in general than
 0 approximations. Clearly, which one is better will depend on the requirements
of each case.

5 Conclusions

We have presented a novel method for bi-clustering that combines a non-negative
matrix factorization with the powerful MDL model selection criterion for choos-
ing the best model parameters. We have demonstrated the effectiveness of our
approach for three different factorization methods. More results and a more in-
depth analysis will be presented in a full article to be published elsewhere.
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Abstract. This paper introduces a novel spectral clustering approach based on
kernels to analyze time-varying data. Our approach is developed within a multiple
kernel learning framework, which, in this case is assumed as a linear combination
model. To perform such linear combination, weighting factors are estimated by
a ranking procedure yielding a vector calculated from the eigenvectors-derived-
clustering-method. Particularly, the method named kernel spectral clustering is
considered. Proposed method is compared to some conventional spectral cluster-
ing techniques, namely, kernel k-means and min-cuts. Standard k-means as well.
The clustering performance is quantified by the normalized mutual information
and Adjusted Rand Index measures. Experimental results prove that proposed ap-
proach is an useful tool for both tracking and clustering dynamic data, being able
to manage applications for human motion analysis.

Keywords: Dynamic data, kernels, support vector machines, spectral clustering.

1 Introduction

Undoubtedly, an emergent issue that has become of great interest today for the scien-
tific community on pattern recognition and machine learning is the analysis of the evo-
lutionary or dynamic behavior of time-varying data. There is a lot of highly important
applications in which a dynamic analysis is needed, such as human motion analysis
and people identification [1], image segmentation [2] and video analysis [3], among
others. In this connection, clustering represents a good alternative since it allows for
grouping and/or ranking data, mainly, when dealing with unlabeled problems. Due to
its versatility, applicability and feasibility, it has been preferred in many approaches.
In the literature, many recommended approaches the use of kernels since they allow
to incorporate prior knowledge into the clustering procedure. However, the design of a
whole kernel-based clustering scheme able to group time-varying data achieving a high
accuracy is still an open issue. Taking advantage of kernel-based formulations, some
works have been proposed to manage the temporal information for clustering, mainly
in segmentation of human motion [4]. Other approaches include either the design of
dynamic kernels for clustering [5] or a dynamic kernel principal component analysis
(KPCA) based model [6]. Also, another study [7] introduces a variation of the primal
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functional of a KPCA formulation for spectral clustering to incorporate the memory
effect.

In this paper, aiming to consider the temporal effect of dynamic data, we introduce
a spectral clustering approach based on multiple kernel learning. Our approach con-
sists of a variation of the so-called kernel spectral clustering (KSC), introduced in [8],
which is a KPCA formulation from least-square support vector machines for cluster-
ing being useful to group hardly separable data. It allows for out-of-samples extensions
[9]. Multiple kernel learning (MKL) emerges from the premise that the learning can be
enhanced when using a set of kernels instead of an unique kernel [10].The MKL here
considered is a linear combination of kernels. Then, after computing the kernel matrices
from an input data sequence – in which each data matrix represents a frame – , a cu-
mulative kernel matrix is calculated as a linear combination of the previously obtained
kernels. The weighting factors for such linear combinations are estimated by ranking
each sample contained in the frame. Needed ranking is accomplished by combining
the relevance procedure proposed in [11] as well as the MKL approach presented in [2].
This ranking approach is detailed in [12], in which it is used as a tracking approach. Ex-
periments are carried out using a subject from Graphics Lab Motion Capture Database
from Carnegie Mellon University. For comparison purposes, some conventional spectral
clustering techniques are also considered, namely, kernel k-means (KKM) and min-cuts
(MC) [13]. Also, standard k-means is considered. The normalized mutual information
[14] and Adjusted Rand Index [15] metrics are used to quantify the clustering perfor-
mance.

2 Kernel Spectral Clustering (KSC)

Let X = [x

1 , . . . ,x


N ]
 be a data matrix, where X ∈ RN×d and xi ∈ Rd,

Φ ∈ RN×dh , Φ =
[
φ(x1)


, . . . ,φ(xN )

]


, φ(·) is a function mapping data from
the original dimension to a higher one dh, that is φ(·) : Rd → Rdh . Then, projection
matrix E ∈ RN×ne is grounded in a latent variable model in the form E = ΦW +
1N ⊗ b
, where ⊗ denotes the Kronecker product, vector b holds the bias terms and
ne denotes the number of considered support vectors. Therefore, the kernel spectral
clustering introduced in [9] is aimed to maximize the following expression:

max
E,W ,Γ

1

2N
tr(E
V EΓ )− 1

2
tr(W
W ) (1a)

s.t. E = ΦW + 1N ⊗ b
 (1b)

where tr(·) denotes the trace, Γ = Diag([γ1, . . . , γne ]), W ∈ Rdh×ne , where W =[
w(1), · · · , w(ne)

]
and E ∈ RN×ne , E =

[
e(1), · · · , e(ne)

]
. Problem stated in (1),

after forming a Lagrangian and applying the Karush-Kuhn-Tucker conditions becomes
to the following dual problem:

AΛ = V HΦΦ
A, (2)

where Λ = Diag(λ1, . . . , λne) is a diagonal matrix formed by the eigenvalues λl =
N/γl, matrix H ∈ RN×N is the centering matrix that is defined as H = IN −
1/(1


NV 1N )1N1

NV , where IN a N -dimensional identity matrix.
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From the Mercer’s conditions, we have that ΦΦ
 = Ω, where Ω ∈ RN×N is a
kernel matrix such that its entries are given by Ωij = K(xi,xj), i, j ∈ [N ]. Therefore,
projections can be calculated as follows:

E = ΩA+ 1N ⊗ b
 (3)

According to [9], by binaryzing the projection matrix E, we obtain a code book
Ẽ as Ẽ = sgn(E), where sgn(·) is the sign function. Thus, its corresponding rows
are codewords, which allow to form the clusters according to the minimal Hamming
distance.

3 Dynamic Kernel Spectral Clustering

Dynamic Kernel Spectral Clustering (DKSC), which is an approach based on Kernel
Spectral Clustering (KSC) and Multiple Kernel Learning (MKL), works, as follows:
Given a sequence of data matrices {X(1), . . . ,X(Nf )}, beingX(t)=[x

(t)T
1 , . . . ,x

(t)T
N ]T

the data matrix at instance time t, Nfm the number of input data (frames), then the corre-

sponding kernel matrices are calculated {Ω(1), . . . ,Ω(Nf )}with Ω
(t)
ij = K(x(t)

i ,x
(t)
j ).

Afterwards, MKL is applied with the purpose to obtain accumulated kernel, as a
result of the relation between kernel functions and weighting factors (calculated pre-
viously). Finally, assuming a certain number of clusters K , KSC is applied. Since the
accumulated kernel matrix is used, the information of the frame at instance T contains
the information of the previous ones. Hence, this approach can be called as dynamic.

3.1 Multiple Kernel Learning (MKL)

Here, multiple kernel learning is applied to obtain a linear combination of all the input
kernel matrices until the current matrix. At instance T , the cumulative kernel matrix is
computed as follows:

Ω̌
(T )

=

T∑
t=1

ηtΩ
(t) (4)

where η = [η1, . . . , ηT ] are the weighting factors or coefficients and Ω(t) is the kernel

matrix associated to X(t) such that Ω(t)
ij = K(x(t)

i ,x
(t)
j ). Nonetheless, the cumulative

kernel matrix can be also calculated in a recursive fashion as: Ω̌
(T )

= Ω̌
(T−1)

+

ηTΩ
(T ) with Ω̌

(0)
= 0N×N .

3.2 Weighting Factors

The basic idea is to obtain the ranked values for samples, here, termed tracking vector
that works as follow: first, we apply clustering to the input data by means KSC; at
this step, it is necessary to establish manually the number of clusters previously and
the kernel function, after we linearly project the high dimensional representation of
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input data (to obtain a sample relevance ranking process). Then, the projection matrix
is obtained as a sparse solution of a quadratic optimization problem, where an energy
term is maximized and, finally, a tracking vector is obtained by a linear combination of
vectors solving such optimization problem.

Consider the frame matrix X ∈ RNf×Nd where, X = [x̃

1 , . . . , x̃


Nf
]
 and x̃t =

vec(X(t)). The corresponding kernel matrix can be expressed as Ω̃ ∈ RNf×Nf such
that Ω̃ij = K(x̃i, x̃j). Then, the high dimensional representation matrix Φ̃ ∈ RNf×dh

is Φ̃ =
[
φ(x̃1)


, . . . ,φ(x̃Nf
)

]


, where φ(·) : RNd → Rdh . Moreover, we as-

sume a linear projection in the form Z = Φ̃
U , where U ∈ RNf×Nf is an orthonor-
mal matrix. Likewise, a lower rank representation of Z is assumed in the form Ẑ =
Φ̃
Û , where Û ∈ RNf×c(c<Nf). Therefore, an energy maximization problem can be
written as:

max
Û

tr(Û
Ω̃Û) s.t. Û
Û = Ic (5a)

Indeed, by using the kernel trick, we have tr(Ẑ
Ẑ) = tr(Û
Ω̃Û). Furthermore,
the KSC allows centering matrix for frame matrix X . Therefore, normalizing regarding
the degree and centering both Z and Ẑ, which means to pre-multiply Φ̃ by L̃Ṽ −1/2,
we can infer that tr(Û
Ω̃Û) =

∑c
t=1 λ̃t, where L̃ comes from the Cholesky decom-

position of H̃ such that L̃
L̃ = H̃ and λ̃l is the l-th eigenvalue obtained by KSC when
applied over X with a determined number of clusters K̃. Therefore, a feasible solution
of the problem is U = Ã, being Ã = [α̃(1), . . . , α̃(c)] the corresponding eigenvector
matrix. Thus, c is the same number of considered support vectors ñe.

We introduce a tracking vector η ∈ RNf as the solution of minimizing the dissim-
ilarity term given by ‖Φ̃ − Φ̂‖2F , subject to some orthogonality conditions, being Φ̂ a
lower-rank representation of Φ̃. Then, the ranked vector can be calculated by:

η =

ñe∑
�=1

λ̃�α̃
(�) ◦ α̃(�) (6)

where ◦ denotes Hadamard (element-wise) product. Accordingly, the ranking factor ηt
is a single value representing an unique frame in a sequence. Notation ã means that
variable a is related to Ω̃. Finally, it is possible to normalize the vector by multiplying
it by 1/max |η| to keep the entries of η ranged into the interval [0, 1].

3.3 Clustering

The proposed DKSC works as follows: Let {X(1), . . . ,X(Nf )} be a sequence of data
matrices, being Nf the number of frames, the corresponding kernel matrices are com-

puted with Ω
(t)
ij = K(x(t)

i ,x
(t)
j ). Then, the weighting factor η is calculated from equa-

tion 6 over the frame matrix X . Further, we obtain the accumulated kernel matrices
{Ω̌(1), . . . , Ω̌(Nf )} and, lastly, the KSC is applied over each pair (X(t), Ω̌(t)), where

t ∈ {1, . . . , Nf}, achieving as a result the cluster assignment vector q̌(t)
train.
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4 Experimental Set-Up

4.1 Considered Database

Motion caption Database: The data used in this work was obtained from mocap.cs.
cmu.edu. The database was created with funding from NSF EIA-0196217. In this work,
we use the subject #1 (progressive jump), for which the three first jumps are considered
as shown Figure 1.
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Fig. 1. Subject #1 (progressive jump)

Four frames are considered, where each frame X(t) ∈ R160×114 has rows containing
the vectorization of coordinates X , Y, and Z of the subject’s body points. Therefore
x̂i ∈ R1×18240 and X ∈ R4×18240. Data matrices from the above database are z-score
normalized regarding their columns.

4.2 Applying DKSC

All the experiments are performed for a given set of initial parameters, that is, the num-
ber of clusters K per each frame and the kernel function parameter. To recognize three
underlying movements in Motion Caption database (subject #1), parameter K is set to
be 3. Kernel matrices associated to the data sequence are calculated by the local-scaled
Gaussian kernel [16]. Then, each entry of kernel matrix related to frame t is given by:
Ω

(t)
ij = K(xi,xj) = exp(−‖xi − xj‖22/σiσj), where ‖ ·‖ denotes the Euclidean norm

and the scale parameter σi is chosen as the Euclidean distance between the sample xi

and its corresponding m-th nearest neighbor. Free parameter m is empirically set as
that one supplying the greatest Fisher’s criterion value. For both databases, the value
m = 10 is adjusted. To compute the lower-rank matrix Ω̂, a scaled Gaussian kernel
is applied. Afterwards, the clustering for the pair (X , Ω̂) is carried out by setting the
number K = Nfm whereas m is fixed as the entire closest number to 0.1Nfm in case
of Motion Caption.

In order to numerically assess the performance of DKSC against other methods, we
suggest an estimation of the ground truth. Since the tracking vector plotting depicts a
concave mode for each identified dynamic event, we can suggest that the ground truth
can be estimated by detecting the beginning and ending of each mode. In this sense, as
seen from Fig. 2, we apply a Gaussian fitting process where each mean μk is located
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Fig. 2. Gaussian fitting process

at that entry t of η showing maximum value Ak. Likewise, the standard deviation sk is
the distance between μk and the entry corresponding to Ak/

√
2.

For comparison purposes, kernel K-means (KKM) and min-cuts(MC) are also con-
sidered [13], which are applied over the data sequence by considering the same MKL
approach as considered for KSC. The clustering performance is evalauted by two met-
rics: normalized mutual information (NMI) [14] and Adjusted Rand Index (ARI) [15].
Both metrics return values ranged into the interval [0, 1], where 1 is the best clustering
performance.

5 Results and Discussion

Motion caption database has not a ground truth to apply label-based metric to assess
the clustering performance. However, because weighting factors η are ranking values
related to samples, we can consider each instant (man position) as a sample. Then, KSC
can be applied to generate the eigenvectors needed to compute η. If analyzing each
jump separately, corresponding η vectors should provide information about the clusters
contained in the frame (jump). Figure 3 shows the η vector corresponding to each jump.
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(c) DKSC for frame 2
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(e) DKSC for frame 3
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(g) DKSC for frame 4
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Fig. 3. MKL weighting factors
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Besides, we can observe that η has a multi-modal shape. According to (6), η is
computed from the eigenvectors α(l). Such eigenvectors point out the direction where
samples having the most variability measured in terms of a generalized inner product
(Φ
Φ). Then, we can argue that each mode might represent a different cluster. Under
this assumption, we obtain the reference label vectors by detecting the local minima,
considering each inflection as a cluster. Results are obtained by comparing the cluster-
ing indicators of each method with the determined reference labels. It can be appreciated
in Table 1 that our approach reaches greater values than the other methods, then in terms
of NMI and ARI it is possible to affirm that DKSC and KSC are suitable approaches to
cluster frames in this kind of applications.

Table 1. Clustering performance

Measure Frame
Clustering Method

DKSC KKM KM MC

NMI

1 0.6545 0.6583 0.6610 0.7537
2 0.9046 0.9186 0.7527 0.9046
3 0.8839 0.9028 0.6245 0.9045
4 0.8533 0.8498 0.5993 0.5780

ARI

1 0.6583 0.6583 0.6800 0.6832
2 0.9140 0.9304 0.7468 0.9140
3 0.9054 0.9060 0.4372 0.9238
4 0.8680 0.8542 0.4827 0.5101

6 Conclusions

A spectral clustering approach for time varying data is introduced. In this sense, the
proposed approach is based on multiple kernel learning to keep the evolutionary in-
formation by means of a cumulative kernel. Results show that a linear combination of
kernels as a MKL approach is enough to cluster dynamic data taking into account past
information. Besides, an estimation for coefficients or weighting factors for a linear
combination is provided, which is founded on the spectrum of kernel spectral cluster-
ing. In addition, we verified that introduced weighting factors give relevant information
to both track the dynamic behavior and determine the supposed ground truth. As a fu-
ture work, we are interested in studying different alternatives to estimate the weighting
factors as well as another multiple kernel learning approaches to design clustering ap-
proaches able to deal with dynamic data.

Acknowledgments. Authors thank to “Jóvenes Investigadores” COLCIENCIAS pro-
gram with the project entitled “Comparativo de métodos kernel para agrupamiento es-
pectral de datos desde un enfoque primal-dual”(A comparative study of kernel-based
methods for primal-dual formulations aimed spectral clustering).
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Abstract. Feature selection is an essential preprocessing step for classi-
fiers with high dimensional training sets. In pattern recognition, feature
selection improves the performance of classification by reducing the fea-
ture space but preserving the classification capabilities of the original
feature space. Image classification using frequent approximate subgraph
mining (FASM) is an example where the benefits of features selections
are needed. This is due using frequent approximate subgraphs (FAS)
leads to high dimensional representations. In this paper, we explore the
use of feature selection algorithms in order to reduce the representation
of an image collection represented through FASs. In our results we re-
port a dimensionality reduction of over 50% of the original features and
we get similar classification results than those reported by using all the
features.

Keywords: Approximate graph mining, approximate graph matching,
feature selection, graph-based classification.

1 Introduction

Finding a discriminative subset of features is essential when there are high di-
mensional representations. Feature selection algorithms allow improving clas-
sifiers performance by reducing the feature space and keeping discrimination
capabilities of the original representation. The main idea of these algorithms is
to calculate a subset of the input features by removing those with little or no
predictive information for classification [3–6, 10, 15, 17, 19]. These algorithms
can be arranged into three main groups: wrapper algorithms [3], filter algo-
rithms [6, 10, 19] and embedded algorithms [5, 17]. Wrapper ones use a classifier
to evaluate feature subsets. The advantage of these algorithms is the interac-
tion between the feature subset search and the classifier, but it is an expensive
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process. Filter ones evaluate the feature subsets without involving any classi-
fier during selection and, generally, they are faster than wrapper algorithms.
Embedded ones combine the advantage of wrappers and filters including some
interaction with the classifier.

FASM has become a technique of great significance in mining tasks where
the frequent subgraphs are computed considering data distortions. The useful-
ness of the patterns computed by these algorithms has been shown in different
classification tasks [1, 2, 12, 14]; but only a few of them have been applied to
image classification [1, 2] outperforming the results of exact algorithms [7, 18].
However, using a large number of graphs (patterns) as features could affect the
performance of the classifiers, due to the high dimensionality of the representa-
tion of the images.

In this paper, we explore the use of feature selection to reduce the repre-
sentation of an image collection represented through FASs. Experiments show
that our proposal allows drastically reducing the dimensionality of feature vector
while getting competitive results compared with the method that uses all the
features for classification. On the other hand, to the best of our knowledge, this
is the first work that uses a fusion of FASM and feature selection algorithms for
image classification.

The organization of this paper is the following. In Section 2, some basic
concepts are presented. In Section 3, we describe how the feature selection is
included into the framework for image classification using FASM. Later, in Sec-
tion 4, some experiments are shown in order to empirically validate the efficiency
and accuracy of feature selection for feature space reduction in graph-based im-
age classification. Finally, our conclusions and future directions are discussed in
Section 5.

2 Background

This work is focused on collections of simple undirected labeled graphs. Hence-
forth, when we refer to a graph we are assuming this type of graphs.

A labeled graph in the domain of all possible labels L = LV ∪ LE , where
LV and LE are the label sets for vertices and edges respectively, is a 4-tuple,
G = (V,E, I, J), where V is a set whose elements are called vertices, E ⊆
{{u, v} | u, v ∈ V, u 
= v} is a set whose elements are called edges (the edge {u, v}
connects the vertex u with the vertex v), I : V → LV is a labeling function for
assigning labels to vertices and J : E → LE is a labeling function for assigning
labels to edges.

Let G1 = (V1, E1, I1, J1) and G2 = (V2, E2, I2, J2) be two graphs, we say
that G1 is a subgraph of G2 if V1 ⊆ V2, E1 ⊆ E2, ∀u ∈ V1, I1(u) = I2(u), and
∀e ∈ E1, J1(e) = J2(e). In this case, we use the notation G1 ⊆ G2 and we also
say that G2 is a supergraph of G1.

Given two graphs G1 and G2, we say that f is an isomorphism between these
graphs if f : V1 → V2 is a bijective function, where: ∀u ∈ V1 : f(u) ∈ V2∧I1(u) =
I2(f(u)), and ∀{u, v} ∈ E1 : {f(u), f(v)} ∈ E2 ∧ J1({u, v}) = J2({f(u), f(v)}).
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If there is an isomorphism between G1 and G2, we say that G1 and G2 are
isomorphic. If G1 is isomorphic to G3 and G3 ⊆ G2, then we say that there is a
sub-isomorphism between G1 and G2, and we also say that G1 is sub-isomorphic
to G2.

Let D = {G1, . . . , G|D|} be a collection of graphs and G be a labeled
graph in L, the support value of G in D is defined as the fraction of graphs
Gi ∈ D, such that there is a sub-isomorphism between G and Gi. This value
of support is obtained using the following equation: supp(G,D) = |{Gi ∈
D: G is sub-isomorphic to Gi}|/|D|

Let Ω be the set of all possible labeled graphs in L, the similarity between
two graphs G1, G2 ∈ Ω is defined as a function sim : Ω × Ω → [0, 1]. We say
that the graphs are very different if sim(G1, G2) = 0, the higher the value of
sim(G1, G2) the more similar the graphs are, and if sim(G1, G2) = 1 then there
is an isomorphism between these graphs.

As there are several correspondences between two graphs, simmax(G1, G2) =
max{sim(G1, G2)} is defined as the highest value of similarity which can be
obtained between the different correspondences of G1 and G2.

Let D = {G1, . . . , G|D|} be a graph collection and G be a labeled graph in L,
the approximate support (denoted by appSupp) value of G in D, in terms of the
similarity, is computed as: appSupp(G,D) =

∑
Gi∈D simmax(G,Gi)/|D|.

When appSupp(G,D) ≥ δ, then G is a frequent approximate subgraph (FAS)
in D. The value of the support threshold δ is in [0, 1] since the similarity is
defined in [0, 1]. Frequent approximate subgraph mining consists in finding all
the FAS in a collection of graphs D, using a similarity function sim and a
support threshold δ.

3 Proposed Framework

Given a pre-labeled image collection, we built a graph collection for representing
these images, following the same approach proposed in [1]. The FAS are obtained
from the graphs that represent the images in the collection, using a FASM algo-
rithm. These patterns (FAS) are used as features for representing each image of
the collection. In fact, feature vectors for the original images are built using such
patterns, in the same way as in [1], taking into account the similarity of each
image of the collection (represented as a graph) to each pattern. Later, these
feature vectors are reduced by using a feature selection algorithm (information
gain, chi-squared, and gain ratio feature evaluation) in order to take into account
only the selected features for classification.

Following the main idea of [1], the proposed framework for graph-based im-
age classification including feature selection consist of four modules (see Figure
1): representation module, pattern extraction module, feature selection module,
and classification module. Representation, pattern extraction and classification
modules are the same ones respectively used in [1]. The feature selection module
is the main contribution of our proposal. This module is introduced in order to
identify better features for representing the classes of the image collection than
those used in [1].
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Fig. 1. The graph-based image classification framework proposed in this paper

4 Experiments

In this section, some experiments to show the impact of feature selection in
graph-based image classification using FASM are presented. These experiments
include a comparison between the framework for graph-based image classification
including feature selection and the framework proposed in [1] which uses all the
FASs for representing the images. The FASM algorithm, which we select to be
used in the pattern extraction module for our experiments, is VEAM [1]. This
decision was made based on the results reported in [1], where the use of patterns
obtained taking into account distortion in vertex and edge labels, i.e. those
computed by VEAM, are better for image classification than: those patterns
found by APGM [14].

4.1 Databases

In order to compare the results obtained by our proposal against those reported
in [1], the image collection used in this paper is the same. This collection con-
sists of 700 images obtained by the Random image generator of Coenen1. These
images are divided in two classes “landscape” and “seascape”, according to their
content. The process to represent these images as graphs is the same used in [1],
which is based on quad-trees with 4 as depth limit for divisions. This collection
was split into six sub-collections with different sizes: from 200 to 700 images
with an increment of 100 images. All these collections contain 18 vertex labels,
24 edge labels and a mean graph size ranging between 43 to 47 in terms of the
number of edges.

4.2 Experimental Results

The comparison presented in this section is performed over the graph collections
detailed in Section 4.1. Once we have the FAS’s computed by VEAM, a feature
selection algorithm is used only once to obtain the feature subset that represents
each class in the collection. Finally, this subset of features is used as input for a
classifier using 10-fold cross-validation.

1 www.csc.liv.ac.uk/~frans/KDD/Software/ImageGenerator/imageGenerator.html

www.csc.liv.ac.uk/~frans/KDD/Software/ImageGenerator/imageGenerator.html
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In Table 1, six cells where each represents a collection database are shown.
Each of these cells show a comparison between the number of features (pat-
terns) used in the classification process. Four columns are grouped into each the
mentioned cells, where the first of these columns shows the patterns computed
by VEAM, the other three columns show the number of patterns that will be
selected by each filter feature selector per each classifier algorithm. The number
of features selected were obtained experimentally in a range [50,200], which re-
sulted as the best options after carrying out several experiments. Finally, each
classifier is specified in the last columns.

In our experiments, we use several classifiers to evaluate our proposal. These
classifiers are of different nature: Support Vector Machine (SVM); Bayesian net-
work (BayesNet); decision trees (J48graft); and boosting (AdaBoost). All these
classifiers, except SVM, were taken from Weka v3.6.6 [9] using the default pa-
rameters. For SVM, we used the same libSVM used in [1]. Moreover, we use three
filter feature selection algorithms: information gain (IG), chi-squared (CHI-Q),
and gain ratio feature evaluation (GRAE). In these experiments, we compared
the accuracy reached by selecting a feature subset computed by VEAM through
a filter feature selector against the accuracy obtained by using all the features
computed by VEAM as it is proposed in [1].

Table 1. Number of features used in the classification process

Coenen–200 (δ = 20%) Coenen–300 (δ = 20%) Coenen–400 (δ = 20%)
All IG CHI-Q GRAE All IG CHI-Q GRAE All IG CHI-Q GRAE Classifier

200 133 200 140 110 200 200 185 185 SVM
110 80 95 125 110 125 125 80 65 BayesNet

340 155 125 155 374 140 50 140 433 140 150 150 AdaBoost
133 110 110 125 140 155 125 110 140 J48graft

Coenen–500 (δ = 25%) Coenen–600 (δ = 20%) Coenen–700 (δ = 20%)
All IG CHI-Q GRAE All IG CHI-Q GRAE All IG CHI-Q GRAE Classifier

140 155 155 185 95 200 200 200 200 SVM
65 50 50 155 65 50 65 80 65 BayesNet

238 155 101 110 498 95 80 125 864 65 65 155 AdaBoost
95 101 95 65 200 125 200 200 200 J48graft

The results of our experiments are summarized in Table 2. This table is divided
in two sub-tables, one for a pair of filter feature selectors. The first and second
columns of these sub-tables show the name of the collection and the support
threshold value that got the best results for this collection. The other eight
columns are grouped in four, each group associated to a different supervised
classifier, the first column in each group shows the accuracy obtained by using
all the features (patterns) computed by VEAM, while the other three columns
show the accuracy obtained by using a features selected by the filter feature
selector specified in the top of the column.

As we can see in Table 2, the results achieved using our framework using fea-
ture selection are competitive in accuracy with those results using the framework
proposed in [1], and it is important to highlight that our proposal uses less than
50% of features used by the framework proposed in [1] in most cases.
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In addition, in Table 3 we present an statistical comparison of the tested
classifiers using all the features (patterns) computed by VEAM against using the
features selected by each one of the filter feature selectors. For this comparison,
we use two significant statistical tests [8]: Holm [13], and Hommel [11] tests. The
value for α used on these tests is 0.05.

Table 2. Accuracy results achieved using different classifiers in several graph (image)
collections with and without the use of several feature selection algorithms.

SVM (linear kernel) BayesNet
Collection δ All IG CHI-Q GRAE All IG CHI-Q GRAE
Coenen–700 20% 95.86% 96.29% 96.43% 96.43% 90.29% 94.57% 94.57% 94.57%
Coenen–600 20% 95.83% 96.50% 96.17% 96.50% 91.17% 94.83% 94.67% 94.50%
Coenen–500 25% 97.20% 97.40% 97.60% 97.60% 90.60% 94.80% 94.80% 94.80%
Coenen–400 20% 96.75% 96.50% 96.75% 97.25% 93.25% 95.25% 95.50% 95.50%
Coenen–300 20% 97.33% 97.00% 97.00% 97.00% 88.33% 95.00% 95.00% 95.00%
Coenen–200 20% 97.50% 97.00% 95.50% 97.50% 88.00% 94.50% 94.50% 94.50%

Average 96.75% 96.78% 96.58% 97.05% 90.27% 94.83% 94.84% 94.81%

AdaBoost J48graft
Collection δ All IG CHI-Q GRAE All IG CHI-Q GRAE
Coenen–700 20% 94.14% 94.29% 94.43% 94.14% 96.14% 96.29% 96.43% 96.43%
Coenen–600 20% 92.67% 94.33% 94.17% 93.67% 95.67% 94.50% 96.17% 96.00%
Coenen–500 25% 94.80% 94.80% 94.80% 94.80% 95.80% 96.60% 96.40% 96.60%
Coenen–400 20% 94.50% 94.75% 94.75% 95.25% 94.50% 96.00% 95.75% 95.50%
Coenen–300 20% 95.00% 95.00% 95.33% 95.00% 94.33% 96.00% 94.67% 95.33%
Coenen–200 20% 94.00% 94.50% 95.00% 94.50% 91.50% 95.00% 95.00% 95.00%

Average 94.19% 94.61% 94.75% 94.56% 94.66% 95.73% 95.74% 95.81%

Table 3. Significant statistical tests (Holm and Hommel) using α = 0.05 for different
classifiers in several graph (image) collections using all the features computed by VEAM
and using the features selected by the filter feature selectors.

Classifier SVM BayesNet AdaBoost J48graft
All vs. GRAE – GRAE – GRAE
All vs. CHI-Q – CHI-Q CHI-Q CHI-Q

All vs. IG – IG IG IG
IG vs. GRAE – – – –

CHI-Q vs. GRAE – – – –
IG vs. CHI-Q – – – –

In the first column of Table 3, “All” represents the approach using all features
computed by VEAM while IG, CHI-Q and GRAE represent our approach using
the feature selection through information gain, chi-squared, and gain ratio, re-
spectively. The other columns show what approach is significantly better than
the other one; the symbol “–” indicates that there is not a statistical significant
difference between the results of both approaches.

As we can see from Tables 3 and 2, the use of the feature selection algorithm
CHI-Q is the best option since in 75% of the results it is significantly better
than “All”, and using CHI-Q, the better classification accuracies are obtained
in general. The other feature selection algorithms IG and GRAE outperform
“All” in 75% and 50% of the results, respectively. And in general, IG, CHI-Q and
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GRAE are significantly similar of the tests. Between CHI-Q and IG, we select
CHI-Q as the best option because it had a better performance in term of the
accuracy results.

5 Conclusions

In this paper, we propose the use of approximate subgraphs jointly with feature
selection for image classification. To our best knowledge, this is the first work
that performs such combination. Using a feature subset for representing the
images in the collection allows us to drastically reduce the dimensionality of the
feature vectors. This reduction was more than 50% in most cases. Moreover, our
proposal is competitive in accuracy regarding the method that uses all the FASs.

As future work, we are going to study the identification of representative
features (patterns) during the FASM process. Thus, only the discriminative pat-
terns will be computed during the mining step, improving the effectiveness of
FAS classifiers and reducing the runtime for the training stage.
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Medina-Pagola, J.E.: Image Classification Using Frequent Approximate Subgraphs.
In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS,
vol. 7441, pp. 292–299. Springer, Heidelberg (2012)
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Abstract. Learning in datasets that suffer from imbalanced class distribution is 
an important problem in Pattern Recognition. This paper introduces a novel 
algorithm for data balancing, based on compact set clustering of the majority 
class. The proposed algorithm is able to deal with mixed, as well as incomplete 
data, and with arbitrarily dissimilarity functions. Numerical experiments over 
repository databases show the high quality performance of the method proposed 
in this paper according to area under the ROC curve and imbalance ratio. 

Keywords: imbalanced data, mixed data, supervised classification. 

1 Introduction 

The training dataset plays a key role for supervised classification. Training data 
allows building classifiers able to estimate the label or class of a new unseeing 
instance. Several researchers have pointed out that if the dataset has an approximately 
equal amount of instances for every class, the classifier can produce predictions that 
are more accurate [1]. However, in several real-world applications, it is not possible 
to obtain a training set with classes equally distributed. The class imbalance problem 
occurs when one or several classes (the majority classes) vastly outnumber the other 
classes (the minority classes), which are usually the most important classes and often 
with the highest misclassification costs.This problem is known as the problem of 
learning in imbalanced scenarios. 

Learning in imbalanced scenarios poses challenges for supervised classifiers, such 
as Nearest Neighbor (NN). Several researchers have addressed the impact of data 
imbalance in NN performance [2, 3]. The problem of class imbalance has been 
addressed by numerous approaches at both algorithmic and data levels. At algorithmic 
level, the methods usually modify the learning algorithm to favor the detection of the 
minority class, while the solutions at data level obtain an approximately equally 
distributed data set, by means of re-sampling, either by oversampling the minority 
class [4] or undersampling the majority class [5-7]. Oversampling techniques create 
artificial objects of the minority class, and increase the computational cost of the 
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learning algorithms, and the storage cost of the dataset, while undersampling 
techniques preserve minority class and obtains a small representation of majority 
class.  

This paper proposes a novel algorithm for undersampling. The algorithm is based 
on Compact Sets (CS) structuralizations, and is able to deal with mixed and 
incomplete data. The use of CS based clustering allows selecting a highly 
representative set of the majority class, preserving the objects of minority class. The 
thorough experimental study carried out shows the significant performance gains of 
the proposed approach when compared to other state-of-the-art algorithms. 

2 Compact Sets Based Data Balancing by Under-Sampling 

One of the greatest challenges in undersampling techniques is to obtain a good 
representation of the majority class. Instead of using a classical prototype selection 
strategy, this paper introduces the idea of structuralize the majority class by means of 
compact sets, and then obtain the desired number of prototypes. Compact sets have 
been used successfully for prototype selection in mixed and incomplete data, and also 
for clustering [8, 9]. A compact set is a connected component of a Maximum 
Similarity Graph. A Maximum Similarity Graph is a directed graph, such as it 
connects each object with its most similar neighbors [10]. Formally, let be ,  
a MSG for a set of objects X, with arcs θ. Two objects ,  form an arc , θ if max , , , where ,  is a similarity 
function, usually , 1 ∆ ,  and ∆ ,  is a dissimilarity function. 
Each connected component of such graph is called a compact set. Compact sets are 
formed by highly similar instances, and allow structuralizing datasets. Formally, a 
subset  of X is a β  compact set if and only if [10]: 



max sim x , x sim x , x β
 max sim x , x sim x , x β   

, , , ,
   p 1, , q 1max sim , x sim , β

 max sim , x sim , β  

 Every isolated object is a compact set, degenerated.  
The proposed algorithm, called CDB (Compact set based Data Balancing) starts by 

dividing the dataset into majority and minority classes (Figure 1 and 2). Then, it 
computes the compact sets of the majority class, and each is considered as a group. 
Next, for each group, it finds the more similar objects with respect to every other 
object in the group (holotype) to represent the group. 
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Fig. 1. Compact Set based Data Balancing algorithm (CDB). 

The algorithm finds the most similar groups, and merges them, until the desired 
number of prototypes (groups) is reached. This proposal directly merges all possible 
groups which have less dissimilarity in a single step. This makes faster the merging 
process, and avoids order dependence.  

Compact set based Data Balancing (CDB) algorithm 
Inputs: I: set of instances, Δ: similarity function  
Output: P: prototype set 
1. C = φ, P = φ 
2. Move the objects of I belonging to majority class to a set M, and add to P the 

remaining (minority) objects of I.  
3. Create a maximum similarity graph of the objects in the set M using β0=0 and  
4. Add to C each connected component of the graph created at step 3. 

4.1. Select as cluster centre (holotype) the object that maximizes the overall 
similarity with respect to every object in the cluster 

5. Merge all more similar groups, using as cluster similarity the similarity between 
cluster centers. 
5.1. Recalculate cluster holotypes. 

6. Repeat step 5, until| | | |, that is, until the amount of clusters is less or equal 
to the amount of objects of minority class. 

7. Add to P the holotypes of C 
8. Return P 

Fig. 2. Pseudocode of Compact set based Data Balancing (CBD) algorithm 
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The new compact set based algorithm differs from previously reported algorithms 
in the following:  It clearly defines the amount of prototypes to select from majority 
class. It also deals with mixed and incomplete data, by using compact sets and a 
hierarchical approach that selects representative instances instead of constructing 
artificial ones. In addition, it uses the similarity between holotypes as intergroup 
similarity, avoiding additional instance similarity computation and it merges at each 
stage all groups selected as more similar, avoiding order-dependence. 

3 Experimental Results 

To compare the performance of the proposed algorithms, there were used 44 
databases from the KEEL dataset repository [11].  

Table 1. Databases used in the experiments 

Databases Att. Instances IR Databases Att. Instances IR 

abalone9-18 8 2934 17 glass04-5 9 368 9 

abalone19 8 16706 130 glass06-5 9 432 11 

cleveland0-4 13 708 13 glass2-5 9 856 12 

ecoli01-235 7 976 9 glass4-5 9 856 15 

ecoli01-55 6 960 11 glass5-5 9 856 23 

ecoli0137-26 7 1124 39 led7digit1 7 1772 11 

ecoli0146-5 6 1120 13 page-blocks13-4 10 1888 16 

ecoli0147-2356 7 1344 11 shuttlec0-4 9 7316 14 

ecoli0147-56 6 1328 12 shuttlec2-4 8 516 21 

ecoli0234-5 7 808 9 vowel0 13 3952 10 

ecoli0267-35 7 896 9 yeast0256-3789 8 4016 9 

ecoli034-5 7 800 9 yeast02579-368 8 4016 9 

ecoli0346-5 7 820 9 yeast0359-78 8 2024 9 

ecoli0347-56 7 1028 9 yeast05679-4 8 2112 9 

ecoli046-5 6 812 9 yeast1-7 3 1836 14 

ecoli067-35 7 888 9 yeast1289-7 8 3788 31 

ecoli067-5 6 880 10 yeast1458-7 8 2772 22 

ecoli4-5 7 1344 16 yeast2-4 8 3056 14 

glass0146-2 9 820 11 yeast2-8 8 1928 23 

glass015-2 9 688 9 yeast4 8 5936 28 

glass016-2 9 768 10 yeast5 8 5936 33 

glass016-5 9 736 19 yeast6 8 5936 41 
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These databases were modified from its original version, to obtain highly 
imbalanced data sets, having only one minority and one majority class [11]. The name 
of the datasets represents the index of minority and majority classes. Table 1 shows 
the characteristics of the selected databases. The second and third columns show the 
amount of attributes (Att.) and instances of the dataset, and the fourth, the Imbalance 
Ratio of each database. Imbalance Ratio (IR) is defined as the ratio between the 
instances count of majority class, with respect to the count of instances of minority 
class. 

For numerical comparison, there were selected the HEOM (equation 1) 
dissimilarity function, proposed by Wilson and Martínez [12], which is able to deal 
with mixed and incomplete data.  

, , , 1 , ,,  

, 0       1   , , | |⁄  

(1)

In addition, the SEC [5], NCL [6], and GGE [7] algorithms were selected for 
comparison purposes, because they are among best undersampling algorithms for 
mixed data balancing. All algorithms were implemented in C# language, and the 
experiments were carried out in a laptop with 3.0GB of RAM and Intel Core i5 
processor with 2.67HZ.   

To compare the performance of the algorithms, it was used the area under the ROC 
curve (AUC).The Area under the ROC curve is another quality measure widely used 
to evaluate classifiers in problems with unequal costs, such as imbalanced problems. 
In  [13] are shown some of the advantages of using the AUC measure over other 
quality measures, such as classifier error. To compute the AUC (equation 2) for a 
discrete classifier, a simple method is proposed in [14], based on a confusion matrix 
(table 2). It was also computed the Imbalance Ratio (IR) for every algorithm, in order 
to determine their effectiveness in balancing the datasets.  

 where ⁄  and ⁄  (2)

Table 2. Confusion matrix for two class problems  

 Positive Prediction Negative Prediction 
Positive Class True Positive (tp) False Negative (fn) 
Negative Class False Positive (fp) True Negative (tn) 

 
Table 3 and 5 show the results according to AUC and Imbalance Ratio, 

respectively, in the testing phase. As shown in table 3, the proposed CDB algorithm 
obtains the highest area under the ROC curve in 28 databases, 16 of them above 0.9. 
These results show the high performance of the proposed method. 
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Table 3. AUC of the algorithms. In bold best results 

Databases NCL SEC GGE CDB Databases NCL SEC GGE CDB 

abalone9-18 0.58 0.60 0.61 0.83 glass04-5 0.73 0.81 0.78 0.67 

abalone19 0.50 0.50 0.50 0.78 glass06-5 0.67 0.70 0.65 0.88 

cleveland0-4 0.74 0.83 0.73 0.93 glass2-5 0.51 0.50 0.46 0.90 

ecoli01-235 0.76 0.73 0.77 0.90 glass4-5 0.48 0.53 0.51 0.68 

ecoli01-55 0.87 0.86 0.90 0.90 glass5-5 0.69 0.71 0.67 0.96 

ecoli0137-26 0.50 0.50 0.50 0.88 led7digit1 0.64 0.85 0.66 1.00 

ecoli0146-5 0.87 0.89 0.90 0.91 page-blocks13-4 0.92 0.96 0.96 0.95 

ecoli0147-2356 0.79 0.78 0.81 0.90 shuttlec0-4 1.00 1.00 1.00 0.99 

ecoli0147-56 0.87 0.88 0.91 0.86 shuttlec2-4 0.95 1.00 0.95 0.75 

ecoli0234-5 0.82 0.84 0.50 0.93 vowel0 0.94 0.95 0.94 0.86 

ecoli0267-35 0.78 0.83 0.79 0.86 yeast0256-3789 0.70 0.73 0.72 0.72 

ecoli034-5 0.82 0.82 0.57 0.88 yeast02579-368 0.81 0.82 0.85 0.79 

ecoli0346-5 0.80 0.82 0.81 0.91 yeast0359-78 0.67 0.67 0.67 0.62 

ecoli0347-56 0.50 0.50 0.50 0.86 yeast05679-4 0.67 0.69 0.73 0.64 

ecoli046-5 0.87 0.89 0.88 0.86 yeast1-7 0.48 0.48 0.63 0.58 

ecoli067-35 0.83 0.83 0.85 0.93 yeast1289-7 0.57 0.59 0.57 0.90 

ecoli067-5 0.82 0.84 0.85 0.72 yeast1458-7 0.60 0.63 0.62 0.77 

ecoli4-5 0.70 0.74 0.69 0.56 yeast2-4 0.50 0.73 0.73 0.78 

glass0146-2 0.55 0.54 0.56 0.66 yeast2-8 0.72 0.71 0.70 0.96 

glass015-2 0.53 0.52 0.50 0.92 yeast4 0.59 0.64 0.68 0.80 

glass016-2 0.54 0.51 0.52 0.94 yeast5 0.73 0.79 0.80 0.66 

glass016-5 0.64 0.66 0.67 0.98 yeast6 0.72 0.72 0.75 0.69 

 
However, to determine the existence or not of significant differences in algorithm´s 

performance it was used the Wilcoxon test [15]. It was set as null hypothesis no 
difference in performance between the proposed method and every other algorithm, 
and as alternative hypothesis that CDB had better performance. It was set a significant 
value of 0.05, for a 95% of confidence. Table 4 summarizes the results of the 
Wilcoxon test, according to area under the ROC curve. The Wilcoxon test concludes 
the proposed method has significantly better performance than the other compared 
methods, according to the area under the ROC curve.  

Table 4. Wilcoxon test comparing area under the ROC curve 

CDB vs. NCL SEC GGE 
wins – looses – ties 31-13-0 29-15-0 26-17-1 

probability 0.000 0.001 0.001 
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Table 5. Imbalance Ratio of the algorithms. In bold best results (near to 1). 

Databases NCL SEC GGE CDB Databases NCL SEC GGE CDB 
abalone9-18 16.36 7.24 13.27 1.00 glass04-5 8.64 4.17 7.42 1.00 

abalone19 129.3 31.7 126.1 1.00 glass06-5 10.50 5.69 8.44 1.00 

cleveland0-4 12.29 3.17 11.69 1.00 glass2-5 11.35 7.26 7.93 1.00 

ecoli01-235 8.95 2.72 8.50 1.00 glass4-5 15.06 5.85 12.85 1.14 

ecoli01-55 10.76 2.81 10.66 1.00 glass5-5 22.22 9.17 21.08 1.00 

ecoli0137-26 38.61 11.0 37.14 1.00 led7digit1 10.87 1.73 10.61 1.00 

ecoli0146-5 12.76 3.26 12.69 1.00 page-blocks13-4 15.73 3.51 15.63 1.00 

ecoli0147-2356 10.35 3.53 9.72 1.00 shuttlec0-4 13.85 0.04 13.87 1.00 

ecoli0147-56 12.03 3.39 11.60 1.00 shuttlec2-4 20.00 1.00 20.50 1.00 

ecoli0234-5 8.90 2.36 8.63 1.00 vowel0 9.92 1.81 9.68 1.00 

ecoli0267-35 8.98 3.00 8.40 1.00 yeast0256-3789 9.04 4.76 7.35 1.00 

ecoli034-5 8.78 2.29 8.53 1.00 yeast02579-368 9.05 4.11 8.14 1.00 

ecoli0346-5 9.04 2.49 8.79 1.00 yeast0359-78 8.93 4.86 6.94 1.00 

ecoli0347-56 9.03 2.97 8.53 1.00 yeast05679-4 9.16 4.51 7.64 1.00 

ecoli046-5 8.94 2.21 8.76 1.00 yeast1-7 14.13 5.48 12.32 1.00 

ecoli067-35 8.89 2.91 8.35 1.00 yeast1289-7 30.38 15.00 27.73 1.00 

ecoli067-5 9.79 3.16 9.18 1.00 yeast1458-7 21.90 11.42 18.88 1.00 

ecoli4-5 15.56 4.60 14.88 1.00 yeast2-4 8.93 3.99 8.26 1.00 

glass0146-2 10.79 6.69 7.94 1.00 yeast2-8 22.91 9.70 21.35 1.00 

glass015-2 8.88 5.57 5.74 1.00 yeast4 27.90 11.27 25.98 1.00 

glass016-2 10.01 6.28 7.19 1.00 yeast5 32.57 7.80 31.37 1.00 

glass016-5 18.86 8.64 17.75 1.00 yeast6 41.09 14.93 38.79 1.00 

 
As shown, CDB obtains a perfectly balanced dataset, in 43 of 44 databases, with 

only 1.14 of Imbalance Ratio in the glass4-5 database. These results confirm the 
proposed approach is able to obtain an adequate balance of data, without losing 
representative objects of majority class.  

4 Conclusions 

Prototype selection for data balancing is an important preprocessing step for learning in 
imbalance scenarios. In this paper, a novel method is introduced, using Compact Sets 
for hierarchical clustering of majority class. The method keeps minority objects, and 
selects representative objects of majority class, from compact sets structuralizations. 
The method is also able to deal with databases containing objects described by features 
no exclusively numeric or categorical. Experimental results carried out over several 
repository data show the high performance of the proposed method, which obtains a 
perfectly balanced datasets with high area under the ROC curve.  



 Mixed Data Balancing through Compact Sets Based Instance Selection 261 

 

References 

1. Weiss, G.M.: Learning with rare cases and small disjuncts. In: Proceedings of the 
International Conference on Machine Learning, ICML 2003, pp. 558–565 (2003) 

2. Hand, D.J., Vinciotti, V.: Choosing k for two-class nearest neighbor classifiers with 
imbalanced classes. Pattern Recognition Letters 24, 1555–1562 (2003) 

3. Zhang, J., Mani, I.: kNN approach to unbalanced data distribution: a case study involving 
information extraction. In: Proceedings of Workshop on Learning from Imbalanced 
Datasets (2003) 

4. Moreno, J., Rodriguez, D., Sicilia, M.A., Riquelme, J.C., Ruiz, R.: SMOTE-I: 
improvement of SMOTE algorithm for minority classes balancing. In: Proceedings of 
Workshops of Software Engineering and Databases 3 (2009) (in Spanish) 

5. García, V.: Distributions of non-balanced classes: metrics, complexity analysis and 
learning algorithms. PhD Dissertation Thesis, Department of Languages and Computer 
Systems, University Jaume I, Spain (2010) 

6. Laurikkala, J.: Instance-based data reduction for improved identification of difficult small 
classes. Intelligent Data Analysis 6, 311–322 (2002) 

7. Alejo, R., Valdovinos, R.M., García, V., Pacheco-Sanchez, J.H.: A hybrid method to face 
class overlap and class imbalance on neural networks and multi-class scenarios. Pattern 
Recognition Letters 34, 380–388 (2013) 

8. García-Borroto, M., Ruiz-Shulcloper, J.: Selecting prototypes in Mixed and Incomplete 
data. In: Sanfeliu, A., Cortés, M.L. (eds.) CIARP 2005. LNCS, vol. 3773, pp. 450–459. 
Springer, Heidelberg (2005) 

9. Villuendas-Rey, Y., Rey-Benguría, C., Caballero-Mota, Y., García-Lorenzo, M.M.: 
Nearest prototype classification of special school families based on hierarchical compact 
sets clustering. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.) 
IBERAMIA 2012. LNCS, vol. 7637, pp. 662–671. Springer, Heidelberg (2012) 

10. Ruiz-Shulcloper, J., Abidi, M.A.: Logical combinatorial Pattern Recognition: A review. In: 
Pandalai, S.G. (ed.) Recent Research Developments in Pattern Recognition. Transword 
Research Networks, pp. 133–176 (2002) 

11. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.: 
KEEL data-mining software tool: Data set repository, integration of algorithms and 
experimental analysis framework. Journal of Multiple-Valued Logic and Soft 
Computing 17, 255–287 (2011) 

12. Wilson, R.D., Martinez, T.R.: Improved heterogeneous distance functions. Journal of 
Artificial Intelligence Research 6, 1–34 (1997) 

13. Bradley, A.: The use of Area under the ROC curve in the evaluation of Machine Learning 
Algorithms. Pattern Recognition 30, 1145–1159 (1997) 

14. Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond Accuracy, F-Score and ROC: a 
family of Discriminant measures for Performance evaluations. In: Proceedings of the 
Australian Conference on Artificial Intelligence, pp. 1015–1021 (2006) 

15. Demsar, J.: Statistical comparison of classifiers over multiple datasets. Journal of Machine 
Learning Research 7, 1–30 (2006) 



An Empirical Study of Oversampling

and Undersampling for Instance Selection
Methods on Imbalance Datasets
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Abstract. Instance selection methods get low accuracy in problems
with imbalanced databases. In the literature, the problem of imbal-
anced databases has been tackled applying oversampling or undersam-
pling methods. Therefore, in this paper, we present an empirical study
about the use of oversampling and undersampling methods to improve
the accuracy of instance selection methods on imbalanced databases. We
apply different oversampling and undersampling methods jointly with
instance selectors over several public imbalanced databases. Our experi-
mental results show that using oversampling and undersampling methods
significantly improves the accuracy for the minority class.

Keywords: supervised classification, instance selection, oversampling,
undersampling, imbalanced datasets.

1 Introduction

The classification process requires a training set T to create a model which will
be used to assign a class to unseen examples. Nevertheless, in a training sample
usually there are some redundant and/or noisy examples that are useless for the
classification process and they could negatively affect the classification accuracy
[1–3]. Instance selection (IS) is focused on this problem. The IS methods select
a subset S of the training set T such that S allows to get an accuracy as similar
as possible to the one computed using T [4].

In an ideal scenario the classes are balanced, that is, the number of instances
for each class are almost the same. But, some real world databases don’t have
this property, i.e. their classes are imbalanced [5–7].

Instance selection algorithms have demonstrated to perform well when the
classes are balanced [3], however, this is not true for imbalanced datasets, in-
stance selection algorithms get low accuracy in this kind of problems because
they tend to remove too many instances from the minority class, damaging
their performance [8, 9]. For this reason, in this paper we focus on the study
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of combining oversampling and undersampling methods with instance selection
algorithms, in order to get good results in imbalanced problems.

This paper is divided in the following sections: Section 2, briefly describes
the instance selection algorithms and oversampling and undersampling methods
that will be used in our experiments. Section 3 presents the experimental results.
Finally, section 4 provides some conclusions and future work.

2 Related Work

In the literature there have been reported several instance selection algorithms.
Most of them are based on the KNN rule, for example DROP3 [10], IB3 [1],
ICF [2]. Another group of instance selection algorithms, clearly different from
the former, are those based on evolutionary algorithms, some examples of these
methods are CHC [11], GGA [12], SGA[13]. More recently some instance selec-
tion algorithms for large databases have been proposed, which can be applied
in problems where conventional IS algorithms, as those previously commented,
cannot produce a solution in a reasonable time. For our study we have selected
DROP3 as a representative of those algorithms based on KNN; CHC as a rep-
resentative of algorithms based on evolutionary algorithms; and IRB [14] as a
representative of IS algorithms for large datasets.

1. DROP3 [10]: This algorithm is based on the concept of associate. The
associates of an instance P are those instances such that P is one of their
k nearest neighbors. First, DROP3 applies ENN [15] for noise-filtering over
the initial training set T. Then, the remaining instances in T are sorted
by the distance to their nearest enemy, which is the nearest instance with
different class. DROP3 iteratively removes an instance P if the majority of
its associates in T would be classified correctly without P.

2. CHC [11]: In [16] a comprehensive study of different evolutionary algorithms
applied in the instance selection field is presented. From this study the CHC
algorithm was able to achieve the best overall performance among the tested
evolutionary algorithms. During each generation the CHC develops the fol-
lowing steps: (1) CHC uses a parent population of size n to generate an
intermediate population of the same size, which are used to generate n po-
tential offsprings. (2) Then, in a competition the best n chromosomes from
the parent and offsprings population are selected to form the next generation.

3. IRB [14]: This algorithm tries to preserve the border instances (those lo-
cated in a region where there are similar instances from different classes)
by computing an instance ranking for each class based on the distance of
each instance to border instances. This algorithm selects a predefined % of
instances having high, medium and low values, in the ranking.

The described algorithms are not able to deal with imbalance datasets by
itself. However, they maintain their reduction capabilities. One way to deal with
the problem of imbalance dataset is applying some oversampling or undersam-
pling techniques. Therefore, in this paper, we present an empirical study about
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the use of oversampling and undersampling methods to improve the accuracy
of instance selection methods on imbalanced databases. For our study we have
selected the following oversampling and undersampling methods, which are some
of the most reported in the literature.

1. Resample: This oversampling method produces an uniform class distribu-
tion. Resample applies a random subsampling to the majority class and an
oversampling, with replacement, to the minority class.

2. Spread Subsampling: This undersampling technique produces a random
subsample of a database. The class distribution is adjusted through a random
elimination of objects from the majority class.

3. Synthetic Minority Over-sampling Technique (SMOTE) [17]: This
oversampling approach generates synthetic samples of the minority class
based on nearest neighbors. The synthetic examples are generated comput-
ing the difference between feature vectors and their nearest neightbors, then
this difference is multiplied by a random number between 0 and 1, and the
result is added to the feature vector under consideration.

On the other hand, in [18] the One-sided method is proposed as an approach
to instance selection over imbalanced datasets. The main idea of this work is to
carry out instance selection only over the majority class leaving intact the minor-
ity class. Another approach to the same problem [19] involves that an instance
can be choose more than once considering the number of nearest neighbours.
The main idea of this work is to cover the same amount of space with fewer
instances.

3 Experimental Results

For our experiments we use 18 databases taken from the KEEL repository [20].
Table 1 describes the used databases. The databases were sorted in ascending
way according to their imbalance ratio (IR) computed as the ratio between
the size of the majority and minority classes. As it is shown in Table 1 the
imbalance ratio is very different for each database, for that reason we grouped
the databases as: IR 1-3, IR 3-9 and IR > 9. It will allow us to analyze the
behavior of oversampling and undersampling techniques, jointly with instance
selection, depending of the imbalance ratio.

For each database, we performed 10 fold cross validation averaging the classi-
fication accuracy for the minority and majority classes separately as well as the
global accuracy, in our experiments we also include the F-Measure.

We used the implementations of Resample, Spread Subsample and SMOTE
taken from WEKA [21] with their default parameters, except for SMOTE where
we adjusted the percentage parameter (-P) according with the imbalance ratio
of each database (-P (IR * 100)). We used different percentage values because
each minority class needs a different percentage of oversampling, for example, in
the abalone database we have an imbalance ratio of 133, the minority class have
only 28 examples, if we apply SMOTE with a fix percentage of 100 the result
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Table 1. Characteristics of the databases used in the experiments. IR: the imbalance
ratio; N.O.: number of objects; cl+: size of the majority class; cl-: size of the minority
class.

Database IR N.O. cl+ cl- Database IR N.O. cl+ cl- Database IR N.O. cl+ cl-

IR 1-3 IR 3-9 IR > 9

ionosphere 1.8 315 202 113 spliceie 3.2 2871 2180 691 ecoliom 15.8 302 284 18
pima 1.9 691 405 241 vehiclevan 3.3 761 582 179 abalone918 16.8 657 620 37
tic-tac-toe 1.9 862 564 298 ecolim 3.4 302 233 69 yeastme2 28.7 1335 1290 45
german 2.3 900 630 270 hepatitis 5.5 72 61 11 yeastme1 33.2 1335 1296 39
phoneme 2.4 4863 3436 1427 segment0 6.0 2077 1781 296 yeastexc 42.1 1335 1304 31
yeast 2.5 1335 949 386 ecolimu 8.7 302 271 31 abalone19 133.1 3756 3728 28

will be an imbalance database with an imbalance ratio very close to the original,
in this case we needed an oversampling percentage of 13300% (133 * 100).

The implementations of KNN, DROP3 and CHC were taken from the KEEL
software [22] and the implementation of IRB was supplied by the authors. The
KNN algorithm with K = 1 is used as base line. For DROP3, CHC and KNN
we used the default parameters in the KEEL software and for IRB we used the
parameters suggested by the authors in [14].

For the One-sided prototype selection method [18] we followed the steps pro-
posed by the authors. First, we apply DROP3, CHC or IRB over the whole
database. The original examples of the minority class jointly with the examples
selected by the IS algorithm in the majority class are used as training for the
1-NN classifier.

3.1 Experimental Comparison

Tables 2, 3 and 4 show the results of the experiments for the databases with im-
balanced ratio 1-3, 3-9 and grater than 9, respectively. Each table is divided in
two main columns, the right column presents the results of applying One-sided
method and the left column presents the results of applying instance selection al-
gorithms after oversampling or undersampling. In each sub-table the average ac-
curacy for the minority and majority classes, the global accuracy, the F-Measure
and the reduction percentage are reported. The numbers in bold represent the
best results for the respective column and row.

The results for databases with IR in the interval 1-3 (see Table 2), show that
applying an instance selection method (IS) followed by oversampling or under-
sampling always produces better results for minority class and global accuracy
than applying the One-sided method. In terms of F-Measure it gets in most of
the cases better results if an instance selection algorithm is applied after over-
sampling or undersampling in contrast to applying the One-sided method. These
results show that IRB got the best accuracy for the minority class (and for global
accuracy) with respect to CHC, DROP3 and KNN no matter if an oversampling
or undersampling techniques is applied or not before applying IRB. However,
SMOTE & IRB obtained the best results. On the other hand, although the ac-
curacy for the majority class is greatly improved by One-sided, simultaneously,



266 J. Hernandez, J.A. Carrasco-Ochoa, and J.F. Mart́ınez-Trinidad

Table 2. Experiment results for the databases with IR 1-3. Red.: reduction percentage,
Acc+: Majority class Accuracy, Acc-: Minority class Accuracy, AccG: Global Accuracy,
F-M: F-Measure

Selector Without over or One-sided Resampling 300%
under sampling

Red. Acc- Acc+ AccG. F-M Red. Acc- Acc+ AccG. F-M Red. Acc- Acc+ AccG. F-M

KNN 0.00 0.66 0.79 0.74 0.54 0.00 0.66 0.79 0.74 0.54 0.00 0.61 0.81 0.75 0.59

CHC 0.99 0.65 0.79 0.76 0.54 0.68 0.37 0.89 0.43 0.53 0.99 0.56 0.84 0.72 0.61

DROP3 0.84 0.54 0.79 0.71 0.54 0.60 0.38 0.85 0.52 0.53 0.91 0.55 0.80 0.71 0.55

IRB 0.60 0.47 0.92 0.78 0.56 0.43 0.54 0.86 0.69 0.62 0.59 0.61 0.81 0.75 0.61

SMOTE SMOTE Resampling 300%
and One-sided and One-sided

KNN 0.00 0.62 0.83 0.75 0.62 0.00 0.62 0.83 0.75 0.62 0.00 0.61 0.81 0.75 0.59

CHC 0.99 0.55 0.85 0.71 0.61 0.47 0.37 0.90 0.43 0.53 0.51 0.39 0.95 0.47 0.54

DROP3 0.82 0.51 0.81 0.69 0.56 0.38 0.45 0.90 0.61 0.59 0.47 0.39 0.87 0.53 0.54

IRB 0.59 0.74 0.79 0.77 0.68 0.40 0.53 0.88 0.67 0.60 0.45 0.50 0.87 0.66 0.62

Spread Subsample Spread Subsample
and One-sided

KNN 0.00 0.55 0.85 0.70 0.61 0.00 0.55 0.85 0.70 0.61
CHC 0.98 0.56 0.85 0.72 0.62 0.49 0.37 0.93 0.42 0.53
DROP3 0.79 0.50 0.81 0.67 0.56 0.45 0.42 0.91 0.56 0.57
IRB 0.60 0.70 0.78 0.75 0.65 0.41 0.50 0.90 0.63 0.62

Table 3. Experiment results for the databases with IR 3-9. Red.: reduction percentage,
Acc+: Majority class Accuracy, Acc-: Minority class Accuracy, AccG: Global Accuracy,
F-M: F-Measure

Selector Without over or One-sided Resampling 300%
under sampling

Red. Acc- Acc+ AccG. F-M Red. Acc- Acc+ AccG. F-M Red. Acc- Acc+ AccG. F-M

KNN 0.00 0.61 0.94 0.87 0.63 0.00 0.61 0.94 0.87 0.63 0.00 0.61 0.93 0.87 0.64

CHC 0.98 0.65 0.92 0.86 0.62 0.80 0.28 0.93 0.49 0.42 0.99 0.61 0.95 0.85 0.68

DROP3 0.90 0.60 0.93 0.84 0.65 0.75 0.34 0.96 0.63 0.48 0.95 0.60 0.92 0.84 0.64

IRB 0.60 0.65 0.96 0.91 0.66 0.52 0.59 0.96 0.84 0.67 0.59 0.74 0.93 0.90 0.71

SMOTE SMOTE Resampling 300%
and One-sided and One-sided

KNN 0.00 0.61 0.95 0.86 0.68 0.00 0.61 0.95 0.86 0.68 0.00 0.61 0.93 0.87 0.64

CHC 0.99 0.62 0.95 0.86 0.70 0.48 0.31 0.99 0.54 0.46 0.51 0.36 0.98 0.63 0.52

DROP3 0.90 0.59 0.91 0.84 0.61 0.42 0.42 0.97 0.73 0.57 0.49 0.35 0.95 0.64 0.50

IRB 0.60 0.91 0.90 0.90 0.78 0.43 0.52 0.93 0.85 0.56 0.46 0.61 0.96 0.86 0.68

Spread Subsample Spread Subsample
and One-sided

KNN 0.00 0.55 0.96 0.82 0.65 0.00 0.55 0.96 0.82 0.65
cline1-11 CHC 0.96 0.57 0.96 0.83 0.67 0.48 0.27 0.98 0.48 0.42
DROP3 0.84 0.55 0.93 0.80 0.63 0.40 0.37 0.97 0.65 0.52
IRB 0.63 0.89 0.86 0.87 0.71 0.45 0.48 0.97 0.77 0.61
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Table 4. Experiment results for the databases with IR > 9. Red.: reduction percentage,
Acc+: Majority class Accuracy, Acc-: Minority class Accuracy, AccG: Global Accuracy,
F-M: F-Measure

Selector Without over or One-sided Resampling 300%
under sampling

Red. Acc- Acc+ AccG. F-M Red. Acc- Acc+ AccG. F-M Red. Acc- Acc+ AccG. F-M

KNN 0.00 0.45 0.98 0.97 0.41 0.00 0.45 0.98 0.97 0.41 0.00 0.41 0.98 0.97 0.41

CHC 0.99 0.41 0.98 0.97 0.35 0.96 0.07 0.97 0.32 0.13 0.99 0.33 0.99 0.90 0.41

DROP3 0.98 0.28 0.98 0.92 0.33 0.95 0.07 0.98 0.45 0.13 0.97 0.25 0.98 0.89 0.30

IRB 0.60 0.30 1.00 0.97 0.33 0.50 0.33 0.98 0.92 0.36 0.59 0.39 0.98 0.96 0.38

SMOTE SMOTE Resampling 300%
and One-sided and One-sided

KNN 0.00 0.35 0.99 0.93 0.42 0.00 0.35 0.99 0.93 0.42 0.00 0.41 0.98 0.97 0.41

CHC 0.99 0.32 0.99 0.91 0.40 0.51 0.10 0.99 0.91 0.40 0.51 0.14 0.99 0.64 0.23

DROP3 0.94 0.28 0.98 0.91 0.33 0.48 0.18 0.99 0.73 0.26 0.51 0.07 0.98 0.44 0.13

IRB 0.59 0.66 0.92 0.91 0.38 0.40 0.28 0.99 0.85 0.36 0.48 0.42 0.98 0.96 0.44

Spread Subsample Spread Subsample
and One-sided

KNN 0.00 0.18 0.99 0.79 0.27 0.00 0.18 0.99 0.79 0.27
CHC 0.95 0.21 0.99 0.82 0.31 0.47 0.08 1.00 0.36 0.14
DROP3 0.82 0.18 0.99 0.77 0.27 0.40 0.11 0.99 0.55 0.19
IRB 0.65 0.81 0.79 0.79 0.25 0.35 0.12 0.96 0.57 0.19

it get a worse accuracy for the minority class, therefore the overall accuracy
obtained by One-sided is far outweighed by the results obtained by applying
oversampling or undersampling jointly with IS.

For databases with IR in the interval 3-9 (see Table 3), the results show that
applying an IS method after oversampling or undersampling always produces
better results for minority class and global accuracy than applying the One-
sided method. In terms of F-Measure it gets in most of the cases better results if
an instance selection algorithm is applied after oversampling or undersampling
in contrast to applying the One-sided method. The same as in databases with
IR in the interval 1-3. The results show that although IRB gets the lower re-
duction percentages, it outperformed the accuracy of the minority class, global
accuracy and F-Measure with respect to CHC, DROP3 and KNN no matter
if an oversampling or undersampling technique is applied before applying IRB.
Again, as in databases with IR in the interval 1-3, SMOTE & IRB obtained the
best results. On the other hand, the One-sided technique is far outweighed by
the results obtained by applying oversampling or undersampling jointly with IS
methods.

The results for databases with IR greater than 9 (see Table 4), show that
applying an IS method after oversampling or undersampling always produces
better results for the minority class and the global accuracy than applying the
One-sided method. In this type of databases Spread Subsample & IRB obtained
the best accuracies for the minority class. However, the best global accuracy was
obtained by Resampling & IRB. The results show that the One-sided method is
far outweighed by the results obtained by applying oversampling or undersam-
pling jointly with an IS method.
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4 Conclusions and Future Work

The instance selection methods are sensitive to imbalance databases. The main
problem is that the minority class always obtains lower accuracy than the ma-
jority class. Only a few works have been proposed to deal with the imbalance
problem on instance selection [18], however, there are some techniques based
on oversampling and undersampling that can be combined with IS methods to
improve the accuracy of the minority class.

The main contribution of this work is an empirical study of combining over-
sampling and undersampling techniques with some instance selection methods
based on nearest neighbor rule (NN), evolutionary algorithms and ranking al-
gorithms. The results show that this combination improves the accuracy of the
minority class with respect to the original dataset. For imbalanced databases
with an IR in the interval 1-9 the best option is to use SMOTE & IRB, for
databases with an IR greater than 9 there are two main combinations: Resam-
ple & IRB, which obtains high global accuracy, and Spread Subsample & IRB,
which obtains high accuracy for the minority class.

As future work, we plan to develop an instance selection algorithm to directly
deal with imbalanced datasets.
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Abstract. Fuzzy Cognitive Maps (FCM) are a proper knowledge-based tool for 
modeling and simulation. They are denoted as directed weighted graphs with 
feedback allowing causal reasoning. According to the transformation function 
used for updating the activation value of concepts, FCM can be grouped in two 
large clusters: discrete and continuous. It is notable that FCM having discrete 
outputs never exhibit chaotic states, but this premise can not be ensured for FCM 
having continuous output. This paper proposes a learning methodology based 
on Swarm Intelligence for estimating the most adequate transformation function 
for each map neuron (concept). As a result, we can obtain FCM showing better 
stability properties, allowing better consistency in the hidden patterns codified 
by the map. The performance of the proposed methodology is studied by using 
six challenging FCM concerning the field of the HIV protein modeling. 

Keywords: Fuzzy Cognitive Maps, Stability, Learning, Swarm Intelligence. 

1 Introduction 

The FCM theory [1] was introduced by B. Kosko as an improvement of the Cognitive 
Mapping which uses fuzzy reasoning in its knowledge representation scheme. From 
the structural point of view, FCM may be denoted as directed graphs with feedback, 
consisting of nodes and weighted arcs. Nodes or concepts are equivalent to neurons in 
connectionist models and represent variables of the modeled system; while weights 
associated to links denote the causality among concepts. In a FCM, each connection 
takes value in the range 1,1 . It denotes the degree of causality between two nodes 
as a result of the quantification of a fuzzy linguistic variable [2-3], which is regularly 
assigned by experts at the modeling stage. The activation value of concepts is also 
fuzzy in nature and regularly takes values in the range 0,1 , although the scale 1,1  
is also allowed. Hence, the higher the activation value, the stronger the influence of 
the concept over the system, which helps to understand the modeling. 

In the past decade, FCM have gained considerable research interest and are widely 
used to analyze causal systems such as system control, decision making, management, 
risk analysis, text categorization, prediction, etc [4]. In order to increase the usability 
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of this knowledge-based approach, numerous researchers have developed learning 
algorithms [3], mainly varying the causal weight matrix. However, these approaches 
suppose that FCM are closed systems and they do not consider external influences, 
while other factors such as the FCM stability are ignored. On the other hand, as far as 
known, there not exist learning algorithms for enhancing the system stability once the 
causality is established. Based on these considerations, the main goal of this work is 
to introduce a new learning algorithm which is oriented to estimate the most adequate 
transformation function for each map concept, simulating the effect of ideal external 
stimulus over the neurons with the hope to improve the map stability. To do that, we 
use a Swarm Intelligence method to solve the related optimization task. 

It is relevant to remark that the authors will be focused on sigmoid FCM, instead of 
discrete (binary o trivalent) maps. This remark is motivated by the benchmarking 
analysis discussed in [5] where results showed that the sigmoid function significantly 
outperforms the other functions, by using the same decision model. The rest of the 
paper is organized as follows: in next Section 2 the formulation of FCM is briefly 
described. In Section 3 we present the proposed learning algorithm which is oriented 
to compute the family of threshold functions improving the map convergence. After 
that, Section 4 introduces the experimental framework and also provides comments 
about the simulations. Finally, conclusions are given in Section 5. 

2 Fuzzy Cognitive Maps 

Without loss generality, a simple FCM can be defined using a 4-tuple , , ,  
where , , , … ,  is a set of  concepts of the graph, : ,  is 
a function which associates a causal value 1,1  to each pair of nodes , , 
denoting the weight of the directed edge from  to . In this context, it is important 
to notice that  represents the causality degree between the concepts  and . Thus 
the weigh matrix  gathers the system causality which is frequently determined 
by experts. Likewise, :  is a function that associates the activation degree 

 to each concept  at the moment  1,2, … , . Finally, a transformation 
or threshold function : 0,1  is used to keep the activation value of concepts in 
the interval 0,1 . Following equation (1) shows the inference mechanism using the 
state vector  as the initial configuration. This inference stage is iteratively repeated 
until a hidden pattern [6] or a maximal number of iterations  are reached.  

 ,                                                1  

The most frequently used threshold functions [5] are: the bivalent function, the 
trivalent function, and the sigmoid variants. The effects on the selection of a specific 
function over the stability and inference capabilities of the FCM have been widely 
explored in [7]. From this work some important remarks were concluded: 

• Discrete FCM (using a binary or trivalent function) never show chaotic 
behavior. It means that always a fixed-point attractor or a limit cycle will be 
detected in the map outputs. These states have the following behavior: 
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o Fixed-point attractor (    , ): the system 
produces the same output after the time . 

o Limit cycle ( ,    , ): the same output 
or state vector is regularly observed with period .   

• Continuous FCM (using a sigmoid function) additionally may exhibit chaotic 
states, where the FCM model continues to produce different state vectors for 
successive cycles. In these situations the FCM can not stabilize. 

In summary, from the algebraic point of view, the states characterizing the system 
are iteratively updated by multiplying the causal weight matrix, by the current state 
vector until a stopping condition is reached. Then the activation value of each concept 
is directly influenced by the values of the connected concepts with the appropriate 
weights, and also taking into account its previous value; showing the causal effect of 
changes on the concept’s activation value on the whole map. That’s why FCM theory 
is a suitable approach for handling modeling and simulation tasks. 

3 Proposed Learning Methodology 

In the literature several supervised and unsupervised learning algorithms have been 
proposed, mainly focused on the transformation of the causal weight matrix. As a 
brief categorization they can be gathered in three major groups [4]: Hebbian-based, 
population-based and hybrid approaches. On the other hand, Tsadiras[7] demonstrated 
that the inference capability of FCM may be strongly influenced by the selection of 
the concept’s transformation function. Based on the Tsadiras’ work, we conducted a 
set of empirical experiments using sigmoid FCM, where the parameter  was changed 
as next equation (2) shows. Observe that in our simulations a custom amplification 
value for each map concept  is assumed. Results were quite promising: we observed 
that variations of factor  lead to some changes on the map stability. Hence, it seems 
to be reasonable to suppose that a learning algorithm could helps to improve the map 
convergence, by solving the related real-parameter optimization problem. 11 .                                                         2  

Before presenting the learning methodology, we need to answer the following 
question: how is affected the FCM inference mechanism by the inception of a 
function  for each node ? Normally FCM are considered as closed systems where 
external factors affecting the concepts are omitted. But, in many real world problems 
this perception will be inadequate and may affect the accuracy of simulations. For 
example, it is known that biological behavior on proteins not only depends on the  
amino acids interaction, but also depends on the external factors such as the chemical 
processes influencing the catalytic responses. Notice that such external factors may be 
modeled by using a function  for each neuron  (instead of the same function for all 
the neurons), ensuring better stability. It means that the activation value of a neuron  
on the map will be now conditioned by the free interaction of the connected nodes and 
also by the steepness  of its threshold function  which denotes the stimulus. 
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It should be mentioned that other works have been proposed to simulate external 
influence over the map concepts. For example, Stylios and Groumpos [8] introduced a 
new FCM model where each concept has an external output (bias), which influences 
each node with a weight and it is take n into account at the calculation rule. It is easy 
to perceive the similarity between the Stylios’ model and our proposal, since both are 
oriented to simulate external influences over the neurons, although they use different 
implementations to do that. Of course, our approach leads to a different interpretation 
of the causal influences since the activation capability of each neuron (now influenced 
by its steepness ) should be also considered. However, this aspect is not discussed in 
the paper since the authors prefer to be focused on the system stability. 

Here, the learning step is focused on estimating an appropriate family of sigmoid 
functions ensuring certain stability features. More explicitly, we need to find a family 
of sigmoid functions , , … , , where the th function will be used for 
transforming the activation value of the th concepts. In practice, it implies to find the 
steepness  for each threshold function. With this purpose in mind, we use a Swarm 
Intelligence technique [9]. Particle Swarm Optimization (PSO) is a non-direct search 
method for solving challenging continuous problems [10], from a distributed point of 
view without any centralized control. In the standard PSO each agent (called particle) 
denotes a -dimensional point in the solution space. For our optimization problem,  
should be considered as the total number of nodes on the map. Hence, the th position 
of each particle will correspond to the steepness  of the th function. 

Particles adjust their position by using a combination of an attraction to the best 
solution that they individually have found, and an attraction to the best solution that 
any particle has found [3], imitating those who have a better performance. This search 
method has proven to be quite efficient for solving real-parameter optimization 
problems. However, the particle swarm is frequently attracted to local optima, causing 
premature convergence or stagnation configurations. For this reason, this paper uses a 
variant called PSO with Random Sampling in Variable Neighborhoods [11-12] which 
is capable to notably outperform the standard algorithm. Next equation (3) shows the 
objective function that should be minimized during the search steps. 

, , , … ,                                        3  

In the above function,  denotes the number of instances (historical data),  is the 
number of neurons,  denotes the maximal number of times, whereas  represents 
the activation value of the th concept for the current time , using the th instance as 
initial condition. Here a simple instance is a sequence of values codifying the initial 
conditions of the system, and the corresponding response. In brief, during the learning 
step the algorithm attempts to reduce the global variability of the system response for 
each input sequence over the time. In this scheme a solution will be considered as no 
feasible if the system inference is negatively affected. It should be remarked that the 
weight matrix can not be modified during this process since our model is oriented to 
compute more stable maps once the causality estimation is done. 
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4 Simulations and Discussion 

In order to validate the proposal discussed in the above section we use six previously 
adjusted FCM taken from the work of Grau and Nápoles [13-14]. Such maps describe 
the behavior of some HIV mutations related to their resistance to existing antiviral 
drugs. Accordingly, the authors described the HIV protease protein as a simple FCM 
where each sequence position1 is taken as a map concept, while another node for the 
resistance target is also defined. Then, all the neurons are fully connected; also there 
exist causal links between each sequence position and the resistance concept. It means 
that the resistance is conditioned by the interaction of the amino acids once a specific 
mutation (simple or multiple) takes place, leading to different levels of resistance to 
the target drug. This model can not represent the external influences. 

It is important to mention that each map denotes the protein behavior for a specific 
drug: Amprenavir (APV), Indinavir (IDV), Saquinavir (SQV), Nelfinavir (NFV), 
Ritonavir (RTV) and also Atazanavir (ATV). Each drug has associated a high-quality 
filtered datasets taken from [15] consisting in reported mutations and their resistance 
value. The configuration of the PSO-RSVN algorithm used as optimizer is fixed as 
follows: 40 particles as the population size, five variable neighborhoods (m = 5), 80 
generations, and the allowed number of evaluations without progress is set to 20. In 
addition, the number of times of the FCM inference process is =100.  

As a first analysis the stability of the resistance node of each drug for a randomly 
selected mutation is measured. Figure 1, 2 and 3 show the activation value of the 
resistance over the time for two scenarios: the solid line represents the FCM response 
without any modification, whereas the dashed line denotes the FCM response using 
the family of sigmoid functions found by the learning method. From these simulations 
it is possible to conclude that our proposal induces better stability features over the 
drug resistance target. In this case, only the resistance node was monitored since it is 
the decision concept, allowing to predict whether a new mutation will be susceptible 
to the drug or not. Note that the system response changes for next drugs: IDV, RTV 
and ATV. In such cases the final classification rate does not suffer any change since 
the resistance target for a drug is measured in a certain range instead of using a single 
value. However, we noticed that some FCM achieve better accuracy. 

For better understanding of this issue let us analyze the behavior of the selected 
mutation “FKLDVFMIIVVSVTVNML” for the map IDV. This sequence has high 
level of resistance for the drug IDV, which means that the higher the activation value 
of the resistance node, the better accuracy should report the model for this instance. In 
fact, in the figure 1a) the FCM inference process is able to compute higher resistance 
after applying the learning algorithm. As a partial conclusion, four behaviors from 
results may be observed: (1a-1b) it possible to compute better stability from stable 
maps, (2a-2b) we can obtain stable maps from maps exhibiting cyclic patterns, (3a) it 
is possible to compute more stable maps from chaotic systems, and (3b) we can obtain 
a map having stable features from a FCM exhibiting a chaotic behavior. 

                                                           
1 The protease sequence is defined by 99 amino acids where each position can be represented 

by its normalized contact energy [16]. In order to reduce the number of nodes in map, the 
authors use a subset of amino acids previously associated with resistance. 
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Fig. 1. Activation value of the resistance concept for a) drug IDV b) drug RTV. The solid line 
denotes the FCM response using the same function for all the neurons, whereas the dashed line 
represents the FCM output using the family of functions found by the learning scheme. 

 

Fig. 2. Activation value of the resistance concept for a) drug ATV b) drug APV. The solid line 
denotes the FCM response using the same function for all the neurons, whereas the dashed line 
represents the FCM output using the family of functions found by the learning scheme. 

 

Fig. 3. Activation value of the resistance concept for a) drug SQV b) drug NFV. The solid line 
denotes the FCM response using the same function for all the neurons, whereas the dashed line 
represents the FCM output using the family of functions found by the learning scheme. 
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In order to generalize these results we introduce a second experiment consisting on 
computing the variability of the system response over the time, taking into account all 
historical data for each drug. In practice, this simulation is equivalent to compute the 
objective function (3) for each instance before applying the learning algorithm, and 
then computing the same formula once the learning process is done. Due to the 
stochastic features of the proposed learning scheme in each case we select the best 
solution from 10 independent simulations. Next table 1 shows the number of instances 
(mutations), as well as the average, mean and standard deviation for the six studied 
drugs with respect to the objective function. In summary, we can conclude that proper 
selection of the family of sigmoid functions lead to better stability.  

Table 1. Variability of the system response over the time for all instances (mutations) 

 Before After 
Drug Mutations Average Median Std. deviation Average Median Std. deviation 

APV 96 39.09962 39.83242 1.57105 1.98303 1.96438 0.34534 
ATV 69 13.84345 13.77815 2.18643 2.43406 1.87842 1.03477 
IDV 137 10.58505 10.38378 4.25156 3.78721 3.53374 0.97868 
RTV 151 19.19583 19.26046 0.75602 7.52529 7.37976 0.70137 
NFV 204 19.59037 32.66005 14.4047 2.835233 2.78300 0.29764 
SQV 139 13.92619 12.02521 6.83530 6.158739 6.30550 0.56349 

 
Why it is desirable more stable systems? To answer this question let us analyze the 

inference process for the map SQV regarding the selected mutation “FKLDVFMIGV 
PVISTVNML”. It has a high level of resistance to drug SQV. When the same treshold 
function is used for all the nodes, the activation level of the decision node has lower 
degree of resistance towards the end, and hence the sequence may be erroneously 
classified as susceptible. However, using the family of sigmoid functions found by the 
learning algorithm the final neuron is more stable, although the biological system 
remains cahotic. In a few words, after apliying the methodology discussed here, the 
map SQV will be more chance to correctly classify new mutations. 

5 Conclusions 

Fuzzy Cognitive Maps are a useful neurofuzzy technique for modeling and simulation 
which have been successfully applied to numerous real world problems. However, 
they are regularly considered as closed systems, where the effects of external factors 
over neurons are omitted. Besides, most of the existing learning algorithm are mainly 
oriented to the transforming the causal weight matrix, ignoring other aspects such as 
the system convergence. Inspired on these limitations, the present paper proposed a 
new learning approach for estimating the proper threshold function for each neuron in 
sigmoid FCM. It attempts to efficiently simulate the effects of external stimulus over 
the concepts, where the stability of the modeled system is the main goal. By doing so, 
we used a Swarm Intelligence based approach with diversity control, for computing 
better estimations during the optimization of the objective function. 
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In order to validate our proposal we used six FCM concerning the field of the HIV 
protein analysis. From these results we can definitely conclude that, after applying the 
learning methodology, adjusted FCM exhibit more stability. In addition, we observed 
that (i) it is possible to achieve better stability from stable maps, (ii) it is possible to 
compute stable maps from maps exhibiting cyclic patterns, (iii) it is possible to obtain 
more stable maps from chaotic systems, and finally (iv) it is possible to accomplish a 
stable map from a FCM exhibiting a chaotic behavior. In this sense more stable maps 
allows to extract more consistent patterns from the system behavior. The future work 
will be focused on studying the FCM convergence, but now from the point of view of 
the causal links characterizing the neurons interaction.  
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Abstract. Data mining for the discovery of novel, useful patterns, en-
counters obstacles when dealing with high-dimensional datasets, which
have been documented as the “curse” of dimensionality. A strategy to
deal with this issue is the decomposition of the input feature set to
build a multi-classifier system. Standalone decomposition methods are
rare and generally based on random selection. We propose a decompo-
sition method which uses information theory tools to arrange input fea-
tures into uncorrelated and relevant subsets. Experimental results show
how this approach significantly outperforms three baseline decomposi-
tion methods, in terms of classification accuracy.

Keywords: multi-classifier systems, feature set decomposition, infor-
mation theory.

1 Introduction

The technological advancement on the field of sensors and other measuring
methodologies, has provoked the existence of processes which output data de-
scribed by a large amount of features. These are often termed high-dimensional
datasets and their distinctive quality is that the number m of features describing
the data is far greater than the number N of data instances (m$ N).

Performing machine learning from such datasets is of high interest. Not only
because of the inherent usefullness of discovering the underlying patterns, but
also because frequently there is poor backgorund knowledge about the domains
from where the data are drawn. Certain domains, e.g. genetic studies or biochem-
istry, yield datasets described by a number of features in the order of 104, while
containing only a few hundred instances [14]. This extreme disproportion con-
ducts to the appearance of certain fenomena affecting the performance of most
machine learning algorithms, which is known in the literature as the “curse” of
dimensionality [6].
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Many strategies have been applied to tackle this issue. One of them is the
construction of multi-classifier systems (MCS) [2], where several complementary
models are combined in some way to make predictions. For high-dimensional
problems, MCS generally train each individual classifier using only a subset of the
original data features, with the intention of reducing the effects of dimensionality.

Such an approach is the Random Subspace Method (RSM) for constructing
decision forests [8], which introduced a general framework to deal with high-
dimensional data. RSM iteratively selects random subsets of features from the
original dataset (i.e. subspaces), which are then employed to train decision trees.
This operation results in an ensemble of models trained with different projections
of the data, whith the random subspacing ensuring diversity. This action of
generating several subsets from an original feature set is commonly defined as
“decomposition” [10].

However, there’s no evidence to assert whether random decomposition is the
most effective in terms of overall classification accuracy. Ideally, all features
should be allocated inside a decomposition in a way that maximizes their com-
bined usefullness. Some features will work well together, some will not because
of redundancy or irrelevance.

In this paper, we explore the application of information theory tools to the
decomposition task. After covering some fundamental concepts about feature set
decomposition in Section 2, we present an information theoretic decomposer in
Section 3, which is the main contribution of this work. Section 4 summarizes an
experimental study where statistical tests show how our approach significantly
outperforms 3 baseline methods, in terms of classification accuracy, over 19 high-
dimensonal datasets.

2 Feature Set Decomposition for the Creation of
Multi-classifiers

Decomposition methods are rarely found as an independent field of study. Usu-
ally a non-random decomposition strategy is developed as a secondary product
of a certain ensemble construction method [11,9]. A tight integration between
the different layers of a multi-classifier is of course desirable. But standalone
decomposition methods [4] present their own advantages. According to Maimon
and Rokach [10], some of these advantages are:

– Increase in classification performance, due to the simplification of the task.
– Scalabiliy to high-dimensional datasets.
– Flexibility in learning algorithm selection.

Given an inducer I, a combination method C and a training set S with input
feature set F = {f1, f2, ..., fm} and a target feature c, the goal is to find an
optimal decomposition Dopt of the input feature set F into n mutually exclusive
subsets Di = {di1, di2, ..., dik} | dij ∈ F ; i = 1, ..., n that are not necessarily
exhaustive, such that the generalization error of the induced classifiers, combined
using method C, will be minimized.
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3 Information Theoretic Decomposition

Several machine learning techniques have been inspired on information theory
concepts, especially in the field of feature selection. Some works have taken
advantage of the usefulness of such concepts, to measure how much information
a given description feature carries about the target feature. The root concept
in this domain is the entropy of a feature X , H(X). The entropy of a feature
could be interpreted as the amount of uncertainty in drawing, at random, a value
from it [12]. Furthermore, the conditional entropy between two given features
H(X |Y ) expresses how much uncertainty remains about X , once Y is known.
These two concepts are further combined to form other relational information
measures, which prove to be very useful in assessing the interaction of features
in a machine learning environment.

In particular, the Symmetrical Uncertainty (SU) and the Conditional Mutual
Information (CMI) display some desirable properties. The success of applying
these for attribute selection problems has been demonstrated in algorithms like
FCBF[15] and CMIM[5].

SU describes how much information is shared by two given features. It is a
normalized measure, with 1 indicating that the values in either feature can be
predicted from the other and 0 indicating that X and Y are independent.

SU(X,Y ) = 2

[
H(X)−H(X |Y )

H(X) +H(Y )

]
(1)

CMI is an estimate of the amount of information shared between X and Y
when Z is known. As shown in Equation 2, when the amount of information
about X contained in Y is already given by Z, CMI equals 0 even if both Z and
Y are informative and mutually independent.

CMI(X,Y |Z) = H(X |Z)−H(X |Y, Z) (2)

Regardless of the success in the application of the information theory approach
in attribute selection algorithms, the selection problem essentially differs from
the decomposition problem. Our goal will be to simultaneously construct the
desired amount of feature subsets, so that the most appropriate subset will be
determined for each feature analyzed.

For this information theoretic decomposition we will traverse 3 phases, each
one aiming at a key aspect of multi-classifiers construction: relevance, diversity
and non-redundancy. The whole procedure is summarized in Algorithm 1.

3.1 Phase A: Relevance

It is desirable that only informative features should be considered to form the
decomposition. Hence, the first phase will ensure that non-informative features
are excluded. To achieve this, all description features that show information
independence from the target feature or class, will be removed.

Phase A will output a depurated feature set F ′, with SU(f, c) > 0 | ∀f ∈ F ′.
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3.2 Phase B: Diversity

It has been proved that individual classifiers with performance error under 0.5
and weakly correlated decisions, will display a higher performance when com-
bined in an ensemble [2]. This weak correlation among the individual decisions
is usually termed diversity and represents a key property on every ensemble.

Our depurated feature set F ′ will most likely contain some subset of highly
relevant features which are also highly independent with regard to each other.
Phase B will find these features and will designate them as "seeds", from which
the decomposition subsets will grow. This is accomplished through an iterative
procedure, where CMI is used to determine the usefulness and diversity of fea-
tures. Starting from the most informative feature, at each iteration a new feature
is selected, based on the amount of additional information it provides. It becomes
a seed since it carries information about the class that is not already provided
by the previously selected seeds.

Phase B outputs the features that will be used as seeds to build up the de-
composition subsets. Their main property is that each one of them provides an
amount of information about the class that complements the others. Our in-
tuition is that such property should enhance the ensemble diversity, once the
respective feature subsets are generated from uncorrelated seeds.

3.3 Phase C: Non-redundancy

As a final requirement, the decomposition must decide whether to include each
description feature and where to allocate it. The main goal in this phase is
to distribute features among subsets, in a way that optimizes their combined
usefulness to predict the class. To achieve this, every feature should be allocated
to the subset where it provides most information, i.e. where it is least redundant.
Furthermore, a feature that is redundant in all subsets should not be considered.

We will define the amount of redundancy that a feature X introduces to
a subset Z, as the maximum difference between the correlation of X to the
members of Z and the relevance of X , as stated in Equation 3.

R(X,Z) = max
∀z∈Z

[SU(X, z)− SU(X, c)] (3)

Subsequently, a feature should be allocated to the subset where it introduces
the least redundancy. To further increase the flexibility of the model, a threshold
could be used to tolerate certain amount of redundancy. As a result, all target
features are evaluated and either discarded or included in the most appropriate
subset. This phase outputs the final decomposition D, which can then be applied
to the original dataset to train an ensemble of n classifiers.

4 Experimental Study

In order to evaluate the performance of our information theoretic decomposer, we
have tested this approach in an experimental setup. The objective is to determine
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Algorithm 1. Information theoretic feature set decomposition (ITD)
Let F be the initial feature set (c ∈ F is the target feature).
Let D = {D}ni=1 be the decomposition (n is the desired number of subsets) and let S
be the set of seeds.
Let ξ be a redundancy threshold, with ξ ∈ [−1, 1].

1. F ′ = {f ∈ F | SU(f, c) > 0} // Phase A
2. S ← {argmax

∀f∈F ′
SU(f, c)} // Phase B

3. While |S| < n do

(a) x = argmax
∀f∈F ′

{
min
∀s∈S

CMI(f, c|s)
}

(b) S ← S ∪ {x}
(c) F ′ ← F ′ − {x}

4. Di ← si | si ∈ S; i = 1, 2, ..., n
5. ∀f ∈ F ′ // Phase C

(a) μ = argmin
i=1,...,n

R(f,Di)

(b) If R(f,Dμ) < ξ then Dμ ← Dμ ∪ {f}

how this method compares to other baseline decomposition methods in terms of
classification accuracy, when working with high-dimensional datasets.

4.1 Datasets

There is a number of benchmark repositories on the web providing structured
high-dimensional datasets. The experimental data for this study was composed
from different sources.

The NIPS 2003 feature selection challenge [7] provided us with 3 datasets:
“Arcene”, “Dorothea” and “Gisette”. The remaining 3 datasets presented for that
challenge do not comply with the desired property of m$ N . Furthermore, all
6 datasets from the basic track of the RSCTC 2010 challenge on mining DNA
data for medical diagnosis [14] were included in our study. In addition, a group of
10 datasets from the Kent Ridge (KR) Bio-Medical Data Set Repository1 were
also included.

A preprocessing was needed in 3 of the KR datasets (DLBCL-NIH, DLBCL-
Stanford and Prostate Tumor), where missing values were replaced by the per-
class average of the corresponding feature values, although other more suited
strategies will be tested in the future. Some interesting properties of the exper-
imental data (Table 1) are: the variety in the number of classes (ranging from 2
to 7), the presence of unbalanced classes (in 13 out of the 19 datasets) and the
variety in the number of features and instances.

1 http://datam.i2r.astar.edu.sg/datasets/krbd/

http://datam.i2r.astar.edu.sg/datasets/krbd/
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4.2 Algorithms and Methods

The general procedure was to decompose the feature set in different ways to train
a decision forest. The ensemble decision is then obtained through a standard
average combination of the class posterior probabilities. Each decision tree was
built using the C4.5 algorithm. For every decomposition method several values
for the number of subsets were considered and tested: up to 50 at intervals of 5.

Table 1. Description of the experimental data (N is the number of instances, m
denotes the number of features) and averaged accuracy rates of the methods. The best
performances for each dataset are emphasized in bold. The threshold value (ξ) and
number of subsets (s) corresponding to de best performances of ITD are also shown.

Dataset N m RSM IFCBF CERP ITD s ξ

Arcene 200 10000 0.74 0.77 0.78 0.78 30 0.2
Dorothea 350 100000 0.76 0.65 0.58 0.71 5 0.1
Gisette 1000 5000 0.93 0.92 0.93 0.93 10 0.5
E-GEOD-10334 123 54676 0.83 0.85 0.83 0.84 25 0.1
E-GEOD-5406 105 22284 0.65 0.65 0.63 0.65 15 0.1
E-GEOD-13425 95 22278 0.89 0.89 0.88 0.90 30 0.3
E-GEOD-13904 113 54676 0.40 0.41 0.40 0.43 20 0.3
E-GEOD-4290 89 54676 0.62 0.63 0.63 0.64 30 0.5
E-GEOD-9635 92 59005 0.52 0.53 0.55 0.57 25 0.5
ALL-AML Leukemia 72 7130 0.93 0.92 0.93 0.96 20 0.3
Breast Cancer 97 24482 0.64 0.67 0.69 0.69 30 0.1
Central Nervous System 60 7130 0.51 0.51 0.53 0.55 10 0.1
Colon Tumor 62 2001 0.75 0.75 0.80 0.79 20 0.1
DLBCL-NIH 240 7400 0.53 0.54 0.57 0.55 10 0.3
DLBCL-Stanford 47 4027 0.87 0.91 0.93 0.92 30 0.1
MLL Leukemia 72 12583 0.93 0.95 0.96 0.96 30 0.3
Lung cancer 181 12534 0.98 0.97 0.98 0.98 10 0.3
Prostate Tumor 136 12601 0.87 0.87 0.89 0.90 15 0.2
Stjude Leukemia 327 12559 0.76 0.79 0.76 0.81 10 0.1

We compared 4 decomposers:

– RSM, the Random Subspace Method [8], which builds subsets of randomly
selected features and allows overlapping, i.e. a feature may appear in more
than one subset. Three subspace sizes were tested, as proportions from the
total: 0.1, 0.3 and 0.5.

– IFBCF, an iterative application of an attribute selection algorithm, in this
case FCBF [15]. Each iteration builds a subset and the selected features are
excluded from subsequent iterations. This particular algorithm was selected
for its time efficiency and its similarity with our decomposer.

– CERP, Classiffication by Ensembles from Random Partitions [3], which is
a successful decomposition method adapted from RSM. As its name states,
this method randomly partitions the feature space, thus avoiding overlaps.
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– ITD, our information theoretic decomposer, which also avoids feature over-
laps. Redundancy threshold values we considered were: 0.1, 0.2, 0.3 and 0.5.

All implementations and tests were performed using Weka [13] 3.7.6. For the
experimental scheme and statistical considerations, we followed what is recom-
mended in a work from Demšar [1]. Five repetitions of a two-fold cross-validation
(5x2cv) were performed for every combination of parameter values, with each
algorithm over each dataset. The performance criterion was the balanced accu-
racy rate, recommended for experiments where unbalanced datasets are present
[7]. A Friedman test was applied to determine whether significant differences
in performance exist within the group of combination algorithms. Afterwards,
the the Holm procedure was used as a post-hoc test, to help identifying those
significant differences. All tests were performed with a 95% confidence level.

4.3 Experimental Results

The performance of each method over each dataset was computed averaging the
10 performance measurements resulting from the 5x2cv. The best performance
of each method over each dataset was selected from the different parameter
settings. As a result, ITD was ranked first in 14 datasets out of 19 (Table 1).

A Friedman test was performed, it yielded significant differences on the ac-
curacies of the 4 methods (p = 2.7408 · 10−4). The Holm procedure rejected all
3 hypotheses that claim non-significant differences between ITD and the other
methods (Table 2). Hence, ITD significantly outperforms the others.

Table 2. Average rankings of the algorithms according to the Friedman test and Holm
procedure table for α = 0.05

Algorithm Ranking p Adjusted p
ITD 1.50 - - -

CERP 2.37 0.03814 0.05 rejected
IFCBF 2.92 0.00069 0.025 rejected
RSM 3.21 4.43·10−5 0.0167 rejected

5 Conclusions and Future Work

Information theory tools may provide useful insight about the internal properties
of a dataset. They reveal feature interactions that are present regardless of the
machine learning algorithm or training procedure. This has been sucessfully
exploited in the past on the field of attribute selection, accounting for fast and
effective algorithms. The same logic can be applied to decompose the feature set
in a way not so different from a filter algorithm for attribute selection.

The experimental and statisical results suggest that this intuition may lead
to significantly superior performances. A decomposition method that takes into
account the internal properties of the dataset will provide independence from
the learning algorithm, enabling its use on different scenarios. In particular,
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this may prove useful when dealing with high-dimensional datasets, since these
are often unmanageable in full size, as well as difficult to pre-process because of
the unavailability of background knowledge on the domain.

We think there is potential behind this result. As a next step it is essen-
tial to test this decomposition method using other learning algorithms to train
the ensemble members. Furthermore, a thorough study on the diversity of such
generated decompositions will most likely reveal new interesting insights. Addi-
tionally, it is relevant to adapt the current approach so that it allows overlappings
on the feature subsets, thus enabling useful features to be present in more than
one subset, as long as it does not affect the overall diversity.
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Abstract. Feature Selection in very-high-dimensional or small sample
problems is particularly prone to computational and robustness compli-
cations. It is common to resort to feature ranking approaches only or
to randomization techniques. A recent novel approach to the random-
ization idea in form of Dependency-Aware Feature Ranking (DAF) has
shown great potential in tackling these problems well. Its original def-
inition, however, leaves several technical questions open. In this paper
we address one of these questions: how to define stopping rules of the
randomized computation that stands at the core of the DAF method.
We define stopping rules that are easier to interpret and show that the
number of randomly generated probes does not need to be extensive.

Keywords: dimensionality reduction, feature selection, randomization,
stopping rule.

1 Introduction

Feature selection (FS) is one of dimensionality reduction techniques, that pre-
serves meaning of the selected original data features, while irrelevant features
are discarded. Assume a general pattern recognition problem (typically a classi-
fication or clustering problem) in N -dimensional feature space. In the particular
case of classification, some objects described by means of features f1, f2, . . . , fN
(real valued or discrete) are to be classified into one of a finite number of mu-
tually exclusive classes. The common initial step in classifier design is to choose
a reasonably small subset of informative features by using a feature selection
method. The first step in solving the FS problem involves choosing appropriate
method based on the knowledge (or lack of therein) of available training data
properties. The key decision to be made involves the choice of the criterion and
the search algorithm capable of optimizing such a criterion. Note that feature
subset search is potentially an expensive combinatorial problem as the number
of candidate subsets is very high. The search is stopped according to chosen
stopping rule; it can be defined in terms of achieved completeness of search,
criterion convergence threshold, subset size limit, time, etc.

In recent years the focus of feature selection research is moving from the rela-
tively well covered area of low-to-mid-dimensional recognition problems towards
very-high-dimensional problems [1]. As the high-dimensional FS is susceptible
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to problems arising from insufficient sample size and computational complexity,
the FS methods often prefer simpler analysis ignoring inter-feature dependen-
cies, e.g., based on feature ranking [2]. This simplifications is commonly assumed
less harmful than obtaining misleading information through serious estimation
errors due to over-fitting. The computational complexity can be reduced by
resorting to randomized methods, however, this is counterbalanced by loss of
optimality due to a user-defined time restriction of the search process. An exam-
ple of such techniques is Relief algorithm [3] based on a simple idea of repeated
randomized sampling of one pattern followed by feature weights update. Com-
binations of randomized and greedy algorithms [4] seems to be better suited for
high-dimensional tasks, than randomized methods based on Genetic algorithms,
Simulated Annealing, and Tabu Search [5], which provide strong optimization
mechanism, at the cost of long converge times. Method’s over-fitting has been
tackled by a random restriction of inter-feature dependencies evaluation by re-
peatable running FS process on various random subspaces in [6].

Finally a combination of ranking and randomization called Dependency-Aware
Feature Ranking has been introduced in [7]. The idea of individually best rank-
ing is generalized to evaluate features contributions in a sequence of randomly
generated feature subsets. The method has been shown capable of selecting fea-
tures reliably even in settings where standard feature techniques fail due to
problem complexity or over-fitting issues and where individual feature ranking
results are unsatisfactory. Several open questions, however, remain with respect
to DAF applicability, that have not been addressed in [7]. The two most practi-
cally important are: a) What is the right final subset size?, and b) How long is
it necessary to let the random probe generation process run?

The problem to specify the optimal number of features to be selected, is
closely related to the number of available data, dimension of the feature space
and also to the underlying classification complexity. It is well known that in
case of infinitely large training sets we should use all features since by omitting
features the classifier performance cannot be improved. If a multidimensional
training set were not large enough then most classifiers would tend to over-fit
with the resulting poor classification performance on the independent test data.
In such a case the generalizing property of the classifier could be improved by
selecting a subset of informative features. Obviously, the optimal choice of the
final reduced dimensionality depends on the size of the training data set and the
complexity of the underlying classification problem. In this sense the question
a) is beyond the scope of this paper since the size of the training data set is not
considered explicitly. For a more detailed discussion of dimensionality problems
in the context of standard individual feature ranking see e.g. [8]. In the following
we investigate some aspects of question b), i.e., we discuss different options
specifying the stopping rule of the feature ordering process.

2 Dependency-Aware Feature Ranking

Denoting F the set of all features F = {f1, f2, . . . , fN} we assume that for each
subset of features S ⊂ F a feature selection criterion J(·) can be used as a
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measure of quality of S. We assume the criterion J(·) to be bounded according
to the most feature selection criteria (estimates of classification accuracy are
typically bounded by [0,1]).

The starting point of dependency-aware feature ranking is a randomly gener-
ated sequence of feature subsets to be denoted probe subsets S = {S1, S2, . . . , SK},
Sj ⊂ F, j = 1, 2, . . . ,K, where each subset is evaluated by the criterion function
J(·). For details on probe generation see [7].

Given a sufficiently large sequence of feature subsets S, we can utilize the
information contained in the criterion values J(S1), J(S2), . . . , J(SK) to assess
how each feature adds to the criterion value. Therefore, we compare the quality
of probe subsets containing f with the quality of probe subsets not including f .

We compute the mean quality μf of subsets S ∈ S containing the considered
feature

μf =
1

|Sf |
∑
S∈Sf

J(S), Sf = {S ∈ S : f ∈ S} (1)

and the mean quality μ̄f of subsets S ∈ S not containing the considered feature
f :

μ̄f =
1

|S̄f |
∑
S∈S̄f

J(S), S̄f = {S ∈ S : f /∈ S} (2)

with the aim to use the difference of both values as a criterion for ranking the
features:

DAF (f) = μf − μ̄f , f ∈ F. (3)

The sequence of generated probe subsets can be arbitrarily long but the num-
ber of possible probes is finite. The probe subsets are generated randomly ac-
cording to some fixed rules, for example the number of features in the subset
may be fixed or bounded. If we denote A the class of admissible subsets which
may occur in the sequence then, in view of the random generating procedure, the
admissible subsets S ∈ A will occur in the sequence S repeatedly according to
some fixed probabilities α(S). Thus, in long sequences of probes the admissible
subsets S ∈ A will occur in S with the relative frequencies approaching α(S).

Like Eq. (1), (2) we denote Af the class of admissible sets containing feature
f ∈ F and Āf the class of admissible sets not containing feature f

Af = {S ∈ A : f ∈ S}, Āf = {S ∈ A : f /∈ S}, f ∈ F. (4)

It can be seen that, in view of above considerations, both the mean quality μf

and μ̄f converge to some finite limit values. Considering Eq. (5) we can write

lim
|Sf |→∞

μf = lim
|Sf |→∞

1

|Sf |
∑
S∈Sf

J(S) =
∑
S∈Af

αf (S)J(S) = μ∗ (5)

where αf (S) is the probability that the admissible subsets S ∈ Af occur in the
sequence Sf and μ∗ is the corresponding limit value of μf . Similarly we can write
analogous limit expression for the mean quality μ̄f :

lim
|S̄f |→∞

μ̄f = lim
|S̄f |→∞

1

|S̄f |
∑
S∈S̄f

J(S) =
∑
S∈Āf

ᾱf (S)J(S) = μ̄∗ (6)
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with ᾱf (S) denoting the occurrence probability of S ∈ Āf in the sequence S̄f .
Consequently, the criterion value DAF (f) has a finite limit for any f ∈ F :

lim
|Sf |→∞

DAF (f) = μ∗
f − μ̄∗

f , f ∈ F. (7)

It has been shown in [7] that selecting features according to highest DAF
coefficients leads to significantly better results then selecting features according
to individually best criterion values. This makes the method well suitable for
scenarios where individual feature evaluation had been considered the only viable
choice (i.e., very high-dimensional or small sample size problems).

In paper [7] the question of when to stop the process of randomized probe
generation (i.e., what is the right value of K) is not specifically addressed. All
presented results have been obtained using the ad-hoc stopping rules. The first
obvious rule is a user-specified time limit, i.e., the computation is stopped after
a pre-specified time limit. Here it is hoped that the number of probes that are
evaluated in the time limit is sufficient with respect to the given problem. There
is almost no way of guessing what time limit should suffice, except the gener-
ally applicable advice that the more time can be invested, the more accurate
predictions can be made. Another problem here is the dependence on particular
hardware, different computers would manage significantly different number of
probes within the same time. The second trivial rule is a user-specified limit of
the number of probes, i.e, the computation is stopped after a pre-specified num-
ber of probes has been investigated. Specifying the minimum necessary number
of probes is as unreliable as specifying the time limit. Although this is indepen-
dent on particular computer settings, there is still no guidance or interpretation
available that would help to adjust the setting for particular problem.

3 Design of Novel Stopping Rules

In this section we consider two natural stopping rules that have not been con-
sidered in paper [7]. Both of them are based on evaluating a function of change
while adding probes, which then can be thresholded to find the moment to stop.

Stopping Condition 1. Change of Feature Order. The adding of probes and
recalculating DAF coefficients for each feature leads to changes in ordering of
all features according to their DAF coefficients. Defining a threshold on the
change would allow to stop adding probes when the ordering is not changing
substantially any more.

Definition 1. Let C denote the function to evaluate difference in feature order-
ing yielded by evaluating DAF coefficient in systems S1 and S2 where S1 ⊂ S2.
Denoting DAF (f)S the DAF coefficient of feature f computed on system S, and
assuming that features have been ordered according to descending DAF (f)S val-
ues and the index of feature f in such ordering is denoted DAF (f)Sidx, we define

C[S1, S2] =
1
N

∑N
f=1 |DAF (f)S1idx −DAF (f)S2idx|.
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In Definition 1 we average the change in position in DAF-based ordering of
features when a certain number of probes has been added to system S1 to obtain
system S2. Naturally, with decreasing change in DAF based ordering of features
we could assume at some point that no more probe adding is needed as it would
not affect the resulting feature ranking.

In Stopping Condition 1 we assume the value of C asymptotically decreases
with increasing S size. However, this may not be always true.

Proposition 1. Assume we keep adding equally large groups of random probes
to systems of subsets so as to obtain a series of systems S1 ⊂ S2 ⊂ S3 . . .. For
any i ≥ 1 the value C[Si, Si+1] can be arbitrary, there is no guarantee of it going
close to zero. As a consequence, there is no guarantee that C would fall below
given threshold when adding probes to a system of subsets indefinitely.

Proof. The problem here is the fact that arbitrarily small change of DAF value
can cause feature ordering to change. Imagine all features in the given problem to
be equal. The feature selection criterion used to evaluate each probe would yield
slightly different values for different probes because the estimate is done from
finite training data susceptible to sampling errors. The process of computing
DAF values would produce for each feature a DAF coefficient that would be
arbitrarily close to each other, in some cases equal. Adding a probe could at any
time cause an arbitrarily small change (possibly decreasing with the number of
probes), but any arbitrarily small nonzero change would be capable of change
DAF coefficient values of two features and change their mutual order.

It seems Stopping Condition 1 is thus useless in general case. We will test it,
however, in our experiments as well, as the convergence problem should not show
up in cases when a sufficient distinction among features can be identified.

Stopping Condition 2. Change of Average DAF value. The adding of probes
and recalculating DAF coefficients for each feature leads to changes in DAF
coefficient value for some or all features. Assuming that these changes would
decrease with increasing number of probes, it should be possible to define a
threshold on DAF value change to specify when the change is to be considered
small enough to justify stopping the process.

Definition 2. Let C2 denote the function to evaluate difference in average DAF
coefficient values over all features, yielded by evaluating DAF coefficient in sys-
tems S1 and S2 where S1 ⊂ S2. Denoting DAF (f)S the DAF coefficient of fea-

ture f computed on system S, we define C2[S1, S2] = 1
N

∑N
f=1 |DAF (f)S1 −

DAF (f)S2 |.

In Definition 2 we average the change in DAF coefficient values of features
when a certain number of probes has been added to system S1 to obtain system
S2. Naturally, with decreasing change in DAF coefficient values we could assume
at some point that no more probe adding is needed as it would not affect the
resulting feature ranking. Concerning the convergence properties of C2 we proof
the following Lemma.
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Lemma 1. Assume we keep adding equally large groups of random probes to
systems of subsets so as to obtain a series of systems S1 ⊂ S2 ⊂ S3 . . .. Then,
for arbitrarily small threshold value t > 0 there exists a size of subset system S
(number of probes) p so that for any i > j > p it is true that C2[Si, Sj ] < t.

Proof. The proof is a simple consequence of the Bolzano-Cauchy theorem. The
sequence ofDAF (f)S coefficients converges with the increasing number of probes

in S and the same holds for the finite sum of coefficients
∑N

f=1 DAF (f)S. There-
fore the corresponding Bolzano-Cauchy condition is satisfied which directly im-
plies the assertion of the Lemma.

The remaining problem with Stopping Condition 2 is the necessity by user to
specify a threshold based on DAF coefficient values. this may still be difficult
to interpret. Therefore, we suggest to set relative instead of absolute threshold.
The relative change can be evaluated with respect to the first recorded change in
probe adding process. For this and also for computational reasons it is practical
to evaluate function C2 not after each probe addition but after the addition of
several probes.

Stopping Condition 2a. Relative Change of Average DAF value. The adding
of probes to system of subsets S and recalculating DAF coefficients for each
feature after the additions leads to changes in DAF coefficient value for some
or all features. Stop probe adding when for the k-th added probe it is true that
C2[Sk,Sk+1]
C2[S1,S2]

< t for a pre-specified threshold t.

In this case the threshold represents limit on the proportional change in av-
erage DAF coefficient values. In the next section we show on examples how the
values C and C2 correspond with classification accuracy throughout the probe
addition process.

4 Experimental Evaluation

We illustrate the proposed stopping rules on two datasets: Reuters-21578 text
categorization benchmark data1 (33 classes, 10105 features) and artificial Made-
lon data [9] (2 classes, 500 features, out of which 20 are informative and 480
noise). Our experiment setup followed the setup described in [7]. With Reuters
data we used the estimated accuracy of linear SVM; both as probe evaluating
criterion and the eventual evaluation of the quality of selected subsets. With
Madelon data we used 3-NN for the same purpose.

Figures 1 and 2 show a 3D graph showing the achieved classification accuracy
on independent test data at various stages of probe-adding process. As DAF
ranking does not decide about the number of features, the d axis in graph rep-
resents results for various subset sizes obtained by using the first d best features
according the current DAF coefficients. Both Figures 1 and 2 show very quick
improvement of classification accuracy after a small number of initially added

1 http://www.daviddlewis.com/resources/testcollections/reuters21578

http://www.daviddlewis.com/resources/testcollections/reuters21578
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Fig. 1. Reuters data - SVM Classifier accuracy and C2 convergence during DAF probe
generation

Fig. 2. Madelon data - 3-NN Classifier accuracy and C and C2 convergence during
DAF probe generation

probes, most of the remaining process of probe adding later led to very slow im-
provement (Fig. 1) or negligible improvements but stabilization (visible in Fig. 2
at least for subset sizes around 20 representing the informative features).

The experiments serve primarily to illustrate the behavior of functions C and
C2 with respect to growing number of probes being added to S. The C and C2
have not been computed after each single added probe but after each 400-th
probe. This is to compensate for the fact that adding a single probe can not
affect all features (probe size was limited to 200 features).
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The function C converged very slowly in the case of Madelon data. Reach-
ing a point of no changes in feature ordering proved unrealistic in this case of
500-dimensional data; with higher-dimensional Reuters data we did not even
attempt. The function C2 though converges reasonably fast as can be seen in
both experiments. The question of what would be the practical threshold can
not be answered unanimously for the general case, but in all our experiments (on
5 different datasets from which only 2 are presented here) it showed practical

to set the threshold roughly to C2[Sk,Sk+1]
C2[S1,S2]

< 0.01, i.e., to stop when C2 values

decrease roughly to 1% of their initial value.

5 Conclusions

We have investigated alternative stopping rules in Dependency-Aware Feature
Ranking. We have shown that thresholding the averaged change in DAF value
when adding probes to the considered subset system is preferable to other stop-
ping rules in terms of interpretability, especially in cases when there is lack
of knowledge of the underlying data. We have also demonstrated that DAF is
fairly robust and does not require excessive numbers of randomized probes (as
expressed by change evaluating functions) in order to produce feature ranking
that works well in independent test case.
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Abstract. The selection of prototypes for the dissimilarity space is a
key aspect to overcome problems related to the curse of dimensionality
and computational burden. How to properly define and select the pro-
totypes is still an open issue. In this paper, we propose the selection
of clusters as prototypes to create low-dimensional spaces. Experimen-
tal results show that the proposed approach is useful in the problems
presented. Especially, the use of the minimum distances to clusters for
representation provides good results.
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1 Introduction

The representation of objects is crucial for the success of a pattern recognition
system. The feature space representation is the most common approach since a
large number of techniques can be used. Dissimilarity representations [1] arose
as an alternative and have been showing a good performance in several prob-
lems, where the dissimilarities may be computed by directly matching original
objects [1] or on top of feature representations [2]. Three main approaches are
presented in [1], the most promising being the dissimilarity space (DS).

In the DS, an object is represented by a vector of dissimilarities with other
objects called prototypes. If a large set of prototypes is used, it leads to a high-
dimensionality of the DS implying that computational costs of classification are
increased as well as storage costs. In addition, a high-dimensionality leads to
problems related to the “curse of dimensionality” and small sample sizes. Fur-
thermore, high-dimensional representations are likely to contain noise since the
intrinsic dimensionality of the data is usually small, leading to overfitting.
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Prototype selection is a way to overcome these drawbacks. It has been stud-
ied [3] for reducing dimensions of DS with encouraging results. Several methods
have been proposed such as Kcentres, Forward Selection (FS), Editing and Con-
densing, among others [3]. In these studies, the selected prototypes are objects.
However, some efforts are also put in a different direction and, instead of objects,
linear models are built, selecting out some of them for representation [4]. These
studies showed that it is a feasible alternative to use a small number of carefully
selected feature lines as prototypes instead of the original objects.

In this paper we study the selection of clusters for the generation of a low-
dimensional generalized dissimilarity space (GDS). Our hypothesis is that clus-
ters may be useful to obtain low-dimensional GDSs in case datasets are
structured in clusters. A similar approach was presented in [5], however it was
specifically developed for graph distances while our research is not restricted to
graphs. Besides, they do not take into account the selection of the best clusters,
while our goal is to find the clusters which allow a good classification with a
decreased dimension of the space. We also included the subspace distance to
clusters. Different approaches to compute the distances of the training and test
objects to the clusters are presented. The paper is divided as follows. Section 2
introduces the DS and prototype selection. Section 3 describes the construction
of the datasets based on cluster distances. Experimental results and discussions
are provided in Sec. 4 followed by concluding remarks in Sec. 5.

2 Dissimilarity Space

The DS was conceived with the purpose to address classification of data rep-
resented by dissimilarities that may be non-Euclidean or even non-metric. The
dissimilarities of a training set X with a set of prototypes R = {r1, ..., rk} are
interpreted as coordinates in the DS. Thereby, the number of prototypes selected
determines the dimension of the space. The DS was postulated as a Euclidean
vector space, making suitable the use of statistical classifiers. The set of proto-
types may satisfy R ⊆ X or R ∩ X = ∅. Once R is selected by any prototype
selector, the dissimilarities of both training and test objects with R are com-
puted. Let x be any training or test object and d a suitable dissimilarity measure
for the problem at hand, the representation dx of the object in the dissimilarity
space is:

dx = [d(x, r1) d(x, r2) ... d(x, rk)]. (1)

2.1 Prototype Selection

Many approaches have been considered [2,3] for the selection of prototypes in
the DS. Variants of wrapper or supervised methods [3] have been proposed.
Other approaches are considered that use the distances or distribution of the
prototypes over the dataset [2]; note that in these cases the class labels of the
prototypes may not be needed. An interesting option is the genetic algorithm
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(GA) presented in [6]. The GA is an evolutionary method which uses heuristics
in order to evolve an initial set of solutions (sets of prototypes) to better ones by
using operations such as mutation and reproduction. Moreover, it is adequate
to handle non-metric dissimilarities and it can find complicated relationships
between the prototypes. For these reasons we propose to use a GA to select the
clusters together with the leave-one-out nearest neighbor (LOO 1-NN) error in
the DS as selection criterion. We adopt the same parameters for the GA as in [6].
Clusters present nice properties that good prototypes must have. For example,
they do not provide redundant information since redundant or close objects must
lie together in the same cluster and they cover the representation space better
than a small set of objects.

3 Construction of Models Based on Clusters

In this section we describe our methodology to construct the new dissimilarity
datasets based on cluster distances computed from the originally given dissimi-
larities. In this study, the clusters are created per class by the Affinity Propaga-
tion algorithm [7]. In the clustering process representatives and their correspond-
ing clusters emerge from a message-passing procedure between pairs of samples
until stopping criteria are met. This method is reported to provide good cluster-
ing results. Furthermore, it is also of our convenience that it semi-automatically
selects the proper number of clusters, emerging from the message-passing proce-
dure but also from a user preference of the cluster representatives. The original
dissimilarities must be transformed into similarities in order to apply the clus-
tering procedure. We set the preferences for each object (i.e. the potential to be
selected as cluster center) equal to the median similarity.

Different types of distances are used to measure the resemblance of objects
with clusters such as: the minimum, maximum, average and subspace distances.
The minimum distance is computed as the distance between the object and its
nearest object in the cluster. The maximum distance is defined as the distance
between the object and its farthest object in the cluster. The average distance
is defined as the average of the distances between the object and all the cluster
objects. The subspace distance is explained more carefully. Theory about it is
sparse in the literature [8,9], especially for the case of data given in terms of non-
metric dissimilarities. Therefore, one contribution of this paper is to describe the
methodology to compute the (speeded-up) distance of objects to subspaces when
data is provided in terms of non-metric dissimilarities.

The methodology to compute the subspace distance to clusters is as follows.
First, a subspace is created for every cluster in order to compute the subspace
distances. To achieve this, the set of dissimilarities is transformed into equivalent
dot products (which can be interpreted as similarities) and centered according
to the “double-centering” formula for each cluster:

Sij = −1
2

(
D2

ij − 1
n

Ci − 1
n

Cj + 1
n2 CiCj

)
, (2)
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where Dij is the dissimilarity between the cluster objects xi and xj , Ci =
∑

j D2
ij ,

which is the i-th row sum of the dissimilarity matrix for the cluster objects, n is
the number of objects in the cluster, and Sij are the centered dot products. The
eigendecomposition of S is performed and eigenvectors are sorted in descendent
manner according to their eigenvalues. Only the eigenvectors associated with
eigenvalues λ > 0 are used to compute the projections of new points to the
subspace via the Nyström formula [10].

Each embedding coordinate of a cluster object xi used to compute the kernel
is given by eik =

√
λkvik as for multidimensional scaling (MDS) [8], where λk

is the k-th eigenvalue and vik is the i-th element of the k-th eigenvector of S,
but the embedding for a new point is obtained via the Nyström approxima-
tion which is interpreted as the Kernel PCA projection [9] using S as the kernel
matrix. The Nyström formula was generalized for extending MDS as suggested
in [9], therefore, each embedding coordinate eik is computed by:

eik(x) =
√

λk

λk

n∑
i=1

vikS(x, xi), (3)

where xi are the cluster objects and S(x, xi) is computed from a continuous
version of the “double-centering” formula:

S(x, xi) = −1
2

⎛
⎝d(x, xi)2 − 1

n

∑
j

d(x, xj)2 − 1
n

∑
j

D2
ij + 1

n2

∑
ij

D2
ij

⎞
⎠ . (4)

S(x, xi) is a data-dependent kernel where d(·, ·) is the dissimilarity function.
This Nyström embedding is applied to speed-up the embedding computation
instead of recomputing the eigendecomposition including x in the whole process.
However, in our case, the embedding is not directly used, instead, the embed-
ding coordinates are used to compute the distance to the subspace. The squared
subspace distance dL(x, L)2 is formulated as the difference between the squared
length of the vector (its squared norm) given by S(x, x) and the length of its
projection on the space via Nyström:

dL(x, L)2 = S(x, x) −
m∑

k=1

(√
λk

λk

n∑
i=1

vikS(x, xi)

)2

. (5)

4 Experimental Results

4.1 Datasets and Experimental Setup

The dissimilarity datasets were selected for the experiments based on the exis-
tence of clusters in the data. The Ionosphere dataset consists in radar data [11]
where the L1 distance is used. The Kimia dataset is based on the shape con-
texts descriptor [12] computed for the Kimia shapes data [13]. The dissimilarity
is based on sums of matching costs for the best matching points defining two



298 Y. Plasencia-Calaña et al.

shapes, plus the amount of transformation needed to align the shapes. The dis-
similarity data set Chickenpieces-20-60 [14] is composed by edit distances from
string representations of the angles between segments defining the contours of
chicken pieces images. The Ringnorm dataset is the one presented in [15]; it is
originally a 20-dimensional, 2-class data, where the first class is normally dis-
tributed with zero mean and covariance matrix 4 times the identity. The second
class has unit covariance matrix and mean close to zero. We use only the first 2
features and the L2 distance. The characteristics of the datasets as well as the
cardinality of the training sets used are presented in Table 1.

Table 1. Properties of the datasets used in this study, Symm. and Metric refers to
whether the data is symmetric or metric, the |T | column refers to the training set
cardinality used for the experiments

Datasets # Classes # Obj. per class Symm. Metric |T |
Ionosphere 2 225,126 yes yes 140

Kimia 18 18 × 12 no no 90
Rings 2 440,449 yes yes 222

ChickenPieces-20-60 5 117,76,96,61,96 no no 158

As classifier we used the support vector machine (SVM) classifier. For the
SVM we used a linear kernel and a fixed appropriately selected cost param-
eter C = 1. Note that despite the fact that the curse of dimensionality was
mentioned as a limitation of high-dimensional spaces, the SVM classifier is able
to handle high dimensions well. This makes our comparisons more fair for the
high-dimensional representations. However, the limitation was mentioned since
in many applications people may want to use classifiers that suffer from the curse
of dimensionality and resorting to low-dimensional representations by prototype
selection is one option to overcome the problem. Our proposals are the following
cluster-based methods: selection by GA of clusters created using minimum, max-
imum, average and subspace distances of training objects to the clusters. The
cluster-based methods are compared with some of the best prototype selectors
presented in the literature (which select objects as prototypes), with representa-
tives of unsupervised and supervised methods: Forward selection [3] optimizing
the LOO 1-NN error in the DS, Kcentres prototype selector [3], random selec-
tion, selection by GA of the best clusters centers, and selection by GA of the
best prototypes from the whole candidate set. In addition, we compared the ap-
proach using all candidate objects as prototypes.

A set of 5 to 20 prototype clusters/objects are selected. However, the total
number returned by the affinity propagation is about 25 clusters. Averaged er-
rors and standard deviations over 30 experiments are reported in Table 2 for
the dimension where the best result was obtained. Objects in each dataset are
randomly split 30 times into training, representation, and test sets. Clusters are
computed on the representation set which also contains the candidate objects
for prototypes, the best clusters and objects are selected optimizing the criteria
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for the training set by which the classifiers are trained, and the final classifi-
cation errors are computed for the test sets. We performed a t-test to find if
the differences between the mean errors of the best overall result and the mean
errors achieved by the other approaches was statistically significant, the level of
significance used is 0.05. In the case that a cluster-based method was the best,
the statistical significance is computed with respect to the non cluster-based
approaches.

Table 2. Mean and standard deviation of errors over 30 experiments. The best overall
result is reported for each dataset with the corresponding results of the other methods
for the same dimension of the space (in parenthesis). When the difference of the best
result with the other standard approaches is statistically significant, it is reported in
bold.
���������Selectors

Datasets Ionosph(15) Kimia(20) Rings(20) Chicken Pieces(20)

Clusters minimum 0.063± 0.028 0.047± 0.032 0.265 ± 0.0205 0.11 ± 0.025
Clusters maximum 0.09 ± 0.029 0.11 ± 0.054 0.263± 0.0236 0.15 ± 0.028
Clusters average 0.072 ± 0.023 0.06 ± 0.045 0.274 ± 0.0181 0.09 ± 0.024

Clusters subspace 0.073 ± 0.022 0.07 ± 0.048 0.276 ± 0.0193 0.088 ± 0.023
Random 0.086 ± 0.026 0.12 ± 0.057 0.274 ± 0.0181 0.17 ± 0.039

GA (whole set) 0.082 ± 0.028 0.1 ± 0.043 0.274 ± 0.0181 0.16 ± 0.028
GA (cluster centres) 0.085 ± 0.032 0.094 ± 0.05 0.275 ± 0.0177 0.15 ± 0.029

Forward selection 0.09 ± 0.027 0.12 ± 0.054 0.274 ± 0.0184 0.16 ± 0.036
Kcentres 0.082 ± 0.029 0.13 ± 0.061 0.274 ± 0.0181 0.15 ± 0.036

All 0.083 ± 0.033 0.068 ± 0.042 0.274 ± 0.0181 0.077± 0.017

4.2 Results and Discussion

In Table 2 it can be seen that classification results in the GDS generated by
selected clusters outperform the classification results in DS with selected objects
as prototypes for the same dimensions of the spaces. For the Ionosphere and
Kimia datasets the best method uses clusters with minimum distance, this is
in agreement with previous findings for graph dissimilarities in [5]. In the Iono-
sphere and Kimia datasets, the selection of clusters using maximum distance
is usually among the worse alternatives. This may be expected since it may be
very sensitive to outliers. However, in the Rings dataset the clusters based on
maximum distances provide the best overall result. In the case of Chicken Pieces,
the best results are obtained using all objects as prototypes, perhaps because
this dataset has a high intrinsic dimension (176) according to the number of
significant eigenvalues of the covariance matrix in the DS. Therefore, in order to
obtain good results, high-dimensional spaces are needed. However, the average
and subspace distance to clusters outperformed the other approaches that create
low-dimensional spaces.

Cluster-based approaches create irregular kernels which nonlinearly map the
data to the GDS in a better way than the object-based approaches for the same
dimensions. We computed the nonlinear mapping for the Rings data from the
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underlying feature space to a Hilbert space using a second degree polynomial ker-
nel and applied SVM classification with this kernel and regularization parameter
optimized. We corroborate that the results were very similar to the ones obtained
using clusters in the dissimilarity space. Cluster-based prototypes allow one to
apply linear classifiers with good results to originally nonlinear data. The same
can be achieved by kernels and SVM if the dissimilarities are Euclidean (they
are transformed to the equivalent kernel). However, the original SVM will not
work anymore for a non-Euclidean dissimilarity matrix but a nonlinear mapping
to the DS or GDS can still be achieved for non-Euclidean data (e.g. the Kimia
dataset).

The main disadvantage of using cluster-based prototypes compared to object-
based prototypes for spaces of the same dimension is the computational cost,
since, when using clusters, more dissimilarities must be measured. In this case,
for training and test objects, the dissimilarities with all the objects in the clusters
must be computed in order to find the minimum, maximum and average dissimi-
larity. However, when compared to the approach using all objects as prototypes,
the computational cost of the cluster-based approach is smaller because some
clusters are discarded in the selection process and, thereby, less dissimilarity
computations are made for training and test objects. Since the dissimilarity ma-
trix is computed in advance before prototype selection is executed, the proposed
approach as well as the standard prototype selection methods have limitations
in case of very large datasets. This remains open for further research.

5 Conclusions

For the selection of prototypes not only the optimization method and crite-
rion used are important, but also how the prototypes are devised is vital. We
found that clusters may be useful to obtain low-dimensional GDSs in the case
of datasets that present clusters. Our approach is useful for problems where the
use of cluster-based prototypes make sense according to the data distribution.
Note that our results hold for small and moderate training set sizes. When large
training sets are available, they may compensate for bad mappings using objects
as prototypes.

In general, we found that the minimum, average and subspace distances to
clusters perform well in real-world datasets. However, there is no “best” approach
among the cluster-based methods, it seems that the best option depends on spe-
cific data characteristics. Our intuition is that the minimum distance seems to
be more meaningful for measuring distances with sets of objects with a shape
such as the clusters. The cluster-based approaches improve the results of using
DS of the same dimension but created by selected objects as well as DS using
all the objects as prototypes (high-dimensional). Future works will be devoted
to study the sensitivity to the choice of different clustering methods as well as
the influence of numbers and sizes of the clusters.
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Abstract. Attribute reduction is an important issue in classification problems. 
This paper proposes a novel method for categorizing attributes in a decision ta-
ble based on transforming the binary discernibility matrix into a simpler one 
called basic binary discernibility matrix. The effectiveness of the method is 
theoretically demonstrated. Experiments show application results of the pro-
posed method.  

Keywords: Attribute reduction, rough sets, reduct, binary discernibility matrix. 

1 Introduction 

Attribute reduction is an important issue in classification problems. The accuracy of 
many classification algorithms depends on the quality of selected attributes. Rough 
set [1] approach for attribute reduction is based on reducts, which are in fact minimal 
sets of attributes that preserve some necessary amount of information.  

This paper investigates the problem of categorizing attributes, identifying the set of 
attributes that are present in all reducts (core); such attributes are called indispensable 
attributes. Those attributes that belong to at least one reduct are called relevant and 
the remaining attributes are called superfluous or redundant. For a given decision 
table, the problem of searching for all relevant (also called reductive [2] or semi-core 
[3]) attributes becomes the problem of determining the union of all reducts of a given 
decision table, or determining the set of all redundant attributes of a decision table. 

Several papers face the problem of attribute reduction by finding redundant 
attributes, in [4] an updated review about research on attribute reduction is presented, 
however there is no reference about the use of the binary representation of the discer-
nibility matrix. 

In this paper, we present a new approach for categorizing  attributes by using a bi-
nary representation of the discernibility matrix. This approach could be useful to re-
duce the search space for computing all reducts. The binary discernibility matrix,  
introduced by Felix and Ushio [5] plays an important role in the solution of the  
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problem of categorizing attributes. First, we describe the binary discernibility matrix 
and some of its properties, then based on some properties of a special type of binary 
discernibility matrix we present a characterization of both indispensable and super-
fluous attributes. The remaining relevant attributes are determined by exclusion.  

The structure of this paper is as follows. Section 2 presents some basic concepts in 
rough set theory. Section 3 presents the theoretical study of the properties that allow 
establishing the categorization of the attributes from the basic binary discernibility 
matrix. In section 4, we introduce a new method for categorizing attributes, as well as 
a demonstration of its effectiveness. In section 5 we present some experiments. Final-
ly conclusions are presented in section 6. 

2 Basic Concepts 

In this section, we review some basic concepts of the Rough Set Theory [6]. In many 
data analysis applications, information and knowledge are stored and represented as a 
decision table because this table provides a convenient way to describe a finite set of 
objects, within a universe, through a finite set of attributes. 

Definition 1 (decision table): A decision table is a tuple   ;      ,  |  ,  |  , where  is a set of descriptive attributes and d is a 
decision attribute indicating the decision class for each object in the universe. U is a 
finite non-empty set of objects, Va is a non-empty set of values for each 
attribute  , and Ia : U→Va is an information function that maps an object in U to 
exactly one value in Va. 

The decision attribute allows us to partition the universe into blocks determined by 
possible decisions. Usually, these blocks are called classes. 

Definition 2 (decision class): For k ∈ Vd, a decision class is defined as   . 
Let us denote the cardinality of  by ; so | |  . We will also denote {d} 

as D. 

Definition 3 (indiscernibility relation): Given a subset of attributes   , the 
indiscernibility relation |  is defined by:  | ,  | , . 

The indiscernibility relation consists of all object pairs that cannot be distinguished 
(indiscernible) based on the set A of conditional attributes   or share the same 
decision class. Based on the relative indiscernibility relation, Pawlak defined a reduct 
as a minimal set of attributes that keeps the indiscernibility relation IND( ) un-
changed [6]. 

Definition 4 (reduct for a decision table): Given a decision table S, an attribute set   is called a reduct, if R satisfies the following two conditions:  

(i)  |     | ; if R satisfies (i) it is a super reduct. 
(ii)     ,    |     | . 

The set of all reducts of an information table S is denoted by RED(S). 
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3 The Discernibility Matrix and the Discernibility Function  

Two objects are discernible if their values are different in at least one attribute. Sko-
wron and Rauszer suggested a matrix representation for storing the sets of attributes 
that discern pairs of objects, called discernibility matrix [7]. 

Definition 5 (discernibility matrix): Given a decision table S, its discernibility matrix 
M = (M[x,y])|U|×|U| is defined as ,   |    .  

The meaning of M[x,y] is that objects x and y can be distinguished by any attribute 
in M[x,y]. The pair (x,y) can be discerned if M[x,y] ≠ Ø. A discernibility matrix M is 
symmetric, i.e., M[x,y] = M[y,x], and M[x,x] = Ø. Therefore, it is sufficient to consid-
er only the lower triangle or the upper triangle of the matrix.  
 

Example 1. Table 1 shows an example of a decision table, its discernibility matrix M 
(only lower triangle) is shown in (1).  

Table 1. A decision table 

U x1 x2 x3 x4 x5 d 
u1 2 1 1 1 1 0 
u2 1 1 1 2 1 0 
u3 1 2 1 1 1 1 
u4 0 1 4 1 1 1 
u5 2 2 3 3 3 1 

 

(1)

Let S be a decision table ;      ,  |  ,  |  , and 
let us define for each attribute a in  a dissimilarity function   as follows: 

 :    0,1     : ,  0  1     

Applying these dissimilarity functions to all possible pairs of objects belonging to 
different classes in S, a binary discernibility matrix, denoted by M01 can be built. This 
concept was previously introduced by Felix and Ushio[5]. 

Definition 6 (binary discernibility matrix): Given a decision table S, its binary dis-
cernibility matrix M01 is a m×n matrix, in which each row is defined by , , , , … , , , being u, v∈U belonging to 

different decision classes. n=| | and    ∑ ∑ .| || |
 .  

After defining the binary discernibility matrix, the authors in [5] highlighted the 
following properties: 

1. If a row only contains 0’s, it means that the corresponding pair of objects are 
indiscernible even when using the whole set , in this case the decision table is 
inconsistent. 

{x1,x2} {x2,x4} 

M= {x1,x3} {x1,x3,x4} 

{x2,x3,x4,x5} {x1,x2,x3,x4,x5} 



 Easy Categorization of Attributes in Decision Tables 305 

2. If a column only contains 1’s, then the corresponding attribute is capable of 
distinguishing all objects pairs belonging to different classes. In such a case, a re-
duct was found, and since it has only one attribute, we can say that it is a minimal 
reduct. 
3. If a column has only 0’s, then the attribute is completely irrelevant because it 
is unable to distinguish any pair of objects by itself. 
4. If a row in the matrix has only one 1, then the corresponding attribute is the 
only one able to distinguish that pair of objects and so it is indispensable. 

The definition of binary discernibility matrix and the properties above outlined are 
the starting point for the method proposed in this work. 

Obviously, taking into account property 1, rows containing only 0’s are not consi-
dered. So, actually m is an upper bound of the number of rows. 
 

Example 2. As an example, we can build the binary discernibility matrix for the deci-
sion table shown in Table 1. 

 

(2)

This matrix has 6 rows, the same amount of non-empty attribute sets that are in the 
discernibility matrix in (1). First row is equivalent to {x1,x2}, second row is equivalent 
to {x1,x3} and so on, until the last row which is equivalent to {x1,x2,x3,x4,x5}. There-
fore both matrices contain the same information. 

From now on, we interpret some concepts and properties from this matrix. Since 
the discernibility matrix is just focused on the ability of attribute subsets to distinguish 
objects belonging to different classes, we conclude that usually this matrix contains 
redundant information. 

In this paper, we describe a simple way to eliminate redundant information in M in 
terms of its ability to discern. 
 

Definition 7 (basic row): Let , , … ,  and , , … ,  two rows in 
M01, we say that  is a sub row of  if for each column j=1,2,…,n:    and for at 
least one index the inequality is strict. We say that a row f in M01 is a basic row if no 
row of the matrix is a sub row of f. 
 

Definition 8 (basic binary discernibility matrix): Let M01 be a binary discernibility 
matrix, the basic binary discernibility matrix (bbdm) M(01) is defined as the sub-matrix 
of M01 formed only by the basic rows (without repetitions). 

Example 3. For the binary discernibility matrix M01 (2), we have the following bbdm 

 

(3)
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From a discernibility matrix, Skowron and Rauszer [7] define the discernibility 
function. 
 
Definition 9 (discernibility function): The discernibility function of a discernibility 
matrix is defined as   , | ,   , ,   . 

Starting from the binary discernibility matrix, it is very easy to obtain the discerni-
bility function . If instead of it, we consider the bbdm, then we obtain an equiva-
lent simplified discernibility function. 

The discernibility function can be used to state an important result regarding the set 
of reducts of a decision table, as it is shown by the following theorem. 
 
Theorem 1. [7] The reduct set problem is equivalent to the problem of transforming 
the discernibility function to a reduced disjunctive form (RDF). Each term of the RDF 
is called a prime implicant. Given the discernibility matrix M of a decision table S, an 
attribute set  , . . . ,  is a reduct iff the conjunction of all attributes in R, 
denoted as  … , is a prime implicant of . 

In order to derive the RDF, the discernibility function  is transformed by us-
ing the absorption and distribution laws.  

Based on Theorem 1, Skowron and Rauszer [7] also suggested an alternative charac-
terization of a reduct in terms of the discernibility matrix which provides a convenient 
way to test if a subset of attributes is a reduct. However, they neither offer a method to 
compute a reduct nor a way to determine whether an attribute is reductive or not. 

Using definitions and notations introduced here, we can state the following equiva-
lent theorem: 
 
Theorem 2. Given the bbdm M(01) of a decision table, an attribute set B is a reduct iff  

(i)   ∑ . 0.  

(ii)  1, … ,  1  : 1  ∑ . 1  
being  the characteristic vector of B, defined as follows: , , … ,     1      0            1,2, … , . 

Condition (i) means that B is a super reduct; (ii) means that each attribute is neces-
sary.  

Proof is rather immediate and omitted for space reasons.  

4 Attribute Categorization  

In this section, we introduce the categorization of attributes and establish a method to 
categorize them from the bbdm in an easy way. 

Definition 10: Let   ;      ,  |  ,  |   be a decision 
table, let a   

(i) the attribute a is a core (or an indispensable) attribute iff it belongs to all re-
ducts of S. The set of all core attributes is denoted by Core(S). 
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(ii) the attribute a is superfluous (or redundant) iff it does not belong to any reduct 
of S. We denote the set of all superfluous attributes by Spf(S). 
(iii) the attribute a is relevant iff it belongs to at least one reduct. 

Obviously, all indispensable attributes are relevant. The set of all relevant 
attributes is denoted by Rlv(S). 

We have that Core(S)  R  Rlv(S) for any reduct  . Let Rem(S) = 
Rlv(S) - Core(S), then  is partitioned into  = Core(S)  Rem(S) Spf(S). 

Below, we enunciate and prove some theorems that allow us to carry out this parti-
tion. 
 
Theorem 3. Let   ;      ,  |  ,  |   be a decision 
table and let M(01) be its bbdm. An attribute  is indispensable iff M(01) contains a row 

f such that 
1       0         . 

Proof: ( ) Let f be a row in M(01) such that fj=1 and all remaining co-ordinates are 
0´s, and suppose that B is a reduct such that , i.e. 0, then ∑ .0 and from theorem 2 (i) B is not a super reduct which contradicts the supposition. 
Then we conclude that if such row exists aj is indispensable. 

( ) Let aj be an indispensable attribute, then    (i.e. 1) 
and B' = B-{aj} is not a reduct. From theorem 2 (i) we have that   ∑ . 0 but B' does not fulfill this condition. It means that 
there exists a row f in M(01) such that ∑ . 0 and ∑ . 0. Since B 

and B' only differ in aj, these sums only differ in the j-th terms which are .  and .  respectively. By hypothesis 1 then we can conclude that 1 and 0 for all i≠j. The proof is complete. 
 
Theorem 4. Let   ;      ,  |  ,  |   be a decision 
table and let M(01) its bbdm. An attribute  is superfluous iff the corresponding col-
umn in M(01) has only 0’s. 
Proof: ( ) Suppose that B is a reduct containing aj and let B' = B-{aj}. From theorem 
2 (i) we have that   ∑ . 0. 

Let j be the index of the column corresponding to aj in M(01). By hypothesis   0, then B' fulfills condition (i) of theorem 2 and it means that B' is a 
super reduct which contradicts the supposition. We conclude that aj is redundant. 

( ) Now suppose that aj is redundant, it means that aj does not belong to any re-
duct. If aj is not able to discern any pair of objects belonging to different classes, its 
corresponding column in M01 has only 0’s and of course also in M(01). More interest-
ing is the case when aj discerns at least a pair of objects but it does not belong to any 
reduct. In this case, it turns out that all disjunctions containing  aj in the discernibility 
function are absorbed and therefore ultimately aj does not appear in any prime impli-
cant. As the construction of the bbdm is based precisely on the law of absorption, if aj 
is not in any reduct, the corresponding column in M(01) will contain only 0’s. 
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It is important to emphasize that this property is not held in M. If the corresponding 
column in M is fully of 0’s, the attribute is superfluous, but the reciprocal is not true. 
This is one of the most important contributions of using the bbdm instead of the original 
binary discernibility matrix, since eliminating redundant attributes reduces the space 
dimension which may facilitate several tasks, for example computing all reducts. 
 
Corollary. Let   ;      ,  |  ,  |   be a decision 
table and let M(01) its bbdm. An attribute  is relevant iff the corresponding column in 
M(01) contains at least one 1. 

Based on the above theorems the proposed method for categorizing the attributes is 
as follows: given a decision table, first compute the binary discernibility matrix, and 
then compute the bbdm. Columns containing only 0´s correspond to redundant 
attributes, all other attributes are relevant. Each row in bbdm containing only one 1 
determines that the attribute corresponding to that 1 is indispensable. Thus we have 
the attributes categorized as indispensable, relevant, and superfluous. 
 
Example 4. Let S be the decision table in Table 1. RED(S) = {{x1,x2},{x1,x4},{x2,x3}}, 
Core(S)=Ø, Rem(S)={x1,x2,x3,x4} and Spf(S)={x5}.  

The main contribution of the proposed method is that without calculating all the 
reducts, it allows, by analyzing easy properties over the bbdm, obtaining the same 
categorization that we would get after computing all the reducts (see M(01) (3)). Notice 
that the column corresponding to x5 in M(01) (3) has only 0’s but in M01 (2) this column 
has  0’s and 1’s. 

5 Experiments 

In order to show the application of the proposed method, ten datasets from the UCI 
machine learning repository [8] were used. Table 2 shows information about these 
datasets: name, number of attributes, objects and classes respectively. Last column 
shows the size of the bbdm. 

Table 2. Datasets information 

N. Dataset Attributes Objects Classes M(01) size 
1 iris 4 150 3 6 4 
2 krkopt 6 28056 18 6 6 
3 mushroom 22 8124 2 39 22 
4 nursery 8 12960 5 8 8 
5 yeast 8 1484 10 9 8 
6 zoo 17 101 7 14 17 
7 adult 14 30162 2 8 14 
8 australian 14 690 2 23 14 
9 krvskp 36 3196 2 29 36 
10 shuttle 9 43500 7 8 9 

 
Table 3 shows the results of categorization for these ten datasets. Columns contain 

indexes of attributes belonging to Core, Spf and Rem sets respectively. 
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Table 3. Attribute categorization for the ten datasets  

N. Core(S) Spf(S) Rem(S) 
1 Ø Ø {1,2,3,4} 
2 {1,2,3,4,5,6} Ø Ø 
3 Ø {1,16} {2,3,4,5,6,7,8,9,10,11,12,13,14,

15,17,18,19,20,21,22} 
4 {1,2,3,4,5,6,7,8} Ø Ø 
5 {7} {5,6} {1,2,3,4,8} 
6 {1,7,14} {3,6,16} {2,4,5,8,9,10,11,12,13,15,17} 
7 {1,2,3,7,8,11,13} {6,9,10,

12,14} 
{4,5} 

8 {2} Ø {1,3,4,5,6,7,8,9,10,11,12,13,14} 
9 {1,3,4,5,6,7,10,12,13,15,16,17,18,20,21,23,2

4,25,26,27,28,30,31,33,34,35,36} 
{2,8,14,
19,29} 

{9,11,22,32} 

10 {2} {6} {1,3,4,5,7,8,9} 

6 Conclusions  

In this paper, we present an easy method to categorize  attributes in a decision table. 
This method is based on the concept of basic binary discernibility matrix (bbdm), 
which is a simplification of the classical binary discernibility matrix. Once the bbdm 
is obtained, attributes are immediately categorized. Experiments show that our pro-
posed method is very simple and effective. Moreover, the effectiveness of the method 
has been theoretically demonstrated. 

Acknowledgements. This work was partly supported by the National Council of 
Science and Technology of Mexico (CONACyT) through the project grants CB2008-
106443 and CB2008-106366. 

References  

1. Pawlak, Z.: Rough sets. International Journal of Computer Information and Science 11, 
341–356 (1982) 

2. Nguyen, L.G., Nguyen, H.S.: On elimination of redundant attributes in decision tables. In: 
Ganzha, M., Maciaszek, L., Paprzucki, M. (eds.) Proceedings of the Federated Conference 
on Computer Science and Information Systems, pp. 317–322. IEEE Computer Society 
Press, Alamitos (2012) 

3. Hashemi, R.R., Bahrami, A., Smith, M., Young, S.: Identification of Core, Semi-Core and 
Redundant Attributes of a Dataset. In: Eighth International Conference on Information 
Technology: New Generations, pp. 580–584. IEEE Computer Society, Washington, DC 
(2011) 

4. Linyuan, G., Yanyun, C., Jianlin, Q.: Research advances of attribute reduction based on 
rough sets. In: 9th International Conference on Fuzzy Systems and Knowledge Discovery 
(FSKD), pp. 143–247. IEEE (2012) 

5. Felix, R., Ushio, T.: Rough sets-based machine learning using a binary discernibility matrix. 
In: Meech, J.A., Veiga, M.M., Smith, M.H., LeClair, S.R. (eds.) Proceedings of the Second 
International Conference on Intelligent Processing and Manufacturing of Materials, pp. 
299–305. IEEE Press, New York (1999) 



310 M.S. Lazo-Cortés et al. 

6. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic 
Publishers, Dordrecht (1991) 

7. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. 
In: Slowiński, R. (ed.) Intelligent Decision Support, Handbook of Applications and Ad-
vances of the Rough Sets Theory. Kluwer, Dordrecht (1992) 

8. Bache, K., Lichman, M.: UCI Machine Learning Repository. University of California, 
School of Information and Computer Science, Irvine, CA (2013),  
http://archive.ics.uci.edu/ml 



Comparing Quality Measures

for Contrast Pattern Classifiers
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Abstract. Contrast pattern miners and contrast pattern classifiers typ-
ically use a quality measure to evaluate the discriminative power of a
pattern. Since many quality measures exist, it is important to perform
comparative studies among them. Nevertheless, previous studies mostly
compare measures based on how they impact the classification accuracy.
In this paper, we introduce a comparative study of quality measures over
different aspects: accuracy using the whole training set, accuracy using
pattern subsets, and accuracy and compression for filtering patterns. Ex-
periments over 10 quality measures in 25 repository databases show that
there is a huge correlation among different quality measures and that
the most accurate quality measures are not appropriate in contexts like
pattern filtering.

Keywords: quality evaluation, contrast patterns, emerging patterns.

1 Introduction

A supervised classifier predicts the class of a query object based on the relation-
ships it finds among its description and the descriptions of the objects in the
training sample. An accurate prediction is an important component of the clas-
sifier behavior, but in some domains the classifier and its results should be also
easily understandable by the user. In some cases, the lack of comprehensibility
may cause a reluctance to use certain classifiers. For example, when credit has
been denied to a customer, the Equal Credit Opportunity Act of the US requires
the financial institution to provide the reasons for rejecting the application; in-
definite or vague reasons for denial are illegal [1].

Most understandable classifiers are based on patterns, which are expressions
defined in some language that describe some properties of an object collection.
An important family of understandable and accurate classifiers is based on con-
trast patterns [2]. A contrast pattern is a pattern that describes differences be-
tween two given datasets. Then, if a contrast pattern appears in a query object,
it can be taken as an evidence towards the pattern class.

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part I, LNCS 8258, pp. 311–318, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Algorithms for finding contrast patterns or for classification based on con-
trast patterns usually employ a quality measure for evaluating the discrimina-
tive power of a pattern [3]. Since many authors have introduced different quality
measures, it is important to perform both theoretical and experimental studies,
in order to help users to select the appropriate one for a given task. Nevertheless,
most published studies present comparisons mainly based on the classifier accu-
racy [4]. In this paper, we introduce a comparative study about a set of quality
measures for contrast patterns over the following aspects:

– Accuracy using the whole training sample
– Accuracy using percentages of the best evaluated patterns
– Ability to be used to filter patterns:

• Accuracy using a classifier based on aggregated support
• Compression ratio

Additionally, we perform a correlation study that reveals that all the studied
quality functions can be grouped into four groups. Functions in the same group
have so similar behaviour that it is enough to use one of them in future compar-
ative studies. This result is consistent with other results shown in this paper.

2 Quality Measures

In this section, we succinctly describe the quality measures used in this paper.
More details can be found on each associated reference. Lets define the function
count(pattern, set) as the number of objects in set containing pattern, and the
function

support(pattern, set) =
count(pattern, set)

|set|
as the ratio of objects in set containing pattern. We also consider, for a given
universe U , |U | = N , |I| = count(I, U), ¬I as the pattern negation, and |¬I| =
count(¬I, U) = N − |I|.

A quality measure q(I,Dp, Dn) → R returns a value, which is larger while
the pattern I better discriminates objects between the positive class Dp and
the negative class Dn (both classes form a partition of the universe U = Dp ∪
DN ,Dp∩DN = ∅ ). In this paper, we investigate the following quality measures:

Confidence. Conf = count(I,Dp)/ count(I, U), predictive ability of the pat-
tern for the positive class [5].

Growth Rate. GR = support(I,Dp)/ support(I,Dn), ratio of the positive and
negative class supports [6].

Support Difference. SupDif = support(I,Dp)−support(I,Dn), support dif-
ference between positive and negative classes [7].

Odds Ratio. Odds =
support(I,Dp)/(1−support(I,Dp))
support(I,Dn)/(1−support(I,Dn))

, ratio of the pattern odds

from Dp to Dn [8].

Gain. Gain = support(I,Dp)(log
support(I,Dp)
support(I,U) − log

|Dp|
|U| ) [9].
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Length. Length = 1/|I|, inverse of the number of items in |I|. We use the
inverse because shorter patterns are more desirable for discrimination [10].

Chi-square. χ2 =
∑

X∈{I,¬I}
∑

Y ∈{Dp,Dn}
(count(X,Y )−E(X,Y ))2

E(X,Y ) ,whereE(X,Y )

is the expected frequency count of pattern X in class Y. This measure assesses
how significantly different is a pattern supportwith respect to the universe sup-
port [7].

Mutual Information. Estimates how correlated is the pattern distribution
with respect to the expected pattern frequencies per class [5].

MI =
∑

X∈{I,¬I}

∑
Y ∈{Dp,Dn}

count(X,Y )

N
log

count(X,Y )/N

|X ||Y |/N2

Weighted Relative Accuracy. WRACC = |I|
|Dp|+|Dn| (

count(I,Dp)
|I| − |Dp|

N ), used

in the subgroup discovery field [11].

Strength. Strength = support2(I,DP )
support(I,Dp) support(I,Dn)

measures how strongly the pat-

tern appearance indicates the class of the query instance containing it. [12]

Although most of these quality measures were defined for two-class problems,
we use them in multi-class problems using the one-vs-rest approach [13]

3 Comparing Quality Functions

Accuracy Comparison. A good quality measure should assign higher eval-
uations to patterns that contribute more to the correct classification of query
objects. That is why it is frequent to evaluate quality measures using the ac-
curacy of a supervised classifier, which uses the measure information during
the classification process. Nevertheless, in a contrast pattern classifier there are
many parameters that impact the classifier accuracy like thresholds, aggregation
scheme, and normalization procedures, among others. Then, using the classifier
accuracy as an estimation of the behavior of the quality measure can be error
prone.

To minimize the parameter influence in the classification accuracy, we perform
the accuracy comparison using a simple classification algorithm. This algorithm
assigns O to the class with the maximum aggregated support, calculated with
the top-quality patterns from those contained in O. As this classifier is mostly
based on the quality values, we expect that accuracy differences are mostly due
to the specific quality measure behavior. In this way, we can safely estimate the
behavior of the quality measure based on the accuracy. The pseudocode of the
algorithm is the following:

Input: Set of patterns P , quality function q, query object O
Output: Class assigned to O

1. S ←− patterns in P contained in O
2. MaxQual←− argmaxs(q(s))
3. S′ ←− {s ∈ S : q(s) = MaxQual}
4. return class with maximum aggregated support of patterns in S′
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Accuracy Comparison Using a Pattern Subset. If we use a small subset
of the pattern collection in a supervised classifier, the global classifier accuracy
usually deteriorates. This behavior is mainly due to query objects that do not
contain any pattern, causing classifier abstention to appear. If we select a per-
centage of the best patterns, using some quality measure, we expect the best
quality measure to obtain the highest accuracy.

Filtering Patterns. Most pattern filtering methods iterate through the pattern
collection, selecting those that fulfill some criterion. To obtain a subset with the
best patterns, the pattern collection is sorted according to some quality measure.
In this section, we evaluate the ability of quality measures to be used in a pattern
filtering procedure. We use the following filtering algorithm:

Input: Set of patterns P , quality function q, training sample T
Output: Selected patterns R

1. R←− ∅
2. foreach o ∈ T

(a) Find S = patterns in P contained in o
(b) if S ∩R = ∅ then add to R the pattern in S with the highest q value

3. return R

The filtering algorithm uses a greedy heuristic to find the smallest pattern
subset covering the full training sample, selecting the pattern with the highest
quality evaluation. In this way, the best quality measure is expected to obtain
the smallest and most accurate filtered subset.

4 Experimental Results

Experimental Setup. For mining patterns, we use LCMine miner [14], pruning
each decision tree in order to obtain non pure patterns. LCMiner extracts patterns
from a collection of decision trees, induced using a particular diversity generation
procedure. For comparing the accuracy of a classifier based on emerging patterns,
we perform a Friedman test with all the results [15]. Then, when we find signifi-
cant differences, we perform the Bergmann-Hommel dynamic post-hoc, because
it is more powerful than the classical Nemenyi and Holm procedures [16]. Post-
hoc results are shown using critical distance (CD) diagrams, which present the
order of the classifier accuracy, the magnitude of differences between them, and
the significance of the observed differences in a compact form [15]. In a CD dia-
gram, the rightmost classifier is the best classifier, while two classifiers sharing a
thick line means they have statistically similar behavior. We use a 2 times 5 fold
cross validation procedure averaging results, as suggested in [15].

All databases used for experiments were taken from the UCI repository of Ma-
chine Learning [17]. We selected small databases with balanced classes, because
emerging pattern classifiers are very sensitive to class imbalance [18]. Accord-
ing to the feature type, there are pure numerical, pure categorical, and mixed
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databases. The number of features ranges from 4 to 60. Databases are breast-
cancer, breast-w, cleveland, colic, credit-a, credit-g, crx, cylinder-bands, diabetes,
haberman, heart-c, heart-h, heart-statlog, hepatitis, ionosphere, iris, labor, lung-
cancer, sonar, tae, tic-tac-toe, vote, wdbc, wine, and wpbc.

1 2 3 4 5 

Base 

6 7 8 9 

Conf 
Ods 
GR 

MI 
WRACC 

X2 Length 
SupDif 

Strength 

Gain 

Fig. 1. CD diagram for accuracy comparisons

Accuracy Comparison. Results of the accuracy comparison (Figure 1) reveals
that the quality measures Conf, Odds, and GR obtain the most accurate clas-
sifier. Their results are statistically similar to the base classifier, which uses the
whole pattern collection to achieve classification. The good behavior of GR is
not surprising, because it has been used as quality function in many papers. Ad-
ditionally, it is used in the definition of emerging patterns [6], which are contrast
patterns whose GR is above certain threshold.

1 2 3 4 5 

Base 

6 7 8 9 

WRACC 
SupDif 
Strength 

Gain 
X2 

Length 

Odds, GR, Conf 

MI 

Fig. 2. CD diagram for accuracy comparisons taking the 10% of the best patterns

Accuracy Comparison Using a Pattern Subset. To compare accuracies
using pattern subsets, we created pattern collections containing different per-
centages of the whole collection. We finally chose 10%, because it is the lowest
value where accuracies are significantly similar to the unfiltered classifier, so
the filtering procedure does not significantly deteriorates the classifier. Results
shown in Figure 2 reveal an outcome not consistent with Figure 1, because the
top accurate classifiers like Conf, GR and Odds had the worst behavior. To ex-
plain this behavior we must realize that Conf, GR and Odds returns the same
value on all patterns having zero support on the negative class. In this way,
a pattern with support (1, 0) is considered as good as a pattern with support
(0.001, 0). On the other hand, the quality measures with the best results like
WRACC, SupDif and Strength can easily differentiate among them, assigning
the former a significant higher quality value.

Filtering Patterns. Figures 3 and 4 show the accuracy and compression ratio
results from the pattern filtering experiment. Results are consistent with those
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Fig. 3. CD diagram for accuracy comparisons with filtered pattern subset using each
quality measure
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Fig. 4. CD diagram for compression ratio of the filtering procedure using each quality
measure

previously shown, being the most accurate quality measures those that distin-
guish among single class patterns. As the compression ratio ranges from 0.01 to
0.10, with average 0.05, it looks promising to follow these ideas to obtain future
pattern filters.

5 Correlation Study

According to their definitions, many quality measures seem to be very similar,
being most of them variations of other measures. Additionally, during the anal-
ysis of the experiments, we also realize that many quality measures behave very
similarly in all the experiments and databases. That is why we performed a
two-way Pearson correlations analysis using the quality values extracted from
all the emerging patterns per database. A Pearson correlation is a measure of
association between two numerical variables. Pearson values range from −1 (per-
fect negative correlation) to 1 (perfect positive correlation). Since the results are
highly consistent among all databases, we only show in Table 1 the results in
colic database.

Correlation results allows us to cluster measures in four different groups, with
very high inner correlations and very low outer correlations. These groups are
completely consistent with other experimental results presented in this paper.
The groups are the following:

Group 1. Conf, GR, Odds

Group 2. WRACC, Gain, SupDif, Strength, MI

Group 3. Length

Group 4. χ2
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Table 1. Non-trivial correlations among quality functions on colic database. An “X”
appears where qualities have correlations above 0.75

χ2 Conf Gain GR Length MI Odds Strength SupDif WRACC

χ2

Conf X X
Gain X X X X
GR X X

Length
MI X X X X
Ods X X

Strength X X X X
SupDif X X X X
WRACC X X X X

This clustering information can be useful in at least two tasks. First, we can
simplify future researches on quality measures, using a single quality measure
per cluster. Second, we can take a single quality measure per cluster to obtain a
diverse measure collection, which can be used in some combination schemes.

6 Conclusions

In this paper, we present a comparative study about a set of quality measures
for contrast patterns, which are used to evaluate the discriminative power of a
pattern. We have addressed the necessity to provide theoretical and experimental
comparisons to help users select among the existing measures, since previous
studies lack comparisons over different relevant aspects.

After analysing experiments over 10 quality measures in 25 repository databases,
we lead to the following conclusions:

– Many quality measures are strongly correlated, obtaining very similar results
among them. Quality measures used in this paper can be grouped in four
clusters: Group1={Conf, GR, Ods}, Group2={WRACC, Gain, Supdif,
Strength, MI}, Group3{Length}, and Group4={χ2}.

– On most databases, quality measures in Group1 are better estimations of
the real pattern value for classification.

– Quality measures in Group1 can be very inaccurate in domains like pattern
filtering, because they cannot distinguish among patterns supported by a
single class
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Abstract. A common problem with feature selection is to establish how
many features should be retained at least so that important information
is not lost. We describe a method for choosing this number that makes
use of Support Vector Machines. The method is based on controlling an
angle by which the decision hyperplane is tilt due to feature selection.

Experiments were performed on three text datasets generated from
a Wikipedia dump. Amount of retained information was estimated by
classification accuracy. Even though the method is parametric, we show
that, as opposed to other methods, once its parameter is chosen it can be
applied to a number of similar problems (e.g. one value can be used for
various datasets originating from Wikipedia). For a constant value of the
parameter, dimensionality was reduced by from 78% to 90%, depending
on the data set. Relative accuracy drop due to feature removal was less
than 0.5% in those experiments.

Keywords: feature selection, SVM, documents categorization.

1 Introduction

Commonly known feature selection methods for automatic text processing, like
mutual information and information gain [1] [2] or SVM-based approaches [3],
define ranking algorithms that allow to order features from most to least informa-
tive. However, those methods do not specify how many features must be retained
for a particular set of data so that classification accuracy is preserved. This num-
ber can be determined by cross validation, yet such a solution is computationally
very expensive unless the data set is small. Often either final dimensionality is
fixed a priori, only features ranked above certain threshold are retained, or the
number of selected features depends on vectors’ density [4].

In this paper we would like to propose a different approach to deciding how
many features to retain. The method is based on Support Vector Machines
(SVM) [5] [6], requiring a hyperplane trained on all features. Similarly to other
widely used schemes, it has a single parameter, yet we argue that it is much eas-
ier to find its correct value than in case of feature weight threshold or the final
dimensionallity itself. It is worth noting that our approach does not enforce any
particular ranking method. On the other hand, since it requires a hyperplane
separating the classes, it would be a natural choice to take that hyperplane into
account when ranking features.

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part I, LNCS 8258, pp. 319–325, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Much of our current work is related to processing text data obtained from
Wikipedia dumps. We work on a large-scale, distributed multilabel text classifier
[7] based on the LIBLINEAR library [8] and one-vs-all approach that allows to
categorize a textual data into Wikipedia categories. In this context we managed
to successfully apply the feature selection method described here.

In the next section we will describe the feature selection method in detail.
In section 3 results of experiments conducted using presented method will be
shown, and we will conclude in section 4.

2 Feature Selection

One of the method’s prerequisites is an SVM-trained hyperplane separating be-
tween some two classes. A normal to this hyperplane will be denoted by w, while
wi will mean an ith component of w referring to feature i. Also a feature ranking
is required in form of a vector r where ri denotes ith feature’s rank. Number of
retained features is set to minimum k satisfying inequality 1:

cos γ(k) ≥ 1− α (1)

where α ∈ [0, 1] is the method’s parameter defining the accepted level of distor-
tion between original hyperplane and the one obtained after feature selection,
and γ is a following angle:

γ(k) = 	
(
w,w(k)

)
(2)

where w(k) is a vector defined as below:

w(k)
i =

{
wi if ri is among k top components of r

0 otherwise
(3)

A simple way to obtain r is to use naive SVM ranking. For some input x,
prediction of a label can be computed as sgn

(
xT ·w + b

)
, where b is a bias term.

The larger value of wi is, the more presence of feature i inclines the classifier
to predict positive class; the smaller (negative) it gets, the bigger ith feature
contribution towards negative class. When wi is close to 0, it has minor influence
on the output meaning that feature i is not imporant in this context. Therefore
naive SVM ranking can be defined as below:

ri = |wi| (4)

However, in presence of highly corelated features it may be beneficial to apply
Recursive Feature Elimination (RFE) [3]. In this iterative approach one feature
is neglected in each run after a new SVM is trained on a working set of features.
Ranking obtained this way, as opposed to naive approach, does not undervalue
groups of correlated features. Note that ranking r is not limited to the two
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Fig. 1. Feature selection – toy example

approaches mentioned above. Features may be ranked in any way and exact rank
values are not important since r is only required to order features.

Figure 1 presents a toy feature selection scenario for a dataset of three fea-
tures f1, f2, f3. It was assumed that the trained hyperplane has normal vector
w = [0.8;−0.35;−0.9] and naive SVM ranking was applied: r = [0.8; 0.35; 0.9]
implying that features ordered by their ranks are f3, f1, f2. In such case w(2) =
[0.8; 0;−0.9] and w(2) = [0; 0;−0.9]. If α was set to 0.05, k = 2 features would
be retained as cos γ(2) ≈ 0.96 ≥ 1− α and cos γ(1) ≈ 0.72 < 1− α.

3 Experiments

MATRIX’u application [9] was used to generate representations of three datasets
originating from a Simple Wikipedia dump. Stemmed words were used as fea-
tures and documents were expressed in vector space model with TF-IDF weight-
ing. Features were then scaled to the range [0.15, 1]. The datasets are described
in Table 1.
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Table 1. Datasets used in the tests

Name Description # classes # objects # features

GR categories Geography and Religion 2 36000 90000
TL top level categories: Everyday Life, Ge-

ography, History, Knowledge, Litera-
ture, Media, People, Religion

8 50000 115000

Science subcategories of Science 29 50000 117000

Feature selection was performed with use of naive SVM ranking and various
values of α. Accuracy obtained after feature selection was compared to the result
measured on all features. Figure 2 shows how the percentage of selected features
depends on α.

0 0.05 0.1 0.15 0.2

0

50

100 GR TL Science

Fig. 2. Average percent of retained features (per hyperplane) as a function of the
parameter α

For each of the data sets there is a distinct elbow point: the number of features
drops considerably for α = 0.0125 and stabilizes around α = 0.05. Percentages
of retained features differ among the data sets. In Figure 3 the accuracy drop
(measured performing 10-fold cross validation) is displayed. Note that relation
between the relative accuracy and α is linear, and slopes of those lines differ
depend on howmany classes there are in a dataset. According to these results, the
proposed approach to feature selection requires little parameter adjustment. For
the considered data sets the only parameter of the described model universally
yields good results for the steady value of α = 0.05.

A by-product of this feature selection method is the information that can be
easily inferred from the vector w. Having ordered the features by wi one can find
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0 0.05 0.1 0.15 0.2

0

0.5

1

1.5 GR TL Science

Fig. 3. Relative F1-score accuracy drop as a function of α (percentage)

out what are the most descriptive features of a related class, which can be useful
for debugging purposes. Table 2 presents keywords that are the most specific to
some of the classes from the dataset TL. The words in the table are malformed
due to stemming. Similarly, features most differentiating between two classes can
be inspected this way – Table 3 presents words that are the most useful to tell
Geography and Religion pages apart. Finally Table 4 lists features which are the
most specific to category Mathematics as well as keywords indicating scientific
categories other than math.

4 Discussion

We described a method for choosing the number of features that should be
retained based on the hyperplane tilt angle caused by feature selection. This
method is parametrized by a single parameter α, however in our experiments on
Wikipedia good results were achieved for constant value α = 0.05.

According to the conducted experiments, the method for selecting number
of features allows for significant dimensionality reduction while preserving clas-
sification accuracy. Dimensionality of the datasets was decreased by from 78%
to 90% while the relative accuracy drop was less than 0.5%. With a single pa-
rameter value across various datasets containing different numbers of classes, we
obtained satisfying dimensionality reduction. We plan to compare this technique
to other known approaches in order to evaluate the order of features resulting
from the ranking function [10].

The datasets differed in terms of ”classification difficulty” (to distinguish be-
tween articles about geography and pages about religion is easier than to tell
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Table 2. Best describing keywords for some of the classes from the dataset TL

Geography History Literature People Religion

town (2.9) born (3.8) book (5.8) born (4.5) religi (12.8)

river (2.7) career (2.3) fiction (4.9) career (2.3) mytholog (7.3)

city (2.6) february (2.2) screenwrit (4.1) songwrit (2.2) god (5.6)

island (2.2) event (2.1) treati (3.8) ethnic (1.8) cathedr (5.1)

county (2.0) june (1.9) newspap (3.8) wrote (1.7) church (4.5)

motto (1.9) october (1.9) diktat (3.0) tribe (1.7) anglican (4.3)

district (1.9) military (1.7) orig (3.0) middleham (1.6) mosqu (4.2)

chicago (1.9) single (1.7) epistl (3.0) spous (1.5) islam (4.2)

Table 3. Words differentiating between Geography and Religion

Geography Religion

citi (6.9) religi (15.1)

town (4.2) mytholog (6.5)

district (4.1) god (6.2)

born (4.0) christian (5.5)

armenian (3.8) islam (5.2)

region (3.7) cathedr (4.9)

area (3.7) bibl (4.8)

river (3.7) pope (4.2)

capit (3.7) church (4.2)

franc (3.5) jewish (3.9)

Table 4. Keywords specific to the category Mathematics along with the words indi-
cating other subcategories of Science

Mathematics
+ -

mathemat (15.3) fear (7.6)

number (7.1) citi (6.9)

geometri (5.5) comput (5.1)

math (5.3) superscript (4.8)

algebra (4.7) water (4.6)

actuari (4.6) state (4.6)

arithmet (4.6) town (4.6)

statist (4.4) cyril (4.5)

function (4.2) birth (4.2)

some scientific topics apart). Feature selection resulted in various numbers of
retained features as well as various cut off thresholds. Such results would not be
possible if the final dimensionality was fixed a priori or if only features ranked
above some constant threshold were retained.
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Of course it would be easy to construct datasets for which optimal α would
be vastly different. However, for groups of similar problems – in our case all
problems origined in some areas of Wikipedia – good results can be obtained
using constant value of α.

Acknowledgments. The work has been supported by the Polish Ministry of
Science and Higher Education under research grant N N 516 432338.
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Abstract. Designing reliable computer-aided diagnosis (CADx) systems based 
on data extracted from breast images and patient data to provide a second opi-
nion to radiologists is still a challenging and yet unsolved problem. This paper 
proposes two benchmarking datasets (one of them representative of low resolu-
tion digitized Film Mammography images and the other one representative of 
high resolution Full Field Digital Mammography images) aimed to (1) model-
ing and exploring machine learning classifiers (MLC); (2) evaluating the impact 
of mammography image resolution on MLC; and (3) comparing the perfor-
mance of breast cancer CADx methods. Also, we include a comparative study 
of four groups of image-based descriptors (intensity, texture, multi-scale texture 
and spatial distribution of the gradient), and combine them with patient’s clini-
cal data to classify masses. Finally, we demonstrate that this combination of 
clinical data and image descriptors is advantageous in most CADx scenarios.  

Keywords: Breast cancer, image-based descriptors, clinical data, machine 
learning classifiers, computer-aided diagnosis (CADx), histograms of gradient 
divergence. 

1 Introduction 

According to the World Health Organization, breast cancer is the second most com-
mon form of cancer in the world, with a prediction of over 1.5 million diagnoses in 
2010 and causing more than half a million deaths per year [1]. At present, there are no 
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effective ways to prevent breast cancer, because its cause remains unknown. Howev-
er, efficient diagnosis of breast cancer in its early stages can give women better 
chances of full recovery. Screening mammography is the primary imaging modality 
for early detection of breast cancer because it is the only method of breast imaging 
that consistently has been found to decrease breast cancer-related mortality [2].  

Double reading of mammograms (two radiologists read the same mammogram) 
has been advocated to reduce the proportion of missed cancers. But the workload and 
costs associated with double reading are high. Therefore, many research institutions 
have focused their efforts in applications of Computer-Aided Diagnosis (CADx) ap-
proaches combining mammography image-based descriptors and associated metadata, 
being the correct patterns classification of breast cancer an important real-world med-
ical problem. For this reason, the use of Machine Learning Classifiers (MLC) in 
breast cancer diagnosis is gradually increasing [3]. MLC can explain complex rela-
tionships in the data and constitute the backbone of biomedical data analysis on high 
dimensional quantitative data provided by the state-of-the-art medical imaging and 
high-throughput biology technologies [4].  

While several produced mammography-based breast cancer databases (public or 
private) have been reported [1], [5-12], currently, the information included in these 
databases presents some undesirable issues: a) lesions are not exactly identified; b) 
are incomplete in terms of available features (pre-computed image-based descriptors 
and clinical data); c) have a reduced number of annotated patient’s cases; and/or d) 
the database is private and cannot be used as reference. Altogether, these issues make 
it difficult producing golden standard datasets assembling properly extracted informa-
tion of breast cancer lesions (biopsy proven) for assessing and comparing the perfor-
mance of machine learning classifiers (MLC) and Breast Cancer CADx methods. 

In preceding works, first we made an exploration of mammography-based MLC 
[13] and hereafter we made an evaluation of several groups of mammography image-
based descriptors, clinical data, and combinations of both types of data for classifying 
microcalcifications, masses and all lesions together on two different Film mammo-
graphy-based datasets [14]. As result, we obtained MLC with high performance and it 
was proposed a novel image-based descriptor that is especially designed for round-
shape objects, such as masses, the Histograms of Gradient Divergence (HGD).  

This paper proposes two benchmarking datasets (one of them representative of low 
resolution Film Mammography images and the other one representative of high reso-
lution Full Field Digital Mammography (FFDM) images) aimed to: (1) modeling and 
exploring machine learning classifiers (MLC); (2) evaluating the impact of mammo-
graphy image resolution on MLC; and (3) comparing the performance of breast can-
cer CADx developed methods. Also, it is included a comparative study of four groups 
of image-based descriptors (intensity, texture, multi-scale texture and spatial distribu-
tion of the gradient), and their combination with patient’s clinical data to classify 
masses. The two benchmarking datasets used in this work are available for public 
domain at the Breast Cancer Digital Repository (BCDR – http://bcdr.inegi.up.pt) and 
it is the first experiment made on the FFDM-based dataset (BCDR-D01). 
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2 Materials and Methods 

2.1 Benchmarking Datasets 

The two benchmarking datasets proposed here were extracted from the Breast Cancer 
Digital Repository (BCDR). The BCDR is a wide-ranging annotated public repository 
composed by Breast Cancer patients’ cases of the northern region of Portugal.    

BCDR is subdivided in two different repositories: (1) a Film Mammography-based 
Repository (BCDR-FM) and (2) a Full Field Digital Mammography-based Repository 
(BCDR-DM). Both repositories were created with anonymous cases from medical 
archives (complying with current privacy regulations as they are also used to teach 
regular and postgraduate medical students) supplied by the Faculty of Medicine – 
Centro Hospitalar São João, at University of Porto (FMUP-HSJ). BCDR provides 
normal and annotated patients cases of breast cancer including mammography lesions 
outlines, anomalies observed by radiologists, pre-computed image-based descriptors 
as well as related clinical data.  

The BCDR-FM is composed by 1010 (998 female and 12 male) patients cases 
(with ages between 20 and 90 years old), including 1125 studies, 3703 mediolateral 
oblique (MLO) and craniocaudal (CC) mammography incidences and 1044 identified 
lesions clinically described (820 already identified in MLO and/or CC views). With 
this, 1517 segmentations were manually made and BI-RADS classified by specialized 
radiologists.  MLO and CC images are grey-level digitized mammograms with a 
resolution of 720 (width) by 1168 (height) pixels and a bit depth of 8 bits per pixel, 
saved in the TIFF format. 

The BCDR-DM, still in construction, at the time of writing is composed by 724 
(723 female and 1 male) Portuguese patients cases (with ages between 27 and 92 
years old), including 1042 studies, 3612 MLO and/or CC mammography incidences 
and 452 lesions clinically described (already identified in MLO and CC views). With 
this, 818 segmentations were manually made and BI-RADS classified by specialized 
radiologists. The MLO and CC images are grey-level mammograms with a resolution 
of 3328 (width) by 4084 (height) or 2560 (width) by 3328 (height) pixels, depending 
on the compression plate used in the acquisition (according to the breast size of the 
patient). The bit depth is 14 bits per pixel and the images are saved in the TIFF for-
mat.  

The BCDR-F01 dataset is built from BCDR-FM and is formed by 200 lesions: 100 
benign and 100 malignant (biopsy proven) and it is composed by a total of 358 fea-
tures vectors (184 instances related to the 100 benign lesions and 174 instances re-
lated to the 100 malignant lesions).   

The BCDR-D01 dataset is built from BCDR-DM and is formed by 79 lesions: 49 
benign and 30 malignant (biopsy proven) and it is composed by 143 features vectors 
(86 instances related to the 49 benign lesions and 57 instances related to the 30 malig-
nant lesions).  

Both datasets (currently, available for download at the BCDR website) are com-
posed by instances of the same clinical, intensity, texture, multi-scale texture and 
spatial distribution of the gradient features. Clinical features include the patient age, 
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breast density and a set of selected binary attributes for indicating abnormalities ob-
served by radiologists, namely masses, microcalcifications, calcifications (other than 
microcalcifications), axillary adenopathies, architectural distortions, and stroma dis-
tortions. Thus, the clinical data for each instance of the datasets is formed by a total of 
8 attributes per instance: 6 binary attributes related to observed abnormalities, an or-
dinal attribute for breast density, and a numerical attribute that contains the patient 
age at the time of the study. The same group of image-based features (intensity, tex-
ture, multi-scale texture and spatial distribution of the gradient) that we reported in 
[14] were utilized here, namely, Intensity statistics, Histogram measures, Invariant 
moments, Zernike moments, Haralick features, Grey-level run length (GLRL) analy-
sis, grey-level differences matrix (GLDM), Gabor filter banks, Wavelets, Curvelets, 
Histograms of Oriented Gradient (HOG), and Histograms of Gradient Divergence 
(HGD). For the sake of brevity, the reader is addressed to [14] for a formal descrip-
tion of the descriptors and the range of parameters evaluated. All descriptors were 
computed from rectangular patches of the lesions that were generated by extracting 
the part of the mammogram within the bounding box of the outlines provided by both 
datasets. 

2.2 Evaluation of the Benchmarking Datasets 

For evaluating the datasets, and delivering baseline benchmarks for CADx, an expe-
riment was conducted for classifying masses.  

Classification was performed using several machine learning classifiers available 
on Weka version 3.6 [15], namely Support Vector Machines (SVM), Random Forests 
(RF), Logistic Model Trees (LMT), K Nearest Neighbours (KNN), and Naive Bayes 
(NB). For all classifiers with the exception of NB (which is parameterless), 3-fold 
cross-validation was performed on the training set for optimizing the classifiers para-
meters. Linear SVM was chosen for simplicity and speed with regulation parameter C 
ranging from 10-2 to 103. The number of trees of RF was optimized between 50 and 
400, with each tree having log2(A) + 1 randomly selected attributes, where A is the 
number of attributes available in the current dataset. On LMT the number of boosting 
iterations was also optimized. Finally, the number of neighbours (K) of KNN varied 
from 1 to 20, and the contribution of each neighbour was always weighted by the 
distance to the instance being classified. For all classifiers, attribute range normaliza-
tion [0..1] was performed as pre-processing with the minimum and maximum values 
of the attributes found in the training set and then applied to both train and test sets.  

The evaluation measure used was the Area Under the Curve of the Receiver Opera-
tor Characteristic (AUC). Resampling without replacing was performed 50 times for 
each view (MLO and CC) resulting in 100 runs per experiment to provide different 
splits across training and test sets, with 80% of the cases randomly selected for train-
ing the classifier, and the remaining 20% used for test. The two views were trained 
and tested independently to prevent biasing results and finally the AUCs from both 
views were merged resulting in a total of 100 evaluations per experiment. When com-
paring descriptors, the best combination of parameters’ values and classifier was used. 
Comparisons between the experiments were based on the median AUC of the 100 
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worst results with performances ranging from 0% to 3% of the wins. When clinical 
data is not included in the datasets, the frequence of wins is equaly distributed by all 
the remainder classifiers on BCDR-D01 with 24% of wins, while on BCDR-F01 
ranged from 21% (LMT) to 32% (RF). When clinical data is present, wins are 
dominated by LMT on both datasets (46% on BCDR-F01, and 44% on BCDR-D01), 
as well as SVM in the the film dataset with 42% of wins. 

4 Conclusions 

The main contributions observed in this work are: (1) Histogram of Gradient Diver-
gence (HGD), a descriptor of shape through the gradient of the image that is naturally 
invariant to rotation and that was recently proposed in [14] was the only image de-
scriptor scoring best or comparable to best on both datasets; (2) Haralick features 
despite being a texture descriptor and not a descriptor related to shape, scored best on 
BCDR-D01 and second on BCDR-F01, suggesting that texture information may be 
important for evaluating masses; (3) clinical information enabled to significantly in-
crease the performance of image descriptors in 92% of the cases; (4) the relative per-
formance of the classifiers is similar for the two datasets, then it is possible to expect 
that image resolution is not critical; and (5) the Breast Cancer Digital Repository 
(BCDR) demonstrated to be a suitable reference for exploring machine learning clas-
sifiers and breast cancer CADx methods.  

Future work will be aimed at increasing the BCDR with new annotated patients 
cases and exploring the combination/selection of features from different groups of 
image-based descriptors for improving the performance of Breast Cancer CADx 
methods.  
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Abstract. Multi-label learning has been becoming an increasingly ac-
tive area into the machine learning community since a wide variety of real
world problems are naturally multi-labeled. However, it is not uncommon
to find disparities among the number of samples of each class, which con-
stitutes an additional challenge for the learning algorithm. Smote is an
oversampling technique that has been successfully applied for balancing
single-labeled data sets, but has not been used in multi-label frameworks
so far. In this work, several strategies are proposed and compared in or-
der to generate synthetic samples for balancing data sets in the train-
ing of multi-label algorithms. Results show that a correct selection of
seed samples for oversampling improves the classification performance of
multi-label algorithms. The uniform generation oversampling, provides
an efficient methodology for a wide scope of real world problems.

1 Introduction

Multi-label learning refers to classification problems where each sample can be
associated to more than one class at the same time. A high number of real world
applications such as image classification [1] or protein sequence annotation [2] are
multi-labeled. Methods for classifying multi-label data can be grouped into two
categories: transformation of the problem and adaptation of the algorithm [3].
The former kind of methods searches to transform the multi-label problem into
a single-label one. For that purpose, they employ intuitive strategies such as
considering each different set of labels in the multi-label data set as a single
label [1] or learning one binary classifier for each different label (one-against-
all) [4]. Although those strategies have reached acceptable performances and they
are very commonly used nowadays, none of them considers existing correlations
among classes, thus discarding potentially useful information that could help to
properly solve the problem.

On the other hand, methods based on adaptation of the algorithm are intended
to modify existing algorithms in order to explode those correlations among classes.

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part I, LNCS 8258, pp. 334–342, 2013.
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Some of the most recent and successful general purpose algorithms in this category
are Ml-knn [5], Ml-loc [6], and TraM [7]. However, it is common to find that
the number of elements belonging to each class significantly differ from each other.
This “class imbalance” is a well known problem for most standard algorithms
that assume balanced class distributions and thus, when presented with complex
imbalanced data sets, fail to properly represent the distributive characteristics
of the data and provide unfavorable accuracies [8]. Common strategies to man-
age imbalanced data comprise sub-sampling and over-sampling methods. Among
them, Smote ( Synthetic Minority Over-sampling Technique) [9] is an oversam-
pling tool that has been successfully applied to several real world problems, but
has not been applied so far to multi-label algorithms. Moreover, standard Smote

does not consider correlations among classes and therefore it only could generate
synthetic samples belonging to single classes. Although some studies have tackled
the balance of classes in multi-label problems [10,11], these follow follow a scheme
one vs all to adapt the balancing technique, lossing information about the corre-
lations that exist between the classes. In [12] the imbalance is treated from the
classification point of view, causing lack of flexibility of the method when this is
intended to be adapted to other classifiers.

This work presents a series of strategies for applying class balance tools in
conjunction with multi-label algorithms. The strategies are tested over several
real-world problems, proving to be a valuable tool to improve classification per-
formance in multi-label problems. The rest of the paper is organized as follows:
section ii presents the basis of Smote; section iii explains the proposed strate-
gies to apply Smote in conjunction with multi-label algorithms. Experimental
framework and results are shown in section iv and discussion and conclusions
are presented in sections v and vi, respectively.

2 Synthetic Minority Oversampling Technique - Smote

Basic strategies to manage class imbalance are: random sub-sampling and ran-
dom over-sampling. However, these techniques provide disappointing results in
several cases because the former one causes lose of potentially useful information,
while the latter induces overfitting due to the exact replication of samples. As
an alternative to improve these limitations, Smote [9] is an over-sampling strat-
egy that avoids the overfitting because synthetic samples are not exact copies
of the original ones. Instead, synthetic samples are interpolated along the line
segments connecting seed samples, forcing the decision region of the minority
class to become more general. Algorithm 1 describes this procedure.

3 Proposed Framework for Balancing Multi-label Data

Generating synthetic data from multi-labeled instances requires a careful selec-
tion of inputs for the Smote algorithm. For explanatory purposes, consider a
set of training samples associated to a set of three possible labels T = {(xi,yi)},
i = 1, 2, . . . ,m, with xi ∈ Rd and yi ⊆ Y, being Y = {a, b, c}. Let Tγ ⊂ T ,
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Algorithm 1. SMOTE (S, r, k)
Input: S : Seed samples, samples of the minority class xi ∈ Rd, i = 1, 2, . . . ,m
Input: r: Imbalance percentage
Input: k: Number of nearest neighbors
1: for i = 1, 2, ..., m do
2: Compute distances ‖xi − xj‖2,∀i �= j
3: Find the k nearest neighbors asociated to the k minimum distances
4: Compute the number of synthetic samples to be generated from xi,

n = round(r/100)
5: for z = 1, 2, ..., n do
6: Select a random integer ε between 1 and k
7: Draw a random vector from a uniform multivarite distribution λ ∼ Ud(0, 1)
8: Compute the synthetic sample szi = λ ◦ (xi − xε) + xi where ◦ is the

Hadamard product between vectors
9: end for
10: end for
11: returnThe set of n×m synthetic samples {szi }, i = 1, 2, . . . , m−, z = 1, 2, . . . , n

γ ∈ Y, be the set of samples associated to a given class, Tγ = {(xi,yi)|γ ∈ yi}.
Balancing the classes means generating a number of synthetic samples of the
three classes such that |Ta| = |Tb| = |Tc|, where | · | denotes the number of
elements of the set.

Three strategies are proposed in order to apply Smote to imbalanced multi-
label data. In the first place, it is important to properly define the set of seed
samples for each class, Sγ ⊆ Tγ , γ ∈ Y. Strategies are depicted with graphs in
figures 1 2 3, highlighting in each case the nodes of the graph corresponding to
seed samples of the class a. After defining the set of seed samples, the second
input parameter of the Smote algorithm is the imbalance percentage r. The
imbalance percentage ra drives the decision of how many synthetic samples from
class a must be generated (known as over-sampling). Equations (2), (4) and (6)
show the calculus for strategies OG, PG and UG, respectively.

One-against-All Generation The first strategy, depicted in figure 1, is defined
as a “one-against-all generation” (OG). In this case, all the samples belonging
to the minoritary class are considered as seed samples, that is, seed samples of
class a are defined on equation (1)

Fig. 1. one-against-all generation

SOG
a = {(xi,yi)|a ∈ yi} (1)

rOG
a =

⎛
⎝max

γ
|Tγ | − |Ta|

|Ta|

⎞
⎠ ∗ 100% (2)
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This strategy is inspired from transformation method called binary relevance,
used in [4]. This approach is widely employed, however, it is criticized for not
taking into account the correlation between classes.

Pure Samples Generation The second strategy, termed “pure samples gener-
ation” (PG) is depicted in figure 2. It takes as seed samples only those samples
associated to a single label. Thus, the seed samples for class a are selected ac-
cording to equation 3.

Fig. 2. pure samples generation

SPG
a = {(xi,yi)|a = yi} (3)

rPG
a =

⎛
⎝max

γ
|Tγ | − |Ta|

|Sa|

⎞
⎠ ∗ 100% (4)

This strategy is inspired from transformation method called PT2 described
in [3], those were used successfully in problems with low cardinality levels.

Uniform Generation. The third strategy, depicted in figure 3 divides the whole
set Ta into several subsets, and over-samples each set individually. The subsets
are defined on , by each different set of labels and are depicted in figure 3 with
different intensities of green. This strategy is termed “uniform generation” (UG).

Fig. 3. uniform generation

SUG
al

=
{
(xi,yi)|(a ⊆ P(Y)l) ∈ yi

}
(5)

rUG
a =

⎛
⎝max

γ
|Tγ | − |Sal |

|Sal |

⎞
⎠ ∗ 100% (6)

4 Experimental Setup

Experiments were performed over four datasets from the Mulan [13] repository
and a fifth dataset from [14]. The first dataset, Emotion, comprises 593 songs
belonging to several music genres. The second dataset, Scene, is a natural scene
classification problem [1]. It consists of 2407 natural scene images belonging to six
different classes. The third dataset, the Enron database, is a subset of the Enron
email corpus [15], including 1702 emails with 53 possible labels. Each message
was labeled by two people, but no claims of consistency, comprehensiveness, nor
generality are made about these labelings. Due to the large number of classes,
only those that have more than 300 samples were selected. Also, the principal
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component analysis (PCA) was used in order to decrease the number of features.
The fourth dataset, Image, consists of 2000 natural scene images, where a set of
labels is artificially assigned to each image. The number of images belonging to
more than one class (e.g. sea+sunset) comprises over 22% of the dataset [14].
Finally, the Yeast database is designed to predict functional classes in the genome
of yeast Saccharomyces cerevisiae. The whole data set has 2417 instances of genes
and 14 possible class labels; only the classes 1, 3, 4, 5 and 6 are considered and
the first 250 principal components were used as features. Table 1 summarizes the
datasets. The cardinality of the database is an average of the number of labels
associated to each sample, given an estimate of the difficulty of the multi-label
problem.

Table 1. Databases summary

Database Classes Samples Features Cardinality Database Classes Samples Features Cardinality

Emotion 6 593 72 1.869 Image 5 2000 135 1.24
Scene 6 2407 294 1.074 Yeast 14 2417 103 4.237
Enron 52 1702 1001 3.378

The strategies are used in conjunction with three state-of-the-art multi-label
methods: TraM,Ml-knn andMl-loc. Parameters are fixed for all the datasets
as: 10 nearest neighbors for the first two methods (values suggested in [5, 7]),
and λ1 = 1, λ2 = 100, m = 15 for Ml-loc (suggested by [6]). A lineal kernel is
used for evading extra tuning parameters. The number of nearest neighbors for
Smote is set to 5, by literature recommendations [9].

All the reported results are obtained with a 10-fold cross-validation scheme.
It is important to point out that, since the Yeast database has the highest
cardinality and some of its classes have no pure samples (samples belonging
exclusively to that class), the “pure samples regeneration” strategy (PG) could
not be applied for such database.

Table 2. Results for the Emotion dataset

Classifier Measure WO OG PG UG

ML-kNN

H loss ↓ 0.197 ± 0.020 0.255 ± 0.021 ◦ 0.239 ± 0.019 ◦ 0.207 ± 0.019 ◦
F measure ↑ 0.621 ± 0.037 0.459 ± 0.051 ◦ 0.536 ± 0.041 ◦ 0.646 ± 0.030 •
G mean ↑ 0.700 ± 0.031 0.567 ± 0.046 ◦ 0.635 ± 0.035 ◦ 0.734 ± 0.029 •
Recall ↑ 0.596 ± 0.050 0.401 ± 0.053 ◦ 0.480 ± 0.047 ◦ 0.646 ± 0.051 •

TRAM

H loss ↓ 0.218 ± 0.022 0.247 ± 0.027 ◦ 0.240 ± 0.026 ◦ 0.218 ± 0.026

F measure ↑ 0.640 ± 0.032 0.540 ± 0.045 ◦ 0.579 ± 0.044 ◦ 0.652 ± 0.040

G mean ↑ 0.729 ± 0.028 0.649 ± 0.035 ◦ 0.678 ± 0.035 ◦ 0.743 ± 0.035 •
Recall ↑ 0.656 ± 0.037 0.496 ± 0.042 ◦ 0.546 ± 0.047 ◦ 0.683 ± 0.050 •

MLLOC

H loss ↓ 0.248 ± 0.024 0.285 ± 0.023 ◦ 0.255 ± 0.022 0.253 ± 0.016

F measure ↑ 0.450 ± 0.076 0.231 ± 0.074 ◦ 0.424 ± 0.070 ◦ 0.471 ± 0.045

G mean ↑ 0.545 ± 0.074 0.313 ± 0.089 ◦ 0.520 ± 0.067 ◦ 0.574 ± 0.046

Recall ↑ 0.389 ± 0.074 0.166 ± 0.062 ◦ 0.345 ± 0.070 ◦ 0.413 ± 0.051
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Table 3. Results for the Scene dataset

Classifier Measure WO OG PG UG

ML-kNN

H loss ↓ 0.086 ± 0.009 0.089 ± 0.008 ◦ 0.087 ± 0.008 0.087 ± 0.008

F measure ↑ 0.742 ± 0.028 0.731 ± 0.025 ◦ 0.738 ± 0.026 0.741 ± 0.026

G mean ↑ 0.812 ± 0.020 0.807 ± 0.018 ◦ 0.815 ± 0.019 0.817 ± 0.019

Recall ↑ 0.691 ± 0.031 0.688 ± 0.026 0.701 ± 0.029 • 0.705 ± 0.030 •

TRAM

H loss ↓ 0.090 ± 0.010 0.093 ± 0.009 0.092 ± 0.010 0.092 ± 0.010

F measure ↑ 0.746 ± 0.027 0.736 ± 0.027 ◦ 0.740 ± 0.029 0.740 ± 0.028

G mean ↑ 0.831 ± 0.019 0.825 ± 0.018 ◦ 0.828 ± 0.018 0.829 ± 0.019

Recall ↑ 0.730 ± 0.028 0.725 ± 0.027 0.729 ± 0.026 0.731 ± 0.028

MLLOC

H loss ↓ 0.155 ± 0.009 0.153 ± 0.008 0.152 ± 0.008 • 0.151 ± 0.006 •
F measure ↑ 0.355 ± 0.047 0.339 ± 0.051 0.356 ± 0.045 0.350 ± 0.043

G mean ↑ 0.463 ± 0.049 0.441 ± 0.053 ◦ 0.456 ± 0.048 0.453 ± 0.046

Recall ↑ 0.270 ± 0.045 0.256 ± 0.048 0.274 ± 0.043 0.265 ± 0.040

Table 4. Results for the Enron dataset

Classifier Measure WO OG PG UG

ML-kNN

H loss ↓ 0.325 ± 0.021 0.393 ± 0.017 ◦ 0.356 ± 0.019 ◦ 0.336 ± 0.023 ◦
F measure ↑ 0.458 ± 0.036 0.283 ± 0.033 ◦ 0.385 ± 0.032 ◦ 0.533 ± 0.041 •
G mean ↑ 0.528 ± 0.033 0.391 ± 0.034 ◦ 0.496 ± 0.026 ◦ 0.616 ± 0.031 •
Recall ↑ 0.402 ± 0.044 0.255 ± 0.034 ◦ 0.301 ± 0.027 ◦ 0.509 ± 0.049 •

TRAM

H loss ↓ 0.268 ± 0.021 0.361 ± 0.020 ◦ 0.321 ± 0.025 ◦ 0.288 ± 0.016 ◦
F measure ↑ 0.623 ± 0.026 0.491 ± 0.029 ◦ 0.554 ± 0.029 ◦ 0.633 ± 0.021 •
G mean ↑ 0.664 ± 0.023 0.607 ± 0.023 ◦ 0.646 ± 0.026 ◦ 0.696 ± 0.018 •
Recall ↑ 0.618 ± 0.024 0.500 ± 0.024 ◦ 0.550 ± 0.032 ◦ 0.670 ± 0.025 •

MLLOC

H loss ↓ 0.299 ± 0.016 0.347 ± 0.025 ◦ 0.317 ± 0.021 ◦ 0.306 ± 0.020

F measure ↑ 0.556 ± 0.042 0.425 ± 0.051 ◦ 0.507 ± 0.039 ◦ 0.572 ± 0.039

G mean ↑ 0.601 ± 0.043 0.530 ± 0.046 ◦ 0.588 ± 0.038 0.624 ± 0.039 •
Recall ↑ 0.540 ± 0.047 0.340 ± 0.045 ◦ 0.446 ± 0.050 ◦ 0.572 ± 0.055 •

5 Results and Discussion

For comparisonpurposes, all test are also performedwithout over-sampling (WO).
Tables 2, 3, 4, 5 and 6 show the results for the Emotions, Scene, Enron Image and
Yeast datasets, respectively. Tables show Hamming Loss (H loss), F-meausure
(F measure), Geometric mean (G mean) and Recall (Recall) defined below.

F measure =
1

Q

∑
i∈T

2
|h (xj) ∩ Yi|

|Yi\h (xj)| + 2 |h (xj) ∩ Yi| + |h(xj)\Yi|

H loss =
1

Q (n − m)

∑
i∈T

|h(xj)ΔYi| Recall =
1

Q

∑
i∈T

( |h(xj) ∩ Yi|
|h(xj) ∩ Yi| + |Yi\h(xj)|

)

G mean =
1

Q

∑
i∈T

√
|h (xj) ∩ Yi| |h(xj)

c ∩ Yi
c|

(|h (xj) ∩ Yi|+ |Yi\h (xj)|) (|h(xj)\Yi| + |h(xj)
c ∩Yi

c|)

where \, Δ , c , |.| , h(xj) , Yi stands for the difference and symmetric difference
between two sets, complement and the cardinality of the set, the set of labels
predicted, the set of real labels, respectively; and Q is the number of labels.
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Table 5. Results for the Image dataset

Classifier Measure WO OG PG UG

ML-kNN

H loss ↓ 0.197 ± 0.010 0.201 ± 0.010 ◦ 0.200 ± 0.011 ◦ 0.202 ± 0.011 ◦
F measure ↑ 0.470 ± 0.029 0.458 ± 0.033 0.471 ± 0.037 0.481 ± 0.040

G mean ↑ 0.580 ± 0.025 0.575 ± 0.029 0.586 ± 0.032 0.598 ± 0.035 •
Recall ↑ 0.374 ± 0.033 0.380 ± 0.033 0.394 ± 0.040 • 0.404 ± 0.047 •

TRAM

H loss ↓ 0.218 ± 0.015 0.220 ± 0.014 ◦ 0.218 ± 0.016 0.222 ± 0.017 ◦
F measure ↑ 0.531 ± 0.031 0.517 ± 0.029 ◦ 0.524 ± 0.034 ◦ 0.526 ± 0.035

G mean ↑ 0.657 ± 0.025 0.649 ± 0.023 ◦ 0.655 ± 0.027 0.658 ± 0.027

Recall ↑ 0.496 ± 0.032 0.488 ± 0.029 0.494 ± 0.035 0.502 ± 0.036

MLLOC

H loss ↓ 0.231 ± 0.011 0.230 ± 0.010 0.230 ± 0.009 0.228 ± 0.011

F measure ↑ 0.161 ± 0.063 0.153 ± 0.058 0.150 ± 0.058 0.181 ± 0.058

G mean ↑ 0.249 ± 0.068 0.240 ± 0.064 0.239 ± 0.060 0.273 ± 0.065

Recall ↑ 0.104 ± 0.047 0.099 ± 0.046 0.096 ± 0.046 0.119 ± 0.045

Table 6. Results for the Yeast dataset

Classifier Measure WO OG UG

ML-kNN

H loss ↓ 0.240 ± 0.013 0.273 ± 0.015 ◦ 0.269 ± 0.016 ◦
F measure ↑ 0.575 ± 0.028 0.505 ± 0.033 ◦ 0.590 ± 0.029 •
G mean ↑ 0.648 ± 0.023 0.598 ± 0.027 ◦ 0.674 ± 0.024 •
Recall ↑ 0.491 ± 0.031 0.400 ± 0.037 ◦ 0.554 ± 0.039 •

TRAM

H loss ↓ 0.272 ± 0.016 0.295 ± 0.017 ◦ 0.288 ± 0.017 ◦
F measure ↑ 0.598 ± 0.024 0.551 ± 0.028 ◦ 0.601 ± 0.023

G mean ↑ 0.671 ± 0.02 0.645 ± 0.023 ◦ 0.685 ± 0.020 •
Recall ↑ 0.609 ± 0.023 0.518 ± 0.027 ◦ 0.623 ± 0.025 •

MLLOC

H loss ↓ 0.319 ± 0.019 0.346 ± 0.017 ◦ 0.319 ± 0.018

F measure ↑ 0.298 ± 0.068 0.153 ± 0.075 ◦ 0.307 ± 0.057

G mean ↑ 0.386 ± 0.070 0.245 ± 0.087 ◦ 0.394 ± 0.062

Recall ↑ 0.237 ± 0.058 0.101 ± 0.055 ◦ 0.246 ± 0.053

All tables depict (mean ± sd) for each metric. Additionally, •(◦) indicate wich
strategy is significantly higer (lower) than WO strategy, based on paired t−test
at 95% significance level. ↑(↓) implies the larger (smaller), the better.

Strategies OG and PG decrement the performance of classification, presum-
ably due to the fact that this strategy is only capable of generating synthetic
samples belonging to a single class instead of truly synthetic samples belong-
ing to multiple classes. In addition PG presents a decrease respecting to the
performance without over-sampling, possibly by the inability of this strategy to
generate samples with multiple labels, fact that results in the lack of exploitation
of the correlations between classes. Generation strategies based on OG, PG and
UG showed similar behaviors when applied to datasets with low cardinality (low
number of labels per sample), as it can be seen in Table 3, with variations of
less 2% in the performance for three classifier. The experiments carried out in
this paper show that the performance of Ml-knn can be significantly improved
when a balance of classes is made, due to the fact that the prior probabilities
on the Bayesian decision rule are computed from relative frequencies of samples
and are thus the minority class loses prominence.
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6 Conclusions

Three strategies for managing imbalanced data sets in multi-label problems are
proposed. Experimental analyses on several real-world problems showed that
“uniform generation” and classification by TraM, achieved high performance
on four of five tasks. Also, “uniform generation” is the most efficient strategy for
multi-label datasets with high cardinality, while ‘pure samples generation” and
“one against all” induce noise to the classification. It is important to note that the
proposed strategies can also be implemented with other class-balance techniques
based on classifier ensembles or undersampling. As future work, a broader study
including several class-balance methods can be conducted. Also, further studies
are needed for computing the optimal number of synthetic samples.
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Abstract. The paper presents an online matrix factorization algorithm
for multilabel learning. This method addresses the multi-label annotation
problem finding a joint embedding that represents both instances and
labels in a common latent space. An important characteristic of the novel
method is its scalability, which is a consequence of its formulation as an
online learning algorithm. The method was systematically evaluated in
different standard datasets and compared against state-of-the-art space
embedding multi-label learning algorithms showing competitive results.

1 Introduction

The multilabel learning problem consists in inducing a function, from a set of la-
beled instances, that assigns one or more labels to a new instance. Formally, given
a set of labels L = {λ1, λ2, . . . , λm} and a set of instances D = {xi, yi}i=1...n,
where xi ∈ X , yi ⊂ L, with l = |L| > 1, find a function f : X → P (L).This is in
contrast with the multi class learning problem where a given instance is associ-
ated with one and only one of the |L| labels. Instances are usually represented
in a k-dimensional real space, i.e. X = Rk, while the labels are usually repre-
sented using a l-dimensional vector space model, i.e. a subset of L is described
by binary vector y ∈ {0, 1}l such that for i = 1, . . . , l, yj [i] = 1 if and only if the
j-th instance has the i-th label associated with it.

The multi-label learning problem arises in areas such as semantic labeling
of images and video, text classification, music categorization and functional ge-
nomics among others [9]. Several methods to address this problem have been
proposed during the last years. Many of these methods transform the prob-
lem to a conventional classification problem. For instance, multiples classifiers
are trained, one binary classifier per label, then a new instance is labeled by
independently applying the set of classifiers. The problem with this class of ap-
proaches is that usually they do not scale well when there is a large number of
labels and/or instances [9]. A possible strategy to deal with the large number of
labels is to find a compact representation of them by using, for instance, a di-
mensionality reduction method. This approach is followed by multi-label latent
space embedding (MLLSE) methods, which have recently shown competitive
results [8,7,6].
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LSE methods find a low-dimensional latent space, S = Rs with s << k or
s << l, where labels, and in some case instances, are embedded. This embedding
is expected to preserve and highlight correlation information from each space and
to remove irrelevant, redundant or noisy data, while at the same time reducing
computational and space complexities of the learning algorithms. The main dis-
advantage of this method is that usually the dimensionality of the shared space
is a parameter to be tuned.

MLLSEmethods use different strategies to find the latent space: principal com-
ponentanalysis, canonical correlationanalysis, compressive sensing, amongothers.
Some of these methods do not scale well to large datasets. This paper presents an
MLLSE method, which is able to deal with large datasets thanks to the fact that
it uses an online learning strategy. Our method embeds both the instances and the
labels in a common latent space, whichmakes it able to exploit the labels structure
and to find instance-instance, label-label and instance-label correlations.

The paper is organized as follows: Section 2 reviews the related work, Section
3 introduces the details of the new method, Section 4 presents the experimental
evaluation of the method, and Section 5 discusses the conclusions as well as the
future work.

2 Related Work

MLLSE models are characterized by the usage of a latent space where either the
representation of the labels, the instances or both are embedded. This embedding
is done to (1) reduce the dimensionality of the data and eventually reduce the
computational and spatial complexities of the learning algorithms and to (2)
extract and exploit hidden structures which rise from the correlation patterns
present in real world datasets.

Among MLLSE models there is a subset that has been recently called feature-
unaware [3]. These subset of methods only embed the labels’ space but not the
instances’ space. Some examples of feature-unaware models are Compressive
Sensing (CS)[4] and Principal Label Space Transformation (PLST)[8]. These
models can be characterized by their definition of two functions: a label embed-
ding function fL : {0, 1}l → Rs and a reconstruction function fS : Rs → {0, 1}l.
The function fL goes from the original space of labels to the compact embedded
representation and the function fS reconstructs the original labels given the em-
bedded representation. The labels embedding function is designed to exploit the
correlation information and find semantic factors presents in the labels represen-
tation data, while the reconstruction function is designed to minimize the loss
of information (as measured by a reconstruction error). Using the embedding, s
linear regressors fi : χ→ R are found and used later to predict the embedding of
the labels of new unseen instances as F (x) = (f1(x), . . . , fs(x)). This prediction
is then translated into a labels representation using the reconstruction function.

In CS [4] the goal is to learn to predict compressed label vectors using lin-
ear regressors, under the assumption that the labels vector y are sparse. The
embedding function is determined by random projections that allow the em-
bedded labels to fulfill some sparseness requirements that reduce the number
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of linear regressors to learn. The reconstruction function on the other hand is
posed as an optimization problem, also called the decoding problem, and so adds
computational complexity to the overall multi labeling process.

In PLST [8] the embedding function is defined as fL(y) = V y and the recovery
function is defined as fS(h) = V Th, where V is obtained by solving the opti-
mization problem minV TV =I ‖Z − V TV Z‖, with Z = Y − 1

nY 11T , and 1 being
a vector of ones. This minimizes the reconstruction error in the reconstruction
function. In this model the reconstruction function consists in just a multiplica-
tion by a precomputed projector, in contrast with the decoding problem faced
by CS.

There are two problems with feature-unaware models: (1) the information
provided by the correlation between the instances’ data and the labels’ data
is ignored as the dimensionality reduction is only applied to the labels’ space,
and (2) the curse of dimensionality is still present as the instances’ space is not
reduced. Reducing only the instances’ space would have the same issues and so
it is natural to think in models that embed both the labels and the instances
into the same low-dimensional space.

In contrast with feature-unaware models, there are feature-aware models,
which take into account both the instances and labels data when inducing
the mappings to a latent space. Therefore an instances’ embedding function
fK : Rk → Rs is learned in addition to the labels’ embedding function and
the reconstruction function. Examples of this models are multilabel max-margin
embedding (MME) [6] and multilabel canonical correlation analysis (CCA) [7].

CCA [7] looks for a latent space in which the instances’ and the labels’ embed-
ding correlation is maximized. The method proposed in [3] embeds the instances
into the latent space to learn a binary relevance model in which a binary classi-
fier is trained for each label, i.e. the labels’ embeddings to the latent space are
not further used and so there’s no recovery function here.

In MME [6] both the instances and the labels are embedded into a shared
latent space, where the distance between a given instance embedding and its
associated labels’ embedding is smaller than the distance between the instance
embedding and other unrelated labels’ embeddings in the dataset, i.e. ∀j 
= i
fK(xi)

T fL(yi) − fK(xi)
T fL(yj) is maximized. Once such latent space is found

MME predicts the labels of a new instance by embedding it to the latent space
and then recovering the labels representation using the reconstruction function.

There are several MLLSE methods based on non-negative matrix factoriza-
tion, those methods includes asymmetric and mixed NMF [2] and another vari-
ations like structure preserving NMF [5] that could be adapted to multilabel
learning, however, they impose more constraints on the embedding space that
usually leads to an addition of complexity to the original NMF model.

Our method simultaneously addresses both the embedding problem and the
label representation reconstruction problem using a common formulation based
on matrix factorization, which is solved using an efficient online learning strategy.
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3 Online Matrix Factorization Multilabel Classification

Let X ∈ Rk×n be the instances representation matrix, with n the number of
instances and k the dimensionality of the instances space, and Y ∈ Rl×n be the
label indicator matrix with l the number of labels and Yij = 1 if and only if the
i-th label is assigned to the j-th instance.

The proposed method has two stages, a learning stage and a prediction stage.
In the learning stage the method assumes that there is a latent space, L = Rs,
where both instances and labels have a common representation. Lets H ∈ Rs×n

be the latent representation matrix, then X may be obtained from H by a
transformation:

X = PH

In the same way, the label indicator matrix may be obtained from H by the
transformation:

Y = QH

The goal of the learning stage is to find P , Q and H . This is accomplish by
solving the following unconstrained optimization problem:

min
P,Q,H

(1− α)‖X − PH‖2F + α‖Y −QH‖2F + λ(‖P‖2F + ‖Q‖2F + ‖H‖2F ) (1)

where α controls the relative importance of instance reconstruction with respect
to label reconstruction during the embedding learning, and λ controls the relative
importance of the regularization term, which penalizes large values (measured
by the Frobenious norm) in matrices P and Q preventing overfitting.

The H matrix contains a compact representation of each instance, which
is expected to encode a unique semantic representation of the instance, from
which the label or instance information may be reconstructed using the Q and
P transformations respectively.

In the prediction stage, the latent representation of a new unseen instance x
is calculated using the the learned model (matrices P and Q) and solving the
optimization problem:

h = argmin ‖x− Ph‖2F + ξ‖h‖2F (2)

From the latent representation h of the sample we calculate the corresponding
labels using the Q matrix, i.e. the predicted labels representation for the new
instance would be y = Qh. So, once the model is learned, the embedding function
of our model consists in solving the convex optimization problem of Eq. 2, while
the recovery function consists in multiplying by a projection matrix Q.

The algorithm 1 solves the optimization problem in Eq. 1 using an online
learning strategy based on stochastic gradient descent. This requires the objec-
tive function to be formulated as a per-sample loss function as follows:

f(xi, yi, P,Q, hi) = (1−α)‖xi−Phi‖2F +α‖yi−Qhi‖2F +λ(‖P‖2F + ‖Q‖2F ) (3)
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In each step, the algorithm processes a sample (xi, yi) by calculating the gradient
of f , ∇f , and moving the parameters P and Q in the opposite direction:

gP (xi, P,Q, hi, α, λ) = ∇P f(xi, yi, P,Q, hi) = λP − (1− α)(xi − Phi)h
T
i

gQ(yi, P,Q, hi, α, λ) = ∇Qf(xi, yi, P,Q, hi) = λQ− α(yi −Qhi)h
T
i

Algorithm 1. Learning stage

Precondition: X ∈ Rk×n and Y ∈ Rl×n

function Train(X,Y, s, λ, epochs)
P (0) ← RANDOM-MATRIX(k,s)
Q(0) ← RANDOM-MATRIX(l,s)
h(0) ← RANDOM-MATRIX(s,1)
gamma ← 1
for j ← 1 to epochs do

for i ← 1 to n do
x, y ← SAMPLE-WITHOUT-REPLACEMENT(X,Y)
P (i∗j) ← P (i∗j)−1 − γgP (x, λ, P

(i∗j)−1, Q(i∗j)−1, h(i∗j)−1)
Q(i∗j) ← Q(i∗j)−1 − γgQf(y, λ, P

(i∗j)−1, Q(i∗j)−1, h(i∗j)−1)

h(i∗j) ← (λIr + P (i∗j)T P (i∗j) +Q(i∗j)T Q(i∗j))−1(P Tx+QT y)
γ ← γ

1+iγλj

end for
RESTART-SAMPLING()

end for
return P epochs×n, Qepochs×n

end function

In Algorithm 1 the details of the training algorithm are shown. The algorithm
randomly samples pairs (instance,labels) from the dataset D and updates P and
Q the gradient of per-instance loss function f (Eq. 3). The vector h is updated
using the closed-form solution to the optimization problem with respect to h.
At every update only one sample is processed, in contrast with batch gradient
descent algorithms where the whole dataset is processed during each update,
therefore the memory usage is proportional to the size of one sample and the
size of the matrices P and Q. This makes the algorithm suitable for large-scale
applications. The algorithm can be easily extended to process not just one sample
but a small sampled subset of the dataset, a minibatch, on each iteration. This
has shown good results on online factorization algorithms [1].

In this algorithm the learning rate γ is updated on each iteration to improve
the convergence rate as it is usual in SGD algorithms. The epochs parameter in-
dicates the number of times that each sample from the dataset will be processed.
This parameter is analogous to the number of iterations of a batch gradient de-
scent algorithm.
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In Algorithm 2 the prediction algorithm is detailed. A new instance is em-
bedded into the latent space by solving the problem in eq 2, to later recover its
label representation. However the predicted representation is not necessarily a
binary one because our model does not restricts it to be, but we can interpret
this representation as a label ranking and then either selecting the top m ranked
labels (letting m be close to the average number of labels of each instance in the
training data set) or using a threshold value to decide for each label whether it
is selected or not. For the experimental evaluation of our method we evaluate
both approaches and selected the best one using cross-validation.

Algorithm 2. Prediction stage

function Predict(x, P , Q, xi, param)

h ← (ξIr + P (i)T P (i))−1(P Tx)
y ← Qh
L ← SELECT − TOP (param,y) � Or THRESHOLD(param,y)
return L

end function

The parameter param might either be an integer for the top selection case or a
real for the thresholding case. The THRESHOLD(param, y) procedure returns
a list of the indices of the labels with a rank value in y bigger than param. The
procedure SELECT-TOP(m, y) will return the index of the elements of m largest
elements of y, SAMPLE-WITHOUT-REPLACEMENT(X,Y ) will sample a pair
(instance, labels) from the dataset, represented by the pair (X,Y ), and store in
x the instance and in y the labels representation. Subsequent calls to SAMPLE-
WITHOUT-REPLACEMENT will not return the same values as before, unless
the RESTART-SAMPLING procedure is invoked.

4 Experimental Evaluation

The method was evaluated on 5 standard multilabel datasets (described in Table
1) distributed by the mulan framework authors [10]. Results were compared
against 7 MLLSE algorithms: CCA, OVA, MME, CS, PLST, and two batch
non-negative matrix factorization techniques: Assymetric Non-negative Matrix
Factorization (ANMF) and Mixed Non-negative Matrix Factorization (MNMF)
[2]. We used the implementation kindly provided by the authors of [6] to compare
it with our algorithm on the larger Mediamill dataset.

We used the same experimental setup as in [6], i.e. a random 5-fold cross
validation schema for all experiments. One important parameter of our algorithm
is the weight parameter α, which controls the relative importance of instances
and labels. This parameter was experimentally tuned. The weight α has been
experimentally shown to have low values, giving more importance to the label
data. This can be seen as a consequence of the semantic richness underlying the
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Table 1. Datasets considered in our experimental setup. The label cardinality is the
average number of labels per instance.

Dataset Labels Examples Features Label Cardinality

Medical 45 978 1449 1.245

Corel5k 374 5000 500 3.522

Bibtex 159 7395 1836 2.402

Scene 6 2407 294 1.074

MediaMill 101 43907 120 4.376

words used for annotation. In the reconstruction of the label vector for the test
instances a range of thresholds were evaluated according to the range of values
of the reconstructed vector, so we assign 1 to the label j of the instance xn if
xn
j > threshold. In a similar way we choose the top-k labels for each test sample

selecting the highest k label values in the reconstruction of the labels vector.
Table 2 reports the performance of each method in terms of the micro f-

measure. In all the cases, the presented method shows a competitive perfor-
mance, obtaining in three of the five datasets the best one. ANMF and MNMF
are based on ideas similar to the ones that support our method, learning a joint
embedding space for instances and labels. In ANMF a compact label space is
learned as a semantic basis for the joint embedding space, and in MNMF a con-
catenation of the label and instance matrices is made to learn the embedding
space, also the instance and label matrices are weighted according to a param-
eter α for weight the contribution to of each representation to the embedding
space representation. Both algorithms have the drawback that are not suitable
for large scale datasets, since them handle the whole matrices X and Y becoming
unfeasible to store in RAM for huge datasets. In contrast, the proposed method
scales very well to large datasets thanks to its formulation as an online learning
algorithm.

Table 2. Performance of each method in terms of f-measure, in parentheses the em-
bedding space dimension. Results in bold are the best ones for each dataset. Results
for OVA, CCA, CS and PLST correspond to the ones reported in [6].

Corel5k Scene Bibtex Medical Mediamill
OVA 0.112 0.617 0.372 0.732 —
CCA[7] 0.150 0.610 0.404 0.404 —
CS[4] 0.086 (50) 0.499 (6) 0.332 (50) 0.499(50) —
PLST[8] 0.074 (50) 0.539 (6) 0.283 (50) 0.539 (50) —
MME[6] 0.178 (50) 0.698 (6) 0.403 (50) 0.808 (70) 0.199 (350)
ANMF[2] 0.210 (30) 0.678 (10) 0.297 (140) 0.679 (70) 0.496 (350)
MNMF[2] 0.240 (35) 0.697 (10) 0.376 (140) 0.690 (350) 0.510 (350)
Our Method 0.26337 (40) 0.691 (10) 0.436 (140) 0.896 (70) 0.503 (350)
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5 Conclusions

We have presented a novel latent space embedding method for multi label anno-
tation which learns a joint embedding space using an online matrix factorization
formulation that can deal with large datasets. The method was compared against
state-of-art MLLSE methods showing competitive results, especially on data sets
with a large number of annotations. This might be due to the semantic richness
of the information in the labels space. This is an aspect that we plan to explore in
more detail in the future as well as to compare it against recent online methods
for multi labeling in web-scale datasets.

Acknowledgments. Thisworkwas supported byColciencias grant 566 “ Jóvenes
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Abstract. Although the general relevance of Testor Theory as the theo-
retical ground for useful feature selection procedures is well known, there
are no practical means, nor any standard methodologies, for assessing the
behavior of a testor-finding algorithm when faced with specific circum-
stances. In this work, we present a practical framework, with proven
theoretical foundation, for assessing the behavior of both determinis-
tic and meta-heuristic testor-finding algorithms when faced with specific
phenomena.

Keywords: Feature selection, testor theory, typical testor algorithms.

1 Introduction

A matrix A is called Boolean if all its entries are 0 or 1. Let RA = {a1, ..., am}
and CA = {x1, ...xn} be the set of rows and the set of columns of A, respectively.
Two rows of RA, ap and aq, are incomparable if (∃i) [api ≥ aqi]∧(∃j) [aqj ≥ apj ].

A row is called a basic row if it is incomparable with any other row from RA.
A Boolean matrix is called a basic matrix if it is composed exclusively of basic
rows. T ⊆ CA is a testor in A if the submatrix A|T , obtained by eliminating
from A all columns not in the subset T , doesn’t have any zero rows. Also, T is
a typical testor if no subset of T can be found that is also a testor in A.

Typical testors play an important role in solving some feature selection [4] [14],
diagnosis of diseases [8], text categorization [10], document summarization [9] and
document clustering [6]. The concept of typical testor has been extended and gen-
eralized in several ways [5]. The problem of finding the set Ψ∗(A) of all typical
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testors in a basic matrix A is an old problem that has had an important devel-
opment in the last ten years. To support this statement, consider the number of
published papers with new algorithms related to this problem [3] [13] [7] [12].

There are two classes of typical testor-finding algorithms (TTAs): determin-
istic and meta-heuristic. Deterministic algorithms guarantee that they will find
all typical testors at the expense of an exponential complexity. On the other
hand, meta-heuristic algorithms have no guarantee to find all the typical testors
in a given problem, but they are feasible to be used on extremely large search
spaces [1] [3]. The complexity of deterministic TTAs has not been sufficiently
studied. This lack of sufficient study can be regarded as the cause of why most
published works about TTAs fail, in the opinion of the authors of this paper,
to properly justify their selection of basic matrices for comparative performance
experimentation between different algorithms. On one hand, since the number
of matrices selected for experimentation is considerably low, the obtained results
lack statistical significance. On the other hand, by not using a specific criterion
for selecting test matrices and testing any new algorithm with the same ma-
trices the characteristic behavior of each algorithm in the presence of certain
stereotypical phenomena is not captured.

However, a formal and convenient strategy for selecting matrices for algorithm
testing is certainly viable. In [2], a feasible strategy for studying the behavior
of the TTAs was presented for the first time. That strategy was based on the
construction of test matrices (TM) which are basic matrices whose sets of typical
testors can be determined in advance. This property allows the assessment of
the behavior of the computational implementation of any deterministic TTA, as
well as the validation of the answer completeness of any meta-heuristic TTA.
Since both the amount of typical testors and their length can be preset, TMs
can be generated for studying the behavior of an algorithm varying only one
parameter at a time. For example, we can consider the exponential increase in
the number of matrix rows with only a linear increase in the number of typical
testors, or the opposite phenomenon, a linear increase in the number of matrix
rows, resulting in an exponential growth of the number of typical testors.

In this paper, we worked along two main directions. First, we significantly
extended the theoretical framework of the TM strategy to allow the generation
of a whole new set of TMs that are more flexible and versatile. Second, we
show how TMs can be used to study the behavior of a TTA in the presence of
specific phenomena. We also selected three previously published TTAs, tested
them against specific TMs, and reported and discussed the obtained results.

2 Theoretical Background

Let A = [aij ]m×n and B = [bij ]m′×n′ be two basic matrices. In [2] the operators
φ and θ were defined on pairs of matrices A and B. The result of a ϕ operation
is a new Boolean matrix obtained by concatenating two basic matrices with the
same number of rows. The resulting matrix has exactly the same number of rows
of A and B, but it has n+ n′ columns (the sum of the number of columns from
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A and B). On the other hand, the θ operator produces a new matrix having
m×m′ rows (the product of the number of rows in A and B), and also having
n+ n′ columns.

One important property of the ϕ and θ operators is that, when applied to
basic matrices, the resulting matrix is also basic, since it preserves the portion
of the matrix that guarantees incomparability of the rows. Moreover, it can be
demonstrated that if A, B and C are basic matrices, the ϕ operator is associative.
As a consequence, we will write ϕN (A) to represent the resulting matrix of
applying the ϕ operator to the matrix A N times. Likewise, the θ operator is
also associative, so we will write θN (A) to represent the result of applying the
θ operator consecutively N times.

Now, let CA = {x1, ...xn} be the set of columns in a basic matrix A, and let
xj ∈ CA. We will write [xj ]N to denote the class of all columns in A exactly
equal to xj in ϕN (A). In other words, [xj ]N =

{
xj,xj+n, ..., xj+(N−1)n

}
.

Given S ⊆ CA and S = {xj1 , ..., xjs}, [S]N will denote the set of all subsets of
columns from ϕN (A) that can be obtained by replacing one or more columns in
S with any other column in the same class, that is,[S]N = [xj1 ]N × ...× [xjs ]N .

Then it is easy to verify that |[S]N | = Ns = N |S|.
Therefore, if A and B are basic matrices such that the sets Ψ∗(A) and Ψ∗(B)

of all typical testors are known, then the next two propositions establish how
the sets Ψ∗ (ϕN (A)

)
and Ψ∗ (θ (A,B)) can be obtained from them.

Proposition 1. Ψ∗ (ϕN (A)
)
= {[T ]N | T ∈ Ψ∗(A)}.

Proposition 2. Ψ∗ (θ (A,B)) = Ψ∗(A) ∪ Ψ∗(B) .

Proposition 1 is proved by observing that, with the exception of the order
of the columns, the submatrices in ϕN (A) that form the elements of [T ]N are
always identical to A|T . This is, because a column in T can only be replaced by
another from the same class, and therefore all elements in [T ]N are, by defini-
tion, typical testors. Now, let’s make the assumption that some typical testor
S = {xj1 , ..., xjs} exists outside {[T ]N | T ∈ Ψ∗(A)}. There must be at least one
column of S that is not part of A. Lets replace all columns in S with the column
from A within their same equivalence class. Then we would have a contradiction,
because the resulting submatrix must determine a typical testor, which must be
in A, and therefore S must be in [T ]N .

In order to prove Proposition 2, it is enough to observe that if we identify in
θ (A,B) the columns from A and from B, and we eliminate repeated rows in each
set, we end up with the original matrices A and B. Therefore, the set of typical
testors in A and B is preserved in θ (A,B). Also, we cannot find any testor in
θ (A,B) with columns of both matrices, because if the selected columns were
testors in A or in B, then we would be constructing supersets of testors, and
they would not be typical any more. On the other hand, if the selected columns
were not testors, the following reasoning applies:

Let SA and SB be sets of non-testor columns from A and B respectively. Let
also a be the row from A with zeros in the columns of SA , and let b be the row
from B with zeros in the columns of SB. Since the row [ab] is in θ (A,B) the
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Table 1. Test Matrices ϕN (B) and θN (θ (A,B))

N Rows Cols
∣∣∣Ψ∗

(
ϕN (B)

)∣∣∣ N Rows Cols
∣∣∣Ψ∗

(
θN (θ (A,B))

)∣∣∣
1 4 5 4 1 16 10 8

2 4 10 18 2 256 20 16

... ... ... ... ... ... ... ...

N 4 2N N + 2N2 + N3 N 16N 2N 8N

submatrix of θ (A,B) , formed by SA ∪SB must also have a row with zeros, and
therefore it cannot be a testor.

So, we have that |{[T ]N | T ∈ Ψ∗(A)}| =
∑

T∈Ψ∗(A)

[T ]N =
∑

T∈Ψ∗(A)

N |T |, and

also that within θ (A,B), Ψ∗(A) ∩ Ψ∗(B) =. These two properties allow us to
state the following corollaries from Propositions 1 and 2.

Corollary 1.
∣∣Ψ∗ (ϕN (A)

)∣∣ = ∑
T∈Ψ∗(A)

N |T |

Corollary 2. |Ψ∗ (θ (A,B))|=|Ψ∗(A)|+ |Ψ∗(B)|

Example 1. Let A =

x1 x2 x3 x4 x5⎡⎢⎢⎣
1 0 0 0 0
0 0 1 0 1
0 1 0 1 1
0 1 1 0 0

⎤⎥⎥⎦and B =

x6 x7 x8 x9 x10⎡⎢⎢⎣
1 1 1 0 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1

⎤⎥⎥⎦
We can verify thatΨ∗(A) = {{x1, x2, x3} , {x1, x2, x5} , {x1, x3, x4} , {x1, x3, x5}},
and Ψ∗(B) = {{x6} , {x8, x10} , {x7, x9, x10} , {x7, x8}}.Note that A has 4 typi-
cal testors of length 3. By using Corollary 1 above, we know that

∣∣Ψ∗ (ϕ3 (A)
)∣∣

= 4 ∗ 33 = 108. Likewise, since B has one typical testor of length 1, two of
length 2, and one of length 3, we can establish using the same corollary that∣∣Ψ∗ (ϕ3 (B)

)∣∣ = 31 + 2 ∗ 32 + 33 = 48. We can also determine how many typical
testors to expect in θ (A,B) using corollary 2: |Ψ∗ (θ (A,B))| = 8.

Test matrices allow us to control particular aspects that we wish to study re-
garding the performance of a TTA. In Table 1, the effect of appying the operator
ϕN to matrix B from example 1 is shown.As can be seen, the generated matrices
preserve the same number of rows, while the number of columns increase linearly;
but the resulting number of typical testors grows according to a cubic polynomial.

If one wishes to assess the effect of an exponential growth in the number
of rows while sustaining a linear behavior of both the number of columns and
the number of typical testors, then one would only need to use the test matrix
θN (θ (A,B)) with A and B being exactly those from example 1. The resulting
behavior of such test is shown in Table 1.

3 Taxonomy and Nature of TTAs

Deterministic TTAs can be classified in two sets: external and internal. External
TTAs always set an order to test the power set of columns in the basic matrix.
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Following that order, each subset of columns is tested to determine if it is a
typical testor or not. However, the test process is not an exhaustive search over
the power set. Some properties of each tested subset allow the TTA to infer
which other successive subsets, following the established order, cannot be typical
testors, and therefore it is not worthwhile to test them. The act of bypassing
the test of some subsets of columns is commonly referred to as jumping. In
general, the selected order for traversing the power set of columns, along with
the magnitude of the jumps (i.e. the number of subsets not tested), and the
specific procedure applied to a subset for testing if it is a typical testor or not,
determine the behavior of an external TTA.

On the other hand, internal TTAs do not test the power set of columns in
a basic matrix. Their strategy lies in iteratively selecting the entries in the ba-
sic matrix and using them to construct typical testor candidates. An extended
version of this work, which includes analysis and comparison of experimental
results, both on internal and external TTAs as [7], is being prepared. In order
to meet the space requirements, this work will exclusively show results obtained
with experiments on external TTAS.

Three external TTAs were selected for experimentation with representative
TMs. These algorithms are BT [11], LEX [13], and FastCTExt [12]. In the
next section, all the above mentioned algorithms are tested against specifically
selected families of TMs, and the obtained results discussed.

4 Experimental Results

As an example of how the TMs framework can be used for TTA testing purposes,
we designed specific experiments to asses the TTA’s performance when facing
different phenomena. For each experiment, a custom-designed TM was created
with a specific combination of the θ and ϕ operators, applied to the A and B
matrices, as well as some identity matrices. Identity matrices are denoted by IN ,
where N is the dimension of the identity matrix.

All experiments were run on an Intel i7 processor, with 4GB in RAM. However,
since the ultimate goal of this work is to promote the usefulness of the proposed
framework, and not to rigorously test each algorithm, absolute execution times
as well as the hardware platform, are not relevant. For the intended goal, relative
execution times are sufficient.

The first set of experiments was designed with successive powers of the ϕ op-
erator, applied to the identity matrix I5. Each one of those operations generates
a basic matrix with 5 rows, but with a linearly increasing number of columns,
and with a number of typical testors equal to the selected power of ϕ raised to
the power of the dimension of the matrix (5) . Algorithms LEX and FastCTExt
were tested against each matrix, and in order to asses the resulting performance
in each case, their execution times are recorded relative to the time needed for
solving the first experiment (the one described in the first row of the table).
Table 2 summarizes all the experiments performed.

As in the reports from several research works, Table 2 shows that the perfor-
mance of the LEX and BT algorithms are clearly below that of the FastCTExt
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Table 2. Relative execution times of the LEX, FastCTExt, and BT algorithms when
facing powers of the ϕ operator, applied to the identity matrix I5.

# Test Matrix Rows Cols |Ψ∗| LEX FastCTExt BT

1 ϕ1 (I5) 5 5 1 x y z

2 ϕ2 (I5) 5 10 32 4x y 2z

3 ϕ3 (I5) 5 15 243 22x 9y 87z

4 ϕ4 (I5) 5 20 1024 86x 31y 2, 113z

5 ϕ5 (I5) 5 25 3,125 246x 90y 37, 246z

algorithm. However, the fundamental premise of this work is that without using
a practical test framework capable of generating a wide diversity of phenomena,
it is not possible to identify performance bottlenecks and special cases where a
different processing technique is needed. As concrete evidence of this premise,
the reader should consider the next set of experiments, where different combi-
nations of the θ and ϕ operators applied to the reference matrices are used to
induce specific test phenomena for the same algorithms. Table 3, summarizes
the basic matrix phenomena that both algorithms were confronted with. Like in
the previous set of experiments, all execution times are expressed relative to the
time recorded in the first experiment.

As recorded in Table 3, the LEX algorithm turns out to be far more sensible
to an increase in the number of columns of the basic matrix than to an increase
in its number of rows. When the number of rows is kept constant and the number
of columns and typical testors only slightly increase (rows 2, 3, 5, 6 & 7), the
execution time also stays approximately the same. However, when the number
of rows is doubled, and the number of columns (and typical testors) is kept
constant (rows 4, 7 & 10), LEX’s execution times almost doubles.

The FastCTExt algorithm roughly follows the same behavior pattern, al-
though experiments show it to be even more sensitive to the same phenomenon
than the LEX algorithm. Rows 9 and 10, in Table 3, show the exact quan-
tification for this phenomenon. By observing rows 9 and 10, it seems obvious
that when doubling the number of columns and typical testors (from 46 to 96

Table 3. Relative execution times of the LEX and FastCTExt algorithms when
facing alternate powers of θ and ϕ operators

# Test Matrix Rows Cols |Ψ∗| LEX FastCTExt

1 S1 = θ (A,B) 16 10 8 x y

2 S2 = ϕ2 (S1) 16 20 50 17x 22y

3 S3 = θ
(
S2, θ

2 (I1)
)

16 22 52 17x 23y

4 S4 = θ
(
S2, θ

20 (I1)
)

16 40 70 18x 40y

5 S5 = θ (S2, I2) 32 22 51 54x 65y

6 S6 = ϕ2 (S5) 32 44 360 2, 009x 4, 245y

7 S7 = θ
(
S6, θ

2 (I1)
)

32 46 362 2, 021x 4, 321y

8 S8 = θ
(
S6, θ

44 (I1)
)

32 88 404 2, 044x 5, 113y

9 S9 = θ (S6, I2) 64 46 361 5, 466x 11, 671y

10 S10 = ϕ2 (S9) 64 92 2716 486, 052x 2, 147, 293y
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Table 4. Relative execution times of the LEX, FastCTExt, and BT algorithms using
identity matrices of different sizes

# Test Matrix Rows Cols |Ψ∗| LEX FastCTExt BT

1 I5 5 5 1 x y z

2 I10 10 10 1 25x 7y 0.25z

3 I15 15 15 1 885x 231y 0.5z

4 I20 20 20 1 35, 574x 7, 758y 0.5z

5 I25 25 25 1 1428772x 259, 945y 0.75z

columns), LEX ’s execution times increases by a factor 88, while FastCTExt’s
time increases to 296 times that of the previous experiment. The same behavior,
in a lesser magnitude, can also be observed in rows 3 and 4 of the same table.

For the last set of experiments, a comparison of the three studied algorithms
is performed, using simple identity matrices. The results are summarized in
Table 4. Clearly, an identity matrix has only one typical testor, regardless of its
dimension. Surprisingly enough, the BT algorithm turns out to have the best
performance, far beyond those of the LEX and FastCTExt algorithms. This
particular behavior could not be observed without the proposed framework.

5 Conclusions and Recommendations

Deterministic TTAs, as previously discussed, are guaranteed to find the complete
set of typical testors in a basic matrix. The order in which a TTA traverses the
search space, as well as the particular pre-search procedures it applies to the basic
matrix, ultimately determine its behavior and general performance. However, the
TTA’s sensitivity to specific phenomena, such as the growth in rows, columns,
or typical testors on the basic matrix is, in general, not sufficiently assessed.

We have presented a theoretical and practical framework that allows a re-
searcher to test a TTA against specific pre-designed phenomena. The combi-
nation of θ and ϕ operators, in conjunction with sufficiently studied basic ma-
trices, turns out to be a versatile tool for generating almost any conceivable
phenomenon a researcher could wish a TTA to confront. The behavior observed
during those tests can potentially yield enough information for identifying per-
formance bottle-necks, and help design the appropriate fine-tuning procedures.

Meta-heuristic TTA’s, on the other hand, are pseudo-random search proce-
dures that, by nature, don’t offer enough guarantees about the completeness of
the resulting typical testors set. In order to validate these kind of TTA’s, a wise
course of action is to test the TTA against sufficiently studied basic matrices
(those for which the total number of typical testors is known in advance). Matri-
ces that satisfy such requirements are generally small ones, not suited for serious
testing purposes. The TM framework herein proposed allows the generation,
based on one original matrix, of increasingly larger matrices, with any desired
dimensions, for which the total number of typical testors is always known.

In conclusion, TTA testing, under realistic conditions, appears to be a
valuable asset for advancing the general state-of-the-art in pattern recognition.
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By providing practical means for testing both deterministic and meta-heuristic
TTAs, the TM framework seems to fullfill the current gap between theoretical
developments and practical implementations.
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Abstract. The purpose of CBIR (Content Based Image Retrieval) systems is to
allow users to retrieve pictures related to a semantic concept of their interest,
when no other information but the images themselves is available. Commonly, a
series of images are presented to the user, who judges on their relevance. Several
different models have been proposed to help the construction of interactive sys-
tems based on relevance feedback. Some of these models consider that an optimal
query point exists, and focus on adapting the similarity measure and moving the
query point so that it appears close to the relevant results and far from those which
are non-relevant. This implies a strong causality between the low level features
and the semantic content of the images, an assumption which does not hold true
in most cases. In this paper, we propose a novel method that considers the search
as a multi-objective optimization problem. Each objective consists of minimizing
the distance to one of the images the user has considered relevant. Representa-
tives of the Pareto set are considered as points of interest in the search space,
and parallel searches are performed for each point of interest. Results are then
combined and presented to the user. A comparatively good performance has been
obtained when evaluated against other baseline methods.

1 Introduction

Usually, a CBIR system represents the images in the repository as a multi-dimensional
feature vector extracted from a series of low level descriptors, such as color, texture
or shape. The perceptual similarity between two pictures is then quantified in terms of
a distance/similarity function defined on the corresponding multi-dimensional feature
space. A major problem with CBIR systems is the so called “semantic gap”, which
refers to difficulty of translation of user’s intentions into similarities amongst low level
features. Relevance feedback, a technique inherited from traditional information re-
trieval, has been used to increase the efficiency of CBIR systems helping to induce high
level semantic contents from low level descriptors. When relevance feedback is used,
a search is considered an iterative process. At each iteration, the system retrieves a se-
ries of images ordered according to a pre-defined similarity measure, and requires user
interaction to mark the relevant and non relevant retrievals. This data is used to adapt
the similarity measure and produce a new set of results, repeating the process until the
desired picture is found.

Relevance feedback has been a major topic of research during the last two decades
(see [1, 2]). First methods were based on adapting the similarity measure and moving
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the query point so that more emphasis is placed on relevant elements and less on irrele-
vant ones [3–5]. This type of techniques use the user’s judgments to dynamically adjust
the weights of each feature, and to produce a new query point that represents his/her
interest in a more reliable way. In general, these are the fastest techniques, but they
assume the existence of a unique query point. A large number of probabilistic methods
have also been proposed e.g. [6–8]. Most of these are based on estimating posteriori
probabilities from the prior probabilities and the relevance judgments provided by the
user. One particular way to estimate these probabilities is by using nearest-neighbour
estimators [9, 10]. The use of supervised learning techniques has also been a major
trend in the development of relevance feedback mechanisms. In this context, SVMs
(Support Vector Machines) have been widely used [11–13], despite the difficulties asso-
ciated with fine-tuning the retrieval systems choosing the optimal set of parameters for
the SVM [9]. Other successful approaches to CBIR include the use of fuzzy sets [14],
self organized maps [15] or evolutionary computation [16] to determine the degree of
relevance of each image in the database.

In this paper, we propose a novel technique which considers the search as a multi-
objective optimization problem. Each positive selection constitutes an objective, and
the search space is explored to find a representative set of trade-off solutions between
the objectives. Then, each member of this representative set is chosen as a seed, and
the search proceeds concurrently at each seed. By using this method, the search not
only takes place in regions surrounding the relevant selections but also in others areas
in between. This is in contrast to many other existing techniques, which concentrate the
search only on regions around known positive samples.

The remainder of the paper is organized as follows. First the technique proposed
is explained in section 2. Then , the approach is evaluated in section 3. Finally, some
conclusions are drawn in section 4.

2 The Algorithm

2.1 Problem Formulation

Let us consider the discrete solution space of all M images stored in the repository
and denote it by {Im1, Im2, . . . , ImM}. Let us also denote the set of P relevant user
selections by {Im+

1 , . . . , Im+
P }, and the non-relevant selections by {Im−

1 , . . . , Im−
N}.

Let us assume that a similarity function s exists which produces an estimate of the
resemblance between any pair of images.

Let us also consider a set of P objectives {o1, o2, . . . op} for each image Imx, and
define each objective oi as the similarity between the image and the corresponding
relevant user selection Im+

i . The similarity function s can then be used to measure the
degree of satisfaction of the objective oi as s(Imx, Im

+
i ). This formulation allows us to

consider each of the M images in the repository as a potential solution to the problem,
and the similarity to each of the P relevant selections as a different objective which
should be maximized.

When a problem has multiple objectives, several optimal solutions may co-exist.
These are all possible non-dominated solutions to the problem. A solution is said to
be non-dominated if there is no other solution which simultaneously satisfies all the
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objectives better. In the absence of any further information, these cannot be said to be
worse than any other. The set of all non-dominated solutions to a problem is commonly
referred to as the Pareto optimal set.

The calculation of the Pareto optimal set may yield a large number of non-dominated
solutions, specially for large numbers of relevant selections. In general, this implies that
it would not be possible to show the entire set to the user. For this reason, we chose
conveniently scattered representative samples from the Pareto optimal set. In addition,
trade-off solutions which are closer to a negative selection than to a positive one are
removed, according to the principles of a nearest neighbor classifier. The remaining
ones are treated as seeds for potential regions of interest. Then, a ranking is produced for
each seed. These are computed by sorting all images in the repository by their similarity
to the seed, according to the function s. The rankings are finally combined iteratively,
by taking one element from each ranking at each round.

2.2 Implementation

Determining the Pareto optimal set in a discrete solution space is a simple but also
a time consuming operation. Every solution has to be compared against the rest and,
in the worst case, it takes O(P ·M2), with P representing the number of objectives
(positive selections) and M the number of solutions evaluated (the number of images in
the database). With usual values of M in CBIR systems, this cost becomes prohibitive.

An alternative is to assume a continuous search space and use a MOEA (Multi-
Objective Evolutionary Algorithm) to determine a spread of solutions along a set which
is close to the true Pareto optimal front. The algorithm NSGA-II [17] has been chosen
for this purpose. Despite that this algorithm does not perform best with a large num-
ber of objectives [18], it provides a spread set of solutions which is sufficient for our
purpose.

In addition, the use of this approach provides two major advantages. In the one hand,
the parameterless diversity preservation mechanism of NSGA-II provides a representa-
tive spread set of solutions directly, with as many elements as the population size used.
This means that the optimal Pareto set does not need to be post-processed to obtain the
desired representative set of spread solutions. In the other hand, the stopping criteria
can be decided so that the response time is kept within reasonable limits.

In our implementation, the feature vectors of the positive solutions are provided as
an input (these are known to be part of the optimal Pareto set), and the genetic algo-
rithm generates a set of feature vectors that represent the optimal Pareto set. Negative
selections in previous iterations of the same search are accumulated and a restriction is
imposed on potential solutions to the problem. They have to be closer to a positive than
to a negative selection, as determined by the similarity function s. If this is not the case,
the potential solution is discarded. To avoid inconsistent solutions or solutions outside
the border of the multi-dimensional search space, all feature vectors produced in the
process are repaired so that their features are all in range and histogram descriptors add
to the appropriate amount. To this end, out of range values are replaced by the nearest
valid value and histograms are linearly scaled so that all components add to one.

Once the representative set of spread solutions has been determined, each of its mem-
bers is used as a seed to drive the search process. Separate rankings are built for each
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feature vector in the set. To build the final ordering, these are visited iteratively until no
elements are left. At each iteration, the top element from each ranking is extracted, and
added to the final ordering if it is not already present. Observe that, for the simplest case
when a single picture is selected as relevant, the optimal Pareto set would be the image
itself, and all pictures in the repository would be ranked according to their similarity to
this image.

3 Evaluation

To evaluate the results, an experimental set-up similar to those reported in [9] and [19]
has been implemented. These systems use classified databases and simulate user judg-
ment according to the class information available. In our case, a fixed number of images
were chosen at random from each class, avoiding repetitions, and these were submitted
as targets to the system. At each iteration, the system made automatic judgments on the
first 50 images returned by the algorithm. Images which belong to the same class as the
target were considered relevant and any other non relevant.

We compare the results obtained with this algorithm to those obtained by using other
existing techniques, namely a) a classical feature weighting and query movement ap-
proach, implemented as presented in [5]; and b) an engine that uses similar principles to
those used in the PicSOM system [20]. From now on, these algorithms will be referred
to as the Query movement and the SOM-based approaches respectively. The SOM-
based approach uses 64x64 SOMs for the first repository and 16x16 SOMs for the
second. Because of the relatively small size of the repositories, standard SOMs have
replaced the hierarchical SOMs used in the original publication. To allow for a fair
comparison, these two algorithm have been adapted to work with the same feature sets.
Note that although the results obtained with SOM approach may not be generalizable
(the performance depends on the size of the maps and the low pass filter applied), they
provide an indicative baseline for comparison purposes.

To test the approach for different database systems two different collections have
been used:

– The first repository is composed of 30 000 pictures from the Corel database. These
were manually classified into 71 themes and used for evaluation purposes in [21].
This collection has been the largest found for which class information is available
and can be obtained from the KDD-UCI repository (http://kdd.ics.uci.edu/
databases/CorelFeatures), together with a set of 4 descriptors, namely: (a) a
nine component vector with the mean, standard deviation and skewness for each
hue, saturation and value in the HSV color space; (b) a 16 component vector with
the second angular moment, the contrast, the inverse difference moment and the
entropy for the co-ocurrence in the horizontal, vertical, and two diagonal directions;
(c) a 32 component vector representing the 4 x 2 color HS histograms for each of
the resulting sub-images after one horizontal and one vertical split; and (d) a 32
component vector with the 8 x 4 color HS histogram for the entire picture.

http://kdd.ics.uci.edu/databases/CorelFeatures
http://kdd.ics.uci.edu/databases/CorelFeatures
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– A second smaller repository composed of 1 508 pictures, classified into a total of 29
categories. Some of these were extracted from the Web and some others were taken
by the authors. The features used in this case were: (a) a 30 component vector with
the 10×3 HS histogram (b) two 10 component vectors with the granulometries[22],
calculated using a horizontal and a vertical segment as the structuring elements
(each for a different feature vector).

In both repositories, (dis)similarity between features is estimated by using the his-
togram intersection on the color histogram vectors and the Euclidean distance on the
rest. Results have been measured in terms of precision at a cutoff value, and precision vs
recall curves, the most common methods to present results in the context of CBIR [1].
Precision is defined as the percentage of relevant images in the set of pictures retrieved,
and it is usually expressed as a value in the range [0, 1]. Recall represents the percentage
of the relevant images that are retrieved. When measuring precision at a cutoff value n,
the precision is measured over the set composed of the first n images retrieved. We have
chosen n = 50 as the area of interest. In table 1, the results for the multi-objective tech-
nique and those for the query movement algorithm and the SOM-based approaches are
presented. To facilitate the comparison, this same data is also shown in Figure 1. The
numbers shown are the average over a large number of searches. In particular, a total
of 1 420 searches were performed on the first repository (20 queries for each class),
and 1 022 on the second (50 per class, except for those classes containing less than 50
images). To diminish the possible variabilities introduced by the random selection of
targets and by potentially unguided searches when no relevant images are selected, we
have forced that there is at least one relevant sample in between the first 50 images in
the initial order of pictures, and all techniques have been evaluated using the same list
of targets and the same initial orderings.

Figure 2 shows the precision vs recall graphs at each iteration, properly scaled to
the areas of interest, for the two databases considered. The two plots in figures 1 and
2 evidence the robustness of the method as a relevance feedback mechanism. In both
repositories, the number of relevant results in between the first 50 retrievals significantly
increases at each iteration. Unlike the query movement approach, the algorithm is able
to maintain several concurrent search areas and discover new regions of interest as the
search progresses.

Table 1. Precision obtained at a cutoff value of 50 for each of the algorithms considered in the
cases of the Large and Small repositories

Algorithm
Iteration

1 2 3 4 5 6 7 8 9 10

Large
Multi-objective 0.1656 0.2716 0.3540 0.4193 0.4721 0.5174 0.5551 0.5861 0.6119 0.6345

Query-movement 0.1434 0.1826 0.1958 0.2007 0.2074 0.2082 0.2118 0.2139 0.2171 0.2193
SOM-based 0.1346 0.1928 0.1965 0.2055 0.2048 0.2125 0.2098 0.2167 0.2126 0.2190

Small
Multi-objective 0.3531 0.4963 0.5749 0.6216 0.6534 0.6754 0.6914 0.7046 0.7151 0.7244

Query-movement 0.3247 0.3425 0.3596 0.3461 0.3646 0.3461 0.3656 0.3491 0.3643 0.3513
SOM-based 0.3208 0.3428 0.3580 0.3308 0.3522 0.3307 0.3548 0.3339 0.3544 0.3341
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Fig. 1. Precision at a cutoff value of 50 for the three algorithms compared. (a) in the large reposi-
tory; (b) in the small repository.
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Fig. 2. Precision vs recall graphs at each iteration. (a) in the large repository; (b) in the small
repository.

4 Conclusions

A relevance feedback method based on formulating the CBIR problem from a multi-
objective optimization perspective has been presented in this paper. The main advantage
of the method is that it is able to simultaneously explore regions around the relevant se-
lections and others which are in between them. This allows the method to recover images
in regions that other methods would not explore. Results show that the method performs
reasonably well on two manually classified repositories of different characteristics.

One major drawback of the technique is the relatively high computational time in-
volved in the calculation of the pareto optimal sets. Despite that the number of iterations
may be adjusted to keep the response time under reasonable limits, the query movement
and SOM-based approaches are considerably faster. As an illustrative figure, and fix-
ing the response time as 1 second for the method proposed, running time becomes two
to three order of magnitude higher than for the other two methods in the comparison.
The study of alternative methods to compute the pareto optimal front is still an issue
under investigation, and may yield important improvements in retrieval performance
and/or execution time. Currently, further work is directed towards a more detailed
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characterization of the way this method behaves in order to integrate this and other
more powerful strategies into a combined scheme.
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16. Arevalillo-Herráez, M., Ferri, F.J., Moreno-Picot, S.: Distance-based relevance feedback us-
ing a hybrid interactive genetic algorithm for image retrieval. Applied Soft Computing 11(2),
1782–1791 (2011)

17. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: Nsga. Transactions on Evolutionary Computation 6(2) (April 2002)

18. Pighetti, R., Pallez, D., Precioso, F.: Hybdrid content based image retrieval combining multi-
objective interactive genetic algorithm and svm. In: 2012 21st International Conference on
Pattern Recognition (ICPR), pp. 2849–2852 (2012)

19. Müller, H., Müller, W., Squirre, D.M.: Automated benchmarking in content based image
retrieval. In: IEEE International Conference on Multimedia and Expo, pp. 321–324 (2001)

20. Laaksonen, J., Koskela, M., Oja, E.: Picsom-self-organizing image retrieval with mpeg-7
content descriptors. IEEE Transactions on Neural Networks 13(4), 841–853 (2002)

21. Giacinto, G., Roli, F.: Nearest-prototype relevance feedback for content based image re-
trieval. In: ICPR 2004: Proceedings of the 17th International Conference on Pattern Recog-
nition, vol. 2, pp. 989–992. IEEE Computer Society, Washington, DC (2004)

22. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Berlin
(2003)



Large Scale Image Indexing
Using Online Non-negative Semantic Embedding

Jorge A. Vanegas and Fabio A. González

MindLab Research Group, Universidad Nacional de Colombia, Bogotá, Colombia
{javanegasr,fagonzalezo}@unal.edu.co

Abstract. This paper presents a novel method to address the problem of index-
ing a large set of images taking advantage of associated multimodal content such
as text or tags. The method finds relationships between the visual and text modal-
ities enriching the image content representation to improve the performance of
content-based image search.

This method finds a mapping that connects visual and text information that
allows to project new (annotated and unannotated) images to the space defined
by semantic annotations, this new representation can be used to search into the
collection using a query-by-example strategy and to annotate new unannotated
images. The principal advantage of the proposed method is its formulation as an
online learning algorithm, which can scale to deal with large image collections.
The experimental evaluation shows that the proposed method, in comparison with
several baseline methods, is faster and consumes less memory, keeping a compet-
itive performance in content-based image search.

1 Introduction

Large online collections of images are becoming common, thanks to the fast advance
in acquisition, storage and communication technology. These collections are potential
source of knowledge, but an effective and efficient access to them is fundamental to
harness this potential. The classic way to search for images is by typing keywords on
a search engine, but in many cases it is desirable to search by providing an example
image. This approach, called content-based image retrieval, has been studied during the
last two decades resulting in important progress . However, it is well known that match-
ing visual features alone may lead to results with lack of semantic validity [16]. In this
paper we address the problem of indexing the visual content of an image collection,
enriching it with the semantic information provided by text annotations. The method
presented in this papers learns relationships between visual features and text keywords
co-occurring in images. A successful strategy to find these relationships is to build a
common semantic representation space where both image and text content are embed-
ded. This has been previously approached using different methods: Latent Semantic
Analysis (LSA) [8], Latent Dirichlet Allocation (LDA) [1], Non-negative Matrix Fac-
torization (NMF) [4] and Non-negative Semantic Embedding (NSE) [19], among oth-
ers. The main drawback of most semantic learning strategies is that the algorithms are
memory and computation intensive [7]. In order to address this drawback, it is proposed

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part I, LNCS 8258, pp. 367–374, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



368 J.A. Vanegas and F.A. González

a reformulation of the NSE algorithm as an online learning process, which scales up to
data collections with a vast amount of samples.

This work presents two main contributions: first, a reformulation of the NSE algo-
rithm to make it scalable to large image collections, and second, an experimental eval-
uation of the algorithm performance in a content-based image retrieval task. The rest of
this paper is organized as follows: Section 2 discusses the related work; Section 3 intro-
duces the proposed method called Online Non-negative Semantic Embedding (ONSE);
Section 4 presents the experimental evaluation; and, finally, Section 5 presents some
concluding remarks.

2 Related Work

The strategy of finding relationships between visual and text representations has been
extensively studied in the last years, specially focused in the task of image annotation.
However many of the proposed algorithms have been designed without considering a
large scale setup [15,10,11]. In some cases, these algorithms can be scaled up by rely-
ing on parallelized implementations and assuming the availability of abundant compu-
tational resources. However, this can be expensive, tricky and hard to accomplish.

There are some works that try to make semantic embedding approaches suitable for
large scale collections. For example, Hsan et al. [18] propose to utilize multi-modality
cues by incorporating visual and textual information as embedded objects, by using a
simple linear projection to approximate the embedding functions, solving a non-smooth
convex optimization problem. Their goal is to make the method (called Modified Multi-
stage Convex Relaxation, MMCR) suitable for large scale image collections by refor-
mulating the basic algorithm in some way that is possible to reduce the time complexity
and the amount of storage, achieving a significant reduction in time complexity. Also,
Jason Weston et al. [20] present a scalable architecture, proposing methods that learn
to represent images and annotations jointly in a low dimension embedding space. To
make training time efficient, they propose a loss function based in stochastic gradient
descent (SGD) approach. Likewise, Juan Caicedo et al. [6] propose multimodal ma-
trix factorization algorithms based on SGD to decompose a training data set, and find
correspondences between visual patterns and text terms in large image collection.

The proposed algorithm in this work is based on a stochastic gradient descent ap-
proach, which, according to the work of Bottou [2], requires very little time to reach
a predefined expected risk. This makes the strategy suitable for large scale learning
problems, providing guarantees about convergence and scalability [2,3].

3 Online Non-negative Semantic Embedding Model

When the image associated text has a rich and clean semantic interpretation (e.g. tags
provided by experts), the text representation may be used directly as the semantic
space. So the problem of finding a common semantic representation for both visual
and text content is reduced to map the visual content to the semantic space defined by
the tags. A method that follows this strategy is the Non-negative Semantic Embedding
(NSE) [19].
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3.1 Non-negative Semantic Embedding

If the visual and semantic representations are vectors, a database of images can be rep-
resented with two matrices by joining the corresponding vectors of visual and semantic
features as columns of the matrices. Let V ∈ Rn×l be the matrix of visual features,
where n is the number of visual patterns in the bag of features representations and l
the number of images in the collection, and let T ∈ Rm×l be the matrix of text terms,
with m the number of keywords in the terms dictionary. NSE is used when we assume
that the semantic encoding is already known, and we use it to index and represent all
images in the collection. We formulate this problem as finding a linear transformation
of the visual data imposing a non negativity constraint on the solution: V ≈ ST ;S ≥ 0.
Where, S ∈ Rn×m is the transformation matrix representing the relationships between
the visual and text modalities. The non-negativity constraint in this case enforces an
additive reconstruction of visual features, since vectors in the matrix S can be thought
of as parts of images that are combined according to the presence of associated labels.
Notice that the vectors in S can be interpreted as the visual features related to each text
term. Our purpose is to solve the problem under an online formulation using stochastic
gradient descent, which is a gradient descent optimization method for minimizing an
objective function that is written as a sum of differentiable functions. In this context,
we can formulate the problem of semantic embedding as the optimization problem of
min
S≥0

d(V,ST ). Where, d(., .) is a function that measures the difference between V and

ST . The purpose is to find S that minimize this difference.

3.2 Kullback-Leibler Divergence Optimization

A popular measure function for NMF is the generalized Kullback-Leibler divergence
between V and ST [14], Although the KL-divergence equation is not symmetric, and
therefore, it is not strictly a distance metric. This allows to take advantage of the nor-
malized visual and text representation that can be interpreted as probability distribu-
tions. Zhirong Yang et. al [21] show that projected gradient methods based in for KL-
divergence runs faster and yields better approximation than others widely used NMF
algorithms. The updating rule for gradient descent approach with τ as the index of iter-
ations and γ as the step size is:

Sτ+1 = Sτ + γ
[(

V
ST
− [1]n×l

)
TT

]
. (1)

This algorithm requires a non-negativity restriction that can be incorporated by using
a projected gradient strategy. The projection function maps a point back to the feasible
region in each iteration [13], updating the current solution Sτ to Sτ+1 by the following
rule:

Sτ+1 = P [Sτ − γ∇ f (Sτ )] ; P[si j] =

{
si j

0
i f si j ≥ 0,
i f si j < 0,

. (2)

3.3 Online Formulation

The idea of online learning using stochastic approximations is to compute the new
solution for each unknown in the problem using a single data sample at a time.
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Algoritmo 1. Online Non-negative Semantic Embedding

input S0: Initial transformation matrix, γ0: initial step size, N: number of iterations
for k = 1 to N do

1. Step size calculation: γk = γ0/(1+ γ0λk)
2. Update transformation matrix: Sτ+1 = P

[
Sτ − γk

[(
vτ

Sτ tτ − [1]n×m

)
tTτ
]]

end for
return Sτ+1

Then, we can scan large data sets without memory restrictions. The updating rule has
to be reformulated in such a way that it only depends on the τ-th sample (vt , tt , visual
and text features for the τ-th image). The updating rule is reformulated as follows:

Sτ+1 = Sτ + γ
[(

vτ
Sτ tτ

− [1]n×1

)
tTτ

]
. (3)

The resulting algorithm (Algorithm 1) starts by randomly initialization of the trans-
formation matrix. Each iteration consists on updating the transformation matrix from
an observed pair of visual and text features randomly obtained. The step size used in
this algorithm is a decreasing rate [2] that depends on the number of iterations and an
initial learning rate γ0. A small variation of this algorithm is obtained by using several
samples at each iteration instead of using only one. Experimental results show faster ex-
ecution when using mini-batches instead of single examples, and also a better numerical
stability for the solution.

3.4 Image Indexing and Search

A special indexing case is when images do not have attached text. An example of this
situation is when users are interested in searching the database using example images
as queries. A new image without text can be projected to the semantic space by finding
the pseudo-inverse of the transformation matrix (S+) .

t = S+v; S+ =
(

STS+β I
)−1

ST . (4)

where, v is the visual representation of the new image, t is the semantic representation
and β is a regularization parameter. In this way we can searching the database using an
inferred text representation based in its visual features. This pseudo-inverse matrix has
to be preprocessed only once and storing in memory, making very efficient the process
of projection for a new image. Finally, the ranking function for semantic search is based
on the histogram intersection similarity[17].

4 Experiments and Results

4.1 Datasets

The performance of the proposed algorithm was evaluated using three different datasets
with different sizes:

Carcinoma dataset. The Carcinoma dataset is a histopathology image collection that
has been used to diagnose a special kind of skin cancer known as basal-cell carcinoma
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[5]. It is composed of 1,502 images that were studied and annotated by pathologists to
highlight various tissue structures and relevant diagnostic information, elaborating a list
with 18 terms. These images were acquired at various magnification levels, including
8X, 10X and 20X, and stored at 1280×1024 pixels. The list of keywords includes terms
like micro-nodules, elastosis, and fibrosis, among others.

Histology Dataset. The Histology dataset is composed of 2,641 images extracted from
an atlas of histology for the study of the four fundamental tissues [19]. The collection
includes photographs of histology in different magnification factors (10X, 20X and
40X). The resolution of these images is about 800× 500 pixels. Each of these images
was annotated by an expert, indicating the biological system and organs that can be
observed. The total number of different keywords in this data set is 46.

MIRFlickr 25000 Dataset. The MIRFlickr-25000 image dataset is composed of 25,000
pictures downloaded from the popular online photo sharing service Flickr. These photos
were collected directly from the web, to provide a realistic dataset for image retrieval
research, with high-resolution images and associated metadata [12]. This image collec-
tion has been manually annotated using a set of 38 semantic terms.

4.2 Experimental Setup

We conducted retrieval experiments under the query-by-example paradigm. In all
datasets 20% of images were randomly selected as queries and the remaining images
were used as the target collection to find relevant images. We performed automatic ex-
periments by sending a query to the system and evaluating the relevance of the results.
A ranked image in the results list is considered relevant if it shares at least one keyword
with the query. The evaluation was done using traditional measures of image retrieval,
including precision at 10 and mean average precision (MAP).

Image Features. In all datasets we build a bag-of-features representation, with the fol-
lowing characteristics: Patches of 8× 8 pixels are extracted from a set of training im-
ages with an overlap of 4 pixels along the x and y axes. The DCT (Discrete Cosine
Transform) transform is applied in each of the 3 RGB channels to extract the largest
21 coefficients. (DCT-based visual codewords has been found to be an effective repre-
sentation for microscopy image analysis [9]). A k-means clustering is applied to build
a dictionary. For Carcinoma and Histology datasets we use 500 visual terms and for
MIRFlickr we select a dictionary of 2000 features (larger dictionaries do not provide
significant improvements, but just more computational load). Once the vocabulary has
been built, every image in the collection goes through the patch extraction process.
Each patch from an image is linked to one visual term in the dictionary using a nearest
neighbor criterion. Finally, the histogram of frequencies is constructed for each image.

Text Annotations. In these data sets the text annotations are clean and clearly defined
terms from a technical vocabulary and these represent directly the semantic space. We
build semantic vectors following a boolean approach, assigning 1 to the terms attached
to an image and 0 otherwise. This leads to 46-dimensional binary vectors, for text repre-
sentation in the Histology dataset, 18-dimensional binary vectors for Carcinoma dataset
and 39-dimensional binary vectors for Flickr.
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4.3 Retrieval Performance

In order to evaluate the performance of the proposed algorithm, we compare the pro-
posed online algorithm with the classical NSE and the MMCR (Modified Multi-stage
Convex Relaxation) proposed by Hsan et. al [18]. Although the MMCR algorithm was
proposed mainly for annotation, it is possible to use its semantic score vector as a new
representation for retrieval task.

Parameter Tuning. The proposed algorithm has a set of parameters that can impact
the quality of the resulting model. Improper settings of these parameters may cause
the algorithm converge slowly or diverge. So, as preliminary evaluation, we perform an
exploration of these parameters by retrieval experiments using cross-validation 10 fold
in the subset of 80% of the images that were not selected as queries. And, we select the
configuration that perform better in average in all folds (Table 1).

Table 1. Results of parameter tuning for Online Non-negative Semantic Embedding (ONSE)

Carcinoma Histology MIRFlickr

λ0 γ β Mini-batch size λ0 γ β Mini-batch size λ0 γ β Mini-batch size

2−5 2−2 24 16 2−6 2−3 2 16 2−8 2−10 2 32

Once, we had found the better configuration, we evaluate the proposed algorithm with
the remaining 20% of images as test. So we use this 20% of images as queries and the
80% as finding objective. Table 2 summarizes the findings of our experimental results.
In all cases, a general improvement over visual baseline (direct visual matching using vi-
sual representation) is shown in MAP measure. And, with the exception of the Histology
dataset NSE, ONSE-KL and MMCR algorithms, present a very similar performance.

Table 2. Image retrieval performance. Reported measures are Mean Average Precision (MAP)
and Precision at the first 10 results (P@10).

Algorithm
Carcinoma Histology MIRFlickr

MAP P@10 MAP P@10 MAP P@10

Visual 0.2236 0.3503 0.2107 0.6104 0.2505 0.4931

MMCR [18] 0.3146 0.3322 0.5346 0.6030 0.3670 0.5063

NSE [19] 0.3265 0.3249 0.4025 0.4148 0.3672 0.5079

ONSE 0.3171 0.3651 0.3594 0.4439 0.3674 0.5065

4.4 Computational Load

Table 3 shows the average time consumption for the training phase. Reported times are
the result of running all algorithms 5 times in a computer with 4 GB of ram memory and
a CPU at 2.4Ghz using only one core. The size of each dataset is also reported to observe
how the algorithm complexity grows. NSE algorithm take about 5 seconds to process
the Carcinoma dataset, 9 to process the Histology collection and finally increases to
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Table 3. Time consumption in training phase: Time required for each epoch (Epoch Avg. Time)
and the total average time required until convergence (Total Avg. Time ). The algorithm presented
in this paper (ONSE) is compared against MMCR [18] and NSE [19].

Dataset Size Algorithm Epochs Epoch Avg. Time (sec) Total Avg. Time (sec)

Carcinoma 1502
MMCR 8 0.2854 2.1878

NSE 130 0.0411 5.3442

ONSE 4 0.0836 0.3345

Histology 2641
MMCR 10 1.5351 14.2029

NSE 90 0.1009 9.0869

ONSE 4 0.3027 1.2086

MIRFlickr 25000
MMCR 10 283.4327 2834,3278

NSE 200 2.4701 494.017

ONSE 2 13.755497 27.2188

494 seconds for MIRFlickr. MMCR have the most time consuming, requiring about
2 seconds for Carcinoma 14 for Histology and 2834 for MIRFlickr. In contrast, the
ONSE algorithm only requires 0.3 seconds for Carcinoma, 1.2 for Histology and 27 for
MIRFlickr. Thus for MIRFlickr dataset, ONSE algorithm is 18 times faster than NSE
and 104 times faster than MMCR.

The main reason for the reduction of training time, is, that the number of required
epochs until the ONSE algorithm converges is reduced drastically (convergence in all
algorithms is verified by means of a minimum threshold required to improve the error
in each epoch). For instance, in the carcinoma dataset the NSE algorithm required 130
full scans to the training set and the online version only needed 4. In general, Bottou [3]
shows that for a small collection, it is necessary to use very few epochs and for large
collections, one full scan is enough. Furthermore, the proposed algorithm reduces the
memory requirements, since the only element necessary to keep in memory is the trans-
formation matrix, since visual and textual samples used in each update can be discarded,.

5 Conclusions

We presented an approach for large image indexing that takes advantage of text annota-
tions to provide a semantic representation space where the visual content of images is
embedded. This approach is a reformulation of NSE as an online learning algorithm
allowing to deal with large collections of data, achieving a significantly reduction in
memory requirements and computational load, but keeping a competitive retrieval per-
formance.
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Abstract. Queries dealing with complex data, such as images, face se-
mantic problems that might compromise results quality. Such problems
have their source on the differences found between the semantic inter-
pretation of the data and their low level machine code representation.
The descriptors utilized in such representation translate intrinsic char-
acteristics of the data (usually color, shape and texture) into qualifying
attributes. Different descriptors represent different intrinsic characteris-
tics that can get different aspects of the data while processing a similarity
comparison among them. Therefore, the use of multiple descriptors tends
to improve data separation and categorization, if compared to the use of
a single descriptor. Another relevant fact is that some specific intrinsic
characteristics are essential for identifying a subset of the data. Based
on such premises, this work proposes the use of boundary conditions to
identify image subsets and then use the best descriptor combination for
each of these subsets aimed at decreasing the existing “semantic gap”.
Throughout the conducted experiments, the use of the proposed tech-
nique had better results when compared to individual descriptor use
(employing the same boundary conditions) and to various descriptors
combination without the use of boundary conditions.

Keywords: CBIR, multiple descriptor combination, similarity queries.

1 Introduction

The need for storing and manipulating non-traditional data (such as images,
video and audio among others) is becoming very common in a variety of com-
puter systems, thus managing and retrieving such data in an effective and effi-
cient way is more necessary than ever. Such data are commonly called complex
data.The similarity found between element pairs of such complex data is one of
the most useful approach to manipulate such data and indicates how similar or
distinct an object is in relation to another. In such similarity queries, the com-
parison is not done using the complex data elements directly but, instead, a set
of features that were extracted from such data. Features extraction algorithms
are commonly applied to data generating the so called feature vectors which are

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part I, LNCS 8258, pp. 375–382, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



376 R.F. Barroso et al.

used to represent the data in further processing. In the case of images, the most
used features are related to texture, shape or color distribution. Comparison
is done by applying distance functions over the feature vectors of two element
pairs resulting in a numeric value that determines the distance (dissimilarity)
between such elements. A basic means to compute similarity queries is employ-
ing the Content-Based Retrieval (CBR) techniques, or, in the case of images, the
Content-Based Image Retrieval (CBIR). One of the major challenges found in
CBIR is to reduce the semantic gap [1] which is characterized by the divergence
between the low level image characteristics found by the extraction algorithms
and the semantic interpretation of the same image made by a human being.

Besides finding the best combination between the features extractor and an
appropriate distance function [2,3], the use of more than one intrinsic charac-
teristic while comparing elements tend to present better results while reducing
such semantic gap [4,3]. Furthermore, different subsets of data in a same larger
set can be better represented by different characteristics [5,6].

Based on all principles above, this work proposes the use of boundary condi-
tions in order to find subsets of similar data inside a larger data set thus allowing
the choice of the best combination of multiple descriptors in each given subset.
The expected result is a reduction on the aforementioned semantic gap while
running similarity based queries against data in each subset.

The remainder of the paper is organized as follows. Section 2 presents the
background and correlated work. Section 3 shows this works proposal and Section
4, in its turn, shows the experiments performed and the discussion about the
results found. Finally, Section 5 present the papers final remarks.

2 Background and Related Work

2.1 Similarity Queries and Semantic Gap

Content Based Image Retrieval is supported by similarity queries which com-
monly make use of feature vectors. Such vectors, normally extracted in an au-
tomatic way, contain low level characteristics, such as color distribution, shape
and texture, which aim at representing the image contents. To compare those
images, the similarity between element pairs is calculated through the use of a
distance function between each images feature vectors. A small distance value
corresponds to a high similarity degree. A descriptor comprises a features ex-
tractor and a distance function [3]. The main similarity query operators [7] are
kNN Queries (giving an element as query center, the k nearest neighbors are
returned) and Range Queries (giving an element as query center and a radius,
all elements positioned inside a given distance (radius) are returned).

There exist many difficulties inherent to content based image retrieval sys-
tems. The decision about what is found similar compared to what is found not
similar can be subjective thus generating a perceptual variation among system
users. The very own search by similarity mechanism using feature vectors assum-
ing similar data would render results not compatible to reality. Such difficulties
are directly tied to the semantic gap mentioned before [1].
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2.2 Multiple Descriptors Combination

The multiple descriptors combination approach in CBIR has been demonstrating
a great capacity for leveraging results accuracy in similarity queries [8,4,5,3]
and such fact has its explanation on the complimentary nature of each images
visual characteristics. By using multiple descriptors, the CBIR systems try to
mimic human behavior on a similar image interpretation task where various
image aspects (such as color, texture or shape) are compared simultaneously.
Many works proposed different ways to performmultiple descriptors combination
[4,5,9,10,8]. In [4], fractal dimension analysis is used to determine the intrinsic
data correlation, then using it to normalize the contribution among the multiple
descriptors on the similarity calculations between the elements.

Other proposals use a relevance feedback [9,10,8] in an attempt to capture
the users similarity perception using his/her interactions in the system and re-
flecting them in the similarity calculation. In [8], a weighted calculation is done
and each multiple descriptors weight is interactively changed according to the
indication of the relevant images. In [9], together with the relevance feedback,
functions are generated using a genetic programming algorithm what generates
more complex functions that would better calculate each elements similarity
[3]. Genetic programming algorithms are also used in [11] to combine local and
global descriptors.

In its majority, the approaches for combining multiple descriptors dont con-
sider the fact that distinct intrinsic characteristics (or their combination) can
better identify different data subsets.

2.3 Boundary Conditions

The use of boundary conditions allows delimitating subsets of data inside the
data as a whole. In this work, we understand boundary conditions for image
similarity queries as any information associated to the images that can be used
for estimating limits for subsets of images in a way that data in a subset can be
better highlighted by a descriptor or a combination of specific descriptors. For
medical imaging queries, for example, we can quote as boundary conditions items
like the diagnose hypothesis mentioned by the medical doctor in the moment an
exam is requested, radiological findings included by a radiologist, or even the
exam type, among others.

In [6] a perceptual parameter was included in the medical imaging similarity
queries. It has been verified that in a same database, there are image subsets that
could be better represented by different individual descriptors thus increasing re-
sults precision. The authors proposed the use of triads formed by the perceptual
parameter, features extractor and distance function. As boundary condition to
subset limitation, the radiological finding has been used, i.e., some visual charac-
teristic found by the specialist usually related to some diagnostic hypothesis. For
each subset delimited by this boundary condition the best individual descriptor
was defined experimentally. Further experimentation demonstrated that the use
of this perceptual parameter had leveraged similarity queries results quality and
helped reducing the semantic gap.
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In [5] it had been shown that different subsets (or classes) of images were better
represented by the combination of multiple descriptors with distinct weights. As
illustrated in Figure 1 (adapted from [5]), queries using images from class B as
query center had better precision levels when higher weight values were used to
the texture descriptor than the shape descriptor. An opposite result had been
found while considering only images pertaining to class A, and its similar to the
average result while considering all images in the subset.

Fig. 1. Average precision with descriptors weight variation (adapted from[5])

3 Proposed Method: Multiple Descriptors Combination
Using Boundary Conditions

In this work we propose the use of boundary conditions to delimitate subsets
of images and, for each subset, the establishment of the best combination of
multiple descriptors to be used in subsequent similarity queries.

Such descriptors combination establishment is done in an initial training
phase. Later in the process, while executing a query, the boundary condition
is used to identify (or estimate) the subset where the query center image is part
of, so the best descriptors combination for that particular subset can be used.

A boundary condition for the larger image set must be defined first in an
attempt to delimitate images subsets that have similar behavior in similarity
queries. A domain application specialist is responsible for choosing such bound-
ary condition definition considering the query objectives to be obtained while
running such queries against the data set. Taking as example medical imaging
applications, the boundary conditions can be defined using its associated data,
like the diagnose hypothesis given by the medical specialist while requesting the
exam, as well as from an initial analysis of the images provided by a specialist
who can pre-classify then based in any radiological finding.

After the boundary condition is defined, the next step is to find the best
descriptors combination where pre-classified images are used in this training
phase and the outcome is a relation of the best descriptors combination for each
boundary condition. It is worth mentioning that the criteria used as boundary
condition does not need to be the same used for image classification. As a simple
example, the patients sex can be used as a boundary condition while the images
used for training were classified according to the illness identified in the image.
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In this case, the multiple descriptors combination to be found would be the ones
that better highlight the illness being considered (classes) to each image subset
gathered using the boundary condition (men and women).

To demonstrate the proposed methods validity, during the training phase it
has been used a simple linear combination algorithm so an exhaustive search for
the best descriptors combination could be performed. Despite that, the proposed
method can be used with almost any multiple descriptors combination method
that can generate a valid descriptors combination in a data set.

4 Experiments

Two experiments (using two different data bases) are presented in this paper.
Both image sets used were made available by the Clinical Hospital of the Med-
ical School of Ribeirão Preto, Universidade de São Paulo, Brazil. The results
evaluation was based in precision and recall curves[12].

4.1 Experiment 1: Lung Computed Tomography Exam Images

In this first experiment, a collection of 247 images related to lung computed
tomography (CT) exams were classified by specialists in 6 classes according
to radiologic findings: emphysema, consolidation, ground-glass opacity, inter-
lobular septal thickening, honeycombing and normal (no findings). As boundary
condition, the physicians perception has been used according to each finding:
homogenous and non-homogenous increase of attenuation, inter-lobular fissures,
and low attenuation with and without well defined lobule walls [6]. The extracted
features were related to color [6] (high histogram, low histogram, traditional
histogram) and texture (Haralick [13]).

Initially, through experimentation, descriptors with the best results were cho-
sen (shown in Figure 2) and then the best descriptors combination for the whole
set. Distinct distance function types were evaluated for each feature vector,
namely the Minkowski family functions and Canberra [2]. Following, the best
descriptor for each subset delimited by the boundary conditions was chosen and
then triads were formed from the association between them [6]. As a final step,
for each subset formed using the boundary conditions it has been calculated the
best descriptors combination using the linear combination algorithm. This way,
we have the final result with an ideal descriptors combination associated to each
subset delimited by each of the boundary conditions.

Figure 2a) depicts the precision curves versus the recall found on the best
individual descriptors for the whole set, the best individual descriptors for each
boundary condition, the best combination considering the whole set and the best
combination defined for each boundary condition. For the definition of the best
descriptor and the best combinations, only 25% of recall was considered. The
proposed technique obtained better results in all recall levels.

Figure 2b) presents the average precision for the same procedures, but now
analyzing all recall levels for triad and descriptors combination definition. The
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Fig. 2. CT for lung examination. a) Precision vs Recall curves. b) Average Precision.
Comparison between individual descriptors, individual descriptors using boundary con-
ditions, descriptors combination for the whole set, and descriptors combination using
boundary conditions (proposed technique).

multiple descriptors combination proposed resulted in better results, with aver-
age precision next to 6.5% superior to the one obtained using descriptors com-
bination without the boundary conditions and 14.2% better average precision
obtained through the best individual descriptor use.

4.2 Experiment 2: MR Images

A set of 704 images acquired by magnetic resonance (MRI) was used to per-
form the second experiment, where each image was pre-classified in 40 classes
according to the body region, vision plan, and cut over position they covered. As
boundary condition, it has been used the exam type that generated the image:
Angiogram, Axial and Coronal abdomen, Axial, Coronal and Sagittal head, Ax-
ial pelvis and Sagittal spine. The extracted features were related to color (tra-
ditional histogram), texture (Haralick) and shape (256 first Zernike moments
[14]). Through the experiments, three descriptors presenting better results over
the whole data (shown in Figure 3) and the triad (best descriptor associated to
the boundary condition) have been defined. All recall levels in this experiment
have been analyzed in order to define the triad and the best multiple descriptors
combination.

Figure 3a) presents precision versus recall curves and Figure 3b) presents aver-
age precision found by each individual descriptor, individual descriptors defined
for each boundary condition, best combination considering the whole set and
best combination defined for each boundary condition. As it can be verified in
Figure 3a), and as occurred in the first experiment, the proposed method pre-
sented better results in all recall levels and, according to Figure 3b), the average
precision of the proposed method was also superior with approximately 9% gain
in relation to the boundary conditions chosen for a single descriptor.
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Fig. 3. Magnetic resonance images. a) Precision vs Recall curves. b) Average Precision.
Comparison between individual descriptors, individual descriptors using boundary con-
ditions, descriptors combination for the whole set, and descriptors combination using
boundary conditions (proposed technique).

5 Conclusion

This paper proposed a technique that chooses the best combination of multiple
descriptors for each subset in a large data set. The similar subsets were found by
use of boundary conditions. This new methodology sought to simulate human
perception during images analysis for purposes of comparison among them.

In the presented experiments, the proposed technique was compared with
the main techniques used in CBIR found in the literature. These were: 1) use
of individual descriptors for the entire set of images 2) use of a combination
of descriptors for the entire set of images and 3) use of individual descriptors
for each selected subsets of images, delimited by the boundary conditions. The
proposed technique achieved better results in all the experiments, showing that
the automatic comparison of images should consider all relevant visual aspects,
each with its specific balancing to the presented context.

The use of a single descriptor for content search limited the comparison to just
one criterion of similarity. On the other hand, the use of multiple descriptors for
the entire set of images disregards the visual properties intrinsic to each subset
delimited by the boundary conditions. Thus, the analysis presented in this paper
showed a new field of research in CBIR systems, with approach to the perception
of similarity of the users of these systems. The results show how promising is
the use of boundary conditions for combining multiple descriptors for similarity
queries on medical images.

Acknowledgments. We thank FAPESP, CAPES, CNPq and the INCT INCod
for the financial support.
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Abstract. Image segmentation is a critical step in computer vision tasks
constituting an essential issue for pattern recognition and visual interpre-
tation. In this paper, we propose a new stopping criterion for the mean
shift iterative algorithm by using images defined in Zn ring, with the goal
of reaching a better segmentation. We carried out also a study on the weak
and strong of equivalence classes between two images. An analysis on the
convergence with this new stopping criterion is carried out too.

1 Introduction

Many techniques and algorithms have been proposed for digital image segmen-
tation. Unfortunately, traditional segmentation techniques using low-level, such
as thresholding, histograms or other conventional operations are rigid methods.
Automation of these classical approximations is difficult due to the complexity
in shape and variability within each individual object in the image. Mean Shift
(MSH) is a robust technique which has been applied in many computer vision
tasks. MSH as an iterative algorithm has been used in many works by using the
entropy as a stopping criterion [4–8].

Entropy is an essential function in information theory and has special uses for
images data, e.g., restoring images, detecting contours, segmenting images and
many other applications [9, 10]. However, in the field of images, the range of prop-
erties of this function could be increased if the images would be defined inZn rings.

In this paper, we compare the stability of iterative MSH algorithm using a new
stopping criterion based on ring theory with respect to the stopping criterion used
in [4–7]. The remainder of the paper is organized as follows: Theoretical aspects
related with the entropy and the defined images in Zn ring are exposed in Section
2. Here, a special attention is dedicated to the benefits of image entropy in the Zn

ring. Section 3 shows the experimental results, comparisons and discussion. And
finally the most important conclusions are given in the last section.

2 Theoretical Aspects: Entropy

Entropy is a measure of unpredictability or information content. In the space of
the digital images the entropy is defined as [1].
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Definition 1 (Image Entropy). The entropy of the image A is defined by

E(A) = −
2B−1∑
x=0

pxlog2px, (1)

where B is the total quantity of bits of the digitized image A and p(x) is the
probability of occurrence of a gray-level value. By agreement log2(0) = 0.

In recent works [4–7] the entropy is an important point to define a stopping
criterion for a segmentation algorithm based on an iterative computation of the
mean shift filtering. In [4–7] the stopping criterion is

ν(A,B) = |E(A) − E(B)|. (2)

E(·) is the function of entropy and the algorithm is stopped when ν(Ak,Ak−1) ≤
ε. Here ε and k are respectively the threshold to stop the iterations and the
number of iterations.

Definition 2 (Weak equivalent in Images). Two images A and B are weakly
equivalents if

E(A) = E(B).

We denote the weak equivalent between A and B using A ) B.

Trivial implication is:
A ) B ⇐⇒ ν(A,B) = 0.

Note that using the Definition 2 the stopping criterion defined in (2) is a measure
to know when two images are close to be weakly equivalents.

Figure 1 shows two different images of 64×64. A reasonable stopping criterion
should present a big difference between Figure 1(a) and Figure 1(b). However,
by using the expression (2), we obtain that ν(Figure 1(a), F igure 1(b)) = 0.

(a) (b)

Fig. 1. Dissimilar Images
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The defined stopping criterion in (2) never consider the spacial information
between the images A and B. For this reason, it is possible to have two very
different images and to obtain a small value by using (2).

This is a strong reason to consider that the defined stopping criterion in (2)
is not appropriate and provide instability in the iterative mean shift algorithm.
For this reason, it is necessary to consider other stopping criterion that provides
a better performance.

It is natural to think that two images are close if their subtraction is close
to zero. The problem of this idea is that, in general, when the subtraction gives
negative values many authors consider to truncate to zero these elements. This
consideration, in general, does not describe the difference between both images,
and in some cases, it is possible to lose important information.

For this reason, it is necessary to define a structure such that the operations
between two images are intern.

Definition 3 (Zn Ring). The Zn ring is the partition of the set of integers Z
in which the elements are related by the congruence module n.

Mathematically speaking, we say that a is in the class of b (a ∈ Cb) if a is related
by (∼) with b, where

a ∼ b⇐⇒ a ≡ b(mod n)
def⇐⇒ (b− a) ∈ nZ, where

nZ = {0, n, 2n, . . .} and n ∈ Z is fixed.

Consequently Zn = {C0, C1, . . . , Cn−1}.
If we translate the structure of the Zn ring to the set of images of size k ×m
where the pixel values are less that n− 1 and we denote this set as Gk×m(Zn),
we obtain the next result.

Theorem 1. The set Gk×m(Zn)(+, ·), where (+) and (·) are respectively the
pixel-by-pixel sum and multiplication in Zn, has a ring structure.

Proof. As the pixels of the image are in Zn, this has satisfies the ring axioms.
The operation between two images was defined pixel by pixel, then is trivial that
Gk×m(Zn) under the operations (+, ·) of the Zn ring inherits the ring structure.

�

In this moment, we have an important structure where we can operate with the
images. In the ring Gk×m(Zn)(+, ·) the sum, subtraction or multiplication of
two images always is an image.

Definition 4 (Strong Equivalence). Two images A,B ∈ Gk×m(Zn)(+, ·) are
strongly equivalents if

A = S + B,
where S is a scalar image. We denote the strong equivalence between A and B
as A ∼= B.
Note that if A = S + B ⇒ ∃ S | B = S +A and S = −(S), where −(S) is the
additive inverse of S. This is calculated using the inverse of each pixels of S in
Zn.
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Theorem 2. If two images A and B are strongly equivalents then they are
weakly equivalents.

Proof. If A and B are strongly equivalents then A = S + B where S is a scalar
image. Then E(A) = E(S + B) but S is a scalar image and for this reason the
sum S + B only change in B the intensity of each pixel but don’t change the
number of different intensities or the frequency of each intensity in the image.
Then, E(S + B) = E(B). Finally we obtain that E(A) = E(B) and they are
weakly equivalents. �

Note that the shown images in Figure 1 are weakly equivalents, but they are not
strongly equivalents. This is an example that in general A ) B � A ∼= B.
Definition 5 (Natural Entropy Distance). Let A and B two images, then
the natural entropy distance is defined by

ν̂(A,B) = E(A+ (−B)). (3)

Remark 1. Remember that −(B) is the additive inverse of B and this is calcu-
lated using the inverse of each pixel of B in Zn.

If it are considered the images of Figure 1, the results show that

ν̂(Figure 1(a), F igure 1(b)) = 0.2514.

The next theorem is an important characterization of the strong equivalent
among images.

Theorem 3. Two imagesA and B are strongly equivalent if and only if ν̂(A,B) =
0.

Proof. If A and B are strongly equivalents A = S + B where S is the scalar
image. Then we have

ν̂(A,B) = E(A+ (−B)) replacing A = S + B
= E(S + B + (−B))
= E(S) = 0.

E(S) = 0 because S is a scalar image. It is demonstrated that A ∼= B ⇒
ν̂(A,B) = 0.
On the other hand if ν̂(A,B) = 0 ⇒ A + (−B) = S, where S is a scalar
image. Adding B in the last equation we obtain that A = S + B, therefore
ν̂(A,B) = 0⇒ A ∼= B. �

Taking in consideration the good properties that, in general, the natural entropy
distance has (see Definition 5), one sees logical to take the condition (3) as the
new stopping criterion of the iterative mean shift algorithm. Explicitly, the new
stopping criterion is

E(Ak + (−Ak−1)) ≤ ε, (4)

where ε and k are respectively the threshold to stop the iterations and the
number of iterations.
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3 Experiments and Results

Image segmentation, that is, classification of the image gray-level values into ho-
mogeneous areas is recognized to be one of the most important step in any image
analysis system. Homogeneity, in general, is defined as similarity among the pixel
values, where a piecewise constant model is enforced over the image [3].

The principal goal of this section is to evaluate the new stopping criterion in
the iterative mean shift algorithm and to prove that, in general, with this new
stopping criterion the algorithm have better stability. For this reason, compar-
isons with other segmentation approaches will not be carried out. In [5] were
compared the obtained results with the mean shift iterative algorithm through
the old stopping criterion with other segmentation methods. We used three dif-
ferent images for the experiments. The first image (“ Bird”) have low frequency,
the second (“Baboon”) have high frequency and in the image “Montage” has
mixture low and high frequencies.

All segmentation experiments were carried out by using a uniform kernel
[4, 6]. In order to be effective the comparison between the old and the new
stopping criterion, we use the same value of hr and hs in the iterative mean
shift algorithm (hr = 12, hs = 15). The value of hs is related to the spatial
resolution of the analysis, while the value hr defines the range resolution. In the
case of the new stopping criterion, we use the stopping threshold ε = 0.9 and
when the old stopping criterion was used, we selected ε = 0.0175, this values are
selected based to the segmentation level that we want obtain in each case.

Figure 2 shows the segmentation of the three images. Observe that, in all
cases, the iterative mean shift algorithm had better result when was used the
new stopping criterion.

When one compares Figures 2(b) and 2(c), in the part corresponding to the
face or breast of the bird a more homogeneous area, with the new stopping cri-
terion (see arrows in Figure 2(c)), it was obtained. Observe that, with the old
stopping criterion the segmentation gives regions where different gray levels are
originated. However, these regions really should have only one gray level. For
example, Figure 2(e) and 2(f) show that the segmentation is more homogeneous
when the new stopping criterion was used (see the arrows). In the case of the
“Montage” image one can see that, in Figure 2(i) exists many regions that con-
tains different gray levels when these regions really should have one gray level
(see for example the face of Lenna, the circles and the breast of the bird). These
good results are obtained because the defined new stopping criterion through
the natural distance between images in expression (4) offers greater stability to
the mean shift iterative algorithm.

Figure 3 shows the profile of the obtained segmented images by using both
stopping criteria1. The plates that appear in Figure 3(b) and 3(d) are indicative
of equal intensity levels. In both graphics the abrupt falls of an intensity to other
represent the different regions in the segmented image. Note that, in Figure
3(b) exists, in the same region of the segmentation, least variation of the pixel

1 We show only the profile of one image for reasons of space, but the results in the
other images were similar.
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(a) Bird (b) New Criterion (c) Old Criterion

(d) Baboon (e) New Criterion (f) Old Criterion

(g) Montage (h) New Criterion (i) Old Criterion

Fig. 2. Segmentation of the experimental images. In the first column are show the
original images; in the second, the segmentation using the new stopping criterion and
in the third column are the segmented images using the old stopping criterion.

intensities with regard to Figure 3(d). This illustrates that, in this case the
segmentation was better when the new stopping criterion was used.

Figure 4 shows the performance of the two stopping criterion in the experi-
mental images. In the “x” axis appears the iterations of the mean shift algorithm
and in the “y” axis is shown the obtained values by the stopping criterion in
each iteration of the algorithm.

The graphics of iterations of the new stopping criterion (Figure 4(a), 4(b),
4(c)) show a smooth behavior; that is, the stopping criterion has a stable per-
formance through the iterative mean shift algorithm. The new stopping criterion
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(a) New Criterion
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(d) Profile

Fig. 3. An intensity profile through of a segmented image. Profile is indicated by a
line. (a) and (c) are the segmented images and (b) and (d) are the profile of (a) and
(c) respectively.

not only has good theoretical properties, but also, in the practice, has very good
behavior.

On the other hand, if we analyze the old stopping criterion in the experi-
mental images (Figure 4(d), 4(e), 4(f)), we can see that the performance in the
mean shift algorithm is unstable. In general, we have this type of situation when
the stopping criterion defined in (2) is used. This can originate bad segmented
images.
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(f) Montage

Fig. 4. Stopping criterion. In the first row appears the performance of the new stopping
criterion and in the second, it is shown the old stopping criterion in correspondence
with the experimental images.

4 Conclusions

In this work, a new stopping criterion, for the iterative mean shift algorithm,
based on the ring theory was proposed. The new stopping criterion establishes a



390 Y. Garcés Suárez et al.

new measure for the comparison of two images based on the use of the entropy
concept. We introduced a new way to operate with images based on the use of the
ring structure. The rings in the images space were defined using the concept of Zn

rings. Through the obtained theoretical and practical results, it was possible to
prove that the new stopping criterion had very good performance in the iterative
mean shift algorithm, and in general, is more stable that the old criterion [4–7].

References

1. Shannon, C.: A Mathematical Theory of Communication. Bell System Technology
Journal 27, 370–423, 623–656 (1948)

2. Comaniciu, D.I.: Nonparametric Robust Method for Computer Vision. Thesis New
Brunswick, Rutgers, The State University of New Jersey (2000)

3. Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach toward Feature Space
Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5),
1–18 (2002)

4. Rodriguez, R., Torres, E., Sossa, J.H.: Image Segmentation based on an Itera-
tive Computation of the Mean Shift Filtering for different values of window sizes.
International Journal of Imaging and Robotics 6(A11) 1–19 (2011)

5. Rodriguez, R., Suarez, A.G., Sossa, J.H.: A Segmentation Algorithm based on an
Iterative Computation of the Mean Shift Filtering. Journal Intelligent & Robotic
System 63(3-4), 447–463 (2011)

6. Rodriguez, R., Torres, E., Sossa, J.H.: Image Segmentation via an Iterative Algo-
rithm of the Mean Shift Filtering for Different Values of the Stopping Threshold.
International Journal of Imaging and Robotics 7(6), 1–19 (2012)

7. Rodriguez, R.: Binarization of medical images based on the recursive application
of mean shift filtering: Another algorithm. Journal of Advanced and Applications
in Bioinformatics and Chemistry I, 1–12 (2008)

8. Dominguez, D., Rodriguez, R.: Convergence of the Mean Shift using the Linfin-
ity Norm in Image Segmentation. International Journal of Pattern Recognition
Research 1, 3–4 (2011)

9. Zhang, H., Fritts, J.E., Goldma, S.A.: An Entropy-based Objective Evaluation
Method for Image Segmentation, Storage and Retrieval Methods and Applications
for Multimedia. In: Proceeding of the SPIE, vol. 5307, pp. 38–49 (2003)

10. Suyash, P., Whitake, R.: Higher-Order Image Statistics for Unsupervised,
Information-Theoretic, Adaptive, Image Filtering. IEEE Transactions on Pattern
Analysis and Machine Intelligence 28(3), 364–376 (2006)



Evolutionary Optimisation of JPEG2000 Part 2 Wavelet
Packet Structures for Polar Iris Image Compression

Jutta Hämmerle-Uhl, Michael Karnutsch, and Andreas Uhl

Multimedia Signal Processing and Security Lab
Department of Computer Sciences, University of Salzburg, Austria

uhl@cosy.sbg.ac.at

Abstract. The impact of using evolutionary optimised wavelet subband stuctures
as allowed in JPEG2000 Part 2 in polar iris image compression is investigated.
The recognition performance of two different feature extraction schemes applied
to correspondingly compressed images is compared to the usage of the dyadic
decomposition structure of JPEG2000 Part 1 in the compression stage. Recog-
nition performance is significantly improved, provided that the image set used
in evolutionary optimisation and actual application is identical. Generalisation to
different settings (individuals, sample acquisition conditions, feature extraction
techniques) is found to be low.

1 Introduction

The International Organization for Standardization (ISO) specifies iris biometric data
to be recorded and stored in (raw) image form (ISO/IEC FDIS 19794-6), rather than
in extracted templates (e.g. iris-codes). On the one hand, such deployments benefit
from future improvements (e.g. in feature extraction stage) which can be easily incor-
porated,without re-enrollment of registered users. On the other hand, since biometric
templates may depend on patent-registered algorithms, databases of raw images enable
more interoperability and vendor neutrality [1, 2]. These facts motivate detailed inves-
tigations and optimisations of image compression on iris biometrics in order to provide
an efficient storage and rapid transmission of biometric records. Furthermore, the ap-
plication of low- powered mobile sensors for image acquisition, e.g. mobile phones,
raises the need for reducing the amount of transmitted data. There are two options in
iris recognition: the acquired sample data can be compressed and transfered as it has
been obtained by the sensor (termed “rectilinear images”), or the iris texture strip as
obtained from prior segmentation and log-polar mapping (termed “polar iris image”)
may be compressed and transfered. The second option obviously trades off the higher
computational cost at the sensor (segmentation + compression) for a minimisation of
the transfered data amount.

The certainly most relevant standard for compressing image data relevant in bio-
metric systems is the ISO/IEC 19794 standard on Biometric Data Interchange Formats
where only JPEG2000 is included for lossy compression. In literature on compress-
ing iris imagery, rectilinear [1, 2, 3] as well as polar [2, 4] iris sample data has been
considered. With respect to employed compression technology, we find JPEG [1, 2]
JPEG2000 [1, 2, 3, 4], JPEG XR, and other general purpose compression techniques
[2] being investigated.
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In biometrics, wavelet packet based image compression schemes have been applied
before in the area of fingerprint recognition (e.g. [5, 6]) due to the high frequency nature
of the ridge and valley pattern in fingerprint imagery. Eventually, similar to fingerprint
images, image features important for iris template matching might reside in high or mid
frequency parts of the iris texture, which could be represented better by adapted wavelet
packet structures.

In this work, we employ wavelet packet decomposition structures for the compression
of polar iris images using JPEG2000 Part 2 technology. Recent work [7] showed that
common subband structure selection selection strategies including rate-distortion opti-
mising ones are not very successful as compared to the dyadic decomposition scheme
(defined in the Part 1 of the JPEG2000 standard suite). Therefore, in this work, evolution-
ary optimisation is applied to select subband structures where recognition performance
is used as optimisation criterion (while much simpler criteria are used in [7]). In Section
2, we review the use of wavelet packets in JPEG2000 and discuss various subband struc-
ture selection strategies inlcuding the evolutionary approach used in this paper. Section
3 provides experimental results for two different iris recognition schemes while Section
4 concludes the paper.

2 Wavelet Packet Selection and JPEG2000

The use of adapted wavelet packet bases for image compression purposes has been
subject to investigation since the introduction of the first adaptation technique called
“best basis algorithm”. Due to the high number of wavelet packet bases (wpb) (i.e., for
a decomposition depth d, the number is Qd = Q4

d−1+1with Q0 = 1), exhaustive search
is infeasible which has lead to the development of various wpb selection strategies. The
employment of rate-distortion optimization criteria for wpb subband structure selection
has been first demonstrated for classical wavelet image coding schemes, but has been
extended later to zero-tree based compression algorithms [8] and to JPEG2000 in recent
work [9]. While JPEG2000 Part 1 is restricted to the pyramidal wavelet transform (fixed
dyadic decomposition), JPEG2000 Part 2 facilitates the use of more general wavelet
packet subband structures [10] (besides the specification of user-defined wavelet filters
and other advanced coding options).

All the so far described wpb selection schemes have failed to significantly improve
iris recognition performance as compared to dyadic decomposition [7]. Therefore, we
want to directly optimise recognition performance instead of optimising certain cost
functions usually targeted towards rate/distortion performance. However, common wpb
selection schemes rely on the independent evaluation of cost functions on single wpb
subbands, which is not possible when recognition performance of a certain wpb has
to be assessed. In earlier work [11], we have used genetic algorithms to assess the
degree of optimality and to further optimize wpb subband structues. This approach is
adopted for the present study where the fitness function of the evolutionary approach
rating a single wpb is set to be a parameter describing recognition performance after
compressing the data to JPEG2000 format using the corresponding wpb, i.e. the equal
error rate (EER).

Genetic algorithms are random search procedures guided by evolutionary principles
suited for vast search spaces, where parameter optimisation problems need to be solved.
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A key issue to apply the generic approach to the wpb subband structure selection task
is to find a suitable representation of the wpb and to adapt genetic operators to the
wpb tree structures [11]. The wpb can also be considered as a quadtree which needs
to be transformed into a “flat” representation: in adopting principles of the heap sort
algorithm, a string b of finite length L over a binary alphabet {0, 1} is used. With a
particular bit k set to 1, the corresponding subband is decomposed, otherwise the index
k is set to 0 and the decomposition stops in this part of the tree. Determining the indices
for the corresponding subbands is accomplished by k′

m = 4 ∗ k + m, 1 ≤ m ≤ 4.
After having chosen two particular individuals for being candidates for the next genera-
tion, a kind of genetical material interchange is performed. Classical one- or two-point
crossover operators cannot be applied since in general, the resulting bitstrings do not
correspond to valid wpb. Therefore, sub-tree based crossover has been introduced [11]
which exchanges sub-trees and maintains a valid tree structure. Other genetic operators
like mutation and selection can be applied in a standard manner. For selection, we apply
roulette wheel selection (where the probability of an individual i for being chosen to be
a candicate for the next generation is pi = fi/

∑N
j=1 fj; fi is the fitness value of the

individual i and is N the total number of individuals per generation) as well as tourna-
ment selection (where the best m out of k randomly chosen individuals are selected for
the next generation).

3 Experiments

3.1 Experimental Settings

As sample data, we use the public CASIA V3 Interval database consisting of 2639
images from 391 eye classes with 320 × 280 pixels and eight-bit grey value. These
are extracted into polar iris images with 512× 64 pixels, which act as the base for the
following compression and subsequent iris recognition algorithms. For the evolutionary
optimisation, the first 59 classes (555 images) were used, while the remaining data is
used for intra-database verification. For cross-database verification, the first 555 images
(i.e. 111 classes) of the IITD Iris Database version 1.0 are used, polar iris images are
extracted into the same size.

Experimental results with respect to JPEG2000 Part 1 & 2 compression have been
generated using a custom implementation of wpb selection strategies based on the
JJ2000 reference implementation [9]. Bitrates 0.2bpp, 0.4bpp, 0.8bpp and 1.5bpp are
considered. Both templates involved in biometric matching, the one generated from the
sample data and the one from the database, are derived from images compressed to the
same bitrate.

It is crucial to assess the effects of compressing iris samples using different iris recog-
nition schemes since it can be expected that different feature extraction strategies will
react differently when being confronted with compression artefacts and reduced im-
age quality in general. We use custom implementations of two feature extraction tech-
niques (for a description of our implementation of preprocessing, feature extraction, and
matching see [2]). Both implementations are available in USIT (University of Salzburg
Iris-Toolkit at http://wavelab.at. The first scheme has been developed by Ko

http://wavelab.at
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et al. [12] and extracts spatial domain features, while the second approach has been
designed by Monro et al. [13] and relies on DCT-derived features.

Evolutionary optimisation is started with 50 initial individuals (wpb) in the first gen-
eration which are derived from results using techniques in [7]. After determining the
fitness values (difference to the EER, which the dyadic decomposition at depth three
achieves), either roulette wheel selection or tournament selection (with k = 5 and
m = 2) is applied. Subsequently, tree crossover is repeatedly applied to two selected
wpb in order to generate two new individuals for the next generation and finally, mu-
tation is applied to each bit in the wpb representation of the new generation with a
probability of 0.01. This procedure is repeated over 50 generations.

In case of cross-bitrate optimisation (i.e. searching for wpb superior to the dyadic
case for more then just a single bitrate), the wpb fitness is the number of bitrates, at
which the particular wpb outperforms the dyadic case, and as a second value either the
mean or the standard deviation of the relative EER for the bitrates (0.2bpp, 0.4bpp,
0.8bpp, 1.5bpp) is considered. In this case, only roulette wheel selection is applied.

3.2 Experimental Results

Figs. 1 and 2 are meant for illustrating the evolutionary process. On the x-axis, the 50
generations are shown whereas on the y-axis the fitness values are given (a point in
the plot corresponds to the value of a single individual – wpb). Below the two graphs
(left: roulette wheel selection, right: tournament selection) three wpb are shown: the
one corresponding to the “best” wpb in the initial generation in the middle, and the final
“winning” individuals of the last respective generations left and right to it.

When considering the EER of the two recognition schemes under JPEG2000 Part 1
compression for the four bitrates 0.2bpp, 0.4bpp, 0.8bpp, and 1.5bpp (i.e. (EER(Ko) =

roulette wheel selection tournament selection

-0.5926

-0.9521-0.9731

Fig. 1. Evolvement of wpb for Ko et al. recognition @ 0.8 bpp
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9.28, 9.51, 9.40, 9.18, EER(Monro) = 2.24, 1.40, 1.35, 1.36), the improvements of
0.97 (Ko @ 0.8bpp, roulette wheel selection) and 0.77 (Monro @ 0.2bpp, roulette wheel
selection) can be rated clearly significant.

roulette wheel selection tournament selection

-0.4478
-0.7723 -0.714

Fig. 2. Evolvement of wpb for Monro et al. @ 0.2 bpp

Table 1 provides the overall view. For each bitrate considered, JPEG2000 Part 2 com-
pression is able to significantly outperform the dyadic JPEG2000 Part 1 scheme. While
for the Ko et al. recognition algorithm improvements are distributed rather uniformly
over different bitrates, for Monro et al. the case 0.2bpp shows the highest optimisation
potential (EER is reduced from 2.24 to 1.47 !). In all but a single case, roulette wheele
selection exhibits superior results to tournament selection.

Table 1. Results of the individual bitrate optimizations (improvements in terms of EER)

Ko et al. 0.2 bpp 0.4 bpp 0.8 bpp 1.5 bpp
Roulette wheel selection -0.5401 -0.8154 -0.9731 -0.6233
Tournament selection -0.4817 -0.7940 -0.9521 -0.544

Monro et al. 0.2 bpp 0.4 bpp 0.8 bpp 1.5 bpp
Roulette wheel selection -0.7723 -0.2531 -0.2621 -0.1000
Tournament selection -0.7140 -0.1564 -0.2368 -0.1437

Having seen the potential of optimisation to a single target bitrate, the question arises
natually if there exist wpb which outperform the dyadic decomposition for several bi-
trates (we stick to the four bitrates defined before) – “cross-bitrate optimisation”. The
answer is “yes”, as illustrated in Fig. 3. Figs. 3.a - 3.b show the gain in EER (y-axis)
of the top-six wpb individuals for the four target bitrates (x-axis). We clearly see that
we succeed with our optimisation, but the improvements are less distinct as compared
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to the optimisation for a single bitrate. For Ko et al. recognition, optimisation with re-
spect to the mean EER gain leads to several wpb which improve over the dyadic case
for all bitrates considered (see Fig. 3.a). For the Monro et al. scheme (Fig. 3.b), the fit-
ness function involving the standard deviation leads to some uniformly distributed EER
gain, however, the amount of achieved gain is not very high (Fig. 3.b).
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Fig. 3. Cross-bitrate optimisation results

Fig. 3.c – Fig. 3.f illustrate some of the evolved wpb, the value in the corresponding
caption is the cost function value (mean or standard deviation of EER gain). The first
two wpb correspond to Fig. 3.a – while they look fairly different overall, at least the
LL-band decompsition (top left quater) is identical (which is the case for all but one
of those top-six results). The last two wpb correspond to Fig. 3.b – they do not exhibit
structural similarity among each other nor to the wpb considered before.

The aim of the following investigations is to verify if the behaviour of the optimised
wpb generalise to different scenarios. First we look into intra-database verification, i.e.,
we apply the wpb optimised on the first part of the CASIA V3 Interval dataset for
a specific target bitrate to the remaining part of the database using the same bitrate.
Consequently, no evolutionary optimisation is involved in the following experiments,
the results of which are shown in Table 2.

Results clearly indicate that the results do not at all generalise. While for some
specific settings we still observe significant EER improvements as compared to the
JPEG2000 Part 1 dyadic scheme (e.g. Ko et al. with roulette wheel selection @ 0.4bpp
or Monro et al. with tournament selection @ 0.2bpp), for most scenarios the EER gain
is not significant, in some cases EER even clearly degenerates (e.g. Monro et al. with
roulette wheel selection @ 0.2bpp).

Table 3 shows the results of the cross-database verification, where the wpb optimised
on a part of the CASIA V3 Interval database are applied to a part of the IITD database.
As expected (when considering the previous results), results do not generalise as well.
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Table 2. Results of intra-database verification (individual bitrate optimizations, improvements in
terms of EER)

Ko et al. 0.2 bpp 0.4 bpp 0.8 bpp 1.5 bpp
Roulette wheel selection -0.0874 -0.2529 -0.0143 -0.1541
Tournament selection -0.2282 -0.1012 0.0264 -0.0075

Monro et al. 0.2 bpp 0.4 bpp 0.8 bpp 1.5 bpp
Roulette wheel selection 0.3974 0.0158 -0.0711 -0.0105
Tournament selection -0.1514 -0.0867 -0.1074 -0.0041

Interestingly, at least for roulette wheel selection a sight gain is observed for all bitrates
and both recognition algorithms but given the amount of improvement (especiall for the
Monro et al. scheme) this seems to be a random phenonemon only.

Table 3. Results of cross-database verification (individual bitrate optimizations, improvements in
terms of EER)

Ko et al. , IITD 0.2 bpp 0.4 bpp 0.8 bpp 1.5 bpp
Roulette wheel selection -0.2063 -0.1103 -0.3951 -0.1541
Tournament selection -0.3471 0.0414 -0.3543 -0.0075

Monro et al. , IITD 0.2 bpp 0.4 bpp 0.8 bpp 1.5 bpp
Roulette wheel selection -0.3494 -0.0888 -0.0451 -0.1461
Tournament selection -0.1806 0.1846 0.0145 0.0697

Finally, we apply the wpb optimised for one iris recognition scheme using the other
scheme. The dataset of the intra-database verification is used, while optimisation has
been done on the first part of the CASIA V3 Interval dataset as before. Results are
displayed in Table 4 which show that in about half the cases, EER is degenerated.

Table 4. Results of cross-algorithm verification (individual bitrate optimizations, improvements
in terms of EER)

Ko verifies Monro 0.2 bpp 0.4 bpp 0.8 bpp 1.5 bpp
Roulette wheel selection 0.1539 -0.1360 0.3710 0.0123
Tournament selection 0.1807 -0.7029 -0.1833 0.0416

Monro verifies Ko 0.2 bpp 0.4 bpp 0.8 bpp 1.5 bpp
Roulette wheel selection 0.2761 0.1444 -0.0406 0.0623
Tournament selection -0.0169 0.1501 -0.071 -0.0050

4 Conclusion

The obtained results show that evolutionary optimisation of wavelet packet subband
structures in JPEG2000 with respect to a fixed target bitrate is possible and leads to a
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significant gain in terms of EER as compared to the dyadic JPEG2000 Part 1 decom-
position. Also optimisation for a set of bitrates is possible, however, the gain in EER
is clearly lower as compared to the individual bitrate optimisation strategy. Our results
also show that the computed wavelet packet subband stuctures are highly tuned to the
dataset used in the optimisation – results do neither generalise to a different sample
database (different capturing conditions) nor to a different subset of the database used
for optimisation (different individuals). Furthermore, results are highly specific for the
recognition algorithm they have been optimized for and do not at all carry over to a
different feature extraction and matching scheme. Thus, the proposed approach can be
used for a closed application with a fixed user set – a verification scenario as it is ex-
pected at border control with multi-national passports obviously cannot be supported.
For such a scenario with dynamically varying user group it is best to stick to the fixed
pyramidal decomposition of JPEG2000.
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Abstract. Image Segmentation and Automatic Image Annotation are
two research fields usually addressed independently. Treating these prob-
lems simultaneously and taking advantage of each other’s information
may improve their individual results. In this work our ultimate goal is
image annotation, which we perform using the hierarchical structure of
irregular pyramids. We propose a new criterion to create new segmenta-
tion levels in the pyramid using low-level cues and semantic information
coming from the annotation step. Later, we use the improved segmen-
tation to obtain better annotation results in an iterative way across the
hierarchy. We perform experiments in a subset of the Corel dataset, show-
ing the relevance of combining both processes to improve the results of
the final annotation.

Keywords: image annotation, image segmentation, irregular pyramids.

1 Introduction

Automatic image segmentation and annotation are two prominent fields in Com-
puter Vision, that are usually addressed individually, disregarding the benefits
they can provide to each other. Image segmentation based only on low-level
cues (without prior knowledge of the object being segmented) is insufficient to
delineate objects due to the semantic gap. Image segmentation presupposes an
abstraction process of low-level features and when it is not guided by a seman-
tic interpretation of the segments, the resulting partition is dependant on the
defined mathematical equivalence relation. Also, Automatic Image Annotation
(AIA) will not provide good results if the underlying segmentation is not correct
(i.e. instances of different classes are merged together in a region, boundaries of
objects are lost).

In the literature, some works have addressed these two problems together. In
[1] the author proposes an object recognition scheme that involves a hierarchy
(tree) of class-specific object parts (fragments). He combines a recognition pro-
cess with a top-down segmentation, where the latter process takes advantage of
the classification information, but not the other way around. In [2] they propose
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to use a hierarchy of segmentations to guide a selective search for improving ob-
ject classification results, but the segmentation is based only on low level cues.
The same happens in [3] and [4], where a hierarchy of segmentations is used for
object detection and image annotation respectively, but semantic information
is not used in the segmentation process. In [5] they combine four segmentation
algorithms to obtain an enhanced partition, and they refine classification in this
partition by using classification information from the initial partitions. Yet, there
is no contribution of the semantic information to improve the segmentation. In
[6] they perform detection and segmentation simultaneously, allowing cross in-
formation between these processes, but they need ground truth segmentations
at training stage and the proposal is intended for detecting/segmenting specific
objects in the images.

In this work we use an idea similar to the one presented in [4] to perform AIA
using irregular pyramids [7], but we propose an iterative process where the seg-
mentation hierarchy is rebuilt and improved using the classification information
obtained from the annotation process in each level of the pyramid. Our ultimate
goal is to improve the results of image annotation. We show in the experiments
performed on the CorelA dataset how much the synergy between segmentation
and annotation can contribute to this task, improving almost in 5% the reported
accuracy in this collection. Our contributions are (1) the introduction of a new
criterion to create new levels in the irregular pyramid, combining semantic and
low-level information and (2) the proposal of an iterative process where segmen-
tation is improved using the annotation results of the previous level, and each
new segmentation level is annotated taking the advantages of a better partition.

2 Introduction to Irregular Pyramids

A Region Adjacency Graph (RAG) that represents an image is a graph G =
(V,E), whose vertices (V ) represent regions, and the edges (E) represent ad-
jacency relations between them. An irregular pyramid [7] is composed by a set
of successively reduced RAGs, (being the base level the high resolution input
image). When we build an irregular pyramid [8] from an image, each level rep-
resents a partition of the pixel set into cells, i.e. connected subsets of pixels. On
the base level (level 0) of the pyramid, the cells represent single pixels and the
neighborhood of the cells is defined by the 4-connectivity of pixels. A cell on level
k (parent) is a union of neighboring cells on level k− 1 (children). Each graph is
built from the graph below by selecting a set of surviving vertices and mapping
each non surviving vertex to a surviving one. Each surviving vertex represents
all the non surviving vertices mapped to it and becomes their father [7]. At any
level these parent-child relations may be iterated down to the base level and the
set of descendants of one vertex in the base level is named its receptive field (RF).
Within the irregular pyramid framework the reduction process is performed by
a set of edge contractions. The edge contraction collapses two adjacent vertices
into one vertex and removes the edge. This set is called a Contraction Kernel
(CK) [7][8]. The contraction of the graph reduces the number of vertices while
maintaining the connections to other vertices.
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3 Proposed Approach

3.1 Automatic Image Annotation Using Hierarchical Random
Fields

In order to annotate regions in an image, we use the method proposed by [4].
In this work they use a base classifier to classify image regions based only on
low-level features of these regions. After this first classification step, a Markov
Random Field (MRF) is constructed for every level of the irregular pyramid.
In addition to using the spatial Markovian neighborhood (defined by all the
vertices adjacent to one vertex), they proposed to include a hierarchical Marko-
vian neighborhood (composed by the father, in level k + 1 of the pyramid, and
children, in level k − 1 of a vertex). This hierarchical MRF structure is used to
improve the initial annotation by using contextual information from the adjacent
regions and hierarchical information from regions in adjacent levels.

First, this annotation process is performed bottom-up. All the MRFs are
solved starting from the lowest level using only information from the children
regions in level k−1. After the top level is reached, the annotation is reconsidered
again, and all the MRFs are computed once more in a top-down process, now
with information from father and children regions in adjacent levels.

3.2 Improving Segmentation Based on Annotation Results

The approach presented in [4] is limited in terms of annotation accuracy because
of the underlying image segmentation. In the irregular pyramid implementation
employed in [4], the only criterion for deciding whether two regions must be
joined for the next level is based on the similarity between the average color of
each region. The average color of the regions is a feature that becomes less and
less discriminative as regions grow bigger. We believe that the combination of
low-level cues and semantic information resulting from the annotation step can
improve the image segmentation and ultimately, the final annotation results.

For this task we are proposing to modify the criterion employed to create the
Contraction Kernels (CK) by using the classification information at each level
and the edge information extracted from each image. We propose to compute a
value Vcontract that will label every edge at every level of the pyramid and will
combine a semantic measure VS and a low-level measure VB .

For computing the semantic value VS(i, j) between vertices vi and vj , we use
the information of the classes obtained and the prior probability given by the
base classifier. For each vertex vi, after the classification step (and correction
using the MRF) we have the following information:

– A class CMRF
i assigned to vertex vi after the MRF was solved.

– The prior probability that the base classifier obtained for this class in this
vertex P (CMRF

i ).
– A list of all the n classes [CBC

i,1 , CBC
i,2 , ... , CBC

i,n ], ordered by the prior proba-
bility of each class for representing vertex vi, obtained with the base classifier
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(BC). In this way, we can notice that class CBC
i,1 was the one assigned finally

to vertex vi by the BC.
– A list of all the prior probabilities [P (CBC

i,1 ), P (CBC
i,2 ), ... , P (CBC

i,n )] obtained
with the BC to vi for each class.

The first thing to do is to check whether the classes annotated for vi and vj are
the same. If this is the case, the value of VS(i, j) is the sum of the probabilities
given by the base classifier for these classes. If the classes are different, there
is a chance that the base classifier made a misclassification, therefore, we check
the confidence of the class assigned to these vertices. The confidence of the
classification is a logical value (true/false) given by Equation 1.

Confidence(CMRF
i ) = [(P (CBC

i,1 )− P (CBC
i,2 )) > δ] (1)

We consider that there is confidence in the classification of vertex vi with class
CMRF

i if the difference between the two highest probabilities assigned by the base
classifier for this vertex, is bigger than a threshold δ. If there is confidence in
the classification of both vertices, the value of VS(i, j) will be -1, indicating that
semantically, these two vertices should not be joined. But if the classification
for one of the vertices has no confidence, we check whether the first or second
class assigned to it with higher probabilities are the same of the other vertex
class, and if this happens, we sum up the probabilities for those classes to obtain
VS(i, j) (depicted in Equation 2 with the name of MisclassV alue(i, j)).

MisclassV alue(i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P (CMRF

i ) + P (CBC
j,1 ) if CMRF

i = CBC
j,1

P (CMRF
i ) + P (CBC

j,2 ) if CMRF
i = CBC

j,2

−1 otherwise

(2)

The process for computing VS(i, j) can be summarized in Equation 3:

VS(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (CMRF
i ) + P (CMRF

j ) if CMRF
i = CMRF

j

MisclassV alue(i, j) if Confidence(CMRF
i ) = 0

MisclassV alue(j, i) if Confidence(CMRF
j ) = 0

−1 otherwise

(3)

Based on the above explanation, it can be noticed that VS(i, j) intuitively
represents the likelihood for two adjacent regions of being of the same class, and
therefore, the likelihood for joining them given this information.

On the other hand, the value VB(i, j) represents intuitively the likelihood of
joining vertices vi and vj taking into account the boundary information when
they are two separate regions and when they are combined into a single region.
For this, we use the Canny edge detector [9] to find the edges for each image,
and we use the resulting edge mask to evaluate the convenience of joining two
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adjacent regions. We will call the set of edge pixels in the Canny mask BCanny.
The set of edge pixels corresponding to the boundary of the receptive field (RF)
of vertex vi is Bi and the set of edge pixels resulting from joining the RFs of vi
and vj is Bi∪j . We compute in the first place how many pixels of Bi∪j match the
edge pixels in BCanny (Equation 4), and then we find the intersection between
the edge pixels in BCanny and the union of Bi and Bj (Equation 5).

B1(i, j) = |Bi∪j ∩BCanny| (4) B2(i, j) = |(Bi ∪Bj) ∩BCanny| (5)

We propose to compute VB(i, j) as shown in Equation 6. In this case, we can
notice that if B2(i, j) > B1(i, j), there is a boundary between the regions of vi
and vj that is present in the Canny edge mask, and that would be removed if
these two regions were joined. This is not desirable, since this is a boundary
that we would like to preserve, therefore in this case the value of VB(i, j) is
-1, invalidating the contraction of these two vertices. Otherwise, the value of
VB(i, j) is the relation between Bi∪j and the intersection of Bi∪j with BCanny,
i.e, intuitively how many edge pixels of the joint regions representing vi and vj
match the Canny mask, with respect to the total edge pixels of the union. If all
the edge pixels from the union of the two regions are present in the Canny mask,
the value VB(i, j) will be 1.

VB(i, j) =

⎧⎨⎩
−1 if B2(i, j) > B1(i, j)

B1(i,j)
|Bi∪j | otherwise

(6)

Once we have VS(i, j) and VB(i, j), we can compute Vcontract(i, j) as expressed
in Equation 7, using a weight (α) to balance the importance of each type of
information.

Vcontract(i, j) =

⎧⎪⎪⎨⎪⎪⎩
0 if VS(i, j) = −1 or

VB(i, j) = −1

αVS(i, j) + (1 − α)VB(i, j) otherwise

(7)

Once we compute Vcontract for every edge in the graph, in order to create
the new CKs, each surviving vertex will use this information to select which
of its adjacent vertices is more likely to be joined with it. The biggest value of
Vcontract corresponds with the edge with best conditions to be contracted, given
the semantic and boundary information employed. If Vcontract is 0, that edge
will never be contracted, either because the vertices it connects have different
semantic classes or because there is a boundary between the underlying regions
that must be preserved. The combination process is illustrated in Figure 1.

Using this contraction criterion, a new level will be created. This is part of
an iterative process where a level is first annotated with a base classifier, then
this classification is refined by solving the associated MRF and finally the new
CKs are found using the classification and boundary information, giving birth
to a new level of segmentation. All the process will be repeated until we reach a
level where no more contractions are allowed.
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Fig. 1. Combination of the low-level and the semantic information for building a new
segmentation level. In (f), white vertices are the surviving ones, and they use the
VContract value to determine which non-surviving vertex will be merged to it.

4 Experiments

We ran experiments on a subset of the Corel image collection (CorelA) developed
by [10]. This dataset contains 205 natural scene images split into two subsets
with 137 images for training and 68 images for testing. All images have been
segmented and manually annotated with 22 classes.

We compute irregular pyramids for all the images, with an average of 20 levels
per image. We consider that image over-segmentation is sufficient to perform
efficient classification of small objects or object parts, therefore we start our
process from level 10 of the original pyramids. In [4] and [11] they use KNN
as base classifier We chose for our proposal to use a more sophisticated base
classifier, in this case, Random Forests [12]. In order to train the base classifier,
we used the ground truth annotations of this dataset, i.e. a group of regions
per image, each one manually annotated with a class label. To perform the
base classification on the test set, we use the training information to classify all
the regions at level 10 of the test image pyramid, then we compute the MRF
associated to this level and find the new CKs to construct a whole new level
11. This process will be repeated until reaching level 20 for all pyramids. We
measured the annotation accuracy at pixel level for every segmentation level
of each test image, with respect to the ground truth labels. Following the idea
of [13], we used as visual features for each vertex (region) of each graph, the
quantization of the RGB values in 16 bins per channel, yielding a 48-dimensional
color histogram, and a local binary pattern (LBP) histogram to characterize
texture in the region. The value of δ was set to 0.3 empirically.

In Table 1 we can see a comparison among the annotation results obtained us-
ing the base classifier Random Forest (RF) alone, the results from the HMRF-Pyr
algorithm [4], which keeps the original pyramid levels of segmentation through-
out the annotation process, and our proposal HMRF-PyrSeg, which uses the
same annotation method of HMR-Pyr, but improves the segmentation by cre-
ating new levels. In [4] they use KNN as base classifier, with 32% of annotation
accuracy, and after the HMRF-Pyr method is applied, they improved the re-
sults up to 44.6%. Nevertheless, as shown in Table 1, when we use a better base
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Table 1. Results obtained in the CorelA subset for each level of the pyramid

Pyramid levels
Algorithm 10 11 12 13 14 15 16 17 18 19 20

RF (base classifier) 37.3% 38.5% 39.7% 40.7% 41.7% 42.6% 43.1% 43.1% 42.7% 42.2% 41.6%

HMRF-Pyr 39.7% 40.4% 41.2% 42.0% 42.7% 43.3% 43.7% 44.1% 44.4% 44.6% 44.8%

HMRF-PyrSeg 48.7% 48.7% 48.9% 49.3% 49.7% 49.9% 50.0% 50.2% 50.3% 50.4% 50.4%

classifier for HMRF-Pyr, the relative improvement decreases (being 3.2% the
highest improvement). Since the base classifier does a better job, there is less
room for refining the annotation given the underlaying image representation.
We chose to modify the image segmentation by creating new levels that would
take into account the annotation results from the level below, and therefore, it
is possible to obtain much better annotation results with respect to the base
classifier.

In Table 2 we can see a comparison of our approach with other methods
that were tested on this dataset, in terms of overall accuracy. To illustrate the
improvement of segmentation, in Figure 2 we show the best segmented levels for
one sample image using HMRF-Pyr and HMRF-PyrSeg. With these results we
can notice the relevance of having a better underlying segmentation during the
process of image annotation and how these two processes can be combined to
take advantage of each other’s feedback for improving their results.

Table 2. Comparison with other methods in the CorelA subset. Second row shows the
accuracy of each algorithm.

Algorithm gML1o [10] MRFs AREK [11] HMRF-Pyr [4] HMRF-PyrSeg

Overall accuracy 36.2% 45.6% 44.6% 50.4%

Original Image Ground Truth HMRF-Pyr HMRF-PyrSeg

Fig. 2. Example segmentation result using HMRF-Pyr and HMRF-PyrSeg. Colors rep-
resent different classes. (Best seen in color)

5 Conclusions

In this paper we proposed an approach that combines image annotation and
segmentation in an iterative and hierarchical way. The segmentation step is
improved using semantic information coming from a previous annotation and the
subsequent annotation takes advantages of a better partition. As experimental
results showed, this synergy can boost the final results of image annotation.
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In a future work we plan to make experiments showing the improvements in
image segmentation, as an alternative goal of this combination.
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Abstract. In this paper, we review some alternatives to reduce the com-
putational complexity of the Non-Local Means image filter and present a
CUDA-based implementation of it for GPUs, comparing its performance
on different GPUs and with respect to reference CPU implementations.
Starting from a naive CUDA implementation, we describe different as-
pects of CUDA and the algorithm itself that can be leveraged to decrease
the execution time. Our GPU implementation achieved speedups of up to
35.8x with respect to our reduced-complexity reference implementation
on the CPU, and more than 700x over a plain CPU implementation.

Keywords: Image denoising, Non-Local Means, GPU, CUDA.

1 Introduction

In this work we focus on the implementation in GPU of the Non-Local Means
(NLM) image filter[3] which proposes to compute the output pixels as a weighted
average of all pixels in the image (in practice for all pixels inside a given search
region). The weights reflect the similarity between pixels and the novelty of the
method is that this similarity is based on the distance between patches centered
at pixels being processed. If I(x) is the value of the input image at pixel x and
Sx is a rectangular search region centered at pixel x the output of the NLM

filter is computed with the following equation: Î(x) =
∑

y∈Sx
w(x,y)I(y)∑

y∈Sx
w(x,y) where the

weights w(x, y) measure the similarity between patches Nx and Ny of size (2W+
1)× (2W + 1) centered at x and y respectively. This similarity is computed as:
w(x, y) = exp(−||Nx −Ny||22/h2) with h a parameter that controls the aperture
of the weighting function. We assume a search region with range [−S, S]2. The
computational cost of a naive implementation of NLM is O(N2(2S + 1)2(2W +
1)2)) where N is the size of the image (N rows and columns), (2S + 1)2 is the
number of pixels in Sx and (2W+1)2 is the number patch pixels. To alleviate the
computational cost of the NLM filter several authors proposed different strategies
to speed up the algorithm. These strategies can be classified into two categories.
On the one hand the ones that propose approximations to the original NLM

� ANII FMV200913042 and SticAmsud MMVPSCV. Thanks to P. Ezzatti and E.
Dufrechou from Univ. de la Republica for discussions and running our code on their
machines.
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that allow the reduction of the computation cost [8,7]. On the other hand, there
are solutions that reduce the computational cost while implementing the same
filter [5,4]. Here, we review these references that inspired our work for the GPU
implementation.

In [4] Condat proposes an elegant solution to lower the computational cost us-
ing convolutions. The first observation is the following. If the pixel y is expressed
using a displacement vector starting from pixel x as y = x+dx then the weights
fulfill w(x, x + dx) = w(y, y − dx). Therefore, there is no need to compute both
weights. The second modification involves swapping the loops in x and dx and
dividing the computation of the weights in two steps. First, compute an image
with square differences: u(x; dx) = (I(x)− I(x+ dx))2 Second, using the image
u(x; dx), the weights are expressed using convolutions as:

w(x, x + dx) = exp(−v(x)/h2), v(dx) =
∑
x∈N

u(x; dx) = u(x; dx) ∗ g

where g is a square kernel of size (2W + 1)2. Condat’s algorithm is:

Î(.), C(.) = 0
for all dx in halved search region

compute the image u(x) = ( I(x) − I(x+ dx) )2

compute the exponents v(x) = u(x) ∗ g
for all pixels x

w(x + dx) = exp( −v(x)/h2 )
Î(x) + = w(x + dx)I(x + dx); Î(x+ dx) + = w(x + dx)I(x)
C(x) + = w(x + dx); C(x+ dx) + = w(x + dx)

for all pixels x
Î(x) = Î(x)/C(x)

The computational cost of this algorithm is O(N2(2S + 1)2(2W + 1)) which
implies a reduction of (2W +1). If the convolution with g is implemented with a
IIR filter this cost can be further reduced to O(N2(2S+1)2). A similar solution
was presented in [5] by Darbon et. al., where they also express the differences
between patches as a convolution and calculate them using integral images. This
alternative has a computational cost O(4N2S2) which is independent of the
patch size (does not depend on W ).

In this work we evaluate a GPU implementation of Condat’s algorithm and
study different optimizations at the GPU level. For comparison purposes we also
implemented CPU versions of Condat’s and Darbon’s proposals.

2 GPUs

Modern GPUs are very efficient in parallel processing of computer graphics data
but also with any other type of data that can take advantage of the parallel
nature of the GPUs. The manufacturers of the GPUs realized the power of this
technology in fields beyond computer graphics and introduced programming
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models that transform the GPU units into more general computing devices.
Image and video processing are two examples where the application of GPUs
gives many benefits and great reductions in computational time. Since GPUs are
basically consumer electronics products they are very competitive in terms of
price. The programming models provided by the manufacturers are transparent
to the hardware specifications to allow the end user to upgrade the hardware to
increase computational power without the need to modify the software. NVIDIA
was the first company to introduce a general-purpose programming model with
the release of CUDA and recently other companies joined efforts around the
OpenCL standard.

Several authors have proposed NLM implementations for GPUs. In [2] the au-
thors divide the image in blocks and calculate weights only for the central pixel,
assigning that weight to all pixels within the block. Although their proposed
method does reduce the computational complexity of the algorithm, it does so
by sacrificing denoising performance, since this coarse weight approximation can
introduce artifacts at the edges in the image. This same implementation is eval-
uated in [9].

In [10], a CUDA implementation of NLM for CT scans is presented that takes
no steps to reduce the computational complexity of the algorithm. The authors’
main contribution towards runtime optimization is exploiting the shared memory
space to prefetch and then access the image data rather than reading from global
memory multiple times, since the former can be accessed much faster than the
latter. However, shared memory is a limited resource that restricts the number
of thread blocks that can be run concurrently on a streaming multiprocessor,
and the proposed approach does not extend well when processing color images
or video. In [6], the authors present a DirectX implementation that, just as
Condat’s and Darbon’s, exploits the fact that the differences between patches
can be calculated as a convolution.

3 Proposed Implementation

There are many resources available to learn CUDA programming, and coding
an initial version of a parallel application can be very easy. However, to get
the most of the GPU, a deeper understanding of the underlying architecture
is usually required and at this point the learning curve grows steeper. In this
article we describe each of these improvements so that they may serve as an
introductory guide to others that may be getting started with implementing
image processing applications in CUDA.

Naive Implementation: This consists in a straightforward implementation of
Condat’s algorithm. Host code controls the iteration through the search region
while GPU kernel functions are invoked for displaced image subtraction, separa-
ble convolution, addition of weighted pixel contribution and finally division of the
contributions by the total summed weights. The pseudo code for this approach
is described below. For the separable convolution, we used the CUDA Toolkit
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sample code described in [1]. The other kernels are straightforward implementa-
tions of their CPU counterparts. The only addition is that, since a thread with
linearized index x updates Î(x) and C(x) as well as Î(x + dx) and C(x + dx),
we introduced another pair of accumulation and summed weight images Îsym
and Csym to store the symmetric contributions and thus eliminate concurrency
overwrite issues between threads.

Î(x), Î sym = 0, C, C sym = 0
for all dx in halved search region

u = displaced image substraction kernel(I, dx)
v = separable convolution kernel(u)
(Î , Î sym, C, C sym) + = add weighted pixel contributions kernel(I, v, dx)

Î(x) = weight normalization kernel(Î(x), Î sym, C(x), C sym)

Coalescing Memory Access: On many GPU applications, memory access can
have a great impact on performance. Reads and writes to global memory can be
coalesced (meaning grouped into a single transaction) when the threads in a warp
access the memory addresses in predefined patterns. These patterns can vary
depending on the CUDA architecture, with 1.0 and 1.1 being the most restrictive
and relaxing into more permissive models from 1.2 to 2.x and 3.x versions. In
CUDA 1.0 and 1.1, successive threads in a half-warp must access consecutive 4,
8, or 16-byte words, with the first word located in a memory address aligned to
the size of the transaction. In order to coalesce most global memory reads, we
allocated the memory for our images using the function cudaMallocP itch() and
cudaMemcpy2D() rather than cudaMalloc() and cudaMemcpy(). The former
pads (if necessary) the allocation to ensure that the addresses of the rows of 2D
arrays will meet the alignment requirements for coalescing. Since we replicate
the border of the processed images, we also had to make sure that the size of
the replicated border was a multiple of 16 for our card with CUDA 1.1 and of
32 for our cards with CUDA 2.0 or higher, in order to assure memory alignment
when working within the border. After coalescing global memory access in this
manner, a speedup of 1.5x over the naive GPU implementation was obtained.

Using 2D Textures for Remaining Unaligned Reads: After the modifica-
tions described above, all reads and writes of threads with linearized index x to
pixels with the same index will be coalesced. However, the kernels that compute
image subtraction and addition of weighted pixel contributions also perform ac-
cesses that remain uncoalesced to pixels indexed as x+dx. We therefore explored
using textures to accelerate these read operations. The texture memory space
is read-only and resides in device memory but is cached, so a texture fetch will
cost one memory read from the texture cache rather than global memory unless
a cache miss occurs, in which case the cost will then be a read from global mem-
ory. Since this cache is optimized for 2D spatial locality, higher bandwidth can
be achieved by using textures if memory reads by threads in the same warp do
not follow the access patterns required for memory transaction coalescing but
the read addresses are close together in 2D. By using textures to read displaced
pixel values, the speedup factor over the previous implementation was of 1.2x.
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As an alternative to texture fetches for unaligned memory access, we experi-
mented with prefetching the data to shared memory using a coalesced memory
access pattern to then operate on the data in shared memory. However, due
to the overhead introduced by the prefetching code and that we only used the
prefetched data once per kernel, using textures remained the faster option.

Coalescing Remaining Write Operations: At this point, writes of the con-
tributions and weights of displaced pixels to Îsym(x+dx) and Csym(x+dx) still
remained uncoalesced. However, if instead of each thread using w(x) to update
indexes x and x+dx we change to updating only x using w(x) and w(x−dx) as
noted in [6], all writes can be coalesced. Furthermore, the need for a second set
of images to keep track of symmetric weighted contributions and weights diss-
apears as well, since each thread will now update a single image index. Under
this strategy, in order to avoid reevaluations of the exponential function, the
convolution kernel has to be trivially modified to calculate the weights of each
pixel as a last step. This modification resulted in a further speedup factor of
2.3x.

4 Results

All of the reported NLM implementations operate on color float images. Table
1 details the execution times and speedups obtained for each of the GPU im-
plementation variants mentioned in section 3, with 4.1x being the final speedup
factor obtained over the naive GPU implementation. These results were obtained
on a Quadro FX 770M card with compute capability 1.1. Following CUDA ver-
sions introduced global memory caching that may provide a higher bandwidth
than texture fetches if the accessed elements are present on the cache, which
may yield different speedup factors than these.

Table 2 lists execution times for the different algorithm variants we imple-
mented on the CPU and our current GPU version. Since the purpose of the
CPU implementations was to provide easily reproducible and comparable base-
line execution times, straightforward implementations with no particular code
optimizations were employed. The fastest implementation on the CPU was Con-
dat’s alternative, which represented a 11.8x improvement over the implementa-
tion that only exploits weight symmetry. In turn, the GPU version was 32.4x
faster than its CPU counterpart (Condat) and an impressive 717.9x faster than
the naive CPU implementation, but the latter is hardly a fair comparison.

We experimented with running the algorithm on different cards, obtaining the
same execution times for a Quadro FX 770M and a GT 430, in spite of the lat-
ter having 3 times as many cores as the former. This is caused by the algorithm
being bandwidth-bound rather than compute-bound and both cards having the
same memory bandwidth of 25.6 GB/sec. For the GTX 480, with 133.9 GB/sec,
and the GTX 680, with 192.2 GB/sec, execution times were 8.7x and 10.7x re-
spectively faster than with the previous cards. Thread block dimensions were
set to maximize occupancy. In order to comply with memory access coalescing
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Table 1. Execution times and speedup factors over the naive GPU implementation
for all tested GPU implementation alternatives. Listed results correspond to 512x512
images with a 21x21 search window and 9x9 patches.

GPU implementation Execution Speedup vs.
alternative Time (sec) Naive Implementation

Naive Implementation 3.09 1x
Coalescing memory access 2.06 1.5x
Using 2D textures for unaligned reads 1.72 1.8x
Coalescing remaining write operations 0.73 4.1x

Table 2. Execution times and speedup factors for a 720x480 image with a 21x21 search
window and 9x9 patches. The CPU used was an Intel Core Intel Core i7 2600 CPU @
3.40GHz. The GPU implementation was run on a NVIDIA GeForce GTX 680 card.

NLM implementation Execution Speedup vs.
alternative Time (ms) Naive Implementation

CPU 1: Naive Implementation 63,180 1x
CPU 2: Using symmetric weights 33,688 1.9x
CPU 3: Darbon (integral images) 4,789 13.2x
CPU 4: Condat (separable convolution) 2,851 22.2x
GPU Final implementation 88 717.9x

Fig. 1. Left: Execution times per image pixels for different GPUs on images of size
512x512, 720x480, 1200x720 and 1920x1080. Right: GPU speedup factor over an Intel
Core i7 2600 @ 3.40GHz CPU for the different test image sizes.

patterns, the block width was set to 16 for the Quadro FX 770M, which has
compute capability 1.1, and to 32 for the other cards.

Figure 1 (left) illustrates execution times for NLM running on images of dif-
ferent sizes over the different GPU cards. For these image sizes and the best two
cards, the speedup factor obtained over the CPU implementation of Condat’s
method is plotted on the right. The speedup factor increases with image size,
leveling off for larger images, and varies between 24.5x and 30.7x for the GTX
480 and between 30.6x and 35.8x for the GTX 680.
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Fig. 2. Execution times per pixels in search window for windows of size 5x5, 7x7, 11x11
and 21x21. Image size remained fixed at 720x480 and patch size at 9x9.

Figure 2 illustrates the execution times when varying the search window’s size.
Since the algorithm calculates the differences between patches using a separable
convolution, changing the patch size hardly affects execution time. The execution
times reported in [6] for their DirectX-based implementation, which also exploits
the use of a convolution to calculate the distances between image patches, are
included among the results presented in figure 2. A more direct comparison was
not possible, but when adjusting for the maximum memory bandwidth of the
cards, the results in 2 seem to be up to 2x faster than our current implementation.
The difference may lie in that they mention computing the convolution as a
moving average, whereas we compute the separable convolution. We will evaluate
whether we can improve on this point.

5 Conclusions

In this paper we have presented a CUDA-based GPU implementation of NLM
that reduces its computational complexity by calculating the differences between
images patches as a separable convolution. This variant still produces the same
result as the original algorithm, as opposed to the CUDA implementation pro-
posed in [2], which calculates weights for only a subset of image pixels and assigns
the same weight within image blocks. It is also faster than the alternative de-
scribed in [10], since in that case the authors do not reduce the algorithm’s com-
putational complexity. The implementation that can be more closely compared
to our work is the DirectX-based one presented in [6], which seems to suggest
that we could still improve upon our convolution computation to achieve higher
speedups.

With respect to our CPU reference implementation, a speedup factor of 3.5x
was obtained with the Quadro FX 770M and GeForce GT 430 cards, and up to
30x and 35x speedups were obtained with the comparatively more powerful GTX
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480 and GTX 680. The main reason behind the difference in performance be-
tween cards is the memory bandwidth of each, since the algorithm is bandwidth-
limited. The final speedup factor with respect to a naive CPU implementation
was of 718x.

One of the contributions we have tried to make with this paper has been to
report each step we have taken while optimizing our implementation, starting
from the most basic, so that it may serve as a quick reference for people that
are just starting to port their image processing algorithms to CUDA.

It should be noted that we have not explored yet all concepts that we be-
lieve may lead to further efficiency improvements. In particular, our access to
the better-performing cards reported in this work has been recent, and further
exploring implementation alternatives on them can probably yield additional
optimizations. As future work, we plan to explore these remaining promising
modifications and write a revised version of this article more focused on serving
as an quick introduction to CUDA optimization for image processing tasks based
on the NLM case study.
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Abstract. In this paper we propose a new method to automatically cor-
rect wide-angle lens distortion from the distorted lines generated by the
projection on the image of 3D straight lines. We have to deal with two
major problems: on the one hand, wide-angle lenses produce a strong
distortion, which makes the detection of distorted lines a particularly
difficult task. On the other hand, the usual single parameter polynomial
lens distortion models is not able to manage such a strong distortion.
We propose an extension of the Hough transform by adding a distor-
tion parameter to detect the distorted lines, and division lens distortion
models to manage wide-angle lens distortion. We present some experi-
ments on synthetic and real images to show the ability of the proposed
approach to automatically correct this type of distortion. A comparison
with a state-of-the-art method is also included to show the benefits of
our method.

Keywords: lens distortion, wide-angle lens, Hough transform, line
detection.

1 Introduction

Wide-angle lenses are specially suited for some computer vision tasks, such as
real-time tracking, surveillance, close range photogrammetry or even for simple
aesthetic purposes. The main advantage these lenses offer is that they provide
a wide view up to 180 degrees. However, the strong distortion produced by
these lenses may cause severe problems, not only visually, but also for further
processing in applications such as object detection, recognition and classification.

To model the lens distortion, we consider radial distortion models given by
the expression: (

x̂− xc

ŷ − yc

)
= L(r)

(
x− xc

y − yc

)
, (1)

where (x, y) is the original (distorted) point, (x̂, ŷ) is the corrected (undistorted)
point, (xc, yc) is the center of the camera distortion model, L(r) is the function
which defines the shape of the distortion model and r=

√
(x− xc)2 + (y − yc)2.
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According to the choice of function L(r), there exist two widely accepted types
of lens distortion models: the polynomial model and the division model.

The polynomial model, or simple radial distortion model [10], is formulated
as:

L(r) = 1 + k1r
2 + k2r

4 + ..., (2)

where the set k = (k1, ...., kNk
)T contains the distortion parameters estimated

from image measurements, usually by means of non-linear optimization tech-
niques. The two-parameter model is the usual approach, due to its simplicity
and accuracy [12], [1]. Alvarez, Gomez and Sendra [1] proposed an algebraic
method suitable for correcting significant radial distortion which is highly effi-
cient in terms of computational cost. An on-line demo of the implementation of
this algebraic method can be found in [2].

Camera calibration is a topic of interest in Computer Vision which, in order
to be efficient, requires including the distortion into the camera model. Most
calibration techniques rely on the linear pinhole camera and use a calibration
pattern to establish a point-to-point correspondence between 2D and 3D points
(see a review on camera calibration in [14]). In this applications, the polynomial
model with only one distortion parameter, k1 (one-parameter model), achieves an
accuracy around 0.1 pixels in image space using lenses exhibiting large distortion
[7], [8]. However, [7] also indicates that for cases of strong radial distortion, the
one-parameter model is not recommended.

The division model has initially been proposed by [13], but it has received
special attention after the more recent research by Fitzgibbon [9]. It is formulated
as:

L(r) =
1

1 + k1r2 + k2r4 + ...
. (3)

The main advantage of the division model is the requirement of fewer terms
than the polynomial model for the case of severe distortion. Therefore, the divi-
sion model seems to be more adequate for wide-angle lenses (see a recent review
on distortion models for wide-angle lenses in [11]). Additionally, when using
only one distortion parameter, its inversion is simpler, since it requires finding
the roots of a second degree polynomial instead of a third degree polynomial. In
fact, a single parameter version of the division model is normally used.

For both models, L(r) can be estimated by considering that 3D lines in the
image must be projected onto 2D straight lines, and minimizing the distortion
error, which is given by the sum of the squares of the distances from the points
to the lines [7].

Once a lens distortion model has been selected, we must decide how to apply
it. Some methods rely on the human-supervised identification of some known
straight lines in one or more images [3], [4], [15]. As a consequence of the human
intervention, these methods are robust, independent of the camera parameters,
and require no calibration patterns. However, for the same reason, these methods
are slow and tedious for the case of dealing with large sets of images.
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New approaches have recently appeared to eliminate human intervention. In
[6] and [5], an automatic radial estimation method is discussed. This method
works on a single image and no human intervention or special calibration pattern
are required. The method applies the one-parameter Fitzgibbon’s division model
to estimate the distortion from a set of automatically detected non-overlapping
circular arcs within the image. The main limitation of the method is that each
circular arc has to be a collection of contiguous points in the image and, therefore,
the method fails if there are no such arcs.

In this paper, we propose a new unsupervised method which makes use of
the one-parameter division model to correct, from a single image, the radial dis-
tortion caused by a wide-angle lens. We first automatically detect the distorted
lines within the image by adapting the usual Hough transform to our problem.
The adaptation consists in embedding the radial distortion parameter into the
Hough parametric space to tackle the detection of the longest arcs (distorted
lines) within the image. From the improved Hough transform, we obtain a col-
lection of distorted lines and an initial value for the distortion parameter k1.
Next, we optimize this parameter by minimizing the distance of the corrected
line points to straight lines.

2 A Hough Space Including a Division Lens Distortion
Parameter

In order to correct the distortion, we need to estimate the magnitude and sign
of the distortion parameter and, to this aim, we can rely on the information
provided by line primitives. Line primitives are searched in the edge image which
is computed using any edge detector. One of the most commonly used techniques
to extract lines in an edge image is the Hough transform, which searches for the
most reliable candidates within a certain space. This space is usually a two-
dimensional space which considers the possible values for the orientation and
the distance to the origin of the candidate lines. Each edge point votes for those
lines which could contain this point, and the lines which receive the highest
scores are considered the most reliable ones.

However, this technique does not consider the influence of the distortion in
the alignment of the edge points, in such a way that straight lines are split into
different segments due to the effect of the distortion. For this reason, we propose
to include a new dimension in the Hough space, namely the distortion parameter.
For practical reasons, instead of considering the distortion parameter value itself
in the Hough space, we make use of the percentage of correction obtained with
that value, which is given by:

p = (r̃max − rmax)/rmax, (4)

where rmax is the distance from the center of distortion to the furthest point
in the original image, and r̃max is the same distance, but after applying the
distortion model. This way, the parameter p is easier to interpret than the dis-
tortion parameter itself. Another advantage of using p as an extra parameter in
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(a) Synthetic image (b) Real image

Fig. 1. Values of the maximum in the voting space with respect to the percentage of
correction for the images in (a) the synthetic image in Fig. 2 and (b) the real image in
Fig. 3 using the modified Hough transform and division lens distortion model

the Hough space is that it does not depend on the image resolution. When we
use single parameter division models the relation between parameter p and k1
is straightforward and it is given by the expression :

k1 =
−p

(1 + p)r2max

. (5)

To reduce the number of points which vote and the number of lines that
each edge point votes for, we first estimate the magnitude and orientation of
the edge for every edge point. Only those points where the magnitude of the
gradient is higher than a certain threshold are considered. Afterward, we select,
for every value of p and every edge point, those lines which, after being corrected
according to the distortion model associated to this value of p, are close enough
to the point and present an orientation which is similar to the orientation of the
edge in that point. Furthermore, the vote of a point for a line depends on how
close they are, and is given by v = 1/(1 + d), where d is the distance from the
point to the line.

In the Hough space, the different lines may have different orientations and
distances to the origin. Nevertheless, they should all have the same value of
the distortion parameter (i.e. the same value of p), since it is a single value for
the whole image. This means that we must not search for the best candidates
individually, but for the value of p which concentrates the largest number of
significant lines.

Figure 1 illustrates how the maximum of the voting score varies within the
Hough space according to the percentage of correction determined by the dis-
tortion parameter.

Once we have searched for the best value of p within the three-dimensional
Hough space, we refine it to obtain a more accurate approximation. To this
aim, by using standard optimization techniques (gradient descent method) we
minimize the following error function:
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(a) (b)

(c) (d)

Fig. 2. Lens distortion correction for a test image: (a) lines detected using the Bukhari-
Dailey method, (b) lines detected using the proposed method, (c) undistorted image us-
ing the Bukhari-Dailey method, and (d) undistorted image using the proposed method.

E (p) =
Nl∑
j

Np(j)∑
i

dist (xji, linej)
2 (6)

Nl is the number of lines, Np(j) is the number of points of the jth line and xji

are the points associated to linej. This error measures how distant the points are
from their respective lines, so that the lower this value, the better the matching.

3 Experimental Results

We have tested our model in some images showing wide-angle lens distortion
and we have compared the results with those obtained using the Bukhari-Dailey
method [5]. We have used the code avaliable on F. Bukhari’s web page1.

Figure 2 (1024 × 683 pixels) presents the results for a synthetic image. It
consists of a calibration pattern in which the radial distortion has been simu-
lated using a division model. The magnitude of such distortion is 20% (p = 0.2).
Figure 2(a) shows the arcs detected using the Bukhari-Dailey method, whereas

1 http://www.cs.ait.ac.th/vgl/faisal/downloads.html

http://www.cs.ait.ac.th/vgl/faisal/downloads.html
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(a) (b)

(c) (d)

Fig. 3. Lens distortion correction for a real image: (a) lines detected using the Bukhari-
Dailey method, (b) lines detected using the proposed method, (c) undistorted image us-
ing the Bukhari-Dailey method, and (d) undistorted image using the proposed method

the lines detected using the proposed method (modified Hough transform and
division model) are shown in Fig. 2(b). We have represented each line using a
different color to identify them. In both cases, from the detected arcs or distorted
lines, the distortion is estimated and the images are corrected. Figure 2(c) illus-
trates the result using the Bukhari-Dailey method, whereas Fig. 2(d) presents
the corrected image using the proposed method. As observed, the Bukhari-Dailey
method splits those lines where points are not contiguous, while the proposed
method is able to identify a single line from different disconnected segments (see,
for instance, how the edges of the squares in the same row or column are not
associated using the Bukhari-Dailey method, but are properly linked using our
method). Since longer lines provide more useful information than shorter ones,
this results in a better distortion estimation for the proposed method.

Figure 3 (640 × 425 pixels)2 illustrates the same experiment on a real image
with a strong distortion. Figure 3(a) shows the arcs detected using the Bukhari-
Dailey method. As observed, when different segments of the same line are visible,
this method is not able to associate them (see for instance the lower green line,
which is not continued on the right side of the image), but the proposed method
associates them into the same line (see Fig. 3(b)). For this case, the corrected

2 US Air Force CC0 http://commons.wikimedia.org/wiki/File:Usno-amc.jpg

http://commons.wikimedia.org/wiki/File:Usno-amc.jpg
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Table 1. Number of lines, number of points, CPU time and percentage of correction
for Fig. 2 and 3 using the Bukhari-Dailey method and the proposed method

Figure Measure Bukhari-Dailey Our method

Figure 2 (synthetic image)

No. of arcs 306 24
No. of points 11,255 9,033
CPU time (sec.) 79.611 7.844
% correction 0 19.9555

Figure 3 (real image)

No. of arcs 22 22
No. of points 2,894 3,651
CPU time (sec.) 57.41 3.209
% correction 63.3116 49.9186

image using the proposed method is also better than that obtained by means of
the Bukhari-Dailey method (compare Fig. 3(c) and Fig. 3(d)).

Table 1 shows some quantitative results. If we analyze the results for the
calibration pattern, we can observe two important advantages of our method.
First, the number of lines which have been identified is 24, which is exactly
the number of lines within the image. Nevertheless, the Bukhari-Dailey method
extracts a higher number of lines, since each one of them has been split in many
segments. Second, the percentage of correction obtained with our method is very
close to the real value (20%). In this case the Bukhari-Dailey method does not
provide a good result (0% of correction), probably because the obtained segments
are too small to properly estimate the distortion model. Concerning the total
amount of points of the arcs obtained by both methods, the Bukhari-Dailey
method obtains more points (11,255 points in all) than our method (9,033 points)
probably due to the spurious arcs extracted by the Bukhari-Dailey method.

For the real image, both methods have identified the same number of lines,
but those obtained by our method are longer (3,651 points in all) and they have
not been split. Regarding the computational cost, in the experiments presented,
our method is about 10 times faster than the one proposed by Bukhari-Dailey.

4 Conclusions

In this paper we propose a new method to automatically correct wide-angle lens
distortion. The main novelty of the paper is the combination of an improved 3D
Hough space, which includes the distortion parameter to detect distorted lines,
and the division distortion model which is able to manage the strong distortion
produced by wide-angle lenses. We present some experiments which show that
the proposed method properly corrects the lens distortion in the case of wide-
angle lenses and outperforms the results obtained in [5] specially in the case
where the distorted lines are not contiguous arcs in the image.

Acknowledgement. This work has been partially supported by the MICINN
project reference MTM2010-17615 (Ministry of Science and Innovation, Spain).
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Abstract. Survey. The main goal of the Algebraic Approach is the design of a 
unified scheme for the representation of objects for the purposes of their recog-
nition and the transformation of such representations in the suitable algebraic 
structures. It makes possible to develop corresponding regular structures ready 
for analysis by algebraic, geometrical and topological techniques. Development 
of this line of image analysis and pattern recognition is of crucial importance 
for automated image mining and application problems solving. It is selected and 
briefly characterized main aspects of current state of the image analysis alge-
braization. Special attention is paid to the recent results of the Russian mathe-
matical school. 

Keywords: Image analysis, image algebras, descriptive approach, pattern rec-
ognition, image representations. 

1 Introduction 

Automation of image processing, analysis, estimating and understanding is one of  
the crucial points of theoretical computer science having decisive importance for  
applications. 

The specificity, complexity and difficulties of image analysis and estimation (IAE) 
problems stem from necessity to achieve some balance between such highly contra-
dictory factors as goals and tasks of a problem solving, the nature of visual percep-
tion, ways and means of an image acquisition, formation, reproduction and rendering, 
and mathematical, computational and technological means allowable for the IAE. 

The mathematical theory of image analysis is not finished and is passing through a 
developing stage. It is only recently came understanding that only intensive creating 
of comprehensive mathematical theory of image analysis and recognition (in addition 
to the mathematical theory of pattern recognition) could bring a real opportunity to 
solve efficiently application problems via extracting from images the information 
necessary for intellectual decision making. 

A new approach to analyzing and estimating information represented in the form of 
images - the Descriptive Approach to Image Analysis and Understanding (DA) by 
I.B.Gurevich [2, 6, 14-16] is based on the specialization of the “Algebraic Approach 
to Pattern Recognition and Classification Problems Solving” by Yu. I. Zhuravlev [43] 
for the case when the initial information is represented in the form of images. 
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2 State of the Art of the Mathematical Theory of Image 
Analysis 

To automate image mining, we need an integrated approach to implement the poten-
tial of mathematical apparatus being used in transforming and analyzing information 
represented in the form of images. 

Image mining now tends to multiplicity (multi-algorithmic and multi-model mod-
es) and to fusion of the results. It means that several different algorithms are applied 
in parallel to process the same model and several different models of the same initial 
data are used to solve the problem and then the results are fused to obtain the most 
accurate solution. Yu.I.Zhuravlev obtained the first and fundamental results in this 
area in 1970s [43]. 

From 1990s, the most part of pattern recognition applications and considerable part 
of research in artificial intelligence deal with images. As a result, new technical tools 
emerged to obtain information that allow representing of recorded and accumulated 
data in the form of images and the image recognition itself became more popular as 
the powerful and efficient methodology to process and analyze data mathematically 
and to detect hidden regularities. 

There are a lot of internal scientific problems that have arisen within image recog-
nition. First of all, these imply algebraizing the image recognition theory, arranging 
image recognition algorithms, estimating the algorithmic complexity of the image 
recognition problem, automating the synthesis of the corresponding efficient proce-
dures, formalizing the description of the image as a recognition object, etc. These 
problems form the base of the mathematical agenda of the descriptive theory of image 
recognition developed using the ideas of the Algebraic Approach to Pattern Recogni-
tion and Classification. 

There are three main issues one needs to overcome when dealing with images: 1) 
to describe images; 2) to develop, study and optimize the selection of mathematical 
methods and tools for data processing under image recognition; 3) to implement ma-
thematical methods of image analysis via software and hardware means. 

3 Algebraization of Pattern Recognition and Image Analysis 

This section contains steps of the algebraization in image analysis fundamentals and 
the basic theories of pattern recognition, image algebras. 

By now, image analysis and evaluation have a wide experience gained in applying 
mathematical methods from different sections of mathematics, computer science and 
physics, in particular algebra, geometry, discrete mathematics, mathematical logic, 
probability theory, mathematical statistics, mathematical analysis, mathematical 
theory of pattern recognition, digital signal processing, and optics. 

However we still need a regular basis to arrange and choose suitable methods of 
image analysis, represent in an unified way the processed data (images), construct 
mathematical models of images designed for recognition problems, and, on the whole, 
to introduce the universal language for unified description of images and transforma-
tions over them. 
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The necessity to solve complex recognition and specialized image languages gen-
erated attention to formal descriptions–models of initial data and formalization of 
descriptions of procedures of their transformation in the area of pattern recognition 
(and especially in image recognition in 1960s). As the substantial achievements in this 
“descriptive” line of R&D we should mention publications by A. Rosenfeld [34], T. 
Evans [12], R. Narasimhan [29], R. Kirsh [21], A. Shaw [37], H. Barrow, A. Ambler, 
and R. Burstall [1], S. Kaneff [20]. 

In 1970s Yu.I.Zhuravlev proposed “The Algebraic Approach to Recognition and 
Classification Problems” [43], where he defined formalization methods for describing 
heuristic algorithms of pattern recognition and proposed the universal structure of 
recognition algorithms. In the same years, U. Grenander stated his “Pattern Theory” 
[18], where he considered methods of data representation and transformation in rec-
ognition problems in terms of regular combinatorial structures, leveraging algebraic 
and probabilistic apparatus. M.Pavel [31] introduced “Theory of Categories Tech-
niques in Pattern Recognition”, to describe pattern recognition algorithms via trans-
forms of initial data preserving its class membership. 

The Russian mathematical school also has important original results on algebraic tools 
for pattern recognition and image analysis in. There are algebras on algorithms, algebraic 
multiple classifiers, algebraic committees of algorithms, combinatorial algorithms for 
recognition of 2-D data [1], descriptive image models, 2-D formal grammars [34]. 

In the framework of scientific school of Yu.I.Zhuravlev several essential results 
were obtained by V.L.Matrosov [26], K.V.Rudakov [35] and V.D.Mazurov [27]. 
There are significant number of results concerned with algebraic methods of analysis 
and estimation of information represented as signals (G.Labunec [22], Ya.A.Furman 
[13], V.M.Chernov [4]). 

Algebraization of pattern recognition and image analysis has attracted and contin-
ues to attract the attention of many researchers. First of all – the development of alge-
braic construction for image analysis and processing – formal grammars, cellular 
automata, mathematical morphology, image algebras, multiple algorithms, descriptive 
approach. 

The idea of constructing a unified language for concepts and operations used in 
image processing appeared for the first time in works of Unger [42], who suggested to 
parallelize algorithms for processing and image analysis on computers with cellular 
architecture. 

Mathematical morphology by G. Matheron [25] and J.Serra [36] became a starting 
point for a new mathematical wave in image analysis. Serra and Sternberg [39] were 
the first to succeed in constructing an integrated algebraic theory of processing and 
image analysis on the basis of mathematical morphology. It is believed [28] that it 
was precisely Sternberg who introduced the term “image algebra” in the current stan-
dard sense. The final version of image algebras (IA) was Standard Image Algebra by 
G.Ritter [32] (algebraic presentation of image analysis and processing operations). 

Descriptive Image Algebras (DIA) is created as a new IA provided possibility to 
operate with main image models and with basic models of procedure of transforms, 
which lead to effective synthesis and realization of basic procedures of formal image 
description, processing, analysis and recognition. DIA is introduced by I.B.Gurevich 
and developed by him and his pupils I.V.Koryabkina, I.A.Jernova, A.A.Myagkov, 
A.A.Nefedov, Y.O.Trusova, V.V.Yashina [14-16]. 
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In the history of algebraization we should mention: J.von Neumann [30], S.Unger 
[42] (studies of interactive image transformations in cellular space); M. Duff, D. Wat-
son, T. Fountain, and G. Shaw [10] (a cellular logic array for image Processing); A. 
Rosenfeld [33] (digital topology); H.Minkowski and H.Hadwiger (pixel neighborhood 
arithmetic and mathematical morphology); G.Matheron, J.Serra, S.Sternberg [25, 36, 
39] (a coherent algebraic theory specifically designed for image processing and image 
analysis - mathematical morphology); S. Sternberg [39] (the first to use the term “im-
age algebra”); P. Maragos [24] (introduced a new theory unifying a large class of 
linear and nonlinear systems under the theory of mathematical morphology); L. Da-
vidson [9] (completed the mathematical foundation of mathematical morphology by 
formulating its embedding into the lattice algebra known as Mini-Max algebra); 
G.Ritter [32] (Image Algebra); I.B.Gurevich [15] (Descriptive Image Algebra); T.R. 
Crimmins and W.M. Brown, R.M. Haralick, L. Shapiro,  R.W. Schafer, J. Goutsias, 
L. Koskinen and Jaako Astola, E.R. Dougherty, P.D. Gader, M.A. Khabou, A. Kol-
dobsky, B. Radunacu, M.Grana, F.X. Albizuri, P. Sussner [7,8,10,11,19,40] (recent 
papers on mathematical morphology and image algebras). 

4 Descriptive Approach to Image Analysis and Understanding 

This section contains a brief description of the principal features of the DA needed to 
understand the meaning of the introduction of the conceptual apparatus and schemes 
of synthesis of image models proposed to formalize and systematize the methods and 
forms of image representation. 

By the middle of 1990s, it became obvious that for the development of image anal-
ysis and recognition, it is critical to: 1) understand the nature of the initial information 
– images, 2) find methods of image representation and description that allow con-
structing image models designed for recognition problems, 3) establish the mathemat-
ical language designed for unified description of image models and their transforma-
tions that allow constructing image models and solving recognition problems; 4) con-
struct models to solve recognition problems in the form of standard algorithmic 
schemes that allow, in the general case, moving from the initial image to its model 
and from the model to the sought solution. 

The DA gives an unified conceptual structure that helps to develop and implement 
these models and the mathematical language [14-17]. The main DA purpose is to 
structure and standardize different methods, operations and representations used in 
image recognition and analysis. The DA provides the conceptual and mathematical 
basis for image mining, with its axiomatic and formal configurations giving the ways 
and tools to represent and describe images to be analyzed and evaluated. 

Experience in the development of the mathematical theory of image analysis and 
its use to solve applied problems shows that, when working with images, it is neces-
sary to solve problems that arise in connection with the three basic issues of image 
analysis: 1) the description of images; 2) the development, exploration, and optimiza-
tion of the selection of mathematical methods and tools for information processing in 
the analysis of images; 3) the hardware and software implementation of the mathe-
matical methods of image analysis. 
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Mathematical foundations of the DA are as follows: 1) the algebraization of the ex-
traction of information from images; 2) the specialization of the Zhuravlev algebra  
to the case of representation of recognition source data in the form of images; 3) a 
standard language for describing the procedures of the analysis and recognition of 
images (DIA) [14-16]; 4) the mathematical formulation of the problem of image rec-
ognition; 5) mathematical theories of image analysis and pattern recognition; 6) a 
model of the process for solving a standard problem of image recognition. The main 
objects and means of the DA are: 1) images; 2) a universal language (DIA); 3) 2 types 
of descriptive models: a) an image model; b) a model for solving procedures of prob-
lems of image recognition and their implementation; 4) descriptive algebraic schemes 
of image representation (DASIR); 5) multi-model and multi-aspect representations of 
images, which are based on generating descriptive trees (GDT) [14-16]. 

The basic methodological principles of the DA are: 1) the algebraization of the im-
age analysis; 2) the standardization of the representation of problems of analysis and 
recognition of images; 3) the conceptualization and formalization of phases through 
which the image passes during transformation while the recognition problem is 
solved; 4) the classification and specification of admissible models of images (de-
scriptive image model - DIM); 5) RIRF; 6) the use of the standard algebraic language 
of DIA for describing models of images and procedures for their construction and 
transformation;7) the combination of algorithms in the multi-algorithmic schemes; 8) 
the use of multi-model and multi-aspect representations of images; 9) the construction 
and use of a basic model of the solution process for the standard problem of image 
recognition; 10) the definition and use of non-classical mathematical theory for the 
recognition of new formulations of problems of analyzing and recognizing images. 

5 Ontology-Based Approach to Image Analysis 

The automation of image analysis assumes that researchers and users of different 
qualifications have at their disposal not only a standardized technology of automation, 
but also a system supporting this technology, which accumulates and uses knowledge 
on image processing, analysis and evaluation and provides adequate structural and 
functional possibilities for supporting the more intelligent choice and synthesis of 
methods and algorithms. The automated system (AS) for image analysis must com-
bine the possibilities of the instrumental environment for image processing and analy-
sis and a knowledge-based system. Therefore, one of its main components is a know-
ledge base. Knowledge bases usually contain modules of universal knowledge, which 
are not related to any subject domain and knowledge modules related to a certain 
subject domain. The AS must provide software implementation of the hierarchies of 
classes of the main objects used in image analysis, have a specialized user interface, 
contain a library of algorithms that allow one to solve the main problems of image 
analysis and understanding with the help of efficient computational procedures, and 
provide accumulation and structuring of knowledge and experience in the domain of 
image analysis and understanding.  

The need of efficient knowledge representation facilities can be fulfilled by using a 
suite of ontologies, For example, in [23], an approach devoted to semantic image 
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interpretation for complex object classification purposes is proposed. The work de-
scribed in [5] addresses the problem of explicit representation of objectives when 
developing image processing applications. The proposed framework demonstrates 
that ontology-based content representation can be used as an effective way for hierar-
chical and goal-directed inference in high-level visual analysis tasks.  

In [6], a novel knowledge-oriented approach to image analysis based on the use of 
thesauruses and ontologies as tools for representation of knowledge, which are neces-
sary for making intelligent decisions on the basis of information extracted from im-
ages, is proposed. The main contribution of this work is the development of a suffi-
ciently detailed and well-structured Image Analysis Ontology. As a main source of 
the information about concepts the Image Analysis Thesaurus (IAT) [2] has been 
used. The important feature of the IAT is a novel hierarchical classification of tasks 
and algorithms for image processing, analysis and recognition. 

6 Conclusions 

The main deduction from the analysis of current trends in mathematical image analy-
sis is necessity of a new algebraic language for describing and representing of image 
processing and understanding procedures and models. The new image algebra has to 
make possible: a) processing of images as objects of analysis and recognition; b) op-
erations on image models and on models of procedures for image transformations; c) 
implementation of the procedures for image modifications both as operations and 
operands of the new image algebras for construction of compositions of basic models 
of procedures. The future research will be mostly devoted to constructing of image 
formal descriptions, i.e. to the Image Formalization Space and, in particular, to a) its 
topological properties; b) embedding of descriptive algorithmic schemes for image 
analysis into this space. 
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Abstract. Nowadays a huge volume of data (e.g. images and videos)
are daily generated in several areas. The importance of this subject has
led to a new paradigm known as eScience. In this scenario, the bio-
logical image domain emerges as an important research area given the
great impact that it can leads in real solutions and people’s lives. On
the other hand, to cope with this massive data it is necessary to inte-
grate into the same environment not only several techniques involving
image processing, description and classification, but also feature selec-
tion methods. Hence, in the present paper we propose a new framework
capable to join these techniques in a single and efficient pipeline, in order
to characterize biological images. Experiments, performed with the Im-
ageCLEF dataset, have shown that the proposed framework presented
notable results, reaching up to 87.5% of accuracy regarding the plant
species classification, which is highly relevant and a non-trivial task.

Keywords: image descriptors, feature selection, classification, pattern
recognition.

1 Introduction

Currently the digitization of information is becoming more common, generating
a massive volume of data, leading to a new paradigm of data analysis known
as eScience [1]. In 2011 it was estimated that the amount of information in
the digital universe exceeded 1.8 zettabytes [2]. Among these data are largely
digital content such as images and videos. However, these contents can only
become useful when accessed efficiently, meaning not only fast, but also accurate.
Therefore, it is needed new computational tools to retrieve and index these great
volume of generated data.

The recovery of data can occur in textual form, through the inclusion of
identifiers known as tags. Although, the tags inclusion have the advantage of
indexing and retrieving multimedia content quickly, it is required to be given
the textual information for each content. This task may lead to inconsistencies
because it depends on the human perception. If the tag inclusion is incorrect,
incomplete or not done, the content is not indexed properly, and consequently it
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will not be recovered correctly. On the other hand, the retrieval of images based
on its content eliminates the human interaction and the allocation of tags is
done automatically. This process is based on extracting measures or features of
the content, which is used to perform the indexing and retrieval of a particular
object. A major challenge in this process is to generate features that really
represent the data and consequently establish a classifier in order to correctly
identify the data under analyses.

In this scenario, emerges an important research area known as Bioimage in-
formatics [3], which focuses attention on developing new techniques for image
processing, data mining, database and visualization in order to extract, compare,
search and manage the biological knowledge in data-intensive problems. Regard-
ing bioimages, there is an important challenge called the CLEF Cross Language
Image Retrieval Track (ImageCLEF) [4]. This challenge illustrates the impor-
tance of the image retrieval in the actual data-intensive scenario. In particular,
the biological diversity is very significant both in relation to the genetic potential
as compared to the number of species and ecosystems. Considering plant bio-
diversity, the Amazon Rainforest holds the largest reserves of medicinal plants
in the world. Then, there is a great necessity to recognize the flora through fast
and efficient computational methods in order to deal with big data scenarios.

This paper presents an efficient framework for bioimage processing, feature
extraction and classification, based on its texture and shape descriptors, which
are combined in order to classify the input images. In this way, the performance
of the proposed methodology was evaluated based on ImageCLEF [4] database
by using several image features and classification techniques for this task, which
are presented in the following sections.

2 Background

2.1 Feature Extraction

The feature extraction is defined as the entire set of operations for image process-
ing and analysis performed in order to obtain numerical values that characterize
the images or parts of them. It can also be defined as the capture of the most
relevant information from a data given as input. The features extracted from
the images can be based on three main classes: color, texture and shape.

The shape descriptors are measures of the boundaries, such as chain code,
circularity, width, perimeter and area. The Fourier descriptor is widely used as
a shape descriptor through its coefficients. The Fourier coefficients represents a
global information of the curvature extracted from the image, which can be used
to compare objects, because these coefficients are invariant to rotation, transla-
tion and scale. This invariance is achieved by applying simple transformations
to the Fourier coefficients [5]. In this way, the Fourier coefficients from object
boundary [6] was adopted in this work.

The color descriptors are based on the spectral radiation emitted or reflected
by the objects, quantified by the intensity of the pixels in different spectral bands.
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In this work, it was not adopted color descriptors by the nature of application
in images of leaves, which have little variation in this feature.

The texture is an important descriptor used to identify objects in a digital
image. The Haralick descriptors [7] use the distribution of gray levels and co-
occurrence matrices to evaluate the different textures, which can be defined as:
thin, thick, smooth, wavy, irregular or linear. Another method for texture anal-
ysis was proposed by Chao-Bing Lin and Quan [8], called Quantized Compound
Change Histogram (QCCH). In this method, given a particular pixel the main
idea is to check all gray level variations from its neighbors in the four directions.
The differences of intensities in each direction are used for the construction of a
histogram. By considering the variation of the intensities, this approach is free
from variation between rotation and translation of the image. The Haralick and
QCCH descriptors were adopted in the present work.

2.2 Image Classification

The classification is a way to analyse the data set and extracting models that lead
to a category (class). The classification process can be defined in two paradigms:
supervised learning, in which is known the classes for each available sample and
unsupervised learning, in which the samples has no indication about its class.

The supervised learning is commonly divided into two tasks. The first task is
called training, in which the classifier is constructed to determine the classes of
the input objects from their attributes [9]. The second task is the classification,
in which the model created in the first task is applied in order to define the
classes for the input samples. There are a wide variety of supervised learning
methods. In order to explore some important methods available in the literature
the following classifiers: K-NN (K-nearest neighbor) [10], NB (Naive Bayes) [11],
MLP (Multilayer Perceptron) [12], RF (Random Forest) [13], J4.8 [14] and SVM
(Support Vector Machines) [15] were considered in this work.

In addition, the classifiers can be combined with the adaptive boosting strat-
egy, which can be defined as a machine learning algorithm used to improve the
performance of other learning algorithms [16]. In order to evaluate the perfor-
mance of such technique, it was also considered in this work.

2.3 Feature Selection

The feature selection approach has been investigated, mainly in pattern recog-
nition area, since the 70s [17]. By considering the big data scenario, the feature
selection techniques has become essential in many knowledge areas [18–21].

Regarding pattern recognition, the feature selection aims to reduce the volume
of features, i.e. the feature space, keeping the maximum of the source information
as possible, in order to reduce the computational cost and to increase the accuracy
of the classifier. Other aspects may be useful such as to increase the comprehen-
sibility of the classification model and to increase the robustness of learning.

An important consideration in feature selection methods [22] is that much
of the search assumes the monotonicity principle, i.e. increasing the number of
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attributes improves the performance of the classifier. However, adding more fea-
tures the estimation error also increases, because the number of samples needed
for constructing a suitable model.

A well known feature selection technique is the so-called correlation feature
selection (CFS) [23]. This technique evaluates the subset of features by consider-
ing the consistency measure, seeking for combinations of attributes whose values
split the data into subsets associated with a majority class. For a feature fit in
this condition, the technique seeks for features that have a high correlation with
the observed class and features not correlated among themselves, considering
not only the feature individually, but also the relation among them.

3 Proposed Approach

After the image dataset definition it was performed the segmentation of the
desired object from the image. Once the segmentation process is not the main
focus of this paper, it was applied the baseline thresholding method proposed by
Otsu [24]. Its basic principle is to select a threshold that maximizes the variance
between classes (foreground and background).

The next step was the extraction of the image features as related in Sec. 2.1.
It was developed in Java technology a framework to perform the extraction of
the adopted image features from an input image, which is freely available1.

The image features are extracted from each sample and was built a feature
vector with 218 positions, as follows: [1 - 52] Haralick, [53 - 92] QCCH and [93
- 218] Fourier coefficients. Each image has an unique feature vector, which will
be considered for its classification (see Sec. 5).

The final step is the classification of the image data set by applying the meth-
ods described in Sec. 2.2. In face of the number of the extracted image features,
a feature selection was adopted as a filter step before the classification (Sec. 2.3).
Besides, the adaptive boosting strategy was also performed with the classifiers.

4 Measuring Effectiveness

In order to evaluate the performance, it is necessary to perform the classification
and to compare the results with the correct class for each sample. An approach
commonly used in this task is the cross-validation or k-fold cross validation, in
which the image data set is splitted in k folds, D1, D1, . . . , Dk of equal size.
Then, the training and test set is performed k times in order to evaluate the
performance of the classifier. More specifically, one fold Di is used for test and
the remaining folds are used for training. The overall accuracy is calculated
by averaging the results obtained at each step, thus achieving an estimation
of the quality of knowledge generated by the classification model and allowing
statistical analyses.

After performing the test, it is also possible to obtain statistical values for
measure the performance of the classifier such as Precision, recall and receiver
operating characteristic (ROC) curve [25].

1 http://code.google.com/p/jimagefeature/

http://code.google.com/p/jimagefeature/
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4.1 Image Dataset Description

The ImageCLEF 2012 [26] image dataset was adopted in this work in order
to evaluate the proposed methodology by considering the plant identification
species from its leaves. The image dataset includes n = 126 different species
of trees located in the French Mediterranean area, the total number of samples
available is 11,527, which are subdivided into three categories of images: scan
(57%), scan-like (24%) and free natural photos(19%).

The scan category was adopted in this work, which contains 4870 images
divided unevenly among the 126 species (classes). In order to normalize the
distribution among classes, it was applied the following procedure: (1) it was
calculated the average x of images for each species ei, i = 1, . . . , n; (2) by con-
sidering this average value, it was observed the quantity of images in each specie
(qi) was greater than x. The species with lower quantity of samples, i.e. qi < x,
were excluded for not having enough samples. This pre-processing led to a bal-
anced number of samples for each species. As a result, the pre-processed image
dataset was reduced to 3,582 samples distributed in 54 different species.

5 Results

The first round of experiments was performed in order to evaluate the contribu-
tion of each class of the adopted descriptors (shape and texture). The correlation-
based feature approach was applied to the complete feature vector (see Sec. 3)
before the classification methods. As a result, the features were selected in order
to build a new feature vector as shown in Table 1.

Table 1. Feature vector composition by considering all features and the feature selec-
tion results

Descriptors All Features Selected Features

Haralick 52 (24%) 11 (20%)

QCCH 40 (18%) 20 (37%)

Fourier 126 (58%) 23 (43%)

Total 218 54

These results points out that the texture features are slightly more relevant
than shape descriptors with respect to the number of selected features. However,
the feature selection indicates that both were important. The texture features
have 58% and the shape descriptors have the 42% of the selected features.

The second round of experiments was performed in order to investigate the be-
havior of the adopted classifiers by considering all features, the filtered feature
vector and the the Adaptive Boosting technique. Table 2 presents the average re-
sults by adopting the 10-fold cross validation approach for each configuration. It is
important to notice that the SVM classifier presented the best performance over
all configuration, achieving 87,5% of precision when all features were applied. The
MLP and Random Forest classifiers showed slightly lower results. However, these
results were achieved only after performing the feature selection and adaBoost
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approaches, respectively, indicating the robustness of the SVM classifier. The J4.8,
Random Forest methods had a significant improvement when using the feature
selection and adaBoost approaches. Surprisingly, the MLP classifier showed no
improvement when combined with the AdaBoost approach. The K-NN and Naive
Bayes showed similar results for all adopted variations.

Table 2. Performance comparison among the adopted classifiers by considering all
features, the selected features and the selected features with adaBoost technique in
terms of the precision measure

Classifier all features selected features adaBoost

K-NN 78.9% 82.6% 82.6%

Naive Bayes 76.8% 78.9% 78.9%

J4.8 67.1% 68.3% 84.1%

Random Forest 77.0% 81.1% 87.1%

MLP 50.9% 83.9% 83.3%

SVM 87.5% 83.2% 86.5%

In order to evaluate the performance of the classifiers regarding the better
and the worst classified species, the five species with better and worst results
were selected in Tables 3 and 4 respectively. Figure 1 shows an example for each
of the species listed in Tables 3 and 4.

Table 3. The five better classified species

Id Class
K-NN NB J48 RF MLP SVM

Precision ROC Precision ROC Precision ROC Precision ROC Precision ROC Precision ROC

(a) Daphne-cneorum 1 0,992 1 0,985 0,988 0,999 0,988 1 0,975 1 1 1

(b) Buxus-sempervirens 0,978 0,999 0,983 0,998 0,972 1 0,978 1 0,962 1 0,972 1

(c) Juniperus-oxycedrus 0,988 1 0,987 0,997 0,963 1 0,988 1 0,898 1 0,975 1

(d) Albizia-julibrissin 1 1 0,886 0,999 1 1 0,951 1 0,95 0,999 1 0,993

(e) Nerium-oleander 0,978 0,993 0,965 0,988 0,966 0,996 0,966 0,998 0,925 0,999 0,977 0,997

Table 4. The five worst classified species

Id Class
K-NN NB J48 RF MLP SVM

Precision ROC Precision ROC Precision ROC Precision ROC Precision ROC Precision ROC

(f) Ginkgo-biloba 0,784 0,788 0,515 0,911 0,7 0,985 0,871 0,983 0,583 0,959 0,795 0,974

(g) Acer-campestre 0,795 0,857 0,515 0,906 0,789 0,956 0,696 0,986 0,707 0,954 0,688 0,979

(h) Arbutus-unedo 0,562 0,866 0,791 0,782 0,662 0,963 0,593 0,975 0,667 0,953 0,788 0,969

(i) Laurus-nobilis 0,661 0,926 0,508 0,882 0,681 0,993 0,765 0,99 0,694 0,961 0,706 0,988

(j) Fraxinus-angustifolia 0,464 0,704 0,712 0,795 0,676 0,99 0,803 0,988 0,615 0,982 0,662 0,932

Fig. 1. Samples of the better and worst classified species accordingly Tables 3 and 4
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By considering the five better classified species (a–e), it was observed that they
have similar features of texture and shape. For instance, the Daphne cneorum
(a) and Juniperus oxycedrus (c) species present similar shape features, but have
different texture features being the first roughened and the second smooth. Only
the Albizia-julibrissin has different texture and shape from other species.

The five worst classified species (f–j) show similar texture and shape features
as in the case of the species Arbutus unedo (h) and Laurus nobilis (i) increasing
the difficulty in classification between them. Another case is the Fraxinus angus-
tifolia (j), because it varies greatly in shape making very difficult to establish a
pattern for this class, the same variation occurs with the species Ginkgo biloba
(f) and Acer campestre (g).

6 Conclusion

This paper presents a novel and flexible framework for Bioimage processing, fea-
ture extraction and classification. The proposed framework combines texture-
based and shape-based features improving in a great extent the classification
accuracy of biological images. Furthermore, it not only allows an easy addition
of new methods for processing, description and classification of images, but also
provides the evaluation of such methods under the same conditions. It is im-
portant to highlight that the great majority of works in the literature neglects
this issue. Another point addressed by the proposed approach is related to the
high dimensionality of the feature vectors. In order to mitigate this problem we
embedded a feature selection method into it.

As shown in the experiments section, the proposed approach presented notable
results by considering the plant species classification, reaching up to 87.5% of
accuracy in the overall case. Considering each one the species it reached, in
many cases, up to 100% of accuracy. Moreover, the dimensionality of the feature
vectors was reduced about 4 times less dimensions, diminishing the classification
computational cost. Hence, this testifies the usefulness of the proposed approach
in real biological applications.

Future work includes to apply the proposed framework to other biological
image datasets, to include color-based features and join new steps in the proposed
framework, such as unsupervised classification. It is also planned as a future
work to apply non-parametric tests for statistical comparisons of classifiers as
described in [27].
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Abstract. Various vision applications exploit matching algorithms to
locate a target object in a scene image. A new fast matching algo-
rithm based on recursive calculation of oriented gradient histograms over
several circular sliding windows is presented. In order to speed up the
algorithm pyramidal image decomposition technique and parallel imple-
mentation with modern multicore processors are utilized. The proposed
fast algorithm yields a good invariance performance for both in-plane
and out-of-plane rotations of a scene image. Computer results obtained
with the proposed algorithm are presented and compared with those of
common algorithms in terms of matching accuracy and processing time.

1 Introduction

Recently numerous matching algorithms using features or keypoints were pro-
posed. Among them, Scale Invariant Feature Transform (SIFT) [1] and Speeded-
Up Robust Features (SURF) [2] are the most popular algorithms. These basic
algorithms and their variants [3,4,5] can be used as references for comparison
with new matching methods. Although feature-based matching methods are
popular, template matching algorithms are an attractive alternative for real-
time applications [6,7]. Template matching filters possess a good formal basis
and can be implemented by exploiting massive parallelism in hybrid optodigital
systems [6,8] or in high-performance digital hardware such as graphic process-
ing units (GPU) [7,9] or field programmable gate arrays (FPGA) [10] at high
speed. Another approach is a combination of feature-based and template match-
ing algorithms. For example, Scale Invariant Compressed Histogram Transform
(SICHT) [11] uses the Histograms of Oriented Gradients (HoG) [12] calculated
in a moving window as features. In this paper we present a fast hybrid algorithm
for a reliable matching that recursively calculates the histograms of oriented gra-
dients in several sliding circular windows. The shape of sliding windows helps
us to obtain a pretty good invariance to in-plane/out-of-plane image rotations
with a slight scaling. The algorithm can be easily implemented using modern
technology of multi-core processors. The performance of the proposed algorithm
in a test database is compared with that of SIFT and SURF algorithms in terms
of matching accuracy and processing time.
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2 Proposed Approach

First, let us define a set of circular windows {Wi, i = 1, ...,M} in a reference
image as a set of the following closed disks:

Wi =
{
(x, y) ∈ R2 : (x− xi)

2
+ (y − yi)

2 ≤ ri

}
, (1)

where (xi, yi) are coordinates of the center and ri is the radius of the ith disk.
The circular windows with possible overlapping fill inside an object of interest
in the reference image as shown in Fig. 1. The disks form a geometric struc-
ture that runs across a scene image. The histograms of oriented gradients are
calculated in circular areas and further used for matching. It is interesting to
note that at any position of the structure each disk contains image area that
is unchangeable during rotation; therefore, the histogram of oriented gradients
computed in a circular window is also invariant to rotation. Moreover, in order
to obtain a high accuracy of matching relative positions of the disks described
by the center distances and center-to-center angles should be taken into account.
It is recommendable to choose a minimum number of equal disks with a radius
to fill inside as much as possible the reference object. Actually, numerous experi-
ments have showed that the number M of circular windows may be chosen from
2 to 4 to yield the matching performance comparable with that of the SIFT.

Fig. 1. Set of circular windows calculated from an object

Histograms of Oriented Gradients are good features for matching [12] because
they possess a good discriminant capability and robust to small image deforma-
tions such as rotation and scale. First, at each position of the ith circular window
on a scene image we compute gradients inside the window with the help of the So-
bel operator [13]. Next, using the gradientmagnitudes {Magi (x, y) : (x, y) ∈ Wi}
and orientation values quantized for Q levels {ϕi (x, y) : (x, y) ∈Wi}, the his-
togram of oriented gradients can be computed as follows:

HoGi (α) =

⎧⎪⎨⎪⎩
∑

(x,y)∈Wi

δ (α− ϕi (x, y)), Magi (x, y) ≥Med

0, otherwise,

(2)
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where α = {0, ..., Q− 1} are histogram values (bins), Med is the median value

of image pixels inside of the circular window, and δ (z) =

{
1, z = 0

0, otherwise
is the

Kronecker delta function. Note that the calculation in Eq.(2) requires approxi-
mately

[
πr2i
]

addition operations. In order to reduce computational complexity
the calculation of the histograms at the sliding window position k can be per-
formed in a recursive manner as follows:

HoGk
i (α) = HoGk−1

i (α) −
∑

(x,y)∈OutPk−1
i

δ
(
α−Outϕk−1

i (x, y)
)

(3)

+
∑

(x,y)∈InPk
i

δ
(
α− Inϕk

i (x, y)
)

where OutP k−1
i is a set of outgoing orientation values whose pixels belong to

the half of the perimeter of the sliding window at step k − 1, that is,

{
Outϕk−1

i (x, y) =

{
ϕk−1
i (x, y) , Magk−1

i (x, y) ≥Medk−1

0, otherwise
: (4)

(x, y) ∈ OutP k−1
i

}
;

InP k
i is a set of incoming orientation values whose pixels belong to the half of

the perimeter of the sliding window at step k given by

{
Inϕk

i (x, y) =

{
ϕk
i (x, y) , Magki (x, y) ≥Medk

0, otherwise
: (5)

(x, y) ∈ InP k
i

}
.

The computational complexity of this calculation is approximately [2πri] ad-
dition operations. Fig. 2 shows the recursive update of the histogram along
columns. The recursive calculation can be used along columns as well as along
rows. To provide rotation invariance a cyclic shift of the histogram moving a
dominant orientation was proposed [11]. However, if there are several dominant
orientations in the histogram owing to noise, this method does not work properly.

Another drawback is the method does not take into account scale invariance.
To overcome these disadvantages, we utilize a normalized correlation operation
for comparison of the histograms of the reference and scene images. Let us com-
pute a centered and normalized histogram of oriented gradients of the reference
as follows:
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Fig. 2. Recursive histogram update

HoGR
i (α) =

HoGR
i (α)−MeanR

√
V arR

, (6)

where MeanR and V arR are sample mean and variance of the histogram, re-
spectively.

The correlation output for the ith circular window at position k can be com-
puted with the help of the fast Inverse Fourier Transform [13] as follows:

Ck
i (α) = IFT

⎡⎢⎢⎢⎢⎢⎢⎣
HSk

i (ω)HR∗
i (ω)√√√√Q

Q−1∑
q=0

(
HoGk

i (q)
)2 − (HSk

i (0)
)2

⎤⎥⎥⎥⎥⎥⎥⎦ , (7)

where HSk
i (ω) is the Fourier Transform of the histogram of oriented gradients

inside of the ith circular window over the scene image and HRi (ω) is the Fourier
Transform of HoGR

i (α); the asterisk denotes complex conjugate. The correlation
peak is a measure of similarity of the two histograms, which can be obtained as
follows:

P k
i = max

α

{
Ck

i (α)
}
. (8)

The correlation peaks are in the range of [−1, 1]. It is of interest to note
that the normalized correlation peaks possess two important properties: first,
invariance to rotation because a cyclic shift of the histogram values corresponds
to a cyclic shift of the correlation output and does not change the correlation peak
value; second, the normalization in Eqs.(6) and (7) helps us to take into account
a slight scale difference between the reference and scene images. Computation
of the centered and normalized histograms for all circular windows over the
reference image as well as the Fourier Transforms can be done as preprocessing.
A block diagram of the proposed one-pass matching algorithm is shown in Fig. 3.
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Fig. 3. Block diagram of the algorithm

In order to accelerate the proposed algorithm a decomposition technique [14]
is exploited. As shown in Fig 4, an image can be decomposed in a set of small
images by decimating in each direction depending on a decomposition level L;
i. e. when L = 2, the image is divided in 4 similar images that can reconstruct
the original image by performing the inverse process, in a similar way, if L = 3
there are 9 images, and so on.

Fig. 4. Ilustration of a pyramidal decompostition with level 2 of an image

After selecting the decomposition level, two sets of small images from a scene
and reference images are formed. Next, the described algorithm in the preceding
section is applied only to one pair of the images. A set of decomposed images
are shown in Fig. 5.

The speed-up is achieved by the spatial search in a smaller scene image.
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Fig. 5. Level 2 of reference image decomposition: a) original image, b) set of decom-
posed images

3 Experimental Results

In this section we present experimental results using the image database ALOI
[15]. Ten scene images with the size of 1280 × 1024 pixels and ten reference
images of the size 144 × 144 pixels with varied objects were used. Each refer-
ence object is located at 100 random positions within the scene images. The
performance of the proposed algorithm was compared with that of popular
SIFT and SURF algorithms, the parameters of such algorithms are the ones
proposed by Lowe [1] and Bay [2]. The algorithms are tested in different con-
ditions such as in-plane/out-of-plane rotations and a slight scaling. The perfor-
mance is evaluated in terms of the number of correct matches and processing
time. The proposed algorithm referred to as CWMA uses two circular win-
dows in each object with a radius r (depends on the size of object). For a
better matching we use Q = 64 bins instead of 9 bins as proposed in [12].
The parameters of the algorithms are as follows: M = 2, Q = 64, Thp = 0.7,
L = {1, 2, 4}. The performance of the tested algorithms for in-plane/out-of-
plane rotation is shown in Fig. 6. It can be seen that the CWMA yields the
best in-plane rotation invariance and a similar performance with that of the
SIFT for out-of-plane rotation. The number in parenthesis is the decomposition
level.

Figure 7 illustrates tolerance of the proposed algorithm to image scaling in
the range of [0.8, 1.2]. One may observe that the performance of the CWMA is
pretty good for slight image upscaling and downscaling. So, the algorithm can
be utilized in real-life application such as tracking.

Finally, the performance of the tested algorithms in terms of processing time
is shown in Fig. 8. A standard PC with an Intel Core i7 processor with 3.2
GHz and 8 GB of RAM was used. The implementation of the SIFT and the
SURF is taken from the open library OpenCV with Intel multithreading li-
brary TBB. The proposed algorithm was also implemented with OpenCV with
multithreading from OpenMP library. We see that the proposed algorithm with
a pyramidal decomposition performs close to the SURF and outperforms
the SIFT.



CWMA: Circular Window Matching Algorithm 445

Fig. 6. Matching results for: a) in-plane rotation, b) out-of-plane rotation

Fig. 7. Matching results for a slight scaling

Fig. 8. Processing time of tested algorithms
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4 Conclusion

In this paper a fast image matching algorithm based on recursive calculation of
oriented gradient histograms over several circular sliding windows was presented.
Multicore processors with inherent parallel architectures can help to implement
the algorithm for image matching with large scenes at high rate. Experimental
results showed that the proposed algorithm outperforms the common algorithms
for in-plane rotation, yields a similar performance with the SIFT for out-of-plane
rotation and a slight scaling, and requires processing time close to the SURF.
The algorithm is attractive for real-time applications when rotation invariance
matching with a slight scaling is required.
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Abstract. In document analysis line segmentation is a necessary pre-
requisite step for further analysing of textual components. While much
work has been devoted to line segmentation of regular text documents,
this work can not be easily adopted to documents that contain specialist
components such as tables or mathematical expressions. In this paper we
concentrate on a line segmentation technique for documents containing
mathematical expressions, which, due to their two dimensional structure
are often comprised of multiple distinct lines. We present an approach to
line segmentation in the presence of mathematics that is based on a set
of histogram measures and heuristics considering vertical and horizontal
distances of characters only. The method also provides a technique to
distinguish consecutive lines that are vertically overlapped but belong to
different mathematical expressions. Experiments on data sets of 200 and
1000 maths pages, respectively, show a high rate of accuracy.

1 Introduction

Line segmentation is a prerequisite step for structural analysis of both printed and
handwritten documents. While much work has been done for text line segmenta-
tion of documents containing primarily text only. The developed techniques such
as projection profile cutting [3,2], smearing [6], grouping [4] or seam carving [5],
rely to some extent on the fact that in regular text documents generally lines can
be clearly separated by detecting consecutive whitespace between them.

For documents containing mathematical expressions, however, these tech-
niques do not suffice due to the occurrence of particular artifacts of mathematical
notations such as math accents, the limits of sum symbols, etc. that, while ac-
tually constituting a single line, can appear spatially lay out over more than one
separable line. And while there exists quite a body of work on the segmenta-
tion of mathematical documents, this work is generally more concerned with the
identification and separation of mathematical structures from surrounding text
and their subsequent layout analysis [8].

In this paper we present a math line recognition algorithm that is reliable inde-
pendent of knowledge on any peculiarities of mathematical expressions (Sec. 2).
It is based on spatial considerations only, thus avoiding committing to prema-
ture errors, that stem from considering actual content such as symbols or fonts.
In particular, we use a histogram-based approach, considering horizontal spaces
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between glyphs in lines of a page, in order to classify lines into two types: prin-
cipal and non-principal, where the former are lines in their own right, while
the latter are only parts of mathematical expressions and should be merged
with neighbouring lines. In addition to this technique we have developed a set
of heuristics using simple yet effective measures for correction of classification
errors as well as to separate lines that share vertically overlapping characters
but that belong to distinct mathematical expressions. We demonstrate the ef-
fectiveness of our approach by presenting experiments on two distinct data sets
containing 200 and 1000 pages from mathematical documents, where we achieve
an accuracy rate of 96.9% and 98.6%, respectively for line detection (Sec. 3).
A previous version of the algorithm, that in particularly did not allow for split-
ting lines with vertical overlap, has been successfully applied in experiments to
improve the identification rate of mathematical expressions was presented in [1].

2 A Histogrammatic Approach to Line Segmentation

The basic idea of our approach is to detect all possible individual lines first and
then merge neighbouring lines into single lines likely to contain mathematical
expressions. Thereby we rely neither on knowledge of the content of lines, font
information nor vertical distance. Instead we use a histogrammatic measure on
space within a single line. We then employ simple height considerations to detect
lines that have not been correctly classified to be merged or not merged. In a
final step, each line that is classified to be merged is clustered with its closest line
as long as they are horizontally overlapped. In summary our procedure consists
of the following steps:

1. Initial line separation by vertical cuts (cf. [7]).
2. Detect and split lines with vertically overlapping characters.
3. Initial classification of lines into principal and non-principal, where the latter

should be merged with the former.
4. Improvement of classification using two measures based on character height.
5. Merge non-principal with neighbouring principal lines to obtain final lines.

We now define the concepts of our procedure more formally. Step 1 is given
by the following three definitions.

Definition 1 (Bounding Box). Let g be a glyph, then the limits of its bound-
ing box are defined by l(g), r(g), t(g), b(g) representing left, right, top and bottom
limit respectively. We also have l < r and t < b.

Definition 2 (Vertical and Horizontal Overlap). Let g1,g2 be two glyphs.
We say g1 overlaps vertically with g2 if we have [t(g1), b(g1)]∩ [t(g2), b(g2)] 
= ∅,
where [t(g), b(g)] is the interval defined by the top and bottom limit of glyph g.

Similarly we define horizontal overlap of two glyphs g1,g2 by [l(g1), r(g1)] ∩
[l(g2), r(g2)] 
= ∅.

We can now define a line using the vertical overlap on a set of glyphs.
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Fig. 1. Examples of different types of lines overlapping

Definition 3 (Line). Let G = {g1....gn} be a set of glyphs. We call a L ⊆ G a
line if for every g ∈ L there is a h ∈ L such that g and h overlap vertically and
there is no g ∈ G \ L that overlaps vertically with any element in L.

Since this initial step separates lines that share vertically overlapping charac-
ters as one line. For examples of different types of overlaps see Fig. 1. Therefore,
we perform a post-processing step to detect and split those lines, which is for-
malised in the next three definitions:

Definition 4 (Detect Overlapping Line). Let L = {g1....gm} be a line where
the glyphs are sorted in ascending order according to l(g) and m. We split L if
the following conditions are satisfied:

(i) Neighbouring glyphs g1, g2 ∈ L horizontally overlap such that [l(g1), r(g1)]∩
[l(g2), r(g2)] 
= ∅.

(ii) The same two neighbouring glyphs g1, g2 ∈ L not both vertically over-
lap with any g ∈ L where g 
= g1 and g 
= g2 such that [t(g1), b(g1)]∩
[t(g2), b(g2)] ∩ [t(g), b(g)] 
= {g1, g2, g}.

(iii) h(g1) < (t(g2)− b(g1)) and h(g2) < (t(g2)− b(g1)) where h is the height of
glyphs such that h = b(g)− t(g).

(iv) h(g1) > (w(g1)/2) and h(g2) > (w(g2)/2) where w is the width of glyphs
such that w = r(g) − l(g).

We then split the line into two lines by using a threshold that is determined
by horizontally projecting lines across the whole vertical distance between the
two overlapping glyphs, using the y-coordinate value of the line that crosses the
least number of glyphs.
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Definition 5 (Separator Value). Let g1, g2 ∈ L overlapping glyphs, and Y =
{y1....yn} be y-coordinate values between b(g1) and t(g2). Then let the separator
value S is defined as the y ∈ Y that minimises the number of vertically overlap-
ping glyphs.

We then cluster glyphs into two lines using the separator value S as a threshold.

Definition 6 (Split Overlapping Lines). Let L = {g1....gm} be the line to
be split. Then we define Labove = {g ∈ L|h(g)/2 < S} and Lbelow = L \ Labove.

We can now define the distance measure with respect to which we will consider
histograms.

Definition 7 (Horizontal Distance). Let L = {g1....gn} be a line. We call
two glyphs g, g′ ∈ L neighbours if r(g) < l(g′) and there does not exist a g′′ ∈ L
with g′′ 
= g and g′′ 
= g′ such that [l(g′′), r(g′′)]∩ [r(g), l(g′)] = 
 ∅. We then define
the horizontal distance d between two neighbouring glyphs g, g′ as d(g, g′) =
l(g′)− r(g).

Observe that in the above definition we define distances only for elements in
the line that do not overlap horizontally. Thus the distances represent the actual
whitespace in lines.

The distance measure from the previous definition allows us now to compute a
histogram that captures the horizontal distances between glyphs in lines for the
entire page. Figure 2 shows two examples for the histograms, where the x-axis
denotes the values for the distance measure d in pixels and the y-axis the number
of occurrences of a particular distance. Note, that when building the histogram,
we deliberately omit all the values where no distance occurs or in other words,
where the y value is equal to 0.

We can observe a general pattern in these histograms: They can be split into
two parts by a global minimum that is roughly in the middle of the x-axis. This
leaves two parts, each with a global maximum. Furthermore in the right part one
can identify a further global minimum. While this can be at the very end of the
x-axis it usually is not. We call these two minimal points v1 and v2, respectively,
and use them to define classification of lines as follows:

Definition 8 (Principal Lines). Let L be a line. We call L a principal line if
there exists two neighbouring glyphs g, h ∈ L with v1 ≤ d(g, h) ≤ v2. Otherwise
L is a non-principal line.

The intuition behind this definition is that the values in the histogram less than
v1 represent distances between single characters in a word or a mathematical ex-
pression,whereas the area between v1 and v2 represents the distance between single
words, which generally do not occur in lines that only constitute part of a mathe-
matical formula, for example, those consisting of limit expression of a sum.

While the measure alone already yields good results, it can be improved
upon by considering a simple ratio between glyph heights of principal and non-
principal lines.
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Fig. 2. Examples of pages and their histogram of the gap between glyphs

Definition 9 (Height Ratio). Let L1 and L2 be two consecutive lines, such
that L1 is a non-principle line and L2 is the nearest principle line to L1. If
maxg∈L1 [b(g) − t(g)] > 1

T maxg∈L2 [b(g) − t(g)], where 1 ≤ T ≤ 2 then L1 is
converted into a principal line.

Observe that the value for the parameter T is fixed and determined empirically
by experiments in on a small sample set.

Since the previous step tackles only the problem of wrongly classified principal
lines, we also need to define a corrective instrument to detect non-principal lines
that have wrongly been classified as principal lines. This is achieved as follows:

Definition 10 (Non-principal Height Bound). Let Ln = {n1, n2, ...nl} be
the set of non-principal lines of a page and Lp = {p1, p2, ...pk} be the principal
lines of the same page.

Then we define the non-principal height bound as the maximum height of all
non-principal lines M as

M = max
n∈Ln

|b′(n)− t′(n)|,

where t′ and b′ are the top and bottom limits of L respectively, such that t′(n) =
ming∈n t(g) and b′(n) = maxg∈n b(g).

Any p ∈ Lp is converted to a non-principal line, if and only if, [b
′(p)−t′(p)] ≤M .
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Table 1. Results for vertical splitting

Overlap Type Correct Split Incorrect Split

embedded math direct overlap 36 2
expression misaligned 1 0

display math direct overlap 2 2
expression misaligned 2 0

Table 2. Experimental results for line recognition

Method Pages. Total line Lines found Correct lines Accuracy

Vert. Cuts 200 5801 6987 5015 86.4%
Hori. Dist. 200 5801 5727 5265 90.7%

Height Ratio 200 5801 5910 5587 96.3%
Height Bound 200 5801 5863 5625 96.9%

Table 3. Experimental results of 1000 pages

Pages. Total line Lines found Correct lines Accuracy

1000 34146 34526 33678 98.6%

Table 4. Evaluation results of 1000 pages

Line Type Precision(P) Recall(R)

Principal Line 99.39% 99.15%

Non-principal Line 93.87% 81.49%

Once the classification of lines is finished, in the final step we merge non-
principal lines with their horizontally closest neighbouring principal line, but
only if there exists horizontal overlapping between them. If not, the non-principal
line is converted to a principle line.

Definition 11 (Merging Lines). Let N and P be non-principal and principal
lines respectively, such that P is the nearest neighbour of N . Let l′ and r′ be
the left and right limits of L respectively, such that, l′ = ming∈L l(g) and r′ =
maxg∈L r(g). If l′(P ) < r′(N) and r′(P ) > l′(N) then N and P are merged.
Otherwise, N is converted to P .

3 Experimental Results and Discussion

We have run experiments on two datasets of 200 and 1000 pages, respectively,
taken from a wide variety of mathematical documents. Before discussing the
results of our overall procedure we first present the results of the line separa-
tion step alone. Our dataset contained 36 pages with lines that share vertically
overlapping characters. These lines were effectively of two types: text lines with
embedded math expressions and lines with display math expressions. Each of
the two categories are further divided into two sub-categories: lines that overlap



A Histogram-Based Approach to Mathematical Line Segmentation 453

because of at least one overlapping glyph and lines that overlap because a part
of these lines is misaligned. (See Figure 1 for examples of the four types.)

Table 1 shows the results of the splitting step. Observe that the two lines that
are incorrectly split fail due to characters being wrongly clustered to either of
the two result lines, which suggests that some improvement on our separator
threshold method should be investigated in the future.

In terms of experiments of the overall procedure we have carried out initial
experiments on 200 pages. These pages are taken from 12 documents compris-
ing a mixture of books and journal articles. Table 2 presents the experimental
results for this dataset. We have compared using simple vertical cuts, with our
techniques of using the horizontal distance measure introduced in Def. 7 as well
as using additionally the height ratio defined in Def. 9 and the non-principal
height bound defined in Def. 10. As height ratio parameter we have set T = 1.7,
a value that was experimentally determined on a small independent sample set.

Altogether we manually identified 5801 lines in the 200 pages of the dataset.
We compare this number with the number of lines found altogether and the
number of lines identified correctly, that is, those lines corresponding to the
actual line as manually identified in the dataset.

Not surprisingly simple vertical cuts results in a larger number of lines and,
as there is no subsequent merging of lines, in a relatively low accuracy of 86.4%.
Using the horizontal distance measure improves this accuracy, however, in gen-
eral merging too many lines. This is corrected by the addition of the height ratio
that re-classifies some of the lines incorrectly assumed to be non-principal as
principal lines. As a consequence we get a slightly higher number of lines but
also a higher accuracy of 96.3%. A further slight improvement in this accuracy
to 96.9% is obtained using the height bound.

To further examine the robustness of our technique and in particular to rule
out that there was overfitted to our original data set we have experimented with
a second independent and larger data set. The data set contains 1000 pages
composed from more than 60 mathematical papers different of our original set.

We ran our technique on this second larger data set and then manually checked
the results by painstakingly going through every page line by line. Consequently
we have done this comparison only for the full classification including both height
ratio and height bound correction. And while we can not rule out some classifi-
cation mistakes due to human error we are very confident that the experimental
results given in Table 3 are accurate.

Table 3 demonstrates that although, the data set is five times the size of
the previous one our classification results remain stable. In fact, one can see
that in comparison with table 2 we have even a increase of recognition rate by
approximately 2%. This result gives us confidence about the effectiveness of our
technique even on large datasets and documents.

Further evaluation is shown in table 4. Precision (P ) and recall (R) measure-
ments are used. As can be seen, the (P ) and (R) percentages for principal line
are close and high since there are 33186 correct principal lines and a very small
number of incorrect ones. For non-principal lines, the percentages are not as
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high as the fronter lines. However, one can still claim that these results are very
promising in comparison with the Vertical Cuts results where all non-principal
lines are not recognized.

For the lines that were not identified, it is possible to categorise the recognition
error into two types.

Incorrect Non-principal Lines: The most common error stems from classify-
ing a line with respect to the horizontal distance measure as a principal line that
should actually be non-principal. This is the case when there is a gap between
two neighbouring glyphs that satisfies the horizontal distance condition. Below
are some examples show several cases of errors taken directly from our dataset.

≤ C
∞∑
i=1

√
l∑

j=1

E[|x + S(l) . . . B̃iB̃i+1B̃i = 2M̃i + . . .

Although, the first expression should be detected as a single line, the limits
under the two summation symbols are at a distance that coincides with the
distance identified by the histogram for the entire page. Likewise, in the second
expression, also taken from our dataset, the tilde accents have a similar distance.

Incorrect Principal Lines: This error occurs when a line is initially classified
as non-principal line as it does not contain any glyph gaps that coincide with
the distance measure derived from the histogram. Examples of these lines are
those with single words, page numbers, single expressions etc. While these can
be corrected by the height ratio, sometimes they are not as they do not satisfy
the ratio condition. Below is an example taken from our dataset.

+3
5

(
Vk−1,k,2

1 (n; (1)).(Lk−1,k,2
n−3 − Lk−1.k.2

3 )

12

Here the page number 12 is merged as a non-principal line to the expression
above, as firstly it does not exhibit a glyph gap satisfying the distance mea-
sure and secondly its height is significantly smaller as the height of the open
parenthesis in the mathematical expression.

4 Conclusions

In this paper, we presented a line detection technique that is geared towards
documents that contain a large number of complex mathematical expressions.
Our approach can not only deal with detecting compound lines that consist of
combination of several independent lines separated by vertical whitespace, but
we also have most recently added a method to detect and split math lines that
share vertically overlapping characters. The procedure exploits only simple spa-
tial features in a histogrammatic approach, avoiding the use of many parameters
that need to be fine tuned or relying on statistical data from large sample sets.
Our experiments show that we nevertheless get a high rate of accuracy in de-
tecting correct lines. The algorithm currently serves as a basis for our work on
layout analysis of tabular mathematical expressions.
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Abstract. Object detection is an important and challenging task in computer
vision. In cascaded detectors, a scanned image is passed through a cascade in
which all stage detectors have to classify a found object positively. Common de-
tection algorithms use a sliding window approach, resulting in multiple detections
of an object. Thus, the merging of multiple detections is a crucial step in post-
processing which has a high impact on the final detection performance. First, this
paper proposes a novel method for merging multiple detections that exploits intra-
cascade confidences using Dempster’s Theory of Evidence. The evidence theory
allows hereby to model confidence and uncertainty information to compute the
overall confidence measure for a detection. Second, this confidence measure is
applied to improve the accuracy of the determined object position. The proposed
method is evaluated on public object detection benchmarks and is shown to im-
prove the detection performance.

1 Introduction

Object detection is a widely used application in computer vision and has been inten-
sively studied. Most detectors used in computer vision have been trained by a machine
learning algorithm. Especially the cascaded object detector proposed by Viola & Jones
[1] which employs the AdaBoost [2] machine learning algorithm is very successful.
Object detectors are commonly applied by a sliding window which scans the scene
image on shifted positions and varied scales. This frequently results in multiple de-
tections of an object at slightly shifted and scaled positions. In a post-processing step,
these multiple detections have to be combined to determine the final object position and
scale. Often only little effort is spend on detection merging and simple methods are ap-
plied. Although this subtask has a strong impact on the overall accuracy of the detection
framework and the results achieved in benchmarks. E.g., Viola & Jones in [1] merge all
overlapping detection windows to one detection. But this approach easily leads to worse
results in case of increasing numbers of detections, in particular if detections on large
scales are involved. Everingham et al. [3] thus reported in the PASCAL VOC Challenge
that the measured average precision steeply dropped for all participating methods when
they tightened the tolerances for correct detections on the “car” class.

In this work, a novel method for merging multiple detections is proposed. Demp-
ster’s Theory of Evidence is applied to combine confidence values similar to Real Ad-
aBoost [4] and uncertainty information that is available in a cascaded detector. In this
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way intra-cascade information is exploited in an improved merging of multiple detec-
tions during post-processing. Huang et al.[5] introduced a nested classifier to inherit
classification confidences in detection cascades. But their approach is confined to the
classification step and requires a retraining. This paper proposes a novel confidence
measure which is in addition applied to refine the position and scale of merged detec-
tions. It is shown that the proposed confidence gives an appropriate measure to distin-
guish the reliability of detections. As a post-processing step, the proposed method is
easily applicable in other object detection frameworks without the need of retraining
the object classifiers. Hence, other object detection frameworks could benefit from the
proposed detection merging.

2 Merging Multiple Detections Based on Dempster’s Theory

In this Section, the proposed strategies on merging detections are described in detail.
The required methods of machine learning, object detection and evidence theory are
briefly discussed in advance.

2.1 Cascaded Classifier

The object detection framework used in this work utilizes a cascaded classifier as intro-
duced by Viola & Jones [1] and illustrated in Figure 1. Each stage of this cascaded clas-
sifier consists of a strong classifier that is created using the AdaBoost machine learning
algorithm [2]. Hence in a cascade of S stages, S strong classifier have to decide posi-
tively for a scanned sub-window x to be classified as an object. Any of these candidate
sub-windows is then further processed in the post-processing step in which the merging
of multiple detections is done.

Each strong classifier Hs(x) =
∑Ts

t=1 αs,ths,t(x), s ∈ 1 . . . S is composed of an
ensemble of Ts weak classifiers hs,t which have been selected in the training phase
of the AdaBoost algorithm. Each weak classifier returns 0 or 1 in case of a negative
or positive classification, respectively. These ensembles decide in a weighted majority
vote in which each weak classifier hs,t supports its decision by an assigned weight
αs,t that represents the classification error of that weak classifier in training. Thus, the
maximum positive classification of a strong classifier is given by Hs,max =

∑Ts

t=1 αs,t

and the decision threshold of AdaBoost is the weighted majority τs =
1
2

∑Ts

t=1 αs,t.
AdaBoost’s decision threshold aims at a low error rate on the training set without

differentiating between positive and negative training examples. But due to the rejection
opportunity of each cascade stage, a very high true positive rate is primarily desired.
Hence according to [1], a subsequently adjusted threshold τs is used to maintain a very
high true positive rate accepting an also high false positive rate.

2.2 Dempster-Shafer Theory of Evidence

In this section Dempster’s theory of evidence is briefly described. It is utilized in the
proposed method to model intra-cascade decision confidences and uncertainties. The
Dempster-Shafer theory of evidence was introduced in 1968 by A. P. Dempster [6] and
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from scene images
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Fig. 1. Detection cascade: Evaluated sub-window have to be positively classified (P) and passed
by all cascade stages to be considered as a found object. Each cascade stage can reject a sub-
window if it is negatively classified (N) and thus prevents its processing by the following stages.

later in 1976 expanded by G. Shafer [7]. Evidence theory can be interpreted as a gen-
eralization of Bayesian theory that directly allows the representation of uncertainty and
inaccuracy information. The key element of the evidence theory is the definition of a
mass function on a hypotheses set Ω. Let a hypotheses set be denoted by Ω and com-
posed of n single mutually exclusive subsets Ωi written as Ω = {Ω1, Ω2, . . . , Ωn}. For
each element A of the power set ℘(Ω) a mass function m(A) is defined that expresses
the proportion of all evidence assigned to this hypothesis. Hence, the mass function m
represents a degree of confidence and is defined as m : ℘(Ω) → [0, 1]. Furthermore,
the following conditions have to be fulfilled by the mass function:

(i) m(∅) = 0 (ii)
∑

An⊆Ω

m(An) = 1 . (1)

Mass functions in evidence theory describe the totality of belief as opposed to Bayesian
probability functions. This belief can be associated with single and composed sets of
hypotheses allowing for a higher level of abstraction. The so-called additivity rule
p(A) + p(A) = 1 is in contrast to Bayesian theory not generally valid in Dempster-
Shafer evidence theory. This means that if m(A) < 1, the remaining evidence 1−m(A)
does not necessarily claim its negation A.

Dempster’s Rule of Combination. In order to combine information from different
stages of the detection cascade, Dempster’s rule of combination is applied. Dempster’s
rule combines two mass functions that are defined within the same frame of discernment
but belong to independent bodies of evidence. Let m1 and m2 be two mass functions
associated to such independent bodies of evidence. Then Dempster’s rule defines the
new body of evidence by the mass function

m(A) = m1(A)⊗m2(A) =

∑
B∩C=A

m1(B)m2(C)

1−
∑

B∩C=∅
m1(B)m2(C)

. (2)

The denominator in Equation (2) works as a normalization factor that ignores the con-
flicting evidence. Hence, Dempster’s rule of combination focuses on the measure of
agreement between two bodies of evidence. Dempster’s rule is associative and thus can
be used to iteratively combine evidences obtained from arbitrary number of classifiers.
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2.3 Joint Confidence Based on Dempster-Shafer

In the proposed application of joining intra-cascade confidences, the frame of discern-
ment is defined as Ω = {TP, FP} containing the set of hypotheses supporting a true
positive (TP) and a false positive (FP) decision, respectively. The uncertainty of each
cascade stage s is modeled by ms(Ω) with respect to its size:

ms(Ω) = 1− Ts∑S
s=1 Ts

(3)

This leads to a higher belief into stages that consist of larger number of weak classifiers.
The mass functions, expressing the proportion of evidence of a stage s, for true pos-

itive or false positive decisions are defined by:

ms(TP ) =
Hs(x)− τs
Hs,max − τs

(1−ms(Ω)), (4)

ms(FP ) =
(
1− Hs(x) − τs

Hs,max − τs

)
(1−ms(Ω)) (5)

This results in higher stage confidence when the difference between the response of
the strong classifier and the decision threshold grows. Using Dempster’s rule of combi-
nation the stage confidences for a detection Di are joined by

mDi(TP ) = m1(TP )⊗m2(TP )⊗ · · · ⊗mS(TP ) (6)

to gain an overall detection confidence.

2.4 Confidence-Based Detection Merging

Merging of multiple detection commonly takes place in the post-processing step of an
object detection framework. The position and scale information of the candidate sub-
windows has to be processed to determine the true object location.

In this work, the candidate detections are first clustered using the Meanshift al-
gorithm [8,9] as the number of true objects and thus desired clusters is unknown in
advance. The i-th candidate detection is hereby defined as a four-dimensional vec-
tor Di = (xi, yi, γi, δi)


 which represents the combined position (xi, yi)

 and scale

(γi, δi)

 in x and y-dimension. The set of n candidate detections is partitioned by the

Meanshift algorithm in four-dimensional space into k ≤ n sets C = {C1, C2, . . . , Ck}
of clusters. The merged detections are then set as the cluster centers of the k clusters in
C and a simple confidence of the k-th cluster is given by its cluster size |Ck|.

To improve the performance of the object detector, this paper proposes two enhance-
ments to the detection merging. First, the detection confidences given by Equation (6)
are exploited to define the Dempster-Shafer based confidence of the k-th cluster as
Γk =

∑
Di∈Ck

mDi(TP ). Second, these confidences of detections associated to one
cluster are utilized to refine the position and scale of the cluster center. In this way the
Dempster-Shafer refined position/scale of the k-th cluster is defined by:

D′
k =

1

Γk

∑
Di∈Ck

DimDi(TP ) (7)
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(a) (b) (c)

Fig. 2. Example images showing detections of our method on the three evaluated data sets:
MIT+CMU [11], FDDB [10] and UIUC lateral car database [12]

3 Experimental Results

In this section, cascaded classifiers are applied by a sliding window to data sets for face
and lateral car detection. The acquired multiple detections are post-processed using
different merging strategies and results are presented for the Face Detection Data Set
and Benchmark (FDDB) [10], the MIT+CMU frontal face database [11] and the UIUC
lateral car database [12]. Figure 2 exemplary shows detections found by our method in
the evaluated data sets.

3.1 Face Detection

For the detection of faces, a classifier is trained on the ”MPLap GENKI-4K” database
from the Machine Perception Laboratory in California [13] that consists of 4000 faces
under different facial expressions. The obtained strong cascaded classifier consists of
10 stages and 593 weak classifiers in total.

Experiments Incorporating Confidence. The first experiments are conducted using
the Face Detection Data Set and Benchmark [10] that contains 5171 faces in 2845
images. This data set also provides an evaluation tool for a consistent comparison of
the performance of competing methods. Evaluations generated by this tool for different
face detectors are available on the project web page1. The evaluation procedure requires
multiple detections to be priorly merged to single detections that have an assigned con-
fidence value. In descending order, each unique confidence value is then selected as
a threshold and the true positive rate and total false positives are calculated consider-
ing all merged detections that have a greater confidence. In this way, a ROC curve is
constructed that presents the detection performance.

The inspection of the detection confidence enables the separate evaluation of two con-
tributions in the proposed approach: The confidence computation based on Dempster-
Shafer theory of evidence and the position and scale refinement using these confidences.

Figure 3 presents the detection results for different strategies on merging multiple
detections. The performance of the Viola & Jones detector in OpenCV, supplied by the
FDDB project page, is presented as a baseline result. But the primary topic of this work

1 http://vis-www.cs.umass.edu/fddb/results.html

http://vis-www.cs.umass.edu/fddb/results.html
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Fig. 3. ROC curve presenting the detection performance on FDDB [10] for different approaches
on merging multiple detections. Confidence calculation and position/scale refinement based on
Dempster-Shafer (DS) is compared to Meanshift-based confidence and position/scale (MS) and
mixed approaches using Dempster-Shafer only for confidence and position/scale, respectively.
The performance of the Viola & Jones implementation in OpenCV is presented as a baseline
result. The shown range is (a) up to saturation and (b) a detailed view.

is the impact of the pre-processing step of multiple detection merging and not the com-
parison to different object detection methods. The proposed method (DS) is compared
to an approach that only exploits the preceding Meanshift clustering (MS). For this, the
number of detections forming each cluster is utilized as the confidence value. In addi-
tion, the results of two mixed approaches are presented that use Dempster-Shafer only
for confidence calculation and position/scale refinement, respectively. The detailed view
in Figure 3(b) demonstrates that, although the same detector is used, the performance
can be significantly improved by about 5% in terms of true positive rate. It can be also
observed from the blue curve in Figure 3(b) that the proposed confidence computation
causes the biggest part of the improvement. This demonstrates that the Dempster-Shafer
confidence gives an appropriate measure to distinguish the reliability of detections. The
position/scale refinement slightly improves the detection performance, indicating that
the trained classifier is not detecting symmetrically around the true object location. The
proposed refinement can rectify that bias presenting improved results in the green curve
of Figure 3(b).

Experiments on Position/Scale Refinement. Additional experiments are performed
on the MIT+CMU frontal face database [11] which consists of 130 grayscale images
containing 511 faces. The image database is partially noisy and blurred and contains
several difficult samples like comics, line drawings and a binary raster image and thus
is, despite its age, still challenging. This test set gives ground truth information on the
position and scale of the faces but no evaluation tool is provided. Hence, the evalua-
tion against ground truth is done by a built-in function of the detection framework that
governs the ROC curve by a threshold multiplier in the detection process instead of
exploiting confidence values.
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Fig. 4. (a) ROC curve presenting the detection performance on the MIT+CMU frontal face
database [11]. The effect of the position/scale refinement using Dempster-Shafer is compared
to Meanshift clustering in the case of loosened and stricter ground truth tolerances. Addition-
ally results when omitting multiple detection merging are presented. (b) ROC curve presenting
the detection performance on the UIUC lateral car database [12]. The effect of the additional
position/scale refinement using Dempster-Shafer is compared to merging multiple detections by
Meanshift clustering.

For this reason, Figure 4(a) shows only the impact of the position/scale refinement.
In addition, results for completely omitting the post-processing are presented as the
built-in evaluation does not require the merging of multiple detections. The general
benefit of the post-processing can be observed from the improved results compared to
the approach without merging multiple detections. During the merging process detec-
tion outliers are suppressed that are outside the ground truth tolerances. The detector
performance only slightly benefits from the position/scale refinement. This is partly
a consequence of the properties of the MIT+CMU frontal face database that contains
many very small faces but provides no subpixel accuracy in the ground truth data. As
the accuracy of the detections position and scale has no influence on the ROC curve as
long as they are inside the tolerances, additional results for stricter tolerances are pre-
sented by the curves labeled as strict. These curves reveal a slight improvement due to
the proposed position/scale refinement even on this unfavourable test set.

3.2 Lateral Car Detection

To evaluate an additional object class, experiments are conducted on the UIUC lat-
eral car database [12]. This database provides a training set containing 1050 grayscale
images (550 cars and 500 non-car images). In addition, images for single and multi-
scale tests are contained as well as an evaluation tool for the calculation of precision
and recall. Figure 4(b) compares the detection results achieved when merging mul-
tiple detections by Meanshift clustering and the proposed position/scale refinement
using Dempster-Shafer confidences. The evaluation tool does not consider detection
confidences but requires multiple detections to be merged to a single detection in ad-
vance. Hence, a concentration on only the impact of the position/scale refinement is
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predetermined. In this experiment, that utilizes a different object class, an improvement
of the detection performance can be observed due to the position/scale refinement. This
indicates that the car classifier as well does not detect symmetrically around the true
object location but introduces a bias that can be rectified by the proposed method.

4 Conclusion

This paper presents a novel method for merging multiple detections which exploits
classification information available in cascaded detectors. Two enhancements are pro-
posed. First, Dempster-Shafer theory of evidence is applied to model a confidence mea-
sure which incorporates intra-cascade decision confidences and uncertainties. Second,
a method is presented to refine the position and scale of merged detections based on
these confidence measures. These methods can be easily integrated in existing detec-
tion frameworks to improve performance without retraining of typical cascaded de-
tectors. Results are presented for a recent benchmark on unconstrained face detection
(FDDB), the MIT+CMU face and the UIUC car database. The refinement of position
and scale solely results in a slight improvement in detection performance. In addition,
the proposed confidence measure shows an improvement of 5% in true positive rate
for applications that consider detection confidences. This demonstrates that Dempster-
Shafer theory of evidence is a powerful technique to model and exploit intra-cascade
confidences.
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Abstract. Image exams are a fundamental tool in health care for de-
cision making. A challenge in Content-based image retrieval (CBIR) is
to provide a timely answer that complies with the specialist’s expecta-
tion. There are different systems with different techniques to CBIR in
literature. However, even with so much research, there are still particu-
lar challenges to be overcame, such as the semantic gap. In this paper,
we presented a new spinal-image comparison method based on the per-
ception of specialists during his/her analysis of spine lesions. We take
advantage of a color extractor and propose a shape descriptor consider-
ing the visual patterns that the radiologists use to recognize anomalies
in images. The experiments shown that our approach achieved promis-
ing results, testifying that the automatic comparison of images should
consider all relevant visual aspects and comparisons’ criteria, which are
defined by the specialists.

Keywords: Content-Based Medical Image Retrieval, Features Extrac-
tion, Spinal Images.

1 Introduction

X-Ray images, Magnetic Resonance Imagining (MRI) and Computed Tomogra-
phy (CT) provide fundamental information for making an accurate diagnosis. In
many situations, when a specialist gets a new image to analyze, having infor-
mation and knowledge from similar cases can be very helpful. All these similar
images are stored and organized by a system such as a Picture Archiving and
Communication Systems (PACS). A PACS [7] consists of a set of computational
systems able of providing storage, retrieval, distribution and presentation of im-
ages for physicians and medical staff in a Medical Center. One of its sub-systems
allows specialists to have access to an automatic retrieval of similar cases based
only on the intrinsic content of the image. These similar-cases retrieval sub-
systems use Content-Based Image Retrieval (CBIR) techniques [14].

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part I, LNCS 8258, pp. 464–471, 2013.
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There are different systems that provide different techniques and algorithms to
CBIR area of Spine. The Lister Hill National Center for Biomedical Communi-
cations department with the National Library of Medicine (NLM) is developing a
CBIR for pathologies in the spine. This system supports hybrid queries, text-based
and content-based of X-Ray images. The feature extraction is performed on Re-
gions of Interest - ROIs (vertebral bodies), working with shape descriptors where
eachROI is compared separately to each other [1,16]. There is also a tool developed
for theWeb, called SPIRS, which works on X-Ray images of the spine andmakes a
comparison between the separate ROIs [6]. Another study, focused on Spine MRI,
uses statistical methods as Haralick features and texture spectrum spine MRI fea-
tures for image feature extraction. This method is global, considering the entire
image as the object for feature extraction. Thus, a single feature vector represents
each image being used to compare it with another image contained in the base, in
this case, to support diagnosis and treatment of scoliosis [9]. Another work allows
automatically extracting specific measures from spine curvature of x-ray images
from patients with scoliosis [10]. In addition to these, there are also others generic
systems, such as IRMA [5] and the ASSERT [12], among others, that can also in-
corporate specific techniques to the images discussed in this paper. CBIR tools
have been extensively explored in several areas of medicine. However, even with so
much research, there are particular challenges to be overcame in each specific area.
Themain one is the Semantic Gap [3], expressed as the difference betweenwhat the
specialist considers as similar and what is offered as similar by the system. One of
the techniques used to reduce this gap is to use of Perceptual-Parameters to guide
the query according to well-defined user’s Criteria of Similarity [11]. However, to
reach this level, there is the need to establish comparison methods compatible with
the methods used by the radiologists in clinical practice and, therefore, to approx-
imate the CBIR technique to the method identified.

In this paper we propose a spinal-image’s comparison method based on the
perception of the specialist during his/her analysis of lesions in the Lumbar
Spine on MR images. To consolidate our proposal, we take advantage of a color
extractor and propose a shape extractor to bring the CBIR to the way of the
comparison performed by the physician during the process of analyzing images.
The proposed approach achieved better results in the experiments, showing that
the automatic comparison of images should consider all relevant visual aspects
and criteria of comparison, defined by the specialist in a specific context.

2 Related Concepts

In the present section we show a set of significant visual patterns used as a
similarity criterion for differentiating vertebral compression fractures - VCFs
(focus of this work) as well as the traditional algorithms employed to extract the
features to quantify the similarity between the images.

2.1 Similarity Criterion for VCFs

The practice of evidence-based medicine within radiology is growing and provides
an important mechanism by which to facilitate further advancement of evidence
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based radiology. The goal of this practice is formalizing and standardizing im-
age interpretation and results communication [15]. Studying this interpretation
allows to identify a set of significant visual predictors used by radiologists for
differentiating VCFs and, with this knowledge to establish a criteria for com-
paring spinal images. Some diseases are characterized by the presence of known
alterations in the normal vertebral body structure. The physicians call these
alterations as radiological findings. Each radiological finding is related to visual
feature parameters. For this work we listed some issues the radiologists analyze
in spine images and for each issue it was specified what the radiologists look for
in the image to help identifying a finding (see Figure 1).
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Fig. 1. Findings and visual characteristics

2.2 Feature Extraction

The feature vectors extracted from the medical images is the one of the key
aspects for the similarity comparison between such images. To represent the
similarity criterions showed in Subsection 2.1 we used the color and shape de-
scriptors described as follows.

Color Descriptors. There are several methods to describe color features from
images. The traditional gray-level histogram is one of the most applied one.
However, some works have shown more robust alternatives to the color represen-
tation. One of this is an interesting feature extractor, called the Border/Interior
Classification (BIC) [13]. This color descriptor uses the RGB color space uni-
formly quantized in a given number of colors (e.g. each pixel represented by 6
bits). It presents a compact representation and consists in classifying the image
pixels in edge-pixels or interior-pixels. Thus, it divides the image in two his-
tograms. A pixel is classified as border if it is at the border of the image itself
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or if at least one of its 4-neighbors (top, bottom, left and right) has a different
quantized color. A pixel is classified as interior if its 4-neighbors have the same
quantized color. In the final step both histograms are merged, generating the
image feature vector.

Shape Descriptors. Shape is one of the most important feature extracted from
an image. For instance, in medical images shape-based features play a major role
from describing the malignancy of tumor nodules to vertebral fractures. The
Zernike moments [8] are a relevant shape-based features that employ the general
theory of moments joined with the Zernike polynomials.

3 Proposed Approach

In this paper, we consider a search engine based on the radiologist’s analysis as a
Method Based on Human Perception (Perceptual-Based). The specialist’s com-
parison method, when he/she is comparing two images, are not usually explored
in the design of traditional CBIR systems. With the goal of bringing the CBIR
system to the perception of the specialist, we questioned several radiologists
about how they compare images that have the findings described in Subsection
2.1. After that, we developed ways to represent the visual aspects described for
each finding. As a result of questioning, we got the proposals described as follows.

3.1 Spine-Based Feature Extraction

To represent the similarity criterions showed in Subsection 2.1 and aimed at
employing the descriptors listed in Subsection 2.2, we propose the following
color and shape descriptors.

Vertebral Body Color Descriptor. The BIC, presented in subsection 2.2,
was designed for traditional RGB images. The medical images are usually in
gray levels, with 16 bits per pixel. This format gives the images up to 4096 gray
levels. Furthermore, the interior of objects found in medical images does not
always have the same intensity (same pixel value). A slight variation in these
gray levels within the same object can be considered normal in this context.
Thus, using BIC can bring losses in traditional representation of the image, due
to a possible misclassification between edge and interior.

Because of this observation, we have changed the way the pixel classification
between interior/border, proposing the BIC-Med. With BIC-Med, the pixel is
classified as border if at least one of its 4-neighbors (top, bottom, left and right)
has a variation of quantized gray-level greater than a given threshold. A pixel is
classified the interior if all its 4-neighbors have a variation less than or equal to
a given threshold. In the final step both histograms are merged, generating the
image feature vector. The threshold for the experiments of this work was 20%
of the gray level of each pixel. This color variation value was chosen empirically
based on an already established culture among physicians about the variation
between the vertebrae images, as is presented below.
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Vertebral Body Shape Descriptor. The shape features extractor proposed
in this work was created based on the method of analysis of vertebral bodies’ frac-
tures proposed by Genant et al. [4]. The method is based on a given score from
zero to three, considering the difference between the maximum and minimum
measurement of the anterior (AH), central (CH) and posterior (PH) vertebral
body heights. It is assigned a score value of 0 (normal) to the percentage dif-
ference less than 20%, until score 3 (severe fracture) to percentage difference
greater than 40%. Thus, the feature vector of the proposed extractor, called
VertebralBody-RelativeShape (VB-RelativeShape), is composed of the relative
proportion between the anterior, central and posterior vertebral body heights.
That is, each vertebral body is represented by the proportion of three measure-
ments. They are: AH/CH, AH/PH, CH/PH.

3.2 Perceptual Spinal Based Method

The images A1, A2 and A3 of Figure 2 are quite similar. However, if you make
a global comparison between them, will probably find images A2 and A3 more
similar to each other. However, if you consider only the f̈ocusöf this specific
domain (see A′

1, A′
2 and A′

3), images A1 and A2 would be considered more
similar to each other. This example characterizes the difference between what
the specialist believes to be similar and that the system can deem to be similar
(i.e., the semantic gap). Probably a descriptor of color or texture applied to the
entire image (Global-Based) would erroneously return images A2 and A3 as the
most similar ones.

On the other hand, in an attempt to reduce this semantic gap, many studies
use ROIs for performing the comparison between images (ROIs-Based). However,
although this method really brings good results, through graphs of precision and
recall, it still has a gap in what occurs naturally during the expert analysis. T̈he
radiologist spots variations in ROIs contrasting them with neighboring regions̈.
Not to mention that when comparing two images, 1) scoring ROIs is extra work to
be performed by the radiologist and 2) When considering only similar ROIs, the
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physician may come across images that have different ROIs representing (as is the
case of Vertebral Bodies) having normal and non-normal ROIs in the same image.

In order to adapt the feature extraction for something close to the concept of
similarity perceived by radiologists, we propose a method that considers the local
characteristics (ROI-based), but, composed into a single feature vector. Thus,
each vertebra belonging to the analyzed image is compared to the equivalent
vertebra on another image. Thus, the similarity between two images is not only
calculated by the similarity of a single ROI, but considering the variation of all
the neighbors.

4 Experiments and Results

To evaluate the proposed method, we have generated precision and recall (P&R)
graphs [2]. Precision is the percentage of relevant images actually returned in
the query among the total number of images returned in the query. Recall is
the percentage of relevant images actually returned in the query among the
total number of relevant images for a given query. For the dataset analyzed, all
images of each class were employed as query centers.
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Fig. 3. Precision Vs. Recall graphs for Color and Shape representation

To perform the experiments we have used an image dataset, provided by the
Hospital of our university (HCRP). The dataset consists of 171 images separated
by the specialists into two distinct classes (83 normal images and 88 images with
VCFs). To enable the Spinal-based experiments, radiologists and residents from
HCRP provided a manual segmentation of the lumbar vertebral bodies. And to
enable the ROI-based experiments, we used this manual segmentation to create
a data set with 855 ROIs.

Analyzing the feature descriptor proposed in this work, both showed better
performance when compared with traditional ones. This comparison was per-
formed using data 171 images, through the Perceptual-based proposed method,
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Fig. 4. Extractors’ precision with different approaches considering the area under the
Precision Vs.Recall graph in the first 50% of recall

and the base 855 ROIs (ROI-based) as shown in Figure 3. Comparing the ex-
tractors color, the BIC-Med precision was higher than 80% in the first 20%
of recall, while the traditional BIC has not reached this level. For shape ex-
tractors, considering the ROI-based methodology, both VB-RelativeShape and
Zernike performed very similar. However, when analyzing with the focus on the
Perceptual-based method, the precision of the two extractors improved and the
VB-RelativeShape presented a significant gain compared to Zernike (about 10%
better in the first 20% of recall).

Another interesting result to be analyzed is the behavior of the different de-
scriptors regarding different ways they are used to compare images (Global-
Based, Perceptual-based or ROI-based). Figure 4 illustrates their performance
in the different approaches. The BIC and Zernike extractors showed are more
focuses to analysis global image. They both lost performance when used in seg-
mented images or ROIs. The BIC-Med extractor achieved better precision in
almost all cases and was representative for Perceptual-Based and the ROIs-
based retrieval. Already VB-RelativeShape showed much better precision with
the proposed methodology, confirming the fact that specific features of shape,
in this context, are best described as representing the whole neighborhood, not
just a single ROI.

5 Conclusions

In this paper, we presented a new approach to deal with the semantic gap. We
propose a spinal-image’s comparison method based on the perception of special-
ist during his/her analysis of lesions in the Lumbar Spine on MR images. The
proposed approach gathers from the physicians the visual patterns they use to
recognize anomalies in images and apply them on building feature extractors
based on these visual patterns. We took advantage of color extractor and pro-
pose a new shape extractor to bring the CBIR to the way of the comparison
performed by the physician during the process of analyzing the images. The
proposed approach achieved better results in the experiments, showing that the
automatic comparison of images should consider all relevant visual aspects and
criteria of comparison, defined by specialist in a specific context.
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Abstract. We proposed a new segmentation based on Active Contours
(AC) for vector-valued image that incorporates evidential distance. The
proposed method combine both Belief Functions (BFs) and probability
functions in the Bhattacharyya distance framework. This formulation al-
lows all features issued from vector-valued image and guide the evolution
of AC using an inside/outside descriptor. The imprecision caused by the
variation of the contrast issued from the multiple channels is incorporated
in the BFs as weighted parameters. We demonstrated the performance of
the proposed algorithm using some challenging color biomedical images.

Keywords: Active Contours, Characteristic function, Belief Function,
Bhattacharyya distance ,Dempster Shafer rule.

1 Introduction

Segmentation based AC models presents several challenges that are mainly re-
lated to image noise, poor contrast, weak or missing boundaries between imaged
objects, inhomogeneities, etc. One way to overcome these difficulties is to ex-
ploit the prior knowledge in order to constrain the segmentation process. Due
occlusion or texture this is often not appropriate to delineate object regions.
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Statistical knowledge [4,20] and additional information such as texture [4] can
improved the segmentation based AC models for vector-valued image [3,22]. An-
other reason for failed segmentations is due local or global minimizer for AC
models [2]. To overcomes these difficulties, the evidential framework appears
to be a new way to improve segmentation based AC models for vector valued
images [19,12,21]. The Dempster Shafer (DS) framework [7] has been combined
with either a simple thresholding [19], a clustering algorithm [14], a region merg-
ing algorithm [12] or with an AC algorithm [21]. In this paper we propose to use
the evidential framework [7] to combine several information sources and incorpo-
rates them in the formulation of the AC models. The fusion of this information
from different feature channels, e.g., color channels and texture offers an alterna-
tive to the Bayesian framework. Instead to fuse separated probability densities,
the evidential framework allows both inaccuracy and uncertainty. This concept
is represented using BFs [7,5,8,1] which is particularly well suited to represent
information from partial and unreliable knowledge. To use BFs as an alternative
to probability in segmentation process can be very helpful in reducing uncer-
tainties and imprecisions using conjunctive combination of neighboring pixels.
First, it allows us to reduce the noise and secondly, to highlight conflicting areas
mainly present at the transition between regions where the contours occurs. In
addition, BFs has the advantage to manipulate not only singletons but also dis-
junctions. This gives the ability to explicitly to represent both uncertainties and
imprecisions. The disjunctive combination allows transferring both uncertain and
imprecise information on disjunctions [7,1]. Then, the conjunctive combination
is applied to reduce uncertainties due to noise while maintaining representation
of imprecise information at the boundaries between areas on disjunctions. In
this paper, we proposed to incorporate the BFs in the formulation of the AC
models. In Section 2, we review of the AC models based Vector-valued image seg-
mentation in total variation framework, which is the basis for our segmentation
framework. In section 3, we formulated our AC models in evidential framework.
Experimental results in Section 4 demonstrate the advantages of the proposed
method.

2 Globally Active Contours for Vector-Valued Image in
Evidential Framework

The evidential framework is provided through the definition of the plausibility
(Pl) and belief (Bel) function [7,8], which are both derived from a mass function
(m). For the frame of discernment ΩII = {Ω1, Ω2, ..., Ωn}, composed of n single
mutually exclusive subsetsΩi, the mass function is defined by m : 2Ω → [0, 1].

m (∅) = 0∑
Ωi⊆Ω

m (Ωi) = 1; Bel (Ω) =
∑

Ωi⊆ΩII

m (Ωi) = 1

Pl (Ω) =
∑

Ωi
⋂

ΩII 	=∅
m (Ωi)

(1)
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The relation between mass function, Bel and Pel can be described as fellows:

m (Ωi) ≤ Bel (Ωi) ≤ p (Ωi) ≤ Pl (Ωi) (2)

When m (Ω) > 0, Ω is a so called focal element [12,7]. The independent masses
mm are defined within the same frame of discernment as:

m
(
Ωi={1,...,n}

)
= m1

(
Ωi={1,...,n}

)
⊗m2

(
Ωi={1,...,n}

)
...

⊗mm

(
Ωi={1,...,n}

) (3)

The total belief assigned to a focal element Ωi is equal to the belief strictly
placed on the foreground region Ωi. Then Belief Function (Bel) can expressed
as:

Bel (Ωi) = m (Ωi) (4)

This relation can be very helpful in the formulation of our AC model. The
segmentation based AC for vector Valued image I consists in finding one or
more regions Ω from I. In this framework, we search for the domain Ω or the
partition of the image P (Ω) that maximizes the Bhattacharyya distance [15,9]
between Bel associated to the inside/outside region or minimizing the criterion:

∂Ω̂ = argmin

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log

(
1

p (P (Ω))

)
︸ ︷︷ ︸

Eb(∂Ω)

+

m∑
j=1

λj
in

∫
R+

√
mj

in (Ω) pjout︸ ︷︷ ︸
Edata(I,Ω)

+

m∑
j=1

λj
out

∫
R+

√
mj

out (Ω) pjin︸ ︷︷ ︸
Edata(I,Ω)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5)

Similairely as in [21], we used the definitions proposed in [1] to define mass
function for all image channels Ij as:

mj={1,...,m}
(
Ωin/out

)
= p

j={1,...,m}
in/out

mj={1,...,m} (Ω) = 1− p
j={1,...,m}
in + p

j={1,...,m}
out

mj={1,...,m} (∅) = 0

(6)

The pdfs pjin and pjout are estimated for all channels using Parzen kernel [17].
Our proposed method uses the total belief committed to foreground or back
ground region. In the next section we proposed a fast version of our segmentation
algorithm.

3 Fast Algorithm Based on Split Bregman

The Split Bregman method [2,10] is an efficient optimization technique for solv-
ing L1 regularized problems and has good convergence properties [2,10]. In order
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to find a contour minimizing AC energy functional, the Split Bregman method
[11] will separate the L1and L2 norm, by introducing a vectorial variable d and
imposing constraints on the segmentation problem. This results in the following
segmentation problem:

min

χ,d

(E (χ, d)) =

∫
Ω

|d (x)| dx+
m∑
j=1

λj
in

∫
Ω

V in
Beliefχ

+

m∑
j=1

λj
out

∫
Ω

V out
Beliefχ

(7)

This constrained segmentation problem can be transformed to an unconstrained
segmentation problem by adding a quadratic penalty function. This function
only approximates the constraint d = ∇χ. However, by using a Split Bregman
technique [11], this constraint can be enforced exactly in an efficient way. An
extra vector, bk is added to the penalty function (7). Then the following two
unconstrained steps are iteratively solved by:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
χk+1, dk+1

)
= argmin

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ω0
|d|+

m∑
j=1

λj
in

∫
Ω

V in
Beliefχ+

+
m∑
j=1

λj
out

∫
Ω

V out
Beliefχ+

μ
2

∫
Ω0

∣∣d−∇χk − bk
∣∣2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
bk+1 = bk +∇χk+1 − dk+1

(8)

where μ is a weighting parameter. The first step requires optimizing for two
different vectors. We approximate these optimal vectors by alternating between
χ and d independently:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χk+1 = argmin

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ω0
|d|+

m∑
j=1

λj
in

∫
Ω

V in
Beliefχ+

m∑
j=1

λj
out

∫
Ω

V out
Beliefχ+

μ
2

∫
Ω0

∣∣d−∇χk − bk
∣∣2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
dk+1 = argmin

dk

{∫
Ω0

∣∣dk∣∣+ μ
2

∫
Ω0

∣∣dk −∇χk − bk
∣∣2}

bk+1 = bk +∇χk+1 − dk+1

(9)

This problem can be optimized by solving a set of Euler-Lagrange equations. For
each element χk+1 of the optimal χ̂, the following optimality condition should
be satisfied :⎛⎝Δ− 1

μ

m∑
j=1

λj
inV

in
Belief −

1

μ

m∑
j=1

λj
outV

out
Belief

⎞⎠
︸ ︷︷ ︸

A

χk = div
(
bk − dk

)︸ ︷︷ ︸
C

(10)
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Note that this system of equations can be written as Aχ = C. In [6] they
proposed to solve this linear system using the Kyrlov subspace method. The
solution of equation (10) is unconstrained, i.e.χ does not have to lie in the
interval [0, 1]. Ifχ ∈ [0, 1], the constrained optimumχ ∈ {0, 1}, since a quadratic
function is monotonic in an interval which does not contain its extremum. Then
the constrained optimum can be calculated as follows [10,6]:

χ̂ = max {min {χ, 1} , 0} (11)

Finally, the minimizing solution dk+1 is given by soft-thresholding:

dk+1 =
∇χk+1 + bk

|∇χk+1 + bk| max

(∣∣∇χk+1 + bk
∣∣ − 1

μ
, 0

)
(12)

Note that this results in a minimizer which values are between 0 and 1, and the
final active contour curve is given by the boundary of:

ησ (χ̂) =

{
1 ifσ < χ̂final ≤ 1
0 0 ≤ χ̂final ≤ σ

(13)

In algorithm below an overview of the complete segmentation. Our segmentation
model is initialized using an initial curve χ0. Given the parameters d0, b0, V in

Belief

and V out
Belief and for the set parameters λin, λout, μ, and σ, the Kl function solves

equation (10) to update primal variable χ. The dual variable dk+1 is shrink

iteratively. The final segmentation is given by
{
x ∈ Ω|χ(x)final ≥ 1

2

}
.

4 Results

The proposed method was tested on a dataset [18,16] which contained both
914 color images acquired from 52 patients. These images have a definition of
1280 pixels/line for 1008 lines/image and are lossless compressed images. To
illustrate and demonstrates the accuracy of our segmentation method, we present
some results of our method and compare them to segmentation done by the
traditional AC model based vector value image and the model proposed in [21].
The three methods are evaluated on 10 color images taken form the dataset
[18,16] using F-measure criterion[13]. Traditional segmentation and method in
[21] are initialized by contour curve around the object to be segmented, our
method is free initialization and the segmentation done by the three method are
presented for three challenging images (see Figure.1).

The accuracy of the segmentation is represented in term of Precision/Recall
[13]. The proposed method give the best segmentation and the F-measure is
better then the other methods (see Table.1).
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(a) Our method (b) Method proposed in
[21]

(c) Method proposed in
[15]

(d) Our method (e) Method proposed in
[21]

(f) Method proposed in
[15]

(g) Our method (h) Method proposed in
[21]

(i) Method proposed in [15]

Fig. 1. Images taken from the dataset [16]. The from the left to right, en yellow color
color segmentation done by our segmentation model, in red color segmentation done by
the model proposed in [21] and green color, the segmentation done by the traditional
model proposed in [15].
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Table 1. Quantitative evaluation of the segmentation using F-measure

Image Our method Method in [21] Method in [15]

Image 1 0.82 0.81 0.81

Image 2 0.79 0.76 0.77

Image 3 0.83 0.79 0.75

5 Conclusion

In this paper, we have investigate the use of the BFs in the Bhattacharyya dis-
tance framework. The results have shown that proposed approach give the best
segmentation for biomedical images. The experimental results show that the
segmentation performance is improved by using the three information sources
to represent the same image with respect to the use information. Indeed, there
are some drawbacks of our proposed method. The proposed is very high time
consuming for calculating the mass functions. Furthermore, the research of other
optimal models to estimate the mass functions in the DS theory and the impre-
cision coming from different images channels are an important perspective issue
of our work.

References

1. Appriou, A.: Generic approach of the uncertainty management in multisensor fu-
sion processes. Revue Traitement du Signal 22(2), 307–319 (2005)

2. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global
minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–
167 (2007)

3. Chan, T.F., Sandberg, B.Y., Vese, L.A.: Active contours without edges for vector-
valued images. Journal of Vis. Communi. and Image Repres. 11, 130–141 (2000)

4. Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level
set segmentation: Integrating color, texture, motion and shape. Int. J. Comput.
Vision 72(2), 195–215 (2007)

5. Cuzzolin, F.: A geometric approach to the theory of evidence. IEEE Trans. on
Syst., Man, and Cyber., Part C 38(4), 522–534 (2008)

6. De Vylder, J., Rooms, F., Philips, W.: Convex formulation and global optimization
for multimodal active contour segmentation. In: 2011 7th International Symposium
on Image and Signal Processing and Analysis (ISPA), pp. 165–170 (2011)

7. Dempster, A.P., Chiu, W.F.: Dempster-shafer models for object recognition and
classification. Int. J. Intell. Syst. 21(3), 283–297 (2006)

8. Denoeux, T.: Maximum likelihood estimation from uncertain data in the belief
function framework. IEEE Trans. Knowl. Data Eng. 25(1), 119–130 (2013)

9. Derraz, F., Taleb-Ahmed, A., Pinti, A., Peyrodie, L., Betrouni, N., Chikh, A.,
Bereksi-Reguig, F.: Fast unsupervised texture segmentation using active contours
model driven by bhattacharyya gradient flow. In: Bayro-Corrochano, E., Eklundh,
J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 193–200. Springer, Heidelberg
(2009)



Image Segmentation Using Active Contours and Evidential Distance 479

10. Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split bregman
method: Segmentation and surface reconstruction. J. Sci. Comput. 45(1-3), 272–
293 (2010)

11. Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems.
SIAM J. Img. Sci. 2(2), 323–343 (2009)

12. Lelandais, B., Gardin, I., Mouchard, L., Vera, P., Ruan, S.: Using belief function
theory to deal with uncertainties and imprecisions in image processing. In: Denœux,
T., Masson, M.-H. (eds.) Belief Functions: Theory & Appl. AISC, vol. 164, pp. 197–
204. Springer, Heidelberg (2012)

13. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image bound-
aries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal.
Mach. Intell. 26(5), 530–549 (2004)

14. Masson, M.-H., Denoeux, T.: Ecm: An evidential version of the fuzzy c. Pattern
Recognition 41(4), 1384–1397 (2008)

15. Michailovich, O., Rathi, Y., Tannenbaum, A.: Image segmentation using active
contours driven by the bhattacharyya gradient flow. IEEE Transactions on Image
Processing 16(11), 2787–2801 (2007)

16. Niemeijer, M., van Ginneken, B., Cree, M., Mizutani, A., Quellec, G., Sanchez, C.,
Zhang, B., Hornero, R., Lamard, M., Muramatsu, C., Wu, X., Cazuguel, G., You,
J., Mayo, A., Li, Q., Hatanaka, Y., Cochener, B., Roux, C., Karray, F., Garcia, M.,
Fujita, H., Abramoff, M.: Retinopathy online challenge: Automatic detection of mi-
croaneurysms in digital color fundus photographs. IEEE Transactions on Medical
Imaging 29(1), 185–195 (2010)

17. Parzen, E.: On estimation of a probability density function and mode. The Annals
of Mathematical Statistics 33(3), 1065–1076 (1962)

18. Quellec, G., Lamard, M., Josselin, P., Cazuguel, G., Cochener, B., Roux, C.: Opti-
mal wavelet transform for the detection of microaneurysms in retina photographs.
IEEE Transactions on Medical Imaging 27(9), 1230–1241 (2008)

19. Rombaut, M., Zhu, Y.M.: Study of dempster–shafer theory for image segmentation
applications. Image and Vision Computing 20(1), 15–23 (2002)

20. Rousson, M., Paragios, N.: Prior knowledge, level set representations & visual
grouping. Int. J. Comput. Vision 76(3), 231–243 (2008)

21. Scheuermann, B., Rosenhahn, B.: Feature quarrels: The dempster-shafer evidence
theory for image segmentation using a variational framework. In: Kimmel, R.,
Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part II. LNCS, vol. 6493, pp. 426–
439. Springer, Heidelberg (2011)

22. Tschumperle, D., Deriche, R.: Vector-valued image regularization with pdes: a
common framework for different applications. IEEE Trans. Pattern Anal. Mach.
Intell. 27(4), 506–517 (April)



Threshold Estimation in Energy-Based Methods

for Segmenting Birdsong Recordings
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Abstract. Monitoring wildlife populations is important to assess ecosys-
tem health, attend environmental protection activities and undertake
research studies about ecology. However, the traditional techniques are
temporally and spatially limited; in order to extract information quickly
and accurately about the current state of the environment, processing
and recognition of acoustic signals are used. In the literature, several
research studies about automatic classification of species through their
vocalizations are found; however, in many of them the segmentation car-
ried out in the preprocessing stage is briefly mentioned and, therefore, it
is difficult to be reproduced by other researchers. This paper is specifi-
cally focused on detection of regions of interest in the audio recordings. A
methodology for threshold estimation in segmentation techniques based
on energy of a frequency band of a birdsong recording is described. Ex-
periments were carried out using chunks taken from the RMBL-Robin
database; results showed that a good performance of segmentation can
be obtained by computing a threshold as a linear function where the
independent variable is the estimated noise.

Keywords: Audio signal processing and recognition, segmentation,
bioacoustics.

1 Introduction

Technology for automatic classification of animal vocalizations is a useful tool
in research studies on taxonomy, ecology and conservation as well as for attend-
ing activities of environmental monitoring. Traditional technologies for assessing
ecosystem health, such as line transects or fixed-radius point counts, are spa-
tial and time consuming, often imply expensive and exhausting journeys, and
could be disruptive to the habitat under observation; thereby, in order to avoid
those inconveniences, an automated system would be desired [1]. Particularly,
researchers are interested in analyzing birdsongs because birds are widely dis-
tributed in nature, relatively easy to detect by their vocalizations and they have
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great knowledge of the biology of most species. Furthermore, there is a commer-
cial interest in developing this type of systems due to the large and increasing
number of birdwatchers worldwide [2]; additionally, this technology is ideal for
impact studies and environmental management plans that are frequently re-
quired by authorities in many countries.

The problem of classifying bird species from an audio recording is a typical
signal recognition problem [3], therefore in many studies, stages of signal prepro-
cessing, feature extraction and classification are included. The first one includes
the segmentation of vocalizations into smaller recognition units [4]. Sometimes it
is done manually, and sometimes automatically; nevertheless, automatic recog-
nition should not require manual segmentation. Even if classification is the aim
in some papers, it is mentioned that a complete automatic recognition system
should include the automatic detection of intervals of interest [5] because accu-
rate segmentation is fundamental for successful classification systems [3].

Segmentation algorithms have been developed using energy and entropy as
criteria to identify the onset and offset times of the regions of interest [5–7]. This
process is simple in ideal conditions [3]; if vocalization call is the only sound in
the recording, an increase in energy reveals a region of interest. In real conditions,
the signal is degraded due to the many sources of sound in a recording, e.g., wind
streams, background noise from other animals and surrounding events.

In this paper, it is proposed a non-supervised segmentation method of bird-
song recordings. The signal energy is calculated from a frequency band extracted
from the Short-time Fourier transform (STFT) —it can be considered as an im-
age known as spectrogram: a representation of the intensity of a sound as a
function of time and frequency [2, 6]. The output of the method is a binary sig-
nal in function of time, where time instants of interest are marked with “one”
and non-interest time instants with “zero”. Despite segmentation methods are
essential in many studies about this topic, it is not clear how similar their out-
puts are to manual segmentations. Such a judgement must be based on objective
performance estimation measurements; a number of them are presented in Sec-
tion 2.4. Three ways of threshold estimation are compared: optimal in each case,
linear function of estimated noise (parameter computed by least squares) and
the segmentation technique used in [4].

2 Material and Methods

The proposed segmentation method is shown in Fig. 1. Basically, it consists in
detecting regions with the highest energies in frequencies where the sound of
interest typically exhibits its components.

2.1 Time-Frequency Analysis

Time-frequency analysis of a signal can be carried out through the STFT,
namely, the Fourier transform per frame of a signal. STFT is a representation
of the distribution of acoustic energy across frequencies and over time. Often,
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STFT Energy signal Threshold
            STFT
      (Only selected
       frequencies)

Binary signalAudio signal

Fig. 1. Flow diagram of the proposed segmentation method

the time is graphically represented in the horizontal axis and frequency in the
vertical one, and the amount of power detected is represented as the intensity
at each time-frequency point, as follows:

S = [sij ]N×M =

⎡
⎢⎢⎢⎢⎢⎣

P0(f0) P1(f0) · · · PM−1(f0)
P0(f1) P1(f1) · · · PM−1(f1)
P0(f2) P1(f2) · · · PM−1(f2)

...
...

. . .
...

P0(fN−1) P1(fN−1) · · · PM−1(fN−1)

⎤
⎥⎥⎥⎥⎥⎦ (1)

where i = 0, 1, ..., N−1 corresponds to the frequency indexes and j = 0, 1, ...,M−
1 to the time.

2.2 Energy Signal

A smoothed energy signal is computed taking only frequencies selected in the
spectrogram (it requires a priori knowledge). When the segmentation is done in a
limited frequency band, with minimum frequency fl and maximum frequency fh,
a sub-matrix Ŝ = [ŝij ]N̂×M (N̂ ≤ N) is taken from the STFT representation,
such that elements in S corresponding to f < fl and f > fh are discarded.
Energy signal is computed as:

Ej =
1

N̂

i=N̂−1∑
i=0

ŝ2ij , (2)

where the energy vector from (3) is obtained.

E = [E0, E1, ..., EM−1] (3)

A smoothed energy signal Ê = [Ê0 Ê1 ... ÊM−1] is obtained using the convo-
lution operator and a Hann window w = 1∑l−1

i=0 wi
[w0 w1 ... wl−1] of size l, where

wi = 0.54− 0.46cos(2πi/(l − 1)) to i = 0, ..., l − 1:

Êj = (E ∗w)[j] =

i=l−1∑
i=0

Enŵi, (4)

with j = 0, 1, ...,M − 1.
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The normalized energy signal is:

Ênorm = 10 log

(
Ê

argmax{Ê}

)
, (5)

so that the maximum element of Ênorm is equal to zero (0).

2.3 Binary Signal

Assuming that vocalizations are present in regions where the energy signal Ênorm

has the highest values, a threshold TdB is used to build a binary function B =
[B0, B1, ..., BM−1] so:

Bi =

{
1 if Ênorm i > TdB

0 otherwise
(6)

for i = 0, ...,M − 1.

2.4 Performance

Let T =[t0, t1, ..., tM−1] be a vector of time instants andA=[A0, A1, ..., AM−1]
a reference binary signal manually labeled, where Ai = 1 if the time instant ti
in the recording is considered as a point of interest and Ai = 0 otherwise; and
B = [B0, B1, ..., BM−1] is a binary signal resulting from a segmentation process
as is indicated in Section 2.3. Recall rate (R) and precision rate (P) were chosen
to measure the performance, following the same evaluation protocol used in [8];
the first one relates the number of points of interest correctly detected or hits
(Nh, it is the total of points where Ai = Bi = 1) with the number of real points
of interest (Nr, it is the total of points where Ai = 1), according with a manual
segmentation; and the second one relates Nh with the number of detected points
(Nd, it is the total of points where Bi = 1), so:

R =
Nh

Nr
× 100%, P =

Nh

Nd
× 100%. (7)

A measure that combines the two previous ones is the Euclidean distance
between the point (R,P) in Cartesian coordinates and the point (100,100):

dT (R,P ) =
√

(100−R)2 + (100 − P )2, (8)

where the best segmentation corresponds to 0 and the worst one to 100.
Other measure that combines R and P is the F1 Score, it is defined as:

F1 Score =
2PR

P+R
(9)
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2.5 Estimating the Optimum Threshold

Threshold level is important because it is used to mark the boundaries between
chosen and discarded segments. In [4] it is suggested to choose as threshold half
of the noise level NdB (computed by an iterative method, see Section 3) of the
energy signal normalized with the maximum value 0 dB.

Intuitively, it is expected that when the TdB value is changed in (6) from NdB

until 0 dB, R starts in 100 and tends to 0 and P starts in 0 and tends to 100
(assuming that at least the maximum energy point is considered of interest).
Therefore, the best TdB is considered the one that minimizes (8), as follows: if
TdB = [TdB 0, TdB 1, ..., TdB k], where TdB 0 = 0 and TdB k = NdB, and the
corresponding R = [R0, R1, ..., Rk] and P = [P0, P1, ..., Pk], the optimal
threshold (Topt) is TdB i for which dT (Rk, Pk) is minimum.

3 Experimental Setup

The objective in this section is to find a rule to estimate a threshold in order to
obtain good segmentation. Experiments were done by following the steps listed
below:

– Signal energy was estimated from audio recording chunks with the following
features: STFTs representations computed using 512 points in each block of
time with an overlap of 256 points; a sub-matrix was estimated, as described
in Section 2.2, with fl = 1000 Hz and fh = 5000 Hz because the pitch
information of the Robin ranges from 1500 to 4500 Hz [8]. The normalized
and smoothed energy signal (see (5)) was estimated using a Hann window
of size 20.

– NdB is computed: the initialNdB is set to the lowest Ênorm level and updated
as the mean from gaps between regions where Ênorm < NdB/2 until the
previous and current values of NdB not vary more than 1 dB.

– Topt is estimated as it is explained in Section 2.5: segmentation was carried
out to several levels of threshold TdB, 20 steps from 0 to the minimum of
Ênorm. The element of TdB with the best performance is chosen as Topt.

– Threshold in function of NdB is computed using least squares: this method

consists in minimizing the expression
∥∥∥ŷ − [x̂ 1] [m c]

T
∥∥∥2, where x̂ and ŷ are

vectors that represents points in a Cartesian coordinate system, and m and
c are the parameters of the linear equation f(x) = mx+ c computed in the
regression; NdB and Topt for each chunk were taken as x̂ and ŷ respectively.
Implementation was done using the numerical package of Python “Numpy”;
the command numpy.linalg.lstsq was used.

3.1 Dataset

Experiments were carried out using a set of chunks of the RMBL-Robin database,
which can be downloaded from http://www.ee.ucla.edu/~weichu/bird/. It is

http://www.ee.ucla.edu/~weichu/bird/
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Fig. 2. P-R curve from a segment of recording

a set of recordings of Robin bird songs collected at the Rocky Mountain Biolog-
ical Laboratory near Crested Butte, Colorado (USA) in the summer of 2009 [8].
Recordings are corrupted by environmental background noises and human voices.
This dataset was selected in this research because timing boundaries of syllables
were annotated by experts. Although noise and intensity levels vary considerably
between recordings, it was assumed that they are relatively constant over chunks
of approximately 10 seconds of duration as considered in [6]. Therefore, experi-
ments were carried out using 20 segments of 10 s approximately, extracted from
10 recordings. Names of the selected recordings and time intervals are specified
in Table 1.

Table 1. Chunks selected from the RMBL-Robin database

Name of file .wav Start time End time

A-01june09-0702-robin.wav 0 10
A-30may09-0729-robin.wav 24 36
C-30may09-0826-robin.wav 0 12
C-31may09-0608-robin.wav 9 19
E-01june09-0537-robin.wav 0 12
E-01june09-0543-robin.wav 0 9
G-08june09-0517-robin.wav 0 12
H-08june09-0507-robin.wav 12 23
H-08june09-0512-robin.wav 0 10
H-09june09-0518-robin.wav 14 26
L-03june09-1905-robin.wav 9 21
L-12june09-0728-robin.wav 0 11
S-09june09-1953-robin.wav 2 15
U-03june09-1813-robin.wav 4 16
U-03june09-1815-robin.wav 10 24
W-03june09-1905-robin.wav 0 9
W-08june09-0733-robin.wav 49 63
W-09june09-1902-robin.wav 4 15
X-04june09-0615-robin.wav 5 15
X-14june09-0518-robin.wav 6 24

3.2 Results

Table 2 shows the performance obtained in segmentation experiments. Two
methods of threshold estimation were compared with the performance obtained
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for segmentation with Topt in each chunk: 1) fitted line: threshold in function
of NdB (TdB = m NdB + c), where m and c are obtained with the regression as
explained in Section 3; 2) half of noise: the same as the previous case but with
m = 0.5 and c = 0, as proposed in [4] (see Fig. 3).
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Fig. 3. Graphical representation of optimal threshold estimated in each chunk and the
linear functions obtained by the linear regression (fitted line) and taken the threshold
equals to NdB/2 (half of noise)

Notice in Table 2 that, according to dT and F1 Score measures, with threshold
regression it is obtained a better performance than the one using the method
of [4] (half of NdB). With threshold estimation as half of NdB a good P was
obtained, even better than with optimum threshold by chunk, nevertheless P
decays considerably.

Table 2. Comparison between performance obtained by computing the threshold as
a linear function of NdB , and the optimal threshold estimated by each chunk. If the
performance measure is next to ↑: the better the bigger; analogously, if it is next to ↓:
the better the lower.

R ↑ P ↑ dT ↓ F1 Score ↑ Parameters estimated

Fitted line 90.3 80.7 21.3 85.2 m=0.4; c=-10.9
Half of NdB 76.0 89.8 26.1 82.3 m=0.5; c=0

Optimum threshold (Reference) 91.1 85.4 17.1 88.2

4 Conclusions

A detailed segmentation methodology for birdsong recordings was presented. It
is based on energy of a frequency band, is straightforward and provides a good
performance. The proposed threshold estimation technique consists in computing
it in function of background noise from a linear regression. Performance methods
are described and results are compared with the optimum threshold heuristically
computed for each chunk and with the threshold estimation method from [4].

Several research studies about automated species recognition are not rigorous
in the description of the segmentation stage, even when they clarify that their
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methods work well when the classification objects are correctly detected [5,9,10].
However, the system confidence depends on both event detection and classifica-
tion algorithms; therefore, the two stages should be explained in detail, including
appropriate evidence of performance.

Birdsongs often have a gramatical structure, where the basic building blocks
are called syllables [2] and which have been used as recognition objects in many
studies; as future work it is proposed to use a merge and delete criterion partic-
ularly to detect these units. Furthermore, other representations different to the
energy might be explored, e.g., the entropy and other criteria to detect regions
of interest; tuning of the new parameters might be carried out based on the
performance measures used in this research.
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Abstract. This paper refers to the application of higher-order statistical signal 
processing techniques (cumulant calculation) on Gaussian noise cancellation. 
The performed procedure, joined to a convolution process and Fast Fourier 
Transform (FFT) application, results in the complete estimation (i.e., amplitude, 
frequency and phase recovery) of any corrupted periodic signal. Whereas tone 
frequency estimation is performed by 4th-order cumulant calculation, phase re-
covery is achieved by the convolution of the cumulant calculation and the cor-
rupted signal. At last, the original signal amplitude is recovered by means of 
modification of the resulting amplitude spectrum. In this paper, higher-order 
statistics foundations are presented and the validation of the proposed algorithm 
is revealed in both theoretical and practical sense. Obtained results are highly 
satisfactory. 

Keywords: Higher-Order Statistics, Noise Cancellation, Convolution, Fourier 
Transform. 

1 Introduction 

Methods for noise cancellation using higher-order statistics, in particular those based 
on cumulants, have demonstrated to be very effective [1]. This is mainly due to the 
properties that state, from one hand, that higher-order cumulants of a normal dis-
tribution random signal is 0 and, on the other hand, that cumulant of the sum of sig-
nals is equal to the sum of the cumulants of each signal, then higher-order cumulant 
of a signal corrupted by normal distribution random signal (noise) is equal to the 
higher-order cumulant of the signal without noise.  

Several works have been approached to the harmonics retrieval problem [2], [3] 
and [4]. However all of these papers only reach to recover harmonic amplitude and 
frequency; phase cannot be retrieved. Other works, as in [5] and [6], use higher-order 
statistics (fourth-order cumulant) for adaptive estimation of amplitude and frequency 
of harmonics in real zero-mean random signals. Some methods, developed for phase 
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estimation, are based on higher-order spectra [7] [8] and Bayes Theorem [9]. However, 
tools proposed in these works exhibit a high computational complexity (higher-order 
spectral parameters are results of multidimensional functions calculation) that makes 
them no suitable for practical use and cannot be directly or simply applied on the 
problem of estimation of amplitude, frequency and phase of a periodic signal in noise.  

Methods for phase estimation using Polyspectrum Slice [10] have also been re-
ported but these ones are just approached to phase recovery in linear time-invariant 
systems, thus they are out of the scope of this work. In order to obtain a complete 
algorithm for periodic signals estimation corrupted by noise, a new algorithm is pro-
posed in this work. 

2 Removing Noise from Periodic Signal through Higher-Order 
Statistics   

For real value signals, in the problem that concerns removing noise from harmonic 
signal, observed data is described as follows:  

    )()()()cos()(
1

twtxtwtwAty
N

k
kkk +=++=

=
φ            (1) 

where )(tx  is the useful signal (signal to be detected) and )(tw  is additive zero 

mean Gaussian noise. Besides, kA , kf  and kφ are the amplitude, frequency and 

phase, respectively, of the signal. Since higher-order cumulants of a zero mean Gaus-
sian noise is equal to zero, the estimation of cumulants for noise cancellation can be 
made starting from the third order, but from [11] all third-order cumulants of complex 
harmonic are always zero. Consequently this research continues with the use of 
fourth-order cumulant. 

2.1 Fourth-Order Cumulant Calculation  

For a zero-mean stationary random process z(t), and for k=3,4, the kth order cumulant 
of  z(t) can be defined in term of its joint moments as [12]: 

     
)}()...({)}()...({),...,,( 1111121 −−− −= kkk

z
k ggEzzEC τττττττ      (2) 

Where g(t) is a Gaussian random process with the same second-order statistic as z(t). 
If z(t) is Gaussian, the cumulants are all zero. Then, for zero-mean real random va-
riables the fourth-order cumulant can be calculated in agreement to [12] as follows: 

      )}()()()({),,( 3213214 ττττττ +⋅+⋅+⋅= tztztztzEC z   

   )()()()()()( 212321322232212 τττττττττ −⋅−−⋅−−⋅− zzzzzz CCCCCC    (3) 



490 M.E. Iglesias Martínez and F.E. Hernández Montero 

 

According to the process described in equation (1), since )(tw  is a zero-mean Gaus-

sian random signal, 0),,( 3214 =τττwC  . Then,  ),,(),,( 32143214 ττττττ xy CC =  .  

Using equation (3) and working with only the one-dimensional component of the 

fourth-order cumulant, )0,0,( 14 τyC , by setting 032 ==ττ , leads to a result simi-

lar to that obtained in [11] by setting ττττ === 321 . This one-dimensional 

component contains original amplitude and frequency of the signal to detect, )(tx  , 

although the phase is missed; on the other hand, the noise is entirely removed: 

  )}({)}()({3)}()({)0,0,( 2
11

3
14 txEtxtxEtxtxECy ⋅+⋅⋅−+⋅= τττ       (4) 

Then, developing the left term of the equation (4) by substituting )(tx  declared  

in (1): 
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Substituting, in the equation (6), the result obtained in the expression (5): 
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obtaining as result (similar to that obtained in [11]):  

                 =
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It is clear from equation (7), that the waveform of the original signal is not pre-
served, which is due to the loss of the phase information of the original signal in the 
noise cancellation procedure. This is the problem to face in the following section. 

3 Phase Recovery Method    

In order to preserve the phase information of the original signal (deterministic) in

)0,0,( 14 τyC , a method based on the convolution between corrupted signal, y(t), and 

)0,0,( 14 τyC  is proposed. In order to theoretically prove the proposed method,  

let )(ta be a sinusoidal signal corrupted by Gaussian noise,
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(i.e., an equivalent of the free-noise periodic signal, the phase of which is equal to 0). 
The convolution procedure is developed as follows: 
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Equation (9) reveals that an equivalent of the original periodic signal, preserving 
phase information, is achieved. 

4 Spectral Amplitude Estimation 

As it can be seen in (9), the original harmonic amplitudes are affected during the 
whole process by a non linear factor equivalent to: 

                     5

3

16
oi AA =                                  (10) 

where iA  represents the original signal amplitude and oA correspond to the output 

signal amplitude. This represents a problem because each amplitude of harmonics in 
x(t) must be independently corrected by itself. Then, in order to fix the original ampli-
tude of harmonics in the periodic signal, in this paper every individual harmonic 
component is individually adjusted in the amplitude spectrum.  The process involves 
calculating the FFT of the signal resulting from the convolution process, and then, 
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applying expression (10) on every single spectral component. Then, the resulting 
spectral vector is anti transformed, leading to the original signal with noise removed. 
This spectral adjustment carries on an important inconvenience since noise brought 
out by the FFT application is also adjusted (depending on its magnitude, this noise 
could indeed be amplified). In practice, this inconvenience can be reduced by anti 
transforming the zero-mean adjusted spectrum instead of the original adjusted spec-
trum. The method diagram can be observed in figure 1. 

 

Fig. 1. Block Diagram of the Proposed Algorithm 

5 Experimental Results 

First, in order to verify the effectiveness of the proposed algorithm, an experiment 
using a multitone signal was performed. In this case, the superposition of six tones 
with different amplitudes (0.4, 0.5, 0.6, 0.6, 0.3, 0.1), frequencies (50 Hz, 200 Hz,  
400 Hz, 400 Hz, 600 Hz and 700 Hz) and phases (π/4 rad, π/6 rad, π/3 rad, π/2 rad, 
π/12 rad and π rad), corrupted by zero-mean Gaussian noise, was generated. Figure 2a 
and 2b show the corrupted signal and its spectrum, and the obtained results, applying 
the proposed algorithm on this signal, are shown in figure 2c. 

            

Fig. 2. Sketch of a) Original multitone signal plus noise b) Spectrum of original multitone signal 
plus noise. c) Comparison between useful signal (uncontaminated signal) and output signal 

a) 

c)

b) 
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- Periodic rectangular and triangular pulses.  
A train of rectangular pulses and a train of triangular pulses were also used during 

experimentations. The temporal approach of these signals in Fourier series representa-
tion can be described through equation (11, rectangular pulses) and (12, triangular 
pulses) respectively.  Figure 3a and 3b show the noisy rectangular pulse and its spec-
trum, and a comparison between such an output signal and the desired signal is shown 
in figure 3c. Furthermore, the figure 4a and 4b shows the noisy triangular pulse and 
its spectrum, and in the figure 4c it is shown a comparison between the signal at the 
noise canceller output and the original periodic signal. 
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Fig. 3. Sketch of a) Noisy rectangular pulse b) Noisy rectangular pulse spectrum c) Comparison 
between useful signal (uncontaminated signal) and output signal 

            
Fig. 4. Sketch of a) Noisy triangular pulse b) Noisy triangular pulse spectrum c) Comparison 
between useful signal (uncontaminated signal) and output signal 

a) 

b) 

c) 

a) 

b) 

c)
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6 Working with Real Signals  

This noise cancellation procedure was also applied on real experimental signals. In 
this case, a signal corresponding to the vibration produced by an unbalanced shaft, as 
part of an experimental rig, was processed. Since shaft rotates at constant speed, the 
sensed vibration is periodic by nature. The signal was digitized by a data acquisition 
system based on an A/D converter, 10 bits resolution, with sampling frequency equals 
to 20 kHz. Gaussian noise was generated in Matlab and added to the sensor signal. 
The resulting signal was given at the noise canceller input. Figure 5a and 5b show the 
sensor signal plus noise and its spectrum, and in the Figure 5c it is shown the output 
signal and the desired signal. In this experiment, only the correlation index was com-
puted in order to quantify the effectiveness of the noise cancellation procedure; in 
fact, computation of the SNR at the noise canceller input and output is hard to be 
accurately achieved. Table 1 summarizes all the results, verifying the effectiveness of 
the proposed algorithm. 
 

             

Fig. 5. Sketch of a) Sensor signal plus noise b) Spectrum of sensor signal plus noise c) Compar-
ison between original sensor signal (useful signal) and output signal 

Table 1. Results of the proposed noise canceller procedure 

Signal Input 
SNR(dB) 

Output 
SNR(dB) 

Input 
Correlation 

Output 
Correlation 

Multitone − 3.99 2.36 0.6332 0.8610 
Rectangular Pulse − 5.72 1.44 0.5976 0.9575 
Triangular Pulse − 6.09 1.54 0.5883 0.9326 

Sensor Signal - - 0.5891 0.7039 

7 Conclusions 

This research confirmed the advisability of the application of higher-order statistics 
combined to a convolution process and Fast Fourier Transform, for detection of peri-
odic signals in noise (Gaussian noise). In this work, the use of 4th-order cumulant, 

a) 

b) 

c)
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was proposed and argued. Experimental results performed in Matlab were presented 
using real and simulate signals, revealing not only the benefits of this application but 
also the problem it carries on. This problem was clearly defined as the loss of signal 
phase information because of the noise cancellation procedure. In order to solve this 
problem, a convolution procedure was proposed. Finally, an amplitude spectral mani-
pulation was performed in order to restore the original amplitude of each spectral 
component.  Results revealed a high effectiveness, given by the significant signal-to-
noise rate enhancement achieved, preserving the amplitude, frequency and phase 
information of the signals to be detected. 
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vs. Full Integration
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Abstract. In this work, we explore the integration of hierarchical Lan-
guage Models (HLMs) in different modules of a Spoken Dialog System.
First of all, HLMs are integrated into the Automatic Speech Recognition
system. In order to carry out this integration, within the recognition
process, finite-state machines were considered. This approach was com-
pared to a two step decoding process in which HLMs are used to rescore
a graph. Then, HLMs were also used for Language Understanding (LU)
purposes. Two architectures were compared theoretically and empirically
in both ASR and LU modules.

Keywords: finite-state machines, language models, automatic speech
recognition, language understanding.

1 Introduction

In a classical pattern recognition problem the maximization of posterior proba-
bility P (w̄|x̄) allows to get the most likely sequence of symbols w̄, that matches
a given sequence of input observations x̄, according to eq (1).

ˆ̄w = argmax
w̄

P (w̄|x̄) = argmax
w̄

P (w̄)P (x̄|w̄) (1)

Automatic Speech Recognition (ASR) is a classical pattern recognition problem
in which the term P (w̄) corresponds to the prior probability of a word sequence
and it is commonly estimated by a Language Model (LM), while P (x̄|w̄) is
estimated by an Acoustic Model (AM), typically a Hidden Markov Model.

If we focus on P (w̄), word n-gram LMs are the most widely used approach in
ASR systems. However, a large amount of training material, that is not always
available, is needed to get a robust estimations of the parameters of such mod-
els. Therefore, different alternatives like Hierarchical Language Models (HLMs)
based on classes of phrases could be adopted. This approach has been success-
fully employed in ASR systems for restricted domain applications [6]. However,
the integration of this kind of complex models into the ASR system is an im-
portant issue that has to be solved. Usually, decoders can deal with standard
word-based LMs, but when complex LMs need to be used two possible alter-
natives can be considered: 1) a decoupled architecure consisting of a two-step

� This work has been partially supported by the Gov. of the Basque Country under
grant IT685-13 and by the Spanish CICYT under grant TIN2011-28169-C05-04.
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process with a word graph rescoring [9,2] or 2) an integrated architecture where
the decoder has to be modified to integrate the LM into the recognition process.

An ASR system employs different knowledge sources to carry out the recogni-
tion process such as acoustic, phonetic, lexical and syntactic knowledge. Each of
this sources adds complexity to the decoding algorithm. AT&T laboratories pre-
sented an approach that simplifies the integration of different knowledge sources
into the ASR system by using Stochastic Finite State Transducers (SFST) [8,3,1].
Newer architectures have also been recently provided for large vocabulary ASR
[10]. The integrated architecture employed in this work takes advantage of the
same idea, that is, the composition of finite-state machines, which model each
knowledge source, to build a dynamic search network. This architecture was
previously described in [7] and it is compared to a decoupled architecture.

On the other hand, HLMs can also be used to deal with a Language Un-
derstanding (LU) procedure that is devoted to extracting semantic information
from a text sentence.

The contribution of this paper is twofold: first, it provides a full theoretical
description of the two architectures, i.e. fully integrated HLMs vs. HLMs for
graphs rescoring. Then, these approaches are theoretically and empirically eval-
uated for both ASR and LU purposes in a Spanish Spoken Dialogue task. The
paper is organized as follows: in Section 2 the employed LMs are briefly de-
scribed. Then, in Section 3 a full theoretical description of the two architectures
is given for ASR and LU tasks; and a theoretical comparison between them is
given. Finally, Section 4 and Section 5 summarizes the obtained results and the
extracted conclusions.

2 HLMs Based on Classes of Phrases

In this section we present the different LMs that were used in this work. All
of them were defined as Stochastic Finite State models. Specifically, we used
k-Testable in the Strict Sense (k-TSS) LMs, which are a subclass of regular
languages and have been successfully proposed for natural language processing
applications [11]. They have been considered as a syntactic approach of the n-
gram LMs under certain conditions. First of all a classical word k-TSS LM was
considered (Mw), where the probability of a sequence of N words (w̄), is obtained
considering the history of previous kw − 1 words as shown in eq. (2).

P (w̄) � PMw (w̄) =

N∏
i=1

P (wi|wi−1
i−kw+1) (2)

Then two different approaches for HLMs (Msw, Msl) were considered [6]. In
the first approach, Msw, a set of classes made up of phrases constituted by
not linked words is used. In this way, the probability of a word sequence (w̄) can
be computed by means of eq. (3), where the segmentation (s) and classification
(c̄) of a word sequence are considered as hidden variables:

P (w̄) =
∑

∀c̄∈Σ∗
c

∑
∀s∈S(w̄)

P (w̄, c̄, s) =
∑

∀c̄∈Σ∗
c

∑
∀s∈S(w̄)

P (w̄|s, c̄)P (s|c̄)P (c̄) (3)
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being Σ∗
c the set of all possible c̄ given an a-priori defined Σc = {ci} alphabet

of classes and being S(w̄) the set of all possible segmentations of a given w̄.
Then, assuming the following approaches: a k-TSS model to estimate the term

P (c̄) (kc−1 stands for the considered history of classes), P (s|c̄) � α and P (w̄|s, c̄)
estimated with zero order models (kcw − 1 stands for the maximum length of
the word history considered in each class), eq. (3) is rewritten as follows:

P (w̄) � α
∑

∀c̄∈Σ∗
c

∑
∀s∈S(w̄)

T∏
i=1

⎡⎣⎡⎣ ai∏
j=ai−1+1

P (wj |wj−1
j−kcw+1, ci)

⎤⎦P (ci|ci−1
i−kc+1)

⎤⎦
(4)

According to this, Nc + 1 (Nc is the size of the set of classes) SFSA are needed
to represent the Msw model: one for each class considering the relations among
words inside the classes, P (wj |wj−1

j−kcw+1, ci), and an additional one that takes

into account the relations among classes, P (ci|ci−1
i−kc+1).

In the second approach, Msl, classes are made up of phrases constituted
by linked words, l̄. Thus, the probability of w̄ is given now by eq. (5)

P (w̄) =
∑

∀c̄∈Σ∗
c

∑
∀l̄∈Σ∗

l

P (w̄, c̄, l̄) =
∑

∀c̄∈Σ∗
c

∑
∀l̄∈Σ∗

l

P (w̄|l̄, c̄)P (l̄|c̄)P (c̄)
(5)

where Σ∗
c is the set comprising all possible class sequences for the given Σc

alphabet of classes and Σ∗
l is the set of all possible sequences of li phrases.

Assuming that P (c̄) is estimated using a k-TSS model, that P (l̄|c̄) is estimated
using zero-order models and finally, P (w̄|l̄, c̄) is equal to 1 when l̄ and c̄ are
compatible with w̄ and 0 otherwise, the eq. (5) can be rewritten as eq. (6).

P (w̄) �
∑

∀c̄∈C

∑
∀l̄∈Lc̄(w̄)

T∏
i=1

[
P (li|ci)P (ci|ci−1

i−kc+1)
]

(6)

Nc + 1 SFSA are needed again to represent the Msl model: one that takes into
account the relations among classes, P (ci|ci−1

i−kc+1), andNc additional SFSA that,
in this case, stands for 1-TSS models, P (li|ci).

3 HLMs into ASR and LU Systems

When considering the ASR system, we want to carry out the recognition pro-
cess by using the HLMs (Msw and Msl) defined above through two different
architectures. First of all, an integrated architecture was considered. In this
case, we took advantage of the use of k-TSS LMs. These models can be repre-
sented by SFSA, which can be easily composed with each other and with other
automata. When considering the integration of complex HLMs there is not only
one automaton associated to each LM but Nc + 1 different SFSA are needed,
as described in Section 2. Thus, for doing the integration of the different SFSA
a dynamic composition was carried out, in the same way the different models
involved in the recognition process (LM, AM and lexical models) are integrated
into the search network for a classical word k-TSS LM.
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Fig. 1. SFSA that considers the relations among
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λ

c2

w2

w1

w3

w2

w3

w1
w2

w4

w4

Fig. 2. Specific SFSA for a c2
class (final states are shaded)

Let us show an example to illustrate this method for the Msw model. Being
Σc = {c1, c2} a two-class vocabulary made up of phrases, where c1 = {w1, w1 w1}
and c2 = {w2 w3, w1 w2 w3, w4}, Fig 1 and Fig 2 represent the automata that
take into account the relations among classes, and the specific automaton associ-
ated to class c2, respectively. Then, when the search network is built dynamically
and the transition probabilities between words are needed (red arrows in Fig. 3)
not only one but the two SFSA associated to the LM have to be consulted.

In this case, the probability of a word sequence is given by eq. (3) and the
most likely word sequence is estimated according to the Viterbi algorithm:

ˆ̄w � arg max
∀w̄∈Σ∗

w

[
max
∀c̄∈Σ∗

c

max
∀s∈Sc(w̄)

max
n̄

P (x̄, n̄|w̄, c̄, s)P (w̄|c̄, s)P (s|c̄)P (c̄)

]
(7)

where n̄ is a path of the search network that is associated to a specific classifi-
cation c̄, to a specific segmentation s and to a specific word sequence w̄. Let us
point out that in the decoding process all the probabilities associated to the Msw

model, as well as to lexical models and AMs, are involved. When considering Msl

model, a similar process is carried out, but in this case the SFSA associated to
each class is a 1-TSS model and the Viterbi algorithm leads to the following ŵ:

ˆ̄w � arg max
∀w̄∈Σ∗

w

[
max
∀c̄∈Σ∗

c

max
∀l̄∈Σ∗

l

max
n̄

P (x̄, n̄|w̄, c̄, l̄)P (w̄|c̄, l̄)P (l̄|c̄)P (c̄)

]
(8)

On the other hand, a decoupled architecture is considered when the recog-
nition process is carried out by means of a two-pass decoder. First of all, we
employ an standard decoder into which a classical word k-TSS LM (Mw) is
integrated. However, the decoder’s output is not a word sequence ( ˆ̄w), but a
word-graph [5]. This word-graph produces a set of hypotheses denoted by ΓG(x̄),
where ΓG(x̄) ⊂ Σ∗

w, being Σw the alphabet of words. Once the word-graph has
been obtained, we can now extract the N -best list, LN (x̄) = { ˆ̄w1, ˆ̄w2, . . . , ˆ̄wN },
with its corresponding scores PN (x̄) = {P ( ˆ̄w1|x̄), P ( ˆ̄w2|x̄), . . . , P ( ˆ̄wN |x̄)} where
ˆ̄wi ∈ LN (x̄), as shown in eq. (9) and (10).

ˆ̄wi � argmax
∀w̄∈Lc

i−1(x̄)
P (x̄|w̄)PMw (w̄) � argmax

∀w̄∈Lc
i−1(x̄)

[
max
n̄

P (x̄, n̄|w̄)PMw (w̄)
]

(9)

P ( ˆ̄wi|x̄) � P (x̄| ˆ̄wi)PMw ( ˆ̄wi) � max
∀w̄∈Lc

i−1(x̄)

[
max
n̄

P (x̄, n̄|w̄)PMw (w̄)
]

(10)
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Fig. 3. Dynamic search network for Msw model

being Lc
i−1(x̄) = ΓG(x̄)−Li−1(x̄); that is, the i-th best word sequence would be

chosen among those hypotheses that are in ΓG(x̄) but without considering the
ones that are already in the (i − 1)-best list (Li−1(x̄)).

Then, the HLM of choice (Msw or Msl) is employed to produce a new score
for the obtained hypotheses (see eq. (3)). A linear combination of this score and
the one given in eq. (10) yields a final score, which is used to reorder the list
again. Thus, we finally obtain a new best hypothesis (the system’s output) when
the HLM is used, as eq. (11) shows for the Msw model.

ˆ̄w � argmax
ˆ̄wi∈LN (x̄)

[
P ( ˆ̄wi|x̄) + αPMsw ( ˆ̄wi)

]
(11)

However, in the present work the sum over all c̄ and s is approaches by the
maximum value. Therefore, eq. (11) can be rewritten as eq. (12) and in a similar
way, ˆ̄w would be estimated for Msl as eq. (13) shows:

ˆ̄w � argmax
ˆ̄wi∈LN (x̄)

[
P ( ˆ̄wi|x̄) + α max

∀c̄∈Σ∗
c

max
∀s∈Sc( ˆ̄wi)

P ( ˆ̄wi|s, c̄)P (s|c̄)P (c̄)

]
(12)

ˆ̄w � argmax
ˆ̄wi∈LN (x̄)

[
P ( ˆ̄wi|x̄) + α max

∀c̄∈Σ∗
c

max
∀l̄∈Σ∗

l

P ( ˆ̄wi|l̄, c̄)P (l̄|c̄)P (c̄)

]
(13)

If we compare eq. (12) and (13) with eq. (7) and (8), respectively, some differ-
ences can be observed. Here, the probabilities associated to Mw LM are taken
into account in the search network, providing P ( ˆ̄wi|x̄) values and then, the HLM
is considered a posteriori. Although this architecture tries to simulate the inte-
gration of the model into the ASR system, the recognition process is not guided
by the LM of choice. Turning to eq. (10) and (12), two maximization processes
can be clearly differentiated. In the first one (eq. (10)), the recognition process
with Mw is carried out and this LM together with lexical and acoustic models
contribute to the local decisions until the final result is reached (an N -best list
(LN (x̄)), in this case). Then, in the second maximization process (see eq. (12))
a hypothesis is chosen from among those that are in the list, according to the
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probability provided by the HLM. In this process the acoustic and lexical mod-
els do not take part in the decision-making process in any way. Furthermore,
the result obtained with the decoupled architecture will always be limited by the
best result that an Mw model could provide using a word graph (oracle result),
because it is selected from among those that are in LN (x̄). On the other hand,
this kind of integration enables us to use a simple standard decoder, while all
the model’s complexity is considered a posteriori, what could be very interesting
in large-vocabulary ASR. When the integrated architecture is employed instead,
a single maximization process is carried out, as can be seen in eq. (7), where lex-
ical models and AMs along with the Msw model contribute to the local decision
making until the resulting word sequence is obtained. The same happens with
the Msl model (see eq.(8)).

In this work, we also propose to use hierarchical models within the LU mod-
ule. When HLMs are integrated into the ASR system by using the integrated
architecture, the Viterbi algorithm provides an estimation of the most-likely word
sequence, as shown in eq. (7) and (8). However, these equations can be rewrit-
ten as eq. (14) and (15) respectively. Consequently, the word sequence, class
sequence and segmentation associated to the most-likely sequence of states n̄
can all be obtained simultaneously from the Viterbi algorithm.[

ˆ̄w, ˆ̄c, ŝ
]
� arg max

∀w̄∈Σ∗
w,∀c̄∈Σ∗

c ,∀s∈Sc(w̄)

[
max
n̄

P (x̄, n̄|w̄, c̄, s)P (w̄|c̄, s)P (s|c̄)P (c̄)
]

(14)

[
ˆ̄w, ˆ̄c, ˆ̄l

]
� arg max

∀w̄∈Σ∗
w,∀c̄∈Σ∗

c ,∀l̄∈Σ∗
l

[
max
n̄

P (x̄, n̄|w̄, c̄, l̄)P (w̄|c̄, l̄)P (s|c̄)P (c̄)
]

(15)

Thus, if our set of classes is obtained using a semantically motivated criterion,
the semantic information associated to the word sequence will be retrieved dur-
ing the recognition process. Therefore, when using the HLMs and the integrated
ASR architecture, the speech recognition and understanding processes could be
merged into a single step, thus speeding up the interventions of the dialogue sys-
tem. Furthermore, the semantic, acoustic and language information contribute
to the local decisions-making process throughout the search space until the out-
put word sequence and class sequence are obtained. Thus, more accurate results
could be attained regarding both words and classes.

In the same way, when HLMs are employed, the decoupled architecture can
also be used to obtain the semantic information associated to a word sequence.
Once the N -best list LN (x̄) has been obtained, all the possible s and c̄ associated
to each hypothesis can be inferred. Using the hierarchical model of choice (Msw

or Msl), a probability P ( ˆ̄wi) is associated to each hypothesis according to eq. (3)
and eq. (5) for Msw and Msl models respectively.

Then, a linear combination of this probability and P ( ˆ̄wi|x̄) is computed taking
into account that in this work the sum over all different s and c̄ is approximated
by the maximum. Finally, the class sequence associated to the best new score is
provided in the output as eq. (16) and (17) show for the Msw and Msl models
respectively.[

ˆ̄w, ˆ̄c, ŝ
]
� arg max
∀ ˆ̄wi∈LN (x̄),∀c̄∈Σ∗

c ,∀s∈Sc( ˆ̄wi)

[
P ( ˆ̄wi|x̄) + α P ( ˆ̄wi|s, c̄)P (s|c̄)P (c̄)

]
(16)
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[
ˆ̄w, ˆ̄c, ˆ̄l

]
� arg max

∀ ˆ̄wi∈LN (x̄),∀c̄∈Σ∗
c ,∀l̄∈Σ∗

l

[
P ( ˆ̄wi|x̄) + α P ( ˆ̄wi|l̄, c̄)P (l̄|c̄)P (c̄)

]
(17)

4 Experimental Results

In order to evaluate the approaches presented in this work a speech based conver-
sational interface is considered. It consists of a virtual butler service that would
be installed at home to control and provide information about electrical appli-
ances. The system was developed within the framework of the GENIO project
[4], which was partially supported by FAGOR. In this context a Spanish corpus
(Domolab) was acquired with the specific features described in Table 1.

First of all, Msw and Msl models were evaluated when they were integrated
into the ASR system. The two different architectures proposed in this work were
considered here for comparison purposes and the results are shown in Table 2.
From this table it can be concluded that hierarchicalMsw and Msl models attain
a better ASR system performance than the classical Mw one, when using either
integration method. However, the decoupled architecture provides slightly worst
WER values than the integrated one for Msw. Note that the lowest WER that
can be achieved with the Mw model through the word graph (oracle WER)
is higher than the WER obtained with the integrated Msw. Thus, a rescoring
procedure cannot outdo this result.

We also evaluated HLMs within a LU task. Note that 40 manually-chosen,
task-dependent semantic classes made up of phrases, specifically those employed
in the LU module of the dialogue system, were used to build HLMs in both
experiments. The evaluation was carried out in terms of the Category Error
Rate (CER) and it is also presented in Table 2. CER is measured in the same
way the WER is, but considering the class sequences provided by the system and
the classified reference sentences. Table 2 shows that both architectures provide
better CER values than the baseline Mw model. Regarding this Mw model,
CER values were obtained by classifying both the reference sentences and the
sentences obtained with the ASR system and an Mw model. Consequently, it can
be concluded that the extraction of the semantic information can benefit from
the use of hierarchical models. Moreover, the percentage improvement associated

Table 1. Features of Domolab
corpus

Domolab

T
ra

in
in
g Sentences 44,236

Diff. sent. 43,962
Words 349,890
Vocab. 357

T
e
st

Sentences 1,617
Words 9,660
Vocab. 325

Table 2. WER and CER results for Mw, Msw and
Msl models using different architectures

Mw Msw Msl1-best oracle
WER Int. Arch. 6.04 - 5.14 5.4
(%) Dec. Arch. 6.04 5.23 5.34 5.35
CER Int. Arch. 8.68 - 7.18 7.06
(%) Dec. Arch. 8.68 5.93 7.12 6.98
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to the use of HLMs with regard to Mw model, is greater when considering CER
values than when considering WER values (e.g. 14.9% vs. 17.28% for Msw model
and integrated architecture). Thus, the CER improvement is not only due to a
better recognized sentence, but the semantic information involved in the HLMs
is helping to provide a better CER result.

Regarding the two different architectures very similar performance values are
achieved. However, when using integrated architecture all the processes (recogni-
tion and LU) can be carried out in only one step. Instead, decoupled architecture
makes it possible to use HLMs to carry out the LU process over the outputs of
different ASR systems.

5 Concluding Remarks

In this work the integration of complex HLMs into ASR systems was explored
by making use of two different architectures, an integrated one and a decoupled
one. The obtained results show that HLMs provide better ASR performance for
both architectures. On the other hand, HLMs can also be used in a LU module.
Different experiments were carried out in order to evaluate this task and the
results show that this process can benefit from the use of hierarchical models.
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Abstract. Query-by-Example Spoken Term Detection (QbE-STD)
tasks are usually addressed by representing speech signals as a sequence
of feature vectors by means of a parametrization step, and then using a
pattern matching technique to find the candidate detections. In this pa-
per, we propose a phoneme-based approach in which the acoustic frames
are first converted into vectors representing the a posteriori probabilities
for every phoneme. This strategy is specially useful when the language
of the task is a priori known. Then, we show how this representation can
be used for QbE-STD using both a Segmental Dynamic Time Warping
algorithm and a graph-based method. The proposed approach has been
evaluated with a QbE-STD task in Spanish, and the results show that it
can be an adequate strategy for tackling this kind of problems.

Keywords: Spoken Term Detection, Query-by-Example, Automatic
Speech Recognition.

1 Introduction

In the last few years both the amount and the availability of digital data have
rapidly and substantially increased. These facts have led to the need of interact-
ing in a multimodal way with a variety of information repositories in order to
find useful information in them, opening this way new and important challenges
in the field of Language Technologies. The Spoken Term Detection (STD) task
is among these challenges. It consists on finding all the occurrences of a search
term, which ortographic transcription is provided and can be composed of more
than one word, in the contents of an audio repository. However, the input may
also be an utterance representing the search term. In this case, the problem is
known as Query-by-Example Spoken Term Detection (QbE-STD) and both the
input query and the collection of documents are acoustic signals. Both of these
tasks have been studied lately [1–4], and some examples of their interest and
importance are the evaluation campaigns carried out in this line, such as the
one organized by NIST in 2006 [5] and the MediaEval evaluations [6]. In this
paper, we will focus on the Query-by-Example Spoken Term Detection task.

Most of the methods that have been proposed for the QbE-STD task are based
on classical pattern matching algorithms. Specifically, the search is performed by

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part I, LNCS 8258, pp. 504–511, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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means of an algorithm that matches the feature vectors corresponding to both
the queries and the documents in the audio repository, looking for occurrences
of the queries in the documents. The feature vectors are usually a standard
parametrization of the acoustic signal, for example based on cepstrals. Also, in
the recent literature one of the most usual algorithms to perform this search is
Segmental Dynamic Time Warping (SDTW) [1–4].

In this work, we perform a step after the parametrization, in which the poste-
rior probabilities of the phonemes given the acoustic frames are calculated. This
implies that the set of phonemes that are going to be used must be a priori
known, but it is not a problem if the language of the task is fixed. These pho-
netic probabilities are computed by means of a process of acoustic clustering and
classification in terms of acoustic classes, as explained in Section 2. Then, the
phonetic probabilities worked out in this step will be the base for two QbE-STD
algorithms. First, Section 3 shows a SDTW algorithm that uses the Kullback-
Leibler divergence and a specific set of transitions. Section 4 shows a method to
build graphs of phonemes from the phonetic probabilities and an algorithm to
perform the QbE-STD task. This algorithm is based on searching common paths
in the graphs corresponding to the document and the query, allowing edit op-
erations to gain flexibility. A description of the experiments we have performed
and a discussion of their results is shown in Section 5, and finally in Section 6
some conclusions are drawn.

2 Computation of the a Posteriori Probabilities of the
Phonemes

After a standard parametrization of the acoustic signal using cepstrals, we will
carry out a procedure to compute the a posteriori probability of every phoneme
u in a pre-defined set of phonetic units U given each acoustic frame xt, it is,
p(u|xt). For this computation, a set of acoustic classes A is obtained using a
clustering procedure on the acoustic feature vector space using the unsupervised
version of the Maximum Likelihood Estimation (MLE) algorithm. Assuming
that the acoustic classes can be modelled as Gaussian distributions, the output
of this procedure is a Gaussian Mixture Model (GMM). The use of conditional
probabilities allows us to compute the phonetic-conditional probability density
p(xt|u) as follows [7]:

p(xt|u) =
∑
a∈A

p(xt|a) · p(a|u) (1)

for each u ∈ U , where p(xt|a) is the acoustic class-conditional probability pro-
vided by the GMM, and p(a|u) is the conditional probability that acoustic class
a was manifested when phonetic unit u was uttered.

The conditional probabilities p(a|u) for all a ∈ A and for all u ∈ U are
computed by a progressive refinement algorithm for phonetic segmentation [8].
It starts from an initial coarse segmentation and continues until no improvements
on the segmentation are found. As a labeled corpus for phonetic segmentation
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is needed to perform this process, we have used the training subcorpus of the
Spanish Albayzin database [9].

Thus, the a posteriori probability of each phonetic unit u given an acoustic
vector xt, p(u|xt), can be rewritten as

Pr(u|xt) =

∑
a∈A

p(xt|a) · p(a|u)∑
v∈U

( ∑
a∈A

p(xt|a) · p(a|v)
) (2)

In the next two sections we will show two different ways of using these phonetic
probabilities for a QbE-STD task.

3 Segmental Dynamic Time Warping with a Posteriori
Phonetic Probabilities

Segmental DTW (SDTW) [10] is a modification of the well-known Dynamic Time
Warping algorithm. The goal of SDTW is to find multiple local alignments of
two input utterances, represented as a sequence of vectors. The main difference
between SDTW and DTW is that, while in DTW there is only one start point
for the alignment, SDTW allows the alignment to start at any point along the
speech document. This is very convenient for the QbE-STD task, as the goal is
to find all the occurrences of the query in each of the documents.

In our case, the vectors corresponding to the utterances will contain the a
posteriori probabilities for each phoneme, given each frame.

Instead of using the DTW typical transitions, we have used (as in other works
like [1]) a different set of transitions, as shown in Equation 3. This set of move-
ments ensures that the paths found will represent alignments where the number
of frames taken in the document is between half and twice the length of the
query. Therefore, the minimization function at each point is given by:

D(i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 j < 1

min

⎛⎜⎝D(i− 1, j − 1)

D(i− 2, j − 1)

D(i− 1, j − 2)

⎞⎟⎠+KL(A(i), B(j)) j ≥ 1
(3)

where A(i) is the vector of a posteriori phonetic probabilities for the frame i of
the speech document, B(j) represents the a posteriori probabilities of phonemes
for the frame j of the query, and KL is the Kullback–Leibler divergence [11].

All the paths in the Dynamic Programming matrix that arrive to the end of
the query are considered candidate detections. However, many of these detections
are false positives. To filter out these detections, Algorithm 1 is performed. This
way, our final set of detections has only at most d elements, and all of them
are the ones with best scores. It must be noted that the sorting performed in
the first line of Algorithm 1 could be either in ascending or descending order,
depending on the objective function of the search procedure.
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Algorithm 1. Algorithm to filter a list of detections

Require: A list of candidate detections CD,
a maximum number of filtered detections d

Ensure: A list of filtered detections FD
1: SCD = sort the hypothesis in CD by their score
2: FD2 = empty list
3: while SCD is not empty do
4: h = first element of SCD
5: Move h to FD2
6: Delete from SCD all the detections whose timespan overlaps h
7: end while
8: Determine a threshold t considering the score of the elements in FD2
9: FD = first d elements of FD2 whose score fulfills the threshold t
10: return FD

Determining the threshold t for this algorithm is a task that can be addressed
in a variety of ways. In our case, we have performed a linear combination of some
statistics of the scores, like the mean, the median, the maximum and the standard
deviation. The weights assigned to each of these statistics provide us a range of
thresholds that can be used to tune the performance of the system. Also we have
considered as the input list of candidate detections CD all the detections found
in all the documents for a specific query. This means that the pruning made by
this algorithm is local to the specific query, considering all the documents in the
repository as a whole. In consequence, for each query at most d detections among
all the documents are considered as confirmed detections.

4 A Graph-Based Algorithm for QbE-STD

Taking advantage of the sequentiallity of speech, our graphs of phonemes have
a left-to-right topology. Nodes act like time marks, and every node has a times-
tamp. The arcs have associated the phonetic unit uttered between the times-
tamps kept by origin and destination nodes, and also its phonetic probability.

The construction algorithm has two steps: phoneme detection, and error cor-
rection. In the first step, each vector of phonetic probabilities is analyzed in order
to find if there is any probability above a detection threshold. If the probability
of a phoneme is above this threshold, we consider that it has been uttered, but
the time in which its pronunciation started and finished is still undetermined. In
order to fix the starting and ending time of the detected phoneme, a new thresh-
old (called extension threshold), less restrictive than the detection threshold, is
used. That is, starting from the frame, or frames, where a phoneme was detected,
an extension process is performed considering the previous and following frames
that overpass the extension threshold for that phoneme. This extension process
finishes as soon as the extension threshold for the phoneme is not exceeded. The
reason for using this lower threshold is that the initial or final parts of phonemes
are less clearly pronounced and detected than its central part. Both thresholds
are empirically determined.
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The error correcting step consists on detecting and correcting both spurious
aparitions and misses of phonemes. This is the case of very short phonemes, or
some gaps in a zone where a phoneme was detected with enough probability.

Finally, the graph of phonemes is built according to these corrections. A node
is created whenever the detection of any phonetic unit begins or ends. Arcs are
built in a way that all go from a node to the following one. Thus, each arc may
represent either a complete detection of a phoneme, or a part of it. The weight of
each arc is the accumulated log-probability of the detection between the instants
represented by the starting and ending nodes.

4.1 Search Algorithm

Once the documents and the queries are represented as graphs of phonemes, we
can take them in pairs to perform the QbE-STD task. The basis of this algo-
rithm is to find, for each node i in the graph corresponding to the document,
the common path in both graphs that goes through all the query, finishes at i in
the document, and has the maximum combined score, defined as the sum of the
weights of both paths individually. To find these common paths, edit operations
on the arcs are allowed, in order to make this search more flexible and to cor-
rect possible errors made while building the graph of phonemes. Insertion and
deletion operations have a constant penalization, while the cost of a substitution
may depend on the pair of phonemes being considered. For this work, we have
only allowed coincidences, as well as substitutions of vowels by their semivowels,
consonants by their semiconsonants and vice versa.

The algorithm that searches for these common paths follows a Dynamic Pro-
gramming (DP) strategy. Let M be a matrix of dimensions I×J , where I and J
are the number of nodes of the graphs representing the document and the query,
respectively. Thus, M(i, j) will contain the best score for arriving to node i in
the document and j in the query, using both the arcs in the graphs and the edit
operations allowed. Also, given an arc a, let ori(a) and dest(a) be functions that
return respectively the position in the graph of the starting and ending nodes of
a, W(a) a function that returns the weight of the arc, and S(a) a function that
provides the symbol (phoneme) attached to the arc. Thus, the algorithm can be
stated as follows:

M(i, j) =

{
0 if j = 0

max {arcSub(i, j), arcIns(i, j), arcDel(i, j)} otherwise
(4)

where:

arcSub(i, j)= max
∀ arcs a,b:

dest(a)=i ∧ dest(b)=j

{M(ori(a), ori(b))+W(a)+W(b)+ksub(S(a), S(b))}

arcIns(i, j) = max
∀ arc a: dest(a)=i

{M(ori(a), j) + kins}

arcDel(i, j) = max
∀ arc b: dest(b)=j

{M(i, ori(b)) + kdel}
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ksub(x, y) =

⎧⎪⎨⎪⎩
0 if x = y

0 if x is semivowel or semiconsonant of y or vice versa

−∞ otherwise

kins and kdel are constants that must be empirically determined.
Once the DP matrix has been filled, all the cells corresponding to the last

node of the query represent candidate detections. Thus, they must be filtered in
order to reject as many false positives as possible. In this case, Algorithm 1 is
also used for finding the confirmed detections.

5 Experiments and Results

To evaluate these approaches, we have performed several experiments using the
MAVIR database [12]. This is the Query-by-Example Spoken Term Detection
corpus that was used in the Search on Speech track of the 2012 Albayzin Eval-
uation. A feature of this task is that the language of both the queries and the
collection of documents is Spanish, so it is a priori known.

In this task we can distinguish two kinds of files. First, there are 10 files
corresponding to recordings of conferences and academic acts carried out in
Madrid between 2006 and 2008. The speech in these files is spontaneous and
was acquired in a variety of conditions using different microphones. Also different
accents of the Spanish language are represented. In addition, these files are very
long, with a duration between 19 and 75 minutes. These facts make this task very
hard. Second, the other kind of files is the set of queries, which is composed of
120 terms. The whole set of files is divided this way: 60 queries and 7 documents
for development and 60 queries and 3 documents for test.

As it is usual in Information Retrieval (IR) tasks, we have considered the
standard Precision and Recall, and its combination by means of the F1-Measure.
Figures 1 and 2 show the evolution of these measures for the development set
using a variety of thresholds, considering as the maximum number of confirmed
detections for the filtering algorithm the one that provided the best results in
our experiments. In the case of the graph-based approach, a large amount of
combinations of insertion and deletion constants have been tried, and Figure 2
shows the evolution for the configuration that achieved the best results.

Figure 1 shows that for the development set the SDTW approach reaches
a Precision of more than 30%, while the best Recall is around 14%. However,
in some IR applications it is more important to find some detections with a
relatively large precision, than finding them all. Another interesting fact is that
there is a point where, even varying the threshold, the results do not change.
This happens when too many candidate detections surpass the threshold of the
filtering algorithm, and the pruning is just done by considering the maximum
number of hypotheses specified beforehand. The results shown in Figure 2 are
not as good as the obtained with the SDTW algorithm. This is due to the fact
that the difficulty of the task and the noisy conditions of the audio recordings
make the graph builder algorithm generate many errors that can not be recovered
when the graphs of phonemes are processed.
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Fig. 1. Precision, Recall and F1 for the development data for the SDTW approach

Fig. 2. Precision, Recall and F1 for the development data for the graph-based approach

Table 1 shows the results obtained for the test set using the parameters that
optimized the F1-Measure in the development phase.

Table 1. Results obtained for the test set

System Precision (%) Recall (%) F1-Measure (%)

SDTW 31.2 18.3 23.1

Graph-based 9.0 10.2 9.6

In the test set the experiments using Segmental DTW also outperform the
experiments with the graphs of phonemes. Thus, the codification of the frames
in terms of the posterior probabilities of phonemes seems to be a good repre-
sentation, and the Segmental DTW algorithm using this representation gives
good enough results. However, SDTW has a higher time complexity than the
algorithm based on graphs of phonemes, as the number of nodes of the graphs is
usually much lower than the number of frames. In consequence, our graph-based
approach seems promising, and we will continue working on how to improve it.
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6 Conclusions

In this work, we have presented two algorithms for Query-by-Example Spoken
Term Detection based on the computation of a posteriori phonetic probabilities
of the phonemes given the speech signals. One of these algorithms performs a
Segmental DTW search, while the other represents the query and the document
as graphs of phonemes and searches for common paths in both graphs using edit
operations. The experimental results show that our codification of the frames in
terms of a posteriori probabilities of the phonemes and the proposed algorithms
are a good approach to QbE-STD. As future work, we want to improve the
performance of the graph-based method presented in this paper, for example
trying to make the phoneme detection process more robust.
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Abstract. Artifacts should be corrected previous heart rate variability analysis. 
A new method for artifact correction in multilead ECG is proposed in this  
paper. The method detects artifacts in the RR series, takes the corresponding 
segment of the multilead ECG, uses entropy of the signal for selecting the 
“cleanest” ECG channel, and uses the wavelet transform to recalculate positions 
of R peaks. The method was evaluated with ECG records of arrhythmia data-
base MIT/BIH, with good results. 

Keywords: ECG, artifact correction, entropy, wavelet, multilead ECG. 

1 Introduction 

The study of the electrocardiogram (ECG) provides great clinical information, not 
only for heart disease but others as neuropathy [1], ischemia [2], etc. Each beat is 
characterized by the points P, Q, R, S and T, providing information for diagnosis and 
prognosis. A topic widely studied is the heart rate variability (HRV) that provides 
information about the functioning of the heart and its interaction with the nervous 
system, in terms of the balance between sympathetic and vagal systems. HRV is    
described by statistical and spectral indexes calculated from time series obtained from 
the differences between R peaks (RR series) [3]. 

The study of HRV in long-term records of ECG obtained by ambulatory 
monitoring (usually 24 hours) is most reliable because the patient performs normal 
activities. This procedure allows studying the true behavior of the heart in certain 
situations. However, artifacts and interference contaminate the information in the 
HRV signal, so that many of the monitored patients can be wrongly classified as 
healthy subjects [1, 3]. Modern devices allow recording multiple channels, but 
sometimes one of them may fail or contain artifacts that are not present in the other. 
Therefore researchers have implemented several methods and techniques in order to 
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separate or extract useful information from the ECG signals, including the QRS 
complex detection, artifacts detection and correction, index calculations, etc. 

The wavelet transform and entropy analysis have already been successfully used 
individually or combined in various areas of electrocardiology. In [4] a wavelet entro-
py (WS) based method is employed to detect QRS complexes in ECG signal from two 
significant channels. In addition, a method to detect multichannel ECG signals by 
using combined entropy is proposed in [5]. 

Methods proposed in [4] and [5] are very effective to detect QRS complexes in 
presence of artifacts such as baseline drift, and others. These artifacts are not present 
all the time in the signal, however the calculation based on wavelet and entropy is 
done for the whole signal. That means a high computing cost. The use of a lower cost 
computational method for detection of QRS complexes, only using the method based 
on wavelet and entropy in signal sections with artifacts seems to be a better option. 

In this paper we propose a new method for correction of artifacts by combining the 
entropy for channel selection and the subsequent detection of R peaks with wavelet 
transform. 

2 Entropy and Wavelets  

2.1 Entropy 

The basic concept of entropy has much to do with the uncertainty that exists in any 
experiment or random signal. It is also the amount of "noise" or "clutter" that contains 
or releases a system. Thus, one can speak about the amount of information carried by 
a signal. 

ECG has varying amplitudes, both over time and between patients, or even with 
the measurement conditions; therefore it is desirable to provide methods for 
parameters analysis independent of signal amplitude. Entropy measures, which reflect 
the "order" of the signal, have this feature. The ECG signal has certain monotony 
from the viewpoint entropy. This can be seen as the appearance of regular and 
recurring waves (each heartbeat) with variations in the morphology and amplitude. 
Entropy measures, which quantify this order, look appropriate to detect events 
associated with muscle movements, noise, interference or artifacts in general [6]. 

To calculate the entropy is convenient to think about the histogram of the signal. 
This is done by making discrete the value range of the signal at L intervals. For each 
interval i there will be a probability of occurrence pi given by: 

1

i
i L

i
i

F
p

F
=

=


                                                        (1) 

Where Fi is the amount of signal values that are in the interval i. Shannon entropy 
E of the signal x is defined by: 
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= −                                               (2) 

2.2 Wavelets 

A wavelet expansion consists of translations and dilations of one fixed function, the 
wavelet ψ Є L2(R), where R denotes the set of real numbers, and L2(R) denotes the set 
of measurable, square integrable one-dimensional  functions [7].  In the continuous 
wavelet transform (CWT), the translation and dilation parameters can vary conti-
nuously. This means that we use the functions: 

,

1
( ) ( )a b

t b
t

aa
ψ ψ −=    with a,b Є R  a≠0              (3) 

Where the parameter a is the scale and b is the position parameter. The factor 1/2
a

−  

has been introduced to guarantee energy preservation [8]. Given a continuous signal 
f(t) Є L2(R), the CWT of f(t) is: 

,( , ) ( ) * ( )a bW a b f t t dtψ
∞

−∞

=                                                  (4) 

Where ψ*a,b (t) is the complex conjugate of ψa,b (t). ECG signals are highly non sta-
tioneries, so the CWT is able to locate events in time and frequency. This analysis 
includes a windows technique with log time intervals for low frequency information, 
and short time intervals for high frequency information. 

3 Artifact Correction Algorithm 

The presented algorithm uses ECG signals in n channels, using the redundancy of 
information being given. The first step is to create the series of positions of the QRS 
complexes (R series) in any one of ECG channels. These QRS complexes are detected 
using a method based on the threshold of the derivative [9]. From R series, RR series 
are constructed in 300 beats segments, as recommended in [3] for short time RR 
series. The mean RR value of the series is calculated for each segment. The mean 
value is an artifact robust parameter of the series. Those points of the RR series that 
deviate more than 20% from the mean RR value are considered artifacts. This 
threshold has been evaluated empirically by the authors with good results. For each 
artifact, it is located in the ECG the heartbeat which originates the artifact, and sets 
the interval to be analyzed. To do this, choose a multi-channel ECG segment between 
the four seconds before the beat for the artifact detected and four seconds later. In the 
selected ECG interval the channel of smaller entropy is chosen, calculated according 
to (2) in the whole 8-second window. The R peaks are detected in this channel using 
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the method based on the wavelet transform, reported in [10, 11], with the Gaussian 
Wavelet Daubechies function of fourth order and decomposition in 8 levels. The db4 
contains good resemblance with the basic QRS shape of the ECG signal. This promi-
nent feature of db4 insisted us to use it as the mother wavelet. The use of 8th level 
Daubechies wavelets neutralizes the baseline drift. 

Then R series is updated with these new values, the RR series is recalculated and 
the process is repeated until no artifact is present or if the number of iterations is 
greater than 20-25. This maximal number of iterations is a reasonable limit to the 
number of artifacts in a short time RR series. Figure 1 shows the steps of the 
algorithm. 

Begin

Detect R peaks and 
create R and RR 

series

Take first 300 beats
interval

Take any artifact and determine
position in ECG

Determine ECG interval around 
artifact for analysis

Take the same interval in all ECG channels and 
determine the channel with smallest entropy

Detect R peaks in the selected channel and 
update R serie with these new values

Recalculate RR serie

Yes No Take next 300 
beats interval

Yes

No

End

Is the last 
300 beats
interval?

Are there 
artifacts?

 

Fig. 1. Algorithm proposed for artifact correction 
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4 Results and Discussion 

The effectiveness of the proposed method was tested using ECG signals of arrhythmia 
database MIT/BIH. These ECG signals are 30 minutes registers in a range of 0-10 
mV, sampled at 360 Hz. The resolution of each sample is 11 bits. The 48 records of 
this database have a variety of ECG morphologies, including heart disease, which 
makes them optimal for a qualitative and quantitative assessment of the algorithms 
described. 
109270 beats (almost all of the base) were used, and the effectiveness of the proposed 
method to detect QRS complexes was proved. The results of this method were 
compared in two steps with the observations made by an expert. This is an indirect 
assessment of the effectiveness of the method to avoid the effect of the artifacts in the 
QRS detection in a multi-channel ECG. 

The first step evaluates the effectiveness of the QRS detections by using 1st deriva-
tive QRS detector applied in one channel. The second step makes artifact detection, 
correction with entropy and wavelet, and the evaluation of the whole method. 

Three reference parameters for the analysis of the proposed algorithm were esti-
mated: the sensitivity (Se), positive predictability (P+) and error (E).  

Sensitivity reflects the percentage of heartbeats which have been detected correctly 
by the algorithm on total existing heartbeat indicated by the expert. It shows the ca-
pacity of the detection method for detecting a peak. Sensitivity is calculated by: 

(%) *100
TP

Se
TP FN

=
+

                                              (5) 

Where: 
TP: Number of true positives. This term represents the number of QRS complex-
es indicated by the expert and detected by the algorithm. 
FN: Number of false negatives. This term represents the number of QRS 
complexes indicated by the expert and not detected by the algorithm. 

The value of P+ gives information about the percentage of beats correctly detected 
on total beats detected, ie, the probability that each point detected whether or not a 
peak R and is determined by the following mathematical equation: 

(%) *100
TP

P
TP FP

+ =
+

                                              (6) 

Where: 
 FP: Number of false positives. It is determined by all the points identified as 
QRS complexes by the algorithm, and not indicated by the expert. 

Another important aspect to evaluate each one of the described algorithms is the 
error, given by the following mathematical expression: 

(%) *100
FP FN

E
TL

+=                                               (6) 

Where TL is the total number of analyzed beats (TP + FP). 
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Tables 1 and 2 show the results of applying the steps of the method to the MIT-
BIH database. Table 1 indicates large number of FN and FP when the 1st derivative 
QRS detector is applied. Table 2 shows how the number of FN and FP strongly de-
crease when the artifacts are detected and corrected by the entropy and wavelet me-
thod.   

Table 1. The results of the first step 

TL TP FN FP Se (%) P+ (%) E (%) 

109270 101458 7812 1723 92.85 98.33 8.73 

Table 2. The results of the proposed algorithm 

TL TP FN FP Se (%) P+ (%) E (%) 

109270 108717 553 120 99.49 99.89 0.67 

 
Table 2 illustrates that the proposed method achieves an average sensitivity of 

99.49%, the positive prediction of 99.89% and the failed detection of 0.67%. These 
results show high values of sensibility and positive prediction, besides a very low 
error rate. Then it is possible to conclude that the proposed method can be applied 
with good results in the detection of QRS complexes in multilead ECG with artifacts. 
This result may be useful in studies of HRV, and in other applications that require 
high precision and dependability of the results. The method shows difficulties when 
artifacts appear in all the channels at the same time. This is not very frequent unless it 
is an artifact of physiologic origin. 

5 Conclusions 

The method developed shows very good indicators in detecting QRS complexes in 
multilead ECG with artifacts, based on the use of the entropy for the selection of the 
channel, together with the detection of devices using the transformed of wavelet.  
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Abstract. The presence of an unusual high level of turbulent noise in voice 
signals is related to air leakage in the glottis as a result of incomplete closure of 
the vocal cords. Harmonics to Noise Ratio (HNR) is an acoustic measure that 
intends to appraise the amount of that turbulent noise. Several algorithms have 
been proposed in both time and frequency domain to estimate HNR. The 
Generalized Variogram (GV) is a time-domain technique proposed for HNR 
estimation based on a similitude function between two speech windows. The 
drawbacks of the GV are related to the biased estimation of the amplitude ratio 
and the final HNR value. The present work deals with these limitations and 
proposes unbiased estimators. The experimental results show that the described 
improvements outperform the original GV. 

Keywords: harmonics to noise ratio, additive noise, shimmer, variogram. 

1 Introduction 

Acoustic measures are a widely used tool to help speech pathologists diagnosing and 
documenting treatment and therapy progress of laryngeal diseases. Several acoustic 
measures related to vocal cords diseases have been reported through the years.  

Healthy vocal cords produce a quasi-periodic vibration pattern but in dysphonic 
voices a deviation from this cycle-to-cycle periodicity appears [1]. Pitch perturbation 
(vocal jitter) is defined as the cycle-to-cycle fundamental frequency variations, 
amplitude perturbation (vocal shimmer) is defined as the cycle-to cycle amplitude 
variations, and the additive noise is related to the turbulent noise produced at the 
glottis and is correlated with the degree of dysphonia [2][4]. This paper is specifically 
aimed for the improvement of an acoustic measure of additive noise. 

Harmonics to Noise Ratio (HNR) is an acoustic measure of the amount of additive 
noise that appears during the vibration of the glottis [1]. This noise is produced by an 
air leakage through the vocal cords caused by the presence of pathologies such as 
nodules, polyps and cancer, among others [1]. HNR estimation can be achieved in 
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both time and frequency domains. Frequency domain algorithms require the 
estimation of the harmonic structure, usually by means of Fourier Transform, and it 
has been criticized for the impossibility to separate measurements of different types of 
perturbations [5]. Time domain methods have been criticized [3][6][7][8][9] for 
depending on the correct determination of individual pulse boundaries, among many 
other method-specific factors. In spite of the latter criticism, this work is specifically 
centered in time domain HNR estimation, due to the advantage over frequency 
domain based methods to separate different perturbations. 

Reference [9] proposes an HRN estimation technique, based on generalized 
variogram (GV), that takes into account the non-stationary nature of voice signals and 
the limitations of boundaries estimation while facing pathological voices. One of the 
advantages of this method is its ability to estimate the HNR values independently 
from the temporal or spectral structures of voice signals. The principal limitations are 
the biased estimation of the gain factor and the influence of the noise component in 
the harmonic part in the HNR estimator. Based on this, the main goal of this work is 
to correct these limitations and to evaluate its performance compare not only to the 
original estimator but to other well-known algorithm proposed in the literature [11]. 

1.1 HNR Based on Generalized Variogram 

For stationary time series the variogram is directly related to the auto covariance 
function [10]. In [9] the GV is proposed taking into account the properties of the 
speech signal.  

Let x(n) denote a pseudo-periodic signal for some T0: 

0( ) ( ),     0,1,2,...kx n a x n kT k= − =   (1)

Where ak is the weighting coefficient and it is related with amplitude changes in 
the speech signal, T0 is the length of the glottal cycle and represents the fundamental 
period. 

The formulation of HNR for a voice segment x(n) in dB is given by the expression: 
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Where the numerator represents the energy of the harmonic component and the 
denominator is related with the energy of the additive noise component in x(n).  

To estimate the energy of the amount of noise (denominator in (2)) the following 
expression was proposed in [9]: 
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The expression for GV is within the brackets in (3). N is the frame length in 
samples (chosen as 2.5 ms) and T is related to the glottal pulse length. Since GV is 
computed in forward and backward directions, T lies within the intervals shown  
in (3). Tmin and Tmax represent the shortest and longest suitable glottal cycle length in 
samples respectively. These values were fitted to 2.5 ms and 20 ms [2].  

The maximum similarity between x(n) and the lagged frame x(n-T) is achieved 
when expression (3) reaches the minimum value. 
The expression for a is defined as: 

( )

( )

x n

x n T

E
a

E −

=  (4)

Where Ex(n) and Ex(n-T) are the energies at the current and lagged frames 
respectively. 

Having the value of T (Topt,) which minimizes the sum of squared errors (3) and the 
value of a, the  noise component in the denominator of HNRx expression is: 

( ) ( ) ( ),  0 1opte n x n ax n T n N= − − ≤ ≤ −  (5)

Therefore the expression for the clean signal can be defined as: 
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An analysis of the limitations of equations (1), (4), (5) and (6) follows. 
The model in (1) does not hold for stationary noise since (1) means that:  
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Where a proportional term ak between lagged noise samples ek(n-kT0) appear. A 
more realistic model for the speech signal is given in [12], using the harmonic and 
noise component terms, as: 
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From (8) it is possible to obtain an expression for the harmonic component of the 

shifted frame 
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Substituting (8) and (9) in (4) the following expression is obtained: 
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As can be observed from (10) the original expression to estimate the gain factor a 
is biased by the factor within the brackets. 

Analyzing the numerator of (2) it is possible to substitute it by (5) and (6) as: 
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As can be seen in (11) the numerator of the HNR expression overestimate the real 
value of HNR as it has a noise term within the numerator. Therefore the original 
overestimated HNR expression without the log operation can be expressed as: 

( )

( )

1 ~ 2 2 2

0
1

2

0

( ( ) )
N

n
x N

n

x n a e n
HNR

e n

−

=
−

=

+
=



  (12)

2 Proposed Modifications 

The derivation of factor a is a minimization problem. The a value is optimum when 
the GV expression (3) reaches its minimum value, so the similarity between the two 
current periods is maximum.  

Substituting (8) in the term within the brackets in (3), it is possible to obtain the 
following expression for the GV: 
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To obtain a, the derivative of (13) respect to a is taken and equated to 0. 
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Developing expression (14) the optimal gain factor a is obtained as: 
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This obtained value of a is similar the one in [12]. Therefore from (13) the 
corrected noisy component in (2) is obtained as: 

2 2
2

( ) ( )
( ) min( ) ( ) ,  0 1

1
opt

c

x n ax n T
e n Den n N

a

− −
= = ≤ ≤ −

+
  (16)

Where the gain factor a can be estimated according to (14). 
Having expressions to estimate both the gain factor a and the energy of the noise 

component e(n) by a corrected variogram, an enhanced expression for HNR can be 
obtained. 

Developing equation (12) we can obtain the following expression to estimate HNR as: 
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It will be demonstrated that this expression solves the overestimation of the actual 
values of HNR. 

2.1 Experiments  

Synthetic signals were generated according to the procedure in [13] and [14] where an 
all-pole filter with formant frequencies corresponding to a vowel ‘‘a” is excited by a 
train of impulses. As the proposed corrections are related to the amplitude factor a, 
seven levels of both Gaussian noise and shimmer were introduced to meet a desired 
signal to noise ratio (SNR) and shimmer in the simulated signals. The added values of 
shimmer and noise used are shown in Table 1. 

Table 1. Levels of actual HNR and Shimmer used for the experiments 

Level 1 2 3 4 5 6 7 
HNR (dB) 22 18 15 12 8 5 2 
Shimm (%) 47.6 40.8 34 27.2 20.4 13.6 6.8 

 
The length of the synthesized signals is 2 s, with sampling frequency Fs = 22050 

Hz and mean F0 = 150 Hz, giving an average of 300 pulses per signal. 
The proposed HNR estimation corrections (GVC) were evaluated by comparing 

them with the original method (GV) proposed in [8] and with a well-known HNR 
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algorithm based on cesptrum estimation (denoted as “Murp”) proposed in [11]. 
Estimated HNR values were also compared with reference values (denoted as “Ref”) 
listed in Table 1 which were added during synthesis of simulation signals. 

3 Results 

Figure 1 shows estimated HNR values for the synthetic vowel contaminated with only 
amplitude perturbations (shimmer). The x-axis represents the different levels of 
synthetized shimmer where 6.8 % denotes the lowest level of perturbation and 47.6% 
the highest level of contamination. The y-axis represents the estimated values of 
HNR. In the case of signals synthesized only with shimmer, 30dB of HNR was added 
to avoid infinite HNR values. The reference values of HNR can be observed in Fig. 1 
as an x-dashed line, and the rest of the estimates analyzed as solid lines. 

Fig.1 demonstrates the superiority of the GVC over the original GV and the 
cepstrum-based variants. A biased estimation of the gain factor produces an 
overestimation of the HNR values facing the shimmered signals. In addition, the 
inferior performance of GV respect to GVC is related to the introduction of the error 
term in the HNR equation (2). Cepstrum based algorithm shows the worst 
performance of the three analyzed estimators. As the shimmer cannot be separated 
from the additive noise in the frequency domain this estimator doesn’t produces 
values related to additive noise alone but to dysperiodicity in a general sense. 

The performance of the algorithms using synthesized signals with only additive noise 
is shown in Fig.2. Unlike the previous figure, the x-axis corresponds to the HNR (in dB) 
actual values and are ordered from the noisiest signals (2 dB) to the cleanest one (22dB). 
It can be observed from the figure that GVC and “Murp” approaches follow more 
precisely the dashed line which represents reference values of HNR. Therefore there is 
superiority in the performance of GVC and “Murp” over the original variogram. The 
GVC approach removes the influence of the noise term in the HNR formula (2). 

Results for signals contaminated with both shimmer and additive noise are shown 
in Fig.3. It can be seen that also the GVC superiority respect to both “Murp” and 
original variogram methods. 
 

 

Fig. 1. Results for estimated HNR values for signals contaminated with only shimmer. The 
dashed line represents the reference values of HNR (30 dB) for each level of shimmer. 
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Fig. 2. Results for signals contaminated with only additive noise. The dashed line represents the 
reference values of HNR for each synthesized level. 

 

Fig. 3. Results for signals contaminated with both shimmer and additive noise. The dashed line 
represents the reference values of HNR for each level of perturbations. 

4 Conclusions 

This work is focused on improving the estimation of the Harmonics to Noise Ratio 
based on the generalized variogram. The experiments results have demonstrated that 
the original algorithm proposed in [9] overestimates real values of HNR and the gain 
factor estimator is biased. As expected the best results corresponds to the proposed 
method, which removes the influence of the noise from the harmonic part of the HNR 
estimation formula. 
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Abstract. In this paper, we propose a robust environmental sound spectrogram 
classification approach; its purpose is surveillance and security applications 
based on the reassignment method and log-Gabor filters. Besides, the 
reassignment method is applied to the spectrogram to improve the readability of 
the time-frequency representation, and to assure a better localization of the 
signal components. In this approach the reassigned spectrogram is passed 
through a bank of 12 log-Gabor filter concatenation applied to three 
spectrogram patches, and the outputs are averaged and underwent an optimal 
feature selection procedure based on a mutual information criterion. The 
proposed method is tested on a large database consists of 1000 environmental 
sounds belonging to ten classes. The averaged recognition accuracy is of order 
90.87% which obtained using the multiclass support vector machines (SVM’s). 

Keywords: Environmental sounds, Log-Gabor-Filter, Mutual Information, 
Reassignment Method, SVM Multiclass. 

1 Introduction 

The environmental sounds domain is vast; it includes the sounds generated in 
domestic, business, and outdoor environments and can offer many services, for 
instance surveillance and security applications. Recently, some efforts have been 
interested in detecting and classifying environmental sounds [1], [2]. In the literature, 
the majority of studies present approaches for classifying sounds using such as 
acoustic, cepstral, or spectral descriptors. These descriptors can be used as a 
combination of some, or even all, of these 1-D audio features together [1]. Recently, 
some efforts emerge in the new research direction, which demonstrate that image 
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processing techniques can be applied in musical [3], and environmental sounds [4]. In 
our previous work [4], we have showed that spectrograms can be used as texture 
images.  In order to enhance this work, this paper develops method, based on 
spectrogram reassignment and spectro-temporal components. However, the 
spectrogram reassignment is an approach for refocusing the spectrogram by mapping 
the data to time-frequency coordinates that are nearer to the true region of the 
analyzed signal support [5].Besides, the reassignment method is applied to the 
spectrogram to improve the readability of the time-frequency representation, and to 
assure a better localization of the signal components. Indeed, many studies [6] and [7] 
show that spectro-temporal modulations play an important role in automatic speech 
recognition (ASR), in particular log-Gabor filters. Our method begins by spectrogram 
reassignment of environmental sounds, which then was passed through an averaged 
12 log-Gabor filters concatenation applied to three spectrogram patches, and finally 
passed through an optimal feature procedure based on mutual information. In 
classification step, we use the SVM’s with multiclass approach: One-Against-One. 
This paper is organized as follows. Section 2 describes environmental sound 
classification system. Classification results are given in Section 3. Finally conclusions 
are presented in Section 4. 

2 Environmental Sound Classification Based on Reassignment 
Method and Log-Gabor Filters 

2.1 Feature Extraction Method 

The method consists in using the reassigned spectrogram patch. The aim is to find the 
suitable part of spectrogram, where the efficient structure concentrates, which gives a 
better result. We tested our method using log-Gabor filter for three spectrogram 
patches. We tested for patch number 2,3,4,5 , we remark that the satisfactory 
result is obtained for 3. The idea is to extract three patches from each reassigned 
spectrogram. The first patch included frequencies from 0.01Hz to 128Hz, the second 
patch, from 128Hz to 256Hz, and the third patch, from 256Hz to 512Hz. Indeed, each 
patch goes through 12 log-Gabor filters , , … , , , … , ,  , followed  
 

 

Fig. 1.  Feature extraction using 3 spectrogram patches with 12 log-Gabor filters  
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by an average operation and then, MI feature selection algorithm is used, 
which constitutes the parameter vector for the classification ( Fig.1.). 

2.2 Reassignment Method 

The spectrogram is the square modulus of the Short Time Fourier 
Transform  ; ,  

 ; , | ; , |                                     (1) 
 ; ,                   (2) 

 
The disadvantage is manifested by its unseparable kernel allowing the spreads of 

the time and frequency smoothings bound, and even opposed [8], which leads to the 
spectrogram a loss of resolution and contrast [9].Hence, the reassignment is going to 
re-focus the energy spread by the smoothing [10].However, the reassignment 
application in time–frequency representation provides to run counter to its poor time-
frequency concentration.  

The reassigned spectrogram obtained by the Short Time Fourier transform (STFT) 
enhances the concentration of the components in comparison to the spectrogram, and 
it does not contain any cross terms.  The values of the new position of energy 
contributions ̂ ; , ,ω ; ,  are given by the center of gravity of the signal 
energy located in a bounded domain centered on , . These coordinates are defined 
by the smoothing kernel TF ,Ω  and computed by means of short-time Fourier 
transforms in the following way [8]: 

 
(3)

 
(4)

For more explication, you can see Appendix of [8]. The corresponding equation to 
the reassignment operators is writing in the following way: 

 

(5)

where  is the Dirac impulse 
We adopted in this work the reassignment method in order to obtain a clear and 

easily interpreted spectrogram, whose purpose is to improve the classification system 
performance realized in previous work [11]. 



530 S. Souli, Z. Lachiri, and A. Kuznietsov 

 

2.3 Log-Gabor Filters 

Gabor filters have many useful and important properties, in particular the capacity to 
decompose an image into its underlying dominant spectro-temporal components [6]. 
The log-Gabor function in the frequency domain can be described by the transfer 
function , with polar coordinates [7]: 

 , .                                           (6) 
 
Where ⁄ ⁄ , is the frequency response of the radial 

component and ⁄ 2⁄ , represents the frequency 
response of the angular filter component.We note that ,   are the polar 
coordinates, represents the central filter frequency,  is the orientation angle,  and  represent the scale bandwidth and angular bandwidth respectively. The log-
Gabor feature representation | , | ,  of a magnitude spectrogram ,  was 
calculated as a convolution operation performed separately for the real and imaginary 
part of the log-Gabor filters: 
 , , , ,                                (7) , , , ,                                (8) 
 ,  represents the time and frequency coordinates of a spectrogram, and 1, … , 2 and 1, … , 6  where  devotes the scale number and  the 
orientation number. This was followed by the magnitude calculation for the filter 
bank outputs: 
 | , | , , , ,                          (9) 

2.4 Averaging Log-Gabor Filters 

The averaged operation was calculated for each 12 log-Gabor filter appropriate for 
each three reassigned spectrogram patches. The purpose being to obtain a single 
output array [7]: 

 
(10)

2.5 Mutual Information 

The feature vectors were reduced using the mutual information feature selection 
algorithm. The information found commonly in two random variables is defined as 
the mutual information between two variables X and Y, and it is given as [12]: 
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(11)

Where  is the marginal probability density function and 
, and , ,   is the joint probability density function. 

2.6 SVM Classification 

The SVM’s is a tool for creating practical algorithms for estimating multidimensional 
functions [13]. In the nonlinear case, the idea is to use a kernel function , , 
where ,  satisfies the Mercer conditions [14]. Here, we used a Gaussian RBF 
kernel whose formula is:  
 , .                                                (12) 

 

Where  indicates the Euclidean norm in  . We hence adopted one approach of 

multiclass classification: One-against-One [15]. For classification with SVM we 
suggest the cross-validation procedure for kernel parameter γ and the constant of 
regularization C. Indeed, according to [16], this method consists in setting up a grid-
search for γ and C. For the implementation of this grid, it is necessary to proceed 
iteratively, by creating a couple of values γ and C. In this work, we use the following  

couples  

3 Classification Results and Discussion 

Our corpus of sounds comes from commercial CDs [17]. We used 10 classes of 
environmental sounds as shown in Table 1. All signals have a resolution of 16 bits 
and a sampling frequency of 44100 Hz that is characterized by a good temporal 
resolution and a wide frequency band.  

Most of the signals are impulsive. We took 2/3 for the training and 1/3 for the test.  
Reassigned Spectrograms are extracted through Short Time Fourier Transform with 
the number of frequency points equal to 512, the smoothing Hanning window is used, 
which divides the signal into segments of length equal to 256 with 192-point overlap. 
Indeed, the idea consists in application of reassignment method to 3 spectrogram 
patches, then passed through a log-Gabor filters concatenation, after that an averaged 
operation is applied, followed by the mutual information criteria for optimization.  
Results of our approach are shown in Table 2. Besides, we obtained in this approach 
an averaged accuracy rate of the order 90.87%.  This method leads to an increase 
approximately 4% of averaged recognition compared to the result obtained when we 
applied the same method but without using reassignment method which we obtained a  
 

.

, : =[2(-5), 2(-4),…, 2(15)] et =[2(-15), 2(-14), …, 2(3)]. 
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Table 1. Classes of Sounds and Number of Samples in the Database Used for Performance 
Evaluation   

Classes Train Test Total 
Door slams (Ds) 
Explosions (Ep) 
Glass breaking (Gb) 
Dog barks (Db) 
Phone rings (Pr) 
Children voices (Cv) 
Gunshots (Gs) 
Human screams (Hs) 
Machines (Mc) 
Cymbals (Cy) 

208 
38 
38 
32 
32 
54 

150 
48 
38 
32 

104 
18 
18 
16 
16 
26 
74 
24 
18 
16 

312 
56 
56 
48 
48 
80 

224 
72 
56 
48 

Total 670 330 1000 

Table 2. Recognition Rates for averaged outputs of 3 Reassigned Spectrogram Patches With 12 
log-Gabor filters applied to one-against-one SVM’s based classifier with Gaussian RBF kernel 

3 Reassigned Spectrogram Patches 
with 12 log-Gabor filters concatenation 

Classes 
Parameters 

Kernel ,  

Classif. 
Rate 

(%) 
Ds (2(-5)

, 2
(-6)) 94.87 

Ep (2(-4)
, 2

(-6)) 88.75 
Cb (2(-5)

, 2
(2)) 78.57 

Db (2(1)
, 2

(3)) 89.58 
Pr (2(15)

, 2
(1))  93.75 

Cv (2(-1)
, 2

(-6)) 85.71 
Gs (2(-4)

, 2
(2)) 95.83 

Hs (2(-3)
, 2

(-4)) 95.58 
Mc (2(-4)

, 2
(-6)) 92.85 

Cy (2(-3)
, 2

(-7)) 93.30 

 
classification rate of the order 86.78 % [11]. The studies of Chu et al. [1] proposed an 
approach based on combination of matching pursuit (MP) and MFCCs features. This 
combination gives the average classification rate of 83.9 % in discriminating fourteen 
classes with GMM classifier. When comparing this result with our system 
classification rate, we remark that our system has more significant and better results. 
We notice that our individual features are significantly better in spite of a limited 
number of features.  

To conclude, we compared also our obtained results with the results attained by 
Rabaoui et al. [2], who used a combination between energy, Log energy and MFCCs 
features. This research gives an average classification rate of (90.23%) in the 
environmental sounds classes. It is slightly lower than our proposed method result 
(90.87%). Moreover, applying the reassignment method on the environmental sound 
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spectrogram enhances the performance of used system. The experimental results 
reported in this work show that the reassignment method provides a higher 
improvement in the environmental sounds classification. Therefore, with the 
reassignment method we can easily interpret the spectrogram signature. In addition, 
the important point of the reassignment method is the proper choice of smoothing 
kernel in order to produce   simultaneously a high concentration of the signal 
components   [8].The purpose of reassignment method is to build a readable time-
frequency representation process.  Previous studies [10], [18] show that using 
reassignment method can improve the detection, the additive sound modeling, and the 
classification performance. Nevertheless, features extracted from reassigned 
spectrogram improve the classification results as shown in Table II. SVMs have 
proven to be robust in high dimensions. Also SVMs are well founded mathematically 
to reach good generalization while keeping high classification accuracy. The 
performance of the proposed classification system has been evaluated and compared 
with our previous work by using a set of synthetic test signals.  However, the 
proposed method maintains overall good performance. The experiments results are 
satisfactory, which encourages us to investigate better in the reassignment method. 

4 Conclusion 

In this paper, we propose a robust method for environmental sound classification, 
based on reassignment method and log-Gabor filters. We show how this method is 
efficient to classify the environmental sounds. Besides, our method uses an averaged 
12 log-Gabor filters concatenation applied to 3 reassigned spectrogram patches. Our 
classification system obtains good averaged classification result of the order 90.87%.  

Furthermore, reassignment method improves classification results. It used as the 
key element of obtaining an optimal classification compared to our previous methods 
[11]. In addition, this paper deals with robust features used with  one-against-one 
SVM-based classifier in order to have a system that quietly works, independent of 
recording conditions. Future research directions will include other methods extracted 
from image processing to apply in environmental sounds classification and will can 
be improved while digging deeply into reassignment methods. 
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4 DAIS, Università Ca’ Foscari Venezia, Venice, Italy

Abstract. Electrocardiographic (ECG) signals are emerging as a recent
trend in the field of biometrics. In this paper, we propose a novel ECG
biometric system that combines clustering and classification methodolo-
gies. Our approach is based on dominant-set clustering, and provides a
framework for outlier removal and template selection. It enhances the
typical workflows, by making them better suited to new ECG acquisi-
tion paradigms that use fingers or hand palms, which lead to signals with
lower signal to noise ratio, and more prone to noise artifacts. Preliminary
results show the potential of the approach, helping to further validate
the highly usable setups and ECG signals as a complementary biometric
modality.

Keywords: Biometrics, ECG, Clustering, Dominant Set, Outlier De-
tection, Template Selection.

1 Introduction

The ECG is a graphical record of the bioelectrical signal generated by the heart
during each cardiac cycle. Typically, it exhibits both persistent features (such
as the average P-QRS-T morphology, and the short-term average heart rate or
average RR interval), and nonstationary features (such as the individual RR and
QT intervals, and long-term heart rate trends) [1].

A recent application for the ECG is its use for biometric recognition [2–6].
In this paradigm, the development of highly usable setups that use the fingers,
or hand palms, as the signal source, is one of the recent trends, leading to new
challenges [6]. With these atypical setups, the acquired signal has lower signal
to noise ratio, and is more prone to noise artifacts. Figure 1 illustrates an ECG
time series, its main complexes, and examples of two noise types of artifacts
(powerline noise and motion artifacts), which need to be detected and removed,
so that the recognition performance is not deteriorated.

An ECG biometric system prepared to process such signals requires the im-
plementation of new blocks, namely an outlier removal step to distinguish noisy
segments from normal heartbeats. In this paper we present a novel approach
based on dominant set clustering [7]. Our approach enables the simultaneous
removal of outlier segments, and the extraction of representative templates.

J. Ruiz-Shulcloper and G. Sanniti di Baja (Eds.): CIARP 2013, Part I, LNCS 8258, pp. 535–542, 2013.
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Fig. 1. Example of ECG signals acquired at the fingers with heartbeat waveforms
with several R-peak complexes annotated, and corrupting noise (motion artifacts and
powerline noise)

The remainder of the paper is organized as follows. In Section 2 we present
an overview of ECG biometrics and a summary of our system. In Section 3 we
review the dominant set clustering paradigm, and show how it can be used for
outlier detection and template extraction. Finally, in Sections 4, 5 and 6 we
present the experimental setup, a summary of the results, and outline the main
conclusions.

2 ECG Biometric Systems

ECG-based biometric methods can be classified as fiducial, non-fiducial or par-
tially fiducial. Fiducial methods use anchor points (called fiducia) as references
[3, 5], where the R-peak of the ECG is typically the main reference, since it is
the easiest to distinguish [2, 8]. Non-fiducial methods extract information from
the ECG signals without having any reference point [4, 5]. Partially fiducial ap-
proaches use fiducial information only for ECG segmentation [3, 6]. We follow a
partially fiducial approach, and Figure 2 depicts the block diagram of our bio-
metric system: it starts with the acquisition of raw data, using a custom one-lead
sensor with virtual ground and dry Ag/AgCl electrodes [6]; the acquired signal
is then converted from analog to digital, and submitted to a data preprocessing
block which performs a digital filtering step (band-pass FIR filter order 300,
and cutoff frequencies 5-20Hz), and the QRS complex detection [6]; finally, the
signal is segmented into individual heartbeats.

Let xi be an individual heartbeat obtained after segmenting the ECG signal.
Each heartbeat is described by a vector of features xi = (x1i, . . . , xmi)


 ∈ �m,
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Fig. 2. Block diagram of our ECG biometric recognition approach

whose values, in this paper, are the amplitudes of the ECG heartbeat wave
form. Also, consider X = [x1, . . . ,xn] as the m×n matrix formed by n individual
heartbeats. The clustering block assigns each of the instances of X to a cluster.
Previous work in the context of ECG biometrics has already approached the topic
of outlier detection, evaluating two algorithms [9]: 1) distance-based detection
(DMEAN); and 2) clustering with integrated outlier detection criterion, using
DBSCAN. The approach presented in this paper is more integrated, and also
enables the generation of representative templates on a cluster basis.

For classification, we compare an instance-based learning template-matching
approach, through a k-Nearest Neighbor (k-NN) classifier, and with a Support
Vector Machine (SVM) classifier, which have been found in the literature to
perform adequately [10].

3 Robust Template Selection Using Dominant Sets

In order to select a set of ECG signal templates for a given person in a way to be
robust to outliers, we make use of a graph-based clustering approach introduced
in [7], known as dominant set clustering.

First of all, we cast the ECG clustering task for a given individual into a graph
clustering problem. To this end, let G = (V, ω) be a complete, edge-weighted
graph without self-loops, where V = {1, . . . , n} is the set of vertices, each vertex
i ∈ V being related to an individual heartbeat xi as defined in Section 2, and
ω : V ×V → �+ being a similarity function providing each edge in (i, j) ∈ V ×V
with a nonnegative weight ωij = ω(i, j) ≥ 0. The weight function is defined to
measure the similarity between two ECG heartbeats, assuming ωii = 0 for all
i ∈ V . In this work, we employ the following similarity measures:

– Euclidean (Eucl): ωij = e−d2
ij/σ

2

, dij = ‖xi − xj‖,
– Cosine (Cos): ωij = x


i xj

/
(‖xi‖‖xj‖),

– Discrete Fourier Transform (DFT): ωij = e−d2
ij/σ

2

,
dij = ‖S−1[F(xi)−F(xi)]‖,

where σ > 0 is a parameter of the Euclidean and DFT similarity measures
that we set to the median of the distances among all pairs of ECG signals, i.e.
σ = median({dij : i, j ∈ V }). Moreover, F is the discrete Fourier transform
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operator and S is a diagonal matrix, in which the diagonal holds the row-wise
standard deviations of X.

In the clustering framework proposed in [7], clusters are characterized in terms
of dominant sets, i.e. subsets of vertices generalizing the notion of maximal clique
to edge-weighted graphs that encode two fundamental properties of a cluster:
internal coherency and external incoherency. From a combinatorial perspective,
a dominant set is defined as a subset of vertices D ⊆ V satisfying the following
conditions:

wD(i) > 0, ∀i ∈ D ,

wD(i) < 0, ∀i ∈ V \D .

Here, wD(i) is a recursive characterization of a weight assigned to each element
i ∈ V with respect to the set D ⊆ V (we refer to the original paper [7] for
more details). Another characterization of dominant sets is in terms of strict
local maximizers of the following simplex-constrained quadratic optimization
problem:

max
α∈Δ

α
Wα (1)

where W is a matrix defined as W = [ωij ] and Δ is the standard simplex, which
is given by Δ =

{
α ∈ �n

+ :
∑

i∈V αi = 1
}
. It is indeed proven [7] that there

exists a one-to-one correspondence between dominant sets of G and strict local
maximizers of (1). Additionally, there exists also an interesting game-theoretic
characterization of dominant sets in terms of evolutionary stable equilibria of
two-person non-cooperative strategic games called clustering games [11, 12].

In order to extract a dominant set, we make use of the so-called Infection
and Immunization Dynamics (InImDyn) [13]. This dynamics modifies over time
an initial probability distribution (prior distribution) defined over V . At conver-
gence, the distribution is a local solution of (1) and the elements in V having
non-zero probability form a dominant set. This procedure allows to extract one
dominant set at a time, and one crucial problem to solve is how to enumerate
multiple dominant sets in order to detect multiple objects. A commonly used
method consists in a peeling-off strategy, i.e., one iteratively removes from the
graph the elements belonging to newly extracted dominant sets. Another solu-
tion, which turns out to be effective, is the one proposed in [14, Sec. 3.4] (we
refer to the paper for the details).

3.1 Extraction of the ECG Signal Templates

The problem of template extraction may be posed as follows [15]: given a set
of n heartbeats, acquired during one session, extract k templates that “best”
represent the variability, as well as the typically observed patterns. There are
two main approaches: a) selection of k heartbeats; and b) generation of k repre-
sentative heartbeats. This problem has already been tackled in other modalities
(e.g. signature and fingerprint) [15, 16], and is mainly based on selection.

Our approach is based on template generation using the dominant sets. As
a result of the dominant set extraction procedure mentioned in the previous
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section, we obtain a set of probability distributions over the set of heartbeats
Γ =

{
α(1), . . . ,α(k)

}
. Each vector α(i) ∈ Γ ⊂ Δ corresponds to a dominant set,

and each component of α(i) intuitively represents the probability of being a good
representative for the ith extracted cluster [7]. Based on this fact, we compute
a template t(i) from the ith cluster as the expected ECG heartbeat under the
distribution α(i), i.e.

t(i) = Xα(i) . (2)

By repeating this operation for each dominant set extracted from the graph G
of ECG signals, we obtain a set of k templates T = {t(1), . . . , t(k)}. Note that
a dominant set represents a compact cluster and it is very robust to outliers.
Indeed, outliers appear in the vector α(i) as zero components, thus being intrin-
sically not detrimental to the template computation.

In Figure 3 a) we show the single heartbeats of one of the acquisitions, to-
gether with the generated templates. In this case, 3 templates were generated,
completely removing the outlier segments. In Figure 3 b) we show the α weights
used for this generation (the x-axis represents the partition, and the y-axis repre-
sents the weight associated to each partition). Each of the generated templates
is based on a portion of the partitions, with several partitions having a zero
weight.

(a) Template Generation (b) α

Fig. 3. In a) illustration of the single heartbeat waveforms for one of the acquisition
sessions and the generated templates; b) α weights used for the generation of these
templates

3.2 Exploitation of ECG Signal Templates for Classification

Our classification methodology follows the approach found in [10], where k-NN
and SVM classifiers were tested in the context of ECG recognition. Let X(u)

denote the matrix of heartbeat waveforms of the uth individual, u ∈ {1, . . . , q}
and let T (u) be the set of ECG signal templates extracted according to the
methodology presented in the previous section from X(u). In general, different
subjects can have a different number of templates. We construct a training set
from the collected templates as
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�training =
⋃

u∈{1,...,q}

{
(t, u) : t ∈ T (u)

}
, (3)

and we train a k-NN or SVM classifier based on it.

4 Experimental Setup

For the evaluation of the proposed approach, we used a dataset consisting of
the ECG data from 63 subjects (49 males and 14 females) with an average
age of 20.68 ± 2.83 years. The subjects were asked to sit for 2 minutes in a
resting position with two fingers, one from the left and another from the right
hand, placed in each of the dry electrodes (more details in [6]). The signals were
acquired using a bioPLUX research acquisition unit (12-bit resolution and 1kHz
sampling frequency). The data consists of two independent acquisition sessions
separated by a 3-month interval, entitled “T1” and “T2” [17].

The evaluation of our system is based on: a) analysis of the generated tem-
plates; b) a quantitative analysis on the recognition performance. We compare
against the performance obtained by the DMEAN algorithm [9], when using as
templates, means of 5 heartbeats.

Recognition performance was assessed for both the identification and authen-
tication scenarios. For identification, we based the analysis on the Error of Iden-
tification (EID), which is the proportion of incorrect identifications with respect
to the total number of tests (Rank-1 error). For authentication we compute, for
each operating point (the threshold in k-NN, or the fraction of agreeing mod-
els in SVM), the False Acceptance Rate (FAR) and the False Rejection Rate
(FRR), which are used to determine the Equal Error Rate (EER). Regarding
the classifiers, for the k-NN, we used k = 1, and for the SVM we used a linear
kernel.

5 Results

Table 1 shows the biometric recognition performance (EER and EID) of the
proposed approaches (dominant sets with Cos, DFT and Eucl), against baseline
(DMEAN ), within-session T1 (T1-T1), and across-sessions (training in T1, and
testing in T2; T1-T2). For the T1-T1 analysis, we employed cross-validation
using 30% of T1 as training data and the rest as testing data, over 30 runs.

We can observe that across-sessions results are much worse than within-session
results, which was expected given the fact that, in the within-session case, the
training and testing data belong to the same acquisition session and, therefore,
the extracted ECG segments exhibit greater similarity, especially in regard to the
heart rate. In the across-sessions case, the use of the template generation method
produces recognition rates with worse performance, but in the same order of
magnitude, when compared with what is obtained with the DMEAN method,
which only performs outlier removal. This may be a consequence of having fewer
templates than DMEAN approach. The same is not true for the within-session
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case. In particular, the Eucl metric using the SVM classifier outputs the global
best results. Concerning the three adopted metrics (Cos, DFT and Eucl), the
results are similar (within each of the train and test conditions), with a prefer-
ence for the Eucl metric. Finally, regarding the classification method, the SVM
classifier performs better in all studied cases.

These results suggest that, although the template generation method does
not improve the recognition performance for the across-sessions case (the more
realistic one), we can still gain from its use in the sense that it reduces the
number of templates that are required to train the classifiers, thus achieving
better computational efficiency (i.e. the mean number of templates used for
training in the Eucl is 6.9 templates per subject). Additionally, a fine-tuning of
the parameters may lead to better performance.

Table 1. Equal Error Rates (EER) and Identification Errors (EID) in %; proposed
proposed approach (DS) vs. DMEAN, baseline presented in [9], without template gen-
eration; values in bold represent the best score for each column

Train Method
1-NN SVM

T1-T1 T1-T2 T1-T1 T1-T2
EER EID EER EID EER EID EER EID

DMEAN 2.53 1.01 11.90 41.57 1.00 1.22 9.47 38.30

DS
Cos 2.66 1.90 13.91 47.67 1.26 1.61 11.76 46.45

DFT 2.48 1.28 12.46 44.07 0.99 1.21 11.10 40.63
Eucl 2.51 1.43 12.31 42.57 0.75 0.86 10.86 39.91

6 Conclusion

Research on Electrocardiographic (ECG) signals has advanced a long way from
its clinical roots, to novel application domains in areas so diverse as biometric
recognition. The development of highly usable setups based on fingers or hand
palms leads to signals with lower signal to noise ratio, and more artifacts (e.g.
motion induced).

The biometric recognition sytems adapted to this new paradigm require the
inclusion of outlier detection blocks; furthermore, given that heartbeat wave-
forms show high intra-subject morphological similarity, template generation can
also be a nice add-on to ECG-based biometric systems. In this paper we pre-
sented a novel approach based on dominant set clustering. The described system
enables the simultaneous generation of templates and removal of outliers. Ex-
perimental results have shown that our approach enables high recognition rates
comparable to other approaches that also integrate outlier detection, but no
template extraction step. Therefore, the main advantage the proposed approach
is the improvement of the computational efficiency of the biometric recognition
system, given that the number of templates that have to be stored per subject
is much smaller, significantly reducing the number of comparisons that have to
be made.
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Abstract. Traditional methodologies use electrocardiographic (ECG)
signals to develop automatic methods for onset and peak detection on
the arterial pulse wave. In the present work a Multilayer Perceptron
(MLP) neural network is used for classifying fiducial points on photo-
plethysmographic (PPG) signals. System was trained with a dataset of
temporal segments from signals located based on information about onset
and peak points. Different segments sizes and units in the neural network
were used for the classification, and optimal values were searched. Re-
sults of the classification reach 98.1% in worse of cases. This proposal
takes advantages from MLP neural networks for pattern classification.
Additionally, the use of ECG signal was avoided in the presented method-
ology, making the system robust, less expensive and portable in front of
this problem.

Keywords: Arterial Pulse Wave, Artificial Neural Networks, Multilayer
Perceptron, Onset Classification, Peak Classification.

1 Introduction

The photoplethysmography (PPG) signal has been used as a simple and low-cost
optical technique, which is used for measuring blood volume changes through
of the light intensity during the emission and reception on the skin surface.
Peripheral body sites such as fingers, ears, toes and forehead are used to obtain
these kind of signals, approaching blood volume and perfusion changes due to
the dissemination or absorption of the incident light, providing the dynamical
part of the signal [1,2].
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Applications of PPG signal treatment can be seen in commercial medical
equipment, where measures of oxygen saturation, blood pressure or heart rate
monitoring assess autonomic functions and contributes to peripheral vascular
diseases diagnosis. In this way, fiducial points detection on PPG signals is used
to obtain relevant information such as pulse transit time (PTT) and pulse wave
velocity (PWV), which evaluate vascular effects of aging, hypertension, stiffness
and atherosclerosis [3,4].

Onset and peak pulses detection is not a trivial task, due to natural con-
ditions as sensor positioning, skin features, breathing, baseline drift, perfusion
phenomena, visco-elastic and viscosity property of arteries, arterial stiffness and
reflected waves from peripheral sites, which can be easily involved in noise and
artifacts. As PPG signal typically has small amplitude, its incident and reflected
waveform can be affected for these kind of conditions [5].

Different methods have been developed for this detection task varying its com-
plexity. These can include adaptive threshold, computer-based filtering, feature
extraction, and derivative calculation [6,7]. Most of them are assisted by the
electrocardiographic (ECG) signal, which provides a cost increment of medical
equipment and difficult its clinical applications in the Health Primary System. In
[7], morphological similarity of adjacent pulse is used to enhance signal quality
and increase the accuracy of the onset pulses detection. A disadvantage of the
method is the inclusion of measures from time interval between R to R peak of
ECG signal. Additionally, it is applied principal components analysis over ad-
jacent peaks to enhance the onset detection. Information about diastolic point,
second derivative and tangent intersection, shows an enhanced accuracy and
precision [8]. The use of ECG signal problem, again represents a disadvantage
when is not possible obtain this kind of signals. Recently, in [9] a new method
is presented, based on filed collected photoplethysmograms. This method does
not use ECG signal and works through PPG signal filtering in different ways,
but digital filters introduce delays in the temporal signal, which can give wrong
information about onset localization in signal. Other function of that algorithm
is the detection of peak pulses in the PPG signal.

Neural networks has been used in cardiovascular problems detection, such
as QRS detection [10,11], clustering [12,13] and applications with PPG signals
[14,15]. Despite its advantages for pattern recognition, few studies have been
reported as alternative method for onset and peak pulses detection. An example
of this can be found in [16], where Self Organizing Maps (SOM) were employed
for the onset and peak detection and classification.

In this paper, it is presented a proposal based on pattern recognition, which
uses a Multilayer Perceptron (MLP) to learn the temporal information around
onset and peak pulses. Supervised training is implemented, where PPG signals
marked by expert observers are used. Onset and peak are designated into a
temporal windows used to train the neural network. For validation of the models,
the Leave One Out cross validation method is implemented, which is used when
the database is the limited size.
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2 Materials and Methods

Database is composed by signals from seven volunteers, who participated in the
experimental protocol and provide informed consent in accordance with insti-
tutional policy. Each subject remains in rest during five minutes in the supine
position. Previously to the test, personal and clinical data were collected of each
volunteer. Table 1 shows the age and vital signs of the subjects.

Table 1. Characteristics of Volunteers

Subject Sex Age(years) HR(bpm) SBP(mmHg) DBP(mmHg) Breath/min

1 M 19 72 102 68 20
2 M 20 60 98 60 16
3 M 22 80 125 80 17
4 M 20 84 112 72 18
5 F 18 80 110 64 16
6 F 18 88 108 58 22
7 F 18 72 108 68 19

Mean + SD 19.3 + 1.50 76.57 + 9.36 109 + 8.54 67.14 + 7.47 18.28 + 2.21

HR: Heart rate
SBP: Systolic blood pressure
DBP: Diastolic blood pressure
SD: Standard deviation

Acquisition was performed by an experimental station, which collected phys-
iological signals of each person. This station simultaneously acquires electrocar-
diography (ECG) and photoplethysmographic (PPG) signals through an ECG
channel with bandwidth between 0.15 to 150 Hz and two PPG channels with
bandwidth from 0.5 to 16 Hz. Simultaneous ECG and PPG signals were sam-
pled with 1000 Hz and manually marked by trained observers from Center of
Medical Biophysics. This task was developed using functions in Matlab software
(Mathworks Inc., Natick, MA), which provide additional capabilities such as,
add, move and remove the fiducial points of ECG and PPG signals (Fig. 1).
These points correspond to peaks values of QRS complex and, onsets and peaks
of PPG signal. This information is useful for testing the proposed method.

2.1 Neural Networks Training

Neural networks have the ability of learning complex nonlinear patterns, based
on input-output relationships, adjusting a set of free parameters known as synap-
tic weights. The most common type of networks employed in classification tasks
are the Multilayer Perceptrons (MLPs), which have only feed forward connec-
tions and are trained in a supervised way [17].

In the present work, MLPs are employed to learn patterns in temporal seg-
ments around onset and peak fiducial points on PPG signal. This work is based
on the annotations of the expert observers, which marked the onset and peak
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Fig. 1. PPG signal acquisition and annotation system

points. These fiducial points are located in the middle of segment, and then is
extracted the temporal segment (Figure 2). The segment size is a topic of study
in the present study, then windows with values of 21, 41, 61, 81 and 101 mil-
liseconds were used and observed its relation with the behaviour of the network.

Smaller sizes were not considered because are shorter windows to pattern
representation and can be confused with noise segments. In PPG signals, distance
between onset and peak is less than 100 milliseconds, due to its nature [18,19].
For this reason, an upper period of time was not considered. Windows with
the same size of the onset and peak pattern were extracted to create a third
class called noise, these segments were taken from samples before and after of
the onset and peak windows. This makes that the noise represents segments of
signal without activity involved in other classes.

MLP architecture consists of an input, a hidden layer and a output layer.
Number of nodes in the input is given by the segment size; number of units in the
hidden layer was heuristically studied, trying 5, 10, 15 and 20 units. In the output
layer were used three units, each one identifies each pattern. More layers are not
used because two layers are enough for a typical problem of classification [17].

Each segment is normalized before being presented to the network, maintain-
ing its values in the interval from 0 to 1. This contributes to avoid the saturation
of the values in the synaptic weights, which are initialized in a random manner.
Hyperbolic tangent functions are used in each unit as activation functions. In
this way, the units in the output have the value of one when the input belongs
to this class, and -1 when does not belong. Training for MLP is developed in
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a supervised manner, where patterns and its labels are necessary. The resilient
backpropagation algorithm was used for the training of the network, due to its
fast and stable convergence [20]. Training set must represent the statistics of the
data, and its construction is important for a good training, because the network
must generalize its performance to new inputs.

In the present study, the database has a limited size, making difficult the di-
vision of the data for training and validation. Alternatives as bootstrapping and
cross validation methods can be useful in these cases. An example of this kind of
methods is the Leave One Out (LOO) method, where the performance of pattern
classification models can be evaluated based on LOO error. The applied method
consists in training the network with all data, leaving only an observation out. In
the present case, six of seven signals were used in the training, each of them with
345 onset and 345 peak points. When training was finished, the validation is cal-
culated using just with the signal not included in the training, also with 345 onset
and peak points. Finally, there is many models as observations of database. For
this reason the method is employed with databases with limited observations.

Fig. 2. Onset, peak and noise patterns and MLP Neural Network

The LOO error is a statistical estimator of the behaviour when a learning
algorithm is used, and it is very useful for model selection because is slightly
biased, despite its empirical error. Also, when the algorithm is stable, LOO
error is low [21,22]. The LOO error can be calculated by using:

ELOO(fD) =
1

m

m∑
i=1

 (f i, zi) (1)
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where m is the number of samples in the D set, composed by the zi elements,
and it is built the learning algorithm, f i is the function obtained after training.

These methods have been used in applications where models of regression or
structures in time series are required. Also, there have been in areas such as
digital signal processing, obtaining good results [23,24].

3 Results and Discussion

As mentioned, windows with 21, 41, 61, 81 and 101 milliseconds were used to
represent the patterns of the fiducial points and networks with 5, 10, 15 and 20
units in the hidden layer were trained. The results are presented in the Table 2,
where the error was calculated based on expression (1). The results represent the
performance of the MLP method for classification, obtaining seven networks due
to the validation methodology, where for each window size and number of units
was trained one network. Average performance of the technique was computed
using the result of each of these networks.

The results show that models with few units in the hidden layer are preferred,
because when the number of units grows up the network is more specialized,
decreasing the performance. Results for networks with 21, 41 and 61 milliseconds
manifest this behavior, where the best results were given when the network just
has five units in the hidden layer.

Window size used for the pattern representation is relevant for the obtained
models. When sizes of 81 and 101 milliseconds are used, the results reach the
maximum possible, showing that neural networks can learn the patterns ex-
tracted from PPG signal. It is important to note that large networks are avoid,
because the computational cost is higher and its training can be more special-
ized. In this way, the best model to develop the pattern classification is a network
with five units in the hidden layer and 61 nodes in the input.

Table 2. Results for Classification

Window Units in the hidden layer
size (ms) 5 10 15 20

21 98.10 ± 1.31 97.79 ± 1.41 97.78 ± 1.46 97.94 ± 1.45
41 99.92 ± 0.14 99.87 ± 0.27 99.90 ± 0.15 99.89 ± 0.19
61 100 ± 0 99.96 ± 0.06 99.96 ± 0.06 99.96 ± 0.06
81 100 ± 0 100 ± 0 100 ± 0 100 ± 0
101 100 ± 0 100 ± 0 100 ± 0 100 ± 0

These results compared with the used method in [16], where a Self Organizing
Map (SOM) was implemented to do the classification, are quite close in terms
of accuracy. There, accuracy values reach 97.93% using a map of 36 x 10 units
in lattice, a Gaussian function as neighborhood function and 2000 iterations.
The noise class for the SOM case was not defined, detecting just onset and peak
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segments. Those results can be compared with accuracy of 100% in this work,
but validation for the SOM case was developed in a hold out manner.

In addition, it is important to say that the present study does not use the ECG
signal for detection, which is a considerable difference due to the smaller amount
of information that contains just the PPG signal. This is taken as advantage
when the resources are restricted to develop a detection.

4 Conclusions

A proposal for onset and peak pattern classification has been presented, based
on MLP networks. Capabilities of this kind of neural networks are exploited
to learn onset and peak patterns on PPG signals, using a temporal window as
input.

Parameters as the number of units in the hidden layer and the segment size
used in the network input were studied. Results show that the best performance
can be reach using 61 milliseconds in the temporal window and a neural network
with five units in the hidden layer, when the accuracy is 100%.

The results show that the MLP neural network can be used to develop a
detector using a sliding temporal window on PPG signals, taking advantage of
capabilities from MLP as pattern classifier. The presented work can be com-
plemented in this way, avoiding the use of ECG signal for the detection. Some
additional studies can improve the method and obtain better results.
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7. Xu, P., Bergsneider, M., Hu, X.: Pulse onset detection using neighbor pulse-based
signal enhancement. Medical Engineering and Physics 31, 337–345 (2009)

8. Hang, S., Chungkeun, L., Myoungho, L.: Adaptive threshold method for the
peak detection of photoplethysmographic waveform. Computer in Biology and
Medicine 39, 1145–1152 (2009)

9. Liangyou, C., Andrew, T., Jaques, R.: Automated beat onset and peak detection
algorithm for field-collected photoplethysmograms. In: IEEE EMBS, pp. 5689–5692
(2009)

10. Markowska-Kacsmar, U., Kordas, B.: Mining of Electrocardiogram. In: XXI Au-
tumn Meeting of Polish Information Processing Society, Conference Procedings,
pp. 169–175 (2005)

11. Acquaticci, F.: Detección de Complejos QRS mediante Redes Neuronales, Buenos
Aires Argentina

12. Lagerholm, M., Peterson, C., Braccini, G., Edenbrandt, L., Sörnmo, L.: Cluster-
ing ECG Complexes, Using Hermite Functions and Self-Organized Maps. IEEE
Transaction on Biomedical Engineering 47(7) (July 2000)

13. Wenyu, Y., Gang, L., Ling, L., Qilian, Y.: ECG Analysis Based on PCA and
SOM. In: IEEE Int. Conf. Neural Networks and Signal Processing, Nanjing, China,
December 14-17 (2003)

14. Johansson, A.: Neural network for photoplethysmographic respiratory rate moni-
toring. Medical and Biological Engineering and Computing 41(3), 242–248 (2003)

15. Soltane, M., Ismail, M., Rashid, Z.A.A.: Artificial Neural Networks (ANN) Ap-
proach to PPG Signal Classification. International Journal of Computing and In-
formation Sciencies 2(1) (April 2004)
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Abstract. Most common approaches to phonotactic language recogni-
tion deal with phone decoders as tokenizers. However, units that are
not linked to phonetic definitions can be more universals, and therefore
conceptually easier to adopt. It is assumed that the overall sound char-
acteristics of all spoken languages can be covered by a broad collection of
acoustic units, which can be characterized by acoustic segments. In this
paper, such acoustic units, highly desirables for a more general language
characterization, are delimited and clustered using Gaussian Mixture
Model. A new segmentation method on acoustic units of the speech is
proposed for later Gaussian modelling, looking for substitute the pho-
netic recognizer. This tokenizer is trained over untranscribed data, and
it precedes the statistical language modeling phase.

Keywords: Spoken language recognition, Gaussian tokenization, acous-
tic segment modeling.

1 Introduction

Speech is the acoustic manifestation of the language, and probably the main
comunication way between humans. The development of telecommunications
and information’s digital processing has demanded efforts to understand the
mechanisms of communication by speech. Among the numerous applications
included in the field of speech signal analysis, is the process of detecting the
presence of a given spoken language in a segment of speech by an unknown
speaker, commonly referred to as spoken language recognition (LRE)[1].

It is known that humans recognize languages through a perceptual process
that is inherent to the auditory system [2]. The perceptual cues that human lis-
teners use, are an important source of inspiration for automatic spoken language
recognition.

Many sources of information are imprinted on the speech signal, however those
related with LRE task can be grouped in two broad classes, based on prelexical
information and based on lexical semantic knowledge [3]. There are experiments
which have proved that both, prelexical and lexical semantic knowledge con-
tribute to the human perceptual process for spoken LRE.
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Fig. 1. Levels of perceptual cues used for language recognition

Many representations of those desired cues, that distinctively characterize the
diferent spoken languages, have been explored in the past few decades. Articu-
latory parameters[1], acoustic features [4], prosody [5] and phonotactic citeZiss-
man96 are some of the features explored.

Although higher levels, like lexical and grammatical, contain much more lan-
guage information than the other levels (see Fig.1) and tend to be more robusts
to the effects of channel distortion, they have the disadvantage of being more dif-
ficult to generalize (speech recognizers are required for each language to identify
it, which requires transcribed audio so difficult to obtain) and can be computa-
tionally expensive. This makes the systems based on these standards rarely used
in practice [2].

By contrast, the lower levels like the acoustic and prosodic ones, have the
advantage of being easy to apply to any number of languages to a relatively
low computational cost, but suffer from a lower precision and less robustness to
channel variations and noise. On the other hand the intermediates levels like the
phonotactic, maintains a balance between robustness, generalization and compu-
tational cost. While the acoustic information covers the physical sound patterns,
the phonotactic refers to the constraints that determine possible syllables struc-
tures in a language.

Nowadays it is possible to distinguish two main groups of techniques for au-
tomatic LRE: acoustic level techniques and phonotactic level techniques. The
phonotactic information combined with the acoustic information, are the most
used features in LRE [7], being the ones based on phonotactics, those who provide
the best compromise between the level of prior information needed for training
the system and recognition accuracy. Nevertheless, currently, are merged both
paradigms in most of comercial systems.
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1.1 Problem Description

The phonotactic based systems use observed phono sequences to construct a sta-
tistical language model (LM) for each language of interest. This approach have
two major drawbacks. Firstly, most of this systems use phonemes, a knowledge-
based linguistic concept that is language dependent and in many cases difficult
to deal with in speech processing. This systems require one or more phoneme rec-
ognizers, and each recognizer requires labeled data that are not always available
(especially for rarely observed languages).

Secondly, the decoding phase of all these phonotactic approaches is compu-
tationally expensive, particulary when several recognizers in different languages
run in parallel as in Parallel Phone recognition followed by LM (PPRLM) [6].
A model of acoustic units, language independent, can solve some of the just
mentioned problems.

In this paper we propose to model certain acoustic segments of the speech
signal, and to use them for later statistical modelling of each language. In other
words, we will substitute the phoneme recognizer of a PRLM system, by a Gaus-
sian tokenizer, trained with acoustic units, obtained trough a data-driven acous-
tic unit recognizer. This way we eliminate the need of phonetically transcribed
data for training, which allows that the tokenizer could be trained on the same
acoustic data as that used for the LRE task, thus minimizing any session mis-
match. With this method it is easier to increase the number of tokenizers since
phonetically transcribed data are not required.

This investigation is focused on the main part of acoustic segmentation tech-
niques, directed towards the LRE. In particular, this represents an incipient
attempt to find an alternative representation to phonemes, which is a faintly
studied topic today.

There are many other related issues, like channel normalization, channel adap-
tation, robustness under noisy conditions, but these issues are not investigated
this time, they remain for future works.

This paper is organized as follows: Section 2 describes our main contribution
which is the segmentation technique of the speech signal. In Section 3 and 4
is explained how the representation chosen was obtained. Then we described
in Section 5 the results of the proposed approach, ending in Section 6 with
conclusions and futures works.

2 Speech Segmentation

As we said, many sources of information besides the linguistic message are carried
on the speech signal. For the particular task of LRE a question that arises is
whether phonemes, or other similar linguistically defined units are really needed.
The underlying concept of words formed by phonemes may not be necessary.
Over this ideas new approaches for LRE started to emerge.
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In [9] Torres-Carrasquillo uses a sequence of Gaussian index to model the
language information. Adami in [5] uses temporal trajectories of fundamental
frequency and short-term energy to segment and label the speech signal into
a small set of discrete units to caracterize language. More recently Spada in
[10] tried to approximate a phonetic segmentation using the variations in the
spectrogram of the speech signal.

Our research contribute on this direction, trying to develop a technique for
conditioning the Gaussian Mixture Model (GMM) tokenizer input. The idea was
to eliminate the noisy token sequences and give prominence to longer duration
events. We used information in the cepstral domain to segment the speech signal,
supported by the GMM probability distribution of the feature vectors.

Fig. 2. Proposed Methodology: three first steps from training phase and the 4th from
the test phase

2.1 Proposed Methodology

The features vectors can be seen as points in an N-dimensional feature space,
where N is the dimension of feature vectors. Together with the influence of
the variability sesion effects, these feature vectors represent also the state of
our articulation organs. As the movements of our articulation organs are slow,
it could be assumed that consecutive features in time domain, will be near in
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cepstral domain too. In other words, acoustically stable sounds intervals, corre-
spond to consecutive features in cepstral domain.

These ideas motivated us to think that a good way to define acoustic units
could be by grouping together nearby features in the cepstral domain. Spada
in [10] obtained acoustic segments using a spectral variation function based on
the euclidean distance between the static MFCC to the left and the right of the
current frame. Our proposal incorporates the dynamic of the features, adding
the delta and double-delta information to the analisys. Not only looking for
spectrally stable segments, but a more comprehensive pattern.

The first step is the creation of a Universal Background Model (UBM)[12] as
is shown in Fig. 2. This model will be called the “slicer” UBM, because once
obtained it will indicate the boundaries of the segments. We grant the quality
of universal to this model, because it is independent of language and seeks to
represent as much as possible acoustic phones, which is why you train it with all
the languages that will be involved in the task.

One of the attractive attributes of the GMM is its ability to closely approxi-
mate any arbitrarily shaped data distributions, and its ability to model the un-
derlying data classes by the individual Gaussian components. Here this GMM is
used to approximate the overall acoustic-phonetic distributions of the languages
over the model was trained on.

The trainset is clustered with this model, and the two most likely Gaussians
for each frame are analyzed. Two frames will stay together if they share one of
their two most probable Gaussians, otherwise they’ll be separated, and be part
of different acoustic units. If there is a frame whose most probable Gaussians
have no relationship with their neighbors, then that frame is removed. For the
features corresponding to a same acoustic unit, we compute the average, in this
way the whole segment in represented by an average single vector.

With this, we expect to reduce the cost of the systems in terms of resources
and computational complexity, without compromising its discriminative power.

3 GMM for Voice Tokenization

After the segmentation is done, another Gaussian cluster is trained, but this
time with much less classes. This model will be called the tokenizer UBM, and
its function is to represent those acoustic units previously segmented and rep-
resented by an average vector, with the index of the most likely Gaussian of
the tokenizer just like Torres-Carrasquillo did in [9]. With this approach, the
vocabulary or number of tokens in the alphabet, is the same as the number of
Gaussians in the UBM tokenizer. For our experiments we use 128 Gaussians
clusters.

This aspect will be studied looking for an optimization in future works, be-
cause we are tempted to think that exist a relation between the number of
clusters and the number of common phones of the languages that participate in
the model creation.
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4 Language Modeling

The purpose of the LM is to provide a syntax that defines possible tokens se-
quences and enables the computation of the probability (P(W |L)) of the token
string W = (w1, w2, ..., wQ) given the LM L.

The statistical LM is created using the training text set, which was gener-
ated by means of the previously trained cluster (UBM tokenizer). Making use
of the Carnegie Melon University Statistical Language Modeling toolkit [13] we
obtained trigram models for each target language. At the testing phase, to es-
timate the probabilities of an index triplet (3-gram) we compute this quantity
as:

P (wi|wi−1, wi−2) =
C(wi−2, wi−1, wi)

C(wi−2, wi−1)
(1)

where C(wi−2, wi−1, wi) and C(wi−2, wi−1) are the frequency count of the triplet
(wi−2, wi−1, wi) and the index duplet (wi−2, wi − 1) respectively, that occurred
in the training set.

Thus for every string of Gaussian indexes, the probability of it is calculated
as:

logP (W |L) =
Q∑
i=1

logPL(wi|wi−1, wi−2) (2)

The language corresponding to the LM that maximizes P (W |L) is selected as
the language sought.

5 Experimental Results

The speech signal is divided into overlapping frames, 25 ms length with 10 ms
frame shift, where it is supposed to be stationary. Mel Frequency Cepstral Co-
efficients (MFCC)[11], deltas (Δ) and double-deltas (ΔΔ) are used to describe
each frame.

The experiments were conducted using a part of the Oregon Graduate Insti-
tute Multi-Language Telephone Speech (OGI) corpus [14].

A silences detector process took place before the Gausian segmentation step.
We use a trigram model to describe each language and the slicer UBM is esti-
mated from the training selected part of the OGI corpus.

The selected target languages were english and spanish, and the training and
test sets where defined as follows:

Table 1. Experiment Corpus

Training set

Language Time Number of signals

English 1h 23min 102

Spanish 1h 23min 109

Test set (30s each signal)

Language Number of signals

English 109

Spanish 45
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It is worth noting the small volume of training samples (less than 3 hours)
and the fact that we haven’t made use of any phonetically transcribed data for
the experiments.

The performance measure used for this task is the equal error rate (EER).
It represents the system performance when the false acceptance probability (de-
tecting the wrong language for a given test segment) is equal to the missed
detection probability (rejecting the correct language).

Table 2. Performance comparison between our Gaussian segmentation based criterion
and the Euclidean distance based criterion [10]

Language EER Gaussian EER Euclidean

English 22.01% 36.69%

Spanish 24.44% 36.66%

The results are compared using the 30-second test segments.

6 Conclusions

It’s been presented a method for segmenting the speech signal into a number
of acoustic units, seeking to find a more compact and language-independent
representation. Of course the goal was to do this without a significant damage
to the performance of the system, and the experimental results have shown
promissing values of EER for this approach.

For 30s test segments, results were around 23% of EER, which although still
far from the results using phonetic recognition is a significant improvement to the
proposed made in [10], much more appealing with the small amount of training
data which is a limitation very commonly found in real world applications.

Futures studies will be conducted over the idea of increasing the number of
tokenizers, looking for analogies with PPRLM, and the selection of more optimal
features for the particular task. Also are objectives to incorporate more samples
and more languages to the experiments. The aspect of the number of Gaussians
clusters used in the GMM tokenizer is also pending of further insights, because
as we said there is probably a relation between the number of clusters and
the number of common phones of the languages that participate in the model
creation.
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Low Cost Language Identification. In: V Jornadas en Tecnoloǵıas del Habla, pp.
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Álvarez-Meza, Andrés Marino I-190,

I-238, II-495
Arana-Daniel, Nancy I-73
Arcelli, Carlo I-25
Arevalillo-Herráez, Miguel I-359
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de Alcântara, Marlon F. II-471
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Garćıa, Maŕıa M. II-190
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Leon, Javier Lamar II-366
Li, Xiaoou II-342
Liu, Feng I-117
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Loyola-Gonzalez, Octavio I-311

Machado, Liliane S. I-165, II-158
Machlica, Lukáš I-49
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Nápoles, Gonzalo I-270, II-190
Nappi, Michele II-302
Nasrollahi, Kamal II-334
Nava, Rodrigo II-214
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Tepper, Mariano I-230, II-552, II-560
Thibault, Guillaume II-238
Tome, Pedro II-399
Torres, Diana II-246
Torres, Esley I-383
Torres, M. Inés I-496
Torres-Boza, Diana I-519
Toumi, Hechmi I-472
Tournu, Helene II-25
Traina, Agma Juci Machado I-375,

I-464



Author Index 563

Traina-Jr., Caetano I-464
Trujillo, Maria II-174
Trusova, Yulia I-423

Uhl, Andreas I-391, II-310, II-374
Ulloa, Gustavo I-84
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