Cooperatively Searching Objects
Based on Mobile Agents

Takashi Nagata', Munehiro Takimoto', and Yasushi Kambayashi?

! Department of Information Sciences, Tokyo University of Science, Japan
2 Department of Computer and Information Engineering,
Nippon Institute of Technology, Japan

Abstract. This paper presents a framework for controlling multiple
robots connected by communication networks. Instead of making mul-
tiple robots pursue several tasks simultaneously, the framework makes
mobile software agents migrate from one robot to another to perform
the tasks. Since mobile software agents can migrate to arbitrary robots
by wireless communication networks, they can find the most suitably
equipped and/or the most suitably located robots to perform their task.
In this paper, we propose a multiple robot control approach based on
mobile agents for searching targets as one of the effective examples.
Though it is a simple task, it can be extended to any other more prac-
tial examples, or be used as an element of a real application because
of its simplicity. We have conducted two kinds of experiments in order
to demonstrate the effectiveness of our approach. One is an actual sys-
tem with three real robots, and the other is a simulation system with a
larger number of robots. The results of these experiments show that our
approach achieves reducing the total time cost consumed by all robots
while suppressing the energy consumption.

Keywords: Mobile agent, Dynamic software composition, Intelligent
robot control.

1 Introduction

In the last decade, robot systems have made rapid progress not only in their
behaviors but also in the way they are controlled. In particular, control systems
based on multiple software agents have been playing important roles. Multi-
agent systems introduced modularity, reconfigurability and extensibility to con-
trol systems, which had been traditionally monolithic. It has made easier the
development of control systems on distributed environments such as multi-robot
systems. On the other hand, excessive interactions among agents in the multi-
agent system may cause problems in the multiple robot environments.

In order to mitigate the problems of excessive communication, mobile agent
methodologies have been developed for distributed environments. In a mobile
agent system, each agent can actively migrate from one site to another site. Since
a mobile agent can bring the necessary functionalities with it and perform its

N.T. Nguyen (Ed.): Transactions on CCI XI, LNCS 8065, pp. 119-[[36] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

120 T. Nagata, M. Takimoto, and Y. Kambayashi

tasks autonomously, it can reduce the necessity for interaction with other sites.
In the minimal case, a mobile agent requires that the connection is established
only when it performs migration [I].

The model of our system is a set of cooperative multiple mobile agents execut-
ing tasks for controlling a pool of multiple robots [2]. The property of inter-robot
movement of the mobile agent contributes to the flexible and efficient use of the
robot resources in addition to reducing the number of inter-communication as
mentioned above. A mobile agent can migrate to the robot that is the most con-
veniently located to a given task, e.g. the closest robot to a physical object such
as a soccer ball. Since the agent migration is much easier than the robot motion,
the agent migration contributes to saving power consumption. Here, notice that
any agents on a robot can be killed as soon as they finish their tasks. If the
agent has a policy of choosing idle robots rather than busy ones in addition to
the power-saving effect, it would result in more efficient use of robot resources.

In this paper, we show that the effectiveness of our control system in terms
of resource usage and the efficiency of our system in terms of power consump-
tion in two experimental setting. One setting consists of three physical robots
cooperatively search targets [3] and the other setting consists of a larger number
of virtual robots on a simulator also cooperatively search targets [4]. Since we
implemented the simulator that reflects parameters given by the experiments
with actual robots, we can expect the results of the simulation should be realis-
tic enough. Although our example may look too simple, it could be extended to
practical applications, or used as elements of them in a variety of applications
because of its simplicity.

The structure of the balance of this paper is as follows. In the second section
we describe the background. The third section describes the mobile agent class
library that we have developed for controlling multiple robots. In our robot
control system, the mobility that the software mobile agent system provides
is the key feature that supports the ability of adding new functionalities to
intelligent robots in action. The fourth section shows an example of intelligent
robot systems in which robots search multiple target objects cooperatively. In the
fifth section, we demonstrate how the properties of mobile agents can contribute
to efficient use of robot resources through numerical experiments based on a
simulator. Finally, we conclude in the sixth section.

2 Background

The traditional structure for the construction of intelligent robots is to make
large, often monolithic, artificial intelligence software systems. The ALVINN au-
tonomous driving system is one of the most successful such developments [5].
Putting intelligence into robots is, however, not an easy task. An intelligent
robot that is able to work in the real world needs a large-scale knowledge base.
The ALVINN system employs neural networks to acquire the knowledge semi-
automatically [6]. One of the limitations of neural networks is that it assumes
that the system is used in the same environment as that in which it was trained.

Cooperatively Searching Objects Based on Mobile Agents 121

When the intelligent robot is expected to work in an unknown space or an
extremely dynamic environment, it is not realistic to assume that the neural
network is appropriately trained or can acquire additional knowledge with suf-
ficient rapidity. Indeed, many intelligent robots lack a mechanism to adapt to a
previously unknown environment.

On the other hand, multi-agent robotic systems are recently becoming pop-
ular in RoboCup or MIROSOT [7]. In traditional multi-agent systems, robots
communicate with each other to achieve cooperative behaviors. The ALLIANCE
architecture, developed in Oak Ridge National Laboratory, showed that coop-
erative intelligent systems could be achieved [§]. The architecture is, however,
mainly designed to support self-adaptability. The robots in the system are ex-
pected to behave without external interference, and they show some intelligent
behaviors. The observed intelligence, however, is limited due to the simple mech-
anism called motivation. Robots’ behaviors are regulated by only two rules robot
impatience and robot acquiescence. These rules are initially defined and do not
evolve. In contrast, the goal of our system is to introduce intelligence and knowl-
edge into the robots after they start to work [2]. Therefore, our system does not
have any learning mechanism or knowledge acquiring mechanism. All the neces-
sary knowledge is sent as mobile agents from other robots or the host computer.

An interesting research work of multi-agent robot control system was con-
ducted at Tokyo University of Science [9]. Their work focused on the language
aspect of robot control systems using multi-agents. They employed a hierar-
chical model of robot agents where the root agent indirectly manages all the
agents. The lowest agents are physical devices and each has only one supervisor
agent. Communications are performed through super-agent channels and sub-
agent channels. Each robot has a hierarchically structured set of agents and the
structure is rigidly constructed at the initial time. Therefore the structure of the
control software is predetermined, and there is no concept of dynamic configura-
tion of the structure of agents. The framework we present in this paper provides
dynamic re-structuring of the set of agents and provides more flexibility in the
real-world environments where any assumption cannot be expected.

For the communication aspect, they employ agent negotiation. In contrast,
we employ agent migration so that our model can more suitably fit in a realistic
multi-robot environment where the communication should be expected to be
intermittent.

One notable feature of their system is the description language, called Multi-
agent Robot Language (MRL). This language is based on the committed-choice
concurrent logic programming language and compiled into the guarded Horn
clauses [I0/TI]. This feature has advantages of transparency of the agent de-
scriptions over our framework that is based on Java. The efficiency problem of
logic programming is overcome by recompiling into C language. We also imple-
ment a descriptive language based on functional languages, Objective Caml and
Scheme, in order to achieve the transparency of the agent descriptions [12/13].

The work most closely related to ours is the distributed Port-Based Adaptable
Agent Architecture developed at Carnegie Mellon University [14]. The Port-Based

122 T. Nagata, M. Takimoto, and Y. Kambayashi

Agents (PBAs) are mobile software modules that have input ports and output
ports. All PBAs have the map of the port addresses so that they can move other
robots and combine themselves with other PBAs to compose larger modules. The
usefulness of PBA architecture is demonstrated by the Millibot project also at
Carnegie Mellon University [15]. In a robot mapping application, PBA is used to
control the mapping robots, and when the working robot has a hardware failure,
the PBA on the robot detects it and moves to an idle robot.

Software composition is clearly possible using port-based modules. The dy-
namic extension capability of our mobile agent control system, however, is an-
other strategy for the composition of larger software.

The PBA is derived from the concept of port-based objects, designed for
real-time control applications [I6]. Therefore it may have advantages as a robot
control mechanism. The framework we present in this paper is an exploration
of the applications of mobile agents and software compositions through mobility
and extensibility. Constructing robot control software by mobile agents and its
dynamic extension is not only novel but also flexible due to the migration which
agents perform autonomously. It may be superior for extensibility of working
software.

3 Mobile Agent Controlling Robots

We assume that a mobile agent system consists of mobile agents and places.
Places provide runtime environments, through which mobile agents achieve mi-
gration from one environment to other environments. When a mobile agent mi-
grates to another place, not only the program code of the agent but also the
state of the agent can be transferred to the destination. Once an agent arrives at
another place through migration, it can communicate with other mobile agents
on that place.

The mobile agent system we have used to control robots is based on an existing
mobile agent system, called AgentSpace, developed by I. Satoh [I7]. AgentSpace
provides the basic framework for mobile agents. It is built on the Java virtual
machine, and agents are supposed to be programmed in Java language. The
behaviors of an agents on AgentSpace are determined by the following methods:

create: is called when initializing the agent,
destroy: is called when killing the agent,

leave: is called when migrating to another site, and
arrive: is called when arriving at the new site.

These methods are call-back methods which are invoked by a place i.e. a run-
time environment of AgentSpace. The create or destroy method is called when
the user requires to create or to kill mobile agents through GUI. The arrive
and leave method are called in the process of migration. All the behaviors of
an agent are determined by programs described in these methods. In the case

Cooperatively Searching Objects Based on Mobile Agents 123

where an agent needs to communicate with other agents, first, the agent requires
the context of the current place that the agent resides. The context includes
information of other mobile agents on the place, and therefore through that
context, any agents can extract information such as the reference to a specific
agent through its own name from the context. The reference can be used to
invoke the methods of other agents on the same place. The context also provides
the functionality of agent migration. The agent migration is achieved through
method move. The method mowve receives an instance of URL class with TP
and port number as an argument, and move the agent that is referred by the
context.

We have extended AgentSpace and developed an agent library Robot that
includes methods as shown by Fig.[Il In order to implement the methods, we
have taken advantage of primitives of ERSP. ERSP is a software development kit
with high-level interfaces tailored for controlling robots. These interfaces provide
several high-level means for control such as driving wheels, detecting objects
through a camera, checking obstacles through supersonic sensors, and intelligent
navigations. They are written in C++, while mobile agents are described as Java
classes that extend Agent class of AgentSpace. Therefore, we have designed
Robot library that uses these interfaces through JNI (Java Native Interface).
The library Robot has interfaces that are supposed to be implemented for the
following methods:

initialize initializes flags for inputs from a camera and sensors,

walk makes a robot move straight within required distance,

turn makes a robot turn within required degree,

setObjectEvent resets the flag for object recognition with a camera,
setObstacleEvent resets the flag for supersonic sensors,

getObject checks the flag for object recognition,

getObstacle checks the flag for the sensors, and

terminate halts all the behaviors of a robot.

4 Robot Controller Agents for Target Searcher

In this section, we demonstrate that our model, which is a set of cooperative
multiple mobile agents, is an efficient way to control multiple robots. In our robot
control system, each mobile agent plays a role in the software that controls one
robot, and is responsible to complete its own task. One agent with one specific
task migrates to one specific robot to perform that task. In this manner, an agent
can achieve several tasks one by one through the migration to robots one by one.
This scheme provides more idle time for each robot, and allows other agents to
use the idle robots for incomplete tasks. In that way, this scheme contributes
in decreasing the total time of completing all the tasks. We will show these
advantages in the numerical experiments.

124 T. Nagata, M. Takimoto, and Y. Kambayashi

package robot;
public class Robot {

static {
System.loadLibrary("RobotStatic");
}

static public native void initialize();

static public native void walk(double distance, double speed,
int wait, double timeQut);

static public void walk(double distance, double speed, double timeOut) {
walk(distance, speed, 500, timeOut);

static public native void turn(double angle, double speed, double timeQut);
static public native void setObstacleEvent(int dir, double threshold);
static public native void setObjectEvent(int objId, double threshold);
static public native int getObstacle();

static public native int getObject();

static public native void terminate();

Fig. 1. Class library Robot

4.1 Controlling Robots

An intelligent multi-robot system is expected to work in a distributed envi-
ronment where communication is relatively unstable and therefore where fully
remote control is hard to achieve. Also we cannot expect that we know every-
thing in the environment beforehand. Therefore intelligent robot control software
needs to have the following features: 1) It should be autonomous to some ex-
tent. 2) It should be extensible to accommodate the working environment. 3)
It should be replaceable while in action. Our mobile agents satisfy all these
functional requirements.

Our control software consists of autonomous mobile agents. Once an agent
migrates to a remote site, it requires minimal communication to the original site.
Mobile agents can communicate with other agents on the same place so that the
user can construct a larger system by migration to the place. The newly arrived
agent can communicate with agents that reside in the system before its arrival,
and achieve new functionality with them. If we find that the constructed software
is not good enough to satisfy our requirements in a remote environment, we can
replace the unsuitable component (an agent) with new component (an- other
agent) by using agent migrations.

In the first experiment, we employed three wheeled mobile robots, which are
called PIONEER 3-DX, as the platform for our prototype system. Each robot
has two servo-motors with tires, one camera and sixteen sonic sensors. The power
is supplied by rechargeable battery. Fig. [shows the team of robots in action
for searching targets.

In the second experiment, we constructed a realistic simulator following infor-
mation we have extracted from the observation of the behaviors of PIONEER
3-DX to show the scalability of our control system.

Cooperatively Searching Objects Based on Mobile Agents 125

ﬂ‘\

:
>

Fig. 2. A team of mobile robots are working under control of mobile agents

4.2 Searching a Target

Let us consider how to program a team of multiple robots to find a target.
For such a task, the most straightforward solution would be to make all robots
search for the target simultaneously. If the targets were comparatively fewer than
the robots, however, most robots would move around in vain, consuming power
without finding anything.

This problem can be more serious in our model where any robots can be
shared by any agents, because the robots to which an agent with a new task is
going to migrate may be already occupied by another agent with some different
task. Especially, consider a case where the robots are working in an area where
communications on wireless LAN are difficult. In such a case, even if one of the
working robots finds the target, the other robot may not be able to know that
fact. As a result, most robots continue to work to search that target in vain until
time-out. Thus, this searching strategy could not only wastes the power but also
increase the total costs of the multiple robots in aggregate. On the other hand,
our strategy of using mobile agents achieves the suppression of the total cost
due to the efficient use of idle resources as well as saving power consumption.

The core of our idea is finding the nearest robot to the target by using agent
migration. Initially, an agent is dispatched from the host machine to a nearby

126 T. Nagata, M. Takimoto, and Y. Kambayashi

package agent.search;

import agentspace.*
import robot.Robot;

public class Search implements Agent, Mobile, Duplicatable, Preservable {

public void arrive(AgentEvent evt, Context context) {
//get ids of agents on the current place.
AgentIdentifier[] aids = context.getAgents();

if (aids.length == 1) {
// If there is just itself on the current place,
//execute behavior() as the main behavior.
behavior(context) ;
}
else {
// If there are other agents on the current place,
// it migrates to other robot.
try {
context.move (otherAddress());
} catch(Exception e) { }

public static void behavior(Context context) {
while(true) {
// It makes the robot rotate within 360 degrees.
// If it finds a target, stop rotation and set the flag for detecting.
Robot.turn(360.0, 5.0, 5.0);

if (Robot.getObject().equals("TARGET1")) {
// If detected thing is the target, it makes the robot go straight.
Robot.walk(40.0, 3, 7.0);

else if (isExhausted()) {
// If it has arrived at the last robot without finding anyting,
// it makes the robot walk randomly.
randomWalk() ;

else {

// Otherwise, migrates to other robot.
context.move (otherAddress());

Fig. 3. arrive() method and behavior() method

Cooperatively Searching Objects Based on Mobile Agents 127

robot in the multi-robots system. Then, the agent hops among the robots one by
one and checks the robot’s vision in order to locate the target until it reaches the
robot that is the closest to the target. Until this stage, robots in the multi-robot
system do not move; only the mobile agent migrates around so that robots can
save power.

Once the agent finds the target, it migrates to the closest robot and makes the
robot move toward the target. In our strategy, since only one robot dedicates to a
particular task at a time, it is essentially similar to making each robot special for
each task. Since the migration time is negligible compared to robot motion, our
strategy is more efficient than such as we described before. If the agent visits all
the robots without finding the target, the agent makes the last one move around
randomly with wheels in order to find the target.

In our current multi-robot system, the robots’ vision does not cover 360 de-
grees. Therefore a robot has to rotate to check its circumstance. Rotating a robot
at its current position may capture the target and another robot closer to the
target. Then the agent migrates to that more conveniently located robot. Notice
that the rotation requires much less movement of the wheels than exploration,
and it contributes to the power saving.

Details of our searching algorithm are the followings: 1) an agent chooses an
arbitrary robot to which it migrates, and performs the migration, 2) as the agent
arrives on the robot, it makes that robot rotate,where if the robot to which the
agent migrates has been occupied by another agent, it migrates to another robot
further,3) if the target is found, the agent makes the robot move to that direction;
otherwise, goes back to step 1, and 4) at this stage, if all robots have been tried
without finding the target, the agent makes the last robot do random-walk until
it can find a target.

We have implemented this algorithm as an AgentSpace agent search as shown
by Fig. Bl As soon as search agent has migrated to a robot, its arrive() method
is invoked. Arrive() checks whether there are any other agents on the current
robot or not. That can be achieved by checking agents’ ids. This is achieved
by calling context.getAgents(). If it finds only its own agent id, it means that
there are no other agents. If it finds no other agents, it invokes behavior() as the
main behavior of the robot. If it finds another agent id, it means the robot is
occupied by the other agent, and the newly arrived agent immediately migrates
to another robot in order to avoid interferences with the other agents.

The method behavior() first makes the robot rotate within 360 degrees to look
around its circumstance. If it finds something, it stops the rotation of the robot,
and sets the flag that indicates it detects an object. At this time, what is found
can be checked through Robot.getObject(). As a result, if the return value cor-
responds to "TARGET1”, it makes the robot go straight through Robot.walk().
Otherwise, it checks whether it has visited all the robots through isEzxhausted().
If there is no more robots to visit, it invokes random Walk(), and makes the
robot walk randomly in order to find the target at different angles. Otherwise,
it migrates to one of the other robots.

128 T. Nagata, M. Takimoto, and Y. Kambayashi
5 Experimental Results

In order to demonstrate the effectiveness of our system, we have conducted
numerical experiments on the example of target search that is mentioned in the
previous section. In the experiments, we set a condition where robots search
several targets, where searching each target corresponds to distinct task.

We have compared our approach based on mobile agents with other two strate-
gies as follows:

EachForEach: allocates specific target to each robot. Each robot searches its
own target, and does not search any other things as shown by Fig. d(a), and

AllForEach: makes all robots move around for each target as shown by
Fig. E(b) which is the snapshot for searching a target.

The EachForEach approach is the simplest method. If there is no way to replace
the program on a robot in action, this method would be used as the most realistic
solution.

The AllForEach approach seems to consume the least time in order to search
one target. In some case, it may also be the most efficient method for searching
several targets. However, this approach may consume a lot of time in the area
where the condition of connections among robots is changeable, because even if
one robot finds a target, other robots may not be able to know the fact. In such
a case, the task for searching one target might exhaust the time allowed for the
entire team of robots. In our mobile agent based approach (Fig. d{c)), a mobile
agent is fixed to one robot at a time, and only one robot with the mobile agent
searches one particular target until robots to which it migrates are exhausted.
Eventually, the behavior becomes the same as the EachForEach approach.

5.1 Three Robots Experiment

First, in order to show that our approach is physically effective, we conducted
experiments based on actual three robots in 3.5m x 5.0m rectangle area which
is the largest possible area where at least two of three robots have overlapping
views.

We deal with the case where every target is the close to the different robot. In
order to simulate realistic situations, we set several variations for some approach
as follows:

For the EachForEach: a) robots for target A, B and C are respectively close
to A, B and C , b) only robot for target A is close to A, and the other ones
are close to different targets, and c¢) every robot is close to different target.

For the AllForEach: making all robots search one target at a time, and repeat
for three targets. There is no other variation.

For mobile agent based approach: a) agents for target A, B and C initially
migrate to robots close to A, B and C, b) some agents migrate one time after
initial migration, and c) some agents migrate twice.

Cooperatively Searching Objects Based on Mobile Agents 129

agent 1

0

ERSP

ROBOT 1

OO

agent 3

ERSP

ROBOT 3

T

ERSP

ROBOT 2

o

(a) EachForEach approach

i

agent 1

ERSP

ROBOT 1

oo

agent 1

ERSP

ERSP

ROBOT 3

b O o :Q:: EES

ROBOT 2

OO

(b) AllForEach approach

———

ERSP

ROBOT 1

agent |
> -

ERSP

@ agent 1

ROBOT 3

T

ERSP

ROBOT 2

(c) Our approach based on égent migration

Fig. 4. Experiments

130 T. Nagata, M. Takimoto, and Y. Kambayashi

600 160

500

400
300
200
B =
0

EachForEach AllForEach Agent

E
m Exhaustive

seconds

60

40

the number of rolling wheels
®
3

N
3

o

mn 1

(a) Efficiency of searching three targets (b) Energy consumption

d

Fig. 5. Time cost and energy consumption based on phisical robots

Fig.[El(a) shows the results of the experiments on efficiency. This graph shows
how long the multiple robots take to find all the targets in seconds as the average
of all settings for each approach. As shown by the figure, we can observe that
our approach is the most efficient. We can reason that our approach makes
mobile agents occupy robot resources not so long as the other approaches do,
and produces more idle resources. Therefore the idle resources are effectively
reused through migration of other new agents with other tasks.

In this experiment, we dealt with the ideal case that does not cause random-
walk for our approach. In general, such cases would not occur so often, and
our approach also has to randomly walk as soon as the robot to which the agent
migrates are exhausted. As mentioned before, the behavior of our approach after
visiting all the robots is the same as the EachForEach approach, so our approach
has an obvious advantage against the EachForEach approach.

On the other hand, the AllForEach approach may be more efficient in some
cases. Consider that there are fewer targets than robots that search them. In this
case, some robots successfully find the targets, but the other ones would move
around in vain. That results in wastefully consuming energy. Fig. Bl(b) shows the
comparison of the times of rotating wheels for the AllForEach approach and our
approach in the extreme case where three robots search one target. Each result
shows the time in the different settings as follows:

Pattern a: the target is near the robot to which the search agent migrates first,
Pattern b: the target is near the robot to which the agent migrates second,
Pattern c: the target is near the robot to which the agent migrates last, and
Pattern d: the target is far from any robots.

It is reasonable to assume that energy consumption of servo-motors is linear
to the wheel rotation times. It is clearly observed that, in all the settings, our
approach consumes less energy than the AllForEach approach. Furthermore, as
mentioned before, the AllForEach approach can waste plenty of time in the case
where the condition of connections among robots is changeable.

Cooperatively Searching Objects Based on Mobile Agents 131

time = 573

0(0) : Move 29 5
1{1} : OnlyTurn 2

2{2) : Turn 46 5
33 Tum 27 5
4{4) : Found host
5{5) : Found ho
&{5) : Found ho%
7{7) . Found hos
B(B) . OnhTurn 4|
(%) . OnhTurn 1R 5

Fig. 6. A snapshot of a running simulator

5.2 Large Scale Simulation

Second, in order to demonstrate the effectiveness of our system in a large scale
environment, we have implemented a simulator of the target search based on the
real multi-robot system described in the previous section, and have conducted
numerical experiments on it. On the simulator, moving and rotating speed of
robots, and lags required in agent migration and object recognition are based
on real values obtained in the previous experiments using PIONEER 3-DX with
ERSP [3]. In the experiments, we set a condition where fifty robots are scat-
tered in a 500 x 500 square field in the simulator, where searching each target
corresponds to a distinct task. We have compared our approach based on mobile
agents with other two strategies, AllForEach and EachForEach as well as the
experiments with actual robots.

We have recorded the total moving distance and the total time of the robots
that perform all the strategies. We have evaluated the results by changing the
two parameters. They are the number of targets and the width of a view. The
view means a circle with a robot as a center, and the robot can detect any
objects in the circle as shown in Fig. il It is reasonable to assume that energy
consumption of servomotors is linear to moving distance.

Bar charts of Fig. [f{a)—(d) show each of the total moving distances for 10, 30,
50, 70, and 90 targets respectively. The AllForEach strategy seems to achieve the
least energy consumption over any number of targets. In some cases, it shows

132

T. Nagata, M. Takimoto, and Y. Kambayashi

140000 0.8
X
120000 \ ro7
100000 r 06
F 05
20000 | mmm AllForEach
[0.4 wwwm EachForEach
60000 -
F 03 mmmAgent
40000 7 [0.2 ==for EachForEach
20000 - L 01
0 - = 0

20 40 60 80 100

350000

300000

250000

200000

150000

100000

50000

0

mmmm AllForEach
e EachForEach
I Agent

=>é=for EachForEach

20 40 60 80 100

(a) Results for 10 targets

(b) Results for 30 targets

20 40 60 80 100

(e) Results for 90 targets

600000 800000 1
500000 700000
600000
400000
= AllForEach 500000 mm AllForEach
300000 e EachForEach 400000 e EachForEach
200000 I Agent 300000 I Agent
=>¢=for EachForEach 200000 =>é=for EachForEach
100000 100000
0 0
20 40 60 80 100 20 40 60 80 100
(c) Results for 50 targets (d) Results for 70 targets
1000000 1
900000 0.9
800000 - - 08
700000 - 07
600000 - 0.6 mmmmAllForEach
500000 - r 05w EachForEach
400000 - - 04 - Agent
300000 - r 0.3
=>=for EachForEach
200000 - 0.2
100000 - \\ 0.1
0 = |

Fig. 7. The total moving distances for the view width: 20, 40, 60, 80, and 100

Cooperatively Searching Objects Based on Mobile Agents 133

1
0.9
08—
07 ——20
0.6
0.5 40
04 4! =60
03 =80
02 —_——= A 5100
0.1 —<

0 —e—————

10 30 50 70 90

Fig. 8. The total moving distance over the numbers of targets

itself as the most efficient method for searching multiple targets. This approach,
however, may consume a lot of energy when the condition of connections among
robots is intermittent. Even though one robot finds a target, other robots may
not be able to know the fact. In such a case, the task for searching one target
might consume all the allowances for the entire team of robots. In our mobile
agent based approach, on the other hand, a mobile agent is fixed on a certain
robot after its migration, and as soon as the robot achieves the task, the entire
multi-robot system turns to pursue the next object. As a result, the behavior
of entire multi-robot system becomes effectively similar to the EachForEach
strategy but it performs the same task just more efficiently.

The mobile agent system displays a remarkable saving of energy consumption
compared to the EachForEach strategy. Furthermore, the more the width of a
view increases, the more efficiency Agent gains than EachForEach, as shown
by the line chart representing the ratio of the Agent to the EachForEach in
Fig. [M(a)—(d).

Meanwhile, Fig. Bl shows the ratio of the total moving distance of the Agent
strategy to the EachForEach strategy for each view width over the various num-
bers of targets. The flat lines illustrate the constant advantage of the Agent
strategy over the EachForEach strategy regardless of the number of targets.

Fig.[@(a)—(d) shows the total time for searching out all the 10, 30, 50, 70, and
90 targets respectively. Since the total duration time is proportional to the total
moving distance, the AllForEach strategy seems to be the most efficient among
the three strategies. But it is not practical as mentioned above. On the other
hand, the Agent strategy makes mobile agents occupy robot resources not so long
as the other approaches do, and produces more idle resources. Then other new
agents with other tasks can effectively use the idle resources through migration.
We, however, observe that the Agent strategy shows less efficiency than that of
the EachForEach where the width of a view is 20 shown in Fig. B(b)-(d). In such
cases, the Agent strategy often fails to find any target during the migration step
due to the restricted view, and causes robots to randomly walk. We can conclude
that the wider the view becomes, the more efficiently Agent works.

134

T. Nagata, M. Takimoto, and Y. Kambayashi

(e) Results for 90 targets

20000 30000
18000
16000 25000 -
14000 20000 1
12000 B AllForEach B AllForEach
10000 15000 -
8000 = EachForEach m EachForEach
6000 = Agent 10000 - = Agent
4000 5000
2000
0 o
20 40 60 80 100 20 40 60 80 100
(a) Results for 10 targets (b) Results for 30 targets
45000 50000
40000 45000
35000 40000 -
30000 35000 -
25000 m AllForEach 30000 4 AllForEach
25000 -
20000 w EachForEach 20000 - w EachForEach
15000 = Agent 15000 - W Agent
10000 10000 |
5000 5000 4
0 0 -
20 20 60 80 100 20 20 60 80 100
(c) Results for 50 targets (d) Results for 70 targets
60000
50000
40000
30000 B AllForEach
[EachForEach
20000 u Agent
10000
0
20 10 60 80 100

Fig. 9. The total time for each the view width: 20, 40, 60, 80, and 100

Cooperatively Searching Objects Based on Mobile Agents 135

Thus, we believe that our approach is practical enough for controlling multiple
robots in the real world in terms of the total cost and energy consumption.

6 Conclusions

We have presented a novel framework for controlling intelligent multiple robots.
The framework helps users to construct intelligent robot control software by
migration of mobile agents. Since the migrating agents can dynamically change
the functionalities of the robot which they control, the control software can be
flexibly assembled while they are running. Such a dynamically extending the
control software by the migration of mobile agents enables us to make the base
control software relatively simple, and to add functionalities one by one as we
know the working environment. Thus we do not have to make the intelligent
robot smart from the beginning or make the robot learn by itself. We can send
intelligence later as new agents.

We have conducted experiments using three real robots. Through the exper-
iments, we have successfully shown that our framework for controlling multiple
robots can reduce energy consumption under the realistic circumstances. We
also implemented a simulator that simulates the behaviors of a large scale team
of cooperative search robots to show the effectiveness of our framework, and
demonstrated that our framework contributes to suppressing the total cost of
a multi-robot system in large scale cases. The numerical experiments show the
volume of saved energy is significant. They demonstrate the superiority of our
approach over more traditional non-agent based approaches.

Our future directions for research will include the addition of security fea-
tures, refinement of the implementation of dynamic extension, additional proof
of concept for dynamic addition of new functionality, and additional work on
scheduling of conflicting tasks.

Acknowledgement. This work is supported in part by Japan Society for Pro-
motion of Science (JSPS), with the basic research program (C) (No. 20510141),
Grant-in-Aid for Scientific Research.

References

1. Binder, W.J., Hulaas, G., Villazon, A.: Portable resource control in the j-seal2
mobile agent system. In: Proceedings of International Conference on Autonomous
Agents, pp. 222-223 (2001)

2. Kambayashi, Y., Takimoto, M.: Higher-order mobile agents for controlling intel-
ligent robots. International Journal of Intelligent Information Technologies 1(2),
28-42 (2005)

3. Nagata, T., Takimoto, M., Kambayashi, Y.: Suppressing the total costs of execut-
ing tasks using mobile agents. In: Proceedings of the 42nd Hawaii International
Conference on System Sciences. IEEE Computer Society CD-ROM (2009)

136

4.

10.
11.
12.

13.

14.

15.

16.

17.

T. Nagata, M. Takimoto, and Y. Kambayashi

Abe, T., Takimoto, M., Kambayashi, Y.: Searching targets using mobile agents in
a large scale multi-robot environment. In: O’Shea, J., Nguyen, N.T., Crockett, K.,
Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2011. LNCS, vol. 6682, pp. 211-220.
Springer, Heidelberg (2011)

Pomerleau, D.: Defense and civilian applications of the alvinn robot driving system.
In: Proceedings of 1994 Government Microcircuit Applications Conference, pp.
358-362 (1994)

Pomerleau, D.: Alvinn: An autonomous land vehicle in a neural network. In: Ad-
vances in Neural Information Processing System 1, pp. 305-313. Morgan Kaufmann
(1989)

Murphy, R.: Introduction to Al robotics. MIT Press, Cambridge (2000)

Parker, L.: Aliance: An architecture for fault tolerant multirobot cooperation. IEEE
Transaction on Robotics and Automation 14(2), 220-240 (1998)

Nishiyama, H., Ohwada, H., Mizoguchi, F.: A multiagent robot language for com-
munication and concurrency control. In: Proceedings of International Conference
on Multi-Agent Systems, pp. 206-213 (1998)

Shapiro, E.: Concurrent Prolog: Collected Papers. MIT Press, Cambridge (1987)
Ueda, K.: Guarded Horn Clauses. PhD Thesis, University of Tokyo (1986)
Kambayashi, Y., Takimoto, M.: A functional language for mobile agents with dy-
namic extension. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004.
LNCS (LNAI), vol. 3214, pp. 1010-1017. Springer, Heidelberg (2004)
Kambayashi, Y., Takimoto, M.: Scheme implementation of the functional language
for mobile agents with dynamic extension. In: Proceedings of IEEE International
Conference on Intelligent Engineering Systems, pp. 151-156 (2005)

Pham, T., Dixon, K.R., Jackson, J., Khosla, P.: Software systems facilitating self-
adaptive control software. In: Proceedings of IEEE International Conference on
Intelligent Robots and Systems, pp. 1094-1100 (2000)

Grabowski, R., Navarro-Serment, L., Paredis, C., Khosla, P.: Heterogeneous teams
of modular robots for mapping and exploration. Autonomous Robots 8(3), 293-308
(2000)

Stewart, D., Khosla, P.: The chimera methodology: Designing dynamically recon-
figurable and reusable real-time software using port-based objects. International
Journal of Software Engineering and Knowledge Engineering 6(2), 249-277 (1996)
Satoh, I.: A mobile agent-based framework for active networks. In: Proceedings of
IEEE System, Man and Cybernetics Conference, pp. 71-76 (1999)

	Cooperatively Searching Objects
Based on Mobile Agents

	1 Introduction
	2 Background
	3 Mobile Agent Controlling Robots
	4 Robot Controller Agents for Target Searcher
	4.1 Controlling Robots
	4.2 Searching a Target

	5 Experimental Results
	5.1 Three Robots Experiment
	5.2 Large Scale Simulation

	6 Conclusions
	References

