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Abstract. A novel formalization of beliefs in multiagent systems has recently
been proposed by Dunin-Kȩplicz and Szałas. The aim has been to bridge the gap
between idealized logical approaches to modeling beliefs and their actual imple-
mentations. Therefore the stages of belief acquisition, intermediate reasoning and
final belief formation have been isolated and analyzed. In conclusion, a novel se-
mantics reflecting those stages has been provided. This semantics is based on the
new concept of epistemic profile, reflecting agent’s reasoning capabilities in a dy-
namic and unpredictable environment. The presented approach appears suitable
for building complex belief structures in the context of incomplete and/or incon-
sistent information. One of original ideas is that of epistemic profiles serving as
a tool for transforming preliminary beliefs into final ones. As epistemic profile
can be devised both on an individual and a group level in analogical manner,
a uniform treatment of single agent and group beliefs has been achieved.

In the current paper these concepts are further elaborated. Importantly, we in-
dicate an implementation framework ensuring tractability of reasoning about be-
liefs, propose the underlying methodology and illustrate it on an example.

1 Beliefs in Multiagent Systems

During the past years awareness has been intensively investigated both from the theoret-
ical as well as from the practical perspective. Its importance manifested itself especially
in the context of cooperating teams of agents or other mixed groups in the context of
intelligent, autonomous systems. In multiagent systems, agents’ awareness is typically
expressed in terms of different (combinations of) beliefs about

– the environment;
– an agent itself;
– other agents/groups involved.

Such beliefs are built using various forms of observations, communication and rea-
soning [2,12,13,15,36]. Existing modern, fine-grained logic-based approaches typically
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exploit rather subtle (combinations of) multi-modal logics [16,18,19,20]. Unfortunately
this usually leads to high complexity of reasoning that is unacceptable from the point
of view of their implementation and use. In fact, the underlying semantical structures
are rather abstract and hardly reflect the way beliefs are acquired and finally formed.
To make it even worse, in many applications one needs to take into account relevant
features of perception, including:

– limited accuracy of sensors and other devices;
– restrictions on time and other resources affecting measurements;
– unfortunate combinations and unpredictability of environmental conditions;
– noise, limited reliability and failure of physical devices.

In multiagent systems during belief formation initial and intermediate beliefs are
confronted with other beliefs originating from a variety of sources. The resulting be-
liefs can then substantially deviate from the initial ones. Moreover, there might still
exist areas of agents’ ignorance and inconsistencies. A low quality of information does
not waive agents’ responsibility of decision making. Therefore, reducing the areas of
ignorance and inconsistencies is vital. In modern systems this can be accomplished in
many different ways, including

– a variety of reasoning methods;
– belief exchange by communication;
– belief fusion;
– supplementary observations.

Apparently there is no guarantee to acquire the whole necessary information and/or
to resolve all inconsistencies. Information may still remain partly unknown and/or in-
consistent. Such situations may be sorted out by the use of

– paraconsistent models allowing for inconsistencies and lack of information;
– nonmonotonic reasoning techniques for completing missing information and re-

solving inconsistencies.

However, both paraconsistent and nonmonotonic reasoning, in their full generality, are
intractable [5,17,21,25]. This naturally restricts their use in multiagent systems and calls
for a shift in perspective. In [10] we proposed a novel framework for flexibly modeling
beliefs of heterogenous agents, inspired by knowledge representation and deductive
database techniques.

The key abstraction is that of epistemic profiles reflecting agent’s individual reason-
ing capabilities. In short, epistemic profile defines a schema in which an agent reasons,
deals with conflicting information and deals with its ignorance. These skills are achiev-
able by combining various forms of reasoning, including belief fusion, disambiguation
of conflicting beliefs or completion of lacking information. This rich repertoire of avail-
able methods enables for heterogeneity of agents’ reasoning characteristics. More im-
portantly, the same approach may be applied to groups of agents or even more complex
mixed groups, allowing for uniform treatment of these, essentially different, cases.
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In the current paper we show how the framework of [10] can serve as a basis for actual
implementations and ensure tractability of reasoning. This is achieved by representing
sets of preliminary and final beliefs as well as epistemic profiles using the deductive
databases machinery of the 4QL query language [22,23,24,35].

The rest of this paper is structured as follows. In Section 2 our approach to structur-
ing beliefs is outlined and motivated. Next, in Section 3, formal syntax and semantics of
the basic language are defined. The pragmatics of its use in multiagent systems is dis-
cussed in Section 4. Section 5 is devoted to distributed beliefs. Implementation issues
and complexity are addressed in Section 6. Finally, Section 7 concludes the paper.

The current paper is an extended and revised version of papers [10,11].

2 Structuring Beliefs

In the sequel, belief formation by agents will be unveiled. In the idealized logical ap-
proaches to agency, this paradigmatic part of agents’ activity seems to be, at least partly,
neglected. We analyze and model this process from the very beginning, that is from
agents’ perception and other kinds of basic beliefs.

The basis for the framework is formed by semantical structures reflecting the pro-
cesses of an agent’s belief acquisition and formation. Namely, an agent starts with con-
stituents, i.e., sets of beliefs acquired by:

– perception;
– expert supplied knowledge;
– communication with other agents;
– other ways.

Next, the constituents are transformed into consequents according to the agent’s in-
dividual epistemic profile.

While building a multiagent system, lifting beliefs to the group or even more com-
plex level is substantial. As regards belief formation, it would be perfect to reach a con-
ceptual compatibility between individual and group cases. Assuming that the group
epistemic profile is set up, analogical individual and group procedures are then applica-
ble for defining belief fusion methods, where:

– consequents of group members become constituents at the group level;
– such constituents are further transformed into group consequents.

Observe that this way various perspectives of agents involved are taken into consid-
eration and merged. Moreover, we use the same underlying semantical structures for
groups and individuals. The only requirement is that all epistemic profiles of complex
structures are fixed. This way a uniform approach applies to groups of groups of agents
or to mixed groups of individuals and other complex topologies.

Example 2.1. Consider an agent equipped with a sensor platform for detecting air pol-
lution and two different sensors for measuring the noise level. The agent has also some
information about the environment, including places in the neighborhood, etc. The task
is to decide whether conditions in the tested position are healthy.

It is natural to consider, among others, three constituents:
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– Cp gathering beliefs about air pollution at given places, in terms of P (x, y) indi-
cating the pollution level y at place x, where y ∈ {low,moderate, high};

– Cn gathering beliefs about noise level at given places, in terms of Ni(x, y) indi-
cating the noise level y at place x, as measured by a sensor i ∈ {1, 2}, where
y ∈ {low,moderate, high};

– Ce gathering information about the environment in terms ofCl(x, y) indicating that
place x is close to a place characterized by y, where y∈{pollutive, noisy, neutral}.

For example, we may have:

Cp = {P (a, low)}, Cn = {N1(a, high)},
Ce = {¬Cl(a, noisy), Cl(a, neutral), Cl(a, pollutive)}.

Note that we have no information from the second noise sensor (no literal N2() is
given) and somehow inconsistent information as to the pollution level (Cp indicates
low level, but according to Ce the agent is close to a pollutive location). Also there
is an implicit disagreement between N1(a, high) appearing in Ce and ¬Cl(a, noisy)
appearing in Ce, which may be caused by a defective information source.

Based on constituents, the agent has to decide whether the situation is healthy or not
(and include the thus obtained belief to the set of consequents). For example, the agent
may accept

F = {¬S(a, healthy), S(a, healthy)}

as its consequent, i.e., it may have inconsistent beliefs about the issue whether the situ-
ation at place a is healthy. �

3 Syntax and Semantics

Inconsistency in common-sense reasoning attracted recently many logicians. To model
inconsistencies, a commonly used logic is the four-valued logic proposed in [4]. How-
ever, as discussed, e.g., in [8,37], this approach is problematic in many applications. In
particular, disjunction and conjunction deliver results which can be misleading for more
classically oriented users.

On the other hand, our approach is strongly influenced by ideas underlying the 4QL
query language [22,23,24] which does not share such problems. 4QL is a rule-based
DATALOG¬¬-like query language that provides simple, yet powerful constructs for ex-
pressing nonmonotonic rules reflecting, among others, default reasoning, autoepistemic
reasoning, defeasible reasoning, local closed world assumption, etc. [22]. 4QL enjoys
tractable query computation and captures all tractable queries. Therefore, 4QL is a nat-
ural implementation tool creating a space for a diversity of applications. To our knowl-
edge a paraconsistent approach to beliefs has mainly been pursued in the context of be-
lief revision [26,30]. However, these papers use formalisms substantially different from
ours (like models based on criteria and rationality indexes [30] or relevant logic [26]).

Most of the approaches to modeling beliefs in logic start with variants of Kripke
structures [12,15,16,18,19,34,36], where possible worlds are total and consistent. This
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Table 1. Truth tables for ∧, ∨, → and ¬ (see [37,22])

∧ f u i t ∨ f u i t → f u i t ¬
f f f f f f f u i t f t t t t f t
u f u u u u u u i t u t t t t u u
i f u i i i i i i t i f f t f i i
t f u i t t t t t t t f f t t t f

creates natural problems in modeling certain types of ignorance. For example, it is cur-
rently unknown whether, say, the Riemann’s hypothesis is true. Therefore, to model this
situation, we would have to create (at least) two possible worlds: one where the hypoth-
esis is true and one where it is false. However, one of them would become inconsistent.
In order to address such problems, modal frames involving non-standard worlds are
considered [31,38]. However, our solution is simpler and leads to a substantial reduc-
tion of complexity.

In what follows all sets are finite except for sets of formulas.
We deal with the classical first-order language over a given vocabulary without func-

tion symbols. We assume that Const is a fixed set of constants, Var is a fixed set of
variables and Rel is a fixed set of relation symbols.

Definition 3.1. A literal is an expression of the form R(τ̄ ) or ¬R(τ̄ ), with τ being
a sequence of arguments, τ̄ ∈ (Const∪Var)k, where k is the arity of R. Ground literals
over Const, denoted by G(Const), are literals without variables, with all constants in

Const. If � = ¬R(τ̄ ) then ¬� def
= R(τ̄ ). �

Though we use the classical first-order syntax, the presented semantics substantially
differs from the classical one. Namely,

– truth values t, i, u, f (true, inconsistent, unknown, false) are explicitly present;1

– the semantics is based on sets of ground literals rather than on relational structures.

This allows one to deal with the lack of information as well as inconsistencies. As 4QL
is based on the same principles, it can immediately be used as the implementation tool.

The semantics of propositional connectives is summarized in Table 1. Observe that
definitions of ∧ and ∨ reflect minimum and maximum w.r.t. the ordering:

f < u < i < t, (1)

as advocated, e.g., in [7,22,37]. Such a truth ordering seems to be quite natural. It in-
dicates how “true” a given proposition is. The value f indicates that the proposition is
definitely not true, u admits a possibility that the proposition is true, i shows that there

1 For simplicity we use the same symbols to denote truth constants and corresponding truth
values.
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is at least one witness/evidence indicating the truth of the proposition, and finally, t
expresses that the proposition is definitely true.

Note that (1) linearizes the truth ordering of [4], where u and i are incomparable.
This linearization is compatible with knowledge ordering of [4] where u < i.

According to [35], the pragmatics of disjunction should include the following prin-
ciples:

– disjunction is true only when at least one of its operands is true;
– disjunction is false only when all its operands are false;

and the pragmatics of conjunction:

– conjunction is true only when all its operands are true;
– conjunction is false only when at least one of its operands is false.

The implication→ is a four-valued extension of the classical implication. It is motivated
and discussed in [22,23,37,35]. Observe that implication can only be t or f. Implication

premisses → conclusion

reflects the following principles [35]:

– truth or falsity of the conclusion can only be deduced when premisses are true;
– when premisses are inconsistent, conclusion should be inconsistent, too;
– false or unknown premisses do not participate in deriving new conclusions.

Remark 3.2. It is worth emphasizing that [35]:

– when one restricts truth values to {t, f} then connectives defined in Table 1 become
equivalent to their counterparts in classical propositional logic;

– when one restricts truth values to {t, u, f} or to {t, i, f} then conjunction, disjunction
and negation become respectively their counterparts in Kleene three-valued logic
K3 with the third (non-classical) value meaning undetermined and in Priest logic
P3 [30], where the third value receives the meaning paradoxical.2 �

Let v : Var −→ Const be a valuation of variables. For a literal �, by �(v) we under-
stand the ground literal obtained from � by substituting each variable x occurring in �
by constant v(x).

Definition 3.3. The truth value of a literal � w.r.t. a set of ground literals L and valua-
tion v, denoted by �(L, v), is defined as follows:

�(L, v)
def
=

⎧
⎪⎪⎨

⎪⎪⎩

t if �(v)∈L and (¬�(v)) �∈L;
i if �(v)∈L and (¬�(v))∈L;
u if �(v) �∈L and (¬�(v)) �∈L;
f if �(v) �∈L and (¬�(v))∈L. �

2 The only difference between K3 and P3 is that only true is designated in K3, while in P3 both
true and paradoxical are.
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Table 2. Semantics of first-order formulas

– if α is a literal then α(L, v) is defined in Definition 3.3;

– (¬α)(L, v) def
= ¬(α(L, v)), where ¬ at the righthand side of equality is defined in Table 1;

– (α ◦ β)(L, v) def
= α(L, v) ◦ β(L, v), where ◦∈{∨,∧,→};

– (∀xα(x))(L, v) def
= min

a∈Const
{(αx

a)(L, v)}, where min is the minimum w.r.t. ordering (1);

– (∃xα(x))(L, v) def
= max

a∈Const
{(αx

a)(L, v)}, where max is the maximum w.r.t. ordering (1).

Example 3.4. Consider the situation described in Example 2.1 and let v(x) = low.
Then, for example, P (a, x)(Cp, v) = t and P (a, x)(Ce, v) = u. �

For a formulaα(x) with a free variable x and c ∈ Const, by α(x)xc we understand the
formula obtained from α by substituting all free occurrences of x by c. Definition 3.3
is extended to all formulas in Table 2, where α and β denote first-order formulas, v is
a valuation of variables, L is a set of ground literals, and the semantics of propositional
connectives appearing at righthand sides of equivalences is given in Table 1.

Let us now define belief structures based on sets of literals. In this context the concept
of an epistemic profile is the key abstraction involved in belief formation.

If S is a set then by FIN(S) we understand the set of all finite subsets of S.
Let us now define the concepts of belief structures and epistemic profiles which are

central to our approach.

Definition 3.5. Let C
def
= FIN(G(Const)) be the set of all finite sets of ground literals

over the set of constants Const. Then:

– by a constituent we understand any set C ∈ C;
– by an epistemic profile we understand any function E : FIN(C) −→ C;
– by a belief structure over an epistemic profile E we mean BE = 〈C, F 〉, where:

• C ⊆ C is a nonempty set of constituents;

• F
def
= E(C) is the consequent of BE . �

Example 3.6. For the Example 2.1,
C = {Cp, Cn, Ce} and F = {¬S(a, healthy), S(a, healthy)},

so E is any function of the signature required in Definition 3.5 such that E(C) = F . �

Note that constituents and consequents contain ground literals only. Of course, they
can be defined using advanced theories or deductive database technologies. Therefore,
if one wants to express beliefs as expressions more complex than just literals, it can
be done. In Definition 3.5 we do not restrict representation of constituents or conse-
quents. It may be of arbitrary complexity. The only requirement is that representations
used should finally return finite sets of ground literals. The same applies to epistemic
profiles. However, when tractability is to be achieved, such representations should be
restricted to algorithms running in deterministic polynomial time. Our choice is to find
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representations based on deductive database technologies that ensure tractability and
capture all polynomially computable queries. This way we guarantee both tractability
and possibility of expressing all epistemic profiles and belief structures constructible in
deterministic polynomial time.

Definition 3.7. Let E be an epistemic profile. The truth value of formula α w.r.t. belief
structure BE = 〈C, F 〉 and valuation v, denoted by α(BE , v), is defined by:3

α(BE , v) def
= α(

⋃

C∈C
C, v). �

Example 3.8. Consider again the situation described in Example 2.1. Let v(x) = low
and the belief structure BE be as described in Example 3.6. Then,

⋃

C∈C
C = {P (a, low), N1(a, high),¬Cl(a, noisy), Cl(a, neutral), Cl(a, pollutive)}.

Therefore, e.g., (P (a, x)∧N1(a, x))(BE, v) = u and (P (a, x)∨N1(a, x))(BE, v) = t.
Observe that truth of N1(a, high) does not automatically imply falsity of N1(a, low).�

To express beliefs, we extend the language with operator Bel() standing for beliefs.
The truth table for Bel() is:

Bel(t)
def
= t , Bel(i)

def
= i , Bel(u)

def
= f , Bel(f)

def
= f. (2)

We say that a formula is Bel()-free if it contains no occurrences of the Bel() operator.

Definition 3.9. Let E be an epistemic profile. The truth value of formula α w.r.t. belief
structure BE = 〈C, F 〉 and valuation v, denoted by α(BE , v), is defined as follows:

– clauses for propositional connectives and quantifiers are as in Table 2;
– when α is Bel()-free then:

• α(BE , v) is defined by Definition 3.7;

• Bel(α)(BE , v) def
= Bel(α(F, v)), where the truth value α(F, v) is defined in

Table 2 and Bel() applied to a truth value is defined by (2);
– when Bel() operators are nested in α then α(BE , v) is evaluated starting from the

innermost occurrence of Bel(), which is then replaced by the obtained truth value,
etc. �

Example 3.10. For the belief structure BE introduced in Example 2.1 (see also Exam-
ple 3.6) and v(x)= low, we have:

(
P (a, x) ∧ Bel(P (a, x) ∨ Bel(S(a, healthy)))

)
(BE , v) =

t ∧ Bel(P (a, low) ∨ Bel(i)) = t ∧ Bel(P (a, low) ∨ i) = t ∧ Bel(u ∨ i) =
t ∧ Bel(i) = t ∧ i = i. �

3 Since
⋃

C∈C
C is a set of ground literals, α(S , v) is well-defined by Table 2.
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One can easily verify the following proposition.

Proposition 3.11. For any formula α, belief structure BE and valuation of variables v:
(¬Bel(f))(BE , v

)
= t; (3)

(
Bel(α) → Bel(Bel(α))

)(BE , v
)
= t; (4)

(¬Bel(α) → Bel(¬Bel(α)))(BE , v
)
= t. (5)

�

Observe that the above formulas express the classical properties of beliefs: (3) is the
axiom D, (4) and (5) are axioms 4 and 5, expressing positive and negative introspection.
Note that modal logic KD45, based on these axioms, is typically used to model beliefs
in multiagent systems. Furthermore, there are belief structures, where the following
axiom T, distinguishing knowledge and beliefs, does not have to be true:

Bel(α) → α. (6)

This follows from the fact that given a belief structure 〈C, F 〉, Bel(α) evaluates α in F
while α itself is evaluated in

⋃ C.
Let us also note that the following axiom:

¬(Bel(α) ∧ Bel(¬α)), (7)

sometimes replacing axiom (3) is not always true under our semantics. For example,
when α is i then formula (7) is i. Axioms (3) and (7) are equivalent in the context of
KD45. However, this is no longer the case in our semantics as we allow agents to have
inconsistent beliefs.

Observe, however, that in our semantics Bel(α∨ β) has always the same truth value
as Bel(α) ∨ Bel(β). This is caused by the fact that we assume that any epistemic pro-
file delivers a single consequent (a single “world”). This is closer to the intuitionistic
understanding of disjunction than to the classical one. In applications requiring that
Bel(α∨β) does not force Bel(α)∨Bel(β) one has to allow more than one consequent
in Definition 3.5 introducing belief structures.

4 Pragmatics

4.1 Individual Beliefs

Agents can acquire knowledge about other agents’ beliefs via communication and ob-
servation. In contrast to many existing approaches, we do not assume that an agent en-
tering a group changes its beliefs. However, group beliefs prevail over individual ones.
For example, when two agents cooperate, they may have certain beliefs as a group, but
do not have to share them as individuals. Such a perspective usually results in a sub-
stantial improvement of complexity.

When the group is dismissed, agents continue to act according to their individual
beliefs. These can be revised to reflect information acquired during cooperation. In our
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approach such revisions are delayed until the group disintegrates. Actually, in everyday
life we frequently face similar situations. A group member does not need to share beliefs
of group leaders, but still has to obey their commands. As group beliefs are typically
built upon individual ones, immediate revisions of group members’ beliefs could force
revision at the group level. In reasonable cases one can expect that this process would
converge to a fixpoint, but this is not guaranteed. Therefore, in certain situations infinite
loops in belief revisions could occur.

When agents cooperate, a specific group is, possibly implicitly, created, including
an epistemic profile fitting the entire situation. This is where belief fusion methods
adequate for the group in question occur. In general, any interaction between agents
leads to the creation of a (possibly virtual) group with a specific epistemic profile. We
can naturally model this process in the proposed framework.

Let {Agi | i = 1, . . . , n} be a set of agents. To model individual beliefs we introduce
belief operators Beli(α), for i = 1, . . . , n. As usually, the formula Beli(α) expresses
that agent Agi believes in α. To define the semantics of Beli(α) operators we assume
that for i = 1, . . . , n, Ei is an epistemic profile of agent Agi and BEi = 〈Ci, Fi〉 is
a belief structure of agent Agi.

Definition 4.1. Let B̄ = {BEi | i = 1, . . . , n} be a tuple of belief structures. The truth
value of formula α w.r.t. B̄ and valuation v w.r.t. agent Agi, denoted by α(i, B̄, v), is
defined as follows:

– clauses for propositional connectives and quantifiers are as in Table 2;
– when α is Bel()-free then:

• α(i, B̄, v) is defined as α(BEi , v) in the sense of Definition 3.7;

• Belj(α)(i, B̄, v) def
= Bel(α(Fj , v)), where the truth value α(Fi, v) is defined

in Table 2 and Bel() applied to a truth value is defined by (2);
– when Belj() operators are nested in α then α(i, B̄, v) is evaluated starting from the

innermost occurrence of Bel(), which is then replaced by the obtained truth value,
etc. �

Example 4.2. When agent Agk evaluates formula
(
r∨Beli(Belj(p)∧ q)

)
w.r.t. v then:

– r is evaluated w.r.t. Fk and v;
– p in Belj(p) is evaluated w.r.t. Fj and v;
– q in Beli(Belj(p) ∧ q) is evaluated w.r.t. Fi and v. �

4.2 Group Beliefs

A group of agents, say G = {Agi1 , . . . , Agik}, has its group belief structure
BEG = 〈CG, FG〉, where CG = {Fi1 , . . . , Fik}. Thus, consequents of group members
become constituents of a group. The group then builds group beliefs via its epistemic
profile EG, e.g. by adjudicating beliefs of group members, and reaches its consequent
FG (see Figure 1).

To express properties of group beliefs we extend the language by allowing operators
BelG(α), where G is a group of agents.



Taming Complex Beliefs 11

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��
. . . . . .

Ci1 Cik�

�

�

	

�

�

�

	

Ei1 Eik

Fi1=Ei1(Ci1) Fik=Eik(Cik)



�

�



. . .

. . .

FG= EG(CG)

EG CG

Fig. 1. The architecture of individual and group beliefs

Let {Agi | i = 1, . . . , n} be a set of agents and {Gj | j = n + 1, . . .m} be
a set of groups of agents. To define the semantics of BelG(α) operators we extend
Definition 4.1 by assuming that for l = n + 1, . . . ,m, El is an epistemic profile of
group Gl and BEl = 〈Cl, Fl〉 is a belief structure of group Gl. We therefore have a tuple
of belief structures B̄ = {BEl | l = 1, . . . ,m}, where for i = 1, . . . , n, BEi is a belief
structure of agent Agi and for j = n+ 1, . . . ,m, BEj is a belief structure of group Gj .

Since groups are dealt with exactly as agents, given a tuple of belief structures
B̄ = {BEl | l = 1, . . . ,m}, the truth value of formula α w.r.t. B̄ and valuation v w.r.t.
agent Agi (respectively, group Gi), is defined exactly as in Definition 4.1, assuming
that indices 1, . . . , n refer to agents and indices n+ 1, . . . ,m refer to groups.

4.3 Other Complex Beliefs

The same way, beliefs of groups involving other groups may be formed. For example,
a surveillance group of robots Gs may join a rescue team of robots Gr making a larger
group Gs,r. Then the consequents of Gs and Gr become constituents of Gs,r. Further-
more, such groups can become parts of other, more complex groups, and so on. The
underlying methods for forming group beliefs on the top of group members’ beliefs are
typically highly application- and context-dependent.

To express beliefs of such groups we extend the language with BelG() operators,
where G may contain individual agents, groups of agents, groups of groups of agents,
etc. Since such complex groups, when formed, are equipped with belief structures like
in the case of groups consisting of agents only, the semantics of BelG() operators is
given by an immediate adaptation of the semantics of groups.

Note that, due to complexity reasons, it is reasonable to assume that only formed
groups are equipped with belief structures and epistemic profiles. When a group does
not exist, we assume that its belief structureB is “empty”, i.e., B = 〈C, F 〉with C = {∅}
(that is, C consists of a single set being the empty set) and F = ∅. Note that all queries
supplied to this structure return the value u.
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4.4 Querying Belief Structures

Traditional deductive databases are mainly based on the classical logic [1]. Belief op-
erators are rather rarely considered in such contexts (but see, e.g., [9,28,29]). In our
approach belief operators relate formulas to consequents which are sets of ground lit-
erals. Therefore, rather than with possible worlds, we always deal with sets of ground
literals present in considered structures. Namely, in order to find out what are actual
beliefs of agents, groups of agents, etc., the mechanism based on querying belief struc-
tures is applicable. For example one can ask the following queries:

Bel(∃X(S(X, healthy))) – is it believed that there is a healthy place?
Bel(∀X(S(X, healthy))) – is it believed that all places are healthy?

Belief fusion requires gathering beliefs of different agents. For example, the following
query:

Bel1(∃X(S(X, healthy))) ∧ Bel2(∃X(S(X, healthy))), (8)

allows us to check whether agents Ag1 and Ag2 believe that there is a place where
the situation is healthy. Formula (8) contains no free variables, so the query returns a
truth value. Of course, beliefs of these agents do not have to refer to the same place.
If one intends to verify whether there is a place believed to be healthy by both agents
simultaneously, then the query should rather be formulated as:

∃X(Bel1(S(X, healthy)) ∧ Bel2(S(X, healthy))). (9)

Using query:

Bel1(∀X(S(X, healthy))) ∨ Bel2(∀X(S(X, healthy))) (10)

one can ask whether at least one of agents believes that all places are healthy.
On the other hand, query:

∀X(Bel1(S(X, healthy)) ∨ Bel2(S(X, healthy))) (11)

expresses the fact that every place is believed to be healthy by at least one agent.
When formulas used as queries contain free variables, queries return tuples together

with an information whether a given tuple makes the query t, f or i (tuples making the
query u are not returned) – see [35]. For example, the query:

Bel1(S(X, healthy)) ∧ Bel2(S(X, healthy)) (12)

asks for values of X such that both agents believe that X is healthy. One can get an
answer that a place a is healthy, a place b is not healthy, that it is inconsistent that
a place c is healthy. Since there is no information about other places, it is unknown
whether these places are healthy or not.

Such, possibly rather complex, queries are naturally used in designing epistemic
profiles. Let us also note, that in multiagent settings they provide a powerful mechanism
for deciding which actions to perform.
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5 Distributed Beliefs

In contemporary intelligent distributed systems, like multiagent systems, we typically
deal with many heterogenous information sources. They independently deliver infor-
mation (e.g. percepts), expressed in terms of beliefs, on various aspects of a recent
situation. Depending on the context and the goal of the reasoning process, different
beliefs need to be fused in order to achieve more holistic judgement of the situation.
Apparently, this information fusion may be realized in various ways. Let us now take
a closer look at this formal process.

Distributed information sources naturally introduce four truth values [4,10,22,23,24].
On the other hand, in real-world distributed problem solving, lack of knowledge and in-
consistent beliefs are to be resolved at some point. More precisely, in the case of lacking
knowledge, we need to complete missing information at the objective level, while in the
case of inconsistencies we do this at a meta-level, for example, by verifying which infor-
mation sources deliver false information. This knowledge can then be used for a better
setup or calibration of sensors and other data sources, as well as diagnostic systems
detecting malfunctioning devices. When this is impossible, especially in time-critical
systems, commonsense reasoning methods can be of help as they generally character-
ize typical situations [6,21,25]. Among these methods (local) closed world assumption,
default reasoning, autoepistemic reasoning and defeasible reasoning are of primary im-
portance. Again, 4QL supports such forms of reasoning.

As we shall discuss in the next sections, using our approach one can achieve a tractable
model of distributed belief fusion, as well as an implementation framework of distributed
belief fusion via epistemic profiles.

6 Towards Implementation

As indicated before, we apply reasoning over databases rather than over general the-
ories. Such an approach reflects the reality of intelligent systems and significantly re-
duces the complexity of reasoning, typically from at least exponential to deterministic
polynomial time, no matter what type of reasoning is used. This substantial complex-
ity gain is achieved by using 4QL, a query language [22,23,24] which enjoys tractable
query computation and captures all tractable queries. Belief structures, when imple-
mented in 4QL, can be considered as sets of ground literals generated by facts and
rules. Therefore, one can tractably query belief structures using such query languages
as first-order queries, fixpoint queries or 4QL queries.

6.1 The Main Idea

The main idea is illustrated in Figure 2. Namely, we propose to implement epistemic
profiles via an intermediate layer consisting of derivatives, where each derivative is
a finite set of ground literals. Intuitively, derivatives represent intermediate belief fusion
results or, in other words, intermediate views on the situation in question. Importantly,
such a structure allows us to implement belief fusion in a highly distributed manner.
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Example 6.1. One can consider two derivatives:

– Dp – for deciding the pollution level;
– Dn – for deciding the noise level.

Such derivatives should result from reasoning patterns defined by the corresponding
epistemic profile of the considered agent. For example, these derivatives may be:

Dp = {P (a,moderate)}, Dn = {N(a, high)}.

Based on the contents of Dp and Dn, the agent has to decide whether the situation is
healthy or not (and include it in its set of consequents F ). �
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Fig. 2. Implementation framework for belief structures and epistemic profiles. Arrows indicate
belief fusion processes.

6.2 Implementation Tool: 4QL

There are several languages designed for programming BDI agents (for a survey see,
e.g., [27]). However, none of these approaches directly addresses belief formation, in
particular nonmonotonic/defeasible reasoning techniques. Our choice is therefore 4QL,
a DATALOG¬¬-like query language. It supports a modular and layered architecture, and
provides a tractable framework for many forms of rule-based reasoning both mono-
tonic and nonmonotonic. As the underpinning principle, openness of the world is as-
sumed, which may lead to the lack of knowledge. Negation in rule heads, expressing
negative conclusions, may lead to inconsistencies. As indicated in [22], to reduce the
unknown/inconsistent zones, modules and external literals provide means for:

– the application-specific disambiguation of inconsistent information;
– the use of (Local) Closed World Assumption;
– the implementation of various forms of nonmonotonic and defeasible reasoning.
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To express nonmonotonic/defeasible rules we apply modules as well as external lit-
erals, originally introduced in [22]. Importantly, different modules can be distributed
among different agents participating in the reasoning process.

In the sequel Mod denotes the set of module names.

Definition 6.2. An external literal is an expression of one of the forms:

M.R,−M.R,M.R IN T,−M.R IN T, (13)

where M ∈Mod is a module name, R is a positive literal, ‘−’ stands for negation and
T ⊆ {f, u, i, t}. For literals (13), module M is called the reference module. �

The intended meaning of “M.R IN T ” is that the truth value of M.R is in the set T .
External literals allow one to access values of literals in other modules. If R is not
defined in the module M then the value of M.R is assumed to be u.

Assume a strict tree-like order ≺ on Mod dividing modules into layers. An external
literal with reference module M1 may appear in rule bodies of a module M2, provided
that M1 ≺ M2.4

Definition 6.3. By a rule we mean any expression of the form:

� :– b11, . . . , b1i1 | . . . | bm1, . . . , bmim . (14)

where � is a literal, b11, . . . , b1i1 , . . . , bm1, . . . , bmim are literals or external literals, and
‘,’ and ‘|’ abbreviate conjunction and disjunction, respectively.

Literal � is called the head of the rule and the expression at the righthand side of :–
in (14) is called the body of the rule. �

Rules of the form (14) are understood as implications:

((b11 ∧ . . . ∧ b1i1) ∨ . . . ∨ (bm1 ∧ . . . ∧ bmim)) → �,

where it is assumed that the empty body takes the value t in any set of literals.
By convention, facts are rules with the empty body. For example, a fact ‘P (a).’ is an

abbreviation for the rule ‘P (a) :– .’ .

Definition 6.4. Let a set of constants, Const, be given. A set of ground literals L with
constants in Const is a model of a set of rules S iff each ground instance of each rule of
S (understood as implication) obtains the value t in L. �

The semantics of 4QL is defined via well-supported models generalizing the idea
presented in [14]. Intuitively, a model is well-supported if all derived literals are sup-
ported by a reasoning grounded in facts. It appears that for any set of rules there is
a unique well-supported model and it can be computed in polynomial time. For details
see [24].

Remark 6.5. One can further extend 4QL without losing its tractability by allowing
arbitrary first-order formulas in bodies of rules. This allows one to directly implement
queries like those considered in Section 4.4. For details of such an extension see [35].�

4 Observe that layers generalize the concept of stratification of DATALOG¬ queries [23] (for
definition of stratification see, e.g., [1]).
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6.3 Implementing Belief Structures in 4QL

Implementation of tractable belief structures and epistemic profiles is now relatively
easy. Namely,

– epistemic profiles can be implemented by the use of derivatives;
– every constituent, derivative and consequent can be implemented as a separate 4QL

module.

The hierarchical structure of derivatives makes it possible to use the layered architecture
of modules, as required in 4QL. External literals allow to access information to create
beliefs on the basis of perhaps still preliminary beliefs already obtained.

Let {Ei | i = 1, . . . , n} be epistemic profiles of agents Ag1, . . . , Agn and let
BE
i = 〈Ci, Fi〉 be the agents’ belief structures over these epistemic profiles. Assume

an agent Agk (1 ≤ k ≤ n) is asked a query. We have the following two cases:

1. when a formula expressing (a part of) a query is not within the scope of a Bel()
operator then we evaluate it in the database obtained as the union of constituents⋃

C∈Ck

C (according to Definition 3.7);

2. when a formula has the form Belj(α) (1 ≤ j ≤ n), it is evaluated in Fj (considered
as a database).

Example 6.6. Consider queries (8)– (11) (Section 4.4). If Ag1.S, Ag2.S respectively
refer to relation S included in the set of consequents ofAg1’s andAg2’s belief structures
then queries (8)– (11) can be expressed by:

∃X(Ag1.S(X, healthy)) ∧ ∃X(Ag2.S(X, healthy)),
∃X(Ag1.S(X, healthy) ∧ Ag2.S(X, healthy)),
∀X(Ag1.S(X, healthy)) ∨ ∀X(Ag2.S(X, healthy)),
∀X(Ag1.S(X, healthy) ∨ Ag2.S(X, healthy)),

where Agi.S indicates that the value of S is taken from consequents of agent Agi. �

Open source interpreters [32,33] of 4QL are available via 4ql.org. Also, a com-
mercial implementation of 4QL is being recently developed by NASK.5

6.4 Exemplary Implementation

Consider now the scenario outlined in Examples 2.1 and 6.1. Exemplary modules cor-
responding to constituents, derivatives and consequents are shown in Tables 3–5, re-
spectively.6

It is important to note that well-supported models are sets of literals. Thus relational
or deductive databases technology can be used to query them (see also Section 4.4).

In fact, four logical values, external literals and modular architecture distinguish 4QL
from many other approaches (for a survey see, e.g., [3]). 4QL modules are structured

5 http://www.nask.pl/nask en/
6 We use the Inter4QL self-explanatory syntax – for details see [33].
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Table 3. Modules corresponding to constituents considered in Example 2.1

module Cp:
domains:

literal level.
literal place.

relations:
P(place, level).

facts:
P(a, low).

end.

module Cn:
domains:

literal level.
literal place.

relations:
N1(place, level).
N2(place, level).

facts:
N1(a, high).

module Ce:
domains:

literal level.
literal place.

relations:
Cl(place, type).

facts:
-Cl(a, noisy).
Cl(a,neutral).
Cl(a,pollutive).

end.

into layers. According to syntax of 4QL, the lowest layer represents monotonic reason-
ing, while higher ones allow the user to provide (nonmonotonic) rules for disambiguat-
ing inconsistencies and completing lacking information. This is achieved by explicitly
referring to logical values via external literals.

6.5 Complexity

Theoretically, any belief structure (also augmented with derivatives) can be of exponen-
tial size w.r.t. the number of literals involved. In applications they may be dynamically
generated as agents appear or groups are formed. However, at a given timepoint we can
assume that their size is always reasonable, as it reflects available resources. Also the
number of groups may, in theory, be of exponential size w.r.t. the number of agents.
Again, in a given application we have a limited number of groups and only these are
equipped with belief structures, as discussed in [10] and in this paper itself.

Let |Const| = k, let n be the number of agents and let m be the number of groups.
Further, let the size of all belief structures involved be bounded by f(k, n,m). Then we
have the following theorem which follows from the tractability of 4QL [22,23,24].

Theorem 6.7. If belief structures and queries are implemented using the 4QL query
language then the time complexity of computing queries is deterministic polynomial in
f(k, n,m). �

Let us emphasize again that in practice one can safely assume that f(k, n,m) is
bounded by available resources, including time, memory and physical devices.

Theorem 6.7 holds also when 4QL is replaced by any query language with polyno-
mially bounded complexity of computing queries. However, 4QL captures all polyno-
mially computable queries [23], so when 4QL is used, we also have another theorem.

Theorem 6.8. Any polynomially constructed belief structure can be implemented using
4QL. �

It is worth emphasizing that Theorem 6.8 shows that 4QL is a sufficient language
that serves our purposes. One can argue that the same applies to any query language
which captures deterministic polynomial time. However, in contrast to other languages,
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Table 4. Modules corresponding to derivatives considered in Example 6.1

module Dp:
domains:

literal level.
literal place.

relations:
P(place, level).

rules:
P(X, moderate):- Cp.P(X, low) IN {TRUE, UNKNOWN},

Ce.Cl(X, pollutive) IN {TRUE, UNKNOWN}.
...

end.

module Dn:
domains:

literal level.
literal place.

relations:
N(place, level).

rules:
N(X,Y):- Cn.N1(X,Y), Cn.N2(X,Y) IN {TRUE, UNKNOWN} |

Cn.N1(X,Y) IN {TRUE, UNKNOWN}, Cn.N2(X,Y).
...

end.

Table 5. Module corresponding to consequents considered in Example 2.1

module F:
domains:

literal characteristics.
literal place.

relations:
S(place, characteristics).

rules:
-S(X, healthy):- Dn.N1(X, high), Dn.N2(X, high).
S(X, healthy):- Cp.P(X, moderate),

Cn.N1(X, low) IN {TRUE, UNKNOWN}.
...

end.

4QL provides simple, but powerful tools for direct expression of a wide spectrum of
reasoning techniques, including nonmonotonic ones, and allowing one to handle incon-
sistencies.

Observe also that agents’ and groups’ belief structures and epistemic profiles typi-
cally match some patterns reflecting agents’ types or groups’ organizational structures
and cooperation procedures. Therefore, in practice, one can expect belief structures to
be generated on the basis of a library of patterns, much like in object-oriented program-
ming dynamic objects are generated on the basis of static classes, developed during the
system’s design phase. Of course, the number of such patterns does not change during
system execution, so can be bound by a constant.
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7 Conclusions

In this paper we differentiated agents’ characteristics via individual and group epistemic
profiles, reflecting agents’ reasoning capabilities. This abstraction tool permits both to
flexibly define the way an agent (a group) reasons and to reflect the granularity of rea-
soning. The presented pragmatic framework to beliefs suits real-world applications that
often are not easy to formalize. In particular, it allows for natural handling of inconsis-
tencies and gaps in beliefs by using paraconsistent and nonmonotonic reasoning.

Moreover, our approach permits a uniform modeling of individual and group beliefs,
where group is a generic concept consisting of individual agents, groups of agents,
groups of groups of agents, etc. Importantly, the assumed layered architecture underly-
ing the framework allows one to avoid costly revisions of agents’ beliefs when they join
a group. This is especially important when paradigmatic agent interactions are consid-
ered. Cooperation, coordination and communication is naturally modeled by creating
a group and forming group beliefs to achieve a common informational stance. What
sort of structure it is and how this influences agents’ individual beliefs is a matter of
design decisions. Our approach ensures both the heterogeneity of agents involved and
flexibility of group level reasoning patterns.

Most significantly, we have indicated 4QL as a tool to implement all epistemic pro-
files and belief structures constructible in deterministic polynomial time. We have also
shown a natural methodology to obtain such implementations. One can then query im-
plemented belief structures in a tractable manner, which provides a rich but still prag-
matic reasoning machinery. To the best of our knowledge, such tractability of reason-
ing about beliefs has not been achieved yet. Also, nonmonotonic/defeasible reasoning
techniques are easily expressible in 4QL, ensuring both richness and flexibility of im-
plemented epistemic profiles.
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