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Preface

This volume collects the revised proceedings of the 21st International Security
Protocols Workshop, held in Sidney Sussex College, Cambridge during 19th and
20th March 2013.

The theme of the workshop was “What’s happening on the other channel?”
Many protocols use a secondary channel, either explicitly (as in multichannel
protocols1) but more usually implicitly, for example to exchange master keys, or
their hashes. The role of the Other Channel is fundamental, and often problem-
atic, and yet protocol composers typically take them as a given. Sometimes the
Other Channel really is completely covert, but sometimes it just has properties
that are different. And it’s not only security properties that are relevant here:
bandwidth, latency and error rate are often important considerations too. Even
a line-of-sight channel usually doesn’t quite have the properties that we unthink-
ingly attributed to it. Moriarty has been subscribing to the Other Channel for
years: perhaps it’s time for Alice and Bob to tune in too.

As with previous workshops in this series, each paper was revised by the
authors to incorporate ideas that emerged during the workshop. These revised
papers are followed by an edited transcript of the presentation and ensuing
discussion.

Our thanks to Lori Klimaszewska for the raw transcriptions of the audio,
later revised by the speakers themselves, and to Vashek Matyas for serving with
us on the Program Committee.

We hope that reading these proceedings will encourage you to join in the
debates. If you have an idea that might spark an interesting discussion, why not
write it up as a position paper and send it to us? There’ll be another workshop
next year.

September 2013 Bruce Christianson
James Malcolm
Frank Stajano

Jonathan Anderson
Joseph Bonneau

1 LNCS 4631, 112–127.
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Introduction:

What’s Happening on the Other Channel?
(Transcript of Discussion)

Bruce Christianson

University of Hertfordshire

Welcome to the 21st Security Protocols Workshop, which means that we are
indeed twenty years old this year, and it’s nice looking round to see a few faces
of people who were at the very first one twenty years ago. And it’s also very nice
to see a few new faces of people who haven’t been here before. So for the benefit
of those who haven’t, and for the benefit of some of those who are regulars, I’ll
just go through the rules of engagement quickly.

This is a workshop and not a conference: the idea is to be spontaneous and to
let ideas emerge, so when you’re presenting you’re expected to lead a discussion
rather than power through your PowerPoint in the order in which you originally
intended to give it. We do prepare transcripts but they’re heavily edited, you’ll
get a chance to see it, and we won’t let you say anything egregiously stupid on
the record, so feel free to have a go, and if it doesn’t work out we’ll just delete
it. Don’t feel that you have to say what you planned to say when you stood up.
On the other hand, if the answer that you’d give to a question is going to be
less interesting than what you would have said anyway, please just use your skill
and judgement to resolve that one.

We have a couple of small features designed to add to the spontaneity this
year. One is that the pre-proceedings won’t be available until tomorrow. And
the second is that Vashek is currently snowed in on the runway at Brno airport,
so if there’s somebody who was planning to speak tomorrow and who’s either
already prepared their talk, or wasn’t planning to prepare their talk at all, and
is willing to give the same (or even a different) talk this afternoon, please make
yourself known to me during the tea break and we’ll do a swap round.

Every year we have a theme. This isn’t intended to constrain what people
say, it’s just intended to give a conceptual framework to allow the ideas to de-
velop, so you can think of it as a sort of drying rack to hang your ideas on
while they’re still a bit damp, and this year the theme is: “What’s happening
on the other channel?” There’s been continued interest over the last few years
in multi-channel protocols, probably the most famous being the Resurrecting
Duckling, which was presented here quite a few years ago1. And I saw just the
other day a new device for a cash-point in Japan, where you put your mobile
phone on the cash-point and then place your finger on a scanner, you don’t ever
key any information into the cash-point, only ever on your mobile phone. There’s

1 LNCS 1796, 172–194.

B. Christianson et al. (Eds.): Security Protocols 2013, LNCS 8263, pp. 1–2, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 B. Christianson

no keyboard on the cash-point. You can have a think about that one over the
tea break.

But just as we discover at some point that we’ve all been speaking prose for
years, in the same way when we go back and look again at all the old protocols
that we thought we understood, but with the perspective that looking at multi-
channel protocols has given us, we usually realise that these protocols involved
side channels as well. The difference is just that they’re not on stage, they’re
either happening before the formal modelling that we do for the single channel
protocols begins, or they’re happening out of band, or they’re happening after-
wards when there’s some sort of dispute resolution going on. But there’s almost
always something happening using some other means of communication than
the one that’s being modelled in the protocol, and the thought is that perhaps
this is a helpful way of looking at things more generally.

Sometimes the other channel is a covert channel. We’re used to thinking of
covert channels as something that attackers use, but when we look at a number
of authentication protocols we often find out that Alice and Bob are relying on
being able to keep a covert channel open somewhere in order to prove that the
authentication protocol has actually authenticated the parties that they think
it has. Line-of-sight authentication is a classic example of this, once you start
looking at how line-of-sight authentication actually works, there’s an awful lot
more going on there than you might think.

But one thing we can be sure of, which is that Moriarty being an evil genius
has been looking very carefully for many years at what’s happening on the other
channel, and there is a danger that he’s getting ahead. So part of our mission
for the next two days is to redress that situation.



Towards New Security Primitives

Based on Hard AI Problems

Bin B. Zhu1 and Jeff Yan2

1 Microsoft Research Asia, Beijing, China
binzhu@microsoft.com

2 School of Computing Science, Newcastle University, UK
Jeff.Yan@ncl.ac.uk

Abstract. Many security primitives are based on hard mathematical
problems. Using hard AI problems for security has emerged as an ex-
citing new paradigm (with Captcha being the most successful example).
However, this paradigm has achieved just a limited success, and has been
under-explored. In this paper, we motivate and sketch a new security
primitive based on hard AI problems.

Keywords: Captcha as gRaphical Passwords (CaRP), passwords, cross-
device authentication.

1 Thwart Password Guessing: A New Method

PassPoints [1] is a well-studied graphical password scheme, where a user clicks
on an image and the ordered sequence of her click-points is used to derive a
password.

Fig. 1. Hotspots in PassPoints (taken from [2])

PassPoints has an inherent security weakness: it is easy for an attacker to
automatically identify all salient points in an image using standard image pro-
cessing methods. Then running through random combinations of salient points
will lead to a brute force attack on passwords. To make things worse, when given

B. Christianson et al. (Eds.): Security Protocols 2013, LNCS 8263, pp. 3–10, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



4 B.B. Zhu and J. Yan

an image, people tend to prefer some image points (e.g. eye-catching ones) over
others when creating passwords. These more popular points are ‘hot spots’ of the
image, as shown in Figure 1, and an attacker can exploit them for an effective
dictionary attack, significantly reducing the security of PassPoints [2,3].

To address the above problems, we have pondered a new approach to miti-
gating password guessing attacks.

Password guessing, on text or graphical passwords, online or offline, is typ-
ically a deterministic elimination process. Each guess reduces the remaining
search space, and a next guess has a higher chance for success. While more
and more password candidates get eliminated, the probability of a current guess
being correct increases, and this probability finally approaches 1. Naturally, a
classic defense is to increase the password space.

But, how about thwarting the deterministic elimination process? What if pre-
vious guesses do not contribute to reducing the password space, and thus a next
guess is just like starting from scratch? Is this possible?

Salient points in PassPoints harm security but help memorability, as these
points are often structural and they facilitate users to remember their click-
points. It is impractical to force users to choose non-salient points, as these will
be hard to remember. If we do not want to increase the image size to boost the
password space, the only option remaining seems to make it hard for computers
to exploit salient points. If the points a user clicks to login in a session cannot
be correlated to the points she clicks in other sessions, then it is likely that a
previous guess is not correlated with the next. One way of achieving this is the
following: a different image is used for each session, and in each of the images,
a user’s password points appear in different forms, different locations, etc. This
way, each automated guess will not reduce the password search space any more.

On the other hand, there must exist some invariant components in all the
images used in different login attempts, otherwise users cannot use anything as
passwords. We also need a password to remain the same for a user so that the
authentication server can use it to verify her.

The above two requirements are similar to that of an ideal Captcha. In par-
ticular, as an established principle in Captcha design: to defeat machine learning
attacks, each Captcha challenge should be computationally independent of the
other [4]. If a new image is used in every login attempt and there is no compu-
tationally detectable correlation among these images, then the salient points or
hotspots collected from previously used images will not help to locate the target
points in the next image. As such, an adversary cannot build a dictionary with
entries consistent for different login attempts to mount a dictionary attack.

The above thoughts have led to the concept of CaRP (Captcha as gRaphi-
cal Passwords), a new family of graphical passwords robust to online guessing
attacks. Their relationship with Captcha also indicates how to construct CaRP
schemes from various Captchas.
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2 CaRP: Captcha as gRaphical Passwords

CaRP is a family of graphical password systems created with Captcha technol-
ogy. Just like PassPoints, a user clicks on a CaRP image and the sequence of her
clicks creates a password. However, each CaRP image is automatically generated
by a Captcha generator, and thus is also a Captcha challenge. Just like a session
key, a CaRP image is never reused across different sessions. Even for the same
user, a new CaRP image is needed for every login attempt. To the contrary, in
PassPoints a user always uses the same image to click her password, and many
users use the same image for their password input, which leads to successful
attacks exploiting hotspots.

Pinkas and Sander [5] introduced a protocol to protect passwords from online
dictionary attack with Captchas1. Captcha and password are separate entities
in this protocol, but are intrinsically combined in CaRP, which is both a Captcha
and a graphical password (scheme).

The notion of CaRP is simple but generic, and it can have multiple instan-
tiations. Many Captcha schemes, regardless of whether they are text based or
image recognition based, can be converted to a CaRP scheme. We provide a
number of examples as follows.

2.1 ClickText

ClickText is a CaRP scheme built on top of text Captcha. Unlike normal text
Captchas, a CaRP image should contain all the alphabet to allow a user to form
any allowed password. Figure 2 shows a ClickText image with an alphabet of
33 characters. In ClickText images, characters can be arranged randomly on
2D space. This is another major difference from traditional text Captchas in
which characters are typically ordered from left to right. Using ordinary text
Captcha is not suitable in this context, as it is hard to arrange all the characters
one dimensionally in a reasonably small space. Also, there is no order among
characters in a CaRP image whereas the order is needed for characters in a
normal Captcha image so that users can type them in. Therefore, we propose
a new problem, 2D text segmentation, as the underlying hard AI problem for
ClickText.

A ClickText password is a sequence of characters in the alphabet, e.g. ρ =
‘AB#9CD87’, which is similar to a text password. To enter a password, the user
clicks on the image the characters in her password in the order, ‘A’, ‘B’, ‘#’, ‘9’,
‘C’, ‘D’, ‘8’, and then ‘7’.

When a CaRP image is generated, each character’s location is tracked to
produce a ground truth. The authentication server relies on the ground truth to

1 In the PS protocol, a user is required to solve a Captcha challenge after entering
her valid user name and password, unless a valid browser cookie from a previous
successful login is available. If the user name and password pair is invalid, with a
probability determined by a deterministic function, the user will receive a Captcha
challenge to solve before being denied access to her account.



6 B.B. Zhu and J. Yan

Fig. 2. A ClickText image with 33 characters

identify the characters corresponding to user-clicked points. The server does not
store passwords in the clear, but their cryptographic hashes.

ClickText does not use visually-confusing characters. For example, letter ‘O’
and digit ‘0’ may cause confusion in a CaRP image, and thus one of the characters
should be excluded from the alphabet.

2.2 ClickAnimal

Captcha Zoo [6] is an image recognition scheme whose security relies on both ob-
ject segmentation and binary object classification. It uses 3D models of two sim-
ilar animals, e.g. dog and horse, to generate 2D animals with different textures,
colors, lightings and poses, and then places them on a cluttered background. A
user clicks all the horses in a challenge image to pass the test. Figure 3 shows a
sample challenge where all the horses are circled red.

Fig. 3. A challenge in Captcha Zoo with horses circled red (taken from [6])

We can turn Captcha Zoo into a CaRP scheme, by introducing additional
similar animals such as dog, horse and pig into the alphabet. In this new CaRP
which we call ClickAnimal, a password is a sequence of animal names such as
ρ = ‘Turkey, Cat,Horse,Dog, ...’. For each animal, one or more 3D models are
built. The Captcha generation process is applied to generate ClickAnimal images,
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wherein 3D models are used to generate 2D animals by applying different views,
textures, colors, lightning effects, and, optionally, distortions. Different views
applied in this step generate many different 2D shapes for the same animal,
which, together with other anti-recognition mechanisms applied in this step,
makes it hard for automatic recognition to identify the generated 2D animals.
The resulting 2D animals are then arranged on a cluttered background such as
grassland. Some animals may be occluded by other animals in the image, but
their core part should not be occluded in order for humans to identify. Figure 4
shows a ClickAnimal image with an alphabet of 10 animals.

Fig. 4. A ClickAnimal image (left) and a 6 × 6 grid (right) determined by the red
turkey’s bounding rectangle

2.3 AnimalGrid

The number of similar animals is much less than the number of available text
characters. ClickAnimal has a smaller alphabet, and thus it implies a smaller
password space than ClickText does. CaRP should have a sufficiently-large ef-
fective password space to resist human guessing attacks. ClickAnimal’s password
space can be increased by combining a grid scheme as follows, leading to a new
CaRP which we call AnimalGrid.

To enter a password, a ClickAnimal image is displayed first. After an animal
is selected, an n× n grid appears, with the grid-cell size equaling the bounding
rectangle of the selected animal. All grid cells are labeled to help a user iden-
tify them. Figure 4 shows a 6 × 6 grid when the red turkey in the left image
was selected. A user can select zero to multiple grid-cells to form her pass-
word. Therefore a password is a sequence of animals interleaving with grid-cells,
e.g. ρ = ‘Dog,Grid(2), Grid(1);Cat,Horse,Grid(3)’, where Grid(1) means the
grid-cell indexed as 1, and grid-cells following an animal means that the grid
is determined by the bounding rectangle of the animal. A password must begin
with an animal.
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3 Application Scenarios

CaRP’s typical applications include the following.
E-banking. Many e-banking systems have deployed Captchas to protect

customers from automated online password attacks. For example, ICBC
(http://www.icbc.com.cn/), the largest bank in the world, requires solving
a Captcha for every login attempt. We envisage that it is faster and more con-
venient for people to use CaRP than the combined effort of entering a password
and then solving a Captcha.

Cross-device authentication. Typing passwords is cumbersome on touch devices
such as smartphones and tablets, where click/touch-based input is convenient.
CaRP can offer the same password entry experience across different types of de-
vices, including desktops, smartphones and tablets. Therefore, it is inherently a
cross-device authentication mechanism, and a single implementation can simulta-
neously serve a wide range of different devices. On the contrary, text passwords are
more friendly to desktop users, but less so to smartphone or tablet users.

Spam mitigation. CaRP can be deployed to increase a spammer’s operating
cost, and thus likely help reduce junk emails. For an email service that deploys
CaRP, human involvement is compulsory to access an account; a spam bot can-
not log into any account even if it knows the password. If CaRP is used together
with a policy of throttling the number of outgoing emails allowed per login ses-
sion, a spam bot will need regular human assistances, and each time it sends out
only a limited number of emails. All these will reduce a spammer’s productivity.

4 Security Analysis

The computational intractability of hard AI problems such as object recognition
is fundamental to the security of CaRP. Existing analyses on Captcha security
were mostly case by case or used an approximation approach. No theoretic secu-
rity model has been established yet. Segmenting similar objects (e.g. characters) is
considered as a computationally-expensive and combinatorially-hard problem [7],
which modern text Captcha schemes rely on. According to [7], the complexity of
object segmentation is exponentially dependent of the number of objects contained
in a challenge, and polynomially dependent of the size of the Captcha alphabet.
A Captcha challenge typically contains 6 to 10 characters, whereas a CaRP im-
age typically contains 30 or more characters. Therefore, ClickText is much more
secure than normal text Captcha. Furthermore, characters in a CaRP scheme are
arranged two-dimensionally, which further increases segmentation difficulty due
to an additional dimension to segment. ClickAnimal relies on both object segmen-
tation and multiple-label classification. Its security remains an open question.

As a framework of graphical passwords, CaRP does not rely on the security
of any specific Captcha scheme. If one Captcha scheme gets broken, a new and
more robust Captcha scheme may appear and be used to construct a new CaRP
scheme.

CaRP offers protection against online dictionary attacks on passwords, which
have been for long time a major security threat for various online services.

http://www.icbc.com.cn/
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Defending against online dictionary attacks is a subtler problem than it might
appear. Intuitive countermeasures such as limiting the number of logon attempts
do not work, for two reasons:

– They cause denial-of-service attacks (which were exploited to lock high-
est bidders out in final minutes of eBay auctions [8]) and incurs expensive
helpdesk costs for account reactivation.

– They are vulnerable to global password attacks [5], where adversaries intend
to break into any account rather than a specific one, and thus they try each
password candidate on multiple accounts. This way, the number of guesses on
each account is made below the threshold, thus avoiding triggering account
lockout.

CaRP makes it much harder for bad guys to perform automated guess attacks.
Even when a human is involved, the attack is still expensive and slowed down.
CaRP also offers protection against relay attacks, which have been an increasing
threat to online applications protected by Captchas. In a relay attack, Captcha
challenges are relayed to humans to solve, with their answers returned.

CaRP is robust to shoulder-surfing attacks, if combined with Microsoft’s dual-
view technologies [9] that show two sets of completely different images simulta-
neously on the same LCD screen: one for private, and the other for public. When
a CaRP image is displayed as private, attackers can capture a user’s click-points
but not the private image, but these points are useless for a next login session
(where a new CaRP image will be used).

CaRP is robust to cross-site scripting attacks targeting at stealing users’
graphical passwords, although other click-based graphical passwords such as
PassPoints are vulnerable to such attacks.

However, a longitudinal evaluation is needed to establish the effective pass-
word space for each CaRP instantiation. CaRP is vulnerable if a client is com-
promised, and the image and user-clicked points can both be captured.

5 Usability

Initial user studies with several schemes proposed in Section 2 are encouraging.
Still, CaRP requires a user to handle a Captcha-like challenge each time to login.
This might have a usability impact, but it can be mitigated by serving CaRP
images of different difficulty levels, according to an account’s login history and
whether a known machine is used for login.

The optimal configuration for achieving good security and usability remains
an open question for CaRP, and further studies are needed to refine each imple-
mentation for actual deployments.

6 Summary

It is a fundamental method in computer security to create cryptographic primi-
tives based on hard mathematical problems that are computationally intractable.



10 B.B. Zhu and J. Yan

Using hard AI problems for security, initially proposed in [10], is an exciting
new paradigm. Under this new paradigm, the most notable primitive invented
is Captcha. However, the new paradigm has achieved just a limited success,
if compared with the number of cryptographic primitives based on hard math
problems and the wide applications of such primitives. We have showed that it is
indeed possible to construct new security primitives based on hard AI problems.

Like Captcha, CaRP utilizes unsolved AI problems. However, a password is
much more valuable for attackers than a free email account that Captcha typ-
ically protects. Therefore there are probably more incentives for the attackers
to hack CaRP than Captcha. That is, CaRP can attract more efforts than ordi-
nary Captcha does to the following win-win game: if the attackers succeed, they
contribute to improving AI by providing solutions to open problems. Otherwise,
our system stays secure, contributing to practical security.

Overall, CaRP appears to be a step forward in the paradigm of using hard
AI problems for security. What else can be invented this way? We expect CaRP
to inspire new inventions of AI based security primitives.

Acknowledgements. We thank Peter Ryan for very helpful discussions, and
thank Tim Barclay for proofreading our camera-ready version, which improved
the writing quality of this paper.

References

1. Wiedenbeck, S., Waters, J., Birget, J.C., Brodskiy, A., Memon, N.: PassPoints:
design and longitudinal evaluation of a graphical password system. Int. J of HCI 63,
102–127 (2005)

2. Thorpe, J., van Oorschot, P.C.: Human-seeded attacks and exploiting hot spots in
graphical passwords. USENIX Security (2007)

3. Dirik, A.E., Memon, N., Birget, J.-C.: Modeling user choice in the PassPoints
graphical password scheme. ACM SOUPS (2007)

4. Zhu, B.B., Yan, J., Li, Q., Yang, C., Liu, J., Xu, N., Yi, M., Cai, K.: Attacks and
design of image recognition CAPTCHAs. ACM CCS, 187–200 (2010)

5. Pinkas, B., Sander, T.: Securing passwords against dictionary attacks. ACM CCS,
161–170 (2002)

6. Lin, R., Huang, S.-Y., Bell, G.B., Lee, Y.-K.: A new Captcha interface design for
mobile devices. In: Australasian User Interface Conference (2011)

7. Chellapilla, K., Larson, K., Simard, P.Y., Czerwinski, M.: Building Segmentation
Based Human-Friendly Human Interaction Proofs (HIPs). In: Baird, H.S., Lopresti,
D.P. (eds.) HIP 2005. LNCS, vol. 3517, pp. 1–26. Springer, Heidelberg (2005)

8. Wolverton, T.: Hackers attack eBay accounts. ZDNet (March 26, 2002),
http://www.zdnet.co.uk/news/networking/2002/03/26/

hackers-attack-ebay-accounts-2107350/

9. Kim, S., Cao, X., Zhang, H., Tan, D.: Enabling concurrent dual views on common
LCD screens. In: Sig. CHI 2012, pp. 2175–2184 (2012)

10. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: Captcha: using hard AI prob-
lems for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
294–311. Springer, Heidelberg (2003)

http://www.zdnet.co.uk/news/networking/2002/03/26/hackers-attack-ebay-accounts-2107350/
http://www.zdnet.co.uk/news/networking/2002/03/26/hackers-attack-ebay-accounts-2107350/


Towards New Security Primitives

Based on Hard AI Problems
(Transcript of Discussion)

Jeff Yan

University of Newcastle

OK, today I talk about ‘Towards new security primitives based on hard AI
problems’. We all know that actually most security primitives are based on hard
math problems, such as integer factorisation and discrete logarithm, but in 2003,
using hard AI problems for security purposes was proposed at CMU. Everyone
knows that Captcha is the most successful example. The research question we
have asked is very simple: what else can we invent along this line? Can we do
anything else in security primitives based on hard AI problems?

My next slide, which some people in this audience have seen before, is taken
from a talk I gave at a Cambridge Security Seminar in 2007. At the time I
was busy designing a new graphical password scheme, which is now known as
Background Draw A Secret. I had a look at a popular graphical password scheme,
which is called PassPoints. In this scheme basically each user has an image, you
click five points on this image, and derive your password. Apparently you can
apply image processing techniques to automatically grab all those salient points,
those eye-catching points. Therefore, if you do a random combination of those
salient points you effectively do a brute-force attack on the passwords. And in this
system, because multiple users will use the same image to create and enter their
passwords, some salient points are more popular than others, therefore they lead
to ‘hotspots’. If the hotspots are detected then you effectively can launch a very
successful dictionary attack to break PassPoints. The attack was demonstrated
in two papers, one at USENIX Security’07 and the other at SOUPS’07.

I was considering how to address the problems, or the difficulties facing Pass-
Points. We pondered over a new method for thwarting password guessing attacks.
The idea is the following. If we look at the password guessing attack, we have
the following angle. No matter whether the guessing is done online or offline,
and no matter it is on text passwords or graphical passwords, guessing is a de-
terministic elimination process. Each guess reduces the remaining search space,
and therefore a next guess will have a higher chance of success. While more and
more password candidates get eliminated, the probability of a current guess be-
ing correct of course increases. And finally this probability approaches 1. This
is the usual real world strategy of password guessing attacks, and therefore a
natural defence is very simple: we just increase the password space, and make it
harder and longer to finish this elimination process.

What we were thinking at the time is: how about failing the deterministic
elimination process so that password guessing is less effective? For example, no
matter how many previous guesses have been done, if the chance for a current
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guess to be correct remains the same, then this would effectively make each guess
fail to reduce the search space. So in a sense, this means that each password guess
is independent of the other. [Pointing to an equation on the slide] This might
not be mathematically a rigorous description, but anyway, the point is that if
such a thing can be done then we can fail this elimination process.

We know, as I mentioned, salient points in PassPoints harm security, but
they are essential, and they help memorability, because people have to use those
salient points to remember passwords. It is unlikely to force people to choose
non-salient points as their password click-points, as nobody could remember
them. OK, so if we choose to not increase the image size to boost the password
space then the only option remaining for us to defend against password guessing
is to make it harder for computers to exploit salient points. So if a user still uses
a sequence of salient points – and indeed a user needs a sequence of salient points
to form a password – but if the salient points are displayed in different forms,
different locations, etc, for each logon session, for example, we use a different
image per session, what does this imply? Basically this means that a previous
guess is not correlated with the next. This means each automated guess will not
reduce the password search space any more.

Of course for the same user, her password points have to remain invariant
across all the different images used for different logon sessions. But if we look
at these two requirements: we need invariant points to form passwords, this
is the first requirement; the second requirement is to make a previous guess
independent of the next. These two requirements are exactly the same as for
Captchas. For those who are familiar with Captcha design, we know there is
an established principle in Captcha design: to defeat machine learning attacks,
each Captcha challenge should be computationally independent of the other.
Therefore we have a simple idea: we want to combine Captcha and graphical
passwords. And what we have got is what we call a CaRP: Captcha as gRaphical
Passwords.

The idea is simple: a CaRP is both a Captcha and a graphical password
scheme. Just like PassPoints, a user clicks on an image to create her passwords.
But unlike in PassPoints, in CaRP each image is actually a Captcha challenge,
and it should be used only once, just like a session key. This CaRP notion is
actually pretty generic. We can use either text or image-recognition Captchas to
build such a graphical password scheme. Let me just show a few examples.

The first one is ClickText, a CaRP based on text Captchas. In my previous
work, we looked at a lot of text Captchas, and all the text Captchas we have
looked at were broken by us. Well just this morning, I apologised to some of
the audience for making everybody’s life hard, as our attacks made it harder for
people to solve Captchas. What we have learned from our attacks is the tradi-
tional text Captcha doesn’t work. Those are one line Captcha, where characters
are displayed from left to right, just in one line. They will not work for this
ClickText either, therefore we propose a new open problem, and we propose to
form a new kind of Captcha. And we use this new Captcha to build a CaRP,
which is called ClickText. So like text passwords, you still construct passwords
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using letters and digits, but with a limited alphabet. The server of course has
to track each character’s location as ground truth, so when the user logs on she
clicks on an image and her click points will be mapped to the right characters
by the server using the ground truth, and then the actual ground truth’s hash
is store in the server.

In our prototype implementation we used an alphabet of 33 characters, so if
we ask users to form a password of eight characters, this gives us about 40 bits.
The design choice of using 33 keys is just to make this scheme work for both
laptops and touch devices. Of course you can use a larger alphabet, but ...

Frank Stajano: Could you tell us what the advantage would be compared
to the password, because it looks that this is not going to be any more secure
than passwords, there’s more or less the same cognitive effort, perhaps more,
because yours also have defined the characters, what’s the benefit compared
with passwords?

Saar Drimer: And you also have to click on the right place.
Reply: First, this one is better in terms of defending against online dictionary

attacks. Secondly, this kind of design is suitable for a touch device like an iPad
or iPhone. If we deploy this solution for e-banking on mobile devices, this will
offer a lot of advantages.

Saar Drimer: If it’s a touch device on the finger I just can’t see it, like the
bottom area, is it HK is it down there, where do you expect people to click it?

Reply: You’re right, indeed sometimes a user will find it hard to figure out
some distorted characters. So what they can do is to pass the confusing image
and get another one.

Frank Stajano: I don’t believe the claim is better for a dictionary attack
because all that the programme has to do is segmentation, without even recog-
nizing which characters, and then just try the stuff that goes in there.

Reply: Well the good thing is that this image will not be used again, so you
have only one single chance to guess a password using this image, next time you
get an entirely different image, so all the previous guesses will not contribute to
your next guess. So all the guesses should now be started from scratch, that’s
why we claim this is good for defending against online dictionary attacks.

Frank Stajano: How is this different from just showing a keyboard that
randomises each time?

Reply: Those keys can be easily recognized by image processing algorithms,
so attackers can still know the locations of each character.

Frank Stajano: And then?
Reply: And then, they know where each character is, but if it’s this design,

the location of each character is in a different place for a different image.
Feng Hao: So if I understand correctly, if you are talking about a human

attacker and he doesn’t have an advantage over the traditional password au-
thentication scheme, but if you’re talking about the bot.

Reply: Yes, I’m talking about automated attacks.
Feng Hao: In that case, yes, it has some (inaudible).
Reply: Yes. For human attacks this slows down their guessing process.
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William Claycomb: Isn’t there still a finite number of combinations of pic-
tures that you have as they will never be used again, is that really true, surely
an infinite number of combinations that you can put on the screen?

Reply: Yes, that’s definitely doable. The alphabet is fixed, but the location
of a character can change each time, and the form and font of each character can
change all the time. So this requirement is just like a requirement for ordinary
Captchas, which of course is satisfied and practised by all the major companies.

Frank Stajano: I really don’t see the differences here because if the point is
that the password is just going to make mixed up characters like this, right, its
password is not going to be word, right, otherwise you could just look for a word.
Is it going to be something that has meaning, or is it going to be completely
random characters?

Reply: I think actually you can use a word or a non-word, just up to your
own choice, although I agree this choice of alphabet will put some constraints to
users. But for the exact constraints I am not very sure at this moment.

Daniel Thomas: So this is like having a long hash function on a server, it will
then take longer to attack, and instead of doing it on the client, the clients are
forced to do a computational, so brute-forcing rather than the server having to
do the work, so you’re trying to slow down attacks by making people bruteforce
lots of hashes, so you have can have a, your login process is slow because you’re
doing a lot of SHA-256 iterations, and making your server do it, but the client
has to do its own recognition stuff, but each client has to do quite a lot of work
in order to proceed.

Reply: I think the main point is that no matter what a client does, each guess
doesn’t reduce the password search space. So you cannot say, we definitely can
crack this password with a definite number of guesses. So this process becomes
probabilistic. You have to do a lot more guesses if we are talking about automated
guessing attacks. But if it is about a human guess attack, that’s a different story.

Daniel Thomas: So you must reduce the search space by one if you do
character recognition and you know what your characters are you can ...

Reply: Basically the idea is that current recognition techniques cannot iden-
tify each character, and where each character is.

Daniel Thomas: So it would have to do random guesses?
Reply: Yes, that’s the main idea. So you don’t know which character is which,

and you don’t know where a character is.
Reply: Mike, you still have any questions?
Michael Roe: I think you’ve just answered my questions. What I was going

to say was the reason this increases the entropy is because the program trying
to do brute-force doesn’t know which character is which, and so can’t use its
knowledge about what dictionary words are likely, and it just has to choose
things, choose points randomly, I think you already covered in the answer.

Reply: Yes you are right, thanks.
Feng Hao: So from the usability perspective, if you have an eight character

password, and the user will have to sit through eight random pictures, and then



Towards New Security Primitives Based on Hard AI Problems 15

for each picture the user has to identify where to click. Is that quite tedious
process for the user? Do you anticipate any usability issues?

Sandy Clark: Particularly because each image is going to have to contain
every character, because you don’t know which one they chose originally, so the
images are going to be quite confusing.

Reply: We did run a usability study, and we got some interns at MSRA as
the participants. The preliminary result is pretty encouraging. But of course a
user study with general people would definitely be a plus.

Francesco Bergadano: It looks like those Captchas could actually be easier
for this particular application with respect to Captchas where it used to use
another application, because if the Captcha is defeated ...

Reply: You mean this is easier, right?
Francesco Bergadano: No, I mean, it could be an easier image, because

if it’s defeated then you don’t get the property you want to get; next time the
probability will be higher of finding the password.

Reply: But if the underlying Captcha is broken then this CaRP will not
be secure because attackers can do an automated guess attack to guess your
password.

Francesco Bergadano: if it’s defeated one time then it’s not a disaster
for this particular application. And the consequence is that the image could be
made a little bit larger, bigger and easier to use for the user especially on a touch
screen.

Reply: Yes. OK, any other comments or questions?
Saar Drimer: This is implemented, and if it is broken, the image processing

problem is not there any more.
Reply: This is indeed implemented and we trialed existing attacks and haven’t

succeeded yet.
Saar Drimer: I understand that it’s implemented in the real world and used.

What would be the solution to that if the image processing problem is no longer
a hard problem, do you now need to train your users to a different system, how
would you enhance your system so you increase the amount of work that the
attacker has to put in? It doesn’t seem to me like an easy incremental addition
to how hard it is to circumvent What’s your next step if it’s easy to ...

Reply: If it’s easy to break, you mean?
Saar Drimer: Yes.
Reply: Let me answer this question when I talk about the security analysis

later on, OK? My slides will cover that. The next thing to show: we can use other
types of Captchas to build CaRP as well. So this is a new CaRP instantiation
which uses image recognition Captchas.

We took a Captcha in the literature, this is not designed by us, but an image
recognition Captcha in the literature. The idea is that, they use two animals
of similar 3D models, and then derive 2D animal images using their similar 3D
models; different textures, colours, lightings and poses and etc are applied to
those 2D animals, and then the animals are placed on a cluttered background.
This Captcha design is currently not broken yet. In order to pass the test, a user



16 J. Yan

has to click all the horse’s images. In the original design there are two types of
animals only, one is a horse, the other is a dog; their images look very similar.

We added a spin to this Captcha Zoo scheme in order to show that it’s in-
deed possible to form a CaRP using image recognition Captchas. We create 10
animals of similar 3D models, then use these 3D models to derive 2D images.
And this way, these animals are invariants in each logon session, and people use
the animals to form a password. This of course is not as secure as ClickText be-
cause the search space is a lot smaller, but this is still stronger than PassFaces,
a graphical password scheme whose password space is only about 104.

We can enhance the security of this scheme by adding some other tricks. For
example, we introduced a grid scheme to create a new CaRP which we call
AnimalGrid. Basically this is based on the ClickAnimal scheme I introduced a
while ago. Once you click an animal then the system will show a grid. This grid
has a grid cell size equal to the bounding square of the selected animal. So, for
example, if people click ‘turkey’ then you will have this grid, then you can select
any grid cell as your click point as well. So in this case a password is a sequence
of animals interleaving with grid cells. Basically this is just to show, indeed we
can make the password space larger. And in this design a password must begin
with an animal. I give an example of a password here: the first click is a dog
animal, then followed by Grid 2 and Grid 1. This means actually once this dog
is clicked, a grid is displayed and the user just ticks two grid cells there. And for
this cat, this next click, the user actually decided to choose no grid cells, then
there’s no grid cell there in the password, and so on. In this way we can make
the password space larger.

OK, some application scenarios we have figured out for CaRP. I talked about
this e-banking application already in answer to some of your questions. I think
that another application, a pretty cool application, is to make a spammer’s life
harder. If you run an email service you know some accounts are more suspicious,
they are more likely spam suspects, then OK for those accounts they have to use
CaRP to login every time. This means that even if a spammer runs a bot, and
this spammer knows the password, but they cannot login to their own account
without human involvements. We’re trying to sell this idea to Microsoft’s product
team. Probably one day if your account looks suspicious, you will be forced to
use this CaRP all the time.

Just a little bit more about security analysis. As I mentioned, and some of
you commented, computational intractability of hard AI problems is indeed fun-
damental to CaRP security. So far segmenting ClickText is still an open prob-
lem. And this problem is apparently much harder than cracking the usual text
Captchas. And the security of Animal Zoo is also an open problem. And because
we believe what we are proposing is not just individual constructions of CaRPs,
what we are proposing is actually a framework of constructing graphical pass-
words using Captchas. Therefore we can claim that CaRP does not rely on any
specific Captcha, so if a Captcha gets broken, a new and more robust scheme
may appear, and then you can use that to construct a new CaRP. For example,
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if we have a scheme to make it more difficult to do segmenting attacks, this could
be used for building a better ClickText, in response to Saar’s question.

We also mentioned that this design makes it much harder to do an auto-
mated online guessing attack, even if a human is involved the attack is slowed
down and still expensive. Some other new features are the following. Unlike a
Captcha, CaRP is not vulnerable to a relay attack. We know for a Captcha pro-
tected system there is a relay attack, but a relay attack doesn’t work on CaRP
at all. We can also make a CaRP resistant to shoulder-surfing. A new technol-
ogy, implemented into Microsoft Windows 8, is called dual-view support. This
technology can show two views of the same screen. One view is shown as pri-
vate, and the other is shown as public. This technology can help us to provide a
shoulder-surfing defence. Why? Because if we display a CaRP image as private,
and attackers of course can capture click-points each user is clicking, but these
click-points are useless, because only when you get both the click-points and the
CaRP image, the correlation of those click-points and the underlying image will
tell you which character is which. But in this case, because the CaRP image is
private and thus invisible to the attacker, and the next time a new image will be
used, therefore this CaRP image is just like a session key. So all the click-points
that attackers collect are useless, so they cannot do shoulder-surfing attacks any-
more. I think CaRP would also be good at defending against cross-site scripting
attacks, but it takes a lot more time to explain, that’s why I’ve skipped that.

But the main reason why we have this feature, it goes to the main point:
effectively the previous guess is independent of the next – this explains almost
all the security advantages of CaRP.

But of course as a password scheme, it is essential to estimate its effective
password space. We do not know yet what an effective password space is like for
each CaRP instantiation we are proposing. To get an estimate for the effective
password space, of course longitudinal user studies are needed.

I think actually this is my last slide. The take home message is that security
primitives based on hard AI problems are pretty interesting stuff, and that this
is an interesting new paradigm. And now we have Captcha and CaRP, so the
question naturally we want to ask is, what’s next, what else can we do, what
else can we invent along this line? And I also encourage the audience to think,
what other killer applications we can figure out for CaRP, whether there are
some novel use of such primitives in security protocols. This’s the last slide of
my talk. If you have any questions... You can have a look at my adverts as well.

William Claycomb: So I understand the image itself on the back end for the
system, the image itself is a grid thing, and at some point the user presses a point
on the image, the machine recognises the point on the grid, and the machine
knows what’s supposed to be in that grid, whether an image or a combination
this user has selected.

Reply: The server knows the click-points, because once the click-points are
clicked they will be passed to the server, when generating each CaRP image, the
server knows exactly where the character is. Such information is stored as the
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ground truth. So this design is not about defending against offline attack, it is
mainly for dealing with online guessing attacks.

William Claycomb: So the attacker, you’re trying to prevent somebody
trying to guess the password, the password is CAT, and they have to determine
where C A T are, and each different image changes every time. What about an
attack where the attacker lets the system introduce the variability, I just click
the same point, at the same time, every image I put the same point and let the
variability happen at the backend so that the guessing ...

Reply: What vulnerability are you thinking about?
William Claycomb: Well eventually C A T will, the randomness will appear

at the same point on three sets of images.
Reply: No, actually in theory that shouldn’t appear in the same place with

a limited amount of time, in theory that will be randomised.
William Claycomb: So in theory, when I’m like picking the letter for images

for my password I will never by chance pick the same place on the screen twice
in a row?

Bruce Christianson: There’s always a possibility that you’re going to get
somebody’s private key in RSA by being very lucky. (laughter)

Reply: Good point.
Michael Roe: But clearly, you cannot guess the password that way. It makes

it much stronger to defeat, it takes many more guesses to guess it, that’s why
we’re choosing them at random, than you would have done by using the dictio-
nary, and knowing which words are active, choosing the right new words, because
you’ve got an idea of which one is the most likely one.

William Claycomb: I’m just thinking about the key space; would a two-
character password be secure in the scheme, or three or four, what’s necessary.

Reply: Well I think you have a good point, if two, then this could be a prob-
lem, I think that’s why we actually enforce in our study eight as the minimum
length.

Bruce Christianson: It deprives the attacker of some opportunities to do
systematic searching.

Reply: And we have to worry about human guessing as well. If the password
is only two characters then this would be too weak. So for the real deployment
it is not just about automated attacks, it is about human guessing attacks as
well. So a minimum length is definitely needed.



Towards a Theory of Application

Compartmentalisation

Robert N.M. Watson1, Steven J. Murdoch1, Khilan Gudka1,
Jonathan Anderson1, Peter G. Neumann2, and Ben Laurie3

1 University of Cambridge
2 SRI International
3 Google UK Ltd.

Abstract. Application compartmentalisation decomposes software ap-
plications into sandboxed components, each delegated only the rights
it requires to operate. Compartmentalisation is seeing increased deploy-
ment in vulnerability mitigation, motivated informally by appeal to the
principle of least privilege. Drawing a comparison with capability sys-
tems, we consider how a distributed system interpretation supports an
argument that compartmentalisation improves application security.

1 Introduction

Application compartmentalisation decomposes applications into sandboxed com-
ponents, each assigned only the rights it requires to operate. Motivated by the
principle of least privilege, the focus of historic work on compartmentalisation
has been primarily in access-control policy enforcement [25]. More recently, com-
partmentalisation has been employed in vulnerability mitigation: exploited vul-
nerabilities leak only the subset of overall application rights that are held by the
compromised sandbox. For example, web browsers might be compartmentalised
such that each web page visited is rendered in its own sandbox [22]. Successful
exploitation of a JavaScript rendering bug might lead only to very limited leak-
age of system-centered rights (e.g., local files) and application-centered rights
(e.g., username/password tuples for other web sites).

To date, application compartmentalisation has been intuitively grounded in
the principle of least privilege, but without a theoretical foundation that permits
the use of formal or automated reasoning. In this paper, we consider experience
gained in developing and deploying compartmentalised applications, and its im-
plications for new theoretical foundations. Our approach considers applications
to be distributed systems, and is, therefore, a fundamentally protocol-centered
approach. This viewpoint grants us access to a large existing literature on net-
work and distributed system analysis: we reason about the gains attackers make
in communicating with, and compromising, elements of the system as a network
of components. One important outcome of this work will be a new approach to
application security measurement.

B. Christianson et al. (Eds.): Security Protocols 2013, LNCS 8263, pp. 19–27, 2013.
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2 Protection Model

Application compartmentalisation is premised on strong isolation between in-
dividual compartments: no communication is permitted except via controlled
communication channels. This is a view long-espoused in security system design,
ranging from microkernel- and security-kernel systems to programming-language
virtual machines. Isolation deployed within applications typically follows a sand-
boxing model: code is encapsulated in a process or other execution container, and
granted only specific rights delegated or forwarded from the containing system.
We have previously observed an elegant alignment between the intersection of
sandboxing features across operating system platforms and the capability system
model [7,26].

Capability system models can be mapped into classic OS primitives (processes
and IPC) if access to ambient authority is limited. This approachs falls naturally
out of classic capability hardware and OS designs such as the CAP computer [27]
and seL4 [12], but also hybrid capability systems such as Capsicum that allow
selected processes to operate in a non-ambient “capability mode” [26]. Capability
system models can also be layered over other substrates, such as distributed
systems or programming languages such as Joe-E [17] or Caja [18].

All of these systems are able to represent non-hierarchical protection models:
mutually distrusting program instances with disjoint sets of rights may safely
interact. However, the efficiency of cross-domain calls involving mutual distrust
varies significantly – programming languages such as Java provide this very ef-
ficiently through a blend of static and dynamic enforcement, whereas hardware-
supported process models rely on slower message passing via a mutually trusted
kernel. This variation introduces a necessary set of tradeoffs between performance
and security – i.e., more granular compartmentalisations that better approximate
the principle of least privilege may incur greater cost on some substrates.

In general, we believe that sandboxing schemes approximate capability sys-
tems, but with a not-uncommon problem that support for flexible delegation and
fine-grained application-level access control may be limited by some substrates
(e.g., SELinux with its static rule configuration [16]). It is unclear to us whether
this rigidity improves performance; in our experience, however, it observably
increases fragility in the presence of ongoing software development.

3 Applications as Distributed Systems

In Capsicum, the kernel and a small amount of userspace communications code act
as the run-time Trusted Computing Base (TCB) [2]. Sets of sandboxes and their
interconnections are able to represent different communication and trust relation-
ships, including both purely hierarchical relationships (e.g., the HTTPS download
component depends fully on the ambient component of fetch), non-hierarchical
isolation (e.g., different renderer processes in a web browser), and non-hierarchical
mutual distrust with communication (e.g., two components representing different
stages in a firewall processing pipeline). This approach suggests a graph-oriented
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Fig. 1. Whereas conventional HTTPS fetch executes within a single process holding
ambient user privilege, Capsicum’s fetch executes TLS in a sandbox holding only
delegated rights. This is a code-oriented compartmentalisation: selected risky code
runs in a per-application instance sandbox.

analysis of programstructure, in which nodes execute components with state (pro-
cesses), and edges are IPC channels (perhaps sockets).

However, this graph captures only communications, and not trust (or perhaps
more accurately, dependence), which may track communication edges (especially
in a purely information-flow-centric analysis), but also span multiple edges via
intermediate nodes. For example, microkernel systems often employ the notion
of a service namespace manager, such as in Mach [1]; isolated components will
necessarily trust the namespace manager in some form, but via the namespace
manager they may indirectly trust the actions of other parties that are reachable
via the shared namespace. As such, trust is more complex than simple annota-
tions on communications edges in the graph.

This is fundamentally a distributed system view of application structure, al-
lowing us to borrow an extensive literature on protocols, consensus, fault toler-
ance, and distrust, including Lamport’s Byzantine Generals [13], and more recent
work on understanding and managing compromise in distributed systems [23],
software composition [19], and layering of compartmentalised software over mi-
crokernels and separation kernels [3].

4 Compartmentalisation Philosophies

Figure 1 illustrates the transformation of a conventional application, fetch, into
a compartmentalised one via Capsicum. The kernel provides a capability system
substrate; a portion of fetch operates with ambient authority, outside of the
capability system, and a sandboxed HTTPS download component executes with
only delegated rights. In this example, two types of rights have been delegated
via kernel capabilities: a set of explicitly delegated files and sockets, and an IPC
channel used to communicate with the parent.

Even a program as simple as fetch serves as a useful proving ground for explor-
ing ideas about compartmentalisation – not least, by bringing to light the observa-
tion that a single programmay have many different possible decompositions, with
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Fig. 2. fetch and libfetch can be compartmentalised along many different cut points,
with different security, performance, and complexity tradeoffs

different security properties. The illustrated compartmentalisation is fundamen-
tally code-oriented, in that two pieces of code, a main loop and a set of network
functions, are separated from one another. Selection of a decomposition is often
grounded in our understanding of past vulnerabilities: OpenSSL code has suffered
a number of past vulnerabilities, both stemming from incorrect implementation
and incorrect use. Frequently, these vulnerabilities have been remotely exploitable,
leading to remote code execution, which can be mitigated by sandboxing.

However, further decomposition along data-oriented lines can also be justi-
fied: fetch can accept multiple URLs on the command line, and if an exploit
originates from one web server communicated with, exploit code may have ac-
cess to later files downloaded in the same code-oriented sandbox. We might,
therefore, choose to further introduce sandboxes one per web site, pursuing the
principle of least privilege. We might reasonably take the view that this is an
object-oriented partitioning, instantiating an object to process each URL, based
on a common class, even though the C programming language itself does not
capture those higher-level programming properties. It is for this reason that
we suggest that fine-grained compartmentalised applications adopt the object-
capability paradigm; Figure 2 illustrates additional points on the code-based spec-
trum, including finer-grained compartmentalisations even within the processing
of as single HTTPS connection.

We make several further observations about the nature of compartmentali-
sation. Finer-grained decompositions require tradeoffs between security goals,
program complexity, and performance, as security-beneficial decomposition re-
quires both programmer attention and incurs a run-time overhead. In designing
decompositions, we are responding to informal notions of risk – properties of
the code itself: past vulnerabilities, source code provenance (e.g., open-source
supply-chain trojans), and risky code structures (e.g., video CODECs). How-
ever, we are also taking into account where data originated (a file or web site),
its sensitivity (e.g., keying material), and how it will be processed. Notions of
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data provenance (informally, taint) and the nature of rights that could be leaked
will all be inputs to this reasoning.

These are all aspects of compartmentalisation design that we would like to
capture in a structured model.

5 A Graph-Oriented Analysis

Traditional graph representations of networks (whether of connected hosts, col-
lections of applications on a host, or subsystems within an application) repre-
sent components as nodes and edges indicate permitted communication paths
between components. This representation lends itself to compartmentalisation
through blocking communication paths which are not necessary, using firewalls,
mandatory access control, or capabilities as appropriate. Eliminating an edge in
this model by blocking a communication path will improve security, but not all
edges are created equal. Typically, there is some concept of the source of mali-
cious activity (e.g. the Internet), and following connectivity from here to other
nodes will show which nodes are at particular risk.

However, merely being connected to a potentially malicious node does not
necessarily imply that that the network design is vulnerable. While some com-
munication paths are highly dangerous (e.g. exposing an industrial control sys-
tem designed without security in mind to the Internet), others may be far less
problematic (e.g. connecting a hardened web server to the Internet). Including
information about how vulnerable a particular node is can help, as it indicates
the likelihood that a node may be compromised if it encounters malicious input.
However, even this extension is not sufficient – for example while connecting the
web server to the Internet may be fine, connecting its file system to a malicious
file server is likely not.

The traditional model can capture connectivity, but not trust, and so has
significant limitations when it comes to measuring the network. Instead each
node can be modelled as a series of ports, and connectivity is from a port on
one node to a port on another, forming a matrix of probabilities. Rather than a
single vulnerability probability for a node, there is a probability assigned to each
pair of nodes stating the probability that a malicious output will result from a
malicious input. In the example of a web server, a malicious input on the socket
input of the web server is unlikely to lead to malicious output and thus will be
assigned a low probability, whereas a malicious input in the file system input of
the same program will likely result in malicious output on all ports.

This approach captures both trust between nodes and vulnerability of appli-
cations, but a high probability does not necessarily mean that an individual node
is somehow flawed. A router may forward malicious traffic (unless the router has
a suitably configured firewall) even though it is operating as intended. To eval-
uate whether a network is secure it is necessary to establish the consequences of
connectivity between malicious nodes and critical resources to be protected.
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Defences can also be modelled in this approach. For example compartmental-
ising an application may not affect the probability that it will be compromised,
and so will not be captured by assigning a single probability of compromise figure
to the node. However, the matrix approach is more suitable – compartmental-
isation results in the probability for malicious output will be lowered in cases
where the input and output ports are in different compartments.

While powerful, the challenge of using the model is in its complexity. Extract-
ing data to fill in the vulnerability matrix is challenging. Also the computational
complexity of reasoning about the network is high, due to the number of network
states growing exponentially with the number of states of each node. Therefore
new techniques in data collection and simulation will need to be adopted for this
model to be fruitful.

6 Related Work

Application compartmentalisation is a recasting of the microkernel hypothesis
into the application space – in fact, contemporary monolithic applications are of
a similar scale (millions of lines of code) to the monolithic kernels that motivated
microkernel research. Past security-kernel research is concerned with providing
a reliable TCB for decomposed components [15], and more recent microkernel
research has likewise been interested in the verifiability of security properties
when combining untrustworthy components over a formally verified separation
kernel [3].

Karger originally proposed the use of capability systems to contain tro-
jans [10], an approach later adopted by Provos in SSH privilege separation [21]
and Kilpatrick in Privman [11]. While these application decompositions were
concerned with UNIX root privilege, contemporary application compartmentali-
sation is more interested in limiting rights to ambient (unprivileged) user rights,
as utilised by Reis et al in Chromium [22] and by the authors in Capsicum [26].
This is a response to the observation that, on a single-user machine, access to
the single user’s account is, in practice, almost as important as access to root
privilege.

We are interested in capturing a variety of trust relationships in application
compartmentalisation – not least, hierarchical trust models explored in Mul-
tics [24], non-hierarchical models, such as assured pipelines, from Type Enforce-
ment [5], and the flexible programmer-drivenmodels supported by capability sys-
tems that differentiate policy and enforcement, such as in CAP [27], PSOS [20],
and Hydra [14].

Research into automation of application decomposition is also directly rele-
vant, although not always well-supported by current theory. Brumley and Song
developed Privtrans [6]; Bittau et al, Wedge [4], and most recently, Harris et
al have used parity games to drive automata-based application of policies to
compartmentalised software [9] – a policy- rather than least-privilege–oriented
approach. Our own SOAAP toolchain attempts to take into account many fac-
tors in selecting (and trading off) application decompositions in a dialogue with
the developer, which has motivated our search for formal grounding [8].
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7 Conclusion

Our ongoing work with application compartmentalisation has driven us to be-
gin development of theory helping us to justify and quantify program decom-
positions. Throughout, the principle of least privilege (together with desires for
good software engineering practices such as abstraction, encapsulation, and facile
composability) guides our approach, with a focus on providing vulnerability mit-
igation. In a broad sense, compartmentalisation represents the adoption of fur-
ther distributed system programming paradigms in local systems: interconnected
components are isolated in sandboxes used to construct larger user-facing appli-
cations, and subject to a variety of faults (malicious and otherwise). This has
led us to a graph-oriented analysis that will provide the foundation for mod-
elling application security through quantifiable comparisons of risk and rights
exposure. This in turn will lead to the development of automated tools to help
develop and reason about compartmentalisation strategies.
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(Transcript of Discussion)

Robert N.M. Watson

University of Cambridge

I would like to start by acknowledging a great many collaborators, some of whose
names appear on the first slide.

Here is a plausible outline, we’ll see how it goes. First I will tell you about ap-
plication compartmentalisation. You have probably heard of this already, but you
might know it by another name, perhaps privilege separation or another term.
However, I want to reintroduce it using some specific vocabulary. I’m going to
tell you very briefly about capability systems, as we are attempting to under-
stand compartmentalised applications in terms of the vocabulary of capability
systems. But the actual topic of this talk is how to write these compartmen-
talised programs. I’m going to suggest – and it might be true – that we could
apply ideas from security protocols and distributed systems to understand the
behaviour of these pieces of software. In particular we would like to get from a
world where we have a very informal understanding of why we break programs
into pieces and sandbox their components to a more formal one, and ideally
more quantitative one. By appealing to the literature of distributed systems and
security protocols, we can start to do that.

Very briefly, what is application compartmentalisation? The intuition is pretty
simple. We start out with some application that historically will have had what
we call “ambient rights” in the system – which is to say, pretty much everything.
It contains vulnerable pieces of code – in this case we’re going to talk about the
fetch application on BSD, but you could think of wget or curl, or any other
command-line tool that accepts a set of URLs and downloads the files. In the
brave new world order we compartmentalise fetch: part of it continues to run
with full rights – so it has the ability to open the files you ask it to open – but
the remainder of it will run in a sandbox. The principle is fairly straightforward:
when something goes horribly wrong, we’d like the horribly-wrong thing to be
in the sandbox.

So how does this play out? We decompose the applications into parts; how
to do that is the problem of interest. We will try to make each one run with
only the rights it needs, the principle of least privilege, the granularity of which
is an interesting question. And then we’re going to claim that at the end of
it we’ve mitigated vulnerabilities, that is, somehow the vulnerability has less
impact because we’re running things in a sandbox. This is all intuition-based
today, and we’d like to go somewhere a little bit more structured if we can.

So what happens when things go wrong? Well when a vulnerability happens
on this side of the slide, they get everything, and typically that’s full access to
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your file system. On a single-user machine, which many machines are, that really
is everything of value. On the other side of the slide, you leak certain very specific
delegated rights. We’re going to try and make life harder for the attacker because
if they want to get larger sets of rights they have to break more things. Privilege
separation is an idea popularised by Neil Provos in the late 1990s, but actually
we can trace the idea back to Paul Karger, here at the Computer Laboratory,
who proposed that we might use capability systems to mitigate Trojans. Today’s
interesting notion of a Trojan might be something that arrived in your software
supply chain, but it might as well be a vulnerability that’s been exploited, so
the idea is fairly interchangeable.

This is what we term an “application TCB”. Historically when we talked
about trusted computing bases, we meant operating systems and the CPU; today
applications are really important, because many of our applications are managing
different security domains. They’re dealing with data frommany different origins,
and perhaps we can use this compartmentalisation idea to try and make them
run better in the same way we did for historic TCBs.

Let me give you a couple of examples. When you use your web browser, you
visit many different sites – you would like to think that every one of those tabs
is isolated from the other tabs. We can push it a bit further because each tab
renders content from many different sites, and we might want to further com-
partmentalise there. Each site itself might present content from many different
origins – images appearing in GMail are downloaded from Google, but you might
not trust them equally, or at all. You would not want attachments in one e-mail
to interfere with processing of attachments in another e-mail, despite both ar-
riving in the browser side-by-side from GMail: you want them in separate boxes.

You can extrapolate from this to many other kinds of applications: office suites
and your mail reader have these properties as well. You can imagine progressively
finer- and finer-grained sandboxing improving security. It should be obvious that
a failure of your application as a TCB allows all the data and rights to leak back
and forth: access to your web banking from your webmail is not something that
we want to encourage.

There was a class of systems called capability systems. Here’s a notable ca-
pability system, the CAP Computer; you can go and see it at the Computer
Laboratory. If you see it live it is in a pretty shade of blue, here it’s black and
white, a photo from the CL’s relics archive. These systems were designed to
implement the principles of least privilege: they’re designed to have lots of com-
partments, and they have a model by which rights are passed around in the
system. We call these things capabilities, and the textbook definition says that
they are “unforgeable tokens of authority” that you can pass around, but are
unable to simply make up; you have to have received them from somebody. You
only have the rights (or capabilities) that are delegated to you; you’re not allowed
to access other things in the system without their capabilities. Delegation is a
key part of the model; there isn’t necessarily an access control policy inherent
to the system, but we might layer one on top, so it is a protection mechanism,
not a policy mechanism.
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We can build interesting things on top. We can have policies about information
flow, we can have policies about fine-grained delegation, and so on. This is an
approach widely adopted in microkernels – the compartmentalisation story seems
familiar as it is exactly the same story as microkernels: take a big piece of
software, break it into pieces, and put them in compartments. We might wonder
to ourselves why we care about compartmentalisation in applications today, and
why did the microkernel story not go so well? One reason is need: we have real
security problems we want to mitigate today, which is why people run their SSH
daemons in a compartment. There’s also performance: computers have gotten
a lot faster and so we’re willing to invest energy in places perhaps we weren’t
before.

A few years ago, in collaboration with several of the co-authors on this paper,
we built a system called Capsicum. We attempted to take ideas from research
capability systems and merge them with a conventional UNIX operating system.
We did this so that we would have access to a large application corpus – real
software is very complicated. Central to this is moving away from using access-
control primitives for sandboxing, and moving towards an explicit protection
primitive. An example of the former is using SELinux to create compartments
using access-control rules; our approach is exactly the other way around, in which
the fundamental primitive is the compartment. We bridge compartments, and
we might use access-control to limit that, but the compartment is fundamental.
In Capsicum, some pieces of your programme run with all the rights they’ve
held previously; other pieces have only the rights they are delegated – hence
being a hybrid capability system. We argue that makes Capsicum incrementally
adoptable.

Once you have a system like that you begin to think: “how am I going to write
these programmes that are so much better than they were before.” You can think
about it in lots of different ways. In fact, every application has a spectrum of
possible compartmentalisations that might be interesting, which allow you to
trade off performance, security, and complexity in different ways to get different
results. Obviously one potential result is incorrectness, though we try to aim for
correct programmes; I’ll talk more about that in a moment. I have suggested
that finer-grained decomposition gives you better mitigation of vulnerabilities.
Intuitively this makes sense: the smaller the sandbox is, the fewer rights each
has, the fewer rights you gain when you exploit a vulnerability. Not only that,
you get network effects where you (as the attacker) can’t reach every component,
and because you can’t reach it, perhaps it is less exposed as well.

I’ve suggested a number of axies, but let’s look at the details. One axis might
be data-centred compartmentalisation. For example, if we take the fetch web
downloaded programme, we might decide that processing for each site belongs
in its own sandbox. When we do the risky bit, which is the downloading of data
and parsing of protocols, we want an exploit from one site to affect only other
downloads from the same site. I’ve also suggested we might go further – perhaps
rather than combining URLs downloaded from the same site in a single sand-
box, we give every URL a separate sandbox. Another dimension is code-centred
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compartmentalisation. We observe, for example, that if we’re processing HTTP
within SSL, we could put HTTP and SSL processing in different sandboxes. If
you have a vulnerability in HTTP processing you don’t get access to the client
cert, which might be on the SSL side. As you move across this dimension you get
finer and finer-grained compartmentalisation. And, as your throw the code and
data instances together, you inevitably observe that this sounds object-oriented;
indeed, many people who build capability systems use an object-oriented pro-
gramming style, with capabilities as references to objects (with rights) – a quite
natural composition.

If we were to zoom in very slightly we might wonder, when you compromise one
of these components, what do you get out of it? The answer depends on how we’ve
distributed these system capabilities (files and so on), in Capsicum. But there is
another notion, an application-centered object: sometimes your application itself
has objects that are interesting – a database of objects, for example, and these
are just as important, perhaps more important, than system objects. They’re fre-
quently expressed in terms of the system capabilities such that we have to be care-
ful when we reason about this, and obviously the goal is to distribute things as
carefully and minimally as we can. I suggested we might have this problem, via
application-level keying material, with TLS and HTTP, which might be one rea-
son we break things up. We might decompose things further: we could take HTTP
processing itself, and break it into pieces so that the keying material used to au-
thenticate to an HTTP proxy is not available for the processing of later MIME
encodings of data. There are all sorts of possibilities here.

Naturally, having come up with this great solution we now have a new prob-
lem, which is that writing these programmes turns out to be very difficult. The
first observation we made almost immediately was when you compartmentalise
a program, it ceases to be a local programme in a classic sense – it becomes a
distributed system. You have lots of parts running around, talking to each other,
often using message passing, suffering various kinds of problems. We would prefer
our programmes to do (almost) the same things when we’re done compartmen-
talising as they did before: most of the time they should behave identically, and
once in a while they behave differently, and that’s when the sandboxing kicks in.
But we found it was quite hard to do this, and particularly, as you start to repli-
cate data between sandboxes, attempt to keep them consistent, and so on, you
encounter classic data-synchronisation problems. We leave the programmer with
this trade-off space: how should they determine what is the right trade off? Do
they accomplish their security goals through various cuts through the system?
And because compartmentalising requires work, do you become over-invested in
a particular compartmentalisation? It is hard to change compartmentalisations
after introducing them – so you want to explore the space without having to
implement every one of them.

An important larger question is: if you’ve made all these changes to your pro-
gramme, did you meet your security goals? We would like to be able to reason
about this – and get away from the intuitive “ah, the principle of least privilege
says we should do this” and towards a more structured analysis.We have a project
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named SOAAP, which I won’t describe in detail: the aim of the project is to pro-
vide analysis tools for applications, which will provide advice to the programmer
about compartmentalisation. The programmer describes hypotheses, annotating
the programme with, “I was thinking about compartmentalising it this way, and I
want to accomplish these security goals; could you help me figure out if that’s
true.” Of course that requires a model of why it is that compartmentalisation
helps, which is why we’re thinking about some of these things. We are able to look
at things like past vulnerabilities that are annotated in the programme – where
have you found problems before? You could also have as an input to that an auto-
mated vulnerability analysis tool with false positives and false negatives: “there
might well be a vulnerability here,” or “this is the kind of code where you don’t
tend to find a vulnerability.” We also perform information-flow analysis and call-
graph analysis trying to figure out, if you have keying material, could it leak out
using the APIs in the way that you have, so your SSL key escapes to the wrong
place? Finally, we do some performance analysis, trying to predict whether, if you
pick a particular compartmentalisation, will you meet your performance goals?
So it’s an analysis tool: it doesn’t actually perform the compartmentalisation, it
helps you reason about it, and play with it, and it’s very cheap to use so you can
trivially vary the annotations and get updated results.

What you get in return is advice: you can change your application, you can
change your hypotheses, and iterate until you are satisfied. I also wanted to
draw your attention to something on the left-hand side of the diagram: its in-
puts. There is the application author, but often the application author is not
the person doing the compartmentalisation. We often have a security developer
who turns up later and wants to take an application and add these. Despite be-
ing a very common structure, this causes lots of problems because the security
developer doesn’t understand the application; the application author doesn’t un-
derstand the security goals; so we have to try and help them meet in the middle.
And there’s this last character – sometimes us – the person who provides the
sandboxing platform, who must characterise its semantics because authors of
portable applications want to know what the implications are when the applica-
tion is moved from one platform to another with different sandboxing properties.

I’ve suggested this might be a distributed systems problem, or a protocol prob-
lem, so let’s rearrange things a bit, draw dotted lines, and boxes, and now we have
the same picture but differently represented. The dotted lines are communication
channels, and we have the kernel, or TCB; some rights are delegated – this really
thick one is intended to suggest ambient authority. This component really has all
rights in the system, so it is necessarily part of the TCB. These other elements
might arguably be part of the TCB, because something might depend on them
for security: if SSL processing is wrong, then it’s hard to imagine you’re going to
get HTTP processing particularly right. We could also add some labels to try and
make it look more familiar to a security-protocol community: Alice and Bob, and
Eve. You often have intermediate nodes in these structures – some component
that sits in the middle and forwards messages, whether it’s the kernel, or perhaps
a name space service. Objects are advertised, and exchanged, and so on.
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We could also, somewhat obviously, observe that the dotted lines that I’ve
drawn mean that message passing is taking place. It might be performed by the
kernel, it might just be initiated by the kernel, it could be capability oriented.
One of the other interesting things is that we’re allowed to pass around these
capabilities: suppose this process has a capability; it sends a message and it
can attach the capability. We have a vocabulary for this in security protocols
literature – we call these capabilities “keys,” and of course key is a term often
used in capability systems. We likewise have distributed capability systems, so
we could reapply that vocabulary. There’s some transitivity: if I give you a
capability then, in many capability systems, you’re allowed to delegate it on, so
you have a delegation-based model. In fact, we could make a comparison with
systems like Kerberos, or cryptographically protected data services, and so on,
try to reuse that vocabulary as well.

I mentioned reachability earlier, but I wanted to be explicit. Direct reachabil-
ity is important: I can’t talk to a node unless I have a communications channel.
However, compartments may link multiple communication channels providing
shared services such as file-system access. So reachability is important to un-
derstanding exposure, but it is not the only element, we can’t simply assign
probabilities to nodes, and then specify a probably of compromise, and extrap-
olate directly.

I’m going to touch on a few more specific topics – first, correctness. One
element of system correctness has to do with minimising the set of capabili-
ties assigned to each compartment while still retaining programme functionality.
We’re also interested in this data synchronisation problem: not classically a se-
curity problem per se, but we also do know that security problems arise out of
synchronisation problems, so we have to be a bit careful, if we don’t get that
right it’s not going to help things. And of course there’s this pragmatic question:
if I build a compartmentalisation, is it something that falls naturally out of the
existing structure of my programme, or is it a ton of work? If I invest lots of
energy trying to select this compartmentalisation, might I discover that I don’t
really like it? Performance in these systems is a first class property, so an in-
teresting further question is, if I have a strategy, how will affect a workload I’m
actually interested in? There are trade offs here, so one interest is in selecting
performance bounds: will a given compartmentalisation lead to no more than a
ten percent slowdown for my workload?

A more interesting question has to do with changes to the protection substrate.
If I take code written for Capsicum and I reuse it on Linux, using SELinux for
sandboxing, are the performance trade offs the same, and will that affect how I
understand how the application is going to behave? We want to help the pro-
grammers reason about that. In classic distributed system performance parlance,
a key part of that is avoiding or mitigating round trip times. There’s therefore
a tendency to adopt asynchronous programming styles to try and mitigate sys-
tem calls and message passing. That unfortunately forces us to more complex
application event models.
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When we think about what the attacker is trying to accomplish, we can ask
ourselves, “what will they gain when they compromise something?” The obvious
benefit is data in the process, so we can perhaps gain access to the keying material
associated with the TLS session, and so on. But we’re also interested in system
rights, such as local files – and also references to communication channels to other
sandboxes. More generally we are interested in the leaking of computational
resources; that tends to be less of a focus in our community, but we do like
availability.

When we contemplate these relationships, it would be tempting to use the
word “trust” – which we don’t like very much as it’s very broad – but certainly
there is a notion of dependence. There is dependence entirely in a functional
sense, “does one node depend on another node.” There’s also an attack surface
associated with opportunity: if I compromise one node, I interface more directly
with another that I want to attack – perhaps exploiting lower-level vulnerabilities
in its RPC library, for example.

The most important part is security. Critically: does the compartmentalisa-
tion implementation I have limit the flow of rights through the system – has
sandboxing actually bought me anything, or do I simply have a slower and more
complicated programme? One way to think about this is to consider past vul-
nerabilities: if they exploit a vulnerability, can we reason about the effects? Well,
in the distributed system view, when we look at capabilities held by the com-
promised component, and ones that depend on it, we can answer that question
directly. For example, we can annotate in programme source code where the
vulnerability took place (historically), perform a static or dynamic analysis, and
report on what rights will be leaked. For the first time, we actually have quite
useful information about the effects (and mitigation) of a vulnerability. We can
also hypothesise about future vulnerabilities, reusing the literature on vulnera-
bility analysis, and probabilistic understanding of where they might occur.

Another interesting case occurs if one of the pieces of my very large application
pulled from a third party turns out to contain a Trojan. If you are the author of
the Chromium web browser you might find that you have an application TCB
footprint of around four million, perhaps six million lines of code. You have
WebKit, you have image libraries, you have libpng, you have the works, and it
is not impossible that someone has compromised one of the repositories from
which you get code. We want to be able to reason about that – and we can in
this world view: we can say, “where are all the compartments where this code
could run?”, “what rights are exposed to them?”, and “what is the impact of
discovering that we have a Trojan?” This is a very nice world view.

And finally there’s this protection substrate question. What happens if I move
from one platform to another? In particular, we have security refinements to file
descriptors in Capsicum that don’t exist in other UNIX systems, and so we are
able to more finely compartmentalise programmes in terms of delegated rights.
We need to know what the implications are of losing access to aspects of the
model across different platforms: how does the set of potentially leaked rights
change?
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All this suggests that we’re actually thinking about risk in a much more
mature way, although we must use the word “risk” with some caution. We’re
trying to ask questions such as: what are the rights that will be leaked if there
is a partial or total compromise of some specific component, and then we want
to build from that out, spreading across a network of compartments, both in
terms of direct and indirection communications and functional dependence. This
in turn how affects attacker strategy, so we can lift ideas out of the space on
attacker reasoning and modelling that say, well if the attacker’s model of the
system involves these features, how will they now apply those to our distributed
system? Historically those models have been applied primarily to distributed
systems because we were interested in attackers getting into middle nodes and
firewalls, and then spreading out across the network – that applies entirely in
the environment that I’m describing.

Sandy Clark: I find myself thinking that this would be extremely useful for
not just in security but for privacy, because this compartmentalisation isolates
things in such a way that, it might make things like wiretapping . . .

Reply: Yes I think you’re right. We provide a protection substrate, and then
we try overlay a network on top of it with properties of information flow, and so
on, dependent on our protection substrate for isolation and bounded communi-
cation. It doesn’t really specifically target information flow, but we do then layer
an information flow analysis on top, so we do do information flow in programmes.
And I’d like to do what you’re describing.

Sandy Clark: Yes, it may not do this now, but this might be something that
could be put. . .

Reply: Yes, it seems like the right thing, and you can make a comparison
with some of the privacy work on Android, and in particular TaintDroid. Ideas
like TaintDroid on top of the JVM work, in part because you have a protection
layer under the hood, so you need protection somewhere.

I want to draw a couple of conclusions. First, there’s a hypothesis: we’re saying
that compartmentalised applications are distributed systems. This means that
we can take advantage of that model to give us robustness – for example, so that
we can have nodes fail without the whole system failing. However, we also accept
the distributed-system Byzantine failure mode, which is appealing to attackers:
when I break into a node via a vulnerability, I’m not going to crash it and cause
a fail stop necessarily – although that might be a side effect of a failed attempt.
What I would rather do is subvert the node entirely and make use of its rights.
However, we can reason about the impact of that as we know what rights have
been delegated around the system.

We can also reuse notions of attacker modelling and protocol analysis. When
I drew those pictures of messages going back and forth, and capabilities being
delegated, it was hard not to think of cryptographic protocol descriptions – where
things are encrypted and passed around. Having a protection substrate changes
the narrative, because we now get our integrity properties from a different place.
But in some ways, it’s really the same story because, if you can access the key
– that is, the capability – you could use all of its rights. You can be a middle
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node taking advantage of a middle spot in the network, and so on. And, in fact,
if we look at sensor-network research in the past, we had this notion of node
compromise there, and that applies entirely here.

Right now we’re interested in automated analysis, what we’d like to move
towards is automated transformation. Where we’d really like to end up is a
quantifiable notion of applications security, because if you start assigning prob-
abilities to nodes, and you start looking at the communication networks, then
we really can start to quantify the behaviour of the system and the presence of
a vulnerability being exploited. We can look at what is exposed, we can look
attack surfaces. More generally, we can now answer the question: “is our appli-
cation better from a security perspective?” which is not something we’ve able
to do before, and it really requires this approach. It gives us a concrete set of
strategies for tolerating and managing vulnerabilities.

Jeff Yan: Actually I’m just curious, the notion of “capability” actually has
been there for a very long time. What were the reasons it didn’t take off?

Reply: I think in some sense it did. You find lots of outcome from the capabil-
ity literature in programming languages; such as ideas of unforgeable references
in the JVM. You find these ideas all over the place – the microkernel literature,
SeL4 and so on, are all entirely based on capability models.

Virgil Gligor: So it’s very hard to say that they did or they did not.
Reply: Yes, it’s the system of the future, and it always will be, yes.
Virgil Gligor: That’s what Jim Morris used to say, capabilities are the way

of the future and always will be.
Jeff Yan: In terms of security actually I think capability is a lesser require-

ment, right?
Virgil Gligor: Well yes, but there is a group of people who argue that strong

typing is essentially embedded into capabilities, therefore it took off at the pro-
gramming language level. But that view has a little bit of a problem because
strong typing existed slightly before capabilities. So then you could say, well,
capabilities propagated into different pieces of the system, for example, crypto-
graphic capabilities; tickets in Kerberos might be considered to be capabilities,
and of course those took off. And certificates might be considered to be capabil-
ities, and of course those took off.

Jeff Yan: I think Kerberos is probably less successful.
Virgil Gligor: No, it’s in your box!
Reply: You don’t have Active Directory?
Virgil Gligor: Well maybe not in that one.
Reply: Oh it’s probably there.
Jeff Yan: Is there anything changing that makes capabilities more relevant?
Reply: I think capabilities are a natural way to describe systems that re-

quire delegation and flexibility, and so when we say, “let’s turn to capabilities,”
what we really mean is, we want to build systems that have natural delegation
properties – not just overt policies, but the delegation of rights based on code
and structure. And you’re forced to end up in this place. There’s no novelty in
capabilities except that we can perhaps use them in some new ways, I think.
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And they do seem to solve this problem nicely. When we did the original Cap-
sicum work, for example, we looked at Chromium. One of the things that we
like about Chromium is that they implemented a ridiculous number of different
sandboxing techniques. They used discretionary access control, and mandataory
access control in other systems, and then capability systems, and so on, and
because they want to run on top of all of these they have to actually choose a
subset of the functionality. And intuitively what they’re doing is, they’re taking
all these different policy-based systems, you know, SELinux and so on. They’re
building sandboxes, and they’re creating constrained communication paths, and
then they’re delegating things across them, which is to say, somehow out of all
these access-control systems they’ve derived a capability system. And so it was
very natural to then take Chromium and say, “well let’s make it a use capability
system.” And in fact when we counted lines of code: you know, using discre-
tionary access control on windows is a very bad idea, so twenty thousand lines of
code; and Capsicum took about a hundred lines of code, relative to an already
effectively capability-based piece of software, it just seemed like a natural struc-
ture. And if you assume what you’re doing is building distributed systems then
it kind of makes sense, because in the distributed systems world we’ve seen lots
of success of capabilities, certificate-like systems, and so on.

Bruce Christianson: Do you have a view about how fine grained it’s ap-
propriate for capabilities to be?

Reply: When we did Capsicum, we took the view that there were natural
operating system objects, and that it was therefore natural that capabilities
refer to instances of the objects. Then, there are two dimensions: “how fine-
grained on instances do you go,” and “how fine-grained on rights do you go?”
In the operating system context, those choices were pretty much defined by the
objects the OS provides. It’s when you get into the application that it gets
interesting, because the application might be very large – significantly larger
than your operating system. We would argue the finer grained you get, the more
potential protection benefit you get, although then you have to reason about
where vulnerabilities could be. I think that’s a very intuitive argument, and of
course there are these trade-offs.

Hopefully this analysis and this approach allows us to start to reason about,
when do you hit the point where you get diminishing returns. “I keep adding
more complexity and I keep not getting any benefit”, especially if you have some
probabilistic notion of where vulnerabilities will be. I think we have some tools,
there’s been a lot of research on this basis to say, “this piece of code is pretty
questionable,” and “this piece of code is OK.” The other nice thing you get out of
this approach is the ability to take a view on where you should apply your effort,
because you can now find the pieces of code which have the greatest impact and
improve those. I think what you’ll find is that it’s the TCB: that’s where you
should be investing your effort. Anywhere that holds lots of rights, and potential
vulnerabilities are enormous, those components are part of the TCB, and that
means we actually now have a notion of a gradient of TCB, which we never
had before. Ii’s not just “the TCB” and “the not-TCB” – we have all these
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pieces with different levels of trust, which seems like the right thing, I think, as
a security-oriented view.

Bruce Christianson: Sometimes another way you can go is to say that
certain capabilities come with flavours, and if you give a capability a flavour
that says it can only be used as part of a sequence in a compatible flavour.

Reply: I didn’t really mention types much, but some capability systems have
types, and others don’t, and there’s a very long literature of capability-derived
systems that only had types, and then eventually just became types and no
capabilities. SELinux I think is a quintessential example of that. Type Enforce-
ment in SELinux was derived from Type Enforcement in in Sidewinder and so
on, type enforcement in Fluke, DTMach, and so on, which were microkernel sys-
tems where they were types on capabilities. Somehow, this ends up in SELinux
– the code is lifted from Flux and dropped in, despite there being no capabilities
in Linux. And as you suggest, there’s a temporal aspect, which we are also in-
terested in. We have a recent joint publication with Harris, Jha, and Reps at the
University of Wisconsin on reasoning about the delegation of capabilities. Their
interest is primarily on system-oriented capabilities, they don’t really take an
application-centred approach, whereas we are more interested in the internals,
but I think the analysis would apply.
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Abstract. Software Defined Networks (SDN) aim to deconstruct cur-
rent routers into a small number of controllers, which are general purpose
machines, and a large number of switches that contain programmable
forwarding engines. The vision is that, instead of the ad-hoc mecha-
nisms used in current routers, we can build programmable networks us-
ing proper computer science abstractions. This technology is now at the
startup stage, and is being deployed in the data centres of large web
service firms.

We are interested in protecting a future SDN. The current designs
follow traditional security assumptions and do not consider many likely
deployment scenarios. We discuss how SDN architecture can be struc-
tured to offer more security, the auxiliary services that such a network
will require and the advantages that it can offer.

1 Introduction

SDN is gaining traction in traditional networking settings by offering a low-cost,
programmable alternative to traditional proprietary routers. A large number of
hardware switches are controlled by a smaller number of controllers, which are
general-purpose computers running special software. This allows network opera-
tors to break free from vendor lockin and also holds out the prospect of making
networks programmable, leading to the prospect that a number of services cur-
rently deployed in proprietary devices (such as firewalls, intrusion detection en-
gines and botnet mitigation) might become applications. The initial deployments
are mostly in datacentres where cost savings are paramount [4].

However SDNs will be deployed in less controlled environments too. The ques-
tion that then arises is what new security problems and protection opportuni-
ties may arise in these environments, such as a large airport where 100,000 staff
working for 1,000 companies may be sharing the facility owner’s network. These
airlines, baggage firms, travel agents, catering companies and so on are often
competitors and sometimes the agents of states in conflict with each other. A fu-
ture SDN will have to support good separation between rivals’ virtual networks
while also supporting dependable shared channels (e.g. of which aircraft is at
which gate).

How will the controllers and switches in a complex environment such as an
airport authenticate each other? The current standards simply state that SDN
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systems may use TLS, but this is not always implemented and would be nowhere
near enough. We need to work with, or in some cases replace, existing network
security mechanisms such as MPLS, DNSSEC [1] and BGPSEC [5] while sup-
porting resilience against local failures and service-denial attacks. In an environ-
ment like an airport, for example, many switches and some controllers will be on
tenant premises and so may be open to occasional compromise. Existing mech-
anisms not only fail to support resilience; they are incompatible or ill-defined.
For example, within an AS, iBGP authentication is not compatible with route
reflectors, which cause source IP addresses to not work. (There’s a proprietary
extension by one router vendor to deal with this, but no standard.) Another ex-
ample is bandwidth: there are proprietary mechanisms such as Cisco’s IP SLA
to probe network bandwidth to inform routing decisions, but no standard.

It is therefore time to update the threat model. Just as the traditional protocol
research community started off in the days of Needham and Schroder from the
assumption that all principals behave themselves, and then had to adapt to
cope with misbehaving clients or servers, so also intradomain routing has been
traditionally thought to need little authentication which will change as we move
to more dynamic networks. The airport with a controller and six switches in
a closet that a janitor can access is a very simple case; if and when SDN is
deployed on the battlefield, engineers will have to design authentication to cope
with devices being constantly added and lost, and occasionally falling into enemy
hands.

Scaling also forces a rethink. As we move from current SDN deployments of
perhaps 50 controllers and 500 switches in one data centre to global networks
with tens of thousands of controllers and hundreds of thousands of switches, we
can no longer assume that the threat only comes from outside. It is already an
issue that when a network operator deploys a router in a remote location, this
is usually done by an untrusted local contractor.

Our threat model must assume physical compromise of devices, along with
associated attacks involving (for example) software that’s old and vulnerable or
that has been tampered with. We must assume that some devices in the field are
unsafe; that a handful of switches, and sometimes controllers at the bottom of
the hierarchy (which are deployed near switches), are compromised at any given
time. Some communication channels are also insecure: the wires are subject to
the same attacks.

In addition to the usual mechanisms for key generation, distribution, update
and revocation, a resilient authentication infrastructure will also require a trust-
worthy mechanism to monitor and detect rogue devices in the rest of the SDN.
This will alert operators when a device starts to act maliciously, so that appro-
priate action can be taken to revoke and exclude it. The scale and complexity
are much larger than previously considered, but a broad range of data can be
monitored: we can query a switch, its neighbours and their controllers for band-
width information; and we can also launch data plane probes to cross-check.
With a large corpus of live and historical network data, the operator can make
better decisions when under attack.
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2 Proposed Architecture

Architecture matters. We can get real benefit from the move from peer routers
and switches, any of which can cause equal havoc if compromised, to a hierar-
chical system of switches and controllers. This means we can arrange things so
that the compromise of a few switches will do no more than local damage.
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Fig. 1. An SDN setup with hierarchical controllers and switches. Solid lines denote
connections, and dotted lines backup connections. Note that the PKI, management,
and monitoring services are conceptually drawn, and may not be physically separate
from the main hierarchy.

To illustrate this, an SDN currently deployed in a data centre, as illustrated
in Figure 1, might have a bottom layer of 1,000 switches, with each ten switches
driven by a level 2 controller, every ten level 2 controllers driven by a level 1
device, and the ten level 1 devices coordinated by a master controller. If we can
arrange things so that only controllers can cause widespread outages if compro-
mised, the number of critical components is reduced by a factor of ten. If we
can further arrange things so that the compromise of a level 2 controller does
little damage outside of its immediate neighbourhood, then we have reduced the
number of points of serious failure by another order of magnitude.

Although Figure 1 illustrates an SDN hierarchy informed by datacenter prac-
tices, without much imagination it is plausible to map the components to those
of an ISP (Network Operation Centre, Regional Offices, PoPs, etc.) and to the
components of our airport example (where there are some central facilities, some
in separate buildings and some on different floors of those buildings, connected
in a hierarchy).
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In terms of division of work, the two or more layers of ‘middle management’
controllers between its root controller and the switch fabric is where the ‘work’
will be done, of creating virtual networks and supporting virtual services. An
operator will issue commands top down from level 0 and each level of controllers
below will be responsible for translating the directives into rules suitable for
their layer of abstraction. If there is virtualisation, it will also happen in the
middle layers, at layers 1 and 2. Finally, the level 2 controllers issue the necessary
primitive rules to the switches they control.

We assume the level 0 and level 1 controllers to be trusted, although with po-
tential accidental configuration errors; and that there may be occasional compro-
mises at level 2. However, there may be network application code (the software-
defined applications) running on level 1 and level 2 controllers, which might
misbehave, intentionally or not. As we noted, some proportion of the switches
may be compromised at any one time; and, as the data packets being dealt with
can come from anywhere, nothing is assumed of them.

We imagine that in time there will be many SDN applications that operators
can choose to deploy. This will bring the same problems seen with application
markets for mobile phones. Will we take the ‘walled garden’ approach of the
iPhone, with some central authority that vets applications and developers, or
the somewhat more freewheeling approach of Android, where all can play but
applications are removed from the play store once they are considered harm-
ful? Many applications will contain too much code to verify, and even if their
developers are honest and competent, they may still face commercial incentives
to collect as much information as possible, or to give higher priority to their
own traffic at the expense of their competitors’. Network engineers deciding how
much access to grant an app may be more sophisticated than the typical Android
user trying to decide whether a social networking app that asks for the ability
to send text messages is exploitative — but the difficulties encountered with the
manifests for phone apps bear careful thought. How should we design the set of
permissions that will define and constrain the behaviour of an SDN app? How
should the access control policies look like? And what will be the practicality if
a hundred different virtual networks are run on this fabric for different tenants
– will it be at all practical to run different apps on behalf of different tenants on
a number of controllers, or will we have to impose significant limitations (such
as no shared state for apps on tenant networks, or across controllers)?

We believe this area that needs substantial and urgent research.

3 Auxiliary Services

Apart from the hierarchy of controllers and switches, we will need auxiliary
services in the network. Switches are connected to a logical monitoring service
which in turn feeds relevant data back into the management service, completing
the loop by connecting to the root level controllers. If TLS is used, there may
also be a PKI to support this; an alternative could be a Kerberos-type system.

Monitoring is a logical service in the network. The purpose of monitoring is
to collect both control plane status and data plane statistics from the bottom



Authentication for Resilience: The Case of SDN 43

level switches. Monitoring makes available its information to relevant users and
operators so they can watch and intervene if needed. This service can perform
both passive and active monitoring. Passively, it can measure statistics such as
the number of packets matching a certain signature, or per-interface bandwidth
usage. Actively, it can send a packet to a switch and observe the decision made
by the switch on that packet. Because the monitoring service can observe all
interfaces of a switch, it can see the result of a forwarding decision. Monitor-
ing also exposes a new level of control to the network. The potential of using
this for auditing and information flow analysis is immense. Among others, SDN
makes available an interesting potential for tackling botnet outbreaks as well as
adapting and reacting to other forms of network attacks [6,8].

The monitoring service also feeds data back into the management service.
Since this knows all the commands issued from the top, it can check if they are
followed, completing the loop. It can can also actively generate fake traffic to
isolate devices that are dishonest. Most importantly, it links the human operator
with the rest of the network. While the root controllers are the technical author-
ities in the control plane, the management service translates human operator
intentions into control directives.

Both the management service and monitoring service expose a virtual inter-
face for a users of the network, or to those to whom the operator delegates access,
for example a network operator for an airline only needs partial access to the
airport network. Each such user gets a separate virtual slice of the network along
with relevant virtual devices, resources, and monitoring data. On the manage-
ment side, the virtual interface deals with resource allocation and visibility; and
the monitoring side only shows the part of the collected data that the user is
authorised to view. There exist recent works [3,2,7] that caters to abstractions
and virtualisations in network programming. It is not hard to adapt these works
to be integrated into the architecture we have laid out.

4 Conclusions

Software defined networks are getting deployed because they are cheap, both for
hardware capital expenditure and for operation. Yet the work on SDN security
has only just started. As these technologies escape from the datacenter and get
deployed in large heterogeneous networks, a lot of protection issues arise. An
important first step is architecture. We propose a hierarchical model of SDN
which reduces the number of points of serious failure by one or two orders of
magnitude. The significance for protocol research is that while people have in
the past talked about hierarchical deployment of both public-key and shared-key
protocol mechanisms, this has so far been abstract (and was largely limited to
the debate in the 1990s about which cryptographic technology scaled better).
For the first time, SDN provides an environment with a real need for hierarchical
security. This in turn raises the question of whether we can use delegation with
public key mechanisms, or hierarchical Kerberos mechanisms, to support tiered
security in networks.
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Authentication for Resilience: The Case of SDN

(Transcript of Discussion)

Dongting Yu

University of Cambridge

My name is Dongting and I’m here to talk about software defined networks
and their resilience. It’s joint work with Professor Ross Anderson. So what are
SDNs? It’s a fairly new concept of doing networking in the past three, four years.
The basic concept is we take intelligent controllers, which are basic everyday
computers, PCs, and we use them to drive the switching and routing logic inside
switches, using programming languages. It’s a separation of control and data
plane, because the switchers and routers will just do their own stuff, and the
controllers would be doing all the control plane logic. The goal of SDN is not
to bring a new feature into networking, but rather to bring organisation and
abstraction into networking, so you have much better manageable networks.
And another goal is to cut cost because we can potentially replace large Cisco
routers with a few of the cheaper switches and the general purpose PCs.

So where can SDNs be used? The traditional settings of datacentres and ISPs
can almost directly benefit from SDNs, and in fact a lot of them are already de-
ploying or almost deploying. There are some newer settings. Internet exchange
points and control systems are what we can think of, and in fact Internet ex-
change points are actually moving towards SDN prototype as well. We can also
think of next generation networking, for example, in battlefields or microclouds
when we have Google Glass, and using a nearby microcloud for rendering, for
example. We have a favourite example here, which is Heathrow Airport. The
case of Heathrow Airport is that there are 180,000 staff, and 3,000 companies,
including baggage handler companies, UKBA presence, there are also airlines
that are representing countries at wor with each other, for example, Israel and
Arabic nations. And there are many staff members at Heathrow, more than the
population of Cambridge itself. So a terminal of Heathrow would be a very good
use case for SDN, and we can keep that in mind when we talk about SDN.

Frank Stajano: When you describe this as a working example does it mean
it would be a good way to envisage this, or it’s already currently deployed there?

Reply: It’s not deployed, but it’s a good way to envisage this, because it’s a
very concrete example.

One question that people raise is, if we already have MPLS and OSPF, and all
these existing networking technologies, why do we need SDN. What we realise
is that SDN can reduce the number of points of serious failure in the network.
So if you have MPLS network and you manage to take over one MPLS switch,
then you can pretty much bring havoc to the whole network that the MPLS is
part of. But with SDN you can reduce that because you can potentially make
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the switches not the failure points. And it’s a good idea, in the case of Heathrow
again, when there are many people trying to take over your network.

So what’s the threat model that we’re considering? In the case of Heathrow, for
example, we can think of a dozen, or a few dozen switches, being compromised
at any time by malware or physical attack. If you are a janitor at Heathrow
you probably can have access to some sort of networking device within the
terminal. Or if you are an airline then you have access to the other computers
and potentially you can do some damage as well. And we also consider once in a
while a controller, especially the local controllers that we distribute everywhere,
can get compromised. Once you compromise a hardware you can inject firmware,
you can change software, you can add a new hardware, for example, you can
install anything, so basically once you have access to something you can do a lot
of damage.

So we want authentication in SDN. We assume many of the switches are phys-
ically vulnerable because they are out everywhere in the building. So protecting
the controller is a more reasonable thing to do. At the same time, because SDNs
will be deployed in many large networks, we also want authentication to scale.
The classical order log(n) way to do it, is to have a tree of things, so we have
the most important controller on the top, and then recursively down into a hi-
erarchy of controllers, and at the very end many, many switches. In the 1990s,
there were discussions of shared keys versus PKIs and this can be applied into
an SDN case.

So there are things we need to authenticate. Controllers need to be first con-
sidered. If we have a hierarchy of controllers in a shared network, or a dedicated
network, the controller-controller communication is anything that the program-
mer writes, so it becomes pretty much a general distributed systems problem,
where you can use any of the existing technology, or we can make new tech-
nologies to make them authenticate each other. BGPSEC is one of the possible
candidates, but BGPSEC is not exactly written for this kind of situation, so
it might have its own problems and cost overheads. We also need to think of
revocation. What if you want to revoke devices as you maintain the network, or
what if you want to revoke devices when you’re being attacked, how do you do
it within a reasonable time. And more importantly, how do you know what you
want to revoke. If you see misbehaviour how do you know which ones are the
ones exactly that you want to revoke.

We also have authentication of switches at the most bottom layer. In the
OpenFlow specification, OpenFlow is one of the most popular implementations
of SDN, and they say use TLS, and that’s pretty much the only security word
inside the whole specification. But TLS has its own problems, a lot of vendors
are not implementing TLS, especially hardware switches. In software it’s fairly
OK because you have existing libraries, you can borrow them. Another thing
is, how do we monitor switches, what kind of behaviour do we want to monitor
in the switches. And if switches become so small then maybe a lot of existing
assumptions do not hold anymore.
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So that brings us to the problem of monitoring, and we argue that monitoring
is needed in this situation. Controllers know exactly what logic they are sending
to the switches, so they can query the switches and their neighbours to see if a
particular switch is behaving correctly. We can have a large monitoring system
where a lot of data continues to flow into a central repository of a database that
operators can see, or they can write automated systems that detect malicious
behaviour. And this monitoring system should be separate, because controllers
can be compromised, and maybe not all the controllers can be trusted.

So how do we design a system that encapsulates all these desired properties.
In turns out in datacentre design there’s already a similar hierarchical view. So
if we learn from the datacentre design we can build a hierarchical system where
we have a couple of very important root controllers on the top, we have area
controllers. And we have a hierarchy, going down we have local controllers, and
each of the local controllers controls a whole bunch of switches, and these can be
maybe fairly insecure, but the ones on the top should be pretty secure. And we
have primary links, and we have backup links, similarly for all the all the other
layers, for failover purposes. So we have a basic design of an SDN network, but
in order to add authentication into it we might want a PKI which connects to
all areas. It can be RPKI, for example, or it can be a general purpose PKI.

But the controllers are still a little low level for the operators, so we want
a management interface. And in the management interface we can say things
like, we want to create a new VPN consisting of so many switches and so many
specific kinds of behaviour. And connecting to the switches we attach a mon-
itoring service server, and this monitoring server collects data from all of the
switches, statistically or by other means, and puts it into a central database.
And what’s good about this design is that the monitoring device can feed back
into the management, so the management can say, I’ve issued these comments
into the controllers and switches, does it match with the behaviour that I see. If
it doesn’t match then maybe somewhere something is misconfigured, or some-
thing is malicious. In the Heathrow case, because we have so many users and
different companies, we want to have a virtualised interface for the monitoring
and the management services. So in the management case a new airline carrier
will say, well we are a new company, we want so many switches, a VPN that
does so and so, submit. And the terminal operator can see the request and say,
OK, we’ll deploy into the controllers. In the monitoring case the same airline
can say, well we want to see if our network is behaving correctly, give us some
data, but at the same time you don’t want to give the data that they shouldn’t
see to that company. So we’re going to have a virtualised monitoring interface
as well.

So what are the advantages of this design? Well we have minimal trust, be-
cause we don’t need to trust all the devices, we only need to trust the higher
ones. So if you only protect the root controllers, and maybe the area controllers
in more protected rooms where the janitors cannot access. It might be OK to
have the switches everywhere that people can launch physical attacks. We can
also get faster convergence, for example, when there’s a power failure and you’re
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trying to boot up the whole network, in the traditional sense you need to have
everyone participating in the convergence time, but right now we say that we
can only do the root controllers, and then they all converge the area controllers,
and each of them will converge the devices underneath. There is also a delega-
tion of work. You can offload a lot of the computing power into the lower level
controllers in this case, so the higher level ones only need to do the higher level
coordination where the lower ones do the actual work.

So there are three highlights in the design that I just showed. One is the
management system, they directly manage the root controllers, they do higher-
level directions, so for example, give me a VPN, and then they will make sure
that the controllers do the rest of the work. The management system also can
be, for example, a general web interface that faces everyday users, airlines, so
we need to have abilities to deal with different users. But the management itself
is a trusted subject. Second thing we had in that diagram was virtualisation. In
the case of Heathrow, for example, and similarly in other cases, such as shared
datacentres and ISPs, you have many users that share the same resource. Each
of them will want their own management interface, and also the monitoring
interface. Virtualisation also works in the middle layer, so the roots do not
virtualise, but they will control the virtualisations, and the virtualisation will
stop just before the switches. The third thing we had was monitoring. So we
need a monitoring system that stands on the side of the network and observes
this whole network. We need to collect data from switches through multiple ways
that are possible. The monitoring system sees everything, but it doesn’t provide
all of the information to every party that requests information. So we might
want some kind of control, mandatory access control would be one of the ways
to solve this.

So what we are seeing here is a change of scale. In the 80s and 90s we were
concerned with thousands of users, and we were concerned about how to set up
keys, the authentication channel. Later on we were concerned with millions of
users, and we were concerned with the revocation channel, how do we tear down
keys. And now with SDN and potentially many, many more nodes in the network,
it’s now shifting into the monitoring channel, which keys shall we replace.

So in conclusion, software defined networks are seen as a Cisco killer, so Cisco
is now participating in this as well so they can control their share of this. In a
large network especially a heterogeneous one such as Heathrow, by doing SDN
we reduce the protection perimeter that we need in the network so that there is
less chance of causing catastrophic failures. Mandatory access control is probably
needed because you have so many users. But the real hard problem is monitoring
multiple virtual networks efficiently and effectively. We have a mandatory thank
you for the sponsor, and I will take the questions.

Bruce Christianson: You have a little box with the letters PKI written on
it on one of your slides, tell us a little bit more about that, and in particular
about the key replacement policy.

Reply: The key replacement policy. So the PKI serves as a querying service,
so you can query for things, and if you see keys or certs you can ask the PKI
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if this is right. If it’s not right then the logical thing to do is not to trust the
information that comes with it. If you do see through the monitoring and man-
agement interface that something is misbehaving then you can revoke devices.
In a system like BGP and BGPSEC it’s hard to revoke because you have a very
distributed system, and if you revoke your neighbour you don’t necessarily know
that your neighbour’s neighbour will see your revocation, because that might be
the only route downstream. But in this case because everything is controlled by
the same domain, it might be easier. So we assume that these are more or less
trusted, so if a switch is misbehaving then the controller can easily revoke this
and programme the other switches, so takeover its function.

Bruce Christianson: Right, but how does that get propagated?
Reply: It doesn’t need to be because the switches are the lowest level already.

So the case of this versus the traditional network is that the switches don’t need
intelligence, they don’t need to participate. So as long as the controller knows
that this switch is misbehaving, it just needs to revoke this switch and tell the
other switches to do something else. We also considered that the lowest level
controller may be occasionally compromised so if that one is compromised then
this controller will tell the needed parties that this one is being wicked, and we
assume that other switches below are lost.

Bruce Christianson: Does the monitor need to know about any of this?
Reply: The monitoring reports activity so I would say the intelligence would

be the management system, because it’s only in the management system that
you know the expected behaviour, and the observed behaviour.

Bruce Christianson: That PKI box needs to have about a billion dotted
lines coming out of it.

Reply: It’s to illustrate that it connects to all layers. I guess the lines are not
very rigorous.

Robert Watson: I guess one of the problems with a software defined network
is that, the way it talks to nodes is over the network, and so when you lose control
of the nodes you risk not being able to talk to the nodes anymore, or any of the
nodes that it’s connected to. Do you take a view on structures we compose that
help keep reachability working for the purposes of maintenance administration,
or you take the view that that’s kind of a policy?

Ross Anderson: We did have a slide on whether we needed heartbeat net-
works or not but we deleted it for reasons of time. There’s a debate in a number
of environments, such as the control systems world, for example, about whether
you need an absolutely dependable core network with multiple layers of fallback
and backup.

Robert Watson: Maybe in software defined networking you can implement
that, right. It’s all programmable, but you’d have to instruct switch vendors on
how to construct these things, and it seems like a design pattern that might be
useful.

Ross Anderson: We thought the interesting thing for this workshop though
was that with an architecture like this, which strongly suggests it’s sort of in
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this new technological world, the revocation problem that we’ve agonised over
for so many protocols workshops becomes almost trivial.

Bruce Christianson: That’s a really nice thing.
Ross Anderson: Not entirely trivial, because there are some residual intel-

ligence things on the bottom, but that’s almost trivial. But what then suddenly
becomes of overwhelming importance is the audit trail, the block of fat old pa-
per that we used to use to keep open the fire-door, all of a sudden this becomes
where the intrinsic complexity of the system migrates, right, it becomes a big
complex mandatory access control multi-level secure system, that is if you’re
going to do full network virtualisation and provide different decent separation
between different VPNs. But it’s become seriously hard.

Bruce Christianson: But at least you’ve got the sense that you’re trying to
solve the actual problem, whereas with revocation you always had the sense that
you were trying to solve a problem that was an artefact of how you architected.
Whereas here the audit information is all stuff that you need anyway.

Ross Anderson: Well with small systems the detection of faults was always
down to the system administrator. The police would phone you up, or cert would
phone you up, or a customer would phone you up and say, oh golly, or words to
that effect, and you’d rush round and wonder what broke. But once you have
billion node networks, you know, the oh golly approach to fault diagnosis doesn’t
work.

Bruce Christianson: It doesn’t scale.
Robert Watson: Also taking a view on the work the applications are doing,

the reason that you’re seeing a pickup of SDN in high-end datacentres is that
things like spanning tree don’t scale, so in order to replace spanning tree, and say,
provide applications, in a datacentre you might have one or two applications,
or some larger number, but I suppose in some environment you might want
applications to do load balancing or traffic engineering. Is that part of the model
that you’re interested in, or is that sort of a separate application.

Reply: So we’re definitely interested in that. There are multiple things, right,
so at the most connection area you need basic connection, and we say that you
can have a physical connected network for, for example, for this layer, for the
root controllers. And you have a more expanded network for the area controllers.
And if something fails then you still have the core ones, and they can kind of boot
the other ones up. So you have this layer, and once you establish connectivity
you can do authentication on top of it, controller to controller and controller to
switch. And once you have established a trusted perimeter of your authenticated
devices then you can load applications on top of that.

Robert Watson: Yes, the basic question is, where does the application fit
into this graph of communications and so on. Applications might run on the
controllers, they might have applications by talk controllers of distance, but I
guess there’s an authentication piece there.

Reply: Applications are created in the management, and the management
will convert the applications into directives into the controllers.
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Ross Anderson: If you want to do this with the kind of tools you’re working
on, and you think perhaps in terms of a language where you can express a
number of rules for the creation of the virtual networks, and you then compile
these down through the various layers until you’ve got full rules you can apply
to the switches. And of course extraction rules that can apply to the monitoring
systems for putting out the relevant examples of facts.

Robert Watson: I’ve seen applications that would do much more sophisti-
cated things like that, they look at flows, that come in and decide how to load
balance across multiple service, or interactive things. So I wonder if, since this
is a protocols workshop, the bit to blow up is the management bit, you need to
figure out if there is another set of principles there, there is another set of au-
thentication protocols. Obviously you have to have the substrate, which is what
this is, to bootstrap in order to make it useful, but at the end of the day it’s the
applications that are going to need properties as well.

Reply: I would say the virtualisation is kind of an application in the general
sense offered by the SDN

Audience: Virtualisation is one application is all I’m saying, there may be
other applications.

Reply: So the other applications, such as load balancer, would work on top
of the virtualisation layer, and only work with a device that the virtualisation
provides. So in the case of Heathrow, the Heathrow administration would have a
virtualisation app, and each airline can have their own load balancer or firewall
apps within this virtualised SDN slice, and they don’t even see it’s a virtualised
slice, they just think it’s their own slice of SDN. So I guess there’s a separate
view, a separate portion in this diagram where a user through the management
interface after receiving an allocated slice can then deploy their own applications
on top of the available resources.

Ross Anderson: I expect load balancing would, and if you’re doing that in
part of that work in this fabric would probably run at the C2 layer.

Bruce Christianson: Is there an assumption that the controller hierarchy
maps onto a switching hierarchy, or is the switching much more longer term in
the story?

Reply: I don’t think we need to have a hierarchy in the switches. So these
can be tightly coupled, but we don’t need the hierarchy in the switches.

Robert Watson: You can characterise this as an enterprise centred view of
how SDN gets deployed, that is the enterprise owns all the switches therefore
you don’t need a switching hierarchy, or so on, or do you view it, what happens
if you’ve got two enterprises with two networks, does somebody have to own all
the switches to use this key, or can it be two different networks that switch it or
talk to each other?

Reply: Even if you have two enterprises sharing physical resources, you always
still need to have an owner.

Robert Watson: Someone has to own your switch. Some of the questions
that came up in active networks, which is what the last round of software defined
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networking was called, were concerned with multiple enterprise networks, appli-
cations that span different networks, so they for example, were tracking down
denial of service, and then suppressing at the origin rather than suppressing in
the middleware. It isn’t obvious how to do that. And so they would have to co-
ordinate the applications so they would be allowed to talk to – well, they weren’t
controllers, but they might as well have been – at each one of the enterprises in
order to suggest, this flow is no longer of interest, which led to a whole research
area in, how do I identify, how do I authenticate, how do I decide what policies
are appropriate to distribute. And so to my mind it would be appropriate to
apply that vocabulary once you have a substrate like this one, which is why I
asked the enterprise question. Within an enterprise, yes, you can say who owns
a thing, who provides virtualisation, and so on, but when you’ve got multiple
enterprises, there are actually quite interesting applications that could float one
layer higher.

Ross Anderson: Well exactly, suppose you’re US Airways, for example, you
go and you rent yourself a VPN at Heathrow, you rent yourself a VPN at JFK,
you stitch these together into your own corporate network, that’s the sort of thing
people want to do, and this is perfectly fine. Similarly if you’re HM government,
you want to rent a classified slice of network at Heathrow, and one at Gatwick,
and one at Stansted and so on, and put them all together into your classified
borders agency network, this is normal.

Robert Watson: You imply there’s a layer above that and I think it would
be interesting to draw the layer above, because the layer above obviously it
wouldn’t have these Ss in it, I think, right, and yet clearly it’s a replication in
some sense of that structure.

Reply: So yes, applications, especially if you write your own applications that
stitch multiple networks, it would be interfacing with the management interface.

Robert Watson: And one way to interpret software defined networking is to
look at software defined TLBs in conventional processes. So TLB uses a TCAM,
you try to cache the collected information, and then once in a while you take
an exception because there’s a miss, and then you go out to a controller, which
is to say the software page tables and so on, and it fills the TLB. So a classic
failure of design there is how many rings do you want, do you want one ring,
or two rings, do you want four rings, and the recent explosion of hypervisors in
virtualisation was possible because, I think we should use that extra ring now.
So one thing that would be nice to know is that this structure doesn’t impose a
bounded number of rings to the point you get a cliff in performance behaviour,
or we have to fundamentally change your perimeter, but instead degrades, say,
as a factor of load rather than a factor of a number of layers in virtualisation.
So it would be interesting to look at that.

Ross Anderson: Well in practice how many layers of virtualisation would
you expect to have, two or three max?

Robert Watson: Well that’s not the direction things are going currently in
software.

Ross Anderson: But networks maybe aren’t quite the same. I don’t know.
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Robert Watson: Well, no, I think it’s an open question, right, but it could
be that by describing the APIs properly they’ve actually set it up so you can
have unlimited layers of virtualisation, and efficiency is a property of load on
the network, not on the number of layers. But it would be good to have security
properties track that scalability if it exists in the underlying layer. Because I
think you’re right, I think layers of virtualisation is the natural place to put
these applications, but how many layers of those can you have.

Jeff Yan: In addition to authentication, what other security properties do
we need to reconsider in SDN and in particular OpenFlow?

Reply: Well in this talk we argue for authentication as a way to achieve
resilience. In reality, in the very general sense, there are also integrity would
be an immediate property that we would want to have. But that follows from
authentication, so if you have an authenticated device then maybe integrity
would be easier.

Jeff Yan: Are there some newer security issues for SDN?
Reply: Nothing comes to mind immediately, I mean, you can think of it as

programmable network where you can match any bits in the switches. I don’t
think there’s anything immediately different from a traditional networking ex-
ample, of course other than what we’re arguing here.

Rubin Xu: How do you gather reliable monitoring information from the
switches?

Reply: We didn’t really consider this part in detail, but you can think of,
for example, a monitoring device that sends random messages into the switches
once in a while in a round robin fashion.

Ross Anderson: Bear in mind that we’re assuming that merely a dozen
switches out of a thousand in an installation the size of Heathrow would be bad
at any one time. So even if none of the switches is unconditionally trustworthy,
most of them are working properly at any one time, and so there’s a big literature
on how you do sampling of network traffic, and you want to arrange things so
that if you’re looking at one packet in ten thousand then you see the same one
packet in ten thousand going out from switch K to switch K+1 that you see
coming in at switch K+1 from switch K again, because that way if a switch
starts misconducting itself and lies about it, then you’ll protect it faster. But
the details of this are basically for future work.
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Abstract. This proposal aims to combine the best properties of paper-
based and end-to-end verifiable remote voting systems. Ballots are de-
livered electronically to voters, who return their votes on paper together
with some cryptographic information that allows them to verify later
that their votes were correctly included and counted.

We emphasise the ease of the voter’s experience, which is not much
harder than basic electronic delivery and postal returns. A typical voter
needs only to perform a simple check that the human-readable printout
reflects the intended vote. The only extra work is adding some crypto-
graphic information into the same envelope as the human-readable vote.

The proposed scheme is not strictly end-to-end verifiable, because it
depends on procedural assumptions at the point where the ballots are
received. These procedures should be public and could be enforced by a
group of observers, but are not publicly verifiable afterwards by observers
who were absent at the time.

Keywords: electronic voting, verifiability, postal voting, vote by mail,
end-to-end verifiable voting.

1 Introduction

There are no good options for voters unable to visit a polling place. Snail mail is
slow, unreliable and easily intercepted, but it has one great advantage: ordinary
people can see clearly what they have sent. This is the same advantage that
has made a human-readable paper trail a focus of attempts to improve the
integrity of polling-place DRE voting machines. Voters all over the world are
clamouring for a substitute for postal voting, with its numerous inconveniences.
Postal voting is also much less secure than attendance paper voting, being more
susceptible to both privacy compromise and vote manipulation. It struggles to
satisfy fast delivery requirements, in two directions, over what can be a very slow
channel. Many people who haven’t thought much about electronic security think
that Internet voting is a great alternative. It’s a pity about the human-readable
paper record though.
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One obvious improvement to postal voting is to deliver ballot information
electronically and then ask voters to return paper votes by mail [JS12]. This
cuts out the difficult half of the snail-mail delivery, and provides simple cast-
as-intended verification, but it gives no more guarantees than ordinary postal
voting of privacy, delivery, or accurate counting.

An alternative approach is to use cryptography to mitigate the vulnerabilities
of (Internet-based) electronic voting. End-to-end verifiable systems such as He-
lios [Adi08] provide proofs that all the votes were counted as cast and correctly
tallied. The most difficult part is allowing voters to verify that their votes were
cast as they intended, even given the possible presence of malware on their com-
puters. Helios voters are encouraged to perform a randomised protocol to test
whether the vote is recorded in the way they intended. If the voters perform the
protocol correctly, they get very good evidence that their vote was cast as they
intended. It isn’t necessary for all voters to perform this check—the important
point is that a manipulating machine risks detection unless it can be confident
the voter won’t check. There is therefore a key assumption that regardless of
the voter, a Helios client will never have prior certainty that the voter will not
perform a check. Whether this assumption is valid depends, at least in part,
on the population of voters. The IACR election is highly likely to have a large
enough population of sophisticated voters that any cheating attempt has a high
probability of detection. However, for some ordinary voters in government elec-
tions, it could be much easier for a malicious machine to predict that the voter
will not check, or to trick them into not checking.

Our proposal is to try to get the best of both worlds, with a simple cast-as-
intended check for most voters and a verifiable protocol demonstrating correct
inclusion and counting. The scheme uses both an electronic and a snail-mail
channel — blending the best properties of each.

We emphasise the ease of the voter’s experience, which is not much harder
than basic electronic delivery and postal returns. The extra cryptographic infor-
mation needs only to be added into the same envelope as the human-readable
vote. Mechanisms for assisting voters with disabilities could easily be incorpo-
rated into the process of filling in the ballot by computer (though not quite so
easily into the process of putting the printouts in an envelope and posting it).
The proposal provides a set of security properties not obtainable on other remote
systems with such an easy voting experience.

The proposed scheme is not strictly end-to-end verifiable, because it depends
on procedural assumptions at the point where the ballots are received. These
procedures should be public and could be enforced by a group of observers, but
are not publicly verifiable afterwards by observers who were absent at the time.

1.1 Related Work

A completely different approach is Code Voting [Cha01], in which voters receive
a code sheet in the mail and then use codes to communicate their choices to the
electoral authorities via an untrusted electronic device, or to check via a return
code that the authorities received the correct choice. This style of remote voting
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has been used in government elections, for example in Norway [Gj10]. Chaum’s
original code voting scheme assumed an honest electoral authority. Although
subsequent works have weakened this assumption substantially, all code voting
schemes still require a secrecy assumption for the integrity of the election. In
other words, a malicious device that learns the codes can manipulate the vote.
PGD [RT13] allows the code information to be generated in a distributed way,
and Remotegrity [ZCC+13] uses physical protections such as scratch strips to
protect the data in transit, but there are still strong assumptions about the se-
curity of the (postal) delivery system. Furthermore, code schemes are difficult to
use when the ballot is complex, such as in IRV/STV elections with many pref-
erences [HRT10]. Our proposed system works for any voting or tallying scheme.
One interesting difference is that code-based schemes send out a piece of paper
and then receive the vote electronically, while our proposal sends ballot infor-
mation electronically and then requires a paper return.

Two polling-place voting systems elegantly combine human-readable paper
records with end-to-end verification. In the Wombat voting system [RTsRBN],
voters produce both human-readable and encrypted versions of their votes. Be-
cause Wombat is an attendance voting system, the process of reconciling and
then separating the two representations is performed by the voter, using a pro-
cess similar to Benaloh’s simple verifiable elections [Ben06]. In the StarVote
system proposed for Austin, TX, [BBK+12], voters make both human-readable
plaintext representations and encrypted representations, check that the former
matches their intentions, and then either cast or audit their ballots. In addition,
the plaintext representation is part of a risk-limiting audit in the style of SOBA
[BJL+11]. Our question is how to achieve a similar set of security guarantees in
a remote setting without asking the voters to do too much work.

Our proposal uses a different method of combining the benefits of
cryptographic-style verification with randomised, publicly-observable checking
of paper records. The rough idea is that each voter produces a human-readable
paper record, and a (non-human-readable) encrypted record. Voters check that
the former matches their intention, and submit the latter into a process of public
auditing which verifies that with high probability the encrypted records match
the paper ones. The following section describes the background assumptions. We
then provide an overview of the protocol, followed by some important details,
then a discussion of some possible variants.

2 Assumptions and Requirements

Some simple assumptions about voting:

1. The electoral authorities maintain an accurate list of who is eligible to vote,
2. There is a public list linking a public key to each eligible voter.

Some more complex assumptions about postal voting in particular:

3. There is sufficient observation or proper process at the vote receiving location
to ensure that votes are not lost upon arrival and some observable procedures
are followed.
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We will require an unpredictable coin toss for each received vote. The trick is
to design a process that provides good counted-as-cast evidence to observers.
See below.

4. There is an irrevocable process for separating pieces of paper that arrive in
the same envelope, from each other and from the envelope.

This process varies somewhat from one country to another, but is used
to separate the voter’s identity, usually on an external envelope, from the
contents of the vote, usually inside an(other) envelope. Traditionally the
vote is mixed in a box with other votes. We will also use this to separate
irrevocably pieces of paper that originated in the same envelope.

Like all end-to-end verifiable voting protocols, we assume we have a Bulletin
Board, which is an electronic authenticated write-only broadcast channel with
memory (“broadcast” means that everyone is guaranteed to see the same data).
Some requirements for the system:

1. Vote privacy. It should be infeasible to link individual voters to their vote.
However the system is not receipt-free (and hence not coercion resistant).

2. Eligibility Verifiability. The list of public keys of admitted voters is public.
3. Cast-as-intended (individual) verifiability. Voters should each have evidence

that their votes were cast as they intended.
4. Counted-as-cast verifiability. Each observer should each have evidence that

all votes were counted as they were cast. (Note that in end-to-end verifiable
systems this is verifiable by voters; here it is verifiable by any observer who
participates in the vote-opening protocol.) We have two different variants
with different assumptions for counted-as-cast verifiability—see Section 3.3.

5. Universally verifiable tallying. Voters and observers alike can verify the cor-
rect tallying of all cast votes.

The scheme aims to defend against:

1. An attacker who manipulates paper votes in transit.
This should be detected at audit time with probability at least 1/2.

2. A malicious voting device that misprints the plaintext paper record.
This should be detected by the voter.

3. A malicious voting device that manipulates the encrypted record
This should be detected at audit time with probability at least 1/2.

4. A collusion of some of the electoral authorities opening envelopes and their
observers.
One honest observer should be able to detect departure from the protocol.

It does not aim to defend against an attacker who drops postal votes—this
can be detected, but cannot be distinguished from “honest” failures of the mail
system. Nor does it defend against a complete collusion of all electoral author-
ities and all of the observers at envelope-opening time. In other words, at least
one observer must be honest. Although the scheme defends against either a ma-
licious voting device or an attacker who controls the postal voting channel, it
is susceptible to collusion between those two attackers. There is also a strong
assumption that the paper records, once received, are properly secured.
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3 The Proposal

Voters receive voting information, such as candidate names, electronically. They
fill out their vote on their computer, and print three representations of it on
separate pieces of paper:

– VR, a human-readable plaintext vote,
– VE, an encrypted and signed representation of the vote, which identifies (in

non-human-readable form) whose key it is signed with.
– VI, an encrypted but not signed representation of the vote, which is printed

along with two large random values:

• RI is the random value used to encrypt VR to produce VI,
• RE is the random value used to re-encrypt VI to produce VE.

(These values may or may not be encrypted—see below.)

All three printouts go in the same postal envelope.
Each voter retains a copy of VE as a receipt (in printed or electronic form),

but voters’ computers are supposed to delete VI and the random values used to
produce VI and VE.

The difficult part is to allow any observers present at the opening of the voting
envelopes to get evidence that the votes are counted as cast, without compromis-
ing privacy. In other words, by checking that for each vote, VR and VE represent
the same thing. We will do this by using the intermediate representation VI. Ob-
servers randomly choose whether to get evidence that VI matches VR or that
VI matches VE. (This evidence consists of learning either RI or RE). The im-
plementation details could vary with the voting scheme and the requirements of
the paper delivery mechanism.

The result is similar to Randomised Partial Checking [JJR02]. On the bulletin
board go the complete list of plaintext votes VR1,VR2, . . . the complete list of
intermediate representations VI1,VI2, . . . the complete list of signed, encrypted
votes VE1,VE2, . . ., and, for each vote, either a value (RIi) proving the link
from VRi to VIi, or a value (REj) proving the link from VIj to VEj . Like RPC,
privacy is reasonable but imperfect: each vote is anonymised among half of the
set. See Figure 1.

The difficulty is to design an easy process for publishing (and proving) either
the link from VI to VE or the link from VI to VR, while hiding or destroying
the other link.

3.1 Details 1: How One Link Can Be Published and the Other
Destroyed

One possibility (from now on called the crypto option) is to encrypt both RE
and RI, print both encrypted values on the same piece of paper as VI, post both
encrypted values on the Bulletin Board, and then decrypt only the one that is
selected. The other value remains encrypted and hence does not reveal the link
between VI and the other data item (VR or VE).
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VR Physical shuffle or proven link VI Physical shuffle or proven link VE

VR2 —————–link (RI2)———— VI2

Physical Shuffle

VE8

VR5 —————–link (RI5)———— VI5 VE2

VR7 —————–link (RI7)———— VI7 VE7

VR8 —————–link (RI8)———— VI8 VE5

VR3

Physical Shuffle

VI4 —————–link (RE4)———— VE4

VR1 VI1 —————–link (RE1)———— VE1

VR4 VI3 —————–link (RE3)———— VE3

VR6 VI6 —————–link (RE6)———— VE6

Fig. 1. Information published on the Bulletin Board to demonstrate votes are counted
as cast

A second possibility (from now on called the paper option) is to use physical
paper mechanisms to separate and destroy the unused value. For example, RI
and RE could each be printed on its own separate piece of paper. The selected
value could then be attached to VI and published, while the unselected value
was shredded. Alternatively, both values could be printed on the same piece of
paper as VI, but the unused one could be detached and shredded.

These two options seem to achieve the same effect. The first option involves
more cryptographic work; the second involves more fiddling with pieces of paper.
The structure of the protocol is the same in each case.

3.2 The Rest of the Protocol

When the envelopes arrive at the electoral authority:

1. For each envelope, the signature on VE is verified without revealing to ob-
servers whose signature it is.

2. For each envelope, a coin is tossed which determines whether observers will
later get a link from VR to VI, or a link from VI to VE. The piece of paper
containing VI is accordingly stapled to either VE or VR, depending on the
coin toss.

If we are using the paper option, the appropriate random value (RE prov-
ing VI matches VE or RI proving VI matches VR) must also be stapled to
VI, while the other value is shredded. With the crypto option both encrypted
values and VI are printed on the same piece of paper and don’t need special
treatment here.

3. When all envelopes are opened there are four (nearly) equally large piles of
paper:
(a) VR with VI and (possibly encrypted) RI stapled to it,
(b) VR without VI stapled to it,
(c) VE with VI and (possibly encrypted) RE stapled to it,
(d) VE without VI stapled to it.
Each is shuffled in an ordinary ballot box, then retained as evidence.

4. The pile of VR with VI stapled to it has its RI values (proving the equivalence
of VI and VR) published on the Bulletin Board. If we are using the crypto
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option the encrypted value is published, then provably decrypted.1 (The
unused value doesn’t need to be published, and should never be decrypted.)

5. The pile of VE with VI stapled to it has its RE values (proving the equiva-
lence of VI and VE) published on the Bulletin Board. The crypto option is
the same as for the VR with VI pile.

6. The other data contained in the other two paper piles (the lists of VR and
VE unlinked to their corresponding VI) is also published on the Bulletin
Board.

7. The list of encrypted, signed votes are cryptographically mixed (or homo-
morphically tallied) and verifiably decrypted.

Everyone can verify the proofs, but of course the cast-as-intended evidence
depends on the coins being properly tossed so that the match of VR with the
electronic data is verified.

Some care needs to be taken for the first of the above steps, i.e. verifying the
signatures at envelope-opening time without revealing to the observers whose
signature it was, or to the (electronic) signature reader which vote it was. En-
suring this separation is crucial for privacy, and has to be enforced procedurally.
The signature would be in a format (such as a QR code) that’s prohibitively dif-
ficult for humans to read or remember by sight. The electronic signature reader
would scan only the signature on VE, and the observers would be forbidden from
pointing technological devices at the ballots.

3.3 Details 2: How the Random Bit Selection for Each Ballot
Should Be Performed

There are various sources of randomness. It’s important that the source is un-
predictable to whichever attacker tries to manipulate the vote. Here are two
example sources:

The Voter, Using a Combination of the Electronic and Paper Chan-
nels. Individual cast-as-intended and counted-as-cast verifiability could be
achieved by having voters themselves make the “random” selections as to which
of RI or RE will be revealed after their ballots have been printed. This could be
accomplished by explicitly indicating which of the two links should be revealed
(perhaps by ticking a separate box). Dilligent voters could remember which of
RI and RE they had selected and see on the subsequent public postings that the
correct one had been revealed.

One problem with this apporach is that humans are notoriously poor at mak-
ing random selections, and this would need to be accounted for along with cases
where no selection is made.

1 It isn’t entirely clear that a proof of correct decryption is necessary here given that
we’ve assumed the paper trail is properly guarded after being received at the electoral
commission. However, it seems important not to introduce an opportunity to pretend
it matched a value different form what the voter saw.
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A physical method of obtaining randomness from voters could work well here.
The ordering or orientation in which the ballot paper(s) are placed in the en-
velope could be used as a source of random selections. (There are at least four
distinct and easily distinguished orientations in which a — folded or unfolded —
rectangular piece of paper can be placed in a slightly larger rectangular envelope.
Two simple classes can be whether the leftmost printing of the front of the ballot
is placed against the leftmost or rightmost printing of the front of the envelope.)
Since every ballot must be oriented somehow within the envelope, there would
always be a “random” selection — presumably not known in advance by the
voter’s computer. Knowledgeable voters could take note of this orientation and
check that the correct value is subsequently revealed.

However, this approach has one important weakness: an attacker who controls
the postal system (and can open envelopes and reseal them) can see which VR
records will not be checked against VI. This allows the possibility of substituting
VR undetectably. (A full mix and decryption of VE records will detect the
anomaly—it just won’t be clear what caused the problem, or which result is
correct. See Section 5 for a longer discussion.)

It is preferable to ask the voter to send one bit in the paper envelope, and a
separate bit electronically (via the same machine that they use for vote printing).
The checking of VI against VR or VE could then be chosen by taking the XOR
of that voter’s two bits. The aim would be to prevent the machine from learning
the “paper” bit (and hence manipulating the electronic bit and the encrypted
records), and prevent anyone who intercepted the paper record from knowing
the electronic bit (and manipulating the paper bit and paper record).

Voters could access their VE records and verify that the correct links had been
opened. This reduces the trust assumptions on the observers to not knowing the
electronic bit in advance, and not manipulating the paper records afterwards.

The Observers or Electoral Authorities Jointly, Using Jointly Gen-
erated Data and Data from the Vote. We could do a more traditional
distributed randomness generation, either using cryptographic joint coin-tossing
or the sort of machine used in lotto. In this case we’re assuming that at least
one observer at the receiving end honestly inputs some randomness, and there’s
a commonly available PRNG to expand the seed into a string of random bits.2

This could be applied to ballots in some predetermined order, or combined with
some randomness generated from the ballot itself. There are two options:

– ballot order: The ballot order would be fixed in advance, or drawn at
random. The seed would be used to generate a pseudorandom string which
was applied to each ballot choice in turn.

– ballot contents: The bit would be (part of) the output of a hash of both
the seed and some data on the ballot. One possibility is to use only data

2 One concrete possibility is to use Stark’s tools for generating randomness for risk-
limiting audits, available at
http://www.stat.berkeley.edu/~stark/Java/Html/ballotPollTools.htm

http://www.stat.berkeley.edu/~stark/Java/Html/ballotPollTools.htm
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from VE, in which case anyone can use the data on the Bulletin Board to
check that the correct link has been opened for each vote.

This reduces the trust assumptions on the observers to not arranging the
envelopes with knowledge of their contents, and not manipulating the paper
records afterwards.

Comparison of Approaches to Random Bit Selection. One way to com-
pare the proposals is to think about an attacker with unsupervised access to a
ballot at different times. Our attacker wants to substitute VR.

– If the attacker has the ballot before the envelope has arrived at the vote
receiving location, and before the seed has been generated, then (with either
method) the attack has at least a 1/2 chance of being detected.

– If the attacker has the ballot after the seed has been generated, and before it
arrives at the vote receiving location (or before it’s been properly accepted
into a secure storage area), then with the “ballot contents” scheme the at-
tacker knows which half of the ballots can be safely manipulated; with the
“ballot order” scheme the attacker also has to arrange for the ballot order
to be manipulated.

– If the attacker has the ballot before the seed has been generated, then with
the “ballot contents” scheme the attack will still be detected with probability
1/2. With the “ballot order” scheme, the attacker will (still) need to collude
with someone who manipulates the ballot order.

– An attack on the scheme where the voter chooses two bits has at least a 1/2
chance of being detected, assuming that the electronically-sent bit is secret
and was randomly generated. (But this is possibly a too-strong assumption
given that people are not good at choosing random values or keeping secrets.)

The crucial point with the keyed scheme is not to generate the seed until all
the ballots are in, past the point where they’re subject to manipulation. One
option is to generate a new seed every day.

4 Privacy

Since voters mark their ballots electronically, there is no defence against eaves-
droppers or malware such as keyloggers resident on the voter’s computer system.
The system otherwise provides reasonable (though not perfect) privacy but is
not receipt-free. (We could encrypt the signature and the voter’s ID so that only
the electoral authority could identify whose it was. This would mitigate eaves-
dropping on the snail mail and not otherwise affect the protocol, except that it
would require an additional decryption step when the vote arrives.)

When the envelopes are opened, all of the vote and identification data are
present together. At the time the signature is verified electronically, the vote
information is not supposed to be available to the electronic system. When the
human-readable paper vote is exposed, the observers are not supposed to learn
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the identity of the signature that is being verified. Both of these need to be
enforced by procedural mechanisms as the envelopes are being opened and the
pieces of paper stapled together. Similarly, the proper shuffling of each of the
four piles of paper is necessary for breaking the links between corresponding
elements.

Voters are obviously supposed to erase VI and its associated
randomisation/re-encryption factors. If they remember this data then they can
prove how they voted. This is why the protocol is not receipt-free.

5 Verifiability

Cast-as-intended verifiability is achieved very straightforwardly by letting each
voter print a human-readable vote VR and check it before placing it in the
envelope. Universally verifiable tallying is achieved by publishing the paper votes
in cleartext, so they can be tallied directly. Voters check that their electronic
records have been properly received by looking up VE on the Bulletin Board.

Counted-as-cast verifiability consists of checking that VE matches VR. This
is done by allowing observers to choose randomly whether to get a proof of VI
matching VE or VR. Of course the quality of this assurance depends on the
randomness. If the two options are chosen randomly and independently then
the probability of successfully manipulating votes decreases exponentially with
the number of manipulations. We have described two different proposals which
give evidence of proper random generation to different sets of observers. One
gives each individual voter control over their own random bit selection; the
second gives a group of observers evidence about the proper bit selection of the
collection of votes.

This system could be have been designed as two independent partially-
verifiable systems: a simple paper system of electronic ballot delivery and
(human-readable) paper returns, plus a (non-human-readable) computerised sys-
tem in which the voter can use cryptography to verify proper inclusion and tal-
lying, but not that their vote was cast as they intended. We could have simply
compared the paper count to the cryptographically verifiable electronic tally
and declared success if they matched. Numerous cryptographic schemes exist
that are truly universally verifiable (e.g. [CGS97], [SK95]), and ensure that the
probability of a single undetectable vote substitution by the authorities would
be exponentially small. However, there is no cast-as-intended verification: if the
electronic tally differed from the paper records, it would not be clear whether
the paper record had been manipulated, or a malicious voting computer had
sent the wrong vote.

The problem, of course, is that in any practical election they’d be unlikely
to match perfectly, and it would be impossible to understand what had gone
wrong. This would raise unanswerable questions about which tally to accept—
the answer would depend on a guess about what had caused the inconsistency.
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The auditing step suggested here, in which each ballot is checked for con-
sistency between its encrypted and human-readable versions, ensures that the
paper and electronic counts are very unlikely to differ by much. This should
obviate the need to decide whether it’s the paper count or the electronic count
that’s the “true” count.

There is still a firm assumption about proper care of the physical paper evi-
dence, particularly the half that’s not cryptographically linked to VI. This seems
unavoidable with a simple VVPAT.

Although the scheme defends against an attacker who controls either the
voting device or the postal channel, it does not defend against colluding attackers
who control both. The malicious device could print a human-readable record that
matches the voter’s intention, but encrypted electronic records for a different
choice, then the attacker could switch the human-readable record in the mail.

6 Other Variants and Discussion

It would be possible to ask voters to send VE electronically to the electoral
authorities (as well as the printed version). This increases the complexity, but
also has the benefit that the count could commence much sooner. It could be
possible to mix and tally electronically “optimistically,” meaning that the elec-
tronic record would be used, but the paper records would subject to audit in
close races, or kept in case of a dispute.

One important practical complication is that some electronically delivered
votes will not subsequently appear in paper form, due to failure of the mail.
It’s unclear what to do in this situation, but the simplest defensible thing is
not to count them. (The alternative is to count them anyway, but then there is
no cast-as-intended verifiability.) Hence the authorities must at least open each
envelope and check which votes have arrived.

Another design direction worth investigating is to attempt to achieve everlast-
ing privacy [MN10] by using perfectly hiding commitments rather than encryp-
tions of VI and VE. This would mean that integrity depended on a computational
assumption (that a computationally binding commitment could not be opened
in more than one way), but this could be a reasonable tradeoff, especially since
integrity depends on distributed randomness generation and associated proce-
dures here anyway. It would require a way of either adapting or omitting the
electronic tallying step.

7 Conclusion

This system makes strong, but observable procedural assumptions for both ver-
ifiability and privacy, but almost all parts of the process are individually or
universally verifiable. This represents a reasonable tradeoff among the conflict-
ing requirements of remote voting.
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(Transcript of Discussion)
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[Uninterrupted explanation of the paper, omitted.]
Conclusion: So the argument is supposed to be that this process of randomly

choosing one link or the other is supposed to give you confidence that the set
of pieces of paper on the far left-hand side that the voter has actually looked
at matches the set of encrypted things on the right-hand side that the voter
has signed with their public key. But you didn’t actually get to learn for any
individual vote which signature matches which plaintext.

Michael Roe: So the human-readable one isn’t identifiable as to which vote
it is?

Reply: Correct. It’s just a completely ordinary vote. In Australia, this is
an ordinary piece of paper with a vote on it and without a unique ID. More
questions? The obvious question is, what’s the process for choosing this random
bit in a way that makes anybody believe that this process is being done correctly?
Because clearly if you can manipulate the bit-choosing process, then you can
also manipulate the vote, one way or another, even without being able to forge
signatures.

There are some simple ways to choose the random bit. You could throw some
dice at the receiving point, you could use one those random beacons from astro-
nomical noise or something, and assume that it’s more expensive to manipulate,
to pay off the people at the telescope, than it is to manipulate the election in
other ways. Or a more complicated, but I think more credible, way of choosing
the random bit, goes like this: Everybody agrees before voting on a keyed hash
function, but you don’t determine the key until after the votes have come in.
Once voting has ended and you’ve got an ordered list of votes sitting in the room
you’re using to count the votes, let’s assume that there’s some set of observers
who are present, maybe party scrutineers, or election observers, or whatever,
who can join in some distributed process for generating a key together, which
could be a fancy crypto process, or possibly could be something more simple
involving envelopes and people writing numbers on it, or filling out lotto tickets
or something, depending on whether your group of observers is sophisticated
enough to accept the crypto protocol. And then for each ballot we’re going to
take the keyed hash, and take some kind of data from the ballot, and combine
them together to get one bit which says which side of that table gets opened.
And so then the argument is supposed to be that anybody who might have tried
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to manipulate the votes isn’t going to be able to predict which side gets opened,
and therefore is going to get caught with 50-50 probability.1

In summary, nobody really knows how to do usable, verifiable remote voting,
and anyone who says differently is selling something. This proposal gives a rea-
sonable combination of security properties. It’s not strictly end-to-end verifiable,
but the bit that isn’t publicly verifiable is verifiable because the coin-tossing step
is verifiable among a group of people who are standing around in a room. And
the great virtue of it is that it has a very simple cast-as-intended step that really
could be used in practice by ordinary voters, even using very complicated voting
systems. Questions?

Michael Roe: So what protects the voter against the voting authority open-
ing all of them and then working out where they voted?

Reply: So, yes, that’s a good question. Whenever you’ve got a person attached
to an encrypted representation of the vote, there’s always going to be a possibility
that all the people who can decrypt that vote will get together and figure out what
it says. So I guess there are two different ways that a person’s vote might be ex-
posed in this system. One is what you said, one is that at the point where all their
pieces of paper are in the same envelope, somebody could just open the envelope
and carefully look through all the pieces of paper and identify whose signature it
is. And the other is that whoever holds the key that their vote was encrypted with
before it was signed could use that. You would usually distribute that key among
a set of people, but that set of people could maliciously get together and decrypt
a particular individual’s vote if they wanted to.

So when I wrote the proposal here I made a lot of the “what’s happening on the
other channel” theme, and actually when I first wrote it the thing that struck me
as being nice about the paper channel was the fact that it’s evident to everybody
exactly what they sent on it. So the big advantage of the paper channel is that you
don’t have to do anything clever to see what information you sent on a piece of
paper. But it strikes me that the other thing that is really nice about the pieces of
paper, that wouldn’t be so nice about sending that equivalent data electronically,
is that once you’ve opened the envelope and split the pieces of paper apart they’re
irrevocably split. If you had that all coming in as electronic data you’d really have
to work hard to make sure that you completely deleted all of the possible places
where that data might have been copied by anybody. But in the paper case you’ve
only got one copy of it and so you can just put it in different piles.

Ross Anderson: It’s not that simple because, if you have got two halves of
a piece of paper you can join them, if you’ve got two pieces of paper from the
same pack then there’s going to be forensic stuff, so you have to have a procedure
surrounding the eventual destruction of the paper. What about the procedures
surrounding the mechanism whereby the user’s public signature verification key
gets shared between the user and the authority? Because of course the verifica-
tion key need not be public in the sense that it’s posted on the front page of
The Times.

1 The updated version of the paper includes more detail and some new techniques for
performing this random selection.
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Reply: Right, that’s a good question, and that’s out of scope for this work,
but you’re right, it’s a really important question in practice.

Ross Anderson: That’s perhaps the missing link in a system like this because
if you are going to enrol people in a professional society, you presumably have
their email addresses, but if you’re enrolling them for a national election there
will be some mechanism whereby people get a piece of paper in the letterbox,
or whatever.

Reply: They have to register and do something.
Ross Anderson: And there’s then a protocol whereby they run an app which

generates a key, and they interact with the website, and you know, that website
could be under the control of a different authority. The end-to-end design, in
other words, would have to take a view of the likelihood of attackers compromis-
ing a system which consisted of the registration mechanism, and also the voting
system, and also the mechanism for ultimately destroying the papers after the
losing candidate has bought the election.

Reply: That was three different things, so let me try and go through them
one at a time. So the registration phase, you’re absolutely right, the registration
phase for this kind of thing is by far the most vulnerable point of such a system.
So in some ways it’s a bit unfair to. . .

Ross Anderson: And in the UK the very biggest organised attempts to mess
with elections have been in Northern Ireland where each of the factions wants
to register many more voters of their type than actually exist.

Reply: Yes, it’s true. So, I mean, the argument that I’ve been trying to
run is that, at least in principle, if you get people to register once, and then
continue, and then use their registration credentials over and over again, it’s
still completely insecure at the point that they actually register, but at least
the capacity for, re-manipulating every time a new election is run is a little bit
harder. I’m not saying that that solves the problem, but I’m saying that I don’t
know how to solve the problem really.

Ross Anderson: What are reasonable assumptions around the challenge of
that sort of thing? In domestic elections in the UK you simply go and state
your name to the Returning Officer, and if it turns out that somebody already
voted in your name they register a protest, which will be investigated only if the
margin between the winner and the losers is so low that it matters.

Reply: We have similar secure procedures.
Ross Anderson: All these other surrounding procedures tend to be ignored

by designers of e-voting systems, but putting them in a design as well could
make the whole problem an awful lot more interesting and tractable.

Reply: I don’t understand how you can establish that kind of authentication
mechanism within the design.

Ross Anderson: There’s an assumption in the UK that the voter roll is ver-
ifiable because in principle at least it’s published. There are some privacy ifs and
buts around that, you could be on the roll that isn’t really public, the roll that’s
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only made available to the political parties, but maybe there is challengability
in that if one party registers a whole lot of dead people to vote for it, the other
party can pick that up and challenge it.

Reply: So that’s true, but it’s still hard to make sure that you’ve attached
a particular public key to a particular individual who is eligible to vote. Com-
pulsory voting in Australia actually makes it hard, because there’s a strong
expectation that everybody votes, but if anything there are people who would
pay somebody else to save them the trouble. So it’s very hard to say with any
confidence that anybody would bother to protect their voting credentials, or
prevent somebody else from registering on their behalf.

Ross Anderson: But this is then an assumption that perhaps no-one in this
community has considered, that people might wish not to vote, and to find a
cheat that will enable them to get out of the duty to vote.

Reply: I don’t know how to solve that one either.
Sandy Clark: Or better yet sell their vote.
Reply: Yes, right, I guess the vote-selling thing assumes that. . .
Bruce Christianson: But I guess you’re trying to make it so that it’s no

harder or easier than the manual voting-in-person protocol.
Reply: Yes, exactly.
Daniel Thomas: But this way, you could give someone an app, a sort of

steal-my-vote app, you give him some money and then it takes the credentials
away, and in your scheme that would be easier than getting someone to turn up
in person.

Reply: Yes, very true.
Ross Anderson: Well how this is typically done in Britain is that the politi-

cian who’s buying or harassing your vote, comes and sits in your front room and
helps you fill out the postal ballot form.

Reply: Right, which is very labour intensive.
Ross Anderson: But certain parties have a large amount of labour, they

have lots of supporters, people who want to be councillors, and so on.
Peter Ryan: But they also have lots of people who could go along perhaps

impersonating you, in person.
Bruce Christianson: There’s a protocol for the New Zealand postal votes

where you print off two papers, one of which is the voting paper that’s the same
for everyone, one of which is the paper that identifies you as the person that
casts that particular vote. And then you put your vote in an envelope and you
put that with the other piece of paper in another envelope. And the obvious
protocol is followed with the chain of officers at the receiving end. It’s similar in
some ways to what you’re proposing.

Reply: So do you have any evidence that nobody changed your vote in tran-
sit?
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Bruce Christianson: Only by the protocol for sealing envelopes, and sign
and pass them back, chain of custody. So that you’re relying on the Post Office
to provide you with a chain of custody.

Reply: That’s interesting, I’ll have to look that up. And you need a special
envelope, like you need to fit one envelope into the other envelope.

Bruce Christianson: You need to fold one envelope into the other.
Reply: I’ll have to find out about that. I think in Victoria we’ve done some-

thing similar, but I think they decided that it was really clever to get the voter
to print out the special envelope, and then carefully cut it out and fold it up.
The result was it wasn’t a very popular scheme.
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1 Introduction

In a world where a high percentage of citizens carry a smart phone or iPod
and most households have one or more computers, it is difficult to understand
why we have not been able to leverage powerful personal computing devices to
allow citizens to cast their ballots electronically. The argument turns on security
weakness in all kinds of network computing and on theoretical limits on the
ability to protect critical applications.

Though there are several voting system vendors that provideRemote Electronic
Voting (REV) services, the SERVE Report [1] and its subsequently published ver-
sion [2] continue to define REV security discussions. One of the most serious se-
curity concerns with REV is the danger of malware on the voter’s client machine.
Malware can easily be designed to prevent the voter from successfully voting, or
to violate the voter’s privacy by sending a copy of the ballot to a third party, or
even to surreptitiously modify the voter’s choices before the ballot is encrypted for
transmission so that the wrong vote is transmitted and counted without anyone
knowing. While we have no solution to the first two kinds of malware threats, in
this paper we present an all-electronic protocol that greatly reduces the likelihood
that malware can modify a ballot without detection. To date, we have not seen
an Internet voting solution proposed for real elections whose design effectively ad-
dresses ballot integrity on a computer that is malware infected.

In this paper, we propose a verifiable, paperless Remote Electronic Voting
protocol that leverages independent computations, one for voting and one for
verification, to prevent acceptance of any ballot on which malware on the vot-
ing client has altered the voter’s selections. Our solution reduces the likelihood
that malicious software on the voting client or assistive device can alter REV
voter selections. While our approach requires device properties that may not be
widespread in the general population, we contend that these protocols are well
suited for use by some constituencies, such as the U.S. military members and
federal service employees serving overseas.

The rest of this paper is organized as follows. In the next section, we give an
overview of Internet Voting architectures and follow with a description of our
protocols, the prerequisites of the voting environment, and provide details of the
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system’s properties, specifically including things that the protocol does not do.
We close with summary and concluding remarks.

2 Internet Voting Architectures

Voting integrity is commonly considered in terms of the voter’s ability to have
justified confidence in three serial steps, i.e., that their selections are:

a. Cast as Intended
b. Recorded as Cast
c. Tallied as Recorded

These steps form the core of the five Voter Integrity Phases (VI Phases) shown
in Table 1

Table 1. Voter Integrity Phases

Cast as 
Intended (CaI)

Tallied as 
Intended 
(TaI)

Recorded as 
Intended (RaI)

Recorded as 
Cast (RaC)

Tallied as CastTallied as Cast 
(TaC)

Tallied as 
Recorded (TAR)

“Cast as Intended” (CaI) involves ensuring that the voter is able to find their
preferred candidates/choices on the ballot and that they are able to unambigu-
ously indicate their selections. This is usually managed through user interface
activities such as ballot design, analysis and testing for paper ballots and elec-
tronic ballot engineering for electronic voting devices.

The latter two self-descriptive VI Phases are beyond the capabilities of current
election practice. That is, with existing voting technology (e.g. Precinct Count
Optical Scan and touch screen Direct Recording Electronic devices) the voter
has a limited ability to prove that their ballot is either recorded as cast or that
it is properly included in the final tally.

Cryptographic voting systems leverage mathematical formula in order to at-
tempt to provide voters the full spectrum “Tallied as Intended” (TaI) proof.
Computer scientists have been developing cryptographic voting protocols that
can have provable security and accuracy properties for years, e.g. [3–5]. The key
to many cryptographic voting systems is that they leverage a voter feedback
channel. That is, at the time of voting, each voter receives, or generates, some-
thing that they can use after results are reported to ensure the accuracy of the
voting process. Of course this information is most useful if it also allows them
to make corrections if they detect an error or malicious entry.
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The following three phrases are often used synonymously: Cryptographic vot-
ing systems, End-to-End voting systems, and Universally Verifiable voting sys-
tems. The latter two are subsets of the former; that is, end-to-end voting systems
and universally verifiable voting systems are distinct subsets of cryptographic
voting systems. Differences in the two include the number of voters, the type of
feedback channel, and the VI Phase that is involved.

Universal Verification (UV) provides strong voter integrity, giving the voter
procedures that can provide strong confidence that ALL published votes were
legally cast and accurately counted. Voting systems that provide UV [4, 6] rely on
a public broadcast medium, e.g. a public bulletin board, to broadcast all the vot-
ing information necessary to confirm the election results. Usually, that includes
the voter rolls and some form of each voted ballot that is cryptographically
manipulated to both ensure election integrity and to preserve voter anonymity.

End to End (E2E) voting systems provide voters information that is sufficient
to allow them to have a high level of confidence that their own votes are Recorded
as Intended (RaI)1. This is a weaker standard because voters in E2E systems
are not necessarily able to verify all ballots because their proof of inclusion is at
the recording, rather than tallying, level.

The E2E feedback channel may be in the form of a text message, e-mail, or
some other type of serial communication between the elections office and the
voter. Like UV systems, E2E voter feedback may also take the form of a public
broadcast medium, such as posting on a bulletin board or webpage, but the
broadcast is not necessary to meet the E2E feedback requirement.

Voting client malware is the one of the greatest threats to Internet elections,
so being able to ensure that the voting client is not infected can dramatically
increase the security of an Internet voting system that leverages remote attesta-
tion. One approach to improving confidence in networked applications systems
is for nodes to rigorously assess one another to determine whether or not either
node is malware infected, this is a technique known as remote attestation. There
is substantial research in literature that details the approaches and technolo-
gies that can enable remote attestation with a high level of competence [7–10].
Once these solutions are fully mature, voting applications may leverage remote
attestation to mitigate voting client malware risks.

3 Voting Protocols with Independent Computations

We propose to protect integrity for Remote Electronic Voting by requiring voters
to create a signed, electronic version of their ballot that is independent of the
voting client. The security of this approach turns on the voter’s ability to safely
enter the signed ballot into the voting client.

If the voter can generate the signed ballot without the help of a computer,
then malware alterations can always be detected. Unfortunately generating a
digital signature is a complicated operation that requires automated assistance.

1 Many equate E2E systems with those that offer universal verification. In this paper
E2E has a slightly different meaning, reflecting transmission from the voter to the
elections official but without universal verification.
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Two of our protocols rely on the voter using two cooperating devices [11, 12].
In our case, the devices are a voting client and an assistive device to compute
digital signatures. If the voting client and assistive device are strongly indepen-
dent, then a voting client malware attack must independently infect both the
voting client and the assistive device in order to undetectably alter a voters
ballot, making the attack much more difficult.

3.1 Preliminaries

Voters must first generate a public/private key pair and register the public key
with a Certification Authority from which election officials can retrieve a cer-
tificate for the voter’s public key. For the protocols that use two computing
devices, the voter must have a smart assistive device with a camera/scanner,
proper computational ability, and an appropriate voting application.

The assistive device holds the voter’s private key which must not be accessible
to the voting client. The primary computation on the assistive device during
voting is to decode a barcode and to compute a hash and signature.

3.2 Device and Malware Independence

The phrase “device independence” can have many connotations. We are con-
cerned about device relationships relative to malware infection, as given in the
following definition.

Definition #1. Two electronic computing devices are malware independent if
and only if, in the threat environment they are both embedded in, the prob-
ability that the two devices will be infected by a pair of cooperating malware
modules at the time of voting is the product of the probabilities that either
of them will be infected by one of the malware modules separately.

The significance of this independence property is that the protocols that we
describe can only be defeated when both devices are infected by a pair of malware
modules that were designed to cooperate to subvert the voting process. If, for
example, there is a 10−2 probability that one device is infected with one of a pair
of malware modules that can undermine our protocol and a 10−3 probability that
the other device is infected with another malware module that can cooperate
with the first one, then we want to be able to say that there is only a 10−5

probability that they are both infected with a cooperating malware pair, and if
that is true, then the devices are malware independent.

Of course there are circumstances that can undermine malware independence.
If the devices communicate directly with each other before the election and one
of them is infected, the malware might be able to pass a cooperating malware
infection to the other device, in which case the probability that both are infected
can be almost as high as the probability that the first one is infected. If the two
devices communicate indirectly with each other, or both communicate with the
same third device or server, e.g. by visiting the same web page, they are also
less malware independent.
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Other factors affecting malware independence include the hardware and soft-
ware architectures of the two devices. Sharing the same processor, motherboard,
or disk drive model reduces independence, as does running the same operating
system, device drivers, or other software because it makes it easier for the same
malware module [with similar proliferation strategies] to infect both machines.

It is common for smart phone users to connect their phone directly to a laptop,
e.g. to synchronize files or download mobile applications. Some smart phones
tether to the laptop to provide remote connectivity. Devices that are directly
connected dramatically reduce malware independence. Any connection, wired or
wireless, can allow a sophisticated intruder to install cooperating malware on the
connected devices. So, in order to maintain the strongest malware independence,
one of the two devices would never be network connected. In our protocols, only
one message is sent to the assistive device and this as its last protocol action.
This minimizes the amount of connectivity, and optimizes the devices’ malware
independence.

3.3 Digitizing the Ballot

Our protocols leverage properties of a ballot’s binary representation and there
are many ways to digitize a ballot. For our purposes, it is beneficial to have a
representation that minimizes the ballot size and that the voters can compute
themselves.

In the sample ballot shown in Figure 1, the fourth row represents a voter’s
selections reflecting the traditional ‘x’ in the box. The fifth row is the translation
of the votes into their binary representation. Of course binary representation is
not intuitive, or convenient, for voters. By partitioning the digital ballot into six-
bit groups, we can translate the selections into an alphanumeric form a base-64
representation using digits 1-0, letters a-z and A-Z, and special symbols ‘@’ and
‘*’ to reflect the base-64 values. In Figure 1, the character string “kAo” represents
selection of Hunt, Arthur, Snow, Went, Beck, and Good and no others.

Doran

Hunt

Katz

Arthur

Ford

M
ack

Snow

Clay

Jeff

W
ent

Rick

Trip

Sm
ith

Beck

Good

Farm
er

Clark

Davis

x x x x x x
0 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0

k A o

Federal Contests State Contests

President

U
S
Senator

U
S
Congress

State
Senator

State
Representative

State
Attorney

General

Fig. 1. Sample Digital Ballot
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000000 0 001000 8 010000 g 011000 o 100000 w 101000 E 110000 M 111000 U

000001 1 001001 9 010001 h 011001 p 100001 x 101001 F 110001 N 111001 V

000010 2 001010 a 010010 i 011010 q 100010 y 101010 G 110010 O 111010 W

000011 3 001011 b 010011 j 011011 r 100011 z 101011 H 110011 P 111011 X

000100 4 001100 c 010100 k 011100 s 100100 A 101100 I 110100 Q 111100 Y

000101 5 001101 d 010101 l 011101 t 100101 B 101101 J 110101 R 111101 Z

000110 6 001110 e 010110 m 011110 u 100110 C 101110 K 110110 S 111110 *

000111 7 001111 f 010111 n 011111 v 100111 D 101111 L 110111 T 111111 @

Fig. 2. Binary to Base 64 Conversion Table

We do not suggest this as a regular, general election voting approach. However,
we argue that it is not unreasonable for certain constituencies, such as the U.S.
military and federal service employees serving overseas, to be able to enter their
votes using a ballot constructed as shown in Figure 1 and a conversion table as
shown in Figure 2 to cast their ballot in base-64 format.

3.4 Quick Response (QR) Code Technology

In simplified terms, a QR Code TM is a high capacity barcode definition2. QR
codes store data in images that can be captured via a camera or scanner and
translated with image-interpreting software.

Reading a QR Code from the screen of one device through the camera of
another device offers several positive security properties. The communication is
short range, with no repeaters, amplifiers, switches, routers, or other devices,
and no software required between sender and receiver. Unlike electronic com-
munications media, the “sender” is passive; it is the “receiver” that performs
the active role. No network is necessary, no MAC address, IP address, phone
number, or Bluetooth addresses are needed. The receiving device need not be
discoverable or detectable other than to the intended sender.

4 Voting-Client-Malware Safe Voting Protocols

4.1 A Two-Pass Protocol

The de facto standard remote electronic voting configuration is for the voting
client to reside on a classic networked workstation, such as a desktop or laptop
computer, which provides a full suite of user interface tools. Most importantly,
the workstation model provides a full screen display to allow the voter to effec-
tively understand their options and accurately capture their intended selections.
We refer to this workstation as the “voting client”.

2 http://www.iso.org/iso/iso catalogue/

catalogue ics/catalogue detail ics.htm?csnumber=30789

http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=30789
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=30789
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For our protocols, the voter selects a second, independent device as described
above, to generate a computation that cannot be spoofed by the voting client.
An obvious selection would be for the voter to use their smartphone or personal
digital assistant for that purpose. We call this the assistive device.

Once the voting client and assistive device software and the other prerequi-
sites are met, the voter attains a blank electronic ballot. The blank ballot may
be delivered via electronic network or out of band as long as the ballot is de-
livered safely and does not compromise the cooperative voting devices malware
independence.

With the proper blank ballot loaded the voting protocol proceeds as follows:

1. The voter enters his or her selections on the voting client.
2. The voting client translates those selections into a digital ballot representa-

tion and presents it on its display screen as a QR code to the voter.
3. The voter scans the QR code, containing the voted ballot, with the assistive

device.
4. The assistive device presents the voter’s choices on its display for verification.
5. On voter approval, the assistive device generates a hash of the ballot repre-

sentation, signed with the voter’s private key.
6. The voter scans the signed hash into the voting client via QR code generated

by the assistive device.
7. The voting client returns the signed hash along with the voter’s ballot to the

voting server.
8. The voting server calculates the hash of the ballot and compares it to the

hash that it received.
9. If the hashes match, the voting server sends a success message to the voter

on both devices, confirming his or her selections.
10. If the hashes do not match, the voting server refuses the ballot and sends a

failure message notifying the voter of the problem.

The concept is straightforward, with the voter entering their selections into
the voting client, transferring them to the assistive device via QR code signing
the ballot on the assistive device, and then transferring the signature back to
the voting client. The voting client then submits the digital envelope, containing
ballot and signature, to the voting server where the signature is verified. When
the votes are transferred between the assistive devices, they are presented to the
voter for verification.

This protocol defends against the following three possible malware attacks:

a. Ballot manipulation on an infected voting client. Since the voting client does
not have access to the voters private key, the voting server will detect any
ballot manipulation through malware on the voting client, reject the ballot,
and notify the voter.

b. Ballot manipulation on an infected assistive device. The voting client submits
the original ballot that the voter entered into the voting client. The assistive
device has no access to, thus cannot manipulate, the ballot. The most that
a malware-infected assistive device can do is to generate a false signature,
which would be detected by the voting server and reported to the voter.
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c. Denial of Service. The voter can detect a denial of service attack by either the
voting client or the assistive device by noticing that the success notice does
not arrive on both devices (specifically, it will not arrive on the uninfected
device).

4.2 A One-Pass Protocol

In electronic communications protocols, every message transmission introduces
vulnerability. If voters are willing and capable of making their selections on their
assistive device, they may reduce the number of communications between the
cooperative voting devices using the following steps.

1. The voter enters his or her selections on their assistive device.
2. The assistive device translates the voter’s selections into a binary ballot

representation, generates a hash of the ballot signed with the voter’s private
key, and presents it on its display screen as a QR code to the voter.

3. The voter scans the QR code containing the digital envelope containing the
voted ballot and signature into the voting client, which decodes the ballot
and presents the ballot choices to the voter.

4. The voter verifies his or her selections on the voting client and authorizes the
voting client to return the signed hash with the voter’s ballot to the voting
server.

5. The voting server generates the same hash, decrypts the voter-provided hash
using the voter’s public key, and compares the two.

6. If the hashes match, the voting server sends a success message to the voter
on both devices, confirming his or her selections.

7. If the hashes do not match, the voting server refuses the ballot and sends a
failure message to the voter, notifying them of the problem.

The security properties of this protocol are similar to the previous protocol,
except that in this protocol, there is only one electronic message between the
cooperative voting devices.

4.3 Independent Computation with No Device-to-Device
Communication

Two vulnerable components of the protocol given in Section 4.2 are: (1) The im-
age processing software in the voting client (as described above in Section 3.4)
and (2) The scanning device itself, which contains sensitive components. In ad-
dition, the PC-connected scanners that are needed to collect barcode messages
at the voting client are in declining demand.

In the following protocol, the voter casts their ballot on the assistive device,
but there is no “transmission” to the voting client. Rather, the voter enters
an alphanumeric string that represents their encrypted ballot directly into the
voting client.

An additional prerequisite to this protocol is for the voting client to hold a
valid public key certificate for the voter.
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1. The voter enters his or her selections on their assistive device.
2. The assistive device:

a. Translates the voter selections into a binary ballot representation.
b. Generates a hash of the binary ballot signed with the voter’s private key.
c. Appends the signed hash to the binary ballot to form the digital vote

envelope.
d. Translates the digital vote envelope into a base-64 format.
e. Presents the vote envelope on its screen to the voter as a base-64, al-

phanumeric string.

3. The voter enters the base-64 digital vote envelope into the voting client via
the voting client keypad.

4. The voting client verifies the hash using the voter’s Public Key and displays
the voter’s selections on its display screen.

5. The voter verifies their selections and authorizes the voting client to deliver
the digital vote envelope to the voting server.

6. The voting server generates the same hash, decrypts the voter-provided hash
using the voter’s public key, and compares the two.

7. If the hashes match, the voting server sends a success message to the voter
on both devices, confirming their selections.

8. If the hashes do not match, the voting server refuses the ballot and sends a
failure message to the voter, notifying them of the problem.

The security properties of this protocol are similar to the previous protocols;
however, in this protocol, there are no electronic messages between the cooper-
ative voting devices. The user enters their choices on the assistive device and
manually transfers the ballot and signature to the voting client, where the voter
verifies their votes.

5 Experimental Results

A team implemented the two-pass protocol in a system that included neces-
sary elements of the voting server, voting client, and assistive device [13]. The
project demonstrated the efficacy of the protocol that captured voter selections,
exercised hashing and public cryptography to protect ballot integrity, passive
communication capabilities to transfer data between the devices, and return
messaging to allow voter verification.

QR Code software is openly available and the system effectively encoded,
transferred, and delivered the ballots using QR Codes to communicate between
the voting client and the assistive device. The implemented system meets the
design functionality and demonstrated that the protocol is practical in prototype.

6 Security Review

We simplified these protocols to focus on the power of independent computations
to protect against voting client malware. We do not claim that these protocols
provide comprehensive security.



80 A. Yasinsac

In this section, we discuss our protocols security strengths and weaknesses. We
also describe the security properties that these protocols alone do not improve
over existing remote voting methods.

6.1 Voting Client Malware

The goal of these protocols is to protect the integrity of cast ballots against
voting client malware attacks. Independent computations in each protocol ac-
complish strengthened malware protection by isolating the voter’s private key
to protect it from compromise. In the second and third protocols the assistive
device application does not receive any data other than through the keypad.

Consider the probability that any arbitrary Voting Client ‘a’ (vca) is infected
with a specific Voting Malware version ‘b’ (vmb). If that probability is non-
absolute then:

0 ≤ P (vca, vmb) ≤ 1

This probability is difficult to assess, but is certainly dependent on the protec-
tive measures taken by the device and network administrators. If the probability
is low, it complicates the attacker’s job and reduces the possible impact that an
attacker could have

6.2 Computation Independence Attacks

As we noted above, in order for protocols 4.1 and 4.2 to conclusively prevent
malware attacks on the voting client, the two computers used to conduct compu-
tations must be independent. Network-based software applications offer oppor-
tunity for sophisticated intruders to corrupt different devices with cooperating
malware that could defeat our protocols. However, our protocol complicates the
attacker’s job in several ways.

First, the attacker must have cooperating malware versions that match the
voting client and the assistive device that the targeted voter uses. Second, if
the voting client and assistive devices are never connected, the attacker must
infect the two devices independently, in which case, using the notation above,
the Probability of a Successful Attack is:

PSA = P (vca, vmb) ∗ P (ada′, vmb′)

Where ada′ is the assistive device that matches voting client ‘a’ and vmb′ is
voting malware that can collaborate with vmb and is able to attack assistive
device b.

On the other hand, like any other data transfer protocol, barcodes offer an
avenue for intruders to introduce malware. That is, if there are software flaws in
the barcode interpreter, an intruder might be able to construct a barcode that
can inject malware into the interpreting device. Protocols 4.1 and 4.2 may be
susceptible to barcode malware attacks.
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6.3 Voting Server Malware

The protocols that we present are designed to prevent malware attacks on the
voting client, but they are not intended to prevent attacks that install malware
on the voting server. Our protection can ensure that the voter’s ballot is cast to
the voting client as intended and that an honest voting server can identify and
refuse to accept a manipulated ballot.

Our protocols provide only “Recorded as Intended”, not “Tallied as Intended”,
confidence. An infected voting server controls the interactions with the voter so
could interact inappropriately with the voter (i.e. provide the results as the voter
expects), but could tabulate maliciously without the voter being able to detect
the changes.

REV systems that utilize our protocols must implement other protections
against voting server malware attacks.

6.4 Cryptographic Key Protection Vulnerabilities

Like most schemes that depend on cryptography, key management is critical to
our protocol’s success. If the voter’s secret key is divulged to a malicious intruder,
that malicious intruder could masquerade as the voter.

6.5 Receipt-Freeness

Our protocols are receipt free-neutral. That is, none of the three protocols that
we present address the issue of receipt-freeness or coercion resistance [14]. Be-
cause the voter is unsupervised, similarly to vote-by-mail, voters could demon-
strate to a third party how they vote.

On the other hand, our protocols are simply designed for delivering verifiable
results from the voter to the voting server and are in no way inconsistent with
methods for preventing vote buying and voter coercion. So, coercion resistance
could be handled via other mechanisms, many of which are in the literature, see
e.g. [15–18].

6.6 Voter Privacy

Similar to vote-by-mail, our protocols do not protect voter privacy. The voting
application would need to incorporate standard network encryption to prevent
transmission eavesdropping and elections officials would need to incorporate rig-
orous application operation procedures to ensure that voter privacy is not com-
promised.

Additionally, if the voting client is infected with malware, that malware can
send a copy of the voted ballot, with voter identification, to a third party. Again,
receipt-freeness and coercion resistance techniques could mitigate this effect.



82 A. Yasinsac

6.7 Denial of Service

As we noted above, the protocols can detect denial of service through a feedback
loop. If notification is sent to both devices, neither can be used to independently
accomplish undetectable denial of service.

7 Conclusions and Future Work

Malware on the voting client is one of the most challenging problems to overcome
in remote electronic voting. Cryptographic voting protocols have attempted to
provide systems that can overcome malware attacks by allowing voters to verify
that their votes were Tallied as Intended independent of the voting platform.

Our approach provides Recorded as Intended confidence even in the face of
malware infection. We offer three voting protocols that leverage independent
computations to prevent acceptance of any ballot on which malware on the
voting client has altered the voter’s selections. These protocols are simple in
design and rely on voters using two independent devices to cast their ballot.

By leveraging malware independence we ensure that the difficulty of malware
infestation is factored across the two platforms. We also leverage the positive
security properties of barcode transmission to reduce the likelihood of malware
transfer between the voting devices and offer one protocol in which no electronic
communication between the devices is necessary.

Because of the properties of our protocols, specifically the properties of the
voting devices, this protocol may be best suited to military voters, where both
of the voting devices may be government issued and professionally maintained.

In order to move these protocols to the general voting public, it may be nec-
essary to incorporate a third voting device that is never network connected, but
that only communicates via keyboard and QR codes. This research is ongoing.

In this paper, we introduced the concepts of independent computations and
malware independence and leverage the positive security properties of QR
Codes TM for safe device-to-device communication. We propose three protocols
that reduce the prospective impact that a malware attack on either the voting
client or the assistive device can have.
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So this is a good follow-on to the previous papers. I’ve been working on electronic
voting for several years, and as a retired U.S. Marine, I voted absentee for 20
years, and having not known much about voting and the electoral process when
I was voting, when I began studying the electoral process I realized how many
times I sent my ballot in and it wasn’t counted, because, for example, in the
military when you make a mistake you cross it out with a pencil and you initial
it. Well when I did that on my ballot, that ballot went in the trashcan. Of course
I had no idea. So since I’ve been involved with information security for a while,
when I retired from the Marine Corps, I made this a focus of my research.

And I come at it from a perspective that’s slightly different from many of my
colleagues, and as a matter of full disclosure, my objective is to find a way for
military members to deliver a voted ballot electronically. My objective is not to
say, “is there possibly a way”; my objective is to find a way.

The notion here is pretty foundational. From a theoretical perspective, digital
verification is hard. The Halting Problem says that using one computer program
to verify another computer program is folly; you can’t do that for arbitrary
programs. That’s the theoretical result. More practically speaking we know that
it is hard because malware is pervasive, and in fact one of the hardest problems
with remote electronic voting is being able to verify that you are doing these
things with code that is unflawed.

There’s a notion out there now of software attestation that would be a great
thing to have for remote voting, and I’ve spent some time working on that too,
but that’s a little bit further down the road. Once you can be sure that the
software that’s running on that computer is the software that’s supposed to be
running there, that gives you a lot more flexibility to come up with protocols
that can make voting safe. Still, I well-understand the reasons why many of
my colleagues don’t believe it’s possible to vote remotely over electronic media
today. What I’m here to offer you is, what I think is a fundamental difference in
the ability to verify these ballots at the end and to make the argument that there
are practical voting systems out there today that have some of the properties
that could allow this to happen in a real election. So that’s the goal of this
paper today. I want to acknowledge several students, because they worked very
hard, and they worked mostly independent of me: Erin Pettis, Son Le, Naquita
Hunter, and Mengchu Lin. I gave them a copy of the paper, and their mentor,
Terri Gilbert, and they implemented it as their senior, capstone project.

B. Christianson et al. (Eds.): Security Protocols 2013, LNCS 8263, pp. 84–93, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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They put it together and they wrote a voting system that actually imple-
mented all of these concepts. It’s not been used in any kind of election, but
this is my fifth paper at the Security Protocols Workshop, so I know very well
that you all know that the devil is in the details. It’s awfully nice to have these
high level protocols that have all these properties that you can prove, but then
when you actually put them in the computer and in a machine, you know, it
just didn’t work out the way you thought it was going to work out. So that’s
a major contribution, from my perspective, that we have a system that actu-
ally runs, and it runs with handheld devices in the Android environment with
a laptop computer, and that we made these things work in the laboratory. So I
appreciate the work that they did, it gives me a little bit more confidence.

Now I want to back up just a minute and talk about this notion of universal
verifiability, end-to-end voting systems. This terminology is not really well un-
derstood, even by some that have been doing this for a long time. The notion
here regards the three steps in the middle that are the canonical steps in the
voting integrity process. Have you cast that ballot as is intended? Now I argue
that from a real perspective it’s almost impossible to measure, because the in-
tent of that voter is in that voter’s mind. It may be that a voter doesn’t have an
intent that you can even describe. Maybe they voted for candidate A because
they didn’t like candidate B, or because they liked candidate A’s name, or be-
cause candidate A was the first position on the ballot. We don’t know what the
voter’s intentions are, so the metric that I have used is, “is it voter verifiable”,
i.e. can the voter look at what they cast and in some way say, yes, that’s what I
want to vote. So when they take a second look, they get a chance to be able to
fix a mistake.

Now that’s a very weak form of Cast as Intended, but it’s probably, at least in
my opinion, about as good as you can do. Now the real point of this slide is the
difference between these two, “Recorded as Cast” and “Tallied as Recorded”.
The notion of Recorded as Cast is: I have some way to be able to determine
that the local elections official that I sent my ballot to actually received the
ballot in the form that I intended it to be delivered. Are all the selections on
the ballot that the local elections official has the same as those that I intended
for them to have? Now that is far better than the system that we have in place
today. The gold standard of the voting elections community, is a Precinct Count
Optical Scan system where you take your ballot, and you mark your ballot, put
it in an envelope (or not), and you feed it in to this machine that scans it right
there. Or maybe it scans it; maybe it’s actually a shredder. It may well be that
all those machines in some precincts really aren’t counting those ballots, they
may be shredding the ones that are received and dumping one that is in a bin
underneath that shredder into the counted pot, that could really well be what’s
happening in all of those precincts throughout the United States.

So we do not have “Recorded as Cast” confidence today. While we think we
have the gold standard in the United States, PCOS voting integrity system is
Cast as Intended. Now I argue here that getting down to Tallied as Intended,
or Tallied as Recorded and Tallied as Intended, is actually not an important
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distinction for us to make. It’s hard to really capture what it means for the
voter to be able to say, “I know my vote counted, because I can look at this
piece of paper and see my ballot up there on the bulletin board, so I know it was
counted”. No, if I see it on the bulletin board all I know is it was Recorded as
Intended. If I have some way to know that my ballot is on that bulletin board,
I know that the local elections official got my ballot.

In order to be able to say that it’s Tallied as Intended, I have to have some
mathematics behind it. There must be some kind of abstraction that connects
what I intended to be counted to the actual count at the end. So I can count all
those ballots that are up there, and then I know my vote is in that count. Well
in order for it to be Tallied as Intended I then have to know that all of those
other ballots are legal, right, and that no other ballots were counted in the final
count that was used to make this election. Well that’s a really difficult process
to do, it requires a whole lot of knowledge and understanding that most voters
aren’t able to get. And again, my argument is it doesn’t give that much value
to the electoral process and it provides a set of new attack vectors.

So the goal of the system that I’m presenting is to produce a Recorded As
Cast electronic voting system.

The paper introduces the concept of malware independence; it’s in the paper,
so I won’t go through this in detail. Malware independence is a property that
two devices have, for two devices to have cooperating malware, they had to have
been implemented independently. If the probability of putting malware A on
machine X is Y, then the probability of putting malware B on machine C is a
different probability, you have to multiply those together to get the probability
of getting both of them. Remember the goal of this definition is to describe the
complexity of being able to infect two independent devices. So if the voter uses
two independent devices to cast a ballot, for malware to be able to change that
vote without the voter being able to detect it, both of those devices would have
to be infected by cooperating malware.

If a voter casts their ballot using two cooperating devices, they want to be
sure they’re not both infected with cooperating malware. Let’s say a voter has
a cellphone and a laptop, which are the two devices that really probably fit this
bill. These devices are not malware independent if the voter plugs them together
because as soon as they connect, one device could infect the other. There are
other things that have an impact on whether two devices are independent or
not, and I think that’s the important point of this slide.

Another way that we try to reduce the likelihood that we’re going to share mal-
ware between devices is through passive communication. Vanessa talked about
using QR codes, but she didn’t mention that was the form of the ballots that she
took, the intermediate form, and then the encrypted form of her ballots, were
essentially in QR codes. But the beauty of QR codes in this process is that it’s
passive communication; there is no IP address, there are no repeaters, you can’t
sit back and listen to this stuff at the back of the room, you can’t have devices
that are able to intercept the communications between a QR code and the scan-
ner that reads the QR code. That reduces the attack surface because it doesn’t
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have to be on a network. If it’s on a network you can attack it from anywhere in
the world. QR codes are local communication; they’re passive communication.
No electrons are exchanged and it reduces the likelihood that it will be able to
inject malware into the system again.

QR codes are not perfect. One limitation is length. This slide quickly shows
that QR code is 15 characters captured, you’ve got 185 characters here. Ob-
viously if you’ve got a large ballot you’re not going to be able to make those
ballot representations, and there’s some information in the paper about how you
create digital representations of ballots that are optimized too, but it’s not the
paper’s focus.

You could use multiple QR codes per ballot if you needed to, but in our
prototype we wanted to get it down to one and they were able to do that with
just a reasonably complex looking QR code to be able to make this work.

So the protocol overview for these independent computations, and essentially
these are independent channels, which fits the theme; I know James will be proud,
as there are independent channels, multiple channels working in this protocol.
The notion is this: the voter gets their electronic ballot on the voting client.
They make their selections, and transmit that to their assistive device through
QR code. The assistive device then generates a ballot signature, a signed hash,
whatever that may be, whichever works best, and the assistive device will then
be the confirmation agent. So the voter can mark their ballot on their laptop,
then when they receive it on their assistive device they can look at it right
there on the assistive device; that’s the voter verification. You have a second
voter verification opportunity on the laptop, but again, if there’s malware on
the laptop, the laptop can show you the same ballot at the same time.

This is what the protocol looks like. Again all of this is right out of the paper
so I won’t go through that, but it’s a blank ballot to the voting client. The
voted ballot to the assistive device, the signed voted ballot, or the signature to
the voted ballot back to the voting client. The ballot then comes to the State
voting system and the confirmation goes back up to the assistive device, and life
is good. Silence in the room.

Sandy Clark: Do you know that Norway actually implemented something
like this about three years ago?

Reply: I do. Yes.
Vanessa Teague: You probably know what I am going to say, which is

that it’s hard to know a good criterion for real malware independence. So in
particular, I agree that the examples you’ve given which demonstrate that the
two devices are not malware independent, but it strikes me that there are other
examples as well that could make the devices malware dependent. For example,
some malware is propagated by infecting a website the person is likely to visit
and encouraging the person to click on a link. If you as an individual own both
these devices and you like that website you could very well visit independently
once on each device, and then probability of your two devices getting infected
by the same malware is much greater.
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Reply: Absolutely true, there are many, many mechanisms that can allow
these devices to be infected by cooperating malware, there’s no doubt, because
you have those same kind of interests, that’s a great point. In fact I think in
the long term a third way to do this is to have a third device that does nothing
but those computations, OK, a widget, what I would call a widget. But in this
case the answer may be, and going back to what my motivation was, that I
shared in full disclosure when I began, in a military environment, many military
members are given a handheld device, and they generally don’t surf the web
with that handheld device, you see. So the laptop that they vote on would be
a machine that would be protected from malware from websites because maybe
they don’t use that machine for websites, their handheld they don’t use for going
to websites, and so that reduces the possibility of a coordinated malware attack.

Frank Stajano: In point number 6 you have the voter’s countersigned hash
to the voting client by the QR code generated by the assisted device. Usually
the assistive device is the one that has a camera, but the laptop doesn’t really
have a camera, so how do you scan the QR code.

Reply: That’s an excellent point and that’s part of the challenge here is that
the laptop would have to have a scanner associated with it for this particular
protocol to work. In order for the laptop to be able to scan that in they would
have to have a scanner. Of course scanners are cheap. It’s just not an expensive
proposition to have a scanner, but it creates more of a usability problem. Again,
if you go back to the environment. . .

Frank Stajano: Is there a necessity of doing this via QR code as opposed to
some other means? Are you exploiting any properties of the QR code channel in
that particular step 6 is what I’m asking you.

Reply: That’s an excellent point. There’s no theoretical reason, no physical
reason, why you couldn’t use Bluetooth. The reason that I don’t use Bluetooth
is because I’m promoting this notion of passive communication that can’t be
intercepted, that can’t be injected, it is a one-way communication that doesn’t
require any transmission.

Frank Stajano: But then you are exploiting features of that particular chan-
nel, because that’s what makes it better than Bluetooth.

Reply: OK, thank you, yes I am exploiting features of that channel, thank
you. But not in terms of speed or size, in fact the size is a limitation, but it is
the security nature of that channel that makes it most useful. Yes.

Ariel Stulman: How do you know that the voting client doesn’t inject in
the QR some exploitable something that your assistive device would conflict?

Reply: That is absolutely in the paper. We mention that it is not impossible
to be able to attack a device through the transmission that is in that QR code.

Ariel Stulman: That’s the missing link because you guys clearly need inde-
pendence.

Reply: No, it’s not a missing link. We addressed this in the paper, that again
there’s no computer, and I mentioned it in my very first slide. Practically it’s
folly to try and verify one machine with another machine, but we can mitigate
many of the risks by using this passive communication. The QR code technology
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is very well known, very well understood, and the amount of communication that
can occur across it is very, very limited. So as you know, when we try and verify
very large programs we have really hard problems; when we try and verify very
small programs we have a much better chance of being able to do that. So being
able to keep malware out of QR codes is much easier, even than being able to
try and keep malware out of a user entry space where they’re trying to enter
their name. The QR code is small enough that you have a much better capability
essentially of being able to do brute-force verification for every opportunity for
transmission across that channel because it’s so small. But it’s a good point, and
again, it’s identified in the paper that I know many of you folks haven’t seen
yet, because you don’t have the pre-proceedings just yet. Yes?

Peter Ryan: Perhaps you’re going to say this in a minute, but what form
does this confirmation message take?

Reply: That’s a great question. The assistive device would create the signed
hash, and that’s what it was. But that’s not necessarily the best form that
it should take. Again, if you go back to the fundamentals of the Needham and
Schroeder protocols, sending back that same signed hash is probably not a really
good mechanism.

Let me confess here too that one of the things I didn’t try to do in this paper
was to do too much. One of the challenges of being able to offer an approach
that we can reach some agreement on, is to try and not do too many things at
one time. I don’t know exactly the process this would take in an implemented
system. The way we did it in our prototype was to send back the same signed
hash. That’s probably not what we would do in practice.

One thing that you might do to try and reduce some of the communications
between those QR codes in the different machines is to receive that blank ballot
on the assistive device. You get the blank ballot on the assistive device, you
make all your votes there, then you would pass that signed voted ballot to the
voting client, where you could verify your votes, so that if the assistive device
has malware on it, you can still detect the change in votes that came from that
assistive device, send that back here, and back with the confirmation to the
assistive device again. So it’s just a second protocol, only one pass required. You
can see the second computation here where it’s checked and the ballot is verified,
and then to the local elections official.

Feng Hao: Isn’t it required to have a private key to sign everything.
Reply: Yes, you have to have a key with the local elections official to be able

to make this work.
Feng Hao: So problems of key distribution pertain here too?
Reply: Again, if you look right there in the paper, I mention all the standard

disclosures, disclaimers, about the key handling and key management apply, if
you’re going to use cryptography, you’ve got to use keys. If you want to say that
you can’t use keys because you can’t maintain them, then we’ll throw those away
too. But the bottom line here is, yes, you do have to use keys; you have to have
a key infrastructure to make it work. Again, in the military that key structure
is in place, it’s on the cards. And again, I go back, the ability to verify in the
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United States military is done on a card, all the ID cards have chips in them.
That type of capability is not available in the general population, but it is in the
military.

Feng Hao: But again, that becomes the source of your lack of independence,
because if two machines need to get the key from some key distribution center
then they are both accessing the same place.

Reply: Which two machines need the key?
Feng Hao: The assistive device and the voter client.
Reply: No, the voting client doesn’t have the private key.
Feng Hao: How is it decrypted, how can it verify what’s in the assistive

device?
Reply: In the single pass protocol, the voting client need not decrypt any-

thing. Rather, integrity is protected by the signed hash. The ballot that’s dis-
played the voter could verify and then send that ballot and the signed hash to
the local elections official. If that signed hash didn’t match the ballot then it
would be rejected by the voting server, which needs only hold the voter’s public
key. This ballot could be sent in the clear with a signature, with a signed hash
of the ballot. Then when that gets here if they don’t match the local elections
official will reject, and notify. In order to protect privacy, the voting client, not
the assistive device, would need to have the voting server’s public key, but we
did not incorporate that aspect because our focus is overcoming the malware
threat.

Jeff Yan: So why do you need the voting client here, why not just one device?
Reply: You could do that, but then malware could convince the voter that

the voter had created a ballot. The assistive device, without this device there’s no
voter verification. The malware on the assistive device could create a bad ballot,
change the votes, create a hash and send that to the local elections official, but
display the ballot that the user had intended to have vote. Does that make sense?

Bruce Christianson: But the assistive device can do that anyway can’t it,
by sending a voted ballot to the voting client that doesn’t correspond to that,
and then it’s signed. The voting client has no way to know whether the signature
that it’s got matches the hash of the ballot that’s been sent.

Audience: But in a local election the official would correct it.
Ross Anderson: Well they can, presumably the client can verify the signa-

ture if you assume the verification key is public.
Reply: That’s correct.
Ross Anderson: And it can verify the signature against the display of the

text.
Bruce Christianson: So it has to be done like that.
Reply: That’s correct. Thank you Ross.
Ross Anderson: But that means in this particular design you lose the ben-

efits of having a signature verification key that is in some sense not public.
Reply: Right. Well again the question here is, if the voting client doesn’t have

any key of any type, if the ballot is in the clear, but the signed hash accompanies
the ballot, then when the voter looks at it, if it’s the wrong ballot then they reject,
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and they go back and they start the process again. But if the ballot is what they
intended they could send that with the signed hash to the voting server, and the
only impact would be if they don’t match it will be rejected.

Ross Anderson: No there’s still an attack because if I’m the black bagman
for the Republicans and what I arrange is a temporal sense of the time if some-
body votes for the Democrats, I put in a signature that’s mathematically wrong.
Now if the voting client cannot verify that then I’ve managed to spoil ten percent
of the Democrats ballot without a voter realizing it.

Reply: But the notification goes back and the voter starts over.
Bruce Christianson: The verification goes back to the assistive device,

which is corrupt, and displays it as a positive acknowledgment.
Ross Anderson: Correct.
Reply: A ha.
Bruce Christianson: There’s only one loop through the voting client and

you can’t do it with only one loop.
Ross Anderson: So what this means is that voting client must have the

verification key corresponding to the signing key.
Bruce Christianson: Or must receive a confirmation.
Audience: Which means they can be attacked.
Ross Anderson: Which means it’s difficult, not impossible, but it just makes

it more difficult for the verification key to be non-public.
Bruce Christianson: You just need one more loop.
Reply: That’s right.
Vanessa Teague: What happens if the assisted device could talk back to the

local elections official, and is there anything that stops it spoofing the voting
client? So, for example, if I were a corrupt assistive device, could I send one
signed version of the ballot for the way that I wanted to cast, back to the local
elections official, and then a few seconds later send, so the voter’s got a properly
signed vote that the voter wanted to cast back to the voting client, and then I
guess I’d try and interfere with that message, the message number 3, and try
and stop the voting client from sending back to the elections official.

Reply: So if, you’re saying if the assistive device is malware infected and it has
taken over the device and it decides to act as an adversary, an active adversary,
by sending multiple messages, for example, to the local elections official. I mean,
so what we would have then is the local elections officials would receive multiple
ballots from the same voter.

Vanessa Teague: Yes, it would.
Feng Hao: It does not have to be a multiple, because the voting client doesn’t

have any secret keys so the assistive device can simply bypass that voting client
and the elections official.

Reply: But the end user is using the voting client to verify the ballot, so they
will know. They can’t bypass the voting client in this case because the voter is
looking for the ballot here.

Daniel Thomas: But if the voting client is tethered to the assistive device
via wifi, then the assistive device could drop message 3, and just send message
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2 directly to the election official. Because there’s no change that happens in
the voting client, if the assistive device actively accepts then the voter client
won’t know.

Reply: How could the assistive device prevent message 3 from being sent?
Daniel Thomas: If the voting client is connecting to the local elections offi-

cial via the assistive device, for example, if they’re using wi-fi tethering through
3G through the assistive device, then that would be possible.

Reply: Right, but we said we weren’t going to do that, right, I mean, that
was an assumption. If you violate the assumptions then the protocol doesn’t
work. So back to your question Vanessa, What you were saying is if this device
sends a ballot to the local elections official then what you would have is either
it would not send a vote here, and the voter would know, or there would be a
second ballot that goes here and the local elections official would know.

Vanessa Teague: That’s true. So in order to do it without the local elections
official knowing you would have to find a way to interfere with the voting client’s
communications.

Reply: So this is the argument that we make, usual key management dis-
claimer that you ask for, receipt-free-neutral; maybe not. Maybe it actually
diminishes receipt free properties because folks get back confirmations of how
they voted that could be verified. But there is not intention to inject capabilities
for coercion resistance, or vote buying or selling, that’s not part of this paper.

The notion here, really the focus of this paper, is the technology to mitigate the
impact of malware on independent voting clients, which has been an important
problem. If you folks remember the SERVE Report, everybody that does voting
knows the SERVE Report in 2004, the gang of four wrote a letter to the New
York Times and ended up stopping a voting project by the U.S. Department of
Defense, and one of the most important arguments they made was the issue of
end-user device malware. So that’s what this paper is intended to provide, at
least a step forward in that area. No impact on voter privacy, the same as all
remote electronic voting, and also denial-of-service, it at least in most cases will
allow you to detect denial-of-service, but those are the ones that are in there.

That’s really the paper I think. Again, it’s recorded as intended, not counted as
intended. And they are voter verifiable; passive communications are important,
malware independence is important.

Jeff Yan: I am curious about the military chip. You showed us the card, so
what was the underlying key mechanism, the PKI-based stuff? Basically how
does the system enable an individual key for a person? So basically how does
the card you showed to us work?

Reply: Oh I’m sorry, OK, so I confused things here, I apologize, this doesn’t
have anything to do with the talk, when I pulled out my card he asked how the
card works in the US military. It’s just simply a smart card, that’s all it is, it
allows you to have a personal ability to create cryptography. They use them in
Estonia’s voting system. Norway has the same kind of thing.

So in the United States, using electronic voting for remote voting is going
to be very difficult without some type of strong authentication in the general
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population. In the US military you can use that card if you need to. I didn’t
leverage the strength of that card in this paper, but I did want you to know that
that is a capability that the military has to be able to do that kind of thing with
their card, in their handheld device, and in the laptops that they would have
access to be able to cast their ballots. So it’s a good question, just confused me,
I’m sorry.

Michael Roe: And in that case is the US military has a reasonably good
idea of who its employees are and how to identify them, whereas in general doing
elections, let’s say the UK government, had a rather poor idea of who the people
are, of how to authenticate people who are going to vote, so you have a better
starting position.

Reply: Well that’s exactly right. There are probably hundreds of reasons
why the military establishment is an excellent establishment to target remote
electronic voting; lots and lots of really good reasons. There are also a lot of
reasons why it’s a political hot button issue because at least in the US the
military is seen as being more affiliated with one party than the other. So every
time somebody talks about increasing the availability of voting to the military
you get into political discussions as opposed to the technology discussions, which
is really what I’m here to talk about. So, I’m sorry, I’m taking up your time
rambling, I appreciate it very much. Thank you.
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Abstract. Many commodity operating systems and applications be-
come infested with malicious software over time, primarily due to ex-
ploits that take advantage of software flaws and operator errors. In this
paper, we present the salient features of a system design which allows
remote-device authentication by a verifier, reaching malware-free mem-
ory states, and trusted application booting in the presence of malicious
software that is controlled by a network adversary. Our system design
revisits the notion of device attestation with bounded leakage of secrets
(DABLS), and illustrates both the significant challenges of making it
work in practice and how to overcome them.

1 Introduction

During the past decade, Professor Moriarty, the fictitious genius and evil ad-
versary, has acquired new attack capabilities and now poses an unprecedented
challenge for the wizards of the Security Protocols Workshop (SPW). Not only
can he fully control communication networks (e.g., in man-in-the-middle style)
connecting remote devices with device-attestation hosts, but also he can now
inject malware into those devices, making them behave in a Byzantine manner
and/or leak their secrets. In the past, the wizards were able to counter either
one of these attack capabilities or the other, but not both together.

For example, if Moriarty controls all network communications but not end
hosts and devices, the wizards of SPW could deploy secret encryption keys in the
commodity cryptographic modules; e.g., the Trusted Platform Modules (TPMs)
[11] of remote hosts and devices, and take advantage of Moriarty’s bounded com-
putational power to counter his attestation attacks with provable-secure proto-
cols. Or, if he could only insert malware in some of the remote devices but not
control any network communications, remote connections to devices could be
authenticated without device secrets; e.g., by using network front-ends, which
remain beyond the reach of device malware, for remote devices. In this setting,
the wizards could deploy sufficiently many additional devices beyond Moriarty’s
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reach to detect Byzantine misbehavior by the malware-infected ones, and en-
able host reliance only on clean devices. The strategy of relying on secret keys
could be safely foregone and the significant challenge of secure, remote key man-
agement on malware controlled commodity hardware1 avoided, in this setting.
However, if use of secret keys would still be desired, each device could store a key
fragment and rely on threshold cryptography - with the appropriate assumptions
– to assemble a shared secret key that Moriarty could not obtain from the set
of devices he controls.

Three of the questions faced in designing attestation protocols for remote
devices are as follows.

(1) How could a host authenticate a remote device, when adversary Moriarty
controls both the communication network (i.e., via network adversary Mout) and
the remote device software (i.e., via device malwareMin), but not its commodity
hardware (e.g., physical device configuration, components, channel bandwidth)?
Clearly, device authentication requires that a device’s secret be protected, and if
secrets protected by commodity hardware could be discovered by Moriarty’s mal-
wareMin and exported to his network adversaryMout, he could then use his own
bogus device to masquerade as the authentic remote device. Could we exploit
hardware architecture features to perform software-based device authentication
without depending on long-lived, hardware-protected secrets; e.g., without phys-
ically unclonable functions (PUFs) [2, 5], TPMs?

(2) How could a remote device prove that it has reached a malware-free mem-
ory state to an attestation host after Moriarty has inserted malware Min into
that device? Remotely re-booting device software and initializing a memory state
could not be performed with significant assurance since malwareMin itself could
compromise the reboot operation. Even if device authentication could be per-
formed in the presence of malware Min (e.g., by using special hardware, such
as PUFs), proving the establishment of a malware-free memory state on a com-
modity device to an attestation host remains a challenge. Is there a way to
clean up the device remotely and eliminate malware Min despite the network
adversary Mout?

(3) How could a remote device prove that it has performed a trusted boot of
application software to an attestation host? Notice that between the time that
a malware-free memory state is demonstrated to an attestation host and the
time that trusted boot of application software is completed, the device could be
compromised by Moriarty’s malware Min again. Could a proof of correct device
authentication be composed with one of malware-free memory state establish-
ment and further with one of trusted boot of application software?

1 For example, a secure key update in response to side-channel attacks – as prescribed
by leakage-resilient cryptography – could not be performed with significant assur-
ance, even if a host could reach a remote device using secure network communica-
tion channels, now assumed to be beyond an adversary’s control. Device malware
could always respond correctly to key update commands using the already captured
device key.



96 J. Zhao et al.

In this paper, we provide preliminary answers to the above questions in the
context of commodity devices, without assuming that malware is prevented from
accessing secrets stored on commodity devices and communicating with an exter-
nal network adversary which controls it. Instead, we present a system that limits
the bandwidth of the device’s output channel to Dban bits per second, updates
secrets periodically and prevents the leakage of an entire pool of secrets. In effect,
our system confines malware Min sufficiently to enable a remote verifier estab-
lished the three desirable properties outlined above, namely (1) remote-device
authentication, reaching malware-free memory states, and trusted (re)boot of
application software. Specifically, we revisit the notion of device attestation with
bounded leakage of secrets (DABLS) and system description provided by Tran
[10], and provide new operating conditions and modes, called ReDABLS, which
appear to be practical for large classes of different system types and configura-
tions. In particular, we argue that in contrast to the overhead rate of DABLS,
which makes it impractical for large classes of intuitive operating conditions,
ReDABLS can yield much lower overhead rates, particularly when acceptable
probabilistic upper bounds are found for an adversary’s success in attacking it.

ReDABLS also differs from the better-known software-only root of trust
(SWORT) mechanisms [1, 3, 4, 6–9] in three ways. First, SWORT mechanisms
do not provide device authentication directly since they have been introduced to
achieve only authentication of program execution on any device of the same type
and configuration. Second, without additional mechanisms, SWORT does not
usually guarantee uninterruptable composition of malware-free memory state
establishment and trusted boot of application software; i.e., malware could re-
install itself into the device after the establishment of a malware-free state and
trusted software boot. Third, the ReDABLS verifier would be less susceptible to
timing variations in the speed of the computing device (e.g., processor speed),
since it would have to tolerate larger (e.g., network) delays, by design. For these
reasons, practical answers to the three questions posed for ReDABLS above
would provide stronger, more robust guarantees than SWORT.

We envision the use of ReDABLS for several applications that require periodic
attestation of malware-free state and secure initialization for (1) hypervisors of
remote devices, (2) control software of autonomous devices, and (3) software of
unattended smart-grid devices (e.g., smart meters).

2 A Brief Overview of DABLS

In DABLS, a remote device is initialized with a device-unique, large pool of
secrets S comprising N blocks of b bits each, prior to deployment;2 viz., Fig. 1.
The pool is updated by using a device local function f(ni, S) in response to a
nonce ni−1 sent by a remote Verifier, in every Ts seconds, where Ts represents
the device computation time dedicated to application execution. The time used
for updating the N blocks of the pool and responding to the Verifier is denoted

2 The initialization of pool S is done using a pseudo-random number generator, PRNG,
which yields statistically unique pool values for reasonable sizes of N and b.
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Fig. 1. A snapshot of the DABLS operation

by Tup. At the end of each update time, Tup, the device sends response Ri =
y(f(ni−1, Si−1), constant) to the Verifier, where y is a message authentication
code function based on the updated secret pool state Si = f(ni−1, Si−1). Failure
to respond by the end of Tup or to produce an incorrect response Ri causes the
Verifier to signal an exception. As a result of pool initialization to state S0, and
subsequent updates, the secret pool goes through a number of device unique
states S0, S1, · · · , Si−1, unless a Verifier exception interrupts this sequence and
causes re-initialization. A snapshot of the DABLS operation is illustrated in Fig.
1, and the device-authentication request and response over time are illustrated
in Fig. 2.

We note that pool update function can use a variety of cryptographic primi-
tives, such as pseudo-random functions (PRFs) and one-way functions (OWFs),
to ensure that entire past pools can be computed and future pools cannot be
anticipated unless all pool blocks of a given state are available, except with neg-
ligible probability. Let the speed of the cryptographic primitive used by the pool
update function f(n, S) be CPn seconds per pool block. The overhead rate of the
update operation is Tup/Ts, and the system feasibility condition is Tup/Ts < 1.

In this paper we argue that the overhead rate has a lower bound N × CPn ×
Dban/b, for a large class of pool update functions. We illustrate one of the chal-
lenges posed by the design of DABLS by showing that intuitively efficient pool
update functions – not just those initially considered for DABLS [10] – fail to
satisfy the system feasibility condition. This motivates our introduction of prob-
abilistic pool update functions and additional operating modes for ReDABLS;
viz., Section 4 below.
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Fig. 2. The device-authentication request and response over time

2.1 The Original Pool Update Function

DABLS presents a pool update function f1 by using a non-invertible pseudo-
random function (PRF) as the basic tool. Let P be a family of non-invertible
PRFs. A particular non-invertible PRF Pn is selected from that family by using
the nonce n; i.e., P : {0, 1}|n| → Pn. An instance Pn takes as input k blocks of
size b bits, and produces one block of output; namely, Pn : {0, 1}k·b → {0, 1}b.

A secret pool S is broken into N blocks of size b bits: S[0], S[1], . . . , S[N − 1].
S[i] is referred to as block i of the pool S, where 0 ≤ i ≤ N − 1. As specified by
Equation (1), the recursive function g takes an index i as input and produces
a single block gi as output. gi equals S[i] for 0 ≤ i ≤ N − 1, and is computed
by inputting the N previous blocks gi−j |j=N,N−1,...,1 to the PRF Pn for i ≥ N .
Finally, f1 is realized according to Equation (2) below, where λ ≥ N .

gi =

{
S [i] , for 0 ≤ i ≤ N − 1,

Pn(gi−N ||gi−(N−1)|| . . . ||gi−1), for i ≥ N .
(1)

f1(n, S) = gλ||gλ+1|| . . . ||gλ+N−1. (2)

2.2 DABLS Fails the Feasibility Condition

With f1 used as the pool update function in DABLS, a necessary condition for
preventing the external adversary Mout from obtaining a complete secret pool is
(Ts + Tup)Dban < N × b, which leads to Ts < N × b/Dban. Let CPn be the time
cost to compute Pn on each input block. Then Tup = N×λ×CPn . Therefore, the
overhead rate Tup/Ts > λCPnDban/b ≥ NCPnDban/b. However, as illustrated in
Table 1, this lower bound NCPnDban/b of Tup/Ts is greater than 1 for typical
devices, rendering DABLS infeasible in practice.
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Table 1. Examples of system parameters. Pn uses AES as the block cipher and the
CBC-MAC-like as the mode of encryption, as illustrated by DABLS [10]

|S| (MB) b (bits) N Dban (MB/sec) b/CPn (MB/sec) Tup/Ts

0.16 128 104 0.001 1.2 (on ARM 1176-482MHz) > 8.3
1.6 128 105 0.01 107 (on Intel Core 2-1.83 GHz) > 9.3

Several possible approaches to reduce the lower bound NCPnDban/b of Tup/Ts

are available. For example, to decrease CPn , Pn could use a 5 − 8 times faster
primitive; e.g., XoR-universal hash functions. Furthermore, given a fixed |S|,
the block size b could be set larger to decrease N . Finally, commodity hardware
front ends or network interfaces that remain beyond the reach of device malware
could be used to effectively decrease the outbound network bandwidth limit
of the device depending on other system parameters; e.g., an increased Ts, a
decreased pool size |S|.

3 The New Pool Update Functions for ReDABLS

DABLS fails to provide a feasible pool update function for achieving the three
desirable security properties discussed in the Introduction; i.e., remote-device
authentication, reaching malware-free memory states, and trusted boot of appli-
cation software. In ReDABLS, we rely on similar protocols as those in DABLS
but introduce new pool update functions in an attempt to make the system
overhead rate practical.

The challenge one faces in designing new pool update functions is that in-
tuitive optimizations do not necessarily work. For example, one could attempt
to use smaller input sizes than that of f1(n, S) without compromising update
security; i.e., the number of input blocks could be smaller than N . However,
this would not necessarily decrease the overhead rate; viz., function f2 below.
Another way would be to also use more efficient cryptographic primitives for
the function implementation. Although, this could decrease the overhead rate,
it would not necessarily satisfy our feasibility condition; viz., function f3 below.
For these reasons, we introduce probabilistic update functions (viz., f4 and f5
below), which can reduce the overhead rates of update functions such as f2 and
f3 to feasible levels.

3.1 The Pool Update Function f2

We assume that N is a product of two positive integers q and m; i.e., N = qm,
where m ≥ 2. Now we explain how f2(n, S) is computed given a nonce n and a
secret pool S. S consists of N blocks: S[0], S[1], . . . , S[N − 1]. gi is updated as
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follows. gi equals S[i] for 0 ≤ i ≤ N − 1, and is computed by inputting (q + 1)
blocks gi−jm|j=q,q−1,...,1 and gi−1 to the PRF Pn for i ≥ N ; namely,

gi =

{
S[i], for 0 ≤ i ≤ N − 1,

Pn

(
gi−qm||gi−(q−1)m|| . . . ||gi−m||gi−1

)
, for i ≥ N.

(3)

Finally, similar to the design of f1, the function f2 is still defined as the last N
blocks after computing λ blocks of g; i.e., f2(n, S) is set by

f2(n, S) = gλ||gλ+1|| . . . ||gλ+N−1. (4)

With function f2 used as the pool update function, we have derived a set of
conditions which are both necessary and sufficient for preventing the external
adversary from obtaining a complete secret pool. (A detailed analysis of these
conditions is provided in Appendix A.) The set of conditions indicates that
the overhead rate Tup/Ts is at least NCPnDban/b, the same lower bound as
in the case where f1 is used as the pool update function. Therefore, a system
implemented with f2 would also fail the feasibility condition Tup/Ts < 1. Note
that function f1 can be regarded as a special case of function f2 with q = N .

3.2 The Pool Update Function f3

Consider a pool update from a secret pool S to the next secret pool f3(n, S).
S consists of N blocks: S[0], S[1], . . . , S[N − 1]; f3(n, S) consists of N blocks:
y0, y1, . . . , yN−1. For i = 0, 1, . . . , N − 1, block yi is computed by inputing to
PRF Pn w blocks with a sliding window of length w; specifically,

yi = Pn(zj+i||zj+i+1|| . . . ||zj+i+(w−1)),

where j ∈ {0, 1, . . . , N − 1} is determined by the nonce n and block zt is defined
by

zt =

{
S[t], for 0 ≤ t ≤ N − 1,

yt−N , for t ≥ N.

Here we set Pn as the MD5 hash function, whose computation cost on an
input block is lower than that of CBC-MAC-AES.

With f3 used as the pool update function, we have also proved that a necessary
condition for preventing the external adversary from obtaining a complete secret
pool is Tup/Ts ≥ NCPnDban/b. (The proof is omitted due to space limitations.)
If Pn is implemented with the MD5 function, f3 also fails the feasibility condition
Tup/Ts < 1, as illustrated in Table 2.

Table 2. Examples of system parameters. Pn is the MD5 hash function.

|S| (MB) b (bits) N Dban (MB/sec) b/CPn (MB/sec) Tup/Ts

0.16 128 104 0.001 2 (on ARM 1176-482MHz) > 5
1.6 128 105 0.01 268 (on Intel Core 2-1.83 GHz) > 3.7
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3.3 The Probabilistic Pool Update Functions f4 and f5

We consider probabilistic pool update functions and show that they can reduce
the overhead rates of the three non-probabilistic functions discussed above to
feasible levels.

Random Permutation. The idea of using a random permutation is that, given
a random nonce, we can derive a permutation from the nonce that will change
the ordering of the N blocks of the old secret pool randomly before the pool
update. The intuition behind the overhead rate Tup/Ts reduction is that the
external adversary Mout still cannot obtain a complete secret pool even though
the internal adversary Min leaks more blocks per epoch than in the three cases
above where a random permutation is not used. This is the case because Min

can no longer be sure which pool blocks will be useful as the input for the update
function in future epochs. Instead, the external adversaryMin has to predict the
usefulness of blocks in future epochs.

We introduce a pool update function f4, which is the random permutation
version of function f2, as shown below. Given a secret pool S, we now explain
the computation of f4(n, S). S consists of N blocks: S[0], S[1], . . . , S[N − 1].
Then, based on the external nonce n, blocks S[0], S[1], . . . , S[N−1] are randomly
permuted to blocks S′[0], S′[1], . . . , S′[N − 1], which are inputs to the recursive
block computation. Similar to (3), we define gi as follows:

gi =

{
S′[i], for 0 ≤ i ≤ N − 1,

Pn

(
gi−qm||gi−(q−1)m|| . . . ||gi−m||gi−1

)
, for i ≥ N.

Then the same as (4), f4(n, S) is set by

f4(n, S) = gλ||gλ+1|| . . . ||gλ+N−1.

With f4 used as the pool update function in ReDABLS, one can prove that the
overhead rate is reduced by a constant factor that depends on system architecture
(e.g., the ratio of the local memory size over the pool size |S|), compared with
the case where f2 is the pool update function.

Partial Pool Update. Consider a pool update from secret pool Si to Si+1. A
fixed number of blocks in Si are propagated to Si+1 without any change, while
the remaining blocks in Si are updated. The purpose of partial pool update is to
reduce the number of blocks in each pool update to be updated by Pn, and thus
to reduce Tup, which helps decrease the overhead rate Tup/Ts. Also, we need to
enforce that the external adversary Mout still can obtain a complete secret pool
with only a negligible probability.

We introduce a pool update function f5, which is the partial pool update
version of function f3, as detailed below. In computing f5(n, S), let the number
of propagated blocks in S be G. The G blocks are randomly selected based on
the nonce n and are uniformly distributed among the N blocks of S. Without
knowing the nonce n, the attacker cannot predict the G blocks.
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Table 3. Examples of system parameters. The units of |S|, b, Dban and b/CPn are
MB, MB/sec, bits and MB/sec, respectively. Pn is the MD5 hash function; and Pr∗ is
Pr[Mout succeeds in obtaining a complete secret pool].

|S| b N Dban b/CPn G w h Tup/Ts Pr∗

0.161281040.001 2 (on ARM 1176-482MHz) 9N/10 10N/11N/11> 0.562.3× 10−39

1.6 128105 0.01 268 (on Intel Core 2-1.83 GHz)29N/3030N/31N/31> 0.131.0× 10−45

The maximal number of blocks leaked or saved blocks in any epoch should
be less than the sliding window w; otherwise, Mout could splice these leaked
or saved blocks and update them, obtaining at least w blocks of secret pool S0

at the end of epoch 0, at least (w + 1) blocks of secret pool S1 at the end of
epoch 1, . . ., and a complete secret pool Si at the end of epoch (N − w). We
denote that number by (w − h) since it is less than w, where h ≥ 1. Clearly,
(w − h) is at least TsDban/b, the maximal number of blocks leaked within Ts.
Then Ts ≤ (w−h)b/Dban. Noting that Tup = (N−G) ·w ·CPn , we finally obtain

Tup/Ts ≥ 1−G/N

1− h/w
×NCPnDban/b.

The goal is to let the probabilistic-update factor 1−G/N
1−h/w be small and have a

negligible probability for Mout succeeding in obtaining a complete secret pool.

First, to ensure 1−G/N
1−h/w ≤ 1, it follows that G ≥ h.

Given the leaked or saved (w − h) blocks in an epoch and the G propagated
blocks, if there are at least w consecutive blocks among them, thenMout succeeds
in splicing the w blocks. Consider that the (w−h) blocks have i (resp., j) number
of the G propagated blocks to their immediate left (resp., right), where i, j ≥ 0.
Mout succeeds in splicing if i+ j ≥ h.

We have

Pr[(i ≥ h) ∩ (j ≥ 0)] =

(
N − h

G− h

)/(
N

G

)
,

and for t = h− 1, h− 2, . . . , 0,

Pr[(i ≥ t) ∩ (j ≥ h− t)] =

(
N − h− 1

G− h

)/(
N

G

)
.

Then

Pr[Mout succeeds in obtaining a complete secret pool]

≤ Pr[i+ j ≥ h].

=

(
N − h

G− h

)/(
N

G

)
+ h ·

(
N − h− 1

G− h

)/(
N

G

)
≤ (h+ 1)× (G/N)h.

Table 3 presents examples of system parameters.
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4 Additional Operational Modes for ReDABLS

In this section, we briefly outline two additional operational modes intended to
enhance the usability of ReDABLS.

First, a commodity network-interface device that is beyond the reach of
malware Min can be connected to the remote application device to limit the
malware’s output bandwidth independent of any length of Ts. All other hard-
ware communication channels of the application device are disabled so that the
network-interface device provides the only Internet connection service for the
remote application device. We denote by D′

ban the effective outbound network
bandwidth limit of the device enforced by the interface device. D′

ban can be set to
be much smaller than Dban, the device D’s maximum outbound network band-
width in the absence of the interface device. This means that Ts can be increased
and/or |S| decreased more than before to ensure a small overhead rate.

Second, ReDABLS can have an infrequent-activation mode based on a sepa-
rate private but slow/expensive channel between the verifier and a remote human
operator who would be located in the vicinity of the device and could visually
identify it. The verifier-operator channel is secure, since it connects the veri-
fier to an operator’s phone via an encrypted cellular network connection, which
remains beyond the reach of the network adversary Mout. That is, we assume
that the network adversary Mout does not control the cellular communications,
and the device owner’s phone or any potential malware on it. For example, this
operational mode could consist of the following specific steps.

1) The verifier sends a short secret seed over the secure channel to the device
owner’s phone. Note that this channel would be expensive to use for the
direct transfer of the entire secret pool S from the verifier to the remote
device. Instead, the secret seed is used to generate the pool on the device
owner’s phone.

2) The device owner’s phone generates a secret pool S by seeding a PRNG with
the short secret, and sends S to the device via a fast private channel (e.g.,
through a USB cable connecting the phone to the device).

3) The verifier can now authenticate the remote device, enable a multi-epoch
establishment of malware-free state, and perform a trusted boot.

Note that this operational mode would be used only infrequently. Thus even
if its overhead rate would be high, the overall overhead would be acceptable
because it would be chargeable only to a small portion of the device operation.
This operational mode also offers an opportunity to optimize |S|, the size of
pool S. On the one hand, |S| cannot be very large since S is generated on a
phone with limited battery power, and on the other, |S| cannot be very small
because, otherwise, secret pool S could be leaked to the network adversary Mout

by malware Min before it gets updated.

5 Conclusions

In earlier work, Tran [10] presented DABLS – a system that attempts to achieve
remote-device authentication, reaching malware-free memory states, and trusted
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boot of application software, in the continuous presence of device malware that
can access device secrets and leak them to a network adversary. However, DABLS
was infeasible in practice, leaving us with the substantial challenge of designing
new operating conditions and modes for bounding the leakage of device secrets
in a practical manner. To this end, we introduced a set of probabilistic update
functions that decrease the update overhead rates in ReDABLS, and outlined
new modes of operation to further decrease the relative system overhead. We
now believe that the feasibility of device attestation with bounded leakage of
secrets can be established conclusively.

Acknowledgments. The first author was supported in part by Lockheed
Martin’s CyLab Corporate Partners membership funds.
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A Analysis of ReDABLS with Pool Update Function f2

In this appendix, we provide a detailed analysis of ReDABLS only for the pool
update function f2.

3

A.1 Minimum Amount of Leakage Necessary

In this update function, we enforce the condition

λ ≥ N +m− 1 (5)

to ensure that any block of the updated pool f(n, S) ultimately needs all N
blocks of previous secret pool S as inputs. If this condition is satisfied, then the
internal adversary (i.e., malware) Min needs to leak at least N = m · q blocks to
succeed in leaking an entire secret pool.

Let S be the concatenation of N blocks xD+i|i=0,1,...,N−1, where D ≥ 0.
For j = 0, 1, . . . ,m − 1, we define Yj := {xD+j+�m}|�=0,1,...,m−1. Clearly, the
computation of block xD+N+j needs xD+N+j−1 and all blocks in Yj . Therefore,
by a recursive analysis, the condition j ≥ m − 1 is necessary and sufficient to
ensure that block xD+N+j ultimately needs all blocks in

⋃m−1
j=0 Yj .

We denote the initial secret pool by S0 and denote the N blocks of S0 by
x0, x1, . . . , xN−1. Let the secret pool obtained in the ith pool update be Si.
In the ith pool update for i ≥ 1, pool Si−1 is updated to Si. We let Ai be
the set of blocks computed by the update. Then for i ≥ 1, set Ai consists
of all λ blocks with indices at least (i − 1)λ + N and at most iλ + N − 1;
i.e., Ai = {x(i−1)λ+N |j=0,1,...,λ−1.}. We also define A0 as the set of N blocks
x0, x1, . . . , xN−1; i.e., A0 = {xj |j=0,1,...,N−1.}. Note that blocks in Ai can only
be leaked after time iTs for i ≥ 0.

A.2 Preventing the Leakage of N Contiguous Blocks

Another necessary condition for attack success is for the external adversaryMout

to obtain an arbitrary group of N contiguous blocks among the blocks leaked
by malware Min. (Note that we do not consider brute-force attacks whereby the
adversary attempts to discover a few pool bits that are not available in the leaked
blocks). We call a leaked block x “useful” in satisfying the contiguity condition,
if x is used in at least one intermediate computation to obtain one of the final
N desired blocks or if x itself is one of the final N desired blocks. Without loss
of generality, we only consider attacks in which all the leaked blocks are useful.
The index stretch of an attack is defined as the result of the highest index of
useful leaked blocks minus the lowest index of useful leaked blocks.

For the external adversary Mout to obtain the final N consecutive blocks, the
internal adversary Min has to leak at least N blocks. For any successful attack
with a certain number of useful leaked blocks, we derive the maximal index

3 For simplicity, we sometimes drop the subscript of f2 and just use f to denote f2.
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stretch of the attack to see how Min might be able to spread the leaked blocks
in multiple epochs so that only a small number of blocks needs to be leaked in
each epoch. To this end, we establish Theorem 1. Preventing the maximal index
stretch will deny Min the opportunity to leak useful blocks.

Theorem 1. The maximal index stretch of a successful attack with a fixed num-
ber M of useful leaked blocks is (M −N)m+ qm2 − 2m+ 1, where M ≥ N .

We use the following Lemmas 1-4 in the proof of Theorem 1. The proofs of
Theorem 1, and Lemmas 1-4 are given in Section A.5 of the appendix.

Lemma 1. The maximal index stretch of a successful attack with N useful leaked
blocks is qm2 − 2m+ 1.

Lemma 2. For the external adversary Mout to obtain J blocks out of N con-
secutive blocks xG+i|i=0,1,...,N−1, where G ≥ 0 and 1 ≤ J ≤ N , the internal
adversary Min has to leak at least J blocks with indices at most G+N − 1.

Lemma 3. Consider the following attack with M leaked blocks, where M ≥ N .
With y := (M −N) mod q and a := M − N − qm, the internal adversary Min

leaks the following M blocks:

xA−ym−iqm+jm|i=0,1,...,a;
j=0,1,...,q−1

, xA+im|i=q−y+1,...,q−1,

xA−ym−iqm+qm−1|i=0,1,...,a, xA+iqm−i+jm |i=1,...,m−1;
j=0,1,...,q−1.

Then the external adversary Mout can obtain any block with index at least qm2−
qm− 2m+2; and the index stretch of this attack is (M −N)m+ qm2 − 2m+1.

Lemma 4. If adversaryMout obtains blocks xA+iqm−i−(
∑i

�=1 β�)m+jm|j=0,1,...,q−1

and xA+(i+1)qm−(i+1)−(∑i
�=1 β�)m for i = 0, 1, . . . , r, where r ≥ 1, then adversary

Mout can acquire blocks in

Bi :

= {xA+iqm−i−(∑i
�=1 β�)m+zm|z=0,1,...,(r+1)q−iq−∑

r
�=i+1 β�

}, (6)

for i = 0, 1, . . . , r.

A.3 Non-circumventable Time-Space Tradeoff

The internal adversary (i.e., malware) Min faces a space-time tradeoff in its
attempt to leak N contiguous pool blocks to Mout, whenever the output band-
width Dban prohibits the transfer of all N block in a single epoch. This is the
case because Min would either have to save the blocks not leaked in an epoch
in freely usable system memory, denoted by Lmem below, for leakage in future
epochs or perform the pool update computation using fewer than N blocks, or
both. Hence, either (1) the memory size of Lmem is large enough to hold most,



ReDABLS: Revisiting Device Attestation with Bounded Leakage of Secrets 107

if not all, the blocks not leaked in an epoch or (2) Min would have to use extra
update computation time, if not enough memory space is available in Lmem. In
the latter case, some of the N pool blocks would have to remain unused during
the update, and thus extra computation time would be needed. However, if both
Lmem and the pool update time Tup are upper-bounded by appropriately small
values, Min will either not have enough memory space to leak all blocks or will
exceed the update time and be detected by the verifier. We call this the space-
time tradeoff faced by Min. If Min cannot circumvent this tradeoff, it could not
leak all the contiguous N blocks of any complete secret pool S.

Upper Bound on Memory Freely Usable by Malware. We derive the
upper bound on Lmem, the amount of memory freely usable by malware Min,
so that it cannot circumvent the time-space tradeoff.

From Theorem 1, for any successful attack with (N + y) leaked blocks, where
y ≥ 0, its index stretch is no greater than (qm2 − 2m + 1 + ym). Recall that
Ai = {x(i−1)λ+N+j |j=0,1,...,λ−1.} and |Ai| = λ for i ≥ 1, A0 = {xj |j=0,1,...,N−1.}
and |A0| = N . Therefore, the (N + y) blocks leaked by Min fall in at most(⌊

qm2−2m+ym
λ

⌋)
+2 (denoted by L hereafter) number of successive sets among

Ai|i=0,1,..... Assume the (N+y) leaked blocks fall in h successive sets AH , AH+1,
. . . , AH+h−1, where 1 ≤ h ≤ L. Let Fi be the set of bits which are leaked by
Min and are among the bits in blocks of Ai, for i = H,H + 1, . . . , H + h − 1.
Recall that blocks in Ai can only be leaked after time iTs for i ≥ 0. We actually
give adversary Min more power by assuming that Min can leak blocks in Ai at
any time instance immediately after time iTs, since the computations of blocks
in Ai start from time iTs and finish before iTs + Tup.

After time HTs, adversary Min can leak bits in FH . At time (H + 1)Ts, the
number of bits in FH thatMin has not leaked is at least max{|FH |−TsDban, 0} ≥
|FH | − TsDban. After time (H + 1)Ts, adversary Min can leak bits in FH+1 or
leak those bits in FH that has not been leaked. At time (H + 2)Ts, the bits in
FH ∪ FH+1 that Min has not leaked is at least max{max{|FH | − TsDban, 0} +
|FH+1| − TsDban, 0} ≥ |FH |+ |FH+1| − 2TsDban.

This process continues iteratively. Then, at time (H + h)Ts, the bits in⋃
FH+j |j=0,1,...,h−1 that Min has not leaked is at least

∑
j=0,1,...,h−1 |FH+j | −

hTsDban. From time (H+h)Ts to (H+h)Ts+Tup, the pool SH+h−1 is updated to
SH+h; and the set of computed blocks is AH+h. At time (H+h)Ts+Tup, the bits
in
⋃
FH+j |j=0,1,...,h−1 that Min has not leaked is at least

∑
j=0,1,...,h−1 |FH+j |−

(hTs +Tup)Dban. If all blocks of SH+h are in the memory, Lmem is the available
space to store the bits in

⋃
FH+j |j=0,1,...,h−1 that has not been leaked. There-

fore, to ensure that malware Min cannot circumvent the space-time tradeoff and
leak all bits in

⋃
FH+j |j=0,1,...,h−1, we impose the condition

h−1∑
j=0

|FH+j | − (hTs + Tup)Dban > Lmem. (7)
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Given
∑h−1

j=0 |FH+j | = (N+y)b and 1 ≤ h ≤ L, where L =
(⌊

qm2−2m+ym
λ

⌋)
+2,

then we obtain

L.H.S. of (7)

≥ (N + y)b−
[(

qm2 − 2m+ ym

λ
+ 2

)
Ts + Tup

]
Dban. (8)

R.H.S. of (8) increases as y increases if

bλ ≥ mTsDban. (9)

Therefore, we enforce (9) and

N · b−
[(

qm2 − 2m

λ
+ 2

)
Ts + Tup

]
Dban > Lmem, (10)

so that (7) follows for any y ≥ 0 and h = 1, 2, . . . , L.

Computation Cost of Pool Update. Using the terminology of DABLS [10],
we call the case when all |S| bits of memory are used for the computation of
f(n, S), the benign case, and the case when fewer than |S| bits of memory are
used for computation, the malicious case. The following theorem gives the com-
putation cost of f(n, S) in both the benign and malicious cases.

Theorem 2. For a pool update f(n, S) in the benign case, the computation cost
is λ(q+1)CPn . For a pool update f(n, S) in the malicious case, if λ ≥ N +m− 1
and c blocks of memoization cache [10] are used, where c < N , then the compu-

tation cost is at least [2�
λ−1−c

m �−2m(m+ 1)(q + 1) + c(q + 1)]CPn .

The proof of Theorem 2 is given in Section A.5 of this appendix.

Remark 1. If q is a constant and does not scale with N , then the computation
cost in the benign case is linear with λ.

When |S|− 1 bits are used, this leaves c = N − 1 blocks to cache intermediate
blocks. Given c = N − 1 and Theorem 2, we enforce the relation:

λ(q + 1)CPn < Tup < [2�
λ−N
m �−2m(m+ 1)(q + 1) + (N − 1)(q + 1)]CPn . (11)

A.4 Summary of ReDABLS Parameter Conditions for f2(n, S)

From the above analysis, the required parameter conditions are (5), (9), (10),
and (11), whenever N = m · q and m ≥ 2.
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A.5 Proof of Theorems 1, 2 and Lemmas 1-4

Proof of Theorem 1. Among the successful attacks with a fixed number M of
useful leaked blocks, where M ≥ N , let AM be an attack which maximizes the
index stretch and IM be the index stretch of AM . As explained in Section A.2,
all leaked blocks in AM are “useful.” We regard M ≥ N + 1 below.

Let xB+j |j=0,1,...,N−1 be the N consecutive blocks that the external adversary
Mout finally obtains. Note that Mout can further use xB+j |j=0,1,...,N−1 to get any
block with an index of at leastB. Denote the useful block with the lowest index in
attack AM by xA. To make xA useful, the external adversaryMout should obtain
xA+jm|j=0,1,...,q−1, xA+qm−1 to compute xA+qm. Since xA is the useful block with
the lowest index, all of xA+jm|j=0,1,...,q−1, xA+qm−1 can only be leaked instead of
being computed, given the fact that if at least one of xA+jm|j=1,2,...,q−1, xA+qm−1

is computed, then at least one block with an index lower than A should be leaked.
Clearly, xA is not used in computation(s) other than that of xA+qm.

We note that the highest index among the leaked blocks is B+N−1 since any
block with index greater than B+N−1 is useless in inducing xB+j |j=0,1,...,N−1.
Then the index stretch IM is at most B + N − 1 − A. Lemma 3 presents a
successful attack with a fixed number M of useful leaked blocks and with an
index stretch of qm2 − 2m+ 1 + (M −N)m. Hence, it follows that

B +N − 1−A ≥ IM ≥ qm2 − 2m+ 1 + (M −N)m. (12)

Given M ≥ N + 1, N = qm and (12), it holds that for i = 1, 2, . . . ,m− 1,

B > A+ iqm− i. (13)

Consequently, block xA+iqm−i is not one of the final desired blocks
xB+j |j=0,1,...,N−1 for each i = 1, 2, . . . ,m− 1.

We have the following observation. If xA+qm−1 is used in computations in
addition to that of xA+qm, then there exists β1 ∈ {0, 1, . . . , q − 1} such that ad-
versary Mout obtains xA+qm−1−β1m+jm|j=0,1,...,q−1 and xA+2qm−2−β1m, which
are together used to compute xA+2qm−1−β1m. If xA+2qm−2−β1m is used in compu-
tations in addition to that of xA+2qm−1−β1m, then there exists β2 ∈ {0, 1, . . . , q−
1} such that adversary Mout obtains xA+2qm−2−(β1+β2)m+jm|j=0,1,...,q−1 and
xA+3qm−3−(β1+β2)m, which are together used to compute xA+3qm−2−(β1+β2)m.

This process continues iteratively. Then we have the following two cases. 1)
There exist β� ∈ {0, 1, . . . , q − 1} for � = 1, 2, . . . ,m − 1 such that
xA+iqm−i−(

∑i−1
�=1 β�)m

is used in computations in addition to that of xA+iqm−(i−1)

for i = 1, 2, . . . ,m−1. 2) There exist γ ∈ {1, 2, . . . ,m−1} and β� ∈ {0, 1, . . . , q−
1} for � = 1, 2, . . . , γ − 1 such that xA+iqm−i−(

∑i−1
�=1 β�)m

is used in computa-

tions in addition to that of xA+iqm−(i−1)−(
∑i−1

�=1 β�)m
for i = 1, 2, . . . , γ − 1;

and xA+γqm−γ−(
∑γ−1

�=1 β�)m
is not used in any computation other than that of

xA+γqm−(γ−1)−(
∑γ−1

�=1 β�)m
.
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We first consider case 1). Defining
∑i

�=1 β� = 0 for i = 0, then by an it-
erative analysis, we know that for i = 0, 1, . . . ,m − 1, adversary Mout has
xA+iqm−i−(

∑
i
�=1 β�)m+jm|j=0,1,...,q−1. and xA+(i+1)qm−(i+1)−(∑i

�=1 β�)m, and use

them to compute xA+(i+1)qm−i−(∑i
�=1 β�)m. From Lemma 4, adversaryMout fur-

ther acquires all blocks in ∪m−1
i=0 Bi, where Bi is defined by (6). Define

T := A+ (m− 1)qm− (m− 1)−
(

m−1∑
�=1

β�

)
m (14)

Then given β� ∈ {0, 1, . . . , q− 1} for � = 1, 2, . . . ,m− 1, the lowest index among

the blocks in Bi is A+iqm−i−
(∑i

�=1 β�

)
m, which is at least T+(m−i−1); and

the highest index among the blocks in Bi is A+mqm− i−
(∑m−1

�=1 β�

)
m, which

equals T + qm+ (m− i− 1). Therefore, for i = 0, 1, . . . ,m− 1, adversary Mout

obtains at least all the blocks whose indices modulom give (T−i−1) mod m and
whose indices are at least T+(m−i−1) and at most T+qm+(m−i−1). In other
words, adversary Mout obtains at least all the blocks whose indices are at least
T and at most T + qm+m− 1. Clearly, Mout acquires blocks xT+j |j=0,1,...,qm−1

without leaking xi for any i > T + qm − 1. Given obtained xT+j |j=0,1,...,qm−1,
Mout can further compute xi for any i > T + qm − 1. Then Mout obtains any
block with index at least T . From (13), B > T follows. Hence, Mout gets the final
desired N blocks xB+j |j=0,1,...,N−1 without leaking xi for any i > T + qm − 1.
Then it further follows that IM (i.e., the index stretch of attack AM ) is at most
T + qm− 1−A, which is at most qm2 −m given the definition of T in (14) and
β� ≥ 0 for � = 1, 2, . . . ,m − 1. This contradicts with (12) which shows that IM
is at least qm2 − 2m + 1 + (M − N)m and thus at least qm2 − m + 1, given
M ≥ N + 1. Hence, case 1) does not hold.

Then we consider case 2). Noting
∑i

�=1 β� = 0 for i = 0, we know that for
i = 0, 1, . . . , γ − 1, adversaryMout has xA+iqm−i−(

∑i
�=1 β�)m+jm|j=0,1,...,q−1. and

xA+(i+1)qm−(i+1)−(∑i
�=1 β�)m, anduse themto computexA+(i+1)qm−i−(∑i

�=1 β�)m.

Note that given βi ∈ {0, 1, . . . , q− 1}, block xA+(i+1)qm−(i+1)−(∑i
�=1 β�)m belongs

to xA+(i+1)qm−(i+1)−(
∑i+1

�=1 β�)m+jm|j=0,1,...,q−1.. We define T as the N consecu-

tive blocks with indices starting from A+ (γ − 1)qm+ 1− (
∑γ−1

�=1 β�)m and end-

ing with A + γqm − (
∑γ−1

�=1 β�)m. Let T1 be the set of blocks which belong to T
and whose indices modulo m give (A − i) mod m for i = 0, 1, . . . , γ − 1. Then
|T1| = γq. From Lemma 4, adversaryMout obtains at least all blocks in T1. Other
than xA+γqm−γ−(

∑γ−1
�=1 β�)m

and the blocks in T1, among the blocks in T , let T2 be

the set of remaining blocks that adversaryMout obtains. Then among the blocks in
T , adversaryMout obtains T∗ := T1∪T2∪{xA+γqm−γ−(

∑γ−1
�=1 β�)m

}. From Lemma

2, to acquire T∗, adversaryMin has to leak at least T∗ blocks with indices at most
A+ γqm− (

∑γ−1
�=1 β�)m.
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We refer attack AM as A∗
M when Min leaks exactly the following T∗ = (γq +

|T2|+1) blocks among the blocks with indices at most A+ γqm− (
∑γ−1

�=1 β�)m:

xA+iqm−i−(
∑i

�=1 β�)m+jm|i=0,1,...,γ−1;
j=0,1,...,q−1.

(15)

xA+γqm−γ−(∑γ−1
�=1 β�)m, and all blocks in T2. (16)

Then the number of leaked blocks with indices at most A+γqm−(
∑γ−1

�=1 β�)m in
any instance of AM is at least that in any instance of A∗

M . Therefore, considering
that (a) the number of leaked blocks with indices greater than A + γqm −
(
∑γ−1

�=1 β�)m in any instance of AM is at most that in any instance of A∗
M as the

total number of leaked blocks is M for both AM and A∗
M ; and (b) for both the

instance of AM and the the instance of A∗
M , T∗ is the set of all obtained blocks

in the N consecutive blocks T , we know an instance of A∗
M which maximizes

the index stretch is also an instance of AM which maximizes the index stretch.
Hence, we can just let AM be A∗

M in the analysis. Accordingly, we can assume
the (|T1|+ |T2|+ 1) blocks given by (15) (16) are leaked in attack AM .

Given attack AM , we construct attack AM−1 as follows. The (γ + 1) blocks
xA+iqm−i−(

∑i
�=1 β�)m

|i=0,1,...,γ leaked in AM are not leaked in AM−1. The γ

blocks xA+iqm−(i−1)−(
∑i−1

�=1 β�)m
|i=1,2,...,γ not leaked in AM are leaked in AM−1.

Other than the (2γ+1) blocks mentioned above, the remaining blocks leaked in
AM are still leaked in AM−1. Then the blocks which are leaked in AM−1 and
have indices at most A+ γqm− (

∑γ−1
�=1 β�)m constitute the set

{xA+iqm−i−(
∑

i
�=1 β�)m+jm|i=0,1,...,γ−1;

j=1,...,q−1.
}

∪ {xA+iqm−(i−1)−(
∑i−1

�=1 β�)m
|i=1,2,...,γ.} ∪ T2

= {xA+iqm−i−(
∑i

�=1 β�)m+jm+m|i=0,1,...,γ−1;
j=0,1,...,q−1.

} ∪ T2. (17)

Therefore, each block given by (15) and leaked in AM is now replaced with a
block with index adding m in AM−1. Similar to the proof of Lemma 4, we can
show by mathematical reduction that in AM−1, with leaked blocks

xA+iqm−i−(
∑i

�=1 β�)m+jm+m|i=0,1,...,γ−1;
j=0,1,...,q−1.

, (18)

adversary Mout can obtain all the blocks whose indices modulo m give (A −
i) mod m and whose indices are at least A + iqm − i − (

∑i
�=1 β�)m + m and

at most A + γqm − i − (
∑γ−1

�=1 β�)m. Then (a) in attack AM−1, among the
blocks in T , adversary Mout obtains T1 ∪ T2. It’s straightforward to see that
any block given by (18) is useful in inducing T1 ∪ T2. Then since all the M
blocks in attack AM are useful, all the (M − 1) blocks in attack AM are also
useful. (b) Recall that in attack AM , among the blocks in T , adversary Mout

obtains T1∪T2∪{xA+γqm−γ−(
∑γ−1

�=1 β�)m
}, but xA+γqm−γ−(

∑γ−1
�=1 β�)m

is not used

in any computation other than that of xA+γqm−(γ−1)−(
∑γ−1

�=1 β�)m
, which is also

a block in T and is leaked in AM−1. Note that (c) in attacks AM and AM−1,
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the leaked blocks with indices greater than A + γqm − (
∑γ−1

�=1 β�)m (i.e., the
highest block index of T ) are the same. Therefore, from (a) and (b) and (c),

among the blocks with indices greater than A + γqm − γ − (
∑γ−1

�=1 β�)m, the
blocks that Mout can obtain in attacks AM and AM−1 are the same. From (13),
the lowest block index (i.e., B) among the final desired blocks xB+j |j=0,1,...,N−1

is greater than A+ γqm− γ − (
∑γ−1

�=1 β�)m. Then since adversary Mout obtains
xB+j |j=0,1,...,N−1 in attack AM , Mout also obtains xB+j |j=0,1,...,N−1 in attack
AM−1. Because xA is the leaked block with the lowest index in AM ; block xA+m

is leaked in AM−1; and the highest block index in AM−1 is no less than that
in AM , then the index stretch of attack AM minus m. Recall that (M − 1)
blocks are leaked in attack AM−1; and IM−1 is the maximal index stretch of a
successful attack with (M − 1) useful leaked blocks. Therefore, for M ≥ N + 1,
it follows that IM−1 ≥ IM −m, which together with Lemma 1 and (12), leads
to IM = qm2 − 2m+ 1 + (M −N)m. 	


Proof of Lemma 1. Here we also let xB+j |j=0,1,...,N−1 be the final N con-
secutive blocks that the external adversary Mout wants to obtain. Given
N = mq, we divide {xB+j |j=0,1,...,N−1} into m sets Ri|i=0,1,...,m−1, where
Ri := {xB+jm+i|j=0,1,...,q−1} for i = 0, 1, . . . ,m − 1. We will prove that for
adversary Mout to acquire xB+j |j=0,1,...,N−1, the internal adversary Min has
to leak at least N blocks in the union of m sets Gi|i=0,1,...,m−1, with Gi :=
{xαim+jm+i|j=0,1,...,q−1}, where αi is a positive integer, for i = 0, 1, . . . ,m − 1.
Given i = 0, 1, 2, . . . ,m − 1, if all blocks of Ri are leaked, we just set Gi as Ri.
Then we consider that at least one block (denoted by xI hereafter) of Ri is not
leaked given i = 0, 1, 2, . . . ,m − 1, where I mod m = i. Computing block xI

needs blocks xI−jm|j=q,q−1,...,1, xj−1. If the q blocks xI−jm|j=q,q−1,...,1 are all
leaked, xI−jm|j=q,q−1,...,1, then we set Gi as xI−jm|j=q,q−1,...,1. If there exists
a j∗ such that xI−j∗m is not leaked, the analysis continues iteratively as com-
puting block xI−j∗m needs blocks xI−j∗m−jm|j=q,q−1,...,1, xj−1. Therefore, at the
end Min should always leak Gi to let Mout get Gi.

To maximize the index stretch, we consider the m sets Gi|i=0,1,...,m−1 do not
“cross” with each other. In other words, there exist distinct i0, i1, . . . , im−1 which
are from {0, 1, . . . ,m− 1} such that the highest block index of Gij−1 is less than
the lowest block index of Gij , where j = 1, 2, . . . ,m−1. Then it’s straightforward
to see

(αijm+ ij)−[αij−1m+ (q − 1)m+ ij−1]

= m− 1, ∀j = 1, 2, . . . ,m− 1, (19)

so that adversary Mout can use {xαij−1
m+�m+i|�=0,1,...,q−1} and xαij

m+ij to

compute xαij
m+ij+1. Given (19), with A := αi0m+ i0, adversary Mout leaks the

following N blocks: xA+iqm−i+jm|i=0,1,...,m−1;
j=1,2,...,q−1.

. With xA+iqm−i+jm |i=0,1,...,m−1;
j=0,1,...,q−1.

,

adversary Mout can further acquire any block with index at least qm2 − qm −
2m+2. In addition, any leaked block is useful in obtaining N consecutive blocks
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with indices at least qm2 − qm− 2m+ 2. The index stretch of this attack is

(m− 1)qm− (m− 1) + (q − 1)m = qm2 − 2m+ 1.

	

Proof of Lemma 2. The J blocks that adversary Mout wants to obtain can be
divided into m sets Li|i=0,1,...,m−1, where Li consists of blocks which are part
of the J blocks and whose indices modulo m all give i, for i = 0, 1, . . . ,m − 1.
Note that |Li| ≤ q. We show that for Mout to obtain Li, Min has to leak at least
|Li| blocks whose indices modulo m all give i. This is true when all blocks of Li

are leaked, and is also true in the case where at least one block (say block x)
of Li is computed instead of being leaked because in that case, at least q blocks
whose indices modulo m all give i should be leaked to compute block x. Hence,
to obtain J blocks out of xG+i|i=0,1,...,N−1, adversary Min has to leak at least
J blocks with indices at most G+N − 1. 	

Proof of Lemma 3. First, given xA−ym−iqm+jm|i=0,2,...,a;

j=0,1,...,q−1
, xA−ym−iqm+qm−1

|i=0,2,...,a andxA+im|i=q−y+1,...,q−1, adversaryMout canobtainxA+jm|j=0,1,...,q−1..
Then as explained in the proof of Lemma 1,with xA+iqm−i+jm|i=0,1,...,m−1;

j=0,1,...,q−1.
, adver-

saryMout can further acquire any block with index at least qm2− qm− 2m+2. In
addition, any leaked block is useful in obtainingN consecutive blocks with indices
at least qm2 − qm − 2m + 2. It’s straightforward to derive that the index stretch
of this attack is (M −N)m+ qm2 − 2m+ 1. 	

Proof of Lemma 4. We prove that adversary Mout can get Bi for i = 1, 2, . . . , r
by mathematical reduction with the following two steps ① and ②. ② Given
i = 1, . . . , r, if Mout obtains the blocks in Bi, then Mout can further get the
blocks in Bi−1.

① We show how adversary Mout acquires the blocks in Br. Given
xA+rqm−r−(

∑r
�=1 β�)m+jm|j=0,1,...,q−1 and xA+(r+1)qm−(r+1)−(

∑r
�=1 β�)m, adver-

sary Mout can calculate
xA+(r+1)qm−r−(

∑r
�=1 β�)m. Therefore, adversary Mout have all the blocks in Br.

Second, to prove ②, we demonstrate that given i = 1, . . . , r, if Mout gets all
the blocks in Bi, then Mout can also acquire all the blocks in Bi−1. We first prove
that adversary Mout gets xA+iqm−(i−1)−(

∑i−1
�=1

β�)m+zm|z=0,1,...,(r+1)q−iq−∑r
�=i β�.

also by mathematical reduction with the following two steps ❶ and ❷. ❶ For
z = 0, adversary Mout uses xA+iqm−i−(

∑i−1
�=1 β�)m

in Bi and

xA+(i−1)qm−(i−1)−(
∑i−1

�=1 β�)m+jm|j=0,1,...,q−1 to calculate

xA+iqm−(i−1)−(
∑i−1

�=1 β�)m
. ❷ Let adversary Mout obtain

xA+iqm−(i−1)−(
∑i−1

�=1 β�)m+zm|z=0,1,...,z∗., where z∗ ∈ {0, 1, . . . , (r + 1)q −
iq −∑r

�=i β� − 1}. From the condition, Mout also gets

xA+(i−1)qm−(i−1)−(
∑i−1

�=1 β�)m+jm|j=0,1,...,q−1

= xA+iqm−(i−1)−(
∑i−1

�=1
β�)m+zm|z=−q,−(q−1),...,−1.
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Hence, Mout has xA+iqm−(i−1)−(
∑i−1

�=1
β�)m+zm|z=−q,...,z∗.. It’s straightforward to

see block xA+iqm−i−(
∑i−1

�=1 β�)m+(z∗+1)m belongs to Bi. Then Mout utilizes

xA+iqm−i−(
∑i−1

�=1 β�)m+(z∗+1)m and

xA+iqm−(i−1)−(
∑i−1

�=1 β�)m+zm|z=−q+z∗+1,−q+z∗+2,...,z∗.

= xA+(i−1)qm−(i−1)−(
∑i−1

�=1 β�)m+(z∗+1)m+jm|j=0,1,...,q−1

to compute xA+iqm−(i−1)−(
∑i−1

�=1 β�)m+(z∗+1)m. Owing to ❶ and ❷ above, Mout

acquires

xA+iqm−(i−1)−(
∑i−1

�=1 β�)m+zm|z=0,1,...,(r+1)q−iq−∑
r
�=i β�.,

which with xA+(i−1)qm−(i−1)−(
∑i−1

�=1 β�)m+jm|j=0,1,...,q−1 also obtained by Mout

compromise set Bi−1.
The result follows given ① and ②. 	


Proof of Theorem 2. Let Cben and Cmal be the computation time for a pool
update in the benign case and in the malicious case, respectively.

It is straightforward to derive Cben = λ(q + 1)CPn .
Then we compute Cmal in the malicious case.
For i ≥ 0, we also use Ci to denote the time cost in the malicious case to

compute the unmemoized block gnS(N + c+ i). For −N ≤ i < 0, we define Ci as
0 only for ease of notation. Note that for −N ≤ i < 0, Ci is not the time cost in
the malicious case to compute the unmemoized block gnS(N + c+ i). We have
for i ≥ 0,

Ci = Ci−1 +

j=q∑
j=1

Ci−jm + (q + 1)CPn . (20)

From (20), we obtain Ci ≥ 2Ci−m for i ≥ m and Ci = (i + 1)(q + 1)CPn for

0 ≤ i ≤ m− 1. Then for i ≥ 0, it follows that Ci ≥ 2�
i
m �[(i mod m) + 1](q + 1).

The total cost Cmal equals the cost to compute gnS(N + i)|0≤i≤c−1, plus the
cost to compute unmemoized blocks gnS(N+c+i)|max{λ−N−c,0}≤i≤λ−1−c. Then

Cmal = c(q + 1)CPn +

λ−1−c∑
i=max{λ−N−c,0}

Ci

≥ [2�
λ−1−c

m �−2m(m+ 1)(q + 1) + c(q + 1)]CPn .
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Our work on device attestation with bounded leakage of secrets (DABLS) started
in early 2010, when Adrian Perrig described an idea he had in an area that inter-
ests me quite a bit, namely how to obtain desirable security properties without
relying on secrets. Briefly, he suggested that a Verifier might be able to authen-
ticate a remote device, D, even if the device is contaminated with malicious
software (malware) that could access any of D’s secrets. If both device D and
Verifier could be initialized with the same large pool of high entropy secrets,
S, and if the device’s output bandwidth, Dban, could be appropriately limited,
then after deployment the device malware could not leak the entire secret pool
S to a network collaborator before the Verifier would cause the device software
to update and overwrite pool S to a new verifiable state S′ = f(n, S). Here, n is
a Verifier-sent public nonce that has to be used in the pool update and f is the
update function. The Verifier would send a fresh nonce to D every Ts units of
time, the device would use Tup units of time to compute the pool update f(n, S)
and respond to the Verifier’s challenge. The response would be computed with
a message authentication code (MAC) function using the new secret S′, namely
MAC(S′, constant). Adrian thought that we could find an update function f ,
which would preserve pool entropy, prevent the external malware collaborator
from ever discovering an entire secret pool S, and successfully masquerading
device D in response to a Verifier’s nonce-based challenge. Clearly, neither the
device malware nor its external collaborator could predict a nonce n and con-
struct a future state of pool S, given that the external collaborator’s power is
bounded.

Soon after, we realized that an additional requirement would become neces-
sary, namely that the external collaborator must also be prevented from recov-
ering an entire past state of S by updating and splicing blocks of different past
pools over time, and thus the problem became more challenging than antici-
pated. We both thought that one of my graduate students, Andy Tran, would
be able to design a suitable update function f for an appropriate device memory
size, pool size |S|, output bandwidth, and time units Tup and Ts, so that device
authentication would be possible even if the entire content of the secret pool S
were accessible by device malware (but not by the external malware collabora-
tor). Furthermore, our colleague Jon McCune suggested that, once we solve the
device authentication problem, we could extend the solution to obtain remote
device attestation. After authentication, the Verifier could then send some addi-
tional high entropy E, where |E| � |S|, to device D, which would be used by

B. Christianson et al. (Eds.): Security Protocols 2013, LNCS 8263, pp. 115–122, 2013.
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D’s ROM-implemented boot program to initialize all D’s processor-accessible
memory outside the pool S region (e.g., primary memory, graphics card mem-
ory) with a bit pattern that could not be predicted by the malware collaborator
in the network. The ROM program would be inaccessible to the device malware.
Then device D would return a response MAC(E||S′) to the Verifier, and receive
the new code to be booted C, and MAC(E||S′, C), which would authenticate
code C to the boot program.

DABLS has the following advantages over the better known software root of
trust (SWORT) establishment1 on device D because SWORT does not (1) pro-
vide device authentication, nor (2) does it typically guarantee uninterruptable
composition of malware-free memory state establishment and trusted boot of ap-
plication software, without additional mechanisms (i.e., malware could re-install
itself into the device after the establishment of a malware-free memory state
and trusted software boot), nor (3) does it allow remote verification of program
execution on a device, since it is usually very susceptible to much smaller timing
variations than those experienced over the Internet.

Designing DABLS proved to be harder than anticipated, despite a clever con-
struction for update function f supplied by our colleague Jim Newsome; i.e.,
function f1 defined in the accompanying paper. While the update function and
system parameters chosen allowed Andy Tran to prove the security of DABLS,
the system design was infeasible since Tup/Ts  1. This would imply that device
D would spend a lot more time updating pool S than performing useful work.
Andy Tran’s Master Thesis2 presents the DABLS analysis in some detail, and
suggests that this problem is similar in spirit with that of bounded leakage of
secrets in cryptography – a problem area started about 20063.

In 2012, Jun Zhao, another of my graduate students, revisited the DABLS
problem, and this presentation summarizes the progress we made to date. We
call the new system ReDABLS. In particular, we analyze two new additional
pool update functions, namely functions f2 and f3 of the accompanying paper,
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erals.” In International Conference on Trust and Trustworthy Computing (TRUST),
June 2010.
A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla. “SCUBA: Secure code
update by attestation in sensor networks.” In Proceedings of ACM Workshop on
Wireless Security (WiSe), Sept. 2006.

2 Andrew Tran. “DABLS: Device attestation with bounded leakage of secrets.” Mas-
ters Thesis, Carnegie Mellon University, July 2011.

3 G. Di Crescenzo, R. Lipton, and S. Walfish “Perfectly Secure Password Protocols in
the Bounded Retrieval Model,” in Proc. of the Theory of Cryptography Conference,
LNCS 3876, Springer 2006, pp. 225-244.
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which help us prove secure remote authentication in the presence of device mal-
ware and an external malware collaborator. Unfortunately, these functions also
lead to an infeasible system despite somewhat improved performance; i.e., their
overhead rate Tup/Ts > 1. Their analyses help illustrate the challenges faced by
the ReDABLS design. Finally, we illustrate two new probabilistic update func-
tions (i.e., denoted by f4 and f5 defined in the accompanying paper) and argue
that these types of functions can lead to feasible system designs (i.e., their over-
head rate Tup/Ts � 1), although they allow a very small probability of network
adversary success in forging remote device authentication by collaborating with
the device malware.

Note, again, that the embodiment of our adversary comprises two collaborat-
ing entities, both of which could easily be operated by the fictitious Professor
James Moriarty – the evil genius and Cambridge graduate of Arthur Connan
Doyle fame. The first entity is Min, the malware operating inside the computing
device, and the second Mout, the external network collaborator to whom Min

tries to leak a complete pool S during some epoch Ts of device operation. If this
were possible, Mout could obtain the current value of some secret pool, past or
present, and using the collected nonce, could generate a correct response to a
Verifier’s current challenge. However, given the design of ReDABLS with func-
tions f4 and f5 defined in the the paper, and the bounding of the amount of
leakage by Min, this would be unlikely, except with a very small probability.

Observe that Min’s network collaborator, Mout, controls the network in the
same way that the Dolev-Yao adversary would. Hence, Professor Moriarty is
much more powerful than a Dolev-Yao adversary, since he also operates and
controls Min. In fact, Moriarty is one of the most powerful adversaries that we
faced at the Security ProtocolsWorkshop (SPW) during the past decade. Clearly,
if Moriarty could not insert, operate, and control Min in device D, his power
would degrade to that of a classic Dolev-Yao adversary, and SPW participants
could easily counter his attacks using known techniques. Similarly, if Moriarty
were deprived of Mout’s services and had to rely only on Min, we would also
be able to design a scheme for device authentication; e.g., perhaps using simple
and secure network front-ends. Other techniques used in cryptography, such as
proactive security based on threshold cryptographic functions, could also be
used, at least in theory.

In short, this is the setting of the ReDABLS problem.
Frank Stajano: I have a question on the scheme as shown in the previous

slide. I understand that the basic idea of software attestation is that, if you
can say that the device was found in a certain state, then there’s nothing else
running on the device, so long as you already know what the device is like from
a hardware viewpoint?

Reply: Yes, in software attestation one verifies a carefully-crafted program’s
timed execution on a known device, which essentially means that there is no
running malware code during that program’s execution. For timed execution to
work, one has to know all the device details, not only of the processor timing.
One has to know the timing of the buses, for example. In short, one has to
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know the very precise timing of the device to enable the Verifier to attest to the
program execution on a certain device type.

Frank Stajano: For example, if someone has twice as much RAM in the
device, then that could make a timing difference.

Reply: Yes, in attesting to a program’s execution on a device, the device has
to have a fixed configuration a priori known to the Verifier. More importantly,
one cannot let the device communicate with an outside proxy device, which could
be faster and simulate a correct response to a Verifier’s challenge.

Frank Stajano: So, in this new scheme the adversary also controls the net-
work.

Reply: Yes.
Frank Stajano: So, it seems that the Verifier would have no way of knowing

whether it is talking to a device of the given hardware configuration, or not. In
that case, how can you guarantee that the relevant part of the device RAM was
overwritten in full when you don’t even know how much RAM there is?

Reply: Oh no, the device configuration is fixed and known to the Verifier.
In fact, part of the design of this scheme is determining how to choose the
device parameters, for a given update function, for example. The hardware is
fixed, and the Verifier has to know its parameters. In all attestation cases, the
Verifier knows (at least some of) the hardware configuration, whether software
or hardware attestation.

Frank Stajano: So please tell me if the following is part of your attacker
model. Assume I amMoriarty, I get one of your devices, I open it up by consulting
with Sergei [Skorobogatov], and then I take a much bigger computer in which
install all the stuff (e.g., secret pool) that I got out from your device. Then,
using this bigger computer, I start responding to your Verifier’s challenges.

Reply: This adversary attack cannot be handled by our scheme. In our model,
after deviceD and the Verifier are initialized locally with the same pool of secrets
and the Verifier has the device configuration, the device can be deployed. After
deployment, Moriarty has no physical control over the device. The only thing he
can do is to install malware Min. Or, perhaps, he has already managed to install
Min in the shrink-wrapped operating system code, which was loaded into the
device prior to deployment. So Moriarty is able to either control the distribution
of the device software or penetrate the system after deployment during normal
device operation by exploiting software vulnerabilities, or both.

Frank Stajano: So Moriarty can only do a software attack on these devices.
There’s no hardware attack in your model.

Reply: Correct.
Frank Stajano: Or maybe some tamper resistance prevents hardware at-

tacks.
Reply: No, we are simply not assuming any hardware tampering. The key

idea is that this scheme would feasible for commodity hardware devices whose
deployment and operation is beyond Moriarty’s physical reach. Sorry for not
having mentioned this earlier.
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Mohammed Almeshekah: Sorry, just going back to the previous slide, did
you say that you reset the RAM every time you reload software? So, if I un-
derstood you correctly, you minimize the bandwidth for output, and then every
time you reset, you erase the pool of secrets that you have, right?

Reply: The RAM reset is done online, unless there is an authentication fail-
ure. We don’t take the device off line to clean its memory of malware. However,
if the Verifier detects that the device response was incorrect, or didn’t arrive on
time, then the Verifier would know that there is an authentication failure. In
that case, the device operation would have to be restarted. One would have to
reset the device offline, install a fresh pool (which erases the old one), and start
the authentication protocol over again. However, so long as all the responses are
correct and arrive on time, one would clean up the device memory only occa-
sionally. The Verifier would send a command that says: “please clean up, here
is some fresh high-entropy information E, erase whatever you have in memory
outside pool S, use the additional entropy to fill out all this memory area with
pseudorandom bits, and send the response back to me.” That’s basically the
second part of the process, which follows device authentication protocol. And
the third part would be to load the device with Verifier-provided software, after
the device-accessible free RAM is overwritten with the pseudorandom sequence.

Returning to our authentication protocol, it is quite important that updating
the large pool of secrets S be done efficiently, and not only efficiently, but be done
in a feasible way. This means that the time to update the pool of secrets and
send a response, namely time Tup, has to represent a small fraction of the device
operation time; i.e., Ts the time until a new challenge arrives. Why is this the
case? During epoch Ts the device performs the actual application computation,
namely real application work. Hence, we want the overhead rate Tup/Ts to be
much less than 1, or as close to 0 as possible. So what would be a reasonable
overhead rate? In security typically unreasonable high rates would exceed 8 -
10%. Desirable overhead for security checks usually are between about 4 - 5%.
If this rate comes close to 1, or if it’s over 1, our scheme couldn’t possibly work,
so that’s why the feasibility condition Tup/Ts � 1 is very important. And as it
turns out, satisfying this feasibility condition is not easy at all.

The system operation, including the periodic pool update in response to re-
ceiving a nonce from the Verifier, is illustrated in Figures 1 and 2 of the accompa-
nying paper. Please note the definitions of the first two update functions f1 and
f2; viz., the accompanying paper. These functions satisfy the following three re-
quirements that are necessary for the proof of secure pool updates, and yet they
fail the feasibility condition. First, any block of the updated pool S′ = f(n, S)
needs all N blocks of previous secret pool S as inputs. If this condition is sat-
isfied, then the device malware Min needs to leak at least all the N blocks of a
secret pool to succeed in leaking the entire pool. Second, the collaborating net-
work adversary Mout needs to obtain an arbitrary group of N contiguous blocks
of a pool among the blocks leaked by device malware Min. Third, the design
of the functions must force Min in a space-time tradeoff when attempting to
leak N contiguous pool blocks to Mout. If the the device output bandwidth Dban
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prohibits the transfer of all N blocks in a single Ts epoch, then Min would either
have to save the blocks not leaked in an epoch in freely usable system memory,
Lmem for leakage in future Ts epochs or perform the pool update computation
using fewer than N pool blocks, or both. Hence, either (1) free memory Lmem

is large enough to hold most, if not all, of the blocks not leaked in a Ts epoch or
(2) Min would have to use extra update computation time beyond Tup, if Lmem

is too small. Hence if both Lmem and pool update time Tup are upper-bounded
appropriately, Min will either not have enough memory space to leak all blocks
or will exceed Tup, which be detected by the Verifier. If Min cannot circumvent
this tradeoff, it could not leak all the contiguous N blocks of any complete secret
pool S.

So the question is, what can we do now that neither function is feasible? Well,
we try another function, f3. Here, one runs a sliding window w, where |w| < |S|
over pool S, which is the input to a hash function, to generate a single block
of the update pool. Then, the update function shifts the input window to the
right over S by one block and produces a second block of the updated pool.
This proceeds in a circular way over pool S, and once all the blocks of S have
been processed, the updated pool S′ is obtained. Note that f3 uses a smaller
input, |w| < |S|, for each block of the updated pool than f1 and f2, and a
hash function instead of a PRF to generate a block of the updated pool, so we
expected a significant performance improvement. Unfortunately, the feasibility
condition could still not be satisfied.

Frank Stajano: So in all of these schemes you keep on generating new secrets,
but still from the initial pool of the first epoch.

Reply: Yes, from the initial pool also committed in the Verifier.
Frank Stajano: So maybe I fail to understand some part of the scheme, but

I thought that you said you needed to make sure that the malware inside the
device could not leak the secret pool content, and you would do that by keeping
on making the secret pool bigger, and bigger, and bigger.

Reply: No, the pool always has a fixed size |S|. It’s not growing bigger and
bigger when it is being updated.

Frank Stajano: So what is the part that prevents the malware from leaking,
maybe slowly, the initial N secret blocks after which the network can simulate
the whole device no matter how far the pool updates have gone.

Reply: We’ll see that in a minute, but let me give you the short answer now.
If I can leak only, say, three blocks out of a two hundred block pool during an
epoch, Ts, in the next epoch the previous two hundred pool blocks are gone,
since they’re overwritten with the updated set of blocks.

Frank Stajano: After enough epochs have passed that I have leaked every-
thing, I can leak an entire pool.

Reply: Yes, you are anticipating an important problem. Let me explain it
now. Clearly, even if the scheme restricts malware Min to leaking only a small
part of the secret pool S before it is overwritten by the next set of values S′, the
outside network collaborator Mout can gain increasingly more pool values. As
you anticipate, Mout could collect all the nonces sent by the Verifier, and apply



ReDABLS: Revisiting Device Attestation with Bounded Leakage of Secrets 121

the update function to the partial pool blocks (e.g., the three blocks mentioned
above) it receives from Min in epoch 1 to generate blocks of epoch 2. Then it
could combine the updated blocks with the blocks leaked by Min in epoch 2,
and thus Mout would already exceed the three-block limit of epoch 2 leakage
imposed on Min. And Mout repeats this process for leaked blocks of epoch 3:
with the collected nonces, it updates the blocks it has for epoch 2 and combines
them with the leaked blocks of epoch 3, and thus it constructs a larger part of
a secret pool outside the device. Eventually, adversary Mout can construct an
entire pool for some epoch and wins. So the question is this: what prevents the
adversary from carrying out this pool splicing process? That is your question.

Briefly, update functions f1, f2, and f3 are designed to satisfy the three nec-
essary conditions summarized above, namely (1) Mout needs at least N blocks,
(2) it has to have contiguous blocks of some pool, and (3) Min has to circumvent
the space-time tradeoff in order to enable Mout to obtain the entire pool S of
some epoch. (The appendix of the accompanying paper illustrates the use of
these conditions in the security proof for function f2.) However, none of these
functions led to a performance-feasible system, as all have an undesirable lower
bound on the overhead rate Tup/Ts. The challenge we faced caused us to doubt
the feasibility of the entire idea of ReDABLS for a while. However, we could not
prove that a suitable update function could not exist, and hence we had to try
some other type of update function. The idea was to construct a probabilistic
pool update function that could have about 1/100 of the overhead rate of the
previous functions, which would obviously be practical, even if the probability of
adversary’s success would not be zero. The goal was to design an update func-
tion that would have a small overhead rate and would only allow a very small
probability of adversary success. Thus we defined functions f4 and f5 (viz., the
the accompanying paper) and obtained feasible overhead rates Tup/Ts � 1.

This part of the presentation covered the first part of device attestation with
bounded leakage of secrets, namely the authentication of a remote device. The
second part is that of obtaining a malware-free memory state, and I will not go
over it in detail because it’s pretty straightforward. Once the Verifier authen-
ticates the remote device D at epoch i, it can send it a bunch of entropy, E,
where |E| � |Si|, to D over a clear line. A ROM-stored program of D could
overwrite everything in D’s accessible memory outside the secret pool Si with
pseudorandom bits derived from E. The secret pool would be updated to Si+1

and then D would respond to the Verifier essentially confirming that this new
memory state has no malware in it.

Ariel Stulman: I think I missed something in the previous slide. You send
entropy E to the device over a network that’s controlled by an adversary.

Reply: Yes.
Ariel Stulman: So, first of all, you assume Mout will send entropy on.
Reply: The point is that entropy E arrives at the device over clear lines. E

augments the secret pool, which the network adversary Mout can only have in
an incomplete way. So even if the adversary Mout gets E completely, it would
not have the union of E and Si+1; e.g., E||Si+1. However, the device has E||Si+1
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and could respond correctly to the Verifier’s challenge E. Remember that the
device has to prove that it has E||Si+1.

Ariel Stulman: It proved a union?
Reply: Yes, we’ve already shown that a secret pool cannot be leaked com-

pletely. Now if the adversary Mout has an incomplete pool and the complete
entropy, he will still be unable to respond correctly to the Verifier, say with the
result of a MAC function over the union E||Si+1.

Ariel Stulman: The device is not sending back Si+1, only?
Reply: No. We already have the complete pool Si+1 by now.
Ariel Stulman: On the device and Verifier?
Reply: Yes.
Ariel Stulman: Independently?
Reply: Yes, the device and Verifier independently generate Si+1. That’s ex-

actly what they’re supposed to do. And now the device says to the Verifier: “I’m
done with the entropy E, and here is my response.” And it takes a MAC over
E||Si+1 and sends it back to the Verifier. The Verifier checks that the response
received is correct, and if it is, clearly all is well because the adversary Mout

would not have been able to send this response since Mout only has entropy E,
but not the complete pool Si+1.
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Abstract. We propose some simple changes to a class of Quantum Key
Distribution protocols. The first enhancement ensures early detection of
any attempted Man-in-the-Middle attack and results in less leakage of
key material to any eavesdropping attacker. We argue that this version
is at least as secure as the original BB’84 scheme, but ensures a closer
binding of the key establishment and authentication components of the
protocol. Further proposed enhancements lead to a doubling of the key
rate, but the security arguments become more delicate.

We also touch on the need to enhance the models used to ana-
lyze both the classical and quantum aspects of QKD protocols. This
is prompted by the observation that existing analyses treat the quantum
(key-establishment) and classical (authentication etc) phases separately
and then combine them in a simple-minded fashion.

1 Introduction

The purpose of this paper is twofold: to present enhancements to existing
prepare-and-measure Quantum Key Distribution (QKD) protocols, and to ar-
gue that we need to enrich our models for the analysis of QKD protocols, in
particular to deal with this enhancement, but also for QKD protocols in general.

QKD exploits features of quantum mechanics, in particular Heisenberg’s Un-
certainly Principle and the No-Cloning Theorem, to ensure that any attempt by
an eavesdropper to monitor the quantum channel will, with high probability be
detected. Typically, QKD strives to provide unconditional secrecy, i.e. secrecy
against an adversary with unbounded computational power. This contrasts with
most classical crypto, where the security properties are typically based on hard
computational problems and therefore assume an adversary with bounded com-
putational power.

In this paperwe focus on enhancing theBB’84 protocol due toBennett andBras-
sard, [BB84]. The first enhancement proposed here is very simple but appears to
be rather effective. After a quantum phase, protocols such as BB’84 involve a first
classical step of agreeing forwhichphotons the receiver used the “correct”measure-
ment basis, followed by a step in which Anne and Bob agree a subset on which they
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will compare their bits to detect any eavesdropping/noise on the quantum chan-
nel. In existing schemes, the agreement on the correct set and the eavesdropping
detection subset is done by open negotiation, and so is known also to an attacker,
indeed could potentially be manipulated by the attacker. Some form of end-to-end
authentication and integrity property is required for the channel overwhich this ne-
gotiation takes place, and in practice this is provided by cryptographicmeans that
require Anne and Bob to pre-share a secret authentication key. In our enhance-
ment, Anne and Bob compute the subset for comparison separately and secretly,
as a function of entropy derived from the previously established, secret authenti-
cation string. This results in less leakage of information to any eavesdropper and
provides early, implicit authentication of the protocol.

The second enhancement is rather more audacious: we propose that the prepa-
ration/measurement bases, rather than being chosen purely randomly, are deter-
mined as pseudo-random functions of the prior, shared secret. Thus Anne and
Bob are able to independently compute the basis sequence. Thus Bob can use
the correct basis to measure all the photons emitted by Anne, rather than just
guessing as for the conventional BB’84. This results in a doubling of the resulting
bit rate, but now the security arguments become more delicate. A crucial obser-
vation that emerges from the analysis is that any measurements performed on a
single photon by an eavesdropper, Yves, leak no information about the prepara-
tion basis. Consequently Yves cannot determine the seed of the pseudorandom
function even with unlimited computational resources, as he cannot gain any
information about the output from it. This, rather surprising observation is key
to showing that this enhancement does not sacrifice security.

The third, even more radical, enhancement involves checking all the bits, not
just a subset, without revealing anything about them. In certain circumstances,
this makes the protocol more efficient.

We discuss the need for suitable models for the analysis of such protocols. Ex-
isting analyses typically use a physics (quantum mechanics based) model to argue
that any eavesdropping on the quantum channel will be detectable during the clas-
sical phase, and any information leakage can be strictly bounded. The proofs are
essentially reductionproofs: violation of these propertieswould imply the existence
of a way to violate principles of quantum mechanics: Heisenberg Uncertainty and
the no-cloning theorem for example. It is usually then argued that Man-In-The-
Middle attacks canbe thwartedbyusingunconditional authenticationmechanisms
onappropriate steps of the classical exchanges.Authentication is typically achieved
using MACs based on universal hash functions such as the Carter-Wegman class.
Most descriptions of QKD protocols in the literature are rather vague or inconsis-
tent as to which of the classical exchanges should be authenticated.

Such a proof strategy is worrying: it treats the key-establishment and authen-
tication phases separately and then composes them in a rather simple-minded
fashion. We know from decades of experience analyzing classical protocols and
primitives that great care needs to be taken in composing modules and argu-
ments. We also know that it is essential that the key-establishment and authen-
tication be inextricably bound together.
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2 Background

BB’84, or variants of it, constitute the form of QKD that are most advanced
in terms of implementation and commercialization. Similar constructs to those
presented here apply to other QKD protocols, e.g. entanglement based proto-
cols such as Ekert’91, [Eke91], but we’ll stick to BB’84 based protocols for the
purposes of this paper.

First we briefly outline the steps of conventional (prepare and measure) QKD
protocols. We describe the idealized flow of the protocol, assuming a sufficiently
low level of noise on the quantum channel and ignoring complications such as
maintaining synchronization of the photon indices, multiple photon pulses etc.
We then describe the changes to the eavesdropping detection and key sifting
steps that constitute the enhancements proposed here.

As is standard, we assume that Anne and Bob share a secret bit string s
prior to starting the protocol, and that this will be used to authenticate the key
establishment. Note that, in order to achieve unconditional guarantees, none of
the initial string should ever be re-used. If we use a stretch of the s string, say
to authenticate a message using a MAC style mechanism, then this stretch of s
must be discarded after use.

We assume that Anne possesses a device capable of emitting individual pho-
tons circularly polarized in one of four states: (↑) 0◦ (↗) 45◦ (→) 90◦ (↘) 135◦.
Bob possesses a polarization measurement device that can be set to measure
either in the horizontal (⊕) or diagonal (⊗) basis. We take the convention that
in the ⊕ basis, a 0◦ photon encodes a 1 and a 90◦ photon encodes a 0, and in
the ⊗ basis, 45◦ encodes a 1 and 135◦ a 0.

We will not go into the details of the “operational semantics” arising from
the quantum mechanics, except to remark that when the circular polarization
of a photon is measured with the “correct” basis the state will collapse to the
correct eigenstate with 100% probability. If the “wrong” basis is used, the wave
function will collapse into either of the eigenstates with 50% probability. Thus,
for example, if a ↑ photon is measured in the ⊕ basis it will collapse to the ↑
state. If a ↗ photon is measured in the ⊕ basis it will collapse to a ↑ state
with 50% probability and a → state with 50% probability, and similarly for the
other combinations. More generally, if the angle between the photon state and
an eigenstate is θ, then the probability that it will collapse to this eigenstate is
given by cos2(θ).

2.1 Phase 1 : The Quantum Channel

Anne emits a stream of photons over a suitable channel, e.g. optical fiber or free
space. Each photon will be polarized in one of the four possible polarizations
chosen randomly and independently. The source of this randomness is pure as
opposed to pseudo-random. Anne keeps a record of the chosen polarization of
each emitted photon. We will assume that mechanisms are in place to allow Anne
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and Bob to label each photon with a unique and consistent index, e.g. numbered
consecutively. We’ll refer to this indexing set as φ. Typically Anne emits a large
number of photons, perhaps tens of thousands. Bob, at the other end of the
quantum channel, measures each incoming photon in one of the two bases, chosen
independently at random (again, really random). Bob keeps a record of the bases
he used for each measurement and the outcome of the measurement (as a bit).

We now move to the classical phases of the protocol in which Anne and Bob
exchange classical information over conventional, classical channels. These chan-
nels are not assumed to be secret, but are where necessary provided with integrity
and endpoint authentication using information-theoretically secure MACs based
on the prior shared secret string s.

2.2 Phase 2 : Key Sifting

Once the transmission and measurement of the photons is finished, Anne and
Bob need to agree for which photons Bob used the “correct” measurement basis
(the ⊕ basis in the case of 0◦ and 90◦ polarization, and the ⊗ in the case
of 45◦ and 135◦ polarization). For these photons, in the absence of noise or
eavesdropping on the quantum channel, the bit corresponding to the outcome
of Bob’s measurement should match Anne’s bit. Where Bob used the “wrong”
basis, the outcome of the measurement will be a random choice of 0 or 1. This
agreement is established over open channels and so any attacker eavesdropping
the classical channel will also learn this information.

To this end, for example, Bob reveals his choice of measurement basis for
each photon (index). Anne responds by stating for which indices his choice was
correct, but without revealing the polarization (i.e. the corresponding bit). At
the end of this phase they have agreed the subset of the indices on which, aside
from noise, they should have agreement between their bits. We’ll refer to this
set as φ1. The complement set of φ1 in φ is discarded.

2.3 Phase 3 : Detection of Eavesdropping

Now Anne and Bob need to agree a subset of φ1 on which they will compare their
bits to establish whether any eavesdropping occurred on the quantum channel.
We will refer to this subset of φ1 as φ2. It is essential that φ2 is chosen at random
after the quantum phase is complete, but it is not, in the existing protocols,
assumed that it is kept secret, rather it is established by open discussion and
hence assumed known to the attacker.

Once they have agreed on φ2, Anne and Bob compare bits for each index in
φ2. In the absence of eavesdropping and noise, they should agree on all these
bits. In practice, due to noise on the quantum channel, there will be some level
of disagreement, but as long as this is low enough to be compatible with the
noisiness of the channel they conclude that there was either no eavesdropping or
any possible eavesdropping is bounded to a sufficiently low level. If the level of
disagreement exceeds an appropriate threshold, typically around 11%, they will
conclude that a significant level of eavesdropping is likely and abort the protocol
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run. Note that they cannot distinguish between noise and eavesdropping. In line
with the literature, we refer to this level of discrepancy as the Quantum Error
Rate (QER).

2.4 Phase 4: Information Reconciliation

Assuming that they have not aborted after phase 3, Anne and Bob proceed to
phase 4: where they start to construct the new session key. They now work with
the complement of φ2 in φ1, which we will call φ3. Thus φ3 is the set of indices of
photons for which Bob used the correct basis but for which they have revealed no
information about the corresponding bits. For the bits indexed by φ3, Anne and
Bob should each have a string of bits which, aside from noise and eavesdropping,
will match. The attacker should know at most a bounded amount about these
bits. The problem is that there will inevitably be some disagreement between
their bits strings due to the QER. They need to eliminate these mismatches
while revealing as little as possible to an attacker eavesdropping on the classical
channel about the actual bit strings. This is usually done using a “cascade”
protocol [BS93]. This is quite standard and will be used unchanged in our first
two enhancements, so we will not go into the details here. However our third
enhancement will propose an alternative approach.

2.5 Phase 5: Secrecy Amplification

We assume that after completing phase 4 above, Anne and Bob share identical
bit strings. An attacker should have at most a bounded amount of informa-
tion about these strings, gleaned possibly from some “below the radar” level of
eavesdropping on the quantum channel and by monitoring the classical channel,
in particular from monitoring phase 4. Anne and Bob can use the QER they
observed in phase 3 to bound the information that Yves might extract. This
information now needs to be reduced to a negligible level by a process of “se-
crecy amplification”. In essence the string is “distilled” down to a shorter string
with purer entropy from the attacker’s perspective. Again, the procedure here is
perfectly standard and will be unchanged in our enhanced protocol so we omit
details, [BBCM95].

2.6 Phase 6: Key Confirmation

Finally, to confirm that Anne and Bob indeed share the same distilled key and
to authenticate the key, they can perform a final key confirmation step. They
can for example each compute a keyed universal hash over the key, keyed using
a fresh stretch of the initial shared string s, and exchange parts of the output.
These values reveal no information about the session key to an eavesdropper,
but if these values agree then Anne and Bob can be confident that they possess
the same session key, and that the key has been shared with the correct counter-
party.
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They now have a confirmed secret key that can be used for secure communi-
cation in a One-Time-Pad (Vernam) encryption mode to provide unconditional
secrecy, or in conjunction with a universal hash function to provide unconditional
integrity. Alternatively, the key could be used for encryption under a suitable
block cipher such as AES, but in this case the security properties are no longer
unconditional.

Anne and Bob should set aside a suitable stretch of this freshly established
key to use for authentication in the next run of the protocol.

Note that in existing descriptions of the protocol, these classical exchanges
are over public channels and so the attacker knows the index sets φ1, φ2 and φ3

and indeed the bits of the string indexed by φ2. Descriptions vary as to which of
these exchanges are authenticated and how, but these details are not relevant for
our purpose here. The point for us is simply that at least some of the exchanges
must be authenticated, and that in practice this requires a pre-established shared
authentication secret.

3 The First Enhancement

The first proposed enhancement to the above style of protocol is very simple
and modifies only phase 3: rather than have Anne and Bob agree the subset
φ2 in a public fashion, we provide a way for each of them to compute it in a
secret fashion. Besides leaking less information, this approach also provides early,
implicit authentication. For this they will use an agreed stretch of the shared
initial shared secret string s, say the first 128 bits, call this s′, to compute φ2.

The details of this construction can be varied as necessary, but it should have
the following properties:

– It must be a deterministic function of the secret string s′. Thus, given s′,
Anne and Bob should compute the same set of indices.

– It should be able to deal with an input of any given length (corresponding
to the size of index set for which they establish that Bob used the correct
measurement basis, i.e. the size of the φ1 set).

– It should be able to accept a value p (0 < p < 1) as a parameter and extract
a proportion p of the φ1 indices.

– An attacker, who knows p but does not know s′, should not have a strategy
for guessing φ2 that is significantly better than guessing at random with
probability p, even if the attacker has been “lucky” in guessing a higher
than average proportion of the bits of s′.

An example of a simple way to realize such a construction is for Anne and
Bob to use the s′ value as a key for AES in Counter mode to generate a pseudo-
random string w. The reason for this is that block ciphers are designed to have
the property that that streams produced by even slightly different keys will
be uncorrelated. Note that we are not using difficulty of inversion: Yves has
unlimited computational power but cannot, even indirectly, observe the cipher
stream.
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Suppose, for illustration, that Anne initially transmits 1024 photons to Bob.
For approximately 512 of these they will establish that Bob used the correct
measurement basis, i.e. the φ1 set. Suppose that they want to select 25% of these
to compare, i.e. approx 128 indices to form the φ2 set on which they will compare
bits to check their level of agreement. They each use s to produce a string w.
They segment w into pairs of bits, and for each 00 pair they select the index in
φ1. The 01, 10, and 11 pairs are not selected. This will yield approximately 128
bits. Anne can now transmit the first 64 bits to Bob and Bob transmits the last
64 bits to Anne. They do not reveal publicly the positions to which these bit
values correspond.

More generally, suppose Anne and Bob want to select approximately 1/m of
the φ1 bits on the set to form the φ2 set, where m is an integer. The stream
w can be segmented into pieces wi of length at least log2 m, and interpreted as
select for wi = 0, not select for 0 < wi < m and ignore for wi ≥ m.

The point of this construction is fourfold:

– An attacker, whom we assume does not know s (or hence s′), will not be
able to compute φ2, hence he does not know which photons Anne and Bob
will use for their comparison.

– We have implicit authentication: an attacker cannot masquerade convinc-
ingly as either Anne or Bob. Even if he tries a MITM attack and say, mea-
sures all the photons emitted by Anne, he will not be able to provide Anne
(or Bob) with a string of bits matching her (or his) bits without knowledge
of φ2.

– The process of key establishment and authentication are inextricably inter-
twined in the protocol.

– In contrast to the standard protocols, we leak only partial information about
the bits in the φ2 set. Consequently we have the possibility of using these in
the final session key, as long as we use suitable privacy amplification. Thus
the resulting bit rate will be higher than with previous QKD protocols. It is
worth noting also that an attacker knows less about the bits of the φ3 string:
even if he has managed to surreptitiously measure some of the photons in
this set, he will not know exactly where these sit in the final key string.

3.1 Discussion

As mentioned previously: the new approach leaks much less information to the
attacker (about the φ2 and hence the φ3 set) and provides early implicit au-
thentication. In fact, with our modification, we do not even have to explicitly
authenticate the classical exchanges between Anne and Bob, hence we do not
need to consume so much of the s string (for example via universal hash func-
tions) in order to ensure integrity.

From the attacker’s perspective, the protocol is unchanged aside from the fact
that he does not now learn the φ2 set. The security of this variant of BB’84 is
thus reducible to that of the original BB’84.
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The new approach also provides a counter to the Photon Number Splitting
(PNS) attack [GBS00]: this can occur when photon pulses have more than one
correlated photon and, in principle, the attacker could measure one (or more)
of the photons in the pulse while leaving one untouched. This provides a way
to eavesdrop on the quantum channel without triggering the detection mech-
anisms (the photon that Bob measures has not been interfered with by the
attacker). Such attacks are worrying, as in practice it is very difficult to elim-
inate completely the occurrence of multiple photon pulses, and they break the
abstractions on which previous correctness proof models were based. This has
prompted proposed counter-measures, such as the SARG protocol [SARG04].
The SARG protocol is however significantly more complex that the one pro-
posed here, in particular it involves Anne and Bob having to throw away 75% of
the photons at the first step as opposed to 50% in the original BB’84. With the
enhancement proposed here, even an adversary who succeeds in measuring some
photons undetectably in this fashion cannot masquerade successfully during the
eavesdropping/authentication step. Furthermore, even if he manages to extract
some bits of the key stream in this fashion, Yves will not know exactly where
they lie in the final key stream.

Another important point is that, from experience in the analysis of classical
AKEs, we know that it is essential that the key establishment and authentication
be explicitly bound together. The approach proposed here achieves this: the bits
that they compare, and hence the bits retained to form the key ultimately, are
derived from the pre-shared secret authentication string s, because the indices
that are identified for the comparison step, the φ2 set, are computed as a function
of s.

In the event that bits from the φ2 set are used in the final key, an issue to
consider is the possibility of belated leakage of information about the s string.
This is analogous to a “forward secrecy” property for a purely classical scheme.
To avoid this threat Anne and Bob should ensure that the utilized parts of s are
deleted as soon as they have served their purpose.

4 The Second Enhancement

Now we introduce the second innovation: rather than generating the basis se-
quence purely randomly, we propose that Anne and Bob also compute the basis
sequence bi as a pseudo-random function of the shared s string. Anne now gener-
ates a true random bit sequence zi and prepares the ith photon according to the
coding convention mentioned earlier. Bob, for his part, measures the i-th photon
using the bi basis. Thus, in the absence of noise or eavesdropping, Bob should
recover the zi sequence exactly as generated by Anne. They now perform a com-
parison of a randomly selected set of elements of the z sequence as before. They
could of course combine this second enhancement with the first enhancement,
and secretly compute the comparison subset pseudorandomly.
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4.1 Discussion

An important, and rather surprising, observation that emerges from the analysis
is that, in the absence of an PNS attack, any measurement that the attacker may
perform on the photons during the quantum phase leaks no information about
the basis sequence. A simple calculation using the “operation semantics” of the
measurement operator shows that Yves will get a 0 with probability 1

2 and a 1
with probability 1

2 , regardless of which generation basis was used by Anne, and
which measurement basis Yves uses, including oblique ones. This calculation is
based on the assumption that the z sequence and the basis choice have the same
statistics as pure random.

The significance of this observation is that it thwarts the obvious strategy
that Yves might attempt: measure lots of photons early in the quantum phase
and try to improve his guesses at the bases further downstream. We also need to
ensure that Yves cannot benefit from a better-than-average guess at the string
s. As argued before, the use of a good block cipher such as AES in counter mode
to provide the PRNG should ensure an adequate lack of correlation.

Suppose that we use a 128 bit string as the seed to generate the basis sequence.
The property we require of the PRNG is that if the attacker gets even one bit
wrong in his guess at the seed, then the xor of the resulting guessed sequence
and the real basis sequence will be essentially random. Using a good block cypher
such as AES in counter mode has exactly this property, by construction. Hence,
unless the attacker gets really lucky and guesses the 128 bits exactly right, he
faces the same challenge as the conventional protocol with a strictly random
basis sequence. This, along with the observation that (in the absence of PNS style
attacks) no observation he can make on the quantum channel can extract any
information about the basis sequence, implies that the security of the enhanced
scheme is essentially the same as that of BB’84.

The above argument is based on the assumption that the attacker has at
most negligible information about the authentication string. This assumption is
standard for BB’84 and QKD protocols in general. We need to take additional
care though with such an assumption for our second enhancement: having non-
zero information about the authentication key for one run may help the attacker
launch a more effective attack in a subsequent run. In conventional BB’84, as
the basis sequences are pure random, this is not an issue. In our case, there is
the possibility that a lucky guess in one run might be amplified in subsequent
runs. However, as long as the PRNG has the properties stated above, a better
than average guess at the authentication string will not yield any advantage over
a simple bitwise guessing at the basis sequence, and hence confers no advantage
for a subsequent run of the protocol.

However the second enhancement is vulnerable to PNS attacks: for example, if
Yves measures two photons (out of three) in the same basis and they are different,
then he knows that the basis choice is wrong. With his infinite computational
power, he can then eliminate approximately half of the potential values for s′

for each such measurement.
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On the other hand, vulnerability to PNS is an unsatisfactory feature of most
QKD protocols - for example SARG itself is insecure if Yves can block all pulses
with fewer than three photons (and half of the three-photon pulses) [SARG04].

One possible response is to stipulate that if Yves is to be equipped with a
reliable photon counter then it is only fair for Anne to have one too. In this case
Anne can eliminate PNS attacks simply by deleting pulses with more than one
photon, and under this assumption protocols incorporating the second enhance-
ment are invulnerable.

Of course, informal arguments such as the ones given above need to be made
formal in the context of an appropriate model that encompasses both the quan-
tum and classical aspects.

5 The Third Enhancement

The most radical of our proposals involves Anne and Bob effectively testing all
of the bits in φ1, and not merely a subset. To do this we use a trick from the
Vintage Bit protocol of Christianson and Shafarenko [CS09]. The protocol se-
quence proceeds as usual (Section 2) until the end of Phase 2. At this point Anne
has a bitstream z corresponding to the elements of φ1 and Bob has a bitstream
z′ which is the same as z apart from the QER (including any eavesdropping.)
Instead of Phases 3 and 4, Anne and Bob proceed as follows:

Anne and Bob have set aside a segment p of a previously agreed key stream.
This is now used as One-Time Pad to conceal a Forward Error Correcting Code
F and a collision-resistant hash h of the key stream z currently being agreed.
Specifically:

A → B : [F (z) | h(z)] xor p

Bob now recovers F (z), applies this to z′, and checks that the result hashes
to h(z). If not, then Bob aborts the protocol, otherwise Anne and Bob proceed
with Phase 5 as usual.

5.1 Discussion

Note that the property of the hash h being relied upon here is not non-invertibility
(since Yves can never learn any bits of the hash value) but a particular form of col-
lision resistance:Yves cannotmanipulate the values for z or h(z) plausiblywithout
knowing p. Note also that no authentication or integrity is required for the open
channel communication betweenAnne andBob used to transmit the encodedF (z)
in this enhancement. Privacy amplification can be done deterministically by Anne
and Bob, with no further communication. Of course, the hash could be replaced by
the conventional use of an information-theoretically secure MAC at the end of the
protocol; but equally, Step 6 could be replaced by an authenticated confirmation
to Alice by Bob that the corrected value of z′ has the correct hash1.
1 For example, B → A : p′ where p′ is another segment of a previously agreed key
stream.
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The requirement to use key bits from a previous run for p appears to be
an additional burden, but this step replaces Phases 3 and 4 of the conventional
protocol. Although the number of bits required for F (z), and hence for p, is of the
order of twice the maximum allowable QER for z, under the third enhancement
no bits are lost from z by the need to reveal bits to detect eavesdropping, or to
apply a cascade protocol.

The approach with the third enhancement has the advantage that any suitably
aggressive FEC protocol can be used off the shelf, without concern for security
issues, and Bob can count exactly how many of the bits in z needed to be
corrected.

The third enhancement can be combined with the second enhancement, with
similar caveats about PNS.

6 Conclusions

We have proposed some simple but effective enhancements to the BB’84 based
QKD protocols. These enhancements explicitly ensure a closer binding between
key-establishment and authentication than for previous protocols. They ensure
very early detection of any MITM or masquerade attacks as well as the possibility
of higher bit rates and an effective counter to PNS style attacks.

We have also argued that we need more powerful models, that encompass
both the quantum and classical aspects of QKD protocols, in order to deal with
richer threat models.
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Enhancements to Prepare-and-Measure-Based

QKD Protocols
(Transcript of Discussion)
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OK, so I’m going to talk about a little idea for what I believe will enhance
quantum key distribution, in particular the BB84 style of prepare-and-measure
protocol, so I guess it fits in the theme in the sense that we’re dealing with quan-
tum channels and classical channels, and in particular the relationship between
the two, which I think is particularly intriguing. Can I just take a quick poll?
Most people in this room have probably come across things like quantum key
distribution and BB84, hands up. A fair number, OK. I was planning to just go
very quickly through it to refresh and then to introduce the new idea.

As probably most of you realise, quantum key distribution relies on a com-
pletely different kind of premise from the usual classical security crypto proto-
cols, namely principles of quantum mechanics like the Heisenberg Uncertainty
Principle and the non-cloning theorem. Classically, we assume the eavesdropper
can take copies of anything that travel across the channels, and can try and do
computations on them, but he is limited in what he can do computationally,
subject to assumptions about computationally hard problems. Here what we are
assuming is that he can’t actually make copies, if he tries to eavesdrop and take
copies of the data that’s travelling on quantum channels, he will inevitably, ac-
cording to Heisenberg, perturb that and we set the protocol up in such a way
that we ensure that we can detect that with high probability. We’ll see this
shortly.

So the basic idea, the quantum part, is a really beautiful concept, and in
a sense it’s a kind of Diffie-Hellman in the realm of the quantum. Of course
the difficulty is that, just as in the classical world, you have to worry about
authentication. There’s no point having key establishment if you don’t have
authenticated key establishment. And one of the things we’ve learnt very clearly
in the classical realm is that you really have to be very careful to intertwine
these two processes. If the adversary can somehow disentangle the two, even if
you’ve got perfect key establishment and perfect authentication, you can still
get man-in-the-middle attacks and so on. One of the concerns that I’ve had for
quite a while is whether the arguments that are presented in the QKD literature
are intertwined properly.

I’ve looked at a bit of the literature, and I’ve spoken to some of the experts
here and there are beautiful proofs, some of you may have seen them, in the
quantum world at least, subject to certain idealised assumptions, and I can see
Ross looking over, I’m in very dangerous water here I know. But anyway, if
you buy quantum mechanics there are very nice proofs that show that the key
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establishment works quantum mechanically speaking. But then when you quiz
people to say, well OK, but how do you intertwine the authentication, the answer
I’ve had from several people is, well that’s fine, we do it unconditionally using
MACs, Carter-Wegman hashes and so on and so forth, that’s fine. And I for one
feel uneasy about this, I don’t know about other people in this room. I haven’t
managed to attack any of these protocols. The other comment I should make is
that when you look at the literature, it seems to be very vague and inconsistent
about what parts of the classical exchanges should be authenticated, and how
and when, and so on. There may be people in the room who know the literature
better than I in fact, in which case I’m open to comments.

OK so I’m clearly not going to go into the depths of quantum mechanics,
I’ll just outline a few very elementary facts which are relevant for this talk,
and most of them probably you know them already. So the basic premise of
quantum mechanics is that the state of a system is represented by a vector in
a Hilbert space, and when you make a measurement you collapse that state
into one of the eigenstates of that measurement operator. And typically this
will be a probabilistic collapse, you can’t predict which way it’s going to go.
So now I just want to switch quickly to a couple of coding conventions, which
I prepared earlier. So for BB84, again, probably most of you are familiar with
this, we assume that we’re working the circular polarisation states of photons. So
we assume in the protocol that Anne and Bob will use four polarisation states,
and the recipient will choose between two measurement bases. You can write a
kind of operational semantics if you like, for this, so if Bob uses this basis to
measure an incoming photon in a state it will come out right in the sense, it will
collapse to that. On the other hand, if he uses an incorrect basis, for example,
the diagonally polarised here, the photon here, it will collapse into either of the
eigenstates of this operator with a 50-50 probability, and so on and so forth.

OK, so the crucial point is, if you use the incorrect measurement basis, and
of course if you’re do things randomly a 50-50 chance that it will be incorrect,
you will scramble the bit. I should also add there’s a coding convention here
translating these into classical bits, OK, in this basis, this is a 0 and this is
a 1, and in the diagonal basis this is a 0 and that’s a 1. OK, got the gist of
it, I think that’s about all you really need to know. So don’t worry too much
about the Copenhagen interpretation of what’s going on underneath that. For
authentication we typically assume that there’s an initial shared secret between
Anne and Bob.

OK, so for the quantum phase, Anne sends a stream of photons, we assume
that she has a device that can send a pulse containing one photon; in practice
that’s not easy, but let’s leave that aside. And for each of these she chooses
a polarisation randomly chosen from these four possibilities. OK, so it’s sent
across the quantum channel, and Bob, for each of these, makes a random choice
of these two bases, to measure them in. And both of them record the appropriate
information. And so at the end of the quantum phase then we move into some
classical phases. Yes.
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Ariel Stulman: There’s one thing I don’t understand, if there’s an initial
shared secret, so Eve could target that, what do you have to know?

Reply: Yes, we assume that there’s a fairly short string, that they’re going to
use for authentication. When they run this they can send an unbounded number
of photons essentially. So the point is to be able to amplify, bootstrap from a
short string up to an unbounded string. Does that answer your question, is that
your point?

Ariel Stulman: We can always do that, you can always go up out of the
quantum, if I have a shared secret with Mark, I can fill up a secure channel.

Reply: Classically or quantumly?
Ariel Stulman: Classically, so why bother with quantum?
Reply: Yes, there are classical protocols which do this kind of thing. Perhaps

I should have stressed more: the point about this is that it’s meant to give
you unconditional security guarantees, right, not subject to any computational
assumptions about the adversary’s computational power. If you do it classically
then, you use, Diffie-Hellman or something, if that what you’re thinking of, that’s
not unconditional.

Feng Hao: Well that depends on the condition that you distributed the MAC
key securely, otherwise how do you get an authenticated channel.

Bruce Christianson: Let him go on for a bit (laughter).
Reply: Well, you have to assume that at time zero they share a secret string

at some point, yes, I mean, I’m glossing over some details.
Bruce Christianson: At some point they’ve met in a desolate place.
Reply: Yes, precisely. And, the other point is, you have to iterate this. They

run the protocols so they generate a large string, but they have to set aside a
bit of that string to authenticate the next run.

Feng Hao: OK, I thought this s was set before the photons were sent?
Bruce Christianson: Yes, but you can use s to agree a long string, you then

use some of that long string as the s for the next run. And you only have to
agree s1.

Feng Hao: But if you agree on s and then probably some computation of
Diffie-Hellman, or bootstrapping to get that shared secret.

Reply: Not if they meet in a desolate place, no.
Bruce Christianson: Yes, it’s an insoluble problem, they have to have some

other way of agreeing on a secret string to start off with.
Reply: Is that OK. I thought you were all saying you were all familiar with

this stuff already! (laughter)
Bruce Christianson: To be fair all these books that explain this are very

vague about how the authentication is done.
Reply: Precisely, that’s part of the point of the talk, yes, exactly.
So I think we’ve done the quantum phase.
So now there are a series of classical phases which I’ll try and go through

quickly. Anne and Bob are choosing these things at random, and that should be
pure random ideally. So the net effect is that for roughly half of these photons
Bob will have chosen the right measurement basis. So the first thing they have
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to do is determine for which photons Bob used the correct basis, and by the
way I’m assuming glibly that they’re able to index these photons in a consistent
way, which is not trivial either, but let’s leave that aside. Typically this is just
done in the open by conversation, they just tell each other. Bob, for example,
announces which basis he used for each photon, and Anne tells him which were
correct, but without announcing of course the bit. So they do that. And so let’s
call that index set that they establish for the correct photons I1.

OK, now we move into phase 2, which is where they’re going to try and detect
if there’s been any eavesdropping by Yves in the middle. So now they choose a
random subset of this I1 set, which I’m going to call I2, and again, typically the
way this is described it is just done by open discussion: they exchange the mes-
sages in the clear, and they decide some random subset which is unpredictable to
the adversary, and on this set they’re going to compare their bits. In the absence
of noise or eavesdropping, as you can see from the little semantics I put up there,
they should agree on all the bits. Assuming that the noise-level disagreement is
sufficiently low, they’ll conclude either there’s been no eavesdropping or at least
if there was it’s sufficiently low that it can be eliminated basically later in phase
3 when they do privacy amplification. OK, does that make sense? So they’re
happy that there’s been at most a bounded level of eavesdropping by Yves.

Bruce Christianson:Although they seem to have to make some assumptions
about Moriarty’s computational bound to get the authentication to work, even
at that stage.

Reply: Well so far I haven’t actually said anything about authentication.
Bruce Christianson: It was on the previous slide.
Reply: Oh yes, OK. Well actually what people here typically say is that you

use a universal Carter Wegman type hash MAC, you use a piece of that string,
and you don’t re-use it, to do the authentication. And the claim is it gives you
unconditional authentication. I don’t want to get too deeply into that because
the point of my talk is to sidestep that. The claim is that that is achievable
unconditionally. It’s probabilistic I guess, Yves does have a negligible probability
of faking it, but it’s not computationally conditional.

So now what they do is they switch to the compliment of I1 in I2, which I will
call I3. So this is the subset of bits for which they should have agreement, but
about which they’ve revealed nothing. In the I2 set they were revealing their
bits to do the comparison. In I3 they haven’t revealed anything about those
bits. So in principle this should be a bit string, which they are pretty much in
agreement modulo some degree of noise, but which is secret to the eavesdropper.
But the difficulty is they will inevitably detect some noise, there will be some
level of mismatch, so they have to eliminate that because ultimately they want
a precisely matching secret string. So there’s something called, well typically it
seems to be the “cascade protocol”, for which again, I’ll skip over the details,
but by basically comparing parities of randomly chosen blocks they can detect
blocks that have mismatches and eliminate them. Of course in this process they
will be leaking some information, and we’ll come to that in a second.
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I’ll go through this very quickly, are people comfortable with this? Shout at
me if I’m going too fast. OK. So in principle after phase 3 they should now have
this secret, exactly matching bit string, which can be in some sense unboundedly
long depending on how many photons they sent off in the quantum phase. But we
know that there’s potential for Yves to have some level of information about this
string. So he may have managed to get away with a little bit of eavesdropping
in the quantum channel, kind of under the radar, but we can bound that in the
detection phase. And of course, if he’s been monitoring this classical phase 3,
he will also have got some information via parities of blocks etc. So we now go
through a secrecy amplification phase, which basically distils the string down
into, in a sense, a purer entropy string, about which Yves will have negligible
information. So we can in principle, the claim is, reduce the information leakage
to the adversary to a negligible level by appropriately distilling.

So now they have a secret shared key, they can do a key confirmation, for
example, and at the very least, if you do that at the end presumably you get
some authentication, confirmation of the key and implicit authentication, that
it really is Anne and Bob, i.e. the two people who have shared that initial secret
s.

Michael Roe: And it’s an information-theoretically–secure hash rather than
just a computationally-secure one like SHA-1?

Reply: It’s Carter Wegman type stuff again, yes. And then of course you
can run it either as a one-time pad, or sometimes it’s suggested you use a block
cipher or something, but then of course you drop the unconditional secrecy of
the communication.

So that’s got me through the preamble. So as I think we’ve sort of agreed there
seems to be a real problem in the literature that it’s very vague about how really
the authentication is done, which parts of the communications are authenticated,
and so on and so forth. I for one feel concerned about this, but when I talk
to people in the field they say, oh it’s not a problem, it’s all unconditional
authentication on the classical channels, there’s no problem. But I felt uneasy
about this. And it’s in the process of mulling over this that we come to the twist,
which is really what the talk is about.

So it’s I think a very simple idea, almost embarrassingly simple, and it’s
possible it’s somewhere out in the literature, but I haven’t been able to find it. If
someone knows of it, or knows of something similar, please let me know. So the
simple thought was, well in all the conventional descriptions, as far as I can see,
they talk about this I2 being agreed in public, so it’s known to the adversary. But
why can’t we compute it, secretly independently at Anne and Bob using part of
the secret string, perhaps using unconditional hash functions or something. And
we may want to include some fresh entropy, maybe they exchange some further
entropy in the clear, which is also folded in, or maybe they derive some entropy
from the communications that have happened during phase 1, the agreement on
the correct set. So in principle they should be able to compute I2 independently
in secret, not communicate it to the adversary. And having done that they can
then start exchanging bits between each other drawing from this index set, but
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the adversary doesn’t know what these indices are. So Anne could say, send
a bunch of these bits that she’s computed at her end, and Bob can check they
agree with his, and vice versa. So they do the eavesdropping detection phase, but
they’re also folding in mutual authentication into the process. So that’s basically
the idea.

So what are the features of this idea? Well one thing is, as I’m trying to
stress, I think it does entwine the key establishment and the authentication steps
much more tightly than, as far as I can see, it’s done in any of the conventional
protocols. It also gives you authentication at a very early step, almost as early
as you can get it, sort of for free, as a spin-off of the eavesdropping detection
process. You can also argue that you can perhaps get a better bit rate out of this
whole process. It’s kind of interesting: you could in principle use some of the bits
from I1. And you’ve got a rather interesting information theory problem here.
You know that there’s some long bit string, and you’ve leaked some of these bits
to the adversary, but the adversary doesn’t know where these bits fall in the
string. So you obviously leak some information to him, but arguably not that
much. And I haven’t had time to do the information theory computations here,
but you could presumably work out a bound on the information leakage in that
process, and in principle you could actually use some of the entropy from the I1
set that you would normally have to bin in the conventional approach.

Of course you’d have to be rather careful about this, so you probably might
have to do a more ferocious distillation, so on balance I’m not quite sure how
much of a gain you get. And I guess another thing which occurred to me a
few weeks back is that there may be an issue of forward secrecy: a danger that
at some later time information about the secret s leaks, then that could cause
some additional leakage that you hadn’t originally anticipated, so that might
be a problem. How serious a threat that is I’m not quite sure. In principle, in
these protocols we always of course assume that s is kept secret, but I guess
conventionally you only have to assume it’s secret until the end of the protocol.
Here you’ll potentially have to assume it remains secret indefinitely, which is
maybe a little bit tricky. But maybe if you implement things carefully, and the
secret is destroyed locally immediately after the run of the protocol, maybe
you can make that assumption that it remains secret fairly strong, but that’s
something certainly to think about.

There’s also a little technicality that this scheme also seems to help with
something called the multiple photon counter attack, which again, some of you
may of heard of. As I hinted earlier, a lot of these models are very idealistic
of how the concept, the protocol, is implemented. In practice producing single
photon pulses is far from trivial, and so in practice you often get two or three,
you get a Poisson distribution, probably a fairly tight Poisson distribution, but
a Poisson distribution nonetheless. And so in principle, an attacker, if he could
detect that a particular pulse had more than one photon, and he could just pick
one out and measure it nicely and let the others go through, then he’s got a nice
attack. Now as far as I know, this is still way beyond the current technology,
but who knows, there are smart guys out there. And people worry about this, at
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least in theory, and so, for example, there is a protocol called the SARG protocol,
which is designed to counter this, and I won’t go into the details of it now, but
it actually involves throwing away effectively 75% of the original bits that you
sent, rather than the 50% that we had originally. So its bit rate is even worse
than normal. But I think I would argue that my protocol seems to help counter
this attack. I’ll let you think about it, or we can discuss it later.

So, conclusions: it’s a little tweak, a fairly simple tweak, it’s a ludicrously
simple tweak, and I’m kind of surprised that I’ve not been able to find it in the
literature already, but it doesn’t seem to have been used. It does seem to entangle,
or entwine perhaps I should say, perhaps entangle is not the right word here, the
key establishment and authentication in a much tighter sense. It does seem to
result in somewhat higher bit rates, that’s maybe not such a big deal because it’s
probably rather marginal, but it throws up some interesting little information
theory problems. And I think it also points up just a more general issue in
this whole field that, I for one have not really seen any convincing analyses
which combine both the classical and the quantum parts of QKD. There are
beautiful analyses of the quantum part, and beautiful analyses of the classical
part, but then the arguments combining them seem rather loose, they’re just sort
of saying, oh it’s fine, the authentication of the classical part makes everything
fine. And I for one feel uneasy about this, and I think we need better approaches
to either analysing these two channels together, or better ways of combining the
arguments, the analyses of each individually. And that’s about it. Thank you.

Bruce Christianson: Is there any reason why you couldn’t use s to agree
the sequence in I1?

Reply: I1 is the correct basis set, right, the....
Bruce Christianson: Yes, suppose that Alice and Bob have a convention

that, instead of randomly choosing the alignments, they do it pseudo-randomly,
based on s.

Reply: Well in fact I think there is one paper I came across which does
something a bit like that, it does, there is a sort of pre-agreement.

Bruce Christianson: Because then you don’t have to throw any bits away
at all.

Reply: Yes, and I think that was precisely the point of this paper. You could.
I for one feel rather uneasy about this. Yes, I think he even did a sort of periodic
repeating of the pattern I think as he went through the photons.

Bruce Christianson: Now that’s the point where I start to get uneasy.
Reply: You’re saying just do it with a pseudo-random sequence generator

either side?
Ross Anderson: But that reduces the security of the whole system to some-

body guessing the pseudo-random generator.
Bruce Christianson: If somebody can guess the pseudo-random generator

then they can masquerade as Bob, and the game is over anyway. Even in the
standard quantum approach you have no more security than s to begin with.
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Ross Anderson: Exactly so. You can secure the path, but you need over
$30,000 of equipment to do that.

Bruce Christianson: Precisely so, yes. So pseudorandom generation of I1
doesn’t change the security parameters1.

Reply: Right, and that’s supporting your question, why couldn’t you do that.
I suppose in principle you could.

Bruce Christianson: You could then do a similar trick to the one that
Alex Shafarenko and I do in the Vintage Bit Cryptography paper2 where you
essentially use very aggressive forward error correction. So instead of comparing
things through a sample, you just do very aggressive forward error correction
on the whole sequence. Xor the error correction code with a surplus piece of the
transmitted sequence, and openly exchange that value along with a hash of the
sequence that you’re trying to agree (xored with another surplus piece of the
transmitted sequence), and if that agrees then you’re done.

Reply: Yes, it may work, I kind of thought about that sort of thing, I felt a bit
uneasy. I mean, one of the beauties of the original scheme is that you are using
these pure random strings, and you know, if you’re gunning for unconditional
secrecy that feels . . .

Bruce Christianson: Well you are, you’re using a purely random string
that you’ve shared with someone. But the authentication of this, in the classical
quantum protocols, comes entirely from this relatively tiny bit sequence that
you’ve shared in a pub somewhere beforehand. And OK you’re using it in a
protocol that’s information-theoretically secure, but that doesn’t get you any
more entropy. I really like your idea, it’s a neat trick.

Reply: Well, maybe this is something we can talk about at greater length.
And you are injecting more entropy into the whole process just because you’re

generating these photons in a pure random fashion. So you are getting more
entropy, fresh, genuine entropy in that sense.

But yes, I agree, what you are suggesting is certainly interesting and worth
thinking about. I thought about it but I kind of felt a bit nervous about it
somehow. The proofs will certainly get trickier, put it that way, it may end up
being arguably perhaps as secure, but the proofs will certainly be difficult, it
will be harder. But yes, that’s certainly something that would be interesting to
think about some more, yes. Any other questions, comments.

Michael Roe: Did you say you hadn’t done the proof of correctness for this
yet? The thing that is interesting about this is how then you prove something
like this is correct.

Reply: Yes. I haven’t done it, no. And that’s one of the open questions, and
well as I say, I’m not even convinced it’s done properly for the original schemes.

Bruce Christianson: Yes, you’ve only got to do better than them.
Reply:Yes, right. And yes, that’s the next thing to do, and do the information

theory and analysis, and so on, which I suspect is probably sort of standard
somewhere in the literature, but I’m not so familiar with that literature, I don’t

1 All that distinguishes Alice and Bob from Moriarty in BB84 is knowledge of s.
2 LNCS 261–275.
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know where to, which book to pull off the shelf. But of course, the whole basis
of this might be completely flawed.

Ross Anderson: I’m very sceptical of the robustness of many of the defini-
tions that are used in this field.

Reply: Which particular definitions?
Ross Anderson: The whole field of quantum crypto and quantum computing

doesn’t seem to suggest it’s had anything like as much adversarial critique as
things normally are in our field. But that is a story for, you know, a different
workshop.

Reply: Yes. OK, you’re not going to rise to the bait3, OK.

3 Ross Anderson and Robert Brady, 2013, “Why Quantum Computing is Hard – and
Quantum Cryptography is not Provably Secure”, arxiv.org/abs/1301.7351

arxiv.org/abs/1301.7351


Simple Defences against Vibration-Based

Keystroke Fingerprinting Attacks

Rushil Khurana1 and Shishir Nagaraja2

1 IIIT Delhi, India
rushil09040@iiitd.ac.in

2 University of Birmingham, UK
s.nagaraja@cs.bham.ac.uk

Abstract. Smartphones are increasingly equipped with sensitive ac-
celerometers that can analyse acoustic vibrations on a physical surface.
This allows them to gain a covert understanding of the surrounding envi-
ronment by combining accelerometer sampling with sophisticated signal
processing techniques. In this work, we analyse keyboard-sniffing attacks
based on acoustic (vibration) covert channels, launched from a malicious
application installed on a smartphone. An important requirement of such
attacks is access to reliable acoustic signals that can be distinguished
from the noise floor by applying appropriate signal processing techniques.
Our analysis indicates that state-of-the-art attack techniques are fragile;
injecting randomised noise (jamming) via the vibration medium into the
accelerometer, reduces the efficiency of the attack from 80% to random
guessing. We conclude that our work presents an important step towards
disabling the covert channel and ensuring full security.

1 Introduction

The accelerometer sensors of modern mobile devices are getting increasingly
powerful ( around 100Mhz). After circumventing weak access control systems, if
any, a malicious application on a mobile device such as a smartphone, can analyse
incoming accelerometer signals to covertly gain an understanding of activities in
its physical surroundings in an unauthorised manner.

Past work [2,3,5,7,6], on exploiting accelerometers to sniff keystrokes required
direct physical contact with the keyboard. However a smartphone based ac-
celerometer can be used to recover keystrokes to some extent without direct
contact with the keyboard: Marquardt et al. [1] devised an attack that uses
accelerometer readings from a smartphone to recover text being typed on a vic-
tim’s keyboard. The keyboard and the smartphone are separated by a few inches
on the same table. Accelerometer readings are collected by a mobile application
running on the smartphone. Machine learning techniques are then applied to
decipher English dictionary words. Marquardt et al. report an accuracy of re-
covering around 80% of the typed words.

Since the Marquardt attack is based on analysing acoustic vibrations, it is
vital to examine their attack model in the context of all acoustic vibrations that

B. Christianson et al. (Eds.): Security Protocols 2013, LNCS 8263, pp. 143–151, 2013.
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are present in a reasonable setting including the keystrokes’ acoustics and then
test the effectiveness of the attack. Our contributions are as follows:

– We propose simple and usable defences based on injecting acoustic (vibra-
tion) noise into the covert channel to reduce the effectiveness of sophisticated
signal processing techniques.

– We analyse and report on the practicality of the Marquardt attack within
the original threat model [1]. We found that it attack effectiveness is much
lower than a laboratory setting.

The Marquardt attack exploits weak OS access control mechanisms which al-
low smartphone applications to access the accelerometer sensor without explicit
user permission. However, a major challenge they needed to overcome in compar-
ison to past work is that the sampling rate of the accelerometer sensor present
in a mobile device is a full two orders of magnitude less than that of the devices
used in the previous works [2]. As a result, naive approaches involving direct
mapping between signal features to keyboard input do not work. To overcome
this challenge, they chose to apply the well known technique of bi-gram analy-
sis where the statistical characteristics of the vibration signal can be uniquely
mapped to two consecutive keypresses instead of a single keypress.

Vibration based side-channels pose an important threat to user security as
they can leak confidential information. Such attacks leverage the fact that most
users tend to place their mobile devices next to the keyboard. The attacker in-
stalls a keylogger via a social malware attack [8] on to the victim’s mobile phone,
which can record and relay stolen information (keystrokes) to the attacker.

The use of machine learning techniques to analyse vibrations caused by
keystrokes or other sensitive information has given rise to fresh concerns about
user security. However, we find that it is fairly straightforward to induce error
into such attack techniques. In this paper, we analyse the robustness of the Neu-
ral Network technique, a supervised machine learning technique. We find that
the attack is surprisingly ineffective when dealing with low levels of noise. Careful
application of periodic acoustic noise alone can bring the classifier accuracy close
to that of random guessing. It is clear that the attack is rendered completely
ineffective by the application of pseudorandom noise.

We start by describing the Marquardt attack and explore the effectiveness of
the attack under various common-day scenarios where random noise accompanies
the acoustic vibrations produced by full-size desktop keyboards.

2 Keystroke Fingerprinting Attack Using Neural
Networks

In the following section, we describe the Marquardt attack for fingerprinting vi-
brations caused by keyboard usage. Consider a desktop computer user operating
the computer through a keyboard placed on a desk. Now consider a smartphone
placed on the same desk a few inches away from the keyboard. The Marquardt
keysniffing attack leverages a acoustic covert channel between the keyboard and
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a malicious application running on the smartphone. Vibrations induced by key-
presses on to the desk shared by the smartphone and the computer keyboard
are captured by the smartphone accelerometer. The collected information is then
analysed by the malicious smartphone app (attacker) which applies a machine
learning technique on the sampled vibration signals to infer the words typed in
by the computer user (defender).

2.1 Marquardt’s Keypress Fingerprinting Model

The sampling rate of accelerometers in mobile devices is too low to map the
maximum amplitude of a vibration signal to a unique keypress (on a nearby
keyboard). Therefore, the Marquardt adopts a bigram approach towards model-
ing keypresses; instead of a single keypress, a pair of keypress events is modelled
together. Let Ei and Ej be sequential keypress events. The following features
have been used to characterise the event (Ei, Ej):

1. Keyboard Position: For each event Ei, pos(Ei) is a feature that describes
the relative position of Ei to a central line dividing the keyboard into two
parts- left(L) and right(R).

2. Distance Between Successive Keypress Events: For each pair of suc-
cessive keypress events, dist(Ei, Ej) is a feature that describes the distance
between the two keypress events for a given pair. For a pre-determined value
α, dist(Ei, Ej) is either near(N) or far(R) where N < α and R ≥ α.

Each pair of successive keypress event (Ei, Ej) is represented by pos(Ei)||
pos(Ej)||dist(Ei, Ej) where || represents feature concatenation. Any word can
thus be represented by a sequence of concatenated features for each event-pair
appearing in the word. For example, let α = 3 and consider a partition of a
QWERTY keyboard. All keys on the left of ’t’, ’f’ and ’v’ (inclusive) are assigned
to the first partition named Left. The remaining keys are assigned to partition
named Right. The word rope can then be represented as:

RO . OP . PE
LRF.RRN.RLF

It is clear from the above example that a word of n letters can be broken
down into n− 1 constituent character representation in the attack model. This
is a compact representation of words. The corresponding text can be extracted
by processing it as shown in the following section.

2.2 Attack

The attack consists of two phases, supervised learning and analysis which we
outline in multiple steps as follows.

Data Collection: When a key is pressed, the mobile application records the
surface vibrations produced in the process and stores a three dimensional vector
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(x, y and z axes) per sample in a log. The log thus generated, is a dump of raw
accelerometer readings obtained using the victims phone.

Feature Extraction: Next, simple statistical metrics are computed over the
collected data to yield a compact representation consisting of the following fea-
ture vector corresponding to each keypress.

Keypress(Ei) =
(mean, kurtosis, variance,min,max, energy, rms,mfccs, ffts)

Feature Labelling: To train the system, the above two steps are performed
using a chosen dictionary of words. Next, each word in the training dictionary
is broken down into a LR/NR (Left-Right Near-Far) representation. The model
prepares a training data set by labelling feature vectors extracted in the previous
step as either left(L) or right(R) for individual keys. For key-pair samples the
feature vectors of each of the constituent letters is concatenated together and
then this composite vector is labelled as either near(N) or far(F). After this step,
we will have a training set containing labelled feature vectors.

Neural Network Setup: Two neural networks are created from the training
set obtained — one for classifying left-right feature vectors (hereon, referred to
as L/R classifier) and the near-far feature vectors (hereon, referred to as N/F
classifier). After training using the labelled data from the dictionary; these two
neural networks can be used to classify and label accelerometer readings from
the log obtained from the victim as L/R or N/F.

Word Matcher: The word matcher assigns a score against each word in the
dictionary to each of the word representation it obtains from the previous steps.
The scored dictionary words are then sorted on the basis of their scores and the
top k results are presented as predictions for the given representation.

2.3 Attack Efficiency before Application of Defences

As our first experimental step, we reproduced the Marquardt keyboard sniffing
attack [1]. It involved two experiments to measure the accuracy of the two classi-
fiers involved, and two experiments to measure the recovery of text. We obtained
comparable accuracy results as the original authors. Marquardt et al. recovered
80% of the text from a self-built context-aware dictionary in the top 5 guesses.
In comparison, we were able to recover 76% of the text.

3 Effectiveness of Marquardt’s Attack under Random
Noise

Given the relatively high accuracy of the attack, we devised a series of further ex-
periments to analyse the Marquardt attack in a practical setting of a motivated
defender. Specifically, we measured the susceptibility of the attack torandomised
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Table 1. Table showing results of accuracy of L/R and N/F classifier measured with
a single Harvard Sentence. Each column entry is the accuracy of each of the classi-
fiers trained at a sampling rate of the corresponding row header and tested at the
corresponding column header.

Sampling Rate 100 80 64 50

Trained at 100 88% (L/R), 76% (N/F) 85%, 70% 76% , 67% 76% , 64%
Trained at 80 85% (L/R), 73% (N/F) 85%, 76% 79% , 67% 73% , 64%
Trained at 64 79% (L/R), 70% (N/F) 79% , 70% 79% , 73% 67% , 64%
Trained at 50 70% (L/R), 64% (N/F) 70% , 67% 67% , 64% 61% , 58%

noise. For each of the following experiments, wemeasured the accuracies of the two
classifiers involved in the attack. Their accuracy is a direct indicator of the rate of
text recovery.

3.1 Variation across Keyboards

Marquardt et al claim that their attack does not require violating the physical
security of the victim (unlike previous attacks). This implies that the attacker is
unaware of the target’s keyboard make and model. Therefore, we examine change
in attack efficiency when the training keyboard is different from the keyboard
on which the attack is applied.

Table 2. Table showing results of accuracy of L/R and N/F classifiers measured with
a single Harvard Sentence. Each column entry is the accuracy of each of the classifiers
trained with the data collected from the keyboard of the corresponding row header and
tested with data collected from the keyboard of the corresponding column header.

Keyboards K1 K2 K3 K4 K5

Trained K1 88%(L/R),76%(N/F) 76%,64% 70%,58% 52%,47% 52%,50%
Trained K2 76%(L/R),67%(N/F) 91%,70% 73%,61% 58%,50% 52%,52%
Trained K3 70%(L/R),61%(N/F) 73%,61% 85%,73% 64%,52% 58%,52%
Trained K4 58%(L/R),50%(N/F) 61%,55% 61%,58% 85%,70% 73%,73%
Trained K5 58%(L/R),52%(N/F) 55%,52% 64%,55% 76%,70% 79%,70%

We used the following keyboards in our set:

– K1: a HP KB-0316 keyboard.
– K2: a SK-1688 keyboard.
– K3: an Intex keyboard-M/M Rolex.
– K4: an iBall KB279 keyboard.
– K5: a Wipro SK-2030 keyboard.

We trained the attack classifiers on acoustic vibrations from one of the key-
boards from the set followed by an attack targeting every other keyboard in the
set. We evaluate attack efficiency by measuring classifier accuracy. The results
are shown in Table 2.
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Keyboards K1 and K5 have identical layouts but differ in terms of spacing be-
tween adjacent keys. Thus training on K1 and attacking K5, results in decreased
attack efficiency. Similarly, keyboards K1 and K2 nearly identical spacing be-
tween keys resulting in similar attack efficiency.

3.2 Impact of Sampling Rate on Attack Efficiency

Apart from the accelerometer sensor itself, the sensitivity and resolution of the
accelerometer is also dependent on the firmware settings and the mobile op-
erating system’s data handling and delivery mechanisms. We assume a broad
spectrum of available accelerometer sampling rates and measure the accuracy
of the attack. We do this by training the attack framework with a particular
sampling rate and test it against data collected at a higher or lower sampling
rate. We noted the accuracy of the L/R and N/F classifiers at various sampling
rates, this is presented in Table 1. Each column in the given table indicates the
accuracy achieved by the L/R and N/F classifier when Experiment 1 — Using
a single Harvard sentence was conducted. The phone was trained with the sam-
pling rate in the corresponding row header and tested with a sampling rate of
the corresponding column header.

Table 1 shows that the sampling rate impacts accuracy of the attack. A attack
classifier trained at a certain sampling rate has somewhat reduced efficiency at
lower sampling rates. Roughly, a 20% reduction in sampling rate reduces attack
accuracy by 10% to 15%.

3.3 Defensive Vibrations

So far we have considered the challenges faced during reproduction of the attack
in a practical setting. We now consider automated defences against the entire
class of covert-channel attacks that leverage vibrations induced on shared phys-
ical surfaces. Our approach to defence is to “sanitise” the physical surface sup-
porting a user device using additional user-controlled devices that transmit de-
fensive vibrations into the shared physical medium. Defensive vibrations can
be introduced according to a variety of strategies. An optimal strategy would be
to transmit well designed signals waveforms into the shared medium such that
the user-dependent vibration signals are exactly cancelled out. A simpler and
more obvious strategy is to introduce random vibrations which we explore in
this section.

Therefore, in our next experiment we used a buzzer within a defender phone
(of the type found on conventional mobilephones/pagers) to produce acoustic
vibrations in various configurations (distances and angle) with respect to the
locations of the attack smartphone. A defensive buzz (induced vibration from
the buzzer) consists of switching the vibrator (defender’s phone) on and off
periodically for the duration of the attack. It depends on three parameters:
relative location from attacker phone and keyboard, the signal amplitude (buzz
volume), signal-on duration, and signal-off duration.
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In our experiments, the attack phone and the keyboard were placed four inches
apart while the defender phone was placed at various positions relative to them, as
follows.

– Keyboard, attacker phone, and defender phone are placed in a straight line.
Defender phone is placed between the keyboard and the attacker phone at
a distance of one inch from the keyboard.

– Keyboard, attacker phone, and defender phone are placed in a straight line.
Defender phone is placed one inch from the attacker phone.

– Keyboard, attacker phone, and defender phone are not placed in a straight
line. Defender phone is placed one inch directly below the attacker phone.

At each of these positions, defensive buzzing was continuously applied for the
duration of the attack at three different intensities from a Nokia-2100 phone —
gentle (signal-on for 0.5 seconds signal-off for 2 seconds), medium (signal-on 0.5,
signal-off 1 second), and aggressive (signal-on 0.5 seconds, signal-off 0.5 seconds).
We trained the attack classifiers using a single Harvard sentence and calculated
the accuracy of the L/R and N/F classifier at each of those points at each of the
specified pace. We averaged out the results at each point for each of the specified
intensity of defensive buzzing. The results are as shown in Table 3.

Table 3. Table showing results of accuracy of L/R and N/F classifier measured with a
single Harvard Sentence while injecting noise with defensive buzzing at various paces.
Each result in the column entry is averaged out from three pre-decided points.

Buzzing intensity L/R N/F

Gentle 85% 76%
Medium 79% 73%
Aggressive 70% 61%

We observe that aggressive buzzing is able to lower the classification rate to
just 61%, which is ten percent better than a random guess. We believe that by
better calibration, defensive buzzing can achieve much improved results.

3.4 Data Collector as a Source of Acoustic Noise

We now consider active defences where the victim’s phone (so far referred to as
the attacker phone) also participates in the defence mechanism. A possible de-
fence allowed by the Marquardt threat model is the direct injection of noise into
the attacker’s data on the smartphone itself. Therefore, we analysed the effects
of playing music on attacker/victim smartphone on attack efficiency. Again, a
completely plausible scenario.

In this experiment,we played ten songs each from the following categories:Rock,
Pop, Jazz, Classical, Blues, Hip Hop, R&B and Bollywood. We tried to pick as di-
versified songs as possible from the sub genres of each category. We measured the
efficiency of the classifier in each case. The results are as shown in Table 4.
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Table 4. Table showing results of accuracy of L/R and N/F classifier measured with
a single Harvard Sentence while playing a song. Each result in the column entry is
averaged out for 10 songs from each category.

Music Genre L/R N/F

Rock 44% 38%
Pop 47% 47%
Jazz 41% 38%
Classical 29% 41%
Blue 38% 44%
Hip Hop 29% 44%
R&B 38% 47%
Bollywood 29% 26%

For all categories, the accuracy was less than 50% which means that the
classifier’s detection rate at deciding the relative position of the keypress was
worse than a coin toss.

Additional sources of noise: Calling/Receiving a phone and connecting via text
messaging are among the most basic functionality of a mobile phone. In a real-
world setting, the victim’s phone could receive a text message, or receive a call,
or buzz in response to event notifications. In workplaces, most of the phones are
usually set to vibrate mode and even if not, phones often ring as well as vibrate.
To understand the change in attack efficiency as a result of noise resulting from
day-to-day operations, we ran the following experiments.

1. We generated a notification by text messaging the phone while the malicious
application was running. This could be seen as any notification as usually
the notification alert is similar (if not same) in android.

2. We called the victim phone while the attack was in progress. We however,
did not receive the call as it would disturb the orientation of phone and the
experiment is merely to understand the affect of vibrations produced by the
phone. The attack obviously would fail if the victim picks up her phone from
the table itself.

For each of the two scenarios, we conducted the experiment ten times and
averaged out the results. In scenario one, the accuracy of the L/R classifier was
noted to be 67% and the N/F classifier was only accurate 55% of the time.
In scenario two, the accuracy of both the L/R classifier and the N/F classifier
was noted to be 41% and 35% respectively. Therefore, suggesting that attack
efficiency is very low if the victim receives a call during the attack.

4 Conclusions and Future Work

We have demonstrated that several simple defence options against the Marquardt
attack are available to the motivated defender. Something as trivial as a periodic
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buzz can reduce the attack efficiency to 61%. Better defences are obtained by
inducing low-frequency acoustic noise resulting in lowering attack efficiency to
less than 50% (in a binary choice problem).

We have demonstrated that the attack can fail under various day-to-day sce-
narios. However, this is due to the limitations of the signal processing techniques
which are not noise-tolerant. Overall, the application of machine learning tech-
niques for statistical analysis of sensitive user data is fraught with difficulties.
In particular, the ML technique used by Marquardt et al. is easily thwarted by
random perturbations.

In future work, we will establish a comprehensive defence mechanism which
can “cancel” the acoustic vibrations induced by a keyboard, hence moving to-
wards a provably secure mechanism which can prevent the flow of data across
the acoustic channels involved in the attack. The idea is to sanitise the nearby
environment in a manner such that the sensor picking up data cannot differen-
tiate between the instance of keyboard being typed on and the instance when
it is not. That would ensure that irrespective of the attack mechanism or the
algorithm used behind such an attack, it would be defended against.
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(Transcript of Discussion)

Shishir Nagaraja
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Good morning everybody, my name is Shishir Nagaraja, and I’m from the Uni-
versity of Birmingham. Welcome to the talk. This is a fairly practical talk where
we are looking at vibration-based covert channels. The basic idea is very simple.
You’ve got a phone, it sits next to a keyboard (laptop or conventional), when
you press the keys, the phone tells you what keys were pressed by analysing the
corresponding vibrations. OK, so that’s a fairly simple setup.

In this work, we have analysed the machine learning techniques proposed for
converting vibrations into keypresses. A second contribution is a threat model
for covert channels. Covert channels have been used in the literature quite a lot,
but often in the absence of a clear threat model. This makes it hard to get a
handle on what the system can achieve, and what the limitations are.

The ability to meaningfully sense vibrations in human environments gives at-
tackers access to a large amount of information. The potential risks are obvious:
privacy invasion, and information theft. You type in keystrokes, your keystrokes
are stolen, human drumming patterns on a chair or table can be similarly anal-
ysed to determine the person sitting there.

But there are also opportunities here, such as trustworthy information ex-
change. Together with vibration sensors and sources, you’ve got a relatively
isolated network which doesn’t require cables or special purpose infrastructure
to set it up. So why would that be useful? It’s well understood that a full-
sized keyboard is an efficient way of typing, however carrying one everywhere
is cumbersome and doesn’t fit into the phone anyway. Using a vibration-based
channel, this can be conveniently achieved with just a smartphone. I place the
phone down on a table and I start typing on the same table, assuming a key-
board were present, and the phone picks it up. That’s a constructive capabil-
ity and you can build collaboration mechanisms over it. However, you can use
vibration-based communication channels for stealing people’s keystrokes. While
a vibration based network is relatively isolated, you still need to tolerate attack-
ers, both active and passive. How do you go about securing communication over
vibration communication networks? We have a fairly conventional setup where
one or more enemy phones share the communication medium with two or more
friendly phones, all on the same table, and you want the authorised (friendly)
phones to sense but not the unauthorised (enemy) phones. So that’s the problem
we’re trying to solve. Note that the attacker doesn’t actually have to physically
place a phone on the table, they can do so by installing malware on a friendly
phone using a targeted infection strategy.

B. Christianson et al. (Eds.): Security Protocols 2013, LNCS 8263, pp. 152–160, 2013.
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Right, so how do vibration-based communication channels actually work?
Most smartphones possess a vibration sensor called the accelerometer. Any phys-
ical activity that induces vibrations into its surroundings can be sensed by the ac-
celerometer. The accelerometer senses vibrations when you press keys. So you’ve
got some ’traffic’ which you are capturing using the accelerometer of the smart-
phone. You can build a PIN sniffer using this by putting a smartphone on the
side of an ATM to read PINs, or you can build a virtual keyboard for smartphone
users as we just discussed. So that’s the setting.

Now let’s briefly discuss the threat model. Often we see research which pro-
poses a covert channel, the paper discusses various technical aspects such as
bit-rate without any discussion of attacker capabilities or how easy or difficult
it is to induce error in the covert channel. This is typically the way most papers
are written in the covert channel literature unlike mainstream computer security
literature. I argue that we’ve got to have a proper threat model in the first place
to effectively evaluate covert channels. Of course this means we necessarily have
to bring in an application context.

In the case of vibration-based covert channels, we envisage the following at-
tacker capabilities: an obvious attacker is the active attacker who has full control
of the smartphone on the table. An active attacker might purposely inject noise
into the channel, for instance by engaging the phone’s vibrator at well-chosen
times. As usual, active attacks are observable which is usually against the inter-
est of the attacker. A second setting is that of a passive attacker who just uses
the accelerometer to sense and analyse vibrations. For instance, as a piece of
malware running that does not interfere with other applications on the phone.

Aside from active and passive attackers, let me add a few more attacker
types. The third type is a chosen-signal attacker. This attacker is modelled in
the chosen-plaintext attacker from the security protocols literature. The chosen-
plaintext attacker injects vibrations corresponding to keystrokes (plaintext) and
tries to analyse the variation in the friendly phone’s output caused by the vi-
bration injection to gain an understanding about keyed mechanism used by
the friendly phone to convert vibrations to ASCII. The fourth type of attacker
model worth considering is the signal-replaying attacker, a weaker form of the
chosen-signal attacker who can simply record and replay previous transmissions
between friendly devices (keyboard and authorised phone). Finally, a fifth type
is the signal-gathering attacker, who gathers multiple signal transmissions and
tries to make useful inferences.

Let me briefly talk about the security requirements. This might clarify the
motivation behind the threat model. One obvious requirement is secrecy—I don’t
want the adversary’s smartphone to actually understand the keystrokes that I’m
writing, but I want the friendly (authorised) phones to understand, so that’s the
secrecy property. Another requirement is covertness, which is, I don’t want the
adversary’s phone to actually understand that there are any keystrokes being
injected into the table in the first place. So the signal-replay attacker is a threat
model that makes covertness really, really hard, because you can record a set of



154 S. Nagaraja

signals that’s injected, you can repeatedly inject it into the medium, and you
can look for differences in output.

To summarise the requirements, firstly unauthorised devices should not be
able to read messages from the channel. Second is traffic analysis resistance,
which is that unauthorised devices should not be able to distinguish whether
the channel is under use or not.

Let me give an overview of the defence approaches we are considering for
achieving these requirements. The first approach is to jam the channel. Jamming
the channel means you’re injecting arbitrary (pseudorandom) vibrations into the
table. This can be done by injecting vibrations, say with a phone’s vibrator or
using a subwoofer facing down, among other techniques. Jamming in this manner
disables the channel rendering it useless for both friendly and adversary devices.
However that’s not very good if you want to actually use it for creative purposes.
Instead we propose pseudo-jamming which involves additional pseudorandom
noise, which is the output of a key, into the communication medium. Devices
which have the keys will be able to make sense of the transmissions but those that
don’t will not. To be effective, the noise has to be both additive and cancelling.
Further, to achieve covertness it is necessary to ensure that the noise that you
are adding is credible, because if the noise is not from the same space as normal
traffic then clearly you cannot get any covertness, so that’s a key requirement.

Earlier I mentioned the use of malware keylogger techniques. A recent paper
was written on the topic by Marquardt et al. in CCS 2011 and they basically
built a keylogger. Their essential design is as follows: the accelerometer signal
coming from a phone is a time series where each element is a vector (X,Y, Z). The
low sampling rate on the phones prevents you from mapping an accelerometer
signal to a keypress directly. Instead, they map pairs of vibration signals to word
pairs using a machine learning technique that requires two features. For example,
let’s take the word ’Rushil’. When ’r’ and ’u’ are pressed, or when ’u’ and ’s’ are
pressed, you try to distinguish between whether successive keystrokes were near
or far. That’s the first feature, the distance. The second feature is the position,
as to whether each key pressed was to the left side of the keyboard or the right
side of the keyboard. So the position of the attacker phone is assumed to be
fixed and in addition, it has to be to be fairly close to the keyboard. However
that’s because of the low sensitivity of current smartphone accelerometers.

Once you’ve placed the attacker smartphone, you then run a training session
to train the classifier. This is done by typing a set of sentences (ground truth)
into the keyboard. The corresponding text is also supplied to the classifier on the
phone to complete the training. Going back to the example of the word ’Rushil’.
If you consider letters ’r’ and ’u’ then then the features recorded are: position –
near (as the keys are close to eachother on a QWERTY keyboard), and distance
– Left-Right. Thus position and distance features are recorded for each pair of
keypresses. The authors use a neural network based classifier, however that’s a
rather poor choice amongst the available design options.

So the learning phase goes this way. You’ve got the raw accelerometer data,
you get the feature extraction, which is the L R N or R L F kind of sequences that
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we just showed, and then you’ve got the training words with the corresponding
representation. And then you just have this labelling part and that’s essentially
the inference algorithm. Once the attack model has been trained, you can carry
out the attack phase, which means you get the raw accelerometer data and
convert it into sequences which can be mapped into keystrokes.

It’s instructive to try to understand the error tolerance of this mechanism,
and then we can look at the attack tolerance. First we examine the effects of
sampling. If you train at 100Mhz and then you carry out the attack at 100Mhz,
the efficiency of the classifiers is between 88% and 76%. If you train 100 but use
it at 50 then detection rate is seriously reduced. Generally, if you train at 100
you get a slightly higher detection rate than if you train at 50, it doesn’t really
affect it too much, but there’s some impact. The other parameter is a change
of the keyboard and then you see a bigger impact. Basically if you train it on a
particular keyboard and use it on a different keyboard, then the attack doesn’t
work at all—it’s close to the guessing rate because if you have a binary classifier
that’s working at 52% the detection rate is as good as tossing a coin. Our error
tolerance analysis shows that in its current form the Marquardt attack isn’t
practical. However their limitations are down to the design of their inference
algorithm’s inability to deal with stochastic noise.

Daniel Thomas: So I am trying to understand what error rate means, I
thought there should be two types of error rates, but you are only showing one
here, which is success rate of recognising correct text, whereas there should be
another one (false-positive rate).

Reply: Yes, so you are completely right, the reason I haven’t discussed the
false-positive rate is because I am first trying to determine the conditions under
which detection will work. Without having a high enough true-positive rate it
may not be worth discussing the false-positive rate.

Feng Hao: And your typist is always the same?
Reply: If you attenuate the signal then the error rate would go up, so if you

put pads on the bottom and had the same typist, or changed the typist, then yes
it does matter. The effects of changing typists is similar to the effect of increasing
distance between the keylogger and the keyboard. If you increase that then the
attack efficiency falls dramatically. This is due to the low sensitivity of current
smartphone accelerometers.

Frank Stajano: And how sensitive is the attack to having the training session
done in a completely different environment, because you can’t really expect that
you would be able to train on the desk where you are going to do the attack with
the same guy, and the same computer, and so on. So presumably the attacker
would have to train in his home, and then attack one of his acquaintances or
friends?

Reply: Fairly sensitive, as you see, on some types of keyboards, so you just
change the keyboard or the laptop, for example, on some it tends to work fairly
OK, but on other places it’s only as good as guessing.

Frank Stajano: I suppose it’s not just the keyboard, it’s also which table
it’s on.
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Reply: Yes. Different tables can also lead to signal attenuation so these are
sort of abstracted into the distance between the phone and the keyboard.

Frank Stajano: But there’s plenty more here. What is the mechanical vi-
brations of the tables, it’s completely different from the distance right?

Reply: Well in the sense that the signal gets attenuated by the distance, or
it can get attenuated by the conductivity.

Frank Stajano: Is that the only variable, I mean, I have no idea. I’m sur-
prised if that’s the only effect, just attenuation. Surely there must be other things
than inconvenient stuff that happened differently with different table resonance
or other effects which are more interesting.

Reply: Right, OK, I see what you mean. No, I haven’t looked at that.
Frank Stajano: How about the transfer function of different tables?
Reply: Resonance aspects and secondary vibrations are also interesting,

you’re right.
Michael Roe: It would be harder to implement but you could just imagine

doing this with an unsupervised machine where there’s no training set but you
know the system is English so you’ve got the guy sitting there typing an email
or something that gives you enough of a sample and you get vibration from it,
and you don’t know what their email was, but you have a reasonable guess it’s
in English, you know the statistics of English.

Robert Watson: And you could find out their character set, because you
can send them an email that prompted them to send you an email.

Michael Roe: That would be a stretch?
Robert Watson: It would be a plaintext attack.
Michael Roe: So it’s also if you get a known plaintext where you force

him to type something, but even if you did, yes, I think you could in principle
reconstruct given the unknown text, but knowing it’s English, an unknown typist
and unknown keyboard, you probably still could reconstruct it, so I think that
has to be a threat model of possibility.

Reply:Yes I agree with you. The structure of the language is certainly helping
here. I mean, the neural network-based machine learning technique is probably
one of the worst candidates of the entire toolkit that machine learning offers. So
you could certainly come up with much better machine learning techniques to
exploit structural aspects.

Right, so let’s now examine the attack tolerance. What happens if you add
additional vibrations into the medium, for instance from resonance (Frank’s
comment)? What we do is inject defensive vibrations comprising sine waves at
different frequencies. This is done using a simple desktop-style subwoofer with
a 2.5 inch diaphragm, and 130 watts RMS. You place the subwoofer facedown
on the table, and then play sine waves. That does quite a bit of damage to
attack efficiency. At 1 kilohertz the attack success rate in reproducing sentences
is reduced to about 50% of the text that you were getting earlier. At slightly
higher frequences, at 50 kilohertz, the attack efficiency dramatically reduces. So
if you inject random noise the attack efficiency dramatically comes down. So
that I think answers your question to some extent, right Frank?
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Frank Stajano: Well it’s not quite the same because I’m just talking about,
without external noise the transfer characteristics between the keyboard and the
phone are literally dependant on the table.

Reply: Okay. The transfer characteristics primarily depend on the ’conduc-
tivity’ of the table. Wood is an okay conductor, metal is much better. The
resonance characteristics come into picture at certain frequencies only which is
a function of table material as well as dimensions.

Daniel Thomas: If this just turned sideways, and there’s no noise in it is
there? This is a predictable sign wave?

Reply: It is a predictable sine wave, yes.
Daniel Thomas: So it’s not noise, you could subtract it.
Reply: Yes.
Frank Stajano: If he has been trained without it then you have to guess

that he has?
Reply: Yes.
Michael Roe: But a reasonable threat model is the attacker knows you’re

doing this and so does the obvious bit of processing to remove the sine wave.
Reply: Absolutely, yes, I think so. Better still as we’ve suggested in the

paper, if you add random values to the accelerometer input that’s coming into
the smartphone, it becomes very hard for the attacker to make any sense out of
it, right?

Frank Stajano: How annoying is this for the person who’s at the table and
have these things going bzzzz.

Reply: It can be pretty annoying because you can stand here and you can
feel the vibrations, I mean, from the table.

Frank Stajano: But I’m just imagining you are in a situation like this and
the guy behind you keeps shaking his leg against the chair, I mean, it’s really
annoying.

Reply: It’s a little it, I mean, it’s a bit faster than that because the frequency
is a bit faster than that, because they don’t do it 50 times a second.

Frank Stajano: Especially if you have the sine wave.
Audience: What about a room full of people each with their own? If it’s a

cube farm, a big office building, everyone has their desk, and they all are doing
it, then could the building actually fall down?

Reply: Perhaps, if you hit the resonant notes with enough amplitude, but I
am not sure.

Audience: To go back to the question from Frank, if you’re in a cube farm
you’re sitting on something that’s probably got some padding on it that might
absorb those vibrations, and so I think it’s really important that you consider
the material that the phones are sitting on. I mean, have you done any testing,
if you had a tablecloth on it as opposed to a solid surface?

Reply: No.
Audience: I see.
Reply: OK, so if you don’t have a subwoofer, the other even more irritating

alternative is to actually use a couple of defence phones on vibratory mode, and
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you can do a sort of gentle 50 milliseconds followed by a two second silence, I
don’t know which one is more irritating, or a more aggressive one, which is 50
milliseconds followed by 100 milliseconds of silence, and on the classifier you can
start to see that with the aggressive one you can start pushing down the attack
efficiency to some extent.

Audience: How about a real vibrator?
Reply: A real vibrator?
Audience: What people really mean when they say vibrator.
Reply: OK, so jamming is basically denial-of-service, but we can do some-

thing slightly better, a pseudorandom alternative which is what I’m currently
working on. Basically you generate random noise from a seeded uniform dis-
tribution. The seed acts as a key, and all devices which share the key with
synchronised boundaries can infer the correct vibrations while the unauthorised
devices sense noise alone.

Frank Stajano: Well just plug in some music, why does it have to be an-
noying, you can just listen to your favourite ?

Reply: Yes you can do that, and it works pretty well, as could several other
alternatives mentioned in the paper.

But I think basically it has the same problem as using a sine wave because
it’s going to have structure, and then you can use the structure to isolate and
discard the blinding effects of the acoustic wave. Therefore, you have to have a
uniform distribution over frequencies. In addition, you need to have the combined
effects of wave energy addition and cancellation. Note that if you had only one
of them then the shape energy envelope of the keystrokes would still be in the
distribution, and then you could extract the keystroke from that.

So the main point is this gives you some secrecy but there’s no covertness in
it. So I have a uniform pseudorandom generator, it’s obviously not covert, even
my neighbours know that I have the jamming switched on, right, because they
might feel it through the floor.

Sandy Clark: Are you sure it’s not because you’re just having a party?
Reply: I am not too sure, yes, maybe it goes to what Frank was saying

about the vibrator. So spying on other people’s keystrokes using smartphone,
you know, accelerometers isn’t trivial, they are fairly easy to break, so that’s
one thing. It’s easy to defend basically by jamming the tabletop network, you
saw that picture already. So better defences are achieved by pseudo-jamming
based on shared keys, but achieving covertness is going to be hard because what
you’d have to do is, you’d have to simulate vibrations from the distribution of
whatever keystrokes based vibration is injected into the table. So you’d have to
draw from that distribution, and you’d have to probably come up with some
pretty neat ways of directional injection of waveforms to cancel the keystrokes
perhaps, that’s going to be future work.

Frank Stajano: Covert, and so you’re pretending you’re not typing?
Reply: Well the phone doesn’t know whether you’re typing or not, yes, but

the jamming should not be obvious either.
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Frank Stajano: Is the assumption that, of course the guy who wants to be
covert doesn’t know that the phone is tracking him? Why does it have to be?
I’m not too sure I understand.

Reply: If you’re using the table as a communication channel it shouldn’t be
obvious whether you’re communicating or not.

Frank Stajano: Right, but if you’re worried about it why don’t you check
whether there are any phones on the table?

Reply: That may not be obvious.
Audience: If I want to record your keystrokes that way I probably would

stick my cellphone to the bottom of the table.
Reply: There are lots of ways.
Frank Stajano: Right, then I am still worried about whether when I type

people detected I typed or not.
Audience: You can put another mat under the keyboard, and a tablecloth

for either table, does that mean that that there is no longer a channel?
Reply: No, it just reduces the amplitudes of the signal, but it’s not equivalent

to signal absence; a more sensitive accelerometer will pick up the signal. What
you actually want is the signal cancelling out. Otherwise, you’re on weak ground
as you are fighting an arms race with the sensitivity of the accelerometers and
hoping to win.

Audience: Yes, but there’s an amount of noise being derived anyway, and if
you’re pushing the noise to the noise limit

Reply: Well remember that you also want your smartphone to work in the
same situation, so if you jam it, or you reduce it to a noise floor, that’s not going
to happen.

Audience: But do you get initially good signal to your phone that you can
type on your keyboard and it would work effectively?

Reply: It is an app on the market.
Audience: OK.
Frank Stajano: Is the phone that is listening to you your own phone?
Reply: So you’ve got one phone, which is your own phone, and you pretend

it’s a keyboard and type and it understands, and then the attacker phone, which
is trying to get the same stuff but that shouldn’t work.

Audience: In that case it’s not a covert channel, it’s an intentional channel.
Reply: So that’s an intentional channel, yes.
Frank Stajano: But you can’t plausibly want to use this iPhone app and be

covert in your typing, right.
Reply: You might want to be. The friendly phone running the app obviously

understands, but you are covert in your typing as far as the enemy phone is
concerned (the one that doesn’t have the secret key).

Alec Yasinsac: If you’re using the iPhone app you want the iPhone to know
you’re typing.

Reply: Yes.
Frank Stajano: But you want nobody else to know that you’re typing.
Reply: Yes.
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Robert Watson: Have you looked at the power use implications of this?
Reply: Not too bad, I think, but I haven’t measured. Essentially you’re just

having the accelerometer on to collect the data, and the processing is done offline.
Robert Watson: I was wondering about the power use of vibrating the

further relay and things like that.
Reply: No, I didn’t look at that, no.
Daniel Thomas: When you have the accelerometer on it’s basically free if

you’ve only got a CPU on?
Michael Roe: I seem to remember something in the book Spycatcher, where

they’re not just, where they’re doing the roll thing of Tempest, when they’re
looking at electromagnetic emanations from cipher machines, but they also look
at the audio emanations from the electromechanical cipher missions of the era,
so this idea that you might be able to monitor what the Russians are sending by
listening to the teleprinter chatter from their cipher machines. And I think it’s
something that goes back a way in the literature. So it’s a similar sort of thing.
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Abstract. In anonymous group messaging any group member may wish
to send a message anonymously to the other members, and all members
follow a defined protocol. Not all members can be trusted, meaning that
some may disclose relevant information to an adversary, and our adver-
sary could have complete access to network communications.

We will discuss here the protocol setup and start-up phase in anony-
mous messaging: this phase is highly critical and can actually compro-
mise the anonymity of subsequent communication the very goal we
wanted to achieve. The start-up phase actually represents a secondary
communication channel, where relevant information is released, that can
be caught by an adversary.

Two cases will be discussed: onion routing (section 1) and token pass-
ing (section 2).

The first case dates back to Mix-nets [1], and has being addressed in
substantial later research [13–15]. Here we will specifically refer to the
newest real-world Internet implementation of Tor, as described in [2]. In
Tor, we have a free topology, where the actual path of messages within
the onion router (OR) network is chosen at the source. This path-setup
phase can be seen as part of communications on a secondary channel,
that can provide useful information to an adversary.

The second case is based on new protocol, based on token passing over
a fixed ring topology. The method can be related to some characteristics
of DC-nets [6, 16, 17], and in particular to the Dissent [3] system. In the
token passing system a start-up phase requires choosing the node that
will first transmit relevant information, as well as guaranteeing that any
node will be able to communicate (anti-starvation policy). The start-
up phase, again, may contain secondary channels that will need special
attention. The discussion is limited to 3 nodes, and the general n-node
case is left for future work.

1 Onion Routing

Onion routing, as implemented in Tor [2], is based on the operation of so-called
Onion Proxies (OPs) and Onion Routers (ORs). ORs have the same role of
mixes in [1], while OPs interface to the user systems. Because Tor is a practical,
real-world Internet system, it has to deal with the fact that, for efficiency rea-
sons, encryption will have to be symmetric, and not only based on public key
cryptography as was the case for Mix-nets.
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Because of this need for symmetric encryption with short-term keys, such keys
will have to be distributed and shared between the OP and the first OR in a
desired path, and between adjacent ORs on the path. A path and the corre-
sponding keys will determine a so-called “circuit”, allowing to send anonymous
messages.

Let us first discuss the general Mix-net case, we will then come back to Tor
and to the problems connected to the setup phase, where a circuit is created.

1.1 Mix-nets and Traffic Analysis

In mix-nets, some messageMA, sent by user A, is encrypted n times for a number
of intermediate mixes R1, ,Rn. Every encryption also carries the address of the
next mix, and a random value Ni, needed to prevent someone from guessing the
encryption input from the previous step.

Although this work is very well known, we will briefly review it, and then
restate it in a modified context, so as to understand more clearly some con-
sequences for anonymity when network-wide eavesdropping is possible. In the
original proposal of mix nets, message MA is sent from A to B through a se-
quence of mixes R1, ,Rn. Initially, A sends to Rn the following message:

En(Nn, Rn−1, En−1(Nn−1, Rn−2, En−2(. . . (E1(N1, B,EB(NB , null,MA))) . . .)))

where Ei is the encryption for Ri, e.g. encryption with the public key of Ri.
Rn will then strip the outer encryption layer, throw away the random value Nn,
and forward the following message to Rn−1:

En−1(Nn−1, Rn−2, En−2(. . . (E1(N1, B,EB(NB, null,MA))) . . .))

Finally, B will strip the last encryption layer, and obtain the message MA.
Each mix only knows its predecessor and its successor, but does not know the
rest of the chain.

It is well-known that, if there is a global eavesdropper, the above discus-
sion will be insufficient when anonymity is desired [2]. Suppose, in an extreme
case, that only one message is sent through the network, and it goes from A
to B through the n mixes as explained above. For the global eavesdropper, see-
ing all the messages (though unable to decrypt them), it will be evident that
the message is from A to B. If the message is then published by B, it will be
clear that A is the origin. When many messages run through the onion routers,
traffic and timing analysis will be more difficult, but in general not impossible if
further assumptions are not made. The situation is informally depicted in Fig. 1.

In running onion routing infrastructures, one is faced with two contrasting
needs:

– It is desirable to have many mixes, so that the user will not have to trust
just a few mixes, that might collude and break the user’s anonymity. E.g.,



Communication Setup in Anonymous Messaging 163

Sender2 → R1 → R2 → R3 → Receiver
Sender1 → R6 → R2 → R4 → Receiver

Fig. 1. Mix-nets and traffic analysis

when using the Anonymizer [4], the user will need absolute trust in that
one system, because the Anonymizer proxy could itself trace all of the user’s
traffic. In Tor, more than 30 mixes are used in different countries, and all
would need to collude to link messages to users in the general case.

– It is desirable to have lots of messages going through mixes [2], otherwise
traffic analysis may link initial input to final output, hence allowing an eaves-
dropper to identify message origin. To have many messages traverse the
mixes, however, one should have a smaller number of mixes, to be used by
the highest possible number of users.

1.2 Circuit Setup in Tor

In Tor the same Mix-net framework is used, but encryption is done with sym-
metric keys. The user communicates with an Onion Proxy (OP), and subsequent
nodes are Onion Routers (ORs). A circuit has then to be constructed, so that,
upon receipt of a cell, an OR knows which OR to forward the cell to, and what
symmetric encryption key to use.

In order to setup a circuit:

1. The OP will send a first ‘create’ message to a first OR (call it OR1), specify-
ing a new circuit link name (call it C1), and her own half of a DH handshake.

2. OR1 will reply with the other half of the DH handshake, so that OP and
OR1 share a key.

3. To extend the circuit, the OP will send an ‘extend’ message to OR1, spec-
ifying the same circuit link name C1, and the next OR in the circuit to be
constructed, say OR2, as well a DH information needed for generating the
key to be shared by OP and OR2, encrypted with OR2’s public key.

4. OR1 will now send a ‘create’ message to OR2, forwarding OP’s DH hand-
shake, and a new circuit link name, say C2. OR1 maintains a table that links
OP’s C1, with C2 and OR2, but this correspondence need not be known to
OR2.

5. OR2 will then reply to OR1 with its own DH info.
6. OR1 will forward OR2’s DH info to OP, so that OP and OR2 will now share

a secret key.
7. The same circuit extension process (steps 3 to 6) is repeated by substituting

OR2 to OR1 and OR3 to OR2. The communication actually goes through
OR1, too, as if it contained application data to be relayed.

The above process is depicted in Fig. 2 - arrows may correspond to multiple
messages over ORs.
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− →1

. OP OR1 OR2 OR3

. ← −2

. −−−− →3

. OP OR1 OR2 OR3

. ← −−−−4

. −−−−−−− →5

. OP OR1 OR2 OR3

. ← −−−−−−−6

Fig. 2. Circuit Setup Pattern

Once the circuit is set up, data can be relayed over the circuit as in Mix-
nets, but symmetric keys are used. So, in the example of Fig. 3, the OP will
encrypt data for OR3, then again for OR2, and finally for OR1, and send it
to OR1 specifying C1 as a circuit. OR1 will decrypt once, find the content to
be still encrypted, then relay data to OR2, with circuit name C2. OR2 will do
the same. OR3 will finally receive a data relay cell, decrypt it, and find it to be
plain content, non-encrypted. OR3 will then route the traffic as simple TCP/IP
connections.

− →1 − →2 − →3

. OP OR1 OR2 OR3 ↔4 TCP responder

. ← −7 ← −6 ← −5

Fig. 3. Data Relay Pattern

Every OR, as a Mix in Mix-nets, will know the preceding and following OR,
but not the rest of the circuit, nor the originating OP. However, TOR relay data
cells are subject to traffic analysis by a global eavesdropper, just as discussed
for Mix-nets in the previous subsection. Moreover, the circuit setup phase can
be detected by an eavesdropper.

The circuit setup and data relay patterns are different and can be detected by
eavesdropping. Even though the content of messages is not known, the particular
sequence of messages may give evidence of a circuit being constructed, with the
identity of the participating ORs.

In Fig. 2 (circuit setup), in fact, the sequence of messages is

1. OP → OR1
2. OR1 → OP,
3. OP → OR1, OR1 → OR2
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4. OR2 → OR1, OR1 → OP
5. OP → OR1, OR1 → OR2, OR2 → OR3
6. OR3 → OR2, OR2 → OR1, OR1 → OP

whilst in Fig. 3 (data relay), the sequence is

1. OP → OR1
2. OR1→ OR2
3. OR2→ OR3
4. TCP/IP traffic to and from OR3
5. OR3 → OR2
6. OR2 → OR1
7. OR1 → OP

Even though the content of messages is not known, a global eavesdropper
acquires important info about circuit members and sequence, that could help
identify message origin in subsequent data relay phases. Circuit setup can then
be viewed as a critical secondary channel.

2 Token Passing

We will now describe a new protocol for anonymous messaging, that is based on
a ring topology and on a token passing approach. The basic idea is to have a
fixed topology (a ring), so that communication has to flow around all nodes in
the ring, and there is no need for a dangerous circuit setup phase. In this paper,
we will limit the description to three nodes, ongoing research is being pursued
to extend the method to an arbitrary number of nodes. We will first describe
the protocol, and then address secondary channel and system setup issues.

Let us then suppose the group is composed of three members, namely A,
B and C. Suppose also that the three members can communicate with each
other as in a token ring LAN protocol. This is reminiscent of the IEEE token
ring topology [10], where messages are exchanged as tokens traveling around the
ring. In this case, we have a ring with 3 nodes (namely A, B and C), that are
circularly connected, as in a ring topology.

We suppose each group member has a pair of asymmetric keys, and that the
public keys are securely known to all group members. We will call the public
keys PK(A), PK(B), PK(C), and the corresponding private keys SK(A), SK(B),
SK(C).

Suppose now that A wants to anonymously send a message MA to the group.
A will then encrypt for B, sending EPK(B)(MA) to B. We will say in this case,
that A has “seized” the token, as in IEEE 802.5 (token ring). B does now know
if the originator of the message is A, because A could also have forwarded a
message received from C.

If, on the contrary, A does not wish to send a message to the group, A will
send to B an encrypted dummy: EPK(B)(dummy1). The dummy is recognizable
as such , so B will know there is no message and will be able to insert his own
message, if desired.
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If a non-dummy message is received, B will forward the message to C, after
re-encrypting for C. In this case B sends EPK(C)(MA) to C. C does not know
whether the originator of the message is B or A.

C will now forward the message to A, and send EPK(A)(MA). A will receive
and decrypt , and will recognize it as the message she had previously sent. So
A will absorb the token, as in IEEE token ring, and will release a dummy. So
A will send EPK(B)(dummy) to B. B will now have a chance to insert his own
message, if desired, or pass a new empty token (with a newly generated dummy)
to C. The dummy should be fresh, i.e. each new dummy should be different
from previously used dummies. The above example is illustrated in the following
three-party protocol:

1. A → B : EPK(B)(MA)
2. B → C : EPK(C)(MA)
3. C → A : EPK(A)(MA)
4. A → B : EPK(B)(dummy1)

We will now discuss two issues that can be seen as related to a subtle type
of secondary channel, where the adversary uses information about which node
starts the process, and draws conclusions that may help identify the message
source.

2.1 Starvation Avoidance

Consider the above three-party protocol. If, after absorbing the token, A will send
a new message, instead of a dummy as in message (4), it will keep occupying
the ring, denying others the chance to communicate. If the same happens again
and again, only A will communicate and other group members will starve.

One could solve the problem as in token ring protocols, and force the node
that ate the token to release a dummy afterwards, as in the above three-party
protocol. This, however, will not work in this context, because it will destroy
anonymity. To understand this, consider again the above three-party protocol.
Member C will have received an informative message in (2) and will have for-
warded an informative message in (3). Suppose now that, in the next round, C
receives again an informative message, as described below:

1. A → B : EPK(B)(MA)
2. B → C : EPK(C)(MA)
3. C → A : EPK(A)(MA)
4. A → B : EPK(B)(dummy1)
5. B → C : EPK(C)(MB)

In this case C knows the message originates from B, if the rule of “mandatory
dummy after eating token” was applied. In fact, in the previous round, C does
not know if message (2) originates from B or from A. However, if it originated
from B, seeing a non-dummy at step (5) would be impossible.
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This is solved by having the member who absorbed the token flip a coin, and
forward a dummy or a content message accordingly. So, in the latest example
above, message (4) could be a dummy with probability 1/2, or a new information
message EPK(B)(M

1
A) with probability 1/2. In this case the above situation

does not occur, and the probability of starvation rapidly approaches zero as
information flows around the ring: after n rounds, the probability of A never
releasing a dummy, and B starving, is 1/2n.

2.2 Protocol Start-up

In the previous method, anonymity is destroyed if some group member can
easvesdrop on all traffic, simply because the first group member sending any
kind of communication is also the originator of the message. We then need to
define a protocol start-up phase that will prevent sender detection via starter
detection.

The issue is quite tricky, and easily overlooked. However, let’s follow this line
of reasoning:

– Suppose there is no traffic on the network (power was just turned on and no
previous messages were sent). Suppose also A sends a first encrypted info to
B. This has to be a dummy, otherwise B knows for sure it originates from A
(cannot have been forwarded from C).

– Suppose now that after this first message from A to B, that everyone knows
to be a dummy, an information-carrying message is sent from B to C. Then
C knows it is from B, and not from A, since the previous message was a
dummy.

– The same reasoning goes on and on, and no one is able to start without
being detected.

So it looks like the protocol is ok when it is up and running, but it cannot be
started securely. How can this be solved? We propose the following solution: let
any node start spinning a dummy token around the ring, and let A, B, and C
wait an unpredictable amount of time, before they send their first message.

More formally, let each group member define a time interval [Low, High],
that is not revealed to the other members (e.g. A could define [3 seconds, 10
seconds], while B could define [5 seconds, 8 seconds]). When the protocol starts,
each member waits a random amount of time within his defined interval, then
sends a message if desired. The time intervals are re-initialized periodically, so
that they cannot be detected by observation.

In the above discussion, the very act of ‘starting to speak’ creates a secondary
channel, even though the content of the message is not known (in fact the ad-
versary is not even supposed to know if it is a message or a dummy).

2.3 Anonymity and Randomness

There seems to be some connection between anonymity and randomness. Well,
there is a similar connection between secrecy and randomness. In a deterministic,
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randomness-free world, God can see all the sins (no secrecy), and similarly he will
know all the sinners (no anonymity). We will address the issue more technically
below.

For secrecy, randomness is needed for key generation. If our adversary can
predict our pseudo-random numbers, she will bypass all our cryptographic tools,
no matter how secure.

For anonymity, all protocols we knowneed somekind of true-randomness. Some,
like the token passing method described in this paper, need it for a number of rea-
sons, including the generation of cryptographic keys. Others, like DC-nets [6], that
can work without cryptographic keys, need randomness for some other reason.

The fact that DC-nets need randomness is easily seen, even in the original
3-party description by Chaum [6]: each dining cryptographer needs to flip a
coin to start the protocol. If our adversary can predict the coin flipping result,
anonymity is lost. DC-nets also need to generate random numbers in order to
avoid collisions, i.e. message generation by more than one party in the same
round. Knowing who is allowed to send the message is the same as knowing the
next message origin, if only one member is allowed to communicate at a time.
Hence members will need to wait a random and unpredictable amount of time
after a collision is detected, or some other form of system-wide initialization is
needed. It looks like dining cryptographers also go along with some secondary
channel that is related to the need for a start-up phase.

Shuffled-send methods [3, 5] require randomness to produce an unpredictable
shuffle. This is also done in mix-nets, though in a less systematic way, by requir-
ing onion routers to delay transmission until some suitable batch of messages
is received, so that individual messages may be forwarded in some different,
unpredictable order.

3 Conclusions

When dealing with anonymity, secondary channels are everywhere. Well, it’s no
surprise: one registers to some anonymity-preserving service, and part of the
anonymity is instantly gone.

We have highlighted some cases that are relevant in well know anonymity ap-
proaches (Mix-nets and onion routing, and approaches based on DC-nets). We
have also presented a new anonymous messaging protocol for three parties, and
addressedpossible solutions to secondary channels that arise in the start-upphase.
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(Transcript of Discussion)

Francesco Bergadano

University of Turin

Hello everyone, I’ll be talking about secondary channels in anonymous messag-
ing. Actually I’m going to be considering two different approaches to anonymous
messaging. One is the well-known Mix-net like approach, also called onion rout-
ing. This is well-known, so I will go only briefly over it. And the second approach
is a new protocol based on token passing over a ring. They both have interesting
types of secondary channels I want to discuss.

For onion routing I based my analysis on a relatively recent paper on the im-
plementation of onion routing in the Tor system; I believe many of you have seen
that. But in any case, what was known as Mix-nets in the previous literature, in
these practical systems have become either onion proxies or onion routers. So all
the IP packets travelling over the network first go to an onion proxy. Then the
onion proxy does all the work for the user, encrypts the packet many times in
an onion-like multiple encryption, and routes the packet, the encrypted packet,
through the network, through a number of onion routers, and in the end the last
onion router will finally get the plaintext IP packet, and forward it to the normal
TCP/IP communication network. This is to protect anonymity, so in the end no-
body knows who was the original sender of the packet. Every mix, every onion
router, only knows the predecessor and the successor in the sequence of commu-
nication hops.

And it is well known, as the authors of the cited paper on Tor also admit,
that onion routing is not strong against a global eavesdropper. If we have all
these onion routers, we have senders and receivers, if somebody can see all this,
if we are far enough away to see all the communication going on, we can simply
analyse traffic to detect the sender. Looking at the slide, suppose for example
that Sender 2 sends a packet to Receiver, and no other traffic is going on. Then
we see that something is going from R1 to R2, then to R3 and finally to Receiver,
and by simply looking at that we can see the path of the packets through the
network, so we can tell at the Receiver’s end that the Sender was Sender 2.

In reality things get more complicated because the network is busy, so there’s
packets running every way, and it becomes very difficult to analyse traffic. But
still in principle one can do it. And as a consequence, even in the original Mix-
net paper by Chaum, it is suggested that routers should buffer traffic, so as to
accumulate a sufficient number of packets, and wait until the buffer is full enough.
They should then send away the packets in a different order, so as to make it
impossible to analyse traffic by changing the order with which the packets were
sent. But that causes a delay, additional latency in the network. So you have a
trade-off between latency and anonymity in onion routing.

B. Christianson et al. (Eds.): Security Protocols 2013, LNCS 8263, pp. 170–175, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In my paper, I have analysed another form of traffic analysis that is related
to a start-up phase in onion routing approaches, such as Tor. In Tor everything
is based on symmetric cryptography at some point, because you want to make
it more efficient. In the original Mix-net paper everything was based on public
key cryptography, but it was of course just a proof of principle idea. If you want
to do it for real, as they did in Tor, you have to set up a symmetric key path
between Sender and Receiver to make it fast. So when an onion proxy wants to
communicate through a sequence of onion routers, before even starting to use a
circuit, it has to set up the circuit. In order to set up the circuit the onion proxy
first sends a circuit set up request to the first onion router and gets a response.
There is a Diffie-Hellman key agreement, so after this phase the onion proxy and
the onion router share a symmetric key. The same is done with steps 3 and 4
with onion router 2, and afterwards with onion router 3. After the set up phase
the user, via the onion proxy, shares a key with each of the onion routers. So,
from that point on, Mix-net operation can work with symmetric encryption.

When the circuit is set up then the communication will go through the routers,
encrypted many times as in Mix-nets, and when it gets to the final onion router
then it continues as normal TCP/IP traffic. By looking at these we can see that
there is some possible traffic analysis again because the pattern used in circuit
set up is different with respect to the data relay pattern. In fact, by looking
at the figure, one notices that in circuit set up we have links 1 and 2 between
OP and OR1, then links 3 and 4, etc, etc, whilst in data transmission traffic
goes all the way to the final router, and then it comes back, so the two kinds of
communication can be distinguished. So again, you can do some traffic analysis.
So I will conclude here for onion routing, because the work is very well-known,
but what I wanted to point out is that in onion routing in Mix-nets you can do
traffic analysis of different kinds that endangers the very goal of anonymity we
were looking for.

So now I’m going to move to the second part of the paper, and I’m going to be
talking about token passing and a new protocol for anonymous group messaging.
We use a ring topology and a token passing idea. We pass a token from one user
to the next around the ring.

Frank Stajano: So besides Mix-nets there was another famous construction
of Chaum paper.

Reply: DC-nets, yes.
Frank Stajano: Can you say how it is different?
Reply: Well, one of the goals of DC-nets was to allow for anonymity without

encryption, in order to provide unconditional security for anonymity. This is
not our goal. At the same time we can avoid some of the drawbacks of dining
cryptographers such as the difficulty of media access, with the kind of contention
that you get in dining cryptography. I’ll get back to it in the end.

Anyway here the communication is anonymous because one cannot tell if a
token is created by the predecessor, or just passed on.

Alec Yasinsac: Just to be sure I understand that, that’s also true with
the Tor network, when a message comes in an eavesdropper can’t tell whether
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the message going out is a message that was forwarded, or a message that was
created, right. So I mean, that’s really a property of Tor as well.

Reply: In Tor, when there is a message one cannot tell who sent it in the first
place because it was encrypted all the way. But actually in Tor I don’t think the
routers ever create a message, they only route the messages.

Alec Yasinsac: But the message could be created from a user who is a Tor
node.

Reply: Yes.
Alec Yasinsac: You see my point is, if you have one message on a network

it goes from router A to router B, and then the message goes from router B to
router C, an eavesdropper has no way to know if that message that went from
A to B terminated at B and a new message started to go to C, which is exactly
the property that you’re addressing.

Reply: There’s maybe some similarity, but I think not exactly the same,
because routers are routers, they’re not users, they just forward messages.

Alec Yasinsac: On behalf of users.
Reply: On behalf of users, yes. Here the user can be the origin of a new

message, or just a forwarding mechanism.
Michael Roe: In email remailers when the remailer buffers up a lot of mes-

sages and then sends them out in a different order then they came in, then
because they’re encrypted, and the eavesdropper can’t tell which message com-
ing in corresponds to which message coming out. But Tor has, I think, slightly
weaker mathematics, because if you see the real time properties an eavesdropper
who’s got global surveillance of the network can, by looking at the correlation
of the message coming in and going out, possibly match things up even though
they’re encrypted just by looking at the timing of when things come in and go
out.

Reply: Yes. OK, so the whole idea is a kind of a whispering game, I don’t
know if British and American kids do that, but kids sit in a circle and you whisper
some sentence to your neighbour, and your neighbour will whisper to the next.
And at some point the sentence that is broadcast is not exactly the same that
we started with. So you can say something anonymously, for example, I start
out with some innocent looking sentence such as“moles love apples”, then it’s
whispered to the next one and becomes “moles loves add-ons”, and then “Bob
loves add-ins”, and “Bob loves Alice”. And in the end the kid says ”hey: Bob
loves Alice!”. Who said that? We don’t know, it’s anonymous. So this is the idea,
we pass something around and we never know who injects the information in
the process.

So here is the protocol, it’s very simple. For the moment it’s just a three-party
protocol because it’s ongoing work. I use public key cryptography here to make
it simple, but I could have used secret keys just by setting up the keys first, or
I could have used nothing at all, just relying on the physical security of point-
to-point communication. In any case there is a message MA sent from A, and,
at step 1, A sends secretly to B message MA. B reads the message, decrypts
it, understands it, and forwards the message to C by re-encrypting it for C. So
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now C has the message, but C does not know who created the message, it could
have been B, or it could have been somebody ahead in the ring, and B is just
a forwarder of the message. This reminds us of IEEE token ring, because when
we receive the message we don’t just say, OK, I’ve got it, it’s finished, but no, I
forward the message anyways, so the message keeps going on, and it does a whole
ring trip. When A gets the message again, A can realise she was the creator of
the message, so A will absorb the message and free the network again. So A,
after receiving her own message, sends out a dummy at step 4 so the network is
free to use again, like in IEEE token ring. So this is very simple, and it should
allow for anonymity.

I could not see any problem for a while, then by thinking about this for a while
I realised there were some secondary channel issues. And basically there are two
problems I want to discuss with you. One of them is anti-starvation, i.e. network
availability issues. If the protocol is as I have described it, you realize that after
A receives the message after one complete ring trip, A has to send a dummy,
because if A sends a message again everyone else will starve. For networking,
this is fine, but for security and anonymity it’s not fine because then everybody
knows things have to be that way, and this knowledge provides a secondary
channel that completely destroys anonymity.

Imagine these are the messages that went around the network. When C re-
ceives message number 5, this is a content carrying message, it’s not a dummy, it
contains a real message. As a consequence C will know that the previous message
number 2 was sent by A, because if it was sent by B, then message number 5
should be a dummy. If message 2 was sent by B, it would have returned here, and
B would have released the dummy at this point. So, if we don’t want starvation,
and we adopt a classical anti-starvation policy, then there is no anonymity.

So what do we do? The solution is, after finishing a trip around the ring A at
step 4 will not necessarily send out a dummy, but it will send out the dummy
only with probability a half. So with probability 0.5, A will send a dummy, and
with probability 0.5 it will use the network if it so wishes. In this case C cannot
use this information as a secondary channel, but at the same time there is no
starvation because with probability 1/2 the network will be freed, so there is
starvation only with probability 1/2M , after M trips around the ring. So this
was one first problem that was easily overlooked, and we have solved it.

Here is another problem, even more subtle: the start-up phase. The protocol
works fine when it’s running. We imagine this token going round the ring, and
it’s been going round the ring for hours, then it’s fine, it’s no problem. But
when you have to start, somebody has to start speaking, and starting to speak
is another secondary channel. This is well known also in more recent works, such
as Dissent, which was published just a couple of years ago, they have the same
problem. If you want to do anonymity, but then you take action and you speak
first, then everybody realises you want to say something, and anonymity is not
there anymore. And here it’s the same. If the network is idle, who will start to
speak? A cannot start to speak, because otherwise B will receive an informative
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message and it will know it’s from A, because that’s the first message in history.
So A cannot start. But then also B cannot start, nobody can start.

So what do we do? Again we have a probabilistic solution. It’s like in this
famous movie, this movie by Sergio Leone, I don’t know if anybody has seen it,
but in the final scene of the movie there is a showdown, and it’s three gunmen at
the showdown, not two as usual, but three, so it fits my protocol. And of course
you should not draw your gun, because when you do that you’re dead. So you
have to wait, wait as in the movie, there is a long waiting time. It’s about the
unpredictability of gun drawing, nobody knows when the other ones will draw
a gun. And it’s the same here. The network has to start but nobody has to be
able to predict when anyone will start speaking, because if we can predict when
someone will start speaking, then there’s no anonymity.

Frank Stajano: Start with the dummy.
Reply: Yes, that’s what we do, exactly. We start spinning a dummy. The

dummy goes around and everybody waits, how long does everybody wait, you
don’t know, everybody has to think of some time when they will start com-
municating, but this has to be secret. For example, every player chooses two
randoms, low and high, two random times, system-wide, and then it will select
a time within the interval, and start speaking only after that amount of time. If
this is unpredictable to others then the anonymity is preserved.

Frank Stajano: But what does it mean if that is idle if you’re already spin-
ning a dummy in the network?

Reply: Idle in the sense that there is only a dummy going around, no infor-
mation. It’s a dummy talking, it goes around, the network is idle.

So we have seen some examples of secondary channels. In onion routing we
have traffic patterns, traffic analysis can detect traffic patterns. I can detect
when some packet is forwarded by a router, as a consequence I can know traffic
sources. This was well known, but then we have seen a new kind of secondary
channel analysis, which is linked to a start-up phase in Tor, known as circuit
setup.

Then we have seen a different approach based on token passing, and we have
seen that starvation-avoidance policies and network activation can cause prob-
lems that have to be addressed. We have also seen a very interesting link between
anonymity and randomness. We have seen that in order to get anonymity you
need random bits everywhere. For example, in Mix-nets you need buffering, and
a random reordering of packets in order to avoid traffic analysis. In more recent
work in Dissent, there is a so-called notion of ‘shuffled send’, for those who have
seen it, and the message shuffles have to be random.

My approach here to anti-starvation and start-up in this token passing mech-
anism needs randomness, because, for example, I have to insert information only
with some probability. I have to flip a coin to insert information only when we
get heads, for example. In DC-nets there is a coin flipping primitive, which is at
the basis of all communication, and also acquiring media access requires some
kind of solution. For example, by a contention mechanism, and this also requires
randomness, waiting for some random amount of time. So we get an intriguing
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question: it has been shown that one can obtain anonymity without cryptogra-
phy, as in dining cryptographers, and also in cocaine auctions, and it has been
shown that I don’t need pubic key cryptography or secret key cryptography,
to get anonymity. But the question is, can we also obtain anonymity without
randomness, without unpredictable data that I have access to, but that others
cannot predict, without secrets. I would tend to give a negative answer based on
what we have seen here.

Future work: of course, this has to be extended to an N-party protocol, and
it turns out it’s not easy, because if we just extend what I have shown here
to N parties a näıve extension doesn’t work, so I’m working on a more involved
protocol for N parties. Then I’d like to formalize a more precise adversary model,
and provide further comparison with approaches based on DC-nets. OK, I’m
done, any other questions?

Daniel Thomas: So with the alternative, probabilistically sending a dummy
when you receive your own message back, if it’s possible to say that two messages
were sent by the same person, you don’t know who the person was, because of
the anonymous network, but you know that the same person sent them, because
they have the same kind, can you do a correlation with whether the dummy was
sent or not, and over the sequence of the messages eventually work out who it
was who sent them?

Reply: So the question is, if I can tell two messages were sent by the same
person, I don’t know who it is, but they were sent by the same person.

Daniel Thomas: You know that sometimes the node sends and sometimes
it won’t. OK, if a dummy is never sent by a node, when it sees one of these
messages, then it’s not the sender of the message. But if sometimes it does send
a dummy then it is the sender of the messages, can you over a period of time ...

Reply: So if you never see a dummy you know the same person is transmitting
again and again.

Daniel Thomas: Yes, the same kind of message.
Reply: Interesting.
Daniel Thomas: Over time if you do that universally and to check probabil-

ity, can you have, with some high probability, the one that’s sending messages.
Reply: So we get some information we should not get.
Daniel Thomas: Yes.
Reply: I had not thought of it, thank you, yes. So that’s still another channel.

Yes.
Vanessa Teague: Could the same thing happen, if the sender is sending a

dummy. Just go back to the slide, I understand that if B doesn’t get message 4,
then he doesn’t know whether A was the originator of message A. But if B does
get message 4, then can’t B infer that A must have sent message A?

Reply: If B does get message 4 then, well the dummy could have been created
here, too, right.

Vanessa Teague: Ah, so it’s the dummy getting propagated in that case.
Reply: Yes, A does not have to transmit every time.
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Abstract. Currently in mobile location-based services the application
relies solely on the coordinates provided by the phone’s operating sys-
tem to determine its location. The application residing on the phone then
submits the resulting location data to the application server, leaving the
protocol insecure as a dishonest user can inject fake data at the last
step. In this paper we propose a new method that allows an application
to independently verify the integrity of submitted data by checking its
plausibility given surrounding Wifi access points. Instead of the tradi-
tional single channel of information, namely the submitted coordinates,
the application can supplement a second channel to potentially filter out
fraudulent location data.

1 Introduction

With an increasing number of mobile phones having GPS capabilities so too have
the number of location-based services and applications increased. These services
use a user’s location in many ways: some to help provide a context to provide
relevant information, some to provide local engagement, and some to verify phys-
ical presence. We see an increasing number of services relying on the accuracy
of the location data, some even having financial incentives (imagine an airline
offering discounts for travellers visiting the greatest number of airports), with
little visible effort devoted to verifying the authenticity of these data. Academ-
ically, location privacy is an active research topic, but the integrity of location
data has largely been little studied. Prior work on location integrity ([4], [2],
[1], [3]) requires the deployment of trusted location beacons, and hence is only
applicable in specialised use cases with a limited spatial coverage.

There are currently two popular methods to locate a mobile device: through
computing GPS coordinates using satellite information, and querying a remote
location provider with nearby Wifi access point (Wifi AP) and cellular tower
identifiers [5]. After either of these methods, the mobile device then submits the
latitude and longitude coordinates to the application server, which then uses
this data directly. It is at this last step that the user can discard real calculated
data and insert fraudulent coordinates, creating a fake physical presence.

Our threat model is as follows: an adversary who is trying to falsely appear at
as many places as possible in the shortest amount of time or with minimal effort.
This adversary is likely an everyday mobile device user who is dishonest when
using the service, as lying to the application can bring some incentives for himself.
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He can easily modify the application itself or directly tap into the application’s
communication with its server. We do not assume larger cooperating attacks
(adversaries sharing necessary information among them) or ones funded by a
powerful adversary. After all, our method cannot provide absolute certainty but
rather a boost in confidence. Also, as a lightweight method, we cannot prevent
all types of location-spoofing attacks. For example, we do not prevent replay
attacks so if a user physically shows up at a location once, he will be able to
repeatedly lie for that location in the future. We consider these types of attacks
to be out of scope.

We bring two contributions in this paper. First, we present a lightweight
design that allows mobile applications to independently verify the integrity of
received location data. No special hardware or modification to phone OSes is
needed apart from software code in the mobile application and its server. An
implementation can be easily made modular and used as a library to further
reduce implementation hassle. Second, we present an example formula that can
be used to calculate a score to indicate the plausibility of a submitted coordinate.
Individual applications can set their own thresholds below (or above) which the
location would then be accepted with integrity.

2 Design

We start with a description of the general design of our protocol. The mobile
application first requests location information from the phone OS as usual. The
phone OS proceeds with GPS, A-GPS, or Wifi (for an approximate location) and
returns a coordinate to the mobile application. Now, instead of submitting this
coordinate alone to the application server, we add that the application should
collect the identifiers of nearby Wifi APs (they may have been collected just
earlier, but that time was by the OS), and send this information as well. As
before, this channel should be protected for confidentiality and integrity, for
example with TLS.

After the application server receives the (claimed) coordinates and the set of
Wifi APs, it checks the coordinates against its database of previous such sub-
missions. If there are sufficiently close (i.e. Wifi signal range) submissions made
prior by other users, then the submitted Wifi APs are compared against those
previously-submitted lists. The rationale is that since these two submissions are
fairly close, the current submission should at least report some APs previously
seen in this area. Similarly, it is also possible to check the submitted APs against
all of the APs database, with the rationale that an AP does not usually move,
for a submitted AP that in fact exists elsewhere far away. For each ‘correct’
report of an AP, a score is added; optionally, a score is deducted for each report
of an AP that has been reported elsewhere. In the end, a final score will result
for this submission of location, and the application will then decide whether to
accept it or not depending on an application-specific threshold.

We mentioned a formula to calculate the plausibility of a set of submitted
Wifi APs and thus determine the integrity of the data. Optimising this formula
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itself is worthy of study, simulation, and field trials. We present a basic formula
that illustrates the idea behind our design, as

score = f(m, p1)× f(m, p2)× · · · × f(m, pn)

where a lower score indicates better plausibility,m is the coordinate of the mobile
device (as given by the phone OS), pn is coordinate set of each seen Wifi APs
that are also previously reported (to be specific it is the coordinate set of most
recently accepted submitted location that includes the matched AP), and

f(x, y) =
|x− y|

1 + |x− y|
is the function to convert the distance between two points in space to a value
in [0, 1). Of course, either the score or f(x, y) can be optimised. For example,
f(x, y) can be written as a piecewise-defined function to eliminate the long tail
and better reflect the fact that Wifi APs will no longer be detectable after a
certain distance due to signal attenuation.

In the above formula we choose to only consider the submitted APs that are
previously reported, and not to penalise submitted APs that are close enough
but not previously reported, or submitted APs that are previously reported
as being elsewhere. Arguably getting APs right is already hard enough that
no further penalties are necessary (it is very hard to correctly brute force an
AP’s MAC address). However, if such penalties were introduced, some care must
be taken. We approximate the location of an AP to be the location of last
accepted submission that reports this AP (or a weighted average location of last
n submissions); this location is only an approximation and it is possible that the
new submission is just out of the range of that AP. The submission in this case
should not be falsely penalised.

3 Discussion

Our proposed scheme brings confidence to client-submitted location data with-
out any changes to the existing mobile infrastructure, and can be realised as a
generic service/library adoptable by different applications with ease. However
some challenges still remain, as we outline below:

– Bootstrapping
The continuous availability and accuracy of the Wifi AP database is critical
to the correct operation of our scheme. If the database is to be built from
scratch, the initial portion of submitted AP locations has to be trusted and
assumed correct. More generally if some geographical location is seldom vis-
ited by previous queries, their initial explorers will play an important part
in bootstrapping that part of the database. To avoid DoS attacks from mali-
cious clients, it might be better to probabilistically update the AP database
even if the submitted query is in conflict with known AP information.
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– Third-party Location Authority
To work around the bootstrapping problem, we could take advantage of
existing maps of Wifi AP locations. Both Apple and Google are in possession
of such databases, used for coarse-grained location services where GPS is
unavailable. We can imagine them becoming a location stamping service
where individual application provide current location coordinates together
with a list of nearby Wifi APs, and the stamping service will digitally sign
the location data if the submitted APs are consistent with their database.

– Wifi AP Dynamics
In our model we have not explicitly considered the cases where an AP is
moving in space (such as personal hotspots) or is temporarily unavailable
as being powered off. The probabilistic nature of our scheme can associate
lower weight to such transient APs, minimising their impact on the overall
accuracy of the score.

Another scenario is that multiple APs can occupy the same geographic
coordinate but are yet distant to each other, because they live on different
altitudes, for example different floors of a highrise building. A scheme that
does not penalise absence of APs still works well in this scenario, as positive
AP witnesses are sufficient to pass the location validation.

4 Conclusion

In this paper we present a lightweight design that allows mobile applications to
verify the plausibility of user-submitted location data with no modification to
phone OSes or third-party equipment. We have also provided an example score
formula as an initial workable metric. Potential difficulties are outlined with
possible solutions. We believe that our work is a practical proposal to verify
location integrity.
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Location data has been more and more accessible since the wide adoption of
smartphones, and if you open up your smartphone you’ll be surprised how many
applications use your location data. A recent survey suggests that in Google
Play, the official Android application store, more than 42% of applications ask
for permissions to access your location data. Some of these applications use
location data just to increase usability, for example, to provide contextual infor-
mation about service around you. Others, namely location-based services, build
their core functionality on top of your current location. For example, we have
Foursquare, where a user can check in their current location and obtain informa-
tion like promotions or reviews about service around him. Another one is Momo,
a Chinese location-based service from which you can communicate with people
around you. After you check in your current location, the app allows you to see
people around you and start chatting with them, providing a way of socialising
with new people.

So for applications where location is the key component of their functionality,
we think that sometimes a user will have incentives to cheat. One example would
be the Nando’s ‘around the world’ challenge. Has anyone heard of it? Basically
if you are able to prove that you have been eating at every single Nando’s
restaurant around the world, then they will allow you to dine at Nando’s for
free for the rest of your life. Well they haven’t actually made clear how they’re
going to judge this, which I guess is kind of on purpose so you can’t really claim
the prize. But nevertheless you can imagine that hypothetically Nando’s can use
your Foursquare check in records as proof that you’ve actually been to these
restaurants. So in this case the user will have an incentive to trick Foursquare
into checking in at places where he isn’t physically present.

Another incentive will be for spammers and phishers. They could fraudulently
initiate you to push their spamming and phishing attempts. A third example
would be that a normal user would actually try. Take Foursquare as an example,
a normal user will actually trust when Foursquare tells you that this user has
been checking into this particular place without realising that the actual location
can be spoofed, hence facilitating actual privacy issues around location-based
social networks. So, for example, the Momo, the Chinese location-based service,
from which you can find out people around you, and the application actually tells
you how far the people are away from you, then you can imagine an attack by a
malicious user where the user fraudulently claims that he is in this place and then
he collects the data about the people around him with precise distance between
the current location and the user’s location. And you repeat this process multiple
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times, for three different locations at least, then you will be able to perform a
triangulation attack on the service, finding out the exact location of every other
user around you, which kind of is a violation of the privacy of other users.

Well we could argue that in this case it’s kind of the flaw of the design of
the protocol of this particular location-based service where they didn’t provide
enough randomisation, and they didn’t actually take the privacy of other users
into consideration. But the ability to spoof your current location data to actually
inject false location into the system actually makes an attack much more dan-
gerous because, I’m going to show you, a malicious user can actually automated
a process and potentially find out people around the world, potentially every
user on this particular location service around the world.

Right, so what are the ways of tricking applications into taking fraudulent
location data. Well we have this hard way, you can reverse engineer the appli-
cation, find out exactly how the application communicates with the server, and
then you can initiate this protocol yourself but feeding in false location data.
And note that in this case authentication or cryptography doesn’t help at all
because the adversary has complete visibility of applications, hence all encryp-
tions, keys, and possible obfuscation, so an attacker will always be able to inject
false coordinates if he has access to an application. Well, there’s actually a much
easier way. So Android’s operating system allows to inject mock locations. The
only thing you need to do is to enable this option in your mobile device’s devel-
oper settings, and then you can simply invoke public APIs, which can be used
to inject false location data. There are already plenty of apps that perform such
tasks for you, and this is bad.

So I hope now you can see that we need some kind of location integrity in these
scenarios. Most research we have seen so far focuses on location privacy where
users don’t trust applications: they assume that the application may leak their
private location information. However, if we look from the other side then the
applications do not necessarily trust the user because the user is able to inject
fraudulent location information, interfering with the application and potentially
other users.

So how can applications have confidence in user-submitted location data?
Imagine that you are engineering a location-based service, and writing up the
access control policy for it. What kind of properties do you want? The first thing
is we want it to be practically deployable, so hopefully we don’t need to invest
in new infrastructure on which to base our trust. There exists previous research
on topics related to location authentication, for example the Echo protocol from
CMU where they perform location-based authentication which basically means
that they are able to prove that a device is within a particular range of a trusted
beacon by means of distance bounding using ultrasonic waves. This is not very
scalable because they have to deploy these beacons to places where you want
to have location integrity, and that’s really not going to scale well. A similar
requirement is that you want your location integrity verification to be globally
available, well at least in populated areas of the planet where location-based
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services makes sense, so probably you don’t need to worry about the Arctic, but
you do want to have location integrity in big cities or populated areas.

A third desired property would be we want the implementation of location
integrity verification to be lightweight. We definitely don’t want to modify the
existing smartphone’s hardware to add more sensors, and hopefully we should be
able to implement the verification scheme with minimal coding effort. In other
words a stock mobile OS should already provide the information we need to
perform the verification.

Perfect location integrity is a very difficult, if not impossible, problem and we
are definitely not claiming that we’ve solved it. We just want to increase applica-
tions’ confidence in user-supplied location data, and to raise the bar for attackers
such that they need to spend some effort to spoof location. An adversary should
not be able to spoof location coordinates of places he hasn’t physically been to.
It’s possible for him to perform a replay attack whereby he makes submissions
about places he actually did go to but is not currently in. We also consider the
case where two colluding users can cheat by relaying their location data, but
again the bottom line is we are not claiming we’ve solved the problem of perfect
location integrity, it’s just a way of boosting confidence.

Frank Stajano: You started with something about attacks on privacy from
apps. Now you are talking about something you want to do, where you want to
make sure that their location is the real one, so in some sense “whose side are
you on?” Are you also trying to do something which is going to protect privacy
for those who use the apps?

Reply: Well we don’t explicitly talk about privacy. As in the previous ex-
ample, the privacy violation is made dangerous because of the lack of location
integrity verifications, such that an attacker can make automated attacks on a
large scale. But we do not address location privacy.

Frank Stajano: Even if your thing works it doesn’t mean that the attacker
is going to use your thing, so it doesn’t solve that problem, right?

Reply: Well the attacker is not going to use our scheme, the location service
provider will be using it to prevent attackers from automating.

So our idea is quite simple: you just use your nearby Wifi access points as
your location witness. This fits nicely with the three desired properties we just
proposed. First of all you don’t need to invest in new beacons, you just take
advantage of existing, publicly available Wifi access points as your location bea-
con. They are globally available, well at least in populated areas of the world.
And it’s easily implementable in current mobile operating systems because the
OS provides APIs to retrieve the list of available access points around you.

So in our scheme, an app will first request location from the operating system,
the operating system delegates the request to location providers - peripheral de-
vices in the mobile phones, who will then return the appropriate coordinates,
and the OS passes this back to the app. In the meantime the app also requests
the list of visible Wifi access points together with their MAC address and the
signal strength from the OS. Then the application could submit its current lo-
cation data together with the Wifi access points information to its server where
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validation will be performed. Basically we use these Wifi access points as the
other channel to increase the confidence of submitted location.

Right, so how does the server verify the location information? It maintains a
list of access points and their previously reported locations, and when a new re-
quest comes, the server will only consider the first N strongest Wifi access points
information just to prevent a malicious user from submitting all possible access
points with fake MAC addresses. Next, it will check if the reported access point
is consistent with previously seen access points in the database. Here we have a
bootstrapping problem. Initially the server will have no information about a new
access point so it has to bootstrap itself by trusting the first few submissions in
an unexplored area and that the submitted access point is genuine. After this
initial phase it can proceed by checking if the user-submitted access point is con-
sistent with the submitted coordinates, considering factors like the last seen date
of the access point, the signal strength, and whether this Wifi is a fixed router
or some mobile hotspot. By verifying the coordinates with the submitted APs,
the server will be able to determine whether this is plausible or not, and if it is
plausible then it will accept a query, and update its AP database accordingly.

Francesco Bergadano: So you don’t actually have to connect to the Wifi?
Reply: You don’t need to connect.
Francesco Bergadano: Only use the SSID?
Reply: Yes, you just need to passively scan the surroundings for available

access points, and using their MAC address as keys to the database.
Feng Hao: So it can also easily spoof the Wifi access point.
Reply: Well everything can be spoofed, even if you can’t physically spoof the

Wifi access point you can do it in software, just reverse engineer the communi-
cation protocol and submit fraudulent access point data. So in this sense, yes
you can spoof it. But, you have to submit the correct access point information
to be able to pass the test.

Robert Watson: And I guess Google, and maybe also Apple, collect some
information on access points, do you know how they go about verifying the
integrity of things submitted. I guess they’ve crowdsourced it, and sometimes
it’s driving around in cars and so on.

Reply: I could only guess that most of Google’s data is actually based down
their street view cars so it’s kind of trusted in some sense.

Robert Watson: Right, I was just curious if you had any information on
whether they had some validation technique. I guess they must do something.

Reply: Well if we have the majority of the data correct then you can easily
find out the outliers, using statistical techniques.

Alec Yasinsac: Please clear it up for me just to be sure I understand. What
you’re saying is the app will send to the location service and say, here’s where I
am, right?

Reply: And a list of access points as witnesses that I am actually here.
Alec Yasinsac: But they’re not witnesses because they don’t speak for you,

you just say, I am here, and this is additional proof that I’m here because I know
these access points are around me.
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Reply: Yes.
Alec Yasinsac: But if I already know, so I could report, so I know now I’m

here, I’ve got all the access points that I’ve connected to here, and if some of
those are connected, I go back to the USA next week and I could report that
I’m here.

Reply: Yes, so this is the replay attack I talked about before.
Alec Yasinsac: But it doesn’t have to be a replay attack, because I don’t

necessarily have to be here.
Reply: But you have to have been here.
Daniel Thomas: So you’re saying that it’s easier for the person running the

service to get hold of information than the attacker, so it’s more work for them
to find out this data.

Alec Yasinsac: That’s my question, and additionally if the provider has to
be able to protect that information too, because that database obviously would
give them, the adversaries, a lot of data to be able to use to do this. But my
question, I want to be sure I understood.

Feng Hao: And also one question I was wondering is why you send all this
information entirely by the app because it makes spoofing quite easy. If you
consider the alternative approach of sending information through the Wifi or
the Internet to the server, if just some kind of handshaking between the server
and the Wifi access point at least the server can know that the information
source address is actually from this Wifi.

Reply: That’s not entirely trivial to do because if you just communicate using
IP stack then you don’t know the source MAC address because there could be
layers of routing around on top of that. I think the only thing you know is IP
addresses, but you could also go through proxies so even IP addresses may not
be reliable.

Feng Hao: I guess my question is, who will be the best witness in this case,
and it can’t be the app itself because app could be cheating, and a witness has
to be something else.

Reply: Well the witness is the access point. It’s just the way we ship the
witness information via applications, hence, yes, this is open to spoofing attack.

Dongting Yu: To the app, the server in the backend is the trusted part of
this protocol, and they’re not an adversary.

Feng Hao: Yes, but it still relies on the wireless access point in the sense
that wireless test points should be some trusted witness in some way if you built
a protocol based on that assumption.

Dongting Yu: So the point is, if I were to spam a large area of the US, I
don’t know the Wifi access points in San Francisco, for example, so I cannot
rapidly appear in many places within a short period to spam my neighbours.

Robert Watson: It’s a world in which there’s an open version database that
lists the set of access points everywhere, which can be crowdsourced in the same
way you can crowdsource street navigation and so on. Can you imagine some
extensions to the model you have that use cryptography, or proof of liveness, or
something that might help us with that. Could a Wifi access point then just for
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example agree that every access point then will provide a proof of liveness, and
strengthen the protocol.

Reply: If you have guarantee on the freshness of your Wifi access point data
then you can prevent replay attacks, but you will probably still face relay attacks.

Robert Watson: And I guess you need the distance bounding and so on.
Reply: Yes and distance bounding is going to be difficult, especially when we

are talking about signal travelling at speed of light.
Frank Stajano: So why is the application upset if it gets the wrong location?
Reply: Because some of their core functionalities are based on the availability

of user location, and surely they don’t want fraudulent data.
Frank Stajano: If the user gets a benefit from the application, the user

will provide the correct location. If the user want to the application then it’s an
adversarial game between the user and the application. Why does the application
want to fight the user, what does the application gain by getting something that
the user doesn’t want to give?

Reply: Well there are always good users and bad users. A good user’s incen-
tives will be aligned with the application, but there are bad users like spammers
and phishers who try to trick the application and others, whose incentives are
not entirely aligned with the application itself.

Michael Roe: You might, for example, have an access control policy that
says, this information about this location is only accessible to people who are
really there, and you’ve got a bound on how many that’s likely to be, which is
no longer true if you can’t authenticate that, and somebody will pretend to be
in large numbers.

Frank Stajano: Well if you are granting benefits based on the application as
opposed to just providing a service like Foursquare, then for granting benefits I
would argue that you need a stronger form of authentication to just collecting
Wifi access point here.

Bruce Christianson: But the question is, what could that possibly lead to.
Frank Stajano: Yes, so I just want to have a more concrete description of

the scenarios in which this location service is used before I understand whether
this is the appropriate strength to provide, because it looks to me that if the
application is just giving me something which is made more useful by knowing
where I am, like I’m going to tell you how to get to the station, and if you tell
me where you are, I can tell you from where you are to the station, in fact if you
lie, well tough, I’m just going to give you a wrong route and it’s not going to be
useful to you. Therefore either you give me the right location or I’m just going
to give you incorrect information, that’s fine. If instead it’s something like Mike
said, you know, if you’re here I’m going to give you some extra benefit beyond
the information from the application like, open the door?

Michael Roe: That’s probably too strong, you know, sending information
about the location or like who else is here, for example, then you might say,
who is in this room is different from people who are elsewhere in the world, but
people who are supposedly in the same room with us, it should be within line of
sight are allowed to know that piece of information.
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Robert Watson: Of course after the question if you’re in the same room,
you might have ID cards if you brought some identification, is the important
property that we’re in the same room, or is the important property that we’re in
the same location. And those are slightly different questions, because are we in
the same room is a question that we might build the protocol among ourselves,
and are we in the same location has to do with this sort of formal notion of
you’re at this point on the planet. And maybe if you’re trying to solve one of
those problems you don’t need to solve the other problem.

Mohammed Almeshekah: There is a startup called Shopkick that tries to
drive foot traffic to physical stores. They created a scheme to reward customers
for physically being in the stores in an effort to provide incentives for customers
to visit physical stores instead of only shopping online. Whenever you physically
step into on of their participating stores the app will detect that by determining
your location and then charge the physical stores a fixed amount per customer.
So in this case, your location will cost some companies money and there is a
huge incentive to determined the location with relatively high accuracy.

Frank Stajano: So in that case, for example, I would much rather suggest
and scan a QR code of a screen in the shop that is constantly changing, which
proves that you were in the shop at that time, as opposed to, you know, do it
with a location Wifi.

Audience: Well they do ultrasonic sound beacon, the ones that you men-
tioned at the beginning of the talk.

Frank Stajano: Collecting something electronically that is there in that store
as opposed to doing something based on location.

Mohammed Almeshekah: Yes, they do something similar with some bea-
cons that are installed in the stores, however, they still dealing with some fraud
cases.

Sandy Clark: That requires a user to be active to scan the QR codes but
his is a passive.

Frank Stajano: It is active, which in my viewpoint is a feature because you
only, from a privacy viewpoint, you only say that you’re there, if you want to
say that you’re there. If you wanted to be passive and you thought that was a
better idea, you could do it with Bluetooth for example, you could still get a
Bluetooth token that was only available in that store.

Bruce Christianson: But again you’ve got to be careful about the threat
model, because I could go to the store, scan the QR code, and relay that to 4000
people, who then . . .

Frank Stajano: Well not if you change it every minute.
Bruce Christianson: Well how long does it take to change?
Robert Watson: This is like a guy with a one-time token, you have to for-

ward stuff to giving your proximity, whether it’s pressing a button or something
to limit the use of numbers, then it’s just information.

Frank Stajano: Well you know you’re not going to have had the 4000 people
in the shop at the same time if the shop is this size.

Bruce Christianson: Yes, the question is, what is the threat model.
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Robert Watson: If it’s advertising, well we know actually advertisers are
kind of interested in it as long as people look at them.

Frank Stajano: Well what I am saying is, if you do the QR code version it
doesn’t really scale to the problem because you’d have to do that every minute
to get a new one, right, and if you have one you can’t keep on re-sending it, and
if you try to send it to 4000 people then it’s obvious that it’s a fake, because you
couldn’t physically have 4000 people inside the shop.

Bruce Christianson: But what about 16 people.
Frank Stajano: Well 16 people, yes, but it just doesn’t scale, so that’s again,

you can do the scan and you get 16.
Robert Watson: If you look at all the CCTV camera how long will it take

before they recognise you are good? And it seems like, if there are two different
questions you can ask yourself, and to ask one if you really require strongly
that you know the person’s physical location, you basically start with distance
bounding. And the other if you can accept something you really have to limit
what you use or make sure people don’t try to rely on something you can’t rely
on. And suddenly you care about, well how much money is getting sold?

Frank Stajano: If it’s something where you’re basically getting a discount
token for the store, so long as it doesn’t scale to thousands of people I think that
you can do it for 10 people and you have to redo it the next minute, then it’s
not too bad.

Robert Watson: There is an interaction with a business model though, for
example, the store also has an online website and if you have time to go there
in person, you get a discount on the website, and you get these sort of problems
we’ve had with Groupon, and they went out of business because they didn’t
understand the scalability you associate with cheap communication.

Reply: Shall I carry on? So one way of computing a plausibility score is to
compute the likelihood that the given submitted coordinates are close to the
known sighted location of the access points. This formula is just an example,
don’t worry about the details too much. A possible improvement is that, we could
do distance or rather travel bounding. If a user submits successful location data
as time goes then you can find out their average travelling speed. And a possible
upper bound for that is you can’t really travel faster than a plane. An even more
elaborate scheme is that the upper bound of travel speed is dependent on your
local terrain, or local traffic, and if you are travelling a very short distance then
you probably aren’t travelling on a plane, and hence you can make the upper
bounds a little bit more precise. And I said, replay and relay attacks are still
possible, but we’re not trying to achieve 100% integrity here, we just want to
increase the confidence and raise the bar for attackers.

Right, because bootstrapping is difficult, we have to assume that the initial
submission of access points from users are trusted. As Robert said, Google and
Apple already have this database, so we could also imagine that in future Google
may become a location authority, whose service is providing authenticated mes-
sages of location directly to the app server.
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Final conclusions: we argue that location integrity is important, and in our
scheme we propose to use Wifi access points as a location witness to increase the
confidence of user-submitted location data. The details still need to be thought
of carefully. Yes, bootstrapping is hard but Google and Apple already have this
database and we probably could take advantage of that.
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1 Introduction

Whereas many current research efforts in improving authentication seek to de-
velop stronger credentials and better management of these credentials, we are
not aware of a facility for giving users and their service providers a login flexibil-
ity beyond the usually implied “this username requests to access to the system.”
Service providers (such as banks, brokerages, etc) provide all-or-nothing access:
a customer who merely wants to check her balances and positions (i.e., read-
only access) cannot do so without implicitly obtaining the authority to carry
out transactions (including money transfers), and the authority to administer
the account (including changing the physical address of record, the email ad-
dress of record, etc). Ideally, in this situation, there should be three levels of
access: One that allows only viewing account balances, another that also allows
carrying out transactions, and the highest one that also allows account adminis-
tration. Compromising the credentials of the read-only level would not give the
adversary full control over the user’s account, and would limit the damage done
during the time it takes for the victim and bank to realize that a phishing attack
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has happened. Contrast this to the current deployed systems, where a victim of
phishing would grant the adversary all of these privileges at once, even if the
victim wanted “read-only” access (e.g., because the phishing email containing a
link to a phishing site invited the victim to “view an important message”).

A customer who knows she is “taking a risk” by logging in from a public
place, with possibilities of shoulder-surfing and/or of hidden CCTV cameras,
should really be given the option of a degraded form of login (the “read-only”
kind). The question then arises, why is such a 3-level login facility not provided
by financial institutions, even though the liability from a phishing attack often
falls more on them than on the imprudent customer? The obvious answer is that
no customer would want to memorize three passwords for each institution they
do business with. Customers are having enough of a hard time managing their
current passwords where the ratio is one-to-one. We argue that there is a way
to have the benefits of the 3-level access, without the burden of increasing the
number of passwords users have to manage.

2 Preliminary Solution

This section presents a simple first step towards achieving the goal of conveying
extra information to the server, beyond the all-or-nothing access that is implicit
in every login made in currently deployed systems. In what follows, for conve-
nience we use financial institutions in our examples, but this entails no loss of
generality as the discussion applies equally well to any service provider.

2.1 A Simple Proposal

We propose a login mechanism such that:

1. The interface is similar to those currently deployed, namely, with two fields,
one for entering a username and the other for entering a password, and

2. What is entered in the password field does not tax the user’s memory sig-
nificantly more than in currently deployed systems, and

3. What a shoulder-surfer or eavesdropper observes when the user enters her
credentials reveals no information as to what covert message is being sent,
other than the usually implied “this username wants to login.”

To achieve the second requirement, we propose that the user enters, in the
password field, the regular password (the same thing users enter today) followed
by a space, and then followed by a word that conveys the secret message to
the bank. In the 3-level access example we discussed, this could be one of three
words {w1, w2, w3} that are (i) trivially memorizable by the user, and (ii) have
a natural total ordering in that particular user’s mind. For example, the three
words could be the names of the 3 first dogs of that customer, or of three soccer
teams, or of three makes of cars. Accidental mis-typing (that results in a word
that is outside the pre-agreed set) would result in a failed login, with the necessity
to re-enter username, etc. The only constraint on these three words is that the
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edit distances among them should be greater than one typographic error. This is
essential so that mis-typing one of them does not accidentally result in sending
another one. A shoulder-surfer (or a ceiling CCTV camera) that captures what
the user entered would of course be able to replay it, but would not get a higher
access level.

The above simple scheme does not reveal to a shoulder-surfer the nature of
the secret message being sent to the bank through the memorizable word. Even
a shoulder-surfer who is a customer of the same bank (and we should assume
such an adversary) may not know that the covert message pertains to a choice
of access-level, because the bank customer may have chosen to use the covert-
messaging facility for something completely different than access-level selection.
We discuss below the possibilities of sending other covert messages to the bank.

2.2 Conveying Other Messages

Once financial institutions make such a login facility available, its possible uses
include many other scenarios other than the 3-level access used above to intro-
duce the rationale for such a mechanism. Some customers may not care at all
about 3-level access: Such customers might decide to never click on an email link,
therefore never fall prey to phishing. They might also never take any risk when
logging in from public places. Such a customer may set her account up so that
the trivially memorizable word(s) that comes after the password covertly con-
vey to the bank different courses of action(s) that the bank is supposed to take
following the login. The scheme can also be extended to provide k-level access,
with k > 3, although the costs in storage and user memory increase accordingly.

Conveying Duress. One such possibility is conveying to the bank one of the
following two messages: (i) “this is a normal login and I request full access”;
or (ii) “I am under duress, pretend that access is granted but call the police
immediately and inform them that I am under duress.” As discussed in [1,2], if
the user is under duress then the adversary will demand to know, under threat
of violence, how the user conveys both messages (i) and (ii). As explained in [2],
there is a way for the user to appear to comply while giving the adversary what
will trigger message (ii) only (if the adversary attempts to use it). For example,
the agreement with the bank could be that “bulldog” is the word for message
(i), and any other dog breed is for message (ii). Typos result in denied access (no
accidental police-calling because of a typo). An adversary who is given wrong
information, such as poodle for message (i) and any non-poodle dog for message
(ii), has no way to tell whether a signal will be sent to the bank or not.

Indirectly Exposing Phishing. There is no way for the victim of an ongoing
phishing attack, made possible as a result of the user’s unwisely clicking on a
link in a phishing email from the “bank,” to directly inform the bank of this fact.
However, the user can unwittingly (and indirectly) alert the bank to this fact if
one of the few covert messages in her repertoire is “I am doing this login because
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you solicited it in an email to me.” If such a covert message is sent to the bank’s
server it indirectly alerts the bank of the high likelihood of an unfolding phishing
attack. Because the bank knows whether it solicited a connection or not – many
banks never send email-embedded links as a matter of policy – it can conclude
whether the user has fallen for a phishing attack. As a result of that, an active
man-in-the-middle attack resulting from the successful phish only compromises
a degraded version of the login that (indirectly) alerts the bank. The bank can
call the customer and ask for a change of password and provide advice so as
to avoid a repeat occurrence of the episode. This is not a sure-fire defense and
several things can still go wrong but it provides an improvement over the current
situation where the bank is oblivious of such an attack, even though it may stand
to suffer damages from it more than the customer; in some countries financial
institutions are required to charge-back the customers’ accounts when they fall
prey to a phishing attack if the customers acted in good faith.

Phishing is characterized by the discrepancy between what the user thinks
(that the bank sent an email urging access via a provided link) and the bank’s
state (that it sent no such link). Providing a way for users to express their state
serves to indirectly alert the bank and prompt it to take some precautionary
measures. Such measures can include contacting the user to verify a sensitive
transaction and/or giving the user limited access thus minimizing the damage
caused by an adversary. Furthermore, the bank can direct the adversary to a
honeypot account and alert the user, using out-of-band communication channels,
so that the adversary can be monitored and possibly identified for prosecution.

A more sophisticated system can be designed following the same structure in
[2] where a third party monitoring user logins is only alerted if the user signals
a solicited login as a result of a phishing attack. Such a third party would learn
nothing about the identities and activities of the users during normal logins and
will only be alerted in case of phishing. We can imagine such a security and
business model of combatting phishing led by third-party companies.

2.3 Using Other Channels Than the Password Field

The password field is not the only channel for conveying a covert message to the
server; we next give examples of other authentication channels that can be used
for that purpose.

Biometrics. Some biometrics can be used as the communication channel de-
pending on how much control the user has on the selection of the biometric and
its mode of use. For example, when using an iris scan the user has limited choice,
but when using fingerprints the user may send a covert message by the choice of
finger to use. Furthermore, for a given finger the user may be able to convey a
message through the tilt of the finger relative to the fingerprint reader.

Multi-factor Authentication. Two-factor authentication has been widely
adopted, especially in financial institutions. It increases security but remains
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vulnerable to server impersonation and other sophisticated attacks such as those
used by the Zeus malware [4]. Not only is our proposal still relevant in a world
of multi-factor authentication, but the multiplicity of factors provides a new
mechanism for covert communication. The choice by the user of which factors to
use can be used as the covert communication mechanism. For example, if three
factors are available and a minimum of two are required, then the user’s choice
of which factor to leave out sends a covert message to the server.

2.4 Channel Capacity

Psychological and user-acceptance considerations dictate that covert messages
be encoded in unary: If three bits can be sent then three (and not the usual 23)
distinct covert messages can be sent to the server. In fact we argue that, even
if k > 3 bits can be sent (e.g., by the user’s choosing of k − 1 out of k possible
factors to authenticate), in practice it will not be practical for the typical user
to send more than a very small number of bits (possibly as low as 3, but that
number is best determined experimentally with user studies).

2.5 Credentials-Sharing

It is ill-advised to share access credentials (such as a password) with others,
yet people do it all the time for the sake of convenience. For example, doc-
tors or managers share their passwords with a nurse or secretary so they can
avoid the inconvenience of using a (possibly unwieldy) patient-management or
enterprise-resource-planning software system. For password-based systems, a ser-
vice provider can gain a competitive advantage by offering those customers who
choose to share their access credentials the ability to share lower forms of access
credential (e.g., “read-only” with their tax-accountants).

3 Desiderata for a Better System

The scheme that implements the covert channel needs to have more sophisticated
features than the simple ones discussed above. We discuss these features in the
following paragraphs.

3.1 Obliviousness

An electronic eavesdropper should neither learn nor be able to re-use the recorded
client responses (even for, e.g., repeating the low form of “read-only” login that
the user executed). Achieving this means that the server, upon receiving a login
request, must use a nonce that affects what the user’s client software sends to
the server. A replay would then be useless because at the next login the server
will generate a different nonce and will expect a different response. The simple
scheme’s user interface would still be used, but it would need to be processed
by client software (that would use it together with the nonce received from the
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server to generate the response sent to the server). Such obliviousness is best
implemented within, for example, the browser itself, as using plugins would imply
a lack of mobility, but this assumes the client is running trusted software.

3.2 Resistance to Server Compromise

An adversary who gets a copy of the information stored in the server’s credentials
file (e.g., /etc/passwd/) should not gain more information than in currently
deployed systems. In the scheme discussed earlier, where a password is followed
by an easy-to-memorize word, neither the password nor the easy-to-memorize
words are vulnerable to a dictionary attack. This is of more importance with the
latter as they are likely to be dictionary words (because they need to be trivially
memorizable by the user).

3.3 Resistance to Persistent Adversaries

The scheme should assume that the adversary is persistent in seeking access to
the user’s account, and the adversary will continuously try until he succeeds
unless specifically prevented by the underlying scheme. In the case of an attack
involving coercion the adversary can demand all the possible login credentials
and try them until he succeeds. In phishing attacks, the adversary might launch a
number of different attacks through a different number of vectors, e.g., a phishing
email, a Facebook message, and an IM message.

4 Further Remarks

A grand vision for authentication has been sought for a number of years, of
users having a small number of identities to login to the many heterogeneous
service providers, with full control on the user side [3]. Such a vision has been
articulated in the National Strategy for Trustworthy Identities in Cyberspace
(NSTIC), with cell phones serving as a central hub for client online identities
[5]. Such a mechanism addresses many of the security and privacy problems
associated with online identities, but it does not render unnecessary what we are
proposing: A cell phone hub would become a more tempting target for evildoers,
and would benefit from what we propose (especially in cases of physical coercion
against the phone’s owner).

The features and properties of a covert communication channel as we describe
deserves further investigation along many dimensions, including:

1. Cryptographic: How to best achieve the desired obliviousness and resistance
to server compromise, without degrading the ability and performance of the
necessary credentials-checking at login time?

2. Psychological: Which parameters of such a system would be acceptable to
users, and (if acceptable) would not cause too many errors and false alarms
after deployment?
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3. Risk analysis and Economics: Would such a system decrease the overall risk
to the service provider, and by how much. What is its effect on the liability
insurance rates of the service provider? Are here any hidden and costly
unintended consequences?

Many questions will need answering, but we believe that the overall outcome
of such investigations will be favorable to our general approach along all of the
above-mentioned dimensions.
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Robert Watson: Can you just clarify the problem very slightly. Is the goal to
make users use some passwords less frequently or you want them to have the
ability to delegate?

Reply: Delegation is part of what we want to achieve. However, the main
goal is to give users a ways to express their intentions and doubts through the
password protocol itself. This will give them different levels of access. Why would
users want to do that? Take as an example the case where users get an email
to take some actions. The user might think that the real service provider might
have solicited them, but when they convey this information to the server, in the
case the server didn’t solicit them, phishing attempt can be detected before any
damage could happen. The main challenge of course is how users can convey this
message in a way that is undetected by middle parties.

Frank Stajano: In duress situations there is still a distinguisher for the
attacker who has the user in front of him. Either the credentials the user gave
him work and allow access or does not work and access is denied. If the attacker
asks the user for the credentials and release him this is fine, but if you are there
at the cash point and he has a gun at your head, he can see that all the stuff
that you supply still doesn’t work.

Reply: So the service provider, the bank, should make the duress credentials
work and present what is supposed to be presented while at the same time take
some other actions to protect the user and his account.

Bruce Christianson: The duress password should present what is supposed
to happen.

Reply: Exactly. The advantage here is that the bank would know what is
happening right now is completely under duress and whatever activity on the
account is not under the user’s will. The main point here is the bank knows
that duress is happening just before it happens, not just having to deal with the
aftermath where it would be much harder to solve the problem.

Ariel Stulman: In the case of accessing a bank account, the attacker can
simply ask the user to transfer some money and the check his account that the
money has really being transferred.

Reply: This is a valid point. However, since the bank already know, at the
authentication layer, that a duress is taking place some actions can be taken
such as dividing the user’s balances by 10. This will greatly reduce the damage.
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Also, the bank, can automatically have some procedures that can kick-in and
issue a detailed audit trail logging all useful information (which would be a
waste of resource if done for every account activity). Another possible action,
is to temporarily disable overseas money transfer and show a message to the
user account saying that they have to come physically to the branch due to
some suspicious account activities, or something similar. Is it not a bullet-proof
solution, and not sure if one can be provided to this problem, but it significantly
reduces the damage to some more acceptable levels and changes the economics
of the game.

Dylan Clarke: The whole point of a phishing attack is it only works if the
user actually believes the email, so what would be to stop the attacker putting
in the email, we believe your solicited password has been compromised so you
must put in your unsolicited password?

Reply: Nothing prevents them from doing so. However, I think it give much
more room for users to think “why are they soliciting and telling me my solicited
password is compromised?”. The other thing is that the scheme simplifies the
user’s login instructions and clearly distinguish between two type of credentials,
solicited-credentials that are always used when logging in by following a link and
unsolicited-credentials that is used whenever the user types the URL himself.

Sandy Clark: It won’t work.
Reply: I don’t see why not. Surely, we need further user studies examin-

ing how much does such a scheme reduce the compromise of the unsolicited-
credentials.

Bruce Christianson: It would work if you could rely on users to just follow
the protocol instead of acting irresponsibly. However, this scheme is solely used
for the password scheme. When having a multi-factor authentication, the choice
of factors could be used to convey a message.

Reply: The idea here is that the instructions are much simpler and clearer.
Two different credentials for two different, clear and distinct usages.

Ariel Stulman: Not taxing the users memories is obviously a noble goal.
However, trying to remember that this login for solicitation and this login for
non-solicitation, etc is a challenging task?

Robert Watson: Not only that, but you’re going to use these at different
rates. There is the credential you use all the time, and there is the one you use
once in a while. Chances are some password I will never use and probably cannot
remember when I want to use it.

Ariel Stulman: Also, the question of which one is which during the time of
use is challenging.

Frank Stajano: And which one of the two fingers? Probably, the one that is
more worn out.

Ariel Stulman: Also, probably I will end up every time I want to login I will
try the first one, then the second one until I found the right one.

Reply: I totally agree with you that there are some challenges. More field
studies are needed and further investigation of other scheme that uses the same
concept is an interesting area of future research. We try to argue here that there
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is a spectrum of interesting usage of covert communications and provide some
preliminary schemes. Also, we present some recommendations and properties of
such schemes for them to be useful and effective.

Bruce Christianson: It’s a very nice protocol, the danger is obviously the
things that people don’t have to do very often. The rarer an actual fire is the
more important it is to have fire-drills, so perhaps you can have some protocol
where users regularly have to do the solicited or unsolicited.

Robert Watson: Especially duress, we ought to kind of apply duress for a
short period of time.

Bruce Christianson: Yes, a mechanism by which the bank can apply duress
for a short period to train the user.

Reply: But in the duress problem, it’s not a major issue, all that the user
needs in the example presented is to pick another word from the same dictionary
other than what the user is regularly using. An example of the dictionary of fruits
with the normal login word as ”apple” all that the user need do is to give any
other fruit other than apple.

Bruce Christianson: Do something different to what you usually do.
Reply: Yes, but in duress, going back to presented example, if the user picked

poodle as their dog breed word, they don’t need to remember the non-duress
part, they could put any non poodle breed, so that’s kind of easier for the user to
remember. You will always use poodle to access and when you are under duress
use any non-poodle breed.

Bruce Christianson: What about solicited versus non-solicited credentials.
Reply: It is a more challenging case. However, assuming the user gets enough

solicitation email, which is currently the case, they tend to remember it. Also, an-
other point is that users don’t have to have different words in different domains.
If we can design the system such that the service provider does not know the
word itself (by obfuscating it using the password) the user can repeat the word
across domains. We are currently investigating some ways of trying to achieve
that.

Robert Watson: It’s harder, the duress thing is probably easier to engineer.
The question I have for you is, I think this protocol lacks some fundamental self-
centredness effects still, which is the bank feels that they are the only person
in the world that needs to authenticate you, and therefore thinks they should
use special things to authenticate you, then they give you special procedures, or
special devices, and so on.

Bruce Christianson: And why should they need to be authenticated?
Robert Watson: Right, absolutely, so then this very asymmetric and why

the burden should be on me as the end user. Do you have any thoughts of how
you might apply this in such a way that you could use it for a single sign-on,
or of some method of authentication to other services, or integrate with existing
token devices?

Reply: We actually haven’t thought about that yet, but that’s a really inter-
esting question to look into.
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Robert Watson: I mean, here in the UK you could not deploy this system
with banks that now provide tokens to all customers. So you’d have to combine
them to places such as these tokens.

Reply: But with tokens, an active man-in-the-middle, could just relay the
messages back and forth, and just get access, as he’s part of the session.

Robert Watson: So what the token gives you is something you have, that
is subject to relays. If people were really looking for that protection, then they
expect the bank authentication systems to use both systems, and that would
be a simple composition of the two systems. But, is there is something stronger
you could do by composing these two systems directly and actually integrate the
protocols, then you get some new techniques. In other words, can you evolve the
tokens somehow such that, in the duress attack, there’s something you can do
that’s stronger than either of the two systems isolated.

Reply: We’ve been thinking a little bit of integrating this with the token
itself exactly as you said. For example, can I put that message in the RSA ID
and just add two simple buttons click representing the two cases of solicited and
non-solicited, which subsequently can generate different codes.

Robert Watson: Yes, the straightforward thing to do is to have a “I’m under
duress” button, but I think if I was putting someone under duress I would make
sure they didn’t press that. You would need still covert channels to communicate
with the device. But I think this in interesting of how to integrate this with
existing mechanisms for authentication.

Reply: I totally agree.
Steven Murdoch: One way of specifying a scheme for this is that most bank

customers care about people stealing, and especially customers care about who
will see how much money they have. And the way that they deal with this is
a covert channel but it’s only a single bit, and the meaning of this bit is sent
by the bank. So the bank sends you a message to say, do you wish to login, or
do you wish to do a transfer, or do you wish to do that, and then the user can
either say yes and take the number, or they can say no.

Reply: But with a single so my question is the yes or no fixed, so 1 means,
yes, and 0 means no, so anyone in the middle, if he gets 1 he could just change
it to, or if he gets 0 he could just change it to 1.

Steven Murdoch: So the yes answer is you’ve taken a cryptographic hash
of the cash, and in the no answer you didn’t.

Dylan Clarke: Just to go back to your point about duress, and say people will
have to do something different. But have you looked at any of the psychological
studies on the fact that when they’re distressed people tend to do whatever
they’re trained for, whether it’s appropriate or not.

Reply: No we haven’t yet. Unfortunately, we don’t see a lot of work on duress,
while this matter is becoming increasingly important as the convergence between
our physical and digital lives is at rapid pace. So I think it would be a really
interesting question to answer whether users will will tend to use what they are
trained to use usually because they are under duress?
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Dylan Clarke: There’s one example that shows how serious that could be.
There was a case in the US with a Police officer who trained extensively to do
close quarter firearms disarms and he was an expert at it. One day he faced
somebody who pulled a gun at close quarters, he grabbed him, took the gun off
him, and then handed it back to him just like he did with his partner in training.

Reply: I hope he didn’t kill him.
Dylan Clarke: No, his partner actually came round the corner and shot the

other guy.
Bruce Christianson: So that second mechanism, that’s the one you need.
Feng Hao: Just one small point on the phishing attacks. Yes, it’s quite a

nice protocol, but you also assume a lot of intelligence and good educational
background for the kind of users you want to protect. So that tends to be one
extreme side of the spectrum of the users, but it is usually not the kind of users
that spammers and phishers want to target, because they want to catch the
other extreme.

Reply: The major difference in this scheme is that users instruction are ex-
tremely simplified into two distinct black and white cases. If you do enter the
URL yourself using your own personal computer, use the unsolicited part. In any
other case use the solicited/suspicious part. It might not work for all users but
certainly raises the bar and alleviates the burden on users on having to verify
the origin of the email and the URL of the server they go to when they click
the link, and that the certificate is valid, etc. In these cases most users have no
clue what we are talking about, let alone being able to perform these tasks and
verify that they are talking to what they think they are talking to.

Daniel Thomas: So currently banks tell users that they will never get any
links, and people still do click on links.

Reply: That is one of the motivations of this work. There is a trade-off, users
would like convenience and functionality. They would like to get an email from
the bank with a direct link to their bank statements. The other point is that,
it is not the case that all banks tell you that they will never send you an email
with clickable links. In fact, one of the banks I bank with sends me a clickable
link to my monthly statement. This leaves users confused, and the instructions
of what to do with email links is not universal. The other point is that whenever
there is a trade-off between convenience and security, convenience most of the
time wins. Users would like technologies to help them and not make their lives
harder.

Frank Stajano: The other point is that it’s all very well telling the users,
“don’t do this”, but if they follow the advice and then they can’t get what
they need to do, like checking their own bank account, they’re just not going to
follow the advice because they need to check their bank account, and that’s more
important. I mean, if the advice is, don’t run JavaScript because it’s dangerous,
which is a very sensible piece of advice, and if I don’t run JavaScript my bank’s
website doesn’t work, what choice do I have? I’ll have to run the JavaScripts,
because I need to see my bank account. No matter how much I trust my system,
it’s not going to give me money instead of my bank.
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Reply: So yes, there’s a limit to giving users sensible instructions and then
blame them if they don’t follow them, because we have no remedy to offer them
if they don’t follow them for a good reason. This schemes proposes one of the
ways to provide some remedies as we alleviate the damage by having a restricted
access with the solicited part.

Robert Watson: The trick here is to at least align the interest in adopting
your protocol with one of the two parties. Ideally this would be the bank because
the bank would like to accomplish low levels of fraud. Then they have the system
administrator problem, which is how do you get the users to conform to your
policy, how do you get them to use the system correctly. So it would be nice
if there is a structured argument specifically for why they actually need this
protocol and what benefits does it produce.

Reply: That’s part of the liability issuer we raised in the paper. Will the user
be liable now if he doesn’t communicate solicitation? Would that covert message
change liabilities? Do we want to do so? That is an interesting question to ask.
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Abstract. As the capabilities of mobile technology such as PDAs, smart-
phones and tablets increases, theoretical ideas are materializing. One of
these ideas under active development is a infrastructure free network,
based solely on mobile devices (a.k.a. MANET - mobile ad hoc network).
These networks would have the ability of running communications with-
out the use of pre-existing infrastructure, allowing for a reduction of cost
to carriers, setting up communication networks where no infrastructure
is available (like disaster zones), etc. In this paper we propose an algo-
rithm, based on the famous Diffie-Hellman key exchange (KE) algorithm,
that will provide for confidentiality of KE during conversation initiation,
from which a cryptographically secure channel can later be derived. The
algorithm utilizes the constant fluctuation of MANET network topology
to flush-out eavesdroppers (if they exist), assuming no prior knowledge
and without active user intervention.

1 Introduction

Peer-to-peer applications are quickly gaining popularity, with many applications
taking advantage of the multitude of channels (Bluetooth, WIFI, etc.) between
devices for setting up closed networks. There are even SDKs that attempt to
abstract the entire communication process (regardless of channel) and leave to
the developers the task of application programming. [1] The next logical step,
which is already emerging in some applications (see for example [2]), is complete
mobile ad hoc networks, or MANETs, which allows for the connection of two
parties through intermediate parties without pre-existing infrastructure. The
network is based on mobile devices, such as smartphones, acting both as the
end users for the communications and the routing agents for packets. Usage of
such networks is advantageous in many perspectives, including, for example, the
ability to bypass central routing hubs which are required for efficient ‘big brother ’
eavesdropping.

Of course, eavesdroppers are not limited to routing hubs, as they are able to
anonymously join the MANET and monitor or taint all traffic passing through
them. In order to achieve confidentiality, MANET developers turn to cryptogra-
phy. Assuming that cryptographic keys were not setup in advance, key exchange
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algorithms must be employed to allow for a secure channel between commu-
nicating parties. In this paper we wish to introduce a variant of the famous
Diffie-Hellman (DH) key exchange algorithm [3], spraying Diffie-Hellman, which
allows for a secure key exchange given an adversary that can manipulate pack-
ets in transit (section 2). Since man-in-the-middle (MITM) attack undermines
DH’s main claim of confidentiality, our algorithm will mitigate (within a pre-
defined probability) this attack allowing for communication confidentiality as
intended by DH protocol. This will be accomplished without prior agreement
among communicating parties (section 4.1) and without user intervention in the
confirmation protocol (section 4.1).

2 Spraying DH

2.1 Model

In our model, we place no limitations on the attacker. She can eavesdrop, control
(stop or allow transmission) and inject data into the stream she controls. Thus,
we must assume that on every route under her control, she can taint the data to
initiate a MITM attack. We assume that attackers can collude, bringing under
their control multiple routes. For the sake of simplicity, we will refer to all of the
colluding parties as one entity.

We assume that there is no trusted third party coordinating or authenticating
sender to receiver (or vice-versa), and that the only prior knowledge to work with
is the address of both communicating parties. This address can be in a form of
IP address in the network, the phone number allocated to the smart device,
or the IMEI number embedded in the device by the manufacturer. In order to
prevent network collisions, we do assume that this address is unique and cannot
be spoofed. This assumption can be justified by the fact that although one can
transmit a false address, this can only influence some of the network routing
tables, but not all of them. This gives packets not traveling through malicious
nodes the ability to be delivered to the correct recipient.

Definition 1. Let R = {r1, r2, · · · , rn} be a non-cyclic route (ri �= rj ∀ri, rj ∈
R) between the sender (r1) and receiver (rn) at the connection time.

Let R denote the set of all possible such routes, and |R|= the size of R.
Let A = {a1, a2, · · · , aw}, such that A ⊆ R and all ai ∈ A are under the

attacker’s control. Let |A|= the size of A.
Let F = {f1, f2, · · · , fm} = A. That is F ∪ A = R andF ∩ A = Ø, denoting

all the paths not under the attacker’s control. Let |F |= the size of F .

Based on the above definition, it is understood that |A| < |R| =⇒ |F | > 0,
meaning that at least one route between the sender and receiver is not under
the attacker’s control.

2.2 Algorithm

What allows an attacker, Eve, the ability of executing MITM attack against DH,
is the ability of tainting the data passing through her. Without this ability, DH
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provides confidentiality as stated. By utilizing the inherent nature of MANETs
of ever changing network topology, we are able to remove this ability from the
attacker; thus, rendering her a passive attacker.

To accomplish this we notice that Eve cannot know in advance all of the paths
between sender, Alice, and receiver, Bob. By utilizing more than one path for
KE, we reduce Eve’s capabilities to guesswork. She must, by chance, succeed in
intercepting all channels between Alice and Bob to be able to taint the KE data.

KE Sending Protocol. Suppose we have a KE message, msg, that needs to be
passed from Alice to Bob. Alice must go through the following protocol steps:

1. Alice appends a cryptographic hash (i.e. MD5, SHA1, etc.) to msg. The
purpose of this hash is for Bob to be able to confirm that he received all
parts of msg (see next step) untainted.

2. The derived msg (including the original msg coupled with its hash) is then
divided into k smaller parts, such that msg = msg1 +msg2 + ...+msgk.

3. Each msgi is to be sent through a different network route, starting with
Alice’s immediate neighbors and making its way to Bob in separate paths.

KE Receiving Protocol. For Bob to be able to re-construct the message, he
must:

1. receive and concatenate all micro-message parts of the information to re-
compose msg.

2. Bob must now check the integrity of the data by recomputing the crypto-
graphic hash attached to the message to see if it coincides with what was
sent.

Under these conditions, in order for Eve to manipulate the key in such a way
so a MITM attack can be conducted later, she must intercept all of the micro-
messages (msgi), re-build msg, change the data, compute the hash, break the new
msg and resend it to Bob. One micro-message that escapes interception, alerts
Bob to the possibility of MITM, for which appropriate measures can be taken.
This is functionally equivalent to reducing Eve’s capabilities to eavesdropping,
without the ability of tainting the data.

Some More Details. Step 3 of the sending protocol, describes the dispersement
of msgi through different routes starting from Alice’s adjacent neighbors. This
dispersement (or, spraying) of msgi among available routes, R, can be done by
having Alice randomly select an adjacent node, r2 ∈ R, for each msgi and allow
the routing to commence from there. This will give a probability of

P = 1−
( |A|
|R|
)k

(1)

that the channel will not be compromised (a positive result); whether a secure
channel is actually setup, or an attack attempt is detected and thwarted. This
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is based on the probability that at least one msgi will get through some fj ∈ F
to alert Bob as to the existence of MITM.

Alternatively, she can evenly spread all msgi among her neighbors, picking
as many routes as possible. By having Alice spray micro-messages in an even
fashion on all available routes, we get a positive result probability of

P = 1−

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 k > |A|
(|A|

k

)(|F |
0

)
(|R|

k

) k ≤ |A|
(2)

Intuitively, random spread should have a higher secure channel setup success
rate (see figure 1). This can be explained by the fact that if there are insecure
routes originating at Alice’s neighbors, they get a higher probability of being
selected if one was forced to spread micro-messages.

Consider, for example, the scenario where Alice has four neighbors, of which
one ∈ A and three ∈ F . In addition, suppose that k=3; that is, msg is divided
into three micro-messages. If we assume random-spread, there is a

(
3

4

)3

=
27

64
= 42.19% (3)

chance of setting up a successful secure channel. Using even-spread under the
same conditions, the chances of setting up a secure channel drop to

(
1
0

)(
3
3

)
(
4
3

) =
1 ∗ 1
4

=
1

4
= 25% (4)

The chances of being fully compromised, however, are also higher when ran-
dom spread is used. For the above scenario random spread would have a

(
1

4

)3

=
1

64
= 1.56% (5)

chance of being compromised. Even-spread, based on Equation 2, would guar-
antee that the channel isn’t compromised.

If, however, we consider an alternative scenario where Alice has four neighbors,
of which three ∈ A and one ∈ F , and again we suppose that k=3, the situation
is reversed. Using even-spread there is a high probability that Alice will be
fully compromised. In addition, there is some probability that the attack will
be detected. Success, however, is impossible. Using random-spread, however,
increases the possibility of being attacked, but leaves the possibility of success
open.
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(a) 1% of population are colluding attackers

(b) 2% of population are colluding attackers

(c) 3% of population are colluding attackers

Fig. 1. Comparison of random vs. even spread for 100000 channel setups for different
network population sizes. Graphs on left show that even spread is better or equal
to random spread when attack is present (fewer successful attacks (Bad) and more
detected attack attempts (Detect)). Random spread, however, is more successful in
setting up a secure channel (right).
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In some link-state based routing protocol, like OLSR [4], nodes have enough
information about the structure of the network so they can find several differ-
ent routes to the destination. This allows for the pre-planning of up to nine
forward hops using the SSRR (Strict Source and Record Route) IP option [5].
Assuming a capable attacker will try to place herself at the location xi such that
max(xi ∈ F1 ∧ xi ∈ F2 ∧ · · · ∧ xi ∈ Fh) increasing |A|, she will try to control
the route convergence points; the location near the sender (i=1) or near the
receiver (i = nj). Therefore, by pre-planning routes and distancing automatic
route selection from a convergence point, we presume security will be increased
dramatically.

3 Previous Work

Strong cryptographic algorithms in place today for securing data transmission
heavily depend upon the secrecy of the cryptographic keys. Both in symmetric
and a-symmetric schemes, one of the weak links lies in the key coordination
between sender and receiver. As many MITM attacks are centered around this
weakness, key exchange algorithms that allow for secure key coordination are
of utter importance. Today, key coordination in public networks is based on a
trusted third party using public key infrastructures (PKI) [6], such as in SSL [7]
and TLS [8], on out-of-band coordination techniques in private networks, such
as in SSH [9], or on a combination of both such as in IPsec [10].

The most famous in-band, no-third-trusted-party key exchange algorithm is
the Diffie-Hellman (DH) algorithm [11,12], standardized in [3]. The DH scenario
environment, allows for the coordination of a symmetric key between two parties
with an eavesdropping adversary not being able to deduce the key. In [13] it was
shown, however, that an adversary who has the ability to manipulate commu-
nication packets, can execute a MITM attack compromising the confidentiality
of future data transmission. This is accomplished by orchestrating two separate
exchanges, one between the sender and attacker, and the other between the at-
tacker and receiver. Thus, all communication from the sender can be decrypted
by the attacker and re-encrypted for the receiver. In this scenario, neither the
sender nor the receiver is aware of the MITM and there is a loss of confidentiality.

In order to mitigate this threat, authenticated DH variants, that authenti-
cate communicating parties to each other, were developed. In STS, a-symmetric
public key certificates are used to authenticate communicating parties [14]. Zim-
merman et. al. [15] developed ZRTP which provides confidentiality, protection
against MITM attacks, and, in cases where the signaling protocol provides end-
to-end integrity protection, authentication. It uses ephemeral DH with hash
commitment, and allows the detection of MITM attacks by displaying a short
authentication string (SAS) at initial startup for the users to read and verbally
compare over the phone.

Both methods have their downsides with regards to pre-required knowledge
to overcome MITM attack. In STS [16], pre-shared certificates must be known in
advance in order to validate communicating parties. In ZRTP prior knowledge
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of the communicating parties voices must be known. The security is built upon
the fact that each party recognizes the other side’s voice and thus verifies their
authenticity. In [17] it was shown that use of voice synthesizers can overcome
ZRTP security mechanisms and conduct a MITM attack.

4 Discussion

4.1 Overcoming Problems

The algorithm described above has been able to overcome some problems existent
in related algorithms used within the MANET architectures.

Prior Knowledge. The prior knowledge that communicating parties must have
before commencement of the session is a key issue in protocol selection for a
specific architecture. On the one extreme, pre-shared key (PSK) protocols, like
SSH [18], require that the key be correlated “by hand” out-of-band. This scheme
is perfectly suitable on VPNs where parties “meet” and “setup” a network. In our
model, however, where communicating parties might have never met (i.e., A tells
B about C, and provides his address. B and C have never met, and could not have
pre-shared a key for communication exchange), this scheme is excluded. Other
algorithms, like ZRTP, use SAS for the authentication mechanism. This requires
that both sides recognize each other prior to session setup, which precludes
a party from referring one friend to another. In addition, as [19] stated and
has been shown in [17], voices can be spoofed with a synthesizer, overcoming
authentication.

By utilizing the inherent architecture of the network, we can detect with high
probability the existence of a MITM attack without prior cooperation between
communicating parties; thus, terminating the connection and protecting its
parties.

User Intervention. It is quite accepted among protocol (and application) de-
velopers that minimal user intervention is essential for the success of the proposed
product. The more a user must interact with the protocol, the less likely he will
do so; reducing the overall security of the product.

In ZRTP it is required, in every conversation, that both users run SAS and
recognize voice for the shared secret to be computed and authenticated. Many
people will be inclined not to do so. On the contrary, sooner or later they will
view it as a burden and try to do away with this feature. This, obviously, totally
voids the ability of ZRTP to detect MITM.

In our algorithm, user intervention is not required. It is the protocol that
detects MITM based on concatenation of msg parts, and can be pre-configured
to terminate connection setup if MITM is detected. Of course, the option can
be presented to the user as to allow communication regardless of the threat, but
this is just an augmentation to the protocol and not an essential part.
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Forward Security. Perfect forward secrecy [16], PFS, is defined as the ability
to protect the secrecy of exchanged keys from earlier runs even in the event
of disclosure of long-term secret keying material. This amounts to a conversa-
tion remaining secret even if some long term keying material is compromised.
Ephemeral DH is known to have perfect forward security. This is based on the
fact that for each conversation a different key is agreed upon based on a onetime
random number chosen by each party. Compromising the data from one con-
versation does not compromise any other conversation as no long term keying
material exists. Under these definitions SDH adheres to PFS as it reduces to the
ephemeral DH algorithm.

In addition, in contrast to ZRTP where compromise of current key opens all
future conversations to MITM attack, as future key is derived from current key
stored by the communicating party, in SDH this isn’t true. For every conver-
sation a new ephemeral key is negotiated and isn’t based on previously stored
information.

4.2 Cost and Shortcomings of SDH

Overhead. Features, no matter how effective, all come at some cost. For every
feature introduced into the protocol in order to achieve some goal, be it security,
authenticity, reliability etc., a cost must be endured. SDH is no different. For
this scheme to work we must increase the overhead of conversation handshake.
As msg is divided into more parcels or packets, the optimum packet size isn’t
used. Since the same amount of data is sent, the overhead increases in a linear
fashion as a direct function of the number of micro-messages msg is divided into.

For example, suppose we had a ratio of

ρ =
headers

data
(6)

then by splitting msg into i micro-messages we get an linear increase by a factor
of i

ρ′ =
i ∗ headers

data
(7)

since the overall data sent is constant but each parcel has its own header.
The difference between (7) and (6), ρ′−ρ, is the additional overhead incurred

at the sender’s side, but there is other overhead as well. Since multiple paths
are used for each msgi, only one would actually take the optimal path between
communicating parties. All others are forced into sub-optimal paths, and this is
also an overhead incurred by the protocol. Of course, there is a direct correlation
between the level of security achieved and the overhead incurred. The more
we divide msg into micro-messages and the bigger their dispersement among
different paths, the greater the probability that MITM will be thwarted. We
leave exact calculations and estimations to future research.

Bottle Necks. SDH assumes that convergence points around the sender and
receiver are the vulnerable portions of the path between communicating par-
ties; thus, the spraying embedded in the algorithm. This, however, might not
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necessarily be the case. It is possible that there are bottle necks on the path be-
tween parties. These bottle necks would require that all traffic between parties
converge and pass through these nodes, allowing for an attacker to compromise
the connection. Suppose, for example, that there are only x intercity connection
points. All traffic between the two cities must pass through one of these x nodes,
regardless of the multiple paths SDH started with.

Single Side Mitigation. SDH exhibits an interesting phenomenon; specifically,
single side mitigation. Spraying is done on the sender’s side, without any control on
the path micro-messages will take once released. It is quite possible that although
spread out at the beginning of the journey, paths will converge long before reaching
their destination. This would stipulate that albeit an attacker close to the sender
is turned passive, an attacker near the receiver, however, will still have the ability
to intercept communications with much less effort. Thus, it would seem that the
algorithm’s capabilities are influenced by the attacker’s position.

This, however, might not be a problem. All KE algorithms (including DH)
require the receiver to respond with some un-forseen data. At this point, the
receiver would employ the same spraying technique, causing a nearby attacker to
loose the ability of influencing the communication. Now, for an attack to succeed,
we must have colluding attackers strategically placed near moving targets, a feat
difficult to execute “on the fly”.

We leave the investigation of this phenomena (“single side mitigation”) to
future research.

Shortcomings. There is one major deficiency with SDH that must be further
looked into. SDH, just like DH, does not take care of authentication; rather, it
creates confidentiality (which is the basis for authentication). This implies that
one does not know to whom one really is talking. We assumed that the network
addresses cannot be spoofed, and network routing cannot be influenced. This is
true for most part, since routing information is widespread and constantly being
updated by all around. Thus, the probability of being able to taint everyone’s
information all of the time is small. But theoretically speaking, if an attacker
were able to do that, the SDH does not provide authenticity. It would be possible
for the key exchange to be conducted with a different partner than was intended.
To achieve authentication of parties as well, we must incorporate mechanisms
that will operate above the actual connection. We leave that to further research.

5 Conclusion and Future Research

In this paper we proposed an algorithm, SDH, that allows for secure key exchange
with zero prior knowledge between sender and receiver. In today’s emergingmobile
wireless networks, this type of capability is of utter importance. As CAs are being
hacked and certificates forged,with governmentsand criminals listening in on com-
munication lines, the chain of trust is compromised and must be augmented. We
believe that SDH can be a step in the right direction towards privacy.
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In addition, we provided two possible spraying methods (random spread and
even spread) and showed that on average even spread is better. Albeit, the
difference between the two diminishes as the population size increases.

There are still many questions left open for future research, including estima-
tion of protocol cost, the ability to force bottlenecks, augmenting the protocol
with authenticity to overcome identity mis-match, examining the feasibility of
running packets through completely different network paths, etc.

References

1. Alljoyn, Qualcomm (2012), https://developer.qualcomm.com/
mobile-development/mobile-technologies/peer-peer-alljoyn

2. The serval project (2010), http://www.servalproject.org/ (access date: Septem-
ber 6, 2012)

3. Rescorla, E.: Diffie-Hellman Key Agreement Method. RFC 2631 (Proposed Stan-
dard), Internet Engineering Task Force (June 1999),
http://www.ietf.org/rfc/rfc2631.txt (access date: September 6, 2012)

4. Clausen, T., Jacquet, P.: Optimized Link State Routing Protocol (OLSR).
RFC 3626 (Experimental), Internet Engineering Task Force (October 2003),
http://www.ietf.org/rfc/rfc3626.txt (access Date: September 6, 2012)

5. Postel, J.: Internet Protocol. RFC 791 (Standard), Internet Engineering Task Force,
updated by RFC 1349 (September 1981), http://www.ietf.org/rfc/rfc791.txt
(access Date: September 6, 2012)

6. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280 (Proposed Standard), Internet Engineering Task Force (May
2008), http://www.ietf.org/rfc/rfc5280.txt (access date: September 6, 2012)

7. Freier, A., Karlton, P.: The Secure Sockets Layer (SSL) Protocol Version 3.0.
RFC 6101 (Proposed Standard), Internet Engineering Task Force (August 2011),
http://www.ietf.org/rfc/rfc6101.txt (access date: September 6, 2012)

8. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard), Internet Engineering Task Force, updated by
RFCs 5746, 5878. (August 2008), http://www.ietf.org/rfc/rfc5246.txt (access
date: September 6, 2012)

9. Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Protocol Architecture. RFC 4251
(Proposed Standard), Internet Engineering Task Force (January 2006),
http://www.ietf.org/rfc/rfc4251.txt (access date: September 6, 2012)

10. Kent, S., Seo, K.: Security Architecture for the Internet Protocol. RFC
4301 (Proposed Standard), Internet Engineering Task Force (December 2005),
http://www.ietf.org/rfc/rfc4301.txt (access date: September 6, 2012)

11. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

12. Hellman, M., Diffie, W., Merkle, R.: Cryptographic apparatus and method. USA
Patent 4 200 770 (April 29, 1980)

13. Rivest, R.L., Shamir, A.: How to expose an eavesdropper. Commun. ACM 27(4),
393–394 (1984), http://doi.acm.org/10.1145/358027.358053 (access date:
September 6, 2012)

14. O’Higgins, B., Diffie, W., Strawczynski, L., de Hoog, R.: Encryption and isdn - a
natural fit. In: Proc. ISS 1987, Pheonix, March 15-20, pp. 863–869 (1987)

https://developer.qualcomm.com/mobile-development/mobile-technologies/peer-peer-alljoyn
https://developer.qualcomm.com/mobile-development/mobile-technologies/peer-peer-alljoyn
http://www.servalproject.org/
http://www.ietf.org/rfc/rfc2631.txt
http://www.ietf.org/rfc/rfc3626.txt
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc6101.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc4251.txt
http://www.ietf.org/rfc/rfc4301.txt
http://doi.acm.org/10.1145/358027.358053


212 A. Stulman, J. Lahav, and A. Shmueli

15. Zimmermann, P., Johnston, A., Callas, J.: ZRTP: Media Path Key Agreement
for Unicast Secure RTP. RFC 6189 (Proposed Standard), Internet Engineering
Task Force (April 2011), http://www.ietf.org/rfc/rfc6189.txt (access date:
September 6, 2012)

16. Diffie, W., Van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Cryptography 2(2), 107–125 (1992),
http://dx.doi.org/10.1007/BF00124891 (access date: September 6, 2012)

17. ser. Cryptologic Quarterly, vol. 26(4), United States’ National Security Agency,
NSA (2007)

18. Cusack, F., Forssen, M.: Generic Message Exchange Authentication for the Se-
cure Shell Protocol (SSH). RFC 4256 (Proposed Standard), Internet Engineering
Task Force (January 2006), http://www.ietf.org/rfc/rfc4256.txt (access date:
September 6, 2012)

19. ERK. On the security of short authentication strings (March 2007),
http://www.imc.org/ietf-rtpsec/mail-archive/msg00608.html (access date:
September 6, 2012)

http://www.ietf.org/rfc/rfc6189.txt
http://dx.doi.org/10.1007/BF00124891
http://www.ietf.org/rfc/rfc4256.txt
http://www.imc.org/ietf-rtpsec/mail-archive/msg00608.html


Spraying Diffie-Hellman for Secure Key

Exchange in MANETs
(Transcript of Discussion)

Ariel Stulman

Jerusalem College of Technology

I want to talk about key exchange algorithms in MANETs and mobile ad hoc
networks, and do some background, which I’m sure everybody knows. Every-
thing started with a joint research project with Flinders University in South
Australia. They built a practical MANET for Android call Serval, and in the
communication between us it was agreed that we took on ourselves the secu-
rity aspect of the system. So this arrangement induces a requirement on the
algorithm, it has to be practical.

The Diffie-Hellman key exchange algorithm, everybody knows, it’s one of
the most famous algorithms out there. This is a famous picture taken out of
Wikipedia. We have A and B, Alice and Bob, trying to communicate. Each one
has to pick a secret key, they have some common knowledge, that’s public knowl-
edge, that’s the yellow paint. Each one of them goes and picks a secret key, which
is the paint that each one knows. Each one combines separately his own paint,
it’s obviously mathematical equations not paint, and they get a different paint.
Now they send it out one to the other, and then they can generate a common
secret without actually transferring the key from one side to another. As long
as the adversary is sitting in the middle doesn’t know the secret key, it’s got
to be computationally infeasible for him to compute this shared key, and this is
something that Diffie-Hellman gives us without any problem.

The problem is, as everybody knows, man-in-the-middle. B could be a man-
in-the-middle, and then he’ll just set up a secret key with A, with Alice, and
set up a secret key with C, and then just be the man-in-the-middle transferring
everything around, and save it in cleartext, such that everything passing through
him, is cleartext. We have two separate common keys, and then Diffie-Hellman
is broken. This is famous. So we sat and we thought what could be done. Firstly,
Diffie-Hellman’s strong point is if an attacker is passive and is only listening
to the channels. The only problem is if we have an active attacker that can
orchestrate a man-in-the-middle attack, or any other kind of attack, like relay
attacks, or impersonation attacks, if it can orchestrate an attack then it’s broken.
So a lot of algorithms out there trying to take Diffie-Hellman and play around
with it to get around this problem, and most of them go in the route of, let’s add
authentication, you should know who you’re talking to, am I talking to B, am
I talking to C. If we add authentication into the actual key exchange algorithm
then we solve the problem.

B. Christianson et al. (Eds.): Security Protocols 2013, LNCS 8263, pp. 213–222, 2013.
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There are two famous solutions. One of them is by Diffie himself, STS. The
other is ZRTP, Zimmermann real time protocol. And the idea was that either
we add certificates, which is what station to station protocol did. They add a
certificate to actual communication and that identifies you to other side. What
Zimmermann did in ZRTP is that he used a short authentication string protocol.
The first time you set up communication, out of the supposed secret key we
generate some kind of short sentence, three words, four words, whatever, and
you’re supposed to use your voice and say, I see on my screen apple, orange, and
I don’t know what. And the other side will also see the same words, and that will
authenticate the fact that it’s secure from side to side. If you have a man-in-the-
middle, so in that sense he would have a different key with Alice and a different
key with Bob, so then the two, Alice and C, would not see the same words, and
they’ll say, there’s something wrong here, and they will stop the communication.
But NSA used voice synthesisers to prove that this is easily broken. Just by him
saying the generated words, and then I just go and synthesise his voice. In a sense
ZRTP, which is what is used today - actually incorporated Serval right now -
that’s the standard they use today in MANET security, is obviously broken if
we can synthesise the voice.

The problem with everything as usual is prior knowledge. If there are cer-
tificates or user intervention, all these things are obviously not good ideas. The
more we demand out of users, the less they are inclined to do it, like we spoke
right now. If I asked, if I demanded of a person to add password plus, plus, plus,
he just wouldn’t do it. So if I go and I tell them, every time you give a call say:
apples and oranges, and pears, and next time say: Oxford and Cambridge. He
just won’t do it. He’ll just say, I don’t care, and just go on. So this obviously is
not good. So we were thinking how can we go and do this automatically. Now
on the Internet today everybody knows TLS, or SSL, or whatever protocol you
use, it’s automatic, you don’t deal with it, you go the bank, you write HTTPS,
or you link using a hyperlink, or whatever it is, and then it just happens. But in
order to do that we have to have trusted third parties, some certificate authority,
and your browser has to be pre-installed with the certificate, and the signatures,
and everything else. But in MANETs that’s not practical, because if we were
going to set up right now a MANET right here, a mobile ad hoc network, so
there is no trusted third party. I can sit in the corner and just hack everybody
around, and nobody would know. There’s no trusted third party in something
that is set up ad hoc. So what can we do to try to setup all a secure connection?

The architecture we’re talking about is some kind of network, and let’s suppose
that this little guy right here is trying to communicate with that guy, and we
have two adversaries in the middle, and they’re trying to break the system. So
the question is how can we go and set up the key exchange between this one
and that one without these two actually seeing what’s happening. Now we are
assuming that obviously the cryptography works, which means that if I set up
a key exchange then I’m home free. The question is how do we get the keys to
the other side. So we thought of the following. What we first do is append some
kind of hash to the message, the purpose of the hash at the other end is if the
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attackers do get the message, or at least part of the message, and that hash will
change, I will be able to detect it on the other side at the receiving end. So we
append some kind of hash, and then we split the message. Instead of one key
exchange message, I’ll take it and split it into N parts, with N obviously varying,
I don’t know what it is exactly, 2, 3, 4, 5, 10, 15 parts, exactly the same message,
instead of sending as one piece we’ll send it over the system in N pieces, and we’re
going to try to send every piece through a different route in the system, which
is not something difficult to do since I know that I’m attached to X number of
people I can upfront, even TCP, or any other protocol you know, send this piece
through him, and that piece through him, that piece through her, and then let
it go on by itself. The truth is that in TCP itself I could even specify nine steps
ahead, I could say, go from here to there, from there to there, and then go, or
any other way. In a sense I am taking a sub optimal path, because the standard
routing algorithm will look for the optimal path, but by taking a sub optimal
path what I am doing is I am spreading risk around, and by spreading around I
am trying to circumvent those two attackers.

Now the actual spreading algorithm, we have two possible spreading algo-
rithms that we have thought of, and there can be many variations of these two,
but we have the random and the even spread. The random spread will just say,
each message part randomly go and pick one of your neighbours and say, you
take it. And then for the next message part he can randomly go and pick any one
of those neighbours and take it again. So it could be that the same neighbour
will actually get all the pieces, or parts of the pieces, just randomly spread. I
have to define success before I say the probability of success, but success means
if I detect that I’m being attacked, because I can just go and shut down the
communication, or if I’m able to set up a key exchange. Failure is that if I am
attacked. So if we think about it for a second, if I go and send N parts in N
different routes, or randomly selected routes, for an attacker to be able to or-
chestrate an attack he must be able to intercept every one of those pieces. If even
one piece gets through, then when the receiving side would get all the pieces, re-
construct the message and see that the hash doesn’t match, something is wrong,
somebody is tampering. And by doing that I just shut down the communication
and say let’s start again. So in order for the attacker to succeed every piece must
go through an attacker. If we have A attackers, and we have from a total of R
possible routes, and you have K parts, that’s a very low probability of being
attacked. This depends on, if you have one neighbor and you’re sending packets
through them, it’s a very high probability of being attacked. But if you’re sitting
in a stadium, or you’re sitting in an airport or any other place, then you have
hundreds of people around you where you can connect to, it becomes a very high
probability of success.

Other possible spreading methods, and in a second I will talk about the ad-
vantages and disadvantages of any one of these methods, is evenly spreading the
message, the packet. I’m going to pick a message part, look for some neighbor
whom didn’t I use yet, so send it through him. The next message part I’m not
going to send through him, I’m going to send through someone else. Purposely,
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upfront, try to spread the messages as much as I can amongst my neighbours,
and then let it go on by itself. Here the probability obviously changes because
my binomial probability is A choose K, so for an attack to succeed I want all
K parts to go through A, and zero parts to go through the good paths, so the
probability obviously changes.

Now we ran simulations on this kind of architecture, and we tried it with a
whole bunch of percentage of attackers, which means that we increased the pop-
ulation, but we left an amount of colluding attackers percentage-wise constant,
which means, for example, up here what we did for these two. We sent 100,000
communication set ups, and we said, let 1% attackers out of a population of
100, 200, 300, 400, and the amount of attackers we increased so it should be the
same percentage of attackers, which obviously doesn’t have to be that way, if
you have three attackers and you increase the population then the percentage
decreases, but if, suppose we just keep it the same percentage of attackers and
we just increase the population and see what happens. So we did it for 1% of
attackers, 2%, 3%, 4%, we did a whole bunch of these things, and we got very
interesting results. What you see on the right side is approximately 95% were
able to succeed which means that all packets went through non-attackers, every
one of them. That means we actually were able to set up a key exchange. What
we see on the left side is either attacked or detected, I made attack red and I
made detected green, because detected is also OK, it’s an OK result. But you
can see that it went down below 1%, even less, of actually attacked. Now the
attackers are colluding attackers, which isn’t something that’s easily done. If you
have 900 people and 1% attackers, so we need a lot of attackers that collude at
real time to be able to do this. So we see the results are pretty good.

The only thing is, let’s talk about the differences we see between even spread-
ing random spread. So when we randomly spread the messages so the chances
of being attacked are actually higher, because it randomly could happen that I
will send all message parts to the same person, and he happens to be an adver-
sary. And when I evenly spread the messages, and not pick a neighbour that I’ve
picked before, so my chances of being attacked decrease. And that’s how we look
at the attack vector, we looked at random and even spread, we see that random
spread actually has a worse blue line, a bit worse than the even spread, you have
a higher chance of being attacked. We looked at the amount of detected attacks,
it’s worse because what happens is that if I go and I send everything through
one attacker, my chances of detecting that I’m being attacked decreases. And
if I go and I spread actual messages then my chances of detecting an attack
increase because at least one packet was able to get through, and able to detect
the attack. So there’s a trade-off here, what’s more important, I’m not sure yet.
But what’s more important, we want to detect an attack, or get actually be able
to thwart an attack. These were pretty much the results we got. Question?

Daniel Thomas:What’s the structure of the graph which you ran simulation
on?

Reply: Random. It means a MANET, when you walk into the airport, that’s
random. I mean, we could sit right here and it’s, change the seats around and it’s
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random again. So the simulation that we did, and we’re still running tests and
simulations, and stuff like that, we just generated random graphs with different
population sizes, and randomly selected attackers, and we just kept a ratio, we
wanted it to be 1% attackers, 2% attackers, 5% attackers, whatever it is, and
then see what happens by setting up the graph, and now flowing through the
system and see what happens.

So now we do the other side, the receiving end, this is just the other way
around to make sure that we detect everything. So first we have to reconstruct
all the message parts. Next thing we do is that we check the hash. A hash
mismatch it indicates a message tampering. Colluding attackers would have to
change every message part, recompute the hash, and resend that in order for
them to succeed in an attack. Because if they just changed one message part then
I will detect it on the other side, so a hash mismatch is what stops tampering.
I could have a denial-of-service, that’s true, because if he just gets one and just
changes it every time I won’t be able to set up a communication. But as far
as I’m concerned denial-of-service is better than being attacked, that’s a better
system. And once we have the key, we can deduce a shared secret.

Rubin Xu: So you can actually build a threshold encryption system on top of
that, such that you don’t need to retransmit each time you get a hash mismatch?

Reply: You could, we were thinking of actually incorporating into the actual
application, talking about future research, all kinds of levels of thresholds of
being attacked, you can talk anyway if you don’t care. If you care then we
can have the application flash red, or flash green, and above that do whatever
you want to build a whole layer of authentication, authorization, whatever you
want, above this system. Obviously it’s still preliminary, it’s not complete, but
you can do above, build a whole level of things above this. What’s interesting
here is that we’re using the actual fluctuating architecture of the network to
be able to get security, and not some prior knowledge or prior I don’t know
what, because if I am trying to call some common friend that we have, suppose
that you told me that his phone number is 12345679, I don’t have any prior
common knowledge of that person, so how can I set up a communication. But
by utilising the fluctuating topology of the network, I can try to set up such a
communication.

If all message parts arrive and the hash matches then we have no attacker
influence of data, and we have security achieved. When I say security I mean
our common shared secret. If the hash does not match, at least some data was
influenced by the attacker, then the attacker is detected, which is also a good
result, it’s not a bad result. The only bad possibility is that all message parts were
influenced by the attacker, and hash matches, it means that they intercepted all
the parts, they did what they want, and then they recomputed the hash and
sent that, that’s a bad result, and then I’m attacked. The thing about it is
that’s it improbable due to ever-changing topology in the network it is very
hard or improbable for some attackers to position themselves in such a way that
every message part in some randomly chosen path would go through them in
real time.
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Chaminda Alocious: You talked about that you divide the message into
parts, so what if you encrypt the whole message first and then you divide these
message into parts, and then you communicate and send it to the receiver, what’s
different between that one and your approach?

Reply: Well you say encrypt the message first, so how do you decrypt a
message without a common shared secret.

Chaminda Alocious: With a shared key. You can use the elliptic curve
cryptography to decrypt each and every part on the receiver end because you
have a shared key.

Reply: That’s prior knowledge, we’re talking without prior knowledge. If you
have a shared key, so we solved the problem before we started. I can’t encrypt
something that the other side can’t decrypt, and he can’t decrypt it if we don’t
share a secret. So what we’re trying to do is actually gain a shared secret without
prior knowledge.

As I said, it’s very improbable for them due to the ever-changing topology in
a network, and everybody should think of an airport, not a stadium, people sit
there for an hour, or two or three, so that’s not changing. But think of an airport,
people just moving around all the time, so the topology is actually changing all
the time, so in order for them to attack you think of a government trying to
attack someone, it will have to have, I don’t know, 20 agents walking around
with you all the time, all around you in some kind of ring, so if you look around
you will probably see them. And they’ve got to make sure that there’s nobody
else within communicating distance, and if we do this over Wifi, which is what
we did, we set up the system over Wifi which has a distance of more than two
feet, it’s not 100 meters, but it’s something like 50 metres, 40 metres Wifi, so
then it’s very hard for an adversary in a very busy place to actually execute an
attack, even if they collude. So that was the actual basic idea.

So some conclusions. Well what we were able to do is allow for a key exchange
over insecure channels without user intervention; I’m not dealing with security,
I’m just calling the other guy, let the system deal with it. We do it without
prior knowledge; I don’t know anything, I don’t have any shared secret, I didn’t
share any secret with them before. And because Diffie-Hellman allows a perfect
forward secrecy and we’re just using Diffie-Hellman, so we were able to gain
perfect forward secrecy. The idea here is in a sense was we were able to take an
active attacker and turn them into a passive attacker. And once we’re passive,
then we’re home free again. The problem with the protocol is that it relies
heavily on the correct routing algorithms of the network, which means that if
the attacker was able to influence the network to route everything to them, then
in a sense they are becoming a breakpoint, a bottleneck, and then if all the
packets, all the message parts were being routed to an attacker, and then he will
send out a new key, he used the network to attack.

Looking at open problems for the research, the first one to consider is the
overhead, how much does this cost. And it turns out it’s not such a big problem.
So it’s true that I’m using a lot of message parts instead of one, and it’s true that
I’m using sub optimal paths instead of the optimal path, because actually by
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spreading it out, only one is the optimal path, everything else is sub optimal, but
this is a one time thing per conversation, which means it’s just a key exchange.
So it’s not a factor of the length of the conversation, it’s a one-time thing so it’s
not such a big problem. And bottlenecks, what happens if there’s bottlenecks,
that’s really an open problem, because suppose you try to call somebody in a
different city and there’s only three or four, or five connections, so if an adversary
sits on those five connections, we have a bottleneck and everything has to flow
through him. And the question is, two questions. One, can an attacker force a
bottleneck, which means suppose there isn’t a bottleneck, when you look at the
graph it’s actually a nice good connected graph, but can he do something to the
network to force everything to actually flow through him. And this is something
that could be a big problem because if you talk about MANETs, so MANETs in
a sense have the characteristics that everybody goes and he announces I’m here,
and there is no big brother that you have to log into. So suppose that somebody
announces, I am Bob, and I announce that I am Bob, so slowly what happens is
there will be a ripple effect, and at some point the ripples will meet and we’re
going to have a contradiction. An attacker could only influence a small part of
the network for a certain amount of time before it’s overrun by the real answers,
and that’s really the open question, can an attacker force such a bottleneck.
And if he can force it can I detect it? which means if I add to the protocol some
kind of detection, that if I hear from the right side that someone is saying he’s
Bob, and on the left side someone saying he’s Bob, so I’m standing right at the
connection of the ripple, can I then announce someone is trying to attack Bob,
in a sense go and knock down Bob and say, listen don’t communicate secret with
Bob right, something is wrong. So that’s another question we have open right
now, can we give a network a bottleneck factor. So as far as graph theory is
concerned it’s not so difficult to look at a network and say, OK, there’s three
bottlenecks, that’s not such a big deal. The question is can you do in real time
without an overhead using smartphones that don’t have high processors and do
it all the time. This is something that we’re dealing with right now.

Another question is, what happens if we have a single side mitigation for
Diffie-Hellman. Suppose that we have Alice and here we have Bob, suppose all
the colluding attackers are all standing right here. In a sense, that we have
actually, we know there are two conversion points in the graph that we must go
through. One conversion point is right there, that’s one conversion point, and the
other conversion point is right here. The sender and the receiver are conversion
points by definition, so if an attacker can go and place themselves in such a
conversion point, can he influence the system. Now what I mean by single side
mitigation, it means that if it’s true that Alice tries to send to Bob, and these
attackers are all sitting at this conversion point, right here, that’s a conversion
point, so they will be able to influence the information that Bob receives. But
Bob, part of a key exchange algorithm has to send back information, and he’s
going to spread it out. So if he goes and he has even one more out here, or even
if he goes and he tells it to go through a couple of steps, or I don’t know what.
So it could be that by spreading it out one way and not two ways, does that
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break our scheme, or doesn’t it break the scheme, I’m not sure yet. I think it
doesn’t because as long as Bob can get out even one message part, not through
his converging attackers, then he is home safe. That’s an open problem.

And the last problem is obviously authentication, replay attacks, imperson-
ation attacks. So replay attacks, it’s not so difficult to get around if you add a
nonce or something, you know, one time nonce, into the key exchange, you get
past replay attacks. But impersonation attacks are a bigger problem because
if Eve goes and says, I am Bob, let’s talk, then how can I know it’s not Bob.
But spreading Diffie-Hellman we talked about does not provide authentication,
it provides confidentiality, which is a level below authentication. Above that we
can try to build an authentication scheme, you know, you can add using a pass-
word, you can add, authentication is actually not a problem, it doesn’t have
to be done necessarily with two of the same exact and do them both together.
So we have to know that our scheme does not give authentication, it gives just
confidentiality, and if you can do something with it, build above it so that could
be something good to do.

Anyway that’s it, that’s the scheme, Questions?
Petr Svenda: In wireless sensor networks there is something called secrecy

authentication protocol, which is similar to selecting different routes to the tar-
get node. We are not using the Diffie-Hellman because the nodes can’t compute
Diffie Hellman efficiently at the moment, so it is based on plaintext key exchange
or symmetric cryptography, but in the part of selecting routes over which you
propagate key shares, you will take many different paths. Ross Anderson was co-
author of the paper that proposed secrecy amplification protocols. The different
secrecy amplification protocols that were published are differing in the way how
they are selecting the paths for key shares propagation. In wireless sensor net-
works you really like to save node’s energy and don’t like to try all possible paths
because it’s too (energy) expensive. But you might maybe try and go only with
the close (w.r.t. communication range) or fast (in your scenario) neighbours.

Reply: Trying all pairs is very expensive, but we might not need to if we
decide that we would do studies right now, what is the N, the K, how many parts
do you need to split that’s good enough, it would give me the results I’m looking
for. I’m not sure of the numbers yet. But there is some interesting results which I
don’t know how to explain yet. For some reason, I mean, the hypothesis that we
had is that as I increase the population, even if I keep the percentage of attackers
steady, I would see a downward slope because at some point there becomes
so many possibilities that the chance of an attacker succeeding decreases, even
though I’m increasing the number of attackers, but not the percentage. For some
reason it’s smoothing out, and I don’t know how to explain this yet, it reaches
a kind of plateau, some kind of asymptotic edge as population increases, I don’t
have an explanation yet, I’m trying to figure out why is it doing that, why is it
not doing what we’re assuming it’s supposed to do. And is it true for success too,
I mean, notice it’s decreasing as the population increases, and then it plateaus
out, and I don’t know why yet. But that’s also an open problem because I wasn’t
going to assume I was going to see that, I don’t know why.
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Audience: It might be the case because what you have already shown that
there are attackers that surround some part of the node, and there is no other
way to communicate with these nodes.

Reply: I agree that that could be it, but, and when I increase the population,
so, even if I increase the number of attackers I should be seeing a downward
sloping anyway, because if I go and I have now instead of 900 people I got 2000
people, so sooner or later there will be more possible paths. It was all random,
which means that I increased the number of nodes and then told the simulator
just place them randomly within some pre-defined area, which means I defined
some kind of box. This is the area, place them out, and then just take a look
what the graph that I can build and go on, if I can’t really explain this plateau
yet, I hope to have a better answer next time, but right now, that’s it.

Shishir Nagaraja: So what is the edge actually on this, what does the edge
between two nodes mean?

Bruce Christianson: When are two nodes connected?
Reply: It’s communicating distance. If we talk about over Wifi then it’s 40

meters, and there’s actually a connection between me and you.
Shishir Nagaraja: It’s the signal strength? So if I have a high power broad-

casting antenna here I would be closest to everybody then any two people sitting
next to each other.

Reply: Even if you are connected to everybody, it doesn’t mean that the
other person is also not connected. Why should I send through you, I could
send it through him, him, and him. And if you go and you try to spoof the
packets and send out your own, there will be a contradiction. And once there’s
a contradiction then the system is rebooted, it’s reset.

Bruce Christianson: The argument is if you’re connected to everybody
sooner or later somebody is going to pick him as the next node. The longer the
path is the more chance that that will happen.

Reply: But that’s OK, as long as one message path doesn’t go through him
I’m in business, and that’s what I want. I need everything to go through you
for an attack to succeed, and the chances of that are very small, even if you’re
connected to everyone.

Shishir Nagaraja: If the nodes are trying to conserve power then I could
become the centralised point of the network.

Reply: So then that’s the question I suggested before, can one force a bot-
tleneck? You want to be a bottleneck, and the question is can you force it. And
I’m not sure by a high powered receiver and transmitter you will become the
central bottleneck because I am purposely choosing not to send it through the
optimal best path. I’m purposely choosing sub optimal paths in order not to go
through some flashy system.

Audience: But then it’s a matter of cost.
Reply: Right, I mean, everything is a matter of cost, what we’re paying

here is sub optimal paths. But we’re paying it only for a small fraction of the
conversation because once we set up the key, then from now on it’s on the optimal
path, I’m never going to use sub-optimal again.
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Bruce Christianson: Shishir’s argument is even if you have a 90% chance
of avoiding him at each step, if there are enough steps your chance of avoiding
him for any part of the message is low.

Daniel Thomas: And if there’s more than one attacker doing the same thing,
then it goes down much faster.

Bruce Christianson: That’s right.
Reply: Right, if you have a lot of colluding attackers that are actually strate-

gically placed on the topology of the network, then you can actually break the
system. But the question is, why should this happen. The protocol doesn’t say
anywhere that I have to pick the highest power guy next to me.

Bruce Christianson: No, it’s the fact that he’s a neighbour to everyone that
gives him the advantage.

Shishir Nagaraja: Yes, because he’s got a higher degree there.
Bruce Christianson: Everybody thinks that he’s the nearest neighbour,

that’s the trick.
Reply: That’s a good point.
Audience: So everybody is doing a broadcast, is that right?
Reply: Well that’s what happens in MANETs anyway, what happens in

MANETs, when I want to talk to someone in a MANET I broadcast it to my
neighbour who broadcasts it to his neighbour, and it’s propagated until it reaches
the destination, that happens, it’s nothing to do with authenticity, or with the
confidentiality, it happens by the actual system, that’s the way the system works.
And we set up a MANET right here, a mobile ad hoc network, so then I pass it
to Sandy, who passes it to Frank, who passes it to, so even if you have a high
power receiver and you can see everything, that doesn’t help you, as long as I
don’t pass everything through you.

Steven Murdoch: So this scheme, you’re splitting keys over space. You could
also do the same thing over time, so you could run this protocol over five days?

Reply: Yes, but that’s not practical, if I’m trying to call my mother, five days
from now is not a good idea.

Bruce Christianson: Well you could plan ahead.
Audience: With a no prior knowledge here don’t you require special software

at every two communicating points, such that they divide the message and re-
combine the message?

Reply: Yes and no, because I need special software to actually set up the
MANET, so I can just incorporate it into that software, when you dial to the
other side it should do it with this protocol. I mean, there is no, when you want
to set up an ad hoc network you need some software that does it, so part of the
dialling will actually be to spread it out. Thank you very much.
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Abstract. Cryptanalysis of a cryptographic function like stream, block
or hash function usually requires human cryptanalytical skills and labour.
However, some automation is possible – e.g., by randomness testing suites
like NIST/Diehard that can be applied to test statistical properties of
cryptographic function outputs. Yet such testing suites are limited to pre-
defined statistical functions. We propose a more open approach based on
a combination of software circuits and evolutionary algorithms to search
for unwanted statistical properties like next bit predictability or random
data distinguishability. Design of a software circuit acting as a testing
function is automatically evolved by a stochastic optimization algorithm
and uses the potentially unknown “other channel” leaking information
during cryptographic function evaluation.

We tested this approach on candidate algorithms for SHA-3 and eS-
tream competitions with comparable (but slightly worse) results as STS
NIST and Diehard tests w.r.t. the number of rounds of the inspected algo-
rithm, where tests are still able to detect unwanted statistical properties
in output. Additionally, the proposed approach is not limited only to as-
sess randomness-like properties in function output, but can be also used
for other tests like whether a function is invertible or how its avalanche
effect degrades.

1 Unguided Hunt for Weaknesses in Cryptographic
Functions

The main motivation for this work is to provide a tool with the crucial ability
to automatically probe for unwanted properties of cryptographic functions that
signalize flaws in the function design. Such properties might be (note that we
intentionally target a broad range of cryptographic functions):

– predictability of next output bit (stream ciphers),
– corrupted avalanche effect (hash functions, stream ciphers),
– distinguishability of function outputs from truly random data (block ci-

phers), etc.

Typical cryptanalytical approach against new cryptographic function is usu-
ally based on application of various statistical testing tools (STS NIST, Diehard)
as the first step and then application of established cryptanalytical proce-
dures (algorithmic attacks, differential cryptanalysis) combined with an in-depth
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knowledge of the inspected function. The first step can be at least partly auto-
mated and (relatively) easy to apply, but will detect only the most visible defects
in function construction or apply only to a limited number of algorithm rounds.
The second approach usually yields much stronger insight and detects more de-
fects, but usually requires extensive human cryptanalytical labour. Additionally,
general statistical testing tools are limited to a predefined set of statistical tests.
That on one hand makes the follow-up analytical work easier if the function does
not pass a certain test, yet on the other hand severely limits the potential to
detect other defects.

We designed and tested an automated process that can be used in a similar
manner as general statistical testing suites, but additionally provides the pos-
sibility to construct (again automatically) new tests. We represent “tests” as a
hardware-like circuit with a software emulator to execute the circuit over given
inputs and to compute outputs and evolutionary algorithms (EAs) to design
the circuit layout (“wires” and “gates”). Although such an automated tool will
not (at least for the moment) outperform a skilled cryptographer on particular
cryptographic function, it still has two main advantages:

– It can be applied automatically against multiple different cryptographic func-
tions with no additional human labour, a working implementation of the
inspected function is sufficient.

– It may discover and use unanticipated information leakage “channels” from
the function than those usually assumed by cryptographers.

We implemented the tool (more details given in Section 3) and tested our idea
on SHA-3/e-Stream candidate functions (details are given in Section 4). Results
are very similar to those obtained from NIST and Diehard test suites w.r.t. the
number of rounds of the inspected function where tests were able to find some
defects. Based on experience with behaviour and significance of results, we add
detailed discussion about potential extensions, expressive power of a circuit and
interesting behaviour detected (Section 5). Conclusions are given in Section 6.

2 Previous Work

Numerous works tackled the problem of distinguisher construction between data
produced by cryptographic functions and truly random data, both with reduced
and full number of rounds. Usually, statistical testing with a battery of tests
(e.g., STS NIST [Ruk10] or Dieharder [Bro04]) or additional custom tailored
statistical tests are performed. The STS NIST battery was used to evaluate fif-
teen AES (round 2) candidates, demonstrating some deviation from randomness
in six candidates [Sot99]. In [TDcc06], detailed examination of eStream Phase 2
candidates (full and reduced round tests) with STS NIST battery and structural
randomness tests was performed, finding six ciphers deviating from expected val-
ues. More recently, the same battery, but only a subset of the tests, was applied
to the SHA-3 candidates (in the second round of competition, 14 in total) for a
reduced number of rounds as well as only to compression function of algorithm
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[DEKS10]. Additionally, custom-built statistical tests based on strict avalanche
criterion and others were used, resulting in estimation of relative security mar-
gins of candidates w.r.t. the number of rounds. [SDEK10] proposed a method to
test statistical properties of short sequences typically obtained by block ciphers
or hash algorithms for which some from STS NIST can not be applied due to
insufficient length. Probabilities expressed by p-values are calculated for each
short subinterval and an improved method based on recalculation of expected
probabilities is provided. Example results applied to selected block and hash
functions are presented. 256-bit versions of SHA-3 finalists were subjected to
statistical tests using a GPU-accelerated evaluation [Kam12]. Both algorithms
and selected tests from STS NIST battery were implemented for the nVidia
CUDA platform. Because of massive parallelization, superpoly tests introduced
by [DS09] were possible to be performed, detecting some deviations in all but
the Grøstl algorithm.

Stochastic algorithms were also applied in cryptography to some extent, focus-
ing initially mostly on simple transposition and substitution ciphers or problems
like efficient knapsack algorithm. A nice review of usage of genetic algorithms
in cryptography up to year 2004 can be found in [Del04], a more recent re-
view of evolutionary methods used in cryptography is provided by [PG11]. TEA
algorithm [WN95] with a reduced number of rounds is a frequent target for cryp-
toanalysis with genetic algorithms [CVn05, Hu10, GHD07]. In [GHD07] a com-
parison of genetic techniques is presented, with several suggestions which genetic
techniques and parameters should be used to obtain better results. We adopted
the genetic programming [BNKF97] technique with steady-state replacement
[LLL08]. An important difference of our approach from previous work is the
production of a program (in the form of a software circuit) that provides differ-
ent results depending on given inputs. Previous work produced a fixed result,
e.g., bit mask in [CVn05, Hu10] that is directly applied to all inputs.

Structure of a software circuit resembles artificial neural networks (NN) to
some extent. Notable differences are in the learning mechanism and in a high
number of layers used in our software circuit (NN usually use only three). Re-
cently, deep belief neural networks (DBNN) were proposed [HOT06] with the
learning algorithm based on restricted Boltzmann machines that also use five or
even more layers. Still, a software circuit uses mutation and crossover to con-
verge towards an optimum instead of back propagation in case of classical NN
or lay-by-layer learning algorithm for DBNN. Also, different functions may be
computed inside every node in case of software circuit instead of weighted sum
of DBNN.

3 Software Circuit Designed by Evolution

A software circuit is a software representation of a hardware-like circuit with
nodes (“gates”) responsible for computation of simple functions like AND or
OR taking inputs and providing outputs. Nodes are positioned in layers where
outputs from the previous layer are provided as inputs to the nodes in the
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following layer by connectors (“wires”). Input to the whole circuit is simulated
as an output of the first layer of nodes and output of last layer is taken as the
output of whole circuit. Connectors might connect node to all nodes from a
previous layer or only to some of them.

Examples of such a circuit might be a Boolean circuit where functions com-
puted in nodes are limited to logical functions or artificial neural networks where
nodes compute the weighted sum of the inputs. Besides studying complexity
problems, these circuits were used in various applications like construction of a
fully homomorphic scheme [Gen10] or in design of efficient image filters [SSV12].

3.1 How to Design Circuit Layout

Circuit evaluation can be performed by a software emulator that propagates in-
put values, computes functions in nodes and collects outputs; or possibly directly
in hardware when FPGAs are used [SSV12]. Circuit design can be laid out by an
experienced human designer, automatically synthesized from the source code or
even automatically designed and then improved by an optimization algorithm.
We use the last approach and combine a software circuit evaluated on a CPU (or
also on GPUs) with evolutionary algorithms (EAs). The main goal is (somehow)
to find a circuit that will reveal an unwanted defect in the inspected crypto-
graphic functions. For example, if a circuit is able to correctly predict the nth

bit from a key stream generated by a stream cipher just by observing previous
(n − 1) bits, then this circuit serves as a next-bit predictor [Yao82], breaking
the security of the given stream cipher. Note that a circuit need not to provide
correct answers for all inputs – it is sufficient if a correct answer is provided with
a statistically significant probability better than random guessing.

When combined with evolutionary algorithms (broader term than genetic al-
gorithms, covers also stochastic algorithms inspired by nature evolution), the
whole process of circuit design consists of the following steps:

1. Several software circuits are randomly initialized (randomly selected func-
tions in nodes, randomly assigned existence of connectors between nodes)
forming population of candidate individuals. Every individual is represented
by one circuit. Note that such a random circuit will most probably not pro-
vide any meaningful output for given inputs and can even have disconnected
layers (no output at all).

2. If necessary, generate new test vectors used later by a so-called fitness func-
tion for evaluation.

3. Every individual (circuit) in the population is emulated and the outputs
obtained are evaluated by the fitness function that will assign a rating based
on how well this individual performs in solving a given task (e.g., what
fraction of inputs were correctly recognized as being output of stream cipher
rather than completely random sequence).

4. Based on the evaluation provided by the fitness function, a potentially im-
proved population is generated by mutation and crossover operators (genetic
algorithms) from individuals taken from the previous generation. Design of
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every individual (circuit) may be changed by changing operations computed
in nodes or add/removing connectors between nodes in subsequent layers.

5. Repeat from step 2. Usually hundreds of thousands or more repeats are
performed, therefore the evaluation of a single circuit in step 3 must be fast
enough (currently, we are in the milliseconds range).

IN_0 IN_1 IN_2 IN_3

1_0_NOR 1_1_ROL_5 1_2_AND 1_3_NOP

2_0_ROL_0 2_1_SUM 2_2_ADD 2_3_ROR_6

3_0_SUB 3_1_OR_ 3_2_SUB 3_3_DIV

4_0_BSL_3 4_1_DIV 4_2_NAN 4_3_ADD

0_OUT 1_OUT 2_OUT 3_OUT

Fig. 1. Software circuit with input nodes (IN x), inner nodes, output nodes (x OUT)
and connectors. Note that not all input or output nodes need to be used, and that not
all inner nodes need to output any value.

3.2 How to Evaluate Circuit Performance?

Evaluation of a circuit performance is a crucial yet tricky part of the proposed pro-
cess. Evaluation of a circuit is so called “supervised teaching” – we have pairs of
inputs and expected outputs (given by a “teacher”). Outputs from a circuit for
given inputs are compared with expected outputs and circuit performance is then
graded accordingly. When done incorrectly, the process will not provide a circuit
solving the expected problem. The progress may fail at least on two fronts:

1. Improperly defined problem to be solved by circuit. For example, if we define
a problem to be solved so that there is more than one correct answer (e.g.,
to find a preimage for a given hash function output) and yet we insist only
on one particular preimage being correct (although other values also provide
same hash), the circuit will not be able to converge towards a working so-
lution, even though the hash function is invertible. Alternatively, a problem
may be too hard to be solved, yet a working solution for a limited number of
rounds still would be of interest from the cryptanalysis perspective. Finally,
a circuit may seem to be solving the problem, yet we do not learn anything
about the function itself – so called “overlearning”. E.g., if we ask the circuit
to distinguish between a function output and a completely random value,
but we do not change the test vectors, then we just learn which particular
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test inputs belongs to which category and achieve a very good performance
on the testing set, but not on new verification data.

2. Unsuitable settings for EAs to progress towards a better solution (usually
caused by an improper fitness function or insufficient amount of computa-
tional time). EAs work well where a gradual improvement with small steps
towards a better solution is possible. Problems for which you either have
a solution that solves it at once or you have nothing are not suitable. For
example, defining fitness function as binary YES (all output bits of circuit
match expected bits) or NO (otherwise) will hamper EA chances to find
a working solution. A better approach is to calculate fraction of bits that
match over many different tests vectors (input, expected output). Last but
not least, changing the test vectors either too often (EA fails to adapt) or
too infrequently (EA will overlearn) can lead to dead ends.

So far, we adapted the following problems to be tested by a circuit, with results
presented for the first one (random distinguisher) in Section 4:

1. Random distinguisher – the circuit input is a sequence of bytes produced
either by the inspected function or generated completely randomly and the
output is the guessed source (e.g., if the Hamming weight of circuit output
is higher than 1

2 than it is the function output, otherwise it is a random
sequence). A circuit is successful if able to distinguish function outputs from
random sequences significantly better than by random guessing. Truly ran-
dom sequences were taken from the Quantum random bit generator service
[STS+08].

2. Next bit predictor – the circuit input is a vector of n bits taken from an
output of the function (e.g., stream cipher) and the expected circuit output
is the value of the (n+1)th bit. The problem can be relaxed to the prediction
of multiple bits, Hamming weight or other property of following byte(s). A
circuit is successful if able to predict correct value(s) significantly better than
by random guessing. A typical target would be some keyed function with an
unknown key, yet unkeyed functions can be targeted as well – caution must
be taken to prevent a circuit simply learning the unkeyed function itself and
using it to compute the expected output.

3. Strict Avalanche Criterion detector – the avalanche effect property of func-
tion F (e.g., hash) expects half the bits to flip in the output on average, even
for a single bit change in the input. The input for the circuit is a sequence
of bytes X. Expected output from the circuit is such a sequence Y that will
produce significantly more (or less) bit flips than expected when processed
by a function (Hamming distance(F (X), F (Y )) >> |X |/2). A special care
must be taken not to let the circuit just learn the function itself.

Note that an interpretation of a circuit output might not be just an exact
match to the expected value. Even when only Yes or No is expected, one can let
the circuit to encode its answer into a bit value/Hamming weight/majority value
of the circuit output, as such a less strict matching allows for multiple ways how
the circuit can signalize Yes answer and gives more flexibility to the EA.



On the Origin of Yet another Channel 229

3.3 Practical Implementation

We implemented our evaluation software circuit both on CPU and GPU com-
bined with the GAlib optimization library [GL207]. Significantly larger test
vectors are possible (105 instead of 103) with a GPU implementation (nVidia
CUDA), where many different evaluations can be executed in parallel with neg-
ligible performance impact. On average, a 70x speedup w.r.t. CPU implemen-
tation was achieved. Additionally, we use BOINC infrastructure to perform dis-
tributed computation with more than a thousand CPU cores and 16 nVidia
GF 465 cards. One well described problem of neural networks is difficulty to
understand the resulting solution. To ease understanding of our software cir-
cuits, we implemented an automatic removal of nodes and connectors that do
not contribute to the resulting fitness value, transformation into the Graphviz
dot format for visualization and also transformation into a C program source
code that executes the functionality of a particular circuit without the need to
run a circuit emulator. For a start, we used following elementary operations for
nodes: no operation (NOP), logical functions (AND, OR, XOR, NOR, NAND),
bit manipulating functions (ROTR, ROTL, BITSELECTOR), arithmetic func-
tions (ADD, SUBS, MULT, DIV, SUM), read specified input even from internal
layer (READ) and produce constant value (CONST). Typical initial settings for
software circuit parameters were: 5-8 layers, 16-32 input nodes, 16-32 nodes in
internal layer, 1-16 output nodes. Typical settings for EA parameters were like:
20 individual in population, 1000 test vectors (CPU version), 0.05 probability of
mutation, and 0.5 probability of crossover.

4 Results for eStream/SHA3 Candidates

The approach described above was tested on candidate function for eStream
[ECR04] and SHA-3 [SHA07] competitions. The big advantage came with avail-
ability of implementations with the same programming interface (API) for all
candidates – one can automatically test (e.g., random distinguisher) on large
number of functions without need to change (significantly) corresponding code.

Presented results serve as a baseline over multiple functions rather than the
best result we can achieve against a particular function. Because of the sig-
nificant number of inspected functions parametrized additionally with different
numbers of rounds and multiple parallel runs for every such a combination, we
were not able to optimize for best results for every separate function. Indeed,
we were able to obtain improvements (better distinguishing rate) for selected
functions where we selectively applied more optimizations. For example, when
circuit with memory (see Section 5) was used against Decim limited to three
rounds, distinguishing success rate raised from 0.53 to 0.62.

4.1 eStream Candidates

From 34 candidates in the eStream competition, 23 were potentially usable for
testing (renamed or updated versions, problems with compilation). For a start,
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we limited ourselves to only 7 of these (Decim, Grain, FUBUKI, Hermes, LEX,
Salsa20, TSC) having structure allowing reduction of complexity by decreased
number of rounds in a straightforward way.

In this work, we aim to obtain a software circuit capable of correctly distin-
guishing between a stream of bytes generated by an eStream candidate function
with an unknown key, and a stream of truly random bytes. We worked with
three scenarios with respect to the frequency of key change:

1. Key is fixed for all generated test sets and vectors. Even when test sets
change, new test vectors are generated using the same key.

2. Every test set was generated using a different key. All test vectors in a
particular test set are generated with the same key.

3. Every test vector (16 bytes) was generated using a different key.

Table 1. Results for eStream candidates

Function name
(total rounds)

Rounds detectable by NIST
(run/set/vector)

Rounds detectable by circuit
(run/set/vector)

Decim (8) 5/5/2 3/3/1

FUBUKI (4) 0/0/0 0/0/0

Grain (13) 2/2/0 2/2/0

Hermes (10) 0/0/0 0/0/0

LEX (10) 3/3/3 3/3/3

Salsa20 (20) 2/2/0 2/2/0

TSC (32) 10/10/10 10/10/10

4.2 SHA-3 Candidates

Similarly, we tested also SHA-3 competition candidates. From 51 candidates for
the first round, only 42 were potentially usable for testing due to compilation
problems, source code size, speed etc. We limited ourselves to 18 candidates
that can be easily limited in complexity by decreasing the number of internal
rounds, and while the full (unlimited) version produced a random-looking out-
put, their most limited version did not. Following candidates were considered:
ARIRANG, Aurora, Blake, Cheetah, CubeHash, DCH, Dynamic SHA, Dynamic
SHA2, ECHO, Grøstl, Hamsi, JH, Lesamnta, Luffa, MD6, SIMD, Tangle and
Twister.

4.3 Discussion

Detailed results including the circuits found, analysis of some of them and details
for the STS NIST settings can be found in this paper’s supplementary data1 and
[Ukr13]. The following main points were observed:

1 Detailed results can be found at http://www.fi.muni.cz/~xsvenda/
papers/spw2013/ .

http://www.fi.muni.cz/~xsvenda/papers/spw2013/
http://www.fi.muni.cz/~xsvenda/papers/spw2013/
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Table 2. Results for SHA-3 candidates
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Rounds detectable
by STS NIST

3 3 1 5 1 1 7 12 2 3 1 6 3 7 9 1 22 7

Rounds detectable
by software circuit

3 2 0 4 0 1 7 10 1 2 0 6 2 7 8 0 22 6

1. The circuit providing good distinguishing results for the particular combi-
nation of function, number of rounds and used key usually significantly de-
creased in success rate when function or even key is changed. Therefore, the
whole process of the evolution to particular combination is to be perceived
as a test in some cases.

2. Not all operations and connectors are relevant for the circuit performance. Ir-
relevant components can be automatically pruned out, easing understanding
of the circuit.

3. STS NIST is better in detection of statistical deviances than proposed ap-
proach for multiple SHA-3 candidates, but usually only one more round.

5 Increasing the Expressiveness of the Circuit

Previous section provided us with the baseline results for a wide range of func-
tions. We laid out the following metrics to measure the success of the proposed
approach:

1. Proposed approach should have the power to express statistical tests used
in STS NIST battery (i.e., test from NIST can be encoded in the form of
software circuit, but not necessarily automatically by genetic programming).

2. Proposed approach should provide at least same results (w.r.t. number of
rounds of limited function) as the STS NIST battery. Preferably, there should
be at least one (cryptographic) function with the number of rounds limited
to N, where STS NIST fails to detect significant defects in sequence, but
proposed approach succeeds.

3. Proposed approach may fail to achieve same results as the STS NIST, but
then should provide other significant advantage like smaller computation or
memory requirements or requiring significantly less input data (thus allowing
for use as function’s online tester).
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4. Proposed approach should provide better distinguishing success rate when
combined with STS NIST then STS NIST provides alone (approach is provid-
ing additional test coverage not provided by STS NIST, even when approach
alone cannot distinguish with better probability than STS NIST).

Generally, we achieved points 1 (when extension with memory is considered,
see Section 5) and 3, in some cases achieved point 2 and failed yet to achieve
point 4. Basic version of the proposed approach uses inputs only 16-32 bytes
long. Note that constructing a distinguisher between function output and truly
random data based on as short a sequence as 16 bytes is significantly more
difficult than the same task for a long sequence. First, longer sequences decrease
the impact of small fluctuation of both random data and function’s output (e.g.,
if there is inbalance of number of zeroes and ones by only one bit in 16 bytes,
it is 1/128 of whole input, making it relatively significant difference, even when
one can completely expect such a situation in truly random data. Contrary, if
1 000x1 000 000 bits are used (STS NIST), such a difference is insignificant).
Second, function’s output can produce periodic behaviour easily detectable in
longer data stream, but completely invisible in 16 bytes only. Indeed, when data
for STS NIST battery is generated in such a way that changes key every 16
bytes, proposed approach provides exactly same results on the tested functions.

To further improve performance of the evolutionary circuit, we propose addi-
tional extensions of the basic version presented before. Note that as modification
of a circuit is based on evolutionary algorithms, performance may be increased
by application of generic techniques for faster convergence towards the optimal
solution, like modification of EA parameters. We will not cover these techniques
here. Note that increasing the circuit expressiveness may actually decrease the
convergence speed for easier problems as search space is usually increased by
such a technique.

We can divide such techniques into several groups:

– Techniques to increase amount of data processed by the circuit: READX,
memory (block-based, bit-based), circuit providing formula with expected
occurrence counter

– Techniques to increase expressivity of circuit: loops, circuit of circuits
– Techniques to increase complexity of functions used by the circuit: linear

genetic programming inside node, code fragments inside node, complex in-
struction from known tests

5.1 Techniques to Increase an Amount of Data Processed by the
Circuit

Previous results were provided for the situation where the circuit performing
distinguisher was based on 16 input bytes only – significant disadvantage w.r.t
statistical batteries processing from tens up to hundreds of megabytes of data.
With such a setting, it is a significantly harder situation for the evolutionary
circuit to find a working distinguisher. Therefore, we propose several techniques
for how circuit expressivity and amount of data used can be expanded.
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Possibly the easiest way to provide more data to circuit is to introduce ad-
ditional instruction (called READX) which provides one of the input byte from
the circuit’s inputs directly to the function node with READX instruction. One
may perceive such an instruction as a direct wire between node and requested
input. Such an input can be already encoded by the circuit, but for the price of
several NOP instructions. With a special instruction, input is directly accessible
and more importantly, length of circuit’s input can be more than the size of
input layer as READX can obtain any value from it. Human interpretation of
circuit with READX instruction is straightforward. However, if the input data
should be enlarged by e.g., one hundred input bytes, then one hundred READX
instructions must be present in the circuit to process all inputs by the circuit
(but not all inputs bytes are relevant for a distinguisher).

More promising, but also more complicated (also from the perspective of the
interpretation of well performing circuit) is introduction of a memory. Instead of
circuit processing whole input in a single run, input is divided into B blocks with
same length N and processed one by one. Circuit is extended by additional M
inputs and M outputs (same number). Outputs from a processing block Bi are
provided as inputs for the block Bi+1, together with N inputs from test vector.
Such an extension provides possibility to extract some statistics from input block
Bi, store it into the memory M and later combine with statistics from following
blocks. Most importantly, test vector length can be significantly increased and
all input bytes are directly processed by the circuit. Final output (distinguisher)
is then based on memory and last input block. We already obtained preliminary
results for such a modification which shows better results (better distinguishing
ratio) than single-run circuit. Note that longer input test vector also increases
circuit’s execution time accordingly.

Finally, one can incorporate circuit into bigger framework which will perform
part of the computation and evaluation separately. If evolutionary circuit is pro-
viding working distinguisher, this distinguisher must be based on some redun-
dancy in input stream of a tested function which is not present in truly random
data. Such a redundancy is expressed (if found) by some formula encoded inside
the circuit. Circuit’s output is then interpreted not directly as distinguishing
verdict (truly random data or function data), but only as classificator of input
data into one of several categories C1, ..., Cn (e.g., if circuit provide one output
byte, then classifies into 256 categories). If multiple inputs are given to a circuit
and classified, particular distribution over categories Ci is obtained. The goal is
to find such a circuit, which will provide significantly different distribution Df

of categories Ci for inputs coming from the tested function f then a distribution
Dr produced by the inputs taken from truly random data. If such a circuit can
be found, input stream of data (multiple inputs) is signalized as a function’s
output if significant deviation from pre-computed distribution Dr is detected in
Df and signalized as truly random data otherwise (with given confidence level).
Fitness function is again defined as a ratio of correctly classified test vectors
from presented test set. Note that test vectors now need to be extended from
single input block to multiple input blocks taken from same source (function or
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random data) – single input block would provide only very crude distribution
D. Also, much longer input data are naturally provided to circuit to facilitate
decision.

5.2 Techniques to Increase Inner Functions Complexity

Set of operations available to software circuit design can be extended from el-
ementary operations like Boolean functions or simple arithmetic operations to
code fragments automatically extracted by parser from implementation of in-
spected function with hope of achieving better results than NIST/Diehard bat-
teries. Previously described circuit constructions used very simple operations like
AND, MULT or SUM in the circuit processing nodes. When a circuit needs some
more complex operation, it needs to be constructed from these simple blocks,
occupying multiple layers and connectors. Potentially, a better performance in
weakness hunting can be obtained if the set of allowed operations is extended
by the more complex ones. As a particular cryptographic function is inspected,
sub-operations of this function might be viable candidates for such complex op-
erations. However, selection of such an operation requires some knowledge of the
function itself, hampering advantages of fully automated approach.

We propose to keep with the fully automated approach and let sub-operations
be extracted from an existing implementation of the inspected function automat-
ically. Once extracted, evolution algorithm is allowed to select these fragments
as the function for processing nodes and emulate these fragments on inputs if se-
lected. Note that by partial execution, we do not aim to replicate exact behaviour
of target code (same output for same input), but rather to provide similar code
that can be applied over any input data provided by rest of circuit.

For practical verification of this idea, we choose implementation of target func-
tion (e.g., stream cipher) in the Java language with advantage of human-readable
bytecode generated directly by Java compiler and disassembler (javac g, javap -
c). Resulting file with text representation of bytecode is automatically parsed and
any subpart of code described by triple [method name, start instructi-on offset
and end instruction offset] can be emulated by simple stack-based execution
machine.

Several challenges need to be tackled with such a partial execution:

– Handling of method inputs – in regular program execution, method argu-
ments are pushed to stack before method call. If method is to be executed
from the middle, stack with arguments has to be filled by other means. In
our implementation, part of values provided by previous layer via connectors
is stored into stack before partial execution is performed.

– Bottom of the stack is reached before end of execution – because not all
instructions in method are executed (e.g., push), bottom of the stack might
be reached prematurely as the current instruction to be executed expects
value(s) on stack whereas there is (are) none. In our implementation, we
simply ignore the instruction in case that not enough arguments are present
on stack.
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– Handling of global arrays – in case when global arrays are used to load and
store values during execution, such memory structures must be prepared
and set before first access. In our implementation, part of values provided
by previous layer via connectors is used. Also, instruction is ignored when
data necessary for emulation are not present.

– Form of the output from a partial execution emulated by given node. More
specifically, which byte (or multiple bytes) should be provided as node’s
output? In our implementation, we simply take value at the top of the stack
as output.

Note that challenges described above are solved in ad-hoc manner and may
fail to execute many instructions from original code. Still, if target function itself
uses e.g., finite field multiplication (FFMul in AES) partial execution described
above will enable software circuit to directly execute such an operation.

Once execution stack described above is available, fragments can not only be
taken from existing code, but can also be generated randomly. Every fragment in
the node will then consist of several bytecode instruction emulated over node’s
input – technique known as linear genetic programming.

Another option is are to use parsers like the ANTLR parser generator [PQ94]
or ASTParser [KT06], alternatively BytecodeParser [God12] working directly on
the bytecode level, thus easing emulation later. Optionally, one may use language
supporting reflection and allowing for runtime code modification. However, this
will decrease the evaluation speed of a single circuit (w.r.t. C/C++ performance)
and prevent a GPU-based acceleration. Note that a large number of candidate
circuits needs to be evaluated; otherwise EAs are unlikely to find a viable solu-
tion.

6 Conclusions

We proposed a general design of a cryptoanalytical tool based on genetic pro-
gramming and applied it to the problem of finding a random distinguisher for
several stream ciphers (with a reduced number of rounds) taken from the SHA-3
(18 functions) and eStream (7 functions) competition. Baseline with results was
established for these functions. In general, the proposed approach proved to be
capable of matching the performance of the NIST statistical testing suite in sce-
nario where the tested function key is changed for every test vector, and close
matching results when key is changed less often. When a key is changed less
often, alonger sequence with the same key is produced and available for inspec-
tion by statistical testing suite where a basic version of the proposed approach
is not able to deal with inputs longer than tens of bytes. Therefore, we proposed
several extensions, like circuit with memory or more complex function in the
node capable to process very large inputs.

Future work will be devoted to evaluation of extension proposals and their
comparison with basic version of proposed approach.
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Acknowledgements. Thisworkwas supported by theGAP202/11/0422 project
of the Czech Science Foundation. The access to computing and storage facilities
owned by parties and projects contributing to the National Grid Infrastructure
MetaCentrum, provided under the programme“Projects of Large Infrastructure
for Research, Development, and Innovations” (LM2010005) is highly appreciated.
MartinUkrop provided data from the experiments with SHA-3 candidate function
evaluations.

References

[BNKF97] Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic program-
ming: An introduction: On the automatic evolution of computer programs
and its applications. Morgan Kaufmann Publishers (1997)

[Bro04] Brown, R.G.: Dieharder: A random number test suite, version 3.31.1 (2004)
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On the Origin of Yet another Channel

(Transcript of Discussion)

Petr Švenda

Masaryk University

Good afternoon, I will talk on the origin of yet another channel. The reason why
we choose such a title is that we will use something borrowed from the nature—
the genetic programming technique—and we will search for another side channel
in a cryptographic function. I will be focusing on the randomness testing of the
function outputs. I will give you a brief overview of how existing statistical
batteries like STS NIST or Diehard are doing such testing. Then I will present
our idea based on a software circuit combined with the genetic programming.
I will show you some results for candidates from the eStream competition for
stream ciphers and also some from SHA-3 competition. Some discussion about
interesting results we were getting will go afterwards. And finally some possible
extensions to obtain yet better results.

The first question to ask is why we should bother to test some properties
of randomness in any function output. The answer is that if the function is
planned to be used as a pseudorandom generator then we like to ensure that
the properties of the bits and bytes coming from this generator are similar to
what you would expect from a truly random number generator. It can be also a
requirement by third parties as was the case for the AES or SHA-3 competitions
where this reason is partially same as the first one: sometimes you like to use
AES as a pseudorandom generator. And the third reason is that if the function
behaves in such a way that there are significant deviations from the statistics
of the truly random sequence, it may signal some inner defects of the functions.
Of course, passing the statistical tests is not any proof that the function is
without defects. You can use at least two main different approaches to study
cryptographic functions: human cryptanalysis or the fully automatic approach,
statistical testing.

How is to work with existing statistical batteries like STS NIST or Dieharder?
At first you will take the function you are interested in, for example AES, you will
seed this function with a key, and then you will generate a long stream of output
data. For these batteries you generate at least tens of megabytes. Dieharder
requires several hundreds of megabytes of data. Testing suites contains several
tests, dozens of them in every battery. An example of a simple test is the assertion
that the number of binary ones in the stream should be similar to number of
binary zeroes. Another test is based on taking the data you have and playing
the Scratch game with it and then count how many times the first player will
win, and how many times the second player will win. If the results you are not
too different from what one would expect for truly random data then you say
that given data passed the test.

B. Christianson et al. (Eds.): Security Protocols 2013, LNCS 8263, pp. 238–244, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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What we would like to achieve is having a mechanism that generates new
tests automatically, because designing the tests by hand is time consuming. The
first step is to realize that tests can be expressed as an algorithm. If it is an
algorithm then we can express it as a hardware-like circuit. We will not use a
real hardware circuit, but software emulation, which is more or less the same.
There are several issues that need to be solved. The first thing is who will design
such a circuit? We will use genetic programming as a designer. The second
thing is what will be the question or the task that the circuit should solve? We
formulate this question to be a random distinguisher as circuit should be able
to distinguish data coming from two different sources: the tested function and
truly random generator. Because we will use genetic programming, we need to
be able to compare the qualities of candidate solutions (circuits). We will use a
set of multiple test vectors for comparison.

Basic goal we would like to achieve is to have a circuit-encoding distinguisher
at least as good as the existing statistical batteries, but generated automatically.
Later on I will tell you how and whether we succeeded.

At first I will briefly discuss the software circuit. You have the input nodes
where you put some input data. Then you have nodes inside, each computing one
operation taken from the set of different predefined operations. You have also
connectors (wires) which transport output data from one node in the previous
layer to another node in the next layer. Node output may come to multiple nodes,
the same as in ordinary hardware circuits. In a hardware circuit, you usually have
physical limitations forcing you to have no crossings of the connectors (wires),
but that’s no limitation for the software circuit as connectors are only simulated.
You put your input data to first layer; let it be manipulated by functions in the
following layers and then read the output in the last layer. We developed the
open software tool EACirc to generate and simulate such circuits; you may like
to take a look at that.

The basic assumption is that if there is some defect in the functions output
we should be able to find a circuit that is able to distinguish between the data
produced by the defective function and the data produced by the truly random
generator.

We took truly random data from two different quantum random generators
(QRNG service - HU, Germany and QRBG service - Ruer Boškovic Institute,
Croatia) and we used it to generate 500 test vectors. Test vectors were 16 bytes
long, so we need 500x16 bytes from the truly random source for every test set.
Then we took target function like Salsa20, AES or any other function, and
generated a data stream, forming another 500 test vectors. Then we take these
test vectors one by one, put them as inputs for the circuit, let it run and read
the output. The output is some sequence of the bits that needs to be interpreted.
For example if the Hamming weight of the output byte is bigger than 4 then
the circuit is “signalising that the input data comes from the truly random
generator, otherwise it comes from the tested function. We let it run for all test
vectors (1000 total in our example, half coming from random source, second half
from tested function); counting how many times it correctly thinks the input
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data are coming from the random source, how many times it correctly thinks
the source was the tested function. A successful circuit should do better than
random guessing.

Still, someone has to design this circuit. We use genetic programming for that,
a supervised stochastic optimisation technique inspired by natural evolution. In
short, you are maintaining the population of candidate solutions – distinguishing
circuits in our case. At the beginning, you usually generate them randomly and
initial population is usually no better than random guessing. But due to simu-
lated natural selection, solutions improve over time. We started with something
like 20 candidate solutions, taking one candidate circuit, loading into circuit em-
ulator and letting it run with 1000 input test vectors. Because we know what the
correct answers should be, we can compute how well the circuit was performing
and assign a fitness value. After testing all our circuits we know which circuits
are bad performers, which are better, and which are the best. For the next gen-
eration we will drop some of the circuits that are bad, and instead of them we
will insert new circuits generated by mating (crossover and mutation) of other
well-performing circuits.

I need to stress that the speed of circuit evaluation is critical because we need
to evaluate candidate circuits many times. It has to be done for every generation,
for every individual and for every test vector. Usually you have at least thousands
of generations (we were using 30,000 of generations), tens of individuals in the
population (20 in our case) and we were using 1000 test vectors. Therefore, in
our settings for a single experiment, we need around 600 million of evaluations.
We developed both CPU and GPU implementations and used resources mainly
from our Metacentrum grid to carry these computations.

What is the comparison methodology we were using? We targeted some se-
lected algorithms from the eStream competition at the beginning. We selected
algorithms in which the number of rounds can be easily reduced. The reason
is that usually the statistical testing batteries are not able to find any defects
in a function with a full number of rounds, but they can find some defects if
you will the number of rounds. And that is still a reasonable result because if
the number of rounds where the statistical battery can find some defect is very
close to the total number of rounds then something is potentially wrong with
the function. We generate and run these ordinary testing batteries (STS NIST,
Dieharder) and put these results aside for future comparison with the proposed
approach. We then prepare input data for our software circuit as I have already
described to you. The genetic programming was left running for several hours
or sometimes days, trying to find a circuit that performs reasonably well as a
distinguisher between truly random data and function output.

An important setting influencing the results is howoften you change the key used
for generating the test vectors.We tested three scenarios.The first one fixes the key
for the whole experiment. In the second case we change the key for every test set.
In our case the key remains fixed for 500 test vectors. And in the third scenario the
key changes for every test vector. For every 16 bytes generated you have to supply
a fresh new key. Key change frequency influences the length of data generated by a
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single key. So if you will go with the third extreme scenario then the output stream
generated by the function seeded with same key is only 16 bytes long.

Lets take a look on some example results. Grain is one of the eStream candi-
dates. What you can see are the results for the three described scenarios w.r.t. key
exchange frequency. First two columns are the results from the testing batteries
with 0 means that no test passed. You can clearly see that the Grain function
limited to only two rounds has very defective output. The third column is our
software circuit, which is showing whether we are able to find a distinguisher
better than random guessing.

Here are the aggregate results for the seven eStream functions we were testing.
The green box for the given number of algorithm rounds mean that the statistical
testing batteries say with a high certainty that output is significantly different
from the truly random data. The first column is Dieharder battery, the second
column is the STS NIST battery and the third column is our approach. For
some functions our approach detects deviances in the same number of rounds of
tested functions, for some functions we are a bit worse, for Decim for example.
I will get to that later on. The left group of columns is for the scenario when
key is fixed for the whole output stream, so the Dieharder battery will get from
200 to 250 megabytes of data produced from a single key, quite a large dataset.
If we change the key more frequently, results remains more or less the same.
But the results change dramatically once you are changing the key for every test
vector. What you can see is that testing batteries are performing much worse
than were performing before, lowering the number of rounds where you can see
defects detected.

I will now show you how genetic programming usually works on the proposed
problem. Take an example of Salsa20 limited to 2 rounds only. On the x-axis of
the figure you have the number of generation and when evolution starts. Circuits
are just randomly guessing as they are just randomly generated circuits and you
don’t expect that they are able to distinguish reliably between the function’s
output and truly random data.

But after some time, genetic programming will learn something about the
function output and start to perform better. There are still some fluctuations
because we are exchanging the test sets from time to time and some test sets fit
better or worse with the given circuit. Still, the average distinguishing success
rate is increasing. After several hours of genetic programming, the resulting cir-
cuit is able to distinguish between truly random data and Salsa20 output limited
to two rounds with a good success rate, forming a reasonably good distinguisher.

I will not talk about the details why this particular circuit works; honestly I
don’t understand fully why and how it’s working. We put significant effort to
ensure that it’s not just a bug in the code and that results are real by making
independent verification using statically generated C programs performing the
circuit functionality. We also generated a visual representation of a circuit ren-
dered later by Graphviz. For every particular setting and every tested function,
we ran evolution 30 times in parallel to get robust results, also on-average be-
haviour of the otherwise stochastic evolution. What was interesting was that we
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were getting different results (different distinguishing circuits) each time. Some-
times, the success rate was the same, but the circuits that were coming out from
the genetic programming had different inner structure. For example, first cir-
cuit has different unused input bytes than the second circuit. Such diversity is
well known property of solutions found by genetic programming. You often get
different solutions solving the same problem.

Lets take a look on more interesting results from the experiments done so
far. We tested what will happen if we do not construct the test set as half of
vectors taken from the function output and the second half from random data,
but both taken from the random source, being literally indistinguishable. As
a result, every time the test set is changed, population of candidate solutions
starts by random guessing. But what is getting better when distinguishing be-
tween two truly random groups over the time? The reason is overlearning on
the vectors in particular test set, a common problem in artificial intelligence.
Once the test set is changed, the success ratio goes down. For fun, we took one
half of random data from the Germany-based generator forming the first group,
and the second half from the Croatia-based generator. Fortunately, we were not
able to distinguish between these two sources, hinting that both are possibly
random. But the situation was quite different for the real functions like Salsa20.
The graph provides results for the period where the test set was changed 300
times and in some parts the success rate doesnt drop to random guess over a
period of more than 30 test vector changes, yet suddenly drops afterwards. As
such event repeat with some periodicity, it is probably related to some periodic
defect in the output stream.

Having described the whole process, what is then the new test that can be
added to existing testing batteries? Is it a particular circuit that was found after
several days written down as program in some imperative language? The answer
is most probably no, because this circuit was found for a particular function
we were inspecting, and sometimes even for a particular key. What you should
add as another test is the whole described process including the evolution with
genetic programming. If such a battery test is run and after several hours can
find a distinguisher better than random guessing, then there is some problem
with the function output.

So what is the comparison to statistical batteries? There are advantages, but
also disadvantages. The first advantage is that it’s a new approach and we don’t
need to have a fixed test for all tested functions, but we have dynamic con-
struction for particular function with possibly better results. The proposed ap-
proach is also able to work on very short sequences like 16 bytes whereas Diehard
takes more than 200 megabytes (but Dieharder can possibly detect deviations
on smaller amount of data as well). But working on very short sequences is also
disadvantage as deviations like repetitions with longer periodicity cannot be de-
tected. In a minute, I will present how we can fix that. For the disadvantages,
there is no proof of test quality or coverage, similar to the situation with the
testing batteries. Second, it may be hard to analyse the result because it might
be unclear what the circuit is actually doing (though we are working on auto-
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matic analysis). Finally, the proposed approach can have a longer running time,
depending on the learning period use. Our initial goal was to be at least as good
as statistical batteries, hopefully better. The results so far show that statistical
testing batteries are still sometimes better than we are for a particular algorithm,
but this advantage is decreasing with the frequency of key exchange. If we force
Dieharder to work on the stream with 200 megabytes consisting effectively of
independent short blocks generated by a different key each, then it can detect
deviations in a lower number of rounds with the same results as our approach.

What you can do at the moment is to let the evolution run even longer,
therefore providing more data to evolution overall and waiting for a possibly
better result. We can also add more layers; adjust the setting in a simulator and
so on, but I would not expect significantly better results than we currently have,
because Dieharder and STS NIST are basing their results on megabytes of data
while we are working only with 16 bytes. But working on only 16 byte blocks
is usually a limitation and the obvious next step is how to supply more data
than we are currently working with. Here is an idea of what we are currently
implementing, named as circuit with a memory. Instead of working with one
short input supplied to circuit only once, you designate some of the input nodes
as nodes accepting memory inputs and rest of the input nodes as accepting input
bytes as usual. Same number of output nodes are designated as the memory
outputs, rest as circuit ordinary outputs. Instead of executing given circuit only
once, you are executing the circuit multiple times with memory outputs provided
as memory inputs for the next iteration. Ordinary inputs are taken fresh from
longer data stream. With such settings, circuits can process some statistics from
every new fresh input block and combine it with information already stored in
memory for previous blocks. As a result, one can process a longer stream limited
only by the number of iterations we will perform.

A different way to increase the descriptive power of a circuit is to insert more
complex operations inside circuit nodes. We implemented an emulator of a stack-
based machine similar to Java bytecode execution and the code extraction from
real Java implementation of the tested function. The idea is that if you like to
find some weakness in a tested function, say AES, then it may be helpful to
incorporate parts of the AES code directly inside the circuit, e.g., multiplication
over Galois field. And we can still do this fully automatically. So we take the
AES implementation in Java, compile it into the bytecode, parse the bytecode,
extract some fragment of bytecode instructions and finally emulate this fragment
as one operation inside some node in a circuit.

Finally, there are other goals possible for circuits to perform than random dis-
tinguishing. For example, one can use circuit to check violation of strict avalanche
criterion by manipulating tested function inputs. If successful, some internal
problem is detected.

In conclusion, we come up with a new idea for how to generate tests for
automated statistical testing. We have so far comparable results to STS NIST.
We are lagging for longer sequences, but we have ideas how to hopefully fix this.
What we definitely need is a more detailed analysis of the results we are getting,
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because it took longer than we expected to implement all necessary software
stuff and we had little time to inspect why the circuits are actually working
(what bits in inputs are relevant for final decision). Also I would expect that
once we switch to significantly longer sequences with techniques like circuit with
memory, we will get better results for the scenarios where key is not changed
frequently. That’s all from my side.

Michael Roe: It might be that the periodicity in success rate of distinguisher
circuit that you see for Salsa20 is actually periodicity in the random number
generator you’re using for the generation of the second random stream or for
performing the mutations/crossover of the genetic algorithm.

Reply: We took special care not to be trapped in such a situation. When we
were in need for the random data for the genetic algorithms, we were using the
truly random data taken from the quantum generator services (QRNG service
- HU, Germany and QRBG service - Ruer Boškovic Institute, Croatia). Such a
service was also used as the random number generator for the genetic algorithm
itself and also for the keys that were fed into the tested functions. But your
remark is correct; you need to be very careful about using a randomness source
as it is not used only for the keys, but also for other purposes influencing the
quality of distinguisher found.
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Abstract. In this paper, we propose – and have implemented – the
first verifiable classroom voting system. The subject of secure classroom
voting has so far received almost no attention from the security com-
munity. Though several commercial classroom voting systems have been
available, none of them is verifiable. State-of-the-art verifiable voting pro-
tocols all rely on finding a set of trustworthy tallying authorities (who
are essentially cryptographers and computer experts) in the first place,
and hence are completely unsuitable for classroom voting. Our system
design is based on “self-enforcing e-voting” – a new paradigm that was
first presented at SPW’12 (Hao, Randell and Clarke). A self-enforcing
e-voting scheme provides the same End-to-End (E2E) verifiability as
other e-voting schemes but without involving any tallying authorities.
The removal of tallying authorities brings several compelling advantages
in real-world voting scenarios – here, classroom voting is just one exam-
ple. We have piloted the use of the developed verifiable classroom voting
system in real classroom teaching. Based on our preliminary trial expe-
rience, we believe the system is not only scientifically valuable, but also
pedagogically useful.

1 Introduction

Classroom voting is a powerful new pedagogy, which was first developed for the
physics classroom by Harvard University’s Eric Mazur in his influential book:
“Peer Instruction: A User’s Manual ” [1], and subsequently extended by other
academics to teaching mathematics and other subjects [2].

In this teaching technique, the teacher first poses a set of multiple-choice ques-
tions to a class of students, gives them a few minutes to discuss in small groups and
asks them to vote for the best answers. Typically, a student submits the vote using
a special hand-held device (known as the “clicker” [2,3]) that sends radio frequency
signals to a special receiver installed in the classroom. The receiver tallies votes in
real time and displays the results over a projector, providing instant feedback to the
students and the teacher alike. Several studies have reported success of using this
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technique to retain the students’ attention, to increase the classroom interactions
and to improve the student learning outcome [2, 3].

There have been several commercial classroom voting systems available, e.g.,
iclicker1, TurningPoint2 and eInstruction3. In particular, the TurningPoint vot-
ing system has been adopted and trialed by a number of universities in the UK,
including Newcastle University. (The first author had an opportunity to par-
ticipate in a demo of the TurningPoint system at Newcastle University. This
research work was motivated by that experience.)

However, a notable limitation with TurningPoint – and in fact all existing
classroom voting systems – is that the voting results are not verifiable. There
is no means for students to check if their votes have been recorded and tallied
correctly. The integrity of the results may be affected by many factors: e.g.,
hardware malfunction of the voting device, lost signal in the radio frequency
transmission, software bugs, malicious attacks where an adversary tampers with
the back-end software to arbitrarily modify the results.

One might question why we should care about the verifiability at all – if the
tallying results turn out to be wrong, it is probably not too big a deal. After all,
the classroom voting result is not as sensitive as that in political elections. How-
ever, we believe verifiability is still important. First of all, it provides confidence
on the accuracy of the tallying results. If any hardware failure or a software bug
causes the tallying procedure to go astray, the error in the result will be caught
publicly if the system is verifiable. Second, though classroom voting questions
are usually not sensitive, there are exceptions: for example, when the system is
used as a module assessment tool to rate a lecturer’s teaching performance. By
taking security into consideration in all conditions, we can make classroom vot-
ing more widely useful. Finally, by making the system verifiable, students will
have an opportunity to learn and practise the fundamental “trust-but-verify”
principle in routine classroom voting. This can prove relevant when they later
participate in more serious national elections.

Besides a lack of verifiability, there are other limitations with the existing
classroom voting systems. They generally use proprietary devices as voting
clients. This however not only imposes vendor lock-in but also creates serious
logistical issues – simply transporting the physical devices into and out of the
classroom can be a laborious task. In addition, they require installing a pro-
prietary receiver in the classroom. This seriously limits the portability of the
system, as voting is confined to only designated classrooms.

2 System Design

In this section, we will propose a verifiable classroom voting system and show
a concrete implementation. Our system addresses all the problems we explained
above.
1 http://www.iclicker.com
2 http://www.turningtechnologies.co.uk
3 http://www.einstruction.com/

http://www.iclicker.com
http://www.turningtechnologies.co.uk
http://www.einstruction.com/
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Fig. 1. Verifiable classroom voting system using mobile devices as voting clients

2.1 Overall Architecture

Figure 1 shows the overall architecture of our system. At the client side, students
use their own computing devices to vote. We have developed two voting clients
– an Android app [5] and an iOS app [4] – to support voting from iPhone,
iPad, Android phone and Android tablet. In addition we provide a generic web
voting interface, so people with any other types of smart phones (e.g., windows
8, blackberry etc) or a laptop can still vote, as long as the device has a web
browser and is connected to the Internet.

2.2 System Configuration

There are three roles involved in the use of the system: administrator, coordinator
and voter. The administrator is responsible to maintain the availability of the
web server. A coordinator – usually a teacher – is someone who coordinates
voting in a classroom. The system can accommodate many coordinators at the
same time. Finally, voters are usually students in a class.

Classroom voting is arranged according to voting sessions. A voting session
consists of a list of voting questions. We support four types of questions in the
system:

1. Single-answer question: students can only choose one answer. (e.g., which
is the largest country in the world? A: Russia; B: China; C: America; D:
India)

2. Multiple-answer question: students can choose multiple answers. (e.g., which
of the following countries are members of Commonwealth? A: Singapore; B:
India; C: Austria; D: Canada)

3. Free numeric input question: there are no given answers and students are free
to enter any numeric value (e.g, “Enter the value of π to the two decimals”)

4. Free text input question: similar as above, except that the entered answer
can be any text (e.g., “Enter the name of the largest ocean on earth.”)
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Fig. 2. Login screen for the voting client

The system is only verifiable when the voting questions are of the first two types
(our verifiable voting protocol requires knowing the names of the candidates
before the election). However, we still support the latter two types of questions,
as we consider them useful features, even though the voting results cannot be
verifiable in the cryptographic sense.

When a coordinator creates a voting session, there are a few options he needs
to configure.

– Whether using a group passcode or individual passcodes.
– The maximum number of students in the class, denoted as N .
– The auditing factor F , which allows each student to audit a vote up to F

times (by default F = 5)
– The security level L bits (by default L = 128)
– The length of the receipt R characters (by default R = 5)

A group passcode is a single passcode available to all students in the class. In
this setting, the teacher informs students of a session ID and the group passcode,
which are needed to log into the particular voting session (see Figure 2). However,
one drawback with this authentication mechanism is that one student can vote
multiple times by re-using the same passcode. In many circumstances, this is
not an issue as there is no incentive for students to double-vote. However, in
some cases when voting involves sensitive questions such as rating a lecturer’s
performance, a group passcode would be inadequate. Individual passcodes should
be used instead.

In the individual passcodes scheme, each student is assigned a unique pass-
code. The web server first generates N random passcodes (recall that N is the
maximum number of students in the class). The coordinator then prints out all
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N passcodes, each on a paper slip. The paper slips are physically mixed up in
front of the students before being distributed to the class. One student can only
take one passcode. After voting is finished, the public bulletin board will show
how many passcodes have been used. This number should be matched to the
actual number of students in the class (e.g., based on a signed class attendance
sheet). Any significant discrepancy would suggest something wrong (e.g., ballot
stuffing), which demands further investigation.

2.3 Voting Protocol

To implement the system, we adopt the Direct Recording Electronic with In-
tegrity (DRE-i) protocol [7], which is under the category of “self-enforcing e-
voting” protocols [6]. The DRE-i protocol provides the same end-to-end veri-
fiability as other verifiable voting protocols but without requiring any tallying
authorities.

The protocol has three phases: setup, voting and tallying. The setup phase
involves pre-computing cryptograms for all electronic ballots, as specified in [7].
Depending on the size of the class and the number of questions, this phase usually
takes several minutes to complete.

The second phase is voting. Figure 3a shows the initial voting interface of the
Android app for a single-answer question. To cast a vote, a student follows two
stages: 1) selecting an answer; 2) confirming or canceling the previous selection.

In the first stage, the student makes a selection: let us assume he selects
“Yes”. In the next interface, the app shows that “Yes” had been selected and asks
the student to “Confirm” or “Cancel” (Figure 3b). There is also a third button
“Receipt”, which leads to the display of a stage-1 receipt (Figure 3c). The student
can verify the receipt by checking that the same content on the receipt has been
published on the public bulletin board (a publicly accessible website).

The second stage handles the student’s choice of “confirm” or “cancel”. Sup-
pose the student chooses to “cancel (essentially, this is to perform voter-initiated
auditing [7]). The voting interface will show that the previous selection has been
canceled (Figure 4a); the student can proceed to the next question (if any)
or re-try the same question. There is also a button “Receipt”, which leads to
the display of the stage-2 receipt for the cancellation case (Figure 4b). A stu-
dent can repeat the same cancellation operation up to F times (recall that the
value F is configurable). On the other hand, if the student chooses to “confirm”,
the interface will show the vote has been casted (Figure 4c), together with a
stage-2 receipt for the confirmation case (Figure 4d). Same as before, to verify
the stage-2 receipt, the student simply needs to check that the content on the
receipt matches that published on the public bulletin board. This requires no
knowledge of cryptography. As long as all receipts are available on the public
bulletin board, anyone with cryptographic knowledge and computing skills will
be able to verify all receipts in a batch.

The third - and last - phase is the tallying process. When all students have
casted their votes, the coordinator would end that particular voting session
through a web interface. The voting results are immediately available. Figure
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(a) Initial voting interface (b) After choosing “Yes” (c) Stage 1 receipt

Fig. 3. Stage 1 voting interface and receipt

5 shows an example of the tallying results in a bar chart. The same results are
also available on the voting website, together with all receipts (i.e., audit data).
We provide an open-source Java program on the voting website to facilitate any
interested party to cryptographically verify the integrity of the results based on
the audit data.

3 Trials

3.1 Usability Trial

We conducted a voting trial workshop at the School of Computing Science,
Newcastle University, on 3 September, 2012. The participants were mainly MSc
students who had just submitted their dissertations. We provided pizza catering
for all participants. With this workshop, we aimed at “three birds with one
stone”: to trial our newly developed verifiable classroom voting system; to serve
as a farewell party for MSc students as many of them would leave shortly; and
finally to give some MSc students a chance to present interesting results in their
dissertation projects and let all participants vote for their favorite presentation
using the classroom voting system.

There were in total around 40 participants who were mainly MSc students.
Five students presented their dissertation projects, and afterwards we asked all
participants to vote for the most “entertaining” presentation. In this case, the
integrity of the voting result must be ensured, so we used the individual passcodes
scheme as described in Section 2.
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(a) Case A: user chose cancel-
lation

(b) Case A: receipt for cancel-
lation

(c) Case B: user chose confir-
mation

(d) Case B: receipt for confir-
mation

Fig. 4. Stage 2 voting interface and receipt

During the trial, participants had two ways to vote: 1) using an Android
app [5] (version 1.0.0); 2) using a web interface at http://evoting.ncl.ac.uk.
(At the time of the trial, the iPhone app was still under development, so iPhone
users had to use a web interface to vote.) At the end of the workshop, we received
26 completed questionnaires, among which 17 participants voted through the
Android app, and 9 through the web interface.

http://evoting.ncl.ac.uk
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Fig. 5. Display of tallying results

The feedback questionnaire consisted of 10 statements and respondents were
asked to indicate their agreement or disagreement on a Likert scale from 1 to 5
(i.e., “strongly agree”, “agree”, “neutral”, “disagree” and “strongly disagree”). The
statements were as follows:

1. Joining a new session was easy.
2. I understood how to join a new session.
3. I understood how to answer questions.
4. Answering questions was easy.
5. I understood how to check the receipt.
6. I understood why I might want to check the receipt.
7. I felt confident that my answers had been recorded correctly.
8. I understood how to view the results.
9. Viewing the results was easy.

10. I felt my answer was sent anonymously.

We summarize the received 26 questionnaire answers in Table 1. There was no
obvious difference in the answers between those voting through the Android app
and those through the web interface, so we combine all answers in one table.

In general, the feedback was encouragingly positive. Participants generally
found our verifiable voting system easy to use (see Table 1). However, some
people expressed “neutral” opinions about the security of the system. Despite
that we designed the system to be verifiable and we physically shuffled the
passcodes to ensure anonymity, roughly half of the participants indicated they
were not sure whether the vote had indeed been correctly recorded and whether
the voting was anonymous. These are useful lessons, which teach us that e-voting
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is not only a security problem, but also a subject of of psychology and voters’
perception of security. We do not believe anyone should immediately accept a
new voting system just because it is verifiable or has security proofs. But we do
believe that, given a verifiable voting system with all important security elements
accounted at the outset of the design, the public confidence in the new system
– and their acceptance – will gradually grow.

Table 1. Summary of the 26 received questionnaire answers

Question Strongly Agree Agree Neutral Disagree Strongly Disagree Average score
(1) (2) (3) (4) (5) (nearest option)

1 17 7 2 0 0 1.42 (Strongly agree)
2 15 9 2 0 0 1.5 (Strongly agree)
3 18 8 1 0 0 1.42 (Strongly agree)
4 21 4 1 0 0 1.23 (Strongly agree)
5 7 11 5 3 0 2.15 (Agree)
6 4 14 5 3 0 2.27 (Agree)
7 4 10 8 2 2 2.75 (Neutral)
8 10 10 5 1 0 1.88 (Agree)
9 11 10 3 1 1 1.96 (Agree)
10 3 10 10 3 0 2.5 (Neutral)

3.2 Pedagogical Trial

Following the success of the usability trial in September 2012, we made several
improvements to the Android app to make it more user-friendly. Also, we pro-
vided an iOS app [4] for those using iPhones and iPads to vote. In October and
November, 2012, we first trialed the system in real classroom teaching on the
“Cryptography” (BSc final year) and “System Security” (MSc first year) mod-
ules, in which the first author is the module leader. On 10 January 2013, at the
last (revision) lecture of “Cryptography”, the first author prepared ten revision
questions for the class, gave students 15 minutes to discuss among themselves
and asked them to vote for the best answers. At the end of the lecture, a stu-
dent survey was conducted using the same voting system to collect the feedback.
The survey questions and the tallied answers (within brackets) are summarized
below:

Question-1 Does the voting make the lecture more fun?
Answers: Yes (26), No (2)

Question-2 Does the voting help you learn?
Answers: Yes (26), No (2)

Question-3 Do you find it useful to have a small group discussion before voting?
Answers: Yes (25), No (3)

Question-4 How do you think that the amount of voting used in this lecture
should change?
Answers: More (10), Less (1), Remain the same (16)
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Question-5 Do you recommend classroom voting for teaching the same module
next year?
Answers: Yes (26), No (1)

The survey results clearly indicate the pedagogical value of the developed class-
room voting system. The vast majority of the students in the class found the
classroom voting system quite “fun” to use. We believe “fun” is a critical factor
in learning – by making learning a fun process, we are able to better retain the
students’ attention in the class and improve their learning outcome. It is also
worth noting that we used about a quarter of the time in a lecture (1 hour) for
classroom voting. We were initially concerned if that was too much. But based
on the feedback, 16 out of 27 expressed that was an adequae percentage; another
10 (nearly one third) students actually wanted more voting in the class. This is
further evidence to show that students generally liked the system.

4 Conclusion

In the paper, we have presented a pioneering classroom voting system that is
verifiable. This system serves as a good example to demonstrate the power of
the underlying “self-enforcing e-voting” paradigm. Through putting the system
into the real classroom teaching and collecting the student feedback, we show
that the system has also demonstrated great pedagogical potential to enhance
the students’ learning experience in a traditonal classroom environment.
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Hi, good afternoon everyone. We have come to the last talk. I know many of
you are probably desperate for a pint in the pub, so I will make your life easy
and keep the talk short. This talk is about “verifiable classroom voting”. If you
look for the literature on this subject, you will probably find none. The reason
should become clear later in the talk. This work is in collaboration with Dylan
Clarke, and Carlton Shepherd. Dylan is an RA working with me and Carlton is a
third year undergraduate student in the School of Computing Science, Newcastle
University.

Here is the outline for the talk. First, I will give you some background on
classroom voting. I will explain what classroom voting systems are currently
available. However, none of those available systems is “verifiable”. Next I will
describe our solution. And in addition to describing the theoretical design, we will
present a prototype implementation of the design. Furthermore we will present
our trial experience of applying the prototype in a real classroom environment to
enhance the students’ learning process. That has received good student feedback.
Finally I will conclude with suggestions for future research.

First of all, what is classroom voting? Here is one example.

Question: (3+4)+2=2+(3+4) illustrates which of the following proper-
ties?

a Commutative

b Associative

c Reflexive

d Transitive

e Distributive

Can someone tell me your answer to this question?
Audience: A.
Audience: Also B.
Reply: Any more answers? Imagine that you ask this question to a class of

young students. Many may feel shy to give an answer, because they are afraid to
get it wrong and hence be embarrassed. (The correct answer is A.) Interestingly,
in one study, school teachers were asked the same question, and it turned out
that 48% of them got it wrong.

B. Christianson et al. (Eds.): Security Protocols 2013, LNCS 8263, pp. 255–264, 2013.
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What can you do to encourage students to actively participate in the dis-
cussion? The solution is to remove that barrier of possible embarrassment. You
don’t ask any individual student to answer a question; you ask them to do it
as a group. For example, we can do a-show-of-hands, but counting hands is too
slow. You can do better with electronic technology.

This is how a typical electronic classroom voting system works. You have a
voting device, which may use infrared light communication. So there must be
a receiver, which is usually installed high above in the ceiling to obtain a clear
sight of light. Alternatively, you may use voting devices that use radio frequency
communication. The system normally displays the voting results over a projector
using PowerPoint. When you finish sending your votes, all these votes will be
tallied by the receiver. There is a Powerpoint plug-in that queries the results
from the receiver and displays them over a projector.

Currently, there are several commercial systems available. Many people may
have heard of TurningPoint, which is very popular in the UK. Many universities
have been trialling the use of TurningPoint in a classroom. In the US, iclicker
is commonly used in universities. Another system is called eInstruction. Here, I
only list three, but actually there are quite a few. Technically, all these systems
work basically the same.

There are several problems with all these systems. The first is a lack of ver-
ifiability. And in fact that was what initially motivated our work. I attended a
demonstration of TurningPoint in Newcastle University. The instructor demon-
strated the working of the system. Impressive. But then I asked: “how do I know
the results you show on the screen are actually correct?” He thought a bit and
said: “you have to trust us”. Well, as a security researcher, I was not convinced.
This is just one problem. Another problem is related to the system maintenance.

If you think about the handset, the maintenance of the handsets is not an easy
problem. Someone has to maintain those handsets – if one is malfunctioning, you
have to replace it. In addition, transporting handsets from one classroom to a
different room is not easy. Finally, you must have a fixed receiver installed at
the classroom. That means you are limited to conducting voting only in that
classroom. If you want change to a different classroom, you need to buy another
receiver. The cost can scale up linearly.

The maintenance and cost issues are obvious. Almost everyone agrees. As for
the lack of verifiability, some people may disagree that is a problem. They may
say, “What’s the point? They are students. They should accept whatever the
teacher tells them. What’s the point of having security and verifiability?”

Well, we think security and verifiability are important. A few weeks ago, I
met Steve Schneider at the University of Surrey. He told me quite an interesting
example, so I borrowed the same example here. During a university admission
day, Steve gave a lecture to the 6th form students, who were interested in en-
tering the university. And he distributed all these TurningPoint handsets to the
students and asked them to vote: “Do you think the school uniform should be
made compulsory?” Students were excited because they have strong views on
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this subject. The participation was active and high. They sent all votes by press-
ing the “clickers”. Steve said, “OK. Let’s see the voting result.” So he showed
this result to the students. (79% voted “Yes” while 21% voted “No”.)

There was an immediate gasp from the audience. Steve went on to explain
what happened: he actually swapped the answers, but no one else knew it. That
is the point - if one is able to manipulate the tallying results arbitrarily without
being noticed, how can you trust the tallying results are actually correct? I think
that is a quite good example to explain why we need verifiability. So far we only
talk about problems. Next, I am going to talk about solutions.

Sandy Clark: Did you know that there is a device that will allow you to use
one clicker to beat all clickers in a room by jamming all other clickers’ response?
It’s about 30 dollars. It’s on hack-a-day, if you’re interested.

Reply: That is interesting. I would like to add that to the slides.
Frank Stajano: My feeling to this initial problem setting is that this is an

important problem, and that this is an attempt to fit a technological solution to
what is really an anthropological and sociological problem that should be solved
at that level first. The problem is that the students are embarrassed to say what
is the correct answer according to them because it might be wrong, and they
might look stupid. Then I think that as educators what we need is to make them
feel that making mistakes is OK in the process of learning, and they should be
willing to engage and make mistakes, and not be ashamed of making mistakes.
And just giving them a technological solution that allows them to hide just so
they can express the answer without being embarrassed about mistakes doesn’t
solve the problem that they could be embarrassed. And we should teach them
not to be embarrassed.

Sandy Clark: I agree with you in principle, but there is a problem in that.
Some studies done with primary school teachers involve asking them, you know,
how do you respond when you ask a girl a question, and how do you respond
when you ask a boy a question. They will tell you that they respond in both
the same way. But when you videotape them and show them, they responded
differently. And it’s not only in the training, is the social pressure of the teachers,
but then it’s also peer pressure, so you have a lot of girls who are afraid to speak
up.

Frank Stajano: Then what we want is to liberate those girls.
Sandy Clark: Yes, we do, but it’s, that is a long-term solution that we want

to get to, but this is an immediate solution.
Frank Stajano: This is just a band-aid.
Sandy Clark: But hey, anything that can help.
Bruce Christianson: This is something that gets them through the first

term.
Sandy Clark: Right, this sort of thing develops the confidence to just speak

up later.
Frank Stajano: So if I’m asking a question in my algorithms class, say, is

this going to be linear, n logn or n2, and some people will say something. Then
I want to say, well you guys, you think it’s n logn, why, or how would you deal
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with that. I have to ask the question to someone. If they’re all anonymous how
can I follow this up, and go through the reason?

Reply: Actually I will come to that. If you know the response from the audi-
ence, you can actually structure your next question accordingly. For example, if
you have a question and you realise that almost everyone in this classroom got
it wrong except one student, what I did in my class is that I asked who voted for
this answer. There was one student raising his hand. He looked quite shy and a
bit embarrassed. But then I said that you were the only one who got it right;
can you explain it to the rest of the class why you chose this answer? You could
immediately see the change on his face. He suddenly became quite energetic.
When I asked him to explain it to the rest of the class, he was very happy to do
that.

Frank Stajano: But then when you reveal that that was the wrong answer
he would feel very bad.

Reply: In that case probably.
OK, let me move on. We had a student response survey on the use of the

system and I will explain that later. This is the overall architecture of the solution
that we propose. Basically for the voting we don’t want to have any custom-
built hardware. The voting device could be smart phones, tablets or laptops
– in fact, any computing device, as long as it can connect to the Internet. Of
course if you have smart phones we provide apps that give you good usability.
All communication is through the Internet and the votes are tallied at the web
server. You are not limited to one classroom. It can work anywhere as long as
your device can connect to Internet. You can even vote at home. So that is the
architectural view of the system.

The underlying voting protocol is called self-enforcing e-voting, which is some-
thing I talked about last year. After the workshop last year I was quite fortunate
to receive an ERC starting grant to investigate this idea further. Recall that self-
enforcing e-voting is a system that provides end-to-end verifiability, but without
any tallying authority.

If you look at the literature for the past 20 years, you will find that verifiable
e-voting schemes all assume trusted tallying authorities. That is exactly the
assumption that we challenge. I designed a self-enforcing e-voting protocol three
years ago in 2010, and I put the paper on the IACR eprint. Then I submitted the
paper to conferences like Oakland, CCS. But it was all rejected. The reviewers
basically said, for 20 years everyone assumes tallying authorities are needed to
tally votes, and you argue that’s a bad idea, so you must be wrong. But anyway I
think it is starting to change because people realize that the tallying authorities
are actually not as indispensable as many have thought. And we demonstrated
that by removing the tallying authorities from the whole system, you get a
system that is much simpler and more efficient. You look at security aspects;
they are the same as those depending on the tallying authorities. Then you ask:
what’s the point of having the tallying authority if you can be better off without
them?
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The way to achieve that is by using a combination of pre-computation strat-
egy, and some novel encryption techniques so that you can cancel out random
factors when you multiply the ciphertexts. But I’m not going to go into the
details of that. And for the technical details, you can read our technical report.

I thought the best way to show how the system actually works is to give you a
demo. Can I ask one question? How many of you have Android phones? Can you
raise your hands? How many of you have iPhones? Alright. Just have a try. If
you have an Android phone you can download our app and try it out. The name
of the app is Newcastle University evoting. At some time in future, probably
next year, I want to remove the Newcastle name so it’s going to be generic and
available to everyone. If you use iPhone, there is also an iPhone app you can
try out. Just search for Newcastle University evoting. Who doesn’t have a smart
phone? You can still vote if you have your laptop. You can go to this address,
http://evoting.ncl.ac.uk. It’s essentially the same thing but the usability is
not as good as the apps. Once you get the app all you need to do is to have a
session ID and a passcode. I’ll just give you five minutes, and at the end of five
minutes I will reveal the results of the election.

Steven Murdoch: Is this actually a talk about mobile phone malware?
(laughter)

Reply: At least you know where it’s coming from.
Sandy Clark: So Frank, I thought that one way that you could actually use

this when you’re asking some questions without singling out someone who acted
one way or another would be to have thought through what would cause someone
to choose the wrong answers. Then you can simply say, those of you who chose
A, well A is not the right answer, but this is probably what you were thinking,
and this is what led you this way. Try, what happens if you think about it like
this.

(chatter)
Just cast your vote and I will finish the election and show the results. Then I

can show you how to verify.
(chatter)
Virgil Gligor: This says in progress ...
Reply: Yes, that’s a good point, I will come to that.
Virgil Gligor: We have started in progress.
Reply: No, that is only the first stage. There are two stages.
(chatter)
Reply: Finished? So if you used mobile phone app, the app would have kept

a history of the receipts, and then you can verify.
Virgil Gligor: Shall we go to the next question?
Reply: Yes. With the web interface I have to admit the interface could be

improved, but so far we have been focusing on the app interface.
Alec Yasinsac: You’re sure my answers won’t become public?
Reply: OK, we’ll see. (laughter)
Audience: Can we cheat?

http://evoting.ncl.ac.uk
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Reply: Sure, you can actually double vote. Feel free to do that. All done,
everyone, OK. So now all I need to do is to finish the session. Now you can refresh
your app and you will see the results. I will also display the results here. Right,
so this is the tallying results for the first question: is cryptography is a science,
an art, or both? It is a sensitive question and some people may have strong
opinions. But it seems that we have quite a balanced view here: cryptography is
both a science, and an art. If you ask individual views, sometimes people may
strongly disagree. Here, we take the view of the majority and hence avoid the
potential conflict. That is the first question. Basically the system supports four
types of questions, and I have four questions here which correspond to the four
types.

The first one is type-I, which is called a single-choice question. You’re only
allowed to choose one answer. And for the type-II, that is called a multiple-
choice question. You can choose more than one question. And here we got a few
tallies. I’m actually surprised that six people choose Zimbabwe, but actually its
commonwealth membership had been terminated some time ago if you watch the
news. For the type-I and type-II questions, they are verifiable. There are receipts
on the bulletin board, which you can all verify. But for the last two questions,
they are not verifiable. Still we support them because they are useful. So the
third question is called free numeric input - you enter whatever numeric input
and the system will just tally it. It is not possible to make it verifiable because
we don’t have pre-defined candidate names. In this case, yes, most people chose
27 for the number of countries in the EU, which is the right answer.

Frank Stajano: What does it mean, it is not possible to be verifiable?
Reply: Because to make the system verifiable you need to know what the

candidates are, so that you do this pre-computation. But with the free numeric
choice you don’t know what are the candidates.

Frank Stajano: Well it’s not possible in your system or it’s not possible in
general?

Reply: If you remove the requirement on privacy, yes, it is possible (for
example, everyone speaks aloud). But if you want to have verifiability and privacy
at the same time, you’ve got a problem. So that is the third question. And the
last question is called free text input. For the free text input, it’s entirely up
to the student to enter whatever they want, and this can be a little bit tricky
because a student can write anything they want (laughter), sometimes something
you would not expect.

Ariel Stulman: Can’t you just ask Google the answers?
Frank Stajano: Exactly.
Ariel Stulman: Why bother with anything, when you have these clickable

things and you can search Internet. If you ask how many countries are in the
European Union, what I would do is first ask Google, how many countries. Then
I enter the answer.
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Ariel Stulman: Or try Wikipedia.
Reply: Remember that this is just one example. There could be other cases

that you use this type-4 question. for example, you may ask a student to write
free comment about this lecture, or feedback on what need to improve. And in
fact I am going to show you one session to see what students said.

Ariel Stulman: What I would do would be to just chat with my neighbour,
and ask him what he has to say.

Alec Yasinsac: I think your point here is, if what you’re doing is inspiring
them to go onto Google and find the answer, that’s just as good as if they knew
it off the top of their head.

Reply: Exactly.
Virgil Gligor: Not really, because they may go to the Wikipedia and get the

wrong answer. (laughter)
Alec Yasinsac: But then you show the history ...
Reply: OK, I need to watch the clock so let me carry on. That is a simple

demo of how the voting works, and how it actually worked in my classroom. I
conducted some usability studies among the MSc students, about 40 of them.
About 30 students gave their responses. For example, I asked them to answer
the four questions. Here each question corresponds to one of the four colour bars.
In the first question, students generally find it quite easy to vote. Just get the
app, enter the session ID, passcode, and then start voting. It is quite easy to
do that. And for the next set of questions I wanted to see how students felt, if
it was easy or difficult to check the receipts. In general they felt easy, but not
as easy as compared to the previous slide. But in general I think the responses
are still quite positive. In the third question, I wanted to ask the students to
express their opinions about anonymity, and that is something quite interesting.
If you think about it the voting should be anonymous as you just enter a random
password. But the students were quite cautious and felt that the voting was not
really anonymous. Probably they were thinking about the IP address got logged
by the campus wi-fi network. Given that those MSc students took the security
as the specialist, so it actually makes sense. Unfortunately I don’t know how to
address this problem. One possible solution, as I talked with the University staff,
is to have a special Wi-Fi network just for voting, so anyone can go to Wi-Fi
without needing any campus login.

Ariel Stulman: And use Tor?
Reply: Yes, that’s another way. But the signal is often not good. That is

a usability trial. So far so good. And I also did some trials with final year
undergraduate students. In one last lecture on revision, I actually set an election
of 10 questions. I asked students to vote for the best answers, and at the end
of the lecture I asked them to provide feedback about the voting experience.
The first question is, “does the voting making the lecture more fun?” You can
see that about 95% of students said yes, and about 5% said not really. “Does
voting help you learn?” Again, the vast majority, 95%, said yes. And “do you
find it useful to have small group discussion before voting?” This is something
I found quite useful. Instead of just asking everyone to vote straightway, I said,
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don’t rush to vote; talk to people sitting next to you, and try to reach some
agreement on the best answer for that question before you vote. I want students
to actually take some time, even a few minutes, to discuss among themselves, and
take some consideration before sending the vote. And it turns out that students
like that kind of group discussion, because usually in the classroom everyone is
passive and quiet, and now I give them the freedom to talk to each other. They
found it a quite different experience, and they like it. Finally I asked them: “do
you recommend classroom voting for next year?” Most people said yes, which
is really good. And also, that was a one hour lecture, but I used 15 minutes for
voting. My worry was that I may have used too much time, but it turns out that
was not a problem. Nearly 60% students said that the time was about right.
35% students said they wanted more because they found it quite fun, which is
quite interesting.

Sandy Clark: Students probably liked it as playing a game.
Reply: Yes, I mean, it’s a system in which they can interact with their peers

and express opinions, and like playing a game. They like it, and wanted to have
more in their future classes.

However there are some usability issues. Actually if you have your smart
phone you can go to session 109. So far you have seen quite good results but I
also want to show you some negative aspects. In the last question, I asked them,
“write your free comment about how to improve classroom voting”. They are
quite straightforward. Some said the interface sucks, because there are too many
confirmations; a lot of steps to go through; and there are too many popups. In a
sense, all these complaints are actually just one complaint, which is: verifiability
degrades usability. We say we want to make the system verifiable but that comes
at a cost. By making the system verifiable you push the receipt to the voter, to
the student. But sometimes the student just doesn’t want to take the receipt.
They may say, “yes, we trust you”. So that is the kind of a mental model among
the students, and we are still trying to figure out how to address that.

Here is the conclusion. We have designed and implemented a verifiable class-
room voting system. We believe it is the first, and is the only “verifiable” class-
room voting system available. If you look at all the previous voting systems like
Helios, they are completely unsuitable for a classroom setting, because for all
those systems you need to find a set of cryptographers as tallying authorities to
start with. But in the classroom setting, how can you do that? It is impossible.
So the only way to have a practical and realistic classroom voting system is that
you need to make the elections self-enforcing. You make the system verifiable,
but without involving any tallying authority. Our work is only a start, and is
still in the preliminary stage. In fact we implemented the system just a few
months ago. At the moment, I have one student extending the system to the
whole campus of Newcastle University, so anyone with a Newcastle University
campus login will be able to create elections.

So far that is what we have been doing, but in the longer term we want to make
the system freely available to all the universities in the UK, then in Europe, and
finally the rest of the world, because we see the value of this kind of system. Not
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only the value as scientific research, but also the value in using it for education
and the pedagogy. It might sound quite cool, but to make the system available
worldwide, you have to think about computation. If you do a simple calculation
you may realise that the potential computational load is massive because it
involves a lot of cryptographic operations. That is a challenge that we are going
to face in the future. We’ve got a grant to support further research in this
direction. Initially I thought classroom voting is just a small hobby project but
once the system was developed and trialled in the actual classroom I realised it
is actually more useful that what I initially thought. We will continue to improve
the system and will try to make it available to other universities as well. That
is the end of my talk. Thank you.

Jeff Yan:Well actually it looks like the one question is missing in your student
survey. Did any of them bother to check whether the vote has been recorded,
and how many students have checked that?

Reply: My guess is that very few, but the point is that the information is on
the public bulletin board. If you want to check all the information is there, but
I agree, there should be some mechanism to actually encourage people to check
receipt. That is a hard problem, I mean, it applies to all e-voting schemes in
general. You provide a mechanism for people to check, but then you also need a
mechanism to encourage them to check, or put incentive. I don’t know how to
solve that problem, but that is quite a general problem.

Alec Yasinsac: Well if they’re not using it, it suggests that it’s not needed.
That is the challenge here.

Reply: That’s a very good point because the point of having verifiability in
the system is that people can check. If people don’t bother to check, and then
the verifiability doesn’t really make much sense.

Bruce Christianson: Ask the question about the 6th form uniform and then
see. (laughter)

Reply: On the other hand if you think about elections, here we only talk
about classroom voting. But you also think about larger scale elections. The
point of an election is to convince the losers. So at least the losers would have an
incentive to check. Still they are a small population so there should be a separate
mechanism to encourage more people to do the checking. It’s not a technological
issue, it’s about the incentive.

Bruce Christianson: Well it’s a good application there for the location pro-
tocol because you want to restrict voting to just people who are in the classroom.
But is there an easy way to stop people from voting multiple times or not?

Reply: Yes, so in this case I don’t stop voting multiple times. If you vote twice
it will be guaranteed that it is counted twice, because that’s what verifiability
is for. Authentication is a different matter. Actually we have two mechanisms
for authentication. So far we just used one, which is a group password. That
is one password for everyone. We have another mechanism implemented in the
system which is called individual passwords. For individual passwords, what we
did in our election trial is that we physically print those passwords on pieces of
paper, and mix them together in a sweet box. Everyone takes one random piece
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of paper to vote. And at the end of the voting you can count how many people
have actually voted, and how many confirmed votes shown on the bulletin board.
The two numbers should match.

Bruce Christianson: And it’s clear from the physical characteristics that
it’s anonymous, but how to do that online?

Reply: That’s a big question, and I hope I will come back with an answer in
future research.
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Fig. 1. Offsite backup options (seen on Cambridge Security Group whiteboard)
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