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Abstract. Novel techniques and a toolset are presented for automatically testing 
the conformance of software implementations against partial behavioral models 
constituted by a set of parameterized UML sequence diagrams (SDs), describ-
ing both external and internal interactions. Test code is automatically generated 
from the SDs and executed on the Java implementation under test, and test  
results and coverage information are presented back visually in the model. A 
runtime test library handles internal interaction checking, test stubs, and user in-
teraction testing. Incremental conformance checking is achieved by first trans-
lating SDs to non-deterministic acceptance automata with parallelism.  

Keywords: conformance testing, UML, sequence diagrams, automata.  

1 Introduction 

UML sequence diagrams (SDs) [ 1] allow building partial, lightweight, behavioral 
models of software systems, focusing on important scenarios and interactions, occur-
ring at system boundaries or inside the system, capturing important requirements and 
design decisions. Such partial behavioral models may be not sufficient as input for 
code generation [ 2], but can be used as input for automatic test generation (as test 
specifications), using model-based testing (MBT) techniques [ 3]. However, existing 
MBT techniques from SDs have several limitations, namely in the final stages of test 
automation, dealing with the generation of executable tests and conformance analysis, 
taking into account the features of UML 2 (see Related Work section). 

The overcome some of those limitations, in previous work [ 4], we developed a pro-
totype tool that generates automatically JUnit [ 5] tests from SDs, to be executed by 
the user in the development environment with the support of a run-time test library. 
However, the test code and test results were difficult to interpret by the user and the 
test library had important limitations in terms of its design and functionality (namely, 
it lacked the support for weak sequencing). In this paper, we completely redesigned 
the whole approach, bringing the following contributions for enabling the automatic 
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conformance testing of software implementations (currently in Java) against UML 
SDs, in a modular and extensible way:  

• novel techniques for incremental conformance checking, complying with the de-
fault weak sequencing semantics of UML SDs [ 1], based on the translation of SDs 
to non-deterministic automata with parallelism, that are executed stepwise; 

• related techniques for execution tracing and manipulation, namely internal interac-
tion tracing, test stub injection and user interaction tracing, taking advantage of  
aspect-oriented programming (AOP) techniques and reflection; 

• related techniques for test code generation from the model and test results visuali-
zation in the model (conformance errors and coverage information), raising the 
level of abstraction of the user feedback and improving usability. 

The rest of the paper is organized as follows: section 2 presents an overview of the 
approach; section 3 describes the characteristics of test-ready SDs; sections 4, 5 and 6 
present the main contributions; section 7 presents a case study; section 8 presents a 
comparison with related work; section 9 concludes the paper. 

2 Approach and Toolset Overview 

Our toolset, named UML Checker, comprises two independent tools (see Fig. 1): an 
add-in for the Enterprise Architect (EA) modeling tool [ 6], chosen for its accessibility 
and functionality; and a reusable test library, implemented in Java and AspectJ [ 7]. 
The add-in gets the needed information from the model via the EA API and generates 
JUnit test driver code, including traceability links to the UML model (message iden-
tifiers) and expectations about internal interactions. The test code is then compiled 
and executed over the application under test (AUT). The behavior of the AUT in re-
sponse to the test inputs (namely internal messages) is traced by the test library using 
AOP, and compared against the expected behavior. All discrepancies and exceptions 
occurred and messages effectively executed are listed in the execution result that is 
processed by the EA add-in, which annotates the model accordingly.  

 

Fig. 1. Communication diagram illustrating the toolset architecture and functioning 
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3 Test-Ready Sequence Diagrams 

This section describes the characteristics that SDs should have to be used as test  
specifications for automated conformance testing in our approach.  

The usual modeling features of SDs [ 1] are supported, with some restrictions and 
extensions. As illustrated in Fig. 2, the following types of interactions can be modeled 
and automatically tested in our approach:  

• external interactions with client applications through an API; 
• external interactions with users through a user interface (UI); 
• internal interactions among objects in the system; 
• interactions with objects not yet implemented (marked as «stub»). 

 

Fig. 2. Major constituents of test-ready sequence diagrams and usage for conformance testing 

For example, the SD in Fig. 3 includes external interactions with a client applica-
tion (messages Account and withdraw), as well as some internal interactions 
(messages setBalance and Movement). 
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During test execution, the actor is treated as a test driver, responsible to send the spe-
cified outgoing messages to the AUT, taking into account any guard conditions de-
fined, and to check the responses against the expected values specified in the diagram.  

User Interaction Testing. Since the UML does not prescribe a standard way for that 
purpose, we adopted a set of keywords (signals) to model user interaction through the 
console in an abstract way (possibly since the requirements phase): 
• start(args) − the user starts the application (indicated by its main class);  
• enter(v) − the user enters the value specified through the standard input;  
• display(v) − the application displays the value specified to the standard output. 

During test execution, the test harness injects the values specified by enter mes-
sages, simulating a user, and compares the actual AUT responses against the expecta-
tions specified by display messages.  

Internal Interactions Checking. Besides external interactions with client applica-
tions or users, test-ready SDs may also describe interactions among objects in the 
AUT, capturing significant design decisions. During test execution, for each message 
sent to the AUT, the test harness also checks that internal messages among objects in 
the AUT occur as specified and internal objects are created and passed as specified. 
The benefits are improved conformance checking and fault localization. 

In order to allow keeping SDs as minimalist as wanted, focusing only on relevant 
interactions, and enable the scalability of the approach, we support by default a loose 
conformance mode, in which additional messages are allowed in the AUT, besides 
the ones specified in the diagram (differently from what happens with the other  
supported conformance mode - strict conformance).  

Stubs in the Middle. Lifelines may be marked as «stub», to indicate that the cor-
responding classes (possibly external to the AUT) are not yet implemented or one 
does not want to use the existing implementation. During test execution, the test har-
ness generates not only the reply messages, but also the outgoing messages (hence 
"stub in the middle") specified in the SD for any incoming messages. This allows 
testing partial implementations and simulating additional actors.  

Interaction Operators. The most commonly used combined fragments are sup-
ported, allowing the specification of more generic scenarios with control flow variants 
(with the alt, opt, loop, par, seq and strict interaction operators). Condi-
tions of alt and opt operators may be omitted, to model situations in which the 
implementation has the freedom to choose the path to follow and to support partial 
specifications (see, e.g., the inner alt fragment in Fig. 3).  

Value Specifications. Message parameters, return values and guards may be speci-
fied by any computable expression in the context of the interaction (involving  
constants, interaction parameters, lifelines, etc.), as long as it has no side-effects on 
participating objects. Otherwise, the evaluation of expected parameter and return 
values or guards during test execution could change the behavior of the AUT. Loose-
ness in the specification of parameter and return values can be indicated by means of 
the “-” symbol (matching any value), and by omitting the return value, respectively. 
During test execution, the semantics of value checking depends on the implementa-
tion of equals and the comparison precision defined for some data types in the con-
formance settings.  
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4 Test Code Generation and Test Results Visualization 

This section describes the test code generation and results' visualization techniques. 
The techniques are illustrated with the running example of Fig. 3, referring to a sim-
ple application that exposes an API for creating bank accounts (with an initial bal-
ance) and withdrawing money (with alternative execution paths, depending on the 
money available and the way chosen by the implementation to record movements). 

 

Fig. 3. Sequence diagram of the running example, painted and annotated after test execution  

Test Code Generation. A test class is generated from each SD, with the general self-
explanatory structure illustrated in Fig. 4, containing a parameterized test method 
corresponding to the SD and a plain test method for each combination of parameter 
values. InteractionTestCase is a facade [ 8] that extends JUnit3 TestCase. 
To assure that expressions of message arguments, return values and guards (possibly 
dependent on the execution state) are evaluated at proper moments, they are encoded 
with ValueSpec. To allow the incremental binding of lifeline names to actual ob-
jects (see sec.5), they are encoded with Lifeline - a proxy [ 8] for the actual object. 

Test Results Visualization. The results of test execution are presented visually in the 
model, using a combination of graphical and textual information, as illustrated in  
Fig. 3. The following color scheme is used for painting each combination of parame-
ter values and each message: black - not exercised, green - exercised without  
errors, red - exercised with errors. For each message exercised with errors, the error 
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information (plus the AUT stack trace if wanted) is shown in the message notes. Poss-
ible error types and locations are shown in Table 1. The information about messages 
not covered (exercised) is important in the presence of conditional paths, to check the 
adequacy of test data (parameter values), and in the presence of unconstrained 'opt' or 
'alt' fragments, to analyze implementation choices. 

Table 1. List of conformance errors and locations in the model where they are signaled 

Conformance error Location in the model 
Wrong argument  Call message.  

Wrong return value  Reply message, if it exists; call message, otherwise. 
Unexpected exception Method or constructor execution bar.
Unexpected call (strict conformance) Method or constructor execution bar. 
Missing call Call message or mandatory combined fragment. 
Missing or incorrect output  display message  
Missing input enter message 

The behavioral model packages are marked with self-explanatory stereotypes, de-
pending on the status of contained SDs: «Failed», «Passed», «NotTested» 
and «Incomplete». The stereotypes are visible in the project browser for a quick 
check of conformance status. The classes and methods in the structural model (class 
diagrams) that are not covered (exercised) by the behavioral model are also marked as 
«NotCovered», to help assessing the completeness of the behavioral model. 

public class ATMTest extends InteractionTestCase { 
 private Account a = null; // similar for lifelines m,n 
 public void testATM(final double balance,final double amount){ 
  ValueSpec exp0 = new ValueSpec() { 
   public Object get() {return balance-amount;} 
  }; // similar for other expressions occurring in SD 
  Lifeline aLifeline = new Lifeline() { 
   public void set(Object value) {a = (Account)value; } 
   public Object get() {return a;}   
  }; // similar for other lifelines occurring in SD 
  // Declares expected interactions to conform. check. engine:  
  expect(/*encoding of SD fragments and messages here*/);  
  // Traditional JUnit test driver code (actor messages): 
  a = new Account(balance); 
  if (amount <= balance)  
   assertEquals("OK",a.withdraw(amount)); 
  else  
   assertEquals("INSUF_BALANCE", a.withdraw(amount)); 
  // Final check of interactions missing: 
  finalCheck();  
 } 
 public void testATM_0() { testATM(100, 150); } 
 public void testATM_1() { testATM(100, 50); }   
} 

Fig. 4. Skeleton of test code generated from the SD in Fig. 3  
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5 Techniques for Incremental Conformance Checking 

Translation to Automata. To handle uniformly the variety of interaction operators 
allowed in SDs, and comply with the default weak sequencing semantics of UML 
SDs [ 1] with implicit parallelism between lifelines, SDs are first translated to non-
deterministic automata according to the following steps (also illustrated in Fig. 5):   

1. Generate states. Possible states are generated in each lifeline before and after each 
message end (including implicit reply messages from synchronous calls), com-
bined fragment boundary and operand boundary. Additionally, a (global) start state 
and a (global) final state are introduced for the whole diagram. An auxiliary state is 
also generated for each asynchronous message (see Table 2-j). 

2. Generate transitions. Transitions linking lifeline states, possibly with multiple 
source and/or target states (as in parallel finite automata [ 9]), are generated accord-
ing to the rules shown in Table 2. A transition is generated for each synchronous 
message, synchronizing the lifelines involved. Regarding combined fragments, au-
tomatic transitions (without events) are generated to enter and exit the combined 
fragment and its operands along the lifelines covered. Following a common seman-
tic choice [ 10], the lifelines involved are synchronized in the decision points of 
'alt', 'opt' and 'loop'. Otherwise, it is followed the default weak sequencing seman-
tics of SDs (except obviously for 'strict'). Additionally, it is generated a transition 
linking the start state of the SD to the first state in all lifelines, and another linking 
the last state in all lifelines to the final state of the SD. 

3. Simplify (optional). The resulting automaton is simplified by removing transitions 
with empty labels and redundant states, resulting in an equivalent automaton that 
accepts the same traces. Another example partially simplified is shown in Fig. 6. 

 

Fig. 5. Three-step translation process (with the 3rd optional) from SD to acceptance automaton  
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Table 2. Transition generation rules (superimposed in red) for different fragments  

a) synchronous messages: 
synchCall and reply pair  

 

b) synchronous messages: 
synchCall and reply pair 

 

c) synchronous messages: 
createMessage & reply pair  
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Fig. 6. Automaton generated from the example SD of Fig. 3 (only partially simplified)  

Automata Structure. In our approach, a conformance checking automaton is a tuple ≺S, so, F, T≻, where S is the set of states, so∈S is the initial (start) state, F⊆S is the set 
of final (accepting) states, and T is the set of transitions. Each transition is a tuple ≺σ, 
λ, τ≻, where σ⊆S is the set of source states of the transition, τ⊆S is the set of target 
states of the transition, and λ is the transition label. Transitions with multiple source 
and/or target states are used to handle parallelism and synchronization (see Table 2). 
A transition label is a triple event[guard]/action, all of which components are option-
al. Transitions without event are automatic. The automaton may be non-deterministic, 
i.e., different transitions <σi, λi, τi> and <σj, λ j, τ j> may exist with σi=σj  ∧ λi=λj  ∧ 
τi≠τj, or with λi≠λj  but simultaneously satisfiable (e.g., call specifications m(1) and 
m(-) are both satisfiable by the occurrence m(1)).  

Automata Execution. An automaton run state is a tuple ≺A, β, ρ, C≻, where:  

• A is the set of active automaton states (multiple active states may exist because of 
parallelism), starting with {s0}; each time a transition ≺σ, λ, τ≻ is performed,  
requiring σ⊆A, the new set of active states becomes (A\σ)∪τ; 

• β=βP∪βL∪βC is a binding of variable names to actual values, starting with the 
binding βP of interaction parameters to actual values, and incrementally extended 
with the binding βL of lifeline names to actual objects and the binding βC of loop 
counters to actual values; βL is extended as message occurrences are encountered 
involving lifeline names as target, argument or return value; subsequent  
occurrences of a previously bound lifeline name must refer to the same object; 

• ρ is a mapping from identifiers of matched call or send event occurrences to iden-
tifiers of corresponding events in the automaton; this is needed to assure that reply 
or receive occurrences corresponding to ignored call or send occurrences  (in loose 
conformance mode only) are also ignored, and that reply or receive occurrences 
corresponding to considered call or send occurrences are matched against the  
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correct event in the automaton; we assume that all call-reply and send-receive pairs 
have related identifiers, like n and n' (see Fig. 6); 

• C is the set of identifiers of messages covered so far, starting with the empty set, 
for coverage analysis purposes.  

Because the same event occurrence may match multiple event specifications  
(non-determinism), it is kept a set of possible run states R={r1, ..., rn}. Conformance 
checking fails when R becomes empty at any point of execution, or, at the end of 
execution, there is no run state ri∈R such that all its active states Ai are accepting 
states (i.e., ¬∃ri∈R • Ai⊆F). An example execution is illustrated in Fig. 7. 

 

 

Fig. 7. Example of successful execution of the automaton of Fig. 6 for a possible test case and 
AUT response in loose conformance mode. The test driver stimuli are underlined in the trace. 

6 Techniques for Execution Tracing and Manipulation 

In this section we present techniques, based on AOP with load time weaving, to ena-
ble execution tracing, stub injection, and user interaction testing in a minimally  
intrusive way.  

Execution Tracing and Stub Injection. Method and constructor invocation and ex-
ecution in the AUT are intercepted with the AspectJ [ 7] code depicted in Fig. 8.  
Method invocations are traced with an execution pointcut (line 5), when the con-
trol focus is already on the target object, because it also captures reflective invoca-
tions. In the case of constructors, operations invoked by super-constructors execute 
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1’: return a1

2: a1.withdraw(50)

3: a1.getBalance()
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≺A, βL, ρ, C≻ = ≺{1}, {}, {},{}≻≺{2}, {}, {1↦1}, {1}≻≺{4}, {a↦a1}, {}, {1,1’}≻≺{5,11}, {a↦a1}, {2↦2}, {1,1’,2}≻
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before the self-constructor (and not nested), so we use call pointcuts instead (when 
the control focus is still on the sender object) for proper nesting, with two versions for 
normal and reflective calls (lines 19 and 20). The invocation and reply occurrences 
intercepted by the aspect code are sent to the conformance checking engine for incre-
mental checking (lines 6 and 14). Regarding stubs, we assume that objects marked as 
«stub» in the SD have compilable method skeletons; instead of executing the actual 
method body, the outgoing messages specified in the SD (constructor and method 
calls) and enabled in the automaton are issued through reflection (line 12), and it is 
returned the value specified in the SD and enabled in the automaton (line 13).  

1: public priviliged aspect TracingAspect { 
2:  // Aux. def. to filter points of interest and avoid infinite recursion: 
3:  pointcut mayTrace():  /* definition omitted */ ; 
4:  // Intercepts normal and reflective method invocations:  
5:  Object around(): mayTrace() && execution(* *(..)) { 
6:   Process invocation (call) occurr. by automaton (via synchronized method) 
7:     If the automaton failed, throw the failure 
8:     If no match was found, proceed with normal execution and return  
9:   If target object is not marked as «stub» or this is a constructor call, 
10:     Proceed with normal execution and get return value 
11:   If target object is marked as «stub», perform stub injection, i.e.,  
12:     Execute outgoing calls spec./enabled in SD/automaton via reflection  
13:     If this isn't a constructor call, get return value from SD/automaton 
14:   Process reply (return) occurrence by automaton (via synchronized method) 
15:     If the automaton failed, throw the failure 
16:   Return the return value 
17:  } 
18:  // Intercepts normal and reflective constructor invocations:  
19:  Object around(): mayTrace() && call(new(..) {similar template} 
20:  Object around():mayTrace()&&call(Object Constructor.newInstance(..)){idem} 
21: } 

Fig. 8. Skeleton of AspectJ code responsible for execution tracing and stub injection 

User Interaction Testing. The mechanisms for user interaction testing of console 
applications are illustrated in Fig. 9. A console simulator (from our test library) starts 
the AUT in a thread separate from the test driver and creates input and output block-
ing queues for communication and synchronization between both. AUT calls to read 
and write operations on System.in and System.out are intercepted with 
around pointcuts, and replaced by poll and put operations on the input and out-
put queues, respectively. User interaction messages specified in the SD with the  
enter and display keywords originate put and poll operations that are per-
formed by the test driver on the input and output queues. Poll operations are subject 
to a timeout. Although the test driver already checks displayed values (with asser-
tEquals), the relevant events are also sent to the conformance checking automaton 
for checking their proper ordering with respect to other execution occurrences. 
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Fig. 9. User interaction specification and conformance testing mechanism for console apps  

7 Case Study 

To assess our approach we conducted a case study on a Java application, developed at 
our university and used since 2009 by approximately 200 software engineering stu-
dents for program size measurement. The application, named “FileDiff”, computes 
the difference with minimum cost between two source files, in terms of lines added 
(cost 1), modified (cost 1) or deleted (cost 0), ignoring blank lines and comments. An 
accompanying UML model contains a SD that exercises all classes and methods. 
Some input files for manual testing purposes also accompany the application. 

The goal of the case study was to confirm the main benefits of our approach: the 
ability to take advantage of existing behavioral models for test automation (hence 
reducing the test effort); the ability to find discrepancies between the model and the 
implementation (hence enabling improvements in their quality).  

The initial SD ( 11], pg.67, not shown here for space limitation reasons) was not 
test-ready, due to the usage of pseudo-code and a "procedural" feature - attribute as-
signment ([ 1], pg.507) - not currently supported by our tool. These problems were 
solved by making minor changes to the SD. Test parameters and test data were added 
to exercise the SD for existing test files, resulting in a test-ready SD with 34 messag-
es, 8 lifelines (4 of which instantiated dynamically), and 2 combined fragments ([ 11], 
pg.72). Conformance test execution revealed a message not covered (caused by an 
incorrect loop modeling) and a message exercised with errors (caused by an incorrect 
sequencing in the implementation), which were fixed in the model and in the imple-
mentation, respectively.  

Hence, the benefits of our approach could be demonstrated for this case study. 
Other case studies and acceptance tests performed to validate the approach for all 
supported modeling features, error types and coverage levels can be found in [ 11]. 

Console
Simulator

Output
Blocking
Queue

Test
Driver

(thread 0)

Input
Blocking
Queue

Tracing
Aspect

AUT
(thread 1)

(wait)

(wait)

start(app, args)
main(args)

scan()
poll(timeout)

enter(x)
put(x)

:x :x

check() poll(timeout)
print(y)

put(y)
:y

:y

assertEquals(exp, y)

stop() join(timeout)

send-
display

send-
start

rcv-
start

rcv-
enter

send-
enter

rcv-
display

User

AUT

start(args)

enter(x)

display(y)

Implementation & Tracing

send-
start(args)

rcv-
start(args)

rcv-
enter(x)

send-
enter(x)

send-
display(y)

rcv-
display(y)

Automaton

possibly 
internal 
interactinos 
here

SD



192 J.P. Faria, A.C.R. Paiva, and M.V. de Castro 

8 Related Work 

There are several research works that attempt to use UML SDs either to help under-
stand the systems or for quality purposes, like model checking and model-based test-
ing. However, the use of SDs for testing or other rigorous verification methods  
demands for a rigorous definition of the language semantics [ 10].  

Based on a survey of proposed semantics for UML SDs, Micskei et al. [ 10] point 
out several problems or challenges with the current natural language semantics, and 
categorize the choices taken by 13 selected approaches to address them. The semantic 
choices taken in our approach are inspired by their work and can be classified as fol-
lows: execution traces are either valid or invalid, i.e., no inconclusive traces exist; the 
underlying formalism is based on the encoding of the partial orders into a finite struc-
ture (automaton), for efficient processing, with interleaving as the concurrency model 
(as in the UML standard); both complete (in strict conformance mode) and partial 
trace specifications (in loose mode) are supported; fragments are combined using 
standard interpretation with weak sequencing; choices and guards are handled global-
ly, i.e., the involved lifelines synchronize at decision points for evaluating guards 
and/or choosing a path to follow; the SD is processed by analyzing it as a whole using 
locations (lifeline states in our case), for higher flexibility.  

Currently, we do not support the 'assert', 'neg', 'ignore' and 'consider' operators, but 
the approach can be easily extended, in particular, 'ignore' and 'consider' operators can 
be dealt by allowing an explicit conformance mode, besides the loose and strict mod-
es, and 'assert' and 'neg' operators will lead to irrevocable failure states.  

As pointed out in [ 10], the first step of many proposed semantics (e.g., [ 12]), is to 
find all the legal cuts of a diagram (global SD states, i.e., combinations of lifeline 
locations), but finding cuts can get complicated in the presence of complex fragments 
and asynchronous communication. One advantage of our approach is that, by allow-
ing transitions with multiple source and/or target states, we avoid determining those 
cuts, as well as the potential explosion of states and transitions. A class of automata 
with that type of transitions, named parallel finite automata (PFA), was first proposed 
in  [9] as a convenient way to express the interleaving parallelism inherent in Petri net 
notation without admitting the possibility of an infinite state space (in other words, 
without admitting multiple tokens per place); the authors also show the equivalence 
and translation procedure of PFA to deterministic finite automata (DFA). Our con-
formance checking automata are inspired by the concept and properties of PFA, with 
the addition of several features found in extended state machines (such as UML state 
machines [ 1]), namely state variables and event-guard-action transition labels. 

Regarding the representation of execution traces, we follow the approach of [ 13], 
which uses a single event to model synchronous (instantaneous) communication and a 
pair of send and receive events to model asynchronous (non-instantaneous) communi-
cation. In [ 13], it is also proposed a translation procedure of a partially ordered execu-
tion trace, containing both synchronous and asynchronous communications (but not 
interaction operators), into a system of communicating automata, with one automaton 
per process (lifeline) and one 'message delay' automaton per asynchronous communi-
cation, which product yields the possible ways of interleaving events. Despite the 
different outputs, our translation procedure follows some of the principles of their 
approach, adding the support for interaction operators and other UML SDs' features.  
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Despite the challenges with the SD semantics, there are different approaches in the 
literature that use SD for quality purposes. For instance, [ 14] translate UML 2 interac-
tions into automata for model checking with respect to specified requirements.  

There are also approaches that extract SDs from a dynamic analysis of the system 
for comparison with design SDs. These approaches are split into four phases: instru-
mentation; logging; merging (in the case of distributed systems); and comparison. The 
work of [ 15] uses AOP to support the instrumentation of Java systems’ bytecode. To 
deal with the fact that SDs are not a straightforward representation of the extracted 
traces, they define two metamodels (one for traces and another for SDs) and define 
mapping rules between them using OCL. In our approach, AOP is also used, not only 
for execution monitoring, but also for user interaction redirection and stub injection.  

Other approaches use SDs in the context of model-based testing, either by focusing 
in test case generation, data generation and/or code generation. 

Since SDs show objects and messages exchanged among them along time, test cas-
es generated from them may be adequate to find errors concerning the sequence of 
executed messages and the values passed [ 16]. The interaction operators introduced in 
UML 2 allow the description of a number of traces in a compact and concise manner. 
Because of that, there are several examples in the literature that use an intermediate 
notation to represent the set of possible executions within a SD and afterwards, test 
cases are generated from this representation according to coverage criteria. Some 
examples of such representations are “sequence dependency graphs” [ 17], “message 
dependency graphs” [ 18], and “structured composite graphs” [ 19]. 

Besides generating test sequences, there are some approaches that also generate 
test data. Nayak et al. [ 19] enrich SDs with attribute and constraint information de-
rived from class diagrams and OCL constraints and use a constraint solver to generate 
test data to cover paths along scenarios. Samuel et al. [ 18] create dynamic slices ac-
cording to conditional predicates associated with messages in a SD and generate test 
data satisfying each slice. Benauttou et al. [ 20] generate test data based on partition 
analysis of method contracts expressed in the Disjunctive Normal Form. 

Another important feature is the generation of test code at the end. There are ap-
proaches that generate assertions to check consistency of models with manually de-
rived code at run time [ 21] and others that generate test code, for instance, as unit 
tests. These approaches can be used in combination. Some of the latter examples are: 
a tool generating test code from SDs (SeDiTeC tool [ 22]); a tool generating functional 
test drivers from SDs (SCENTOR [ 23]); a Model-Driven Architecture based approach 
for generating test code for multiple unit testing frameworks [ 24]. 

Javed et al. [ 24] apply a model-to-model transformation from SDs into a xUnit 
model independent form a particular unit testing framework and, afterwards, apply a 
model-to-text transformation into JUnit or SUnit. However, their approach has several 
limitations: the checking of returned values is performed in an intrusive way by con-
structing additional objects, which is problematic when constructors have side-effects; 
the gathering of execution traces is not integrated into the approach and they do not 
automate their verification; they do not deal with the novel features of UML 2. 

One advantage of SeDiTeC [ 22] is the generation of stubs for parts of the AUT not 
implemented, hence allowing starting testing earlier. As far as we know, they do not 
deal directly with the novel features of UML 2. However, they combine different SDs 
which can be used as a way to represent, for instance, alternative blocks of messages.  
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SCENTOR [ 23] tool creates functional test drivers for e-business applications from 
SDs that have test data (parameters and expected values of method calls) embedded in 
them. However it does not check internal interactions and does not generate test stubs. 

Some commercial tools also support conformance testing based on SDs. To our 
knowledge, the IBM Rational Rhapsody TestConductor Add On [ 25] is one of the 
more advanced tools. Having as target real-time embedded applications, it supports 
many features in common with our approach (like internal interaction checking, visu-
al feedback, etc.) and other features outside the scope of our approach. Despite its 
powerful features, it does not support several important features of our approach: 
incremental lifeline instantiation with create messages (all objects must be previously 
defined in a test architecture); non-deterministic 'alt', 'opt' and 'loop' operators (with-
out guards); strict conformance mode (message types absent from a SD are not 
traced); stubs in the middle (only normal stubs are supported); user interaction testing. 

The implementation of tests derived from SDs or similar formalisms in distributed 
asynchronous environments poses additional challenges for coordinating test drivers, 
monitors and stubs. An example of an approach for monitoring the execution of dis-
tributed Java applications with AOP was presented in [ 15]. An approach for coordi-
nating distributed test components (namely test drivers) was presented in  [26]. 

9 Conclusions and Future Work 

It were presented a set of techniques and a toolset for the automatic conformance 
testing of software applications against behavioral models constituted by a set of pa-
rameterized UML 2 SDs. With a single click, test cases are automatically generated 
from the model, executed on the AUT and test results and coverage information pre-
sented back visually in the model. The conformance checking approach, based on the 
translation of SDs to nondeterministic acceptance automata with parallelism that are 
executed stepwise, provides several advantages over existing SD-based testing tech-
niques, namely regarding the kinds of interactions, operators, conformance modes, 
and semantics (weak sequencing) supported. The tool was successfully experimented 
on a set of case studies, one of which was presented. Despite being implemented for 
specific technologies, the overall approach can be applied for other technologies. 

As future work, we plan to: support other modeling environments (reusing the run-
time library); support additional modeling features (such as duration constraints and 
the 'neg', 'ignore', and 'consider' operators); support a semantic option without lifeline 
synchronization at decision points; extend the abstract user interaction modeling and 
testing features for GUIs (which, currently, can be handled in a non-abstract way); 
integrate with approaches for the automatic generation of values for scenario parame-
ters; extend the test execution engine to support the testing of distributed systems; 
conduct further experiments to assess our approach compared to others. 
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