
Hüsnü Yenigün
Cemal Yilmaz
Andreas Ulrich (Eds.)

 123

LN
CS

 8
25

4

25th IFIP WG 6.1 International Conference, ICTSS 2013
Istanbul, Turkey, November 2013
Proceedings

Testing Software
and Systems

Lecture Notes in Computer Science 8254
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Hüsnü Yenigün Cemal Yilmaz
Andreas Ulrich (Eds.)

Testing Software
and Systems
25th IFIP WG 6.1 International Conference, ICTSS 2013
Istanbul, Turkey, November 13-15, 2013
Proceedings

13

Volume Editors

Hüsnü Yenigün
Sabanci University, Faculty of Engineering and Natural Sciences
Orhanli Tuzla, 34956 Istanbul,Turkey
E-mail: yenigun@sabanciuniv.edu

Cemal Yilmaz
Sabanci University, Faculty of Engineering and Natural Sciences
Orhanli Tuzla, 34956 Istanbul,Turkey
E-mail: cyilmaz@sabanciuniv.edu

Andreas Ulrich
Siemens AG, Corporate Technology, CT RTC SAD SDT-DE
Otto-Hahn-Ring 6, 81739 Munich, Germany
E-mail: andreas.ulrich@siemens.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-41706-1 e-ISBN 978-3-642-41707-8
DOI 10.1007/978-3-642-41707-8
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013951161

CR Subject Classification (1998): D.2.4-5, D.2.9, D.2.11, C.2.2, C.2.4, D.3.2, C.3,
F.3.1, K.6.3-4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Testing is the most important quality assurance technique for the validation of
software and systems as well as their models. Yet, testing remains challenging in
the underlying theory, methods, and tools in industrial use and in its systematic
combined application with other validation and verification techniques. There-
fore, researchers and practitioners need a focused forum to discuss new theories
and directions for testing, to share successful industrial testing applications, and
to put forward new challenges of testing to scientists and engineers.

The IFIP International Conference on Testing Software and Systems (ICTSS)
is a series of international conferences addressing the conceptual, theoretic, and
practical problems of testing software systems, including communication proto-
cols, services, distributed platforms, middleware, embedded and cyber-physical
systems, and security infrastructures. ICTSS was founded and achieved to be
a persistent and dedicated venue for researchers, developers, testers, and users
from industry to review, discuss, and learn about new approaches, concepts,
theories, methodologies, tools, and experiences in the field of testing of software
and systems.

The previous instances of ICTSS were held in Aalborg, Denmark (2012), in
Paris, France (2011), and in Natal, Brazil (2010). But the ICTSS conference
series has a much longer history. ICTSS is the successor of TestCom (the IFIP
International Conference on Testing of Communicating Systems, 2000–2009) and
FATES (the International Workshop on Formal Approaches to Testing of Soft-
ware, 2001–2009). TestCom emerged from the previous International Workshop
on Testing of Communicating Systems (IWTCS, 1997–1999), which in turn was
the successor of the International Workshop on Protocol Test Systems (IWPTS,
1988–1996).

It is our pleasure and honor to present the proceedings of the 25th IFIP
International Conference on Testing Software and Systems (ICTSS 2013), held
in Istanbul, Turkey, during November 13–15, 2013. Marking a cornerstone in the
history of ICTSS series, this book contains the refereed proceedings of the 25th
instance of the ICTSS series. We received 68 submissions including 11 short paper
submissions. Each submission was thoroughly reviewed by at least three Program
Committee members or sub-reviewers. Based on the subsequent discussions, the
Program Committee selected 17 full paper and three short paper contributions
for presentation and publication. The accepted papers were revised based on the
comments made by the reviewers. These revised papers are presented in this
volume.

The conference program also included three invited talks. Alexandre Petrenko
(CRIM, Canada) titled his talk “Some Observations on Progress in Model-Based
Testing.” Applying formal methods to testing, he discussed the advancements
in model-based testing during the course of the last 25 years by highlighting

VI Preface

a number of research problems and challenges that cover a variety of models,
non-determinism, fault models, and their applications.

In her talk “From Active Testing to Monitoring Techniques – Application to
Test Secure Interoperability” Ana Rosa Cavalli from Télécom SudParis, France,
motivated the use of passive testing techniques that are based on the observa-
tion of the exchange of messages (input and output events) of the system under
test during runtime. In the last few years important research activities have
taken place dealing with monitoring techniques based on passive testing. Recent
advances in these techniques also allow their application to test the secure in-
teroperability of information systems. She presented the evolution of monitoring
techniques and discussed their advantages and limitations.

Last but not least, Jens Herrman (Daimler AG, Germany) presented technical
outcomes and experiences from the “ARTEMIS Project MBAT on Combining
Model-Based Testing and Static Analysis to Improve Quality and Reduce Ef-
forts.” MBAT is a strongly industrial-oriented 3-year ARTEMIS R&D project
comprising 39 partners from eight European countries, which started in 2011.
The project will provide European industry from the transportation domain (au-
tomotive, aerospace, rail) with leading-edge technology to develop high-quality
and safe embedded systems at reduced costs. It focuses on the combined appli-
cation of different validation and verification techniques to gain advantages in
the system development process.

Furthermore, the program of ICTSS 2013 contained the tutorial titled “Sur-
vey of Bug Localization Approaches using Dynamic Analysis” by Jason Lee
(Dolby Laboratories, Australia). In this tutorial, a review of the literature for
software bug localization using dynamic analysis was given. This was followed
by presenting the main approaches that are known to be effective in bug local-
ization, such as test coverage, statistical methods, program states, and machine
learning with test coverage. Finally, current trends and directions for bug local-
ization using dynamic analysis were given.

In addition, a doctoral workshop was organized to provide a forum for PhD
students to present preliminary results of their thesis work and to receive con-
structive feedback from experts in the field as well as from peers. This workshop
also presented an opportunity for researchers to get an overview of the latest
research topics in the field.

Moreover, two workshops were co-located with ICTSS 2013. The Workshop
on Future Internet Testing (FITTEST) was organized by Kiran Lakhotia (CREST,
University College London, UK) and Tanja E.J. Vos (Universidad Politecnica de
Valencia, Spain). The Workshop on Risk Assessment and Risk-Driven Testing
(RISK) was organized by Thomas Bauer (Fraunhofer IESE, Germany), Jürgen
Großmann (Fraunhofer FOKUS, Germany), Fredrik Seehusen (SINTEF ICT,
Norway), Ketil Stølen (SINTEF ICT, University of Oslo, Norway), and Marc-
Florian Wendland (Fraunhofer FOKUS, Germany).

We would like to thank all authors who submitted their work to ICTSS
2013. We also wish to thank the distinguished invited speakers for accepting our
invitation. We are grateful to the members of the Program Committee and the

Preface VII

additional reviewers for their hard work in the review process that made this
conference possible. We appreciate their competent handling of the submissions
during the summer period. The Chair Robert M. Hierons and the members of
the ICTSS Steering Committee were always ready whenever we needed them.
We are indebted for their guidance and help. We got special support from Rui
Abreu as the PhD Workshop Chair, Vahid Garousi as the Workshops Chair, and
César Viho as the Tutorials Chair, the efforts of whom are greatly appreciated.
We would also like to thank Hasan Ural for encouraging us and guiding us
in submitting a proposal to organize ICTSS 2013 in Istanbul. We express our
gratitude to the organizers of FITTEST and RISK workshops for complementing
the ICTSS 2013 program with more focused topics.

Our special thanks go to our friends and colleagues at Sabanci University,
especially Gülşen Demiröz, Uraz Cengiz Türker, Canan Güniçen, Uğur Koç, Veli
Akçakaya, Sezen Sefayi, Selma Arısüt, and Banu Ayşe Kerse for helping us with
the local organization of the conference. We thank the providers of the EasyChair
conference management system, which has been of great value, and the Springer
LNCS team for their support.

Finally, we gratefully acknowledge the financial support we received from
IFIP and Sabanci University. In addition, Formal Methods Europe has kindly
provided financial support of Alexandre Petrenko’s invited talk.

November 2013 Hüsnü Yenigün
Cemal Yilmaz
Andreas Ulrich

Organization

ICTSS 2013 was organized by Sabanci University in cooperation with the Inter-
national Federation for Information Processing (IFIP).

Steering Committee

Rob Hierons University of Brunel, UK (Chair)
Alexandre Petrenko CRIM, Canada
Ana R. Cavalli Telecom SudParis, France
Brian Nielsen Aalborg University, Denmark
Burkhart Wolff Université Paris-Sud, France
Carsten Weise IVU Traffic Technologies, Germany
Fatiha Zaidi Université Paris-Sud, France
Andreas Ulrich Siemens AG, Germany

Conference Chairs

General Chairs

Hüsnü Yenigün Sabanci University, Turkey
Cemal Yilmaz Sabanci University, Turkey
Andreas Ulrich Siemens AG, Germany

Workshops Chair

Vahid Garousi Middle East Technical University, Turkey
and University of Calgary, Canada

PhD Workshop Chair

Rui Abreu University of Porto, Portugal

Tutorial Chair

César Viho IRISA Rennes, France

Program Committee

Rui Abreu University of Porto, Portugal
Bernhard K. Aichernig TU Graz, Austria
Fevzi Belli University of Paderborn, Germany
Ana Cavalli Telecom SudParis, France

X Organization

Byoungju Choi Ewha Womans University, Korea
John Derrick University of Sheffield, UK
Angelo Gargantini University of Bergamo, Italy
Vahid Garousi Middle East Technical University, Turkey

and University of Calgary, Canada
Jens Grabowski Georg-August-Universität Göttingen, Germany
Roland Groz Grenoble INP - LIG, France
Toru Hasegawa Osaka University, Japan
Klaus Havelund NASA Jet Propulsion Laboratory, USA
Robert M. Hierons Brunel University, UK
Teruo Higashino Osaka University, Japan
Guy-Vincent Jourdan University of Ottawa, Canada
Moez Krichen University of Sfax, Tunisia
Pascale Le Gall Ecole Centrale Paris, France
Hareton Leung Hong Kong Polytechnic University, SAR China
Keqin Li SAP Product Security Research, France
Stephane Maag Telecom SudParis, France
Karl Meinke KTH Royal Institute of Technology, Sweden
Mercedes Merayo Universidad Complutense de Madrid, Spain
Zoltán Micskei Budapest University of Technology and

Economics, Hungary
P.V.R. Murthy Siemens, India
Brian Nielsen Aalborg University, Denmark
Manuel Núñez Universidad Complutense de Madrid, Spain
Jan Peleska Universität Bremen, Germany
Alexandre Petrenko CRIM, Canada
Andrea Polini University of Camerino, Italy
Ina Schieferdecker FU Berlin/Fraunhofer FOKUS, Germany
Holger Schlingloff Fraunhofer FOKUS/Humboldt University,

Germany
Martin Schäf United Nations University, Macao
Adenilso Simão University of Sao Paulo, Brazil
Jan Tretmans TNO - Embedded Systems Innovation,

The Netherlands
Andreas Ulrich Siemens AG, Germany
Jüri Vain Tallinn University of Technology, Estonia
Margus Veanes Microsoft Research, USA
César Viho IRISA Rennes, France
Carsten Weise IVU Traffic Technologies AG, Germany
Stephan Weißleder Fraunhofer FOKUS, Germany
Burkhart Wolff Université Paris-Sud, France
Hüsnü Yenigün Sabanci University, Turkey
Nina Yevtushenko Tomsk State University, Russia
Cemal Yilmaz Sabanci University, Turkey
Fatiha Zäıdi Université Paris-Sud, France

Organization XI

Additional Reviewers

Paolo Arcaini
Stephan Arlt
Cecile Braunstein
Jan Calta
José Campos
Ming Chai
Xiaoping Che
André Takeshi Endo
Voisin Frédérique
Christophe Gaston
Elena Gorbachuk
Maxim Gromov

Patrick Harms
Steffen Herbold
Joachim Hänsel
Afef Jmal Maâlej
Hartmut Koenig
Natalia Kushik
Hartmut Lackner
Mariam Lahami
Luis Llana
Delphine Longuet
Philip Makedonski
Aouadi Mohamed

Anderson Morais
Pramila Mouttappa
Petur Olsen
Sanjay Rawat
Thomas Rings
Uwe Schulze
Fabian Sudau
Jaroslav Svacina
Ramsay Taylor
Khalifa Toumi
Pierre van de Laar
Michele Volpato

Sponsoring Institutions

International Federation for Information Processing (IFIP), Laxenburg, Austria
Formal Methods Europe (FME), Uppsala, Sweden
Sabanci University, Istanbul, Turkey

Table of Contents

Model-Based Testing

Using Logic Coverage to Improve Testing Function Block Diagrams 1
Eduard Paul Enoiu, Daniel Sundmark, and Paul Pettersson

Automatic Grammar-Based Test Generation . 17
Hai-Feng Guo and Zongyan Qiu

Adaptive Homing and Distinguishing Experiments for Nondeterministic
Finite State Machines . 33

Natalia Kushik, Khaled El-Fakih, and Nina Yevtushenko

Exhaustive Model-Based Equivalence Class Testing 49
Wen-ling Huang and Jan Peleska

Testing Timed and Concurrent Systems

Remote Testing of Timed Specifications . 65
Alexandre David, Kim G. Larsen, Marius Mikučionis,
Omer L. Nguena Timo, and Antoine Rollet

An Implementation Relation and Test Framework for Timed
Distributed Systems . 82

Christophe Gaston, Robert M. Hierons, and Pascale Le Gall

Unfolding-Based Test Selection for Concurrent Conformance 98
Hernán Ponce de León, Stefan Haar, and Delphine Longuet

Test Suite Selection and Effort Estimation

Predicting the Size of Test Suites from Use Cases: An Empirical
Exploration . 114

Mourad Badri, Linda Badri, and William Flageol

Chaining Test Cases for Reactive System Testing . 133
Peter Schrammel, Tom Melham, and Daniel Kroening

Variations over Test Suite Reduction . 149
Dennis Güttinger, Vitaly Kozyura, Dominik Kremer, and
Sebastian Wieczorek

XIV Table of Contents

Tools and Languages

Case Studies in Learning-Based Testing . 164
Lei Feng, Simon Lundmark, Karl Meinke, Fei Niu,
Muddassar A. Sindhu, and Peter Y.H. Wong

Techniques and Toolset for Conformance Testing against UML Sequence
Diagrams . 180

João Pascoal Faria, Ana C.R. Paiva, and Mário Ventura de Castro

Parallel SMT-Constrained Symbolic Execution for Eclipse
CDT/Codan . 196

Andreas Ibing

Challenges of Testing Periodic Messages in Avionics Systems Using
TTCN-3 . 207

Bernard Stepien and Liam Peyton

Debugging

Guided Algebraic Specification Mining for Failure Simplification 223
Alexander Elyasov, I.S. Wishnu B. Prasetya, and Jurriaan Hage

Spectrum-Based Fault Localization for Diagnosing Concurrency
Faults . 239

Feyzullah Koca, Hasan Sözer, and Rui Abreu

A Dynamic Approach to Locating Memory Leaks . 255
Kostyantyn Vorobyov, Padmanabhan Krishnan, and Phil Stocks

Short Contributions

Towards a GUI Test Model Using State Charts and Programming
Code . 271

Daniel Mauser, Alexander Klaus, and Konstantin Holl

A Tool for Supporting Developers in Analyzing the Security
of Web-Based Security Protocols . 277

Giancarlo Pellegrino, Luca Compagna, and Thomas Morreggia

Finding Errors in Python Programs Using Dynamic Symbolic
Execution . 283

Samir Sapra, Marius Minea, Sagar Chaki, Arie Gurfinkel, and
Edmund M. Clarke

Author Index . 291

Using Logic Coverage
to Improve Testing Function Block Diagrams

Eduard Paul Enoiu, Daniel Sundmark, and Paul Pettersson

Mälardalen Real-Time Research Centre (MRTC)
Mälardalen University Västerås, Sweden

{eduard.paul.enoiu,daniel.sundmark,paul.pettersson}@mdh.se

Abstract. In model-driven development, testers are often focusing on functional
model-level testing, enabling verification of design models against their specifi-
cations. In addition, in safety-critical software development, testers are required
to show that tests cover the structure of the implementation. Testing cost and time
savings could be achieved if the process of deriving test cases for logic coverage
is automated and provided test cases are ready to be executed. The logic cover-
age artifacts, i.e., predicates and clauses, are required for different logic coverage,
e.g., MC/DC. One way of dealing with test case generation for ensuring logic cov-
erage is to approach it as a model-checking problem, such that model-checking
tools automatically create test cases. We show how logic coverage criteria can
be formalized and used by a model-checker to provide test cases for ensuring
coverage on safety-critical software described in the Function Block Diagram
programming language. Based on our experiments, this approach, supported by
a tool chain, is an applicable and useful way of generating test cases for covering
Function Block Diagrams.

Keywords: logic coverage, function block diagram, timed automata, model-driven
engineering, structural testing.

1 Introduction

Within the last decade model-checking has turned out to be a useful technique for gen-
eration of test cases from finite-state models [12]. However, the main problem in using
model-checking for testing industrial software systems is the potential combinatorial
explosion of the state space and its limited application to models used in practice.
Safety-critical and real-time software systems implemented in Programmable Logic
Controllers (PLCs) are used in many real-world industrial application domains. One of
the programming languages defined by the International Electrotechnical Commission
(IEC) for PLCs is the Function Block Diagram (FBD). Programs developed in FBD are
transformed into program code, which is compiled into machine code automatically by
using specific engineering tools provided by PLC vendors. The motivation for using
FBD as an implementation model comes from the fact that this language is the standard
in many industrial software systems, such as rail transport control.

In this paper, our goal is to help testers automatically develop test cases for safety-
critical software systems modeled in FBD that require a certain level of certification.

H. Yenigün, C. Yilmaz, and A. Ulrich (Eds.): ICTSS 2013, LNCS 8254, pp. 1–16, 2013.
c© IFIP International Federation for Information Processing 2013

2 E.P. Enoiu, D. Sundmark, and P. Pettersson

One example of certification includes logic coverage which needs to be demonstrated on
the developed programs. There has been little research on using logic coverage criteria
for FBD programs in an industrial setting. One way is that logic coverage is analyzed at
the code level [9] while tests are designed at the FBD program level, so time-consuming
iterations between levels are required. Even if at the code level, logic coverage is used,
it would be difficult to standardize the code generation scheme for different PLC tool
vendors in order to map directly the criteria to the original FBD program. Hence, in
this model-driven environment it is advantageous to move as much testing activity from
code level to FBD program level as possible.

As the first contribution of this paper, we present a framework suitable for trans-
forming FBD programs to a formal representation of both its functional and timing be-
havior. For this, we implement an automatic model–to–model transformation to timed
automata, a well known model introduced by Alur and Dill [2]. The choice of timed
automata as the target language is motivated primarily by its formal semantics and tool
support for simulation and model-checking. Our goal is not to solve all testing issues
(e.g., robustness, schedulability, etc.), but to allow the usage of a framework for for-
mal reasoning about logic coverage on FBD programs. The transformation accurately
reflects the data-flow characteristics of the FBD language by constructing a complete
behavioral model which assumes a read-execute-write program semantics. The trans-
lation method consists of four separate steps. The first three steps involve mapping all
the interface elements and the existing timing annotations. The latter step produces a
formal behavior for every standard component in the FBD program. These steps are in-
dependent of timed automata thus are generic in the sense that they could also be used
when translating an FBD program to another target language.

As the second contribution, we develop a test case generation technique based on
model-checking, tailored for logic coverage of FBD programs. There have been a num-
ber of testing techniques used for defining logic coverage using model-checkers, e.g.,
[7,19,20]. However, these techniques are not directly applicable to FBD programs and
semantics. We define logic coverage for FBD programs based on the transformed timed
automata model. This copes with both functional and timing behavior of an FBD pro-
gram. This formal definition is necessary for the approach to be applicable to model-
checking. We present how a model-checker can be used to generate test cases for
covering an FBD program. Based on our experiments, this method is — for the real
world models provided by Bombardier Transportation AB — a useful way of generat-
ing test cases for logic coverage both in terms of automation and robustness to changes
in the FBD programs as monitored by the model-checker.

The paper is organized as follows. Section 2 briefly overviews PLC software, the IEC
61131-3 standard, timed automata and logic coverage. Section 3 describes our overall
testing methodology roadmap. Section 4 introduces the modeling approach for FBD
programs and Section 5 shows the transformation scheme into timed automata. Section
6 and Section 7 presents the test case generation method required for logic coverage
criteria. Next, we apply our method on a Train Startup Mode example in Section 8. In
Section 9 we compare to related work, before concluding in Section 10.

Using Logic Coverage to Improve Testing Function Block Diagrams 3

2 Preliminaries

This paper describes how to generate test cases that cover the logical structure of FBD
programs, by transforming them to networks of timed automata. In this section, we pro-
vide some background details on FBD programs, timed automata and logical coverage.

2.1 FBD Programs and Timer Components

PLCs are widely used in control software from nuclear plants to train systems. A PLC
is an integrated embedded system that contains a processor, a memory, and a commu-
nication bus. Programs execute in a loop, in which the computation follows the “read-
execute-write” semantics. In this way a PLC reads all inputs, executes the computation
without interruption, and then writes to its output. FBD, a PLC programming language
standardized by IEC 61131-3, is very popular in the industrial practice because of its
graphical notations and its data flow nature [18]. Components in an FBD program are
the base for a structured and hierarchical application. They are supplied by the man-
ufacturer, defined by the user, or predefined in a library. An application generator is
utilized to automatically transform each component to a C compliant program with its
own thread of execution.

The type of systems we are studying contain a particular type of components named
PLC timers. These timers are output instructions that provide the same functions as tim-
ing relays and are used to activate or deactivate a device after a preset interval of time.
There are two different timer components (i) On-delay Timer (TON) and (ii) Off-delay
Timer (TOF). Basically, a timer counts time-based intervals when the input instruction
is true or false. In practice many other time configurations can be derived from this ba-
sic timers. In order to study how to generate test cases using a model checker for these
types of FBD programs we use a formal representation that can cope with timers and
timing information.

2.2 Networks of Timed Automata

A timed automaton is a standard finite-state automaton extended with a finite collection
of real-valued clocks. The model was introduced by Alur and Dill [2] and has gained in
popularity as a suitable model for real-time systems. We give here a brief summary for
readers unfamiliar with timed automata theory.

Let C be a finite set of real-valued clocks and B(C) the set of clock constraints, which
are finite conjunctions of atomic guards of the form x �� n, where x ∈C, n is a natural
number, and �� ∈ {<,≤,=,≥,>}.

A timed automaton (A) over actions A , atomic propositions P and clocks C is a
tuple 〈N, l0,E, I,V 〉 where N is a finite set of control locations, l0 is the initial location,
E ⊆N×B(C)×A ×R1×N is the set of edges. In the case of and edge 〈l,g,a,r, l′〉 ∈ E ,

we write l
g,a,r−−→ l′ where the label g is a guard of the edge, r is the data- or clock reset

assignments of the edge, and a is the action of the edge. I : N → B(C) is a function

1 R denotes the reset set i.e., assignments to manipulate clock- and data variables.

4 E.P. Enoiu, D. Sundmark, and P. Pettersson

which for each control location assigns an invariant condition and V : N → 2P is a
function which for each control location gives a set of atomic propositions true in the
location.

The semantics of A is defined in terms of a state transition system, where the state of
A is defined as a pair (l,u), where l is a location and u ∈RC is a clock assignment in C.
A state of A depends on its current location and on the current values of its clocks.

We denote by T (A) all traces σ of A starting from the initial state (l0,u0) as a se-

quence of alternating transitions σ = (l0,u0)
a1−→ (l1,u1)

a2−→ ...
an−→ (ln,un).

A network of timed automata B0 ‖ ... ‖ Bn−1 is a parallel composition of n timed
automata over C, A and synchronization functions (i.e., a! is correlative with a?). We
refer the reader to [1] for more information on the theory of timed automata.

We consider in this paper model-checking algorithms that perform reachability anal-
ysis to check for properties of the form ∃ ♦ β , with respect to a property β of the
locations and the values of the clock. ∃ is the existential quantifier, and ♦ is the tempo-
ral operator. A reachability property states that there is a path in which β in A is reached.
This type of property serves as a basis for formulating various coverage criteria and for
deriving properties that could be used by a model-checker to produce test sequences for
the timed automaton A.

2.3 Logic-Based Coverage Criteria

In this section we briefly describe existing logic-based coverage criteria. In the litera-
ture, there are many similar criteria defined, but with different terminology [4]. Also,
some definitions of coverage criteria (e.g., MC/DC) have some ambiguities. In order to
eliminate the ambiguities and conflicting terminologies, Ammann et al. [5] abstracted
logic criteria with a precise definition and formal representation. A predicate is an ex-
pression that evaluates to a Boolean value. It consists of one or more clauses. A clause
is a predicate that does not contain any logical operators and can be a Boolean variable,
non-Boolean variables used for comparison, or a call to a Boolean function.

Clauses and predicates are used to introduce a variety of coverage criteria. This pa-
per presents three different test criteria, each of which requires a different amount of
test cases: (1) Predicate Coverage (PC), (2) Clause Coverage (CC), and (3) Correlated
Active Clause Coverage (CACC). These are defined in the next sections in terms of the
FBD program. We note that modified condition/decision coverage (MC/DC) is equiva-
lent to CACC and relies on its original definition [5].

3 Testing Methodology and Proposed Solutions

In this section, we describe our approach to automate test-case generation for FBD
programs. Logic coverage criteria are used to define what test cases are needed and we
use a model-checker to generate test traces. In addition, the formal framework presented
in this paper is tailored for FBD programs, and is composed of the following steps,
mirrored in Figure 1:

Using Logic Coverage to Improve Testing Function Block Diagrams 5

FBD Program

Timed Automata Model

Logic-based Coverage Criteria

Reachability Properties

UPPAAL
model-checker

Test Traces Test Suite

Transformation Annotation2

Test Generation

FB

F
F

F

FB
PC, CC, RACC…

1

∃ ♢ β , ∃ ♢ pi , ∃ ♢ c0 and c1...
(Step) (Time) (Inputs) (Outputs)
(1) (20s) (0 1 23) (1 2 3 0)

3

Fig. 1. Testing Methodology Roadmap

1. Model Transformation. To test an FBD program we map it to a finite state sys-
tem suitable for model checking. In order to cope with timing constraints we have
chosen to map FBD programs to timed automata.

2. Logic Coverage Annotation. We annotate the transformed model such that one can
formulate a condition describing a single test case. This is a property expressible as
a reachability property used in most model checkers.

3. Test Case Generation. We now use the model-checker to generate test traces. To
provide a good level of practicality to our work we use a specific model-checker
called UPPAAL which is using timed automata as the input modeling language2.
The verification language supports reachability properties. In order to generate test
cases for logic coverage of FBD programs using UPPAAL, we make use of UP-
PAAL’s ability to generate test traces witnessing a submitted reachability property
[13]. Currently UPPAAL supports three options for diagnostic trace generation:
some trace leading to a goal state, the shortest trace with the minimum number of
transitions, and fastest trace with the shortest time delay.

While UPPAAL is a viable tool for model checking, it is not tailored to test case
generation in practice. We demonstrate how to work around this by automatically gen-
erating traces for logic coverage of FBD programs described in timed automata and

2 The UPPAAL tool is available at www.uppaal.org

6 E.P. Enoiu, D. Sundmark, and P. Pettersson

how we transform these traces to actual test cases. We discuss these steps in further
detail in the following sections. First we start by introducing the FBD programs as a
finite syntactical representation to describe its component model nature.

4 Function Block Diagram Component Model

An FBD program is a component model which obeys the read-execute-write seman-
tics with a mechanism for monitoring the internal components to determine when the
implementation has terminated. Components can be categorized into functions (FUNC)
and function blocks (FB). A FUNC does not have any internal state and its output is
determined only by the current inputs.

Example 1. An example of an FBD program depicting a Loadshed Contactor Control
is shown in Figure 2. Basically the components are equivalent to predicates and in-
strumentation points shown in a circuit diagram fashion. The system consists of basic
functions (e.g., AND, OR) and function blocks (e.g., FAULTEN, RS). In Figure 2, AND
is a FUNC. In contrast, FAULTEN is an FB because it maintains an internal state and
produces outputs based on this state and inputs.

Assume an FBD program defined as the following tuple:

FBDProgram � 〈Name, FE,V, P,Con〉,

where Name is the program identifier, FE is the set of components defined as the union
of FUNC and FB instances, V is the variable set, defined as the union of input (VI) and
output (VO) variables, P is the parameter set, defined as the parameters used internally
by the program, and Con is the set of connectors between all components (e.g., FB and
FUNC).

AND

RS

OR

FAULTEN
I FLT

E BLK

FAULTEN 1

Fig. 2. An FBD program showing the graphical nature of the language

A component in FE has an interface, consisting of a name identifier, input and output
ports, and a list of parameters. The interface is used to access the component behavior.
When the component is activated the behavior is started using the values read on the in-
put ports. When the behavior ends, i.e., when the component implementation terminates

Using Logic Coverage to Improve Testing Function Block Diagrams 7

its execution, the output ports are updated. The behavior of a component is typically im-
plemented by a code fragment that updates local variables. We define a component as a
tuple 〈Name, Port, B〉,where Name is the name identifier, Port is the set ports, defined
as the union of input (IP), output ports (OP), and a list of parameters, whereas B is the
behavior description of a component.

Recall that in order to express timing constraints within one component, standard
PLC timers are used. The timers in a PLC are operated by an internally generated clock
that originates in the processor module. Consider the following PLC timer TON defined
as a tuple TON = 〈TON1, (IN, PT, ET, Q),Bt〉, where TON1 is the name identifier,
IN, PT , ET , and Q are the set of ports and parameters in Port, and Bt is the behavior
description. This timer component is an attempt to specify its interface and behavior.
From a semantic point of view, FBD programs are a special case of deterministic reac-
tive systems. We use more informative notations to denote the actual behavior. In the
following section we present several such notations to describe how FBD programs can
be handled by the UPPAAL model checker.

5 Transforming Function Block Diagrams into Timed Automata

In this section, we introduce the rules that describe the way we transform FBD pro-
grams into a network of timed automata, being one step away from test suite generation
with the UPPAAL tool. Note that the current transformation rules cover one-level hi-
erarchy only. The transformation maps to timed automata all the interface elements
FE,V, P, and Con alongside the existing timing annotations within the FBD program.
These timing annotations are based on the specifications used from structure and be-
havioral elements as defined in the FBD language. The transformation process starts by
creating a timed automaton for the program description. We place templates of compo-
nents and list the composed timed automata network representing the FBD program as
FE1 ‖ ... ‖ FEn.

We consider the target model as a network of timed automata named Timed Au-
tomata Component Model (TACM) and defined as a tuple as follows:

TACM � 〈Comp, Pin, Pout ,Connections, BTACM〉,

where Comp is the set of components that TACM contains, Pin and Pout are the input and
output dataflow ports, respectively, and BTACM is the TACM’s behavior. If Comp = /0
and Connections= /0, then TACM is a primitive component.

The mapping between an FBDProgram and TACM is a function π : FBDProgram→
TACM, which maps each component to a TACM primitive component, input variables
VI to the TACM’s component dataflow input ports, output variables VO to the TACM’s
component dataflow output ports, connectors to the TACM’s component connections,
and the behavioral specification of a component to BTACM . The execution of a compo-
nent is modeled as a timed automaton. The following rules establish in more details
BTACM with regard to the mapping of an FBDProgram to TACM.

An FBD program is executed in a loop and the computation follows the run-to com-
pletion semantics. The timed automaton of the FBD program contains a clock variable
for modeling a delay between the cycles. A cycle starts when the automaton enters

8 E.P. Enoiu, D. Sundmark, and P. Pettersson

Waiting

IN==1 && N==2 && counter==0

Running

IN==1 && N==2

IN==1 && N==2 && ET==Pt−counter && counter!=0

IN==0 && N==2 && ET==Pt−counter IN==0 && N==2

ET<=Pt−counter

N++, Q=0, counter=PtQ=0, N++, ET=0

execute?execute?
N++, Q=1

Q=0, N++, counter=Pt

N++, Q=0, counter−−, ET=0

execute? execute?execute?

Fig. 3. Timed Automaton of a TON component

the ReadInputs node and ends in UpdateScanTime node. For a composition TACM
the execute operation of each component is extended according to connections and Pin

and Pout variables. A composition is a set of interconnected components closed under a
specific execution order. The execution order is automatically defined according to the
general rules included in the IEC standard. We use the notion of precedence to describe
such dependencies on the convention of reading such FBD programs in a top-to-bottom,
left-to-right fashion. For each component we assign a precedence priority to the corre-
sponding timed automaton. A counter is created in this step to represent the execution
priority of a component. In this way we ensure that components are executed one by
one. After the last component is evaluated, the counter is reset to repeat the scan cycle.

For standard components we assign a timed automaton BTACM with its own logi-
cal execution and no internal concurrency. A component is initially Waiting, and after
performing the read action it starts executing until its internal computation is done. Re-
consider the PLC timer TON as described in Section 4. A rather straightforward model
of the TON component is shown as a timed automaton in Figure 3. The composition
interacts with the TON component via execute? action. TON is modeled by a standard
time on timer that sets the output Q to true if IN variable is true at least as long as the
time PT . In this way, we comply with the standard specification of a PLC timer and
the structural definition of the program. The timed automaton encapsulates the internal
behavior with both functional and timing properties. This means that when we create
a TON model we use a separate instantiation of the behavioral model. Also, every in-
stance of TON needs to contain all the variables listed in the interface description and
for this reason it is necessary to give each instance of the TON behavioral model a
unique identifier.

6 Test Case Generation Using the UPPAAL Model-Checker

As a result of the transformation described in Section 5, we consider that the FBD pro-
gram is given as a closed network of timed automata as shown in Figure 4. This model

Using Logic Coverage to Improve Testing Function Block Diagrams 9

FBD Program [F] Enviroment [E]read?

execute?

write!

Function_FE1

Function_FEn
...

PLC_Cycle_Scan

Input_1 Input_n

Output
...

Fig. 4. Test TA Network for a FBD Program

contains two sub-networks, one modeling the FBD Program and the other one model-
ing its Environment. In addition, we consider a completely unconstrained environment
that allows all possible interactions between the timed automata network elements. In
this way the cycle scan is used to control the FBD program via read?, execute?, and
write! actions.

Let us assume the generic timed automata network of an FBD program together with
its PLC cycle scan and environment shown in Figure 4. A trace produced by the model
checker for a given reachability property defines the set of actions executed on the FBD
program. An example of a diagnostic trace has the following form:

(F0,E0)
a1−→ (F1,E1)

a2−→ ...
an−→ (Fn,En),

where (Fk,Ek) are states of the FBD program and PLC cycle scan with environment
constraints, respectively, and ak are either internal synchronization actions, time-delays
or read?, execute?, and write! global synchronizations. For FBD programs the se-
quence represents only the global synchronizations shown in Figure 4. Test cases are ob-
tained by extracting from the diagnostic trace the observable actions read?, execute?,
and write!. Obviously a single test case cannot be obtained for every test purpose or
criterion. By using a program scan cycle we allow the test suite to be implemented as
one or more test sequences separated by resets. To introduce resets in the model, we
annotate the PLC cycle scan with a reset transition leading to the initial ReadInputs
location. On this transition all variables and parameters (excluding encoded internal
variables) are reset to their default value. This reset is hardcoded into the PLC scan
cycle for any modeled FBD program in UPPAAL, being an atomic communication be-
tween all timed automata.

7 Logic Coverage Criteria for Function Block Diagrams

As mentioned earlier, the basic approach to generating test cases for logic coverage
using model-checking is to define a test case as a finite execution trace. If one can char-
acterize this execution trace as a temporal logic property to be used, model-checking
techniques can be used to produce a test trace for the property. It has also been observed

10 E.P. Enoiu, D. Sundmark, and P. Pettersson

that criteria such as logic coverage that have constraints involving more than one test
trace cannot be handled in this way. Based on TACM description, we propose here to
use the logic coverage to annotate the original model and the temporal logic property
to be checked with auxiliary data variables and transitions in such way that a set of test
traces in the TACM can be used as a test suite in the annotated model. The temporal
logic property is described in terms of adding these auxiliary variables and can be used
to produce the necessary set of test cases.

In this section we describe what is needed to achieve logic coverage for FBD pro-
grams. We envision our logic coverage measurement process where model checking is
used to perform more systematic testing. Informally, our approach is based on the idea
that to get logic coverage of a specific program it would be enough to (i) find a test trace
from the initial state to the end of the FBD program, (ii) annotate the clauses and pred-
icates in the FBD program, (iii) formulate a reachability property for logic coverage.
In addition, the values of the clauses and predicates are remembered in every program
execution with the outcome of the trace being different. To apply the criteria, necessary
properties for the integration of logic coverage need to be fulfilled.

Program Reset: The FBD program is assumed to have an implicit control loop, so the
reset can occur in the program without modifying in any way the transformed timed
automata. We consider that TACM has a special reset transition that restores the pro-
gram to its initial state and the program cycle enters the ReadInputs node. Clearly,
multiple execution traces of the FBD program are mapped to a single execution trace
containing sub-traces separated by resets. An example of a single execution trace for an
FBD program has the following form:

(F0,E0)
read−−→ (F1,E1)

execute−−−−→ (F2,E2)
write−−−→

(F3,E3)
read−−→ (F4,E4)

execute−−−−→ (F5,E5)
write−−−→ .

The test trace 3 indicates that the checked reachability property is satisfied. This partic-
ular trace contains two-sub traces, each finishing with the write actions.

Component Annotation: Predicates in an FBD program are components that can be
evaluated to a boolean value, i.e., true or false. Predicates can be identified from the
instrumentation points in the FBD program. Let P be a set of predicates in an FBD
program and C be the set of clauses in P. For each predicate p ∈ P, let Cp be the set of
clauses in p. C is the union of the clauses in each predicate in P. The following coverage
criteria are defined as follows:

– PC: For each p corresponding to a component in the FBD program, a test suite
contains two requirements: p evaluates to true, and p evaluates to false.

– CC: For each c corresponding to a component in the FBD program, a test suite
contains two requirements: c evaluates to true, and c evaluates to false.

3 The states are shown in this trace where (Fk,Ek) are states of the FBD program and PLC cycle
scan with environment constraints, respectively, and the global actions are read, execute,
and write.

Using Logic Coverage to Improve Testing Function Block Diagrams 11

– CACC: For each p ∈ P and each clause ci ∈ Cp, a test suite contains two require-
ments: ci evaluates to true and false so that it solely determines p.

For PC a solution is to analyze every predicate in the FBD program. PC indicates that
each component in the FBD program has taken every outcome at least once. This mech-
anism is implemented by specifying a set of predicate parameters. We annotate every
BTACM with an auxiliary boolean variable vi for each predicate p to be covered. For
every edge in a component with destination waiting : l

g,a,r−−→ waiting, vi is added to r as-
signment. In addition, for CC the annotation of clauses ci is done based on the evaluated
components. A test trace achieves full CC when it causes each input and parameters of
all components to be true at least once during model checking. Similarly for CACC we
store the values of p and ci : and pass the information as a pair (p,ci). We refer to these
value combinations which are needed for logic coverage criteria as test goals.

Reachability Property Annotation: For using the test generation capability of a
model-checker, the test property must be formulated as a reachability property and
checked by the timed automata. Hessel et al. [14] already proposed a way to apply
coverage criteria to specifications described in timed automata. In addition, we pro-
pose the usage of logic coverage directly on implementation models. The reachability
property for full PC will require that for all p to be exercised:

∃ ♦ (v0 == 1 and v1 == 1 ... and vk == 1).

For generating test traces for CC we check whether the auxiliary variables are cov-
ered for each ci in the program similarly to the reachability property for full PC. In
addition, to achieve CACC for a component in the FBD program, we would need to
define a reachability property that leads to a goal set satisfying CACC for every ci in p.
What remains is to calculate the total desired set of combinations for each component
in an FBD program.

8 Example: Train Startup Mode

In the previous section we presented a technique to compute logic coverage for FBD
programs. In the following we show empirically that the performance of our technique
is sufficient for practically relevant examples. We have applied our method on a real
world example provided by Bombardier Transportation AB. We present here how our
method is applied to test a part of the MITRAC Train Control and Management Sys-
tem (TCMS) provided within the ATAC research project. TCMS is a distributed system,
built on open standard IP-technology that allows easy integration of control and commu-
nication functions for high speed trains. We are concerned with both the transformation
of FBD programs to timed automata models and the time and memory used to generate
test cases. The tools used for developing these programs are based on the MULTIPROG
software. The FBD program is transformed using the MOS tool 4 [10].

4 MOS is a tool for model-based and search-based testing of safety-critical systems implemented
in FBD language, developed at Mälardalen University since 2012.

12 E.P. Enoiu, D. Sundmark, and P. Pettersson

8.1 Experiments

The experiments reported here are based on an example program, part of TCMS. We
use an FBD program of a train Startup Mode System (TSM) and generate test cases
for logic coverage. In the process, we describe the FBD program, the program to timed
automata model transformation and the annotations made to the model.

TON

IN Q

PT ET
2

Function_TON1
OR

1

Function_OR1

TON

IN Q

PT ET
3

Function_TON2

RS

SET Q

RESET
4

Function_RS1

NOT

5

Function_NOT1

lcm1Act

lcm2Act

lcm3Act

lcm4Act

vltNotAct

TrnStartupMd

Fig. 5. Simplified Train Startup Mode modeled as an FBD program

The train is built up using motorized cars and intermediate trailer cars with pan-
tographs. These cars are combined to create a fixed 8-cars train set, each with its own
complete system for control and propulsion. The task of the train operating in the startup
mode is imposed by the controller FBD program depicted in Figure 5. When the first
Line Converter Module (LCM) is active, the propulsion unit becomes active, i.e. any
of the four inputs becomes true. When activating the propulsion system, the program
waits an additional five seconds and then sets the output to false, which means that the
train is not in the startup mode anymore. If the NotAct is true for at least five seconds,
the element is reset and the output is set true as in the startup mode.

To validate our approach for generating test cases for logic coverage, we imple-
mented our method in our previously developed MOS tool for analyzing and executing
FBD programs. The TSM system is transformed automatically in the fully formal and
executable timed automata used by UPPAAL. The TSM system is modeled as a par-
allel composition of several processes. Several boolean and integer variables are used
for recording information: read!, execute! and write! synchronization channels are
used to model the execution of the FBD program, et is used to keep track of the elapsed
time in timer components, lcm1act, lcm2act, lcm3act, lcm4act for recording
the input variables generated by the LCM input automaton, notact for representing
the line voltage activation, TrnStartupMd for recording the startup mode of the train,
pi and ci for recording each covered item, and pt for recording the delay from the first
LCM starts to communicate. The TSM program has been transformed and checked by

Using Logic Coverage to Improve Testing Function Block Diagrams 13

UPPAAL model checker for generation of test suites for logic coverage by reachability
analysis.

Table 1 shows the generation time (in seconds) for test suites generated from different
logic coverage criteria of the TSM example, and the length (number of program cycles)
of the generated test suite. We notice that for CACC test cases result in longer traces
than for PC and CC. The generation time for CACC is slightly higher than the number
for PC and CC. However, the number of program cycles is twice as high because CACC
is combining already generated test suites for PC and CC.

Table 1. Generation time and test suite length for various coverage criteria

Coverage Criterion Generation Time (seconds) Test Suite Length (program cycles)

PC 18,04 14
CC 18,21 14
CACC 22,86 25

8.2 Logic Coverage and Timing Components

One of the objectives for this experiment is to assess the applicability and scalability of
using logic coverage for testing FBD programs with various sizes and complexities. An
expected characteristic of the FBD program is its associated timing behavior. For the
TSM model, the TON automaton appears to be significantly affecting the generation
time. Therefore, we focus the discussion on timer components (e.g., TON, TOF, etc.)
because these cases lead to a bigger search space. We modify the program by increasing
or decreasing the number of TON components in the TSM model. We observed that an
FBD program consisting of ten or more TON components are difficult to cover. This is
not surprising as the timing components are varying the timing of the entire model and
therefore the number of predicates and clauses in the program. The programming of
two or more timers components together in the same FBD program is called cascading.
From our experiments with timer components in TCMS (over 300 FBD programs), the
number of TON and TOF components is always lower than five. Nevertheless we were
interested to show that —for the studied program— our method of generating test cases
for covering FBD programs is applicable and scalable.

The results, listed in Table 2, show that the memory usage increase essentially lin-
early with the number of timing elements. If we compare test suite length with the
generation time, it can be seen that is much cheaper to compute FBD programs for
FBDs with less than ten timer components than computing for fifty timer components.
We can try to explain this behavior in the sense that timer components pose restrictions
on the solution because it contains more possible behaviors. Thus, searching through
more timer components takes longer. We note that the use of timer elements restricts the
handling of larger systems, with an increased cost of generation time and used memory.

14 E.P. Enoiu, D. Sundmark, and P. Pettersson

Table 2. Results of obtaining PC of the TSM example with increasing timer elements

Timers Generation Time (seconds) Test Suite Length (program cycles) Memory Usage (MB)

0 0,62 4 15
1 1,54 5 27
2 3,29 7 61
5 6,38 14 122
10 6,79 18 200
50 31 36 520

9 Related Work

Previous contributions in testing of FBD programs range from a simulation-based ap-
proach [21] to verification of the actual FBD program code [6,16]. The technique in
[6] is based on Petri Nets models. In comparison to our work, they are not coping with
the internal structure of the PLC logical and timing aspects. It is our opinion that test-
ing FBD programs can be complemented by using a model-checker as presented in
this paper. Similar to this work, Rayadurgam and Heimdahl [20] have defined a com-
plete formal framework that can be used for coverage based test-case generation using
a model checker. For a detailed overview of testing with model checkers we refer the
reader to Fraser et al. [12].

A model checker has been used to find test cases to various criteria and from pro-
grams in a variety of formal languages [7,15]. In addition, Black et al. [3] discuss
the problems encountered in using a model-checker for test case generation for full-
predicate coverage and explain why logic coverage criteria is not directly applicable
for model-checking. Rayadurgam et al. [19] present an alternative method that mod-
ifies instead the system model and are obtaining MC/DC adequate test cases using a
model-checking approach. Similarly to our work, the system model is annotated and
the properties to be checked are expressible as a single test sequence. However, this
technique is not coping with the timing behavior of an FBD program as we do and
only MC/DC criteria is investigated. We provide an approach to generate test cases for
different logic criteria (e.g., PC, CC, and CACC) that are directly applicable to FBD
programs.

The idea of using model-checkers for verifying and testing FBD programs is not new
[22,8]. These two approaches use the UPPAAL model checker and UPPAAL TRON for
verification of FBD programs, however they translate their model for functional verifi-
cation. Soliman et al. [22] provide an automatic transformation to timed automata and
their verification methodology is used to check the model against safety requirements.
In contrast to the online model-based testing approach used in [8] we generate test suites
for offline execution.

Related to this work but outside the PLC testing community, the most notable ef-
forts have been focusing on test coverage for data flow languages. For example, for
the Lustre language there are contributions [17] describing an activation condition con-
cept that can be used when data flows from an input edge to an output edge. While
this approach studied the effect of structural coverage criteria on the overall program,

Using Logic Coverage to Improve Testing Function Block Diagrams 15

we study the ability to generate test cases and its effect on the test artifacts, i.e., predi-
cates and clauses, tailored for FBD programs.

To our knowledge, not much theoretical and experimental data is available regard-
ing the usage of logical coverage for Function Block Diagrams. In our previous work
[11] we have defined a model-based test generation method tailored for Function Block
Diagram programs and demonstrated how to use the UPPAAL tool for model check-
ing the implementation in order to ensure compliance to quality requirements including
unit testing. As a consequence of these results we have developed our own tool chain
called MOS [10] to support both a model and search-based testing approach which can
include specific coverage measurements. The criteria in this paper is based on our pre-
vious work and is an attempt to automatically compute logic coverage using a model
checker for Function Block Diagrams.

10 Conclusion

In this paper we have shown how test case generation for ensuring logic coverage on
Function Block Diagrams can be solved as a model-checking problem, such that model-
checking tools are automatically creating traces which can be transformed to test cases.
We show how logic coverage criteria can be formalized and used by a model-checker to
provide test cases. The results show that model checking scales well for handing logic
coverage and we suggest a general approach for handling tests to cover the structure of
the implementation model. The method is supported by a tool chain that can be used
to produce relevant test cases. We are currently investigating this approach on a larger
case study. In addition, we want to extend the evaluation to measure both efficiency and
effectiveness of our approach.

Acknowledgments. The authors would like to thank Elaine Weyuker and Thomas Os-
trand for their valuable comments on this work. This research was supported by VIN-
NOVA, the Swedish Governmental Agency for Innovation Systems within the ATAC
project.

References

1. Alur, R.: Timed Automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS,
vol. 1633, pp. 8–22. Springer, Heidelberg (1999)

2. Alur, R., Dill, D.: Automata for Modeling Real-time Systems. In: Automata, Languages and
Programming, pp. 322–335 (1990)

3. Ammann, P., Black, P.E., Ding, W.: Model Checkers in Software Testing. In: NIST-IR 6777,
National Institute of Standards and Technology Report (2002)

4. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University Press
5. Ammann, P., Offutt, J., Huang, H.: Coverage Criteria for Logical Expressions. In: 14th In-

ternational Symposium on Software Reliability Engineering, pp. 99–107. IEEE (2003)
6. Baresi, L., Mauri, M., Monti, A., Pezze, M.: PLCTools: Design, Formal Validation, and Code

Generation for Programmable Controllers. In: IEEE International Conference on Systems,
Man, and Cybernetics, vol. 4, pp. 2437–2442. IEEE (2000)

16 E.P. Enoiu, D. Sundmark, and P. Pettersson

7. Black, P.: Modeling and Marshaling: Making Tests from Model Checker Counter-examples.
In: Proceedings of the 19th Digital Avionics Systems Conference, vol. 1, pp. 1B3–1. IEEE
(2000)

8. da Silva, L.D., de Assis Barbosa, L.P., Gorgônio, K., Perkusich, A., Lima, A.M.N.: On the
Automatic Generation of Timed Automata Models from Function Block Diagrams for Safety
Instrumented Systems. In: 34th Annual Conference of IEEE Industrial Electronics, pp. 291–
296. IEEE (2008)

9. Doganay, K., Bohlin, M., Sellin, O.: Search Based Testing of Embedded Systems Imple-
mented in IEC 61131-3: An Industrial Case Study. In: International Conference on Software
Testing, Verification and Validation Workshops. IEEE (March 2013)

10. Enoiu, E.P., Doganay, K., Bohlin, M., Sundmark, D., Pettersson, P.: MOS: An Integrated
Model-based and Search-based Testing Tool for Function Block Diagrams. In: International
Conference on Software Engineering Workshops. IEEE (May 2013)

11. Enoiu, E.P., Sundmark, D., Pettersson, P.: Model-based Test Suite Generation for Function
Block Diagrams using the UPPAAL Model Checker. In: International Conference on Soft-
ware Testing, Verification and Validation Workshops. IEEE (April 2013)

12. Fraser, G., Wotawa, F., Ammann, P.E.: Testing with Model Checkers: a Survey. Journal on
Software Testing, Verification and Reliability 19, 215–261 (2009)

13. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.: Testing Real-
time Systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST.
LNCS, vol. 4949, pp. 77–117. Springer, Heidelberg (2008)

14. Hessel, A., Larsen, K.G., Nielsen, B., Pettersson, P., Skou, A.: Time-Optimal Real-Time Test
Case Generation Using UPPAAL. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS,
vol. 2931, pp. 114–130. Springer, Heidelberg (2004)

15. Hong, H.S., Lee, I., Sokolsky, O., Ural, H.: A Temporal Logic-Based Theory of Test Cover-
age and Generation. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp.
327–341. Springer, Heidelberg (2002)

16. Jee, E., Kim, S., Cha, S., Lee, I.: Automated Test Coverage Measurement for Reactor Pro-
tection System Software Implemented in Function Block Diagram. In: Schoitsch, E. (ed.)
SAFECOMP 2010. LNCS, vol. 6351, pp. 223–236. Springer, Heidelberg (2010)

17. Lakehal, A., Parissis, I.: Lustructu: A Tool for the Automatic Coverage Assessment of Lustre
Programs. In: International Symposium on Software Reliability Engineering, p. 10. IEEE
(2005)

18. Öhman, M., Johansson, S., Årzén, K.E.: Implementation Aspects of the PLC standard IEC
1131-3. Journal on Control Engineering Practice 6, 547–555 (1998)

19. Rayadurgam, S., Heimdahl, M.P.E.: Generating MC/DC Adequate Test Sequences Through
Model Checking. In: NASA Goddard Software Engineering Workshop Proceedings, pp. 91–
96. IEEE (2003)

20. Rayadurgam, S., Heimdahl, M.P.E.: Coverage Based Test-Case Generation using Model
Checkers. In: International Conference and Workshop on the Engineering of Computer Based
Systems, pp. 83–91. IEEE (2001)

21. Richter, S., Wittig, J.U.: Verification and Validation Process for Safety IC Systems. Nuclear
Plant Journal 21, 36 (2003)

22. Soliman, D., Thramboulidis, K., Frey, G.: Function Block Diagram to UPPAAL Timed Au-
tomata Transformation Based on Formal Models. Information Control Problems in Manu-
facturing 14(1), 1653–1659 (2012)

Automatic Grammar-Based Test Generation

Hai-Feng Guo1 and Zongyan Qiu2

1 Department of Computer Science, University of Nebraska at Omaha, USA
haifengguo@unomaha.edu

2 Department of Informatics, Peking University, Beijing 100871, P.R. China
qzy@math.pku.edu.cn

Abstract. In this paper, we present an automatic grammar-based test generation
approach which takes a symbolic grammar as input, requires zero control input
from users, and produces well-distributed test cases. Our approach utilizes a novel
dynamic stochastic model where each variable is associated with a tuple of prob-
ability distributions, which are dynamically adjusted along the derivation. The
adjustment is based on a tabling strategy to keep track of the recursion of each
grammar variable. We further present a test generation coverage tree illustrating
the distribution of generated test cases and their detailed derivations, more impor-
tantly, it provides various implicit balance control mechanisms. We implemented
this approach in a Java-based system, named Gena. Experimental results demon-
strate the effectiveness of our test generation approach and show the balanced
distribution of generated test cases over grammatical structures.

1 Introduction

Grammar-based test generation is especially useful on testing applications which re-
quire structured data as inputs, such as data conversion tools and compilers [7,3], and
those which response to well-ordered external events, such as reactive systems [18],
VLSI circuit simulator [14], and software product line [1]. One common setting of these
applications is using a context-free grammar (CFG) to describe the input structures for
the systems. However, even though grammar-based test generation has been introduced
since early 1970s [5] and has played important roles in software development and test-
ing [9,3], it is well known that without extra control mechanisms, naive grammar-based
test generation has never become practical due to the facts that exhaustive test produc-
tion is often explosive and its testing coverage is often quite unbalanced.

Prior work on grammar-based test generation mainly fall into the following two ap-
proaches: stochastic or annotating. The stochastic approach [13,15,19] randomly select
production rules for derivation based on their pre-assigned probabilities. Practically,
a test case may easily blow out – becoming infinitely long – even if it is suggested
that the probabilities of non-recursive production rules should be much higher than
those of recursive rules [13] to avoid an infinite recursion [15]. Hence, other constraints
(e.g., length control), heuristics, or hints are often required to make sure the termination
of generating test cases. The lava tool [19] takes a production grammar as well as a
seed, which consists of a high-level description that guides the production process, to
generate effective test suites for Java virtual machine.

H. Yenigün, C. Yilmaz, and A. Ulrich (Eds.): ICTSS 2013, LNCS 8254, pp. 17–32, 2013.
c© IFIP International Federation for Information Processing 2013

18 H.-F. Guo and Z. Qiu

The annotation approaches [10,11,7] become much popular recently. Geno [11],
a C#-based test data generator, takes a hybrid between EBNF and algebraic signa-
tures, where combinatorial control parameters are specified, to approximately achieve
expected full combinatorial coverage. YouGen [7] supports many extra-grammatical an-
notations which guide effective test generation, and uses a generalized tag form of pair-
wise testing [20]. However, embedding tags into a grammar to control its production is
not only a burden on users, but may be still difficult to get expected test cases.

In this paper, we present an automatic grammar-based test generation approach which
takes a symbolic CFG [12] as an input, requires zero annotation, and produces well-
distributed test cases for testing. Symbolic terminals are adopted to hide the complexity
of different terminal inputs which share syntactic as well as expected testing behav-
ior similarities. Our approach utilizes a novel dynamic stochastic model where each
variable is associated with a tuple of probability distributions, which are dynamically
adjusted along with the derivation. The more a production rule has contributed to self-
loops while generating a test case, the significantly less probability the same rule will
be applied in the future. To achieve the dynamic adjustment, we use a tabling strat-
egy [4] to keep track of re-occurrences of grammar variables. The tuple associated with
a grammar variable records the degrees of recursion caused by each of its rules. These
tuples eventually determine the probability distribution of selecting a next rule for fur-
ther derivation. We further use a test generation coverage tree, where each path from
the root to a leaf node corresponds to a generated test case. Not only does the tree
show the distribution of test cases and how each of them has been generated, but it also
contains implicit balance control mechanism based on local probability distribution on
each node.

We implemented the proposed test generation algorithm in a Java-based tool Gena,
which takes a symbolic grammar and a number, the total number of test cases to request,
as inputs, and automatically produces a set of test cases with test requirements and a
test generation coverage tree. Experimental results demonstrate the effectiveness of our
test generation approach, and indicate the balanced distribution of generated test cases
over grammatical structures.

The rest of the paper is organized as follows. Section 2 introduces the grammar-based
test generation. Section 3 presents our dynamic stochastic approach as well as a tabling
strategy to keep track of recursion. Section 3.2 illustrate how a dynamically growing test
generation coverage tree maintains its local probability tuples on each node to balance
test generation distribution, followed by detailed algorithms and termination properties.
Section 4 and Section 5 present a Java-based implementation and our experimental
results, respectively. Conclusions and discussions are given in Section 6.

2 Grammar-Based Test Generation

A CFG is represented as a four-tuple G = (V, T, S, P), where V is a set of variables
(or non-terminals), T is a set of terminals, S is the start variable, and P is a set of
production rules in the form of A ::= x, where A ∈ V and x ∈ (V ∪T)∗. Given a CFG
G, automatic test generation is typically done by simulating the leftmost derivation from
its start variable S.

Automatic Grammar-Based Test Generation 19

2.1 Symbolic Terminal

We first introduce a notation of symbolic terminals [12], which are adopted to hide
the complexity of different terminal inputs which share syntactic similarities as well as
similar expected testing behaviors. A symbolic terminal, highlighted by a pair of square
brackets, is an abstract notation for a finite domain, which is represented as an ordered
sequence of individual atoms or a bound form Lower..Upper, where Lower is smaller
than or equal to Upper in their lexicographic order. We treat a symbolic terminal as
a regular terminal except that it returns a random element within the defined domain
whenever a symbolic terminal is seen during derivation.

Example 1. Consider the following CFG:

E ::= [N] | E + E | E − E [N] ::= 1..100

where [N] is a symbolic terminal. An example of test generation based on leftmost
derivation would be as follows:

E ⇒ E+E ⇒ E−E+E ⇒ [N]−E+E ⇒ [N]− [N]+E ⇒ [N]− [N]+[N].

2.2 A Penalty Maze

In fact, generating a terminal string acts like getting out a penalty maze, which is not
only a confusing intricate network of passages, but also a network with many self-loops;
and those self-loop passages, once taken, would magically make the maze bigger and
harder to find an exit.

Consider Example 1 again, where the variable E has two double-recursive rules. As
shown in Table 1, the start variable E is similar to the beginning of a maze; the leftmost
derivation, like navigating a penalty maze, is actually a procedure finding each variable
in the current derived string a terminal, like a segmented exit in a penalty maze. The
more variables in a current derived string, the more challenges – each variable needs to
become terminal – for a leftmost derivation to generate a terminal string.

Derived String Probability of
becoming terminal

E 1/3

⇒ E + E 1/3 ∗ 1/3 = 1/9

⇒ E − E + E 1/3 ∗ 1/3 ∗ 1/3 = 1/27

· · · · · ·

Fig. 1. A penalty maze

Figure 1 shows how fast the probability, for
a derived string to become terminal instantly,
could drop as a leftmost derivation moves on.
Each occurrence ofE has a probability, 1/3, to
become a terminal instantly since E has only
one terminal rule out of three rules. However,
as the derivation moves on, the number of E’s
expands much faster than they become termi-
nal. It is in nearly two-third probability that a
naive grammar-based test generation will blow

out generating a single terminal string of E due to non-termination.

Example 2. Consider a grammar for a subset of arithmetic expressions as follows:

E ::= F | E + F | E − F F ::= T | F ∗ T | F/T
T ::= [N] | (E) [N] ::= 1..1000

20 H.-F. Guo and Z. Qiu

The grammar has only one terminal exit, E ⇒ F ⇒ T ⇒ [N], but the rest are full of
recursive rules. Moreover, direct recursions (e.g, E ⇒ E + F) are even entangled with
indirect one (e.g., E ⇒ T ⇒ (E)), which makes static analysis difficult. For example,
without runtime information, it is difficult to tell whether the production rule E ::= F
is going to be recursive or not due to the possibility of indirect recursion.

It is a common phenomenon getting into infinite recursion during grammar-based test
generation due to the recursive natures of a CFG. Hence, it is really challenge getting
out of a penalty maze, so is generating a terminal string.

3 A Dynamic Stochastic Approach

The essential problem in grammar-based test generation is how to generate a termi-
nal string without getting lost in a “penalty maze”. Our approach utilizes a novel dy-
namic stochastic model where each variable is associated with a tuple of probability
distributions, which are dynamically adjusted along the derivation. When a variable is
encountered during left-most derivation, it applies one of its defined production rules
stochastically, based on the tuple of probability distribution among those rules. Then the
key problem is how to dynamically adjust the probability distribution so that a test gen-
erator is able to avoid keeping getting into loops with potential explosive “penalties”.
The general principles, for a dynamic stochastic model to satisfy, are:

– initially, the probability distribution allows a variable to have an equal chance to
apply different defined production rule;

– as a derivation moves on, since the probability of generating a terminal string could
become low in a dramatic speed (see the example in Figure 1), it has to be effec-
tively fast pushing derivations to applying non-recursive rules;

– the generated terminal tests are evenly distributed over the grammatical structures
of the given CFG; in other words, every terminal test may have a good chance to
be generated as long as the total requested number of test cases is sufficiently big.

3.1 A Tabling Strategy

We present a tabling strategy to detect derivation loops and eventually achieve dynamic
probability distribution. Tabling has been extensively used in logic programming [21,4],
where it successfully resolves lots of termination issues by detecting re-occurrences of
recursively defined predicates at runtime in an automatic way.

In grammar-based test generation, we introduce a global data structure table, where
each grammar variable has a tuple entry, initially all 1’s, recording the degrees of recur-
sion caused by each of its defined production rules at runtime, and the size of a tuple is
determined by the number of its defined production rules.

Definition 1. Given a CFG G = (V, T, S, P), where E is a variable in V and R is a
production rule of E, we say that R causes a recursion of E, if there exists a leftmost
derivation of E in a form of

E
R
=⇒ ω

∗
=⇒ αEβ,

Automatic Grammar-Based Test Generation 21

where
R
=⇒ is a single derivation applying the rule R, ω ∈ (V ∪ T)∗, α ∈ T ∗, β ∈

(V ∪T)∗, and there is no other leftmost occurrence of a variable E during ω
∗

=⇒ αEβ.

Such a caused recursion is dynamically detected by maintaining a derivation stack
that tracks whether a variable leads to a self-loop during its leftmost derivation. Once a
recursion of E, caused by a defined rule R, is detected, the degree tuple of E will be
adjusted by doubling the degree of recursion associated with the contributing grammar
rule R. We say such an adjustment a double strategy.

The main purpose of maintaining a table of degree tuples is determining a dy-
namic probability distribution for selecting a next production rule. Given a degree tuple
(d1, d2, · · · , dn), where n ≥ 1 is the number of rules for a variable, its corresponding
probability distribution (p1, p2, · · · , pn) is determined as follows:

pi =
wi

T
, where wi =

d1
di

and T =

n∑
i=1

wi.

vars deg. tuple probabilities

E (1, 1, 1) (.33, .33, .33)

F (1, 1, 1) (.33, .33, .33)

T (1, 1) (.5, .5)

Fig. 2. Initial degree/prob

We introduce a probability weight wi, which is
a ratio showing the relative degrees of the first rule
over the i-th production rule. Hence, the probability
weight w1 is always 1, while other weight wi, i > 1,
may drop below 1 if the i-th rule causes more re-
cursions than the first rule does; otherwise, wi ≥ 1.
Thus, the initial table for the grammar in Example 2

is given in Figure 2.

derivation tuple of E probabilities

E (1, 1, 1) (.33, .33, .33)

⇒ E + F (1, 2, 1) (.4, .2, .4)

⇒ E − F + F (1, 2, 2) (.5, .25, .25)

⇒ E + F − F + F (1, 4, 2) (.57, .14, .29)

⇒ T + F − F + F (1, 4, 2) (.57, .14, .29)

⇒ (E) + F − F + F (2, 4, 2) (.4, .2, .4)

⇒ (E + F) + F − F + F (2, 8, 2) (.44, .11, .44)

· · · · · · · · ·

Fig. 3. Dynamic Probability Distribution

Dynamic probability distri-
bution is shown in Figure 3 as
the double strategy pushes the
derivation to choose the exit rule
of E at runtime. Note that when
the leftmost variable T is de-
rived to (E), the tabling strategy
will detect this indirect recur-
sion caused by the rule E ::= F ,
and then apply the double strat-
egy to adjust its degree of recur-
sion from 1 to 2; at this point,
the degree tuple of T remains (1, 1). However, as the derivation continues, only when
another T is seen as a leftmost variable, the degree of tuple of T will then be updated
to (1, 2) due to its indirect recursion, leaning the derivation of T toward its exit rule.

The more a production rule has contributed to self-loops while generating a test case,
the significantly less probability the same rule will be selected in the future due to the
double strategy. Note that our tabling strategy detects a self-loop by actually seeing a
same variable during its own derivation, instead of by selecting a potential recursive
rule; therefore, a non-recursive rule, no matter how many times it has been applied, its
corresponding degree of recursion will not be doubled. Our tabling strategy, incorpo-
rated with the double adjusting strategy, provides an effective approach to solving the
“penalty maze” challenges.

22 H.-F. Guo and Z. Qiu

3.2 A Coverage Tree

Our approach ensures that the test case generator will generate a terminal string. Once
a terminal string has been successfully generated, all the degree tuples in the global
table will be reset to 1’s for next test case generation. The next problem is that how to
generate test cases in a balanced coverage distribution on given CFG structures.

Fig. 4. A Coverage Tree on Example 1

We present a test generation cov-
erage tree, a coverage tree in short,
to show the distribution of generated
test cases and how each of them are
generated. Figure 4 shows a cover-
age tree, generating five different test
cases based on the CFG in Example 1.
Each node in a coverage tree con-
tains an intermediate derived string,
starting from a leftmost variable, and
a local probability tuple for the left-
most variable. Each label along the
transition from a parent node to a
child node, if any, shows a leftmost
terminal substring derived from the
parent node, where the rest derived
substring, beginning with a leftmost
variable, is shown in the child node.
Thus, each path from the root to a leaf
node corresponds to a complete left-
most derivation generating a test case,
where each transition corresponds to
a derivation step, and a leaf node, rep-
resented by a little gray box, denotes
the completion of a leftmost deriva-
tion. A coverage tree always starts
with a root node containing the start

variable of a CFG.
Not only does a coverage tree show the distribution of generated test cases and each

detailed derivation step, but it also contains implicit balance control mechanism based
on the local probability tuple on each tree node. Consider the coverage tree in Figure 4.
When a new node is created with an intermediate string whose leftmost variable is E,
its local probability tuple is calculated based on the current degree tuple of E stored in
the global table. For example, when the root node E in Figure 4 was initially created,
its local probability tuple is (0.33, 0.33, 0.33), which tells that at this point, each of the
three possible derivation branches has equal probability. The test generator will take
one branch stochastically based on the local probability, to continue a test generation.

Once a derivation branch has been fully explored for test generation, its local prob-
ability tuple will be adjusted dynamically for future test generation. See the present
status of the root node E in Figure 4, its local probability tuple has been updated to

Automatic Grammar-Based Test Generation 23

(0.00, 0.50, 0, 50); that is because the first branch, corresponding to the rule E ::= [N],
has been fully explored. Therefore, the probability of the first branch will be set to 0,
and the remaining probabilities on the same node will be adjusting accordingly.

In Figure 4, even though there is only a single variableE, and all the local probability
tuples are used to direct the derivation of E’s, probability tuples in different nodes are
quite different. That is mainly because each local probability tuple is like a snapshot of
the degree tuple of E in the global table when the hosting node is created, while the
degree tuple dynamically changes during a test generation.

Example 3. Consider the coverage tree with 10 generated test cases in Figure 5, given
the following symbolic grammar:

E ::= [N] | F − F | E + F F ::= [N] ∗ [N] | [N] [N] ::= 1 .. 100

Example 3 gives a better idea how complete branches will shift probabilities to in-
complete branches, thus pushing future test generation to other unexplored parts. As a
result, our test generation algorithm, based on a dynamic stochastic approach as well as
a test generation coverage tree for implicit balance control, guarantees that every gen-
erated test case is structurally different as long as the given grammar is unambiguous.
The coverage tree expands as more test cases are generated.

Fig. 5. A Coverage Tree on Example 3

24 H.-F. Guo and Z. Qiu

Note that the starting position of each transition tells which production rule to apply.
If a transition starts from a second probability number, it is implied applying the second
corresponding production rule for derivation. We use a gray box to denote a complete
node, all of whose branches have been completely explored.

3.3 Algorithms

This subsection presents a complete algorithm for our dynamic stochastic model, in-
cluding the tabling strategy and a coverage tree construction. To support the tabling
strategy, we use a derivation stack, which dynamically maintains an ancestor relation
among the grammar variables to detect self-loops during derivation. Next, we outline
the basic supported functionalities for a derivation stack, a global table supporting the
tabling strategy, and a coverage tree node, respectively.

Definition 2. Following the same convention as Definition 1, let E1 and E2 be two
different occurrences of a variable E, we say E1 is an ancestor of E2 if there exists a
leftmost derivation as follows:

E1
Ri=⇒ ω

∗
=⇒ αE2β,

where Ri, the i-th production rule of E, is the cause of recursion. If there is no other
leftmost occurrence of a variable E during ω

∗
=⇒ αE2β, we say E1 is the least

ancestor of E2.

The derivation stack contains entries in a form of pair, (E, i), which corresponds to a
derivation step of a variable E by applying its i-th production rule. Note that the index
i begins from 1. Following methods for the stack are provided:

– void push(E, i): push a pair (E, i) into the derivation stack;
– void pop(): pop out a pair (E, i);
– int leastAncestor(E): given a variable E, leastAncestor(E) returns an integer i; if
i ≥ 1, it means that there exists a pair entry (E, i) in the stack, that is, a self-loop
detected; otherwise, i = 0, which tells no occurrences of E in the current stack.

The global table is used for storing and retrieving the dynamic degree tuples for each
variable, which supports the following methods:

– void reset(): set for each variable a degree tuple with all 1’s.
– Degree-Tuple get(E): return the degree tuple of E in the table;
– void doubleDegree(E, i): double the ith-degree entry of E.

A coverage tree is gradually constructed during a test generation, and further ex-
panded as more test cases are generated. A coverage tree node, containing a derived
substring, which always starts with a variable if non-empty, and a probability tuple.
The tree supports the following methods:

– Node newChild(i, str): create the i-th child node, set str as the child’s derived sub-
string, and return the child node; if str is an empty string, the child node will be
automatically a compete node.

Automatic Grammar-Based Test Generation 25

– Node childAt(i): return the i-th child node if already exists; otherwise, null is
returned.

– void setProbFromDTuple(t): transform a degree tuple t into a probability tuple, and
then set the probability tuple into the node;

– void setZeroProbability(i): set the i-th probability 0, and adjust the rest of probabil-
ities accordingly to make sure that the sum of all probabilities equals to 1, except
that all probabilities have been set 0, that is, the node has been fully explored.

– bool isComplete(): check whether the node has been fully explored or has an empty
derived substring.

– int chooseByProbability(): return a random index of production rule based on the
probability distribution in the node.

Algorithm 1. Generating A Test Case
1: Global: symbolic grammar G = (V, T, S, P), table TABLE , and derivation stack DS
2: Input: a dummy node root for the coverage tree
3: Output: a test case
4: function TESTGENERATION(root)
5: DS← an empty stack � initialize the derivation stack
6: TABLE.reset() � initialize the global TABLE
7: return DERIVATION(root, 1, “S”, “”)
8: end function

Algorithm 1 shows a main procedure, TESTGENERATION, on how to generate a new
test case, given a dummy root node for a coverage tree. We give a dummy root node
outside the test case generation procedure, so that it can use a same coverage tree for
generating as many test cases as users expect. The procedure starts with creating an
empty derivation stack and initializing the global TABLE for simulating a new leftmost
derivation, which is implemented in a recursive function, named DERIVATION.

Algorithm 2 shows how a leftmost derivation has been implemented by applying a
dynamic stochastic model. Assuming that a string, str, has been derived from a parent
node, pNode, in the coverage tree by applying i-th production rule of the leftmost vari-
able in pNode, the function DERIVATION takes the four-tuple as an input, prepares to
create a child node holding str, and then continue the derivation from the child node
recursively until str is empty (lines 5-7).

If the derived string, str, starts with a variable E (line 8), we first checks whether
there exists a least ancestor of E in the derivation stack; if that is the case (lines 10-12),
we apply the double strategy to increase its associated degree of recursion. Secondly,
we create the i-th child node cNode, if not existing yet, to hold str and a corresponding
probability tuple based on its latest degree tuple of E (line 13-17). We then choose a
production rule (e.g., a j-th rule E ::= α) of E randomly based on the local probability
distribution of cNode, and push a pair (E, j) into the derivation stack for future self-
loop detection (line 18-19). To find out when the substring α will become completely
terminal, we insert a special symbol � as an indicator right after the substring α in
the derived string (lines 20-22). The pair (E, j) will be popped only after the derived
substring α has become completely terminal (lines 29-31), that is, when the indicator
“ � ” becomes the leftmost symbol of str (line 29). After a recursive call, in line 22,

26 H.-F. Guo and Z. Qiu

Algorithm 2. DERIVATION: Core Algorithm
1: Global: symbolic grammar G = (V, T, S, P); table TABLE, and derivation stack DS
2: Input: a coverage tree parent node, pNode; the index of a next rule to apply, i; a derived

substring, str; and a label on the transition from the parent node to a child node, label
3: Output: a partial or complete test case
4: function DERIVATION(pNode, i, str, label)
5: if (str is an empty string) then � end of a derivation
6: pNode.newChild(i, “”) � a complete node
7: return label
8: else if (str is in form of Eβ) then � E ∈ V , β ∈ (V ∪ T)∗

9: int k ← DS.leastAncestor(E)
10: if (k ≥ 1) then � self-loop detected
11: TABLE.doubleDegree(E,k) � Double Strategy
12: end if
13: Node cNode ← pNode.childAt(i)
14: if (cNode is null) then � expanding the tree
15: cNode ← pNode.newChild(i, Eβ)
16: cNode.setProbFromDTuple(TABLE.get(E))
17: end if
18: int j ← cNode.chooseByProbability()
19: DS.push(E, j) � critical to track self-loop
20: Let E ::= α be the j-th production rule of E
21: str ← α+ “ � ” + β � special symbol � is an indicator to pop (E, j)
22: String rLabel ← DERIVATION(cNode, j, str, “”)
23: if (cNode.isComplete()) then
24: pNode.setZeroProbability(j)
25: end if
26: return label+ rLabel � + is concatenation
27: else if (str is in form of aβ) then � a ∈ T, β ∈ (V ∪ T)∗

28: return DERIVATION(pNode, i, β, label + “a”)
29: else if (str is in form of “ � ”β) then � β ∈ (V ∪ T)∗, str leads with �
30: DS.pop() � paired with push operations
31: return DERIVATION(pNode, i, β, label)
32: end if
33: end function

processing further derivation from cNode, lines 23-25 check whether a child node has
been completely explored, if so, the information will be propagated to its parent node
by adjusting its local probability distribution. A generated test case is the concatenation
of all labels from the dummy root node to a leaf node where str becomes empty.

3.4 Termination

Our dynamic stochastic approach almost surely [8] guarantees the termination of a sin-
gle test case generation, as long as a proper symbolic CFG is given, where a symbolic
CFG is said to be proper, if it has

– no inaccessible variables: ∀E ∈ V, ∃α, β ∈ (V ∪Σ)∗ : S
∗⇒ αEβ;

– no unproductive variables: ∀E ∈ V, ∃ω ∈ Σ∗ : E
∗⇒ ω.

Automatic Grammar-Based Test Generation 27

Let E be a variable in a given symbolic CFG, R be a recursive rule of E, and n be the
number of times that R has been applied to cause its own recursions. Assuming that E
has only two rules, R and a non-recursive one, we have (1, 1) as the initial degree tuple
of E; and (2n, 1) will be degree of tuple after n applications of R. Thus, the probability
of choosing R in the next derivation of E, P (R, n) = 1

2n /(1 +
1
2n), and we have

lim
n→∞P (R, n) = lim

n→∞

1
2n

1 + 1
2n

= lim
n→∞

1

2n
= 0

If a variable E contains more than two production rules, the probability drops even
faster. On the other hand, the probability that a derivation will take terminal exits ap-
proximates to 1 infinitely as the derivation gets deeper and deeper. One say that an event
happens almost surely if happens with probability one in probability theory [8].

4 Gena – A Java Implementation

In this section, we present Gena, a Java-based implementation of an automatic grammar-
based test generator. Its system overview is illustrated in Figure 6.

Fig. 6. Gena – a system overview

Gena, requiring zero annotation from users, takes inputs a symbolic grammar and
how many test cases to request, and produces well-distributed test cases as well as a
coverage tree showing the distribution of test cases along with their detailed leftmost
derivation. Our test generator utilizes a novel dynamic stochastic model and local con-
trol mechanisms to maintain balanced distribution of test cases; and the distribution is
demonstrated in a coverage tree.

Note that the graphical representation of a coverage tree, as seen in Figure 4 and
Figure 5, is automatically produced by Gena along with the test generation.

4.1 Implicit Control Mechanisms

Even though Gena requires zero control from users, it implicitly enables various useful
control mechanisms through the implementation of tabling, double strategy, and cov-
erage tree maintenance, while in Geno [11], those control mechanisms are defined by
users. We introduce some typical control mechanisms as follows:

Depth Control: Due to our double strategy, Gena always puts high penalty on the
rules causing recursion, which brings about a low probability distribution to the recur-
sive rules. As a result, when generating multiple test cases, Gena tends to generate test

28 H.-F. Guo and Z. Qiu

cases in an order, not strictly, from short to long ones; and in terms of the coverage tree,
it will be explored from shallow towards deep as more test generations are requested.

Recursion Control: Our tabling strategy, utilizing a derivation stack, detects causes
of recursion, and then applies the double strategy to put exponentially increased penalty
on the recursive rules. Based on probability theory, it will almost surely push derivation
to stay away from those recursive rules eventually.

Balance Control: Incorporated with the double strategy for recursion control and
complete nodes detection for local probability adjustment, Gena does not only avoid
non-terminating recursion, but also work along the derivation in an evenly distributed
way. It is extremely important that if a grammar has multiple recursive rules, each recur-
sive rule under a same variable is explored with similar probabilities. Also, due to com-
plete nodes detection, Gena guarantees that every generated test case is structurally
different in terms of grammar structures, as long as the grammar is unambiguous.

Construction Control: With such a coverage tree, it is easy to extend Gena with cus-
tomized constraint controls. For example, users could specify the lengths of expected
test cases, or specify the quantitative data constraints; both specifications can be eas-
ily supported by incorporating constraints as part of coverage nodes, so that the test
generator will only explore those tree parts where constraints are satisfied.

4.2 Structural Test Case Requirements

A test case generated automatically often comes with a set of test requirements, so that
when the test case is used in software testing, we know what features of a system have
been tested. Test requirements are also critical to the areas of test cases minimization,
selection and prioritization, serving as comparison criteria [22]. For example, in auto-
mated model-based test case generation where test cases are typically generated based
on a data flow model, definition-use pairs of variables [6] in a program are popularly
identified as test requirements serving as effective reduction criteria.

Gena generates a test case as well as an associated set of structured test requirements.
It breaks each complete derivation path, from the root node to a leaf one in a coverage
tree, into small basic components which represent structural patterns of the generated
test case. For example, consider the Figure 4. The rightmost path in the coverage tree
corresponds to a generated expression:

[N] + [N]− [N] + [N]− [N]− [N],

where each [N] is automatically substituted with a random integer from its domain
during the generation. Its associated set of test requirements, produced by Gena, is
{E3E2E1, E3E2E3E1, E1}. Each test requirement is actually a structural input pat-
tern which consists of a sequence of production rule indices, denoting a leftmost deriva-
tion sub-sequence starting from a leftmost variable E until a terminal symbol is seen at
the leftmost while deriving E.

For example, E3E2E1 represents a segment of derivations starting from the root,
where the leftmost system is the variable E. The derivation moves on by first applying
the third production rule of E, followed by applying a second rule of E and a first
rule of E in order, until the leftmost symbol in the derived string becomes a terminal

Automatic Grammar-Based Test Generation 29

Table 1. Among 1000 generated expressions

Operators Total Frequencies

+ 2149

− 2162

∗ 4452

/ 4472

() 1823

[N] : a random integer 14235

Table 2. Among 2000 generated program code

Keywords Total Frequencies

:= 3353

print 3554

if-then 2116

if-then-else 1693

while 2099

repeat 1829

[N] (shown in a label “[N]+”). The other two terms E3E2E3E1 and E1 are similar,
representing the segments of derivations following that of E3E2E1. Figure 7, using
a standard derivation tree for the generated expression, shows that each requirement
actually corresponds to a lefty tree showing nested structural information.

Fig. 7. Lefty Subtrees

We believe that each test case may contain some
structural patterns which could be possibly linked
to potential failures of software under test. These
structural test requirements could serve as testing
coverage measurement criteria for test case mini-
mization, selection and prioritization, especially in
data-intensive or data-critical applications.

5 Experimental Results

We have carried out some experiments to measure
how balanced the test cases generated by Gena
over grammar structures, and tried some related
applications.

5.1 Balance Results

Table 1 shows a statistic report among the first 1000 generated arithmetic expressions
by Gena, given a symbolic grammar in Example 2. By comparing the total frequencies
among operators, we measure how balanced in overall among test case generation. (1)
The total frequencies of the operators + and − are close, which indicates the balanced
distribution between two recursive rules under the same variable E; similar reasons
apply on the frequency observation between ∗ and /. (2) The total frequency of +, an
operator at the production rule of E, is about half lower than the total frequency of ∗, an
operator at the level of F . This observation makes sense because every single + and −
involved in the derivation introduces an extra F variable into a derived string, and every
F may possibly derive multiple ∗ or / operators. Similar reasons for the observation
that the frequency sum of () and [N] is almost double than the sum of ∗ and /. (3)
The total frequency of () is much lower than [N] due to the reasons that the indirect
recursion caused by T ::= (E); and the majority of T derivation takes the terminal rule
T ::= [N] due to unbalanced probability distribution caused by our double strategy.

30 H.-F. Guo and Z. Qiu

We further tested Gena on a symbolic grammar for a pascal-like program code. The
grammar, containing 34 production rules and 13 variables, is partially shown below:

P ::= K. K ::= begin C end C ::= S;C | S
S ::= I := E | if (B) then S | if (B) then S else S |

K | while (B) do S | repeat C until (B) | print E
· · ·

Table 2 shows a statistic report among the first 2000 generated programs by Gena.
Here we compare the total frequencies of keywords to measure how balanced in overall
among generated cases in a more complicated grammar setting, where all those listed
keywords are distributed in the production rules of S. (1) The observation, that the fre-
quencies of keywords := and print are similar, justifies the even probability distribution
among terminal rules if multiple ones exist. (2) The frequencies of if-then and while are
less than that of print because a single recursion of S is involved in both statements.
(3) The frequency of if-then-else is lower than that of if-then because if-then-else con-
tains a double recursion, which results in double penalties in the dynamic probability
distribution. (4) Interestingly, the frequency of repeat is between those of if-then and
if-then-else because the derivation of C in the repeat statement may result in a single
recursion (if C ::= S is applied), or a double recursion (if C ::= S;C is applied).

5.2 A Grading System

We have implemented an automatic grading system for Java programs, based on our
test case generator, Gena. Consider a Java programming assignment which takes an
infix arithmetic expression as an input string, performs stack operations to convert the
input into a postfix expression, and finally returns a number by calculating the postfix
expression. We use a correct program to calculate the expected results for each gener-
ated expression, and compare the result with the one returned from each submission.

Table 3 shows grading results on 14 Java program submissions, by running 1000 dif-
ferent arithmetic expressions generated by Gena. The second column shows the ratios

Table 3. Grading Results

ratio failure-inducing patterns Possible Causes
1 14% {-+, //, /*, --, */} right-associativity
2 78% {()} parenthesis not properly handled
3 100% {}
4 2% {+, -, /, *, ()} not working at all
5 9% {*/, /-, *-, *+, /*, //, /+, -+, --} right-associativity; operator precedence ignorance
6 6% {*/, /-, *-, *+, /*, //, /+, +/, --, -/} right-associativity; operator precedence ignorance
7 53% {*/} [N] ∗ [N]/[N]
8 100% {}
9 68% {-*-, -*+, -/-, -/+} partial operator precedence ignorance

10 100% {}
11 14% {*/, //, -+, --, /*} right-associativity
12 54% {/-, *-, *+, /+} operator precedence ignorance
13 4% {/, *, -, +} operators not supported
14 10% {*/, /*, //, -+, (), --} right-associativity and parenthesis problem

Automatic Grammar-Based Test Generation 31

of correctness for each submission. For example, the first submission performs correctly
on 14% of the 1000 test cases. The third column demonstrates common failure-inducing
patterns for each submission; and the last column gives typical causes on processing
arithmetic expressions.

The Gena-based grading system frees users from constructing test cases manually
and worrying about their coverage. The grading system is able to find out significant
number of failing test cases on those Java programs, which lays important founda-
tion for further program fault localization. The failure-inducing patterns, extracted from
those test requirements associated with failing test cases, contain clear clues for under-
standing root causes of software testing failure. Due to space limitation, we will have
to leave details of our Gena-based fault localization in our future work.

6 Conclusions

We presented an automatic grammar-based test generation algorithm requiring zero
control inputs. Our algorithm utilizes a novel dynamic stochastic model where each
grammar variable is associated with a probability tuple, which is dynamically adjusted
via a tabling strategy. Our dynamic stochastic approach almost surely guarantees the
termination of test case generation, as long as a proper CFG is given. We further pre-
sented a test generation coverage tree which does not only illustrate how each test case is
generated and their distribution, more importantly, it provides various implicit control
mechanisms for maintaining balanced coverage. Our grammar-based test generation
guarantees that every generated test case is structurally different.

We have presented, Gena, a Java-based system based on our grammar-based test
generation algorithm. Gena, requiring zero annotation from users, takes input a sym-
bolic grammar and how many test cases to request, and produces well-distributed test
cases as well as a graphical test case coverage tree showing the distribution of test cases
along with their respective derivations. Experimental results justify the effectiveness of
our test generation approach and show the balanced distribution of test cases.

Grammar-based test generation can be thought of a branch of model-based test
generation since a grammar actually describes the input data model. Model-based test-
ing [2,16,17] has been extensively researched and become increasingly popular in prac-
tical software testing. Model-based test generation typically derives test cases from a
given system model (e.g. UML chart, or a control flow graph), representing the desired
system behaviors. The major issues involved in grammar-based test generations, such as
depth control, recursion control, and balance control, etc., occur as well in model-based
test generation when dealing with a complicated control flow graph with loops and
branches structures. Hence, our test generation algorithm based on a dynamic stochas-
tic model can also be valuable in implementing other model-based test generations.

References

1. Bagheri, E., Ensan, F., Gasevic, D.: Grammar-based test generation for software product line
feature models. In: Proceedings of the 2012 Conference of the Centre for Advanced Studies
on Collaborative Research (CASCON 2012). IBM (2012)

32 H.-F. Guo and Z. Qiu

2. Belli, F., Endo, A.T., Linschulte, M., da Silva Simo, A.: Model-based testing of web service
compositions. In: IEEE 6th International Symposium on Service Oriented System Engineer-
ing, pp. 181–192 (2011)

3. Godefroid, P., Kiezun, A., Levin, M.Y.: Grammar-based whitebox fuzzing. ACM Sigplan
Notices 43(6), 206–215 (2008)

4. Guo, H.F., Gupta, G.: Simplifying dynamic programming via mode-directed tabling. Soft-
ware Practice & Experience 38(1), 75–94 (2008)

5. Hanford, K.: Automatic generation of test cases. IBM Systems Journal 9(4), 242–257 (1970)
6. Harrold, M.J., Koltit, P.C.: A compiler-based data flow testing system. In: Pacific Northwest

Quality Assurance, pp. 311–323 (1992)
7. Hoffman, D.M., Ly-Gagnon, D., Strooper, P., Wang, H.Y.: Grammar-based test generation

with yougen. Software Practice and Experience 41(4), 427–447 (2011)
8. Jacod, J., Protter, P.: Probability Essentials, p. 37. Springer (2003)
9. Kosindrdecha, N., Daengdej, J.: A test case generation process and technique. Journal of

Software Engineering 4(4), 265–287 (2010)
10. Lämmel, R.: Grammar testing. In: Hussmann, H. (ed.) FASE 2001. LNCS, vol. 2029, pp.

201–216. Springer, Heidelberg (2001)
11. Lämmel, R., Schulte, W.: Controllable combinatorial coverage in grammar-based testing. In:

Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS, vol. 3964, pp. 19–38.
Springer, Heidelberg (2006)

12. Majumdar, R., Xu, R.G.: Directed test generation using symbolic grammars. In: Proceedings
of the 22nd IEEE/ACM International Conference on Automated Software Engineering, pp.
134–143. ACM (2007)

13. Maurer, P.M.: Generating test data with enhanced context-free grammars. IEEE Soft-
ware 7(4), 50–55 (1990)

14. Maurer, P.M.: The design and implementation of a grammar-based data generator. Softw.
Practice and Experience 22(3), 223–244 (1992)

15. McKeeman, W.: Differential testing for software. Digital Technical Journal of Digital Equip-
ment Corporation 10(1), 100–107 (1998)

16. Offutt, J., Liu, S., Abdurazik, A., Ammann, P.: Generating test data from state based specifi-
cations. The Journal of Software Testing, Verification and Reliability 13, 25–53 (2003)

17. Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C., Baumgartner, M., Sostawa, B., Zölch,
R., Stauner, T.: One evaluation of model-based testing and its automation. In: Proceedings of
the 27th International Conference on Software Engineering, pp. 392–401. ACM (2005)

18. Raymond, P., Nicollin, X., Halbwachs, N., Weber, D.: Automatic testing of reactive systems.
In: 32nd IEEE Real-Time Systems Symposium, pp. 200–209. IEEE Computer Society (1998)

19. Sirer, E.G., Bershad, B.N.: Using production grammars in software testing. In: Proceedings
of the 2nd Conference on Domain-Specific Languages, pp. 1–13. ACM (1999)

20. Tai, K.C., Lei, Y.: A test generation strategy for pairwise testing. IEEE Transactions on Soft-
ware Engineering 28(1), 109–111 (2002)

21. Warren, D.S.: Memoing for logic programs. Communications of the ACM 35(3), 93–111
(1992)

22. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization: a survey.
Software Testing, Verification and Reliability 22(2), 67–120 (2012)

H. Yenigün, C. Yilmaz, and A. Ulrich (Eds.): ICTSS 2013, LNCS 8254, pp. 33–48, 2013.
© IFIP International Federation for Information Processing 2013

Adaptive Homing and Distinguishing Experiments
for Nondeterministic Finite State Machines

Natalia Kushik1,2, Khaled El-Fakih3, and Nina Yevtushenko1

1 Tomsk State University, Tomsk, Russia
ngkushik@gmail.com, ninayevtushenko@yahoo.com

2 Telecom SudParis, Evry, France
3American University of Sharjah, Sharjah, UAE

kelfakih@aus.edu

Abstract. Adaptive experiments are well defined in the context of finite state
machine (FSM) based analysis, in particular, in FSM based testing where hom-
ing and distinguishing experiments with FSMs are used in test derivation. In
this paper, we define and propose algorithms for deriving adaptive homing and
distinguishing experiments for non-initialized nondeterministic finite state ma-
chines (NFSM). For NFSMs, the construction of adaptive experiments is rather
complex as the partition over produced outputs does not define a partition over
the set of states but rather a collection of intersecting subsets, and thus, the re-
finement of such subsets is more difficult than the refinement of a partition.
Given a complete non-initialized observable NFSM, we establish necessary and
sufficient conditions for having adaptive homing and distinguishing experi-
ments and evaluate the upper bound on the height of these experiments. Simple
application examples demonstrating a proposed approach are provided.

Keywords: Nondeterministic finite state machine, conformance testing, adap-
tive homing and distinguishing experiments.

1 Introduction

Many methods are known for the development of experiments and conformance tests
based on the specification given in the form of a finite state machine (FSM) [see, for
example, 1-7]. In FSM-based testing, given a machine or an implementation under
test (IUT) about which we lack some information, experiments are performed with the
machine to deduce some lacked information. An experiment consists of applying
input sequences to the machine, observing corresponding output responses and draw-
ing the conclusion about the machine under test. An experiment is preset if input se-
quences are known before starting the experiment and an experiment is adaptive if at
each step of the experiment the next input is selected based on previously observed
outputs [3][8]. Well-known types of experiments include distinguishing and homing
experiments which are used when deriving FSM based tests with the guaranteed fault
coverage and those experiments are elaborated for different types of FSMs. An FSM
is initialized if it has one initial state, otherwise, weakly-initialized or non-initialized.

34 N. Kushik, K. El-Fakih, and N. Yevtushenko

An FSM is observable if at each state the machine has at most one transition under a
given input/output pair. Given an FSM, assuming that the initial state is unknown, a
distinguishing experiment determines the initial state of the FSM, i.e., a state of the
FSM before the experiment and such an experiment is widely used when checking the
correspondence between transitions of an IUT and those of the specification FSM. A
homing experiment identifies the final state reached at the end of the experiment and
it is used when deriving a checking sequence for non-initialized FSMs [9,10].

Ongoing research on preset and adaptive homing experiments for deterministic
FSMs started since the seminal paper on “gedanken experiments” by Moore [8]. For
information and surveys on FSM-based experiments and some related algorithms, a
reader may refer to [4, 5, 11]; in particular, in [3, 5] a reader can find methods for
deriving preset and adaptive distinguishing experiments for deterministic FSMs with
corresponding evaluation of the length of these experiments. Preset homing experi-
ments are considered in [3, 4, 12, 13]. Derivation of minimal length preset homing
sequences can be done using the homing tree method introduced by Gill [3] and re-
ported in details in Kohavi [4]. Any deterministic complete reduced FSM with n
states has been shown to have a homing sequence of length up to n(n - 1)/2 and Hib-
bard [14] showed that deterministic machines require adaptive homing sequences
with length of the same order. There is also some work devoted to the derivation of a
synchronizing sequence that takes the FSM from any initial state to the same state
independent of produced output sequences. As in this case, outputs are not important,
most researchers derive such sequences for corresponding automata where only input
actions are considered. A related detailed survey is given by Sandberg in [15]. Parallel
algorithms for related problems are surveyed by Ravikumar [see, for example, 16].

In this paper, we consider homing and distinguishing experiments with nondeter-
ministic FSMs, as nowadays, analysis and testing of nondeterministic systems are
capturing a lot of attention. Preset distinguishing and homing experiments for non-
deterministic FSMs are considered in [17, 18]. In particular, Spitsyna et al. [17]
presented the method for deriving a sequence that separates two initialized nondeter-
ministic FSMs. An input sequence is a separating sequence of two FSMs if the sets of
output sequences produced by the NFSMs to the input sequence do not intersect [19].
Kushik et al. [18] showed that differently from deterministic FSMs a homing se-
quence does not necessarily exist for a complete reduced nondeterministic FSM and
proposed an algorithm for deriving a preset homing sequence for a given nondetermi-
nistic FSM when such a sequence exists. A tight lower bound on a shortest preset

homing sequence is shown to be of the order
2

2n where n is the number of states of
the nondeterministic FSM. Moreover, it has been shown [20] that there exists a spe-
cial class of FSMs with n states and (n - 1) inputs, for which a shortest homing se-
quence has the length 2n - 1 - 1. i.e., its length is exponential not only with respect to
the number of FSM states but also the number of FSM transitions. Zhang and Cheung
studied related problems when deriving transfer and distinguishing trees for observa-
ble nondeterministic FSMs with probabilistic and weighted transitions [21].

Adaptive experiments with nondeterministic FSMs are considered in [22-25]. In [23],
Petrenko and Yevtushenko introduced the notion of a test case for describing an adap-
tive experiment as an initialized observable FSM with an acyclic transition diagram

 Adaptive Homing and Distinguishing Experiments for NFSMs 35

such that at each non-deadlock state only one input is defined with all possible outputs.
A representation of a test case using the same formal model is widely used for transition
systems such as LTS, input/output automata etc. [see, for example 26]. Such definition
of a test case allows defining distinguishing/checking/homing test cases based on the
properties of the intersection of a transition system under experiment and a given test
case. In [22-25] it is shown how a distinguishing test case can be derived for two states
of NFSMs when such a distinguishing test case exists. In particular, Alur et al. [22]
show that the length of a shortest adaptive distinguishing test case that distinguishes two
states of an observable nondeterministic FSMs with n states is at most n(n - 1)/2. Pe-
trenko and Yevtushenko [25] consider a set of adaptive test cases which have three
parts: a preamble for reaching an appropriate state, a traversal input/output sequence and
a state identifier. In this case, the length of an identifier can be optimized when distin-
guishing not two but several states with the same distinguishing test case. In addition, a
checking sequence derived for a non-initialized FSM [9, 10] also can be adaptive but in
this case, an adaptive homing experiment should be performed before applying such a
sequence. Gromov et al. [27] and El-Fakih et al. [28] presented adaptive experiments for
two timed nondeterministic observable FSMs.

In this paper, we consider adaptive homing and distinguishing experiments for
non-initialized nondeterministic finite state machines. Similar to many other papers
described above, an adaptive experiment is represented by a test case that is an initia-
lized observable FSM with the acyclic flow diagram where only one input is defined
at each intermediate state. Lee and Yannakakis [5] proposed an approach for deriving
an adaptive distinguishing sequence of a deterministic FSM that is based on refining a
partition of the set of states based on different outputs. In this paper, we deal with
nondeterministic FSMs and unlike [5], the output partition defines not a partition of
the set of states but rather a set system, which is a collection of intersecting subsets,
for which it is difficult to define a corresponding refinement. For this reason, in this
paper, necessary and sufficient conditions for having adaptive homing/distinguishing
test cases are established based on extending the notion of k-r-distinguishability of
two states [29] to subsets of states and an algorithm for deriving a hom-
ing/distinguishing adaptive test case with minimal length is proposed. The upper
bound on the length of homing/distinguishing experiments is determined and an ex-
ample illustrating that the upper bound seems to be tight for the length of distinguish-
ing test cases is presented.

This paper is organized as follows. Section 2 includes preliminaries. Homing and
distinguishing test cases with related properties are introduced in Section 3. Section 4
contains an approach for deriving a homing/distinguishing test case with correspond-
ing statements about the complexity. Section 5 concludes the paper.

2 Preliminaries

In this paper, we consider experiments with weakly initialized Finite State Machines.
A weakly initialized Finite State Machine (FSM) S is a 5-tuple (S, I, O, hS, S′), where
S is a finite set of states with the set S′ ⊆ S of initial states; I and O are finite non-
empty disjoint sets of inputs and outputs, respectively; hS ⊆ S × I × O × S is a

36 N. Kushik, K. El-Fakih, and N. Yevtushenko

transition relation, where a 4-tuple (s, i, o, s′) ∈ hS is a transition. If |S′| = 1 then the
FSM S is an initialized FSM. An input i ∈ I is a defined input at state s of S if there
exists a transition (s, i, o, s′) ∈ hS for some s′∈ S and o ∈ O.

An FSM S = (S, I, O, hS, S′) is complete if for each pair (s, i) ∈ S × I there exists
(o, s′) ∈ O × S such that (s, i, o, s′) ∈ hS. FSM S is nondeterministic if for some
pair (s, i) ∈ S × I , there exist at least two transitions (s, i, o1, s1), (s, i, o2, s2) ∈ hS,
such that o1 ≠ o2 or s1 ≠ s2. FSM S is observable if for each two transitions (s, i, o, s1),
(s, i, o, s2) ∈ hS it holds that s1 = s2. FSM S is single-input if at each state there is at
most one defined input at the state, i.e., for each two transitions (s, i1, o1, s1), (s, i2, o2,
s2) ∈ hS it holds that i 1 = i2 , and FSM S is output-complete if for each pair (s , i) ∈
S × I such that the input i is defined at state s, there exists a transition from s with i
for every output in O [21, 25].

A trace of S at state s is a sequence of input/output pairs of sequential transitions
starting from state s. Let Tr(S/s) denote the set of all traces of S at state s including
the empty trace and let Tr(S/S′) denote the union of Tr(S/s) over all states s ∈ S′ . As
usual, for state s and a sequence γ ∈ (IO)* of input-output pairs, next_stateS(s, γ) de-
notes the set of all states that are reached from s by γ. If γ is not a trace at state s then
the set next_stateS(s, γ) is empty; otherwise, each state of the set next_stateS(s, γ) is a
γ-successor of state s. For an observable FSM S, |next_stateS(s, γ)| ≤ 1 for any string γ
∈ (IO)*. Given a nonempty subset S′ of states of the FSM S and γ ∈ (IO)*, the set
next_stateS(S′ , γ) is the union of the sets next_stateS(s, γ) over all s ∈ S′ and this set is
a γ-successor of the set S′. An FSM S is acyclic if the set Tr(S/S′) is finite, i.e., the
FSM transition diagram has no cycles.

To characterize the common behavior of two weakly initialized machines, we ex-
tend the operation of the intersection of initialized FSMs as follows. Given two com-
plete FSMs S and P with the sets S′ and P′ of initial states, the intersection S ∩ P is
the connected FSM Q such that states of Q are pairs (b, c) of sets of states of FSMs
S and P, the initial state of Q is (S′, P′), and hQ is the smallest set derived using the
following rule: Given state (b, c), b ⊆ S and c ⊆ P, and an input/output pair i/o, the
FSM Q has a transition ((b, c), i, o, (b′, c′)) if there exist states s ∈ b and p ∈ c with an
outgoing transition labeled by the pair i/o, and b′ and c′ are i/o–successors of subsets
b and c. By definition, the FSM S ∩ P is observable even for non-observable FSMs
S and P.

As an example of the FSM intersection, consider FSMs P (Fig. 1) and S (Fig. 2).
FSM P is an initialized FSM while S has three initial states marked in bold. The inter-
section S ∩ P is shown in Fig. 3. As usual, the intersection of two weakly initialized
FSMs describes the common behavior of component FSMs, and in addition, it also
provides some information about the structure of their transition sets. For example, a
state of the intersection provides information about which states of the corresponding
machines are reachable from the initial states under a corresponding trace. In fact, the
following proposition holds.

Proposition 1. Given FSMs S and P with the sets S′ and P′ of initial states and state
(b, c) of the intersection S ∩ P that is reachable from the initial state under a trace γ,
the set b is the γ-successor of the set S′ while the set c is the γ-successor of the set P′.

 Adaptive Homing and Distinguishing Experiments for NFSMs 37

As in this paper we consider adaptive experiments with nondeterministic FSMs, in
order to identify a state of a weakly initialized FSM before or after the experiment, a
finite input sequence is applied to an FSM under experiment where the next input
(except of the first one) of the sequence is determined based on the output of the FSM
produced to the previous input. Formally, such an experiment can be described using
a single-input output-complete FSM with an acyclic transition graph and similar to
[23, 25] we refer to such an FSM as a test case.

Given an input alphabet I and an output alphabet O, a test case TC(I, O) is an in-
itially connected single-input output-complete observable initialized FSM
P = (P, I, O, hP, p0) with acyclic transition graph. By definition, if |I| > 1 then a test
case is a partial FSM.

A test case P over alphabets I = {a, b} and O = {0, 1} is shown in Fig. 1.

Fig. 1. A test case P over alphabets I = {a, b} and O = {0, 1}

A test case TC(I, O) over alphabets I and O defines an adaptive experiment with
any FSM S over the same alphabets. As an example, consider the test case P in
Fig. 1. An adaptive experiment with an FSM S over alphabets I = {a, b} and O = {0,
1} is conducted using P as follows. At the first step the input b is applied to S as this
input is the only input defined at the initial state of P. If the output of the FSM S to
this input is 1, then the experiment is over, since we reach the deadlock state p3 of P.
If the FSM S produces the output 0 to input b then the experiment is not over, since
the test case P enters the intermediate state p2 where the single input a is defined. As
this input does not take the test case to a deadlock state, the next input which is also a
is applied. If the output to a is 0 then the next input is b; otherwise, the next input is a.
For this example, the length of a longest trace of the test case is three, i.e., at most
three inputs are applied during this adaptive experiment.

In general, given a test case P, the length of the test case P is determined as the
length of the longest trace from the initial state to a deadlock state of P and it specifies
the length of the longest input sequence that can be applied to an FSM S during the
experiment that is also often called the height of the adaptive experiment. As usual,
for testing, one is interested in deriving a test case (experiment) with minimal length
(height).

p7

5p

a/0

2p p3

4p

p3p7 p6

1p

b/1

a/1

b/0 b/1 a/1

a/0

b/0

38 N. Kushik, K. El-Fakih, and N. Yevtushenko

Fig. 2. FSM S with three initial
states

Fig. 3. The intersection S ∩ P

3 Homing and Distinguishing Test Cases

In this section, we define the notions of homing and distinguishing test cases that can
be used in the context of adaptive testing of non-initialized nondeterministic observa-
ble FSMs. A homing (distinguishing) experiment allows determining the unknown
current (initial) state of the machine under experiment. Hereafter, if not stated other-
wise, we consider an FSM under experiment to be a weakly initialized complete non-
deterministic observable FSM and in the following sections we propose a method for
deriving homing and distinguishing test cases for an FSM and we also determine the
upper bound on minimal length of a test case.

Given a complete observable FSM S over input and output alphabets I and O, let S′
be the set of initial states of FSM S. A test case P is a homing test case for FSM S if
for each deadlock state (b, c) of the intersection S ∩ P, the set b is a singleton.

A test case P is a distinguishing test case for FSM S = (S, I, O, hS, S′) if (1) for
each deadlock state (b, c) of the intersection S ∩ P subset b is a singleton, and (2) for
each transition ((b, c), i, o, (b′, c′)) of the intersection S ∩ P the subset b does not
have two different states which have the same i/o–successor, i.e.,

∀s1, s2 ∈ b ((s1, i, o , s′) ∈ hS & (s2, i, o , s′) ∈ hS s1 = s2).
If there exists a homing (distinguishing) test case for the FSM then the set is S′ is a

homing (distinguishing) set and the test case P is a homing (distinguishing) test case
for the set S′ or the test case P homes (distinguishes) states of the set S′.

According to the above definitions, the following statement holds.

Proposition 2. Given a weakly initialized observable FSM S, each distinguishing test
case for S is also a homing test case. However, the converse is not necessarily true.

Example. As an example of homing and distinguishing test cases, consider a weakly
initialized FSM S in Fig. 2 and the test case P in Fig. 1. By direct inspection, one can
assure that each deadlock state of the intersection S ∩ P (Fig. 3) is labeled by a pair of
singletons and each two different states of any subset b such that (b, c) labels an inter-
mediate state of the intersection do not have the same i/o-successor. Thus, the set
{1, 2, 3} is not only a homing but also a distinguishing set and the test case in Fig. 1 is a
homing test case and a distinguishing test case for FSM S. For example, if the output 1

 Adaptive Homing and Distinguishing Experiments for NFSMs 39

is produced to the input b at the initial state of the FSM S then the FSM reaches state 2
after experiment and we certainly know that the initial state before the experiment was
2. However, we later show that the FSM S has a shorter homing test case.

A homing (distinguishing) test case is used for representing a homing (distinguish-
ing) adaptive experiment with a nondeterministic FSM. An adaptive homing (distin-
guishing) experiment has two steps. At the first step a finite input sequence is applied
to an FSM under experiment where the next input (except of the first one) significant-
ly depends on the output of the FSM produced to the previous input. At the next step,
after observing a produced output sequence, the conclusion is drawn about a state of
the FSM after (before) the experiment and such a state has to be unique for the hom-
ing (distinguishing) experiment. If all the traces of a test case have the same input
projection, then the test case defines a preset input sequence and a corresponding
adaptive experiment becomes a preset experiment. In the same way, when having a
homing or separating sequence for a given FSM a corresponding test case can be
derived by augmenting this sequence with all possible output sequences.

Propositions 3 and 3′ state necessary and sufficient conditions for a test case to be a
homing and/or a distinguishing test case. As the proofs are almost the same, we only
prove Proposition 3.

Proposition 3. Given a weakly initialized observable FSM S = (S, I, O, hS, S′), a test
case P is a homing test case for S if and only if every trace of P from the initial state
to a deadlock state that is a trace at two different initial states of the set S' takes the
FSM S from these initial states to the same state.

Proof. Let P be a homing test case for FSM S = (S, I, O, hS, S′). Suppose that ∃ s1,
s2 ∈ S' ∃ α ∈ I* ∃ β ∈ O* (β ∈ out(s1, α) ∩ out(s2, α)) and the trace α/β takes the
FSM P from the initial to a deadlock state (b, c). The deadlock state (b, c) of the
intersection S ∩ P contains α/β-successors of states s1, s2 (Proposition 1), i.e., α/β-
successors of these states coincide.

⇐ Consider a trace α/β that takes the FSM P from the initial state to a deadlock
state p. Let s1, s2 ∈ S' be initial states where the trace α/β can be executed and state s'
is an α/β-successor of states s1 and s2 (since FSM S is observable). By the intersection

construction, the FSM S ∩ P has a deadlock state (s′ , p) where both items are

singletons.

Proposition 3′. Given a weakly initialized observable FSM S = (S, I, O, hS, S′), a test
case P is a distinguishing test case for FSM S if and only if every trace from the initial
state to a deadlock state of P is a trace at only one initial state of the set S′.

According to the above Propositions 3 and 3′, given a weakly initialized FSM S
there exists an adaptive homing (distinguishing) experiment for the FSM S if and only
if the FSM S has a homing (distinguishing) test case.

Here we note that the above propositions establish one-to-one correspondence
between homing/distinguishing test cases and adaptive homing/distinguishing expe-
riments only for observable FSMs; for non-observable FSMs, the definition of a
distinguishing test case that corresponds to an adaptive distinguishing experiment
should be modified. If a given FSM S is observable then according to the following

40 N. Kushik, K. El-Fakih, and N. Yevtushenko

proposition there is a simple way to check whether there exists a corresponding hom-
ing experiment.

Proposition 4. Given a weakly initialized observable FSM S with the set S′ of initial
states, there exists a homing test case for the set S′ of S if each subset {si, sj} of two
states of S is a homing set.

Proof. We prove this proposition by construction. Let for each two different states si and
sj, si ≠ sj, of S there exist a homing test case Pi,j. Without loss of generality we assume
that S′ = {s1, .., sm}. Consider a homing test case P1,2 for the set {s1, s2} and derive a test
case P1,2,3 by adding the state s3 into the set labeling the initial state of P1,2 and obtain
P1,2,3 that includes all the transitions of P1,2. Subsets of states that label deadlock states
of S ∩ P1,2,3 are not necessarily singletons but they contain at most two states, since
FSM is observable. Each pair of different states of S is homing, thus, for each deadlock
state (ji ss , , p) of S ∩ P1,2,3 we concatenate the initial test case P1,2,3 with the cor-

responding test case Pi,j. Proceeding in the same way we derive test case P1,2,…,m. By
construction, the derived test case is homing for the FSM S.

Corollary. Given a weakly initialized observable FSM S with the set S of initial
states, there exists a homing test case for FSM S if and only if there exists a homing
test case for each two different states si and sj of S.

Proposition 4′. Given a nondeterministic observable FSM S = (S, I, O, hS, S), if for
each two different states si and sj of S there exists a homing test case, then there exists
a homing test case for FSM S with length O(n3).

Proof. Each pair of states of an observable FSM can be homed by a sequence of in-
puts of length at most Cn

2 that covers in the worst case all pairs of different FSM
states. The number of states to be appended at each step of the procedure used in the
proof of Proposition 4 equals (n – 1). Thus, the maximal length of the trace in the test
case P1,2,…,n has length at most of the order n3.

In other words, if each pair of states of an observable FSM S with n states can be
adaptively homed then there exists a homing test case for the set S of FSM states and the
length of this test case is of the order n3. The proof of Proposition 4 proposes a proce-
dure for deriving such a homing test case when the conditions of the proposition hold.

Example. As an example of applying the construction stated in Proposition 4, consid-
er the FSM S with the set of initial states S′ = {1, 2, 3} in Fig. 4 below. FSM S is
complete and observable. We derive a homing test case for this FSM by deriving a
test case Pi,j for each pair (i, j), i ≠ j, of the FSM states and then derive a test case for

the set S′. The set of transitions of P12 equals {(2,1 , i1, o1, 1), (2,1 , i1, o2, 2)}; the

set of transitions of P13 equals {(3,1 , i3, o1, 1), (3,1 , i3, o2, 3)}; and the set of P23

transitions equals {(3,2 , i2, o1, 2), (3,2 , i2, o2, 3)}. We add state 3 to the pair 2,1 ,
include transitions of P12 into P123 and concatenate the obtained test case with ap-
propriate test cases for subsets of two states. More precisely, this is done as follows.
First, we consider input i1 at state 3 for which a single output o1 can be obtained, thus,

 Adaptive Homing and Distinguishing Experiments for NFSMs 41

the corresponding transitions at state 3,2,1 of P123 are {(3,2,1 , i1, o1, 2,1), (3,2,1 , i1,

o2, 2)}. At state 2,1 , we append corresponding transitions from the test case P12 and

obtain the set of transitions for P123: {(3,2,1 , i1, o1, 2,1), (3,2,1 , i1, o2, 2), (2,1 , i1, o1,

1), (2,1 , i1, o2, 2)}. The length of such adaptive homing test case equals two. How-
ever, if we selected an input i3 when deriving the set of transitions of P12 a corres-
ponding adaptive homing test case for the set S′ = {1, 2, 3} would have length 1.

Fig. 4. FSM S Fig. 5. Homing test case P for the FSM in Fig. 2

Thus, we observe that when deriving an adaptive test case using the above proce-
dure the length of a returned test case significantly depends on the enumeration of
states of the set S′ as well as on selected inputs at each step and therefore, does not
guarantee the derivation of a homing test case of minimal length. Moreover, such a
procedure does not guarantee the homing test derivation when there exists a pair of
two different states of the FSM that is not homing. In the following we propose an
algorithm that returns a homing test case with minimal length for a given FSM.

We also note that a proposition similar to Proposition 4 does not hold for a distin-
guishing test case. That is, given an observable FSM where each pair of two different
states has a distinguishing test case, there is no guarantee that there exists a
distinguishing test case for FSM S.

In order to derive a homing/distinguishing test case with minimal length, we intro-
duce the notion of k-homing/k-distinguishing sets not only for pairs but for arbitrary
subsets of states.

A subset g of states of an observable FSM S is 0-homing if g is a singleton. Let all
(k – 1)-homing sets, k > 0, be already defined. The subset g is a k-homing set if (1) g
is a (k - 1)-homing, or (2) there exists an input i ∈ I, such that for each o ∈ O, the set
of i/o-successors of states of g is either empty or is a (k – 1)-homing set.

In order to define a distinguishing test case for an observable FSM, the previous
definition can be used, where the notion of k-homing is replaced by k-distinguishing
and a subset g of an FSM S = (S, I, O, hS, S′) is called a k-distinguishing set if (1)
applies, i.e., g is a (k - 1)-distinguishing set, and for (2) as previously, there exists an
input i ∈ I, such that for each o ∈ O, the set of i/o-successors of states of g is either
empty or is a (k – 1)-distinguishing set, and in addition, the i/o-successors of two
different states of g do not coincide.

42 N. Kushik, K. El-Fakih, and N. Yevtushenko

Proposition 5. Given a weakly initialized observable complete FSM S with the set S′
of the initial states, the set S′ is k-homing/k-distinguishing, k > 0, if and only if there
exists a homing/distinguishing adaptive experiment of height k for the weakly initia-
lized FSM S = (S, I, O, hS, S′). If S′ is k-homing/k-distinguishing, k > 0, but is not
(k – 1)-homing/(k – 1)-distinguishing then k is the minimal height of a corresponding
adaptive experiment.

Proof. We provide the proof of the Proposition for the case of a homing experiment
as for the distinguishing test case the proof is almost the same.

 We use the induction on k. Let k = 1. By definition, there exists an input i ∈ I,
such that for each o ∈ O, the set of i/o-successors of states of S′ is either empty or is a
0-homing set (a singleton), i.e., there exists an adaptive experiment of length 1 for the
S = (S, I, O, hS, S′).

Let the statement hold for all k ≤ K and S′ is not a K-homing set but S′ is a (K + 1)-
homing set. In this case, by definition, there exists an input i ∈ I, such that for each
o ∈ O, the set of i/o-successors of states of S′ is either empty or is a K-homing and
according to the induction assumption, each if i/o-successors can be homed by an
adaptive experiment of length at most K. Thus, S′ can be homed by an adaptive
experiment of length at most (K + 1).

⇐ Suppose there exists a test case P of a height k > 1. By definition, the states of P
that have transitions to deadlock states are 1-homing. Thus, the states of P that are
connected to these states are 2-homing, etc. The states of P that are connected to the
deadlock states via a sequence of length k are k-homing.

Based on Propositions 3, 3′ and 5, the following proposition holds.

Proposition 6. Given a set S′, |S′| > 1, of states of an observable FSM S, the set S′ is
homing/distinguishing if and only if S′ is k-homing/k-distinguishing for some k > 0.

4 Deriving Homing and Distinguishing Test Cases

Based on the notion of k-homing sets, Procedure 1 given below can be used for deriv-
ing a homing/distinguishing test case for a homing/distinguishing set S′ of states of a
given observable FSM S. If the set S′ is not homing/distinguishing then the states of
the set S′ cannot be homed/distinguished by an adaptive experiment. The main idea of
the procedure below is to iteratively derive subsets of states that are
homed/distinguished by adaptive applying an input sequence of the length j ∈ {1, 2,
…, k}. The set of corresponding subsets we hereafter denote as Qj. If for some j the Qj

is empty and the subset S′ ∉
1

1

−

=

j

k

jQ then a fixed point is reached and a homing expe-

riment for the FSM S does not exist. The states of a test case under construction are
labeled by subsets of S states. We describe a procedure for a homing test case, since
for a distinguishing test case the procedure is almost the same.

 Adaptive Homing and Distinguishing Experiments for NFSMs 43

Procedure 1: Deriving a homing test case for a subset S' of states of an FSM S
Input: Complete observable nondeterministic weakly initialized FSM
S = (S, I, O, hS, S′), |S'| > 1
Output: A homing test case P with minimal length for the subset S' of FSM S or a
message “there is no adaptive homing experiment for the subset S'”
Step-1: j: = 0
Derive the set Qj of all singletons {s} of the set S of FSM S
Step-2: Derive the set Qj+1 that contains each (j+1)-homing set of states of the FSM S
that is not j-homing as follows:

For each subset A of states of FSM S that is not in the set
j

k

kQ
1=

If there exists an input i ∈ I, such that for each o ∈ O, the i/o-successor of A

is either empty or is an item of the set
j

k

kQ
1=

then

Include the set A into Qj+1,
Derive a set TrA that contains each 4-tuple (A, i, o, A′) where A′ is a
non-empty i/o-successor of the set A;

 End For
If the set of subsets Qj+1 is empty then Return the message “there is no adaptive
homing experiment for the subset S'”.
If Qj+1 does not contain the set S′ as an item then

j := j + 1 and Go-to Step-2;

Step-3: Derive a homing test case P with the set P of states as follows:

States of P are subsets of states of the FSM S and the initial state of P is
the set S′; i.e., include S′ into P;
Mark the initial state of P labeled with the set S′ as a “non-visited” state in
P;
While there is a ‘non-visited’ state A in P

For each 4-tuple (A, i, o, A′) in TrA
Add to the test case P as an outgoing transition of the state
A the transition (A, i, o, A′);

If A′ ∉ P
Then add A′ to P and if A′ is not a singleton, mark
the added state with A′ as a ‘non-visited’ state.

 EndFor
 EndWhile

If P is not output-complete then
 For each intermediate state p of P where a single input i is defined

If there is no transition (p, i, o, p′) for some o ∈ O then
add a transition (p, i, o, p′) where p′ is any state of P;

EndFor
Return P.
END Procedure 1.

44 N. Kushik, K. El-Fakih, and N. Yevtushenko

Theorem 1. FSM P returned by Procedure 1 is a homing test case with minimal
length for observable FSM S if and only if the set S' is a homing set.

Proof. ⇐ The set S' is homing if this set is k-homing for some k. For this reason,
when deriving at Step 2 (j + 1)-homing sets an input i ∈ I with the desired features
always exists. By construction, FSM P returned by Procedure 1 is acyclic and at each
intermediate state only one input is defined with all possible outputs, i.e., P is a test

case. At Step 3, each trace α/β ∈ TrS(s), s ∈ S', that takes P to a deadlock state

ks ,

takes FSM S from any state of the set S' where this trace can be executed to state sk of
S. Thus, the test case P is a homing test case for FSM S.

 Let FSM P returned by Procedure 1 be a test case for FSM S of the height l. By
definition, in this case the set S' is a l-homing set, i.e. S' is a homing set.

According to Procedure 1, if S' is an l-homing but it is not (l-1)-homing, then the
procedure returns a test case (Step-3) of length l (the set Ql, Step-2) that is a test case
of minimal length (Proposition 5).

Example. Consider the FSM S in Fig. 2. At Step-1, Q0 = {{1}, {2}, {3}, {4}}. Then,
at Step-2, the set Q1 = {{1, 4}, {2, 3}, {3, 4}, {2, 4}, {2, 3, 4}} as by direct inspec-
tion, one can assure that the sets {1, 4}, {2, 3}, {3, 4}, {2, 4} and {2, 3, 4} are

1-homing with the corresponding sets of transitions Tr{1,4} = {(

4,1 , b, 0, 1), (

4,1 ,

b, 1, 2)}, Tr{2,3} = {(

3,2 , b, 1, 2), (

3,2 , b, 0, 3)}, Tr{3,4} = {(4,3 , b, 1, 2), (4,3 ,

b, 0, 3)}, Tr{2,4} = {(4,2 , b, 1, 2) } and Tr{2,3,4} = {(4,3,2 , b, 1, 2), (4,3,2 , b, 0,

3)}. As the set Q1 does not contain the set S′={1,2,3} of the FSM S, we go back to
Step-2, and then observe that the subset {1, 2, 3} is 2-homing with the corresponding

set of transitions Tr{1,2,3} = {(3,2,1 , a, 1, 4,2), (3,2,1 , a, 0,

3,2)}. The correspond-

ing homing test case derived by Procedure 1 for the FSM S is presented in Fig. 5.
Therefore, the distinguishing test case in Fig. 1 is not a shortest homing test case for
the FSM S, as there exists a homing test case for S of length 2. A distinguishing test
case returned by Procedure 1 for the FSM S is a test case in Fig. 1.

We now add some comments how Procedure-1 can be optimized. Step-2 of Proce-
dure 1 can be performed by an exhaustive search of all subsets and of all possible
inputs with all possible output responses. To optimize this search at each step the
subsets with minimal cardinality can be checked first. The reason is that if a subset A
is not j-homing, thus each superset of A is not j-homing too. Therefore, when check-

ing all subsets of S states that are not in the set
j

k

kQ
1=

an optimal solution can be to

start with pairs of states, then turn to triples, 4-tuples, etc.
For the same reason, at Step-2 only maximal subsets A can be included into the set

Qj+1, i.e., if A contains a subset B ⊂ A that is (j + 1)-homing then B is not included into
the set Qj+1. In this case, given a 4-tuple (A, i, o, B) where B is an i/o successor of A,

 Adaptive Homing and Distinguishing Experiments for NFSMs 45

the set B not necessary is in the set
j

k

kQ
1=

; for this reason, we add to the set TrA a

transition (A, i, o, A′) where A′ ∈
j

k

kQ
1=

 and B ⊂ A′.

The lower bound on the height of a shortest adaptive homing/distinguishing expe-
riment significantly depends on the number of initial states of the observable FSM
under experiment.

Theorem 2. Given a complete observable FSM S with n states and m initial states, the

lower bound on the length of a shortest homing/distinguishing test case is
=

m

i

i
nC

2

.

Proof. If an FSM S is observable, then the corresponding lower bound on the length
of adaptive experiment is proven for homing experiments in [18]. Since the length of
adaptive distinguishing experiment is bounded by the same number of different
subsets of states with cardinality (m – 1), (m – 2), …, 2, thus, the lower bound is

exactly
=

m

i

i
nC

2

.

Additional research is needed in order to check whether the bound 2n – n – 1 is
tight for distinguishing test cases and for homing test cases for machines that have
non-homing pairs of states. For distinguishing test cases, the upper bound seems to be
exponential. Below we show that there exists an observable FSM with four states, all
of which are initial states, such that the longest trace in the distinguishing test case
traverses all subsets with at least two states, i.e., its length equals 11 = 24 – 4 – 1.

Consider an FSM S with the flow table in Table 1 and with the set {1, 2, 3, 4} of
initial states. The FSM S has 11 inputs and four outputs. The inputs are defined x123,
x124, x134, …, x12 to demonstrate which subset is traversed when applying this input.
An input x123 defines x123/0-successor of the subset {1, 2, 3, 4} in the distinguishing
test case, this successor coincides with the index of the input, i.e. it is the set {1, 2, 3}.

Table 1. Flow Table of the FSM S

x\s 1 2 3 4
x123 1/0, 2, 3 2/0, 2, 4 3/0, 3, 4 4/2, 3, 4
x124 1/0, 1 2/0, 1 4/0 3/0; 4/1
x134 1/0, 1 3/0 2/0; 3/1 4/0, 1
x234 2/0; ½ 1/0; 2/1 3/0, 2 4/0, 1
x34 1/1, 2, 4; 2/5 3/2; 2/4, 5 3/0, 1, 4 4/0, 1, 5; 2/2
x24 1/0, 1, 2 3/0; 2/1 2/0; 3/2 4/0; 3/1
x14 2/0; 1/1 1/0 3/0, 1 4/0, 1

x13 1/0, 1 2/0, 1, 2 4/1; 3/0 3/0, 1; 4/2
x23 2/0, 3; 1/1 1/0; 2/1, 2 3/0, 2 3 3/1; 4/2, 3; 1/0
x12 3/0; 1/1 2/0, 1 1/0; 3/2 4/0, 1, 2
xsep 1/0, 2 2/1, 3 2/1; ½ 1/0; 2/1

46 N. Kushik, K. El-Fakih, and N. Yevtushenko

The two last state subsets that are traversed by a longest trace in the distinguishing
test case are {2, 3} and {1, 2}. The set {1, 2} is an x12/0-successor of the subset {2, 3}
in the test case. The last input xsep separates states 1 and 2 of the FSM S and takes the
test case to different 0-distinguishing sets. We further illustrate how this distinguish-
ing test case can be derived for the FSM S using a Procedure similar to Procedure 1.

We first derive all 0-distinguishing sets that are singletons {1}, {2}, {3}, {4}.
according to the Procedure similar to Procedure 1, we then derive a set Q1, and one
can assure that there is a single 1-distinguishing set for the FSM S. This is the set
{1, 2} that is included into the set Q1. The set Q2 contains a single set {2, 3}, the set
{1, 3} is a single 3-distinguishing set that is included into the set Q3, etc. Thus, one
can iteratively derive all Q1, Q2, Q3, ..., sets, till reaching the set Q11 that contains the
set {1, 2, 3, 4} of initial states. A shortest distinguishing experiment traverses all non-
empty subsets of the set {1, 2, 3, 4} and thus, has the length 11. The longest trace of
the experiment covers the chain of sets {1, 2, 3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2,
3, 4}, {3, 4}, {2, 4}, {1, 4}, {1, 3}, {2, 3}, and {1, 2}, respectively. All other traces
do not allow to uniquely determine a state of the FSM before the experiment and thus,
since a sequence of all subsets of some set is traversed by a trace of a test case of
minimal length it seems that the exponential upper bound can be reached for adaptive
experiments with observable nondeterministic FSMs.

5 Conclusion

Given a non-initialized complete nondeterministic observable FSM, a method for
deriving adaptive homing/distinguishing experiments is proposed. Adaptive experi-
ments are represented as special nondeterministic observable machines, called test
cases, and necessary and sufficient conditions for having adaptive hom-
ing/distinguishing test cases with minimal length for observable nondeterministic
FSMs are presented. The lower bound on the length of shortest homing/distinguishing
test cases is evaluated. Possible extensions to the proposed work include extending
the proposed method for non-observable FSMs and adapting the work to partial non-
deterministic FSMs by extending related work in [23] and to timed nondeterministic
FSMs based on the work presented in [28]. Also it would be interesting to determine
the tight lower bound on the length of shortest homing/distinguishing test cases.

References

1. Bochmann, G.V., Petrenko, A.: Protocol testing: review of methods and relevance for
software testing. In: Proc. of International Symposium on Software Testing and Analysis,
Seattle, pp. 109–123 (1994)

2. Dorofeeva, R., El-Fakih, K., Maag, S., Cavalli, A.R., Yevtushenko, N.: FSM-based con-
formance testing methods: a survey annotated with experimental evaluation. Information
and Software Technology 52, 1286–1297 (2010)

3. Gill, A.: State-identification experiments in finite automata. Information and Control, 132–
154 (1961)

 Adaptive Homing and Distinguishing Experiments for NFSMs 47

4. Kohavi, Z.: Switching and Finite Automata Theory. McGraw-Hill, New York (1978)
5. Lee, D., Yannakakis, M.: Testing finite-state machines: state identification and verifica-

tion. IEEE Trans. on Computers 43(3), 306–320 (1994)
6. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a survey.

Proceedings of the IEEE 84(8), 1090–1123 (1996)
7. Simao, A., Petrenko, A., Maldonado, J.C.: Comparing finite state machine test. IET Soft-

ware 3(2), 91–105 (2009)
8. Moore, E.F.: Gedanken-experiments on sequential machines. In: Automata Studies (An-

nals of Mathematical Studies no.1), pp. 129–153. Princeton University Press (1956)
9. Hennie, F.C.: Fault detecting experiments for sequential circuits. In: Proc. of 5th Annual

Symposium on Switching Circuit Theory and Logical Design, pp. 95–110. Princeton
(1964)

10. Petrenko, A., Simao, A., Yevtushenko, N.: Generating Checking Sequences for Nondeter-
ministic Finite State Machines. In: Proc. of ICST 2012, pp. 310–319 (2012)

11. Mathur, A.: Foundations of Software Testing. Addison Wesley (2008)
12. Agibalov, G., Oranov, A.: Lectures on Automata Theory. Tomsk State University Publish-

ers (1984) (in Russian)
13. Ginsburg, S.: On the length of the smallest uniform experiment which distinguishes the

terminal states of a machine. Journal of the ACM 5(3), 266–280 (1958)
14. Hibbard, T.N.: Lest upper bounds on minimal terminal state experiments of two classes of

sequential machines. Journal of the ACM 8(4), 601–612 (1961)
15. Sandberg, S.: Homing and Synchronization Sequences. In: Broy, M., Jonsson, B., Katoen,

J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems. LNCS,
vol. 3472, pp. 5–33. Springer, Heidelberg (2005)

16. Ravikumar, B.: Parallel algorithms for finite automata problems. In: Rolim, J.D.P. (ed.)
IPPS-WS 1998 and SPDP-WS 1998. LNCS, vol. 1388, p. 373. Springer, Heidelberg
(1998)

17. Spitsyna, N., El-Fakih, K., Yevtushenko, N.: Studying the separability relation between fi-
nite state machines. Software Testing, Verification and Reliability 17(4), 227–241 (2007)

18. Kushik, N., El-Fakih, K., Yevtushenko, N.: Preset and Adaptive Homing Experiments for
Nondeterministic Finite State Machines. In: Bouchou-Markhoff, B., Caron, P., Champar-
naud, J.-M., Maurel, D. (eds.) CIAA 2011. LNCS, vol. 6807, pp. 215–224. Springer, Hei-
delberg (2011)

19. Starke, P.: Abstract Automata. American Elsevier (1972)
20. Kushik, N., Yevtushenko, N.: On the Length of Homing Sequences for Nondeterministic

Finite State Machines. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982, pp. 220–
231. Springer, Heidelberg (2013)

21. Zhang, F., Cheung, T.: Optimal Transfer Trees and Distinguishing Trees for Testing Ob-
servable Nondeterministic Finite-State Machines. IEEE Transactions on Software Engi-
neering 19(1), 1–14 (2003)

22. Alur, R., Courcoubetis, C., Yannakakis, M.: Distinguishing tests for nondeterministic and
probabilistic machines. In: Proc. of the 27th ACM Symposium on Theory of Computing,
pp. 363–372 (1995)

23. Petrenko, A., Yevtushenko, N.: Conformance Tests as Checking Experiments for Partial
Nondeterministic FSM. In: Grieskamp, W., Weise, C. (eds.) FATES 2005. LNCS,
vol. 3997, pp. 118–133. Springer, Heidelberg (2006)

24. Gromov, M.L., Evtushenko, N.V., Kolomeets, A.V.: On the Synthesis of Adaptive Tests
for Nondeterministic Finite State Machines. Progr. and Comp. Software 34(6), 322–329
(2008)

48 N. Kushik, K. El-Fakih, and N. Yevtushenko

25. Petrenko, A., Yevtushenko, N.: Adaptive Testing of Deterministic Implementations Speci-
fied by Nondeterministic FSMs. In: Wolff, B., Zaïdi, F. (eds.) ICTSS 2011. LNCS,
vol. 7019, pp. 162–178. Springer, Heidelberg (2011)

26. Tretmans, J.: Model-Based Testing with Labelled Transition Systems: There is nothing
More Practical than a Good Theory. Slides from the lecture at TAROT Summer School
(2010), http://tarot2010.ist.tugraz.at/

27. Gromov, M., El-Fakih, K., Shabaldina, N., Yevtushenko, N.: Distinguing non-
deterministic timed finite state machines. In: Lee, D., Lopes, A., Poetzsch-Heffter, A.
(eds.) FMOODS/FORTE 2009. LNCS, vol. 5522, pp. 137–151. Springer, Heidelberg
(2009)

28. El-Fakih, K., Gromov, M., Shabaldina, N., Yevtushenko, N.: Distinguishing experiments
for timed nondeterministic finite state machines. Acta Cybernetica (to appear)

29. Petrenko, A., Yevtushenko, N., Bochmann, G.V.: Testing Deterministic Implementations
from their Nondeterministic Specifications. In: Proc. of the IFIP Ninth International Work-
shop on Testing of Communicating Systems, pp. 125–140 (1996)

Exhaustive Model-Based Equivalence

Class Testing

Wen-ling Huang and Jan Peleska�

Department of Mathematics and Computer Science
University of Bremen, Germany

{huang,jp}@informatik.uni-bremen.de

http://informatik.uni-bremen.de/agbs

Abstract. In this article we present a formal justification of model-
based equivalence partition testing applied to black box tests of reactive
systems with large input data types (floating point types or large inte-
ger ranges) and small internal and output data ranges. Systems of this
variant typically perform control tasks, where a small number of control
commands is issued, depending on analogue or discretised input data
(e.g., sensors) and internal control states. We prove that a finite collec-
tion of input traces whose elements have been selected from a specific set
of input equivalence classes suffices to prove a conformance relation be-
tween specification model and system under test. This proof holds under
certain practically feasible fault hypotheses. The proof is performed on
systems whose operational semantics may be encoded by means of Kripke
Structures. It is shown how the semantics of SysML state machines can
be represented in Kripke Structures, so that the theorem induces an
equivalence class testing strategy for this formalism in a straightforward
way. To our best knowledge, this is the first formal justification of the
well-known equivalence class testing principle for systems with poten-
tially infinite input data types.

Keywords: Model-based testing, Equivalence class partition testing,
Kripke Structures, UML/SysML state machines.

1 Introduction

Motivation. Equivalence class testing is a well-known heuristic approach to
testing software or systems whose state spaces, inputs and/or outputs have value
ranges of a cardinality inhibiting exhaustive enumeration of all possible values
within a test suite. The heuristic suggests to create equivalence class partitions
structuring the input or output domain into disjoint subsets for which “the
behavior of a component or system is assumed to be the same, based on the
specification” [11, p. 228]. If this assumption is justified it suffices to test “just a
few” values from each class, instead of exploring the behavior of the system under

� The authors’ research is funded by the EU FP7 COMPASS project under grant
agreement no.287829.

H. Yenigün, C. Yilmaz, and A. Ulrich (Eds.): ICTSS 2013, LNCS 8254, pp. 49–64, 2013.
c© IFIP International Federation for Information Processing 2013

http://informatik.uni-bremen.de/agbs

50 W.-l. Huang and J. Peleska

test (SUT) for each possible value. In order to investigate that the SUT respects
the boundaries between different equivalence class partitions boundary values are
selected for each class, so that equivalence class and boundary value testing are
typically applied in combination. As an alternative to deriving equivalence class
partitions from the specification, the structure of the SUT or its model can be
analyzed: classes are then defined as sets of data leading to the same execution
paths [13, B.19].

For testing safety-critical systems the justification of the equivalence class
partitions selected is a major challenge. It has to be reasoned why the behaviour
of the SUT can really be expected to be equivalent for all values of a class, and
why the number of representatives selected from each class for the test suite is
adequate. While being quite explicit about the code coverage to be achieved when
testing safety-critical systems, standards like [13,10,7] do not provide any well-
defined acceptance conditions for equivalence class partitions to be sufficient.

Main Contributions. In this paper we present rules for generating input equiv-
alence class partitions, whose justification is given by the fact that they lead to
an exhaustive test suite: under certain hypotheses the generated classes and the
test data selected from them prove conformance between a specification model
and its implementation, if the latter passes all tests of this suite. The algorithm
is applicable in a model-based testing context, provided that the behavioural
semantics of the modelling formalism can be expressed using Kripke Structures.
The equivalence class partitioning strategy is elaborated and proven to be ex-
haustive on Kripke Structures. As an example of a concrete formalism, we illus-
trate how the strategy applies to SysML state machine models [8]. To our best
knowledge, this is the first formal justification of the well-known equivalence
class testing principle for systems with potentially infinite input data types (see
Section 6 for a discussion of related work).

Example 1. The following example describes a typical system of the class covered
by our input equivalence class partition testing strategy. It will be used through-
out the paper for illustrating the different concepts and results described in this
paper. The example is taken – in simplified form, in order to comply with the
space limitations of this publication – from the specification of the European
Train Control System ETCS and describes the required behaviour of the ceil-
ing speed monitoring which protects trains from overspeeding, as specified in
[15, 3.13.10.3]. The interface is shown in Figure 1. The I/O variables have the
following meaning.

Interface Description

Vest Current speed estimation [km/h]
VMRSP Applicable speed restriction [km/h]

(MRSP = Most Restrictive Speed Profile)
W Warning to train engine driver at driver machine interface (DMI) (1

= displayed, 0 = not displayed)
EB Emergency brake (1 = active, 0 = inactive)

Exhaustive Model-Based Equivalence Class Testing 51

Ceiling Speed
MonitoringVMRSP

Vest W

EB

Fig. 1. Interface of the ETCS ceiling speed monitoring function (simplified)

The behaviour of the ceiling speed monitoring function is specified by the
UML (or SysML) state machine shown in Figure 2. The function gives a warn-
ing to the train engine driver if the currently applicable speed limit VMRSP is
not observed, but the actual estimated speed Vest does not exceed the limit too
far. If the upper threshold for the warning status is violated (this limit is speci-
fied by guard conditions gebi1 or gebi2), the emergency brake is activated. After
such an emergency brake intervention has occurred, the brakes are only released
after the train has come to a standstill. While the specification model requires
guard condition gebi1 ∨ gebi2 , we assume for the purpose of this example that the
implementation has an erroneous guard implementation gebi1 ∨ gebi2 . �

Normal Status Warning Status

Intervention Status (EBI)

entry/ W=0; EB=0; entry/ W = 1;

entry/ EB=1;

[Vest > VMRSP]

[Vest ≤ VMRSP]

[Vest = 0]

[gebi1 ∨ gebi2]

Guard condition of faulty SUT

gebi2 ≡ VMRSP ≤ 110 ∧ Vest > VMRSP + 7.5

gebi1 ≡ VMRSP > 110 ∧ Vest > VMRSP + 15

[gebi1 ∨ gebi2]

gebi1 ≡ VMRSP > 110 ∧ Vest > VMRSP + 20

Guard condition of specification model

Fig. 2. State machine of the ETCS ceiling speed monitoring function

52 W.-l. Huang and J. Peleska

Overview. In Section 2 the basic concepts about Reactive Kripke Structures –
a specialisation of general Kripke Structures which is suitable for application in
a reactive systems context – are introduced. In Section 3 it is shown how input
equivalence class partitionings for Reactive Kripke Structures are constructed. In
Section 4, two test hypotheses are presented, whose validity allows us to prove
that our equivalence class partitioning and test data selection principle leads
to an exhaustive test suite (Theorem 1). While this theorem states that I/O
equivalence can be established using a finite input alphabet only (though the
input data types may be infinite), it does not state whether the number of input
traces needed is finite. In Section 5 we therefore show by means of this theorem,
that Reactive Kripke Structures associated with input equivalence partitionings
can be abstracted to deterministic finite state machines. Then the well-known
W-Method can be applied to establish a finite exhaustive test suite proving I/O
equivalence between specification model and SUT. Section 6 discusses related
work, and we conclude with a discussion of the results obtained and a conjecture
about an extension of the main theorem’s validity in Section 7.

2 Reactive Kripke Structures

2.1 Notation and Definitions

Let K = (S, S0, R, L,AP) be a Kripke Structure (KS) with state space S, initial
states S0 ⊆ S, transition relation R ⊆ S × S and labelling function L : S →
P(AP), where AP is a set of atomic propositions. We specialise on state spaces
over variable valuations: let V be a set of variable symbols for variables v ∈ V
with values in some domain D =

⋃
v∈V Dv. The state space S of K is the set

of all variable valuations s : V → D which are properly typed in the sense that
s(v) ∈ Dv for all v ∈ V .1 It is required throughout the paper that the labelling
function shall be consistent with, and determined by these variable valuations,
in the sense that AP contains propositions with free variable in V and2

∀s ∈ S : L(s) = {p ∈ AP | s(p)}

Since s satisfies exactly the propositions contained in L(s), it satisfies the
negation of all propositions in the complement, that is, ∀p ∈ AP −L(s) : ¬s(p).

K is called a Reactive Kripke Structure (RKS) if it satisfies the following
additional properties.

1 The state space is always total in the sense that all s : V → D are elements of S. This
allows us to assume that specification models K and implementations K′ operate
on the same state space S, possibly with differing subsets of reachable states. The
types Dv are always assumed to be maximal, like R, float or int with a given bit
width. Therefore we can assume that a faulty SUT may produce erroneous variable
values s′(v), but will never violate the type Dv of its interface variables v.

2 We use notation s(p) for the Boolean expression p, where every free variable v ∈
var(p) has been replaced by its current value s(v) in state s. For example, s(x < y)
is true if and only if s(x) < s(y) holds. Observe that this can be alternatively written
as s |= p, or p[s(v)/v | v ∈ V].

Exhaustive Model-Based Equivalence Class Testing 53

1. V can be partitioned into disjoint sets V = I ∪M ∪O called input variables,
(internal) model variables, and output variables, respectively.3

2. The state space can be partitioned into states from where only input chang-
ing transitions are possible, and those from where only internal and output
changing transitions are possible. The former states are called quiescent, the
latter transient.

∃SQ, ST ⊆ S : S = SQ ∪ ST ∧ SQ ∩ ST = ∅ ∧
∀(s, s′) ∈ R : s ∈ SQ ⇒ s′|M∪O = s|M∪O ∧
∀(s, s′) ∈ R : s ∈ ST ⇒ s′|I = s|I

3. All initial states have the same internal and output variable valuations, and
all possible inputs are allowed in initial states.4

∃s : M ∪O → D : S0 = {{x �→ c} ⊕ s | c ∈ DI}

4. The input vector may change without any restrictions.

∀s ∈ SQ, s
′ ∈ S : s′M∪O = s|M∪O ⇒ (s, s′) ∈ R

5. Transient states are always followed by quiescent ones. Internal and output
state changes are deterministic in the sense that they only depend on the
current state valuation.

∃T : ST → SQ : ∀s ∈ ST , s
′ ∈ S : (s, s′) ∈ R⇒ s′ = T (s)

Function T can be extended to the complete state space by defining ∀s ∈
SQ : T (s) = s.

6. The transition relation is total on S.5

The rules above imply that the transition relation of an RKS can be written
as R = {(s, s′) | s ∈ SQ ∧ s′|M∪O = s|M∪O} ∪ {(s, T (s)) | s ∈ ST }. While
transient states always have quiescent ones as post-states (this is stated in rule 5),
quiescent states may have both transient and quiescent ones as post-states.

Example 2. Consider the UML/SysML state machine described in Example 1.
Its behavioural semantics can be described by an RKS K = (S, S0, R, L,AP)
with variable symbols from V = I ∪M ∪ O, I = {Vest, VMRSP}, M = {�}, and
O = {W,EB}. Sets I and O contain the interface variable symbols with domains
DVest = DVMRSP = [0, 350] ⊆ R (maximum speed of ETCS trains under consid-
eration is 350km/h). Symbol � (“location”) has values in D� = {NS,WS, IS}
and its valuation signifies the current control state ‘Normal Status’, ‘Warning
Status’, or ‘Intervention Status’, respectively. The output symbols have values

3 Frequently we use input vectors c to the system, where c is an element of DI =
Dx1×· · ·×Dx|I| , and x1, . . . , x|I| are the input variables. Changing the valuation of all
input variables of a state s0 to c = (c1, . . . , c|I|) is written as s1 = s0⊕{x �→ c}. State
s1 coincides with s0 for all but the the input variables, and s1(xi) = ci, i = 1, . . . , |I |.

4 Observe that initial states may be quiescent or transient.
5 Though not all states in S may be reachable from S0.

54 W.-l. Huang and J. Peleska

in DW = DEB = B = {0, 1}. The state space S contains all valuations of these
symbols, S = V → D, with D = [0, 350] ∪ D�. Setting DI = [0, 350]× [0, 350],
the initial states are elements of S0 = {s0 ∈ S | ∃(c0, c1) ∈ DI : s0 = {Vest �→
c0, VMRSP �→ c1, � �→ NS,W �→ 0,EB �→ 0}}. Fixing the variable order to vector
(Vest, VMRSP, �,W,EB), we will from now on describe states s by their value vec-
tor (s(Vest), s(VMRSP), s(�), s(W), s(EB)), so that an initial state s0 is written as
(c0, c1,NS, 0, 0). The transition relation R is specified by the predicate (see [3]
about how to express transition relations as first order predicates)

R((Vest, VMRSP, �,W, EB), (V ′
est, V

′
MRSP, �

′,W′, EB′)) ≡∨7
i=0 ϕi((Vest, VMRSP, �,W, EB), (V ′

est, V
′
MRSP, �

′,W′, EB′))
ϕ0 ≡ (� = NS ∧ Vest ≤ VMRSP ∧ �′ = NS ∧W′ = W ∧ EB′ = EB)
ϕ1 ≡ (� = NS ∧ Vest > VMRSP ∧ �′ = WS ∧ W′ = 1 ∧ EB′ = EB ∧ V ′

est = Vest ∧ V ′
MRSP = VMRSP)

ϕ2 ≡ (� = NS ∧ (gebi1 ∨ gebi2) ∧ �′ = IS ∧ W′ = 1 ∧ EB′ = 1 ∧ V ′
est = Vest ∧ V ′

MRSP = VMRSP)
ϕ3 ≡ (� = WS ∧ Vest > VMRSP ∧ ¬(gebi1 ∨ gebi2) ∧ �′ = WS ∧ W′ = 1 ∧ EB′ = EB)
ϕ4 ≡ (� = WS ∧ Vest ≤ VMRSP ∧ �′ = NS ∧ W′ = 0 ∧ EB′ = 0 ∧ V ′

est = Vest ∧ V ′
MRSP = VMRSP)

ϕ5 ≡ (� = WS ∧ (gebi1 ∨ gebi2) ∧ �′ = IS ∧ W′ = W ∧ EB′ = 1 ∧ V ′
est = Vest ∧ V ′

MRSP = VMRSP)
ϕ6 ≡ (� = IS ∧ Vest > 0 ∧ �′ = IS ∧ W′ = W ∧ EB′ = 1)
ϕ7 ≡ (� = IS ∧ Vest = 0 ∧ �′ = NS ∧W′ = 0 ∧ EB′ = 0 ∧ V ′

est = Vest ∧ V ′
MRSP = VMRSP)

The quiescent states are characterised by the pre-conditions (“unprimed
conjuncts”) in ϕ0, ϕ3, ϕ6, the transient states by the pre-conditions in
ϕ1, ϕ2, ϕ4, ϕ5, ϕ7. Observe that in order to enforce the RKS rule 5 (transient
states are followed by quiescent states), ϕ2 specifies the direct transitions from
control state NS to IS. Initial state s0 = (0, 90,NS, 0, 0), for example, is quiescent;
this follows from ϕ0. In contrast to this, s1 = (95, 90,NS, 0, 0) ∈ S0 is transient
(ϕ1 applies). The latter initial state applies in a situation where the ceiling speed
monitoring controller is re-booted while the train is driving (Vest = 95), and the
state is immediately left, since Vest exceeds the allowed speed VMRSP. The atomic
propositions AP and the labelling function L will be discussed in the examples
below.

�

2.2 Quiescent Reduction

The notion of transient states in RKSs is semantically redundant. They only help
to facilitate the mapping of concrete modelling formalisms (such finite state ma-
chines or UML/SysML state machines) into RKSs. The redundancy of transient
states is captured in the following definition.

Definition 1. Given a Reactive Kripke Structure K = (S, S0, R, L) the Kripke
structure Q(K) defined by

Q(K) = (Q(S), Q(S0), Q(R), Q(L)), Q(S) = SQ

Q(L) = L|SQ : SQ → P(AP), Q(S0) = {T (s0) | s0 ∈ S0}
Q(R) = {(s, s′) | s, s′ ∈ SQ ∧ (R(s, s′) ∨ (∃s′′ ∈ ST : R(s, s′′) ∧ s′ = T (s′′)))}

is called the quiescent reduction of K. �

The state space of Q(K) consists of quiescent K-states only, and its labelling
function is the restriction of L to quiescent states. The initial states of Q(K)

Exhaustive Model-Based Equivalence Class Testing 55

consist of the union of the quiescent initialK-states and the quiescent post-states
of transient initial K-states (recall that T maps quiescent states to themselves
and transient states to their quiescent post-states). The transition relation Q(R)
relates quiescent states already related in K, and those pairs of quiescent states
that are related indirectly in K by means of an intermediate transient state.

Example 3. For the RKS described in Example 2, the quiescent reduction Q(K)
has initial states Q(S0) = {(Vest, VMRSP, �,W,EB) | Vest ≤ VMRSP∧� = NS∧W =
0 ∧ EB = 0} ∪ {(Vest, VMRSP, �,W,EB) | Vest > VMRSP ∧ ¬(gebi1 ∨ gebi2) ∧ � =
WS ∧ W = 1 ∧ EB = 0} ∪ {(Vest, VMRSP, �,W,EB) | (gebi1 ∨ gebi2) ∧ � = IS ∧
W = 1 ∧ EB = 1}. The transition relation is given by

Q(R)((Vest, VMRSP, �,W, EB), (V ′
est, V

′
MRSP, �

′,W′, EB′)) ≡∨7
i=0 ψi((Vest, VMRSP, �,W, EB), (V ′

est, V
′
MRSP, �

′,W′, EB′))
ψ0 ≡ (� = NS ∧ V ′

est ≤ V ′
MRSP ∧ �′ = NS ∧ W′ = 0 ∧ EB′ = 0)

ψ1 ≡ (� = NS ∧ V ′
est > V ′

MRSP ∧ ¬(g′
ebi1

∨ g′
ebi2

) ∧ �′ = WS ∧W′ = 1 ∧ EB′ = EB)

ψ2 ≡ (� = NS ∧ (g′
ebi1

∨ g′
ebi2

) ∧ �′ = IS ∧ W′ = 1 ∧ EB′ = 1)

ψ3 ≡ (� = WS ∧ V ′
est ≤ V ′

MRSP ∧ �′ = NS ∧ W′ = 0 ∧ EB′ = 0)
ψ4 ≡ (� = WS ∧ V ′

est > V ′
MRSP ∧ ¬(g′

ebi1
∨ g′

ebi2
) ∧ �′ = WS ∧ W′ = 1 ∧ EB′ = EB)

ψ5 ≡ (� = WS ∧ (g′
ebi1

∨ g′
ebi2

) ∧ �′ = IS ∧W′ = W ∧ EB′ = 1)

ψ6 ≡ (� = IS ∧ V ′
est > 0 ∧ �′ = IS ∧ W′ = W ∧ EB′ = 1)

ψ7 ≡ (� = IS ∧ V ′
est = 0 ∧ �′ = NS ∧ W′ = 0 ∧ EB′ = 0)

�

2.3 Traces

Traces of K are finite sequences of states related by R, including the empty se-
quence ε, Traces(K) = {ε}∪{s0 . . . sn ∈ S∗ | n ∈ N0∧s0 ∈ S0∧

∧n−1
i=0 R(si, si+1)}.

The last state of a finite sequence of states is denoted by last(s0 . . . sn) = sn,
and tail(s0 . . . sn) = (s1 . . . sn), tail(s0) = ε. Given trace s0 . . . sn we define its
restriction to symbols from X ⊆ V by (s0 . . . sn)|X = (s0|X) . . . (sn|X).

Given an RKS K = (S, S0, R, L), we consider input traces on states in K’s
quiescent reduction Q(K): an input trace ι = c0.c1 . . . is a finite sequence of
input vectors ci ∈ DI , that is, ι ∈ (DI)

∗. The application of an input trace ι to
a quiescent state s ∈ Q(S) is written as s/ι and yields a trace of Q(K) which is
recursively defined by s/ε = s, s/(c0.ι) = s.(T (s⊕ {x �→ c0})/ι).

As in the definitions above, T denotes the function mapping quiescentK-states
to themselves and transient ones to their quiescent post-states. Obviously each
pair of consecutive states in trace s/ι is related by transition relationQ(R).We will
be frequently interested in the last element of an input trace application to a state;
therefore the abbreviation s//ι = last(s/ι) is used. Since RKSs are deterministic
with respect to their reactions on input changes, s//ι is uniquely determined.

2.4 I/O Equivalence

Model-based testing always investigates some notion of I/O conformance: stim-
ulating the SUT with an input trace ι, the observable behaviour should be con-
sistent with the behaviour expected for ι according to the model. The following
definitions specify aspects of I/O equivalence, as they are relevant in the context
of Reactive Kripke Structures.

56 W.-l. Huang and J. Peleska

Definition 2. Given the quiescent reduction Q(K) of some RKS K, and quies-
cent states s0, s1 ∈ Q(S).

1. States s0 and s1 are called I/O equivalent, written as s0 ∼ s1, if and only if
(s0/ι)|O = (s1/ι)|O holds for all input traces ι.

2. States s0 and s1 are called ι-equivalent, written as s0
ι∼ s1, if and only if ι

is an input trace satisfying (s0/ι)|O = (s1/ι)|O.
�

Definition 3. Two RKSs K,K ′ over the same variable symbols V are called
I/O equivalent (written K ∼ K ′) if their quiescent reductions are equivalent in
the sense that ∀(s0, s′0) ∈ Q(S0)×Q(S′

0) : (s0|I = s′0|I ⇒ s0 ∼ s′0). �

3 Input Equivalence Class Partitionings over Reactive
Kripke Structures with Finite Outputs

In the remainder of this paper we study the special case where our specifica-
tion models K and implementations K ′ may have infinite input domains, but
have output and internal variables with finite domains only. The term “finite”
is to be interpreted here in the sense that these values can be enumerated with
reasonable effort. This contrasts with the domains of input variables, which we
allow to have infinite range (such as real values) or to have “very large” finite
cardinality (such as floating point or large integer types), where an enumeration
would be impossible, due to time and memory restrictions. As a consequence, it
is possible to further restrict the sets AP of atomic propositions under consid-
eration. Since all possible values of internal states and output variables can be
explicitly enumerated, AP can be structured into disjoint sets

AP = API ∪ APM ∪ APO

API ⊆ {p | p is atomic and var(p) ⊆ I}
APM = {m = α | m ∈M ∧ α ∈ Dm}
APO = {y = β | y ∈ O ∧ β ∈ Dy}

Example 4. Consider a SysML state machine transition

C0
[x<m+y]−→ C1

with x ∈ I,m ∈ M, y ∈ O, where Dx = R, Dy = {0, 1}, Dm = {10, 11}. When
transforming this machine into an RKS, the atomic propositions AP can be
strictly separated according to their free variables being from I, M , or O, re-
spectively. For example, AP = {� = C0,m = 10, y = 0, x < 10, x < 11, x < 12}.

�

Definition 4. Given RKS K = (S, S0, R, L,AP) with finite outputs and inter-
nal states, and AP partitioned into AP = API ∪APM ∪APO as described above.
If and only if

∀s0, s1 ∈ S : (L(s0) = L(s1)⇒ L(T (s0)) = L(T (s1)))

Exhaustive Model-Based Equivalence Class Testing 57

then AP is called an input equivalence class partitioning (IECP) of K, and its
input classes are specified by

I =
{
{ c ∈ DI |

∧
p∈M

p[c/x] ∧
∧

p∈API−M

¬p[c/x] } | M ⊆ API

}
\
{
∅
}

�

In order to understand the essence of Definition 4, consider an IECP AP and
alternative input changes {x �→ c} and {x �→ d} applied to some state s. The
input vectors c,d belong to the same input class from I, if and only if they
satisfy the same input-related propositions, that is, if

{p ∈ API | p[c/x]} = {p ∈ API | p[d/x]}

As a consequence, s, when changed by either c or d, will satisfy the same propo-
sitions from AP ; this means

L(s⊕ {x �→ c}) = L(s⊕ {x �→ d})

Now, since AP is an IECP, Definition 4 implies that

L(T (s⊕ {x �→ c})) = L(T (s⊕ {x �→ d}))

Therefore the post states T (s ⊕ {x �→ c}) and T (s ⊕ {x �→ d}) will be in the
same internal state and produce the same outputs. Recall that T maps quiescent
states to themselves, so the IECP property is only non-trivial for the transient
states of an RKS.

Example 5. For the ceiling speed monitoring function, whose RKS K has been
constructed in Example 2, atomic propositions

AP = {Vest = 0, Vest > VMRSP, VMRSP > 110, Vest > VMRSP + 7.5, Vest > VMRSP + 15,
� = NS, � = WS, � = IS,W,EB}

introduce an IECP for K. Consider, for example, the states s0 labelled by
L(s0) = {Vest > VMRSP, � = NS}. Each of these s0 is transient and has a post
state s1 satisfying V ′

est = Vest∧V ′
MRSP = VMRSP∧�′ = WS∧W. As a consequence,

all of these post-states are labelled by L(s1) = {Vest > VMRSP, � = WS,W}.
�

The following Lemma shows that input traces applied to the same state and
passing through the same sequences of input equivalence classes produce identi-
cal outputs.

Lemma 1. Given RKS K = (S, S0, R, L,AP) with finite outputs and internal
state as described above, so that AP is an IECP for K with input classes I. Let
ι = c1 . . . ck, τ = d1 . . .dk, ci,di ∈ DI , i = 1, . . . , k, such that

∀i = 1, . . . , k, ∃Xi ∈ I : {ci,di} ⊆ Xi

Then ∀s ∈ SQ : (s/ι)|M∪O = (s/τ)|M∪O.

58 W.-l. Huang and J. Peleska

Proof. Let Xi ∈ I satisfying {ci,di} ⊆ Xi, ∀i = 1, . . . , k. Let s ∈ SQ. Denote
s/ι = s0.s1 . . . sk, s/τ = r0.r1 . . . rk, where s = s0 = r0. We prove by induction
over i = 0, . . . , k that si|M∪O = ri|M∪O. For i = 0 it is trivial, since s = s0 =
r0. Suppose that the induction hypothesis holds for i < k, si|M∪O = ri|M∪O.
Since si ⊕ {x �→ ci+1}|M∪O = ri ⊕ {x �→ di+1}|M∪O and, according to the
assumptions of the lemma, {ci+1,di+1} ⊆ Xi+1, we conclude that L(si ⊕ {x �→
ci+1}) = L(ri ⊕ {x �→ di+1}).The IECP property of AP now implies that also
L(T (si⊕{x �→ ci+1})) = L(T (ri⊕{x �→ di+1})), and by definition T (si⊕{x �→
ci+1}) = si+1, T (ri⊕{x �→ di+1}) = ri+1, therefore si+1|M∪O = ri+1|M∪O. This
proves the lemma. �
Lemma 2. Given RKS K with finite outputs and internal state as described
above, and AP an IECP. Let p1, . . . , pn be a set of fresh atomic propositions not
contained in AP , with var(pi) ⊆ I, i = 1, . . . , n. Then AP2 = AP ∪ {p1, . . . , pn}
is another IECP, called the refinement of AP . The input classes of AP2, con-
structed according to Definition 4, are denoted by I2. �

Observe that IECP refinement according to Lemma 2 introduces new propo-
sitions in API only, while APM and APO remain unchanged.

4 Test Hypotheses and Proof of Exhaustiveness

The input equivalence class testing strategy to be introduced in this section yield
exhaustive tests, provided that the following two test hypotheses are met.

(TH1) Testability Hypothesis. There exists an RKS K ′ = (S, S′
0, R

′, L′, AP ′)
with finite internal states and output as introduced in Section 3 describing the
true behaviour of the SUT, and its state space S consists of valuation functions
s : V → D for variables from V as specified for the reference model K =
(S, S0, R, L,AP).

(TH2) Existence of Refined Equivalence Class Partitioning. For specification
model K = (S, S0, R, L,AP) and SUT K ′ = (S, S′

0, R
′, L′, AP ′), both atomic

proposition sets AP,AP ′ are IECP of K and K ′ with input classes I, I ′, respec-
tively, and APM = AP ′

M , APO = AP ′
O. Moreover, there exists an input partition

refinement AP2 = AP2I ∪ APM ∪APO, in the sense of Lemma 2, such that

∀X ∈ I, X ′ ∈ I ′ : ∃X2 ∈ I2 : (X ∩X ′ �= ∅⇒ X2 ⊆ X ∩X ′)

Validity of (TH2) induces a finite input alphabet to K and K ′ which will be
shown below to suffice for uncovering any violation of I/O equivalence between
K and K ′.

Definition 5. Given RKSs K,K ′ with finite internal state and outputs, and in-
put equivalence class partitionings AP,AP ′ and AP2 according to test hypothesis
(TH2). Let AI denote a finite subset of input vectors c ∈ DI satisfying ∀X ∈ I2 :
∃c ∈ AI : c ∈ X. Then AI is called an input alphabet for equivalence class par-
tition testing of K ′ against K. For any nonnegative integer k, AI

k is the set of all
AI-sequences of length less than or equal to k (including the empty trace ε). �

Exhaustive Model-Based Equivalence Class Testing 59

Example 6. Let K be the RKS of the ceiling speed monitor model constructed
in Example 2, with IECP AP as given in Example 5. Now suppose that the
SUT implementing the monitor model has an error, as indicated in Figure 2:
it uses a faulty guard condition gebi1 ∨ gebi1 instead of gebi1 ∨ gebi1 . Its IECP
(which, of course, would be unknown in a black box test) is AP ′ = {Vest =
0, Vest > VMRSP, VMRSP > 110, Vest > VMRSP + 7.5, Vest > VMRSP + 20, � =
NS, � = WS, � = IS,W,EB}. The IECP refinement of AP , AP2 = {Vest =
0, Vest > VMRSP, VMRSP > 110, Vest > VMRSP + 7.5, Vest > VMRSP + 15, Vest >
VMRSP + 18.75, Vest > VMRSP + 22.5, � = NS, � = WS, � = IS,W,EB} fulfils
test hypothesis (TH2). Consider, for example the intersection of K input class
X = {(Vest, VMRSP) | VMRSP > 110 ∧ Vest > VMRSP + 15} and the K ′ input class
X ′ = {(Vest, VMRSP) | VMRSP > 110∧Vest > VMRSP+7.5∧¬(Vest > VMRSP+20)}.
Then the input class X2 = {(Vest, VMRSP) | VMRSP > 110 ∧ Vest > VMRSP + 15 ∧
¬(Vest > VMRSP + 18.75)} of the refined IECP AP2 is contained in the intersec-
tion X ∩X ′. Indeed, any input from X2 applied to the SUT in control state WS
would reveal the erroneous guard condition, because K transits into IS, while
K ′ remains in WS.

For practical application (since the IECP of the SUT is unknown), the input
space DI is systematically partitioned by intersecting the input-related proposi-
tions from AP with interval vectors, partitioning DI into |I|-dimensional cubes.

�

Theorem 1. Given RKSs K = (S, S0, R, L,AP), K ′ = (S, S′
0, R

′, L′, AP ′),
such that AP,AP ′ are IECP of K and K ′ with input classes I, I ′ , respectively,
and AP2 is a refinement of AP according to test hypothesis (TH2). I2 contains
the input classes associated with AP2. Let AI be an input alphabet derived from
I2 according to Definition 5. Then for any quiescent states s ∈ SQ, s

′ ∈ S′
Q and

any input trace ι, there exists an input trace τ ∈ AI
∗ with the same length, such

that s/ι|O = s/τ |O and s′/ι|O = s′/τ |O. Hence, s ι∼ s′ if and only if s
τ∼ s′.

Proof. If ι is empty, there is nothing to prove, since ε ∈ AI . Suppose therefore,
that ι = c1 . . . ck with k ≥ 1 and let s/ι = s0.s1 . . . sk, and s′/ι = s′0.s

′
1 . . . s

′
k,

where s0 = s, s′0 = s′.
Consider the associated sequences of input classes X1 . . . Xk ∈ I and

X ′
1 . . .X

′
k ∈ I ′, where ci ∈ Xi and ci ∈ X ′

i, for all i = 1, . . . , k. Since
ci ∈ Xi∩X ′

i �= ∅, i = 1, . . . , k, (TH2) implies the existence ofX21, . . . , X2k ∈ I2
such that

X2i ⊆ Xi ∩X ′
i, i = 1, . . . , k (∗)

According to Definition 5, we can select d1, . . . ,dk ∈ AI , such that di ∈ X2i

for all i = 1, . . . , k. (*) implies di ∈ Xi ∩ X ′
i i = 1, . . . , k. Therefore, setting

τ = d1 . . .dk, Lemma 1 may be applied to conclude that (s/ι)|O = (s/τ)|O and

(s′/ι)|O = (s′/τ)|O. Therefore s
ι∼ s′ ⇔ s

τ∼ s′, and this completes the proof.
�

60 W.-l. Huang and J. Peleska

5 Test Strategy

5.1 Application of the W-Method

Given specification model K = (S, S0, R, L,AP) and SUT K ′ =
(S, S′

0, R
′, L′, AP ′), and the refined IECP AP2 with input classes I2 according

to test hypothesis (TH2). Let AI be the input alphabet constructed from I2 as
specified in Definition 5. Then AP , AI and each s0 ∈ Q(S0) induce a determin-
istic finite state machine (DFSM) abstraction M(K, s0) = (Q, q0,AI , DO, δ, ω)
of K with state space Q = {[s] | s ∈ SQ}, initial state q0 = [s0], and input
alphabet AI , where [s] = {r ∈ SQ | r ∼ s}. Let O be the set of output variables
of K. The output alphabet of M(K, s0) is defined by DO = Dy1 × . . .×Dy|O| .
The state transition function δ : Q×AI → Q of M(K, s0) is defined by

δ(q, c) = q1 if and only if ∃s ∈ SQ : q = [s] ∧ q1 = [s//c]

The output function ω : Q×AI → DO of M(K, s0) is defined by

ω(q, c) = e if and only if ∃s ∈ SQ : q = [s] ∧ (s//c)|O = {y �→ e}

We extend the domain of the state transition function to input traces, δ : Q ×
A∗

I → Q∗ by setting recursively δ(q, ε) = q, δ(q, c.ι) = q.δ(δ(q, c), ι). The output
function can be extended to ω : Q× A∗

I → D∗
O by setting ω(q, ι) = e0 . . . ek, if

and only if δ(q, ι) = [s0] . . . [sk] and si|O = {y �→ ei}, i = 0, . . . , k.

Lemma 3. The DFSMs M(K, s0) = (Q, q0,AI , DO, δ, ω) introduced above are
well-defined.

Proof. Let q = [s] and [r] = [s] for some s, r ∈ SQ. Then r ∼ s, and therefore
s//c ∼ r//c, and this shows that δ(q, c) is well-defined. Since all members of
[s//c] coincide on O, this also shows that ω is well-defined. �

By construction, the DFSMs are minimal, because each pair of different states
[s0] �= [s1] can be distinguished by an input trace resulting in different outputs
when applied to [s0] or [s1], respectively. Since AP is an IECP, all K-states
s0, s1 carrying the same label L(s0) = L(s1) are I/O-equivalent, so {s1 | L(s1) =
L(s)} ⊆ [s] for all quiescent states of K. It may be the case, however, that some
states carrying different labels are still I/O-equivalent, that is, L(s0) �= L(s1),
but {s | L(s) = L(s0)}∪{s | L(s) = L(s1)} ⊆ [s0] = [s1]. In analogy to M(K, s0),
DFSMs M(K ′, s′0) can be constructed from K ′, AP ′, s0 ∈ Q(S′

0), and the same
input alphabet AI as has been used for the DFSMs M(K, s0).

We write M(K, s0) ∼M(K ′, s′0) and q0 ∼ q′0, if and only if ω(q0, ι) = ω′(q′0, ι)
for every ι ∈ A∗

I . Note that this differs from I/O equivalence between K and
K ′, where s0 ∼ s′0 if and only if (s0/ι)|O = (s′0/ι)O for every ι ∈ D∗

I . The
following theorem states that I/O equivalence between specification model K
and an implementation K ′ can be established by investigating the equivalence
of their associated DFSM, that is, using ι ∈ A∗

I only.

Exhaustive Model-Based Equivalence Class Testing 61

Theorem 2. With the notation above, the following statements are equivalent.

– K and K ′ are I/O equivalent, K ∼ K ′.
– ∀s0 ∈ Q(S0), s

′
0 ∈ Q(S′

0) : (s0|I = s′0|I ⇒M(K, s0) ∼M(K ′, s′0)).

Proof. Obviously, M(K, s0) ∼ M(K ′, s′0) ⇔ q0 ∼ q′0 ⇔ (∀τ ∈ A∗
I : s0

τ∼ s′0).
By Theorem 1, we have (∀ι ∈ D∗

I : s0
ι∼ s′0) ⇔ (∀τ ∈ A∗

I : s0
τ∼ s′0). Hence

s0 ∼ s′0 ⇔ M(K, s0) ∼ M(K ′, s′0). Now the assertion follows directly from the
definition of K ∼ K ′ (Definition 3). �

Definition 6. With the terms introduced above, a transition cover of M(K, s0)
is a set of input traces ι ∈ A∗

I satisfying the following condition: for any reachable
state q ∈ Q and any c ∈ AI , there is an input trace ι ∈ TC such that δ(q0, ι) = q
and ι.c ∈ TC. �

Definition 7. With the terms introduced above and minimal M(K, s0), define
a characterisation set W of M(K, s0) as a set of traces ι ∈ A∗

I , such that for all
q1, q2 ∈ Q, there exists an input trace ι ∈ W such that ω(q1, ι) �= ω(q2, ι). �

On DFSM M(K, s0) we can apply Chow’s W-method [2] to conclude that the
following finite test suite is exhaustive for testing I/O equivalence between K
and K ′.

Theorem 3. Let s0 ∈ Q(S0), s
′
0 ∈ Q(S′

0) with s0|I = s′0|I , and TC(s0),W (s0)
the transition cover and characterisation set of M(K, s0) as introduced above.
Assume that M(K, s0) has n states and that M(K ′, s′0) has at most m states
and m0 = max(n,m). Then

W(K) =
⋃

[s0]∈Q(S0)/∼

(
TC(s0).Am0−n

I .W (s0)
)

is an exhaustive test suite for testing SUT K ′ against specification model K.

Proof. M(K, s0) and M(K ′, s′0) are two minimal DFSMs with the same in-
put alphabet AI . Applying Chow’s W-method [2] to M(K, s0) and M(K ′, s′0),
M(K, s0) andM(K ′, s′0) are I/O equivalent if and only if they are TC(s0).Am0−n

I .
W (s0) equivalent.

6 Hence the assertion follows directly from Theorem 2. �

For the example of the ceiling speed monitor introduced in this paper, a
detailed description of the test cases resulting from application of Theorem 3
can be found in [6, Section 7.5].

6 Observe that in [2], the author uses a slightly different notation, where Ai
I denotes

the set of input traces with length i, while we use this term to denote the traces of
length less or equal i.

62 W.-l. Huang and J. Peleska

5.2 Complexity Considerations

Definition 5 determines the size of the input alphabet AI as the number k2 =
|AI | ≤ 2|AP2I | of input classes in the refined equivalence partitioning AP2 ac-
cording to test hypothesis (TH2).

The number n of states in the DFSM associated with K is less or equal to the
number n of labels L(s), s ∈ SQ (we get n < n, if different labels L(s0) �= L(s1)
are associated with I/O equivalent states). Let m0 = max(n,m), where n is the
number of states inM(K, s0), andm the number of states inM(K ′, s′0). Then ac-
cording to [2,16], the number of input traces contained in TC(s0).Am0−n

I .W (s0)
is bounded by n2 · km0−n+1

2 . We have to execute several test suites of this type,
their number is equal to k = |Q(S0)/∼|, the number of equivalence classes de-
rived from initial states of the quiescent reduction of K. In the worst case, all
classes of K can be reached from some transient initial state, so k ≤ n. This
results in an upper bound of k · n2 · km0−n+1

2 ≤ n3 · km0−n+1
2 test cases (that is,

input traces) to be performed.

5.3 Summary of SUT-Related Estimates

While parameters n, k are calculated from the known representation ofK, the fol-
lowing hypotheses about the SUT influence the complexity parametersm,m0, k2
introduced above. (1) The size k2 of the input alphabet relies on (TH2) (Sec-
tion 4); we assume that AI is sufficiently fine-grained, such that one c ∈ AI

can be found in every intersection of input classes X,X ′ associated with K
and K ′, respectively. (2) The number m of M(K ′, s′0)-states is bounded by
m = |{L′(s) | s ∈ S and s reachable in K ′}|. The finite number of reachable
internal states and output states is bounded by

∏
v∈M∪O |Dv|, the product of

finite value ranges for internal state variables and output variables. The num-
ber of different proposition sets M ′ ⊂ AP ′

I fulfilled by reachable states of K ′

is bounded by the number k2 of elements in AI , because this set contains one
element per input equivalence class of AP2 refining AP ′. As a consequence,
m ≤ m ≤ k2 ·

(∏
v∈M∪O |Dv|

)
. (3) This also determines m0 = max(n,m).

6 Related Work

Notable examples for exhaustive test methods have been given in [2,12,9,14].
There exists a large variety of research results related to testing against hierarchic
state machines similar to Harel’s Statecharts or to UML state machines. We
mention [4] as one representative and refer to the references given there. These
contributions, however, mainly deal with the state machine hierarchy and do not
tackle the problem of attributes from large input domains, which is the main
motivation for the results presented here. In [1, pp. 205] large data domains in
the context of state machine testing are addressed, but no formal justification
of the heuristics presented there are given.

In model-based testing, the idea to use data abstraction for the purpose of
equivalence class definition has been originally introduced in [5], where the classes

Exhaustive Model-Based Equivalence Class Testing 63

are denoted as hyperstates, and the concept is applied to testing against abstract
state machine models. Our results presented here surpass the findings described
in [5] in the following ways: (1) while the authors of [5] introduce the equiva-
lence class partitioning technique for abstract state machines only, our approach
extracts partitions from the models’ semantic representation. Therefore an ex-
haustive equivalence class testing strategy can be elaborated for any formalism
whose semantics can be expressed by Kripke Structures. (2) The authors sketch
for white box tests only how an exhaustive test suite could be created [5, Sec-
tion 4]: the transition cover approach discussed there is only applicable for SUT
where the internal state (respectively, its abstraction) can be monitored during
test execution. (3) The authors only consider finite input sets whose values have
been fixed a priori [5, Section 2], whereas our approach allows for inputs from
arbitrary domains.

Our notion of I/O equivalence (Definition 2) corresponds to the well-known
ioco relation, when translating the Reactive Kripke Structures into input/output
transition systems (IOTS) as defined in [14]. To this end, however, the require-
ment [14, Definition 1] that LTL should only have countably many states and
labels has to be dropped, since RKS deal with potentially uncountable input
data types. IOTS traces restricted to input actions correspond to our input
traces, and IOTS suspension traces to our traces revealing inputs and outputs.
Our test strategy is based on quiescent reduction, that is, only outputs in qui-
escent states are visible. The resulting suspension traces are therefore of the
form σ = c1.y1.δ.c2.y2.δ . . ., where ci are input actions, yi are outputs, and δ is
the special output action denoting quiescence. This restricted type of suspension
traces occurs naturally in test applications where test data is exchanged between
test environment and SUT via shared variables, and not via events.

7 Conclusion and Future Work

In this paper, a novel exhaustive test strategy for input equivalence class testing
has been established. The main result (Theorem 1) shows that even in presence of
infinite input data domains, a finite input alphabet can be identified, so that for
every trace performed by specification model or implementation, there exists a
trace using inputs from this finite alphabet only, but producing the same outputs
as the original one. This result holds for arbitrary modelling formalisms, whose
semantics may be expressed by Reactive Kripke Structures with input domains
that may be infinite (or too large to be explicitly enumerated), but with internal
states and outputs having a sufficiently small range to be enumerated in an
explicit way. With the main theorem at hand, the well-known W-Method can be
applied to identify a finite and at the same time exhaustive test suite. Using an
abstraction of the Kripke Structures under consideration to deterministic finite
state machines, we have proven that this method is applicable.

Further research will focus on the generalisation of the test strategy to Re-
active Kripke Structures with arbitrary data domains for internal states and
outputs. According to our conjecture, a result similar to Theorem 1 should hold

64 W.-l. Huang and J. Peleska

in the general case. The equivalence classes under consideration, however, will
no longer refer to system inputs only, but will be characterised by more general
atomic propositions with inputs, internal state and outputs as free variables.

References

1. Binder, R.V.: Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley (2000)

2. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans-
actions on Software Engineering SE-4(3), 178–186 (1978)

3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

4. Gnesi, S., Latella, D., Massink, M.: Formal test-case generation for uml statecharts.
In: Ninth IEEE International Conference on Engineering Complex Computer Sys-
tems (ICECCS 2004), pp. 75–84. ICECCS (2004)

5. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating finite state
machines from abstract state machines. ACM SIGSOFT Software Engineering
Notes 27(4), 112–122 (2002)

6. Huang, W., Peleska, J., Schulze, U.: Comprehensive modelling for advanced sys-
tems of systems – specialised test strategies. Public Document D34.2, COMPASS
(October 2013), http://www.compass-research.eu/deliverables.html

7. ISO/DIS 26262-4: Road vehicles – functional safety – part 4: Product development:
system level. Tech. rep., International Organization for Standardization (2009)

8. Object Management Group: OMG Systems Modeling Language (OMG SysMLTM).
Tech. rep., Object Management Group (2010), OMG Document Number:
formal/2010-06-02

9. Peleska, J., Siegel, M.: Test automation of safety-critical reactive systems. South
African Computer Jounal 19, 53–77 (1997)

10. RTCA,SC-167: Software Considerations in Airborne Systems and Equipment Cer-
tification, RTCA/DO-178B. RTCA (1992)

11. Spillner, A., Linz, T., Schaefer, H.: Software Testing Foundations. Dpunkt Verlag,
Heidelberg (2006)

12. Springintveld, J., Vaandrager, F., D’Argenio, P.: Testing timed automata. Theo-
retical Computer Science 254(1-2), 225–257 (2001)

13. European Committee for Electrotechnical Standardization: EN 50128 – Railway
applications – Communications, signalling and processing systems – Software for
railway control and protection systems. CENELEC, Brussels (2001)

14. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1–38.
Springer, Heidelberg (2008)

15. UNISIG: ERTMS/ETCS SystemRequirements Specification, ch. 3, Principles,
vol. Subset-026-3 (2012), issue 3.3.0

16. Vasilevskii, M.P.: Failure diagnosis of automata. Kibernetika (Transl.) 4, 98–108
(1973)

http://www.compass-research.eu/deliverables.html

Remote Testing of Timed Specifications�

Alexandre David1, Kim G. Larsen1, Marius Mikučionis1,
Omer L. Nguena Timo2, and Antoine Rollet2

1 Department of Computer Science, Aalborg University, Denmark
{adavid,kgl,marius}@cs.aau.dk

2 LaBRI, University of Bordeaux - CNRS, France
{nguena,rollet}@labri.fr

Abstract. We present a study and a testing framework on black box remote test-
ing of real-time systems using Uppaal-TIGA. One of the essential challenges of
remote testing is the communication latency between the tester and the system
under test (SUT) that may lead to interleaving of inputs and outputs. This af-
fects the generation of inputs for the SUT and the observation of outputs that
may trigger a wrong test verdict. We model the overall test setup using Timed
Input-Output Automata (TIOA) and present an adapted asynchronous semantics
with explicit communication delays. We propose the Δ-testability criterion for
the requirement model where Δ describes the communication latency. The test
case generation problem is then reduced into a controller synthesis problem. We
use Uppaal-TIGA for this purpose to solve a timed game with partial observabil-
ity between the tester and the communication media together with the SUT. The
objective of the game corresponds to a test purpose.

1 Introduction

This paper deals with black box conformance testing of remote real-time systems. Usu-
ally, conformance black-box testing is an activity where a tester executes selected test
cases on a system (implementation) under test (SUT) and emits a test verdict (pass, fail,
etc.). This verdict indicates the conformance between SUTs and the specification. It is
computed according to the specification and a conformance relation between SUTs and
the specification. Usually, the assumption of zero delay and synchronous communica-
tion between the tester and the SUT is done, but this is not realistic in many situations,
such as network applications, or systems when time matters. In some cases, it may pro-
vide an erroneous verdict, potentially implying catastrophic situations. Our goal is to
study the impact of explicit propagation delays between the implementation and the
tester on test case generation and execution, and to provide a general testing framework
for remote testing of real-time systems modeled with timed automata.

ioco Based Theory. In the case of untimed systems, the most common approaches are
based on the Labeled Transition Systems (LTS) model, which is used as a semantics for
many standardized languages such as SDL [1] or LOTOS [2]. The ioco relation theory
[3] proposes a complete testing approach for LTS with inputs and outputs, using the

� This work has been partially supported by the French research project ANR VACSIM.

H. Yenigün, C. Yilmaz, and A. Ulrich (Eds.): ICTSS 2013, LNCS 8254, pp. 65–81, 2013.
c© IFIP International Federation for Information Processing 2013

66 A. David et al.

idea that any output of the implementation should be authorized by the specification.
They also introduce the notion of quiescence permitting to consider blocking states as
a special output which should be explicitly specified. A complete framework based on
this theory has been proposed in [4], especially providing the possibility to use Test
Purposes in order to lead the testing process.

Testing with Time. The ioco theory has inspired many testing approaches. [5] pro-
poses an extension of the Finite States Machines with Time (TEFSM) and defines
adapted conformance relations. [6], [7] and [8] propose extensions of ioco relation with
time (tioco) including delays in the set of observable actions, leading to infinite sys-
tems. They propose non deterministic test generation algorithms based on Timed In-
put/Output Automata (TIOA). [8] also shows how to use the Uppaal tool suite in order
to generate offline test cases using coverage criteria for timed models. More recently,
[9] proposes a formal framework permitting to use Test Purpose and non-deterministic
Timed Automata thanks to a determinization algorithm.

Remote Testing. These works introduce conformance relations and test selection al-
gorithms based on synchronous test execution algorithms. However, in the untimed
setting, [10] and [11] point out the fact that synchronous execution of tests cases is not
realistic when there is a significant distance between testers and SUTs. Under this re-
moteness assumption, the adequate communication mode should be asynchronous. [10]
considers that SUTs and testers communicate via input and output queues, and asyn-
chronous points of control of observation (PCOs). [10] also shows that simply using
logical stamps permits to obtain the “same power” of testing than in a synchronous en-
vironment. In a more general way, [12] proposes a study revisiting asynchronous testing
and showing possibilities (or not) to synchronize asynchronous testing.

Usually, the works done on this topic consider this as a “distributed” testing, imply-
ing several entities in a “system” of components. In this case, most effort is done for
solving the problem of relative order between events induced by the communication
process without state space explosion. [13] proposes a test generation framework using
several Input Output State Machines (IOSM) and perfect FIFO queues between them.
Then the author uses the Prime Event Structure in order to fix the problems of interleav-
ing in the test generation process. Still using queues, but with Input Output Transition
Systems (IOTS), [11] proposes a method to generate sound test cases with test pur-
poses. They apply a transformation of the test purpose allowing to consider all possible
distortions induced by the queues. The problem of interleaving is also addressed in [14]
where authors focus on testing of concurrent systems. They propose to use Labeled
Event Structures and partial order semantics in order to handle lightly concurrency as-
pects in the conformance relation. [15] proposes to add local clocks in each component
and timestamps directly included in the exchanged messages. They propose different
strategies depending on assumptions regarding how the clocks relate and give adapted
conformance relations.

Contributions. The related works described above provide testing techniques for un-
timed systems. To the best of our knowledge, there is no explicit work that considers
remote testing of timed specifications. Our contribution is two-fold. Firstly and based
on a real example, we show how remote testing can be performed by modelling the

Remote Testing of Timed Specifications 67

communication channels with processes that delay the actions and synchronize with
the SUT and its environment. We discuss the drawback of this general approach. Then,
after considering timed asynchronous behaviours, we provide a Δ-testability criterion
ensuring remote testing with the same detecting properties as local one.

The paper is organised as follows. Section 2 recalls well-known concepts of the
model-based testing theory with TIOA. In Section 3, we address the challenges for the
remote testing. We present the disadvantages of using asynchronous timed traces in gen-
eral. Asynchronous semantics described the observations of a remote tester. Section 4
relates observed traces with the traces of the implementation. We define the Δ-testable
criterion and present some interesting properties. The remote testing framework with
Uppaal-TIGA is described in Section 5 and it is followed by a case study in Section 6.

2 The tioco-Based Testing Theory

The tioco-testing theory is based on the representation of the specifications and the
implementations with deterministic TIOA. Let us now present formal notations and
concepts for the tioco-testing theory that we extend later for remote testing.

Timed Word, Timed Sequence, and Timed Trace. In the sequel, R≥0 denotes the set of
non negative real-numbers that we will often call delays. A timed word over an alphabet
of actions Γ is an element w = w1 ·w2 ·. . .·wn of (R≥0∪Γ)∗. We define w[i] = wi and
w[i..j] = wi ·wi+1 · . . . ·wj−1 ·wj , and |w| = n denotes the length of w. We consider
the causal/dependency relation between the actions in w and we say that wj depends
on wi when i < j and we write wi ≺ρ wj . The timed word w is a timed sequence if
the projection of w over R≥0 is empty or an increasing sequence of real-numbers i.e
∀0 ≤ i ≤ j ≤ |n| such that wi, wj ∈ R≥0, it holds that wi ≤ wj . A timed sequence
is called a timed trace if it is a sequence of timestamped actions followed with a delay
i.e it belongs to (R≥0 × Γ)∗ × R≥0. We will consider that the behaviours of real-time
systems can be described with timed traces. Each delay in a timed sequence refers to
the time that has elapsed since the system started.

2.1 Input/Output Timed Transition Systems (IOTTS)

Definition 1 (IOTTS). An input/output timed transition system (IOTTS) is a tuple S =
〈S, s0, I, O, Λ,M〉 where S is the set of states, s0 is the initial state, I is a finite set
of input actions, O is a finite set of output actions, Λ is a finite set of silent actions,
M ⊆ S × (I ∪ O ∪ Λ ∪ R≥0) × S is the set of moves. We will write s

α−→ s′ with
α ∈ (I ∪O ∪ Λ ∪ R≥0) to represent a move (s, α, s′) ∈M .

Moreover, we require the following standard properties for IOTTS : time-Determinism

(if s
d−→ s′ and s

d−→ s′′ with d ∈ R≥0, then s′ = s′′) , 0-Delay (s
0−→ s), additivity (if

s
d−→ s′ and s′ d′

−→ s′′ with d, d′ ∈ R≥0, then s
d+d′
−−−→ s′′), continuity (if s

d−→ s′, then for

every d′ and d′′ in R≥0 such that d = d′+d′′, there exists s′′ such that s
d′
−→ s′′ d′′

−→ s′).
We denote by IOTTS(I, O, Λ), the class of IOTTS of which the input actions, the

output actions and the silent actions belong to I , O and Λ, respectively. For S ∈
IOTTS(I, O, Λ), we define Act(S) = I ∪O ∪ Λ.

68 A. David et al.

Notations. In the sequel we write s
α−→ with α ∈ Act(S) ∪ R≥0 when there exists

s′ ∈ Q such that s
α−→ s′. We write s

α1.α2....αn−−−−−−−→ s′ with αi ∈ Act(S) ∪ R≥0 when
there exists s1, s2, . . . sn−1 ∈ S such that s

α1−→ s1
α2−→ s2 → · · · → sn−1

αn−−→ s′.

Executions and Timed Traces. A run of S starting at s ∈ S, is a finite sequence π =
s.(αi.si)i=1..n ∈ S × ((Act(S) ∪ R≥0) × S)∗ such that s

α1−→ s1 and si
αi−→ si+1.

We denote Runs(s) the set of runs of S starting from s and Runs(S) = Runs(s0). The
execution sequence of π is the sequence Seq(π) = α1.α2.αn ∈ ((Act(S)∪R≥0)

∗,
and we naturally extend the notation with Seq(s) = {Seq(π) | π ∈ Runs(s)} and
Seq(S) = Seq(s0). As usual, a move s

α−→ s′ with a ∈ Act(S) means that s′ is reached

when the action a is executed on s (discrete move). A move s
d−→ s′ with d ∈ R≥0 means

that the state s′ is reached after d time units has elapsed from s; so d is interpreted as
the time distance between s and s′ (time elapse).

The environment cannot observe the executions of silent actions in Λ. Moreover
delays in executions are time distances between states. A timed trace corresponding
to an execution is a timed sequence consisting of time-stamps and visible actions and
such that the time-stamps indicate the dates of occurrences of the actions. Given an
execution sequence ρ = (αi)i=1..n ∈ (Act(S)∪R≥0)

∗, the timed trace associated with
ρ is denoted ttrace(ρ) and it is defined by ttrace(ρ) = obs(0, ρ) where

obs : R≥0 × (I ∪O ∪ Λ ∪R≥0)
∗ → (R≥0 × (I ∪O))∗ × R≥0

is a function that removes silent action from execution actions and that computes the
date of the occurrence of the input and output actions. We propose the following re-
cursive definition of obs: obs(d, ε) = d with d ∈ R≥0; then obs(d, α.w) equals
obs(d + α,w) if α ∈ R≥0, otherwise it equals obs(d, w) if α ∈ Λ, otherwise it equals
d.α.obs(d, w) if α ∈ (I ∪O).

In the sequel, TTraces(S) = {ttrace(ρ) | ρ ∈ Seq(S)} denotes the set of timed
traces of S. Note that since σ = (δi·ai)i=1..m.δm+1 ∈ TTraces(S) is a timed sequence,
it implies that δi ≤ δi+1 for every i ∈ [1..m]. Given a timed trace σ ∈ (R≥0 × (I ∪
O))∗ × R≥0, we consider as usual the after operator: s after σ = {s′ ∈ S | ∃ρ ∈
Seq(s′) s.t s

ρ−→ s′∧σ = ttrace(ρ)} represents the set of states that can be reached from

s and after observing the behaviour σ. Then we define elapse(s) = {δ ∈ R≥0 | s δ−→}
(Notice that elapse(s) = R≥0 when there is no restriction on the elapse of the time
in s), S after σ = s0 after σ; and out(s) = {a ∈ O | ∃ρ ∈ Seq(s) s.t ttrace(ρ) =
(0 · a) · 0} ∪ elapse(s) denotes the set of delays augmented with the set of outputs that
can be observed from s without any delay, possibly preceded by the execution of silent
actions. Illustrations of all these notations can be found in Example 1.

Complete and Deterministic IOTTS. We say that S is deterministic if it has no silent
transition and s′ = s′′ whenever there exists s, α ∈ Act(S), s α−→ s′ and s

α−→ s′′.
IOTTS S is input-complete if all the inputs can be executed (observed) in each state.

2.2 Timed Input/Output Automata (TIOA)

A clock is a real-valued variable. Let X denote a set of clocks. A (clock) valuation over
X is a function v : X → R≥0 that assigns a non negative real value to each clock.

Remote Testing of Timed Specifications 69

�0

�1

�2

�3�4

�6�5 �7

�8

�9

�10

x = 3, ?a1, {x}
x = 3, !b5, {x}

x = 1, ?a2, {x}

x = 6, !b1, {x}x = 7, !b2, {x}
x = 1,
!b3, {x}

x = 2, !b4

x = 2, ?a3, {x}
x = 2, !b1

x = 0,
?a1, {x}

x ≥ 0,
!b1

(a) Spec

n0

n1

n2

n3n4

n5 n6

n7

n8

n9

x = 3, ?a1

x = 2, ?a1

x = 4, ?a2, {x}

x = 6, !b1, {x}x = 7, !b2, {x}

x = 1, !b3, {x}

x = 2, ?a3, {x}

x = 1, !b2

x = 2, !b1

(b) Imp1

n0

n1

n2

n3n4

n5 n6

n9

x = 3, ?a1

x = 4, ?a2, {x}

x = 6,
!b1, {x}

x = 7,
!b2, {x}

x = 1,
!b3, {x}

x = 2, ?a3, {x}

x = 2, !b1

(c) Imp2

�0

�1

�2

�3�4

�6�5 �7

�8

�9

�10

x = 5, ?a1, {x}
x = 0, !b5, {x}

x = 1, ?a2, {x}

x = 6, !b1, {x}x = 7, !b2, {x}

x = 1, !b3, {x}
x = 0, !b4

x > 4, ?a3, {x}
x = 2, !b1

x > 4, ?a1, {x}

x ≥ 0, !b1

(d) 2-testable TIOA

n0

n1

n2

n3n4

n5 n6

n7

n9n10

x = 3,
?a1

x = 4,
?a2, {x}

x = 3, !b5, {x}

x = 6,
!b1, {x}x = 7, !b2, {x}

x = 1, !b3, {x}

x = 2, ?a3, {x}

x = 2,
!b1

x ≥ 0, !b1

(e) Imp3

n0

n1

n2

n3n4

n5 n6

n9

x = 3,
?a1

x = 4,
?a2, {x}

x = 6
!b1, {x}

5 ≤ x ≤ 7
!b2, {x}

x = 1
!b3, {x}

x = 2, ?a3, {x}

x = 2,
!b1

(f) Imp4

Fig. 1. Models of one specification and four implementations

The set of valuations over X is denoted by RX
≥0. As usual, we consider two operations

on valuations: the reset of the clocks and the elapse of the time. Given a valuation v,
a real number t ∈ R≥0 and a subset of clocks Y ⊆ X , the valuation v[Y := 0] is
obtained from v by resetting every clock in Y and the valuation v+ t increases by t the
value v(x) of each clock x ∈ X . Formally, v[Y := 0](x) = 0 when x ∈ Y , otherwise
v[Y := 0](x) = v(x); and (v + t)(x) = v(x) + t. The valuation 0 assigns the zero
value to every clock. A clock constraint over X is a boolean combination of equations
of the form n � x where n ∈ Q is a rational number,�∈ {<,>,=,≤,≥} and x ∈ X .
We will denote by C(X) the set of clock constraints over X . The truth value of a clock
constraint is computed w.r.t a valuation and this notion is standard. We say that v ∈ RX

≥0

satisfies g ∈ C(X) and we write v |= g if g evaluates to true w.r.t to v.

Definition 2 (TIOA). A timed input/output automaton (TIOA) is a tupleA = 〈L, �0, I,
O, Λ,X,E〉 where L is a finite set of locations, �0 is the initial location, X is a finite set
of clocks, I is a finite set of input actions, O is a finite set of output actions, Λ is a finite
set of silent actions, E ⊆ L× (C(X)× (I ∪O)× 2X)× L is the set of edges.

70 A. David et al.

Definition 3 (Semantics of TIOA). Let A = 〈L, �0, I, O, Λ,X,E〉 be a TIOA. The
semantics of A is the IOTTS(I, O, ∅) �A� = 〈SA, s

0
A, I, O, ∅,MA〉 where: SA = L ×

RX
≥0 is the set of states of A, s0A = (�0,0) is the initial state of A, I is the set of inputs

of A, O is the set of outputs of A, MA ⊆ SA × (I ∪ O ∪ R≥0) × SA is the set of
moves of A defined such that: ((�, v), d, (�, v+d)) for every d ∈ R≥0, (�, v) ∈ SA; and
((�, v), a, (�′, v[Y := 0])) whenever (�, g, a, Y, �′) ∈ E and v |= g.

We define TTraces(A) = TTraces(�A�) and A after σ = �A� after σ with σ ∈
TTraces(A).

Deterministic TIOA. We say that A is deterministic if �A� is deterministic. Similarly,
A is input-complete if �A� is input-complete.

Example 1. The TIOA Spec in Fig. 1a is composed of a single clock x, the inputs

are ?a1, ?a2, ?a3 and the outputs are !b1, !b2, !b3, !b4, !b5. The edge �0
x=3,?a1,{x}−−−−−−−−→ �1

is passed provided that x equals 3, the input ?a1 is received and x set to 0 just after

the passing of the edge. An execution of Spec is π1 = (�0, 0)
0.5−−→ (�0, 0.5)

2.5−−→
(�0, 3)

?a1−−→ (�1, 0)
0.7−−→ (�1, 0.7)

0.3−−→ (�1, 1)
?a2−−→ (�2, 0)

2−→ (�2, 2)
1−→ (�2, 3)

4−→
(�2, 7)

!b2−−→ (�4, 0)
1−→ (�4, 1)

!b3−−→ (�5, 0)
1−→ (�5, 1)

1−→ (�5, 2)
?a3−−→ (�6, 0), and the

execution sequence associated with π1 is Seq(π1) = 0.5 · 2.5 · ?a1 · 0.7 · 0.3 · ?a2 ·
2 · 1 · 4 · !b2 · 1 · !b3 · 1 · 1 · ?a3 and the associated timed trace is TTraces(Seq(π1)) =
(3 · ?a1) · (4 · ?a2) · (11 · !b2) · (12 · !b3) · (14 · ?a3) ·0. We have that Spec after (3 · ?a1) ·
(4 ·?a2) ·(11 · !b2) ·0 = {(�4, 0)}, Spec after (3 ·?a1) ·(4 ·?a2) ·(10 · !b1) ·0 = {(�3, 0)},
out(Spec after (3 ·?a1) · (4 ·?a2) ·9) = R≥0, out(Spec after (3 ·?a1) · (4 ·?a2) ·10) =
{!b1} ∪ R≥0 and out(Spec after (3 · ?a1) · (4 · ?a2) · 11) = {!b2} ∪R≥0.

2.3 The Relation tioco and Synchronous Testing

As usual, the SUT is represented with an input-complete TIOA. We recall the tioco
conformance relation definition, a common extension of ioco. In the following, we use
this relation for conformance between the SUT and the specification.

Definition 4 (tioco). Let S and I be in TIOA(I, O) where I is input-complete.

I tioco S iff∀σ ∈ TTraces(S), out(I after σ) ⊆ out(S after σ)

Example 2. Consider Spec and the four implementations depicted in Figure 1. We can
verify that Imp1 conforms with Spec even though Imp1 can receive ?a1 when x = 2.
The same, Imp2 tioco Spec. But Imp3 does not because out(Imp3 after (3·?a1)) =
{!b5} ∪ R≥0 and out(Spec1 after (3·?a1)) = R≥0 and Imp4 does not conform with
Spec because out(Imp4 after (3·?a1) · (4·?a2) · 9) = {!b2} ∪ R≥0 whereas
out(Spec after (3·?a1) · (4·?a2) · 9) = R≥0.

An on-line tester for an SUT simulates the specification either by sending an input to
the SUT or by letting the time elapses, while checking that the outputs emitted by the
SUT are expected. Upon the reception of an unexpected output (outputs that are not
specified or that arrive at bad instants), the tester emits the verdict fail indicating that

Remote Testing of Timed Specifications 71

release
grasp

setRelease
setGrasp

headGR tailGR

AdapterGR
id:1 id:2id:0

tailL

setLevel

headL

level

id:0

AdapterL

id:1 id:2

touch
startHold
endHold

setLevel

Dimmer Switch

setRelease
setGrasp

Interface
release
grasp

level

Env

SUT FIFO

FIFO

Tester

Fig. 2. The modeling pattern and how our example of the light controller is modeled

the SUT does not conform to the specification. The communications between the tester
and the SUT are synchronous meaning that the tester blocks upon transmitting an input
to (receiving an output from) the implementation. There is no latency. Consequently,
the time instant at which the tester sends available inputs or receives expected outputs
should be exactly those described by the specification. Local and synchronous testers
control the tests i.e each time a tester observes an output, that output depends on all the
inputs it has sent before. The controllability of the test is an important property giving
the possibility to lead the SUT into a particular situation.

3 Introduction to Remote Testing and Challenges

The main idea is that the SUT and the tester are not located at the same site and com-
munications may be delayed. Fig. 2 illustrates our framework for remote testing. The
model is centered around a 2FIFO(��,Δ) architecture that consists of:

1. One FIFO for each direction of the communication between the SUT and the tester.
2. A communication latency bounded by Δ. The symbol �� stands for either ≤ or =.

3.1 Remote Testing Challenges

Remote test cases are different from the test cases designed for local testers. When the
transmission of an input depends on the reception of an output, a remote tester should
not wait to receive the output before sending the input since there is a latency. The
experimentation with Uppaal-TIGA highlights this point. Let us now consider simple
specification models to provide a theoretical point of view of remote testing.

Example 3. Consider the specification Spec in Fig. 1a and assume that the latency is
exactly 2 time units. If the tester wants that SUT receives a1 at global time 3, it should

72 A. David et al.

send a1 at time 1. When SUT sends b2 at time 11, the tester receives it at time 13. etc. So
a tester shall observe the timed trace σ′

1 = (1·?a1)·(2·?a2)·(12·?a3)·(13·!b2)·(14·!b3)·0
and the SUT executes the timed trace σ1 = (3·?a1) · (4·?a2) · (11·!b2) · (12·!b3) ·
(14·?a3).0. Note that the outputs !b2 and !b3 follow ?a3 in σ′

1 contrary to the trace
σ1 ∈ TTraces(Spec). This means that the tester does not wait for !b2 and !b3 before
sending ?a3 despite the fact that the SUT sends !b2 and !b3 before receiving ?a3.

Remote testing introduces two news challenges: managing the signal propagation
delay between the tester and the SUT; and managing the input/output interleaving
caused by the asynchronous communication: the actions are not always received in the
order they are transmitted and received.

In the next subsection we study the asynchronous traces and we will study the impact
of the propagation delay and the interleaving on the tests cases.

3.2 Testing with Asynchronous Traces

We introduce the asynchronous semantics for TIOA and we present results on using
asynchronous traces for testing. The asynchronous semantics for TIOA takes into ac-
count the queues and the latency; it describes the influence of the latency on the trans-
missions and the receptions of the actions.

Definition 5 (Asynchronous semantics for TIOA). Let A = 〈L, �0, I, O, ∅, X,E〉 be
a TIOA(I, O) with no silent action. Let ��∈ {≤,=} and Δ ∈ N. The asynchronous
semantics for A is an IOTTS(I, O, ΛI∪O),
〈[A]〉��Δ = 〈(L × RX

≥0) × (R≥0 × (I ∪ O))∗ × (R≥0 × (I ∪
O))∗, (�0,0), I, O, ΛI∪O},M��Δ〉
where ΛI∪O = {τa | a ∈ I ∪ O} is the set of silent actions. An asynchronous
state is of the form ((�, v), p, q) where p and q are input and output queues respec-
tively. The set of asynchronous moves, M��Δ is defined by the following five rules:

((�, v), p, q)
?a−→ ((�, v), p.(0·?a), q)

(r1)
((�, v), (δ·?a).p, q) τa−→ ((�′, v[Y := 0]), p, q)

�
g,?a,Y−−−−→ �′ ∧ v |= g ∧ δ �� Δ

(r2)

((�, v), p, q)
t−→ ((�, v + t), p+ t, q + t)

(r3)

((�, v), p, (δ·!b).q) !b−→ ((�, v), p, q)

δ �� Δ
(r4)

((�, v), p, q)
τb−→ ((�′, v[Y := 0]), p, q.(0·!b))
�

g,!b,Y−−−−→ �′ ∧ v |= g
(r5)

The rules r1 and r2 (resp r5 and r4) are dual and they correspond to the transmission and
the reception of an input (resp. output). The rule r3 corresponds to the time elapsing.
The time elapsing operation on a queue is defined by ((δ ·a).p)+ t = (δ+ t, a).(p+ t).
Notice that 〈[A]〉��Δ is input-complete because the transmissions of the inputs do not
require to check the clock constraints. The receptions of the pending inputs require
to check for the validity of clock constraints. The length of each queue is unbounded.
Based on 〈[A]〉��Δ, we can define asynchronous runs, asynchronous execution sequences
and asynchronous timed traces in ATTraces��Δ(A) = TTraces(〈[A]〉��Δ).

Remote Testing of Timed Specifications 73

On Asynchronous tioco. Given an implementation I and a specification S modelled
with a TIOA(I, O), one could try to adapt the relation tioco based on the asynchronous
semantics. Such an adaptation has been studied in [10] for untimed systems. A quick
adaptation of tioco that we call atioco��Δ can be defined as follows:

I atioco��Δ S
iff

∀σ ∈ ATTraces��Δ(S), out((〈[I]〉��Δ) after σ) ⊆ out((〈[S]〉��Δ) after σ).

Designing a remote testing algorithm as a simple adaptation of the local and syn-
chronous testing algorithm with asynchronous traces can be the source of differences
between local testing verdicts and remote testing verdicts. The following example high-
lights three relevant problems: the non preservation of conformance, the permissiveness
and the lack of control during the test.

Permissiveness. The relation atioco��Δ is permissive in the way that there exists an im-
plementation I of a specification S, a delay Δ and ��∈ {<=,=} such that ¬(I tioco S)
but I atioco��Δ S.

For example, consider Fig. 1 and 2FIFO(=, 2). We check that Imp3 atioco��Δ Spec
because out(〈[Imp3]〉��Δ after (1·?a1) · 2) = {!b5} ∪ R≥0 and out(〈[Spec]〉��Δ
after (1·?a1) · 2) = {!b5} ∪R≥0. But, as we discussed earlier, ¬(Imp3 tioco Spec).

Non Preservation of Conformance. The relation atioco��Δ does not preserve the con-
formance in the way that there exists an implementation I of a specification S, a delay
Δ and ��∈ {<=,=} such that ¬(I atioco��Δ S) but I tioco S.

For example, consider Fig. 1 and 2FIFO(=, 2). Because out(〈[Imp1]〉��Δ
after (0·?a1) · 1) = {!b2}∪R≥0 and out(〈[Spec]〉��Δ after (0·?a1) · 1) = R≥0 it comes
that
¬(Imp1 atioco��Δ Spec). But we can check that Imp1 tioco Spec.

Controllability of the Test. We say that a specification is controllable if in the case
a tester observes an input, this means that any output it has sent before has already
been received by the implementation. When performing remote testing, signal prop-
agating delay needs to be managed, especially when the tester sends the inputs early
and receives the outputs lately. An output received after the transmission of an in-
put it does not depend on forces the tester to change the test case it was executing.
For example, consider the specification in Figure 1, and assume that the implemen-
tation is the same as the specification. Also assume that we want to test the path up
to �7 through �6. For that purpose a tester may observe the asynchronous timed trace
σ′
1 = (1·?a1) · (2·?a2) · (12·?a3) · (13·!b2) · (14·!b3) · 0. This trace means that the tester

sends ?a3 before it receives !b3. But, the implementation can change the test purpose
by sending !b4 at the time 13. So a tester should remind that it already has sent ?a3 and
it should pursue the test by following a new trajectory where ?a3 follows !b4.

It is not reasonable that testing verdicts vary depending on the distance and the com-
munication mode between tester and implementation. In order to return correct verdict
whatever the distance and the communication mode, we can equip the implementations

74 A. David et al.

with an additional mechanisms, like logical stamping mechanism [10], that will help
the testers to recover the causal order of the interleaved actions. But, that mechanism
cannot allow the remote testers to control the test.

4 Input/Output Interleaving and Δ-Testability Criterion

Asynchronous timed traces are remote observations of local timed traces executed by
the implementation. The execution order of actions may differ from the observation
order: this happens when inputs and outputs interleave in the communication chan-
nels. We intend to characterize remote observations that may lead to action interleav-
ing. Thanks to the timing information, we introduce Δ-testable specifications of which
asynchronous traces can be used for remote testing without using costly mechanisms.

4.1 Local Timed Traces and Action-Interleaving in Asynchronous Timed Traces

We address the derivation of local timed traces from asynchronous traces. Let S ∈
TIOA(I, O) and let ρ = (αi)i=1..n in Seq(〈[S]〉��Δ) be an asynchronous execution
sequence. Each occurrence of a silent action τa in an asynchronous execution sequences
can be interpreted as the reception/transmission of input/output a. For ρ[i] = αi ∈
I ∪ O, let us denote by ζρ[i] the unique silent action associated with the visible action
ρ[i], when it exists. Notice that either ρ[i] is an input action and ρ[i] ≺ρ ζρ[i] or ρ[i] is
an output action and ζρ[i] ≺ρ ρ[i]: this is because the actions in a queue are delivered
according to their positions in the queue. Moreover, ζρ[i] ≺ρ ζρ[j] whenever ρ[i], ρ[j]
are both either inputs or outputs and ρ[i] ≺ρ ρ[j]. We say that ρ is regular if for every
ρ[i] ∈ I ∪ O, ζρ[i] exists in ρ. A regular asynchronous timed trace is constructed from
a regular asynchronous execution sequence. The local execution sequence associated
with a regular asynchronous execution sequence ρ = (αi)i=1..n, denoted by apply(ρ),
is the timed word obtained from ρ by deleting the visible actions in I ∪O and replacing
each silent action ζρ[i] (1 ≤ j ≤ n) with the corresponding visible action ρ[i].

Example 4. Let ρ = 1·?a1 · 1·?a2 · 1 · τa1 · 1 · τa2 · 5 · 2 · τb2 · 1 · τb3 · 0·?a3 · 1·!b2 ·
0.6 · 0.4·!b3 · 0 · τa3 be in ATTraces��Δ(Spec). We have that |ρ| = 22. We have that
ζρ[2] = ρ[6] = τa1 because τa1 corresponds to the remote execution of ?a1 that is
transmitted at the time 1. ζρ[17] = ρ[11] = τb because this occurrence of τb2 corresponds
to the transmission of !b2 and !b2 is observed later at the position 17. We can check that
ζρ[15] = ρ[22] = τa3 . Then apply(ρ) = 1·1·1?a11·?a2 ·5·2·!b2 ·1·!b3·0·1·0.6·0.4·0·?a3.
We can also compute ttrace(ρ) = (1·?a1) · (2·?a2) · (12·?a3) · (13·!b2) · (14·!b3) ·0 and
ttrace(apply(ρ)) = (3·?a1) · (4·?a2) · (11·!b2) · (12·!b3) · (14·?a3).0. We remark that
?a3 occurs before !b2 in ttrace(ρ) but !b2 occurs before ?a3 in ttrace(apply(ρ)) which
is a timed traces of Spec.

The causal order of the action in an asynchronous timed trace may not be respected
by a remote implementation. The order of execution of two actions may be inverted
by the remote SUT. For example this situation happens in asynchronous sequence ρ
that contains a pattern1 of the form · · · ρ[i] · · · ζρ[j] · · · ζρ[i] · · · ρ[j] · · · where ρ[i] and

1 Note that there are three more patterns.

Remote Testing of Timed Specifications 75

ρ[j] are visible actions and i < j. When such a situation happens, we say that ρ is
action-interleaving. For example, ρ presented in Example 4 is action-interleaving.

Definition 6. A regular sequence ρ ∈ Seq(〈[S]〉��Δ) is action interleaving if there exists
i, j s.t ρ[i] ≺ρ ρ[j] and ζρ[j] ≺ρ ζρ[i].

Proposition 1 states that the causal order of the actions in a non interleaving asyn-
chronous trace is preserved at the implementation site. Let us denote by Projvis(ρ) the
projection of ρ over I ∪ O ∪ R≥0. Given a state s = ((l, v), p, q) of 〈[A]〉��Δ, let us
denote by p(s) = p and q(s) = q the content of the input and output queues at s.

Proposition 1. Let ρ = (αi)i=1..n in Seq(〈[S]〉��Δ) be a regular execution sequence. ρ
is not action-interleaving iff Projvis(apply(ρ)) = Projvis(ρ).

Proposition 2. Let ρ = (αi)i=1..n ∈ Seq(〈[S]〉��Δ) be a regular asynchronous execu-
tion sequence. ρ is action-interleaving iff p(s) and q(s) are non empty for some state s,

some k ≤ n such that s0
ρ[1..k]−−−−→ s.

4.2 Δ-Testable TIOA

We provide a Δ-testability criterion permitting to test remotely while preserving prop-
erties of local testing. Action-interleaving does not occur in Δ-testable specifications.

Definition 7 (Δ-testability). Let A ∈ TIOA(I, O) and σ ∈ TTraces(A) such that
σ = (ti · ai)i=1..n.tn+1. The timed trace σ is Δ-testable if,

– either n = 0,
– or (ti · ai)i=1..n−1 is Δ-testable and an ∈ O,
– or (ti · ai)i=1..n−1 is Δ-testable and if an ∈ I , then for every tb ∈ R≥0, every

b ∈ O, and every k ∈ [1..n− 1] such that !b ∈ out(�A� after σ[1..k] · tb), it holds
that tn − tb > 2Δ.

A is Δ-testable if every σ ∈ TTraces(A) is Δ-testable.

Example 5. Spec is 1-testable. Spec is not 2-testable. Indeed, one can consider the sub-
specification rooted at �4. The delay between !b4 and ?a3 equals 1 and it is not greater
than 2 × Δ = 4. The specification obtained in Fig. 1d that is obtained from Spec by
changing some constants is 2-testable.

The causal order of the observed actions is the same as the causal order of the actions
executed by the remote implementation when the specification is Δ-testable.

Proposition 3. Let A be a TIOA(I, O). If A is Δ-testable then Seq(〈[A]〉��Δ) contains
no action-interleaving sequence.

Putting Proposition 2 and Proposition 3 together, we get Proposition 4.

76 A. David et al.

Proposition 4. Let A be a TIOA(I, O). Let s, ρ ∈ Seq(〈[A]〉��Δ) such that s0
ρ−→ s. A

is Δ-testable iff p(s) is non empty implies q(s) is empty.

According to Proposition 4, Δ-testability implies that at most one queue is non empty
at every reachable state. However, Δ-testability does not guarantee that the sizes of the
queues are bounded. A fast environment can increase the size of the input queue by
sending repetitively the inputs faster than the latency.

We can show that Δ-testable specifications are controllable. Indeed,Δ-testable spec-
ifications have no action-interleaving sequences. Consequently a regular asynchronous
timed trace ρ is such that ρ[i] ≺ρ ρ[j] iff ζρ[i] ≺ρ ζρ[j] for every 1 ≤ i, j ≤ |ρ|.
W.l.o.g, assume that ρ[i] ∈ O and ρ[j] ∈ I . Then, ζρ[i] ≺ρ ρ[i], ρ[j] ≺ρ ζρ[j]. Since
the specification is Δ-testable, the delay between ζρ[i] and ζρ[j] is strictly greater than
2Δ. But since the delay between ρ[k] and ζρ[k] with k ∈ {i, j} is bounded with Δ, we
get the delay between ρ[i] and ρ[j] is strictly positive. This implies that the output ρ[i]
is observed before the input ρ[j]. This means that the outputs transmitted earlier are
received before the transmission of new inputs. Thus, each observed output depends on
input transmitted earlier and the specification is controllable.

In brief, Δ-testability criterion takes advantage of the timing information that are not
available in untimed models. We claim that if the specification is Δ-testable then, the
asynchronous execution of the synthesized test cases is as simple as the synchronous
execution, the tioco conformance is preserved and the tester can control the test.

5 Remote Testing Framework with Uppaal-TIGA

In this section we present our general framework using Uppaal-TIGA with partial ob-
servability [16]. We model the SUT, the communication channels, and the actual tester
as a timed game with the twist that only some states or clocks are visible. The tester
changes its states according to the output from the SUT (via the delayed FIFOs) and
the goal is that given a test objective expressed as a formula (using an extra observer
automaton or not), find a strategy using the actions of the tester and a fixed set of ob-
servations to reach that objective. This matches the situation that the tester can only
observe the delayed output from the SUT and cannot see its state. The framework is an
extension of [17].

Modelling Pattern. Fig. 2 presents our modelling pattern. The originality of the model
is how the FIFOs are encoded. We want to transmit a message with optional data with
a delay that may be non-deterministic. In general, this may change the order of the out-
puts of the “FIFO” if the delays overlap. Each cell of the FIFO buffer is modeled as
an automaton with its own identifier (id) as shown in Fig. 2. Only the automaton with
the right identifier that matches the head of the FIFO (a global variable) reacts to the
communication. The head and tail of the FIFOs are simple counters managed by the
automata. Each automaton has its own clock to delay the output of the incoming mes-
sage. We rename the channels to do the delayed transmission. For our light controller
example of Section 6, grasp becomes setGrasp, and release setRelease.

Then we compose the SUT in parallel with the FIFOs and the tester. The tester
automaton is free to generate outputs with possibly some constraints. The next step
is to solve the game to decide which outputs should be generated, and when.

Remote Testing of Timed Specifications 77

grasp?

release?release?

t=0,
tailGR=(tailGR+1)%
Length

grasp?

t=0,
headGR=(headGR+1)%
Length

t=0,
headGR=(headGR+1)%
Length

setGrasp!

grasp? release?

setRelease!

t<=
maxDelay

off t<=
maxDelay

headGR==id

Overflow

t1t0

t=0,
tailGR=(tailGR+1)%
Length

tailGR==id &&
t >= minDelay

headGR==id headGR==id

headGR==id

headGR==id

tailGR==id &&
t >= minDelay

headGR==id

(a) Automaton that delays grasp and release.

setLevel?

setLevel?

level!

buffer=vfrom, t=0,
headL=(headL+1)%
Length

travel
off

Overflow

vto=buffer, t=0,
tailL=(tailL+1)%
Length

tailL==id &&
t >= minDelay

headL==id

headL==id

t<=
maxDelay

(b) Automaton that delays level and its
value.

Fig. 3. Automata for the FIFOs

Solving the Game. To generate the test, Uppaal-TIGA solves a two-player game be-
tween the tester and the implementation. The implementation (together with the FIFO)
plays uncontrollable transitions and the tester plays controllable transitions. In addition,
observations together with the test purpose are specified. To play the game an action la-
bel is associated with the transitions and the tester plays one given controllable action
until its observation changes. In the meantime, the implementation can play its uncon-
trollable transitions. It is only when an observation changes that the tester can change its
action. We refer to [16] and [17] for more details. The result is that Uppaal-TIGA will
find a strategy for the tester to fulfil the test purpose under the specified observations iff
there exists such a strategy.

POCO Conformance. Uppaal Tiga with partial observability [17] assumes pocoP con-
formance relation constructed similarly to tioco, except that in addition to outputs the
observations also contain a partial information about the system state defined by a set
of predicates P . In theory the discrete changes in the partial state observation can be
identified as special outputs and therefore emulated by tioco. In general, pocoP is most
useful to relate to the SUT as a continuous observation of its partial state which might
be difficult to achieve in practice. In this paper we assume that only the state of environ-
ment (the model of test assumptions or a tester) is observable and thus only observable
I/O is communicated with the black-box SUT and media and therefore tioco is sufficient
for our purposes.

6 Light Controller Example

To apply our remote testing framework we consider the example of a light controller [18].
A user can grasp or release a trigger rod. Grasping and holding makes the intensity of the
light vary. Grasping and releasing have the effect of switching off or on to the previous
light level.

Encoding Delayed Communications. We specialize the FIFOs presented in Section 3
to send grasp and release to the SUT, and level together with a value to the tester.
Fig. 3a shows the automaton used to delay grasp and release, and Fig. 3b the one
to delay level with the value of the light level. The pattern for both automata is that
upon synchronization on a given channel, a transition is taken to a state where the

78 A. David et al.

delay occurs and then a renamed output is produced. Data (Fig. 3b) may be stored and
forwarded thanks to a local buffer.

SUT, Tester, and Test Purpose. The light controller has an interface that receives the
grasp and release commands. It controls two components to respectively dimmer or
switch on or off the light. The actual details of the SUT are not important here since
we are doing black-box testing. The internal communication is not visible to the tester
or the FIFOs. The tester is an automaton that can generate grasp or release at any
time. We can constrain the outputs and to illustrate this, we use two types of testers
to generate test strategies. Our testers are shown in Fig. 4a and 4b. They restrict the
tests to one or two grasp and release. The test purpose is a monitor automaton put in
parallel together with the tester automaton to specify interesting sequences of outputs
that we want to observe. Fig. 4c specifies that the light level should increase to its
maximum level and then decrease monotonically. Fig. 4d specifies that the light level
should increase monotonically to its maximum level and then be switched off.

Playing the Game to Generate Tests. To generate the tests, Uppaal-TIGA solves a two-
player game between the tester and the implementation. In the automata shown for the
tester, purpose, and the FIFO, the uncontrollable transitions played by the implemen-
tation are dashed. The controllable transitions played by the tester are not dashed. In
addition, we need to specify what is observable, which is done together with the formula
giving the test purpose.

We specify the following test purposes:

1. {user.x>=0 && user.x<1} control: A[forall(s:slot t)
!adapterGR(s).Overflow U user.Released and envLevel==Max]

2. {user.x>=0 && user.x<2, envLevel==Max, envLevel==0} control:
A[!purpose.Error && forall(s:slot t) !adapterGR(s).Overflow
U purpose.Goal]

Purpose 1 specifies to turn the light on to its maximum intensity level without having
a buffer overflow in the FIFO2. In addition, the user must have released the trigger. We
do not need an extra automaton for this purpose. To achieve this, the user has a clock x
that can be reset (Fig. 4a or 4b) and can observe if x ∈ [0, 1[or not. In addition, overflow
and the released state together with the maximum light intensity are observable3.

Purpose 2 specifies that the goal state of our monitor automaton should be reached
while avoiding overflow or the error state in the monitor. To do so the user can observe
if his clock x ∈ [0, 2[or not, if the light is at its maximum level (or not), or if it is
switched off (or not). This can be checked for both our purpose automata, though we
need the user of Fig. 4b to fulfil the goal of the purpose of Fig. 4d.

It is important to notice that the observations that are given are only from the tester’s
side and we do not see the internal state of the SUT, thus respecting the black-box
testing principle. We show one strategy generated in a few second4 for purpose 2 with a
deterministic communication delay of 4 time units. We sanitized and minimized it (the
raw output has 16 states).

2 We model-checked that the 2nd FIFO cannot overflow.
3 The winning and losing conditions are always implicitly observable.
4 Using the pre-release version 0.17.

Remote Testing of Timed Specifications 79

grasp! release!

x=0

Grasped Released

x=0

x=0x=0

(a) Tester that can generate
one grasp and release.

release!grasp! grasp! release!

x=0

ReleasedGrasped Regrasped Rereleased

x=0

x=0 x=0

x=0x=0

x=0

(b) Tester that can generate two grasps and re-
leases.

level?

level?

level?

level?

oldLevel = envLevel

oldLevel = envLevel

level?

level?

Dec

Inc envLevel < oldLevel

Goal

Error

oldLevel = envLevel

envLevel == Max

envLevel > oldLevel

oldLevel = envLevel

envLevel < Max && envLevel > oldLevel

envLevel == 0

envLevel > 0 && envLevel < oldLevel

(c) Test purpose to increase and then de-
crease the intensity of the light.

level?

level?

level?

oldLevel = envLevel

oldLevel = envLevel

level?

level?

Dec

Inc

Goal

Error

oldLevel = envLevel

envLevel != 0 && envLevel != Max

envLevel == 0

envLevel == Max

envLevel < oldLevelenvLevel < Max && envLevel > oldLevel

(d) Test purpose to increase the intensity of the light
and then switch it off.

Fig. 4. Tester and test purpose automata

State 0: GRASP until x /∈ [0, 2[. Goto state 1.
State 1: delay until envLevel = 0. Goto state 2.
State 2: RESET until x ∈ [0, 2[. Goto state 3.
State 3: RELEASE until x /∈ [0, 2[. Goto state 4.
State 4: GRASP until x ∈ [0, 2[. Goto state 5.
State 5: delay until x /∈ [0, 2[. Goto state 6.
State 6: RESET until either x ∈ [0, 2[and then goto state 7

or envLevel = Max and then goto state 12.
State 7: RESET until envLevel = Max. Goto state 8.
State 8: RELEASE until x /∈ [0, 2[. Goto state 9.
State 9: delay until envLevel = 0 and envLevel = Max. Goto state 10.
State 10: delay until purpose.Goal. Goto state 11.
State 11: envLevel = 0 and purpose.Goal, goal reached.
State 12: RESET until x ∈ [0, 2[. Goto state 8.

Δ-Testability. The model is general and does not enforce minimal delays between in-
puts and outputs. We can constrain the environment model or add another purpose au-
tomaton to constrain the strategy. For example, if the delay between grasp and release
exceeds the longest duration for registering a touch, then there is no strategy to satisfy
purpose 2. This delay is the Δ of our example.

7 Conclusion

We addressed conformance testing of remote SUTs specified with timed input/output
automata. Our testing architecture is composed of two queues with a communication
latency threshold. Testers and SUTs communicate in an asynchronous way. We intro-
duced the Δ-testability criterion allowing remote testing to be as powerful as local

80 A. David et al.

testing without any additional mechanism. The Δ-testability criterion ensures that in-
put/output interleaving never occurs, controllability of the test and a remote verdict
similar to local one. Then we presented a test selection approach with the partial ob-
servability timed game solver Uppaal-TIGA. The method has consisted in modelling
the queues with new TIOA that receive and delay the actions. Then the test generation
was reduced to synthesis of winning strategies in the game provided that the sizes of the
queues are bounded. However the limitation of the size of the queue restricts the number
of consecutive inputs/outputs the tester/SUT may send within the period of the latency
threshold. Moreover, using one clock per cell leads to exponential blow up during the
generation of the test cases whether the latency is deterministic or not.

We believe that testing Δ-testable criterion can be performed in a more efficient way
and with less constraints on the size of the queues. Promising results hold in case of
deterministic latencies. Further works include the design of dedicated testing algorithms
forΔ-testable specifications and the automatic verification of theΔ-testability criterion.

References

1. Mammeri, Z.: Introduction au langage de description et de spécification (sdl). Technical re-
port, Université Paul Sabatier - Toulouse (2001)

2. ISO: Information processing systems – open systems interconnection – LOTOS – a for-
mal description technique based on the temporal ordering of observational behaviour
ISO/TC97/SC21/N DIS8807 (1987)

3. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Software - Con-
cepts and Tools 17, 103–120 (1996)

4. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. International Journal on Software
Tools for Technology Transfer 7, 297–315 (2005)

5. Núñez, M., Rodrı́guez, I.: Conformance testing relations for timed systems. In: Grieskamp,
W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 103–117. Springer, Heidelberg
(2006)

6. Krichen, M., Tripakis, S.: Black-box conformance testing for real-time systems. In: Graf, S.,
Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 109–126. Springer, Heidelberg (2004)

7. Mikučionis, M., Larsen, K.G., Nielsen, B.: T-uppaal: Online model-based testing of real-time
systems. In: 19th IEEE International Conference on Automated Software Engineering, pp.
396–397. IEEE Computer Society (2004)

8. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.: Testing real-
time systems using uppaal. In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST.
LNCS, vol. 4949, pp. 77–117. Springer, Heidelberg (2008)

9. Bertrand, N., Jéron, T., Stainer, A., Krichen, M.: Off-line test selection with test purposes
for non-deterministic timed automata. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011.
LNCS, vol. 6605, pp. 96–111. Springer, Heidelberg (2011)

10. Jard, C., Jéron, T., Tanguy, L., Viho, C.: Remote testing can be as powerful as local testing.
Formal Desciption Techniques and Protocol Specification, Testing and Verification FORTE
XI/PSTV XVIII 99 (1999)

11. Simao, A., Petrenko, A.: Generating asynchronous test cases from test purposes. Information
and Software Technology 53, 1252–1262 (2011)

12. Noroozi, N., Khosravi, R., Mousavi, M.R., Willemse, T.A.: Synchronizing asynchronous
conformance testing. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS,
vol. 7041, pp. 334–349. Springer, Heidelberg (2011)

Remote Testing of Timed Specifications 81

13. Henniger, O.: On test case generation from asynchronously communicating state machines.
In: Kim, M., Kang, S., Hong, K. (eds.) IFIP The International Federation for Information
Processing, pp. 255–271. Springer (1997)

14. Ponce de León, H., Haar, S., Longuet, D.: Conformance relations for labeled event struc-
tures. In: Brucker, A.D., Julliand, J. (eds.) TAP 2012. LNCS, vol. 7305, pp. 83–98. Springer,
Heidelberg (2012)

15. Hierons, R.M., Merayo, M.G., Núñez, M.: Using time to add order to distributed testing. In:
Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 232–246. Springer,
Heidelberg (2012)

16. Cassez, F., David, A., Larsen, K.G., Lime, D., Raskin, J.F.: Timed control with observation
based and stuttering invariant strategies. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Oka-
mura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 192–206. Springer, Heidelberg (2007)

17. David, A., Larsen, K.G., Li, S., Nielsen, B.: Timed testing under partial observability. In: 2nd
IEEE International Conference on Software Testing, Verification, and Validation, pp. 61–70.
IEEE Computer Society (2009)

18. Larsen, K.G., Mikučionis, M., Nielsen, B.: Uppaal TRON User Manual. CISS. BRICS, Aal-
borg University (2009)

An Implementation Relation and

Test Framework for Timed Distributed Systems�

Christophe Gaston1, Robert M. Hierons2, and Pascale Le Gall3

1 CEA, LIST, Point Courrier 174, 91191, Gif-sur-Yvette, France
christophe.gaston@cea.fr

2 Brunel University, Uxbridge, Middlesex, UK, UB8 3PH
rob.hierons@brunel.ac.uk

3 Laboratoire MAS, Grande Voie des Vignes, 92195 Châtenay-Malabry, France
pascale.legall@ecp.fr

Abstract. Many systems interact with their environment at physically
distributed interfaces and the distributed nature of any observations
made is known to complicate testing. This paper concerns distributed
testing, where a separate tester is placed at each localised interface and
may only observe what happens at this interface. Most previous work
on distributed model based testing has used models that are either fi-
nite state machines or input output transition systems. In this paper
we define a framework for distributed testing from timed input output
transition systems along with corresponding test hypotheses and a dis-
tributed conformance relation.

Keywords: distributed systems, timed systems, model based testing,
symbolic input output transition systems.

1 Introduction

Most approaches to model based testing (MBT) assume that a single tester in-
teracts with the system under test (SUT) and this tester observes all inputs
and outputs. However, many systems such as web services and wireless sensor
networks interact with the environment at multiple physically distributed inter-
faces. This has led to interest in distributed testing, where there is a separate
local tester at each interface, a tester only observes events at its interface, and
there is no global clock. This approach to distributed testing was formalised by
ISO as the distributed test architecture [1]. It is known that the use of the dis-
tributed test architecture affects software testing [2–7]. However, only recently
has the effect been formalised as implementation relations for FSMs [8] and
IOTSs1 [10, 11].

� This work was partially supported by the French Program “Investissements
d’Avenir” in the IRT/SystemX/FSF project and the SesamGrid project, and by
the ITEA2 project openETCS.

1 The implementation relation mioco [9] has also been defined for testing systems with
distributed interfaces but this assumes that a single tester makes global observations.

H. Yenigün, C. Yilmaz, and A. Ulrich (Eds.): ICTSS 2013, LNCS 8254, pp. 82–97, 2013.
c© IFIP International Federation for Information Processing 2013

A Test Framework for Timed Distributed Systems 83

Previous work showed that the distributed test architecture causes additional
controllability and observability problems. A controllability problem is a situa-
tion where a local tester does not know when to apply an input [2]. Consider, for
example, a test case where tester t1 at interface 1 applies input i1?, this should
lead to output o1! at 1, and tester t2 at interface 2 should then send input i2?.
Here t2 cannot know when to send i2? since it does not observe the previous
input and output. Observability problems refer to situations where one cannot
distinguish between the global trace produced by the SUT and that expected
despite these being different [3]. Let us suppose, for example, that the specifica-
tion contains global trace σ where the response to a first i1? at interface 1 leads
to output o1! at 1, and a second i1? leads to output o1! at 1 and output o2! at 2.
Here, the tester at 1 expects to observe i1?o1!i1?o1! and the tester at 2 expects
to observe o2! and this observation is made if the SUT produces global trace
σ′ in which o2! is output in response to the first input rather than the second.
While σ and σ′ are different they have the same projections at the interfaces
and so it is not possible to distinguish between them in distributed testing.

This paper explores distributed testing from systems described by means of
cooperating timed input output transition systems (TIOTS): IOTS extended
with time. We assume that testers have local clocks that are not synchronised
but clocks progress at the same rate; it should be straightforward to adapt
this to the case where the clocks can drift. As far as we are aware only two
previous papers have explored the role of clocks/time in distributed testing and
these consider different problems. One paper uses timestamps and bounds on
clock differences to strengthen implementation relations for IOTSs [12] but did
not consider timed models. A second looked at coordinating distributed testing
from an FSM through the testers exchanging messages when we have bounds
on message latency [13]. While this considered timed models it assumed that
the model is an FSM with time and concentrated on overcoming controllability
problems.

The previously defined implementation relation dioco for distributed testing
against an IOTS compares global traces of the SUT against global traces of
the specification using ∼ where σ ∼ σ′ denotes σ and σ′ having the same local
projections. In order to ensure that the observations at the interfaces are all
projections of the same global trace, it considers either global traces of the SUT
that end in quiescence2 or infinite traces of the SUT [10,12].

This paper uses an alternative approach in which an observation is a tuple
(σ1, . . . , σn) where the tester at p observes σp and we call such an observation a
multitrace. Instead of defining the implementation relation with some projection
mechanisms, we directly use the notion of multitraces to define a new implemen-
tation relation dtioco for distributed testing. We also provide a compositionality
result, which says that dtioco holds if and only if all multitraces of the SUT
are such that exchanged messages respect some communication rules and also
that the local projections of the SUT conform to the local components of the

2 The SUT is quiescent if it cannot produce output without receiving input.

84 C. Gaston, R.M. Hierons, and P. Le Gall

specification under tioco. This allows standard techniques for tioco [14,15] to be
used in distributed testing.

Having defined a new implementation relation we describe a test architecture
for TIOTSs such that test cases can be denoted as multitraces. In distributed
testing we have to bring together observations made by the local testers in order
to determine whether the SUT has passed a test case. Solving the oracle problem
mainly becomes a multitrace analysis problem and is described as a two step
process, in which a test case is run and then a verdict is produced based on the
set of local (timed) traces observed. We then describe how timed testing can be
carried out and provide an algorithm for checking that communication rules are
verified; the compositionality result tells us that we can derive a verdict using
such an algorithm along with standard methods for tioco.

The paper is structured as follows. Section 2 defines the terminology and no-
tation used in this paper and in Section 3 we describe TIOTSs. In Section 4, we
present specifications of timed distributed systems as a collection of cooperating
TIOTSs. Section 5 gives the test framework, defines the new implementation re-
lation dtioco and provides an example. Section 6 then explains how distributed
timed testing can be carried out. Finally, Section 7 draws conclusions and dis-
cusses possible avenues for future work.

2 Preliminaries

We will use a carrier set D (for Duration) isomorphic to the set of strictly
positive real numbers3. We may use classical operations +,− : D×D → D, <,≤:
D ×D → bool... on durations4, provided by default with their usual meanings.
Variables having their values in D are called clocks.

A Labelled Transition Systems (LTS) G over a set of labels L is a triple
(Q, qin, T) where Q is a set of states, qin ∈ Q is the initial state, and Tr ⊆
Q×L×Q is a set of transitions. For transition tr = (q, a, q′), also denoted q

a→ q′,
source(tr) stands for q, target(tr) stands for q′ and act(t) stands for the action
a. Paths(G) ⊆ T ∗ is5 the set of paths of G which contains the empty sequence ε
and all sequences of transitions tr1 · · · trn with n ≥ 1 such that source(tr1) = qin
and for all i satisfying 1 < i ≤ n, we have source(tri) = target(tri−1). For any
p in path Paths(G), the trace of p, denoted trace(p), is inductively defined as ε
for p = ε, and act(tr).trace(p′) for p = tr.p′ with tr a transition and p′ a path.
Traces(G) stands for the set of traces of all paths of Paths(G).

3 Timed Input Output Transition Systems

In this section we define Timed Input Output Transition Systems (TIOTSs) and
associated notation. We then discuss and formalise as multitraces the
3 In practice, any set of values used in a constraint solver for approaching real numbers.
4 d1 − d2 is defined if and only if d1 > d2.
5 Given a set A, A∗ denotes the set of finite sequences of elements of A, ε denotes the
empty sequence, and ‘.’ is used for concatenation.

A Test Framework for Timed Distributed Systems 85

observations that may be made in distributed testing. TIOTSs are labelled tran-
sition systems whose labels represent either Outputs, Inputs or durations.

Definition 1 (TIOTS). A TIOTS-signature is a tuple Σ = (C, I,O) with I ∩
O = ∅, where C is a set of channels, I is a set of inputs and O is a set of
outputs. Moreover C can be partitioned as Cin

∐
Cout where Cin and Cout are

a set of input channels and a set of output channels respectively. Accordingly,
I and O can be partitioned as

∐
c∈Cin

Ic and
∐

c∈Cout
Oc respectively, where for

channel c we have that Ic is the set of inputs that can be received on c and Oc

is the set of outputs that can be sent through c. A TIOTS over Σ is an LTS
(Q, qin, T) over I ∪O ∪D.

In the sequel, for any TIOTS A over Σ = (C, I,O), Sig(A) stands for Σ,
C(A) or C(Σ) stand for C, I(A) or I(Σ) stand for I, and O(A) or O(Σ) stands
for O. Moreover, in a slight abuse of notation we use Σ∗ for (I ∪O∪D)∗. Inputs
(respectively Outputs) occuring in Ic (respectively Oc) are sometimes denoted
c?a (respectively c!a) where a is a value received (sent) through channel c. We
also use c? or c! for simple signals received or sent through channel c. Executions
of TIOTS are called Timed Traces, which are defined as follows:

Definition 2 (Timed Traces). The set TTraces(A) of timed traces of the
TIOTS A is the smallest set that satisfies the following:

– for any σ ∈ Traces(A) (with A viewed as a simple LTS), if σ is of the form
∇.σ′ where6 ∇ = d1. . . . dn, n ≥ 0, for all i ≤ n, di ∈ D, and σ′ is either ε
or of the form a.σ′′ with a ∈ I ∪O, then σ′ ∈ TTraces(A).

– for any d1, d2 and d3 in D satisfying d1 + d2 = d3, for any σ, σ′ in Σ∗,
σ.d3.σ

′ ∈ TTraces(A) iff σ.d1.d2.σ
′ ∈ TTraces(A).

Given timed trace σ and action a in I ∪ O, |σ|a will denote the number of
instances of a in σ.

The first point of the definition prevents us from having timed traces beginning
with durations. This is because in black box testing we cannot differentiate
between the SUT not being initialised from the SUT being initialised but not
having interacted with its environment. Thus, if d is a duration then we cannot
distinguish between traces d.σ and σ. In a distributed context, this problem is
even more pronounced since we cannot even expect that the tester and SUT
are initially synchronised via a reset. The second point says that durations can
be composed and decomposed provided that cumulative sums of consecutive
durations are maintained. The definition of timed traces makes no assumption
on how durations are sampled in testing (it allows all possible choices).

4 Specifications of Timed Distributed Systems

We specify systems as a collection of localized parts (described as TIOTSs) com-
municating through a network. In particular, each localisation l is identified by its

6 If n = 0, then ∇ = ε.

86 C. Gaston, R.M. Hierons, and P. Le Gall

interface, given as a TIOTS signature Σl. The next definition characterises com-
munications between a collection of interfaces, that is a system signature. They
are given as a set of consistency conditions defining tuples of local executions
(timed traces) corresponding to compatible visions of some global execution:

Definition 3 (System communications). A system signature ΣSys is a tuple
(Σ1, . . . , Σn) of TIOTS signatures. The set of multitraces over ΣSys, denoted
MTraces(ΣSys), is the subset of Σ∗

1 × . . .×Σ∗
n defined as follows:

Empty Trace: (ε . . . ε) is in MTraces(ΣSys),

Inputs from the environment: for any i ≤ n, c ∈ C(Σi) \ ∪j �=iC(Σj), a ∈
I(Σi)c, and (σ1 . . . σi, . . . σn)∈MTraces(ΣSys) we have (σ1 . . . σi.a, . . . σn) ∈
MTraces(ΣSys).

Non Blocking Outputs: for any i ≤ n, a ∈ O(Σi), and (σ1 . . . σi, . . . σn) ∈
MTraces(ΣSys), we have (σ1 . . . , σi.a, . . . σn) ∈MTraces(ΣSys).

Causality of communication: for any i ≤ n, a ∈ I(Σi)c where c is a
channel of at least two TIOTS-signatures of Sys, and (σ1 . . . , σi, . . . σn) ∈
MTraces(ΣSys), let us denote by Oa ⊆ {1, . . . , n} the set of all indexes j
such that a ∈ O(Σj)c. If |σi|a < Σj∈Oa |σj |a, then (σ1 . . . , σi.a, . . . , σn) ∈
MTraces(ΣSys).

Consistent Time Elapsing: for any d∈D and (σ1, . . . , σn)∈MTraces(ΣSys),
we have (σ′

1, . . . , σ
′
n) ∈ MTraces(ΣSys) where for any i ≤ n, σ′

i is equal to
ε if σi = ε and equal to σi.d otherwise.

A multitrace is a tuple, each element being a sequence of inputs, outputs or
durations that is an execution that may be observed on a localised interface.
The multitrace whose sequences are all ε (Item Empty Trace) corresponds to
no interaction having occurred. A multitrace can be extended by adding to any
component either an input from the environment (Item Inputs from the envi-
ronment) or an output (Item Non Blocking Outputs). Outputs are non-blocking,
when sent to the environment and when sent to other parts of the system. In-
ternal communications are on shared channels. A channel may be shared by an
arbitrary number of localised TIOTSs. Internal communication is multicast: a
message sent can be received by several recipients (all those who listen on the
channel of interest). Messages are never lost but the time to reach a recipient is
not quantifiable since it travels between interfaces and there is no global clock
(we cannot measure it). If we focus on a thread of execution (i.e. a sequence in
a multitrace), a message cannot be received more often than the total number
of emissions of this message in the system (Item Causality of communication).
Finally, we require that time elapses in the same way for all interfaces whose
corresponding trace is not empty (Item Consistent Time Elapsing).

In distributed testing there is a separate localised tester at each interface and
there is no global clock. Thus, we cannot make any suppositions on the different
moments at which the different testers stop observing their associated interfaces.
To reflect this, we accept as admissible observations multitraces made of trace
prefixes, which we call observable multitraces.

A Test Framework for Timed Distributed Systems 87

Definition 4 (Observable Multitraces). The set of observable multitraces
of ΣSys = (Σ1 . . .Σn), denoted OTraces(ΣSys), is the smallest set containing
MTraces(ΣSys) and such that for any a in Σi, we have:
(σ1, . . . , σi.a, . . . , σn) ∈ OTraces(ΣSys)⇒(σ1, . . . , σi, . . . , σn) ∈ OTraces(ΣSys)

On each localised subsystem, the observer only observes a prefix of the whole
(local) timed trace if it does not wait long enough. Now, system specifications
are defined as tuples (A1, . . . ,An) of TIOTSs whose associated observable mul-
titraces (σ1 . . . , σi, . . . σn) are those such that σi is a timed trace of Ai.

Definition 5 (System). A system Sys over ΣSys = (Σ1, . . . , Σn) is a tuple
(A1, . . . ,An) of TIOTS, Ai being defined on Σi (1 ≤ i ≤ n). OTraces(Sys) is
the set of multitraces:

(TTraces(A1)× . . .× TTraces(An)) ∩OTraces(ΣSys)

Each TIOTS corresponds to a view of the system from one interface. Its timed
traces denote possible observations of system executions from this interface.
Observable traces denote tuples of consistent views of system executions.

5 Testing Framework

5.1 A Conformance Relation for Timed Distributed Systems

In this section we define our new implementation relation dtioco. In MBT it
is normal to assume that certain test hypotheses hold [16], the most basic hy-
pothesis being that the SUT can be described using the same formalism as the
specification. We assume that the following classical test hypotheses hold.

Definition 6 (LUT and SUT). Let Σ = (C, I,O) be a TIOTS signature and
C′ ⊆ C. A TIOTS A = (Q, qin, T r) over Σ satisfies the so-called Input Enable-
ness property over C′ iff ∀q ∈ Q, ∀c ∈ C′, ∀a ∈ Ic, ∃q′ ∈ Q, (q, a, q′) ∈ Tr.

A Localized System Under Test (LUT) over (Σ,C′) is a TIOTS over Σ,
satisfying the input enableness property over C′.

A System Under Test (SUT) over ΣSys = (Σ1, . . . , Σn) is a tuple
(LS1, . . . ,LSn) such that for each 1 ≤ i ≤ n, LSi is an LUT over
(Σi, I(Σi)\(∪j∈1..nO(Σj))).

Input-enabledness adapts the traditional hypothesis to distributed testing by
requiring that the system is input-enabled on its public interface made of chan-
nels shared with the environment. We base our new conformance relation on
tioco [14, 17–19]. In fact, we use a slightly modified version of tioco since, as
stated in Definition 2, our timed traces start with an input or an output (we
remove durations occuring at the beginning of traces).

Definition 7 (tioco). Let LS be an LUT and A a TIOTS both defined on the
same signature (C, I,O). LS conforms to A, denoted LS tioco A, if and only if
for any σ in TTraces(A) and r in O ∪D, we have:

σ.r ∈ TTraces(LS) =⇒ σ.r ∈ TTraces(A)

88 C. Gaston, R.M. Hierons, and P. Le Gall

Our conformance relation for distributed systems is an extension of tioco
to observable multitraces, except that observable multitraces introduce some
constraints (Definition 3), typically on internal receptions that should be pre-
ceded by internal emissions. However, it may happen that an observation of
an SUT S does not satisfy those constraints. For example, the network might
create a spurious message in a channel between localised systems, a localised
system LSi receiving a message (input) on a channel c that connects it to
another localised system LSj without LSj sending this message. Let us note
that there exists no specification to which such systems conform according
to Definition 8 since they do not meet consistency conditions of Definition 3.
Although our implementation relation will consider such behaviours to be er-
roneous, we cannot assume that the possible executions of the SUT are in
OTraces(ΣSys). In fact, we will only suppose that each local execution is a
timed trace of some localised system LSi under test. In the sequel any SUT
S = (LS1, . . . ,LSn) has a set Sem(S) ⊆ TTraces(LS1) × . . . × TTraces(LSn)
that denotes the set of all observations that can be made in testing; this al-
lows the network to introduce messages on channels as discussed earlier. We
further suppose, as in the case of observable traces, that for any a we have that:
((σ1, . . . , σi.a, . . . , σn) ∈ Sem(S))⇒ ((σ1, . . . , σi, . . . , σn) ∈ Sem(S)).

Definition 8 (dtioco). Let S = (LS1, . . . ,LSn) and Sys = (A1, . . . ,An) be
resp. an SUT and a system both on the signature ΣSys = (Σ1, . . . , Σn).
S conforms to Sys, denoted S dtioco Sys, if and only if Sem(S) ⊆ OTrace(ΣSys)
and for any (σ1 . . . , σi, . . . , σn) ∈ OTraces(Sys) and r ∈ (∪i≤nO(Σi)) ∪D, we
have:

(σ1 . . . , σi.r, . . . σn) ∈ Sem(S) =⇒ (σ1 . . . , σi.r, . . . σn) ∈ OTraces(Sys)

The first part of the definition requires that any observation of the SUT is
valid. The second part follows an approach similar to tioco in that it says that for
any observable multitrace (σ1 . . . σi, . . . , σn) of the specification, every possible
next observation of the SUT after (σ1 . . . σi, . . . , σn) is also an observation that
might be made after (σ1 . . . σi, . . . , σn) in the specification.

In the sequel, we introduce a compositionality result that allows us to reuse
testing algorithms dedicated for tioco in a distributed system testing process.
We begin by introducing a definition allowing us to identify which part of an
LUT is stimulated in a distributed SUT.

Definition 9. Let S = (LS1, . . . ,LSn) be an SUT with LSi = (Qi, qi, T ri) for
i in 1..n. The projection of LSi on S, denoted LSi|S is the TIOTS (Qi, qi, T r

′
i)

where Tr′i is the subset of Tri that contains all transitions tr such that there
exists a path of the form p′.t in Paths(LSi), a timed trace σ in TTraces(p′.tr)
and a tuple (σ1, . . . , σn) in Sem(S) such that σ = σi.

The set of timed traces of LSi|S contains all timed traces of LSi that LSi can
produce when interacting with the other LUTs. Thus, if a tester interacts with S

only through the channels of LSi, he/she interacts with a real system that may
be represented by LSi|S (except that the tester does not control inputs received

A Test Framework for Timed Distributed Systems 89

on channels between LUTs). By construction, LSi|S need not be input enabled
over all internal channels since all configurations over the localised part are not
exercised in the context of S.

Property 1. Let S = (LS1, . . . ,LSn) and Sys = (A1, . . . ,An) be resp. an SUT
and a system with both having signature ΣSys = (Σ1, . . . , Σn).

If for all i in 1..n, Ai is input enabled over C(Σi), the following result holds:
(S dtioco Sys)⇔ ((∀i ≤ n,LSi|S tioco Ai) ∧ Sem(S) ⊆ OTraces(ΣSys))

Proof. First consider the left-to-right implication. The fact that Sem(S) ⊆
OTraces(ΣSys) is part of the definition of dtioco.

Now let us suppose that there exists i in 1, . . . , n such that ¬(LSi|S tioco Ai).
If so, there exists σi ∈ TTraces(Ai) and r ∈ O(Σi) ∪ D such that σi.r ∈
TTraces(LSi|S) and σi.r /∈ TTraces(Ai).

Since σi.r ∈ TTraces(LSi|S), there exists (σ1, . . . , σi.r, . . . , σn) ∈ Sem(S). As
Sem(S) ⊆ OTraces(ΣSys), we have that (σ1, . . . σi.r, . . . , σn) ∈ OTraces(ΣSys).
Assume that i, r and (σ1 . . . , σi, . . . σn) are chosen to be minimal and so
σj ∈ TTraces(Aj) for all 1 ≤ j ≤ n. Thus, since (σ1, . . . σi, . . . , σn) ∈
OTraces(ΣSys), we have that (σ1 . . . , σi, . . . σn) ∈ OTraces(Sys). By Defini-
tion 8, since S dtioco Sys we have that (σ1 . . . , σi.r, . . . σn) ∈ OTraces(Sys).
Thus, (σ1, . . . σi.r, . . . , σn) ∈ TTraces(A1)× . . .× TTraces(An), and so we can
deduce that σi.r ∈ TTraces(Ai). This contradicts our hypothesis.

Now consider the right-to-left implication. The first condition of Definition 8
(dtioco) holds immediately from the hypotheses. We assume that we have been
given (σ1 . . . σi, . . . , σn) ∈ OTraces(Sys), r ∈ Σi ∪D and (σ1 . . . , σi.r, . . . σn) ∈
Sem(S) and are required to prove that (σ1 . . . , σi.r, . . . σn) ∈ OTraces(Sys).

Since (σ1 . . . , σi.r, . . . σn) ∈ Sem(S) we have that σi.r ∈ TTraces(LSi|S). Fur-
ther, since (σ1 . . . σi, . . . , σn) ∈ OTraces(Sys) we know that σi ∈ TTraces(Ai).
Thus, since LSi|S tioco Ai, we have that σi.r ∈ TTraces(Ai). Since Sem(S) ⊆
OTraces(ΣSys) we have that (σ1 . . . σi.r, . . . , σn) ∈ OTraces(ΣSys). We thus
have that (σ1 . . . σi.r, . . . , σn) ∈ OTraces(ΣSys), σi.r ∈ TTraces(Ai) and σj ∈
TTraces(Aj) for all 1 ≤ j ≤ n with j �= i. From the definition of OTraces(Sys),
we conclude that (σ1 . . . , σi.r, . . . σn) ∈ OTraces(Sys) as required. �

5.2 TIOSTSs as Symbolic Denotation of TIOSTs

Now, we briefly present symbolic versions of TIOTSs that will be used to il-
lustrate our test framework with a reasonable example. Indeed, generally, for
expressiveness sake, we do not directly use TIOTSs, which are appropriate to
theoretically reason about conformance, but do not permit real time constraints
to be expressed. Here, we use TIOSTS (Timed Input Output Symbolic Tran-
sition Systems) [14, 15] which are automata that have variables to abstractly
denote system states (we call them data variables) and variables to capture
timing constraints (we call them clocks) on system executions.

TIOSTS introduce transitions of the form (q, T , φ, ψ, act, ρ, q′) where (i) q and
q′ are states, φ and ψ are guards on time and data respectively, (ii) T is a set of

90 C. Gaston, R.M. Hierons, and P. Le Gall

clocks to be reset to 0 when the action act occurs, (iii) act may be receptions of
the form c?x (c?) where c is a channel and x is a data variable or emissions of
the form c!t (c!) where t is a term and (iv) ρ is an assignment of data variables
denoting updates of variable values. Such a transition can be executed from q if
ψ holds and at any moment for which values of the clocks are such that φ holds
(as for timed automata). At this moment, the action occurs (signals c? or c! or
a reception of a value on x if the action is c?x or emission of the current value
of t if the action is c!t). Clocks of T are reset and data variables are updated
according to ρ. Finally, by successively executing all consecutive transitions, one
may form all timed traces of a TIOST.

5.3 Example

acci = 0

trainPos i!pi

q0
i

q1
i

q2
i

{ i , ’i }

{ i}
’i <10

pi = pi+ (vi* i) + (1/2)*acci* i
2

{ ’i}
i <10

trainPos 3-i?p’i

i
emergencyModei!true q3

i

driveri?acci

’i <10

pi = initi

With: init1 = 42 and init2 =300 and i < p’i i * 20) + 200

acci = -1

trainPos i!pi

{ i}
’i <10

driveri?acci

i <10
drive

starti?

vi = 0

vi = vi + acci* i

vi = vi + (-1)* i
pi = pi+ (vi* i) - (1/2)* i

2

Fig. 1. Train Control System Example: TLCi for i = 1, 2

Figure 1 gives a simplified model of the functional requirements of Train Local
Controllers (TLCs) that forms part of the European Train Control System7.
Similar specifications can found, e.g. in [20] and in [21]. The overall Train Control
System (TCS) contains two Train Local Controllers (TLCs), one per train (say
train 1 and train 2), going in the same direction on a rolling stock.

The symbol i in Figure 1 should be replaced by two possible values, 1 and
2. The system TCS = (TLC1, TLC2) ensures that the train on the rear side
automatically decreases speed as soon as the one in front of it is too close. The
relative position of trains is given by their positions, which can be accessed by
consulting the value of variable pi: if p1 < p2, then train 1 is behind train 2.

7 Interested readers can consult http://www.uic.org/spip.php?rubrique850

A Test Framework for Timed Distributed Systems 91

The TLCi are automata containing 4 states (qi0 the initial state, q
i
1, q

i
2 and qi3),

communicating through channels (starti, driveri, emergencyModei for commu-
nicating with the environment, trainPosi for sending internal messages and
trainPos3−i for receiving internal messages) and having 4 data variables (acci
in {−1, 0, 1} for the acceleration of the train, vi for the speed of the train, pi for
the position value of the train, p′i for the estimation of the position of the other
train) and 2 clocks (wi, which is reset at each emission of the position and w′

i,
which is reset at each reception of the position of the second train).

TLCi specifies the following behaviour: after an initialisation phase, the train
of interest sends its position to the other train, and in return, the other train
is supposed to send its position. In this loop, two consecutive communication
actions are supposed to be separated by a delay of less than 10 units of time. If
the remote train does not send its position on time, the local train goes into an
emergency mode (not detailed here). At any moment in the loop, the driver may
ask to modify the train acceleration. The new value is taken into account only
if it does not affect the safety of the system (safety is threatened if condition ρ
holds, that is, the distance between trains is less than the distance that can be
covered by the rear train with the current acceleration). If safety is threatened,
than the acceleration of the rear train is set to −1 in order to reduce its speed.
Here are some examples of couples (σ1, σ2) with σi a trace of TLCi for i in 1, 2:

– (σ1
1=start1?.(2).(1).driver1?1.(1).(2).trainPos1!42.(2).(3).trainPos2?300.(2).(1),

σ1
2=start2?.(1).(1).trainPos2!300.(2).(2).trainPos1?42.(3).(2).trainPos2!300.(1))

is a multitrace with the convention that numbers between parentheses are
durations, numbers without parentheses are messages and the punctuation
symbol ”.” separates durations and actions. Note that train 1 is the rear
train and train 2 does not move. This multitrace corresponds to a sit-
uation in which all local testers have observed until the end of the be-
haviour of TLCi: in particular, all receptions have been preceded by an
emission, and except the first duration (2) occurring in σ1

1 , all following du-
rations (1).(1).(2).(2).(3).(2).(1) are the same in both traces (time elapsing
property).

– (σ2
1=start1?.(2).(1).driver1?1,

σ2
2=start2?.(1).(1).trainPos2!300.(2).(2).trainPos1?42.(3).(2).trainPos2!300.(1))

is such that σ2
1 is a prefix of σ1

1 and σ2
2 = σ1

2 . (σ
2
1 , σ

2
2) is thus an observable

multitrace. The observation of TLC1 is stopped just after the driver asked
to accelerate. Since the tester at TLC2 observes for longer, TLC2 receives
the value 42. So, TLC1 sent its position (42), but the observer associated
with TLC1 did not wait long enough to record this action.

– (σ3
1 = start1?.(2).(1).driver1?1.(1).(2).trainPos1!42.(1).trainPos2?300.(1).

trainPos1!60.(1).T rainPos2?300,

σ3
2=start2?.(1).(1).trainPos2!300.(2).(2).trainPos1?42.(3).(2).trainPos2!300.(1))

does not constitute an observable multitrace. Indeed, in σ3
1 , trainPos1!42

is emitted and 3 units of time later, trainPos2?300 is received a second
time. This reception corresponds to the second emission trainPos2!300 in σ3

2 .
Now, in σ3

2 , the second emission trainPos2!300 occurs 5 units of time after

92 C. Gaston, R.M. Hierons, and P. Le Gall

the reception trainPos1?42. This contradicts the time elapsing property:
indeed, for TLC1, time elapses of only 3 units of time between emission of
42 and reception of 300, but, meanwhile, for TLC2, it elapses for at least 5
units of time since it comprises the duration separating the reception of 42
and the emission of 300.

6 Implementing Distributed Timed Testing

This section describes how testing for dtioco can be carried out in a manner that
reflects our underlying assumptions and also utilises our compositionality result.

6.1 Architecture

°

LS

LS

LS1 2

3

Fig. 2. Distributed testing Architecture

Figure 2 illustrates the architecture used. The SUT S is composed of LUTs
LS1, LS2 and LS3. Each LUT LSi has channels connected to the environment
(dark connections) and internal channels to exchange values with other LUTs
LSi (light connections). A tester Ti is associated with each LUT LSi and Ti

may control inputs and observe outputs occurring on channels connected to the
environment. The tester may also observe values sent through internal channels
(represented by the magnifying glasses). Each LSi executes in a centralised way,
so that the local tester can observe the order of actions occurring on its channels
and can measure durations between consecutive actions. Therefore, behaviours
observed by each Ti can be viewed as timed traces and may be analysed with
respect to the set of timed traces of the model specifying the LUT. We can-
not directly combine the timed traces observed at different LUTs since there is
no global clock. Internal communications, represented by a cloud, are observed
twice, at the emission and at the reception, by different testers. Recall, however,
that we assume that all testers use clocks progressing at the same rate.

A Test Framework for Timed Distributed Systems 93

6.2 Process

Consider SUT S = (LS1, . . . ,LSn) with tester Ti at each LSi (i in 1..n), that
we want to test against system Sys = (A1, . . . ,An). Based on Definition 8,
and Property 1, we see that any fault of the whole system can be identified
either at the level of one LUT, or at the level of internal communications:
(S dtioco Sys)⇐⇒ ((∀i ≤ n,LSi|S tioco Ai) ∧ Sem(S) ⊆ OTraces(ΣSys))

So, if a local tester Ti exhibits timed trace σi contradicting LSi|S tioco Ai, or
if (σ1, . . . , σn) (σi observed by tester Ti) does not form an observational trace,
then (S dtioco Sys) does not hold. Moreover, as these conditions are sufficient
to ensure that S dtioco Sys, this suggests a two step testing process:

(1) Timed unitary testing of each LSi w.r.t. Ai. Tester Ti associated with
LSi checks that the timed trace it observes is allowed by Ai under tioco. If
one of the testers reveals an error, then (S dtioco Sys) does not hold;

(2) Testing of internal communications. All the Ti keep track of the lo-
calised timed traces σi observed. Tuple (σ1, . . . , σn) of timed traces is anal-
ysed to check whether or not it constitutes an observational trace. If not,
then (S dtioco Sys) does not hold.

For the first step, the test execution process corresponds to classical unitary
testing since Ti interacts with LSi in the context of the whole system (modeled
as LSi|S). The only slight difference is that inputs on internal channels are not
controlled by the tester but by the remaining part of the system (the LSj with
j �= i) and the cloud network. This kind of test architecture has already been
addressed, typically in the context of orchestrations, a particular class of web
services compositions. An orchestrator can be seen as a main localised module
that orchestrates exchanges between a user and some web services. In [22], we
proposed an (untimed) algorithm to test an orchestrator in the context of the
system in which they are plugged. In such a test architecture, the orchestrator
receives inputs from a user and web services: typically, the latter are not con-
trolled by the tester. An orchestrator is an LUT and a whole orchestration can
be seen as a special case of systems addressed in this paper. The algorithm in [22]
can be adapted to be used in Step (1) to incorporate timed aspects, for example
by considering the on-line test generation algorithm given in [14], or an off-line
alternative [15] and by adapting them in order to ignore any duration that occurs
before the first action of a timed trace. In fact, in our test framework, the off-line
approach should be preferred, since for the moment, we have not addressed the
question of test case generation, but focus mainly on the oracle problem. So, as
we only need an algorithm for analysing trace conformance, it can be obtained
for free from an off-line testing architecture.

Due to the lack of space, we do not fully present Step (1), and rather focus on
the analysis of the system multitraces to check the observational trace property,
and thus to achieve Step (2).

94 C. Gaston, R.M. Hierons, and P. Le Gall

6.3 Observational Multitrace Checking

The algorithm (Figure 3) checking the observable multitrace property follows the
points of Definitions 3 and 4. In the sequel we assume that any duration observed
in any timed trace consists of sequences of 1 unit (which implies that we can
see all delays between communication actions as integers). This is exactly what
is done in practice in a timed testing process, when using a clock to measure
time between actions in a testing process (the clock itself imposes the basic
delay defining the unity). The main idea is to store a multitrace (σc

1, . . . , σ
c
n)

that is observed at the end of a run, to read it from the beginning and to
store the elements already read in a multitrace ot = (μ1, . . . , μn) while keeping
the elements still to be read in a multitrace mt = (σ1, . . . , σn). The algorithm
check(mt, ot) ends with success (return True) when the current multitrace
mt = (σ1, . . . , σn) to be analysed is the empty multitrace (ε, . . . , ε) (line 5)
and the read multitrace ot = (μ1, . . . , μn) corresponds to the complete initial
multitrace (σc

1, . . . , σ
c
n). There are two ways of reading a multitrace (σ1, . . . , σn):

either there exists a trace σi beginning with an action ai (Case (1)) (line 8), or
a duration d can be read on all admissible traces (Case (2)) (line 13):

Case (1). An action ai can be read by the algorithm from σi (line 12), that is,
removed from the trace still to be read (replace(mt, i, tail(σi)) and added
to the trace already read (replace(ot, i, addEnd(μi, ai))) if one of the fol-
lowing conditions is fulfilled: (1) ai is an emission towards the environment
or other subsystems (isOuptut(ai)), (2) ai is a reception from the envi-
ronment (isInputEnv(ai)), (3) ai is a reception of a message m on the
channel c coming from one of the other subsystems (isInputInt(ai)) and
the number of occurrences of ai in μi (elements already read by the al-
gorithm for the subsystem LSi) is strictly less than the number of emis-
sions already read by the algorithm, i.e. the number of c!m occurring in
(μ1, . . . , μn) (Nb I(μi, ai) < Nb O(ot, ai)), provided that none of the sub-
systems LSj (i �= j) that can emit on the channel c has a trace fully read,
i.e. ∀j | LSj can emit on c , σj �= ε, and lastly, (4) ai is a reception of a
message m on the channel c coming from one of the other subsystems and
there exists a subsystem LSj (i �= j) that can emit on the channel c whose
trace is already fully read, i.e. ∃j | LSj can emit on c , σj = ε.
In the algorithm, the predicate FullR(Chan(ai),mt) is True when for all j
such that LSj can emit on Chan(ai), σj (occurring in mt = (σ1, . . . , σn)) is
equal to ε. The predicate is used both for subcases (3) and (4).

Case (2). A duration d = 1 can be read by the algorithm if one of the non
empty traces σi starts with a duration di > 0 and if for all traces σi starting
with an action, the reading of the trace has not been started, i.e. μi = ε
(T imeElapsing(mt, ot)). In this case, the duration d is subtracted from all
durations di occurring at the beginning of traces σi (di is simply removed if
di = 1) and added to the corresponding μi (time elapse of 1(mt, ot)).

A Test Framework for Timed Distributed Systems 95

If the reading cannot be continued until reaching the empty multitrace, then
the initial multitrace does not meet the targeted observable multitrace property
(check(mt, ot) returns the value False, initialised at line 7). As the underly-
ing principle consists of considering all possible configurations for interleaving
emissions and receptions of different subsystems, its complexity is clearly high.
However, as the algorithm is applied only once the local traces are completely
stored (off-line algorithm), a good efficiency is not of primary necessity.

Algorithm 1. Checking of the observable multitrace property
1 check(mt, ot): (* initial call : check((σc

1, . . . , σ
c
n), (ε, . . . , ε)) *)

2 (σ1, . . . , σn) = mt
3 (μ1, . . . , μn) = ot
4 if mt = (ε, . . . , ε) then
5 return True

6 else
7 Cond = False
8 for i in [1, .., n] do
9 if notEmpty(σi) then

10 ai = first(σi)
11 if isOutput(ai) or isInputEnv(ai) or

(isInputInt(ai) andNb I(μi, ai) < Nb O(ot, ai) and not(FullR(Chan(ai),mt)))
or (isInputInt(ai) and FullR(Chan(ai),mt)) then

12 Cond =
Cond or check(replace(mt, i, tail(σi)), replace(ot, i, addEnd(μi, ai)))

13 if TimeElapsing(mt, ot) then
14 (mt′, ot′) = time elapse of 1(mt, ot)

15 Cond = Cond or check(mt′, ot′)

16 return Cond;

Fig. 3. Checking Observable Trace property

7 Conclusions

There has been growing interest in distributed testing where the SUT has phys-
ically distributed interfaces, there is a separate tester at each interface and a
tester only observes the interactions at its interface. This paper extends previous
work by investigating distributed testing from specifications based on TIOTSs
that interact through an implicit distributed protocol. We assume that the SUT
and specification are both composed of separate components at the interfaces
and that the sending and receiving of messages between components is observed
during testing. Components themselves are described as TIOTS. We define the
semantics of such systems as a sets of tuples containing a local trace for each in-
terface. Such tuples, called observational multitraces, have to respect consistency
conditions ensuring that all local traces together reflect correct interactions be-
tween components. Having defined observations, we defined an implementation
relation dtioco for distributed testing. This implementation relation is an exten-
sion of tioco (timed version of ioco). It captures two things: tuples resulting from

96 C. Gaston, R.M. Hierons, and P. Le Gall

distributed interactions with the system under test are valid (i.e. are observa-
tional multitraces), and all reactions of the system under test after a specified
multitrace should also be specified.

We also provide a compositionality result, which shows that an SUT conforms
to a specification under dtioco if and only if all of the observations of the SUT
that can be made are valid and the local projections of the SUT conform to the
corresponding components of the specification under tioco. This result allows us
to reuse techniques developed for tioco. We then describe how testing can be
implemented and give an algorithm that checks that an observation is valid.

Since this is the first work to define an implementation relation for distributed
timed testing, there are several lines of future work. First, there is a need to define
and implement suitable test generation algorithms. In particular, it is necessary
to define distributed test purposes, and to find test generation strategies to
drive system executions so that they follow those test purposes. Recent work has
shown that for untimed systems it is undecidable whether there is a distributed
test case guaranteed to force a model M into a given state s or to distinguish
two states and that this holds even if we restrict M to being a deterministic
finite state machine (DFSM) [4]. Thus, general test generation problems are
likely to be undecidable but we will investigate conditions under which they
are decidable. Such test generation problems become tractable if we restrict
attention to controllable test cases and DFSM models [8] and so it would be
interesting to investigate notions of controllability for timed models. Second,
we assume that local clocks progress at the same rate; it should be possible to
generalise the results to the case where the clocks can drift but, for example,
we have upper bounds on the rate of drift. We also intend to consider the case
where the sending and receiving of internal messages are hidden.

References

1. ISO/IEC JTC 1, J.T.C.: International Standard ISO/IEC 9646-1. Information
Technology - Open Systems Interconnection - Conformance testing methodology
and framework - Part 1: General concepts. ISO/IEC (1994)

2. Dssouli, R., von Bochmann, G.: Error detection with multiple observers. In: Proto-
col Specification, Testing and Verification V, pp. 483–494. Elsevier Science, North
Holland (1985)

3. Dssouli, R., von Bochmann, G.: Conformance testing with multiple observers. In:
Protocol Specification, Testing and Verification VI, pp. 217–229. Elsevier Science,
North Holland (1986)

4. Hierons, R.M.: Reaching and distinguishing states of distributed systems. SIAM
Journal on Computing 39(8), 3480–3500 (2010)

5. Luo, G., Dssouli, R., von Bochmann, G.: Generating synchronizable test sequences
based on finite state machine with distributed ports. In: The 6th IFIP Workshop
on Protocol Test Systems, pp. 139–153. Elsevier, North-Holland (1993)

6. Sarikaya, B., von Bochmann, G.: Synchronization and specification issues in pro-
tocol testing. IEEE Transactions on Communications 32, 389–395 (1984)

7. Ural, H., Wang, Z.: Synchronizable test sequence generation using UIO sequences.
Computer Communications 16(10), 653–661 (1993)

A Test Framework for Timed Distributed Systems 97

8. Hierons, R.M., Ural, H.: The effect of the distributed test architecture on the power
of testing. The Computer Journal 51(4), 497–510 (2008)

9. Brinksma, E., Heerink, L., Tretmans, J.: Factorized test generation for multi-
input/output transition systems. In: FIP TC6 11th International Workshop on
Testing Communicating Systems (IWTCS). IFIP Conference Proceedings, vol. 131,
pp. 67–82. Kluwer (1998)

10. Hierons, R.M., Merayo, M.G., Núñez, M.: Implementation relations for the dis-
tributed test architecture. In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T.
(eds.) TestCom/FATES 2008. LNCS, vol. 5047, pp. 200–215. Springer, Heidelberg
(2008)

11. Hierons, R.M., Merayo, M.G., Núñez, M.: Implementation relations and test gener-
ation for systems with distributed interfaces. Distributed Computing 25(1), 35–62
(2012)

12. Hierons, R.M., Merayo, M.G., Núñez, M.: Using time to add order to distributed
testing. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp.
232–246. Springer, Heidelberg (2012)

13. Khoumsi, A.: A temporal approach for testing distributed systems. IEEE Trans-
actions on Software Engineering 28(11), 1085–1103 (2002)

14. Escobedo, J.P., Gaston, C., Le Gall, P.: Timed Conformance Testing for Orches-
trated Service Discovery. In: Arbab, F., Ölveczky, P.C. (eds.) FACS 2011. LNCS,
vol. 7253, pp. 133–150. Springer, Heidelberg (2012)

15. Bannour, B., Escobedo, J., Gaston, C., Gall, P.L.: Off-line test case generation for
timed symbolic model-based conformance testing. In: Nielsen, B., Weise, C. (eds.)
ICTSS 2012. LNCS, vol. 7641, pp. 133–150. Springer, Heidelberg (2012)

16. Gaudel, M.C.: Testing can be formal too. In: Mosses, P.D., Nielsen, M. (eds.)
CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 82–96. Springer,
Heidelberg (1995)

17. Krichen, M., Tripakis, S.: Black-box time systems. In: Proc. of Int. SPIN Workshop
Model Checking of Software. Springer (2004)

18. Bohnenkamp, H.C., Belinfante, A.: Timed Testing with TorX. In: Fitzgerald, J.S.,
Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 173–188. Springer,
Heidelberg (2005)

19. Schmaltz, J., Tretmans, J.: On Conformance Testing for Timed Systems. In:
Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 250–264.
Springer, Heidelberg (2008)

20. Meyer, R., Faber, J., Hoenicke, J., Rybalchenko, A.: Model checking duration cal-
culus: a practical approach. Formal Asp. Comput. 20(4-5), 481–505 (2008)

21. Andres, C., Yevtushenko, N., On, A.R.C.: modeling and testing the european train
control system. Technical Report TechRca 14-03-2013, Telecom Sudparis (2013)

22. Escobedo, J., Gaston, C., Gall, P.L., Cavalli, A.R.: Testing web service orchestra-
tors in context: A symbolic approach. In: Int. Conf. SEFM. IEEE (2010)

Unfolding-Based Test Selection
for Concurrent Conformance

Hernán Ponce de León1, Stefan Haar1, and Delphine Longuet2

1 INRIA and LSV, École Normale Supérieure de Cachan and CNRS, France
ponce@lsv.ens-cachan.fr, stefan.haar@inria.fr

2 Univ Paris-Sud, LRI UMR8623, 91405 Orsay, France
longuet@lri.fr

Abstract. Model-based testing has mainly focused on models where currency is
interpreted as interleaving (like the ioco theory for labeled transition systems),
which may be too coarse when one wants concurrency to be preserved in the
implementation. In order to test such concurrent systems, we choose to use Petri
nets as specifications and define a concurrent conformance relation named
co-ioco. We propose a test generation algorithm based on Petri net unfolding able
to build a complete test suite w.r.t our co-ioco conformance relation. In addition
we propose a coverage criterion based on a dedicated notion of complete prefixes
that selects a manageable test suite.

Model-Based Testing. The aim of testing is to execute a software system, the implemen-
tation, on a set of input data selected so as to find discrepancies between actual behavior
and intended behavior described by the specification. The testing process is usually de-
composed into three phases: selection of relevant input data, called a test suite, among
the possible inputs of the system; submission of this test suite to the implementation, its
execution; and decision of the success or the failure of the test suite submission, known
as the oracle problem. We focus here on the selection phase, crucial for relevance and
efficiency of testing.

Model-based testing requires a behavioral description of the system under test. One
of the most popular formalisms studied in conformance testing is that of input output la-
beled transition systems (IOLTS). In this framework, the correctness (or conformance)
relation the system under test (SUT) and its specification must verify is formalized
by the ioco relation [1]. This relation has become a standard, and is used as a basis
in several testing theories for extended state-based models: restrictive transition sys-
tems [2, 3], symbolic transition systems [4, 5], timed automata [6], multi-port finite
state machines [7].

Model-Based Testing of Concurrent Systems. Systems composed of concurrent com-
ponents are naturally modeled as a network of finite automata, a formal class of models
that can be captured equivalently by safe Petri nets. Concurrency in a specification can
arise for different reasons. First, two events may be physically localized on different
components, and thus be “naturally” independent of one another; this distribution is
then part of the system construction. Second, the specification may not care about the
order in which two actions are performed on the same component, and thus leave the

H. Yenigün, C. Yilmaz, and A. Ulrich (Eds.): ICTSS 2013, LNCS 8254, pp. 98–113, 2013.
c© IFIP International Federation for Information Processing 2013

Unfolding-Based Test Selection for Concurrent Conformance 99

choice of their ordering to the implementation. Depending on the nature of the con-
currency specified in a given case, and thus on the intention of the specification, the
implementation relations have to allow or disallow ordering of concurrent events. The
kind of systems that we consider is of the first type, where concurrency comes from
the distribution of components. Therefore, we want concurrency of the specification to
be preserved in the implementation.

Model-based testing of concurrent systems has been studied for a long time [8–10],
however it is most of the time studied in the context of interleaving, or trace, seman-
tics, which is known to suffer the state space explosion problem. While the passage
to models with explicit concurrency has been successfully performed in other fields of
formal analysis such as model checking or diagnosis, testing has embraced such mod-
els somewhat more recently. Ulrich and König propose in [11] a framework for testing
concurrent systems specified by communicating labeled transition systems. The spec-
ification is translated into a Petri net, and a complete prefix of its unfolding is used
to construct a behavior machine. The conformance relation proposed in [11] is a gen-
eralization of trace equivalence relation; their work does not include a test selection
procedure, or how the choice of complete prefix impacts selection. Since our goal is to
include conflict relations as well, we will use event structures and their properties.

Haar et al [12, 13] generalize the basic notions and techniques of I/O-sequence based
conformance testing via a generalized I/O-automaton model where partially ordered
patterns of input/output events are admitted as transition labels. However, these models
still maintain a sequential automaton as the system’s skeleton, and include synchroniza-
tion constraints, e.g. all events in the course of a transition must be completed before
any other transition can start.

Our Contribution. In order to enlarge the application domain, and at stronger benefits
from concurrency modeling, we have introduced in [14] a concurrent conformance rela-
tion named co-ioco, as a generalization of ioco. In [15], we dropped the input enabled-
ness assumption and enlarged the conformance relation in order to observe refusals.
Extra causality between outputs specified as concurrent is also allowed.

This paper extends [14, 15] with a conformance relation where actions specified as
concurrent must occur independently, on different processes, in any conformant imple-
mentation. While sufficient conditions for soundness and exhaustiveness of test suites
have been given in [15], we need more: in practice, only a finite number of test cases
can be executed; hence we need a method to select a finite set of relevant test cases
covering as many behaviors as possible (thus finding as many anomalies as possible).

The main contributions of this paper are the following: an algorithm to construct a
complete test suite; a selection criterion that stipulates which behaviors of the system
should be tested in order to have a good coverage of the specification; and an algorithm
to construct a sound test suite based on this criterion.

Outline. The paper is organized as follows. Section 1 recalls basic notions about Petri
nets, occurrence nets and labeled event structures. Section 2 introduces our testing hy-
potheses and our co-ioco conformance relation. In Section 3, we define the notion of
complete test suite, we give sufficient conditions for a test suite to be complete and
an algorithm producing such a test suite. Finally, we define in Section 4 our notion of

100 H. Ponce de León, S. Haar, and D. Longuet

coverage criterion and we adapt the complete finite prefix algorithm of [16] to build a
sound test suite satisfying this criterion.

1 I/O Petri Nets and Their Semantics

We choose to use Petri nets as specifications to have explicit concurrency. The semantics
associated to a Petri net is given by its unfolding to an occurrence net, which can also be
seen as an event structure. We will present both notions since we use them in different
contexts in the following. The execution traces for this semantics are not sequences but
partial orders, which keep concurrency explicit. We recall here these basic notions.

I/O Petri Nets. A net is a tuple N = (P ,T ,F) where (i) P �= ∅ is a set of places, (ii)
T �= ∅ is a set of transitions such that P ∩T = ∅, (iii) F ⊆ (P ×T)∪ (T ×P) is a set
of flow arcs. A marking is a multiset M of places, i.e. a map M : P → N. A Petri net is
a tuple N = (P ,T ,F ,M0), where (i) (P ,T ,F) is a finite net, and (ii) M0 : P → N is
an initial marking. Elements of P∪T are called the nodes ofN . For a transition t ∈ T ,
we call •t = {p | (p, t) ∈ F} the preset of t, and t• = {p | (t, p) ∈ F} the postset
of t . In figures, we represent as usual places by empty circles, transitions by squares, F
by arrows, and the marking of a place p by black tokens in p. A transition t is enabled

in marking M , written M
t−→, if ∀p ∈ •t , M (p) > 0. This enabled transition can

fire, resulting in a new marking M ′ = M − •t + t•. This firing relation is denoted

by M
t−→ M ′. A marking M is reachable from M0 if there exists a firing sequence,

i.e. transitions t0 . . . tn such that M0
t0−→ M1

t1−→ . . .
tn−→ M . The set of markings

reachable from M0 (in N) is denoted RN (M0) (we drop the subscript referring to N
when it is clear from the context). A Petri net N = (P ,T ,F ,M0) is (1-)safe iff for all
reachable markings M ∈ R(M0), M(p) ∈ {0, 1} for all p ∈ P .

Let I and O be two disjoint non-empty sets of input and output labels, respectively.
For a net N = (P ,T ,F), a mapping λ : T → (I O) is called an I/O-labeling. Denote
by TI and TO the input and output transition sets, respectively; that is, TI � λ−1(I)
and TO � λ−1(O). An I/O Petri net is a pair Σ = (N , λ), where N = (P ,T ,F ,M0)
is a 1-safe Petri net and λ : T → (I O) an I/O-labeling. Σ is called deterministically
labeled iff no two transitions with the same label are simultaneously enabled, i.e. for all
t1, t2 ∈ T and M ∈ R(M0):

(M
t1−→ ∧ M

t2−→ ∧ λ(t1) = λ(t2))⇒ t1 = t2

Note that 1-safeness of the Petri net is not sufficient for guaranteeing deterministic
labeling. Deterministic labeling ensures that the system behavior is locally discernible
through labels, either through distinct inputs or through observation of different outputs.

When testing reactive systems, we need to differentiate situations where the system
can still produce some outputs and those where the system can not evolve without an
input from the environment. Such situations are captured by the notion of quiescence

[17]. A marking is said quiescent if it does not enable output transitions, i.e. M
t−→

implies t ∈ TI . The observation of quiescence is usually instrumented by timers. Jard
and Jéron [18] present three different kinds of quiescence: output quiescence when the

Unfolding-Based Test Selection for Concurrent Conformance 101

t λ(t)
t1 ?login
t2 ?insurance
t3 !ins price
t4 !ins data
t5 !us data

t λ(t)
t6 ?train
t7 !tr price 1
t8 !tr price 2
t9 ?plane
t10 !pl price

t1

t5

t6

t7

t8

t9 t10

t2

t3

t4

Fig. 1. A travel agency specified by an I/O Petri net

system is waiting for an input from the environment, deadlock when the system can not
evolve anymore, and livelock when the system diverges by an infinite sequence of silent
actions.

Occurrence Nets and Unfoldings. Occurrence nets can be seen as Petri nets1 with a
special acyclic structure that highlights conflict between transitions that compete for
resources. Formally, let N = (P ,T ,F) be a net, <N the transitive closure of F , and
�N the reflexive closure of <N . We say that transitions t1 and t2 are in structural
conflict, written t1#

ωt2, if and only if t1 �= t2 and •t1 ∩ •t2 �= ∅. Conflict is inherited
along <N , that is, the conflict relation # is given by

a# b⇔ ∃ta, tb ∈ T : ta#
ωtb ∧ ta �N a ∧ tb �N b

Finally, the concurrency relation co holds between nodes a, b ∈ P ∪ T that are neither
ordered nor in conflict, i.e. a co b⇔ ¬ (a � b) ∧ ¬ (a # b) ∧ ¬ (b < a).

Definition 1. A net ON = (B ,E ,G) is an occurrence net if and only if

1. �ON is a partial order;
2. for all b ∈ B , |•b| ∈ {0, 1};
3. for all x ∈ B ∪ E , the set [x] = {y ∈ E | y � x} is finite;
4. no self-conflict, i.e. there is no x ∈ B ∪ E such that x#x;
5. ⊥∈ E is the only ≤-minimal node (event⊥ creates the initial conditions)

Call the elements of E events, those of B conditions. An ON can also be given
as a tuple (B,E\{⊥}, F, cut0), where cut0 = ⊥• is the set of minimal conditions.
Occurrence nets are the mathematical form of the partial order unfolding semantics
[16]. A branching process of a 1-safe Petri net N = (N ,M0) is given by a pair Φ =
(ON , ϕ), where ON = (B ,E ,G) is an occurrence net, and ϕ : B ∪ E → P ∪ T is
such that:

1. it is a homomorphism from ON to N , i.e.
– ϕ(B) ⊆ P and ϕ(E) ⊆ T , and
– for every e ∈ E , the restriction of ϕ to •e is a bijection between the set •e in
ON and the set •ϕ(e) in N , and similarly for e• and ϕ(e)

•;

1 When one allows Petri nets to be infinite.

102 H. Ponce de León, S. Haar, and D. Longuet

⊥
e ϕ(e) λ(e)

e1 t1 ?login
e2 t2 ?insurance
e3 t3 !ins price
e4 t4 !ins data
e5 t5 !us data
e6 t6 ?train
e7 t7 !tr price 1
e8 t8 !tr price 2
e9 t9 ?plane
e10 t10 !pl price

e1

e9

e10

e6

e7 e8

e2

e3

e4

e5

Fig. 2. Part of the unfolding of the PN from Figure 1 represented as an IOLES. Causality is
represented by arrows and immediate conflict by dashed lines.

2. the restriction of ϕ to cut0 is a bijection from cut0 to M0; and
3. for every e1, e2 ∈ E , if •e1 = •e2 and ϕ(e1) = ϕ(e2) then e1 = e2.

The unique (up to isomorphism) maximal branching process U = (ON U , ϕU) of N
is called the unfolding of N .

Input/Output Labeled Event Structures. Occurrence nets give rise to event structures
in the sense of Winskel et al [19]; as usual, we will use both the event structure and
the occurrence net formalism, whichever is more convenient. An input/output labeled
event structure (IOLES) over an alphabet L = I O is a 4-tuple E = (E,≤,#, λ)
where (i) E is a set of events, (ii) ≤ ⊆ E × E is a partial order (called causality)
satisfying the property of finite causes, i.e. ∀e ∈ E : |{e′ ∈ E | e′ ≤ e}| < ∞, (iii)
⊆ E×E is an irreflexive symmetric relation (called conflict) satisfying the property
of conflict heredity, i.e. ∀e, e′, e′′ ∈ E : e # e′ ∧ e′ ≤ e′′ ⇒ e # e′′, (iv) λ : E →
(I O) is a labeling mapping. In addition, we assume every IOLES E has a unique
minimal event⊥E . We denote the class of all input/output labeled event structures over
L by IOLES(L). Given event e, its local configuration is [e] � {e′ ∈ E | e′ ≤ e},
and its set of causal predecessors is 〈e〉 � [e]\{e}. Two events e, e′ ∈ E are said to
be concurrent (e co e′) iff neither e ≤ e′ nor e′ ≤ e nor e # e′ hold; e, e′ ∈ E are
in immediate conflict (e1 #μ e2) iff [e1] × [e2] ∩ # = {(e1, e2)}. A configuration of
an IOLES is a non-empty set C ⊆ E that is (i) causally closed, i.e. e ∈ C implies
[e] ⊆ C, and (ii) conflict-free, i.e. e ∈ C and e#e′ imply e′ �∈ C. Note that we define,
for technical convenience, all configurations to be non-empty; the initial configuration
of E , containing only ⊥E and denoted by ⊥E , is contained in every configuration of E .
We denote the set of all the configurations of E by C(E).

Labeled Partial Orders. We are interested in testing distributed systems where concur-
rent actions occur in different components of the system. For this reason, we want to
keep concurrency explicit, i.e. specifications do not impose any order of execution be-
tween concurrent events. Labeled partial orders can then be used to represent executions
of such systems. A labeled partial order (lpo) is a tuple lpo = (E,≤, λ) whereE is a set
of events,≤ is a reflexive, antisymmetric, and transitive relation, and λ : E → L is a la-
beling mapping to a fix alphabet L. We denote the class of all labeled partial orders over

Unfolding-Based Test Selection for Concurrent Conformance 103

L by LPO(L). Consider lpo1 = (E1,≤1, λ1) and lpo2 = (E2,≤2, λ2) ∈ LPO(L).
A bijective function f : E1 → E2 is an isomorphism between lpo1 and lpo2 iff (i)
∀e, e′ ∈ E1 : e ≤1 e′ ⇔ f(e) ≤2 f(e′) and (ii) ∀e ∈ E1 : λ1(e) = λ2(f(e)). Two
labeled partial orders lpo1 and lpo2 are isomorphic if there exists an isomorphism be-
tween them. A partially ordered multiset (pomset) is an isomorphism class of lpos. We
will represent such a class by one of its objects. Denote the class of all non empty pom-
sets overL byPOMSET (L). The evolution of the system is captured by the following
definition: pomsets are observations.

Definition 2. For E = (E,≤,#, λ) ∈ IOLES(L), ω ∈ POMSET (L) and C,C′ ∈
C(E), define

C
ω

=⇒ C′ � ∃lpo = (Eω ,≤ω, λω) ∈ ω : Eω ⊆ E\C,C′ = C ∪ Eω,
≤ ∩ (Eω × Eω) = ≤ω and λ|Eω

= λω

C
ω

=⇒ � ∃C′ : C ω
=⇒ C′

We can now define the notions of traces and of configurations reachable from a given
configuration by an observation. Our notion of traces is similar to the one of Ulrich and
König [11].

Definition 3. For E ∈ IOLES(L), ω ∈ POMSET (L), C, C′ ∈ C(E), define

traces(E) � {ω ∈ POMSET (L) |⊥E
ω

=⇒}
C after ω � {C′ | C ω

=⇒ C′}

Note that for deterministically labeled I/O Petri nets, the corresponding IOLES is
deterministic and the set of reachable configurations is a singleton.

2 Testing Framework for IOPNs

Testing Hypotheses. We assume that the specification of the system under test is given
as a 1-safe and deterministically labeled I/O Petri net Σ = (N , λ) over alphabet L =
I O of input and output labels. To be able to test an implementation against such
a specification, we make a set of testing assumptions. First of all, we make the usual
testing assumption that the behavior of the SUT itself can be modeled by a 1-safe I/O
Petri net over the same alphabet of labels. We also assume as usual that the specification
does not contain cycles of outputs actions, so that the number of expected outputs after
a given trace is finite.

Assumption 1. The net N has no cycle containing only output transitions.

Third, in order to allow the observation of both the outputs produced by the system
and the inputs it can accept, markings where conflicting inputs and outputs are enabled
should not be reachable. As a matter of fact, if conflicting input and output are enabled
in a given marking, once the output is produced, the input is not enabled anymore, and

104 H. Ponce de León, S. Haar, and D. Longuet

vice versa. Such markings prevent from observing the inputs enabled in a given config-
uration, which we will see is one of the key points of our conformance relation. For this
reason, we restrict the form of the nets we consider via the following assumption on the
unfolding:2

Assumption 2. The unfolding of the net N has no immediate conflict between input
and output events, i.e. ∀e1 ∈ EI , e2 ∈ EO : ¬(e1 #μ e2).

Conformance Relation. A formal testing framework relies on the definition of a confor-
mance relation to be satisfied by the SUT and its specification. In the LTS framework,
the ioco conformance relation compares the outputs and blockings in the implementa-
tion after a trace of the specification to the outputs and blockings authorised after this
trace in the specification. Classically, the produced outputs of the system under test are
elements of O (single actions) and blockings are observable by a special action δ �∈ L
which represents the expiration of a timer.

By contrast, in partial order semantics, we need any set of outputs to be entirely
produced by the system under test before we send a new input; this is necessary to
detect outputs depending on extra inputs. Suppose two concurrent outputs o1 and o2
depending on input i1 and another input i2 depending on both outputs. Clearly, an
implementation that accepts i2 before o2 should not be considered as correct, but if i2 is
sent too early to the system, we may not know if the occurrence of o2 depends or not on
i2. For this reason we define the expected outputs from a configuration C as the pomset
of outputs leading to a quiescent configuration. Such a configuration always exists, and
must be finite by Assumption 1.

The notion of quiescence is inherited from nets, i.e. a configuration C is quiescent iff
C

ω
=⇒ implies ω ∈ POMSET (I). We assume as usual that quiescence is observable

by a special δ action, i.e. C is quiescent iff C
δ

=⇒.

Definition 4. For E ∈ IOLES(L), C ∈ C(E), the outputs produced by C are

outE(C) � {!ω ∈ POMSET (O) | C !ω
=⇒ C′ ∧ C′ δ

=⇒} ∪ {δ | C δ
=⇒}

The co-ioco theory assumes the input enabledness of the implementation [1], i.e. in
any state of the implementation, every input action is enabled. This assumption is made
to ensure that no blocking can occur during the execution of the test until its end and
the emission of a verdict. However, as explained by Heerink, Lestiennes and Gaudel
in [2, 3] even if many realistic systems can be modeled with such an assumption, there
remains a significant portion of realistic systems that can not be modeled as such. In
order to overcome these difficulties, Lestiennes and Gaudel enrich the system model by
refused transitions and a set of possible actions is defined in each state. Any possible
input in a given state of the specification should be possible in a correct implementation.

Definition 5. For E ∈ IOLES(L) and C ∈ C(E), the possible inputs in C are

possE(C) � {?ω ∈ POMSET (I) | C ?ω
=⇒}

2 Gaudel et al [3] assume a similar property called IO-exclusiveness.

Unfolding-Based Test Selection for Concurrent Conformance 105

Our co-ioco conformance relation for labeled event structures can be informally de-
scribed as follows. The behavior of a correct co-ioco implementation after some obser-
vations (obtained from the specification) should respect the following restrictions: (1)
the outputs produced by the implementation should be specified; (2) if a quiescent con-
figuration is reached, this should also be the case in the specification; (3) any time an
input is possible in the specification, this should also be the case in the implementation.
These restrictions are formalized by the following conformance relation.

Definition 6. Let Ei, Es ∈ IOLES(L), then

Ei co-ioco Es ⇔ ∀ω ∈ traces(Es) :
posss(⊥ after ω) ⊆ possi(⊥ after ω)
outi(⊥ after ω) ⊆ outs(⊥ after ω)

When several outputs in conflicts are possible, our conformance relation allows im-
plementations where at least one of them is implemented. Extra inputs are allowed
in any configuration, but extra outputs, extra quiescence and extra causality between
events specified as concurrent are forbidden.

P1 P2

a

b
c

d

S1

P1 P2

a

b

d

S2

Fig. 3. Message sequence charts showing
two implementations of concurrency

Consider Figure 3. In the ioco theory
where concurrency is interpreted as interleav-
ing, the concurrency between outputs !b and
!d of system S2 would be described allowing
either !b before !d or !d before !b. S1 would
be a correct implementation w.r.t ioco be-
cause one of the two possible orders between
the outputs is observed, even if process P2

interferes in the behavior of processP1 (!b de-
pends on !d). We want to prevent implemen-
tations like S1 introducing extra dependency
between events specified as concurrent. Therefore actions specified as concurrent must
be implemented as such, meaning that they must occur on different processes and must
be independent from each other.

3 Complete Test Suites

A test case is a specification of the tester’s behavior during an experiment carried out
on the SUT. It must be controllable, i.e. the tester must not have choices to make during
the execution of the test. That is, tests must be deterministic, and at any stage, the next
input to be proposed by the tester must be unique, i.e. there are no immediate conflicts
between inputs. Finally, we require the experiment to terminate, i.e. the resulting event
structure to be finite.

Definition 7. A test case is a finite deterministic IOLES Et = (Et,≤t,#t, λt) where
(EI

t × EI
t) ∩#μ

t = ∅. A test suite is a set of test cases.

The success of a test is determined by the verdict associated to the result of its exe-
cution on the system, pass or fail, the pass verdict meaning that the result of the test is

106 H. Ponce de León, S. Haar, and D. Longuet

consistent with the specification according to the conformance relation. As IOLES can
be seen as occurrence nets, we can model the test execution as the parallel composition
of labeled nets [20]. This execution leads to a fail verdict in the following situations: (1)
the implementation produces a pomset of outputs that the test case can not accept, (2)
the test case can accept such a pomset of outputs, but the reached configuration is not
quiescent, (3) a quiescent configuration is reached in the implementation, but not in the
test case, or (4) the test case proposes an input that the implementation is not prepared
to accept. These situations corresponds to a deadlock in the parallel composition, but
not in the test case. If the test case deadlocks (and therefore the execution), the SUT
passes the test case.

We expect our test suite to be sound, i.e. if the implementation fails the test, then
it does not conform to the specification. A test suite is exhaustive iff it contains, for
every non conforming implementation, a test that detects it. The existence of a complete
(sound and exhaustive) test suite ensures testability of the conformance relation, since
success of the SUT under such a test suite proves the SUT’s conformance. For obtaining
sound and exhaustive test suites, we give in [15] the following sufficient conditions.
First, for a test suite to be sound, each test must produce only traces of the specification,
and preserve all possible outputs for each such trace.

Theorem 1 ([15]). Let Es ∈ IOLES(L) and T a test suite such that3

1. ∀Et ∈ T : traces(Et) ⊆ traces(Es)
2. ∀Et ∈ T, ω ∈ traces(Et) : outt(⊥ after ω) = outs(⊥ after ω)

then T is sound for Es w.r.t co-ioco.

A test suite is exhaustive if each trace of the specification appears in at least one test
and if tests preserve quiescence.

Theorem 2 ([15]). Let Es ∈ IOLES(L) and T a test suite such that

1. ∀ω ∈ traces(Es), ∃Et ∈ T : ω ∈ traces(Et);
2. ∀Et ∈ T, ω ∈ traces(Et) : (⊥t after ω) is quiescent implies (⊥s after ω) is

quiescent;

then T is exhaustive for Es w.r.t co-ioco.

The algorithm below builds a test case from an IOLES by resolving immediate con-
flicts between inputs, while accepting several branches in case of conflict between out-
puts (note that “mixed” immediate conflicts between inputs and outputs have been ruled
out by Assumption 2). At the end of the algorithm, all such conflicts have been resolved
in one way, following one fixed strategy of resolution of immediate input conflicts; the
resulting object, the test case, is thus one branching prefix of the IOLES. In order to
cover the other branches, the algorithm must be run several times with different conflict
resolution schemes, to obtain a test suite that represents every possible event in at least
one test case. Each such scheme can be represented as a linearization of the causality
relation that specifies in which order the events are selected by the algorithm. By the

3 The inclusion of possible inputs follows from point 1.

Unfolding-Based Test Selection for Concurrent Conformance 107

Algorithm 1. Constructs a test case from E
Require: A finite and deterministically labeled E = (E,≤,#, λ) ∈ IOLES(L) such that

∀e ∈ EI , e′ ∈ EO : ¬(e#μe′) and a linearization R of ≤
Ensure: A test case Et such that

∀ω ∈ traces(Et) : outEt(⊥ after ω) = outE(⊥ after ω)
1: Et := ∅
2: Etemp := E
3: while Etemp = ∅ do
4: em := min

R
(Etemp)

5: Etemp := Etemp \ {em}
6: if ({em} × EI

t) ∩#μ = ∅ ∧ [em] ⊆ Et then
7: Et := Et ∪ {em}
8: end if
9: end while

10: ≤t := ≤ ∩ (Et × Et)
11: #t := # ∩ (Et × Et)
12: λt := λ|Et

13: return Et = (Et,≤t,#t, λt)

above, we need to be sure that the collection of linearizations that we use considers all
resolutions of immediate input conflict, i.e. is rich enough such that there is a pair of
linearizations that reverses the order in a given immediate input conflict.

Definition 8. Fix E ∈ IOLES(L), and let L be a set of linearizations of ≤. Then L is
an immediate input conflict saturated set, or iics set, for E iff for all e1, e2 ∈ EI such
that e1#μe2, there exist R1,R2 ∈ L with ∀e ∈ [e1] : eR1e2 and ∀e ∈ [e2] : eR2e1.

Proposition 1. Let L be an iics set for E , and T the test suite obtained using Algo-
rithm 1 with L. Then every event e ∈ E is represented by at least one test case Et ∈ T .

Proof. Let T be the test suite obtained by the algorithm and L and suppose e is not
represented by any test case in T . We have then that for every Et ∈ T either (i) e ∈ EI

and {e} × EI
t ∩#μ �= ∅ or (ii) [e] �⊆ Et. If (i), we have that there exists e′ ∈ EI

t such
that e#μe′ and e′R1e (where R1 is the linearization used to build Et). By Proposition
1 we know there exist R2 ∈ L such that ∀e′′ ∈ [e] : e′′R2e

′ and then we can use R2 to
construct E ′

t ∈ T such that e is represented by E ′
t which leads to a contradiction. If (ii),

then there exists e′ ∈ [e] such that {e′}×EI
t ∩ �= ∅ and the analysis is analogous to the

one in (i). #$

Note that the size of L and hence of T can be bounded by the number of input
events in immediate conflict, i.e. |T | ≤ 2K, where K = |#μ ∩ (EI × EI)|. Note that
in the case where several input events are two by two in immediate conflict, we need
fewer test cases than one per pair. For example if e1 #μe2, e2 #μe3 and e3 #μe1, we
only need three linearizations, each having a different event ei preceding the two others
whose order does not matter, and therefore only three cases. Moreover, for any pair of
concurrent events e co e′, the order in which they appear in any R ∈ L is irrelevant;
it suffices therefore to have in L only one representative for any class of permutations

108 H. Ponce de León, S. Haar, and D. Longuet

of some set of pairwise concurrent events in E . Therefore, the size of L and thus of T
depends on the degree of input conflict in E and not on the degree of concurrency. It
is known that such a performance is characteristic of methods based on partial order
unfoldings.

⊥

e1

e6

e7 e8

e2

e3

e4

e5

(a)

⊥

e1

e9

e10

e2

e3

e4

e5

(b)

Fig. 4. Two test cases build using the IOLES in Figure 2 and Algorithm 1

Example 1. The test cases (a) and (b) in Figure 4 can be obtained using Algorithm 1
and any linearizationsR1,R2 such that e6R1e9 and e9R2e6.

Let PREF(E) be the set of all prefixes of E , we show now that Algorithm 1 is
general enough to produce a complete test suite from it.

Theorem 3. From PREF(E) and an iics set L for E , Algorithm 1 yields a complete
test suite T .

Proof. Soundness: By Theorem 1 we need to prove: (1) the traces of every test case are
traces of the specification; (2) the outputs following a trace of the test case are preserved.
(1) Trace inclusion is immediate as the test case is a prefix of the unfolding of the
specification. (2) For a test Et and a trace ω ∈ traces(Et), if an output in outs(⊥ after ω)
is not in outt(⊥ after ω), it means either that it is in conflict with an input in Et, which
is impossible by Assumption 2, or that its past is not already in Et, which is impossible
since ω is a trace of Et.

Exhaustiveness: By Theorem 2 we need to prove that every trace is represented in at
least one test case, and that the algorithm does not introduce extra quiescence. Clearly,
for all ω ∈ traces(Es) there exists at least one complete prefix c ∈ PREF(E) such
that ω ∈ traces(c). By Proposition 1 we can find R ∈ L such that this trace remains in
the test case obtain by the algorithm, i.e. ∃t ∈ T : ω ∈ traces(t). If we only consider
the prefixes c ∈ PREF(E) such that (⊥c after ω) is quiescent implies (⊥s after ω)
is quiescent, it follows that any test case built with the algorithm from c inherits this
property. #$

4 Coverage Criteria for Labeled Event Structures

In the ioco framework and its extensions, the selection of test suites is achieved by dif-
ferent methods. Tests can be built in a randomized way from a canonical tester, which

Unfolding-Based Test Selection for Concurrent Conformance 109

is a completion of the specification representing all the authorized and forbidden be-
haviors [1]. Closer to practice is the selection of tests according to test purposes, which
represent a set of behaviors one wants to test. [18]. Another method, used for sym-
bolic transition systems for instance, is to unfold the specification until a certain testing
criterion is fulfiled, and then to build a test suite covering this unfolding. Criteria for
stopping the unfolding can be a given depth or state inclusion for instance [21].

The behavior of the system described by the specification consists usually of infi-
nite traces. However, in practice, these long traces can be considered as a sequence of
(finite) “basic” behaviors. For example, the travel agency offers few basic behaviors:
(1) interaction with the server; (2) selection of insurance; and (3) selection of tickets.
Any “complex” behavior of the agency is built from such basic behaviors. We choose
a criterion allowing to cover each basic behavior described by the specification once,
using a proper notion of complete prefixes.

Complete Prefixes as Testing Criteria. The dynamic behavior of a Petri net is entirely
captured by its unfolding, but this unfolding is usually infinite. There are several dif-
ferent methods of truncating an unfolding. The differences are related to the kind of
information about the original unfolding one wants to preserve in the prefix. Our aim is
to use such a prefix to build test cases, therefore obtaining a finite prefix can be seen as
defining a testing criterion.

As it is shown above, if the information about the produced outputs (and quiescence)
is preserved in the test cases, we can prove the soundness of the test suite. Hence we
aim at truncating the unfolding following an inclusion criterion, while preserving infor-
mation about outputs and quiescence.

We say that a branching process β of an I/O Petri net Σ is complete if for every
reachable marking M there exists a configuration C in β such that

1. Mark (C) = M (i.e. M is represented in β), and
2. for every transition t enabled by M there exists C ∪ {e} ∈ C(β) such that e is

labeled by t.

A complete prefix Fin can be obtained modifying the unfolding algorithm. The com-
plete finite prefix algorithm is presented in [16] and depends on the notion of cut-off
event: how long the net is unfolded. The following notion corresponds to our inclusion
criterion: every cycle is unfolded once.

Definition 9. Let Fin be a branching process. An event e is a cut-off event iff Fin
contains an event e′ ≤ e such that Mark ([e′]) = Mark ([e]).

Nevertheless, as explained in Example 2, completeness does not imply that the in-
formation about outputs and quiescence is preserved.

Example 2. Consider Figure 5, we have that Fin is complete, but the expected outputs
are not part of the prefix. We expect that o1 is produced by the system after i2 and i4,
i.e. outE(⊥ after (i2 · i4)) = {o1}, but this is not the case in Fin , i.e. o2 �∈ outFin (⊥
after (i2 · i4)) = {δ}.

In order to preserve this information, we follow [21] and modify the complete fi-
nite prefix algorithm adding all the outputs from the unfolding that the complete prefix

110 H. Ponce de León, S. Haar, and D. Longuet

s1

i1 i2 i3

s2

i4
s5 s6

o1

s3

s4

Σ

⊥

i1 i3 i2 i4

o1 o1

i1 i3 i2 i4

o1 o1

i1 i3 i2 i4

o1 o1

.

E

⊥

i1 i3 i2 i4

o1

Fin

⊥

i1 i3 i2 i4

o1 o1

EΘ

Fig. 5. I/O Petri net Σ, part of its unfolding E , a complete finite prefix Fin and its quiescent
closure EΘ

enables. As there exists no cycles of outputs in the original net, this procedure termi-
nates, yielding a finite prefix. The procedure to compute the quiescent closure EΘ of
the complete finite prefix is described by Algorithm 2.

As in [16], we implement a branching process of an I/O Petri net Σ as a list of nodes.
A node is either a condition or an event. A condition is a pair (s, e), where s is a place
of Σ and e its preset. An event is a pair (t, B), where t is a transition in Σ, and B is its
preset. The possible extensions of a branching process β are the pairs (t, B) where the
elements of B are pairwise in co relation, t is such that ϕ(B) = •t and β contains no
event e satisfying ϕ(e) = t and •e = B. We denote the set of possible extensions of β
by PE(β). The following result is central and will help proving soundness of the test
suites proposed below.

Theorem 4. Let E ∈ IOLES(L) and EΘ the quiescent closure of its complete finite
prefix. Then

1. traces(EΘ) ⊆ traces(E)
2. ∀ω ∈ traces(EΘ) : outEΘ(⊥ after ω) = outE(⊥ after ω)

Proof. 1) is immediate since EΘ is a prefix of E . Since only the outputs produced after
the traces of EΘ are considered, 2) follows by its construction. #$

The test suite build based on the inclusion criteria is sound:

Unfolding-Based Test Selection for Concurrent Conformance 111

Algorithm 2. The quiescent closure of the complete finite prefix algorithm
Require: A 1-safe I/O Petri net Σ = (T, P, F,M0, λ) where M0 = {s1, . . . , sk}.
Ensure: A complete finite prefix EΘ of the unfolding E of Σ such that

∀ω ∈ traces(EΘ) : outEΘ (⊥ after ω) = outE(⊥ after ω)
1: EΘ := (s0, ∅), . . . , (sk, ∅)
2: pe := PE(EΘ)
3: cut-off := ∅
4: while pe = ∅ do
5: choose an event e = (t, B) in pe such that e is minimal w.r.t ≤;
6: if [e] ∩ cut-off = ∅ then
7: append to EΘ the event e and a condition (s, e) for every place s in t•

8: pe := PE(EΘ);
9: if e is a cut-off event of EΘ then

10: cut-off := cut-off ∪ {e}
11: end if
12: else
13: pe := pe\{e}
14: end if
15: end while
16: pe := PE(EΘ)
17: while pe ∩ TO = ∅ do
18: choose an event e = (t,B) in pe ∩ TO such that e is minimal w.r.t ≤;
19: append to EΘ the event e and a condition (s, e) for every place s in t•

20: pe := PE(EΘ);
21: end while
22: return EΘ

Theorem 5. Let Σs be the specification of a system and Es the IOLES of its unfolding.
Any test suite constructed using Algorithm 1 and EΘ

s as an input is sound for Es w.r.t
co-ioco.

Proof. By Theorem 1 we need to prove that any trace of a test case Et is a trace of
Es (which is trivial as Et is a prefix of EΘ

s and therefore of Es) and that outputs and
quiescence produced after any trace ω of such a test are preserved. The events of EΘ

s

that are added to Et are all the events whose past is already in Et and which are not
in immediate conflict with an input. An output cannot be in immediate conflict with
an input by Assumption 2, so all the outputs whose past is already in Et are added.
So all the outputs from EΘ

s after a trace ω are preserved and by Theorem 4 we have
∀ω ∈ traces(Et) : outt(⊥ after ω) = outs(⊥ after ω). #$
Example 3. The IOLES of Figure 2 is a complete prefix of the unfolding of the net in
Figure 1 and can be obtained using Algorithm 2. We saw in Example 1 how to build test
cases that cover such a complete prefix. Thus the test cases of Figure 4 form a sound
test suite that covers the specification according to our inclusion criterion.

5 Conclusion and Future Work

We have presented a testing framework and a test generation algorithm for true concur-
rency specifications of distributed and concurrent systems. Our test selection criterion

112 H. Ponce de León, S. Haar, and D. Longuet

is based on the quiescent closure of the complete finite prefix of the unfolding of the
specification; it allows to select, among all possible test cases, those covering the be-
haviors traversing each cycle once. As in the case of McMillan’s complete prefixes, the
size of our prefixes can be exponential in the number of reachable markings in worst
case (see for example [16]). However, for several families of nets, the resulting prefix
is smaller than the reachability graph. Full information about the behavior of the net
can be reconstructed with only a finite marking-complete prefix whose size is bounded
by the number of states in the reachability graph. However such reconstruction is not
straight forwards.

Future technical studies include the question whether it is possible to drop assump-
tions 1 and 2 under a fairness assumption, meaning that in a given configuration, all
the different events will eventually occur if the experiment is repeated enough times.
However under such an assumption, controllability of test cases must be ensured during
their construction.

The present testing approach here is global, meaning that a global control and ob-
servation of the distributed system is assumed, and tests are performed in a centralized
way. The next step of our work is to distribute control and observation over several
concurrent components. This will necessarily weaken the conformance relation, since
dependencies between events occurring on different components cannot be observed
anymore. The local test cases should, roughly speaking, be projections of the global
test cases onto the different components, since concurrency of the specification was pre-
served in the test cases. We still have to investigate how distribution affects the power of
testing, and how the resulting methods compares to others, such as the dioco framework
of Hierons et al. [7] for multi-port IOTS.

Acknowledgment. This work was funded by the DIGITEO / DIM-LSC project TEC-
STES, convention DIGITEO Number 2011-052D - TECSTES.

References

1. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Software - Con-
cepts and Tools 17(3), 103–120 (1996)

2. Heerink, L., Tretmans, J.: Refusal testing for classes of transition systems with inputs and
outputs. In: Formal Description Techniques for Distributed Systems and Communication
Protocols. IFIP Conference Proceedings, vol. 107, pp. 23–38. Chapman & Hall (1997)

3. Lestiennes, G., Gaudel, M.C.: Test de systèmes réactifs non réceptifs. Journal Européen des
Systèmes Automatisés 39(1-2-3), 255–270 (2005)

4. Faivre, A., Gaston, C., Le Gall, P., Touil, A.: Test purpose concretization through sym-
bolic action refinement. In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T. (eds.) Test-
Com/FATES 2008. LNCS, vol. 5047, pp. 184–199. Springer, Heidelberg (2008)

5. Jéron, T.: Symbolic model-based test selection. Electronic Notes in Theoretical Computer
Science 240, 167–184 (2009)

6. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal Methods in
System Design 34(3), 238–304 (2009)

7. Hierons, R.M., Merayo, M.G., Núñez, M.: Implementation relations for the distributed test
architecture. In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T. (eds.) TestCom/FATES
2008. LNCS, vol. 5047, pp. 200–215. Springer, Heidelberg (2008)

Unfolding-Based Test Selection for Concurrent Conformance 113

8. Hennessy, M.: Algebraic Theory of Processes. MIT Press (1988)
9. Peleska, J., Siegel, M.: From testing theory to test driver implementation. In: Gaudel, M.-C.,

Wing, J.M. (eds.) FME 1996. LNCS, vol. 1051, pp. 538–556. Springer, Heidelberg (1996)
10. Schneider, S.: Concurrent and Real Time Systems: The CSP Approach, 1st edn. John Wiley

& Sons, Inc., New York (1999)
11. Ulrich, A., König, H.: Specification-based testing of concurrent systems. In: Formal Descrip-

tion Techniques for Distributed Systems and Communication Protocols. IFIP Conference
Proceedings, vol. 107, pp. 7–22. Chapman & Hall (1998)

12. von Bochmann, G., Haar, S., Jard, C., Jourdan, G.-V.: Testing systems specified as partial
order input/output automata. In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T. (eds.)
TestCom/FATES 2008. LNCS, vol. 5047, pp. 169–183. Springer, Heidelberg (2008)

13. Haar, S., Jard, C., Jourdan, G.-V.: Testing input/output partial order automata. In: Petrenko,
A., Veanes, M., Tretmans, J., Grieskamp, W. (eds.) TestCom/FATES 2007. LNCS, vol. 4581,
pp. 171–185. Springer, Heidelberg (2007)

14. Ponce de León, H., Haar, S., Longuet, D.: Conformance relations for labeled event struc-
tures. In: Brucker, A.D., Julliand, J. (eds.) TAP 2012. LNCS, vol. 7305, pp. 83–98. Springer,
Heidelberg (2012)

15. Ponce de León, H., Haar, S., Longuet, D.: Model-based testing for concurrent systems with
labeled event structures (2012), http://hal.inria.fr/hal-00796006

16. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding algorithm.
In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 87–106. Springer,
Heidelberg (1996)

17. Segala, R.: Quiescence, fairness, testing, and the notion of implementation. Information and
Computation 138(2), 194–210 (1997)

18. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. International Journal on Software
Tools for Technology Transfer 7, 297–315 (2005)

19. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains, part I.
Theoretical Computer Science 13, 85–108 (1981)

20. Winskel, G.: Petri nets, morphisms and compositionality. In: Applications and Theory in
Petri Nets, pp. 453–477 (1985)

21. Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic execution techniques for test purpose
definition. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS, vol. 3964,
pp. 1–18. Springer, Heidelberg (2006)

http://hal.inria.fr/hal-00796006

H. Yenigün, C. Yilmaz, and A. Ulrich (Eds.): ICTSS 2013, LNCS 8254, pp. 114–132, 2013.
© IFIP International Federation for Information Processing 2013

Predicting the Size of Test Suites from Use Cases:
An Empirical Exploration

Mourad Badri, Linda Badri, and William Flageol

Software Engineering Research Laboratory
Department of Mathematics and Computer Science

University of Quebec, Trois-Rivières, Quebec, Canada
{Mourad.Badri,Linda.Badri,William.Flageol}uqtr.ca

Abstract. Software testing plays a crucial role in software quality assurance.
Software testing is, however, a time and resource consuming process. It is,
therefore, important to estimate as soon as possible the effort required to test
software. Unfortunately, little is known about the prediction of the testing
effort. The study presented in this paper aims at exploring empirically the
prediction of the testing effort from use cases. We address the testing effort
from the perspective of test suites size. We used four metrics to characterize the
size and complexity of use cases, and three metrics to quantify different
perspectives of the size of corresponding test suites. We used the univariate
logistic regression analysis to evaluate the individual effect of each use case
metric on the size of test suites. The multivariate logistic regression analysis
was used to explore the combined effect of the use case metrics. The
performance of the prediction models was evaluated using receiver operating
characteristic analysis. An experimental study, using data collected from five
Java case studies, is reported providing evidence that some of the use case
metrics are significant predictors of the size of test suites.

Keywords: Software Testing, Testing Effort, Test Suite Size, Use Cases,
Metrics, Relationship, Prediction, Logistic Regression Analysis.

1 Introduction

Software testing is an important part of the software development lifecycle. It plays a
crucial role in software quality assurance. Software testing is, however, a time and
resource consuming process. It is, therefore, absolutely necessary to estimate as soon
as possible the effort required to test software, so that activities can be planned and
resources can be optimally allocated. However, estimating the testing effort is not an
easy task. Indeed, the overall effort spent on testing depends on many different factors
including human factors, testing techniques, used tools, characteristics of the software
development artifacts, and so forth. Many studies focusing on software development
size and effort estimation (prediction) have been published in the literature.
Unfortunately, only a few proposals have addressed problems of the software testing
effort prediction. Often, the testing effort is estimated as a part of the overall software
development. Software testing effort prediction is a key open issue.

 Predicting the Size of Test Suites from Use Cases: An Empirical Exploration 115

Software metrics, or models based on software metrics, can be used to predict
(estimate) the testing effort required to test a software. Software metrics have, in fact,
a number of interesting characteristics for providing effort prediction (estimation)
support. In practice, such prediction (estimation) support can, in fact, be used to guide
the decision-making of software development managers seeking to produce high
quality software. Particularly, it can help software managers, developers, and testers
to allocate testing resources, plan and monitor testing activities, and especially
determine the critical parts of the software which require more testing effort to ensure
software quality. One effective way to deal with this important issue is to develop
prediction models that can be used in early stages of software development lifecycle
to provide high-level estimates of the effort required to test software. Testing effort
prediction at early stages of software development is a challenge. Typical inputs
available at early stages of software development lifecycle are functional
requirements, which describe what a software system is expected to do. Use cases
describe the functional requirements of a software system, so they can be basis for
testing effort prediction.

We explored in [6] the relationship between use cases and the size of test suites in
object-oriented (OO) software systems. The size of test suites was measured in terms
of lines of test code. The performed study was, however, limited to a correlation
analysis between use cases size and complexity and the size of test suites. Results
provide evidence that there is a significant relationship between use cases and the size
of test suites. The present paper aims at exploring empirically, more deeply than the
study presented in [6], the relationship between use cases and the size of test suites in
OO software systems. The goal is to explore the potential of using use cases to predict
the testing effort. Using use cases may be, indeed, a simple and good way to predict
early the testing effort. Use cases have gained popularity and are widely used for
many years. In addition, use cases are the axis of the unified process, which employs
a use case driven approach. In particular, use cases may be used to generate test cases.
Use cases have, in fact, already been used to estimate (predict) the testing effort [e.g.,
2, 15, 28, 35, 36]. These approaches consider actor ranking, use case points, normal
and exceptional scenarios and various technical and environmental factors which may
be difficult to measure.

We propose in this paper a simple alternative approach. We used four metrics to
characterize the size and complexity of use cases. We also used three metrics to
quantify different perspectives of the size of test suites. In order to evaluate the
relationship between use case metrics and the size of test suites, we used logistic
regression methods. The research question we attempt to answer is how accurately do
use case metrics predict the testing effort in terms of size of test suites. In a first step,
and in order to understand the underlying orthogonal dimensions captured by the
proposed use case and test case metrics, we performed a Principal Component
Analysis (PCA). In a second step, we used the univariate logistic regression analysis
to evaluate the individual effect of use case metrics on the size of test suites. The
multivariate logistic regression analysis was used to explore the combined effect of
use case metrics. The performance of the prediction models was evaluated using
Receiver Operating Characteristic analysis. An experimental study, using data

116 M. Badri, L. Badri, and W. Flageol

collected from five Java case studies, is reported providing evidence that some of the
use case metrics are significant predictors of the size of test suites.

The rest of this paper is organized as follows: Section 2 gives a brief survey of
related work. The use case metrics are introduced in Section 3. Section 4 presents the
test suite metrics we used to quantify test cases. Section 5 presents the empirical study
we performed to evaluate the capacity of use case metrics to predict the testing effort.
Finally, Section 6 concludes the paper and outlines some future work directions.

2 Related Work

Recent years have seen an increasing interest in the testability of OO software
systems. Many OO metrics, related to different OO software attributes such as size,
complexity, coupling, and cohesion have been used to predict (assess) testability of
OO software systems [e.g., 3, 4, 13, 14, 19, 32-34]. Bruntink and Van Deursen [13,
14] investigate factors of testability of OO software systems. The authors studied five
open source Java software systems in order to explore the relationship between OO
design metrics and some characteristics of JUnit test classes. Testability was
measured (inversely) by the number of lines of test code and the number of assert
statements in the test code. The study was limited to a correlation analysis between
OO design metrics and testability of classes. Singh et al. [32] use OO metrics and
neural networks to predict the testing effort. The testing effort in this work is
measured in terms of lines of code added or changed during the lifecycle of a defect.
Singh et al. conclude that the performance of the developed model is to a large degree
dependent on the data used. In [34], Singh and Saha attempt to predict the testability
of Eclipse at the package level. This study was limited to a correlation analysis
between source code metrics and test metrics. Badri et al. [3] explore the relationship
between lack of cohesion metrics and testability of OO software systems. In [4], Badri
et al. investigate the capability of lack of cohesion metrics to predict testability of
classes using logistic regression methods. Here also, testability was measured by the
number of lines of test code and the number of assert statements in the test code.
More recently, Badri and Toure [5] explore the capacity of OO metrics to predict the
testing effort of classes using logistic regression analysis. Results indicate, among
others, that multivariate regression models based on OO design metrics are able to
accurately predict the unit testing effort of classes. Most of these studies are, however,
code-based. Using the code to estimate the effort required to test software is a little
late. It is better to do so as soon as possible, ideally in early phases of software
development lifecycle.

Some model-based approaches [e.g., 8-10, 23, 25] have been proposed to deal with
testing effort (or testability) estimation. Most of these approaches are based on data or
control flow designs or on UML design models. Baudry et al. [8-10] address
testability measurement (and improvement) of OO designs. The authors focus on
design patterns as coherent subsets in the architecture, and explain how their use can
provide a way for limiting the severity of testability weaknesses. The proposed
approach supports the detection of undesirable configurations in UML class diagrams.

 Predicting the Size of Test Suites from Use Cases: An Empirical Exploration 117

Le Traon et al. [25] propose testability measures for data flow designs. Khan and
Mustafa [23] focus on testability at the design level and propose a model for
predicting testability of classes from UML class diagrams. Unfortunately, only a few
approaches used use cases to estimate the testing effort. Use cases have, however,
been used in many studies to estimate the software development effort (cost) [e.g., 18,
22, 27, 29-31]. Nageshwaran [28] presents a use cases based approach for test effort
estimation considering weight and environmental factors. Yi et al. [36] present an
experience-based approach for the test suites size estimation. The proposed model is
based on use case verification points. The authors found a linear relationship between
use case verification points and test case number. Zhu Xiaochun et al. [35] present an
empirical study on early test execution effort estimation based on test case number
prediction and test execution complexity. Almeida et al. [2] propose a method to
estimate test activity effort based on information obtained from use cases. The
information used is the actors and the number of scenarios, in addition to technical
and environmental factors available for the tests. The method separates, in fact, the
quantities of normal scenarios of a use case from exceptional ones, arguing that they
have different influences in the effort. Chaudhary and Yadav [15] propose an
approach for estimating the size and effort required in the testing projects using test
case points. The test case point analysis is an approach for doing estimation of
functional testing projects that emphasizes on key testing factors that determine the
complexity of the testing cycle.

3 Use Case Metrics

Use cases are used for capturing and describing functional requirements of a system.
Informally, a use case is a collection of related success and failure scenarios that
describe actors using a system to support a goal [24]. A use case model defines the
functional scope of the system to be developed. Use cases describe, in fact, how
external actors interact with the software system. The interactions between actors and
the software system generate events to the software system, known as input system
events, which are usually associated with system operations. A scenario, also called a
use case instance, is a specific sequence of actions and interactions between actors
and the system. It is one particular story of using the system, or one path through the
use case. The development (testing) process is driven by use cases. In particular, use
case realizations drive the design. A use-case realization (scenario) describes how a
particular use case is realized within the design model, in terms of collaborating
objects. We present, in what follows, the metrics we used to characterize use cases
size and complexity.

Number of Scenarios (NS): This metric gives the total number of scenarios of a use
case. One use case can, in fact, have one or more transactions. The NS metric is
related to the cyclomatic complexity of the use case.

Number of External Operations (NEO): This metric defines the number of system
operations associated with the system events related to a use case. The entire set of
system operations defines the public system interface. During the design, the system

118 M. Badri, L. Badri, and W. Flageol

operations identified during system behavior analysis are assigned to one or more
(controller) classes, which usually should delegate to other objects (classes) the work
that needs to be done.

Number of Involved Methods (NIM): The system events represent messages that
initiate interaction diagrams, which illustrate how objects interact to fulfill the
required tasks (the use case realization). This metric defines the total number of
methods that are involved in the execution of a use case, across all of its scenarios,
including the methods that are invoked by other methods.

Number of Involved Classes (NIC): This metric defines the total number of classes
involved in the realization of a use case (all of its scenarios). It includes the main
classes that are involved in the realization of the use case and collaborating classes.

4 Test Suite Metrics

To indicate the testing effort required for a use case (noted UCi), we used three
metrics to quantify the corresponding JUnit test cases (noted TCi). JUnit
(www.junit.org) is a simple framework for writing and running automated unit tests
for Java classes. Test cases in JUnit are written by testers in Java. We used in our
experiments each pair <UCi, TCi> to explore the relationship between the
characteristics of a use case and the characteristics of the corresponding test cases.
We used the following metrics to quantify the test cases required to test a use case:

Number of lines of test code (TLOC): This metric defines the cumulative number of
lines of code of the JUnit test cases related to a use case (all of its scenarios). This
number includes only the test cases related to classes/methods involved in the
realizations of the use case. It is used to indicate the total size, in terms of lines of test
code, of the test cases corresponding to a use case.

Number of assert statements (TASSERT): This metric defines the cumulative number
of invocations of JUnit assert methods that occur in the code of the test cases related
to a use case (all of its scenarios). The set of JUnit assert methods are used by the
testers to compare the expected behavior of the classes (methods) to their current
behavior. This metric is used to indicate another perspective of the size of the test
cases corresponding to a use case.

Number of test cases (NBTESTS): This metric gives the total number of JUnit test
cases related to a use case (all of its scenarios). This number includes only the test
cases related to classes/methods involved in the realizations of the use case. This
metric is used to indicate another perspective of the size of the test cases
corresponding to a use case.

The first two metrics have already been used (at the class level) in several studies
[e.g., 3, 4, 13, 14, 34] to indicate the size of a test suite corresponding to a class.

 Predicting the Size of Test Suites from Use Cases: An Empirical Exploration 119

5 An Experimental Evaluation

We used in our experiment five Java case studies from different domains. UML
models have been generated by reverse engineering the source code of the
applications. We have also developed the necessary JUnit test cases for each of the
five case studies. In order to explore the relationship between use case metrics and the
size of test suites, we related to each use case the corresponding JUnit test cases. For
each use case, we calculated the values of the four use case metrics. We also used the
suite of test case metrics to quantify the corresponding JUnit test cases.

Table 1. Some statistics on the used case studies

 Use Cases Classes Methods Lines of code

ATM 7 68 158 2 474

NextGen 10 17 95 795

CommonsExec 7 29 150 4 376

CommonsEmail 4 10 128 3 737

CommonsIO 13 22 298 8 969

5.1 Selected Case Studies

The selected case studies are: ATM, NextGen, CommonsExec, CommonsEmail and
CommonsIO. Table 1 summarizes some statistics on the case studies. It gives, for
each case study, the number of use cases, the number of classes, the number of
methods and the total number of lines of code. The first case study ATM is a
simulator system allowing performing basic banking operations (withdrawal, deposit,
transfer, balance, etc.). We adapted the case study for our purposes. The second case
study NextGen is an extension of the application developed in the book by Larman
[24]. The original application has been extended for our purposes. We have added
features about accounts receivable management, suppliers, and employees. We also
added features to support billing and rental payments by debit and credit. The third
case study Commons Exec is an API for dealing with external process execution and
environment management in Java. It allows executing a shell command on a variety
of operating systems. The fourth case study Commons Email aims to provide an API
for sending email. It is built on top of the Java Mail API, which it aims to simplify.
The fifth case study Commons IO is a library of utilities to assist with developing IO
functionality. We used only a part of this system that is related to reading, writing and
files comparison functionalities. In order to have a significant sample of data, we
combined the use cases of the five case studies. We have then a total of 41 use cases.
Table 2 lists the descriptive statistics for use case and test case metrics.

120 M. Badri, L. Badri, and W. Flageol

Table 2. Descriptive statistics for use case and test case metrics

Metrics Obs. Min. Max. Mean Sigma
NIC 41 1,000 12,000 2,244 2,245

NEO 41 1,000 12,000 2,024 2,242

NIM 41 1,000 23,000 3,585 4,796

NS 41 1,000 8,000 2,488 1,938

TLOC 41 14,000 1556,000 201,561 347,010

TASSERT 41 1,000 284,000 21,878 49,865

NBTESTS 41 1,000 36,000 5,780 7,761

5.2 Correlation Analysis

In order to assess the relationship between use case metrics (noted UCm) and test case
metrics (noted TCm), we performed statistical tests using correlation. The null and
alternative hypotheses that our study have tested were:

- H0: There is no significant correlation between a use case metric UCm and a test
case metric TCm.

- H1: There is a significant correlation between a use case metric UCm and a test
case metric TCm.

In this experiment, rejecting the null hypothesis indicates that there is a statistically
significant relationship between a use case metric UCm and a test case metric TCm.
For the analysis of the collected data, and in order to test the correlation between a use
case metric and a size test case metric, we used three correlation analysis techniques
(Pearson, Spearman and Kendall). The Pearson r correlation is widely used in
statistics to measure the degree of the relationship between linear related
variables. The variables should be normally distributed. The Spearman rank
correlation is a non-parametric test that is used to measure the degree of association
between two variables. Spearman rank correlation test does not assume anything
about the distribution. The Kendall rank correlation is also a non-parametric test that
does not assume anything about the distribution (like Spearman’s correlation).
Correlation is a bivariate analysis that measures the strengths of association between
two variables. In statistics, the value of the correlation coefficient varies between +1
and -1. A positive correlation is one in which the variables increase together. A
negative correlation is one in which one variable increases as the other variable
decreases. A correlation of +1 or -1 will arise if the relationship between the variables
is exactly linear. A correlation close to zero means that there is no linear relationship
between the variables. We used the XLSTAT software tool (http://www.xlstat.com/)
to measure the three types of correlations. We applied the typical significance
threshold (α = 0.05) to decide whether the correlations where significant. For each
pair <UCm, TCm> we analyzed the collected data set by calculating the (Pearson’s,
Spearman’s and Kendall’s) correlation coefficients for each pair of metrics. Tables 3,
4 and 5 summarize the results of the correlation analysis (respectively Pearson’s,
Spearman’s and Kendall’s correlation coefficients). These tables show the values for
the three correlation coefficients between each distinct pair of use case and test case

 Predicting the Size of Test Suites from Use Cases: An Empirical Exploration 121

metrics. The correlation coefficients that are significant (at α=0.05) are set in boldface
in the three tables. This means that for the corresponding pairs of metrics there exist a
correlation at the 95 % confidence level.

Table 3. Pearson’s correlation values between use case and test case metrics

Metrics NIC NEO NIM NS TLOC TASSERT NBTESTS

NIC 1 0,267 0,892 0,213 0,844 0,366 0,851

NEO 0,267 1 0,573 -0,066 0,557 0,168 0,499

NIM 0,892 0,573 1 0,237 0,958 0,409 0,923

NS 0,213 -0,066 0,237 1 0,329 0,340 0,333

TLOC 0,844 0,557 0,958 0,329 1 0,560 0,944

TASSERT 0,366 0,168 0,409 0,340 0,560 1 0,489

NBTESTS 0,851 0,499 0,923 0,333 0,944 0,489 1

Table 4. Spearman’s correlation values between use case and test case metrics

Metrics NIC NEO NIM NS TLOC TASSERT NBTESTS

NIC 1 0,541 0,639 -0,062 0,329 0,234 0,382

NEO 0,541 1 0,535 -0,180 0,334 0,269 0,386

NIM 0,639 0,535 1 0,148 0,652 0,556 0,575

NS -0,062 -0,180 0,148 1 0,497 0,655 0,437

TLOC 0,329 0,334 0,652 0,497 1 0,872 0,794

TASSERT 0,234 0,269 0,556 0,655 0,872 1 0,816

NBTESTS 0,382 0,386 0,575 0,437 0,794 0,816 1

Table 5. Kendall’s correlation values between use case and test case metrics

Metrics NIC NEO NIM NS TLOC TASSERT NBTESTS

NIC 1 0,490 0,573 -0,058 0,277 0,203 0,319

NEO 0,490 1 0,468 -0,157 0,250 0,198 0,305

NIM 0,573 0,468 1 0,128 0,562 0,485 0,482

NS -0,058 -0,157 0,128 1 0,382 0,539 0,375

TLOC 0,277 0,250 0,562 0,382 1 0,733 0,654

TASSERT 0,203 0,198 0,485 0,539 0,733 1 0,727

NBTESTS 0,319 0,305 0,482 0,375 0,654 0,727 1

The first global observation that we can make is that there is a significant

relationship between the majority of use case and test case metrics. Only few
correlations that are not significant are observed, particularly in the case of the pair
(NEO, TASSERT) according to the three correlation coefficients and the pair (NIC,
TASSERT) according to the Spearman’s and Kendall’s correlation coefficients. The
second global observation that we can make is that the use case metrics NIM and NS
are correlated to the three test case metrics. The obtained correlation coefficients,
according to the three techniques we used, between NIM and NS and the test case
metrics are all significant (at α=0.05, and for all the pairs of metrics). The four use
case metrics are, however, correlated to the size test case metrics TLOC and
NBTESTS. Moreover, the measures have positive correlation. As mentioned
previously, a positive correlation indicates that one variable (use case metric value in

122 M. Badri, L. Badri, and W. Flageol

our case) increases as the other variable (size test case metric value in our case)
increases. These results are plausible knowing that the more a use case is complex, in
terms of size and complexity, the more it is difficult to test. So, the effort required in
terms of developing corresponding test cases will be relatively high.

Furthermore, it can also be seen that the correlation values between the use case
metrics are overall not uniform. The correlations change from one pair to another. In
some cases, the correlations are not significant. This suggests that even if there is an
overlap between the metrics in terms of provided information, according to the
correlation values, these metrics seem capturing different dimensions. This issue
must, however, be validated. From the same tables, it can also be seen that the test
case metrics are also correlated between themselves. Unlike use case metrics, test
case metrics are better correlated between themselves, which suggest that the overlap
(in terms of provided information) between the metrics is more important than in the
case of use case metrics. This is plausible given that these metrics are all related to the
size of test suites. According to the obtained results, we can therefore reasonably
reject the null hypothesis H0.

5.3 Use Cases Ranking

In order to deepen our analysis and better understand the relationship between use
cases and the size of test suites, we wanted to explore in a first step the use of
clustering techniques for classifying (ranking) use cases into three categories: simple,
medium and complex. Clustering provides, indeed, a natural way for identifying
clusters of related objects (use cases in our case) based on their similarity (use case
metrics in our case). The resulting clusters (three in our case), are to be built so that
use cases within each cluster are more closely related to one another than use cases
assigned to different clusters. We wanted, in fact, to investigate if test case features
will reflect the complexity level of the corresponding use cases. Indeed, we can
intuitively expect that test cases corresponding to complex use cases will be
(relatively) complex, and test cases corresponding to simple use cases will be
(relatively) simple. Let UC be a use case and P = { UCmi } be the set of its properties
(use case metrics). In this paper, as a first attempt, we used the K-means clustering,
which is a method of cluster analysis that aims to partition n observations (use cases
in our study) into k clusters (three in our study) in which each observation belongs to
the cluster with the nearest mean. We used the Weka (Waikato Environment for
Knowledge Analysis) tool, which is a comprehensive suite of Java class libraries that
implement many state-of-the-art machine learning and data mining algorithms. We
obtain three clusters of use cases. Tables 6, 7 and 8 give the descriptive statistics for
test case metrics of the JUnit test cases corresponding respectively to complex,
medium and simple use cases.

 Predicting the Size of Test Suites from Use Cases: An Empirical Exploration 123

Table 6. Descriptive statistics for test cases metrics corresponding to complex use cases

Variables Obs. Mean Sigma

TLOC 3 595,000 145,523

TASSERT 3 32,000 5,292

NBTESTS 3 12,333 3,786

Table 7. Descriptive statistics for test cases metrics corresponding to medium use cases

Variables Obs. Mean Sigma

TLOC 13 293,000 549,852

TASSERT 13 21,769 42,165

NBTESTS 13 8,154 11,936

Table 8. Descriptive statistics for test cases metrics corresponding to simple use cases

Variables Obs. Mean Sigma

TLOC 25 106,800 120,531

TASSERT 25 20,720 56,910

NBTESTS 25 3,760 3,908

The first cluster, corresponding to complex use cases, includes 3 use cases. The

mean values of the corresponding TLOC, TASSERT and NBTESTS metrics are
respectively 595, 32 and 12.33. The second cluster, corresponding to medium use
cases, includes 13 use cases. The mean values of the corresponding TLOC,
TASSERT and NBTESTS metrics are respectively 293, 21.77 and 8.15. The third
cluster, corresponding to simple use cases, includes 25 use cases. The mean values of
the corresponding TLOC, TASSERT and NBTESTS metrics are respectively 106.8,
20.72 and 3.76. Results show clearly that the mean value of the TLOC, TASSERT
and NBTESTS metrics of complex use cases are higher than the mean value of the
same metrics of medium use cases, which are higher than the mean value of the same
metrics of simple use cases. The descriptive statistics of the test case metrics reflect
properly the ranking in terms of complexity level of corresponding use cases. These
results seem suggesting that the more use cases are complex, the more the effort
required to develop corresponding test cases is higher. This issue must, however, be
validated.

5.4 Evaluating the Effect of Use Case Metrics on the Size of Test Suites

We present, in this section, the empirical study we conducted in order to evaluate the
individual and combined effect of use case metrics on the size of test suites. The goal
here is to evaluate how accurately do use case metrics predict the testing effort in

124 M. Badri, L. Badri, and W. Flageol

terms of size of test suites. We used both univariate and multivariate Logistic
Regression (LR) analysis. The univariate LR analysis is used to find the individual
effect of each use case metric, identifying which metrics are significantly related to
the size of test suites. The multivariate LR analysis is used to investigate the
combined effect of use case metrics on the size of test suites, indicating which metrics
may play a more dominant role in predicting the testing effort in terms of test suites
size.

5.4.1 Principal Component Analysis
Results of correlation analysis suggest that there is an overlap between the metrics
(use case and test case metrics) in terms of provided information. So, in order to better
understand the underlying orthogonal dimensions captured by these metrics, we
performed a Principal Component Analysis (PCA). PCA is a technique that has been
widely used in software engineering to identify important underlying dimensions
captured by a set of metrics. We used this technique to find whether the used metrics
are independent or are capturing the same underlying dimensions (properties) of the
object being measured. In a first step, the PCA was performed on the data set
consisting of use case metrics values. The PCA identified three Principal Components
(PCs), which capture about 99% of the data set variance (see Table 9). Based on the
analysis of the coefficients associated with each use case metric within each of the
components, the PCs are interpreted as follows: (1) PC1: NIM, (2) PC2: NS, and (3)
PC3: NEO. So, we used in the following section the suite of metrics (NIM, NS and
NEO) to characterize use cases.

Table 9. Results of PCA analysis (use case metrics)

Table 10. Results of PCA analysis (test case metrics)

We also performed a PCA using the three test case metrics (TLOC, TASSERT
and NBTESTS). The goal was here also to find whether the test case metrics are
independent or are capturing the same underlying dimensions of the object being
measured. The PCA was performed on the data set consisting of test case metrics

 PC1 PC2 PC3 PC4
Prop (%) 56,169 26,693 16,087 1,052
Cumul (%) 56,169 82,862 98,948 100,000

NIC 0,594 0,125 -0,522 -0,599
NEO 0,418 -0,542 0,671 -0,284
NIM 0,656 -0,027 -0,115 0,745
NS 0,204 0,830 0,513 -0,071

 PC1 PC2 PC3
Prop (%) 88,493 7,308 4,199
Cumul (%) 88,493 95,801 100,000

TLOC 0,580 -0,496 -0,646
TASSERT 0,585 -0,298 0,754
NBTESTS 0,567 0,816 -0,117

 Predicting the Size of Test Suites from Use Cases: An Empirical Exploration 125

values. The PCA identified one Principal Components (PCs), which captures more
than 88% of the data set variance (see Table 10). Based on the analysis of the
coefficients associated with each test case metric within each of the components, the
first PC is interpreted as a size component. Moreover, knowing that the three test case
metrics are size related metrics, we decided to use in what follows the TLOC metric
as a test case metric. We assume that the effort necessary to write test cases
corresponding to a use case is proportional to the TLOC metric.

5.4.2 Dependent and Independent Variables
In this section, we used LR analysis to explore empirically the relationship between
use case metrics (independent variables) and the testing effort in terms of size of test
suites (dependent variable). We used the test case metric TLOC to identify the use
cases which required a (relatively) high testing effort. In order to simplify the process
of testing effort categorization, we provide only two categorizations: use cases which
required a high testing effort and use cases which required a (relatively) low testing
effort.

Category 1: includes the JUnit test cases corresponding to use cases for which the
following condition is satisfied: large number of lines of test code (corresponding
TLOC >= mean value of TLOC). We affect the value 1 to this category.

Category 2: includes all the other JUnit test cases. We affect the value 0 to this
category.

Table 11 summarizes the distribution of use cases according to the adopted
categorization. From Table 11, it can be seen that 9 (22%) use cases have been
categorized as use cases having required a high testing effort, and 32 (78%) use cases
have been categorized as use cases having required a (relatively) low testing effort.

Table 11. Distribution of use cases

1 0

9(22%) 32(78%)

5.4.3 Hypotheses
The study tested two hypotheses, which relate the use case metrics to the testing
effort. For each use case metric UCm, the hypothesis was:

A use case with a high UCm value is more likely to require a high testing effort
than a use case with a low UCm value.

The null hypothesis was:
A use case with a high UCm value is no more likely to require a high testing effort

than a use case with a low UCm value.

5.4.4 Logistic Regression Analysis: Research Methodology
LR is a standard statistical modeling method in which the dependent variable can take
on only one of two different values. It is suitable for building software quality
classification models. It is used to predict the dependent variable from a set of
independent variables to determine the percent of variance in the dependent variable

126 M. Badri, L. Badri, and W. Flageol

explained by the independent variables [1, 7, 37]. This technique has been widely
applied to the prediction of fault-prone classes [e.g., 11, 12, 20, 26, 33, 37]. LR is of
two types: univariate LR and multivariate LR. A multivariate LR model is based on
the following equation: P X , … X ∑ X∑ X (1)

The Xis are the independent variables and the (normalized) bis are the estimated
regression coefficients (approximated contribution) corresponding to the independent
variables Xis. The larger the absolute value of the coefficient, the stronger the impact
of the independent variable on the probability of detecting a high testing effort. P is
the probability of detecting a use case requiring a high testing effort. The univariate
LR analysis is, in fact, a special case of the multivariate LR analysis, where there is
only one independent variable. The p-value (related to the statistical hypothesis) is the
probability of the coefficient being different from zero by chance and is also an
indicator of the accuracy of the coefficient estimate. To decide whether a metric is a
statistically significant predictor of testing effort, we used the α = 0.05 significance
level to assess the p-value. R2 (Nagelkerke) is defined as the proportion of the total
variance in the dependent variable that is explained by the model. The higher R2 is, the
higher the effect of the independent variables, and the more accurate the model.

5.4.5 Model Evaluation
In order to evaluate the performance of the prediction models, we used the ROC
(Receiver Operating Characteristic) analysis. Indeed, precision and recall, which are
traditional evaluation criteria used to evaluate the prediction accuracy of LR models,
are subject to change as the selected threshold changes. The ROC curve, which is
defined as a plot of sensitivity on the y-coordinate versus its 1-specificity on the x-
coordinate, is an effective method of evaluating the performance of prediction models
[16, 17]. The optimal choice of the cutoff point that maximizes both sensitivity and
specificity can be selected from the ROC curve. This will allow avoiding an arbitrary
selection of the cutoff. In order to evaluate the performance of the models, we used
particularly the AUC (Area Under the Curve) measure. It is a combined measure of
sensitivity and specificity. It allows appreciating the model without subjective
selection of the cutoff value. The larger the AUC measure, the better the model is at
classifying use cases. A perfect model that correctly classifies all use cases has an
AUC measure of 1. An AUC value close to 0.5 corresponds to a poor model. An AUC
value greater than 0.7 corresponds to a good model [21].

5.4.6 Univariate LR Analysis: Results and Discussion
In this section, we present the results of the univariate LR analysis. The results,
summarized in Table 12, show that the b-coefficient of the metrics NIM (1.825) and
NEO (1.310) are significantly different from zero according to their p-values
(respectively 0.015 and 0.021). This is not the case of the metric NS. The
b-coefficient of the metric NS (0.313) is not significantly different from zero
according to its p-value (0.108). Moreover, the metric NIM has the highest (and

 Predicting the Size of Test Suites from Use Cases: An Empirical Exploration 127

significant) R2 value (53.7%). According to these results, the metrics NIM and NEO
are significantly related to the testing effort compared to the metric NS. The AUC
values (0.816 for NIM and 0.802 for NEO) confirm that univariate LR models based
on the metrics NIM and NEO are more predictive of the testing effort than the
univariate LR model based on the metric NS. These results are also confirmed by the
confusion matrices corresponding to the three univariate LR models (see Table13 –
cutoff = 0.5). In fact, we can get a better idea of the performance of the three
univariate models, respectively the one based on the metric NS (Table 13, I), the one
based on the metric NIM (Table 13, II) and the one based on the metric NEO (Table
13, III), by analyzing the corresponding ROC confusion matrices. These matrices are
also excellent indicators of the accuracy of the models (73.17% for NS, 90.24% for
NIM and 87.80% for NEO). According to these results, we can reasonably support the
hypothesis of the NIM and NEO metrics and reject the one of the NS metric.

Table 12. Results for univariate LR analysis

 NS NIM NEO
R2 9.5% 53.7% 47.9%

2Log 0.106 < 0.0001 < 0.0001
b 0.313 1.825 1.310

p-value 0.108 0.015 0.021
AUC 0.785 0.816 0.802

Table 13. Confusion matrices

5.4.7 Multivariate LR Analysis: Results and Discussion
We present, in this section, the results of the multivariate LR analysis. According to
the PCA analysis (section 5.4.1), the three use case metrics NIM, NS and NEO are
complementary in terms of provided information. As mentioned in section 3, the
metric NEO gives the number of system operations associated with the system events
related to a use case. The system operations, which are identified in fact during
system behavior analysis, are assigned during the design to one or more (controller)
classes, which usually should delegate to other objects (classes) the work that needs to
be done. The metric NIM defines the total number of methods (operations) that are
involved in the execution (realization) of a use case (all of its scenarios), including the
methods that are invoked by other methods according to the assignment of
responsibilities and design of collaborations. The NS metric gives the total number of
scenarios of a use case. The metrics NS and NEO can be calculated early in the
software development lifecycle from the use case model. The metric NIM can be
calculated from the design model, and can be considered as a refinement of the metric
NEO.

I-Univariate model based on NS II-Univariate model based on NIM III- Univariate model based on NEO

0 1 Total % Correct

0 30 2 32 Specificity 93,75%

1 9 0 9 Sensitivity 0,00%

Total 39 2 41 73,17%

0 1 Total % Correct

0 32 0 32 Specificity 100,00%

1 4 5 9 Sensitivity 55,56%

Total 36 5 41 90,24%

0 1 Total % Correct

0 32 0 32 Specificity 100,00%

1 5 4 9 Sensitivity 44,44%

Total 37 4 41 87.80%

128 M. Badri, L. Badri, and W. Flageol

The univariate LR analysis showed that the two metrics NIM and NEO are
significant predictors of the testing effort. Moreover, despite the fact that the metric
NS when taken alone is not a significant predictor of the testing effort (section 5.4.6),
it remains that it captures information that is not captured by the NIM and NEO
metrics. So, we wanted to explore the potential of the use case metrics, when used in
combination, to predict the testing effort. We wanted to explore the two following
combinations: (1) multivariate LR model based on the metrics NEO and NS, which
can be used in the analysis phase of the software development lifecycle, and (2)
multivariate LR model based on the metrics NIM and NS, which can be used in the
design phase of the software development lifecycle. In other words, we wanted to
investigate if the prediction capacity of the metrics NIM and NEO, as significant
predictors of the testing effort, will be improved when combined with the metric NS.

Table 14. Results for multivariate LR analysis

(MLR-I) (MLR-II)

R2
 61.3%

2log < 0.0001
p-value b

NS 0.024 0.579
NEO 0.031 1.660
AUC 0.906

R2
 60.1%

2log < 0.0001
p-value b

NS 0.101 0.453
NIM 0.012 2.262
AUC 0.903

Table 15. Confusion matrix of the multivariate model

 (I) (II)

0 1 Total % Correct

0 30 2 32 Specificity 93,75%

1 3 6 9 Sensitivity 66,67%

Total 33 8 41 87,80%

0 1 Total % Correct

0 32 0 32 Specificity 100,00%

1 3 6 9 Sensitivity 66,67%

Total 35 6 41 92,68%

In a first step, we used the two metrics NS and NEO to build the first multivariate
LR model. Table 14 MLR-I summarizes the results of the multivariate LR analysis.
From this table, it can be seen that the AUC value is 0.906, which is higher than the
AUC values obtained with the univariate LR analysis. Moreover, the R2 value
increases (61.3%). This shows that the combined effect of the two metrics NEO and
NS is higher than the effect of each metric taken alone. The results also show that the
metric NEO has the highest (and significant) contribution (impact of the metric on the
probability of detecting a high testing effort). These results are also confirmed by the
confusion matrix corresponding to the multivariate model MLR-I (see Table 15, I,
cutoff = 0.5). Indeed, the accuracy of the multivariate model (87.80% - Table 15, I) is
higher than the accuracy of the univariate model based on the NS metric (73.17% -
Table 13, I). It remained equal to the accuracy of the univariate model based on the
metric NEO (87.80% - Table 13, II). The sensitivity of the multivariate model is
however improved (66.67% - Table 15, I).

 Predicting the Size of Test Suites from Use Cases: An Empirical Exploration 129

In a second step, we used the two metrics NS and NIM to build the second
multivariate LR model. Table 14 MLR-II summarizes the results of the multivariate
LR analysis. From this table, it can be seen that the AUC value is 0.903, which is
higher than the AUC values obtained with the univariate LR analysis. Moreover, the
R2 value increases (60.1%). This shows that the combined effect of the two metrics is
higher than the effect of each metric taken alone. The results also show that the metric
NIM has the highest (and significant) contribution (impact of the metric on the
probability of detecting a high testing effort). These results are also confirmed by the
confusion matrix corresponding to the multivariate model MLR-II (see Table15, II,
cutoff = 0.5). Indeed, the accuracy of the multivariate model (92.68% - Table 15, II)
is higher than the accuracy of the two univariate models (73.17% for the one based on
the metric NS and 90.24% for the one based on the metric NIM – Table 13, I and II).

In summary, the multivariate LR analysis shows that the combined effect of the
metrics is more significant than when the metrics are considered individually. In
addition, as it can be seen from the confusion matrices corresponding to the two
multivariate LR models (Table 15, I and II), the accuracy of the second model (based
on the metrics NS and NIM – 92.68%) is slightly better than the accuracy of the first
model (based on the metrics NS and NEO – 87.80%).

5.5 Threats to Validity

The study presented in this paper should be replicated using many other OO software
systems in order to draw more general conclusions about the ability of the use case
metrics to predict the testing effort. Indeed, there are a number of limitations that may
affect the results of the study or limit their interpretation and generalization. The
achieved results are based on the data set we collected from only five case studies. To
perform our study, we grouped the use cases of the five case studies to build our data
set. Even if the collected data set is statistically significant, we do not claim that our
results can be generalized. Moreover, knowing that these use cases are from different
case studies, this may bias the results. In order to reduce this threat, we deliberately
affected the development of test cases to the same team, two Master students in
computer science which are familiar with the JUnit framework. They followed the same
methodology in the development of test cases. The findings in this paper should be
viewed as exploratory and indicative rather than conclusive. Results show at least that
use cases offer a potential way that can be used in early stages of the software
development lifecycle to predict the size of test suites. Moreover, the study has been
performed on simple case studies. It is necessary to replicate the study on large systems.

6 Conclusions and Future Work

We explored, in this paper, the relationship between use case metrics and the size of
test suites. The goal was to evaluate the capacity of use case metrics to predict the size
of test suites. We performed an empirical analysis using data collected from five Java
case studies for which we developed JUnit test cases. We used logistic regression

130 M. Badri, L. Badri, and W. Flageol

analysis to evaluate the individual and combined effect of use case metrics on the size
of test suites. The univariate LR analysis shows that: (1) the univariate model based
on the metric NIM, which is related to the number of involved methods in the
realizations of a use case, is a significant predictor of the testing effort, (2) the
univariate model based on the metric NEO, which is related to the number of external
operations associated to a use case, is also a significant predictor of the testing effort.
The multivariate LR analysis shows that: (1) the multivariate model based on the
NEO metric combined with the NS metric, which is related to the number of scenarios
of a use case, improves the accuracy of the testing effort prediction, (2) the
multivariate model based on the NIM metric combined with the NS metric improves
also the accuracy of the testing effort prediction. Moreover, the multivariate LR
analysis shows that the accuracy of the multivariate LR model based on the metrics
NS and NIM is slightly better than the accuracy of the multivariate LR model based
on the metrics NS and NEO.

The performed study should, however, be replicated using many other OO
software systems in order to draw more general conclusions. The findings in this
paper should, in fact, be viewed as exploratory and indicative rather than conclusive.
Results show at least that use cases offer a potential way that can be used in early
stages of the software development lifecycle to provide high-level estimates of the
testing effort (use case ranking). As future work, we plan to extend the present study
by using other methods (such as machine learning methods) to explore the individual
and combined effect of the metrics on the testing effort, compare our approach to
other testing effort prediction (estimation) approaches, and finally replicate the study
on various OO software systems to be able to give generalized results.

Acknowledgments. This work was supported by NSERC (Natural Sciences and
Engineering Research Council of Canada) grant.

References

[1] Aggarwal, K.K., Singh, Y., Arvinder, K., Ruchika, M.: Empirical Analysis for
Investigating the Effect of Object-Oriented Metrics on Fault Proneness: A Replicated
Case Study. Software Process: Improvement and Practice 16(1), 39–62 (2009)

[2] de Almeida, É.R.C., de Abreu, B.T., Moraes, R.: An Alternative Approach to Test Effort
Estimation Based on Use Cases. In: Proceedings of the International Conference on
Software Testing, Verification and Validation. IEEE Computer Society (2009)

[3] Badri, L., Badri, M., Toure, F.: Exploring empirically the relationship between lack of
cohesion and testability in object-oriented systems. In: Kim, T.-H., Kim, H.-K., Khan,
M.K., et al. (eds.) ASEA 2010. CCIS, vol. 117, pp. 78–92. Springer, Heidelberg (2010)

[4] Badri, L., Badri, M., Toure, F.: An empirical analysis of lack of cohesion metrics for
predicting testability of classes. International Journal of Software Engineering and Its
Applications 5(2) (2011)

[5] Badri, M., Toure, F.: Empirical Analysis of Object‐Oriented Design Metrics for
Predicting Unit Testing Effort of Classes. Journal of Software Engineering and
Applications 5(7) (July 2012)

 Predicting the Size of Test Suites from Use Cases: An Empirical Exploration 131

[6] Badri, M., Badri, L., Flageol, W.: On the Relationship between Use Cases and Test Suites
Size: An Exploratory Study . ACM SIGSOFT Software Engineering Notes 38(4)
(July 2013)

[7] Basili, V.R., Briand, L.C., Melo, W.: A Validation of Object-Oriented Design Metrics as
Quality Indicators. IEEE Transactions on Software Engineering 22(10) (1996)

[8] Baudry, B., Le Traon, B., Sunyé, G.: Testability analysis of a UML class diagram. In:
Proceedings of the 9th International Software Metrics Symposium. IEEE CS (2003)

[9] Baudry, B., Le Traon, Y., Sunyé, G., Jézéquel, J.M.: Measuring and improving design
patterns testability. In: Proceedings of the 9th International Software Metrics Symposium
(METRICS 2003). IEEE Computer Society (2003)

[10] Baudry, B., Le Traon, Y., Sunyé, G.: Improving the testability of UML class diagrams.
In: Proceedings of the International Workshop on Testability Analysis, Rennes, France
(2004)

[11] Briand, L.C., Daly, J., Wuest, J.: A Unified Framework for Cohesion Measurement in
Object-Oriented Systems. Empirical Software Engineering—An International Journal 3(1),
65–117 (1998)

[12] Briand, L.C., Wust, J., Daly, J., Porter, V.: Exploring the Relationship between Design
Measures and Software Quality in Object-Oriented Systems. Journal of Systems and
Software 51(3), 245–273 (2000)

[13] Bruntink, M., Van Deursen, A.: Predicting class testability using object-oriented metrics.
In: Proceedings of the 4th IEEE International Workshop on Source Code Analysis and
Manipulation (SCAM 2004), pp. 136–145 (September 2004)

[14] Bruntink, M., van Deursen, A.: An empirical study into class testability. Journal of
Systems and Software 79(9), 1219–1232 (2006)

[15] Chaudhary, P., Yadav, C.S.: An Approach for Calculating the Effort Needed on testing
Projects. International Journal of Advanced Research in Computer Engineering &
Technology 1(1) (March 2012)

[16] El Emam, K., Melo, W.: The Prediction of Faulty Classes Using Object-Oriented Design
Metrics. National Research Council of Canada NRC/ERB 1064 (1999)

[17] El Emam, K.: A Methodology for Validating Software Product Metrics. National
Research Council of Canada NRC/ERB 1076 (2000)

[18] Fan, W., Xiaohu, Y., Xiaochun, Z., Lu, C.: Extended Use Case Points Method for
Software Cost Estimation. In: International Conference on Computational Intelligence
and Software Engineering (2009)

[19] Gupta, V., Aggarwal, K.K., Singh, Y.: A Fuzzy Approach for Integrated Measure of
Object-Oriented Software Testability. Journal of Computer Science 1(2) (2005)

[20] Gyimothy, T., Ferenc, R., Siket, I.: Empirical Validation of Object-Oriented Metrics on
Open Source Software for Fault Prediction. IEEE TSE 3(10), 897–910 (2005)

[21] Hosmer, D.W., Lemeshow, S.: Applied Logistic Regression. Wiley, New York (2000)
[22] Karner, G.: Resource Estimation for Objectory Projects (1993)
[23] Khan, R.A., Mustafa, K.: Metric based testability model for object-oriented design

(MTMOOD). ACM SIGSOFT Software Engineering Notes 34(2) (2009)
[24] Larman, C.: Applying UML and Design Patterns, An introduction to object-oriented

analysis and design and the unified process. Prentice Hall (2004)
[25] Le Traon, Y., Ouabdesselam, F., Robach, C.: Analyzing testability on data flow designs.

In: Proceedings of the 11th International Symposium on Software Reliability Engineering
(ISSRE 2000), pp. 162–173 (October 2000)

132 M. Badri, L. Badri, and W. Flageol

[26] Marcus, D.P., Ferenc, R.: Using the Conceptual Cohesion of Classes for Fault Prediction
in Object-Oriented Systems. IEEE Transactions on Software Engineering 34(2), 287–300
(2008)

[27] Mohagheghi, P., Anda, B., Conradi, R.: Effort Estimation of Use Cases for Incremental
Large-Scale Software Development. In: Proceedings of the International Conference on
Software Engineering (2005)

[28] Nagheshwaran, S.: Test Effort Estimation Using Use Case Points. In: Quality Week 2001,
San Francisco, California, USA (2001)

[29] Ochodek, M., Nawrocki, J., Kwarciak, K.: Simplifying effort estimation based on Use
Case Points. Information and Software Technology 53, 200–213 (2011)

[30] Robiolo, G., Orosco, R.: Employing use cases to early estimate effort with simpler
metrics. Innovations in Systems and Software Engineering 4 (2008)

[31] Robiolo, G., Badano, C., Orosco, R.: Transactions and Paths: two use case based metrics
which improve the early effort estimation. In: Proceedings of the Third International
Symposium on Empirical Software Engineering and Measurement. IEEE Computer
Society (2009)

[32] Singh, Y., Kaur, A., Malhota, R.: Predicting testability effort using artificial neural
network. In: Proceedings of the World Congress on Engineering and Computer Science,
CA, USA (2008)

[33] Singh, Y., Kaur, A., Malhotra, R.: Empirical validation of object-oriented metrics for
predicting fault proneness models. Software Quality Journal 18(1), 3–35 (2009)

[34] Singh, Y., Saha, A.: Predicting testability of eclipse: a case study. Journal of Software
Engineering 4(2) (2010)

[35] Xiaochun, Z., Bo, Z., Fan, W., Chen Lu, Q.Y.: Estimate Test Execution Effort at an Early
Stage: An Empirical Study. In: International Conference on Cyber World. IEEE CS
(2008)

[36] Yi, Q., Bo, Z., Xiaochum, Z.: Early Estimate the Size of Test Suites from Use Cases. In:
Proceedings of the 15th Asia-Pacific Software Engineering Conference. IEEE CS (2008)

[37] Zhou, Y., Leung, H.: Empirical Analysis of Object-Oriented Design Metrics for
Predicting High and Low Severity Faults. IEEE Transactions on Software
Engineering 32(10), 771–789 (2006)

Chaining Test Cases

for Reactive System Testing�

Peter Schrammel, Tom Melham, and Daniel Kroening

University of Oxford
Department of Computer Science
first.lastname@cs.ox.ac.uk

Abstract. Testing of synchronous reactive systems is challenging be-
cause long input sequences are often needed to drive them into a state to
test a desired feature. This is particularly problematic in on-target test-
ing, where a system is tested in its real-life application environment and
the amount of time required for resetting is high. This paper presents
an approach to discovering a test case chain—a single software execu-
tion that covers a group of test goals and minimises overall test exe-
cution time. Our technique targets the scenario in which test goals for
the requirements are given as safety properties. We give conditions for
the existence and minimality of a single test case chain and minimise
the number of test case chains if a single test case chain is infeasible.
We report experimental results with a prototype tool for C code gener-
ated from Simulink models and compare it to state-of-the-art test suite
generators.

1 Introduction

Safety-critical embedded software, e.g., in the automotive or avionics domain,
is often implemented as a synchronous reactive system. These systems compute
their new state and their output as functions of old state and the given inputs. As
these systems frequently have to satisfy high safety standards, tool support for
systematic testing is highly desirable. The completeness of the testing process is
frequently measured by defining a set of test goals, which are typically formulated
as reachability properties. A good-quality test suite is a set of input sequences
that drive the system into states that cover a large fraction of those goals.

Test suites generated by random test generators often contain a huge number
of redundant test cases. Directed test case generation often requires lengthy
input sequences to drive the system into a state where the desired feature can
be tested. Furthermore, to execute the test suite, test cases must be chained
manually or the system must be reset after executing each test case. This is
a serious problem in on-target testing, where a system is tested in its real-life
application environment and resetting might be very time-consuming [1].

This paper presents an approach to discovering a test case chain—a single test
case that covers a set of multiple test goals and minimises overall test execution

� Supported by the EU FP7 STREP PINCETTE, the ARTEMIS VeTeSS project and
ERC project 280053.

H. Yenigün, C. Yilmaz, and A. Ulrich (Eds.): ICTSS 2013, LNCS 8254, pp. 133–148, 2013.
c© IFIP International Federation for Information Processing 2013

134 P. Schrammel, T. Melham, and D. Kroening

void i n i t (t s t a t e ∗s) { s−>mode = OFF ; s−>speed = 0 ; s−>enable = FALSE ; }
void compute (t i n p u t ∗ i , t s t a t e ∗s) {

mode = s−>mode ;
switch (mode) {

case ON: i f (i−>gas | | i−>brake) s−>mode=DIS ; break ;
case DIS :

i f ((s−>speed==2 && (i−>dec | | i−>brake)) | | (s−>speed==0 && (i−>acc | | i−>gas)))
s−>mode=ON;

break ;
case OFF :

i f (s−>speed==0 && s−>enable && (i−>gas | | i−>acc) | |
s−>speed==1 && i−>button | |
s−>speed==2 && s−>enable && (i−>brake | | i−>dec))

s−>mode=ON;
break ;

}
i f (i−>button) s−>enable = ! s−>enable ;
i f ((i−>gas | | mode!=ON && i−>acc) && s−>speed<2) s−>speed ++;
i f ((i−>brake | | mode!=ON && i−>dec) && s−>speed>0) s−>speed−−;

}

Fig. 1. Code generated for cruise controller example

time. The essence of the problem is to find a shortest path through the system
that covers all the test goals.

Example. To illustrate the problem and our approach, we reuse the classical
cruise controller example given in [2]. There are five Boolean inputs, two for
actuation of the gas and brake pedals, a toggle button to enable the cruise control
and two sensors indicating whether the car is acc- or decelerating. There are three
state variables: speed, enable, which is true when cruise control is enabled, and
mode indicating whether cruise control is turned OFF, actually active (ON),
or temporarily inactive, i.e., DISengaged while user pushes the gas or brake
pedal. A C implementation, with the structure typical of code generated from
Simulink models, is given in Fig. 1 and its state machine is depicted in Fig. 2.
The function compute is executed periodically (e.g. on a timer interrupt). Thus,
there is a notion of step that relates to execution time.

We formulate some LTL properties for which we want to generate test cases:

p1: G
(
mode = ON ∧ speed = 1 ∧ dec⇒ X(speed = 1)

)
p2: G

(
mode = DIS ∧ speed = 2 ∧ dec⇒ X(mode = ON)

)
p3: G

(
mode = ON ∧ brake⇒ X(mode = DIS)

)
p4: G

(
mode = OFF ∧ speed = 2 ∧ ¬enable ∧ button⇒ X enable

)
We observe that each of the properties above relates to a particular transition

in the state machine (shown as bold edge labels in Fig. 2). A test case is a
sequence of inputs that determines a (bounded) execution path through the
system. The length of a test case is the length of this sequence. A test case
covers a property if it triggers the transition the property relates to. A test suite
is a set of test cases that covers all the properties.

Ideally, we can obtain a single test case that covers all properties in a single
execution. We call a test case that covers a sequence of properties a test case
chain. Our goal is to synthesise minimal test case chains—test case chains with
fewest transitions. It is not always possible to generate a single test case chain
that covers all properties; multiple test case chains may be required.

Chaining Test Cases for Reactive System Testing 135

OFF,0,FALSE

OFF,1,FALSE OFF,0,TRUE

ON,1,TRUE

DIS,2,TRUE DIS,0,TRUE

OFF,2,FALSE OFF,2,TRUE

brake ∨ dec

brake ∨ dec

brake
∨ dec

gas ∨ acc

gas ∨ acc
gas
∨ acc

acc ∨ dec (p1)

gas ∨ acc

brake ∨ dec button button

button

button

button (p4)

button

button

button

gas ∨ acc

gas ∨ acc

brake (p3)
gas

∨ acc
gasbrake

∨ dec
brake
∨ dec(p2)

brake ∨ dec

Fig. 2. State machine of the example. Edges are labelled by inputs and nodes by state
〈mode, speed , enable〉. Properties are in bold, bold arcs show a minimal test case chain.

We compute such a minimal test case chain from a set of start states I via a set
of given properties P = {p1, p2, . . .} to a set of final states F . For our example,
with I = F = {mode = OFF ∧ speed = 0 ∧ ¬enable} and P = {p1, p2, p3, p4},
for instance, we obtain the test case chain consisting of the bold arcs in Fig. 2.
First, this chain advances to p4, then covers p1, p2 and p3, and finally goes to
F . One can assert that this path has the minimal length of 9 steps.

Testing problems similar to ours have been addressed by research on minimal
checking sequences in conformance testing [3,4,1]. This work analyses automata-
based specifications that encode system control and have transitions labelled
with operations on data variables. The challenge here is to find short transition
paths based on a given coverage criterion that are feasible, i.e. consistent with the
data operations. Random test case generation can then be used to discover such
a path. In contrast, our approach analyses the code generated from models or
the implementation code itself, and it can handle partial specifications expressed
as a collection of safety properties. A common example is acceptance testing in
the automotive domain. Our solution uses bounded model checking to generate
test cases guaranteed to exercise the desired functionality.

Contributions. The contributions of this paper can be summarised as follows:
– We present a new algorithm to compute minimal test chains that first con-

structs a weighted digraph abstraction using a reachability analysis, on which
the minimisation is performed as a second step. The final step is to compute
the test input sequence. We give conditions for the existence and minimality
of a single test case chain and propose algorithms to handle the general case.

– We have implemented a prototype tool, ChainCover, for C code generated
from Simulink models, on top of the Cbmc bounded model checker and the
Lkh travelling salesman problem solver.

136 P. Schrammel, T. Melham, and D. Kroening

– We present experimental results to demonstrate that our approach is vi-
able on a set of benchmarks, mainly from automotive industry, and is more
efficient than state-of-the-art test suite generators.

2 Preliminaries

Program Model. A program is given by (Σ, Υ, T, I) with finite sets of states
Σ and inputs Υ , a transition relation T ⊆ (Σ×Υ ×Σ) and a set of initial states
I ⊆ Σ. An execution of a program is a (possibly) infinite sequence of transitions

s0
i0−→ s1

i1−→ s2 → . . . with s0 ∈ I and for all k ≥ 0, (sk, ik, sk+1) ∈ T .

Properties. We consider specifications given as a set of safety properties
P = {p1, . . . , p|P |}. The properties are given as a formula over state variables

s and input variables i and are of the form G
(
ϕ ⇒ ψ

)
where ϕ describes

an assumption and ψ is the assertion to be checked. ϕ specifies a test goal,
whereas ψ defines the test outcome; hence, for test case generation, only ϕ
is needed. We denote by Π the set of property assumptions. ϕ is a temporal
logic formula built using the operators ∧,∨,¬,X, i.e., it describes sets of finite
paths. An execution π = 〈s0, s1, . . .〉 covers a property iff it contains a subpath
〈sk, . . . sk+j〉 that satisfies ϕ (j is the nesting depth of X operators in ϕ), i.e.,
∃k ≥ 0 : ∃ik, . . . , ik+j : ϕ(sk, ik, . . . , sk+j , ik+j)∧

∧
k≤m≤k+j T (sm, im, sm+1). We

call the set of states sk satisfying ϕ the trigger ϕ̂ of the property.
For our method, it is not essential whether ϕ describes a set of paths or just

a set of states; thus, to simplify the presentation, we assume that the prop-
erty assumptions do not contain X operators. Single-step transition properties
G
(
ϕ⇒ Xψ

)
fall into this category, for example. In this case, ϕ is equivalent to

its trigger ϕ̂.
Moreover, we assume that property assumptions are non-overlapping, i.e. the

sub-paths satisfying the assumptions do not share any edges. Our minimality
results only apply to such specifications. Detecting overlappings is a hard prob-
lem [5] that goes beyond the scope of this paper.

Test Cases. A test case is an input sequence 〈i0, . . . , in〉 and generates an
execution π = 〈s0, . . . , sn+1〉. A test case covers a property p iff its execution
covers the property.

3 Chaining Test Cases

The Problem. We are given a program (Σ, Υ, T, I), properties P , and a set
of final states F ⊆ Σ. A test case chain is a test case 〈i0, . . . , in〉 that covers
all properties in P , i.e., its execution 〈s0, . . . , sn+1〉 starts in s0 ∈ I, ends in
sn+1 ∈ F and covers all properties in P . A minimal test case chain is a test case
chain of minimal length. The final states F are used to ensure the test execution
ends in a desired state, e.g. “engines off” or “gear locked in park mode”.

Our Approach. We now describe our basic algorithm, which has three steps:

Chaining Test Cases for Reactive System Testing 137

(1) Abstraction: We construct a property K-reachability graph of the system.
This is a weighted, directed graph with nodes representing the properties
and edges labelled with the number of states through which execution must
pass, up to length K, between the properties.

(2) Optimisation: We determine the shortest path that covers all properties in
the abstraction.

(3) Concretisation: Finally, we compute the corresponding concrete test case
chain along the abstract path.

We discuss the conditions under which we obtain the minimal test case chain.
Due to space limitations, we refer to the extended version [6] for the pseudo-code
of the algorithms and the proofs omitted in this paper.

3.1 Abstraction: Property K-Reachability Graph

The property K-reachability graph is an abstraction of the original program by
a weighted, directed graph (V,E,W), with

– vertices V = Π ∪ {I, F}, all defining property assumptions, including for-
mulas describing the sets I and F ,

– edges E ⊆ Etarget ⊂ V × V , as explained below, and
– an edge labelling W : E → N assigning to each (ϕ, ϕ′) ∈ E the minimal

number of steps bounded by K needed to reach some state satisfying ϕ′

from any state satisfying ϕ according to the program’s transition relation T .

Fig. 3 shows the property 2-reachability graph for our example.

Graph Construction. The graph is constructed by iteratively calling a func-
tion GetKreachEdges that returns the subset of edges that have weight k in the

set of interesting edges Etarget =
(⋃

ϕj∈Π{(I, ϕj), (ϕj , F)}
)
∪{(ϕj , ϕ�) | ϕj , ϕ� ∈

Π, j �= �}. Etarget contains all pairwise links between the nodes ϕj , links from
I to all nodes ϕj , and from every ϕj to F . GetKreachEdges (e.g. implemented
using constraint solving) is called for increasing values of k and the obtained
edges are added to the graph until a covering path exists, i.e., a path from I to
F visiting all nodes at least once. If we fail to find a path before reaching a given
reachability bound K, or there is no path although the graph contains all edges
in Etarget, then we abort. The constructed graph contains an edge (ϕ, ϕ′) with
weight k iff for the two properties with assumptions ϕ and ϕ′, a state in ϕ′ is
reachable from a state ϕ in k ≤ K steps, and k is the minimal number of steps
for reaching ϕ′ from ϕ.

Existence of a Covering Path. The existence of a covering path can be
formulated as a reachability problem in a directed graph:

Lemma 1. Let (V,E) be a directed graph of the kind described above. Then,
there is a covering path from I to F iff
(1) all vertices are reachable from I,
(2) F is reachable from all vertices and

138 P. Schrammel, T. Melham, and D. Kroening

ϕ1 ϕ3

I F

ϕ2 ϕ4

2
21

1

2

2

2

2 2

2

1

Fig. 3. Test case chaining: property K-reachability graph (for K = 2) and minimal
test case chain of length n = 9 (bold arcs) for our example (Fig. 2)

(3) for all pairs of vertices (v1, v2) ∈ (V \ {I, F})2,
(a) v2 is reachable from v1 or (b) v1 is reachable from v2.

Proof. In the transitive closure (V,E′) of (V,E), v2 is reachable from v1 iff there
exists an edge (v1, v2) ∈ E′.

(=⇒): conditions (1) and (2) are obviously necessary. Let us assume that we
have a covering path π and there are vertices (v1, v2) which neither satisfy (3a)
nor (3b). Then neither 〈v1, . . . , v2〉 nor 〈v2, . . . , v1〉 can be a subpath of π, which
contradicts the fact that π is a covering path.

(⇐=): Any vertex is reachable from I (1), so let us choose v1. From v1 we can
reach another vertex v2 (3a), or, at least, v1 is reachable from another vertex v2
(3b), but in the latter case, since v2 is reachable from I, we can go first to v2
and then to v1. Induction step: Let us assume we have a path 〈I, v1, . . . , vk〉. If
there is a vertex v′ that is reachable from vk (3a) we add it to our current path
π. If v′ is unreachable from vk, then by (3b), vk must be reachable from v′, and
there is a vi, i < k in π = 〈I, . . . , vk〉 from which it is reachable and in this case
we obtain the path 〈I, . . . , vi, v′, vi+1, . . . , vk〉; if there is no such vi then, at last
by (1), v′ is reachable from I, so we can construct the path 〈I, v′, . . . , vk〉. F is
reachable from any vertex (2), thus, we can complete the covering path as soon
as all other vertices have been covered. #$

Reachability can be checked in constant time on the transitive closure of the
graph. Hence, the overall existence check has complexity O(|V |3).

3.2 Optimisation: Shortest Path Computation

The next step is to compute the shortest path covering all nodes in the prop-
erty K-reachability graph. Such a path is not necessarily Hamiltonian; revisiting
nodes is allowed. However, we can compute the transitive closure of the graph
using the Floyd-Warshall algorithm (which preserves minimality), and then com-
pute a Hamiltonian path from I to F . If we do not have a Hamiltonian path
solver, we can add an arc from F to I and pass the problem to an asymmetric
travelling salesman problem (ATSP) solver that gives us the shortest circuit that
visits all vertices exactly once. We cut this circuit between F and I to obtain
the shortest path π.

For our example, the shortest path has length 9, given as bold arcs in Fig. 3.

Chaining Test Cases for Reactive System Testing 139

3.3 Concretisation: Computing the Test Case Chain

Once we have found a minimum covering path π in the property K-reachability
graph abstraction, we have to compute the inputs corresponding to it in the
concrete program. This is done by the function CheckPath(π, T,W) which takes
an abstract path π = 〈ϕ1, . . . , ϕ|V |〉 and returns the input sequence 〈i0, . . . , in〉
corresponding to a concrete path with the reachability distances between each
(ϕj , ϕj+1) ∈ π given by the edge weights W (ϕj , ϕj+1). Typically, CheckPath
involves constraint solving; we will discuss our implementation in §5.

For our example, we obtain, for instance, the sequence 〈gas, acc, button, dec,
dec, gas, dec, brake, button〉 corresponding to the bold arcs in Fig. 2.

3.4 Optimality

Since the (non-)existence or the optimality of a chain in the K-reachability
abstraction does not imply the (non-)existence or the optimality of a chain in
the concrete program, the success of this procedure can only be guaranteed under
certain conditions, which we now discuss.

Lemma 2 (Single-state property triggers). If (1) the program and the prop-
erties admit a test case chain, (2) all triggers of properties in P are singleton
sets, and (3) the test case chain computed by our algorithm visits each property
once, then the test case chain is minimal.

If each property is visited once, it is guaranteed that the abstract path contains
only edges that correspond to concrete paths of minimal length, and hence the
test case chain is optimal for the concrete program. Otherwise, for a subpath
(ϕ, ϕ′, ϕ, ϕ′′), there might exist an edge (ϕ′, ϕ′′) with W (ϕ′, ϕ′′) < W (ϕ′, ϕ) +
W (ϕ, ϕ′′) that is only discovered for higher values of K. For finite state systems,
there is an upper bound for K, the reachability diameter, i.e., the maximum
(finite) length d of a path in the set of shortest paths between any pair of states
si, sj ∈ Σ [7]. Beyond d we will not discover shorter pairwise links.

Theorem 1 (Minimal test case chain). Let d be the reachability diameter of
the program, then there is a K ≤ d such that, under the preconditions (1) and
(2) of Lem. 2, the test case chain is minimal.

In practice, we can stop the procedure if a chain of acceptable length is found,
i.e. we do not compute the reachability diameter but use a user-supplied bound.

4 Generalisations

We will now generalise our algorithm in three ways:

– Multi-state property triggers: Dropping the assumption that triggers are
single-state may make the concretisation phase fail. Under certain restric-
tions, we will still find a test case chain if one exists, but we lose minimality.

140 P. Schrammel, T. Melham, and D. Kroening

I ϕ1 ϕ2 F0 1
1

2
2

2

2

Fig. 4. Broken chain: the path 〈I, ϕ1, ϕ2〉 is not feasible in a single step, but requires
two steps

– Without these restrictions, we might even lose completeness, i.e., the guar-
antee to find a chain if one exists. We propose an abstraction refinement to
ensure completeness under these circumstances.

– Multiple chains: Dropping the assumption about the existence of a single
chain raises the problem of how to generate multiple chains.

We discuss here the first two points and refer to the extended version [6] of this
paper for the third one.

4.1 Multi-state Property Triggers

In practice, many properties are multi-state, i.e. precondition (2) of Lem. 2 is not
met. In this case, the abstract covering path might be infeasible in the concrete
program, and hence, the naive concretisation of §3.3 might fail. We have to
extend the concretisation step to fix such broken chains.

Example 1 (Broken chain). Let us consider the following broken chain in our
example with the properties:

p1 : G
(
mode = OFF ∧ ¬enable ∧ button⇒ X enable

)
p2 : G

(
mode = ON ∧ brake⇒ X(mode = DIS)

)
with I = F = {mode = OFF ∧ speed = 0 ∧ ¬enable}.

We obtain a shortest covering path 〈I, ϕ1, ϕ2, F 〉 in the abstraction with
weights W (I, ϕ1) = 0, W (ϕ1, ϕ2) = 1 and W (ϕ2, F) = 2. However, Fig. 2
tells us that the path 〈I, ϕ1, ϕ2〉 is not feasible in a single step, but requires two
steps, as illustrated in Fig. 4.

A broken chain contains an infeasible subpath failed path = 〈ϕ1, . . . , ϕk〉 of
the abstract path π that involves at least three vertices, such as 〈I, ϕ1, ϕ2〉 in our
example above. We extend the concretisation step with a chain repair capability.
The function RepairPath iteratively repairs broken chains by incrementing the
weights associated with the edges of failed path and checking feasibility of this
“stretched” path. We give more details about our implementation in §5.

Example 2 (Repaired chain). For the broken chain in our previous example, we
will check whether 〈I, ϕ1, ϕ2〉 is feasible with W (ϕ1, ϕ2) incremented by one.
This makes the path feasible and we obtain the chain 〈button,gas,brake,button〉.

Completeness. The chain repair succeeds if the given path π admits a chain in
the concrete program. In particular, this holds when the states in each property
trigger are strongly connected:

Chaining Test Cases for Reactive System Testing 141

ϕ1 ϕ2

×

ϕ3 ϕ ϕ4

=⇒

ϕ1 ϕ2

ϕ3 ϕ4

ϕ

Fig. 5. Abstraction refinement for a failed path 〈ϕ1, ϕ, ϕ4〉 (bold arrows)

ϕ1 ϕ2

ϕ3 ϕ4

W1

W3

W2

W4

ϕ 0 =⇒

ϕ1 ϕ2

ϕ
ϕ3 ϕ4

W1 +W2

W3

W2

W4

Fig. 6. Collapsing the property refinement group (box) in the refined abstraction to a
TSP problem w.r.t. a solution path (bold arrows)

Theorem 2 (Multi-state strongly connected property). If for each prop-
erty trigger the states are strongly connected and there exists a test case chain,
then our algorithm with chain repair will find it.

Inpractice,many reactive systemsare, apart froman initialisationphase, strongly
connected—but, as stressed above, the test case chain might not be minimal.

4.2 Ensuring Completeness

If the shortest path in the abstraction does not admit a chain in the concrete
program, our algorithm with chain repair will fail to find a test case chain even
though one exists, i.e., it is not complete.

Example 3 (Chain repair fails). In Fig. 4, we have found the shortest abstract
path 〈I, ϕ1, ϕ2, F 〉. Now assume that the right state in ϕ1 is not reachable from
the left state. Then the chain repair fails. In this case, there might still be a
(non-)minimal path in the abstraction that admits a chain: in our example in
Fig. 4, assuming that the left state in ϕ1 is reachable from I via ϕ2 and F is
reachable from the left state in ϕ1, we have the feasible path 〈I, ϕ2, ϕ1, F 〉.

To obtain completeness in this situation, we propose the following abstraction
refinement method. Suppose a covering path π in the abstraction turns out to
be infeasible in the concrete program, with failed path = 〈ϕ1, . . . , ϕN 〉.
1. We refine failed vertices ϕ2, . . . , ϕN−1 in failed path by splitting them as

illustrated in Fig. 5 that rules out the infeasible subpath, as typically done
by abstract refinement algorithms. We call the vertices obtained from such
splittings that belong to the same property a property refinement group.

2. The second part of the proof of Lem. 1 gives us anO(n2) algorithmGetCover-
ingPath for finding a (non-minimal) covering path from I to F in the tran-
sitive closure of a directed graph, taking into account that a covering path
needs to cover only one vertex for each property refinement group.

142 P. Schrammel, T. Melham, and D. Kroening

3. A solution π obtained that way might be far from optimal, so we exploit
the TSP solver to give us a better solution π′. However, the refined graph
does not encode the desired TSP problem because it is sufficient to cover
only one vertex for each property refinement group. Hence, given a path π,
we transform the graph by collapsing each property refinement group with
respect to π as illustrated by Fig. 6. The obtained graph is handed over to
the TSP solver. Note that the transformations do not preserve optimality,
because, e.g. in Fig. 6, the arc (ϕ1, ϕ2) would cover ϕ in a concrete path but
not in the transformed, refined abstract graph.

4. We try to compute a concrete test case chain for the covering path π′. If this
fails, we iterate the refinement process.

In each iteration of the abstraction refinement algorithm, a node in the graph
is split such that a concrete spurious transition is removed from the abstraction,
i.e. the transition system structure of the program inside the property assump-
tions is made explicit in the abstraction. Since there is only a finite number of
transitions, the abstraction refinement will eventually terminate and a covering
path will be found that can be concretised to a test case chain.

Example 4 (Abstraction refinement). Assume, as in the previous example, that
the right state in ϕ1 in Fig. 4 is not reachable from the left state. Then the
abstraction refinement will split ϕ1 into two vertices. Suppose that GetCover-
ingPath returns the covering path π = 〈I, ϕ2, ϕ1, ϕ2, F 〉.1 Then collapsing the
two nodes belonging to ϕ1 w.r.t. π will remove the arc from I to ϕ1. The TSP
solver will optimise π and find the shorter path 〈I, ϕ2, ϕ1, F 〉.

5 Test-Case Generation with Bounded Model Checking

The previous sections abstract from the actual backend implementation of the
functions GetKreachEdges , CheckPath and RepairPath . In this work, we use
bounded model checking to provide an efficient implementation. Alternative in-
stantiations could be based on symbolic execution, for example.

BMC-Based Test Case Generation. Bounded model checking (BMC) [8]
can be used to check the existence of a path π = 〈s0, s1, . . . , sK〉 of increasing
length K from φ to φ′. This check is performed by deciding satisfiability of the
following formula using a SAT solver:

φ(s0) ∧
∧

1≤k≤K

T (sk−1, ik−1, sk) ∧ φ′(sK) (1)

If the SAT solver returns the answer satisfiable, it also provides a satisfying
assignment (s0, i0, s1, i1, . . . , sK−1, iK−1, sK). The satisfying assignment repre-
sents one possible path π = 〈s0, s1, . . . , sK〉 from φ to φ′ and identifies the
corresponding input sequence 〈i0, . . . , iK−1〉. Hence, a test case 〈i0, . . . , iK−1〉
covering a property with assumption ϕ(s, i) can be generated by checking satis-
fiability of a path from I to ϕ.

1 It will actually return the better result for this particular example.

Chaining Test Cases for Reactive System Testing 143

reactive system model
C code

generator
static

analyser

properties
test case
generator

test suite

Fig. 7. Tool chain

Instantiation. CheckPath corresponds to a SAT query like Eq. (1) with φ = I,
φ′ = F , conjoined with the formulas for the property assumptions ϕj according
to the covering path π. The formula for T includes any assumptions restricting
the input domain. If the query is unsatisfiable, the SAT solver can be requested
to produce a reason for the failure (e.g. in the form of an unsatisfiable core) from
which we can extract failed path.

The function GetKreachEdges that returns the K-reachability edges in a set
Etarget is implemented by satisfiability checking the formula:⎛⎝ ∨

(ϕ,ϕ′)∈Etarget

ϕ(s0, i0) ∧ ϕ′(sK)

⎞⎠ ∧
∧

1≤k≤K

T (sk−1, ik−1, sk) (2)

We iteratively check this formula, removing the respective terms from the
formula each time a solution satisfies (ϕ, ϕ′), until the formula becomes unsat-
isfiable. In addition to assumptions on the inputs, T must also contain a state
invariant, obtained, e.g. with a static analyser. This is necessary because, other-
wise, the state satisfying ϕ in Eq. 2 might be unreachable from an initial state.

For the chain repair RepairPath , the most efficient method that we tested was
to sequentially find a feasible weight for each of the edges in failed path, starting
the check for an edge (ϕj , ϕj+1) from a concrete state in ϕj obtained from the
successful check of the previous edge (ϕj−1, ϕj).

6 Experimental Evaluation

Implementation. For our experiments we have set up a tool chain (Fig. 7) that
generates C code from Simulinkmodels using the Gene-Auto2 code generator.
Our prototype test case chain generator ChainCover3 itself is built upon the
infrastructure provided by Cbmc4 [10] with MiniSat5 as a SAT backend and
the Lkh TSP solver6 [11].

The properties are written in C. For instance, property p1 in our example is
stated as follows:

2 http://geneauto.gforge.enseeiht.fr , version 2.4.9
3 http://www.cprover.org/chaincover/ , version 0.1
4 http://www.cprover.org/cbmc/, version 4.4
5 http://minisat.se, version 2.2.0
6 http://www.akira.ruc.dk/~keld/research/LKH/, version 2.0.2

http://geneauto.gforge.enseeiht.fr
http://www.cprover.org/chaincover/
http://www.cprover.org/cbmc/
http://minisat.se
http://www.akira.ruc.dk/~keld/research/LKH/

144 P. Schrammel, T. Melham, and D. Kroening

Table 1. Experimental results: The table lists the number of test cases/chains (tcs),
the accumulated length of the test case chains (len) and the time (in seconds) taken
for test case generation. Size indicates the size of the program in the number of (mini-
mally encoded) Boolean (b), integer (i) and floating point (f) variables and (minimally
encoded) Boolean (b) inputs. “P” is the number of properties in the specification. If
the tool timed out (“t/o”) after 1 hour the achieved coverage (“cov”) is given.

size ChainCover FShell random KLEE

benchmark s i P tcs len time tcs len time tcs len time tcs len time

Cruise 1 3b 3b 4 1 9 0.77 3 18 3.67 2.8 24.6 0.54 3 27 46.5
Cruise 2 3b 3b 9 1 10 0.71 4 20 3.56 2.4 21.2 0.07 3 30 17.7

Window 1 3b+1i 5b 8 1 24 14.1 4 32 19.0 1.8 40.4 58.9 3 72 155
Window 2 3b+1i 5b 16 1 45 24.9 7 56 28.3 2.0 86.8 18.7 5 225 242

Alarm 1 4b+1i 2b 5 1 26 7.51 1 27 509 80% cov. t/o 60% cov. t/o
Alarm 2 4b+1i 2b 16 1 71 33.5 3 81 690 94% cov. t/o 63% cov. t/o

Elevator 1 6b 3b 4 1 8 22.9 2 15 115 2.2 10.4 0.85 2 16 24.4
Elevator 2 6b 3b 10 1 32 97.3 5 54 789 2.6 49.0 65.8 70% cov. t/o
Elevator 3 6b 3b 19 1 48 458 6 54 838 4.0 149 18.0 53% cov. t/o

Robotarm 1 4b+2f 3b 4 1 25 185 2 22 362 2.4 49.0 0.07 2 40 10.9
Robotarm 2 4b+2f 3b 10 1 47 113 2 33 532 3.8 72.2 0.21 80% cov. t/o
Robotarm 3 4b+2f 3b 18 1 84 427 5 55 731 3.2 160 0.62 67% cov. t/o

void p 1 (t i n p u t ∗ i , t s t a t e ∗ s) {
CPROVER assume (s−>mode==ON && s−>speed==1 && i−>dec) ;

compute (i , s) ;
a s s e r t (s−>speed ==1) ;

}
Assumptions on the inputs and the state invariant obtained from the static

analysis are written as C code in a similar way.

Benchmarks. Our experiments are based on Simulink models, mainly from
automotive industry. Our benchmarks are a simple cruise control model [2], a
window controller7, a car alarm system 8, an elevator model [12] and a model of
a robot arm that can be controlled with a joystick. We generated test case chains
for these examples for specifications of different size and granularity. The bench-
mark characteristics are listed in Table 1. Apart from Cruise 1 all specifications
have properties with multi-state assumptions, thus, the obtained test case chains
are not minimal in general. All our benchmarks are (almost) strongly connected
(some have an initial transition after which the system is strongly connected),
hence, they did not require abstraction refinement.

Comparison. We have compared our prototype tool ChainCover with

– FShell9 [13], an efficient test generator with test suite minimisation,

7 http://www.mathworks.co.uk/products/simulink/examples.html
8 http://www.mogentes.eu/public/deliverables/

MOGENTES 3-15 1.0r D3.4b TestTheories-final main.pdf
9 http://forsyte.at/software/fshell/ , version 1.4

http://www.mathworks.co.uk/products/simulink/examples.html
http://www.mogentes.eu/public/deliverables/MOGENTES_3-15_1.0r_D3.4b_TestTheories-final_main.pdf
http://www.mogentes.eu/public/deliverables/MOGENTES_3-15_1.0r_D3.4b_TestTheories-final_main.pdf
http://forsyte.at/software/fshell/

Chaining Test Cases for Reactive System Testing 145

�� �� �� ��
��

��
��

��

��

��

��

��

��

*
*

*
*

*
*

*

*

*

*

*

*

*

�� ��
��

��
��

��

��

��

��

��

��

�� ��
��

��
��

��

��

0
50

100
150
200

250
300
350
400
450

500
550
600
650

0 1 2 3 4 5 6 7 8 9 10 11 12

Number of benchmarks

A
cc
u
m
u
la
te
d
te
st

ca
se

le
n
g
th
s

� Klee
♦ RandomTest
∗ FShell
� ChainCover

0

1000

2000

3000

4000

5000

0 1 2 3 4 5 6 7 8 9 10 11 12

�� �� �� �� �� �� �� �� ��
��

��

��

* * * *
*

*

*

*

*

*

*

*

�� �� �� �� �� �� �� �� �� ��
�� �� �� ��

��
��

A
cc
u
m
u
la
te
d
ru
n
ti
m
es

Number of benchmarks

� Klee
♦ RandomTest
∗ FShell
� ChainCover

Fig. 8. Experimental results: accumulative graph of test case lengths on the left-hand
side, accumulated runtimes on the right-hand side

– an in-house, simple random case generator with test suite minimisation and
– Klee10 [14], a test case generator based on symbolic execution.

In order to make results comparable, we have chosen F to be equivalent to I (or
the state after the initial transition). Hence, test cases generated by FShell,
random and Klee can be concatenated (disregarding the initial transition) to
get a single test case chain.

Like our prototype, FShell is based on bounded model checking. FShell
takes a coverage specification in form of a query as input. It computes test cases
that start in I, cover one or more properties p1, . . . , pn and terminate in F when
given the query: cover (@CALL(p 1) | ... | @CALL(p n)) -> @CALL(final).
In the best case, FShell returns a single test case, i.e. a test chain. We have run
FShell with increasing unwinding bounds K until all properties were covered.

For random testing and Klee, we coded the requirement to finish a test case
in F with the help of flags in the test harness. Then we stopped the tools as soon
as full coverage was achieved and selected the test cases achieving full coverage
while minimising the length of the input sequence using an in-house, weighted-
minimal-cover-based test suite minimiser. For random testing we averaged the
results over five runs. Unlike ChainCover and FShell, which start test chain
computation without prior knowledge of how many steps are needed to produce
a test case, we had to provide random testing and Klee with this information.
The reason is that the decision when a certain number of steps will not yield a
test case can only be taken after reaching a timeout for random testing. Similarly,
Klee may take hours to terminate. Consequently, the results for random testing
and Klee are not fully comparable to those of the other tools.

Results. Experimental results obtained are shown in Table 1 and Fig. 8.

– Our prototype tool ChainCover usually succeeds in finding shorter test
case chains than the other tools. It is also in general faster. ChainCover
spends more than 99% of its runtime with BMC. The time for solving
the ATSP problem is neglible for the number of properties we have in the

10 http://klee.llvm.org/, revision 132049

http://klee.llvm.org/

146 P. Schrammel, T. Melham, and D. Kroening

specifications. The runtime ratio for generating the property K-reachability
graph (O(Kn2) BMC queries for n properties) versus finding and repairing
a chain (O(Kn) BMC queries) varies between 7:92 and 75:24.

– FShell comes closest to ChainCover with respect to test case chain length
and finds shorter chains on the robot arm example. However, FShell takes
much longer: the computational cost depends on the number of unwindings
and the size of the program and less on the number of properties.

– Random testing yields very good results on some (small) specifications and
sometimes even finds chains that are as short as those generated by Chain-
Cover. However, the results vary and heavily depend on the program and
the specification: in some cases, e.g. Robotarm, full coverage is achieved in
fractions of a second; in other cases, full coverage could not be obtained be-
fore reaching the timeout of one hour and generating millions of test cases.

– Klee found test case chains on a few of the benchmarks in very short time,
but did not achieve full coverage within an hour on half of the benchmarks,
which suggests that exhaustive exploration is not suitable for our problem.

7 Related Work

Test case generation with model checkers came up in the mid-90s and has at-
tracted continuous research interest since then, especially due to the enormous
progress in SAT solver performance. There is a vast literature on this topic,
surveyed in [15], for example.

In the model-based testing domain, the problem of finding minimal check-
ing sequences has been studied in conformance testing [3,4,1], which amounts
to checking whether each state and transition in a given EFSM specification
is correctly implemented. First, a minimal checking path is computed, which
might be infeasible due to the operations on the data variables. Subsequently,
random test case generation is applied to discover such a path, which might fail
again. Duale and Uyar [16] propose an algorithm for finding a feasible transition
path, but it requres guards and assignments in the models to be linear. Another
approach is to use genetic algorithms [3,17] to find a feasible path of minimised
length. SAT solvers have also been used to compute (non-minimal) checking se-
quences in FSM models [18,19]. Our method does not impose restrictions on
guards and assignments and implicitly handles low-level issues such as overflows
and the semantics of floating-point arithmetic in finding feasible test cases. The
fact that minimal paths on the abstraction might not be feasible in the concrete
program does not arise due to limited reasoning about data variables, but due
to the multi-state nature of the properties we are trying to cover.

Closest to our work is recent work [20] on generating test chains for EFSM
models with timers. They use SMT solvers to find a path to the nearest test
goal and symbolic execution to constrain the search space. If no test goal is
reachable they backtrack to continue the search from an earlier state in the test
chain. Their approach represents a greedy heuristics and thus makes minimality
considerations difficult. Our method can handle timing information if it is ex-
plicitly expressed as counters in the program.

Chaining Test Cases for Reactive System Testing 147

Petrenko et al. [21] propose a method for test optimisation for EFSM models
with timers. They use an ATSP solver to find an optimal ordering of a given
set of test cases and an SMT solver to determine paths connecting them. The
problem they tackle is easier than ours because they do not generate test cases,
but just try to chain a given set of test cases in an optimal order. Additionally,
they take into account overlappings of test cases during optimisation.

In contrast to all these works, our approach starts from a partial specification
given by a set of properties, usually formalised from high-level requirements. The
K-reachability graph abstraction can be viewed as the generation of a model
from a partial specification and automated annotation of model transitions with
timing information in terms of the minimal number of steps required.

8 Summary and Prospects

We have presented a novel approach to discovering a minimal test case chain,
i.e., a single test case that covers a given set of test goals in a minimal num-
ber of execution steps. Our approach combines reachability analysis to build an
abstraction, TSP-based optimisation and heuristics to find a concrete solution
in case we cannot guarantee minimality. The test goals might also be generated
from an EFSM specification or from code coverage criteria like MC/DC. This
flexibility is a distinguishing feature of our approach that makes it equally appli-
cable to model-based and structural coverage-based testing. In our experimental
evaluation, we have shown that our prototype tool ChainCover outperforms
state-of-the-art test suite generators.

Prospects. In §4.2 we have proposed an abstraction refinement method in the
case ofmulti-state property triggers.The fundamental problem is that a failed path
represents information about at least two edges that we cannot encode as an equiv-
alent TSP because it requires side conditions such as the solution not containing a
set of subpaths. Since our experimental results suggest that the bottleneck of the
approach lies rather in solving reachability queries than TSPs, we could also opt
for using answer set programming (ASP) solvers (e.g. [22]), which are less efficient
in solving TSPs, but they allow us to specify arbitrary side conditions.

Test case chains are intended to demonstrate conformance in late stages of the
development cycle, especially in acceptance tests when the system can be assumed
stable. It is an interesting question in how far they canbeused in earlier phases:The
test case chains computedby ourmethod are able to continue to the subsequent test
goals even if a test fails, as long as the implementation has not changed too much;
otherwise the test chain has to be recomputed. In this case, it would be desirable
to incrementally adapt the test case chain after bug fixes and code changes.

Acknowledgements. We thank Cristian Cadar for his valuable advice regard-
ing the comparison with Klee and the anonymous reviewers for their valuable
comments.

148 P. Schrammel, T. Melham, and D. Kroening

References
1. Hierons, R., Ural, H.: Generating a checking sequence with a minimum number of

reset transitions. ASE 17, 217–250 (2010)
2. Robert Bosch GmbH: Bosch Automotive Handbook. Bentley (2007)
3. Nuñez, A., Merayo, M., Hierons, R., Núñez, M.: Using genetic algorithms to gen-

erate test sequences for complex timed systems. Soft Computing 17 (2013)
4. Petrenko, A., da Silva Simão, A., Yevtushenko, N.: Generating checking sequences

for nondeterministic finite state machines. In: ICST, pp. 310–319 (2012)
5. Boyd, S., Ural, H.: On the complexity of generating optimal test sequences. Trans.

Softw. Eng. 17, 976–978 (1991)
6. Schrammel, P., Melham, T., Kroening, D.: Chaining test cases for reactive system

testing (extended version). Research report, University of Oxford (2013),
http://arxiv.org/abs/1306.3882

7. Kroning, D., Strichman, O.: Efficient computation of recurrence diameters. In:
Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS,
vol. 2575, pp. 298–309. Springer, Heidelberg (2002)

8. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. Formal Methods in System Design 19, 7–34 (2001)

9. Schrammel, P.: Logico-Numerical Verification Methods for Discrete and Hybrid
Systems. PhD thesis, Université de Grenoble (2012)

10. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

11. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman
heuristic. European J. of Operational Research 126, 106–130 (2000)

12. Meinke, K., Sindhu, M.A.: Incremental learning-based testing for reactive systems.
In: Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 134–151. Springer,
Heidelberg (2011)

13. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: FShell: Systematic test case
generation for dynamic analysis and measurement. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 209–213. Springer, Heidelberg (2008)

14. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In: OSDI, pp. 209–224 (2008)

15. Fraser, G., Wotawa, F., Ammann, P.: Testing with model checkers: a survey. Soft-
ware Testing, Verification & Reliability 19, 215–261 (2009)

16. Duale, A., Uyar, M.Ü.: A method enabling feasible conformance test sequence
generation for EFSM models. IEEE Trans. Computers 53, 614–627 (2004)

17. Kalaji, A.S., Hierons, R.M., Swift, S.: Generating feasible transition paths for test-
ing from an extended finite state machine (EFSM). In: ICST, pp. 230–239 (2009)

18. Jourdan, G.V., Ural, H., Yenigün, H., Zhu, D.: Using a SAT solver to generate
checking sequences. In: Int. Sym. on Comp. and Inf. Sciences, pp. 549–554 (2009)

19. Mori, T., Otsuka, H., Funabiki, N., Nakata, A., Higashino, T.: A test sequence
generation method for communication protocols using the SAT algorithm. System
and Computers in Japan 34, 20–29 (2003)

20. Peleska, J., Vorobev, E., Lapschies, F.: Automated test case generation with SMT-
solving and abstract interpretation. In: Bobaru, M., Havelund, K., Holzmann, G.J.,
Joshi,R. (eds.)NFM2011.LNCS, vol. 6617, pp. 298–312. Springer,Heidelberg (2011)

21. Petrenko, A., Dury, A., Ramesh, S., Mohalik, S.: A method and tool for test opti-
mization for automotive controllers. In: Software Testing, Verification and Valida-
tion Workshops, pp. 198–207 (2013)

22. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.T.: Potassco: The Potsdam answer set solving collection. AI Communications 24,
107–124 (2011)

http://arxiv.org/abs/1306.3882

Variations over Test Suite Reduction

Dennis Güttinger1, Vitaly Kozyura2, Dominik Kremer3,
and Sebastian Wieczorek2

1 Goethe Universität, Frankfurt am Main, Germany
guetting@stud.uni-frankfurt.de
2 SAP AG, Darmstadt, Germany

{v.kozyura,sebastian.wieczorek}@sap.com
3 Technische Universität Darmstadt, Germany

kremer@mathematik.tu-darmstadt.de

Abstract. This paper deals with the problem of effective test suite re-
duction. In its original form this problem is equivalent to the set covering
problem, which has already been extensively studied and many strategies
such as greedy or branch and bound for computation of an approximative
optimal solution to this NP-complete problem are known. All of these
algorithms only focus on one objective which is the minimization of the
number of action calls within the test suite reduction. However, practi-
cal experience shows that balancing out the distribution of action calls is
another objective which should be considered when choosing an efficient
test suite. We will therefore introduce and evaluate different extensions
of the standard techniques which incorporate action call distribution. We
will see that these adjusted strategies can compute a reduced test suite
with a smoother distribution over function calls within an acceptable
amount of additional time in comparison to the classic algorithms.

1 Introduction

Automatically generating tests suites from formal specifications as advertised
by Model-based Testing (MBT) is regarded as a potential innovation leap in
industrial software quality assurance. Most MBT approaches are running in two
phases. In the first phase vast amount of test cases are generated for an inserted
model until a coverage of model entities is achieved. In the second phase a subset
of these test cases is selected with the aim to preserve the targeted coverage and
therefore the assumed fault-uncovering capabilities [11]. This activity is called
test suite reduction.

The problem of test suite reduction is largely discussed in the literature. There
are papers, where the general test suite reduction activity is described [3,9]. Fur-
ther work on how to apply 0/1-Integer linear programming to the test suite
reduction problem [12] or how to improve the Greedy heuristics [5,6,2] can be
found. In [1,14] there are approaches using multi-objective optimization func-
tions, whereas in [8] an approach based on genetic algorithms is introduced.
Some empirical results for test suite reductions have been reported in [11].

H. Yenigün, C. Yilmaz, and A. Ulrich (Eds.): ICTSS 2013, LNCS 8254, pp. 149–163, 2013.
c© IFIP International Federation for Information Processing 2013

150 D. Güttinger et al.

In this paper we propose a test suite reduction approach that aims for a
smoother test case distribution, as required by our industrial MBT users. The
mathematical definition of the problem as well as proposed algorithmic modi-
fications are the main contributions of this paper. Further we present experi-
mental results that demonstrate the applicability and efficiency of the proposed
approaches.

The paper is structured as follows. In Section 2 we briefly introduce the stan-
dard algorithms for test suite reduction. Section 3 gives a definition of test case
distribution, describes its practical relevance and details how we incorporated it
in the standard reduction algorithms. In Section 4 we illustrate the impact of
our algorithmic modifications on concrete industrial cases and finally discuss our
conclusions in Section 5.

2 Test Suite Reduction

In order to describe the test suite reduction problem, we assume a finite set of
coverage requirements R = {r1, . . . , rn} which is guiding the test generation. All
requirements have to be met by a complete test suite. Each test case tc either
satisfies a given requirement (ri(tc)) or does not, that is
ri(tc) ∈ {true, false}. For convenience we also define

cov(tc) = {ri : ri(tc) = True, 1 ≤ i ≤ n}. (1)

Now a test suite TS = {tc1, . . . , tcm} is complete, if R =
⋃m

i=1 cov(tci) and the
test suite reduction problem can be reformulated as follows:

Given: A test suite TS and a set of requirements R, such that TS is complete
with respect to these requirements.

Problem: Find a complete test suite TS0 ⊆ TS that is minimal with respect to

value (TS0) =
∑

tc∈TS0

|tc|. (2)

In the remainder of this section we present two classical approaches, the
Greedy- and the Branch and Bound-algorithm, to solve this problem. Later we
will describe how these algorithms can be modified in order to obtain a better
test case distribution.

2.1 Greedy Algorithm

Even though the Greedy algorithm computes an approximation, [4] showed that
the result cannot become arbitrarily bad. In fact the upper bound for the error
only depends on the number of requirements.

The algorithm stores two objects: An iteratively constructed subset TS0 of
TS, which will be a complete test suite after termination of the algorithm and
a set R0 of all those requirements that are already met by this subset (l. 1–
2). While not all requirements are met (l. 3), the algorithm does the following:

Variations over Test Suite Reduction 151

It computes the set of all test cases tc, for which the ratio wtc of the number of
additionally satisfied requirements and the number of additional action calls is
maximal (l. 4–6). Then it picks one of these at random (l. 7). This test case is
afterwards added to TS0 and R0 is updated appropriately (l. 8–9).

Input: test suite TS = {tc1, . . . , tcm}, set of requirements R
Output: approximated minimal test suite TS0 ⊆ TS which is complete
1: TS0 = ∅
2: R0 = ∅
3: while |R0| < |R| do
4: for tc ∈ TS \ TS0 do
5: wtc =

1
|tc| · |cov(tc) \ R0|

6: TS′
0 = {tc ∈ TS \ TS0 : wtc is maximal}

7: Pick tc ∈ TS′
0

8: TS0 = TS0 ∪ {tc}
9: R0 = R0 ∪ cov(tc)
10: return TS0

Algorithm 1. Greedy

2.2 Branch and Bound – Algorithm

We use the Branch and Bound variation (Balas-algorithm) described in [7] to
compute an optimal result.

The algorithm identifies all possible subsets of TS = {tc1, . . . , tcm} with arrays
(n1, . . . , nm). Here ni = 1 means, that tci is part of the subset, while ni = 0
means, that it is not. To check these arrays systematically, they are organized
as a binary tree. At the root node no decisions have been made, as any node
on level i represents a certain choice of the first i bits. For simplicity it is also
denoted as array (n1, . . . , ni) and identified with the test suite {tcj : nj = 1}.
We denote the level of a node by level(n1, . . . , ni) = i. Now (2) can be extended
to nodes by

value(n1, . . . , ni) =

i∑
j=1

|tcj | · nj . (3)

The Branch and Bound algorithm stores two objects: The best solution found
so far, nres, and a stack S of nodes that has to be checked. Obviously nres is
initialized with the array that represents whole TS and S with the stack that
only contains the root node (l. 1–2). As long as additional nodes have to be
checked, one of them is popped from S (l. 3–4). Then child nodes n0 and n1

are generated, where n0 rejects the next test case and n1 includes it. To decide,
whether it is necessary to check these as well, the following rules are applied:

– n0 is expanded if it has a successor which represents a complete test suite
(l. 7) and if appending the smallest remaining test case results in a suite that
is smaller than the one represented by nres (l. 8). (To be able to efficiently
evaluate the second condition, we presume TS to be sorted ascending by
length.)

152 D. Güttinger et al.

– n1 is expanded if it is smaller than nres (l. 11), but not if it is complete (l. 12,
15).

Finally nres is updated, if n1 is smaller than nres and complete. In this case all
nodes bigger than n1 are removed from S afterwards (l. 11–14).

Input: test suite TS = {tc1, . . . , tcm} sorted ascending by length,
redundant test cases eliminated

Output: exact minimal test suite TS0 ⊆ TS
1: nres = (1, . . . , 1)
2: Stack S = {()}
3: while S = ∅ do
4: n = S.pop
5: if level(n) < m− 1 then
6: n0 = (n, 0)
7: if {tci : (n0)i = 1 or i > level(n0)} is complete test suite then
8: if value(n0) + |tci+1| < value(nres) then
9: S.push(n0)
10: n1 = (n, 1)
11: if value(n1) < value(nres) then
12: if {tci : (n1)i = 1} is complete test suite then
13: nres = n1

14: S = {n′ ∈ S : value(n′) < value(n1)}
15: else if level(n1) < m then
16: S.push(n1)
17: return {tci : (nres)i = 1}

Algorithm 2. Branch and Bound

3 Test Case Distribution

In this section we formulate the test case distribution problem and describe it
mathematically by introducing a sequence of functions that measures distribu-
tion quality in terms of variances. Using these functions we show how to modify
both Greedy and Branch and Bound algorithms in order to improve test case
distribution.

TS1 = {(A, C, D), (A, C, E),
(A, C, F), (B, C, G)}

TS2 = {(A, C, D), (A, C, E),
(B, C, F), (B, C, G)}

Fig. 1. Test Model Example 1

Variations over Test Suite Reduction 153

Let us start with the simple example depicted in Figure 1 together with two
test suites TS1 and TS2. Both test suites are minimal with respect to action
coverage and vary only in one action, which is denoted in bold font. Actions A
and B are used an equal number of times in TS2, while they are not in TS1.

TS3 = {(A, C, E, F), (A, C, E, G),
(B, D, E, H), (B, D, E, I)}

TS4 = {(A, C, E, F), (A, D, E, G),
(B, D, E, H), (B, C, E, I)}

Fig. 2. Test Model Example 2

Let us now move on to the more complex example depicted in Figure 2,
which again comes with two test suites TS3 and TS4. As before, both test suites
are minimal and their difference is marked in bold font. However this time all
actions are called the same number of times in TS3 as in TS4. Nevertheless the
second suite can be regarded as having a smoother test case distribution since
it includes four different variations for the first two actions, while the first one
only includes two. In a similar fashion one could obtain larger examples, where
distribution quality only depends on the number of occurrences of even larger
test case subsequences.

3.1 Industrial Relevance

In the last few years, development paradigms like lean and agile, propagating
the empowerment of developers [10], have found broad adoption in industrial IT
organizations. While previously development processes were defined on a global
scale and based on an assumed overall efficiency, todays industrial developers
have a much bigger degree of freedom in choosing their development approaches
and tools. Based on our experience, on individual level of decision making effi-
ciency is often traded for lower learning effort, better user experience and other
partially subjective reasons.

Concretely, in a case study [13] that aimed to validate an MBT framework
with industrial testers we observed that uneven test case distribution may cause
negative assessments on individual level. In interview sessions, most of the case
study participants stated that the distribution resulting from standard test suite
reduction made them less confident in the effectiveness of the test suite and the
correctness of the test generation approach. While no concrete evidence for su-
perior qualities of evenly distributed test suites were found in our experiments,
they assumed that a better distribution may be beneficial in the test data as-
signment, test maintenance and selection of test cases for regression. As a con-
sequence, most participants required smoothly distributed test suites in order to
apply MBT in their test routines.

154 D. Güttinger et al.

In summary, from our industrial experience a smooth test suite is more desir-
able as it increases confidence of MBT users. Whether it also has direct effects
on the quality of the test suite remains subject of future investigations.

3.2 Formalization

We now want to give a mathematical description of the problem. Therefore we
propose a way how to measure the distribution quality of a given test suite
TS0 ⊆ TS.

Given that a test case is composed of a sequence of action calls, a simple
approach is to evaluate their variance in a test suite. For any test case tc =

(a1, . . . , ak) ∈ TS we define a counting function d
(1)
tc , which assigns to each

action a ∈ A the number of times it is called by tc:

d
(1)
tc : A → N, a �→

∣∣{i ∈ {1, . . . , k} : ai = a
}∣∣ . (4)

Equivalently for any test suite TS0 = {tc1, . . . , tcm} ⊆ TS we define a counting

function d
(1)
TS0

, which assigns to each action a ∈ A the number of times it is called
by whole TS0. This can be formalized as

d
(1)
TS0

: A → N, a �→
m∑
i=1

d
(1)
tci (a). (5)

Now the mean number of calls per action in TS0 is given as

d
(1)
TS0

=
1

|A|
∑
a∈A

d
(1)
TS0

(a)

(
=

1

|A|

m∑
i=1

|tci|
)
. (6)

If TS0 is well distributed, we would expect d
(1)
TS0

(a) not to vary much, but to stay

near its mean value for all a ∈ A. Hence, the variance of d
(1)
TS0

or the variance of
action calls in TS0 will be our first measure for distribution quality:

Var1(TS0) =
1

|A|
∑
a∈A

(
d
(1)
TS0

(a)− d
(1)
TS0

)2

. (7)

Let us apply this definition to the examples from above. The values obtained

for d
(1)
TSi

are denoted in table 1. Further calculations show, that for the first
example Var1(TS1) = 1.35, while Var1(TS2) = 1.06. As expected TS2 has a
better distribution quality than TS1. Nevertheless for the second example we get
Var1(TS3) = Var1(TS4) = 0.84, i. e we cannot determine the difference between
TS3 and TS4 by Var1. This is not surprising, since the counting functions for
both test suites are identical.

To circumvent this problem we generalize our ideas in order to construct a
variance of action-sequence calls for sequences of a fixed length p: Let A(p) be
the set of all action-sequences of length p that are part of at least one test
case in TS. To ease notation we will use the symbol a to denote such sequences.

Variations over Test Suite Reduction 155

Table 1. Values of d
(1)
TSi

Example 1

Suite A B C D E F G

TS1 3 1 4 1 1 1 1

TS2 2 2 4 1 1 1 1

Example 2

Suite A B C D E F G H I

TS3 2 2 2 2 4 1 1 1 1

TS4 2 2 2 2 4 1 1 1 1

First for any test case tc = (a1, . . . , ak) ∈ TS we again define a counting function

d
(p)
tc , which assigns to each action-sequence a ∈ A(p) the number of times it is

called by tc:

d
(p)
tc : A(p) → N, a �→

∣∣{i ∈ {p, . . . , k} : (ai−p+1, . . . , ai) = a
}∣∣ . (8)

As before we can use these functions to define a counting function d
(p)
TS0

for a
whole test suite TS0 = {tc1, . . . , tcm} ⊆ TS, i. e.

d
(p)
TS0

: A(p) → N, a �→
m∑
i=1

d
(p)
tci (a). (9)

The mean amount of calls per p-action-sequence is given by

d
(p)
TS0

=
1

|A(p)|
∑

a∈A(p)

d
(p)
TS0

(a) (10)

and we can finally define the variance of d
(p)
TS0

or the variance of p-action-
sequences by

Varp(TS0) =
1

|A(p)|
∑

a∈A(p)

(
d
(p)
TS0

(a)− d
(p)
TS0

)2

. (11)

Let us apply this definition with p = 2 to example 2 from above. The val-

ues obtained for d
(2)
TSi

are denoted in table 2. Further calculation shows, that
Var2(TS3) = 0.56, while Var2(TS4) = 0.16. This means that Var2 rates the sec-
ond test suite better than the first one, as demanded by the motivation from the
beginning of this section.

Table 2. Values of d
(2)
TSi

Example 2

Suite (A,C) (A,D) (B,C) (B,D) (C,E) (D,E) (E,F) (E,G) (E,H) (E,I)

TS3 2 0 0 2 2 2 1 1 1 1

TS4 1 1 1 1 2 2 1 1 1 1

156 D. Güttinger et al.

3.3 Lexicographical Approaches

Greedy. We present concrete implementations that respect distribution quality
as described in section 3.2. The approaches proposed here optimize with respect
to the total number of action calls first and with respect to distribution quality
afterwards.

In order to modify the Greedy algorithm, we have to rate distribution quality
not of a complete test suite, but of a partially constructed one. More precisely,
we have to determine how well an additional test case tc = (a1, . . . , ak) would
fit in a non-complete test suite TS0. This is done by the quality functions

q
(p)
TS0

(tc) =

k∑
i=p

d
(p)
TS0

(ai−p+1, . . . , ai). (12)

Using them we can modify the Greedy algorithm in order to achieve better
distribution quality by exchanging line 7 with the following steps:

for i = 1 → p do

TS′
i =

{
tc ∈ TS′

(i−1) : q
(i)
TS0

(tc) is minimal
}

Pick tc ∈ TS′
p

Branch and Bound. To modify the Branch and Bound algorithm from section
2.2, just some simple modifications have to be made in lines 8, 11 and 13–14,
so that the set of all optimal nodes N (0) is returned instead of just one optimal
node nres. For example we have to exchange the sharp inequality (<) in line 8
with a weak one (≤). We will come back to this particular replacement when
discussing experimental results.

More importantly, we have to choose a single node from N (0) when the main
loop is finished. This is done such that the according test suite has optimal dis-
tribution quality. Therefore we extend definition (11) to nodes n = (n1, . . . , ni)
by

Varp(n) = Varp
(
{tcj : nj = 1}

)
(13)

and insert the following steps between lines 16 and 17:

1: for i = 1 → p do
2: N (i) = {n ∈ N (i−1) : Vari(n) is minimal}
3: Pick nres ∈ N (p)

3.4 Multi-objective Greedy Approach

In this subsection we present another approach to the problem, which is based
on the Greedy algorithm from section 2.1. The strategy proposed here optimizes
with respect to both objectives (test suite size and distribution quality) simul-
taneously and allows arbitrary weighting between them.

Variations over Test Suite Reduction 157

As discussed in 3.2, the requirement of TS0 ⊆ TS having a good distribution
quality is equivalent to the one that its variances are minimal. To simplify mat-
ters we will only consider Var1 here. Therefore this objective can be stated as

Var1(TS0) =
1

|A|
∑
a∈A

(
d
(1)
TS0

(a)− d
(1)
TS0

)2

→ min! (14)

To combine it with the goal of minimizing the number of action calls we use
a probabilistic approach. The probability of being contained in an optimal test
suite with respect to distribution quality is greater for some tc ∈ TS \TS0, if its
distribution variance contribution is small. This contribution can be expressed
by the value of Var1 that would result when including tc into TS0, Var1(TS0 ∪
{tc}), in relation to the sum of variances for all elements in TS \ TS0, namely∑

t̃c∈TS\TS0
Var1

(
TS0 ∪ {t̃c}

)
.

Thus, we start with an initially empty set of test cases TS0 and iteratively add
test cases tc ∈ TS to TS0 such that distribution variance increase is minimized.
This leads to the following definition of probabilities for each tc ∈ TS \ TS0:

pvar(tc) :=

1− Var1(TS0∪{tc})∑
t̃c∈TS\TS0

Var1(TS0∪{t̃c})
|{t̃c ∈ TS \ TS0}| − 1

. (15)

Obviously, 0 ≤ pvar(tc) ≤ 1 for all tc ∈ TS\TS0 by construction and the expres-
sions defined in equation (15) can be interpreted as probabilities.

For our primary objective of minimizing the number of action calls we will
construct probabilities in an analogous way by using the same decision criterion
as for the Greedy algorithm from section 2.1. Referring to line 5 of the algorithm
we denote wtc = 1

|tc| · |cov(tc) \ R0| as the weight for each tc ∈ TS \ TS0.

The weight of a test case tc is the total number of requirements r ∈ R that
are satisfied by tc but not yet covered by any test case in TS0. This value is
normalized by the length of tc. It is clear that test cases with a high weight will
more probably be contained in a test suite that is optimal with respect to test
suite size than test cases with a lower weight. See [4] for more details. We can
thus define probabilities for each tc ∈ TS \ TS0 as follows:

prate(tc) :=
wtc∑

t̃c∈TS\TS0
wt̃c

. (16)

So, given a rate proportion coefficient δ ∈ [0, 1] we can construct a weighted
probability distribution by defining

p(tc) := δ · prate(tc) + (1 − δ) · pvar(tc) (17)

for each tc ∈ TS \ TS0.
A resulting Greedy strategy would be to iteratively sort test cases by their

combined probability descending and add the test case with highest probability
value to the final solution set. These preliminary considerations yield to a Greedy

158 D. Güttinger et al.

algorithm like the one presented in section 2.1, except that lines 4 to 6 have to
be replaced by the following steps1:

for tc ∈ TS \ TS0 do
Compute p(tc)

TS′
0 = {tc ∈ TS \ TS0 : p(tc) is maximal}

4 Experimental Results

In this section we present experimental results for the optimization techniques
described above. Due to computational constraints we only considered p = 2 for
the lexicographical algorithms. All computations were performed on an AMD
Opteron (tm) Quad Core with 2.60 GHz and 32 Gigabytes of RAM. As input
we derived 13 different transition state machines which were designed on the
basis of industrial case studies. To get realistic statements for the context of our
work, most of our use cases are small- or intermediate-sized (I-IX). Nevertheless
we included some larger models as well (X-XIII). Actually (XII) and (XIII)
have proven to be too large to be optimized with algorithms of the Branch and
Bound-type.

Table 3. Use cases

|TS| AC AC(2) |A| |A(2)|
I 15 84 69 13 26

II 21 123 102 10 15

III 32 128 96 13 28

IV 41 164 123 15 31

V 30 189 159 25 35

VI 36 190 154 31 40

VII 46 317 271 40 52

VIII 45 374 329 23 36

IX 120 600 480 15 33

X 132 1306 1174 26 40

XI 512 6656 6144 30 54

XII 284 1600 1316 140 422

XIII 625 4375 3750 23 86

For detailed information about the use cases consider table 3. It contains the
number of test cases (|TS|), the number of action calls (AC), the number of

action-pair calls (AC(2)), the number of actions (|A|) and the number of action-
pairs (|A(2)|) for each of our use cases. Nevertheless the full model definitions
must not be published due to legal reasons.

1 Note that for δ = 1 this algorithm is equivalent to the one proposed by [4].

Variations over Test Suite Reduction 159

4.1 Greedy Based Approaches

In the following we compare experimental results for the original Greedy algo-
rithm from [4] with our proposed extensions. As parameters we choose p = 2 for
the lexicographical variation and δ = 0.5 for the multi-objective one. Our results
are displayed in Table 4.

The second column (AC) contains the number of action calls in the unmodified
test suite TS, while columns 4, 8, and 12 (AC0) in each case contain the number
of action calls in the resulting test suite TS0. Columns 3, 7, and 11 (Time)
denote the computation time in seconds needed to run the specific algorithm
and columns 5–6, 9–10, and 13–14 present the variance values as defined by
equations (7) and (11) for the corresponding reduced suite TS0.

Table 4. Results for Greedy algorithms

Original Lexicographical Multi-objective

AC Time AC0 Var1 Var2 Time AC0 Var1 Var2 Time AC0 Var1 Var2

I 84 0.06 16 0.33 0.00 0.08 16 0.33 0.00 0.09 16 0.33 0.00

II 123 0.06 25 2.65 0.86 0.08 25 2.05 0.56 0.09 25 2.05 0.56

III 128 0.08 32 7.17 1.89 0.09 32 4.40 0.16 0.08 32 4.40 0.89

IV 164 0.08 32 4.78 0.76 0.08 32 3.45 0.08 0.08 32 3.45 0.12

V 189 0.08 41 1.83 0.18 0.08 41 1.83 0.18 0.08 41 1.83 0.18

VI 190 0.08 47 0.64 0.15 0.09 48 0.64 0.21 0.09 48 0.64 0.21

VII 317 0.08 69 1.30 0.40 0.09 69 1.30 0.40 0.09 69 1.30 0.40

VIII 374 0.08 47 2.22 0.45 0.09 47 2.22 0.45 0.08 47 2.22 0.45

IX 600 0.09 25 1.56 0.15 0.13 25 1.16 0.19 0.11 25 1.16 0.19

X 1306 0.14 44 1.37 0.30 0.16 44 1.14 0.17 0.17 44 1.14 0.15

XI 6656 0.50 65 1.87 1.00 0.52 65 1.61 0.72 0.52 65 1.61 0.72

XII 1600 0.28 429 92.66 4.63 0.31 425 90.09 4.37 0.30 425 89.95 4.28

XIII 4375 0.36 35 1.82 0.59 0.39 35 1.82 0.59 0.39 35 1.82 0.59

We can see that the computation time for the lexicographical as well as for the
multi-objective approach is always higher than the one for the original Greedy
algorithm. This is just as expected, since computation and consideration of ac-
tion call distribution takes additional time. Nevertheless we also note, that the
additional time consumption is usually not very significant. The number of action
calls is always equal for all algorithms except for the use cases VI and XII. The
variances are usually decreased when running a modified algorithm, although for
Var2 this does not always hold. This is reasonable as well, since the lexicograph-
ical Greedy optimizes with respect to Var1 first and the multi-objective Greedy
does not consider Var2 at all.

Another conclusion one can draw from the results is, that the two modifica-
tions of Greedy behave quite similarly except for use cases III and IV, where a
significant difference in Var2 can be noticed.

160 D. Güttinger et al.

To sum up this discussion, we present the average values over the eleven first
use cases in table 52. Here we can see, that the variance values obtained by
the original Greedy algorithm can be reduced by almost about 22% on average
when using the lexicographical or the multi-objective approach. The values for
Var2 can be even be improved by almost 50% or 37% on average when using the
lexicographical or the multi-objective approach, respectively.

Table 5. Comparison of Greedy algorithms

Algorithm Avg Time Avg AC0 Avg Var1 Avg Var2
Original 0.121 40.273 2.338 0.558

Lexicographical 0.135 40.364 1.828 0.283

Multi-objective 0.134 40.364 1.828 0.352

4.2 Branch and Bound Based Approaches

Now let us compare the standard Branch and Bound approach from section 2.2
with our extension from 3.3. As parameter we again choose p = 2. The use
cases are similar to the ones from the last section except that XII and XIII
are excluded since the algorithms did not terminate within a reasonable time
constraint. Additionally we have to remark that (in difference to the Greedy
algorithms) redundant test cases as described in 2.2 were removed from the test
suite prior to running the algorithms.

Our results are displayed in table 6. Here the second column (AC) contains the
number of action calls in test suite TS after performing the removal of redundant
test cases, but before running the Branch and Bound algorithms. The third
column (AC0) contains the number of action calls in the resulting test suite
TS0, i. e after performing Branch and Bound. By construction of the algorithms
these numbers are always minimal and thus equal. Columns 4–6 contain further
results for the unmodified standard algorithm, while columns 7–9 contain the
further results for the modification discussed in section 3.3.

Considering use cases IX and XI it is evident, that the lexicographical ap-
proach is totally outperformed by the original algorithm in time. Analyzing this
problem leads to the conclusion, that most of the additional time consumption
yields from the change in line 8 of the algorithm, where a sharp inequality (<)
is replaced with a weak one (≤) in order to return all minimal solutions. Hence,
we also tried to use another modified version, which uses sharp inequality (<)
and therefore does not return all minimal solutions, but only a subset of these.
Afterwards, the best suite with respect to distribution quality is chosen out of
this subset just as in the lexicographical approach. The results for this modified
lexicographical algorithm are displayed in columns 10–12 of table 6.

To compare the algorithms with each other we again computed average values,
which are presented in table 7. One can see that standard Branch and Bound

2 The last two examples have been excluded to ensure comparability with Branch and
Bound results, see below.

Variations over Test Suite Reduction 161

Table 6. Results for Branch and Bound algorithms

Original Lexicographical Lex. Mod.

AC AC0 Time Var1 Var2 Time Var1 Var2 Time Var1 Var2

I 78 16 0.06 0.33 0.00 0.09 0.33 0.00 0.09 0.33 0.00

II 123 17 0.06 1.01 0.14 0.09 1.01 0.20 0.11 1.01 0.14

III 128 32 3.66 7.17 1.89 7.55 4.40 0.16 3.78 4.40 0.16

IV 164 32 9.05 5.32 1.25 24.06 3.45 0.08 9.56 3.45 0.08

V 189 38 0.39 1.45 0.16 0.47 1.45 0.16 0.42 1.45 0.16

VI 190 44 10.25 1.08 0.44 11.28 1.08 0.44 10.28 1.08 0.44

VII 317 64 239.61 0.89 0.28 271.66 0.89 0.27 234.02 0.89 0.27

VIII 185 47 0.06 2.22 0.31 0.11 2.22 0.28 0.11 2.22 0.28

IX 600 25 77.49 1.56 0.31 1755.37 1.16 0.05 81.72 1.16 0.10

X 1089 43 198.68 1.38 0.40 230.98 1.15 0.15 198.94 1.38 0.40

XI 4368 52 19.00 1.13 0.52 484.06 1.00 0.37 19.38 1.00 0.37

and the modified lexicographical version have almost equal computation time
on average (about 50 seconds). Nevertheless the average variance values for the
latter one are considerably better than those for standard Branch and Bound
(about 20% for Var1 and almost 60% for Var2). The average variance values for
the“exact” lexicographical version are of course even smaller, but do not advance
very much (only about 2% for Var1 and 10% for Var2). However, this benefit
comes with the cost of a significant increase in computation time (about 400%).

Table 7. Comparison of Branch and Bound algorithms

Algorithm Avg Time Avg AC0 Avg Var1 Avg Var2
Original 50.755 37.273 2.139 0.518

Lexicographical 253.248 37.273 1.648 0.197

Lex. Mod. 50.765 37.273 1.669 0.218

4.3 Comparison of Results

We can see that for the Greedy as well as for the Branch and Bound approaches
taking distribution of action calls into account can yield to considerably smaller
variances than for the standard versions. Nevertheless except for the lexico-
graphical Branch and Bound algorithm computational effort for the extended
approaches is not significantly higher.

When comparing the results for the extended Branch and Bound with the
extended Greedy approaches we see that the number of action calls for all Branch
and Bound approaches is about 7.5% less on average than the corresponding
numbers for the Greedy strategies. Furthermore, the variance of action calls can
be decreased by about 10% and the variance of action-pair calls even by 22% up
to 43% on average when using an extended Branch and Bound algorithm instead
of lexicographical or multi-objective Greedy. However, for the most examples this
is dearly bought with a dramatically higher computation time in comparison to
the Greedy strategies.

162 D. Güttinger et al.

5 Conclusion

In this paper we presented two classical solutions for the test suite reduction
problem, namely the Branch and Bound algorithm, which computes an exact
solution in exponential time, and the Greedy heuristic, which yields the best
approximation possible in polynomial time. Based on these algorithms we intro-
duced modifications to advance distribution quality.

A main contribution of this paper is the formalization of the term“distribution
quality” itself. With the variances Varp at hand a mathematical description of
the problem can easily be given. Our modifications of the algorithms introduce
simple but effective ways to use this description in order to solve the problem.

Experimental results support these approaches. At no time the result of a
modified algorithm was outperformed by the result of its unmodified counter-
part in distribution quality. Conversely the variances shrunk in most use cases,
at times tremendously. Both variations of the Greedy algorithm performed al-
most equally and were only marginally slower than the unmodified version. On
the other hand it showed that our first modification of Branch and Bound was
significantly slower, such that we would not advice to use it. Nevertheless we
also introduced a variation that comes with nearly the full advantage of a bet-
ter distribution quality, but computes insignificant longer compared to standard
Branch and Bound.

References

1. Black, J., Melachrinoudis, E., Kaeli, D.: Bi-criteria models for all-uses test suite
reduction. In: Proceedings of the 26th International Conference on Software Engi-
neering, ICSE 2004, pp. 106–115. IEEE Computer Society, Washington, DC (2004)

2. Chen, T.Y., Lau, M.F.: A new heuristic for test suite reduction 40(5-6), 347–354
(1998)

3. Chen, T.Y., Lau, M.F.: Dividing strategies for the optimization of a test suite.
Information Processing Letters 60, 135–141 (1996)

4. Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Op-
erations Research 4(3), 233–235 (1979)

5. Gupta, R., Soffa, M.L.: Compile-time techniques for improving scalar access perfor-
mance in parallel memories. IEEE Trans. Parallel Distrib. Syst. 2, 138–148 (1991)

6. Harrold, M.J., Unwersity, C., Gupta, R., Soffa, M.L.: A methodology for controlling
the size of a test suite. ACM Transactions on Software Engineering and Method-
ology 2, 270–285 (1993)

7. Chinneck, J.W.: Practical Optimization: A Gentle Introduction (2003),
http://www.sce.carleton.ca/faculty/chinneck/po.html (Chapter 13)

8. Mansour, N., El-Fakih, K.: Simulated annealing and genetic algorithms for optimal
regression testing. Journal of Software Maintenance 11, 19–34 (1999)

9. Offutt, A.J., Pan, J., Voas, J.M.: Procedures for reducing the size of coverage-based
test sets. In: Proc. Twelfth Int. Conf. Testing Computer Software, pp. 111–123
(1995)

10. Poppendieck, M., Poppendieck, T.: Lean software development: An agile toolkit.
Addison-Wesley Professional (2003)

http://www.sce.carleton.ca/faculty/chinneck/po.html

Variations over Test Suite Reduction 163

11. Rothermel, G., Harrold, M.J., von Ronne, J., Hong, C.: Empirical studies of test-
suite reduction. Journal of Software Testing, Verification, and Reliability 12, 219–
249 (2002)

12. Wang, H.S., Hsu, S.R., Lin, J.C.: A generalized optimal path-selection model for
structural program testing. Journal of Systems and Software 10(1), 55–63 (1989)

13. Wieczorek, S., Stefanescu, A.: Improving Testing of Enterprise Systems by Model-
Based Testing on Graphical User Interfaces. In: 2010 17th IEEE International
Conference and Workshops on Engineering of Computer-Based Systems, pp. 352–
357. IEEE (2010)

14. Yoo, S., Harman, M.: Pareto efficient multi-objective test case selection. In: Pro-
ceedings of the 2007 International Symposium on Software Testing and Analysis,
ISSTA 2007, pp. 140–150. ACM, New York (2007)

Case Studies in Learning-Based Testing

Lei Feng1, Simon Lundmark4, Karl Meinke2, Fei Niu2,
Muddassar A. Sindhu5, and Peter Y.H. Wong3

1 Machine Design Department,
Royal Institute of Technology, Stockholm 10044, Sweden

feng@kth.se
2 School of Computer Science and Communication,

Royal Institute of Technology, Stockholm 10044, Sweden
{karlm,niu}@csc.kth.se

3 SDL Fredhopper, Amsterdam, The Netherlands
peter.wong@fredhopper.com

4 TriOptima AB, Stockholm, Sweden
simon.lundmark@trioptima.com

5 Computer Science Department, Quaid i Azam University, Islamabad, Pakistan
masindhu@qau.edu.pk

Abstract. We present case studies which show how the paradigm of
learning-based testing (LBT) can be successfully applied to black-box
requirements testing of industrial reactive systems. For this, we apply
a new testing tool LBTest, which combines algorithms for incremental
black-box learning of Kripke structures with model checking technology.
We show how test requirements can be modeled in propositional linear
temporal logic extended by finite data types. We then provide benchmark
performance results for LBTest applied to three industrial case studies.

1 Introduction

Learning-based testing (LBT) [7] is an emerging paradigm for black-box require-
ments testing that automates the three basic steps of: (1) automated test case
generation (ATCG), (2) test execution, and (3) test verdict (the oracle step).

The basic idea of LBT is to automatically generate a large number of high-
quality test cases by combining a model checking algorithm with an incremental
model inference or learning algorithm. These two algorithms are integrated with
the system under test (SUT) in an iterative feedback loop. On each iteration of
this loop, a new test case can be generated either by: (i) model checking a learned
model Mi of the system under test (SUT) against a formal user requirement req
and choosing any counterexample to correctness, (ii) using the learning algorithm
to generate a membership query, or (iii) random generation. An LBT tool must
interleave these three TCG methods to achieve an overall testing strategy that is
efficient. Whichever TCG method is chosen, the new test case ti is then executed
on the SUT, and the outcome is judged as a pass, fail or warning. This is done by
comparing a predicted output pi (obtained from Mi) with the observed output
oi (from the SUT). The new input/output pair (ti, oi) is also used to update the

H. Yenigün, C. Yilmaz, and A. Ulrich (Eds.): ICTSS 2013, LNCS 8254, pp. 164–179, 2013.
c© IFIP International Federation for Information Processing 2013

Case Studies in Learning-Based Testing 165

current model Mi to a refined model Mi+1, which ensures that the iteration can
proceed again. If the learning algorithm can be guaranteed to correctly learn in
the limit, given enough information about the SUT, then LBT is a sound and
complete method of testing. In practice, real-world systems are often too large
for complete learning to be accomplished within a feasible timescale. By using
incremental learning algorithms, that focus on learning just that part of the SUT
which is relevant to the requirement req, LBT becomes much more effective.

While algorithms for LBT have been analyzed and benchmarked on small
academic case studies (see [9] and [12]), there has so far been no published
evaluation of this technology on real-world case studies. So the scalability of this
approach is unclear. The work presented here therefore has two aims:

1. to describe the problems and potential of using LBT on real world systems
from a variety of industrial domains;

2. to show that learning-based testing is scalable to large industrial case studies,
by measuring concrete performance parameters of the LBT tool LBTest.

The organization of this paper is as follows: In Section 3, we give an introduc-
tion to requirements testing with the LBTest tool focussing on its requirements
language. In Section 4, we describe industrial case studies with the LBTest tool
from three different industrial domains: web, automotive and finance. Finally in
Section 5, we give some conclusions and future directions of research.

2 Related Work

A tutorial on the basic principles of LBT and their application to different types
of SUTs can be found in [10]. The origin of some of these ideas can be traced
perhaps as far back as [17]. Experimental studies of LBT using different learning
and model checking algorithms include [12], [7], [8] and [9]. These experiments
support the thesis that LBT can substantially outperform random testing as a
black-box requirements testing method.

Several previous works, (for example Peled et al. [13], Groce et al. [5] and Raf-
felt et al. [14]) have also considered a combination of learning and model check-
ing to achieve testing and/or formal verification of reactive systems. Within the
model checking community, the verification approach known as counterexam-
ple guided abstraction refinement (CEGAR) also combines learning and model
checking (see e.g. Clarke et al. [3] and Chauhan et al. [1]). The LBT approach
can be distinguished from these other approaches by: (i) an emphasis on test-
ing rather than verification, and (ii) use of incremental learning algorithms, as
well as other optimisations, specifically chosen to make testing more effective
and scalable. This related research does not yet seem to have lead to practical
testing tools. LBTest is the first LBT tool to be used in industrial environments.

Inductive testing (Walkinshaw et al. [16]) is a black-box testing technique that
also uses automata learning algorithms. However, this approach is more focussed
on finding untrapped exceptions then testing formal user requirements (model
checking is not used). Despite its different aim, [16] confirms our own findings
that learning algorithms give more efficient search methods than random testing.

166 L. Feng et al.

In contrast with model-based testing tools, such as Conformiq Designer [4] or
ModelJUnit [15], which perform test case generation using a design model (such
as a UML model), LBTest reverse engineers its own models for testing purposes.
Thus LBTest is advantageous in agile development since its models do not have
to be manually designed or re-synchronised with code changes.

3 Requirements Testing with LBTest

A platform for learning-based testing known as LBTest [11] has been developed
within the EU project HATS FP7-231620. This platform supports black-box
requirements testing of fairly general types of reactive systems. The main con-
straint on applying LBTest is that it must be possible to model a particular
SUT by a deterministic finite state machine.

The inputs to LBTest are a black-box SUT and a set of formal user require-
ments to be tested. The tool is capable of generating, executing and judging a
large number of tests cases within a short time. In large case studies, the main
limitation on test throughput is the average execution time of a single test case
on the SUT. (This will be seen in case study 3 of Section 4.3.)

For user requirements modeling, the formal language currently supported in
LBTest is propositional linear temporal logic (PLTL) extended by finite data
types. PLTL formulas can express both: (i) safety properties which are invariants
that may not be violated, and (ii) liveness properties, including use cases, which
specify intended dynamic behaviors. A significant contribution of LBTest is its
support for liveness testing. Our case studies in Section 4 will provide examples
of both safety and liveness testing.

Currently in LBTest, only one (external) model checker is supported, which is
NuSMV [2]. Further interfaces are planned in the future. The learning algorithm
currently available in LBTest is the IKL algorithm [12], which is an algorithm for
incremental learning of deterministic Kripke structures. New learning algorithms
are also in development for future evaluation.

3.1 PLTL as a Requirements Modeling Language

In the context of reactive systems analysis, temporal logics have been widely
used to formally model user requirements. From a testing perspective, linear
time temporal logic (LTL) with its emphasis on the properties of paths or ex-
ecution sequences, is a natural choice. The design philosophy of LBTest is to
generate, execute and judge as many test cases as possible within a given time
limit. This requirement places stringent requirements on the efficiency of model
checking LTL formulas. Therefore, only model checking of propositional linear
temporal logic (PLTL) formulas is currently considered. However, in an effort to
make PLTL more user-friendly (by hiding low-level Boolean encodings) LBTest
supports an extended PLTL with user-defined symbolic finite data types.

To use LBTest correctly it is important to understand the precise syntax of
the requirements modeling language. Our data type model is based on the well

Case Studies in Learning-Based Testing 167

known algebraic model of abstract data types, involving many-sorted signatures
and algebras (see e.g. [6]).

3.1.1 Definition
A finite data type signature Σ consists of a finite set S of sorts or types, and for
each sort s ∈ S, a finite set Σs of constant symbols all of the same type s.

3.1.2 Definition
Let S be a finite set of sorts containing a distinguished sort in ∈ S, and let Σ be
a finite data type signature. The syntax of the language PLTL(Σ) of extended
propositional linear temporal logic over Σ has the following BNF definition:

φ ::= ⊥ | % | s = c | s �= c| (¬φ) | (φ1 ∧ φ2) | (φ1 ∨ φ2) |(φ1 → φ2) | (Xφ) |
(Fφ) | (Gφ) | (φ1Uφ2)| (φ1Wφ2)| (φ1R φ2)

where s ∈ S and c ∈ Σs. This logic has a simple but strict typing system.
The atomic formulas of PLTL(Σ) are equations and inequations over the

data type signature Σ for defining input and output operations. Only a single
variable symbol of each type is allowed, to support a simple black-box interface
to the SUT. We overload each type symbol s ∈ S to also name a unique SUT
read or write variable of type s. The distinguished sort in ∈ S denotes the single
SUT write variable, while every other type s ∈ S denotes an SUT read variable.

The language PLTL(Σ) can be given a formal Kripke semantics, in a rou-
tine way, over any algebra that interprets the data type signature Σ. A precise
definition is omitted for brevity. Informally, the symbols ⊥, %, ¬, ∧, ∨ and →
denote the usual Boolean constants and connectives. The symbols X , F , G, U ,
W and R denote the temporal operators. Thus, Xφ means that φ is true in the
next state, Fφ means that φ is true sometime in the future, Gφ means that φ is
always true in the future and U is the binary operator which means that φ1 will
remain true until a point in the future when φ2 becomes true. The two operators
W and R stand for weak until and release respectively.

4 Case Studies in Learning-Based Testing

We can now present three industrial case studies which were tested with LBTest.
These were: (i) an access server (FAS) from Fredhopper , (ii) a break-by-wire
system (BBW) from Volvo Technology, and (iii) a portfolio compression service
(triReduce) from TriOptima . These case studies represent mature applications
from the domains of web, automotive and finance. The tool was able to find
errors in each of them, which is a promising achievement. These case studies
have the following basic characteristics:

– FAS is an e-commerce application which has been developed and evolved
over 12 years. Its various modules have been tested with automated and
manual techniques. Requirements modeling involved events and finite data
types.

168 L. Feng et al.

Data and Config
Updates

Live

Live

Configs updates

Staging ...

Client
App

Client
App

Client
App

Data updates
Live... Load

balancer

IN
T

E
R

N
E

T

ClientJob

ClientJob

ClientJob

Boot

SyncClient ...

SyncServer

Connection
Thread

Connection
Thread

Connection
Thread

...

schedule

schedule

schedule

Replication

Replication

(a) (b)

Fig. 1. (a) an FAS Deployment and (b) Interactions in the Replication System

– BBW is relatively new embedded application from the automobile industry,
which has not yet been widely adopted. It has strict timing constraints to
ensure the safety of the vehicle. Requirements modeling involved events and
infinite data types.

– triReduce service has been developed using Django, a popular web frame-
work for the Python programming language. It involves significant use of dy-
namically changing databases, so test set-up and tear-down are non-trivial.
Requirements modeling involved events and finite data types.

Requirements modeling for the BBW case study was particularly challenging
due to the presence of the infinite floating point data type. This required an
extension of LBTest to support partition testing by discretising each floating
point domain.

4.1 Case Study 1: Access Server

The Fredhopper Access Server (FAS) is a distributed, concurrent OO system
developed by Fredhopper that provides search and merchandising services to e-
Commerce companies, including structured search capabilities within the client’s
data. Fig. 1(a) shows the deployment architecture used to deploy an FAS to a
customer. An FAS consists of a set of live environments and a single staging en-
vironment. A live environment processes queries from client web applications via
web services. A staging environment is responsible for receiving data updates in
XML format, indexing the XML, and distributing the resulting indices across all
live environments according to the Replication Protocol. The Replication Pro-
tocol is implemented by the Replication System which consists of a SyncServer
at the staging environment and one SyncClient for each live environment. The
SyncServer determines the schedule of replication jobs, as well as their contents,
while SyncClient receives data and configuration updates according to the sched-
ule. Fig. 1(b) shows the interactions in the Replication System. Informally, the

Case Studies in Learning-Based Testing 169

Replication Protocol is as follows: the SyncServer begins by listening for connec-
tions from SyncClients. A SyncClient creates and schedules a ClientJob object
with job type Boot that connects immediately to the SyncServer. The Sync-
Server then creates a ConnectionThread to communicate with the SyncClient’s
ClientJob. The ClientJob asks the ConnectionThread for replication schedules,
notifies the SyncClient about the schedules, receives a sequence of file updates
according to the schedule from the ConnectionThread and terminates.

The existing QA practise at Fredhopper is to run a daily QA process. The
core component (~160,000 LoC) of FAS, including the Replication System has
2500+ unit tests (more with other parts of FAS). There is also a continuous
build system that runs the unit tests and a set of 200+ black box test cases
automated using the WebDriver Selenium for every code change / 3rd library
change to FAS. Moreover, for every bug fix or feature addition, specific manual
test cases are run by a QA team and for every release, a subset of standard
manual test cases (900+) is executed by the QA team.

The SUT was a Java implementation of the SyncClient, consisting of about
6400 lines of Java code organized into 44 classes and 2 interfaces. Specifically,
we were interested to test the interaction between a SyncClient and a ClientJob
by learning the SyncClient as a Kripke structure over the input data type

Σin = {setAcceptor, schedule, searchjob, businessJob, dataJob,

connectThread, noConnectionThread}
Four relevant output data types were identified as follows:

Σschedules = {φ, {search}, {business}, {business, search}, {data},

{data, search}, {data, business}, {data, business, search}}.
Σstate = {Start,WaitToBoot,Boot,WaitToReplicate,WorkOnReplicate,

WorkOnReplicate,End},
Σjobtype = {nojob,Boot, SR,BR,DR}, Σfiles = {readonly,writeable}.

Eleven informal user requirements were then formalized in PLTL(Σ). Below,
for brevity, we only reproduce some of these requirements formally.
Requirement 1: If the SyncClient is at state Start and receives an acceptor,
the client will proceed to state WaitToBoot and execute a boot job.

G(state = Start ∧ in = setAcceptor → X(state = WaitToBoot ∧ jobtype = Boot))

Requirement 2: If the SyncClient’s state is either WaitToBoot or Booting
then it must have a boot job (Jobtype = Boot), and if it has a boot job, its state
can only be one of WaitToBoot, Booting, WaitToReplicate or End.1

G(state ∈ {WaitT oBoot, Booting} → jobtype = Boot ∧
1 The membership relation ∈ used in Requirement 2 and elsewhere does not belong

to PLTL(Σ) but is a macro notation that can be replaced automatically.

170 L. Feng et al.

jobtype = Boot→ state ∈ {WaitT oBoot, Booting, WaitT oReplicate, End})

Requirement 3: If the SyncClient is executing a Boot job (Jobtype = Boot)
and is in state WaitToBoot and receives a connection to a connection thread,
it will proceed to state Booting.
Requirement 4: If the SyncClient is executing a Boot job (Jobtype = Boot)
and is in state Booting and receives schedules (schedule), it will proceed to state
WaitToReplicate and it will queue all schedules (schedules = { data, business,
search}).
Requirement 5: If the SyncClient is executing a replication job jobtype ∈ {
SR, BR, DR} and is in state WaitToReplicate and receives a connection to a
connection thread, the client will proceed to state WorkOnReplicate
Requirement 6: If the SyncClient is waiting either to replicate or boot and
there is no more connection, the client proceeds to the End state.
Requirement 7: Once the SyncClient is in the End state, it cannot go to
another different state.
Requirement 8: If it is not in the End state then every schedule that the
SyncClient possesses will eventually be executed as a replication job.

G(state �= End→

search ∈ schedules→ (F (jobtype = SR U state = End)) ∧

business ∈ schedules→ (F (jobtype = BR U state = End)) ∧

data ∈ schedules→ (F (jobtype = DR U state = End)))

Requirement 9: The SyncClient cannot modify its underlying file system (files
= readonly) unless it is in state WorkOnReplicate.
Requirement 10: If the SyncClient is executing a replication job for a particular
type of schedule, then that job can only receive schedules for that particular type
of schedule.
Requirement 11: If the SyncClient has committed to a schedule of a partic-
ular type and eventually that schedule is executed as a replication job then that
schedule will be removed from the queue.

Table 1 gives the results obtained by running LBTest to test these 11 user
requirements on the FAS SyncClient. For each requirement, Table 1 breaks down
the total number of test cases used into three figures (columns 5, 6 and 7) which
count the test cases generated by each of the three different TCG methods:
model checker, learner and random. The total testing time (column 3) is the
time taken to execute all three types of test cases. For each requirement, Table
1 gives the final verdict (column 2) i.e. pass/fail/warning. Column 4 gives the
size of the learned hypothesis model at test termination. To terminate each
experiment, a maximum time bound of 5 hours was chosen. However, if the
hypothesis model size had not changed over 10 consecutive random tests, then
testing was terminated earlier than this.

Case Studies in Learning-Based Testing 171

Table 1. Performance of LBTest on Fredhopper Access Server case study

PLTL Re-
quirement

Verdict Total
Testing
Time

(hours)

Hypothesis
size

(states)

Model
checker
tests

Learning
tests

Random
tests

Req 1 pass 5.0 8 0 50,897 45
Req 2 pass 5.0 15 2 49,226 13
Req 3 pass 1.7 11 0 16,543 17
Req 4 pass 2.1 11 0 20,114 14
Req 5 pass 2.5 11 0 24,944 17
Req 6 pass 2.3 11 0 23,215 16
Req 7 pass 2.1 11 0 18,287 17
Req 8 warning 1.9 8 15 18,263 12
Req 9 warning 3.8 15 18 35,831 18
Req 10 pass 2.7 11 0 26,596 19
Req 11 pass 4.6 11 0 45,937 21

Thus for example: Requirement 1 was tested for a total of 5 hours using 50,942
test cases, of which 50,897 were generated by the learning algorithm, 45 were
generated randomly, and 0 were generated by the model checker. We see that
learner generated queries dominate, though generally this is influenced by the
kind of learning algorithm used (here IKL [12]). Around 10,000 test cases per
hour were generated, executed and evaluated. This test throughput does not
vary much across the 11 different requirements. On large SUTs, test throughput
is mainly determined by the average execution speed of a single test case. Since
Requirement 1 was passed, we can infer that the model checker was called 45
times, but on each occasion it failed to find a counterexample, so that a random
test case was used instead.

4.1.1 Discussion of Errors Found
Nine out of eleven requirements were passed. For Requirements 8 and 9, LBTest
gave warnings (due to a loop in the counterexample) corresponding to tests of
liveness requirements that were never passed. The counterexample for both these
requirements was “setAcceptor,Schedule,businessJob,businessJob”. After the first
instance of symbol “businessJob” , a loop occurred in the counterexample which
was unfolded just once. This counterexample violated Requirement 8 because
if we keep reading the input businessJob from the state reached after the first
“businessJob” the SUT does not go to the end state as specified. It also violates
Requirement 9 because the start state is reached after reading this sequence
rather than WaitOnReplicate or End states as specified. Neither of these states
is ever reached if we keep reading the input businessJob from this state. A careful
analysis of these requirements showed that both involved using the U (strong
Until) operator. When this was replaced with a W (weak Until) operator no
further warnings were seen for Requirement 9. Therefore this was regarded as an

172 L. Feng et al.

M_abs: Brake Torque

1

Threshold_10km/h

If v>=10 km/h

T: Requested Torque (Nm)

v: Vehicle Velocity (km/h)

w: wheel Rotation (rpm)

BrakeTorque

function

f()

w: wheel Rotation (rpm)

3

v: Vehicle Velocity (km/h)

2

T: Requested Torque (Nm)

1

Fig. 2. A High Level Simulink Model of the BBW System

error in the user requirements. However, LBTest continued to produce warnings
for Requirement 8, corresponding to a true SUT error. So in this case study
LBTest functioned to uncover errors both in the user requirements and in the
SUT.

4.2 Case Study 2: Brake-by-Wire

The Volvo Technology BBW system is an embedded vehicle application with
ABS function, where no mechanical connection exists between the brake pedal
and the brake actuators applied to the four wheels. A sensor attached to the
brake pedal reads the pedal’s position percentage, which is used to compute
the desired global brake torque. A software component distributes this global
brake torque request to the four wheels. At each wheel, the ABS algorithm
uses the corresponding brake torque request, the measured wheel speed, and
the estimated vehicle speed to compute the actual brake torque on the wheel.
For safety purposes, the ABS controller in the BBW system must release the
corresponding brake actuator when the slip rate of any wheel is larger than the
threshold (e.g., 20%) and the vehicle is moving at a speed of above certain value,
e.g., 10 km/h. A Simulink model of the BBW system is shown in Figure 2.

The BBW is a typical distributed system, which is realised by five ECUs (elec-
tronic control units) connected via a network bus. The central ECU is connected
to the brake and acceleration (gas) pedals. The other four ECUs are connected
to four wheels. The software components on the central ECU manage the brake
pedal sensor, calculation of the global brake torque from the brake pedal po-
sition, and distribution of the global torque to the four wheels. The software
components on each wheel ECU measure the wheel speed, control the brake ac-
tuator, and implement the ABS controller. The BBW is a hard real-time system
with some concrete temporal constraints that could not be modeled in PLTL.

Case Studies in Learning-Based Testing 173

For this it runs ’continuously’ with high frequency sampling using two clocks (5
and 20 ms). The BBW has:

– two real-valued inputs : received from the brake and gas pedals to identify
their positions, denoted by breakPedalPos and gasPedalPos respectively. The
positions of both pedals are bounded by the interval [0.0, 100.0].

– nine real-valued outputs : denoting the vehicle speed vehSpeed, rotational speeds
of the four wheels (front right, front left, rear right and rear left) ωSpeedFR,
ωSpeedFL,ωSpeedRR andωSpeedRL respectively.These speeds are bounded
by the interval [0.0, 111.0]. The torque values on these wheels are denoted by
torqueOnFR, torqureOnRL, torqueOnRR and torqueOnRL respectively. All
torque values are bounded by the interval [0.0, 3000.0]Nm.

The SUT consisted of a Java implementation of the BBW consisting of about
1100 lines of code.

The problem of discretely modeling floating point data types was addressed
by partition testing. For this, the two inputs were discretised into a set of four
input events given by Σin = {brake, acc, accbrake, none}, where the values brake
and acc represented the conditions brakePedalPos = 100.0 and accPedalPos =
100.0 respectively. Also accbrake represented the condition brakePedalPos =
100.0 ∧ accPedalPos = 100.0 and none represented brakePedalPos = 0.0 ∧
accPedalPos = 0.0 respectively.

Exploiting symmetrical user requirements on all four wheels, four finite output
data types for the vehicle speed and one single wheel (front right) were identified
as:

Σspeed = {vehicleStill, vehicleMove, vehicleDecreased}
ΣwheelRotateFR = {zero, nonZero}

ΣtorqueFR = {zero, nonZero}
ΣslipFR = {slipping, notSlipping}

The floating point values of each output variable were mapped to the corre-
sponding set of output events in Σ by using discretisation formulas. Effectively,
each event represents a partition class. These formulas are defined in Table 2,
and they were implemented within the SUT adapter which was used to connect
the BBW to LBTest.

Note that in Table 2, vehSpeedi represents the vehicle speed at i-th event
and hence the speed change at i-th event is vehSpeedi−vehSpeedi−1. The units
of measurement for vehSpeedi are km/h and the vehicle is considered as still
at the i-th event if vehSpeedi ≤ 10 otherwise it is considered to be in motion.
The vehicle is considered to be decelerating at the i-th event if vehSpeedi <
vehSpeedi−1 and vehSpeedi−1 > 0. The units of angular speed of the wheels
are also converted into km/h inside the Java code of the SUT from the usual
rpm. This was essential to calculate the slip rate of the wheels. The slip rate
(denoted by slip) of a wheel (e.g front right) is the ratio of the difference of
vehSpeed−ωSpeedFR and the vehicle speed vehSpeed. The vehicle is considered
slipping when the slip rate slip > 0.2 otherwise the vehicle is considered not

174 L. Feng et al.

Table 2. BBW Discretisation Formulas

Output Value Discretisation Formula
vehicleStill vehSpeed ≤ 10.0

vehicleMove vehSpeed > 10.0

vehicleDecreased vehSpeedi < vehSpeedi−1 ∧ vehSpeedi−1 > 0

nonZero : wheelRotateFR ωSpeedFR > 0

Zero : wheelRotateFR ωSpeedFR = 0

nonZero : torqueFR torqueOnFR > 0

Zero : torqueFR torqueOnFR = 0

slipping 10 ∗ (vehSpeed− ωSpeedFR) > 2 ∗ vehSpeed

slipping. After this partitioning of the input and output values, three informal
requirements were formalized in PLTL(Σ) as follows:
Requirement 1: If the brake pedal is pressed and the wheel speed (e.g., the
front right wheel) is greater than zero, the value of brake torque enforced on
the (front right) wheel by the corresponding ABS component will eventually be
greater than 0.

G(in = brake→ F (wheelRotateFR = nonZero→ torqueFR = nonZero))

Requirement 2: If the brake pedal is pressed and the actual speed of the vehicle
is larger than 10 km/h and the slippage sensor shows that the (front right) wheel
is slipping, this implies that the corresponding brake torque at the (front right)
wheel should be 0.

G((in = brake ∧ speed = vehicleMove ∧ slipFR = slipping) → torqueFR = zero)

Requirement 3: If both the brake and gas pedals are pressed, the actual vehicle
speed shall be decreased.

G(in = accbrake→ X(speed = vehicleDecreased))

Table 3. Performance of LBTest on the Brake-by-Wire case study

PLTL Re-
quirement

Verdict Total
Testing
Time
(min)

Hypothesis
Size (States)

Model
Checker
Tests

Learning
Tests

Random
Tests

Req 1 Pass 34.4 11 0 1501038 150
Req 2 Fail 1.0 537 18 34737 2
Req 3 Pass 16.0 22 0 1006275 130

Case Studies in Learning-Based Testing 175

4.2.1 Discussion of Errors Found
Table 3 shows the results of testing BBW with LBTest using the three LTL
requirements defined above. Noteworthy are the large volumes of test cases and
short session times, due to fast execution of individual test cases. Requirements 1
and 3 were passed, while LBTest continued to give errors for Requirement 2 with
different counterexamples during several testing sessions we ran. The shortest
counterexample found during these sessions was “acc,acc,acc,acc,acc,brake”. This
means that when the brake pedal is pressed, after the vehicle has acquired a speed
greater than 10 km/h, and at that time when the slip rate of a wheel is greater
than 20%, then the SUT does not always have zero torque on the slipping wheel.
All other counterexamples suggested a similar pattern of behaviour.

4.3 Case Study 3: triReduce

TriOptima is a Swedish IT company in the financial sector which provides
post-trade infrastructure and risk management services for the over-the-counter
(OTC) derivatives market. Financial markets involve a constantly changing and
strict regulatory framework. To keep up with such changes, agile software de-
velopment methodologies are important. However, short development cycles are
difficult without test automation, and ATCG is therefore a valuable addition to
quality assurance methods.

A derivative is a financial instrument whose value derives from the values of
other underlying variables. It can be used to manage financial risk. Millions of
derivatives are traded every day. Yet many of these trades are not necessary to
maintain a desired risk position versus the market. Financial institutions can
participate in portfolio compression activities to get rid of unnecessary trades.
The triReduce portfolio compression service runs in cycles, each cycle focuses on
a different product type, for example interest rate swaps or credit default swaps.
Each cycle has four main steps:

1. Preparation. Before participating, each financial institution must complete a
legal process which results in a protocol adherence.

2. Sign up. Parties can log in to the service to review the schedule for upcoming
compression cycles and sign up, indicating they will participate.

3. Linking. During this phase, each participating party uploads their portfolio
of trades, complementing the other participants in the cycle. The trades are
automatically matched, determining which trades are eligible for compres-
sion. During linking, each participant sets their parameters for controlling
movements in the market and credit risk.

4. Live execution. After calculating a multilateral unwind proposal, the differ-
ent parties verify this and indicate acceptance. When all participants have
indicated acceptance, the proposed trades are legally terminated.

TriOptima delivers the triReduce service through a web application that is
developed in Python using the Django Framework. Django is based on a Model-
View-Controller-like (MVC) software architecture pattern, where the models are
tightly coupled to relational database models, implemented as Python classes.

176 L. Feng et al.

In general, testing TriOptima involves isolating test case executions so that the
ordering of test cases in a suite does not matter. Clearing the databases and
caches between test executions would properly isolate them. However, setting
up and tearing down the entire database is not feasible in this case since triRe-
duce has a code base almost 100 times larger than the FAS at about 619 000 LoC
(including large dependencies like Django). It is a database intensive application
with customers uploading trade portfolios containing thousands of trades. Han-
dling this data efficiently takes several hundred database models and relational
database tables. Creating these blank database tables and their indexes can take
time in the order of minutes. Therefore, a special SUT adapter was written to
effectively isolate each test case execution by performing an efficient database
rollback between individual test cases. This SUT adapter was implemented in a
general way that could be used for any other Django web application.

Authentication solves the problem of deciding who a certain user is. Autho-
rization solves the problem of deciding if a certain (authenticated) user is allowed
to perform a certain operation. A central component of any Django application is
its user authentication system. A central and extremely important part of triRe-
duce is deciding what a user may or may not do in the system. For example, a
simplified view of the user authorization in triReduce can be described as follows.
A user is a member of a party (a legal entity). There are also user accounts for
TriOptima staff. To sign up for a triReduce compression cycle, the party must
have the correct protocol adherence stored in the system. (The protocol can be
seen as a legally binding contract between TriReduce and the party.) Only staff
users may add or remove protocol adherences for parties. Because of their criti-
cal importance for system integrity, requirements related to authentication and
authorization were the focus of this LBTest case study.

For this specific focus, the input data type was defined by:

Σin = {next_subject, login, adhere_to_protocol}
and four relevant output data types were identified as:

Σstatus = {ok, client_error, internal_error}

Σsubject = {none, root, a_alice, b_bob}
Σlogged_in = {anonymous, staff , bank_a, bank_b}

Σprotocol = {not_adheres, adheres}, Σsignup = {prohibited, allowed}.
Five functional requirements were then formalised in PLTL(Σ):

Requirement 1: The status must always be okay.

G(status = ok)

Requirement 2: If Bank A is not logged in, and does log in, then Bank A should
become logged in.

G(logged_in ∈ {bank_b, staff , anonymous} ∧
subject = a_alice ∧ in = login→ X(logged_in = bank_a))

Case Studies in Learning-Based Testing 177

Requirement 3: Cycle signup should be prohibited until a bank adheres to the
protocol.

G((logged_in = bank_a→ cycle_signup = prohibited) U

(logged_in = bank_a→ adheres_to_protocol = adheres))

Requirement 4: Cycle signup should be prohibited until a bank adheres to the
protocol, and general system status should always be ok, i.e. 3 and 1 together.
Requirement 5: If bank A adheres to the protocol, then cycle signup for bank
A should always be allowed.

G((logged_in = bank_a→ adheres_to_protocol = adheres)→

G(logged_in = bank_a→ cycle_signup = allowed))

4.3.1 Discussion of Errors Found
Three different types of errors were found within four types of experiments,
which could be classified as follows.

1. Injected Errors. Injecting errors into the SUT was a way of confirming that
LBTest was working as intended. Below, we describe some examples of doing
this, and the results may be seen in Table 4. Here, three versions of triReduce
were used:

– triReduce 1: The standard version.
– triReduce 2: An error is injected, the password of the b_bob user was changed.
– triReduce 3: Another error is introduced, switching the meaning of logging

in as user a_alice and b_bob.

2. Errors in the SUT Adapter. While testing Requirement 3 and observing the
log output, some SUT output contained status states that were not ok. Thus
internal errors were arising in the SUT, which no requirement had covered.
Therefore Requirement 1 and Requirement 3 were combined resulting in Require-
ment 4. After about 55 minutes of LBTest execution it found a counterexample
to Requirement 4. This error was easily traced to the SUT adapter, the code
connecting LBTest to triReduce, and was quickly fixed.

Table 4. Results of injecting errors into triReduce

Req. # SUT Verdict Comment
1 triReduce 1 Pass Stopped after learning a model of 16 states

using 5 hypothesis models, after 18 min.
1 triReduce 2 Warning Counterexample found in the sixth hy-

pothesis (size 8 states) after only 3.8 min.
2 triReduce 1 Pass As previously, stopped after learning 5 hy-

pothesis models in 13 min.
2 triReduce 3 Warning Counterexample found after 98 seconds at

a hypothesis size of 4 states.

178 L. Feng et al.

3. Errors in Requirements. Executions of LBTest found an error in the orig-
inal formalisation of Requirement 3, due to using ∧ instead of → (a common
mistake for beginners). LBTest was able to detect this, by producing a spurious
counterexample within a minute on the faulty LTL requirement.

4. Successful Lengthy LBTest Executions. Requirement 5, was tested to see how
LBTest would behave in much longer testing sessions. Two 7 hour testing sessions
were successfully executed with LBTest. Both terminated with a “pass” verdict
after about 86000 SUT executions and hypothesis sizes of up to 503 states. The
log files were manually checked and contained no errors.

5 Conclusions and Future Work

We have applied LBTest, a learning-based testing tool, to three industrial case
studies from the web, automotive and finance sectors. The tool successfully found
errors in all three case studies (albeit injected errors for triReduce). This is de-
spite the fact that one case study (the FAS) had been operational for a relatively
long time. The tool supported formal requirements debugging in two case stud-
ies, which is often considered to be problematic. The successes of these large case
studies suggest that LBT is already a scalable technique, that could be further
improved with better learning algorithms.

The third case study (triReduce), is the largest that has been tested using
LBTest to date. While no SUT errors were found, we note that this study was
performed by a test engineer external to the original LBTest research team. An
early version of LBTest, with limited documentation and guidance was used.
This suggests that LBT technology should be transferable to industry.

These case studies illustrate the scope and potential for LBT within different
industrial domains and problems. They also illustrate the practical difficulties of
using LBT within an industrial environment, including requirements modeling
and implementing appropriate SUT adapters.

Future research will consider more efficient learning algorithms which can re-
duce both the number of test cases and the time needed to discover errors. The
combination of partition testing with LBT, used in the BBW case study, also
merits further research to understand its scope and limits. In [9], we investigated
extensions of LBT with more powerful model checkers for full first-order linear
temporal logic. However, it remains to be seen whether this approach is com-
petitive with the much simpler but less precise partition testing method used
here.

We gratefully acknowledge financial support for this research from the Higher
Education Commission (HEC) of Pakistan, the Swedish Research Council (VR)
and the European Union under project HATS FP7-231620 and ARTEMIS project
269335 MBAT.

Case Studies in Learning-Based Testing 179

References

1. Chauhan, P., Clarke, E.M., Kukula, J.H., Sapra, S., Veith, H., Wang, D.: Au-
tomated abstraction refinement for model checking large state spaces using SAT
based conflict analysis. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002.
LNCS, vol. 2517, pp. 33–51. Springer, Heidelberg (2002)

2. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495–
499. Springer, Heidelberg (1999)

3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
4. conformiq. The conformiq designer tool,

http://www.conformiq.com/products/conformiq-designer/
5. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. Logic Journal of

the IGPL 14(5), 729–744 (2006)
6. Loeckx, J., Ehrich, H.-D., Wolf, M.: Specification of abstract data types. Wiley

(1996)
7. Meinke, K.: Automated black-box testing of functional correctness using function

approximation. In: ISSTA 2004: Proceedings of the 2004 ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, pp. 143–153. ACM, New
York (2004)

8. Meinke, K., Niu, F.: A learning-based approach to unit testing of numerical soft-
ware. In: Petrenko, A., Simão, A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS,
vol. 6435, pp. 221–235. Springer, Heidelberg (2010)

9. Meinke, K., Niu, F.: Learning-based testing for reactive systems using term rewrit-
ing technology. In: Wolff, B., Zaïdi, F. (eds.) ICTSS 2011. LNCS, vol. 7019, pp.
97–114. Springer, Heidelberg (2011)

10. Meinke, K., Niu, F., Sindhu, M.: Learning-based software testing: a tutorial. In:
Hähnle, R., Knoop, J., Margaria, T., Schreiner, D., Steffen, B. (eds.) ISoLA 2011
Workshops 2011. CCIS, vol. 336, pp. 200–219. Springer, Heidelberg (2012)

11. Meinke, K.: Muddassar A. Sindhu. LBTest: A learning-based testing tool for reac-
tive systems. In: Proc. of the Sixth IEEE Int. Conf. on Software Testing, Verifica-
tion and Validation, ICST 2013. IEEE Computer Society (to appear, 2013)

12. Meinke, K., Sindhu, M.A.: Incremental learning-based testing for reactive systems.
In: Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 134–151. Springer,
Heidelberg (2011)

13. Peled, D., Vardi, M.Y., Yannakakis, M.: Black-box checking. In: Formal Methods
for Protocol Engineering and Distributed Systems FORTE/PSTV, pp. 225–240.
Kluwer (1999)

14. Raffelt, H., Steffen, B., Margaria, T.: Dynamic testing via automata learning. In:
Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 136–152. Springer, Heidelberg
(2008)

15. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann Publishers Inc., San Francisco (2006)

16. Walkinshaw, N., Bogdanov, K., Derrick, J., Paris, J.: Increasing functional coverage
by inductive testing: a case study. In: Petrenko, A., Simão, A., Maldonado, J.C.
(eds.) ICTSS 2010. LNCS, vol. 6435, pp. 126–141. Springer, Heidelberg (2010)

17. Weyuker, E.: Assessing test data adequacy through program inference. ACM Trans.
Program. Lang. Syst. 5(4), 641–655 (1983)

http://www.conformiq.com/products/conformiq-designer/

H. Yenigün, C. Yilmaz, and A. Ulrich (Eds.): ICTSS 2013, LNCS 8254, pp. 180–195, 2013.
© IFIP International Federation for Information Processing 2013

Techniques and Toolset for Conformance Testing
against UML Sequence Diagrams*

João Pascoal Faria1,2, Ana C.R. Paiva1, and Mário Ventura de Castro1,2

1 Department of Informatics Engineering, Faculty of Engineering, University of Porto, Portugal
{jpf,apaiva,ei06064}@fe.up.pt

2 INESC TEC, Porto, Portugal

Abstract. Novel techniques and a toolset are presented for automatically testing
the conformance of software implementations against partial behavioral models
constituted by a set of parameterized UML sequence diagrams (SDs), describ-
ing both external and internal interactions. Test code is automatically generated
from the SDs and executed on the Java implementation under test, and test
results and coverage information are presented back visually in the model. A
runtime test library handles internal interaction checking, test stubs, and user in-
teraction testing. Incremental conformance checking is achieved by first trans-
lating SDs to non-deterministic acceptance automata with parallelism.

Keywords: conformance testing, UML, sequence diagrams, automata.

1 Introduction

UML sequence diagrams (SDs) [1] allow building partial, lightweight, behavioral
models of software systems, focusing on important scenarios and interactions, occur-
ring at system boundaries or inside the system, capturing important requirements and
design decisions. Such partial behavioral models may be not sufficient as input for
code generation [2], but can be used as input for automatic test generation (as test
specifications), using model-based testing (MBT) techniques [3]. However, existing
MBT techniques from SDs have several limitations, namely in the final stages of test
automation, dealing with the generation of executable tests and conformance analysis,
taking into account the features of UML 2 (see Related Work section).

The overcome some of those limitations, in previous work [4], we developed a pro-
totype tool that generates automatically JUnit [5] tests from SDs, to be executed by
the user in the development environment with the support of a run-time test library.
However, the test code and test results were difficult to interpret by the user and the
test library had important limitations in terms of its design and functionality (namely,
it lacked the support for weak sequencing). In this paper, we completely redesigned
the whole approach, bringing the following contributions for enabling the automatic

* This work is part-funded by the ERDF – European Regional Development Fund through the

COMPETE Programme (operational programme for competitiveness) and by National Funds
through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for
Science and Technology) within project «FCOMP - 01-0124-FEDER-022701».

 Techniques and Toolset for Conformance Testing against UML Sequence Diagrams 181

conformance testing of software implementations (currently in Java) against UML
SDs, in a modular and extensible way:

• novel techniques for incremental conformance checking, complying with the de-
fault weak sequencing semantics of UML SDs [1], based on the translation of SDs
to non-deterministic automata with parallelism, that are executed stepwise;

• related techniques for execution tracing and manipulation, namely internal interac-
tion tracing, test stub injection and user interaction tracing, taking advantage of
aspect-oriented programming (AOP) techniques and reflection;

• related techniques for test code generation from the model and test results visuali-
zation in the model (conformance errors and coverage information), raising the
level of abstraction of the user feedback and improving usability.

The rest of the paper is organized as follows: section 2 presents an overview of the
approach; section 3 describes the characteristics of test-ready SDs; sections 4, 5 and 6
present the main contributions; section 7 presents a case study; section 8 presents a
comparison with related work; section 9 concludes the paper.

2 Approach and Toolset Overview

Our toolset, named UML Checker, comprises two independent tools (see Fig. 1): an
add-in for the Enterprise Architect (EA) modeling tool [6], chosen for its accessibility
and functionality; and a reusable test library, implemented in Java and AspectJ [7].
The add-in gets the needed information from the model via the EA API and generates
JUnit test driver code, including traceability links to the UML model (message iden-
tifiers) and expectations about internal interactions. The test code is then compiled
and executed over the application under test (AUT). The behavior of the AUT in re-
sponse to the test inputs (namely internal messages) is traced by the test library using
AOP, and compared against the expected behavior. All discrepancies and exceptions
occurred and messages effectively executed are listed in the execution result that is
processed by the EA add-in, which annotates the model accordingly.

Fig. 1. Communication diagram illustrating the toolset architecture and functioning

8: errors
and

coverage

9: test results

UML Model

Behavioral Model
(Test-ready SDs)

Structural Model

On-the-fly
Test Code

(JUnit)

.

UML Checker Toolset

Production
Code (AUT)

(Java)

EA Add-in

1: invokes
execution

10: paints &
annotates

Software engineer

4: executes

3: generates

2: reads

6: invokes
Runtime Test Library (Java+AspectJ)

5: sets
expectations

7: traces and
manipulates

SD to automata
translator

Conformance
checking engine

Execution
tracer

Stub
injector

Console
simulator

Test code generator

Test result processor

In-memory non-deterministic
acceptance automaton

182 J.P. Faria, A.C.R. Paiva, and M.V. de Castro

3 Test-Ready Sequence Diagrams

This section describes the characteristics that SDs should have to be used as test
specifications for automated conformance testing in our approach.

The usual modeling features of SDs [1] are supported, with some restrictions and
extensions. As illustrated in Fig. 2, the following types of interactions can be modeled
and automatically tested in our approach:

• external interactions with client applications through an API;
• external interactions with users through a user interface (UI);
• internal interactions among objects in the system;
• interactions with objects not yet implemented (marked as «stub»).

Fig. 2. Major constituents of test-ready sequence diagrams and usage for conformance testing

For example, the SD in Fig. 3 includes external interactions with a client applica-
tion (messages Account and withdraw), as well as some internal interactions
(messages setBalance and Movement).

Next we describe in more detail the major constituents of test-ready SDs and how
they are treated in conformance testing automation.

Interaction Parameters. Parameterization of SDs allows defining more generic scena-
rios in a rigorous way. A set of parameters, with their names and types, may be defined
in each SD, accompanied by example values. E.g., the note marked «Parameters»
in Fig. 3 defines two parameters and two combinations of parameter values. Parameters
have the scope of the SD and can be used anywhere (including as lifelines). For test
execution, each parameterized SD is treated as a parameterized test scenario and each
combination of parameter values as a test case. If no parameters are defined (i.e., values
are hardcoded in the messages), the SD defines a single test case.

Actors. Test-ready SDs should have a single actor, representing a user or a client
application that interacts with the AUT through a user interface or API, respectively.

Parameters and
example values

Objects not yet
implemented

Objects in the
system

Actor (client
app or user)

internal
interactions

external
interactions

interactions with objects
not yet implemented

Exercise the
scenario for each

example

(Driver) Generate inputs
as in spec and check

responses against spec

(Stub) Generate
responses & outgoing
messages as in spec

(Monitor) Trace
execution and

check against spec

T
es

t-
re

ad
y

Se
qu

en
ce

D

ia
gr

am
C

on
fo

rm
an

ce
Te

st
in

g

alt

 Techniques and Toolset for Conformance Testing against UML Sequence Diagrams 183

During test execution, the actor is treated as a test driver, responsible to send the spe-
cified outgoing messages to the AUT, taking into account any guard conditions de-
fined, and to check the responses against the expected values specified in the diagram.

User Interaction Testing. Since the UML does not prescribe a standard way for that
purpose, we adopted a set of keywords (signals) to model user interaction through the
console in an abstract way (possibly since the requirements phase):
• start(args) − the user starts the application (indicated by its main class);
• enter(v) − the user enters the value specified through the standard input;
• display(v) − the application displays the value specified to the standard output.

During test execution, the test harness injects the values specified by enter mes-
sages, simulating a user, and compares the actual AUT responses against the expecta-
tions specified by display messages.

Internal Interactions Checking. Besides external interactions with client applica-
tions or users, test-ready SDs may also describe interactions among objects in the
AUT, capturing significant design decisions. During test execution, for each message
sent to the AUT, the test harness also checks that internal messages among objects in
the AUT occur as specified and internal objects are created and passed as specified.
The benefits are improved conformance checking and fault localization.

In order to allow keeping SDs as minimalist as wanted, focusing only on relevant
interactions, and enable the scalability of the approach, we support by default a loose
conformance mode, in which additional messages are allowed in the AUT, besides
the ones specified in the diagram (differently from what happens with the other
supported conformance mode - strict conformance).

Stubs in the Middle. Lifelines may be marked as «stub», to indicate that the cor-
responding classes (possibly external to the AUT) are not yet implemented or one
does not want to use the existing implementation. During test execution, the test har-
ness generates not only the reply messages, but also the outgoing messages (hence
"stub in the middle") specified in the SD for any incoming messages. This allows
testing partial implementations and simulating additional actors.

Interaction Operators. The most commonly used combined fragments are sup-
ported, allowing the specification of more generic scenarios with control flow variants
(with the alt, opt, loop, par, seq and strict interaction operators). Condi-
tions of alt and opt operators may be omitted, to model situations in which the
implementation has the freedom to choose the path to follow and to support partial
specifications (see, e.g., the inner alt fragment in Fig. 3).

Value Specifications. Message parameters, return values and guards may be speci-
fied by any computable expression in the context of the interaction (involving
constants, interaction parameters, lifelines, etc.), as long as it has no side-effects on
participating objects. Otherwise, the evaluation of expected parameter and return
values or guards during test execution could change the behavior of the AUT. Loose-
ness in the specification of parameter and return values can be indicated by means of
the “-” symbol (matching any value), and by omitting the return value, respectively.
During test execution, the semantics of value checking depends on the implementa-
tion of equals and the comparison precision defined for some data types in the con-
formance settings.

184 J.P. Faria, A.C.R. Paiva, and M.V. de Castro

4 Test Code Generation and Test Results Visualization

This section describes the test code generation and results' visualization techniques.
The techniques are illustrated with the running example of Fig. 3, referring to a sim-
ple application that exposes an API for creating bank accounts (with an initial bal-
ance) and withdrawing money (with alternative execution paths, depending on the
money available and the way chosen by the implementation to record movements).

Fig. 3. Sequence diagram of the running example, painted and annotated after test execution

Test Code Generation. A test class is generated from each SD, with the general self-
explanatory structure illustrated in Fig. 4, containing a parameterized test method
corresponding to the SD and a plain test method for each combination of parameter
values. InteractionTestCase is a facade [8] that extends JUnit3 TestCase.
To assure that expressions of message arguments, return values and guards (possibly
dependent on the execution state) are evaluated at proper moments, they are encoded
with ValueSpec. To allow the incremental binding of lifeline names to actual ob-
jects (see sec.5), they are encoded with Lifeline - a proxy [8] for the actual object.

Test Results Visualization. The results of test execution are presented visually in the
model, using a combination of graphical and textual information, as illustrated in
Fig. 3. The following color scheme is used for painting each combination of parame-
ter values and each message: black - not exercised, green - exercised without
errors, red - exercised with errors. For each message exercised with errors, the error

not covered

conformance error

 Techniques and Toolset for Conformance Testing against UML Sequence Diagrams 185

information (plus the AUT stack trace if wanted) is shown in the message notes. Poss-
ible error types and locations are shown in Table 1. The information about messages
not covered (exercised) is important in the presence of conditional paths, to check the
adequacy of test data (parameter values), and in the presence of unconstrained 'opt' or
'alt' fragments, to analyze implementation choices.

Table 1. List of conformance errors and locations in the model where they are signaled

Conformance error Location in the model
Wrong argument Call message.

Wrong return value Reply message, if it exists; call message, otherwise.
Unexpected exception Method or constructor execution bar.
Unexpected call (strict conformance) Method or constructor execution bar.
Missing call Call message or mandatory combined fragment.
Missing or incorrect output display message
Missing input enter message

The behavioral model packages are marked with self-explanatory stereotypes, de-
pending on the status of contained SDs: «Failed», «Passed», «NotTested»
and «Incomplete». The stereotypes are visible in the project browser for a quick
check of conformance status. The classes and methods in the structural model (class
diagrams) that are not covered (exercised) by the behavioral model are also marked as
«NotCovered», to help assessing the completeness of the behavioral model.

public class ATMTest extends InteractionTestCase {
 private Account a = null; // similar for lifelines m,n
 public void testATM(final double balance,final double amount){
 ValueSpec exp0 = new ValueSpec() {
 public Object get() {return balance-amount;}
 }; // similar for other expressions occurring in SD
 Lifeline aLifeline = new Lifeline() {
 public void set(Object value) {a = (Account)value; }
 public Object get() {return a;}
 }; // similar for other lifelines occurring in SD
 // Declares expected interactions to conform. check. engine:
 expect(/*encoding of SD fragments and messages here*/);
 // Traditional JUnit test driver code (actor messages):
 a = new Account(balance);
 if (amount <= balance)
 assertEquals("OK",a.withdraw(amount));
 else
 assertEquals("INSUF_BALANCE", a.withdraw(amount));
 // Final check of interactions missing:
 finalCheck();
 }
 public void testATM_0() { testATM(100, 150); }
 public void testATM_1() { testATM(100, 50); }
}

Fig. 4. Skeleton of test code generated from the SD in Fig. 3

186 J.P. Faria, A.C.R. Paiva, and M.V. de Castro

5 Techniques for Incremental Conformance Checking

Translation to Automata. To handle uniformly the variety of interaction operators
allowed in SDs, and comply with the default weak sequencing semantics of UML
SDs [1] with implicit parallelism between lifelines, SDs are first translated to non-
deterministic automata according to the following steps (also illustrated in Fig. 5):

1. Generate states. Possible states are generated in each lifeline before and after each
message end (including implicit reply messages from synchronous calls), com-
bined fragment boundary and operand boundary. Additionally, a (global) start state
and a (global) final state are introduced for the whole diagram. An auxiliary state is
also generated for each asynchronous message (see Table 2-j).

2. Generate transitions. Transitions linking lifeline states, possibly with multiple
source and/or target states (as in parallel finite automata [9]), are generated accord-
ing to the rules shown in Table 2. A transition is generated for each synchronous
message, synchronizing the lifelines involved. Regarding combined fragments, au-
tomatic transitions (without events) are generated to enter and exit the combined
fragment and its operands along the lifelines covered. Following a common seman-
tic choice [10], the lifelines involved are synchronized in the decision points of
'alt', 'opt' and 'loop'. Otherwise, it is followed the default weak sequencing seman-
tics of SDs (except obviously for 'strict'). Additionally, it is generated a transition
linking the start state of the SD to the first state in all lifelines, and another linking
the last state in all lifelines to the final state of the SD.

3. Simplify (optional). The resulting automaton is simplified by removing transitions
with empty labels and redundant states, resulting in an equivalent automaton that
accepts the same traces. Another example partially simplified is shown in Fig. 6.

Fig. 5. Three-step translation process (with the 3rd optional) from SD to acceptance automaton

Client

o1 :C1 o2 :C2

opt

m0()

m1()
m3()

m2()

2

3

4

5

6

8

11

9

14

15

16

17

18

2

3

4

5

6

7

13

12

11

14

15

16

17

18

m0

Start:

m1

m3

ret m3

m2

ret m2

ret m1

ret m0

12

1

6

10

15

16

17

m0

Start:

m1

m3

ret m3

ret m0

ret m1

Step 1: Generate states Step 2: Generate transitions Step 3: Simplify
1

7

10

13

8

10

9

7

11

m2

ret m2

9

1

19

19

19

 Techniques and Toolset for Conformance Testing against UML Sequence Diagrams 187

Table 2. Transition generation rules (superimposed in red) for different fragments

a) synchronous messages:
synchCall and reply pair

b) synchronous messages:
synchCall and reply pair

c) synchronous messages:
createMessage & reply pair

d) alternatives

e) option

f) loop

g) weak sequencing

h) strict sequencing i) parallel

j) asynchronous messages:
send and receive pair

Legend:
Transition with single source
and target states:

Transition with multiple
source and/or target states
(notation similar to fork/join
in UML):

a, b, c) Even if not indicated, reply messages are always assumed after synchronous calls.
d, e) In the absence of guards in the SD, all guards are also omitted in the generated transitions.
f) ci is a counter variable for loop i. Counters are not needed if n≤1 and m='*'.
d, e, f, g, h, i) These rules extend trivially to more than two operands and/or lifelines.
i) A coregion can also be treated as a parallel combined fragment over a single lifeline, having
as operands the message ends enclosed in the coregion.
j) Currently implemented only for the translation of user interaction messages modeled with the
start, enter and display signals. An auxiliary state is introduced for ordering the mes-
sage sending and receiving events. Even inside loops, given our choice for synchronization at
decision points, at most one sent message occurrence may be waiting to be received.

m
m

r
r

…

mm

…

rr

o1: C1
C1(…)

C1(…)

ret o1

…

alt

[c1]

[c2]

[c1]

[c2]

…

…
[c]

opt
…

[¬c]

[c] loopi
(n,m)

/ci←0

[n=0]

[ci +1≥n]

[ci+1<m]
/ci++

…

seq
…

…

strict
…

…

par

…

…

m

send
-m rcv-

m
event[guard]/action

event[guard]/action
…

…

188 J.P. Faria, A.C.R. Paiva, and M.V. de Castro

Fig. 6. Automaton generated from the example SD of Fig. 3 (only partially simplified)

Automata Structure. In our approach, a conformance checking automaton is a tuple ≺S, so, F, T≻, where S is the set of states, so∈S is the initial (start) state, F⊆S is the set
of final (accepting) states, and T is the set of transitions. Each transition is a tuple ≺σ,
λ, τ≻, where σ⊆S is the set of source states of the transition, τ⊆S is the set of target
states of the transition, and λ is the transition label. Transitions with multiple source
and/or target states are used to handle parallelism and synchronization (see Table 2).
A transition label is a triple event[guard]/action, all of which components are option-
al. Transitions without event are automatic. The automaton may be non-deterministic,
i.e., different transitions <σi, λi, τi> and <σj, λ j, τ j> may exist with σi=σj ∧ λi=λj ∧
τi≠τj, or with λi≠λj but simultaneously satisfiable (e.g., call specifications m(1) and
m(-) are both satisfiable by the occurrence m(1)).

Automata Execution. An automaton run state is a tuple ≺A, β, ρ, C≻, where:

• A is the set of active automaton states (multiple active states may exist because of
parallelism), starting with {s0}; each time a transition ≺σ, λ, τ≻ is performed,
requiring σ⊆A, the new set of active states becomes (A\σ)∪τ;

• β=βP∪βL∪βC is a binding of variable names to actual values, starting with the
binding βP of interaction parameters to actual values, and incrementally extended
with the binding βL of lifeline names to actual objects and the binding βC of loop
counters to actual values; βL is extended as message occurrences are encountered
involving lifeline names as target, argument or return value; subsequent
occurrences of a previously bound lifeline name must refer to the same object;

• ρ is a mapping from identifiers of matched call or send event occurrences to iden-
tifiers of corresponding events in the automaton; this is needed to assure that reply
or receive occurrences corresponding to ignored call or send occurrences (in loose
conformance mode only) are also ignored, and that reply or receive occurrences
corresponding to considered call or send occurrences are matched against the

14
4

2

1
1: Account(balance)

3
1’: return a

2: a.withdraw(amount)

3: a.setBalance(
balance-amount)

5

3’: return
12

4: Movement(a,
amount, “withdraw”)

4’: return m

16

15

6: a.withdraw(
amount)

6’: return
“INSUF_BALANCE”

2’: return “Ok”

6

9

7 13

[! (amount<=balance)]
[amount <= balance]

10
5’: return n

5: Movement(
a, -amount)

underlined: to be
injected by test driver

8

11

 Techniques and Toolset for Conformance Testing against UML Sequence Diagrams 189

correct event in the automaton; we assume that all call-reply and send-receive pairs
have related identifiers, like n and n' (see Fig. 6);

• C is the set of identifiers of messages covered so far, starting with the empty set,
for coverage analysis purposes.

Because the same event occurrence may match multiple event specifications
(non-determinism), it is kept a set of possible run states R={r1, ..., rn}. Conformance
checking fails when R becomes empty at any point of execution, or, at the end of
execution, there is no run state ri∈R such that all its active states Ai are accepting
states (i.e., ¬∃ri∈R • Ai⊆F). An example execution is illustrated in Fig. 7.

Fig. 7. Example of successful execution of the automaton of Fig. 6 for a possible test case and
AUT response in loose conformance mode. The test driver stimuli are underlined in the trace.

6 Techniques for Execution Tracing and Manipulation

In this section we present techniques, based on AOP with load time weaving, to ena-
ble execution tracing, stub injection, and user interaction testing in a minimally
intrusive way.

Execution Tracing and Stub Injection. Method and constructor invocation and ex-
ecution in the AUT are intercepted with the AspectJ [7] code depicted in Fig. 8.
Method invocations are traced with an execution pointcut (line 5), when the con-
trol focus is already on the target object, because it also captures reflective invoca-
tions. In the case of constructors, operations invoked by super-constructors execute

1: Account(100)

1’: return a1

2: a1.withdraw(50)

3: a1.getBalance()

3’: return 100

4: Movement(a1,
50, “withdraw”)

4’: return m1

5: a1.setBalance(50)

5’: return

2’: return “Ok”

≺A, βL, ρ, C≻ = ≺{1}, {}, {},{}≻≺{2}, {}, {1↦1}, {1}≻≺{4}, {a↦a1}, {}, {1,1’}≻≺{5,11}, {a↦a1}, {2↦2}, {1,1’,2}≻

≺{5,12}, {a↦a1}, {2↦2, 4↦4}, {1,1’,2,4}≻≺{5,13}, {a↦a1, m↦m1}, {2↦2}, {1,1’,2,4,4’}≻≺{6,13},{a↦a1,m↦m1},{2↦2,5↦3},{1,1’,2,4,4’,3}≻≺{7,13},{a↦a1,m↦m1},{2↦2},{1,1’,2,4,4’,3,3’}≻≺{16}, {a↦a1,m↦m1},{},{1,1’,2,4,4’,3,3’,2’}≻

(unchanged, call ignored)

(unchanged, reply ignored)

Execution Trace Automaton Run States(s)

βP={balance ↦ 100, amount ↦ 50}

≺{5,9}, {a↦a1}, {2↦2}, {1,1’,2}≻
(unchanged, call ignored)

(unchanged, reply ignored)

(unchanged, call ignored)

(unchanged, reply ignored)≺{6,9},{a↦a1},{2↦2,5↦3},{1,1’,2,3}≻≺{7,9},{a↦a1},{2↦2},{1,1’,2,3,3’}≻
must consider 2’, but
active states don’t accept it

190 J.P. Faria, A.C.R. Paiva, and M.V. de Castro

before the self-constructor (and not nested), so we use call pointcuts instead (when
the control focus is still on the sender object) for proper nesting, with two versions for
normal and reflective calls (lines 19 and 20). The invocation and reply occurrences
intercepted by the aspect code are sent to the conformance checking engine for incre-
mental checking (lines 6 and 14). Regarding stubs, we assume that objects marked as
«stub» in the SD have compilable method skeletons; instead of executing the actual
method body, the outgoing messages specified in the SD (constructor and method
calls) and enabled in the automaton are issued through reflection (line 12), and it is
returned the value specified in the SD and enabled in the automaton (line 13).

1: public priviliged aspect TracingAspect {
2: // Aux. def. to filter points of interest and avoid infinite recursion:
3: pointcut mayTrace(): /* definition omitted */ ;
4: // Intercepts normal and reflective method invocations:
5: Object around(): mayTrace() && execution(* *(..)) {
6: Process invocation (call) occurr. by automaton (via synchronized method)
7: If the automaton failed, throw the failure
8: If no match was found, proceed with normal execution and return
9: If target object is not marked as «stub» or this is a constructor call,
10: Proceed with normal execution and get return value
11: If target object is marked as «stub», perform stub injection, i.e.,
12: Execute outgoing calls spec./enabled in SD/automaton via reflection
13: If this isn't a constructor call, get return value from SD/automaton
14: Process reply (return) occurrence by automaton (via synchronized method)
15: If the automaton failed, throw the failure
16: Return the return value
17: }
18: // Intercepts normal and reflective constructor invocations:
19: Object around(): mayTrace() && call(new(..) {similar template}
20: Object around():mayTrace()&&call(Object Constructor.newInstance(..)){idem}
21: }

Fig. 8. Skeleton of AspectJ code responsible for execution tracing and stub injection

User Interaction Testing. The mechanisms for user interaction testing of console
applications are illustrated in Fig. 9. A console simulator (from our test library) starts
the AUT in a thread separate from the test driver and creates input and output block-
ing queues for communication and synchronization between both. AUT calls to read
and write operations on System.in and System.out are intercepted with
around pointcuts, and replaced by poll and put operations on the input and out-
put queues, respectively. User interaction messages specified in the SD with the
enter and display keywords originate put and poll operations that are per-
formed by the test driver on the input and output queues. Poll operations are subject
to a timeout. Although the test driver already checks displayed values (with asser-
tEquals), the relevant events are also sent to the conformance checking automaton
for checking their proper ordering with respect to other execution occurrences.

 Techniques and Toolset for Conformance Testing against UML Sequence Diagrams 191

Fig. 9. User interaction specification and conformance testing mechanism for console apps

7 Case Study

To assess our approach we conducted a case study on a Java application, developed at
our university and used since 2009 by approximately 200 software engineering stu-
dents for program size measurement. The application, named “FileDiff”, computes
the difference with minimum cost between two source files, in terms of lines added
(cost 1), modified (cost 1) or deleted (cost 0), ignoring blank lines and comments. An
accompanying UML model contains a SD that exercises all classes and methods.
Some input files for manual testing purposes also accompany the application.

The goal of the case study was to confirm the main benefits of our approach: the
ability to take advantage of existing behavioral models for test automation (hence
reducing the test effort); the ability to find discrepancies between the model and the
implementation (hence enabling improvements in their quality).

The initial SD (11], pg.67, not shown here for space limitation reasons) was not
test-ready, due to the usage of pseudo-code and a "procedural" feature - attribute as-
signment ([1], pg.507) - not currently supported by our tool. These problems were
solved by making minor changes to the SD. Test parameters and test data were added
to exercise the SD for existing test files, resulting in a test-ready SD with 34 messag-
es, 8 lifelines (4 of which instantiated dynamically), and 2 combined fragments ([11],
pg.72). Conformance test execution revealed a message not covered (caused by an
incorrect loop modeling) and a message exercised with errors (caused by an incorrect
sequencing in the implementation), which were fixed in the model and in the imple-
mentation, respectively.

Hence, the benefits of our approach could be demonstrated for this case study.
Other case studies and acceptance tests performed to validate the approach for all
supported modeling features, error types and coverage levels can be found in [11].

Console
Simulator

Output
Blocking
Queue

Test
Driver

(thread 0)

Input
Blocking
Queue

Tracing
Aspect

AUT
(thread 1)

(wait)

(wait)

start(app, args)
main(args)

scan()
poll(timeout)

enter(x)
put(x)

:x :x

check() poll(timeout)
print(y)

put(y)
:y

:y

assertEquals(exp, y)

stop() join(timeout)

send-
display

send-
start

rcv-
start

rcv-
enter

send-
enter

rcv-
display

User

AUT

start(args)

enter(x)

display(y)

Implementation & Tracing

send-
start(args)

rcv-
start(args)

rcv-
enter(x)

send-
enter(x)

send-
display(y)

rcv-
display(y)

Automaton

possibly
internal
interactinos
here

SD

192 J.P. Faria, A.C.R. Paiva, and M.V. de Castro

8 Related Work

There are several research works that attempt to use UML SDs either to help under-
stand the systems or for quality purposes, like model checking and model-based test-
ing. However, the use of SDs for testing or other rigorous verification methods
demands for a rigorous definition of the language semantics [10].

Based on a survey of proposed semantics for UML SDs, Micskei et al. [10] point
out several problems or challenges with the current natural language semantics, and
categorize the choices taken by 13 selected approaches to address them. The semantic
choices taken in our approach are inspired by their work and can be classified as fol-
lows: execution traces are either valid or invalid, i.e., no inconclusive traces exist; the
underlying formalism is based on the encoding of the partial orders into a finite struc-
ture (automaton), for efficient processing, with interleaving as the concurrency model
(as in the UML standard); both complete (in strict conformance mode) and partial
trace specifications (in loose mode) are supported; fragments are combined using
standard interpretation with weak sequencing; choices and guards are handled global-
ly, i.e., the involved lifelines synchronize at decision points for evaluating guards
and/or choosing a path to follow; the SD is processed by analyzing it as a whole using
locations (lifeline states in our case), for higher flexibility.

Currently, we do not support the 'assert', 'neg', 'ignore' and 'consider' operators, but
the approach can be easily extended, in particular, 'ignore' and 'consider' operators can
be dealt by allowing an explicit conformance mode, besides the loose and strict mod-
es, and 'assert' and 'neg' operators will lead to irrevocable failure states.

As pointed out in [10], the first step of many proposed semantics (e.g., [12]), is to
find all the legal cuts of a diagram (global SD states, i.e., combinations of lifeline
locations), but finding cuts can get complicated in the presence of complex fragments
and asynchronous communication. One advantage of our approach is that, by allow-
ing transitions with multiple source and/or target states, we avoid determining those
cuts, as well as the potential explosion of states and transitions. A class of automata
with that type of transitions, named parallel finite automata (PFA), was first proposed
in [9] as a convenient way to express the interleaving parallelism inherent in Petri net
notation without admitting the possibility of an infinite state space (in other words,
without admitting multiple tokens per place); the authors also show the equivalence
and translation procedure of PFA to deterministic finite automata (DFA). Our con-
formance checking automata are inspired by the concept and properties of PFA, with
the addition of several features found in extended state machines (such as UML state
machines [1]), namely state variables and event-guard-action transition labels.

Regarding the representation of execution traces, we follow the approach of [13],
which uses a single event to model synchronous (instantaneous) communication and a
pair of send and receive events to model asynchronous (non-instantaneous) communi-
cation. In [13], it is also proposed a translation procedure of a partially ordered execu-
tion trace, containing both synchronous and asynchronous communications (but not
interaction operators), into a system of communicating automata, with one automaton
per process (lifeline) and one 'message delay' automaton per asynchronous communi-
cation, which product yields the possible ways of interleaving events. Despite the
different outputs, our translation procedure follows some of the principles of their
approach, adding the support for interaction operators and other UML SDs' features.

 Techniques and Toolset for Conformance Testing against UML Sequence Diagrams 193

Despite the challenges with the SD semantics, there are different approaches in the
literature that use SD for quality purposes. For instance, [14] translate UML 2 interac-
tions into automata for model checking with respect to specified requirements.

There are also approaches that extract SDs from a dynamic analysis of the system
for comparison with design SDs. These approaches are split into four phases: instru-
mentation; logging; merging (in the case of distributed systems); and comparison. The
work of [15] uses AOP to support the instrumentation of Java systems’ bytecode. To
deal with the fact that SDs are not a straightforward representation of the extracted
traces, they define two metamodels (one for traces and another for SDs) and define
mapping rules between them using OCL. In our approach, AOP is also used, not only
for execution monitoring, but also for user interaction redirection and stub injection.

Other approaches use SDs in the context of model-based testing, either by focusing
in test case generation, data generation and/or code generation.

Since SDs show objects and messages exchanged among them along time, test cas-
es generated from them may be adequate to find errors concerning the sequence of
executed messages and the values passed [16]. The interaction operators introduced in
UML 2 allow the description of a number of traces in a compact and concise manner.
Because of that, there are several examples in the literature that use an intermediate
notation to represent the set of possible executions within a SD and afterwards, test
cases are generated from this representation according to coverage criteria. Some
examples of such representations are “sequence dependency graphs” [17], “message
dependency graphs” [18], and “structured composite graphs” [19].

Besides generating test sequences, there are some approaches that also generate
test data. Nayak et al. [19] enrich SDs with attribute and constraint information de-
rived from class diagrams and OCL constraints and use a constraint solver to generate
test data to cover paths along scenarios. Samuel et al. [18] create dynamic slices ac-
cording to conditional predicates associated with messages in a SD and generate test
data satisfying each slice. Benauttou et al. [20] generate test data based on partition
analysis of method contracts expressed in the Disjunctive Normal Form.

Another important feature is the generation of test code at the end. There are ap-
proaches that generate assertions to check consistency of models with manually de-
rived code at run time [21] and others that generate test code, for instance, as unit
tests. These approaches can be used in combination. Some of the latter examples are:
a tool generating test code from SDs (SeDiTeC tool [22]); a tool generating functional
test drivers from SDs (SCENTOR [23]); a Model-Driven Architecture based approach
for generating test code for multiple unit testing frameworks [24].

Javed et al. [24] apply a model-to-model transformation from SDs into a xUnit
model independent form a particular unit testing framework and, afterwards, apply a
model-to-text transformation into JUnit or SUnit. However, their approach has several
limitations: the checking of returned values is performed in an intrusive way by con-
structing additional objects, which is problematic when constructors have side-effects;
the gathering of execution traces is not integrated into the approach and they do not
automate their verification; they do not deal with the novel features of UML 2.

One advantage of SeDiTeC [22] is the generation of stubs for parts of the AUT not
implemented, hence allowing starting testing earlier. As far as we know, they do not
deal directly with the novel features of UML 2. However, they combine different SDs
which can be used as a way to represent, for instance, alternative blocks of messages.

194 J.P. Faria, A.C.R. Paiva, and M.V. de Castro

SCENTOR [23] tool creates functional test drivers for e-business applications from
SDs that have test data (parameters and expected values of method calls) embedded in
them. However it does not check internal interactions and does not generate test stubs.

Some commercial tools also support conformance testing based on SDs. To our
knowledge, the IBM Rational Rhapsody TestConductor Add On [25] is one of the
more advanced tools. Having as target real-time embedded applications, it supports
many features in common with our approach (like internal interaction checking, visu-
al feedback, etc.) and other features outside the scope of our approach. Despite its
powerful features, it does not support several important features of our approach:
incremental lifeline instantiation with create messages (all objects must be previously
defined in a test architecture); non-deterministic 'alt', 'opt' and 'loop' operators (with-
out guards); strict conformance mode (message types absent from a SD are not
traced); stubs in the middle (only normal stubs are supported); user interaction testing.

The implementation of tests derived from SDs or similar formalisms in distributed
asynchronous environments poses additional challenges for coordinating test drivers,
monitors and stubs. An example of an approach for monitoring the execution of dis-
tributed Java applications with AOP was presented in [15]. An approach for coordi-
nating distributed test components (namely test drivers) was presented in [26].

9 Conclusions and Future Work

It were presented a set of techniques and a toolset for the automatic conformance
testing of software applications against behavioral models constituted by a set of pa-
rameterized UML 2 SDs. With a single click, test cases are automatically generated
from the model, executed on the AUT and test results and coverage information pre-
sented back visually in the model. The conformance checking approach, based on the
translation of SDs to nondeterministic acceptance automata with parallelism that are
executed stepwise, provides several advantages over existing SD-based testing tech-
niques, namely regarding the kinds of interactions, operators, conformance modes,
and semantics (weak sequencing) supported. The tool was successfully experimented
on a set of case studies, one of which was presented. Despite being implemented for
specific technologies, the overall approach can be applied for other technologies.

As future work, we plan to: support other modeling environments (reusing the run-
time library); support additional modeling features (such as duration constraints and
the 'neg', 'ignore', and 'consider' operators); support a semantic option without lifeline
synchronization at decision points; extend the abstract user interaction modeling and
testing features for GUIs (which, currently, can be handled in a non-abstract way);
integrate with approaches for the automatic generation of values for scenario parame-
ters; extend the test execution engine to support the testing of distributed systems;
conduct further experiments to assess our approach compared to others.

References

1. OMG Unified Modeling LanguageTM (OMG UML), Superstructure, v. 2.4.1, OMG (2011)
2. Mellor, S.J., Clark, A.N., Futagami, T.: Model-Driven Development. IEEE Software Mag-

azine 20(5), 14–18 (2003)

 Techniques and Toolset for Conformance Testing against UML Sequence Diagrams 195

3. Uttin, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Morgan Kauf-
mann (2007)

4. Faria, J.P., Paiva, A., Yang, Z.: Test Generation from UML Sequence Diagrams. In: 8th Int.
Conf. on the Quality of Information and Communications Technology, pp. 245–250 (2012)

5. JUnit testing framework, http://www.junit.org
6. Enterprise Architect, http://www.sparxsystems.com.au
7. AspectJ, http://www.eclipse.org/aspectj
8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Pearson Education (1994)
9. Stotts, P.D., Pugh, W.: Parallel Finite Automata for Modeling Concurrent Software Sys-

tems. J. of Software and Systems 27, 27–43 (1994)
10. Micskei, Z., Waeselynck, H.: The Many Meanings of UML 2 Sequence Diagrams: a Sur-

vey. J. of Software and Systems Modeling 10, 489–514 (2011)
11. Castro, M.V.: Automating Scenario Based Testing with UML and AOP,

http://www.fe.up.pt/~ei06064/AutomatingSBTwithUMLandAOP.pdf
(in Portuguese)

12. Harel, D., Maoz, S.: Assert and Negate Revisited: Modal Semantics for UML Sequence
Diagrams. J. of Software and Systems Modeling 7(2), 237–253 (2008)

13. Hallal, H., Boroday, S., Petrenko, A., Ulrich, A.: A Formal Approach to Property Testing in
Causally Consistent Distributed Traces. Formal Aspects of Computing 18(1), 63–83 (2006)

14. Knapp, A., Wuttke, J.: Model Checking of UML 2.0 Interactions. In: Kühne, T. (ed.)
MoDELS 2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007)

15. Briand, L., Labiche, Y., Leduc, J.: Towards the Reverse Engineering of UML Sequence
Diagrams for Distributed Java Software. IEEE Trans. on Soft. Eng. 32(9), 642–663 (2006)

16. Kansomkeat, S., Offutt, J., Abdurazik, A., Baldini, A.: A Comparative Evaluation of Tests
Generated from Different UML Diagrams. In: SNPD 2008, pp. 867–872 (2008)

17. Philip, S., Joseph, A.T.: Test Sequence Generation from UML Sequence Diagrams. In:
SNPD 2008, pp. 879–887 (2008)

18. Samuel, P., Mall, R.: A Novel Test Case Design Technique using Dynamic Slicing of
UML Sequence Diagrams. e-Informatica 2(1), 71–92 (2008)

19. Nayak, A., Samanta, D.: Automatic Test Data Synthesis using UML Sequence Diagrams.
J. of Object Technology 9(2), 115–144 (2010)

20. Benattou, M., Bruel, J., Hameurlain, N.: Generating Test Data from OCL Specification. In:
ECOOP Workshop Integration and Transformation of UML Models (2002)

21. Engels, G., Güldali, B., Lohmann, M.: Towards Model-Driven Unit Testing. In: Kühne, T.
(ed.) MoDELS 2006. LNCS, vol. 4364, pp. 182–192. Springer, Heidelberg (2007)

22. Fraikin, F., Leonhardt, T.: SeDiTeC-testing based on sequence diagrams. In: Proc. of the
17th IEEE Int. Conf. on Automated Software Engineering (ASE 2002). IEEE (2002)

23. Wittevrongel, J., Maurer, F.: SCENTOR: Scenario-Based Testing of E-Business Applica-
tions. In: 2nd Int. Workshop on Automation of Software Test (AST) (2007)

24. Javed, A., Strooper, P., Watson, G.: Automated Generation of Test Cases using Model-
Driven Architecture. In: 2nd Int. Workshop on Automation of Software Test (AST) (2007)

25. IBM® Rational® Rhapsody® Automatic Test Conductor Add On User Guide, v2.5.2 (2013)
26. Boroday, S., Petrenko, A., Ulrich, A.: Implementing MSC Tests with Quiescence Observa-

tion. In: Núñez, M., Baker, P., Merayo, M.G. (eds.) TESTCOM 2009. LNCS, vol. 5826,
pp. 49–65. Springer, Heidelberg (2009)

Parallel SMT-Constrained Symbolic Execution

for Eclipse CDT/Codan

Andreas Ibing

Chair for IT Security TU München
Boltzmannstrasse 3, 85748 Garching, Germany

Abstract. This paper presents a parallel symbolic execution engine as a
plug-in extension to Eclipse CDT/Codan. It uses the CDT parser and the
control flow graph builder from CDT’s code analysis framework (Codan).
Path satisfiability and bug conditions are checked with an SMT solver
in the logic of arrays, uninterpreted functions and nonlinear integer and
real arithmetic (AUFNIRA). Each worker of the parallel engine keeps
the symbolic program states along its current program path in memory,
to allow for quick backtracking. Dynamic redistribution of work between
workers is enabled by splitting a worker’s partition of the execution tree
at the partition’s top decision node, where a partition is defined by the
start path leading to its root control flow decision node. The runtime be-
haviour of the parallel symbolic execution engine is evaluated by running
it on buffer overflow test programs from the NSA’s Juliet test suite for
static analyzers. Both the speedup of backtracking the symbolic program
state over a previous single-threaded implementation with path replay
and the speedup with an increasing number of workers are investigated.

1 Introduction

Symbolic execution (SE, [1]) is an attractive approach for automated discovery
of common software weaknesses. SE treats program input as variables and trans-
lates operations on them into logic equations. For a path through a program, SE
builds a path constraint from the control flow decisions. Path satisfiability and
the presence of bugs is decided with an automatic theorem prover (constraint
solver [2,3]). Current SE tools normally rely on Satisfiability Modulo Theories
(SMT, [4]) solvers. A more detailed overview of the current state and available
tools is given in [5,6].

Many SE tools first transform the source code into an intermediate represen-
tation (IR) and run the symbolic execution on the IR. In [7], C/C++ code is
compiled into LLVM [8] bytecode before symbolic execution, while [9] uses CIL
[10] as intermediate code. [11] analyzes Java bytecode with symbolic execution.

In order to achieve high code coverage in a limited time, parallelization of
SE has been investigated. [12] presents a parallelized version of [11], which ini-
tially performs a breadth-first exploration of the symbolic execution tree up to
a certain depth, and then runs multiple workers on disjunct static partitions

H. Yenigün, C. Yilmaz, and A. Ulrich (Eds.): ICTSS 2013, LNCS 8254, pp. 196–206, 2013.
c© IFIP International Federation for Information Processing 2013

Parallel SMT-Constrained Symbolic Execution for Eclipse CDT/Codan 197

of the execution tree. [13] presents a parallelized version of [7] with dynamic
redistribution of work between workers.

While SE of intermediate code does have its advantages, there is also a mo-
tivation for symbolic execution of source code: an IR loses source information
by discarding high-level types and the compiler lowers language constructs and
makes assumptions about the evaluation order. However, rich source and type
information is needed to explain discovered bugs to the user [14].

In order to detect errors as early as possible, bug detection tools should be
integrated into IDEs. The Eclipse IDE is widely used, open source and designed
for extensibility (OSGi architecture [15]). For C/C++ development, Eclipse CDT
features a code analysis framework (Codan, [16]), which includes a control flow
graph (CFG) builder and several code checkers. Codan does not, however, feature
path-sensitivity or symbolic execution, which may lead to detection inaccuracies
for many analyses (false negative and false positive detections).

This paper presents a parallelized SMT-constrained symbolic execution engine
with dynamic work redistribution and backtracking of symbolic program states
as plug-in extension for Eclipse CDT. It builds on previous work [17], which
developed a sequential SE engine with replay of start paths after backtracking
path decisions. The remainder of this paper is organized as follows. Architecture
and design are described in section 2. Section 3 evaluates the implementation
with buffer overflow test programs from the Juliet test suite [18] and benchmarks
both the speedup of backtracking symbolic program states over [17] and the
speedup with a varying number of workers. Section 4 discusses the results.

Fig. 1. Overview of main classes. WorkPoolManager and Worker are active classes.

2 Architecture and Design

2.1 Trade-offs in Memory, Computation, Communication and
Parallelism

The exploration of (at least a finite) execution tree can in principle be per-
formed in a straight-forward manner with the Worklist algorithm [19], in which

198 A. Ibing

unexplored tree nodes (frontier nodes) are put together with the corresponding
symbolic program state in a work list (queue-based tree traversal). In practice
however, this may lead to memory exhaustion, even in distributed computation
setups.

An alternative to reduce memory consumption is to store program paths with-
out symbolic program states. A program path can further be compressed as a
sequence of branches. Minimum memory consumption is achieved when only one
path and one program state are kept in memory. This approach was used in [17]
for a sequential implementation with depth-first exploration of the execution tree
(with a configurable loop depth bound). Restoration of a program state for an
unexplored (frontier) node, on the other hand, requires redundant computation
along the new start path.

The memory versus computation trade-off extends to storing the history of
program states along a path (which requires memory) versus the possibility of
restoring a program state on this path by backtracking (which avoids redundant
computation). The symbolic program state can be backtracked as far as the
required information (variable definitions, equations, etc.) is available. Thus,
there are effectively three possibilities:

Path replay: only the current symbolic program state is kept in memory, with
the possibility for garbage collection of dead symbolic variables. The current
path’s control flow decisions are used to generate the next path [17].

State cloning: the open symbolic program states (frontier states) are kept in
memory. The program state at a decision node is cloned for each child branch
node. This is used in a distributed implementation in [13].

State backtracking: program states along the current path are kept in mem-
ory. This can be efficiently implemented using single assignment form and
not garbage-collecting dead symbolic variables. This approach is used here.

In a parallelized implementation, it is desirable to balance computation com-
plexity and communication complexity. The communication complexity can be
rated differently for communication between multiple threads on a shared mem-
ory architecture (multi-core and/or hyper-threading CPUs) versus network com-
munication in a distributed setup. There are basically two possibilities:

– symbolic program states are transmitted to new or idle workers (requires
state cloning), or

– start paths are transmitted to new or idle workers (less transmitted data,
but path replay is needed).

The most adequate parallelization depends on the available hardware resources
as well as the size of the software to be analyzed.

Parallel SMT-Constrained Symbolic Execution for Eclipse CDT/Codan 199

Fig. 2. Activity diagram of WorkPoolManager. WorkPool is used as synchronization
object.

Fig. 3. Activity diagram of Worker. WorkPool is used as synchronization object.

200 A. Ibing

2.2 Design Decisions

The symbolic execution engine performs whole-program analysis with a call
string approach [20] for interprocedural analysis.

Symbolic Program State and Backtracking. The translation into SMT
logic is the same as in [17]. For program variables, the interpretation gener-
ates symbolic variables, whose values are logic formulas in SMTLIB AUFNIRA
syntax. The formulas may contain other symbolic variables as terms. Symbolic
variables must not be overwritten (no destructive assignments) if they might still
be needed in other formulas. A variable is called ’live’ if it may still be needed in
the future, and ’dead’ otherwise. Therefore single assignments are used: for each
assignment to a program variable, a new symbolic variable version with unique
name is generated. Pointers and structs are not directly translated into SMT
logic, they are represented internally during interpretation (e.g. a pointer has a
target and an offset formula). Logic equations are generated at pointer derefer-
ence and at field access to a struct. A path through a program is a sequence of
control flow graph nodes along edges in the CFG, and function calls are treated
as edges between different functions’ CFGs. A symbolic program state comprises
all declared symbolic variables and the internal representation of pointers and
structs along a program path. Due to single assignment form, a symbolic pro-
gram state contains all previous states along the path. To allow for backtracking,
an ActionLog keeps track of the actions performed during interpretation of each
CFG node on the path. An action may be the declaration of a symbolic vari-
able or hiding stack variables at the exit from a function. Through backtracking,
’dead’ variables may become ’live’ again. To backtrack a CFG node, the actions
are reversed: a declared symbolic variable is disposed, and hidden variables are
set visible again (in case of backtracking a function exit).

Execution Tree Exploration and Splitting into Subtrees. A configurable
number of workers analyzes disjunct partitions of the execution tree. Each worker
performs a depth-first exploration of its partition with backtracking of the sym-
bolic program state. For dynamic work redistribution, a worker can split its
partition at the partition’s top decision node. The child branches not taken by
the current worker are returned as start paths for other workers. After a split,
the partition start path is adjusted (prolonged by one branch node). Analysis
starts with one worker, who splits until the configured number of workers is busy.
A worker is initialized by replaying its partition start path. The maximum loop
depth to be explored can be bounded. If a worker reaches an unsatisfiable branch
or a satisfiable leaf of the execution tree, it backtracks and changes a path de-
cision according to depth-first tree traversal. If backtracking reaches the end of
the partition start path, the partition is exhausted. The algorithm is illustrated
in the activity diagrams Fig. 2 and Fig. 3.

Parallel SMT-Constrained Symbolic Execution for Eclipse CDT/Codan 201

2.3 Main Classes

A diagram of the main classes is shown in Fig. 1. The implementation is multi-
threaded, where control flow graphs and syntax trees are shared between worker
threads.

WorkPoolManager extends Codan at the extension point
org.eclipse.cdt.codan.core.model.IChecker. The WorkPoolManager starts
workers and reports found errors through the Codan interface to the Eclipse
marker framework.

ProgramStructureFacade provides access to control flow graphs.
WorkPool is used as synchronization object (synchronized methods). It is used

to track the number of active workers and to exchange split paths.
Worker has a forward and a backward (backtracking) mode. It passes references

to control flow graph nodes for entry (forward mode) or backtracking to the
Interpreter.

Interpreter follows the tree-based interpreter pattern [21]. SMT syntax is gen-
erated by the StatementProcessor (which implements CDT’s ASTVisitor) by
bottom-up traversal of AST subtrees (visitor pattern), which are referenced
by CFG nodes. Symbolic variables are stored in and retrieved from Mem-
System. Backtracking additionally relies on ActionLog, which links certain
actions to nodes on the current path, like hiding stack variables at function
exit. The Environment class provides symbolic models of Standard library
functions. The interpreter further offers an interface to BranchValidator and
to checker classes.

SMTSolver wraps the interface to the currently used external solver, which is
[22].

BranchValidator is triggered when entering a branch node. It generates a
satisfiability query for the path constraint. For an unsatisfiable branch it
throws an exception, which is caught by the worker.

BoundsChecker is triggered for memory access. It generates satisfiability
queries for violation of lower and upper buffer bounds and reports an
error in case of satisfiability.

2.4 Communication and Synchronization

Activity diagrams for the active classes are shown in Fig. 2 and Fig. 3. Syn-
chronization of multiple local worker threads for sharing control flow graphs and
abstract syntax trees (ASTs) relies on the following methods:

WorkPool all methods are synchronized. The WorkPoolManager waits if the
configured number of workers is busy or no further split path is available
and is notified for changes (compare Fig. 2).

ProgramStructureFacade offers synchronized methods to retrieve CFG
references.

202 A. Ibing

SATPath

then

else

line != NULL ?

UNSAT

SATPath

UNSAT

else then

line != NULL ?

else

UNSAT

line != NULL ?

UNSAT

elsethen

UNSAT

elseelse

else

then

UNSAT

else

else

line != NULL ?

line != NULL ?

line != NULL ?

line != NULL ?

then

UNSAT

UNSAT

then

then

then

then

global_returns_t_or_...

global_returns_t_or_...

line != NULL ?

then

Partition 1

SATPath

then

else

line != NULL ?

UNSAT

SATPath

UNSAT

else then

line != NULL ?

else

UNSAT

line != NULL ?

UNSAT

elsethen

UNSAT

elseelse

else

then

UNSAT

else

else

line != NULL ?

line != NULL ?

line != NULL ?

line != NULL ?

then

UNSAT

UNSAT

then

then

then

then

global_returns_t_or_...

global_returns_t_or_...

line != NULL ?

then

Partition 1Partition 2

Fig. 4. Illustration of the partition split operation. Red indicates worker 1, green worker
2. Partition start paths are indicated with solid lines, the current worker state with
a dashed line. Partition borders are indicated by curves and the text ”Partition n”.
Unexplored parts of the execution tree are shaded.

Parallel SMT-Constrained Symbolic Execution for Eclipse CDT/Codan 203

UNSAT

then

SATPath

line != NULL ?

line != NULL ?

SATPath

UNSAT

then

UNSAT

else

line != NULL ?

SATPath

then

UNSAT

line != NULL ?

line != NULL ?

then

line != NULL ?

line != NULL ?

UNSAT

then

SATPath

UNSAT UNSAT

else

then

UNSAT

line != NULL ?

UNSAT

else

then

then

then

global_returns_t_or_...

global_returns_t_or_...

else

then

UNSAT line != NULL ?

then

then

line != NULL ?

then

line != NULL ?

else

else

else

UNSAT

line != NULL ?

else

line != NULL ?

UNSAT

line != NULL ?

else

else

UNSAT

else

then

else

else

UNSAT

UNSAT

then

UNSAT

else

else

then

UNSAT

UNSAT

else

else

else

line != NULL ?

UNSAT

line != NULL ?

else

else

else

then

UNSAT

UNSAT

else

UNSAT

else

then

UNSAT

else

else

else

line != NULL ?

line != NULL ?

line != NULL ?

else

line != NULL ?

else

then

line != NULL ?

then

line != NULL ?

line != NULL ?

line != NULL ?

then

UNSAT

UNSAT

then

else

then

then

global_returns_t_or_...

global_returns_t_or_...

then

then

then

global_returns_t_or_...

global_returns_t_or_...

then

else then

line != NULL ?

UNSAT

line != NULL ?

UNSAT

then

line != NULL ?

Fig. 5. Example execution tree (showing only decision and branch nodes) for test
program CWE121 char type overrun memcpy 12 from the Juliet test suite [18]. The
subtree on the lower left was used to illustrate the partition split operation in Fig. 4.

AST nodes are not thread-safe, so Workers lock AST subtrees at the CFG
node level (the AST subtree which is referenced by the currently interpreted
CFG node).

Index each CDT project has an index, which is the persisted document object
model (DOM). Access results in (possibly blocking) I/O operations on a
database stored in small files, so that workers acquire a read lock for accesses.

The split operation is illustrated in Fig. 4, which shows part of the execution
tree of the Juliet test program CWE121 char type overrun memcpy 12. The tree
shows only decision nodes and branch nodes; other CFG node types are not
shown. A path through the execution tree normally contains alternating decision
nodes and branch nodes. This example tree contains an exception because of a
function call expression in a decision node (corresponding to a function call in
the condition of an if-statement). This leads to a repetition of the decision node
as a call node, so that the interpreter can conveniently continue interpretation
with the return value.

The unexplored part of the (sub)tree is shaded. Red lines indicate the paths
which have been explored by worker 1, green lines correspond to worker 2. Parti-
tion start paths are shown as solid lines, and a dashed line indicates the current
position of a worker. Worker 1 splits its partition and generates a split path,
which becomes start path for worker 2. After the partition split, worker 1’s start
path is prolonged by one branch node.

The execution tree is normally not generated during analysis, it is only tra-
versed on-the-fly. The complete execution tree for this example is shown in Fig. 5.

2.5 Visualization

CFGs and explored execution trees can be visualized with the Java Univer-
sal Network/Graph library (JUNG, [23]) and exported as vector graphics with
Apache Batik [24]. These two libraries are therefore loaded as Eclipse plug-ins.
Execution tree visualization has been used for Fig. 4, 5.

204 A. Ibing

Table 1. Duration of analysis for two sets of test programs from Juliet (on a quad-
core processor). Shows increase of analysis speed for backtracking the symbolic program
state over path replay and for different number of worker threads.

CWE121 memcpy CWE121 CWE129 fgets
(18 test programs) (30 test programs)

Single-threaded with path-
replay [17]

131 s 1026 s

Backtracking, 1 Thread 25 s 102 s
Backtracking, 2 Threads 27 s 58 s
Backtracking, 3 Threads 31 s 54 s
Backtracking, 4 Threads 33 s 54 s

3 Evaluation

The parallelized symbolic execution engine is evaluated with stack based buffer
overflow test programs from the Juliet suite [18]. In order to achieve a certain
coverage of bugs, language constructs and context depths, Juliet combines ’base-
line’ bugs with different control and data flow variants into test programs. The
test programs contain ’good’ functions in addition to ’bad’ functions to provide
enough possibilities for false positive detections. Juliet contains 39 flow vari-
ants for C programs, and the maximum context depth spanned by a flow variant
(flow 54) is five functions in five different source files (necessary context depth for
accurate bug detection for that flow). The flows are not numbered consecutively.

Two sets of test programs are used, which contain buffer overflows with the
memcpy (set 1) and fgets (set 2) functions. Analyses are run with time measure-
ment as JUnit plug-in tests in Eclipse. Run times are only evaluated for those
programs for which bug detection is accurate, i.e. no false positives and no false
negatives. Therefore flow 18 is excluded, because it contains a goto statement
which leads to an exception in the current version of the CFGBuilder, resulting
in a false negative detection. Flow 54 uses unions, which is not yet implemented
in the translation to SMT syntax, also resulting in a false negative. A false
positive occurs for flow 66, because the current solver version (version 5.1.9 is
used) gives an incorrect satisfiability answer for the corresponding mixture of
array logic and arithmetic. On the other hand, accurate detection is achieved
for flow 12: the solver reports that the contained modulo function is not yet im-
plemented, but luckily guesses the correct satisfiability answer. As in [17], bugs
have been accurately detected with 36 of the 39 C flow variants (90%), while
the percentage of detectable ’baseline’ bugs is unsatisfying, because only a small
part of the standard library functions is interpreted.

Table 1 shows benchmarks for single-thread execution with path replay, single-
thread execution with backtracking, and multi-threaded execution with partition
splitting for a varying number of threads. The plug-in is run in Eclipse 4.2 on
a Core 2 Quad CPU Q9550 on 64-bit Linux kernel 3.2.0. Even for the tiny
test programs, backtracking already shows a 5-10x speedup over path replay.

Parallel SMT-Constrained Symbolic Execution for Eclipse CDT/Codan 205

The overhead of partition splits and thread creation hampers multi-threading
speedup, and actually leads to a setback for the tiny memcpy programs. The
fgets test programs contain several loops, which leads to bigger execution trees
and a 2x speedup with 3 threads.

4 Discussion

This paper presented a parallelized symbolic execution engine with Eclipse CDT
integration and showed significant speedup over a previous sequential implemen-
tation. Workers are run as multiple local threads on shared control flow graphs
and syntax trees. While the symbolic execution currently aims at path coverage
(with a loop depth bound), less comprehensive coverage criteria also need to be
supported in order to scale analyses to bigger programs. Future work includes a
straightforward extension to a distributed setup with a dynamic two-level hierar-
chical partitioning of the execution tree (first over Eclipse processes on different
machines, then over local threads).

Acknowledgement. This work has been partially funded by the German Min-
istry for Education and Research (BMBF) under grant 01IS13020.

References

1. King, J.: Symbolic execution and program testing. Communications of the
ACM 19(7), 385–394 (1976)

2. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)
3. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge

University Press (2009)
4. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard Version 2.0 (December

2010),
http://goedel.cs.uiowa.edu/smtlib/papers/

smt-lib-reference-v2.0-r10.12.21.pdf

5. Cadar, C., Sen, K., Godefroid, P., Tillmann, N., Khurshid, S., Visser, W., Pasare-
anu, C.: Symbolic execution for software testing in practice – preliminary assess-
ment. In: Int. Conf. Software Eng. (2011)

6. Pasareanu, C., Visser, W.: A survey of new trends in symbolic execution for soft-
ware testing and analysis. Int. J. Software Tools Technology Transfer 11, 339–353
(2009)

7. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In: USENIX Symp. Operating
Systems Design and Implementation (2008)

8. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis and transformation. In: Int. Symp. Code Generation and Optimization (2004)

9. Correnson, L., et al.: FRAMA-C User Manual, release oxygen-20120901. CEA LIST
(2012), http://frama-c.com/download/frama-c-user-manual.pdf

10. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language
and tools for analysis and transformation of C programs. In: Nigel Horspool,
R. (ed.) CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002),
http://dl.acm.org/citation.cfm?id=647478.727796

http://goedel.cs.uiowa.edu/smtlib/papers/smt-lib-reference-v2.0-r10.12.21.pdf
http://goedel.cs.uiowa.edu/smtlib/papers/smt-lib-reference-v2.0-r10.12.21.pdf
http://frama-c.com/download/frama-c-user-manual.pdf
http://dl.acm.org/citation.cfm?id=647478.727796

206 A. Ibing

11. Visser, W., Pasareanu, C., Khurshid, S.: Test input generation with Java
Pathfinder. In: Int. Symp. Software Testing and Analysis (2004)

12. Staats, M., Pasareanu, C.: Parallel symbolic execution for structural test genera-
tion. In: Int. Symp. Software Testing and Analysis, pp. 183–193 (2010)

13. Bucur, S., Ureche, V., Candea, G.: Parallel symbolic execution for automated real-
world software testing. In: EuroSys (2011)

14. Kremenek, T.: Finding software bugs with the Clang static analyzer. LLVM De-
velopers’ Meeting (August 2008),
http://llvm.org/devmtg/2008-08/Kremenek_StaticAnalyzer.pdf

15. Archer, S., VanderLei, P., McAffer, J.: OSGi and Equinox: Creating Highly Mod-
ular Java Systems. Addison Wesley (2010)

16. Laskavaia, A.: Codan- C/C++ static analysis framework for CDT. In: EclipseCon
(2011)

17. Ibing, A.: SMT-constrained symbolic execution for Eclipse CDT/Codan. In: Work-
shop on Formal Methods in the Development of Software (2013)

18. United States National Security Agency, Center for Assured Software: Juliet Test
Suite v1.1 for C/C++ (December 2011),
http://samate.nist.gov/SRD/testCases/suites/

Juliet Test Suite v1.1 for C Cpp.zip

19. Nielson, F., Nielson, H., Hankin, C.: Principles of Program Analysis. Springer
(2010)

20. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Muchnik, S., Jones, N. (eds.) Program Flow Analysis: Theory and Applications,
pp. 189–233. Prentice-Hall (1981)

21. Parr, T.: Language Implementation Patterns. Pragmatic Bookshelf (2010)
22. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathSAT5 SMT

solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 93–107. Springer, Heidelberg (2013)

23. Madadhain, J., Fisher, D., Smyth, P., White, S., Boey, Y.: Analysis and visualiza-
tion of network data using JUNG. J. Statistical Software (2005)

24. Apache: Batik Java svg toolkit, http://xmlgraphics.apache.org/batik/

http://llvm.org/devmtg/2008-08/Kremenek_StaticAnalyzer.pdf
http://samate.nist.gov/SRD/testCases/suites/Juliet_Test_Suite_v1.1_for_C_Cpp.zip
http://samate.nist.gov/SRD/testCases/suites/Juliet_Test_Suite_v1.1_for_C_Cpp.zip
http://xmlgraphics.apache.org/batik/

H. Yenigün, C. Yilmaz, and A. Ulrich (Eds.): ICTSS 2013, LNCS 8254, pp. 207–222, 2013.
© IFIP International Federation for Information Processing 2013

Challenges of Testing Periodic Messages
in Avionics Systems Using TTCN-3

Bernard Stepien and Liam Peyton

University of Ottawa - EECS
800 King Edward Ave Ottawa, ON K1N 6N5, Canada
{Bernard,lpeyton}@eecs.uOttawa.ca

Abstract. The TTCN-3 language was conceived initially for testing telecom-
munications protocols that consist of sequences of discrete messages between
communicating entities. TTCN-3 has a clear model of separation of concerns
between an abstract layer, where test behavior is specified, and a concrete layer,
where messages are encoded / decoded and sent and received to/from the sys-
tem under test. This model, however, is cumbersome for testing protocols with
periodic messages as used in avionics systems. This paper presents an innova-
tive approach to addressing issues involving periodic messages in TTCN-3,
based on our experiences working with avionics systems. Extensions to the
TTCN-3 standard are proposed, based on our approach. We also demonstrate
how the approach can be used for test system certification and requirements ve-
rification for avionics systems.

Keywords: periodic messages, testing, TTCN-3, avionics.

1 Introduction

TTCN-3 [1] is a language and international standard that was initially conceived specif-
ically for testing telecommunications protocols that consist of complex exchanges of
messages that offer both alternative and interleaved behaviors. TTCN-3 has a clear
model of separation of concerns between an abstract layer that specifies the test beha-
vior of a System Under Test (SUT) and a concrete layer that encodes and decodes mes-
sages that are sent to and received from the SUT. The link between the two layers is an
abstract representation of data that enables the use of generic tools not requiring any
programming effort from the user to perform the matching of received data with test
oracles as shown in Fig. 1. The matching mechanism is a central concept in TTCN-3.

Telecommunications system protocols are usually composed of a limited number
of discrete messages. However, avionics systems that use periodic messages send or
receive possibly very large series of messages with an identical payload at precise
time intervals. In contrast to telecommunications protocols, protocols with periodic
messages are mostly based on unacknowledged communication using the UDP proto-
col in broadcast mode. This is mostly due to the fact that the repetition of the same
message will ensure that at least a minimum amount of messages will eventually get
through and thus maintain the receiving system in a stable state. The periodicity is
also verified by the receiving entity to determine if a message is not obsolete and thus

208 B. Stepien and L. Peyton

should be used. Finally, an important feature of periodic messages is that sequence
numbers are used to determine if a message is not obsolete since they do not use any
confirmation mechanisms. These sequence numbers are the only data element that
varies from one message to the next in the otherwise identical payload.

Fig. 1. The TTCN-3 separation of concerns model

This paper presents an innovative approach to addressing issues involving periodic
messages in TTCN-3, based on our experiences working with avionics systems. Ex-
tensions to the TTCN-3 standard are proposed, based on our approach. We also
demonstrate how the approach can be used for test system certification and
requirements verification for avionics systems

2 Background

Various extensions to TTCN-3 have already been developed for other application do-
mains. The extension for continuous signals [4] [19] introduces the notions of time,
sampling, streams, stream ports, stream variables and the definition of an automaton
similar to control flow structure to support the specification of hybrid behavior. The
extension for real time requirements [16][17] introduces a test system wide available
system clock and means to access the time points of the relevant interaction events be-
tween the test system and the system under test (SUT) with precision, namely to avoid
delays caused by the test tool’s processing. The extension for static test configuration
and deployment [14] introduces a concept of special configuration function which can
only be called in the control part of a TTCN-3 test suite. This consists in defining static
test components that straddle several test case executions and have the result of not
resetting timers and message queues. The extension for extended parameterization [17]
introduces extended value and type parameterization for the various TTCN-3 parametric
language elements. The extension for behavior type [18] allows defining types for

 Challenges of Testing Periodic Messages in Avionics Systems Using TTCN-3 209

altsteps, functions and test case to render them parametric. The extension for extended
TRI [20] introduces the capability to pass abstract values from the abstract to the con-
crete layer, thus bypassing the codec step as shown in Fig. 1. Early use of TTCN-3 is
reported for avionics testing in the context of automated test case generation. An ap-
proach to periodic messages using the current version of the TTCN-3 language has been
attempted using procedure oriented testing [5]. However, avionics systems use mes-
sages based on structured data types, similar to telecommunications messages, for
which message oriented testing would seem more appropriate.

3 Periodic Messages and the TTCN-3 Model

3.1 Differences between Discrete and Periodic Message Systems

There are conceptual differences between protocols of systems that use discrete mes-
sages and those that use periodic messages. In systems with discrete messages each
message is unique and usually only occurs once or a limited number of times. Also,
messages usually occur in a given sequence that can be strict as shown in Fig. 2 or
follow more complex patterns of interleaving.

Fig. 2. Discrete message protocol

In systems with periodic messages, such as the ARINC 629 protocol [9], a given
message is repeated automatically potentially a large number of times either with
identical content or minor differences in content as shown on Fig. 3. Most of these
messages are sent to the avionics system by various sensors but less frequent messag-
es are also originating from the avionics equipment side to indicate status. More
challenging is the case where heterogeneous messages of different types occur con-
currently and over the same communication medium.

Fig. 3. Periodic messages systems

210 B. Stepien and L. Peyton

The typical TTCN-3 separation of concerns requires unnecessary repeated encod-
ing or decoding of identical messages. To avoid this redundancy, we propose a new
approach that consists in handling periodicity in the concrete instead of the abstract
layer as shown on Fig. 4. Messages are sent only once by the abstract layer until the
content needs to be changed and received by the abstract layer only when the data
received in the concrete layer has changed. There is a difference between handling
messages that are sent and messages that are received. Periodic identical messages
being sent need to be encoded only once and are first sent to a scheduler that handles
the periodicity. A mechanism updates the data buffer containing the encoded message
whenever content changes and controls the scheduler to modify periodicity.

Fig. 4. Separation of concerns for sending periodic messages

Messages being received are handled through traditional asynchronous receiving
threads, but, with a major difference that consists in first checking if a newly received
message is identical to the previously received message merely by comparing their
bytes, i.e. without first decoding the message. If there is a change, the received mes-
sage is en-queued and presented to the abstract layer for matching with test oracles as
shown on Fig. 5. If the content has not changed, the message is discarded.

Fig. 5. Separation of concerns for receiving periodic messages

This approach is particularly efficient in the case of concurrent periodic messages
of different types which would present enormous interleaving challenges if taken raw.
Also, this approach results in the specification of changes of message content that
appear in the abstract test suite as if they were discrete messages, thus removing the
complexity that concurrent message types would create if their periodicity would be
handled in the abstract level.

One of the major features of TTCN-3 is logging. Each message sent or received is
logged by the test execution tools and thus enables efficient tracing. Although logging
is mostly a feature of TTCN-3 execution tools except for the TTCN-3 explicit log

 Challenges of Testing Periodic Messages in Avionics Systems Using TTCN-3 211

statement, there is no standardization of logging as such. Logging remains the con-
cern of tool providers. However, since each message is logged, periodic messages
inevitably would produce a massive amount of logging making analysis of results
tedious if not impossible. Various tools provide log filtering features based on parallel
test components, but these would not be usable for periodic messages. Solutions have
been found by tool providers that produce logs only when messages have changed.
These solutions are not portable from one tool to another from different vendors be-
cause there are not covered by the standard and each vendor may choose a different
approach. Also, the requirement specific to the avionics industry of using a scheduler
[8] makes the handling of periodicity by the abstract layer useless by definition. The
implementation at the concrete layer requires dispatching messages arriving through
the triSend() method to the appropriate message type data buffer that is then used by
the scheduler as shown on Fig. 6.

Fig. 6. Concrete layer architecture for periodic messages

In avionics, reducing weight is a prime preoccupation. This includes reducing the
needs for equipment of all sorts including networking equipment such as cables. This
is achieved by using data concentrators that receive data from nearby sensors or other
equipment on a many to one principle and then forward an assembled complex mes-
sage to the final destination (cockpit) on a single cable. Different message have dif-
ferent periodicity or may even be aperiodic which requires the use of the concept of
scheduler that is subject to intense research such as in [11] [22] [23]. It is the
scheduler that computes sequence numbers. One of our findings was that the require-
ment of schedulers naturally eliminates the use of parallel test components that is one
of the central concepts of TTCN-3.

3.2 Proposed Changes to the TTCN-3 Language

While a prototype of this model has been fully implemented in the concrete layer with
the current version of the TTCN-3 standard and thus using a general purpose object
oriented language, some modifications to the TTCN-3 language would provide a
more rigorous approach by enabling one to specify the test fully at the abstract level

212 B. Stepien and L. Peyton

leaving the implementation details as built-in features in the hands of TTCN-3 tool
providers rather than the users, thus preserving semantics across TTCN-3 tools.
TTCN-3 is a strongly typed language. For periodic messages, there are a number of
enhancements that would allow mostly checking the use of operations that are specif-
ic to periodic messages and cannot be used for discrete messages protocols. We list
our proposed changes here.

Port Declarations

The port declaration for messages needs an additional keyword periodic to indicate
that the messages are periodic as for example.

port myPort periodic message {
 inout MyPeriodicMesssageType;
}

Also, in the industrial applications we studied, there were cases where both period-
ic and discrete messages are using the same port. This would lead to a need for a
mixed communication mode. The keyword mixed, by itself is already reserved for
indicating that the port is used for both message and procedure oriented communica-
tion. Here the combination of periodic and mixed keyword could potentially solve the
problem.

Data Type Declarations

There are three differences in data typing for periodic messages:

• Specify that the data type is to be used for periodic messages only.
• Specify the periodicity and any changes thereof.
• Handling sequence numbers.

Specifying the Periodic Nature of the Message and Its Periodicity

The first two differences for data typing periodic messages involves specifying the
time interval between sending two periodic messages and determining if received
messages are received at time intervals that exceed the periodicity threshold in which
case a timeout event should be reported to the abstract level. This consists in the ca-
pability to specify both an initial or default periodicity and also new periodicities in
the course of a test sequence. The initial periodicity would be part of the data type
declaration itself rather than a port declaration since a port can be used for different
message types that could have different periodicities or even aperiodic messages. For
example to specify an initial periodicity (default) of 30 ms we would use the
following syntax:

type record MyType periodic 0.030 {
 // field definitions
}

 Challenges of Testing Periodic Messages in Avionics Systems Using TTCN-3 213

However, one test purpose could be the variation of the periodicity to trigger faults
in the SUT and verify that they occur. For that purpose we also need a new abstract
language construct in order to be able to specify modifications of the periodicity in a
similar way as TTCN-3 enables modifying the values of timers with a fundamental
difference that with timers we use a timer instance while with data types we use the
data type name only. This is based on the fact that for periodic messages data types
we have only one method that handles this periodic data type in the test adapter. We
propose the method name setperiodicity with a float value that is applied to a data
type name for this purpose as for example:

 MyPeriodicType.setperiodicity(0.100);

Another aspect of periodicity could be that the periodicity would be different
whether the messages are sent or received. This issue certainly would arise with con-
crete telecommunication messages where a given message type is used in both direc-
tions but our experience with periodic messages shows that periodic messages have a
different data type depending on the direction. Thus, that distinction is not a priority
but must be considered as future work. This feature also requires a mirror method in
the standard test adapter class: triSetPeriodicity(Object datatype, double periodicity).

Handling Sequence Numbers

Sequence numbers must also be handled differently for periodic messages. Normal-
ly, each message has a different sequence number whether the payload is the same or
not. Since the periodicity is handled in the concrete layer, the scheduler is responsible
for assigning the correct sequence numbers. Thus, when creating a template at the
abstract layer, the sequence number field should not be instantiated. This is somewhat
similar to the treatment of optional fields. This means that a sequence number field
can be omitted without producing a compile time error as for mandatory fields. Here
the field is merely ignored in the abstract layer but we still need to declare what the
initial and maximal values that the concrete layer should automatically compute are.
Thus, we propose the new keyword concrete to indicate that a field is computed in the
concrete layer and two keywords to indicate its starting and maximal value. The max-
imal value is used for in fact resetting the value to the starting value when the
maximum is reached.

type record MyPeriodicMessageType {
 integer myConcreteField concrete startvalue 0
 maximumvalue 32000,
 // more fields definitions }

Here again, methods to access the start and maximum values should be provided by
the triAdapter class in order for the scheduler to access them.

Updating Individual Field Values

Real time constraints of systems that use periodic messages call for minimizing the
amount of data being manipulated especially in the codec. In particular, it is important

214 B. Stepien and L. Peyton

to avoid having to encode an entire record when only the value of a minimal amount
of fields has changed. Thus, there needs to be a separate keyword for sending only a
new value for a given field when all the remaining fields remain constant. We propose
the keyword update with three parameters, one that indicates the data type, one for the
field name and finally one for the new value as for example:

myPort.update(MyPediodicDataType, aFieldName, 45000);

This abstract layer keyword requires a corresponding method triUpdate() in the
TriAdapter abstract class defined in the TTCN-3 standard [13] that must be imple-
mented exactly like the triSend() method that corresponds to the abstract send() com-
mand. However, the update command has another challenge, it requires late coding
since it affects only a small portion of the persistent data buffer used by the scheduler.
Effectively the traditional model of sequence of actions –abstract send-message en-
coding-concrete triSend cannot be used since only a portion of a message is encoded
with the updated value. Thus, the triUpdate() method will receive an abstract value in
its parameter. The implementation of this method consists in making the appropriate
modification to the data buffer corresponding to the specified data type and this re-
mains the responsibility of the user.

Timeout and Out of Sequence Events

For receiving periodic message, we propose a concept of timeout event associated
with the data type rather than a concept of timer at the abstract level. This is due part-
ly to the fact that periodicity is an implicit timer that thus does not need to be speci-
fied as such but also because periodicity is by definition associated with a specific
data type. Thus we propose an abstract language construct with the keyword periodic-
timeout that has a data type as an argument and that is associated with a port instance
as follows:

 myPort.periodictimeout(MyMessageType);

However, this timeout is triggered by a timer in the concrete layer that should be
built-in and thus implemented by the TTCN-3 execution tool provider specifically for
periodic messages only and not by the user.

Consequently, when a timeout occurs in the concrete layer, a timeout event should
be en-queued on the message queue.

The setting or checking of out of order sequence numbers can be specified in a
similar way. For checking out of sequence messages being received we use an out of
sequence indicator event that indicates the data type and the field name in which se-
quence numbers are stored as follows:

 myPort.outofsequence(MyMessageType, myFieldName);

However, when sending messages, while the periodicity is naturally controlled
with the setperiodicity construct, provoking out of sequence messages for testing the
response to such a situation by the SUT is not as simple. Here we need to specify

 Challenges of Testing Periodic Messages in Avionics Systems Using TTCN-3 215

which sequence numbers need to be interchanged without really knowing at which
state the sequence numbers are in since they are computed by the scheduler. Thus we
propose a concept of relative position of sequence numbers which really indicates that
at the present point, a sequence number that normally would occur only later should
be sent immediately. We propose the following syntax for specifying out of order
sequence numbers in terms of a relative distance between sequence numbers:

myPort.setoutofsequence(MyMessageType, myDistance);

For example, a relative distance of 8 would create the following suite of sequence
numbers when they have already internally reached the value of 235:

{235, 243, 236, 237, 238, 239, 240, 241, 242, 244, …}
However, one important aspect of periodic messages is that some field values can

be determined only at the concrete layer. This requires a mechanism to specify the
encoding or decoding rule of such fields well decoupled from the value assignment
mechanism. The user would specify the encoding/decoding rule while the value
would be determined by a scheduler. This problem is novel and is future work.

4 Test Certification Using the TTCN-3 Matching Mechanism

Periodic message systems used in the aviation industry require certification by law.
For example, no airplane can fly without a certification of navigability which includes
certification of each of its components, whether hardware or software including test
suites. There are numerous approaches to test certification used by industry. The deci-
sion factors for choosing the appropriate approach for testing are described qualita-
tively in a survey in [3]. They first distinguish the test system for its capacity for
abstraction from a code-centric to a model-driven view and second discuss the advan-
tages of test specification languages. TTCN-3 meets these criteria and has the
additional advantage of being a standard; being well supported by a number of tool
vendors; and by having a clear model. This raises the question of migrating from leg-
acy test systems to TTCN-3. However, in light of the certification requirement, any
migration from a legacy test system to TTCN-3 also requires certification of the cor-
responding new TTCN-3 test suite. Certification is a long and tedious process. Thus,
migrating to a new test specification language requires reducing the certification
process. Normally, this can be achieved by proving behavior equivalence.

The major advantage of using TTCN-3 as a formal test specification language is
the separation of concerns between an abstract level in which test logic is specified
and a concrete level in which system specific messages and protocols are parsed. In
the case of test certification, this means that the equivalence can be determined at the
abstract level only and using the very powerful and simple matching mechanisms that
saves the test engineer the actual implementation of message comparisons. This task
is handled by the built-in mechanisms in the TTCN-3 execution tool.

Behavior equivalence has been already researched for the case of refactoring
TTCN-3 test suites. Makedonski et al [7] studied the equivalence of observable beha-
vior of two TTCN-3 test suites, the latter being the result of refactoring the former.

216 B. Stepien and L. Peyton

They define observable behavior by the interactions of the test system running the test
case and the SUT and the test verdicts and they came to the conclusion that the test
system interface is the best location to observe behavior. More precisely, they state
that the possible sequences of observable events define the observable behavior. Basi-
cally, behavior equivalence means the same message sequences, the same message
content, and the same test verdicts. Practically, they use TTCN-3 logs to evaluate
behavior equivalence. TTCN-3 logs have the advantage of providing message content
in their abstract form which makes the use of the TTCN-3 matching mechanism poss-
ible with a valuable consequence of being able to evaluate the equivalence strictly in
abstract terms since the codecs would remain constant by definition. Their study was
based on discrete messages systems. In our case we face two new challenges:

• The comparison between a non-TTCN-3 and a TTCN-3 test system.
• Periodic rather than discrete messages.

The first difference makes the use of logs difficult because both the format and the
content of these logs are heterogeneous and would require at least a translation prior
to any attempt to use them. Thus, as a result, the only solution would be to capture
concrete messages on the transport medium instead of abstract messages in logs. With
periodic messages, the main problem is precisely the periodicity that produces large
quantity of messages that need to be compared to prove equivalence. Here the prin-
ciple of decoding messages only if their content has changed as shown previously on
Fig. 5 can be used efficiently for the purpose of certification because it reduces the
number of messages to be compared enormously and also avoids interleaving of dif-
ferent message types. Thus, with this approach we focus on the changes in state of the
messages. This results in a more manageable reduced number of messages that is then
comparable to what can be found in discrete messages systems.

The approach consists of using the messages from the legacy system as test oracles
against the messages produced by the corresponding TTCN-3 implementation. The
verification of equivalence can be performed by another TTCN-3 test suite that uses
the logs of both the legacy and TTCN-3 migration test suites and re-uses the codecs of
the migrated TTCN-3 test suite as shown on Fig. 7. Thus, the TTCN-3 certification
test suite is composed of sequences of receive statements only since it checks both
captured messages being sent or received either by the legacy or migration test suites
as shown on Fig. 8.

Thus, the certification process is performed in five steps using TTCN-3:

• Capture concrete messages produced by the execution of the legacy system using a
packet sniffer such as Wireshark [21].

• Transform the concrete legacy messages into a list of abstract TTCN-3 messages
templates using the codec.

• Capture concrete messages produced by the execution of the TTCN-3 migrated
system using a packet sniffer again.

• Transform concrete messages produced by the TTCN-3 migration test suite into a
list of abstract TTCN-3 messages templates using the same codec as in step 2.

 Challenges of Testing Periodic Messages in Avionics Systems Using TTCN-3 217

• Use a simple comparator implemented in the abstract layer of TTCN-3 that com-
pares an abstract message of the legacy system to its corresponding abstract
message of the migrated TTCN-3 system using the basic TTCN-3 matching
mechanism.

Fig. 7. Using TTCN-3 for certification

Fig. 8. Test Certification message comparison

Since both test systems use different message types, the TTCN-3 messages compa-
rator test behavior is composed of alternatives (line 04) for each data type on the port
handling the legacy messages. A message received on the legacy port (line 05) is
stored into a variable (line 06) that is used as a template (line 09) when attempting to
receive and match the corresponding message from the port handling the migrated
messages as shown below:

218 B. Stepien and L. Peyton

01 function messageComparator() runs on ComparatorType{
02 var template MessageType_A legacyMessage_A;
03 var template MessageType_B legacyMessage_B;
04 alt { // code handling MessageType_A
05 [] legacyPort.receive(MessageType_A:?)
06 -> value legacyMessage_A {
07 legacyMessage_A.sequenceNumber := ?;
08 alt {
09 [] migrationPort.receive(legacyMessage_A){
10 setverdict(pass);
11 }
12 [] migrationPort.receive {
13 setverdict(fail);
14 stop;
15 } }
16 repeat;
17 }
18 // other alternatives for different message types
19 } }

Note that the variable must be a template so that the sequence number of that message
can be set to any value using the “?” symbol (line 07) to avoid matching this field
since sequence numbers are not handled in the abstract layer for periodic messages.
Thus, here we can see that the TTCN-3 language and its central model of separation
of concern are used in different ways in the process of certification because this mod-
el ensures a maximum flexibility and the high level of abstraction combined with the
built-in matching mechanism of TTCN-3 tools makes the specification of this
message comparator extremely simple.

5 Verifying Requirements Using TTCN-3

5.1 Defining Verification of Requirements

While most test systems are test case centric, the aviation industry uses an additional
level of structuring, the concept of requirements that consists in enumerating selected
test cases that should have passed to satisfy a given requirement. Such requirements
are described in standards such as in the joint FAA/EASA DO-178C standard [12]
and related documents which also cover the quality assurance process (testing) [10].
They target, in particular, model based development and verification using formal
methods. The requirements are based on a metric of severity that consists of five dif-
ferent levels ranging from no effect to catastrophic. This means that a system may still
be authorized to be put into production even if a requirement with a low severity level
is not full-filled, i.e. some test cases composing it have failed. For example, an aircraft
may still be authorized to fly if the test for the functioning of the entertainment system
is not full-filled. The evaluation of the fulfillment of requirements is performed in two

 Challenges of Testing Periodic Messages in Avionics Systems Using TTCN-3 219

steps: first, all the test cases of a test suite are executed independently from their in-
volvement in a requirement, second, each requirement is evaluated using the subsets
of test cases that define them. This means that a given test case could belong to sever-
al requirements and thus is evaluated but not executed several times. The failure of a
test case could thus have different impacts depending of the severity associated with
the requirements it belongs to.

5.2 Implementation Details

The verification of requirements can be easily implemented in TTCN-3 using the
verdicts that are returned by test cases that are executed in the control part. First, re-
quirements are defined using sets of records containing two fields, one for the re-
quirement name and the other for the set of test cases containing the test cases names
and their corresponding desired verdicts (always pass) as follows:

type record TestcaseVerdictType {
 charstring testcaseName,
 verdicttype testcaseVerdict
}
type set of TestcaseVerdictType TestCasesVerdictsType;

type record RequirementType {
 charstring name,
 TestCasesVerdictsType testCasesVerdicts
}
type record of RequirementType RequirementsType;

Using the above abstract data types, we can define the requirements using TTCN-3
templates as follows:

 template RequirementsType requirements := {
 { name:= "requirement_1",
 testCasesVerdicts := {
 {testcaseName:= "TC_1", testcaseVerdict := pass },
 {testcaseName:= "TC_2", testcaseVerdict := pass },
 {testcaseName:= "TC_3", testcaseVerdict := pass }
 }
 },
 { name:= "requirement_2",
 testCasesVerdicts := {
 {testcaseName:= "TC_1", testcaseVerdict := pass },
 {testcaseName:= "TC_3", testcaseVerdict := pass }
 } } }

Then, we need to execute the test cases independently from the definitions of re-
quirements and collect their returned verdicts in variables of type verdicttype. The test
case verdicts variables must be initialized to the standard value none in order to avoid

220 B. Stepien and L. Peyton

problems resulting from uninitialized variables in the case of conditionally executed
test cases where the actual execution of the test case is not guaranteed. The control
section is executed as follows:

 control {
 var verdicttype verdictTC_1 := none;
 var verdicttype verdictTC_2 := none;
 var verdicttype verdictTC_3 := none;
 verdictTC_1 := execute(TC_1());
 verdictTC_2 := execute(TC_2());
 verdictTC_3 := execute(TC_3());

Once all test cases have been executed, we compose a template variable to create a
set of TestCaseVerdictType that is defined as a subset and contain the actual verdicts
resulting from executing the test cases individually:

var template TestCasesVerdictsType tc_verdicts :=
 subset (
 { testcaseName := "TC_1",
 testcaseVerdict := verdictTC_1 },
 { testcaseName := "TC_2",
 testcaseVerdict := verdictTC_2 },
 { testcaseName := "TC_3",
 testcaseVerdict := verdictTC_3 }
);

Finally we can verify the requirements by using the TTCN-3 matching mechanism
construct (keyword match) for sets using the requirements and test cases verdicts
templates that were defined previously, one statically and the later dynamically as
follows:

var integer i;
for(i:= 0; i < sizeof(requirements); i := i + 1) {
 if(match(requirements[i].testCasesVerdicts,
 tc_verdicts)) {
 log("requirement " & requirements[i].name &
 " has been fullfilled");
 }
 else {
 log("requirement " & requirements[i].name &
 " has NOT been fullfilled");
} }

Thus, the principle consists in verifying that the set of test cases verdicts of a re-
quirement is a subset of the entire set of test cases verdicts. The match can occur only
if all of the test cases of a given requirement have passed. As a result, test cases that
have failed do not influence the evaluation of a requirement if they are not specified
for this specific requirement.

 Challenges of Testing Periodic Messages in Avionics Systems Using TTCN-3 221

5.3 Recommended Change to the TTCN-3 Standard

While the implementation described in the previous section certainly functions cor-
rectly and is straightforward, it requires a development effort and this not only on the
requirement evaluation activity but also on the test report aspect. Test reports are not
covered by the standard and are effectively provided with various levels of details by
TTCN-3 tools. Thus, here we can only recommend the specification of requirements
at the abstract level leaving responsibility of implementation of the corresponding
logging to the tools providers. The abstract language construct can be relatively sim-
ple: the keyword requirement followed by a requirement identifier and a list of test
cases identifiers as follows:

requirement myRequirement
 {myTestcase_1,...,myTestcase_n};

The execution of test cases would still have to be specified separately within the con-
trol section and could include conditional execution. Although this proposal would be
adequate for the industrial avionics systems we have studied because their test cases
are not parametric and thus a given test case is executed only once in a test campaign,
TTCN-3’s parametric test case concept allows the execution of the same test case but
with different parameter values. Thus, the TTCN-3 test case name as a way to identify
an effective test case is not sufficient. Solutions to this problem are future work.

6 Conclusions

In this paper, we have shown how TTCN-3 can be adapted to provide the same level
of efficacy in testing periodic messages in avionics systems as is provided for discrete
messages in telecommunications systems. The key insight is to leverage the separa-
tion of concerns in the architecture of TTCN-3 between the abstract test specification
layer that specifies test behavior and the concrete messaging layer that filters and
interprets the periodic messages. This approach can be implemented with the current
version of TTCN-3, but we have suggested some simple extensions to the TTCN-3
standard that would support testing of periodic message protocols in a more natural
fashion. Test certification and verification of requirements are critical aspects of
avionics systems governed by standards. We have shown how our approach to peri-
odic messages is applicable to them as well.

References

1. ETSI ES 201 873-1 (2013-04). The Testing and Test Control Notation version 3, Part 1:
TTCN-3 Core notation, V4.5.1 (April 2013)

2. Testing Technologies, TTworkbench - an Eclipse based TTCN-3 IDE (2011),
http://www.testingtech.com/products/ttworkbench.php

3. Hartman, A., Katara, M., Olvovsky, S.: Choosing a Test Modeling Language: A Survey.
In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS, vol. 4383, pp. 204–218. Springer,
Heidelberg (2007)

222 B. Stepien and L. Peyton

4. Schieferdecker, I., Bringmann, E., Großmann, G.: Continuous TTCN-3: Testing of Em-
bedded Control Systems. In: Proceeding of SEAS 2006, pp. 29–36 (2006)

5. Efkemann, C., Peleska, J.: Model-Based Testing for the second generation of Integrated
Modular Avionics. In: Proceedings of ICSTW 2011, pp. 55–62 (2011)

6. Laurent, O.: Using Formal Methods and Testability Concepts in the Avionics Systems Va-
lidation and Verification. In: proceedings of ICST 2010, pp. 1–10 (2010)

7. Makedonski, P., Grabowski, J., Neukirchen, H.: Validating the Behavioral Equivalence of
TTCN-3 Test Cases. In: Proceeding of VALID 2009, pp. 117–122 (2009)

8. Audsley, N.C., Grigg, A.: Timing Analysis of the ARINC 629 Databus for real-time appli-
cations. Microprocessors and Microsystems 21(1-7), 55–61 (1997)

9. Gabillon, A., Gallon, L.: Availability of ARINC 629 Avionic Data Bus. Journal of Net-
works, Vol 1(6), 1–9 (2006)

10. Moy, Y., Ledinot, E., Delseny, H., Wiels, V., Monate, B.: Testing or Formal Verification:
DO-178C Alternatives and Industrial Experience. IEEE Software (May/June 2013) (issue)

11. Easwaran, A., Lee, I., Sokolsky, O., Vestal, S.: A Compositional Scheduling Framework
for Digital Avionics. In: University of Pennsylvania Scholarly Commons, Departmental
Paper (August 24, 2009)

12. DOC-178C, Software Considerations in Airborne Systems and Equipment Certification,
RTCA Inc., http://www.rtca.org/store_product.asp?prodid=803 (last
accessed August 2013)

13. ETSI ES 201 873-5 (2013-04). The Testing and Test Control Notation version 3, Part 5:
TTCN-3 Runtime Interface, V 4.5.1 (April 2013)

14. ETSI ES 202 781 TTCN-3: Extension: Configuration and Deployment Support, V 1.2.1
(June 2013)

15. ETSI ES 202 782 TTCN-3: Extension: Performance and Real-Time Testing, V 1.1.1 (July
2010)

16. ETSI ES 202 783 TTCN-3: Extension: Testing of Real-Time Systems, V 1.1.1, draft
17. ETSI ES 202 784 TTCN-3: Extension: Advanced parameterization, V 1.3.1 (April 2013)
18. ETSI ES 202 785 TTCN-3: Extension:Behavior Types, V 1.3.1 (April 2013)
19. ETSI ES 202 786 TTCN-3: Extension:Support of Interfaces with Continous Signals, V

1.1.1 (April 2012)
20. ETSI ES 202 789 TTCN-3: Extension: Extended TRI, V 1.2.1 (April 2013)
21. Wireshark software, http://www.wireshark.org/
22. Levine, D., Gill, C.D., Schmidt, D.C.: Dynamic Scheduling Strategies for Avionics Mis-

sion Computing. In: Proceedings of Digital Avionics Systems Conference, vol. 1, pp.
C141–C158 (1998)

23. Hua, Y., Liu, X.: Scheduling Design and Analysis for End-to-End Heterogeneous Flows in
an Avionics Network. In: University of Nebraska, Digital Commons, CSE Conference and
Workshop Papers (2011)

Guided Algebraic Specification Mining

for Failure Simplification

Alexander Elyasov, I.S. Wishnu B. Prasetya, and Jurriaan Hage

Dep. of Inf. and Computing Sciences, Utrecht University, Utrecht, The Netherlands
{A.Elyasov,S.W.B.Prasetya,J.Hage}@uu.nl

Abstract. Software systems often produce logs that capture informa-
tion about their execution behaviour. When an error occurs, the log file
with the error is reported for subsequent analysis. The longer the log file,
the harder to identify the cause of the observed error. This problem can
be considerably simplified if we reduce the log length, e.g., by removing
events which do not contribute towards finding the error. This paper
addresses the problem of log reduction by rewriting the reported log in
such a way that it preserves the ability to reproduce the same error. The
approach exploits rewrite rules inferred from a set of predefined alge-
braic rewrite rule patterns, exhibiting such properties as commutativity
and identity. The paper presents an algorithm for rewrite rules infer-
ence, and a terminating reduction strategy based on these rules. Being
log-based the inference algorithm is inherently imprecise. So the inferred
rules need to be inspected by a human expert before actually being used
for rewriting. The approach is language independent and highly flexible.
The paper formally defines all used concepts and discusses a prototype
implementation of a log reduction framework. The prototype was empir-
ically validated on a web shop application.

Keywords: logging, fault localisation, log reduction, log rewriting,
property mining.

1 Introduction

Application logs represent an important source of information about the real
behavior of a system under test (SUT). A typical application log consists of
an alternation of the events emitted by the application and application inter-
nal states before or after such events. By means of dynamic inference, often
complemented with static analysis, the logs can be transformed into application
models, commonly expressed as finite state machines (FSM) [15]. These FSM
models are supposed to capture the complex interplay between data and control
flow, have a moderate number of states, and at the same time precisely reflect
the application semantics. As a recent empirical assessment [14] has shown this
task is highly challenging, and in many respects depends on the type of logging
abstraction as well as the quality of log data itself.

H. Yenigün, C. Yilmaz, and A. Ulrich (Eds.): ICTSS 2013, LNCS 8254, pp. 223–238, 2013.
c© IFIP International Federation for Information Processing 2013

224 A. Elyasov, I.S.W.B. Prasetya, and J. Hage

On the other hand, when a failure occurs logs, also become valuable for the
failure context that helps to track down the root cause of the failure, or at least
to reproduce the failure [13,11]. Such a failure context consists of the applica-
tion states and events preceding the failure. In case of failure reproduction, the
length of the failure context might directly impede the debugging process. To ad-
dress this problem several techniques can be employed such as delta-debugging
(DD) [27] and FSM model inference [18,15]. DD searches for a minimal failing
sub-sequence that preserves the failure. It runs until no one event can be re-
moved without breaking the ability to produce the failure. In practice, however,
DD requires multiple online execution attempts which can be expensive or even
not feasible at all. In contrast, once the FSM model of an application is inferred
from logs, it can be used for minimisation of the failing sequence. The drawback
of dynamically inferred FSM models is that the minimised sequence might lose
the possibility to reproduce the failure due to of over-approximation.

To address the restrictions imposed by both DD and FSM inference, we pro-
pose a novel approach to failure simplification based on guided mining of alge-
braic rules and failure revealing test case reduction by rewriting. In comparison
with DD, this approach does not require us to replay the failing sequence re-
peatedly. At the same time, it is less expensive than FSM inference, and it also
more strongly resembles the failure related circumstances.

Our approach consists of two phases: 1) inference of rewrite rules from already
collected logs based on a set of predefined rewrite rule patterns ; and 2) turning
the rewrite rules into event rewriting system, which is used for the reduction
of the original failing test case to a smaller one that still preserves the failure.
The predefined patterns represent common algebraic properties between the ap-
plication events, such as commutativity and identity. Despite their apparent
simplicity, these properties can be successfully used for log reduction, which has
been verified on a model web store application example.

The main contributions of this paper are:

– It formally states the log reduction problem.

– A solution is proposed, which exploits the equivalence of event traces with
respect to the final states in which these traces can result.

– A terminating and non-increasing reduction strategy is presented.

– Empirical validation is carried out on a web shop application example.

The paper has the following structure. Section 2 introduces a motivating ex-
ample, the GCD application, and shows how the reduction approach works. In
Section 3.1 the formal definitions of execution equivalence and event reduction
system are given. The algebraic rewrite rule patterns and the reduction strategy
are provided in Section 3.2 and 3.3 respectively. We discuss the implementation
of the Log Reduction Framework in Section 4. Results of the empirical valida-
tion of inference and reduction parts are presented in Section 5. Related work
is considered in Section 6. Section 7 concludes the paper and discusses future
work.

Log-Based Reduction by Rewriting 225

2 Motivating Example

In this section, we introduce an example to illustrate the log reduction approach.
The example is a GUI application for calculating the greatest common divisor
(GCD) of two natural numbers. The application has three text fields X (the first
number), Y (the second number), and R (the result), and two buttons calc and
clear. When the application is initialised, all fields are empty by default.

An essential part of our approach is to use an event-state logging model. This
model is discussed in detail in Section 3. For now, we only need to know that a
log is composed of the alternation of events and states, where the events are the
application events and the states are the abstract states of the application. That
is, when an event is triggered, we log (serialise) the abstract application state at
the end of the event, as well as a description of the event itself, which includes
the event name (possibly the type) and the values of the event parameters. An
event starts its execution in the state where the previous one has finished (except
for the first event, which starts in some initial state).

We distinguish the following application events in our GCD example:

Event Description

setX(x) the user assigns the value x to the field X
setY (y) the user assigns the value y to the field Y
calc the user clicks the button calc, which changes the value of R
clear the user clicks the button clear, which erases all fields

As an abstract state of the GCD application, let’s take the triple {x, y, r},
where x, y and r are the values of the corresponding fields X , Y and R. At
the beginning of an execution all fields are empty, consequently the variables
associated with them are undefined. If the event calc is called when one of the
fields is undefined, then nothing happens. Assume that the application has a
fault in the implementation of the event setX , namely, setX(x) always results
in assigning zero to the field X . The corresponding error will be exposed as a
failure in case the calc event is executed from the state where one of the variables
x or y is equal to zero.

Now, let us consider the following execution sequence:

τ = {?, ?, ?} setX(3)→ {0, ?, ?} setY (5)→ {0, 5, ?} clear→ {?, ?, ?} setX(9)→ {0, ?, ?}
setY (4)→ {0, 4, ?} setX(0)→ {0, 4, ?} setY (3)→ {0, 3, ?} setY (6)→ {0, 6, ?} calc→ error

This sequence leads to an error due to an attempt to compute the GCD when x
is equal to zero.

For the application model described above, two event sequences are equivalent
if they result in the same final state starting from the same initial state. For
instance, the following equivalences hold for the GCD application:

226 A. Elyasov, I.S.W.B. Prasetya, and J. Hage

∀e ∈ Event [e ; clear] = [clear]
[setX(x); setY (y)] = [setY (y); setX(x)]
[setX(x); setX(x ′)] = [setX(x ′)]
[setY (y) ; setY (y ′)] = [setY (y ′)]

The second rule, for instance, says that the order of assigning values to the fields
X and Y does not matter with respect to the final state they produce. Applying
these rules step by step to the original sequence τ , we can reduce it from nine
entries to only four, such that the reduced sequence preserves the original error.
Therefore, it gives less than half of the original test case exhibiting the same
failure. With this reduced test case it should be easier to discover the error root
cause, which consequently may decrease debugging time:

[setX(3); setY (5); clear ; setX(9); setY (4); setX(0); setY (3); setY (6); calc]

≡ { apply [x;clear]=[clear] two times to setY and setX -}
[clear ; setX(9); setY (4); setX(0); setY (3); setY (6); calc]

≡ { apply [setX(9);setY(4)]=[setY(4);setX(9)] -}
[clear ; setY (4); setX(9); setX(0); setY (3); setY (6); calc]

≡ { apply [setX(9);setX(0)]=[setX(0)] -}
[clear ; setY (4); setX(0); setY (3); setY (6); calc]

≡ { apply [setY(3);setY(6)]=[setY(6)] -}
[clear ; setY (4); setX(0); setY (6); calc]

≡ { apply [setY(4);setX(0)]=[setX(0);setY(4)] -}
[clear ; setX(0); setY (4); setY (6); calc]

≡ { apply [setY(4);setY(6)]=[setY(6)] -}
[clear ; setX(0); setY (6); calc]

3 Formal Reduction Theory

In this section, we formally describe the reduction problem and present our so-
lution. We start by defining an equivalence relation on logs and then describe
the logging approach. This equivalence relation lies at the basis of the log reduc-
tion, the purpose of which is to decrease the length of a log by rewriting it to a
smaller but equivalent one. We propose to learn special rewrite rules from logs
that express simple and ubiquitous properties among the application events such
as commutativity and idempotence. The learning is effective (Section 5.1), even
if the logs are relatively small (hundreds of entries). Moreover, the application
of the rules can result in a significant log reduction (Section 5.2).

3.1 Log and Event Trace Equivalence

Following the line of work Lorenzoli et al. [15], we assume that execution traces
are produced by an Extended Finite State Machine (EFSM), which implicitly

Log-Based Reduction by Rewriting 227

underlines the application model. However, in our representation, the EFSM
does not contain transition predicates, and the context variables are associated
with the states instead of the transitions.

Definition 1 (EFSM). An EFSM E is a 6-tuple (S,X, V,E, I, T), where

– S is a set of states,
– X is an n-dimensional space X1 × · · · ×Xn,
– V is a state valuation function on S such that V : S → X is injective,
– E is a set of events,
– P is a set of inputs (event parameters),
– T is a transition function such that T : S × E × P → S.

Transition ((s, e, p), s′) is denoted as (s, e, p) → s′. For a given s and e, if
(s, e, p) → s′ for all p, we leave out p and write (s, e) → s′. The symbol ε is a
special virtual event without parameters that defines the transition (s, ε) → s.
By its definition, an EFSM is deterministic.

Definition 2 (Execution). Given a state s and a sequence of events with
parameters τ = [e1(p1), . . . , en(pn)], τ is an execution of E starting from the
state s if there is a sequence of transitions (s1, e1, p1) → s2, (s2, e2, p2) →
s3, . . . , (sn, en, pn)→ sn+1 in E such that s1 = s.

The execution of τ starting from s is denoted as s �→ τ , and we say that
τ is executable from s. The function finalState returns the final state of the
execution s �→ τ , that is finalState(s �→ τ) = sn+1.

Definition 3 (Execution Equivalence). Two sequences of events with pa-
rameters τ1 and τ2 are equivalent (τ1 ≡ τ2) if for all s ∈ S: 1) τ1 is exe-
cutable from s (s �→ τ1) if and only if τ2 is executable from s (s �→ τ2); and
2) finalState(s �→ τ1) = finalState(s �→ τ2).

Execution equivalence defines an equivalence relation on executions of EFSM.
Indeed, it is reflexive, symmetric and transitive by definition. We say that two
equivalent executions τ1 ≡ τ2 define a rewrite rule.

Definition 4 (Execution Trace or Log). An execution trace or log Σ pro-
duced by an execution s �→ τ is the sequence:

Σ = [(ε, x1), (e1(p1), x2), . . . , (el(pn), xn+1)],

where all states are mapped into their associated values in the domain X, that
is xi = V (si) and si is an intermediate state of s �→ τ .

The function final returns the value corresponding to the final state of the
log Σ, that is final(Σ) = xn+1.

When a user interacts with an application it generates logs in the sense of the
definition above. Every state has a uniquely defined element from X associated
with it, which is essentially what we see recorded in the log. We call that value

228 A. Elyasov, I.S.W.B. Prasetya, and J. Hage

the application abstract state. Two executions are considered to be equivalent
based on those logged values instead of the states. This gives us the following
execution equivalence criterion derived from a set of collected logs.

Criterion 1 (Execution Equivalence on Logs). Let L be a set of logs pro-
duced by an application according to the Definition 4. Two event sequences τ1 and
τ2 are considered to be equivalent on L if for all Σ1, Σ2 ∈ L resulted from the ex-
ecutions s �→ τ1 and s �→ τ2 respectively, it implies that final(Σ1) = final(Σ2).

Definition 5 (Event Reduction System). Given a set of events E, an event
reduction system & defined by the set of rewrite rules R is a pair (E∗,→R),
where E∗ is the set of execution sequences and →R is a reduction relation on it.

A reduction step τ1 →R τ2 entails the replacement of an occurrence π1 in τ1
(τ1 = φπ1ψ) by an equivalent execution π2, i.e. (π1 ≡ π2) ∈ R. The result of this
reduction is a new execution τ2 = φπ2ψ that is equivalent to τ1 with respect to
Definition 3.

3.2 Rewriting Patterns

As we have already seen in the GCD example, some of the executions are equiv-
alent and can form the bases of the reduction procedure. In general, executions
turn out to be equivalent due to the nature of algorithmic languages that contain
constructions such as loops, branches and recursions. Some equivalences are ap-
plication specific, but some others commonly occur in many applications. Below
we propose three patterns of the execution equivalences that we call algebraic
rewrite rule patterns. They will form the basis for the event reduction in the
following. The patterns are quite small (the executions consist of at most two
events) and they express common algebraic relations such as commutativity. We
believe that algebraic patterns represent commonly occurring equivalences and
as a result can often be observed in the logs. That fact increases our confidence
of their dynamic inference.

Skip: [e(p)] ≡ ε
Obviously, not all events have an effect on the application. Those events that
do not interfere with the abstract state at all fall into the category of this
pattern, which we call skip-like. The GCD application does not have any
skip-like events. However, if the GCD abstract state only consisted of the
variables x and y, then the calc event would become skip-like with respect
to the chosen abstraction.

Zero: [e(p); d(q)] ≡ [d(q)]
Some events may completely overwrite the effect of some preceding events.
We call such events zero-like with respect to those preceding events. In the
GCD application, the event clear annuls the effect of setX , setY and calc. A
particular case of this pattern is when e = d, that is, whatever the application
state is, an execution of e(q) always overwrites the effect e(p). The setX and
setY events are examples of this particular case.

Log-Based Reduction by Rewriting 229

Com: [e(p); d(q)] ≡ [d(q); e(p)]
The last pattern asserts the property of two events being commutative. For
example, the fields X and Y can be updated in any order, and therefore the
corresponding events setX and setY are commutative, in other words they
do not interact with each other.

In the sequel, we only consider event reduction systems formed by rules from
these three categories Skip, Zero and Com.

Definition 6 (Algebraic Event Reduction System). We call the event re-
duction system &A = (E∗,→RA) algebraic if RA is a disjoint union of Rs, Rz

and Rc (denoted by RA = Rs $ Rz $ Rc), where Rs, Rz and Rc are respective
instances of Skip, Zero and Com patterns.

3.3 Reduction Strategy

Algorithm 1 presents a reduction procedure for an algebraic event trace reduction
system that we later prove to be terminating and non-increasing. It terminates in
polynomial time, but does not necessarily produce the maximal possible reduc-
tion that is reachable with a given set of rewrite rules. As an input the reduction
procedure takes an execution τ and a set of algebraic rules RA and returns a
new execution τ ′ that is equivalent to τ but smaller. The procedure consists of
the following key steps:

1. The initial set of rules RA is enriched by the procedure EnrichRules. The
enrichment consists in overlapping certain categories of rules from RA (this
resembles a step of the Knuth-Bendix algorithm [2]). It overlaps Skip and
Zero rules (OverlapSkip), Zero and Zero rules (OverlapZero), and Zero
and Com rules (OverlapMZero). For example, taking the overlap of the rules
ab → b and bc → c and applying them in a different order to the sequence
abc, we get ac→ c as a new possible reduction rule. Crossing Zero and Com
rules gives us the mirror zero rules (line 4), which are like zero with respect
to reversed event sequence (ba ≡ b). These rules are used later at line 2 to
get reduction by means of the ZeroReduce procedure in application to the
reversed sequence.

2. The functions GroupZeroCls (GroupMZeroCls) groups Zero (MZero) rules
with equal right hand sides in the same equivalence class.

3. Next step is to remove all skip-like events by the procedure ReduceSkip.
4. The last reduction step recursively applies the ZeroReduce procedure to the

event trace in both directions (from left to right (line 1) and right to left
(line 2)) until a fixed point is reached. The procedure ReduceZero looks for
the first occurrence of x in u. Then it exhaustively applies all rules from
rx to the part of u left from x (ReduceImmediateZero at line 5), and it
also tries to combine zero with commutative rules (ReduceZeroWithCom at
line 7). The latter combination allows us to discover zero reductions that are
not enabled by default.

230 A. Elyasov, I.S.W.B. Prasetya, and J. Hage

Algorithm 1. A reduction procedure for an execution trace

begin
Data: An intial execution trace τ and a set of algebraic rewrite rules

RA = Rs � Rz �Rc

Result: A reduced execution trace τ ′ such that |τ | � |τ ′| and τ ≡ τ ′

R′
A ←− EnrichRules(RA)

// group zero (mzero) rules with equal RHS into classes

{Rz} ←− GroupZeroCls(R′
A)

{Rmz} ←− GroupMZeroCls(R′
A)

τ ←− ReduceSkip(R′
A, τ) // remove all skip-like events

repeat
1 τ ←− ReduceZero({Rz}, Rc, τ, ε)
2 τ ←− Reverse(ReduceZero({Rmz}, Rc, Reverse(τ), ε))

until3 τ is unchanged
return τ

Function EnrichRules(RA = Rs �Rz � Rc)
R′

s ←− OverlapSkip(Rs, Rz) // ab ≡ b ∧ b ≡ ε ⇒ a ≡ ε
R′

z ←− OverlapZero(Rz) // ab ≡ b ∧ ca ≡ a ⇒ cb ≡ b
4 Rmz ←− OverlapMZero(Rz ∪R′

z, Rc) // ab ≡ ba ∧ ab ≡ b ⇒ ba ≡ b
return RA ∪ R′

s ∪R′
z ∪ Rmz

Function ReduceZero({Rz}, Rc, u, v)
(rx, (u

′, x, v′)) ←− find first class rx ∈ {Rz} such that u = u′xv′

if search for rx is succeeded then
repeat

repeat
5 u′ ←− ReduceImmediateZero(u′, rx)

// u′ = u′′y ∧ ∃(yx ≡ x ∈ rx) ⇒ u′ = u′′

until6 u′ is unchanged
7 u′ ←− ReduceZeroWithCom(u, rx, Rc)

// u′ = wyu′′ ∧ (yx ≡ x ∈ rx) ∧ (∀e ∈ u′′ : com(e, y)) ⇒ u′ = wu′′

until8 u′ is unchanged
ReduceZero({Rz}, Rc, u

′x, v′) // recursive call

else return uv

Theorem 1 (Termination). For the algebraic event reduction system
&A = (E∗,→RA), the reduction relation →RA implemented by Algorithm 1 is
terminating.

Note, that reduction Algorithm 1 essentially applies only Skip and Zero rules,
which form a non-cyclic reduction system. In order to prove termination, we
need to show that the fix points are guaranteed to be reachable in all three cases
(lines 3, 8 and 6). But this fact obviously follows from the invariant that each
time the sequence is either reduced or not, the number of rules is finite, and they
are acyclic. If the event sequence can not be reduced anymore, we have reached
the corresponding fixed point.

Log-Based Reduction by Rewriting 231

Theorem 2 (Length Reduction). For an algebraic event reduction system
&A = (E∗,→RA), the reduction relation →RA implemented by Algorithm 1 is
non-increasing.

This property obviously follows the shape of reduction being applied. The algo-
rithm only uses non-increasing reduction rules.

4 Implementation

In this section, we describe the architecture of our semi-automated Log Reduc-
tion Framework. The framework, including the inference and reduction part,
has been implemented in Haskell. The complete structure of the framework is
depicted in Figure 1. Given a reliable version App of the application, during
the first phase (1. executions) App is subjected to user interaction in order to
produce logs. The concrete rewrite rules are inferred (3. concrete rewrite rules)
from the set of collected logs (2. collect logs) based on the predefined rewrite
rule patterns. After that, they are automatically filtered according to a confi-
dence level (4. check rules) and then passed to the expert (5. report rules to the
expert). The rules at this stage might still contain false positives so the human
inspection is needed to prevent possible mistakes (6. accept rewrite rules).

At some point a new version App′ of the same application will be realised. It
will replace App or will be employed simultaneously with App. We assume that
rewrite rules accepted by the expert (phase 6) still hold for App′, otherwise the
violation is immediately reported. If the user happens to produce a failure (1’.
failure), the log containing the error message (2’. error log) should be passed
on subsequent analysis with the purpose to localize the fault and suggest a bug
fix. At this point, the second component of our framework goes into action. The
failed log is reduced (7. log rewriting) with the help of the inferred rewrite rules.
This log still reproduce the original failure found in App′ but requires less steps.
Finally, the reduced log is inspected (8. reduced log) by the tester or developer
during the debugging instead of the original one.

5 Empirical Validation

The aim of this section is to provide a preliminary evaluation of the Log Reduc-
tion Framework. All experiments presented in this section were carried out on
an Intel i5 (2.4 GHz) machine with 6GB of RAM under control of Ubuntu 12.04
OS. Reflecting the structure of the framework we provide a separate evaluation
of its two main components, Inference and Rewriting. The framework has been
deployed for the web shop application flexstore 1. It is an application example
for buying of mobile phones, provided by Adobe to demonstrate some features
of the Flex SDK. The flexstore has all standard components of a web shop, such
as a catalog, product filters and a shopping cart.

1 http://examples.adobe.com/flex2/inproduct/sdk/flexstore/flexstore.html

http://examples.adobe.com/flex2/inproduct/sdk/flexstore/flexstore.html

232 A. Elyasov, I.S.W.B. Prasetya, and J. Hage

Fig. 1. Log Reduction Framework

We instrumented flexstore GUI events with the help of the FITTEST Automa-
tion Framework (AF) [20]. AF allows us to log GUI events and the application
abstract states associated with them in the FITTEST Logging Format [20]. The
user of AF provides an application abstraction function, which specifies the set of
objects and fields to be logged. The resulting log fully conforms to the definition
of log given in Section 3.1.

5.1 Inference Results

We generated a log of length 11000 entries, randomly invoking different flexstore
events out of the 23 possible events. We considered two different state projec-
tions: high abstraction (2 variables, Abs = high) and low abstraction (7 vari-
ables, Abs = low). False positives were filtered by the use of a confidence level
(Conf = yes), i.e., all rules with a confidence level lower than 0.99 were not ac-
cepted. Without the confidence level (Conf = no) it was sufficient for a rule to
have at least one positive witness and zero negatives to be accepted as a rewrite
rule. As we mentioned already, the inference algorithm can both report false posi-
tives and reject false negative rules. Therefore, an expert assessment is required to
at least sift out the false positive ones, otherwise, wemight end upwith a nonequiv-
alent sequence after reduction. We applied the inference algorithm to the log of
length 11000, manually verified the results, and then took them as a template to
count the number of erroneously accepted and rejected rules in all other measure-
ments during the experiment. The aggregated data of the inference part are shown
in Table 1. We used the logs of different sizes (initial segments of length from
100 up to 5000 entries taken from the original log) to infer the rules, and then

Log-Based Reduction by Rewriting 233

Table 1. Results of pattern inference for flexstore. The events recognised as skip-like
are excluded from the subsequent inference of Zero or Com rules.

Patterns Abs Conf
11000 5000 2500 1000 500 100
m p n m p n m p n m p n m p n m p n

Skip

low yes 7 0 0 7 0 0 7 0 0 7 0 0 6 0 1 2 0 5
low no 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 4 0
high yes 9 0 0 9 0 0 9 0 0 9 0 0 8 0 1 2 0 7
high no 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 5 0

Zero

low yes 26 0 0 15 6 11 13 13 13 11 22 15 4 5 22 0 0 26
low no 26 2 0 25 39 1 23 42 3 17 42 9 12 37 14 0 4 26
high yes 9 0 0 1 9 8 1 17 8 0 31 9 0 7 9 0 0 9
high no 26 0 0 8 15 1 6 30 3 3 46 6 2 42 7 0 4 9

Com

low yes 10 0 0 8 3 2 2 0 8 0 0 10 0 1 10 0 0 10
low no 10 0 0 10 5 0 6 8 4 2 3 8 1 1 9 0 0 10
high yes 7 0 0 6 4 1 1 1 6 0 0 7 0 1 7 0 0 7
high no 7 0 0 7 9 0 4 11 3 1 5 6 0 2 7 0 0 7

we compared the inference outcome with the template. As a result, we calculated
the number of correctly identified rules (m column) as well as the number of false
positives (p column) and negatives (n column). Applying abstraction, we might
obtain some new rules as well as lose some old ones. It is clear from Table 1 that
to correctly identify all skip rules, it was already sufficient to have 1000 entries in
the log. But for Zero orCom rules we missed or wrongly accepted some rules even
for the log of 5000 entries. The choice of an appropriate confidence level is always
a trade-off between the number of false positive rules we want to avoid and the
number of potential false negatives we might lose because of being too exact. As
we can see, in case of the Zero and Com rules, there are dozens of candidates, so
it is wise to rely on the confidence level to decrease the number of false positives,
especially if the amount of data in the logs is limited. For instance, we got rid of 33
false positive rules (reported 6 instead of 39 rules) of the type Zero, learnt from
the log of 5000 entries.

5.2 Reduction Results

The purpose of the experiments in this subsection is to make an assessment of the
failed executions reduction that can be achieved by the framework. We injected
faults in the model application flexstore (one fault for each state variable out
of seven) and have randomly driven the execution until a failure occurred. For
every fault we ran this procedure 100 times in order to deal with randomness
of executions. We used the set of concrete rewrite rules inferred from the log of
11000 events in Section 5.1 to form the algebraic event reduction system. The
summarized data are presented in Table 2.

Let us choose a fault and closely consider its characteristics — for example,
grand total fault, which shows the strongest reduction result. The fault here

234 A. Elyasov, I.S.W.B. Prasetya, and J. Hage

Table 2. Failure revealing test case simplification by reduction

max.red.ord, avg.red.ord, min.red.ord are maximum, average and minimum reduction
orders respectively; avg.org.len is the average length of the original log, and avg.red.len
is the average length of the reduced log.

Failure Type max.red.ord avg.red.ord min.red.ord avg.org.len avg.red.len

cart contents 23 5.62 1.5 35.19 6.35

ctlg contents 20 4.55 1.67 45.43 12.4

comp contents 21.2 6.07 1.33 40.42 6.44

filter count 18 4.45 1.66 45.27 12.02

grand total 104 9.68 1.5 19.61 2.25

#compare cart 34 6.82 2.72 69.11 15.75

#products 31.6 6.83 1.99 42.82 6.59

consist in the restriction imposed on the total price of (variable grand total)
items in the shopping cart. In order to trigger this fault, it is sufficient to open
the product catalog, purchase an arbitrary phone and submit the order. The cor-
responding row in Table 2 indicates that the maximal reduction that is achieved
in one out 100 random executions is a factor of 104, although, on average the
order of reduction is a factor of 10. It also says that on average the log is reduced
from 20 to just over 2 events.

6 Related Work

Since our approach essentially consists of two parts: (1) learning specific rules
from logs, and (2) then applying the reduction procedure based on these rules,
we accordingly split the related work section.

6.1 Mining Properties from Logs

There are various categories of properties that can be learnt from logs. But
these properties come under different names: invariants [6], specifications [10]
and oracles [21].

The Daikon tool [6] discovers assertions (invariants) that hold at certain pro-
gram points, e.g., method entry and exit. The assertions are templated predicates
over program variables. They express invariants such as constant equality and
ordering. Polynomial and array invariants, which Daikon is unable to discover,
are presented in [19]. DySy obtains invariants that are specific for the observed
program executions by using symbolic analysis [3]. The Daikon approach can be
extended by the inference of behavioural models of an application [15], which
are EFSMs that describe the interplay between data values and component in-
teractions.

Temporal properties have also been thoroughly investigated. Therefore, several
tools for learning them have been developed in recent years [7,1,24].

Log-Based Reduction by Rewriting 235

In contrast to Daikon’s properties, which represent data-flow dependencies, the
temporal properties describe control-flow relations, for instance, the precedence
of function calls. The Perracotta tool [24] infers all pairs of events satisfying the
property that p must be followed by s. A more general class of temporal prop-
erties can be inferred by the Ocd tool [7] — a tool for learning and enforcing
temporal properties over function and method call sequences. These properties
are predefined by templates, which are two-letter regular expressions (ab, ab+,
etc.). Synoptic [1] mines temporal properties, such as a always followed by b,
and a always precedes by b, from partially ordered logs, and then uses these
properties to visualise the application model.

The properties proposed in this paper belong to the category of algebraic prop-
erties (specifications) [9]. Hankel et al. [10] suggest discovering algebraic spec-
ifications by exercising the terms (dynamic part) generated from the algebraic
signatures of program classes (static part). Adiheu [8] improves this approach by
using Adabu’s sequences of legal operations [4] expressed as non-deterministic
FSA .

6.2 Log Reduction

Reduction always leads to the loss of information, in particular, we sacrifice the
completeness of logged data. But there should exist an invariant that continues
to hold during the reduction. For instance, someone might be interested in the
presence of certain events in the reduced log. The invariant discussed in this
paper has the ability to reproduce the same failure as the one contained in the
original log.

Wang and Parnas [23] suggest to use trace specifications of software modules
as a basis for trace rewriting to simulate module behaviour. The trace specifi-
cations completely describe the effect of an event trace execution on the appli-
cation. In [23] the authors present smart trace rewriting, which is proved to be
terminating and confluent. But a formal trace specification is often absent, and
its inference brings us back to the questions raised in Section 6.1, namely how
to get the specification in the first place.

Clustering techniques are found to be quite useful to reduce the length of
logs, in particular, if logs are unstructured. So several clustering algorithms and
tools have been introduced, e.g. [16]. Clustering assists the reduction in the
following ways: 1) similar events can be grouped in clusters so that one event
can represent the entire cluster; 2) event correlations can be learnt from logs [28];
and 3) outliers (events out the clusters) are potential candidates for anomalies.

Zawawy et al. [26] propose to filter logs with respect to a set of analysis goals
and diagnostic hypotheses in order to assist root cause analysis. They suggest
two reduction strategies: 1) filter events that are irrelevant to the failure by
executing SQL queries generated from annotated goal models [25] capturing
application requirements; and 2) apply Latent Semantic Indexing [5] to identify
log entries connected with the query representing a particular aspect of the
model. Kontogiannis et al. [12] suggest to reduce logs according to the chosen
upfront sequence of beacon events. This approach exploits the collection of event

236 A. Elyasov, I.S.W.B. Prasetya, and J. Hage

dependency relations to construct the Event Dependency Graph. The graph is
used later on to find all events correlating with the beacon sequence.

Delta Debugging [27] is able to reveal the cause-effect chain of a failure,
isolating the relevant variables and values. This chain is essentially the reduced
log we are looking for. The method compares the states obtained from a passing
and failing run. This requires the ability to replay the failing execution multiple
times, which is not required by our approach.

Lee et al. in [13] consider the reduction of log replaying, retaining the ability
to reproduce the failure. The reduction is reached by reducing the amount of
information that needs to be logged in order to replay the execution. The reduc-
tion is carried out at the unit level (loop iterations) by the offline analysis of the
enhanced log — a log resulting from the execution of an instrumented program
to collect some axillary runtime information.

BugRedux [11] synthesises and reduces in-house executions that could repro-
duce the failures observed in the field. BugRedux exploits additional information,
for instance call sequences or complete traces, to produce an input that mimics
the execution by means of symbolic analysis. Our reduction technique is purely
based on the information presented in the log files, and it does not require the
application source code to be available.

An FSA is a common way to represent an application model. Such a model can
be learnt from logs as in [18] and used for root cause analysis. A failure is then
recognised by observing that an execution trace is inconsistent with the FSA.
The point of divergence indicates where the abnormal behaviour has started, and
the application model can be used to find the shortest path to this point. This
gives us a reduced failing execution trace. But, of course, building the precise
application model from logs is an expensive task, and a lightweight approach to
reduction might be preferable.

7 Conclusion and Future Work

In order to discriminate failures that might happen during the execution of an
application, programmers try to provide as informative logs as possible. But if
a failure occurs, we are not interested in all this excessive information to carry
out the root cause analysis of that particular failure.

This paper addresses the issue of failed execution trace simplification that
arises if we consider in-house or in the field debugging. We propose to infer al-
gebraic properties among application events, and use them as the basis for our
reduction system. We built a prototype of the log reduction framework based on
these rules and validated it against the flexstore web application.

Future Work. There are several questions that were left beyond of the scope of
this paper and which we consider to be a future work. The reduction algorithm
for algebraic log reduction systems presented in this paper, does not guarantee
reaching the maximal reduction. We have not yet investigated the desidability
of this question. If the answer is positive, it will be interesting to provide an
efficient algorithm for maximal reduction.

Log-Based Reduction by Rewriting 237

Apart from the three rewrite rule patterns discussed in Section 3.2, there exist
some other patterns that we did not consider, for instance, [e(p); d(p)] ≡ ε. This
pattern states that d is an inverse of e. In general, some practical issues appear
if we want to extend our reduction framework with new rewrite rule patterns,
namely:

– How to infer the concrete instances of the rewrite rules for this pattern? The
inference might be very expensive, require a huge amount of logging data,
or generate too many false positives.

– How to incorporate a new pattern into the existing reduction algorithm and
to build a new one that is as effective and powerful as the former one?

The answers to these questions require a trade-off between the pattern complex-
ity, inference efficiency and reduction strength. These problems are beyond the
scope of this paper and we consider them future work.

In this paper, we do not address the problem of the construction of abstract
application state, although the strength of our approach very much relies on
the having a good state abstraction. We assume that such abstraction has been
already obtained by the use of known techniques [17,4,22].

Reduction performed with respect to some abstraction might lead to non-
executable event sequences. Although, it is guaranteed by the approach that
they still preserve the failure relevant data, some part of the execution relevant
information might be abstracted over. In order to alleviate this issue, reduc-
tion can be combined with delta debugging [27], so that it produced both the
executable and simplified test case.

Acknowledgements. This work is funded by the EU FITTEST project No.
257574.

References

1. Beschastnikh, I., Brun, Y., Schneider, S., Sloan, M., Ernst, M.D.: Leveraging
existing instrumentation to automatically infer invariant-constrained models. In:
ESEC/FSE, pp. 267–277 (2011)

2. Book, R.V., Otto, F.: String-rewriting systems (1993)
3. Csallner, C., Tillmann, N., Smaragdakis, Y.: DySy: dynamic symbolic execution

for invariant inference. In: ICSE, pp. 281–290 (2008)
4. Dallmeier, V., Lindig, C., Wasylkowski, A., Zeller, A.: Mining object behavior with

ADABU. In: WODA, pp. 17–24 (2006)
5. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-

ing by latent semantic analysis. Journal of the American Society for Information
Science 41 (1990)

6. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program., 35–45 (2007)

7. Gabel, M., Su, Z.: Online inference and enforcement of temporal properties. In:
ICSE, pp. 15–24 (2010)

238 A. Elyasov, I.S.W.B. Prasetya, and J. Hage

8. Ghezzi, C., Mocci, A., Monga, M.: Efficient recovery of algebraic specifications for
stateful components. In: IWPSE, pp. 98–105 (2007)

9. Guttag, J.V., Horning, J.J.: The algebraic specification of abstract data types.
Acta Informatica 10, 27–52 (1978)

10. Henkel, J., Diwan, A.: Discovering algebraic specifications from java classes. In:
Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 431–456. Springer, Heidelberg
(2003)

11. Jin, W., Orso, A.: BugRedux: Reproducing Field Failures for In-house Debugging.
In: ICSE (2012)

12. Kontogiannis, K., Wasfy, A., Mankovskii, S.: Event clustering for log reduction and
run time system understanding. In: SAC, pp. 191–192 (2011)

13. Lee, K.H., Zheng, Y., Sumner, N., Zhang, X.: Toward generating reducible replay
logs. In: PLDI, pp. 246–257 (2011)

14. Lo, D., Mariani, L., Santoro, M.: Learning extended FSA from software: An em-
pirical assessment. Journal of Systems and Software 85(9), 2063–2076 (2012)

15. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral
models. In: ICSE, pp. 501–510 (2008)

16. Makanju, A., Brooks, S., Zincir-Heywood, A., Milios, E.: LogView: Visualizing
event log clusters. In: PST, pp. 99–108 (2008)

17. Marchetto, A., Tonella, P., Ricca, F.: State-based testing of ajax web applications.
In: 2008 1st International Conference on Software Testing, Verification, and Vali-
dation, pp. 121–130 (2008)

18. Mariani, L., Pastore, F.: Automated identification of failure causes in system logs.
In: ISSRE, pp. 117–126 (2008)

19. Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: Using dynamic analysis to discover
polynomial and array invariants. In: ICSE, pp. 683–693 (2012)

20. Prasetya, I.S.W.B., Middelkoop, A., Elyasov, A., Hage, J.: D6.1: Fittest logging
approach (2011)

21. Shahamiri, S.R., Wan-Kadir, W.M.N., Ibrahim, S., MohdHashim, S.: An auto-
mated framework for software test oracle. Information and Software Technology
(2011)

22. Tonella, P., Nguyen, C.D., Marchetto, A., Kessler, F.B., Lakhotia, K., Harman, M.:
Automated generation of state abstraction functions using data invariant inference
(2013)

23. Wang, Y., Parnas, D.L.: Simulating the behavior of software modules by trace
rewriting. IEEE Transactions on Software Engineering, 750–759 (1994)

24. Yang, J., Evans, D.: Dynamically inferring temporal properties. In: PASTE, pp.
23–28 (2004)

25. Yu, Y., Wang, Y., Mylopoulos, J., Liaskos, S., Lapouchnian, A., do Prado Leite,
J.C.S.: Reverse engineering goal models from legacy code. In: RE, pp. 363–372
(2005)

26. Zawawy, H., Kontogiannis, K., Mylopoulos, J.: Log filtering and interpretation for
root cause analysis. In: ICSM, pp. 1–5 (2010)

27. Zeller, A.: Isolating cause-effect chains from computer programs. In: FSE, pp. 1–10
(2002)

28. Zhou, W., Zhan, J., Meng, D., Xu, D., Zhang, Z.: LogMaster: Mining event corre-
lations in logs of large scale cluster systems. CoRR (2010)

Spectrum-Based Fault Localization

for Diagnosing Concurrency Faults

Feyzullah Koca1,2, Hasan Sözer2, and Rui Abreu3

1 TUBITAK BILGEM, Information Technologies Institute, Kocaeli, Turkey
2 Department of Computer Science, Özyeğin University, İstanbul, Turkey

{feyzullah.koca,hasan.sozer}@ozyegin.edu.tr
3 Faculty of Engineering, University of Porto, Portugal

rui@computer.org

Abstract. Concurrency faults are activated by specific thread inter-
leavings at runtime. Traditional fault localization techniques and static
analysis fall short to diagnose these faults efficiently. Existing dynamic
fault-localization techniques focus on pinpointing data-access patterns
that are subject to concurrency faults. In this paper, we propose a
spectrum-based fault localization technique for localizing faulty code
blocks instead. We systematically instrument the program to create ver-
sions that run in particular combinations of thread interleavings. We run
tests on all these versions and utilize spectrum-based fault localization
to correlate detected errors with concurrently executing code blocks. We
have implemented a tool and applied our approach on several industrial
case studies. Case studies show that our approach can effectively and
efficiently localize concurrency faults.

Keywords: Debugging, multithreading, concurrency faults, thread safety,
dynamic analysis, spectrum-based fault localization.

1 Introduction

Concurrency faults are activated by specific thread interleavings at runtime,
which makes them hard to detect by testing since they do not deterministically
lead to an error. Traditional fault localization techniques and static analysis fall
short to detect these faults efficiently. Existing dynamic fault-localization tech-
niques focus on pinpointing data-access patterns that are subject to concurrency
faults [9,12,19,20,25]. Although these techniques are effective in capturing faulty
data-access patterns, the corresponding code blocks should still be identified by
the programmer to locate and fix the defect. More importantly, not all concur-
rency faults are related to data access and shared memory. There exist various
type of shared resources other than memory. Concurrent access to these shared
resources (e.g., file access) can also lead to errors.

We have applied spectrum-based fault localization [1, 3, 10, 11] for directly
pinpointing code blocks, of which multi-threaded execution leads to concurrency
errors. In our approach, we systematically instrument a multi-threaded subject

H. Yenigün, C. Yilmaz, and A. Ulrich (Eds.): ICTSS 2013, LNCS 8254, pp. 239–254, 2013.
© IFIP International Federation for Information Processing 2013

240 F. Koca, H. Sözer, and R. Abreu

program to force context switch within different code blocks. As such, each ver-
sion turns out to be actually the same program that is executed with a different
combination of thread interleavings. We run tests on all the generated versions
and utilize spectrum-based fault localization to correlate detected errors with
concurrently executing code blocks. The result is a ranking of code blocks with
respect to the probability that their re-entrance causes the detected errors. These
code blocks should be analyzed by the programmer to introduce thread-safety.

We have implemented a tool, dubbed SCURF, and applied our approach on
several industrial case studies. Case studies show that our approach can effec-
tively and efficiently localize concurrency faults. The contributions of this paper
are threefold

– We introduce a novel approach for localizing concurrency faults by means of
spectrum-based fault localization techniques;

– We developed a toolset, SCURF that provides automation for our approach;
– We discuss our experiences in applying our approach in several industrial

software projects.

The remainder of this paper is organized as follows. Section 2 provides back-
ground on spectrum-based fault localization. Section 3 introduces a motivating
example. We introduce our approach in Section 4. Industrial case studies and
the evaluation of the approach are presented in Section 5. Related studies are
summarized in Section 6. Finally, conclusions are provided in Section 7.

2 Background: Spectrum-Based Fault Localization

The process of pinpointing the fault(s) that led to the observed symptoms (fail-
ures/errors) is called fault localization. Depending on the amount of knowledge
that is required about the system’s internal component structure and behavior,
the most predominant approaches can be classified as i) statistical approaches
or ii) reasoning approaches (for an overview of approaches, see [2]). The former
approach uses an abstraction of program traces, dynamically collected at run-
time (also known as program spectra [8]), to produce a list of likely candidates
to be at fault [3, 10, 11], whereas the latter combines a static model of the ex-
pected behavior with a set of observations to compute the diagnostic report [14].
In this paper, we use a statistical technique, in particular spectrum-based fault
localization [3,10] due its effectiveness in locating faults, while entailing low time
and space complexity [2].

Spectrum-based fault localization (SFL) is a dynamic program analysis tech-
nique. The basic idea of SFL is that comparing the program behavior over multi-
ple test runs can indicate which program components may be likely to contribute
to an observed program failure. In the following, we assume that a program P
comprises a set of components C and is executed using a set of test cases T that
either pass or fail, with M = |C| and N = |T |, respectively. Program (compo-
nent) activity is recorded in terms of program spectra [3,10,11]. These data are
collected at run-time and typically consist of a number of counters or flags for

Spectrum-Based Fault Localization for Diagnosing Concurrency Faults 241

the different components of a program. Usually, the so-called hit spectra is used,
indicating whether a component was involved in a (test) run or not.

M components error
vector

N spectra

⎡
⎢⎢⎢⎣

a11 a12 . . . a1N e1
a21 a22 . . . a2N e2
...

...
. . .

...
...

aM1 aM2 . . . aMN eN

⎤
⎥⎥⎥⎦

s1 s2 . . . sN

Fig. 1. The ingredients of fault diagnosis

Both spectra and pass/fail information is input to SFL. The combined infor-
mation is expressed in terms of the N × (M + 1) activity matrix A. An element
aij is equal to 1 if component j took part in the execution of test run i, and
0 otherwise. The rightmost column of A, the error vector e, represents the test
outcome. The element ei = ai,m+1 is equal to 1 if run i failed, and 0 if run i
passed. For j ≤ M and i ≤ N , the row Ai∗ indicates whether a component was
executed in run i, whereas the column O∗j indicates in which runs component j
was involved.

In SFL one measures the similarity between the error vector e and the activity
profile vector A∗j for each component j (see Figure 1). This similarity is quanti-
fied by a similarity coefficient, sj . In this work, we employ the Ochiai similarity
coefficient, which was previously identified as the best coefficient to be used for
SFL [3].

sj =
n11(j)√

(n11(j) + n01(j)) · (n11(j) + n10(j))
(1)

where n11(j) is the number of failed runs in which part j is involved, n10(j) is the
number of passed runs in which part j is involved, and n01(j) is the number of
failed runs in which part j is not involved, i.e., formally and referring to Figure 1,

n01(j) = |{i | aij = 0 ∧ ei = 1}|
n10(j) = |{i | aij = 1 ∧ ei = 0}|
n11(j) = |{i | aij = 1 ∧ ei = 1}|

The Ochiai coefficient sj associated with each component Cj ∈ C indicates
the correlation between the executions of Cj and the observed incorrect program
behavior. Applying the hypothesis that closely correlated components are more
likely to be relevant to an observed misbehavior, sj can be reinterpreted as “fault
probability” and components can be listed (i.e., ranked) in order of likelihood to
be at fault. Note that n11(j) + n10(j) equals the number of runs in which part

242 F. Koca, H. Sözer, and R. Abreu

j is involved, whereas n11(j) + n01(j) equals the number of failed runs, which is
the same for all j.

We adapted SFL for localizing concurrency faults. For this purpose, we modi-
fied the collected hit spectra and the analysis process. In the following, we present
a motivating example, followed by our approach illustrated on this example.

3 Motivating Example

In this section, we present a running example for illustrating the problem and our
solution. A C function, addNumberToPhoneList, is shown in Listing 1.1, which
adds a name to a phone book. If the phone book already exists, the function just
opens it (Line 12) and adds the name that is provided as an argument (Line 16).
Otherwise, the function first creates the phone book (Line 6) and then adds the
name into this newly created phone book.

Listing 1.1. The motivating example

1 int addNumberToPhoneList (char ∗name , char ∗number) {
2 FILE ∗ fp ;
3 int retVal = −1;
4

5 i f (FALSE == doesPhoneListExist) { /∗ Component 1 ∗/
6 fp = createPhoneBook () ;
7 i f (NULL != fp) { /∗ Component 2 ∗/
8 doesPhoneListExist = TRUE ;
9 }

10 }
11 else { /∗ Component 3 ∗/
12 fp = openPhoneBook () ;
13 }
14

15 i f (NULL != fp) { /∗ Component 4 ∗/
16 retVal = addPhoneBook (fp , name , number) ;
17 (void) closePhoneBook (fp) ;
18 }
19 return retVal ;
20}

In a single-threaded environment, addNumberToPhoneList function works as
expected. However, the function is subject to a concurrency fault when it is
executed concurrently by multiple threads. To illustrate this problem, we have
executed the function using three threads calling the addNumberToPhoneList
function to add different entries. As a result, we would expect the phone book to
contain three names. Most of the times, this was indeed the case. However, there
were executions where the phone book had less than three entries. The reason
is the concurrent execution of the function: a context switch can occur when a

Spectrum-Based Fault Localization for Diagnosing Concurrency Faults 243

thread is in component 1 (lines 5-10)1. This component creates a phone book
and sets the global variable doesPhoneListExist to true to eliminate the need for
creating a phone book again. Concurrent execution of component 1 leads to an
error because every newly created phone book deletes (overrides) the old one.

In a multi-threaded program, context switches may take place at any time
depending on interrupts, operating devices, and the operating system scheduler.
Although a program is not subject to an error in a single-threaded execution,
multi-threaded execution can, in fact, lead to concurrency errors by enabling
(uncontrolled) multiple entries to a component. This is a common issue we have
observed in the industry when single-threaded legacy software is adopted within
the context of multi-threaded software systems. The legacy software has not been
developed with multi-threaded execution in mind, and testing does not always
reveal the impact of re-entrance to the employed functions.

We propose and evaluate an approach to automatically detect errors and
localize faults in multi-threaded execution of a program. We assume that the
program itself is fault-free. As such, any detected error is due to a concurrency
fault, caused by the multi-threaded execution of the program. Our approach is
explained in the following section.

4 The Approach

Our approach is based on systematically instrumenting the program to trigger
a context switch in different components. This enables us to test the same pro-
gram in different thread interleavings, potentially triggering an error. We apply
spectrum-based fault localization to reveal the particular thread interleavings of
faulty components that lead to the detected errors. We have developed a toolset
called SCURF to automate our approach2, which is realized in three steps as
described in the following.

In the first step, the program under test is instrumented to generate different
versions each of which execute in different thread interleavings. At this step, the
program code is instrumented also to collect spectra information at runtime.
Second, each version is tested being subject to the same test suite. Program-
spectra are collected for the number of re-entries to each component within
a function. Third, the collected spectra are analyzed and correlated with the
detected errors. All the components are ranked with respect to the probability
that they are subject to a concurrency fault as the cause of the detected errors.
These components should be further analyzed by the programmer and possibly
considered for introducing thread-safety. In the following subsections, we explain
the three steps of the approach in more detail.

1 We refer to code blocks (encapsulated in while, for, if, else statement etc.) as
components throughout the paper.

2 SCURF currently supports C make file projects that are deployed on Linux-based
operating systems only.

244 F. Koca, H. Sözer, and R. Abreu

4.1 Step I. Code Instrumentation

In this step, the source code of the program is instrumented to collect program
spectra at runtime and to control the scheduling of threads. The collected pro-
gram spectra record the number of entries made to each component. To control
the scheduling of threads, extra code is inserted at the beginning of each com-
ponent that optionally3 yields the current thread and forces a context switch.
The instrumented code does not change the behavior of the program other than
the thread interleavings.

SCURF inserts sched yield statements to force context switch at a compo-
nent. This does not guarantee, in all cases, the scheduler to switch to another
thread. We have utilized usleep statements in some Linux distributions instead.
The code insertion for context switch is performed for each combination of com-
ponents. That means that the instrumentation step generates O(2n) versions
for a function with n components. However, in practice we have seen that the
execution of O(n) versions (context switch at one of the components each time)
is usually enough to activate a concurrency fault.

4.2 Step II. Test Case Execution

In this step, the generated versions are executed being subject to the same
test suite. We assume that a test oracle and test case(s) exist. For each test, a
different thread interleaving occurs and program spectra are collected regarding
the number of entries made to each component.

An example result, regarding the addNumberToPhoneList running example,
for this step is presented in Table 1. Hereby, each row of this table represents a
test run. The table is separated into three parts. The first part shows for each
component, if a context switch is enforced or not. For example, for the first line,
we know that context switch will be forced only in the first component which
corresponds to the first if statement in the original code. The second part of
the table shows the number of entries made to each component during the test
run. For example, from the first row we can see that in test run 1, the first, the
second and the fourth components were executed three times, whereas the third
component was not executed at all. The third, and the final part/column shows
the error vector, i.e., whether an error was detected during the corresponding
test run or not.

The table is generated incrementally. First, only one component is influenced
at a time (test runs 1 through 4 in the example). Similarity calculation is applied
for only these set of runs to check if there are significant differences in rankings.
We name this step as level-1. Depending on the available resources and signif-
icance of the results, SCURF can move forward with level-2, in which context
switch is forced in two of the components at each test run (test runs 5 through
10 in the example). As such, SCURF can incrementally refine the rankings as
much as necessary and as long as resources are available [26].

3 The option to activate the inserted code block can be set ON or OFF differently for
each version.

Spectrum-Based Fault Localization for Diagnosing Concurrency Faults 245

Table 1. Spectra Collected During Test Runs of the Versions of the addNumberTo-
PhoneList function

Context Switch Number of Entries Error
C1 C2 C3 C4 C1 C2 C3 C4 Vector

Run1 1 0 0 0 3 3 0 3 1

Run2 0 1 0 0 3 3 0 3 1

Run3 0 0 1 0 1 1 3 3 0

Run4 0 0 0 1 1 1 3 3 0

Run5 1 1 0 0 3 3 0 3 1

Run6 1 0 1 0 3 3 0 3 1

Run7 1 0 0 1 3 3 0 3 1

Run8 0 1 1 0 3 3 0 3 1

Run9 0 1 0 1 3 3 0 3 1

Run10 0 0 1 1 1 1 3 3 0

Run11 1 1 1 0 3 3 0 3 1

Run12 1 1 0 1 3 3 0 3 1

Run13 1 0 1 1 3 3 0 3 1

Run14 0 1 1 1 3 3 0 3 1

Run15 1 1 1 1 3 3 0 3 1

In the following subsection, we illustrate the third step of our approach at
level-1 for the running example.

4.3 Step III. Spectra Analysis

In this step, the collected spectra during test runs are analyzed to rank com-
ponents with respect to the probability that they cause an error. Analysis is
performed iteratively to refine the rankings incrementally until a significant re-
sult is achieved or as long as resources permit.

We use the Ochiai similarity metric [3] to correlate the detected errors with
component entries at runtime. We have slightly modified this similarity metric
to correlate errors with concurrent execution of components. The original metric
considers whether a component is executed during a test run or not. In our case,
we are interested for each test run, whether a component was executed multiple
times by different threads or not. Therefore, we modified the metric such that
n11(j) is the number of failed runs in which part j is executed multiple times
concurrently, n10(j) is the number of passed runs in which part j is executed
multiple times concurrently, and n01(j) is the number of failed runs in which
part j is executed only once or not at all, i.e., formally,

n01(j) = |{i | aij ≤ 1 ∧ ei = 1}|
n10(j) = |{i | aij > 1 ∧ ei = 0}|
n11(j) = |{i | aij > 1 ∧ ei = 1}|

246 F. Koca, H. Sözer, and R. Abreu

For the example case, the component rankings are formed as shown in Table 2.
Note that the calculations are based on the first group of test runs (level-1) only.
As we can see from the output in Table 2, s0(j) is the highest for component 1
and component 2. That means, these components are most probably subject to
a concurrency fault that leads to the detected errors. Either of these components
or both of them needs to be thread-safe. Not only for this example, but also in
our industrial case studies, we have seen that usually rankings at level-1 already
provide accurate diagnosis. In the following section, we present examples from
such industrial case studies.

Table 2. Analysis Results for the First Group of Test Runs (level-1) of Versions of
the addNumberToPhoneList function

C1 C2 C3 C4 Error Vector

Run1 M M N M 1

Run2 M M N M 1

Run3 S S M M 0

Run4 S S M M 0

n11(j) 2 2 0 2
n10(j) 0 0 2 2
n01(j) 0 0 2 0
s0(j) 1.0 1.0 0.0 0.707

M: Multiple Exec. (aij > 1), S: Single Exec. (aij = 1) N: No Exec. (aij = 0)

After testing a function, SCURF continues to test other functions that are
called by that function. For instance, the function createPhoneBook is called by
the addNumberToPhoneList function (Line 6). Hence, after testing the addNum-
berToPhoneList function, if the user asks, SCURF proceeds with testing the cre-
atePhoneBook function. Similarly, the functions openPhoneBook, addPhoneBook
and closePhoneBook will be tested as well. SCURF continues to follow the call
hierarchy until the tested function does not call any other function or it makes
calls to POSIX functions only, e.g., strcpy, strcat and sprintf.

5 Industrial Case Studies and Evaluation

SCURF has been applied in the context of different industrial software projects
that have been developed within TUBITAK. TUBITAK4 is a government in-
stitution, which was formed in 1964. Since then, it has been responsible for
many large-scale software development projects for the Turkish government. At
TUBITAK, we have observed that one of the common root causes of concurrency
faults was the adoption of legacy software within the context of multi-threaded
software systems. Usually, the previously implemented functions have been de-
signed to be single-threaded, without multi-threaded execution in consideration.

4 The Scientific and Technological Research Council of Turkey.

Spectrum-Based Fault Localization for Diagnosing Concurrency Faults 247

Due to indeterministic behavior, testing does not always reveal the impact of
concurrent execution and re-entrance to these previously implemented functions.
Moreover, the lack of knowledge/documentation regarding the legacy software
makes it even harder to locate a fault manually.

Several functions from different code bases were tested to i) check if their
multi-threaded execution leads to an error, and if so, ii) locate the components
that are subject to a concurrency fault as the root cause of the error. In the
following subsections, we report three such faults that are detected/diagnosed
by SCURF and discuss our experiences with SCURF. Due to confidentiality
of the projects (and also for brevity), we present modified and simplified code
examples. Nevertheless, they are representative examples to illustrate relevant
cases and discuss our experiences.

Example 1. One of the concurrency faults was detected in a function called pipe;
see its implementation in Listing 1.2. This function also calls other functions.
The first lines of the pipe function is used for initialization. Then, a name (label)
is obtained for the pipe to be created (line 8). Two file descriptors are opened
with different access modes (lines 10 and 12). These descriptors are used as the
read and write end of the pipe.

Listing 1.2. The implementation of the pipe function

1 int pipe (int fds [2]) {
2 int retVal = −1;
3 // . . .
4 i f (FALSE == isPipeInitialized) {
5 funcRet = init () ;
6 }
7 i f (0 == funcRet) {
8 funcRet = generateNewName (pipeName) ;
9 i f (0 == funcRet) {

10 fds [0] = open (pipeName , O_CREAT | O_RDONLY , S_IRWXU) ;
11 i f (0 <= fds [0]) {
12 fds [1] = open (pipeName , O_CREAT | O_WRONLY , S_IRWXU)←↩

;
13 i f (0 <= fds [1]) {
14 retVal = 0 ;
15 }
16 else {
17 close (fds [0]) ;
18 remove (pipeName) ;
19 }
20 }
21 }
22 }
23 return retVal ;
24}

248 F. Koca, H. Sözer, and R. Abreu

Table 3. Spectra collected for level-1 of the versions of the pipe function

Context Switch Number of Entries Error
C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6 Vector

Run1 1 0 0 0 0 0 2 1 1 1 1 0 1

Run2 0 1 0 0 0 0 1 2 2 2 2 0 0

Run3 0 0 1 0 0 0 1 2 2 2 2 0 0

Run4 0 0 0 1 0 0 1 2 2 2 2 0 0

Run5 0 0 0 0 1 0 1 2 2 2 2 0 0

Run6 0 0 0 0 0 1 1 2 2 2 2 0 0

During the testing phase of the pipe function at level 1, SCURF collected the
spectra shown in Table 3. In this table, we can see that an error was detected
during the first test run. Note that we assume the pipe function to be fault-
free in a single-threaded environment. Therefore, the detected error must have
been caused by a concurrency fault. SCURF stopped execution after level-1. As
such, there are 6 test runs in total and in each test run, only one component is
influenced to force a context switch. SCURF runs two threads concurrently to
test the function. Therefore the number of entries for each component are either
0, 1, or 2. Multiple execution of looping components are still treated as a single
execution if being iterated within the same thread. Based on the results listed
in Table 3, SCURF calculated fault probabilities for each component as shown
in Table 4.

Table 4. Analysis results for level-1 of versions for the pipe function

C1 C2 C3 C4 C5 C6 Error Vector

Run1 M S S S S N 1

Run2 S M M M M N 0

Run3 S M M M M N 0

Run4 S M M M M N 0

Run5 S M M M M N 0

Run6 S M M M M N 0

n11(j) 1 0 0 0 0 0
n10(j) 0 5 5 5 5 0
n01(j) 0 1 1 1 1 1
s0(j) 1.0 0.0 0.0 0.0 0.0 0.0

According to the results in Table 4, it can be seen that the reason for concur-
rency violation is multiple execution of component 1, before any thread leaves
that component. In this case, the cause of the concurrency fault is a call to an-
other function, init. This function is supposed to run only once even though the
pipe function can be called multiple times. Therefore, its multiple execution was
intended to be prevented by a global variable named as isPipeInitialized. How-
ever, the access to this variable should be protected for thread-safe execution.

Spectrum-Based Fault Localization for Diagnosing Concurrency Faults 249

To remove the fault, component 1 was protected by a lock mechanism. Although
the solution is easy to implement, it is not always easy to locate such a concur-
rency fault manually. Automated error detection and fault diagnosis facilitated
by SCURF helped to perform this task with almost no effort.
Example 2. It turns out that the function generateNewName, which is called by
the pipe function (Line 8), is also subject to a concurrency fault as detected by
SCURF. There are no issues regarding the sequential execution of the function,
which is shown in Listing 1.3. The function serves as a name generator until
it reaches a limit that is imposed by the system. Every call to this function is
supposed to return a new name.

Listing 1.3. The implementation of the generateNewName function

1 int generateNewName (char ∗fileName) {
2 // . . .
3 while ((0 != fileNameList [index])
4 && (index < MAX_NUM_OF_FILES)) { /∗ Component 1 ∗/
5 index++;
6 }
7 i f (MAX_NUM_OF_FILES != index) { /∗ Component 2 ∗/
8 fileNameList [index] = index + 1 ;
9 // . . .

10 retVal = 0 ;
11 }
12 else { /∗ Component 3 ∗/
13 retVal = ERANGE ;
14 }
15 return retVal ;
16}

SCURF detected a concurrency error for this function during the level-1 tests.
Component 2 was associated with the detected error. When we check the code
in Listing 1.3, we can figure out that concurrent access to the global variable
named as fileNameList leads to an error because of uncontrolled access both
in component 1 and component 2. As such, both of these components must
be protected together. SCURF was of valuable help to detect the error and
locate the fault for this function. Nevertheless, manual analysis was necessary
to successfully remove the concurrency fault concerning both component 1 and
component 2.

Example 3. The third case we present is regarding a concurrency fault in a
function called syncResources. This function also makes calls to other functions
but all these functions are thread-safe. However, there is a concurrency fault
due to the implementation of the syncResources function itself. The function
reads from a buffer of a device and transfers the data to another stream to
be synchronized with the file system. Every call of this function synchronizes
the buffers and flushes them to a permanent storage space. The function has 4

250 F. Koca, H. Sözer, and R. Abreu

components. This case is particularly interesting because SCURF was able to
diagnose the fault only after the test runs at level-2. The collected spectra can be
seen in Table 5. A concurrency error was not triggered when only one component
is influenced at a time to trigger a context switch. At level-2, two components
were influenced at each test run to trigger an error. For instance, to trigger the
error detected in test run 7, the execution of both components 1 and 4 were
influenced. To trigger the error detected in test run 9, on the other hand, the
execution of both components 2 and 4 were influenced. SCURF blamed three
components for the detected errors. We figured out that an uncontrolled access
to a global variable in these components caused the errors.

Table 5. Spectra collected during the first and second group of test runs (level-2) of
the versions of the syncResources function

Context Switch Number of Entries Error
C1 C2 C3 C4 C1 C2 C3 C4 Vector

Run1 1 0 0 0 2 2 2 2 0

Run2 0 1 0 0 2 2 2 2 0

Run3 0 0 1 0 1 1 1 1 0

Run4 0 0 0 1 1 1 1 1 0

Run5 1 1 0 0 2 2 2 2 0

Run6 1 0 1 0 2 2 2 2 0

Run7 1 0 0 1 2 2 2 1 1

Run8 0 1 1 0 2 2 2 2 0

Run9 0 1 0 1 2 2 2 1 1

Run10 0 0 1 1 1 1 1 1 0

5.1 Performance and Scalability

One might claim that it could be impractical to instrument the code for all
possible thread interleavings. This leads to 2n versions for a function with n
components. However, in practice we have seen that test runs at level-1 are
usually enough to diagnose a concurrency fault. At this level, only one component
is influenced to trigger a context switch at each test run. As a result, n versions
are enough for a function with n components. Only in the third case, SCURF
needed to make use of test runs at level-2. Based on these observations we have
implemented an incremental approach, inspired by approximation algorithms
[26]. As such, SCURF can proceed until an error is detected or refine the rankings
as much as necessary and as long as resources are available [26]. Tests on different
versions can also be performed in parallel to improve scalability.

We performed tests on a Pentium 4 - 3.0 GHz HT Single core 32-bit desk-
top computer running openSUSE 12.1. In our first study, we executed functions
of different size (with respect to the number of components) in 2 threads con-
currently. For each of these tests, we measured the time it takes to localize a
concurrency fault. For functions that have 6, 16 and 26 components, an error
was triggered in 494 ms., 645 ms. and 720 ms., respectively.

Spectrum-Based Fault Localization for Diagnosing Concurrency Faults 251

In our second study, we performed measurements for different number of
threads. The functions that have 6, 16 and 26 components are executed with
6, 12 and 24 threads, respectively. SCURF detected and diagnosed an error
within 499 ms., 509 ms. and 547 ms., listed in the order of the corresponding
tests.

Our approach is incomparable with respect to stress testing. We have ap-
plied stress testing on the generateNewName function (Listing 1.3). Even if the
function was concurrently being executed in 24 different threads, the concur-
rency error was still not triggered after 100,000 tests. The error was triggered
by SCURF within milliseconds.

5.2 Assumptions and Threats to Validity

SCURF requires that a test oracle and test case(s) are available for testing the
functions of the subject system. Also, the original program should not be subject
to an error when executed in a single-threaded manner. Otherwise, not all the
detected errors can be associated with concurrency issues.

We instrument the program code to force context switches at different com-
ponents. Inevitably, the effects of our instrumentation are dependent on the
platform and the operating system. We perform our tests by assigning the same
priority to all the child threads used for test runs, and a higher priority to the
parent thread where these threads are created and joined. As such, all the child
threads are created before any other terminates. Also, we use FIFO scheduling
to eliminate the context switch because of time quantum.

The running time is dependent on the test cases and the algorithmic com-
plexity of the function being tested. Hence, our performance measures can not
be interpreted as absolute measures. They only reflect relative measures for a
particular case/function.

6 Related Work

There is a large body of related work on analysis and detection of concurrency
problems. The first attempt to address this problem focused on detecting race
conditions5. Static analysis techniques addressing this issue include those based
on type systems [6], model checking [16], and general program analysis [17].
There were also dynamic analysis techniques proposed like RecPlay [23] and
Eraser [24] However, these techniques were subject to a significant number of
false positives. In our approach, we cope with this issue by exploiting a proba-
bility score to rank the components instead of providing a binary decision.

More recent dynamic analysis techniques such as CCI [9] and Bugaboo [13]
rely on predicate-based fault localization of concurrent programs. In particular,
CCI samples shared-memory accesses during program executions and computes

5 A race condition occurs when multiple threads perform unsynchronized access (with
at least one of the threads writing) to a shared memory location.

252 F. Koca, H. Sözer, and R. Abreu

likelihood scores for those memory accesses. Similarly, DefUse [25] samples def-
use pairs between two threads. It finds the def-use pairs that are in failed execu-
tions and not in passed executions. Recon [12] compares memory accesses with
the five previous memory accesses to compute the likelihood scores regarding the
faulty memory accesses. CTrigger [18] profiles the program execution to identify
thread interleavings correlated to atomicity violation bugs. Aspect oriented tech-
niques have been used [5] for weaving assert statements that verify sequential
access. The main distinction of our approach from these studies is that we do
not employ passive monitoring. We instrument the code to force the application
to run in different combinations of thread interleavings. This improves the di-
agnostic accuracy. As a complementary approach for improving the diagnostic
accuracy, one can utilize test frameworks such as MultithreadedTC [22] to gen-
erate test cases that deterministically exercise specific interleavings of threads
in an application.

PCT [4] is proposed as a randomized scheduler for finding concurrency bugs.
This scheduler quantifies the probability of missing bugs. The quantification is
based on so-called depth of the bug, which is defined as the minimum number
of scheduling constraints that are sufficient to find the bug. Bugs that have
higher depths are revealed in fewer schedules, making them harder to detect and
diagnose. Experimental results show that in practice, many bugs (e.g., ordering
errors, atomicity violations, and deadlocks) have small depths [4]. This result is
also consistent with our observations. SCURF is able to diagnose most of the
concurrency bugs at level-1 already, by just influencing the execution of one
component at a time.

Yet another approach for detecting concurrency errors is by detecting viola-
tions of the atomic property. It has been suggested that atomicity is a property
that could be checked to detect concurrent errors at a more abstract, higher-
level. The main limitation of atomicity violation detectors is the need for the
user to annotate the source code, incurring a considerable overhead during the
development phase of the software [7].

Similar to our approach, Falcon [19] and recently introduced UNICORN [21]
also utilize spectrum-based fault localization for localizing concurrency faults.
Conversely to our approach, both Falcon and UNICORN rank data access pat-
terns (e.g., Read1, Write2, Read1) instead of statements/code blocks. However,
not all concurrency problems are about data access. This was also the case for
our motivating example.

Chess [15] is a concurrent unit testing tool that can provide fine-grained di-
agnosis regarding concurrency bugs. In our approach, we can detect such bugs
at the component level. As an advantage over Chess, SCURF does not require
additional scaffolding or test code to facilitate concurrency testing. An existing
test suite prepared for functional unit testing can be used as is. Moreover, tests
can be run in different processes in parallel.

Spectrum-Based Fault Localization for Diagnosing Concurrency Faults 253

7 Conclusion and Future Work

Concurrency faults are hard to diagnose. We have observed that adoption of
legacy software in the context of multi-threaded software systems is one of the
common root causes of these faults. It becomes even harder to manually locate
concurrency faults when legacy software is involved. Therefore, we proposed a
3-step automated approach to diagnose these faults. We first instrument the
code to force the program to run in different combinations of thread interleav-
ings. At runtime, we collect information regarding the number of entries to each
code block for each test. Then, we employ spectrum-based fault localization to
correlate the detected errors with code blocks. Our tool, called SCURF, has
been applied in the context of several industrial software systems. We have seen
that our approach can accurately localize concurrency faults. We also obtained
promising results with respect to performance and scalability.

As future work, we plan to experiment with various diagnostic algorithms that
exploit the information regarding the number of times components get executed.
Another interesting work is to use static analysis to determine where to enforce
context switches, as such reducing the number of tests needed.

Acknowledgement. We thank the anonymous reviewers for their feedback
to improve this paper. We also thank software developers and managers at
TUBITAK BILGEM for sharing their code base with us and supporting our
analysis.

References

1. Abreu, R., Zoeteweij, P., Golsteijn, R., van Gemund, A.: A practical evaluation of
spectrum-based fault localization. Journal of Systems and Software 82(11), 1780–
1792 (2009)

2. Abreu, R.: Spectrum-based Fault Localization in Embedded Software. Ph.D. thesis,
Delft University of Technology (2009)

3. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: On the accuracy of spectrum-based
fault localization. In: Proceedings of Testing: Academic and Industrial Conference
Practice and Research Techniques, Windsor, UK, pp. 89–98 (2007)

4. Burckhardt, S., Kothari, P., Musuvathi, M., Nagarakatte, S.: A randomized sched-
uler with probabilistic guarantees of finding bugs. ACM SIGPLAN Notices 45(3),
167–178 (2010)

5. Dobbelsteen, J., Golsteijn, R., van de Laar, P.: An infrastructure for traceability
to increase insight in complex embedded systems. Tech. Rep. PR-TN 2006/00506,
Philips Electronics (2006)

6. Flanagan, C., Freund, S.N.: Type-based race detection for java. ACM SIGPLAN
Notices 35(5), 219–232 (2000)

7. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. ACM SIGPLAN
Notices 38(5), 338–349 (2003)

8. Harrold, M., Rothermel, G., Wu, R., Yi, L.: An empirical investigation of program
spectra. ACM SIGPLAN Notices 33(7) (1998)

254 F. Koca, H. Sözer, and R. Abreu

9. Jin, G., Thakur, A., Liblit, B., Lu, S.: Instrumentation and sampling strategies for
cooperative concurrency bug isolation. ACM SIGPLAN Notices 45(10), 241–255
(2010)

10. Jones, J.A., Harrold, M.J.: Empirical evaluation of the tarantula automatic fault-
localization technique. In: Proceedings of the International Conference on Auto-
mated Software Engineering, Long Beach, California, USA, pp. 273–282 (2005)

11. Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Scalable statistical bug
isolation. In: Proceedings of the Conference on Programming Language Design and
Implementation, Chicago, Illinois, USA, pp. 15–26 (2005)

12. Lucia, B., Wood, B., Ceze, L.: Isolating and understanding concurrency errors
using reconstructed execution fragments. ACM SIGPLAN Notices 47(6), 378–388
(2011)

13. Lucia, B., Ceze, L.: Finding concurrency bugs with context-aware communication
graphs. In: Proceedings of the International Symposium on Microarchitecture, New
York, NY, USA, pp. 553–563 (2009)

14. Mayer, W., Stumptner, M.: Evaluating models for model-based debugging. In:
Proceedings of the International Conference on Automated Software Engineering,
L’Aquila, Italy, pp. 128–137 (2008)

15. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P., Neamtiu, I.: Finding and
reproducing heisenbugs in concurrent programs. In: Proceedings of the USENIX
Conference on Operating Systems Design and Implementation, pp. 267–280 (2008)

16. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: Proceedings of the Conference on Programming Lan-
guage Design and Implementation, New York, NY, USA, pp. 446–455 (2007)

17. Naik, M., Aiken, A.: Conditional must not aliasing for static race detection. In:
Proceedings of the Symposium on Principles of Programming Languages, New
York, NY, USA, pp. 327–338 (2007)

18. Park, S., Lu, S., Zhou, Y.: CTrigger: exposing atomicity violation bugs from their
hiding places. ACM SIGPLAN Notices 44(3), 25–36 (2009)

19. Park, S., Vuduc, R., Harrold, M.: Falcon: fault localization in concurrent programs.
In: Proceedings of the International Conference on Software Engineering, pp. 245–
254 (2010)

20. Park, S., Harrold, M.J., Vuduc, R.: Griffin: grouping suspicious memory-access
patterns to improve understanding of concurrency bugs. In: Proceedings of the
2013 International Symposium on Software Testing and Analysis. ACM (2013)

21. Park, S., Vuduc, R., Harrold, M.J.: A unified approach for localizing non-deadlock
concurrency bugs. In: International Conference on Software Testing, Verification
and Validation, Montreal, QC, pp. 51–60 (2012)

22. Pugh, W., Ayewah, N.: Unit testing concurrent software. In: Proceedings of the
International Conference on Automated Software Engineering, pp. 513–516 (2007)

23. Ronsse, M., De Bosschere, K.: Recplay: a fully integrated practical record/replay
system. ACM Transactions on Computer Systems 17(2), 133–152 (1999)

24. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a dy-
namic data race detector for multithreaded programs. ACM Transactions on Com-
puter Systems 15(4), 391–411 (1997)

25. Shi, Y., Park, S., Yin, Z., Lu, S., Zhou, Y., Chen, W., Zheng, W.: Do I use the
wrong definition?: Defuse: definition-use invariants for detecting concurrency and
sequential bugs. ACM SIGPLAN Notices 45(10), 160–174 (2010)

26. Vazirani, V.: Approximation Algorithms. Springer (2003)

A Dynamic Approach

to Locating Memory Leaks

Kostyantyn Vorobyov1, Padmanabhan Krishnan2, and Phil Stocks1

1 Centre for Software Assurance, Bond University, Gold Coast, Australia
{kvorobyo,pstocks}@bond.edu.au
2 Oracle Labs, Brisbane, Australia

paddy.krishnan@oracle.com

Abstract. We present a dynamic approach to memory leak detection
and reporting to aid the debugging process. We track memory allocations
and aliases during execution, which allows us not only to detect leaks,
but also locate the point of the leak in the source code. The level of track-
ing can be customised by the user. This analysis is safe in the presence
of pointer aliasing – a benefit of the dynamic approach, as such problems
are hard to solve using static analysis (or lead to many false positives).
Our technique works by instrumenting programs with statements that
track memory allocations, capture alias information, and monitor po-
tential leaks. By tracking only location and size of memory allocation,
rather than monitoring every bit, as is common in other approaches, we
keep memory overhead very low. We demonstrate the applicability of
our approach on a number of open-source programs and a few SPEC
CPU benchmarks. Our experiments show that the overheads compare
favourably with current analysis tools such as Valgrind.

Keywords: Memory leak, Program instrumentation, Monitoring.

1 Introduction

Memory monitoring through program instrumentation has been extensively re-
searched for the past two decades, resulting in a number of proprietary and open
source tools, such as Purify [1], Valgrind [2], Insure++ [3], Intel Parallel Inspec-
tor [4] and others. These tools are often used during test phase, as dynamic
analysis is reliable and safe in the presence of pointer aliasing – a problem, for
which static techniques do not scale or lead to many false positives. For example,
it has become a common practice to monitor test-suite execution, which allows
to automatically enable additional oracles for the cost of extra overhead.

The state-of-the-art monitoring techniques for memory leak detection use bi-
nary instrumentation, which injects code that observes execution and detects
memory defects at the assembly level. This allows the monitoring of each opera-
tion, including operations that occur in third party libraries. Even though proven
to be useful, binary instrumentation techniques have a number of limitations.
Firstly, as it observes every operation and tracks each bit of allocated mem-
ory, binary instrumentation is known to produce massive memory and run-time

H. Yenigün, C. Yilmaz, and A. Ulrich (Eds.): ICTSS 2013, LNCS 8254, pp. 255–270, 2013.
c© IFIP International Federation for Information Processing 2013

256 K. Vorobyov, P. Krishnan, and P. Stocks

overheads. While this may have little impact during the development process, it
makes it hard to deploy these tools in performance testing, where runs of unmod-
ified programs may take a long time to execute. Additionally, these tools default
to reporting memory leaks using locations of allocation, which does not always
provide enough information to eliminate detected defects. Finally, as instrumen-
tation is performed at the assembly level, binary instrumentation techniques are
inevitably platform and architecture dependent.

In this paper we present a monitoring approach to memory leak detection
that reports where the leakage occurs. This information can facilitate the de-
bugging process. In contrast to binary instrumentation we modify source code
of programs by inserting statements to record and update memory state, observe
execution and detect memory leaks. In our approach we track memory at the
block level, recording only locations and sizes of allocated blocks, which avoids
monitoring of every bit and minimises memory overheads. We associate each
tracked block with two types of locations: allocation and access. The allocation
locations are assigned only once when blocks are created on the heap. The loca-
tions of access are updated based on the execution of the program. Every time
a block containing references is updated, the access locations are also updated
to reflect reachability of the block via some program variable. This is achieved
by dynamically computing the dereference of a block’s address space. The deref-
erence computation is tunable by abstractly specifying memory areas that do
not contain pointers and therefore can not leak. This yields a technique where
run-time overheads can be reduced for the cost of reporting less debugging infor-
mation without losing precision. At the end of execution we report unreachable
blocks that have not been de-allocated along with the information where it was
allocated and where the leakage occurred.

We have a prototype implementation (called Skiff) for monitoring C programs.
We demonstrate the applicability of our approach by analysing real UNIX pro-
grams and SPEC benchmarks and report the results of our experimentation.

The overall contributions made by this paper are as follows:

– A tunable monitoring approach to memory leak detection that uses source
code instrumentation and identifies locations of leakage.

– A proof-of-concept implementation of our technique.
– An empirical evaluation of our approach by comparing the results produced

by our tool to the results produced by a state-of-the-art memory profiler.
This evaluation demonstrates that in observing test suites of applications
the overheads introduced by our technique are much lower.

The rest of the paper is organised as follows. In Section 2 we discuss syntax
and semantics of a simple imperative language we use to describe our technique
at the abstract level. Section 3 presents a technical description of our approach
and shows how to apply it on C programs. Section 4 discusses empirical results
of a prototype implementation and Section 5 gives an overview of related work.
We give our concluding remarks and discuss future directions in Section 6.

A Dynamic Approach to Locating Memory Leaks 257

2 Syntax and Memory Semantics

We present our approach at the abstract level using a simple imperative lan-
guage. We now describe the syntax and semantics of this language.

Figure 1 shows an abstract imperative language similar to the WHILE [5]
programming language extended with memory allocation and operations for
manipulating pointers.

t ::= N

v ::= Vars
e ::= t | v | e⊕ e | deref(e)
c ::= skip | def(v) | c; c | if e then c1 else c2 | while e do c | begin c end|

〈l: deref(v) := e〉 | 〈l: v := e〉 | 〈l: v := malloc(e)〉 | free(e)
P ::= begin c end

Fig. 1. Abstract Language

Expressions e consist of constants t ∈ N, variables v ∈ Vars (where set Vars
denotes the set of variables), composite expressions e ⊕ e, where ⊕ is a binary
operator and dereference operator deref (e). Command c consists of atomic com-
mands (skip), variable definitions (def(v)), conditional expressions (if e then

c1 else c2), loops (while e do c), scopes (begin c end), sequential composi-
tion (c; c), labelled assignments 〈l: v := e〉 and 〈l: deref(v) := e〉, where label
l identifies source location of the command (e.g., a source code line number)
and built-in memory allocation and de-allocation commands 〈l: v = malloc(e)〉
and free(e) respectively. The command malloc allocates a new memory block
(e.g., a sequence of contiguous memory cells) of size specified by expression e
and binds the address of the first cell in the allocated segment to a variable v.
free(e) de-allocates a memory block, whose first address is given by expression
e. If no such block exists the statement is equivalent to skip. Program P is a
sequence of commands within a scope.

We now introduce our semantics of the memory model to formally define
memory leaks. We let Scope denote the set of scope identifiers and set N to
represent a memory address. A particular memory block is denoted by a pair
over N representing start and end addresses of the block. Let B = N×N be the set
of all blocks. Then, memory allocation is a subset of such pairs. Formally, the set
of all possible allocations A is P(B), where P is the powerset operator. Typical
elements are denoted by σ and we require that allocated blocks are disjoint, and
that the start address is not greater than the end address (and assume blocks
represent allocation of contiguous chunks of memory).

Memory mapping mσ is the set of pairs N × N, where each pair (i, t) ∈ mσ

represents a valid memory block. The set of all possible memory mappings is
denoted by the set M = P(N× N), that is mσ is an element of M. A memory
mapping is valid only if each address mapped to a value lies within the allocated
block.

258 K. Vorobyov, P. Krishnan, and P. Stocks

Store usage by program (denoted μ) is the set of triples Vars × Scope × N,
where a triple (v, s, t) ∈ μ, v ∈ Vars, s ∈ Scope, t ∈ N in a particular state
represents a variable v defined at scope s and bound to a numeric constant t.
Formally, the set of all possible store usages S is P(Vars × Scope × N), where
store usage in a particular state μ is an element of S.

Finally, we let the set Lab denote the set of all program labels. An element
l ∈ Lab denotes either a defined source location (such as a line number) or an
undefined one (denoted by ⊥). We use labels to track usage of blocks during
memory allocation and assignments. We let function loc : N × N → Lab denote
usage tracking in a particular state. For example, a label associated with a block
(a, b) ∈ σ, where σ is a valid allocation, is retrieved using loc(a, b). The set of all
such functions is denoted Lt (for label tracking).

2.1 Operational Semantics

Malloc: 〈l: v = malloc(e) : σ,mσ, μ, loc, 〈s1, ..., sn〉〉 → 〈skip : σ∗,mσ, μ
∗, loc∗, 〈s1, ..., sn〉〉

σ∗ = σ ∪ {(eval(v, σ,mσ , μ, s1), eval(v + e, σ,mσ, μ, s1)}
μ∗ = μ\{(w, s, t) (w, s, t) ∈ μ∧w = v}∪{(w, s, eval(v, σ,mσ , μ, s1)) (w, s, t′) ∈ μ∧w = v∧s = s1}
loc∗(a, b) =

{
l if (a, b) = (eval(v, σ,mσ, μ, s1), eval(v + e, σ,mσ , μ, s1))
loc(a, b) otherwise

Free1: 〈free(e) : σ,mσ , μ, loc, 〈s1, ..., sn〉〉 → 〈skip : σ \ {(a, b)},mσ \ {(i, t) a ≤ i ≤ b}, μ, loc∗, 〈s1, ..., sn〉〉
(∃(a, b) ∈ σ : a = eval(e, σ,mσ, μ, s1))

loc∗(e, f) =

{
loc(e, f) if (e, f) �= (a, b)
⊥ otherwise

Free2: 〈free(e) : σ,mσ , μ, loc, 〈s1, ..., sn〉〉 → 〈skip : σ,mσ, μ, loc, 〈s1, ..., sn〉〉 (�(a, b) ∈ σ : a =

eval(e, σ,mσ , μ, s1))

VariableAssignment: 〈l: v = e : σ,mσ, μ, loc, 〈s1, ..., sn〉〉 → 〈skip : σ,mσ , μ
∗, loc∗, 〈s1, ..., sn〉〉

μ∗ = μ\{(w, s, t) (w, s, t) ∈ μ∧w = v}∪{(w, s, eval(v, σ,mσ , μ, s1)) (w, s, t′) ∈ μ∧w = v∧s = s1}
loc∗(a, b) =

{
l if (a, b) ∈ R+

v (σ,mσ, μ, s, v)
loc(a, b) otherwise

MemoryAssignment: 〈l: deref (v) = e : σ,mσ, μ, loc, 〈s1, ..., sn〉〉 → 〈skip : σ,m∗
σ , μ, loc

∗, 〈s1, ..., sn〉〉
m∗

σ = mσ \ {(a, b) (a, b) ∈ mσ ∧ a = eval(deref (v), σ,mσ, μ, s1)}
∪ {eval(v, σ,mσ, μ, s1), eval(e, σ,mσ, μ, s1)}
loc∗(a, b) =

{
l if (a, b) ∈ R+

v (σ,mσ, μ, s, v)
loc(a, b) otherwise

Fig. 2. Operational Semantics

The operational semantics of commands (with key rules shown in Figure 2)
is defined as a relation → on configurations, where a configuration is a tuple
〈c : σ,mσ , μ, loc, Scope

∗〉, such that c is a program command, σ is a memory
allocation, mσ is a memory mapping, μ is a store usage, loc is a function that
identifies command labels associated with allocated memory blocks, and Scope∗

is a sequence of scope identifiers (e.g., sequence 〈s1, ..., sn〉, where s1, ..., sn ∈
Scope are distinct identifiers of executed scopes).

A Dynamic Approach to Locating Memory Leaks 259

The rule for 〈l : v := malloc(e)〉 adds a new block to σ and updates the
block pointed to by v to the new block (indicated by the change to μ). The
rule for free(e) removes the block identified by e from σ. Rule 〈l: v := e〉 for
variable assignments update store usage, while rule 〈l: deref(v) := e〉 for memory
assignments modifies memory mapping, i.e., allows to write to a memory location
through a variable dereference. Additionally, each of the above rules modify label
function loc, which associates labels with allocated blocks and thus is the key
to label tracking. We discuss this behaviour in detail in Section 3. The rules for
the other commands are standard and are not presented.

In the next few paragraphs we summarise the key concepts underlying our
technique. We elaborate only on concepts that are relevant for memory leaks.
The behaviour of expressions is standard in that the result of their evaluation is
defined by function eval(e, σ,mσ , μ, s) that evaluates to a constant t ∈ N, where
e is an expression, σ is a memory allocation, mσ is a memory mapping, μ is
a store usage and s ∈ Scope is an executed scope. I.e., eval (e, σ,mσ, μ, s) = t
denotes expression e that evaluates to a constant t in scope s, where σ ∈ A is a
valid allocation, mσ ∈M is a valid memory mapping and μ ∈ S is a store usage.

A variable v in scope s points to a memory block if the value in the variable
lies within that block. This is formally given using Definition 1.

Definition 1 (Points to via variable). Given a valid memory allocation σ ∈
A, valid memory mapping mσ ∈ M, store usage by program μ ∈ S, scope s ∈
Scope and variable v ∈ Vars, v is said to point to an allocated memory block
(a, b) ∈ σ in scope s if and only if a ≤ eval(v, σ,mσ , μ, s) ≤ b.

Given a valid memory allocation σ, valid memory mapping mσ, store usage
μ and scope s, a given block (a, b) ∈ σ can point to another block (c, d) ∈ σ in
scope s, if and only if a memory address within (a, b) is mapped to an address
that lies within (c, d). The relation Rb in Definition 2 defines this formally.

Definition 2 (Points to via block). Given a valid memory allocation σ ∈ A,
valid memory mapping mσ ∈M, store usage by program μ ∈ S, scope s ∈ Scope
and allocated memory block (a, b) ∈ σ, binary relation:

Rb(σ,mσ, μ, s, (a, b)) = {(e, f) (e, f) ∈ σ∧
∃i ∈ N : a ≤ i ≤ b ∧ e ≤ eval (deref(i), σ,mσ, μ, s) ≤ f}

defines the set of memory blocks in σ, block (a, b) points to.

Thus, in allocation σ, memory mapping mσ, store usage μ and scope s, block
(a, b) points to block (c, d) if and only if (c, d) ∈ Rb(σ,mσ , μ, s, (a, b)).

In a memory allocation σ, memory mapping mσ, store usage μ and scope
s, a given block (say bn) is accessible from another block (say b0) if there is a
sequence of blocks b1, · · · , bn−1 such that for all i between 0 and n− 1, bi points
to bi+1. This is formally defined by the relation R+

b in Definition 3.

260 K. Vorobyov, P. Krishnan, and P. Stocks

Definition 3 (Accessibility). Given a valid memory allocation σ ∈ A, valid
memory mapping mσ ∈ M, store usage by program μ ∈ S, scope s ∈ Scope and
allocated memory block (a, b) ∈ σ, binary relation:

R+
b (σ,mσ, μ, s, (a, b)) = {(e, f) (e, f) ∈ Rb(σ,mσ, μ, s, (a, b)) ∨

(∃(c, d) ∈ Rb(σ,mσ, μ, s, (a, b)) : (e, f) ∈ R+
b (σ,mσ, μ, s, (c, d))}

defines the set of blocks accessible from (a, b).

Thus, for a memory allocation σ, memory mapping mσ, store usage μ and
scope s, memory block (c, d) ∈ σ is accessible from block (a, b) ∈ σ if and only
if (c, d) ∈ R+

b (σ,mσ, μ, s, (a, b)).
Given a memory allocation σ, block (a, b) ∈ σ, memory mapping mσ, store

usage μ and scope s, variable v ∈ Vars references (a, b) if v points to (a, b)
or there exists some block (c, d) ∈ σ, such that v points to (c, d) and (a, b) is
accessible via (c, d). This is formally defined by the relation R+

v in Definition 4.

Definition 4 (Reference). Given a valid memory allocation σ ∈ A, block
(a, b) ∈ σ, valid memory mapping mσ ∈ M, store usage μ ∈ S, scope s ∈ Scope
and variable v ∈ Vars, binary relation

R+
v (σ,mσ , μ, s, v) = {(a, b) (a, b) ∈ σ: a ≤ eval (v, σ,mσ , μ, s) ≤ b ∨

(∃(c, d) ∈ σ : c ≤ eval(v, σ,mσ , μ, s) ≤ d ∧ (a, b) ∈ R+
b (σ,mσ, μ, s, (c, d)))}

defines the set of blocks referenced by variable v.

Thus, given a memory allocation σ ∈ A, memory mapping mσ ∈ M, store
usage by program μ ∈ S and scope s ∈ Scope, variable v ∈ Vars references
allocated memory block (a, b) ∈ σ, if (a, b) ∈ R+

v (σ,mσ, μ, s, v).
Given the above we can define memory leak as follows:

Definition 5 (Memory leak). Given a valid memory allocation σ ∈ A, valid
memory mapping mσ ∈ M, store usage μ ∈ S and scope s, a memory block
(a, b) ∈ σ, is a memory leak with respect to store usage by program μ, if there
exists no triple (v, s, t) ∈ μ, v ∈ Vars, s ∈ Scope, t ∈ N, such that (a, b) ∈
R+

v (σ,mσ, μ, s, v). That is, block (a, b) is not referenced by program variables
from the given store usage.

3 Memory Leak Detection

We now present technical details of the memory leak detection technique. Our
approach consists of two stages: static and dynamic. At the static stage we
instrument an input program (say P to obtain P ′) with statements that monitor
the execution of P to detect memory leaks. At the dynamic stage we run P ′,
which reports occurred memory leaks (if any) at the end of its execution.

To keep track of the memory state during the execution of P we use an explicit
data-structure Tσ. A particular state of Tσ describes the state of memory that
has been tracked during the execution of the transformed program P ′. Tσ is the
set of 4-tuples of values (i.e., Tσ ∈ P(N×N×N×N)). An element (a, b, la, lu) of Tσ

A Dynamic Approach to Locating Memory Leaks 261

represents a memory block (a, b) (where a and b are its start and end addresses),
such that at program location la block (a, b) was allocated and referenced via
a variable at label lu. We further refer to labels la and lu as to allocation and
usage labels respectively.

We now describe functions that operate on Tσ. The function insert(Tσ ,a,b,l)
adds the element (a, b, l, 0) (where 0 represents an undefined label) to Tσ . The
function delete(Tσ, a) removes elements whose start address is a. Given a mem-
ory address c the function lookup(Tσ , c) searches through the elements of Tσ

and returns a memory block (a, b), if there exists an element (a, b, la, lu) of Tσ,
such that c lies within (a, b), or a pair (0, 0) (where (0, 0) represents an invalid
block) otherwise. The function update(Tσ , a, l) modifies a usage label of a par-
ticular element of Tσ identified by a start address of the tracked memory block
it represents.

The function updateLabel is the main memory tracking function. Its task
is to update usage labels of memory blocks that participated in assignments.
Informally, a usage label associated with a block of memory identifies a source
location at which that memory block was accessible. For example, given an
assignment statement 〈l : v = e〉, where v is a variable and e is an expression,
updateLabel sets usage labels of all memory blocks referenced by v to l.

The semantics of updateLabel is as follows. Given an input value val (such
that val is a value to which some variable v at label l evaluates), updateLabel
identifies the set of memory blocks (say R) referenced by v (i.e., memory blocks
that can be accessed through v). R is populated by recursively dereferencing
values stored in blocks pointed to by v and then calling lookup on the values
obtained by dereferencing. Valid memory blocks returned by lookup are then
added to R. For example, given that v points to a memory block (a, b), which
in turn points to some block (c, d), updateLabel first dereferences the value
of v, identifies (a, b) as being pointed to by v and adds it to R. Further, it
dereferences each value in the range [a, b] and adds (c, d) to R (since (a, b) points
to (c, d)). It then searches through the range [c, d] and finalises the search (since
block (c, d) does not point to any other blocks). The fourth argument, mode,
may be used to constrain the generation of the set R and reduce the amount of
reported information for the benefit of speed of execution. We further discuss the
application of mode and describe different modes of operation of our technique in
Subsection 3.1. For each element (a, b) ∈ R the function update(Tσ, a, l) (where
l is the input label) is executed which updates the usage labels associated with
blocks v references to l. The function report(Tσ) reports memory leaks based
on the state of Tσ, such that for each element (a, b, la, lu) that belongs to Tσ, a
memory block (a, b) is reported as a memory leak, such that (a, b) was allocated
at location la and last referenced by a variable at location lu.

3.1 Syntactic Transformations

We now present the set of syntactic transformations, i.e., instrumenting the
source code, in Figure 3. The first step of our transformation instruments an

262 K. Vorobyov, P. Krishnan, and P. Stocks

input program with a data structure Tσ to keep track of the memory state
(Figure 3, Rule Program).

Malloc: 〈l: v := malloc(w)〉 → 〈l: v := malloc(w)〉;
insert(Tσ , v, v + w, l);

Free: free(v) → delete(Tσ, v);
free(v);

MemAssign: 〈l: deref (v) := e〉 → 〈l: deref (v) := e〉;
updateLabel(Tσ, v, l,mode);

VarAssign: 〈l: v := e〉 → 〈l: v := e〉;
updateLabel(Tσ, v, l,mode);

Prog:

c → c′

begin → begin

c; def(Tσ); def(mode); c′;
end report(Tσ);

end

Fig. 3. Syntactic Transformations

Calls to insert and delete, which track allocated and de-allocated memory
blocks, are injected into P via rules Malloc and Free (Figure 3). That is, each
statement that allocates memory (i.e., 〈l: v := malloc(w)〉) is followed by a call
to insert(Tσ , v, v+w, l), where v evaluates to the start address of the allocated
block, expression v+w evaluates to its end address and l is a block’s allocation
label. Similarly, before each statement that de-allocates memory (i.e., a call to
free(v)), a call to delete(Tσ , v), that removes an element of Tσ that refers to
a de-allocated block, is made.

Each assignment statement is appended with a call to updateLabel, which
tracks assignments of memory blocks referenced by variables. That is, calls to
updateLabel update usage labels, which allows us to collect information on
the propagation of data blocks. At any given state, a usage label associated with
a block indicates a source location at which that block was last known to be
referenced by a variable.

Since updateLabel is the main cause of the run-time overhead, its behaviour
can be controlled externally by constraining the search for memory blocks refer-
enced by a variable via limiting the search to the traversal of blocks of particular
sizes only, where the maximal size of a traversed block is given by parameter
mode. Currently, our approach supports Minimal, Partial and Full modes. In the
Minimal mode updateLabel does not track usage labels. Hence, the reported
information is limited to the existence of memory leaks and the locations of their
allocation. In the Full mode, each block is traversed. In the Partial mode only
the blocks of size less than mode are traversed. This avoids traversal of large
blocks that may not contain pointers.

Finally, we insert a call to report(Tσ), before P terminates.
At the dynamic stage of our approach we execute an instrumented program

P ′, which reports memory leaks at the end of execution. A program run, for
which Tσ is empty, does not leak any memory. Otherwise, each element of Tσ

(say (a, b, la, lu)) is reported as the memory leak of size (b − a) allocated at
program location la and last known to be referenced by a variable at lu.

A Dynamic Approach to Locating Memory Leaks 263

3.2 Application on C Programs

The technical details of the approach presented above are at the abstract level
and need to be mapped to a concrete level to be able to apply them on a
realistic programming language. We now discuss the extensions required to use
our approach with C programs.

Due to the semantics of the C programming language, where stack-allocated
memory blocks are automatically freed, additionally to a block’s start and end
addresses we record its type of allocation (i.e., stack, heap, global). This is to be
able to distinguish between memory that is de-allocated explicitly or implicitly.
Stack memory blocks are recorded to Tσ explicitly, via inserting calls to insert
immediately after definitions of local variables. The sizes of stack blocks are
determined via the sizeof operator. Further, each stack block added to Tσ is
assigned an identifier of a scope it was allocated in.

Unlike in the abstract language, C statements are not labelled. To be able to
generate all the required information we instrument the program with a stack
that keeps track of entered functions and program locations associated with
them. Thus the top element of the stack holds the location of the executed line,
while other elements indicate locations of entered functions that lead to current
function.

To be able to track all allocated heap memory we redefine memory allocation
and de-allocation functions, which, apart from the normal functionality, insert
or remove elements of Tσ. This is possible as the GNU C library defines malloc
and similar functions as weak aliases. The original definitions of functions such
as malloc are replaced with our instrumented ones. Such an approach allows for
recording all heap memory, including blocks allocated by library functions for
which no source code is available, e.g., strdup. Thus in practice we can report
leaks for a larger class of programs than described formally.

Since in C programs values of pointers may be affected by function calls,
function arguments are processed similarly to assignment statements.

4 Results

We have implemented our technique in a prototype tool called Skiff for programs
written in the C programming language. Skiff is built on top of the Clang [6]
compiler architecture (LLVM project, version 2.9 [7]). The platform for all results
reported here was an Intel Core i5-2400 3.1 GHz machine with 4GB of RAM,
running Gentoo Linux.

To evaluate the efficiency of our approach we have performed a number of
experiments that involved instrumentation and dynamic analysis of well-known
UNIX utilities, such as find, grep, gzip, diff, patch, rcs, locate and rm, and
C benchmarks from the CPU2000 and CPU2006 sets developed by the Standard
Performance Evaluation Corporation (SPEC). In this section we also report the
results produced by Valgrind [8] (a state-of-the-art system for debugging and
profiling programs) on the same test subjects and compare them to the results
collected using our approach.

264 K. Vorobyov, P. Krishnan, and P. Stocks

During experimentation with UNIX utilities we monitored execution of their
test suites and calculated overheads per test suite. Runs of CPU benchmarks
were performed using the test data set provided by SPEC.

Note, that this evaluation focusses on the value of extended memory leak
reports of the Full mode of Skiff and performance overheads, rather that on the
number of discovered defects. This is because both techniques are sound and
do not report false alarms. The reliability of Valgrind has been established by
various experiments over the years. We manually checked that the output from
Skiff is consistent with Valgrind’s output.

We now report the results of our experimentation. We first outline differences
in reporting of Full mode of Skiff and Valgrind and point out the benefits of
locating sources of memory leaks. We then compare and discuss performance
overheads incurred by different modes of Skiff and Valgrind.

Figure 4 demonstrates the difference in reporting schemes of Valgrind and
Skiff in the Full mode. This uses a memory leak found in GNU locate (Findutils
4.4.2). The Valgrind report (on the left) shows the allocation site of this leak
using a stack trace. Skiff (on the right) also uses stack traces to report leaks and
shows the allocation site of the leak (a stack trace above the line of asterisks) and
the source of leaked memory (a stack trace of below the line). Additionally, our
tool reports variable names (e.g., procdata, highlighted in gray), that referenced
the leaked memory block prior to the leakage. This removes ambiguity, as a single
line of code in C may contain multiple statements.

128 bytes in 1 blocks are definitely lost
==11936== at 0x402B7B8:

malloc (vg_replace_malloc.c:270)
==11936== by 0x80515F9:

xmalloc (xmalloc.c:49)
==11936== by 0x804AAE0:

search_one_database (locate.c:1106)
==11936== by 0x804BDC3:

dolocate (locate.c:1884)
==11936== by 0x804BF43:

main (locate.c:1940)

* 128 bytes
Allocation: xmalloc.c:49
[35]:xmalloc [locate.c:1106]
[33]:search_one_database [locate.c:1884]
[8]:dolocate [locate.c:1940]

**
Leak: locate.c:879 [alias: ’procdata’]
[349]:visit_count [locate.c:375]
[191]:visit [locate.c:385]
[33]:search_one_database [locate.c:1884]
[8]:dolocate [locate.c:1940]

Fig. 4. Valgrind vs. Full Mode Memory Leak Report

We now discuss performance overheads of Skiff and Valgrind.
Figures 5 and 6 outline the difference in memory and run-time overheads

produced by Valgrind and Skiff run in the Minimal mode. That is, the reports
produced by both tools are similar and include detected memory leaks and their
allocation sites as call traces. The Y-axis measures overhead ratio (comparing to
the run-time or memory consumption of unmodified programs) and each point
on the X-axis stands for a series of runs of a program.

It can be seen that the run-time and memory overheads produced by our tool
are lower than Valgrind’s. The memory overhead produced by Skiff averages to
15% with the highest spike of approximately 3 times in equake only. Memory
overheads of Valgrind are much higher, ranging from 1.6 to 34 times with the

A Dynamic Approach to Locating Memory Leaks 265

mc
f

lb
m

sj
en
g

mc
f

ga
p

pa
rs
er

me
sa

h2
64
re
f

go
bm
k

bz
ip
2

bz
ip
2

sp
hi
nx
3

vo
rt
ex

am
mp

eq
ua
ke

gz
ip

mi
lc

fi
nd

lo
ca
te

di
ff

cr
af
ty ar
t

gr
ep vp
r

gz
ip rc
s

tw
ol
f

li
bq
ua
nt
um rm

pa
tc
h

sp
ec
ra
nd
.8

sp
ec
ra
nd
.9

hm
me
r

5

10

15

20

25

30

35

M
e
m
o
r
y

O
v
e
r
h
e
a
d

R
a
t
i
o

1

Valgrind Minimal

Fig. 5. Valgrind vs. Minimal Mode.
Memory Overhead.

mc
f

rc
s

bz
ip
2 rm lb
m

gz
ip ar
t

pa
rs
er

bz
ip
2

mc
f

vp
r

hm
me
r

h2
64
re
f

sj
en
g

sp
hi
nx
3

go
bm
k

am
mp

eq
ua
ke

li
bq
ua
nt
um

me
sa

cr
af
ty

tw
ol
f

ga
p

gz
ip

mi
lc

vo
rt
ex

di
ff

lo
ca
te

sp
ec
ra
nd
.9

sp
ec
ra
nd
.8

fi
nd

pa
tc
h

gr
ep

20

40

60

80

100

120

R
u
n
-
t
i
m
e

O
v
e
r
h
e
a
d

R
a
t
i
o

1

Valgrind Minimal

Fig. 6. Valgrind vs. Minimal Mode.
Run-time Overhead.

average of 15 times. The run-time overhead exhibited by both tools compares
similarly. The overhead produced by Skiff is on average approximately 80%, while
the average run-time overhead of Valgrind is 30.8 times, ranging from 6.8 to 116
times. Note, that spikes, such as 116 times in grep can be partially attributed to
a high number of invocations of programs during test suite execution (e.g., over
1250 runs in grep test suite), where each invocation causes Valgrind to dynam-
ically instrument a binary monitor memory. This is different to our approach,
where we eliminate such overhead by instrumenting source code and compile
monitoring capabilities in. Additionally, we track memory at the block level and
store only the delta of information, such as block addresses, sizes etc., whereas
Valgrind monitors each byte individually. That is, our overhead is proportional
to the number of memory blocks allocated by a program, whereas Valgrind’s
is proportional to the overall amount of allocated memory. Note, that while
on average block-level tracking proves to yield low overhead, it may increase if
many small blocks are allocated. This is exhibited, by the equake benchmark
where overheads can be 3 times for memory and 9 times for run-time. Finally,
it should be noted that in the Minimal mode we monitor only allocation and
de-allocation operations, which is computationally light. Of course, this does not
produce useful debugging information.

The run-time overhead in the Full mode varies and may increase significantly
based on sizes of memory blocks a program manipulates. This is because our
main run-time overhead is due to computation, i.e., iteration through address
ranges of memory blocks and identifying pointers in assignments. Thus, the
main factor that influences overhead is the size of memory blocks traversed (i.e.,
size of manipulated data structures) and the frequency of their use (i.e., the
number of statements that trigger updateLabel). Thus, we may expect larger
overheads for SPEC benchmarks, as these programs are crafted to routinely
perform computationally intensive tasks (such as archiving, compilation etc.) on
large data chunks. We now discuss the results of our experimentation.

Figure 7 depicts the run-time overheads of our prototype run in the Full and
Minimal modes and Valgrind on the set of UNIX utilities. It can be seen that
in the Full mode our overhead increases, spanning from 1.3 times (in gzip) to

266 K. Vorobyov, P. Krishnan, and P. Stocks

almost 11 times in the rcs test suite. These overheads, however, are still lower
than the overheads produced by Valgrind. Notably, the memory overhead does
not increase significantly, reaching the maximum of 21% in UNIX programs.
From Figure 5 it can be seen that this is approximately 15 to 30 times the
overheads incurred by Skiff. Including the results from Valgrind in one graph
obscures the difference in performance between the two modes.

rc
s rm

gz
ip

di
ff

lo
ca
te

fi
nd

pa
tc
h

gr
ep

20

40

60

80

100

120

R
u
n
-
t
i
m
e

O
v
e
r
h
e
a
d

R
a
t
i
o

1

Valgrind Minimal Full

Fig. 7. UNIX: Run-time Overhead

mc
f

bz
ip
2

lb
m
gz
ip ar

t

pa
rs
er

bz
ip
2

mc
f

vp
r

hm
me
r

h2
64
re
f

sj
en
g

sp
hi
nx
3

go
bm
k
am
mp

eq
ua
ke

li
bq
ua
nt
um

me
sa

cr
af
ty

tw
ol
f

ga
p
mi
lc

vo
rt
ex

sp
ec
ra
nd
.9

sp
ec
ra
nd
.8

200

400

600

800

1000

R
u
n
-
t
i
m
e

O
v
e
r
h
e
a
d

R
a
t
i
o

1

Full Partial

Fig. 8. SPEC CPU: Run-time Overhead

It is important to note that Skiff in Full mode does not always outperform
Valgrind – especially on the SPEC CPU benchmarks. Sometimes our run-time
overhead is extremely high (over 1000 times). The main factor that contributes
to such overhead is the size of memory blocks allocated. The larger the size of
the memory allocated, the longer it takes to run updateLabel. This behaviour
is confirmed via experimentation in Partial mode. When we limit traversal of
memory blocks by the size of the largest data structure, i.e., assuming that larger
blocks are data only blocks and do not contain any pointers, the overheads are
significantly reduced as depicted in Figure 8 which for the sake of clarity does
not show the data associated with Valgrind. One can compare the performance
of Valgrind and Skiff in Full mode by combining the data from Figures 6 and 8.
The raw data is available from the authors on request.

For example, the overhead for the lbm benchmark is reduced from 566 to
only 5 times. The excessive overhead of benchmarks, which continue to perform
similarly to the Full mode, is due to the structure of some SPEC benchmarks,
where a large amount of memory is allocated statically, irrelevant of the input
size. Note, that while developing programs such allocations are rarely used.

The relation between increased run-time overhead and the amount of memory
allocated by programs is illustrated in Figure 9. The presentation of these data is
split because of the difference in the run-time overhead ratios and thus the scale
of the figures is different. In the set of UNIX utilities (Figure 9, leftmost plot) the
main purpose of the associated test suites is to evaluate functional correctness
of programs, where memory consumption does not exceed 5 megabytes and thus
Skiff, even in Full mode, outperforms Valgrind. In the SPEC CPU benchmarks
(Figure 9, center and rightmost plots) memory consumption is much higher. The
center plot of Figure 9 shows that Skiff in Minimal mode always outperforms

A Dynamic Approach to Locating Memory Leaks 267

Fig. 9. Overhead Relative to Memory Usage. Left to right: UNIX Programs (Full vs.
Valgrind), SPEC CPU (Minimal vs. Valgrind), SPEC CPU (Partial vs. Full).

Valgrind with negligible overheads and low variance. The rightmost plot of Fig-
ure 9 compares the overheads incurred by Skiff in Partial and Full modes. Note,
memory size alone does not affect the overheads. If each allocated block contains
pointers, then these pointers need to be tracked, adding to overheads, while if
the allocated blocks contain only data they need not be tracked, reducing the
overheads. This is shown by the variance in the overheads. What this means
is that the overhead is not consistently high. Note that abnormal cases with
extreme overhead in SPEC CPU should be attributed to the design pattern of
SPEC benchmarks which are aimed at performance evaluation. The memory
consumption, however, affects only Full or Partial modes.

Our approach is mainly useful in the domain of functional testing, where
program correctness is established through runs with small inputs. In addition
to memory leak detection, our technique can provide useful information that
facilitates debugging. Note, that our experimentation with UNIX utilities indi-
cates that with small inputs Skiff overheads may be lower than the overheads of
conventional monitoring using Valgrind. Our approach can also be used in per-
formance testing, where program runs are significantly heavier, in both memory
consumption and run-time. Our experimentation suggests that for memory leak
detection our technique uses considerably less resources than DBI, while still
producing the same level of output, especially in Minimal or Partial mode.

4.1 Threats to Validity

We now discuss factors that may have affected the validity of our results.
The first factor is the choice of programs and the input data used in our ex-
perimentation. Even though, during experimentation with UNIX utilities we
used realistic programs and representative inputs (i.e., test suites that are as-
sociated with the utilities), which should account for exercising most of the
paths, there is no evidence that applying our technique on different programs
or using different input values will yield similar results. Similarly, during our
second experiment with SPEC CPU benchmarks, the input values provided
may not be representative for the development process. This is because SPEC

268 K. Vorobyov, P. Krishnan, and P. Stocks

concentrates on performance evaluation, rather that on exploring various be-
haviours. The second issue refers to our comparison with Valgrind. Valgrind is a
memory profiler, whose core functionality goes far beyond just memory leak de-
tection. Consequently, some overhead produced by Valgrind may be attributed
to performing tasks not relevant for memory leak detection. But our tool is only
a proof-of-concept implementation, while Valgrind is more robust. Thus, a better
implementation of our technique may improve the results.

5 Related Work

The memory leak problem has been extensively researched, resulting in a variety
of memory leak detection techniques that use static and dynamic analyses. We
now summarise papers that are directly relevant to our approach.

One of the most common approaches in memory profiling is to track memory
usage at the byte level via binary instrumentation. One of the earliest attempts
is Purify [1]. Purify statically inserts additional instructions directly into object
files monitoring memory allocation and every read or write performed by a pro-
gram under test. More recent approaches, such as Dr. Memory [9], use dynamic
binary instrumentation (DBI). In DBI, an executable is analysed using extra
code added to it at run-time. Despite the strengths of DBI, such as soundness
and the ability to monitor any memory operation, DBI may produce high over-
head in both execution time and memory consumption, while still reporting only
allocation sites of leaked blocks. In our approach we have the benefit of locating
the source of leakage without incurring the overheads associated with DBI.

Insure++ [3] is a memory profiler for C and C++. Unlike profilers that ex-
clusively instrument binaries, Insure++ can operate at the source code level.
Unfortunately, implementation details of this tools is not publicly available.

Determining precise locations of memory leakage has also been investigated.
Maebe et al. [10] have presented a technique that tracks all pointers to the
allocated memory using reference count. In their approach authors keep track
of pointers by monitoring load and store operations that may change pointer
structure of a program, detecting locations of memory leakage. The downside
of this technique is that it can report both false positive and false negative re-
sults. Clause and Orso [11] developed a similar technique that detects sources
of memory leaks, called leakpoint. leakpoint tracks memory using dynamic
taint analysis. A tainted pointer identifies an access alias to that memory block.
leakpoint updates the taint as execution proceeds by observing operations on
pointers. This uses a propagation policy which models each such operation. At
run-time leakpoint keeps track of pointer count per allocated memory block
(i.e., taint marks associated with pointers) and identifies leakage locations as
the locations where pointer count dropped to zero. The main weakness of leak-
point is that its propagation policy is neither sound nor complete. That is, while
leakpoint may soundly identify memory leak existence, the reported sources
of leaked memory are not guaranteed to be correct. Finally, leakpoint is a
DBI approach (built on top of Valgrind) and thus also suffers from very high

A Dynamic Approach to Locating Memory Leaks 269

overheads (e.g., the authors report overheads that are 300 times) Our technique
addresses a similar question by using on-the-fly computation rather than refer-
ence count. This makes our technique both sound and complete which we have
formally proven. Also note, that our technique correctly handles cases such as
p1 = p2 + 1; and p++; where p is moved past the end of a block.

Another approach that can potentially detect location of leakage, is Boehm
GC [12] – a garbage collector for C and C++ languages that uses a variation
of the mark-and-sweep algorithm. If used as a leak detector, Boehm GC reports
memory blocks that are no longer accessible as memory leaks. This, however,
relies on a periodic scanning of program address space to determine lost memory
and thus can not determine precise locations of leakage.

6 Conclusions

We have presented a tunable monitoring approach to locating memory leaks. Our
technique uses source-to-source transformations to instrument an input program
with statements to monitor its memory state of and report leaks before the modi-
fied program terminates. Our approach has the benefit of locating program points
at which leaked memory was lost. This aids the debugging process, providing
developers with extra information that can be then used to eliminate detected de-
fects. Additionally, our approach provides tuned monitoring via different modes
of execution enabled at run-time. In the Full mode extra information of leakage
locations is produced for the cost of larger overheads. Minimal mode minimises
overheads using a conventional reporting scheme that outputs only allocation
sites. Partial mode reduces overheads by tracking leakage locations of memory
blocks of particular sizes only.

We have implemented our approach in a prototype tool called Skiff for C
programs. During our experimentation we monitored execution of a number of
well-known UNIX applications and SPEC CPU benchmarks. Further, the results
of our tool were compared to the results produced by Valgrind. Our experimen-
tation shows that in conventional reporting, where only allocation sites of leaked
blocks are determined, our approach significantly outperforms Valgrind. Such re-
sults indicate that for memory leak detection Skiff may be used as a replacement
for binary instrumentation tools, producing similar results with considerably less
system resources. Experimentation with Full mode shows that our overheads di-
rectly depend on the amount of memory allocated by programs and increase as
memory consumption grows. Analysis of UNIX utilities showed Skiff performed
better than Valgrind mainly due to relatively small allocated blocks. However,
Skiff performed considerably worse on SPEC benchmarks, which focus on perfor-
mance evaluation and thus use large inputs. We demonstrated the applicability
of overhead tuning using Partial mode, where in some cases we reduced large
overheads of SPEC benchmarks by not tracking large data blocks for leakage.
Overall we can conclude that leakage detection at the current stage is mainly use-
ful in the domain of functional testing, where program correctness is established
with runs with relatively small inputs.

270 K. Vorobyov, P. Krishnan, and P. Stocks

In the future we are looking to improving the performance of our technique
for large allocations. Our preliminary experimentation shows that the high over-
heads incurred are due to tracking blocks that do not leak or are accessible glob-
ally. Thus, rather than instrumenting each statement, we could use lightweight
but sound static program analysis to filter out statements that cannot leak. We
would also like to consider alternate or extended instrumentations that detect
other memory faults, such as, for example, use after free errors.

Acknowledgement. The first author is supported by a grant from Oracle Labs.
The second author was affiliated with Bond University when most of this work
was done.

References

1. Hastings, R., Joyce, B.: Purify: Fast detection of memory leaks and access errors.
In: Proceedings of the Winter USENIX Conference, pp. 125–136 (January 1992)

2. Seward, J., Nethercote, N.: Using valgrind to detect undefined value errors with bit-
precision. In: Proceedings of the USENIX Annual Technical Conference, USENIX,
pp. 17–30 (2005)

3. Parasoft (Insure++), http://www.parasoft.com/jsp/products/insure.jsp
4. Intel: (Parallel inspector),

http://software.intel.com/en-us/intel-parallel-inspector

5. Nielson, H.R., Nielson, F.: Semantics with applications - a formal introduction.
Wiley Professional Computing. Wiley (1992)

6. clang: a C language family frontend for LLVM (March 2012),
http://clang.llvm.org

7. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proceedings of the International Symposium on
Code Generation and Optimization, CGO 2004. IEEE Computer Society, Wash-
ington, DC (2004)

8. Nethercote, N., Seward, J.: Valgrind: A framework for heavyweight dynamic binary
instrumentation. In: Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2007, vol. 42, pp. 89–100. ACM,
New York (2007)

9. Bruening, D., Zhao, Q.: Practical memory checking with Dr. Memory. In: Proceed-
ings of the Annual IEEE/ACM International Symposium on Code Generation and
Optimization, CGO 2011, pp. 213–223. IEEE Computer Society, Washington, DC
(2011)

10. Maebe, J., Ronsse, M., Bosschere, K.D.: Precise detection of memory leaks. In:
Proceedings of the International Workshop on Dynamic Analysis, pp. 25–31 (May
2004)

11. Clause, J.A., Orso, A.: LEAKPOINT: Pinpointing the causes of memory leaks. In:
Proceedings of the ACM/IEEE International Conference on Software Engineering,
ICSE 2010, vol. 1, pp. 515–524. ACM (May 2010)

12. Boehm, H.: Dynamic memory allocation and garbage collection. Computers in
Physics 9, 297–303 (1995)

http://www.parasoft.com/jsp/products/insure.jsp
http://software.intel.com/en-us/intel-parallel-inspector
http://clang.llvm.org

Towards a GUI Test Model

Using State Charts and Programming Code

Daniel Mauser1, Alexander Klaus2, and Konstantin Holl2

1 Daimler AG, Ulm, Germany
2 Fraunhofer IESE, Kaiserslautern, Germany

daniel.mauser@daimler.com,

{alexander.klaus,konstantin.holl}@iese.fraunhofer.de

Abstract. Modern human machine interfaces provide a sophisticated
structure and logic to ease their use. As they are the only mean to control
the system behind, extensive testing and highest quality is required in the
automotive domain. A common testing approach in literature is to derive
the necessary test cases from a formal model. However, redundancy and
data dependency still hinder manual modeling in the industrial context.
In this paper, we present preliminary work to address these obstacles.
As a first step, we combined depictive state charts with reusable pro-
gramming code. We modeled parts of the graphical user interface of a
state-of-the-art infotainment system and successfully generated a test
suite that covers our testing goal to reach each button at least once.

Keywords: automotive, human machine interface, model based testing.

1 Introduction

An automotive human machine interface (HMI) provides system functionality to
the user. The main interface is usually represented by a graphical user interface
(GUI). Figure 1 shows an example for such a GUI including a possible screen
structure. According to [1], a GUI “is essential to customers, who must use it
whenever they need to interact with the system”. However, testing automotive
HMIs leads to more challenges than testing standard PC applications, caused by
the special characteristics of automotive HMIs, e.g., the dynamic menu behavior
and the large set of variants [2]. Effective usage of an automotive HMI by the
user requires an effective quality assurance process. Failures during the usage
while driving may lead to a distraction of the driver.

The complexity of the specification in the automotive domain is typically
handled by the definition of conditions that represent the states of connected
applications and devices. They consist of internal conditions, such as the selec-
tion of an option (e.g., “ESP on/off”), and of external conditions, such as the
availability of a functionality (e.g., “ESP available/unavailable”). The state of
the conditions influences, e.g., the availability or visibility of menu entries. As
modern automotive infotainment systems comprise hundreds of specified condi-
tions, managing the complexity manually is not feasible. Every condition can

H. Yenigün, C. Yilmaz, and A. Ulrich (Eds.): ICTSS 2013, LNCS 8254, pp. 271–276, 2013.
c© IFIP International Federation for Information Processing 2013

272 D. Mauser, A. Klaus, and K. Holl

Status line

Available
A pplications

(A pplication line)

Content
(Playfield)

Content specific
options

(Subfunction line)

Fig. 1. The SUT is structured in four vertical menus that hold the clickable elements

be set to various values; this results in an extremely large number of possible
combinations. Handling the amount of conditions can be done by modeling the
set of conditions and its effects within a test model. It describes the conditions
and its dependencies and leads to a simplification for the test engineer. Defining
rules for test case derivation enables the possibility to cover the complexity of
the conditions. Hence, a test generator can automatically generate test cases
with the intended test coverage. This increases the controllability for reaching
every menu entry which is desired to be tested. The testing goal, to ensure that
all menu entries are reachable, is important for all types of integration tests.

While developing these kinds of test models, we experienced the following two
major issues: The first issue is that widget behavior often depends on data such
as system conditions or inserted data. One example is the entry behavior of a
menu: in the system under test, menu widgets have a property “entryStrategy”
that influences, which of the the containing button elements is focused the first
time the menu is entered, which again depends on what buttons are actually
visible at this particular moment. Test models should support efficient means
to describe this data dependency. The second major issue is redundancy of be-
havior. Due to the modular nature of most user interfaces, atomic elements,
so called widgets (buttons, menus, ...), are reused in order to ease the specifi-
cation (consistent interaction concepts) and implementation (reuse of software
modules). Explicitly modeling each instance of all widget types occurring in an
entire system is time consuming and error prone in development and mainte-
nance. To reduce the probability of errors, mechanisms to facilitate consistent
modeling have to be applied. In software engineering, these challenges are faced
by code that is structured hierarchically and modularly. Logic is encapsulated
in classes that are instantiated every time this particular logic is needed. In the
context of an ongoing industrial research project we currently adopt this concept
for modeling HMI behavior accordingly, for test case generation purposes.

This paper is structured as follows: after discussing related work regarding
applicability in our context, we present excerpts of our ongoing work to develop
a modularly structured test model. The paper concludes with a first appraisal
of the approach and an outlook on the intended next steps.

Towards a GUI Test Model 273

2 Related Work

A good overview on model based testing (MBT) in general can be obtained in
[3], whereas [4] focuses on MBT of GUIs in particular. As a testing approach
should easily integrate in a software development lifecycle, one crucial point is
the model as basis for test generation. In the automotive domain, UML state
charts are “widely established in HMI specification and development” [2, P. 24].
Various approaches for MBT of GUIs use state based modeling ([5–9]). A widely
used technique for model based GUI testing is reverse engineering, i.e., executing
the application and analyzing the GUI ([5–7]). However, as these approaches
rely on the availability of source code, reverse engineering is not applicable in
our domain. An OEM, such as Daimler, usually assigns the task of creating an
HMI to suppliers and receives a package containing both hard- and software. In
such cases, it is not feasible for OEMs to extract the software or to use reverse
engineering, since there is no operating system supporting these techniques and
the input mechanisms are different.

An approach that presumes manual modeling has been presented in [8]. The
authors use domain specific state machines and model transformations to ob-
tain product line and variant specific test models. Their solution is “to inte-
grate domain knowledge into the state machine metamodel” [8], working with
a combination of EMF1 and Xtext2. Although the presented approach appears
to be promising, no test case generator is available to make use of the results.
Therefore, we decided to adapt the method bearing in mind available tools for
generation. Established solutions are, e.g., Microsoft Spec Explorer3 or Con-
formiq Qtronic4. Qtronic relies on hierarchical UML state machines as models,
which can be enriched with a custom modeling language, which is a superset
of Java [10]. Test cases are generated using symbolic execution [10]. Spec Ex-
plorer uses models created with Spec#, a variant of C# [11]. The model is then
explored to create test cases and capture the intended behavior [11]. The tool
distinguishes between controllable and observable actions [11]. A comparison of
different characteristics of both Spec Explorer and Qtronic can be found in [10].

3 Model Structure

Similar to the basic structure introduced by [8], we combine programming code
and state charts to make use of the strengths of both approaches: state charts
provide a clear structure of screens and their relationships and therefore ease
retracing the generated test cases. Object oriented programming code is easy to
reuse and provides efficient means to specify behavior. The established product
”Conformiq Designer” supports these kinds of models.

1 www.eclipse.org/emf/
2 www.eclipse.org/Xtext/
3 http://research.microsoft.com/en-us/projects/specexplorer/
4 http://www.conformiq.com/

274 D. Mauser, A. Klaus, and K. Holl

+isSelectable() : bool
+isVisible () : bool
+onEnter()
+press()
+next()
+prev()

-ID : string
-entries : Entry
-focusedEntry : Entry
-orienta�on : string
-looped : bool
-entryStrategy : string
-visibility : bool
-selectability : bool

Menu

+isSelectable () : bool
+isVisible () : bool
+onEnter ()
+press()

«interface»
Entry

+isSelectable() : bool
+isVisible () : bool
+onEnter()
+press()
+getText() : string
+getImageRef() : string

-ID : string
-label : string
-imageRef : string
-visibility : Hashtable<String,String>
-availability : Hashtable<String,String>
-condi�onsToSet : Hashtable<String,String>

Bu�on

+le�()
+right()
+up()
+down()
+press()
+back()
+onEnter()

-content : Menu

Screen

11

1* +isSelectable() : bool
+isVisible () : bool
+onEnter()
+press()
+next()
+prev()

-ID : string
-entries : Entry
-focusedEntry : Entry
-orienta�on : string
-looped : bool
-entryStrategy : string
-visibility : bool
-selectability : bool

Menu

+isSelectable () : bool
+isVisible () : bool
+onEnter ()
+press()

«interface»
Entry

+isSelectable() : bool
+isVisible () : bool
+onEnter()
+press()
+getText() : string
+getImageRef() : string

-ID : string
-label : string
-imageRef : string
-visibility : Hashtable<String,String>
-availability : Hashtable<String,String>
-condi�onsToSet : Hashtable<String,String>

Bu�on

+le�()
+right()
+up()
+down()
+press()
+back()
+onEnter()

-content : Menu

Screen

11

1*

Fig. 2. The Screen and the Entry elements Menu and Button are the essential classes

We developed a “widget toolbox” containing the basic elements the user inter-
face consists of: classes for buttons, menus and screens (see Figure 2). The Entry
is the basic widget type that summarizes all methods that are necessary for the
interaction concepts. Deriving classes have to implement methods that state on
demand whether they are visible (displayed on screen) or available (visible and
selectable). Entries further have to implement methods that are triggered once
they are focused and once they are pressed. The Button represents entries that
are clickable and contain content. This content can be textual (attribute: label)
and/or a reference to an icon or symbol (attribute: imageRef). The attributes
visibility and availability describe references to the system conditions the visibil-
ity/availability of the button object depends on. Menus are container elements
for entries (attribute: entries). As menus can again contain menu objects, this
class also implements the “Entry” interface and provides the respective meth-
ods. isSelectable() and isVisible() return the respective attributes that are set via
constructor. Further, menus determine what containing Entry element is focused
on next() and prev(). The Screen class is called from within the state machine.
Therefore, methods for all user interactions that directly affect the content on
the screen are provided. In this setup, this includes left, right, up, down, press,
and back. Screen objects are the root element for all objects in the respective
state space. E.g., for each application, such as Audio or Navi, a separate screen
object is instantiated. As illustrated in Figure 1, the standard screen class pro-
vides three menu lines with horizontal orientation (Application Line, Playfield,
Subfunction Line), which again are contained in the menu object content. The
screen passes the user events through to the respective menus.

The state chart functions as main application. It consists of programming
code that constructs the state machine object and a hierarchical graphical chart.
Within the constructor, all necessary button, menu and screen objects are in-
stantiated. These objects can then be used within the graphical part. An excerpt
of the chart is shown in Figure 3. For modeling, the basic state chart elements
are available. In our approach, we additionally distinguish between view states
that refer to screen objects, and condition states that are used to evaluate system
conditions. On the lowest level of the charts there are solely view states.

With the presented approach, we modeled parts of the audio application of the
latest Mercedes Benz infotainment system (NTG4.5 High Edition) that provides
the functionality to play music that is stored on connected media as well as
to listen to radio. We assumed a fully equipped setup, including all available
media types (HDD, audio and video DVD, AUX, etc.) and radio wavebands

Towards a GUI Test Model 275

Fig. 3. The “Action” keyword of State Chart elements might refer to coded objects

(FM, LW, MW, DAB, etc.). We instantiated 15 screen, 57 menu and 138 button
objects. As stated in Section 1, the testing goal is to set the system conditions to
focus each button object at least once. To guide the test case generation, we
use checkpoints in code and in the state charts. Hence, we added a checkpoint
to the onEnter() method of the Button class to ensure that this method will
be executed in every Button instance. The generator provided functionality to
determine the necessary user interactions. To cover this state space, we had to
declare 38 conditions. 26 test cases with a total of 616 test steps have been
generated to fulfill the testing goal.

4 Discussion and Conclusion

In this paper, we present ongoing work on model-based black-box testing of
graphical user interfaces in the domain of in-vehicle infotainment systems. We
discussed basic challenges of manual model development and maintenance and
pointed out that model complexity is originated in (a) the dependency of be-
havior on data and (b) the redundancy of logic. To address those complexity
drivers we stress the need for modularly structured test models. Due to the con-
text, manual model development is required. We developed a model structure
that combines the strength of state charts to depict macro behavior with object
oriented programming to allow complex data processing and modular reusability.

We developed a model to cover the audio application of a state-of-the-art in-
fotainment system at Mercedes Benz. The disadvantageous redundancy could be
handled successfully: general interaction concepts, such as the focus based nav-
igation or list based screen structures, are described and maintained centrally;
manual modeling was easy and allowed a satisfiable progress. The approach was
stable regarding changes and allowed model-wide adaption of selective behavior.
Due to the inheritance of object-oriented structures, several abstraction lev-
els could be utilized: general Entries had been specialized to clickable Buttons,
which again, if necessary for testing purposes, could be basis for more complex
structures, such as Radio Buttons or Checkboxes. By doing so, details could be
reduced to a level that could be handled manually. We successfully generated test
cases using the proprietary generator “Conformiq Designer”. As testing goal, we
chose to focus every Button object at least once. The state charts were useful to
retrace the generated test cases.

276 D. Mauser, A. Klaus, and K. Holl

According to our experiences, the mixed approach appears to be appropriate:
describing the entire behavior graphically would not have been feasible. An ex-
clusively coded model would have been confusing and thus as error-prone as the
real implementation. In future, we plan to advance the approach to automate
the testing process. Next step will be to use the generated test suite as input
for automatic test execution. Special attention will be drawn to the verification
aspect. Due to the model structure, a data based description of all content to
be displayed on screen could be exported at any time. We plan to embed this
information in the test case description to provide an extensive basis to assess
the system reaction, i.e., as test oracle.

References

1. Brooks, P.A., Robinson, B.P., Memon, A.M.: An initial characterization of indus-
trial graphical user interface systems. In: Proceedings of International Conference
on Software Testing Verification and Validation, ICST 2009, pp. 11–20. IEEE Com-
puter Society (2009)

2. Duan, L.: Model-based testing of automotive hmis with consideration for product
variability. Ph.D. dissertation, Ludwig-Maximilians-Universität München (2012)

3. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann Publishers Inc., San Francisco (2007)

4. Banerjee, I., Nguyen, B., Garousi, V., Memon, A.: Graphical user interface (gui)
testing: Systematic mapping and repository. Information and Software Technology
(2013)

5. Morgado, I.C., Paiva, A., Faria, J.P.: Reverse engineering of graphical user inter-
faces. In: The Sixth International Conference on Software Engineering Advances,
ICSEA 2011, pp. 293–298 (2011)

6. Arlt, S., Podelski, A., Bertolini, C., Schäf, M., Banerjee, I., Memon, A.M.:
Lightweight static analysis for gui testing. In: The 23rd IEEE International Sympo-
sium on Software Reliability Engineering, ISSRE 2012, pp. 301–310. IEEE (2012)

7. Hackner, D.R., Memon, A.M.: Test case generator for guitar. In: Schäfer, W.,
Dwyer, M.B., Gruhn, V. (eds.) ICSE Companion, pp. 959–960. ACM (2008)

8. Grandy, H., Benz, S.: Specification based testing of automotive human machine
interfaces. In: Fischer, S., Maehle, E., Reischuk, R. (eds.) GI Jahrestagung. LNI,
vol. 154, pp. 2720–2727. GI (2009)

9. Paiva, A.C., Tillmann, N., Faria, J.C., Vidal, R.F.: Modeling and testing hierar-
chical guis. In: Proceedings of the 12th International Workshop on Abstract State
Machines (2005)

10. Sarma, M., Murthy, P.V.R., Jell, S., Ulrich, A.: Model-based testing in industry: a
case study with two mbt tools. In: Proceedings of the 5th Workshop on Automation
of Software Test, AST 2010, pp. 87–90. ACM, New York (2010)

11. Veanes, M., Campbell, C., Grieskamp, W., Schulte,W., Tillmann, N., Nachmanson,
L.: Model-based testing of object-oriented reactive systems with spec explorer. In:
Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp.
39–76. Springer, Heidelberg (2008)

A Tool for Supporting Developers in Analyzing

the Security of Web-Based Security Protocols�

Giancarlo Pellegrino1,2, Luca Compagna2, and Thomas Morreggia2

1 Eurecom, Sophia-Antipolis
giancarlo.pellegrino@eurecom.fr

2 SAP AG
{giancarlo.pellegrino,luca.compagna}@sap.com,

thomas@morreggia.fr

Abstract. Security protocols are specified in natural language, are
highly-configurable, and may not match the internal requirements of
the development company. As a result, developers may misunderstand
the specifications, may not grasp the security implications of config-
urations, and may deviate from the specifications introducing flaws.
However, none of the existing security testing techniques provides the
features, scalability, and usability to support developers in assessing the
security of protocol configurations and deviations. This paper presents
a tool that leverages on existing design verification and security testing
techniques, and extends them to support developers in analyzing secu-
rity protocols. We used the tool for the analysis of prominent security
protocols (i.e., SAML SSO, OpenID, OAuth2), and of six industrial-size
implementations.

1 Introduction

Security protocols are communication protocols that aim at providing security
guarantees through the application of cryptographic primitives. Security pro-
tocols are at the core of modern business scenarios and enable partners to set
up business environments. However, their specifications and implementations
can be flawed as witnessed by the many vulnerabilities discovered in the past
years [3,4,9,13]. Security protocols are specified in natural language and, as a
consequence, can be misinterpreted by the developers. Moreover, the design of
modern protocols considers the different deployment landscapes (e.g., mobile, or
cloud scenarios). As a result, protocols feature different flows and a wide range
of options. The number of options combinations makes it difficult for develop-
ers to understand the security implications. In addition, the protocol security
recommendations delivered by the standardization bodies may not match the
internal requirements of the software development company. As a result, imple-
mentations may deviate from the specifications and endanger the overall secu-
rity. E.g., the SAML-based SSO for Google Apps until 2008 neglected few, yet
important, message fields that allowed an attacker to impersonate a user and

� This work has been partially supported by the FP7-ICT Project SPaCIoS
(no. 257876).

H. Yenigün, C. Yilmaz, and A. Ulrich (Eds.): ICTSS 2013, LNCS 8254, pp. 277–282, 2013.
c© IFIP International Federation for Information Processing 2013

278 G. Pellegrino, L. Compagna, and T. Morreggia

steal her confidential data [3]. To detect vulnerabilities, researchers have pro-
posed several techniques at the different phases of the software life-cycle. Source
code analysis looks for patterns into the source code or analyzes the data flow
of the user-controlled inputs [10]. Black-box input fuzzers probe implementa-
tions with special values and analyze the output for detecting vulnerabilities [8].
Model checking checks whether the protocol design satisfies a given security
property [4,13] and if not, the returned counterexample is used as a test case
for the testing implementations [6,7,9]. However, none of these techniques pro-
vides the features, scalability, and usability to support developers in assessing
the security of protocol options and deviations.

This paper presents a tool that leverages on existing design verification and
security testing techniques, and extends them to support developers in analyz-
ing the security of security protocols. The tool helps developers, software en-
gineers, and security experts making decisions during the development process
and detecting flaws both during the design and the deployment phases. It in-
tegrates existing verification and testing techniques that are described in other
works [1,6,5] and it does not introduce new testing or verification techniques.
The tool is not a product of SAP and it is not our intention to promote any
other SAP product. The focus of this paper is to present a tool that is the result
of three years of experience in applying cutting-edge security analysis techniques
to industrial-size scenarios. We used the tool for the security analysis of promi-
nent standard security protocols (i.e., SAML SSO, OpenID, and OAuth2) and
of six industrial-size implementations.

Case Study

C IdP SP

1. URI

2. IdP, AReq(ID, . . .)

3. IdP, AReq(ID, . . .)

4. Resp(ID, . . . , {AA}K−1
IdP

)

5. Resp(ID, . . . , {AA}K−1
IdP

)

6. Resource

Fig. 1. SAML SSO SP-initiated flow
without ARP

The SAML [12] SSO is a security pro-
tocol that enables business partner to
authenticate users once and then let
them access their services. The objec-
tive of a client C is to access to a re-
source at a service provider SP. An
identity provider IdP authenticates
C and issues authentication asser-
tions (a signed authentication token).
The protocol ends when SP consumes
the assertions and grants or denies
C the access to the resource. SAML
SSO has two basic flows depending on
whether the user requests the resource
to SP (SP-initiated SSO), or to IdP (IdP-initiated SSO). Both flows can be used
in combination with the Artifact Resolution Protocol (ARP) that allows SAML
messages to be transported by reference rather than by value. In total, SAML
SSO has six protocol flows (ARP can be used at most twice in each basic flow).

Figure 1 shows the SAML SSO SP-initiated without ARP. In step 1, C asks
SP the resource at URI. In step 2, SP redirects C to IdP with the authentication
request AReq(ID, . . .) where ID is uniquely identifying the request. Then SP

A Tool for Supporting Developers in Analyzing the Security 279

stores ID in a table. In step 3, IdP authenticates C, builds the authentication
assertion AA, and signs it with its private key. Then, IdP adds {AA}K−1

IdP
to

Resp and forwards it to SP via C. SP first verifies the signature and then checks
if its table contains ID. Finally, SP delivers the resource to C. At the end of the
protocol run, C and SP are mutually authenticated (goal G1) and the resource
is kept confidential for C (goal G2). The messages 3-4 and 5-6 in Figure 1 are
exchanged over SSL/TLS communication channels.

In this paper we consider only few protocol options1: SP signs AReq, IdP
signs Resp, and use of SSL/TLS in steps 1-2. In addition, developers would like
to assess the security of design decisions. In this paper we consider the following
decisions: SP does not store the ID in steps 1-2, and SP sets an HTTP cookie
at step 2 and check it at step 5.

2 A Security Testing Tool

Our tool is a set of Eclipse plugins implementing existing testing and verification
techniques [1,5,6]. The tool supports the specification of protocol options and
implementation decisions, implements the design verification and model-based
security testing workflows, and supports verification and test campaigns.2

(a) Design verification: The design verification workflow implements the
formal analysis of security protocols via model checking. The process consists
of three steps. First, the user writes the formal model and specify the security
property. Then, the model checker explores the model for violation of the prop-
erty. If a violation is discovered, the model checker returns a counterexample.
Finally, the user inspects the counterexample using graphical viewers.

Our tool implements text editors to write formal models and properties (cur-
rently, it supports ASLan and ASLan++ languages[1]; both languages support
macros for security properties) with features such as syntax highlighting, and
problems highlighting (for syntax and semantic errors). It integrates the SAT-
based Model Checker [2] for the formal verification, and UI components for
displaying counterexamples as message sequence charts.

(b) Configuration and Implementation decisions: Our tool enables the
specification of configuration options and implementation decisions. This is done
through the SPaCIoS navigator. The navigator implements three main function-
alities. First, it allows the specification of single protocol option (or decision) by
means of labels. (A label is a text description and an arbitrary color.) Second, it
allows for the creation of a new model (capturing the option) starting from an
existing one and for marking it with labels. Finally, the navigator keeps track of
all the model generated in a derivation tree in which the roots are the reference
models. The tree and the labels are used later on for the preparation of the
test/verification campaign so to create reports in the form of Figure 4.

1 The other options of the same flow as well as the options of the other five protocol
flows were considered in our analysis, but not shown in this paper.

2 Plugins for the features (a) and (c) are available in the SPaCIoS Tool
(http://www.spacios.eu/platform.php). The remaining features (b) and (d) are
available upon request.

http://www.spacios.eu/platform.php

280 G. Pellegrino, L. Compagna, and T. Morreggia

Figure 2 shows the navigator. The upper part displays the derivation tree in
which each model (i.e., node tree) is associated to labels. A model can have more
than one label. The lower part of the navigator shows the list of labels created
during the analysis. They capture the configuration options of the SAML SSO
standard that we used for supporting the developers at SAP.

Fig. 2. The Navigator

(c) Model-based security testing:
The model-based security testing work-
flow is used for testing implementations
for detecting security flaws. It consists
of five steps. First, the user writes the
model and properties by using the text
editor as explained in the design verifi-
cation workflow. Second, the tool gener-
ates test cases using an external model
checker (a test case is a counterexam-
ple). Third, the user defines the imple-
mentation under test adapter (IUTA).
The IUTA is a data structure containing
the mapping between model symbols and
real values, the protocol participants un-
der test, and a list of message adapters.

Fig. 3. The Test Campaign Manager

IUTAs are created by using the IUTA
editor. Fourth, the test cases are ex-
ecuted against the IUTA and, fi-
nally, the user inspects the results.
Our tool supports HTTP conversa-
tion and message inspection. More-
over, the tool has a built-in web
browser to visualize the content of
HTTP responses.

This workflow implements the tech-
nique devised by Armando et al. [6] in
which the formal model is compiled
into a set of Java program fragments
that are executed in the order of the
abstract test case.

(d) Verification and Test Cam-
paign: A verification campaign is the
verification of several models. Simi-
larly, the test campaign consists of the
executions of several test cases.

Figure 3 shows the editor for the test campaign manager. It displays the list
of test cases generated, and the IUTAs available. The user selects the test cases
and the IUTAs, and she runs the campaign. At the end of the execution, the tool
displays the HTTP conversations for off-line analysis. The result of a campaign is

A Tool for Supporting Developers in Analyzing the Security 281

organized into tables. In addition, the tool logs the results and HTTP messages
of all the test for future inspections.

3 Application to the Case Study Opt. Dec. Res.
SSL Sign

M
ID

fr
o
m

C
-S
P
:A

R
eq

A
R
eq

A
R
es
p

S
P

se
t
co
o
k
ie

S
P

st
o
re
s
ID

G
1

G
2

0fc - n n n n y y n
2fc 0fc y n n n y y n
4fc 2fc y y n n y y n
5fc 4fc y y y n y y n
. . .

6fc 0fc y n n y y n n
. . .

7fc 5fc y y y y n n n
. . .

Fig. 4. Results for the SP-initiated
protocol

Wemodeled the flow of Figure 1 in ASLan++.
For each option and decision, we created a
label with the UI of Figure 2 and derived
a model. We adjusted each new model for
reflecting the option (resp. decision). After-
wards, we created and launched a verification
campaign. Figure 4 shows an excerpt of the re-
sult of the campaign. The table is structured
as follows. Each row is a model with unique
identifier MID. The column from is a pointer
to the model from which MID has been de-
rived. The remaining columns are grouped by
Opt, Dec, and Res respectively for options,
decisions and results. We use y when the op-
tion (resp. decision) is used or when the model
checker found a violation; we use n otherwise.
For example, the model 2fc derives from 0fc
(depicted in Figure 1) by adding the SSL/TLS
channel in steps 1-2.

Figure 4 shows the following results. First, the protocol suffers from a flaw
in which G1 is not satisfied. Second, the protocol options are not sufficient for
fixing the flaw. Third, the use of cookies solves the vulnerability. Fourth, the
two implementation decisions do not endanger the security with respect to the
properties G1 and G2. Finally, the security goal G2 is always reached.

Developers can use the results of Figure 4 to make decisions about the de-
sign and the implementations. For example, in security-sensitive scenarios, they
may enforce the use of cookie and avoid storing the ID as a Denial-of-Service
countermeasure.

The counterexamples returned by the model checker are used as test cases
for probing the implementations. For example, we used the counterexample of
0fc to test SAML-based SSO for Google Apps and SimpleSAMLphp as reported
by Armando et al. [4]. The former implements the configuration of 0fc while
the latter 6fc. The test against SAML-based SSO for Google Apps succeeded
proving that also the implementation suffers from the flaw [4]. The test against
SimpleSAMLphp failed due to the use of the cookie [4]. We applied the same
approach on the OpenID protocol and its implementations. The tests detected a
flaw in both the specifications and implementations (Zoho Invoice with Google
OpenID or Yahoo OpenID). In addition, we used the tool at SAP to assist
developers during the development of the NGSSO and OAuth2. In the former,
we analyzed all the six SAML SSO flows considering in total 15 protocol options,

282 G. Pellegrino, L. Compagna, and T. Morreggia

and seven implementation decisions. In total we verified 85 formal models. In
the latter, we considered so far one protocol flow and seven protocol options.

4 Future Work and Conclusion

We plan to support other modeling languages more suitable for developers, e.g.,
the Alice-and-Bob notation [11] or UML sequence diagrams. In addition, we
plan to integrate inference techniques for creating models from traces [9] and to
integrate other test case generation techniques [7]. In conclusion, we presented a
model-driven security analysis and testing tool. It supports the evaluation of the
impact of implementation decisions and protocol configurations. The tool was
used for the security analysis of SAML SSO, OpenID, and OAuth2, and of six
industrial-size protocol implementations.

References
1. Armando, A., et al.: The AVANTSSAR Platform for the Automated Validation

of Trust and Security of SOA. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 267–282. Springer, Heidelberg (2012)

2. Armando, A., Carbone, R., Compagna, L.: Ltl model checking for security proto-
cols. In: 20th IEEE CSF 2007 (July 2007)

3. Armando, A., Carbone, R., Compagna, L., Cuellar, J., Abad, L.T.: Formal Analysis
of SAML 2.0 Web Browser Single Sign-On: Breaking the SAML-based Single Sign-
On for Google Apps. In: Proc. of ACM FMSE 2008 (2008)

4. Armando, A., Carbone, R., Compagna, L., Cuéllar, J., Pellegrino, G., Sorniotti,
A.: An authentication flaw in browser-based single sign-on protocols: Impact and
remediations. Computers and Security 33 (2013)

5. Armando, A., Carbone, R., Compagna, L., Pellegrino, G.: Automatic security anal-
ysis of SAML-based single sign-on protocols. In: Digital Identity and Access Man-
agement: Technologies and Framework, ch. 10 (2011)

6. Armando, A., Pellegrino, G., Carbone, R., Merlo, A., Balzarotti, D.: From model-
checking to automated testing of security protocols: Bridging the gap. In: Brucker,
A.D., Julliand, J. (eds.) TAP 2012. LNCS, vol. 7305, pp. 3–18. Springer, Heidelberg
(2012)

7. Büchler, M., Oudinet, J., Pretschner, A.: Semi-automatic security testing of web
applications from a secure model. In: SERE 2012 (2012)

8. Doupé, A., Cova, M., Vigna, G.: Why johnny can’t pentest: An analysis of black-
box web vulnerability scanners. In: Kreibich, C., Jahnke, M. (eds.) DIMVA 2010.
LNCS, vol. 6201, pp. 111–131. Springer, Heidelberg (2010)

9. Guangdong, B., Guozhu, M., Jike, L., Sai, S.V., Prateek, S., Jun, S., Yang, L.,
Jinsong, D.: Authscan: Automatic extraction of web authentication protocols from
implementations

10. Jovanovic, N., Krügel, C., Kirda, E.: Pixy: A static analysis tool for detecting web
application vulnerabilities (short paper). In: IEEE Symposium on Security and
Privacy, pp. 258–263. IEEE Computer Society (2006)

11. Mödersheim, S., Viganò, L.: The open-source fixed-point model checker for sym-
bolic analysis of security protocols. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.)
FOSAD 2009. LNCS, vol. 5705, pp. 166–194. Springer, Heidelberg (2009)

12. OASIS Consortium. Security Assertion Markup Language V2.0 Tech. Overview
(March 2008), http://wiki.oasis-open.org/security/Saml2TechOverview

13. Shmatikov, V., Mitchell, J.C.: Finite-state analysis of two contract signing proto-
cols. Theoretical Computer Science 283(2), 419–450 (2002)

http://wiki.oasis-open.org/security/Saml2TechOverview

Finding Errors in Python Programs

Using Dynamic Symbolic Execution

Samir Sapra1, Marius Minea2, Sagar Chaki1, Arie Gurfinkel1,
and Edmund M. Clarke1

1 Carnegie Mellon University, Pittsburgh, PA, USA�

2 Politehnica University of Timis,oara, Romania

Abstract. For statically typed languages, dynamic symbolic execution
(also called concolic testing) is a mature approach to automated test
generation. However, extending it to dynamic languages presents sev-
eral challenges. Complex semantics, fragmented and incomplete type in-
formation, and calls to foreign functions lacking precise models make
symbolic execution difficult. We propose a symbolic execution approach
that mixes concrete and symbolic values and incrementally solves path
constraints in search for alternate executions by lazily instantiating ax-
iomatizations for called functions as needed. We present the symbolic
execution model underlying this approach and illustrate the workings of
our prototype concolic testing tool on an actual Python software package.

1 Introduction

Dynamic symbolic execution (DSE) has been very successful for generating tests
and finding errors. It accumulates path constraints over symbolic inputs rather
than executing with concrete values. Java Pathfinder [5], Pex [7], or KLEE [2] try
all possible program paths, using full symbolic models also for environment inter-
actions. Concolic testing, a variant used in DART [3], CUTE [6] and Crest [1],
generates symbolic constraints guided by concrete executions, and then modi-
fies them to explore alternate paths. Approximating some execution fragments
through concretization proves useful even in the absence of complete models.

� This material is based upon work funded and supported by the Department of De-
fense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for
the operation of the Software Engineering Institute, a federally funded research
and development center. NO WARRANTY. THIS CARNEGIE MELLON UNI-
VERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FUR-
NISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES
NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS
TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RE-
SULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT. This material has been approved for public release and unlimited
distribution. DM-0000479.

H. Yenigün, C. Yilmaz, and A. Ulrich (Eds.): ICTSS 2013, LNCS 8254, pp. 283–289, 2013.
© IFIP International Federation for Information Processing 2013

284 S. Sapra et al.

Compared to existing work in the context of static typing, symbolic execution
for Python as dynamically typed language raises a series of new challenges:

i) The language complexity makes symbolic execution difficult: First, a more
complex theory is needed to express path conditions precisely. Python objects
have dictionaries of attributes and hence one needs to handle strings and maps.
Dictionary keys can be added dynamically and can be arbitrary hashables, not
just integers or strings. A variety of runtime errors and exceptions related to
dynamic features are handled in different ways.
Moreover, Python is often used to glue together components in other languages,
for which we may not have models. Library functions are often in native code,
thus values become concretized during execution and can no longer be tracked
symbolically. This work avoids the cost and complexity of eager full symbolic
execution by using path constraints that mix concrete and symbolic values. These
constraints are solved incrementally in a search for satisfying program inputs,
lazily instantiating axiomatized models of executed functions as they are needed.

ii) Type information for objects is incomplete and fragmented. Type constraints
are implicitly accumulated from successful runtime checks (objects must have
the accessed attributes, be iterable, callable, etc.). An object’s type may not
be completely known: x[1] could be indexing a list, tuple, string, dictionary,
or user-defined type. This complicates formalizing and tracking type constraints
and also means a program can hide many more bugs. Since many conditions can
be flipped to explore alternate types and program paths, it is crucial to steer
this search efficiently and avoid exploring uninteresting execution paths. This
work selects relevant conditions based on data dependencies, and uses the solver
output (unsatisfiable core) to direct the choice of alternate paths.

A Motivating Example. Version 0.93 of dnuos (https://bitheap.org/dnuos/)
– which creates collections of audio files – crashes on an empty directory. The bug
is in function uniq (line 2 in Fig. 1) – accessing a list without a non-emptiness
check. A faulty run has uniq called from types (l. 7) on a list created with map

(l. 6) from method streams, which filters (l. 10) a list returned by children. The
latter iterates (l. 13) over a list produced by os.listdir for the input pathname.

The challenges are: (i) to detect such errors automatically, i.e., finding a buggy
path starting from a successful run (here, on a non-empty directory); and (ii)
applying DSE in coverage mode to detect as many errors as possible.

We first describe in Sec. 2 the architecture of our concolic testing engine and
the systematic search for alternate execution paths by lazily instantiating the
needed constraints. Sec. 3 then briefly illustrates key aspects of i) the formalism
used to represent Python path conditions, ii) the symbolic bytecode semantics,
and iii) the axiomatization of library functions. Finally in Sec. 4, we show how
these are tied together in our prototype CutiePy by revisiting the above example.

2 An Architecture for Concolic Testing

Dynamic symbolic execution is driven by a concrete execution with some initial
inputs. A symbolic execution engine is run in lockstep, working with symbolic

https://bitheap.org/dnuos/

Finding Errors in Python Programs Using Dynamic Symbolic Execution 285

1 def uniq(list):
2 list [0] = [list [0]]
3 return reduce(lambda A,x: x in A and A or A+[x], list)
4 def types(self):
5 if self._types != None: return self._types
6 types = map(lambda x: x.type(), self.streams ())
7 self._types = uniq(types)
8 def streams(self):
9 ...

10 list = filter(_is_audio_file , self.children ())
11 def children(self):
12 if self._children: return self._children
13 self._children = map(lambda x: os.path.join(self.path ,x),
14 os.listdir(self.path))
15 return self._children

Fig. 1. Code fragments from dnuos for processing a list of audio files

constraints over program variables, rather than concrete values. Given formal
semantics for every instruction, these constraints can be accumulated in a path
condition, which includes all branch conditions taken on the path, and charac-
terizes all inputs for which the program will take the same path. To explore a
new path, a branch condition is flipped and, together with the path condition
leading to it, is passed to a solver which returns inputs to exercise the new path.

Our symbolic execution framework is distinguished by how constraints are
expressed and collected for each instruction, and how branches are flipped. We
describe the former in Sec. 3, including what to do when fully symbolic execution
is not feasible. Here we outline how to find new executions (Algorithm 1).

A path condition is a list of clauses that are either definitions or conditions.
Definitions have the form v = f(s1, . . . , sk) with v a variable and si constants
or variables. Conditions can be explicit (program branch or loop conditions) or
implicit, denoting statement execution without error (e.g., predicates hasattr,
iscallable, isiterable). Program and library functions can be interpreted (fully
formalized, cf. Sec. 3) or uninterpreted, if there is no complete model for them.

Given a path condition, the dependence set Dep(C) of a clause is defined as:
– for a condition, Dep(C) is the set of clauses that share variables with C.
– for a definition v=f(s1, . . . , sk), Dep(C) is the set of all conditions that contain
variables from C, plus any definitions of variables in the right-hand side of C.

Algorithm 1. Selection of alternate execution paths

1: function flip([r1, r2, . . . , rk],flipped)
2: Φ← flipped ∪Dep+(flipped)
3: while sat(Φ) do
4: if FV (Φ) ⊆ I then return sat assignment
5: else strengthen Φ with lemmas for FV (Φ) \ I
6: u← max{i | i ≤ k ∧ ri ∈ unsat core(Φ)}
7: for rj is explicit condition, j = u downto 1 do
8: if (Inputs = flip([r1, r2, . . . rj−1],¬rj)) �= ∅ then return Inputs
9: return ∅ (* failed *)

286 S. Sapra et al.

Define Dep+(C) transitively as the smallest set such that Dep(C) ⊆ Dep+(C)
and if C′ ∈ Dep+(C) is an interpreted clause, then Dep(C′) ⊆ Dep+(C).

Let I be the set of program inputs and FV (C) be the set of variables in the
set of clauses C that do not appear on the left-hand side of a definition.

Starting from a condition to be flipped, the algorithm propagates relevant
constraints (obtained in l. 2) to program inputs. A key point is that uninter-
preted functions are instantiated with lemmas (l. 5) lazily and incrementally.
Thus we do not need an eager fully symbolic execution and can accommodate
concretization, e.g., due to library functions, when collecting the path condition.
Symbolic constraints for these functions are re-introduced to the extent needed.
If no inputs are found for the chosen path, we flip the last condition affecting
the unsatisfiable core, attempting to preserve the longest possible prefix of the
given execution, and the process is repeated. To generate maximal test coverage
rather than force a specific path, conditions are simply flipped one by one. In
particular, flipping implicit conditions (hasattr, isiterable) can find type errors.

3 A Symbolic Execution Model for Python

We briefly present the key points of a theory for expressing symbolic constraints
from Python program executions. We describe the sorts and functions used, and
give examples of bytecode semantics and axioms for Python library functions.

Sorts: We use the standard sorts Bool and Int, and an uninterpreted ObjectSort
for Python objects. Since Python types are also objects, we define a sub-sort
PyType of ObjectSort and constants for Python predefined types (PyBool, PyInt,
PyNoneType, PyTuple, PyList, PyListiterator, PyDict) etc. For this prototype we
do not distinguish plain from long integers, and do not handle floating point.

Functions and predicates that model properties of Python objects include:

- id : ObjectSort→ Int provides each object with a unique identity

- typeof : ObjectSort→ PyType gives the type of an object

- hasattrname : ObjectSort→ Bool if an object has an attribute called name

- iscallable : ObjectSort→ Bool to check for a function or method

- isiterable : ObjectSort→ Bool if object is array, dictionary, list, string, tuple

We also introduce several partial functions; they are used together with the
corresponding conditions for the functions being defined:

- intof : ObjectSort→ Int maps an integer object (type PyInt) to its value

- iterof : ObjectSort→ ObjectSort makes an iterator from an isiterable object

The theory should be decidable and allow reasoning about objects whose types
are being lazily discovered. We translate formulae expressed in this theory into
linear integer arithmetic with uninterpreted functions and arrays (AUFLIA) over
uninterpreted sorts and algebraic datatypes.

Axioms are encoded as universal sentences in an SMT solver (Z3 [4]). They
are similar but distinct from the axiomatizations we introduce as partial inter-
pretations of libraries or non-core language features. As example, we show an

Finding Errors in Python Programs Using Dynamic Symbolic Execution 287

axiom for list.append, which returns None and mutates its first argument, as
expressed using the function Store from the AUFLIA theory.

∀r, newL, oldL, v : ObjectSort . typeof oldL = PyList ⇒
(newL, r) = LIST APPEND (oldL, v)⇒ r = PyNone ∧ typeof newL = PyList

∧ lenof newL = lenof oldL + 1 ∧ seqof newL = Store(seqof oldL, lenof oldL, v)

Concolic execution semantics: Our implementation uses the sys.settrace()
API and a custom build of the CPython interpreter. Symbolic execution is done
in lockstep with the concrete Python interpreter, which at the bytecode level
operates as a stack machine. A (single-threaded) running program corresponds
to a stack of frames, each representing some executing function called by the
parent frame. Let S denote a frame’s associated valuestack of object references o.
Name binding and variable lookup in a frame is done using its locals, globals,
and builtins dictionaries; here we assume only a locals context called C.

Symbolic semantics are defined for each bytecode instruction, reflecting de-
cisions such as whether to symbolically model or concretize various operations.
The symbolic valuestack Σ of an execution frame may contain both symbolic
expressions e and concrete object references o (in case of concretization); any
concrete entries agree with the concrete valuestack. The symbolic context Γ is
a mapping from strings (variable names) to symbolic expressions.

We present as example two rules for the symbolic semantics of BINARY SUBSCR:

C, o ::o′ ::S → C, o′′ ::S e′ symbolic
typeof(o′) == PyList o non-negative

Γ, e ::e′ ::Σ ⇒ Γ, Select (e′, e) ::Σ
assert typeof e=PyInt ∧ typeof e′=PyList
∧ hasattr getitem e′ ∧ lenof e′ ≥ e+ 1

C, o ::o′ ::S → C, o′′::S e′ symbolic

Γ, e ::e′ ::Σ ⇒ Γ, o′′::Σ
assert hasattr getitem e′

Both rules track the indexed collection e′ symbolically. In rule 1, o′ has the
actual type PyList, and successful execution implies that o is an integer, which
allows us to derive size constraints and track the result of subscripting symboli-
cally. In rule 2, we assert (append to the path condition) the only constraint we
learn, hasattr getitem e′, and we push the concrete result o′′ = o′[o], onto Σ.

Concretization when calling functions that lack models (e.g., native code) is
one of the main obstacles to building symbolic path conditions. On return from
such a function, we re-introduce a symbolic variable for the result. This helps
track data flow in spite of concretization. Treating the function as uninterpreted
also allows us to lazily ignore conditions which are irrelevant for the testing goal.

For mutable objects, we exploit the Python bytecode interpreter to intro-
duce the additional indirection needed to update referrers. For dictionaries, we
model only fields that are updated with symbolic values. In both cases, we limit
symbolic modeling to items that are strictly needed.

4 Case Study and Conclusions

We explain a run of our tool CutiePy on the example of Fig. 1. The unit test exe-
cutes the call audiodir.Dir(i_filename).types() on input i_filename="./dummy",

288 S. Sapra et al.

in an environment where the directory ./dummy contains a single, valid music file.
CutiePy produces a path condition with ∼ 400 constraints (after instantiating
partial interpretations). Of particular interest is generating a test that exercises
the unchecked list access on line 2, which is compiled to bytecode BINARY SUBSCR.

Since that list is produced by the built-in function map (Fig. 1, l. 6) written in
C, we need a partial interpretation to reason about it. To achieve this, CutiePy
replaces the standard map with a workable model given by the Python function:
audiodir.__builtins__["map"] = lambda f,L: [f(x) for x in L]. Such models
are inserted up-front and are present at what we designate as the ‘first’ call to
flip. Thus, the path condition fragment Φ sent to Z3 by flip at line 3 is:

p385 == Not(lenof(v148) >= 1) flipped constraint
p384 == (typeof(v148) == PyList)

p377 == (v141, v148) == LIST APPEND(v143, v147) call to APPEND

p364 == (lenof(v143) == 0) execution of map model
p363 == (typeof(v143) == PyList) v143 empty initial list

Combined with the APPEND axiom of Sec. 3, Z3 finds these clauses inconsistent
(unsatisfiable core: [p385,p377,p364,p363]). To break the unsat core, keeping a
maximal execution prefix, lines 6–7 identify the condition Not(exhausted(v144))

as candidate for flipped . Intuitively, we want to flip the branch just prior to
list.append (which contradicts our goal of a zero-length list). CutiePy has rea-
soned about l. 6 in Fig. 1 at bytecode level, concluding that map must return a
list whose iterator (v144) will be immediately exhausted, i.e., an empty list.

In two more recursive calls, flip propagates constraints to primary inputs, but
not with the intended bug-revealing trace. In the first call, line 7 of flip identifies
rj = (exhausted (nexted once v29)) as the next candidate for flipped . CutiePy
has determined through bytecode-level reasoning that list should have ≥ 2
elements. In the next recursive call to flip, Dep+ finally reaches constraints on
the primary input i_filename, pending models for os.path.join and os.listdir.
Here Φ is found unsat, and in line 7 rj=ru = Not(exhausted(v29)); however, by
this point execution has already diverged from our intended one.

When the right rj is picked in line 7, CutiePy will discover the bug in uniq:
exhausted(v144) requires filter returning an empty list (again an immediately
exhausted iterator), which in turn necessitates map returning an empty list in
l. 13, which via a partial axiomatization of os.path.listdir and appropriately set
up environment leads to the new primary input i_filename="./emptydirectory".

When forcing execution to a particular point, flipping the right conditions
impacts efficiency. A promising heuristic is to focus on loop conditions.

Our initial experiments have shown that for the dynamic features of Python
a key challenge is tracking the right amount of symbolic information during
execution. We show how to do this by lazily constructing and solving constraints,
and using complete or partial axiomatizations of library functions as needed.
Further evaluation will provide insight into the amount and types of bugs that
can be automatically found, and how to tune the framework to effectively and
efficiently zoom in on the most representative and relevant errors.

Finding Errors in Python Programs Using Dynamic Symbolic Execution 289

References

1. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. In: 23rd Inter-
national Conference on Automated Software Engineering, pp. 443–446. ACM (2008)

2. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In: 8th OSDI. USENIX (2008)

3. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Programming Language Design and Implementation, pp. 213–223. ACM (2005)

4. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

5. Păsăreanu, C.S., Rungta, N., Visser, W.: Symbolic execution with mixed concrete-
symbolic solving. In: 20th ISSTA, pp. 34–44. ACM (2011)

6. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
10th ESEC/13th SIGSOFT FSE, pp. 263–272. ACM (2005)

7. Tillmann, N., de Halleux, J.: Pex–white box test generation for.NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008)

Author Index

Abreu, Rui 239

Badri, Linda 114
Badri, Mourad 114

Castro, Mário Ventura de 180
Chaki, Sagar 283
Clarke, Edmund M. 283
Compagna, Luca 277

David, Alexandre 65

El-Fakih, Khaled 33
Elyasov, Alexander 223
Enoiu, Eduard Paul 1

Faria, João Pascoal 180
Feng, Lei 164
Flageol, William 114

Gaston, Christophe 82
Guo, Hai-Feng 17
Gurfinkel, Arie 283
Güttinger, Dennis 149

Haar, Stefan 98
Hage, Jurriaan 223
Hierons, Robert M. 82
Holl, Konstantin 271
Huang, Wen-ling 49

Ibing, Andreas 196

Klaus, Alexander 271
Koca, Feyzullah 239
Kozyura, Vitaly 149
Kremer, Dominik 149
Krishnan, Padmanabhan 255
Kroening, Daniel 133
Kushik, Natalia 33

Larsen, Kim G. 65
Le Gall, Pascale 82
Longuet, Delphine 98
Lundmark, Simon 164

Mauser, Daniel 271
Meinke, Karl 164
Melham, Tom 133
Mikučionis, Marius 65
Minea, Marius 283
Morreggia, Thomas 277

Nguena Timo, Omer L. 65
Niu, Fei 164

Paiva, Ana C.R. 180
Peleska, Jan 49
Pellegrino, Giancarlo 277
Pettersson, Paul 1
Peyton, Liam 207
Ponce de León, Hernán 98
Prasetya, I.S. Wishnu B. 223

Qiu, Zongyan 17

Rollet, Antoine 65

Sapra, Samir 283
Schrammel, Peter 133
Sindhu, Muddassar A. 164
Sözer, Hasan 239
Stepien, Bernard 207
Stocks, Phil 255
Sundmark, Daniel 1

Vorobyov, Kostyantyn 255

Wieczorek, Sebastian 149
Wong, Peter Y.H. 164

Yevtushenko, Nina 33

	Preface
	Organization
	Table of Contents
	Model-Based Testing
	Using Logic Coverageto Improve Testing Function Block Diagrams
	1 Introduction
	2 Preliminaries
	2.1 FBD Programs and Timer Components
	2.2 Networks of Timed Automata
	2.3 Logic-Based Coverage Criteria

	3 Testing Methodology and Proposed Solutions
	4 Function Block Diagram Component Model
	5 Transforming Function Block Diagrams into Timed Automata
	6 Test Case Generation Using the UPPAAL Model-Checker
	7 Logic Coverage Criteria for Function Block Diagrams
	8 Example: Train Startup Mode
	8.1 Experiments
	8.2 Logic Coverage and Timing Components

	9 Related Work
	10 Conclusion
	References

	Automatic Grammar-Based Test Generation
	1 Introduction
	2 Grammar-Based Test Generation
	2.1 Symbolic Terminal
	2.2 A Penalty Maze

	3 A Dynamic Stochastic Approach
	3.1 A Tabling Strategy
	3.2 A Coverage Tree
	3.3 Algorithms
	3.4 Termination

	4 Gena – A Java Implementation
	4.1 Implicit ControlMechanisms
	4.2 Structural Test Case Requirements

	5 Experimental Results
	5.1 Balance Results
	5.2 A Grading System

	6 Conclusions
	References

	Adaptive Homing and Distinguishing Experiments for Nondeterministic Finite State Machines
	1 Introduction
	2 Preliminaries
	3 Homing and Distinguishing Test Cases
	4 Deriving Homing and Distinguishing Test Cases
	5 Conclusion
	References

	Exhaustive Model-Based EquivalenceClass Testing
	1 Introduction
	2 Reactive Kripke Structures
	2.1 Notation and Definitions
	2.2 Quiescent Reduction
	2.3 Traces
	2.4 I/O Equivalence

	3 Input Equivalence Class Partitionings over Reactive Kripke Structures with Finite Outputs
	4 Test Hypotheses and Proof of Exhaustiveness
	5 Test Strategy
	5.1 Application of the W-Method
	5.2 Complexity Considerations
	5.3 Summary of SUT-Related Estimates

	6 Related Work
	7 Conclusion and Future Work
	References

	Testing Timed and Concurrent Systems
	Remote Testing of Timed Specifications
	1 Introduction
	2 Thetioco-Based Testing Theory
	2.1 Input/Output Timed Transition Systems (IOTTS)
	2.2 Timed Input/Output Automata (TIOA)
	2.3 The Relation

	3 Introduction to Remote Testing and Challenges
	3.1 Remote Testing Challenges
	3.2 Testing with Asynchronous Traces

	4 Input/Output Interleaving and
	Testability Criterion
	4.1 Local Timed Traces and Action-Interleaving in Asynchronous Timed Traces
	4.2 Testable TIOA

	5 Remote Testing Framework with Uppaal-TIGA
	6 Light Controller Example
	7 Conclusion
	References

	An Implementation Relation andTest Framework for Timed Distributed Systems
	1 Introduction
	2 Preliminaries
	3 Timed Input Output Transition Systems
	4 Specifications of Timed Distributed Systems
	5 Testing Framework
	5.1 A Conformance Relation for Timed Distributed Systems
	5.2 TIOSTSs as Symbolic Denotation of TIOSTs
	5.3 Example

	6 Implementing Distributed Timed Testing
	6.1 Architecture
	6.2 Process
	6.3 Observational Multitrace Checking

	7 Conclusions
	References

	Unfolding-Based Test Selection for Concurrent Conformance
	1 I/O Petri Nets and Their Semantics
	2 Testing Framework for IOPNs
	3 Complete Test Suites
	4 Coverage Criteria for Labeled Event Structures
	5 Conclusion and Future Work
	References

	Test Suite Selection and Effort Estimation
	Predicting the Size of Test Suites from Use Cases: An Empirical Exploration
	1 Introduction
	2 Related Work
	3 Use Case Metrics
	4 Test Suite Metrics
	5 An Experimental Evaluation
	5.1 Selected Case Studies
	5.2 Correlation Analysis
	5.3 Use Cases Ranking
	5.4 Evaluating the Effect of Use Case Metrics on the Size of Test Suites
	5.5 Threats to Validity

	6 Conclusions and Future Work
	References

	Chaining Test Casesfor Reactive System Testing
	1 Introduction
	2 Preliminaries
	3 Chaining Test Cases
	3.1 Abstraction: Property K-Reachability Graph
	3.2 Optimisation: Shortest Path Computation
	3.3 Concretisation: Computing the Test Case Chain
	3.4 Optimality

	4 Generalisations
	4.1 Multi-state Property Triggers
	4.2 Ensuring Completeness

	5 Test-Case Generation with Bounded Model Checking
	6 Experimental Evaluation
	7 Related Work
	8 Summary and Prospects
	References

	Variations over Test Suite Reduction
	1 Introduction
	2 Test Suite Reduction
	2.1 Greedy Algorithm
	2.2 Branch and Bound – Algorithm

	3 Test Case Distribution
	3.1 Industrial Relevance
	3.2 Formalization
	3.3 Lexicographical Approaches
	3.4 Multi-objective Greedy Approach

	4 Experimental Results
	4.1 Greedy Based Approaches
	4.2 Branch and Bound Based Approaches
	4.3 Comparison of Results

	5 Conclusion
	References

	Tools and Languages
	Case Studies in Learning-Based Testing
	1 Introduction
	2 Related Work
	3 Requirements Testing with LBTest
	3.1 PLTL as a Requirements Modeling Language

	4 Case Studies in Learning-Based Testing
	4.1 Case Study 1: Access Server
	4.2 Case Study 2: Brake-by-Wire
	4.3 Case Study 3: triReduce

	5 Conclusions and Future Work
	References

	Techniques and Toolset for Conformance Testing against UML Sequence Diagrams*
	1 Introduction
	2 Approach and Toolset Overview
	3 Test-Ready Sequence Diagrams
	4 Test Code Generation and Test Results Visualization
	5 Techniques for Incremental Conformance Checking
	6 Techniques for Execution Tracing and Manipulation
	7 Case Study
	8 Related Work
	9 Conclusions and Future Work
	References

	Parallel SMT-Constrained Symbolic Executionfor Eclipse CDT/Codan
	1 Introduction
	2 Architecture and Design
	2.1 Trade-offs in Memory, Computation, Communication and Parallelism
	2.2 Design Decisions
	2.3 Main Classes
	2.4 Communication and Synchronization
	2.5 Visualization

	3 Evaluation
	4 Discussion
	References

	Challenges of Testing Periodic Messages in Avionics Systems Using TTCN-3
	1 Introduction
	2 Background
	3 Periodic Messages and the TTCN-3 Model
	3.1 Differences between Discrete and Periodic Message Systems
	3.2 Proposed Changes to the TTCN-3 Language

	4 Test Certification Using the TTCN-3 Matching Mechanism
	5 Verifying Requirements Using TTCN-3
	5.1 Defining Verification of Requirements
	5.2 Implementation Details
	5.3 Recommended Change to the TTCN-3 Standard

	6 Conclusions
	References

	Debugging
	Guided Algebraic Specification Miningfor Failure Simplification
	1 Introduction
	2 Motivating Example
	3 Formal Reduction Theory
	3.1 Log and Event Trace Equivalence
	3.2 Rewriting Patterns
	3.3 Reduction Strategy

	4 Implementation
	5 Empirical Validation
	5.1 Inference Results
	5.2 Reduction Results

	6 Related Work
	6.1 Mining Properties from Logs
	6.2 Log Reduction

	7 Conclusion and Future Work
	References

	Spectrum-Based Fault Localizationfor Diagnosing Concurrency Faults
	1 Introduction
	2 Background: Spectrum-Based Fault Localization
	3 Motivating Example
	4 The Approach
	4.1 Step I. Code Instrumentation
	4.2 Step II. Test Case Execution
	4.3 Step III. Spectra Analysis

	5 Industrial Case Studies and Evaluation
	5.1 Performance and Scalability
	5.2 Assumptions and Threats to Validity

	6 Related Work
	7 Conclusion and Future Work
	References

	A Dynamic Approachto Locating Memory Leaks
	1 Introduction
	2 Syntax and Memory Semantics
	2.1 Operational Semantics

	3 Memory Leak Detection
	3.1 Syntactic Transformations
	3.2 Application on C Programs

	4 Results
	4.1 Threats to Validity

	5 Related Work
	6 Conclusions
	References

	Short Contributions
	Towards a GUI Test ModelUsing State Charts and Programming Code
	1 Introduction
	2 Related Work
	3 Model Structure
	4 Discussion and Conclusion
	References

	A Tool for Supporting Developers in Analyzingthe Security of Web-Based Security Protocols
	1 Introduction
	2 ASecurityTestingTool
	3 Application to the Case Study
	4 Future Work and Conclusion
	References

	Finding Errors in Python ProgramsUsing Dynamic Symbolic Execution
	1 Introduction
	2 An Architecture for Concolic Testing
	3 A Symbolic Execution Model for Python
	4 Case Study and Conclusions
	References

	Author Index

