
An Abstract, Reusable, and Extensible
Programming Language Design Architecture�

Hassan Aı̈t-Kaci

Université Claude Bernard Lyon 1
Villeurbanne, France

hassan.ait-kaci@univ-lyon1.fr

Abstract. There are a few basic computational concepts that are at the core of all
programming languages. The exact elements making out such a set of concepts
determine (1) the specific nature of the computational services such a language is
designed for, (2) for what users it is intended, and (3) on what devices and in what
environment it is to be used. It is therefore possible to propose a set of basic build-
ing blocks and operations thereon as combination procedures to enable program-
ming software by specifying desired tasks using a tool-box of generic constructs
and meta-operations. Syntax specified through LALR(k) grammar technology
can be enhanced with greater recognizing power thanks to a simple augmentation
of yacc technology. Upon this basis, a set of implementable formal operational
semantics constructs may be simply designed and generated (syntax and seman-
tics) à la carte, by simple combination of its desired features. The work presented
here, and the tools derived from it, may be viewed as a tool box for generating lan-
guage implementations with a desired set of features. It eases the automatic prac-
tical generation of programming language pioneered by Peter Landin’s SECD
Machine. What is overviewed constitutes a practical computational algebra ex-
tending the polymorphically typed λ-Calculus with object/classes and monoid
comprehensions. This paper describes a few of the most salient parts of such a
system, stressing most specifically any innovative features—formal syntax and
semantics. It may be viewed as a high-level tour of a few reusable programming
language design techniques prototyped in the form of a set of composable abstract
machine constructs and operations.1

Keywords: Programming Language Design, Object-Oriented Programming,
Bottom-up Parsing, LALR Parser Generation, Denotational Semantics, Opera-
tional Semantics, λ-Calculus, Polymorphic Types, Static/Dynamic Type Check-
ing/Inference, Declarative Collections, Monoid Comprehensions, Intermediate
Language, Abstract Machines.

This article is dedicated to Peter Buneman, a teacher and a friend—for sharing the fun! With
fond memories of our Penn days and those Friday afternoon seminars in his office . . .

� Thanks to Val Tannen for his patience, Nabil Layaı̈da for his comments, and the anonymous
referee for catching many glitches and giving good advice in general.

1 Some of this material was presented as part of the author’s keynote address at LDTA 2003 [1].

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 112–166, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Abstract, Reusable, and Extensible Programming Language Design Architecture 113

The languages people use to communicate with computers differ in their
intended aptitudes towards either a particular application area, or in a par-
ticular phase of computer use (high level programming, program assem-
bly, job scheduling, etc., . . .). They also differ in physical appearance,
and more important, in logical structure. The question arises, do the id-
iosyncrasies reflect basic logical properties of the situations that are be-
ing catered for? Or are they accidents of history and personal background
that may be obscuring fruitful developments? This question is clearly im-
portant if we are trying to predict or influence language evolution.

To answer it we must think in terms, not of languages, but of families
of languages. That is to say we must systematize their design so that a
new language is a point chosen from a well-mapped space, rather than a
laboriously devised construction.

PETER J. LANDIN—“The Next 700 Programming Languages” [2]

1 Introduction

1.1 Motivation—Programming Language Design?

Today, programming languages are designed more formally than they used to be fifty
years ago. This is thanks to linguistic research that has led to syntactic science (beget-
ting parser technology) and research in the formal semantics of programming constructs
(begetting compiler technology—semantics-preserving translation from human-usable
surface syntax to low-level instruction-based machine language). As in the case of a nat-
ural language, a grammar is used to control the formation of sentences (programs) that
will be understood (interpreted/executed) according to the language’s intended (deno-
tational/operational) semantics. Design based on formal syntax and semantics can thus
be made operational.

Designing a programming language is difficult because it requires being aware of
all the overwhelmingly numerous consequences of the slightest design decision that
may occur anytime during the lexical or syntactical analyses, and the static or dynamic
semantics phases. To this, we must add the potentially high design costs investing in
defining and implementing a new language. These costs affect not only time and effort
of design and development, but also the quality of the end product—viz., performance
and reliability of the language being designed, not to mention how to justify, let alone
guarantee, the correctness of the design’s implementation [3].

Fortunately, there have been design tools to help in the process. So-called meta-
compilers have been used to great benefit to systematize the design and guarantee a
higher quality of language implementation. The “meta” part actually applies to the
lexical and syntactic phases of the language design. Even then, the metasyntactic tools
are often restricted to specific classes of grammars and/or parsing algorithms. Still fewer
propose tools for abstract syntax. Most that do confine the abstract syntax language to
some form of idiosyncratic representation of an attributed tree language with some ad
hoc attribute co-dependence interpretation. Even rarer are language design systems that
propose abstract and reusable components in the form of expressions of a formal typed

114 H. Aı̈t-Kaci

kernel calculus. It is such a system that this work proposes; it gives an essential overview
of its design principle and the sort of services it has been designed to render.

This document describes the design of an abstract, reusable, and extensible, pro-
gramming language architecture and its implementation in Java. What is described
represents a generic basis insofar as these abstract and reusable constructs, and any
well-typed compositions thereof, may be instantiated in various modular language con-
figurations. It also offers a practical discipline for extending the framework with ad-
ditional building blocks for new language features as per need. The first facet was the
elaboration of Jacc, an advanced system for syntax-directed compiler generation ex-
tending yacc technology [4].2 A second facet was the design of a well-typed set of
abstract-machine constructs complete enough to represent higher-order functional pro-
gramming in the form of an object-oriented λ-Calculus, extended with monoid compre-
hensions [5,6,7,8]. A third facet could be the integration of logic-relational (from Logic
Programming) and object-relational (from Database Programming) enabling LIFE-
technology [9,10] and/or any other CP/LP technology to cohabit.

What is described here is therefore a metadesign: it is the design of a design tool.
The novelty of what is described here is both in the lexical/syntactical phase and in the
typing/execution semantic phase.

The lexical and syntactic phases are innovative in many respects. In particular, they
are conservative extensions considerably enhancing the conventional lex/yacc tech-
nology (or, similarly, flex/bison) meta-lexico-syntactical tools [4,11] with more
efficient implementation algorithms [12] and recognizing power (viz., overloaded gram-
mar symbols, dynamic operator properties à la Prolog). This essentially gives Jacc the
recognizing power of LALR(k) grammars, for any k ≥ 1. Sections 2.1 and 2.2 give
more details on that part of the system.

The interpretation is essentially the same approach as the one advocated by Landin
for his Store-Environment-Code-Dump (SECD) machine [13] and optimzed by Luca
Cardelli in his Functional Abstract Machine (FAM) [14].3 The abstract machine we
present here is but a systematic taking advantage of Java’s object-oriented tool-set to put
together a modular and extensible set of building blocks for language design. It is suf-
ficiently powerful for expressing higher-order polymorphic object-oriented functional
and/or imperative programming languages. This includes declarative

2 See Section 2.1.
3 Other formally derived abstract machines like the Categorical Abstract Machine (CAM) also

led to variants of formal compilation of functional languages (e.g., Caml). This approach was
also adopted for the chemical metaphor formalizing concurrent computation as chemical re-
action originally proposed by Banâtre and Le Métayer [15] and later adapted by Berry and
Boudol to define their Chemical Abstract Machine (ChAM) [16]. The same also happened for
Logic Programming [17].

http://en.wikipedia.org/wiki/SECD_machine
http://en.wikipedia.org/wiki/Categorical_abstract_machine
http://en.wikipedia.org/wiki/Caml
http://fsl.cs.uiuc.edu/images/a/ab/CS522-Spring-2011-PL-book-cham.pdf

An Abstract, Reusable, and Extensible Programming Language Design Architecture 115

collection-processing based on the concept of Monoid Comprehensions as used in
object-oriented databases [5,6,7,8,18]. 4

This machine was implemented and used by the author to generate several exper-
imental 100%-java implementation of various language prototypes. Thus, what was
actually implemented in this toolkit was done following a “by need” priority order. It is
not so complete as to already encompass all the necessary building blocks needed for
all known styles of programming and type semantics. It is meant as an open set of tools
to be extended as the needs arise. For example, there is no support yet for LP [17],
nor—more generally—CLP [25].

However, as limited as it may be, it already encompasses most of the basic familiar
constructs from imperative and functional programming, including declarative aggre-
gation (so-called “comprehensions”). Therefore, it is clearly impossible—not to say
boring!—to cover all the nitty-gritty details of all the facets of the complete abtract ma-
chine generation system. This article is therefore organized as an informal stroll over
the most interesting novel features or particularities of our design as it stands to date.

1.2 Our Approach—Abstract Programming Language Design

The approach we follow is that of compiling a specific relatively more sophisticated
outer syntax into a simpler instruction-based “machine” language. However, for porta-
bility, this inner language is that of an “abstract” machine. In other words, it is just an
intermediate language that can be either interpreted more efficiently on an emulator of
that abstract machine, and/or be mapped to actual instruction-based assembly code of a
specific machine more easily.

Thus, as for most compiled typed programming languages, there are actually several
languages:

– a surface language—the syntax used by users to compose programs;

– a kernel language—the “essential” language into which the surface language is
normalized;

– a type language—the language describing the types of expressions;

– an intermediate language—the language that is executable on an instruction-based
abstract machine.

4 As an example, we used our system to generate a prototype Algebraic Query Language (AQL
v0.00) as a functional language augmented with a calculus of compehensions à la Fegaras-
Maier [8], or à la Grust [18]. In other words, it is a complete query language, powerful enough
to express most of ODMG’s OQL, and thus many of its derivatives such as, e.g., XQuery [19]
and XPath [20], etc., . . . This version of AQL can be run both interactively and in batch
mode. In the former case, a user can define top-level constructs and evaluate expressions.
AQL v0.00 supports 2nd-order (ML-like) type polymorphism, automatic currying, associative
arrays, multiple type overloading, dynamic operator overloading, as well as (polymorphic)
type definition (both aliasing and hiding), classes and objects, and (of course) monoid homo-
morphisms and comprehensions (N.B.: no subtyping nor inheritance yet—but this is next on
the agenda [21,22,23,24]).

http://www.odmg.org/
http://www.mm.di.uoa.gr/~toobis/seminar/OQL/tsld001.htm
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath

116 H. Aı̈t-Kaci

Although we will not develop it into much detail in this paper, the Java execution
backend for carrying out the operational semantics of the above à la carte design con-
sists of:

– An operational semantic language—interpreting an abstract instruction set having
effects on a set of runtime structures. The latter defining the state of an execution
automaton. The objects operated on and stored in these structures are the basic data
representation all surface language constructs.

– A type-directed display manager—maintaining a trace emulation of abstract ma-
chine code execution in relation to the source code it was generated from. This is
also useful for debugging purposes while managing three sorted stacks (depending
on the nature of Java data pushed on the various sorted stacks—int, double, or
Object).5

– A type-directed data reader—management for reading three sorts of data (int,
double, or Object).

The same applies for pragmatics as well:

– Concrete vs. abstract error handling—delegation of error reporting by inheritance
along 〈design〉.backend.Error.java class hierarchy.6

– Concrete vs. abstract vocabulary—handling of errors according to the most specif-
ically phrased error-handling messaging.

1.3 Organization of Paper

The rest of this document is organized as follows. Section 2 overviews original generic
syntax-processing tools that have been conceived, implemented, and used to ease the
experimental front-end development for language processing systems. Section 3 gives
a high-level description of the architectural attributes of a set of kernel classes of pro-
gramming language constructs and how they are processed for typing, compiling, and
executing. Section 4 discusses the type system, which is made operational as a poly-
morphic type inference abstract machine enabling multiple-type overloading, type en-
capsulation, object-orientation, and type (un)boxing analysis. Section 5 sums up the
essentials of how declarative iteration over collections may be specified using the no-
tion of monoid homomorphism and comprehension as used in object-oriented databases

5 This is essentiially a three-way SECD/FAM used to avoid systematically having to “box”
into objects primitive Java values (viz., of type int and double). This enables precious
optimization that is particularly needed when dealing with variables of static polymorphic
types but dynamically instantiated into int and double [26].

6 Here and in what follows, we shall use the following abbreviated class path notation:
• “〈syntax〉.” for “hlt.language.syntax.”
• “〈design〉.” for “hlt.language.design.” and this latter package’s sub-packages:
∗ “〈kernel〉.” for “〈design〉.kernel.”
∗ “〈types〉.” for “〈design〉.types.”
∗ “〈instructions〉.” for “〈design〉.instructions.”
∗ “〈backend〉.” for “〈design〉.backend.”

when referring to actual classes’ package paths (hlt stands for “hak’s language tools.”).

An Abstract, Reusable, and Extensible Programming Language Design Architecture 117

query languages to generate efficient collection-processing code. Section 6 concludes
with a quick recapitulation of the contents and future perspectives.

In order to make this paper as self-contained as possible, the above overview of
salient aspects of the system that has been implemented is followed by an Appendix of
brief tutorials on essential key concepts and terminology this work relies upon, and/or
extends.

2 Syntax Processing

2.1 Jacc—Just Another Compiler Compiler

At first sight, Jacc may be seen as a “100% Pure Java” implementation of an LALR(1)
parser generator [27] in the fashion of the well-known UNIX tool yacc—“yet another
compiler compiler” [4]. However, Jacc is much more than. . . just another compiler
compiler: it extends yacc to enable the generation of flexible and efficient Java-based
parsers and provides enhanced functionality not so commonly available in other similar
systems.

The fact that Jacc uses yacc’s metasyntax makes it readily usable on most yacc
grammars. Other Java-based parser generators all depart from yacc’s format, requiring
nontrivial metasyntactic preprocessing to be used on existing yacc grammars—which
abound in the world, yacc being by far the most popular tool for parser generation. Im-
portantly, Jacc is programmed in pure Java—this makes it fully portable to all existing
platforms, and immediately exploitable for web-based software applications.

Jacc further stands out among other known parser generators, whether Java-based or
not, thanks to several additional features. The most notable are:

– Jacc uses the most efficient algorithm known to date for its most critical compu-
tation (viz., the propagation of LALR(1) lookahead sets). Traditional yacc im-
plementations use the method originally developed by DeRemer and Penello [11].
Jacc uses an improved method due to Park, Choe, and Chang [12], which dras-
tically ameliorates the method of by DeRemer and Penello. To this author’s best
knowledge, no other Java-based metacompiler system implements the Park, Choe,
and Chang method [28].

– Jacc allows the user to define a complete class hierarchy of parse node classes (the
objects pushed on the parse stack and that make up the parse tree: nonterminal
and terminal symbols), along with any Java attributes to be used in semantic ac-
tions annotating grammar rules. All these attributes are accessible directly on any
pseudo-variable associated with a grammar rule constituents (i.e., $$, $1, $2, etc.).

– Jacc makes use of all the well-known conveniences defining precedences and asso-
ciativity associated to some terminal symbols for resolving parser conflicts that may
arise. While such conflicts may in theory be eliminated for any LALR(1) grammar,
such a grammar is rarely completely obtainable. In that case, yacc technology
falls short of providing a safe parser for non-LALR grammar. Yet, Jacc can accom-
modate any such eventual unresolved conflict using non-deterministic parse actions
that may be tried and undone.

118 H. Aı̈t-Kaci

– Further still, Jacc can also tolerate non-deterministic tokens. In other words, the
same token may be categorized as several distinct lexical units to be tried in turn.
This allows, for example, parsing languages that use no reserved keywords (or more
precisely, whose keywords may also be tokenized as identifiers, for instance).

– Better yet, Jacc allows dynamically (re-)definable operators in the style of the Pro-
log language (i.e., at parse-time and run-time). This offers great flexibility for on-
the-fly syntax customization, as well as a much greater recognition power, even
where operator symbols may be overloaded (i.e., specified to have several prece-
dences and/or associativity for different arities).

– Jacc supports partial parsing. In other words, in a grammar, one may indicate any
nonterminal as a parse root. Then, constructs from the corresponding sublanguage
may be parsed independently from a reader stream or a string.

– Jacc automatically generates a full HTML documentation of a grammar as a set
of interlinked files from annotated /**...*/ javadoc-style comments in the
grammar file, including a navigatable pure grammar in “yacc form,” obtained after
removing all semantic and serialization annotations, leaving only the bare syntactic
rules.

– Jacc may be directed to build a parse-tree automatically (for the concrete syntax,
but also for a more implicit form which rids a concrete syntax tree of most of its
useless information). By contrast, regular yacc necessitates that a programmer add
explicit semantic actions for this purpose.

– Jacc supports a simple annotational scheme for automatic XML serialization of
complex Abstract Syntax Trees (AST’s) [29]. Grammar rules and non-punctuation
terminal symbols (i.e., any meaning-carrying tokens such as, e.g., identifiers, num-
bers, etc.) may be annotated with simple XML templates expressing their XML
forms. Jacc may then use these templates to transform the Concrete Parse Tree
(CST) into an AST of radically different structure, constructed as a jdom XML
document.7 This yields a convenient declarative specification of a tree transduction
process guided by just a few simple annotations, where Jacc’s “sensible” behav-
ior on unannotated rules and terminals works “as expected.” This greatly eases the
task of retargeting the serialization of a language depending on variable or evolving
XML vocabularies.

With Jacc, a grammar can be specified using the usual familiar yacc syntax with
semantic actions specified as Java code. The format of the grammar file is essentially
the same as that required by yacc, with some minor differences, and a few additional
powerful features. Not using the additional features makes it essentially similar to the
yacc format.

For the intrigued reader curious to know how one may combine dynamic operator
with a static parser generator, Section 2.2 explains in some detail how Jacc extends
yacc to support Prolog-style dynamic operators.

7 http://www.jdom.org/

An Abstract, Reusable, and Extensible Programming Language Design Architecture 119

2.2 LR-Parsing with Dynamic Operators

In this section, we explain, justify, and specify the modifications that need to be made
to a classical table-driven LALR(1) parser generator à la yacc [4]. For such a compiler
generator to allow Prolog-style dynamic operators, it is necessary that it be adapted to
account statically (i.e., at compile-time) for runtime information. Indeed, in Prolog, op-
erators may be declared either at compile-time or at runtime using the built-in predicate
op/3.8

How Jacc Enables Static LR-parsing with Dynamic Operators. In an LR-parser
such as one generated by yacc, precedence and associativity information is no longer
available at parse-time. It is used statically at parser generation-time to resolve potential
conflicts in the parser’s actions. Then, a fixed table of unambiguous actions is passed to
drive the parser, which therefore always knows what to do in a given state for a given
input token.

Thus, although they can recognize a much larger class of context-free languages,
conventional shift-reduce parsers for LR grammars cannot accommodate parse-time
ambiguity resolution. Although this makes parsing more efficient, it also forbids a
parser generated by a yacc-like parser generator to support Prolog style operators.

In what follows, we propose to reorganize the structure of the implementation of
a yacc-style parser generator to accommodate Prolog-style dynamic operators. We
do so:

– increasing the user’s convenience to define and use new syntax dynamically without
changing the parser;

– adding new features while preserving the original yacc metasyntax;

– retaining the same efficiency as yacc-parsing for grammars which do not use dy-
namic operators;

– augmenting the recognizing power of bottom-up LALR parsing to languages that
support dynamically (re)definable operators;

– making full use of the object-oriented capabilities of Java to allow the grammar
specifier to tune the parser generation using user-defined classes and attributes.

Declaring Dynamic Operators. The first issue pertains to the way we may specify how
dynamic operators are connected with the grammar’s production rules. The command:

%dynamic op

is used to declare that the parser of the grammar being specified will allow defining, or
redefining, dynamic operators of category op. The effect of this declaration is to create
a non-terminal symbol named op that stands for this token category. Three implicit
grammar rules are also defined:

op : ’op_’ | ’_op_’ | ’_op’ ;

8 See Appendix Section A for a quick review of Prolog-style dynamic operators.

120 H. Aı̈t-Kaci

which introduce, respectively, prefix, infix, and postfix, subcategories for operators of
category op. These are terminal symbols standing as generic tokens that denote spe-
cific operators for each fixity. Specific operators on category op may be defined in the
grammar specification as follows:

%op <operator> <specifier> <precedence>

For example,

%op ’+’ yfx 500

declares the symbol ‘+’ to be an infix binary left-associative operator of category op,
with binding tightness 500, just as in Prolog.

In addition, the generated parser defines the following method:

public final static void op (String operator
, String specifier
, int precedence)

whose effect is to define, or redefine, an operator for the token category op dynam-
ically using the given (Prolog-style) specifier and (Prolog-style) precedence. It is this
method that can be invoked in a parser’s semantic action at parse time, or by the runtime
environment as a static method.

An operator’s category name may be used in a grammar specification wherever an
operator of that category is expected. Namely, it may be used in grammar rules such as:

expression : op expression
| expression op
| expression op expression
;

Using the non-terminal symbol op in a rule such as above allows operators of any
fixity declared in the op category to appear where op appears. However, if an occur-
rence must be limited to an op of specific fixity only, then one may use:

– ‘op ’ for a prefix operator of category op;
– ‘ op’ for a postfix operator of category op;
– ‘ op ’ for an infix operator of category op.

For example, the above rules can be better restricted to:

expression : ’op_’ expression
| expression ’_op’
| expression ’_op_’ expression
;

A consequence of the above observations is that a major modification in the parser
generator and the generic parser must also be made regarding the parser actions they
generate for dynamic operators. A state may have contending actions on a given input.

An Abstract, Reusable, and Extensible Programming Language Design Architecture 121

Such a state is deemed conflictual if and only if the input creating the conflict is a
dynamic operator, or if one of its conflicting actions is a reduction with a rule whose
tag is a dynamic operator. All other states can be treated as usual, resolving potential
conflicts using the conventional method based on precedence and associativity. Clearly,
a dynamic operator token category does not have this information but delegates it to the
specific token, which will be known only at parse time. At parser-construction time, a
pseudo-action is generated for conflictual states which delays decision until parse time.
It uses the state’s table associating a set of actions with the token creating the conflict in
this state. These sets of conflicting actions are thus recorded for each conflictual state.

When a token is identified and the current state is a conflictual state, which action
to perform is determined by choosing in the action set associated to the state according
to the same disambiguation rules followed by the static table construction but using
the current precedence and associativity values of the specific operator being read. If
a “reduce” action in the set involves a rule tagged with a dynamic operator, which
precedence and associativity values to use for the rule are those of the specific operator
tag for that rule, which can be obtained in the current stack. The stack offset of that
operator will depend on which of the dynamic operator’s rules is being considered.

Ambiguous Tokens. Note that in general, the tokenizer may return a set of possible
tokens for a single operator. Consider for example the following grammar:

%token ’!’
%dynamic op1
%op1 ’!’ yf 200
%dynamic op2
%op2 ’!’ yfx 500
%%
expression : expression1 _op1_ expression1

| expression2 _op2
| ’!’ expression
;

%%

For this grammar, the character ‘!’ may be tokenized as either ‘!’, ‘op1’, or ‘op2’.
The tokenizer can therefore be made to dispense with guaranteeing a token’s lexical
category. Looking up its token category tables, the parser then determines the set of
admissible lexical categories for this token in the current state (i.e., those for which it
has an action defined). If more than one token remain in the set, a choice point for this
state is created. Such a choice point records the current state of parsing for backtracking
purposes. Namely, the grammar state, and the token set. The tokens are then tried in the
order of the set, and upon error, backtracking resets the parser at the latest choice point
deprived of the token that was chosen for it.

Note that the use of backtracking for token identification is not a guarantee of com-
plete recovery. First, full backtracking is generally not a feasible nor desirable option as
it would entail possibly keeping an entire input stream in memory as the buffer grows.
The option is to keep only a fixed-size buffer and flush from the choice point stack any
choice point that becomes stale when this buffer overflows. In effect, this enforces an

122 H. Aı̈t-Kaci

automatic commit whenever a token choice is not invalidated within the time it takes to
read further tokens as allowed by the buffer size.

Second, although backtracking restores the parser’s state, it does not automatically
undo the side effects that may have been performed by the execution of any semantic
action encountered between the failure state and the restored state. If there are any, these
must be undone manually. Thus, Jacc allows specifying undo actions to be executed
when a rule is backtracked over.

The only limitation—shallow backtracking—is not serious, and in fact the choice-
point stack’s size can be specified arbitrarily large if need be. Moreover, any input that
overuns the choice-point stack’s default depth is in fact cleaning up space by getting
rid of older and less-likely-to-be-used choice-points. Indeed, failure occurs generally
shortly after a wrong choice has been made. We give separately a more detailed speci-
fication of the implementation of the shallow backtracking scheme that is adequate for
this purpose.

Token Declarations. In order to declare tokens’ attributes in yacc, one may use the
commands %token, %right, %left, and %nonassoc. These commands also give
the tokens they define a precedence level according to the order of declarations, tokens
of equal precedence being declared in the same command. Since we wish to preserve
compatibility with yacc’s notations and conventions, we keep these commands to have
the same effect. Therefore, these commands are used as usual to declare static tokens.
However, we must explicate how the implicit precedence level of static token declara-
tions may coexist with the explicit precedence information specified by the Prolog-like
dynamic operator declarations.

We also wish to preserve compatibility with Prolog’s conventions. Recall that the
number argument in a Prolog ‘op/3’ declaration denotes the binding tightness of the
operator, which is inversely related to parsing precedence. The range of these numbers
is the interval [1, 1200]. To make this compatible with the foregoing yacc commands,
the 〈syntax〉.Grammar.java class defines two constants:

static final int MIN_PRECEDENCE = 1;
static final int MAX_PRECEDENCE = 1200;

In order to have the binding tightness to be such that 1200 corresponds to minimum
precedence and 1 to maximum precedence, we simply define the precedence level of
binding tightness n to be 1200− n + 1. Thus, a declaration such as:

%op ’+’ yfx 500

assigns to binary ‘+’ a precedence level of 701 (viz., 1200− 500 + 1).
We also allow dynamic operators to be declared with the form:

%op <operator> <specifier>

leaving the precedence implicit, and defaulting to the precedence level effective at the
command’s execution time.

The first encountered token declaration with implicit precedence (i.e., a conventional
yacc token command or a two-argument dynamic operator command) uses the initial

An Abstract, Reusable, and Extensible Programming Language Design Architecture 123

precedence level set to a default,9 then increments it by a fixed increment. This incre-
ment is 10 by default, but the command:

%precstep <number>

may be used to set the increment to the given number. This command may be used
several times. Each subsequent declaration with implicit precedence uses the current
precedence level, then increments the precedence level by the current precedence incre-
ment. Any attempt to set a precedence level outside the [1, 1200] range is ignored: the
closest bound is used instead (i.e., 1 if less and 1200 if more), and a warning is issued.

3 The Kernel Language

A language construct is said to be primitive (or “built-in”) if is not expressed in terms
of other language constructs.10 The kernel language is the set of primitive language
constructs. It is sometimes also called the “desugared” language. This is because non-
primitive constructs that are often-used combinations of primitive stuctures are both
easier to use and read by human programmers. Hence, before being given any mean-
ing, a program expressed using the “sugared” language syntax is first translated into
its equivalent “desugared” form in the kernel language containing only primitive
expressions.

3.1 Processing a Kernel Expression

Fig. 1 gives the complete processing diagram from reading a 〈kernel〉.Expression
denoting a program to executing it.

Typically, upon being read, such a 〈kernel〉.Expression will be:

1. “name-sanitized”—in the context of a 〈kernel〉.Sanitizer to discriminate be-
tween local names and global names, and establish pointers from the local variable
occurrences to the abstraction that introduces them, and from global names to en-
tries in the global symbol table;

2. type-checked—in the context of a 〈types〉.TypeChecker to discover whether
it has a type at all, or several possible ones (only expressions that have a unique
unambiguous type are further processed);

3. “sort-sanitized”—in the context of a 〈kernel〉.Sanitizer to discriminate be-
tween those local variables that are of primitive Java types (int or double) or of
Object type (this is necessary because the set-up means to use unboxed values of
primitive types for efficiency reasons); this second “sanitization” phase is also used
to compute offsets for local names (i.e., so-called de Bruijn indices) for each of the
three type sorts (int, double, Object);

4. compiled—in the context of a 〈kernel〉.Compiler to generate the sequence of
instructions whose execution in an appropriate runtime environment will evaluate
the expression;

9 This value is a system constant called 〈syntax〉.Grammar.MIN PRECEDENCE.
10 This does not mean that it could not be. It just means that it is provided natively, either to ease

oft-used syntax, and/or make it more efficient operationally.

124 H. Aı̈t-Kaci

Parsing Name Resolution

Boxing Analysis Type Checking

Code Generation Execution

Fig. 1. Processing diagram

5. executed—in the context of a 〈backend〉.Runtime denoting the appropriate run-
time environment in the context of which to execute its sequence of instructions.

The Syntax Sanitizer. A sanitizer is an object that “cleans up”—so to speak—an ex-
pression of any possibly remaining ambiguities as it is being parsed and further pro-
cessed. There are two kinds of ambiguities that must be “sanitized:”

– after parsing, it must be determined which identifiers are the names of local vari-
ables vs. those of global variables;

– after type-checking, it must be determined the runtime sort of every abstraction
parameter and use this to compute the local variable environment offsets of each
local variable.11

Thus, a sanitizer is a discriminator of names and sorts.12

The Type Checker. The type checker is in fact a type inference machine that synthesizes
missing type information by type unification. It may be (and often is) used as a type-
checking automaton when types are (partially) present.

Each expression must specify its own 〈kernel〉.Expression.TypeCheck
(〈types〉.TypeChecker) method that encodes its formal typing rule.

11 These offsets are the so-called de Bruijn indices of λ-calculus [13]—Or rather, their sorted
version.

12 It has occurred to this author that the word “sanitizer” is perhaps a tad of a misnomer. Perhaps
“discriminator” might have been a better choice. This also goes for the 〈kernel〉.Sanitiz-
er.java class’ method names (i.e., discriminateNames and discriminateSorts
rather than sanitizeNames and sanitizeSorts).

An Abstract, Reusable, and Extensible Programming Language Design Architecture 125

The Compiler. This is the class defining a compiler object. Such an object serves as
the common compilation context shared by an 〈kernel〉.Expression and the subex-
pressions comprising it. Each type of expression representing a syntactic construct of
the kernel language defines a 〈kernel〉.Expression.compile(〈kernel〉.Com-
piler) method that specifies the way the construct is to be compiled in the context
of a given compiler. Such a compiler object consists of attributes and methods for gen-
erating straightline code which consists of a sequence of instructions, each of specific
subtype of abstract type 〈instructions〉.Instruction, corresponding to a top-level
expression and its subexpressions.

Upon completion of the compilation of a top-level expression, a resulting code array
is extracted from the sequence of instructions, which may then be executed in the con-
text of a 〈backend〉.Runtime object, or, in the case of a 〈kernel〉.Definition, be
saved in the code array in the 〈kernel〉.Definition’s 〈kernel〉.codeEntry()
field of type 〈types〉.DefinedEntry, which is an object that encapsulates its code
entry point, and which may in turn then be used to access the defined symbol’s code for
execution.

Each expression construct of the kernel must therefore specify a compiling rule.
Such a rule expresses how the abstract syntax construct maps into a straight-line code
sequence.

In Appendix Section B, this process is illustrated in more detail on a few typical as
well as less typical expressions.

4 Types

We have illustrated a style of programming based on the use of rich type
systems. This is not new in general, but the particularly rich type system
we have described, based on type quantifiers and subtypes, extends the
state of the art. This rich type structure can account for functional, im-
perative, algebraic, and object-oriented programming in a unified frame-
work, and extends to programming in the large and, with care, to system
programming.

LUCA CARDELLI—“Typeful Programming” [30]

4.1 Type Language

We first define some basic terminology regarding the type system and operations on
types.

Polymorphism. Here, by “polymorphism,” we mean ML-polymorphism (i.e., 2nd-
order universal), with a few differences that will be explained along the way. The syntax
of types is defined with a grammar such as:

[1] Type ::= SimpleType | TypeScheme

[2] SimpleType ::= BasicType | FunctionType | TypeParameter

126 H. Aı̈t-Kaci

[3] BasicType ::= Int | Real | Boolean | . . .

[4] FunctionType ::= SimpleType→ SimpleType

[5] TypeParameter ::= α | α′ | . . . | β | β′ | . . .

[6] TypeScheme ::= ∀ TypeParameter . Type

that ensures that universal type quantifiers occur only at the outset of a polymorphic
type.13

Multiple Type Overloading. This is also often called ad hoc polymorphism. When
enabled (the default), this allows a same identifier to have several unrelated types. Gen-
erally, it is restricted to names with functional types. However, since functions are first-
class citizens, this restriction makes no sense, and therefore the default is to enable
multiple type overloading for all types.

To this author’s knowledge, there is no established prevailing technology for sup-
porting both ML-polymorphic type inference and multiple type overloading. So here,
as in a few other parts of this overall design, I have had to innovate. I essentially imple-
mented a type proving logic using techniques from (Constraint) Logic Programming in
order to handle the combination of types supportable by this architecture.

Currying. Currying is an operation that exploits the following mathematical isomor-
phism of types:14

T, T ′ → T ′′ � T → (T ′ → T ′′) (1)

which can be generalized for a function type of any number of arguments to any of its
multiple curryed forms—i.e., for all k = 1, . . . , n− 1:

T1, . . . , Tn → T � T1, . . . , Tk → (Tk+1, . . . , Tn → T) (2)

When function currying is enabled, this means that type-checking/inference must
build this equational theory into the type unification rules in order to consider types
equal modulo this isomorphism.

13 Or more precisely that ∀ never occurs nested inside a function type arrow→. This apparently
innocuous detail ensures decidability of type inference. BTW, the 2nd order comes from the
fact that the quantifier applies to type parameters (as opposed to 1st order, if it had applied to
value parameters). The universal comes from ∀, of course.

14 For the intrigued reader curious to know what deep connection there might be between func-
tional types and Indian cooking, the answer is, “None whatsoever!” The word was coined
after Prof. Haskell B. Curry’s last name. Curry was one of the two mathematicians/logicians
(along with Robert Feys) who conceived Combinator Logic and Combinator Calculus, and
made extensive use of the isomorphism of Equation (1)—hence the folklore’s use of the verb
to curry—(currying, curryed),— in French: curryfier—(curryfication, curryfié), to mean trans-
forming a function type of several arguments into that of a function of one argument. The
homonymy is often amusingly mistaken for an exotic way of [un]spicing functions.

An Abstract, Reusable, and Extensible Programming Language Design Architecture 127

Standardizing. As a result of, e.g., currying, the shape of a function type may change in
the course of a type-checking/inference process. Type comparison may thus be tested on
various structurally different, although syntactically congruent, forms of a same type.
A type must therefore assume a canonical form in order to be compared. This is what
standardizing a type does.

Standardizing is a two-phase operation that first flattens the domains of function
types, then renames the type parameters. The flattening phase simply amounts to un-
currying as much as possible by applying Equation (1) as a rewrite rule, although back-
wards (i.e., from right to left) as long as it applies. The second phase (renaming) consists
in making a consistent copy of all types reachable from a type’s root.

Copying. Copying a type is simply taking a duplicate twin of the graph reachable
from the type’s root. Sharing of pointers coming from the fact that type parameters
co-occur are recorded in a parameter substitution table (in our implementation, simply
a java.util.HashMap) along the way, and thus consistent pointer sharing can be
easily made effective.

Equality. Testing for equality must be done modulo a parameter substitution table (in
our implementation, simply a java.util.HashMap) that records pointer equalities
along the way, and thus equality up to parameter renaming can be easily made effective.

A tableless version of equality also exists for which each type parameter is consid-
ered equal only to itself.

Unifying. Unifying two types is the operation of filling in missing information (i.e.,
type parameters) in each with existing information from the other by side-effecting
(i.e., binding) the missing information (i.e., the type parameters) to point to the part of
the existing information from the other type they should be equal to (i.e., their values).
Note that, like logical variables in Logic Programming, type parameters can be bound
to one another and thus must be dereferenced to their values.

Boxing/Unboxing. The kernel language is polymorphically typed. Therefore, a func-
tion expression that has a polymorphic type must work for all instantiations of this
type’s type parameters into either primitive unboxed types (e.g., Int, Real, etc.) or
boxed types. The problem this poses is: how can we compile a polymorphic function
into code that would correctly know what the actual runtime sorts of the function’s run-
time arguments and returned value are, before the function type is actually instantiated
into a (possibly monomorphic) type?15 This problem was addressed by Xavier Leroy
and he proposed a solution, which has been implemented in the CAML compiler [26].16

Leroy’s method is based on the use of type annotation that enables a source-to-source

15 The alternative would be either to compile distinct copies for all possible runtime sort instan-
tiations (like, e.g., C++ template functions), or compiling each specific instantiation as it is
needed. The former is not acceptable because it tends to inflate the code space explosively.
The latter can neither be envisaged because it goes against a few (rightfully) sacrosanct prin-
ciples like separate compilation and abstract library interfacing—imagine having to recompile
a library everytime you want to use it!

16 See http://caml.inria.fr/

128 H. Aı̈t-Kaci

transformation. This source transformation is the automatic generation of wrappers and
unwrappers for boxing and unboxing expressions whenever necessary. After that, com-
piling the transformed source as usual will be guaranteed to be correct on all types.

For our purpose, the main idea from Leroy’s solution was adapted and improved so
that:

– the type annotation and rules are greatly simplified;
– no source-to-source transformation is needed;
– un/wrappers generation is done at code-generation time.

This saves a great amount of space and time.

4.2 Type Processing

The type system consists of two complementary parts: a static and a dynamic part.17

The former takes care of verifying all type constraints that are statically decidable (i.e.,
before actually running the program). The latter pertains to type constraints that must
wait until execution time to decide whether those (involving runtime values) may be
decided. This is called dynamic type-checking and is best seen (and conceived) as an
incremental extension of the static part.

A type is either a static type, or a dynamic type. A static type is a type that is checked
before runtime by the type-checker. A dynamic type is a wrapper around a type that may
need additional runtime information in order to be fully verified. Its static part must be
(and is!) checked statically by the static type checker, but the compiler may complete
this by issuing runtime tests at appropriate places in the code it generates; namely, when:

– binding abstraction parameters of this type in an application, or
– assigning to local and global variable of this type, or
– updating an array slot, a tuple component, or an object’s field, of this type.

There are two kinds of dynamic types:

– Extensional types—defined with explicit extensions (either statically provided or
dynamically computed runtime values):
• Set extension type;
• Int range extension type (close interval of integers);
• Real range extension type (close interval of floating-point numbers).

A special kind of set of Int type is used to define enumeration types (from actual
symbol sets) through opaque type definitions.

– Intensional types—defined using any runtime Boolean condition to be checked at
runtime, calls to which are tests generated statically; e.g.non-negative numbers (i.e.,
int+, double+).

Static Types. The static type system is the part of the type system that is effective at
compile-time.

17 For the complete class hierarchy of types in the package 〈design〉.types, see Fig. 2.

An Abstract, Reusable, and Extensible Programming Language Design Architecture 129

Primitive Types

– Boxable types (Void, Int, Real, Char, and Boolean)
– Boxed types (i.e., boxed versions of Boxable types or non-primitive types)

Non-primitive Types

– Built-in type constants (e.g., String, etc., . . .)
– Type constructors
– Function types
– Tuple types:
• Position tuple types
• Named tuple types

– Array types:
• 0-based int-indexed arrays
• Int range-indexed arrays
• Set-indexed arrays
• Multidimensional arrays

– Collection types (Set(α), Bag(α), and List(α)).
– Class types

The Class type This is the type of object structures. It declares an interface (or mem-
ber type signature) for a class of objects and the members comprising its structure.
It holds information for compiling field access and update, and enables specifying an
implementation for methods manipulating objects of this type.

A class implementation uses the information declared in its interface. It is interpreted
as follows: only non-method members—hereafter called fields—correspond to actual
slots in an object structure that is an instance of the class and thus may be updated.
On the other hand, all members (i.e., both fields and method members) are defined as
global functions whose first argument stands for the object itself (that may be referred
to as ‘this’).

The syntax we shall use for a class definition is of the form:

class classname { interface } [{ implementation}] (3)

The interface block specifies the type signatures of the members (fields and methods)
of the class and possibly initial values for fields. The implementation block is optional
and gives the definition of (some or all of) the methods.

For example, one can declare a class to represent a simple counter as follows:

class Counter { value : Int = 1;
method set : Int→ Counter;
}
{ set(value : Int) : Counter)

= (this.value = value);
}

(4)

The first block specifies the interface for the class type Counter defining two mem-
bers: a field value of type Int and a method set taking an argument of type Int

130 H. Aı̈t-Kaci

and returning a Counter object. It also specifies an initialization expression (1) for
the value field. Specifying a field’s initialization is optional—when missing, the field
will be initialized to a null value of appropriate type: 0 for an Int, 0.0 for a Real, false

for a Boolean, ′\000′ for a Char, "" for a String, void for Void,18 and nullT for any
other type T . The implementation block for the Counter class defines the body of the
set method. Note that a method’s implementation can also be given outside the class
declaration as a function whose first argument’s type is the class. For example, we could
have defined the set method of the class Counter as:

def set(x : Counter,n : Int) : Counter = (x.value = n); (5)

On the other hand, although a field is also semantically a function whose first argu-
ment’s type is a class, it may not be defined outside its class. Defining a declared field
outside a class declaration causes an error. This is because the code of a field is always
fixed and defined to return the value of an object’s slot corresponding to the field. Note
however that one may define a unary function whose argument is a class type outside
this class when it is not a declared field for this class. It will be understood as a method
for the class (even though it takes no extra argument and may be invoked in ”dot no-
tation” without parentheses as a field is) and thus act as a ”static field” for the class.
Of course field updates using dot notation will not be allowed on these pseudo fields.
However, they (like any global variable) may be (re)set using a global (re)definition at
the top level, or a nested global assignment.

Note also that a field may be functional without being a method—the essential differ-
ence being that a field is part of the structure of every object instance of a class and thus
may be updated within an object instance, while a method is common to all instances
of a class and may not be updated within a particular instance, but only globally for all
the class’ instances.

Thus, everytime a Counter object is created with new, as in, for example:

c = new Counter; (6)

the slot that corresponds to the location of the value field will be initialized to the
value 1 of type Int. Then, field and method invocation can be done using the familiar
“dot notation;” viz.:

c.set(c.value+ 2);
write(c.value); (7)

This will set c’s value field to 3 and print out this value. This code is exactly
equivalent to:

set(c,value(c) + 2);
write(value(c)); (8)

Indeed, field and method invocation simply amounts to functional application. This
scheme offers the advantage that an object’s fields and methods may be manipulated

18 Strictly speaking, a field of type Void is useless since it can only have the unique value of this
type (i.e., void). Thus, a void field should arguably be disallowed. On the other hand, allowing
it is not semantically unsound and may be tolerated for the sake of uniformity.

An Abstract, Reusable, and Extensible Programming Language Design Architecture 131

as functions (i.e., as first-class citizens) and no additional setup is needed for type-
checking and/or type inference when it comes to objects.

Incidentally, some or all type information may be omitted while specifying a class’s
implementation (though not its interface) as long as non-ambiguous types may be in-
ferred. Thus, the implementation block for class Counter in class definition (4) could
be specified more simply as:

{ set(n) = (value = n); } (9)

Declaring a class type and defining its implementation causes the following:

– the name of the class is entered with a new type for it in the type table (an ob-
ject comprising symbol tables, of type 〈types〉.Tables.java; this ensures that
its type definition links it to an appropriate ClassType object; namely, a class
structure reprensented by an object of type 〈types〉.ClassInfo.java where
the code entries for all its members’ types are recorded;

– each field of a distinct type is assigned an offset in an array of slots (per sort);

– each method and field expression is name-sanitized, type-checked, and sort-sani-
tized after closing it into an abstraction taking this as first argument;

– each method definition is then compiled into a global definition, and each field
is compiled into a global function corresponding to accessing its value from the
appropriate offset;

– finally, each field’s initialization expression is compiled and recorded in an object
of type ClassType to be used at object creation time. An object may be created
at run-time (using the new operator followed by a class name).

The Type System. Fig. 2 shows the hierarchy of Java classes representing the cate-
gories of types currently comprising the type system. The classes represented in boxes
are abstract classes. There could be more, of course.

Structure of TypeChecker. An object of the class 〈types〉.TypeChecker.java
is a backtracking prover that establishes various kinds of goals. The most common goal
kind established by a type checker is a typing goal—but there are others.

A 〈types〉.TypingGoal object is a pair consisting of an expression and a type.
Proving a typing goal amounts to unifying its expression component’s type with its type
component. Such goals are spawned by the type checking method of expressions as per
their type checking rules.19 Some globally defined symbols having multiple types, it is
necessary to keep choices of these and backtrack to alternative types upon failure. Thus,
a TypeChecker object maintains all the necessary structures for undoing the effects
that happened since the last choice point. These effects are:

1. type variable binding,
2. function type currying,

19 See Appendix Section B.

132 H. Aı̈t-Kaci

C
la

ss
hi

er
ar

ch
y

of
ty

pe
s

in
th

e
pa

ck
ag

e
h
l
t
.
l
a
n
g
u
a
g
e
.
d
e
s
i
g
n
.
t
y
p
e
s

T
y
p
e

S
t
a
t
i
c
T
y
p
e

D
y
n
a
m
i
c
T
y
p
e

N
a
m
e
d
T
y
p
e

T
y
p
e
P
a
r
a
m
e
t
e
r

C
o
n
s
t
r
u
c
t
e
d
T
y
p
e

E
x
t
e
n
s
i
o
n
a
l
T
y
p
e

I
n
t
e
n
s
i
o
n
a
l
T
y
p
e

B
o
x
a
b
l
e
T
y
p
e
C
o
n
s
t
a
n
t

F
u
n
c
t
i
o
n
T
y
p
e

T
u
p
l
e
T
y
p
e

A
r
r
a
y
T
y
p
e

C
o
l
l
e
c
t
i
o
n
T
y
p
e

T
y
p
e
C
o
n
s
t
a
n
t

T
y
p
e
T
e
r
m

N
a
m
e
d
T
u
p
l
e
T
y
p
e

S
e
t
T
y
p
e

B
a
g
T
y
p
e

L
i
s
t
T
y
p
e

C
o
l
l
e
c
t
i
o
n
T
y
p
e
C
o
n
s
t
a
n
t

C
l
a
s
s
T
y
p
e

D
e
f
i
n
e
d
T
y
p
e

Fig. 2. The type system—Metaclass Hierarchy

An Abstract, Reusable, and Extensible Programming Language Design Architecture 133

3. application expression currying.

In addition, it is also necessary to remember all Goal objects that were proven since
the last choice point in order to prove them anew upon backtracking to an alternative
choice. This is necessary because the goals are spawned by calls to the typeCheck
method of expressions that may be exited long before a failure occurs. Then, all the orig-
inal typing goals that were spawned in the mean time since the current choice point’s
goal must be reestablished. In order for this to work, any choice points that were associ-
ated to these original goals must also be recovered. To enable this, when a choice point
is created for a 〈kernel〉.Global symbol, choices are linked in the reverse order (i.e.,
ending in the original goal) to enable reinstating all choices that were tried for this goal.
This amounts to the on-the-fly compiling of type-checking rules into “typing-goal” in-
structions that must be stored for potential retrial upon subsequent failure. Fig. 3 lists
some typing goals making up the instruction set of the type inference abstract machine
generated by the type checker.

– EmptyGoal
– TypingGoal
– UnifyGoal
– GlobalTypingGoal
– SubTypeGoal
– BaseTypeGoal
– ArrayIndexTypeGoal

– PruningGoal
– PushExitableGoal
– PopExitableGoal
– CheckExitableGoal
– ResiduatedGoal
– ShadowUnifyGoal
– UnifyBaseTypeGoal
– NoVoidTypeGoal

Fig. 3. Typing goals instruction set for the type inference abstract machine

In order to coordinate type proving in a common context, the same typechecker ob-
ject is passed to all type checking and unification methods as an argument in order to
record any effect in the appropriate trail.

To recapitulate, the structures of a 〈types〉.TypeChecker object are:

– a goal stack containing goal objects (e.g., 〈types〉.TypingGoal) that are yet to
be proven;

– a binding trail stack containing type variables and boxing masks to reset to ”un-
bound” upon backtracking;

– a function type currying trail containing 4-tuples of the form (function type, previ-
ous domains, previous range, previous boxing mask) for resetting the function type
to the recorded domains, range, and mask upon backtracking;

– an application currying trail containing triples of the form (application type, pre-
vious function, previous arguments) for resetting the application to the recorded
function and arguments upon backtracking;

– a goal trail containing 〈types〉.TypingGoal objects that have been proven since
the last choice point, and must be reproven upon backtracking;

134 H. Aı̈t-Kaci

– a choice-point stack whose entries consists of:
• a queue of TypingGoalEntry objects from where to constructs new Typ-
ingGoal objects to try upon failure;

• pointers to all trails up to which to undo effects.

Type definitions Before we review dynamic types, we shall describe how one can
define new types using existing types. Type definitions are provided both for (1) con-
venience of making programs more legible by giving terser “logical” names (or terms)
to otherwise verbose type expressions, and (2) that of hiding information details of a
type and making it act as a new type altogether. The former facility is that of providing
aliases to types (exactly like a preprocessor’s macros get expanded right away into their
textual equivalents), while the latter offers the convenience of defining new types in
terms of existing ones, but hiding this information. It follows from this distinction that
a type alias is always structurally equivalent to its value (in fact an alias disappears as
soon as it is read in, being parsed away into the structure defining it). By contrast, a
defined type is never structurally equivalent to its value nor any other type—it is only
equivalent to itself. To enable meaningful computation with a defined type, two meta-
(de/con)structors are thus provided: one for explicitly casting a defined type into the
type that defines it, and one explicitly seeing a type as a specified defined type (if such
a defined type does exist and with this type as definition).

The class 〈types〉.Tables.java contains the symbol tables for global names and
types. The name spaces of the identifiers denoting type and non-type (global or local)
names (which are kept in the global symbol table) are disjoint—so there are no name
conflicts between types and non-type identifiers.

The 〈types〉.Tables.java.typeTable variable contains the naming table for
types and the 〈types〉.Tables.java.symbolTable variable contains the naming
table for other (non-type) global names.

This section will overview some type-related data-structures starting from the class
that manages symbols: 〈types〉.Tables.java. The names can be those of types
and values. They are global names.20 The type namespace is independent of the value
namespace—i.e., the same name can denote a value and a type.

Dynamic Types. Dynamic types are to be checked, if possible statically (at least their
static part is), at least in two particular places of an expression. Namely,

– at assignment/update time; and,
– at (function) parameter-binding time.

This will ensure that the actual value placed in the slot expecting a certain type does
respect additionnal constraints that may only be verified with some runtime values.
Generally, as soon as a type’s structure depends on a runtime value, is is necessar-
ily a dynamic type. These are also often referred to as dependent types. For example,
array of size(int n), where n is the size of the array and is a runtime value. It

20 At the moment, there is no name qualification or namespace management. When this service
is provided, it will also be through the 〈types〉.Tables.java class.

An Abstract, Reusable, and Extensible Programming Language Design Architecture 135

denotes a “safe” array type depending on the array size that may be only computed at
runtime.21 From this, we require that a class implementing the DynamicType inter-
face provides a method:

public boolean verifyCondition ()

that is invoked systematically by code generated for dynamically typed function pa-
rameters and for locations that are the target of updates (i.e., array slot update, object
field update, tuple field update) at compilation of abstractions and various assignment
constructs. Of this class, three subclasses derive their properties:

– extensional types;
– Boolean-assertion types;
– non-negative number types.

We shall consider here a few such dynamic types (motivated esssentially by the typ-
ing needs of for OPL, or similar constraint languages [31]). Namely,

– extensional types;
– intensional types (e.g., non-negative numbers)

An extensional type is a type whose elements are determined to be members of a
predetermined and fixed extension (i.e., any runtime value that denotes a collection—
such as a set, an integer range, a floating-point number range, or an enumeration).
Such types pose the additional problem of being usable at compile-time to restrict
the domains of other variables. However, some of those variables’ values may only
fully be determined at runtime. These particular dynamic types have therefore a sim-
ple verifyCondition() method that is automatically run as soon as the extension
is known. This method simply verifies that the element is a bona fide member of the
extension, Otherwise, it relies on a more complicated scheme based on the notion of
contract. Basically, a contract-based type is an extensional type that does not have an
extension (as yet) but already carries the obligation that some particular individual con-
stants be part of their extensions. Those elements constitute “contracts” that must be
honored as soon as the type’s extension becomes known (either positively—removing
the honored contract; or, negatively—causing a type error).

Extensional types that have been included are set types, range types (integer and
floating-point), and enumeration types. Other dynamic types could of course be added
as needed (e.g., lists, bags, etc.).

Intensional types can be accommodated by defining new opaque types—e.g., in or-
der to define non-negative numbers, we introduce a new (opaque) type Nat as a dy-
namically constrained Int type whose verifyConditionmethod ensures that only
non-negative integer values may be used for this type.

5 Computing with Collections

There are two classes defined for such expressions: 〈kernel〉.Homomorphism.java
and 〈kernel〉.Comprehension.java. These classes are based on the formal no-

21 e.g., à la Java arrays.

136 H. Aı̈t-Kaci

tion of monoid homomorphisms and comprehension as defined in query-language for-
malisms [5,6,7,8].22

These two classes of expressions use monoid homomorphisms as declarative iter-
ators. Thus, henceforth, by homomorphism we mean specifically monoid homomor-
phism. For our purposes, a monoid is a set of data values or structures (i.e., a data type)
endowed with an associative binary operation and an identity element. Examples are
given in Fig. 4. Monoid homomorphisms are quite useful for expressing a certain kind
of iteration declaratively.

Type Operation Identity

Int +Int 0

Int ∗Int 1

Int maxInt −∞Int

Int minInt +∞Int

Real +Real 0.0

Real ∗Real 1.0

Real maxReal −∞Real

Real minReal +∞Real

Boolean orBoolean false

Boolean andBoolean true

set data structures set union the empty set {}
list data structures list concatenation the empty list []
. . .

Fig. 4. Examples of some familiar monoids

The class Homomorphism is the class of objects denoting (monoid) homomor-
phisms. An instance of such a class defines all the needed parameters for representing
and iterating through a collection, applying a function to each element, accumulating
the results along the way with an operation, and returning the end result. More pre-
cisely, it is the built-in version of the general computation scheme whose instance is the
following “hom” functional, which may be formulated recursively, for the case of a
list collection, as:

hom11⊕
⊕ (f)[] = 11⊕

hom11⊕
⊕ (f)[H |T] = f(H)⊕ hom11⊕

⊕ (f)T
(10)

Clearly, this scheme extends a function f to a homomorphism of monoids, from the
monoid of lists to the monoid defined by 〈⊕, 11⊕〉.
22 See Appendix Section E for a refresher on monoid homomorphisms and comprehensions.

An Abstract, Reusable, and Extensible Programming Language Design Architecture 137

Thus, an object of this class denotes the result of applying such a homomorphic
extension of a function (f) to an element of collection monoid (i.e., a data structure
such as a set, a list, or a bag), the image monoid being implicitly defined by the binary
operation (⊕)—also called the accumulation operation. It is made to work iteratively.

For technical reasons, we need to treat specially so-called collection homomor-
phisms; i.e., those whose accumulation operation constructs a collection, such as a set.
Although a collection homomorphism can conceptually be expressed with the general
scheme, the function applied to an element of the collection will return a collection
(i.e., a free monoid) element, and the result of the homomorphism is then the result of
tallying the partial collections coming from applying the function to each element into
a final “concatenation.”

Other (non-collection) homomorphisms are called primitive homomorphisms. For
those, the function applied to all elements of the collection will return a computed ele-
ment that may be directly composed with the other results. Thus, the difference between
the two kinds of (collection or primitive) homomorphisms will appear in the typing and
the code generated (collection homomorphism requiring an extra loop for tallying par-
tial results into the final collection). It is easy to make the distinction between the two
kinds of homomorphisms thanks to the type of the accumulation operation (see below).

Therefore, a collection homomorphism expression constructing a collection of type
coll(T) consists of:

– the collection iterated over—of type coll′(T ′);
– the iterated function applied to each element—of type T ′ → coll(T); and,
– the operation “adding” an element to a collection—of type T, coll(T)→ coll(T).

A primitive homomorphism computing a value of type T consists of:

– the collection iterated over—of type coll′(T ′);
– the iterated function applied to each element—of type T ′ → T ; and,
– the monoid operation—of type T, T → T .

Even though the scheme of computation for homomorphisms described above is
correct, it is not often used, especially when the function already encapsulates the ac-
cumulation operation, as is always the case when the homomorphism comes from the
desugaring of a comprehension—(see below). Then, such a homomorphism will di-
rectly side-effect the collection structure specified as the identity element with a func-
tion of the form fun x · x⊕ 11⊕ (i.e., adding element x to the collection) and dis-
pense altogether with the need to accumulate intermediate results. We shall call those
homomorphisms in-place homomorphisms. To distinguish them and enable the sup-
pression of intermediate computations, a flag indicating that the homomorphism is to
be computed in-place is provided. Both primitive and collection homomorphisms can
be specified to be in-place. If nothing regarding in-place computation is specified for a
homomorphism, the default behavior will depend on whether the homomorphism is col-
lection (default is in-place), or primitive (default is not in-place). Methods to override
the defaults are provided.

For an in-place homomorphism, the iterated function encapsulates the operation,
which affects the identity element, which thus accumulates intermediate results and no

138 H. Aı̈t-Kaci

further composition using the operation is needed. This is especially handy for collec-
tions that are often represented, for (space and time) efficiency reasons, by iteratable
bulk structures constructed by allocating an empty structure that is filled in-place with
elements using a built-in “add” method guaranteeing that the resulting data structure is
canonical—i.e., that it abides by the algebraic properties of its type of collection (e.g.,
adding an element to a set will not create duplicates, etc.).

Although monoid homomorphisms are defined as expressions in the kernel, they
are not meant to be represented directly in a surface syntax (although they could, but
would lead to rather cumbersome and not very legible expressions). Rather, they are
meant to be used for expressing higher-level expressions known as monoid comprehen-
sions, which offer the advantage of the familar (set) comprehension notation used in
mathematics, and can be translated into monoid homomorphisms to be type-checked
and evaluated. This is what the kernel class Comprehension encapsulates, as it is
defined relying on the class Homomorpism, exactly as its formal definition does.

A monoid comprehension is an expression of the form:

〈⊕, 11⊕〉{e | q1, . . . , qn} (11)

where 〈⊕, 11⊕〉 define a monoid, e is an expression, and the q i’s are qualifiers. A qual-
ifier is either an expression e or a pair x ← e, where x is a variable and e is an expres-
sion. The sequence of qualifiers may also be empty. Such a monoid comprehension is
just syntactic sugar that can be expressed in terms of homomorphisms as follows:

〈⊕, 11⊕〉{e | } def= e⊕ 11⊕

〈⊕, 11⊕〉{e | x ← e′, Q} def= hom
11⊕
⊕ [λx.〈⊕, 11⊕〉{e | Q}](e′)

〈⊕, 11⊕〉{e | c, Q} def= if c then 〈⊕, 11⊕〉{e | Q} else 11⊕

(12)

In other words, a comprehension is fully expressible in terms of compositions of
homomorphims. Comprehensions are also interesting as they may be subject to trans-
formations leading to more efficient evaluation than their simple “nested loops” oper-
ational semantics (by using “unnesting” techniques and using relational operations as
implementation instructions [32,33]).

Although a monoid comprehension can be effectively computed using nested loops
(i.e., using a simple iteration semantics), such would be in general rather inefficient.
Rather, an optimized implementation can be achieved by various syntactic transforma-
tion expressed as rewrite rules. Thus, the principal benefit of using monoid comprehen-
sions is to formulate efficient optimizations on a simple and uniform general syntax of
expressions irrespective of specific monoids [5,6,32,7,33]. All the attributes of the syn-
tax of monoid comprehensions derived from monoid homomorphisms are represented
in these type classes.

Thus, monoid comprehensions allow the formulation of “declarative iteration.” Note
the fact mentioned earlier that a homomorphism coming from the translation of a com-
prehension encapsulates the operation in its function. Thus, this is generally taken to
advantage with operations that cause a side-effect on their second argument to enable
an in-place homomorphism to dispense with unneeded intermediate computation.

An Abstract, Reusable, and Extensible Programming Language Design Architecture 139

6 Conclusion

6.1 Recapitulation

In this document we summarized the main characteristics of an abstract, reusable,
and extensible programming language architecture, and its implementation in Java. We
overviewed original generic syntax-processing tools that have been conceived, imple-
mented, and used to ease the experimental front-end development for language process-
ing systems. This consisted of Jacc, a flexible metacompiler all done in 100%-pure Java.
We explained the machinery needed to extend LALR-parsing to enable dynamic opera-
tors à la Prolog. We gave a high-level description of the architectural attributes of a set
of kernel classes of programming language constructs and how they are processed for
typing, compiling, and executing. We presented our architecture general processing dia-
gram taking a kernel expression into straightline abstract-machine code. We discussed a
type system that is the basis for a polymorphic type inference abstract machine enabling
multiple-type overloading, type encapsulation, object-orientation, and type (un)boxing
analysis. We described the type language primitives and constructors, and how they
were analyzed for efficient code generation and execution. We explained our implemen-
tation of type-checking and how execution of declarative iteration over collections may
be specified using the notion of monoid homomorphism and comprehension as used
in object-oriented database query languages to generate efficient collection-processing
code.

For the sake of making this document self-contained, we append below a set of sec-
tions of tutorial nature giving background material and finer-point discussions regarding
what was presented.

6.2 What’s next?

This architecture offers a compromise between formal executable specification systems
(e.g., [34,23]) and pragmatic needs for practical language prototyping backward com-
patible with popular existing tools (yacc, Java), while staying an extensible system—a
poor man’s language kit?. . . It enables fast and low-cost development of programming
languages with basic and advanced features using familiar programming idioms like
yacc and Java with a relatively high efficiency and confidence of correctness.

Importantly, it is open and favors ease of extension as well as interoperability with
popular representation standards such as the W3C’s. As mentioned several times, and
made explicit in the title, this is work to be continued. Indeed, more tools and capa-
bilities are to be added as this author’s sees the need. The system has shown itself a
practical and useful experimental tool. However, much more remains to be done (e.g.,
namespace and access management, rule-based programming, logic programming, finer
type logics, etc., . . .). Here are a few of the most immediate on our agenda.

– Notation—The next step is to extend Jacc by providing other structure-generating
options besides XML, such as the JavaScript Object Notation (JSON)23 and its

23 http://www.json.org/

http://www.json.org/

140 H. Aı̈t-Kaci

version for Linked Data (JSON-LD).24 With this tool, it will then be easier to ex-
periment using Jacc to generate RDF-triples (or variations thereof) as compilation
schemes from high-level (i.e., more legible and user-friendly) KR languages (such
as, e.g.,OSF or LIFE syntax—or even higher level; e.g., NL dialects).

– Typing—Truly polymorphic object-oriented subtyping à la Gesberg, et al. [21,22],
or Satisfiability Modulo Theories à la Bierman et al. [23,24]. This is indeed a most
desired set of type-analytical capabilities to enable subtyping and class inheritance
in our type logic. The type-checking rules given for these systems are the best
candidates to use for this objective.

– Semantics— The most ambitious next step in terms of semantics, would be to ex-
tend the current design with additional abstract meta-constructs for LP [17] and
CLP [25] (and LIFE [9,10] in particular).

– Pragmatics—Not much has been said about the backend system.25 Among the most
desired to be done is a graphical front end based on Eclipse.26 Wrapping all the
backend tools and services in such a front-end would greatly help further meta-
development.

– Implementation—Once abstracted into stable interfaces, any design may then be
made more efficient where needed since implementation has thus been made inde-
pendent. Attention may then be safely given to clever optimization of any type of
algorithms used in the implementation of these interfaces, relying on time-tested
techniques [35].

Appendix

In order to make this article self-contained, we include next a set of tutorials that over-
view essential background notions. Thus, this appendix consists of the following sec-
tions. Section A recalls the peculiar way that Prolog uses to enable changing the syntac-
tic properties of its operators dynamically—i.e., at run time. Section B describes how a
few familiar programming language contructs may be specified as classes of objects and
how these classes are processed in various syntax, typing, or execution contexts. Sec-
tion C recounts notions on algebraic monoids. Section D is a reminder of the abstract
syntax and type inference logic for a basic typed polymorphic λ-calculus with tupling.
Section E presents OQL, an Object Query Language extending this basic λ-calculus into
a monoid comprehension calculus dealing with collection data in a declarative manner
thanks to monoid homomorphisms. Section F is a brief specification of the backend
tooling needed to complete the system,

A Prolog-style Dynamic Operators

In Prolog, the built-in operator ‘op/3’ offers the user the means to declare or modify
the syntax of some of its operators. For example, as will be explained below:

24 http://json-ld.org/
25 See Appendix Section F
26 http://www.eclipse.org/

http://json-ld.org/
http://www.eclipse.org/

An Abstract, Reusable, and Extensible Programming Language Design Architecture 141

?- op(500,yfx,+).

declares the symbol ‘+’ to be an infix binary left-associative operator with binding tight-
ness 500. The second argument of the built-in predicate op/3 is called the operator’s
specifier. It is a symbol that encodes three kinds of information concerning the operator;
namely:

– arity (unary or binary),
– “fixity” (prefix, infix, or postfix),
– associativity (left-, right-, or non-associative).

The specifier is an identifier consisting of either two or three of the letters ‘f’, ‘x’, and
‘y’, which are interpreted as follows. The letter ‘f’ stands for the operator’s position in
an expression (its fixity), and the letters ‘x’ and ‘y’ stand for the arguments’ positions.
These letters are mnemonics for “functor,” (‘f’) “yes,” (‘y’) and “no” (‘x’). A ‘y’
occurring on the left (resp., right) of ‘f’, means that the operator associates to the left
(resp., right). An ‘x’ occurring on the left (resp., right) of ‘f’, means that the operator
does not associate to the left (resp., right). Thus, the possible operator specifiers are
shown in Table 1.27

Table 1. Mnemonic operator specifiers in Prolog

Specifier Arity Fixity Associativity

fx unary prefix non-associative

fy unary prefix right-associative

xf unary postfix non-associative

yf unary postfix left-associative

xfx binary infix non-associative

xfy binary infix right-associative

yfx binary infix left-associative

The binding tightness used by Prolog’s ‘op/3’ works in fact as the opposite of
the precedence level used in parsing: the smaller a Prolog operator’s binding tightness
measure is, the more it takes precedence for parsing. These binding tightness measures
range inclusively from 1 (maximum precedence) to 1200 (minimum precedence).

The third argument of ‘op/3’ can be any syntactically well-formed Prolog functor.
In particular, these need not be known as operator prior to runtime. Prolog’s tokenizer
only recognizes such a token as a functor. Thus, any functor, whether declared operator
or not, can always be parsed as a prefix operator preceding a parenthesized comma-
separated sequence of arguments. Whether it is a declared operator determines how it
may be parsed otherwise. In Sicstus Prolog, for example:
27 Note that ‘yfy’ is not allowed as an operator specifier because that would mean an ambiguous

way of parsing the operator by associating either to the left or to the right.

142 H. Aı̈t-Kaci

| ?- X = 1 + 2.
X = 1+2 ?
yes
| ?- X = +(1,2).
X = 1+2 ?
yes

Prolog’s parser can accommodate dynamic operators for two reasons:

1. The syntax of Prolog is completely uniform - there is only one syntactic construct:
the first-order term. Even what appear to be punctuation symbols are in fact func-
tors (e.g., ‘:-’, ‘,’, ‘;’, etc., . . .). Indeed, in Prolog everything is either a logical
variable or a structure of the form f(t1, . . . , tn).

2. Prolog parser’s is an operator-precedence parser where precedence and associativ-
ity information is kept as a dynamic structure.28

Operator-precedence parsing is a bottom-up shift-reduce method that works sim-
ply by shifting over the input looking for a handle in a sentential form being built on
the stack, and reducing when such a handle is recognized. A handle is the substring
of a sentential form whose right end is the leftmost operator whose following opera-
tor has smaller precedence, and whose left end is the rightmost operator to the left of
this right-end operator (inclusive), whose preceding operator has smaller precedence.
This substring includes any nonterminals on either ends. For example, if ‘*’ has higher
precedence than ‘+’, the handle in ‘E + E * E + E’ is ‘E * E’.

Operator-precedence parsing is possible only for a very restricted class of grammars
- the so-called “Operator Grammars.” A context-free grammar is an Operator Grammar
if and only if no production’s right-hand side is empty or contains two adjacent non-
terminals. For example, the grammar:

E : ’id’ | P E | E O E | ’(’ E ’)’ ;
P : ’-’ ;
O : ’+’ | ’*’ | ’-’ | ’/’ ;

is not an operator grammar. But the equivalent grammar:

E : ’id’ | ’-’ E | E ’+’ E | E ’*’ E | E ’-’ E
| E ’/’ E | ’(’ E ’)’ ;

is. It is not difficult to see that a Prolog term can easily be recognized by an operator
grammar. Namely,

T : ’var’ | ’fun’ | ’fun’ ’(’ B ’)’
| ’fun’ T | T ’fun’ | T ’fun’ T | ’(’ T ’)’ ;

B : T | T ’,’ B ;

which can thus easily accommodate dynamic operators.

28 See “the Dragon Book,” [27]—Section 4.6, pp. 203–215.

An Abstract, Reusable, and Extensible Programming Language Design Architecture 143

B Structure of Kernel Expressions

The class 〈kernel〉.Expression.java is the mother of all expressions in the kernel
language. It specifies the prototypes of the methods that must be implemented by all
expression subclasses. The subclasses of Expression are:

– Constant: constant (void, boolean, integer, real number, object);
– Abstraction: functional abstraction (à la λ-calculus);
– Application: functional application;
– Local: local name;
– Parameter: a function’s formal parameter (really a pseudo-expression as it is

not fully processed as a real expression and is used as a shared type information
repository for all occurrences in a function’s body of the variable it stands for);

– Global: global name;
– Dummy: temporary place holder in lieu of a name prior to being discriminated into

a local or global one.
– Definition: definition of a global name with an expression defining it in a

global store;
– IfThenElse: conditional;
– AndOr: non-strict Boolean conjunction and disjunction;
– Sequence: sequence of expressions (presumably with side-effects);
– Let: lexical scoping construct;
– Loop: conditional iteration construct;
– ExitWithValue: non-local function exit;
– Assignment: construct to set the value of a local or a global variable;
– NewArray: construct to create a new (multidimensional) array;
– ArraySlot: construct to access the element of an array;
– ArraySlotUpdate: construct to update the element of an array;
– Tuple: construct to create a new position-indexed tuple;
– NamedTuple: construct to create a new name-indexed tuple;
– TupleProjection: construct to access the component of a tuple;
– TupleUpdate: construct to update the component of a tuple;
– NewObject: construct to create a new object;
– DottedNotation: construct to emulate traditional object-oriented “dot” deref-

erencing notation;
– FieldUpdate: construct to update the value of an object’s field;
– ArrayExtension: construct denoting a literal array;
– ArrayInitializer: construct denoting a syntactic convenience for specifying

initialization of an array from an extension;
– Homomorphism: construct denoting a monoid homomorphism;
– Comprehension: construct denoting a monoid comprehension;

To illustrate the process, we next describe a few kernel constructs. A kernel expres-
sion description usually consist of some of the following items:

– ABSTRACT SYNTAX—describes the abstract syntax form of the kernel expression.

144 H. Aı̈t-Kaci

– OPERATIONAL SEMANTICS—for unfamiliar expressions, this describes informally
the meaning of the expression. The notation [[e]], where e is an abstract syntax ex-
pression, denotes the (mathematical) semantic denotation of e. The notation [[T]],
where T is a type, denotes the (mathematical) semantic denotation of T—namely,
[[T]] is the set of all abstract denotations [[e]]’s such that kernel expression e has
type T .

– TYPING RULE—this describes more formally how a type should be verified or in-
ferred using formal rules à la Plotkin’s Structural Operational Semantics for typing
the kernel expression, whose notation is briefly recalled as follows [36,37].
A typing judgment is a formula of the form Γ
 e : T , and is read as: “under
typing context Γ , expression e has type T .”
In its simplest form, a typing context Γ is a function mapping the parameters of λ-
abstractions to their types. In the formal presentation of an expression’s typing rule,
the context keeps the type binding under which the typing derivation has progressed
up to applying the rule in which it occurs.
The notation Γ [x : T] denotes the context defined from Γ as follows:

Γ [x : T](y) def=
{

T if y = x;
Γ (x) otherwise.

(13)

A typing rule is a formula of the form:

J1, . . . , Jn

J
(14)

where J and the Ji’s, i = 0, . . . , n, n ≥ 0, are typing judgments. This “fraction”
notation expresses essentially an implication: when all the formulae of the rule’s
premises (the Ji’s in the fraction’s “numerator”) hold, then the formula in the rule’s
conclusion (the fraction’s “denominator”) holds too. When n = 0, the rule has no
premise—i.e., the premise is tautologically true (e.g., 0 = 0)—the rule is called an
axiom and is written with an empty “numerator.”
A conditional typing rule is a typing rule of the form:

J1, . . . , Jn

J
if c(J1, . . . , Jn) (15)

where c is a Boolean metacondition involving the rule’s judgments.
A typing rule (or axiom), whether or not in conditional form, is usually read back-
wards (i.e., upwards) from the rule’s conclusion (the bottom part, or “denomina-
tor”) to the rule’s premises (the top part, or “numerator”). Namely, the rule of the
form:

Γ1
 e1 : T1, . . . , Γn
 en : Tn

Γ
 e : T
(16)

is read thus:

An Abstract, Reusable, and Extensible Programming Language Design Architecture 145

“The expression e has type T under typing context Γ if the expression e1

has type T1 under typing context Γ1, and . . . , the expression en has type
Tn under typing context Γn.”

For example:

Γ
 c : Boolean, Γ
 e1 : T , Γ
 e2 : T

Γ
 if c then e1 else e2 : T

is read thus:

“The expression if c then e1 else e2 has type T under typing context Γ if
the expression c has type Boolean under typing context Γ and if both
expressions e1 and e2 have the same type T under the same typing context
Γ .”

With judgments spelled-out, a conditional typing rule (15) looks like:

Γ1
 e1 : T1, . . . , Γn
 en : Tn

Γ
 e : T
if cond(Γ, Γ1, . . . , Γn,

e, e1, . . . , en,
T , T1, . . . , Tn)

(17)

where “cond(Γ, Γ1, . . . , Γn, e, e1, . . . , en, T , T1, . . . , Tn)” is a Boolean meta-
condition involving the contexts, expressions, and types. Such a rule is read thus:

“if the meta-condition holds, then the expression e has type T under
typing context Γ if the expression e1 has type T1 under typing context
Γ1, and . . . , the expression en has type Tn under typing context Γn.”

An example of a conditional rule is that of abstractions that must take into account
whether or not the abstraction is exitable—i.e., it may be exited non-locally:

Γ [x1 : T1] · · · [xn : Tn]
 e : T

Γ
 fun x1, . . . , xn · e : T1, . . . , Tn → T
if fun x1, . . . , xn · e

is not exitable.

Similarly, a typing axiom:

Γ
 e : T
(18)

is read as: “The expression e has type T under typing context Γ ” and a conditional
typing axiom is a typing axiom of the form:

Γ
 e : T
if c(Γ, e, T) (19)

where c(Γ, e, T) is a Boolean meta-condition on typing context Γ , expression e,
and type T and is read as, “if the meta-condition c(Γ, e, T) holds then the ex-
pression e has type T under typing context Γ .”

146 H. Aı̈t-Kaci

– COMPILING RULE—describes the way the expression’s components are mapped into
a straightline sequence of instructions. The compiling rule for expression e is given
as a function compile[[]] of the form:

compile[[e]] = INSTRUCTION 1

...
INSTRUCTIONn

(20)

The ConstantExpression. Constants represents the built-in primitive (unconstructed)
data elements of the kernel language.

– ABSTRACT SYNTAX A Constant expression is an atomic literal. Objects of class
Constant denote literal constants: the integers (e.g.,−1, 0, 1, etc.), the real num-
bers (e.g., −1.23, . . . , 0.0, . . . , 1.23, etc.), the characters (e.g., ′a′, ′b′, ′@′, ′#′,
etc.), and the constants void, true, and false. The constant void is of type Void,
such that:

[[Void]] def= {[[void]]}

and the constants:

true and false of type Boolean, such that:

[[Boolean]] def= {[[false]], [[true]]}.

Other built-in types are:

[[Int]] def= Z = {. . . , [[−1]], [[0]], [[1]], . . .}

[[Real]] def= R = {. . . , [[−1.23]], . . . , [[0.0]], . . . , [[1.23]], . . .}

[[Char]] def= set of all Unicode characters

[[String]] def= set of all finite strings of Unicode characters.

Thus, the Constant expression class is further subclassed into: Int, Real,
Char, NewObject, and BuiltinObjectConstant, whose instances denote,
respectively: integers, floating-point numbers, characters, new objects, and built-in
object constants (e.g., strings).

An Abstract, Reusable, and Extensible Programming Language Design Architecture 147

– TYPING RULE The typing rules for each kind of constant are:

[void]
Γ
 void : Void

[true]
Γ
 true : Boolean

[false]
Γ
 false : Boolean

[int]
Γ
 n : Int

if n is an integer

[real]
Γ
 n : Real

if n is a floating-point number

[char]
Γ
 c : Char

if c is a character

[string]
Γ
 s : String

if s is a string

(21)

– COMPILING RULE Compiling a constant consists in pushing the value it denotes on
the stack of corresponding sort.

[void] compile[[void]] = NO OP

[true] compile[[true]] = PUSH TRUE

[false] compile[[false]] = PUSH FALSE

[int] compile[[n]] = PUSH I n if n is an integer

[real] compile[[n]] = PUSH R n if n is a floating-point number

[char] compile[[c]] = PUSH I c if c is a character

[string] compile[[s]] = PUSH O s if s is a string

(22)

The Abstraction Expression

– ABSTRACT SYNTAX This is the standard λ-calculus functional abstraction, possibly
with multiple parameters. Rather than using the conventional λ notation, we write
an abstraction as:

fun x1, . . . , xn · e (23)

148 H. Aı̈t-Kaci

where the xi’s are abstraction parameters—identifiers denoting variables local to
the expression e, the abstraction’s body.

– TYPING RULE There are two cases to consider depending on whether the abstraction
is or not exitable. An exitable abstraction is one that corresponds to a real source
language’s function from which a user may exit non-locally. Other (non-exitable)
abstractions are those that are implicitly generated by syntactic desugaring of sur-
face syntax. It is the responsibility of the parser to identify the two kinds of abstrac-
tions and mark as exitable all and only those abstractions that should be.

Γ [x1 : T1] · · · [xn : Tn]
 e : T

Γ
 fun x1, . . . , xn · e : T1, . . . , Tn → T
if fun x1, . . . , xn · e

is not exitable.
(24)

If the abstraction is exitable however, we must record it in the typing context.
Namely,let a = fun x1, . . . , xn · e; then:

Γℵ←a[x1 : T1] · · · [xn : Tn]
 e : T

Γ
 a : T1, . . . , Tn → T
if a is exitable (25)

where Γℵ←a is the same context as Γ except that ℵΓℵ←a

def= a.

– COMPILING RULE Compiling an abtraction consists in compiling a flattened version
of its body (uncurrying and computing parameters offsets), and then generating an
instruction pushing a closure on the stack.

compile[[fun x1, . . . , xn · e]] = compile[[(flatten(e), offsets(x1, . . . , xn)]]
PUSH CLOSURE

(26)

The Application Expression

– ABSTRACT SYNTAX This is the familiar function call:

f(e1, . . . , en) (27)

– TYPING RULE The type rule is as expected, modulo all potential un/currying that
may be needed:

Γ
 e1 : T1, · · · , Γ
 en : Tn, Γ
 f : T1, . . . , Tn → T

Γ
 f(e1, . . . , en) : T
(28)

– COMPILING RULE

compile[[f(e1, . . . , en)]] = compile[[en]]
...
compile[[e1]]
compile[[f]]
APPLY

(29)

An Abstract, Reusable, and Extensible Programming Language Design Architecture 149

The IfThenElse Expression

– ABSTRACT SYNTAX This is the familiar conditional:

if c then e1 else e2

– TYPING RULE

Γ
 c : Boolean, Γ
 e1 : T , Γ
 e2 : T

Γ
 if c then e1 else e2 : T
(30)

– COMPILING RULE

compile[[if c then e1 else e2]] = compile[[c]]
JUMP ON FALSE jof
compile[[e1]]
JUMP jmp

jof : compile[[e2]]
jmp : . . .

(31)

The AndOr Expression

– ABSTRACT SYNTAX

e1 and/or e2

– TYPING RULE

Γ
 e1 : Boolean, Γ
 e2 : Boolean

Γ
 e1 and/or e2 : Boolean
(32)

– COMPILING RULE

compile[[e1 and e2]] = compile[[e1]]
JUMP ON FALSE jof
compile[[e2]]
JUMP ON TRUE jot

jof : PUSH FALSE

JUMP jmp
jot : PUSH TRUE

jmp : . . .

(33)

compile[[e1 or e2]] = compile[[e1]]
JUMP ON TRUE jot
compile[[e2]]
JUMP ON FALSE jof

jot : PUSH TRUE

JUMP jmp
jof : PUSH FALSE

jmp : . . .

(34)

150 H. Aı̈t-Kaci

The Sequence Expression

– ABSTRACT SYNTAX

{ e1; . . . ; en }

– TYPING RULE

Γ
 e1 : T1, . . . , Γ
 en : Tn

Γ
 { e1; . . . ; en } : Tn
(35)

– COMPILING RULE

compile[[{ e1; . . . ; en }]] = compile[[e1]]
POP sort(e1)
...
compile[[en]]

(36)

The WhileDo Expression

– ABSTRACT SYNTAX

while c do e (37)

where c and e are expressions.

– TYPING RULE

Γ
 c : Boolean, Γ
 e : T

Γ
 while c do e : Void
(38)

– COMPILING RULE

compile[[while c do e]] = loop : compile[[c]]
JUMP ON FALSE jof
compile[[e]]
JUMP loop

jof :

(39)

An Abstract, Reusable, and Extensible Programming Language Design Architecture 151

The ExitWithValue Expression. This is a primitive for so-called non-local exit,
and may be used to express more complicated control structures such as exception
handling.

– ABSTRACT SYNTAX

exit with v (40)

where v is an expression.

– OPERATIONAL SEMANTICS Normally, exiting from an abstraction is done simply by
“falling off” (one of) the tip(s) of the expression tree of the abstraction’s body.
This operation is captured by the simple operational semantics of each of the three
RETURN instructions. Namely, when executing a RETURN instruction, the runtime
performs the following three-step procedure:
1. it pops the result from its result stack;29

2. it restores the latest saved runtime state (popped off the saved-state stack);
3. it pushes the result popped in Step 1 onto the restored state’s own result stack.

Then, control follows up with the next instruction.
However, it is also often desirable, under certain circumstances, that computation
not be let to proceed further at its current level of nesting of exitable abstractions.
Then, computation may be allowed to return right away from this current nesting
(i.e., as if having fallen off this level of exitable abstraction) when the conditions
for this to happen are met. Exiting an abstraction thus must also return a specific
value that may be a function of the context. This is what the kernel construction
exit with v expresses. This kernel construction is provided in order to specify that
the current local computation should terminate without further ado, and exit with
the value denoted by the specified expression.

– TYPING RULE Now, there are several notions in the above paragraphs that need some
clarification. For example, what an “exitable” abstraction is, and why worry about
a dedicated construct in the kernel language for such a notion if it does nothing
more than what is done by a RETURN instruction.
First of all, from its very name exit with v assumes that computation has entered
that from which it must exit. This is an exitable abstraction; that is, the latest
λ-abstraction having the property of being exitable. Not all abstractions are ex-
itable. For example, any abstraction that is generated as part of the target of some
other kernel expression’s syntacting sugar (e.g., let x1 = e1; . . . ; xn = en; in e or
〈⊕, 11⊕〉{e | x1 ← e1, . . . , xn ← en}, and generally any construct that hide im-
plicit abstractions within), will not be deemed exitable.
Secondly, exiting with a value v means that the type T of v must be congruent with
what the return type of the abstraction being exited is. In other words:

Γ
 ℵΓ : T ′ → T , Γ
 v : T

Γ
 exit with v : T
(41)

where ℵΓ denotes the latest exitable abstraction in the context Γ .
The above scheme indicates the following necessities:

29 Where stack here means “stack of appropriate runtime sort;” approppriate, that is, as per the
instruction’s runtime sort—viz., ending in I for INT, R for REAL, or O for OBJECT.

152 H. Aı̈t-Kaci

1. The typing rules for an abstraction deemed exitable must record in its typing
context Γ the latest exitable abstraction, if any such exists; (if none does, a
static semantics error is triggered to indicate that it is impossible to exit from
anywhere before first entering somewhere).30

2. Congruently, the APPLY instruction of an exitable closure must take care of
chaining this exitable closure before it pushes a new state for it in the saved
state stack of the runtime system with the last saved exitable closure, and mark
the saved state as being exitable; dually, this exitable state stack must also be
popped upon “falling off”—i.e., normally exiting—an exitable closure. That
is, whenever an exitable state is restored.

3. New non-local return instructions NL RETURN (for each runtime sort) must be
defined like their corresponding RETURN instructions except that the runtime
state to restore is the one popped out of the exitable state stack.

– COMPILING RULE

compile[[exit with v]] = compile[[v]]
NL RETURN sort(v) (42)

C Monoids

In this section, all notions and notations relating to monoids as they are used in this
paper are recalled and justified.

Mathematically, a monoid is a non-empty set equipped with an associative internal
binary operation and an identity element for this operation. Formally, let S be a set,
� a function from S × S to S, and ε ∈ S; then, 〈S, �, ε〉 is a monoid iff, for any
x, y, z in S:

x � (y � z) = (x � y) � z (43)

and

x � ε = ε � x = ε. (44)

Most familiar mathematical binary operations define monoids. For example, taking
the set of natural numbers N, and the set of boolean values B = {true, false}, the
following are monoids:

– 〈N, +, 0〉,
– 〈N, ∗, 1〉,
– 〈N, max, 0〉,
– 〈B,∨, false〉,
– 〈B,∧, true〉.

30 This is why Typing Rule (25) needs to treat both kinds of abstractions.

An Abstract, Reusable, and Extensible Programming Language Design Architecture 153

The operations of these monoids are so familiar that they need not be explicated. For
us, they have a “built -in” semantics that allows us to compute with them since pri-
mary school. Indeed, we shall refer to such readily interpreted monoids as primitive
monoids.31

Note that the definition of a monoid does not preclude additional algebraic structure.
Such structure may be specified by other equations augmenting the basic monoid equa-
tional theory given by the conjunction of equations (43) and (44). For example, all five
monoids listed above are commutative; namely, they also obey equation (45):

x � y = y � x (45)

for any x, y. In addition, the three last ones (i.e., max, ∨, and ∧) are also idempotent;
namely, they also obey equation (46):

x � x = x (46)

for any x.
Not all monoids are primitive monoids. That is, one may define a monoid purely syn-

tactically whose operation only builds a syntactic structure rather than being interpreted
using some semantic computation. For example, linear lists have such a structure: the
operation is list concatenation and builds a list out of two lists; its identity element is
the empty list. A syntactic monoid may also have additional algebraic structure. For
example, the monoid of bags is also defined as a commutative syntactic monoid with
the disjunct union operation and the empty bag as identity. Or, the monoid of sets is a
commutative and idempotent syntactic monoid with the union operation and the empty
set as identity.

Because they are not interpreted, syntactic monoids pose a problem as far as repre-
sentation of its elements is concerned. To illustrate this, let us consider an empty-theory
algebraic structure; that is, one without any equations—not even associativity nor iden-
tity. Let us take such a structure with one binary operation � on, say, the natural numbers
N. Saying that � is a “syntactic” operation means that it constructs a syntactic term (i.e.,
an expression tree) by composing two other syntactic terms. We thus can define the
set T� of �-terms on some base set, say the natural numbers, inductively as the limit
∪n≥0Tn where,

Tn
def=

⎧⎨
⎩

N if n = 0

{t1 � t2 | ti ∈ Tn−1, i = 1, 2} if n > 0.
(47)

31 We call these monoids “primitive” following the presentation of Fegaras and Maier [8] as it ad-
heres to a more operational (as opposed to mathematical) approach more suitable to computer-
scientists. Mathematically, however, these should be called “semantic” monoids since they are
interpreted by the computation semantics of their operations. See Appendix Section E.1 for an
overview of this formalism.

154 H. Aı̈t-Kaci

Clearly, the set T� is well defined and so is the � operation over it. Indeed, � is a bona
fide function from T� × T� to T� mapping two terms t1 and t2 in T� into a unique term
in T�—namely, t1 � t2. This is why T� is called the syntactic algebra.32

Let us now assume that the � operation is associative—i.e., that �-terms verify Equa-
tion (43). Note that this equation defines a (syntactic) congruence on T� which identifies
terms such as, say, 1 � (2 � 3) and (1 � 2) � 3. In fact, for such an associative � opera-
tion, the set T� defined in Equation (47) is not the appropriate domain. Rather, the right
domain is the quotient set whose elements are (syntactic) congruence classes modulo
associativity of �. Therefore, this creates an ambiguity of representation of the syntactic
structures.33

Similarly, more algebraic structure defined by larger equational theories induces
coarser quotients of the empty-theory algebra by putting together in common congru-
ence classes all the syntactic expressions that can be identified modulo the theory’s
equations. The more equations, the more ambiguous the syntactic structures of expres-
sions. Mathematically, this poses no problem as one can always abstract away from
individuals to congruence classes. However, operationally one must resort to some con-
crete artifact to obtain a unique representation for all members of the same congru-
ence class. One way is to devise a canonical representation into which to transform all
terms. For example, an associative operation could systematically “move” nested sub-
trees from its left argument to its right argument—in effect using Equation (43) as a
one-way rewrite rule. However, while this is possible for some equational theories, it is
not so in general—e.g., take commutativity.34

From a programming standpoint (which is ours), we can abstract away from the am-
biguity of canonical representations of syntactic monoid terms using a flat notation. For
example, in LISP and Prolog, a list is seen as the (flat) sequence of its constituents.
Typically, a programmer writes [1, 2, 1] to represent the list whose elements are 1, 2
and 1 in this order, and does not care (nor need s/he be aware) of its concrete repre-
sentation. A set—i.e., a commutative idempotent syntactic monoid—is usually denoted
by the usual mathematical notation {1, 2}, implicitly relying on disallowing duplicate
elements, not minding the order in which the elements appear. A bag, or multiset—i.e.,
a commutative but non-idempotent syntactic monoid—uses a similar notation, allowing
duplicate elements but paying no heed to the order in wich they appear; i.e., {{1, 2, 1}}
is the bag containing 1 twice, and 2 once.

32 For a fixed set of base elements and operations (which constitute what is formally called a
signature), the syntactic algebra is unique (up to isomorphism). This algebra is also called the
free, or the initial, algebra for its signature.

33 Note that this ambiguity never arises for semantic algebras whose operations are interpreted
into a unique result.

34 Such are important considerations in the field of term rewriting [38], where the problem of
finding canonical term representations for equational theories was originally addressed by
Donald Knuth and Peter Bendix in a seminal paper proposing a general effective method—
the so-called Knuth-Bendix Completion Algorithm [39]. The problem, incidentally, is only
semi-decidable. In other words, the Knuth-Bendix algorithm may diverge, although several
interesting variations have been proposed for a wide extent of practical uses (see [38] for a
good introduction and bibliography).

An Abstract, Reusable, and Extensible Programming Language Design Architecture 155

Syntactic monoids are quite useful for programming as they provide adquate data
structures to represent collections of objects of a given type. Thus, we refer to them
as collection monoids. Now, a definition such as Equation (47) for a syntactic monoid,
although sound mathematically, is not quite adequate for programming purposes. This
is because it defines the � operations on two distinct types of elements; namely, the
base elements (here natural numbers) and constructed elements. In programming, it is
desirable that operations be given a crisp type. A way to achieve this is by systematically
“wrapping” each base element x into a term such as x�ε. This “wrapping” is achieve by
associating to the monoid a function U� from the base set into the monoid domain called
its unit injection. For example, if++ is the list monoid operation for concatenating two
lists, U++(x) = [x] and one may view the list [a, b, c] as [a]++[b]++[c]. Similarly, the
set {a, b, c} is viewed as {a} ∪ {b} ∪ {c}, and the bag {{a, b, c}} as {{a}} � {{b}} � {{c}}.
Clearly, this bases the constructions on an isomorphic view of the base set rather than
the base set itself, while using a uniform type for the monoid operator. Also, because
the type of the base elements is irrelevant for the construction other than imposing the
constraint that all such elements be of the same type, we present a collection monoid as
a polymorphic data type. This justifies the formal view of monoids we give next using
the programming notion of polymorphic type.

Because it is characterized by its operation⊕, a monoid is often simply referred to as
⊕. Thus, a monoid operation is used as a subscript to denote its characteristic attributes.
Namely, for a monoid⊕,

– T⊕ is its type (i.e., ⊕ : T⊕ × T⊕ → T⊕),

– 11⊕ : T⊕ is its identity element,

– Θ⊕ is its equational theory (i.e., a subset of the set {C, I}, where C stands for
“commutative” and I for “idempotent”);

and, if it is a collection monoid,

– C⊕ is its type constructor (i.e., T⊕ = C⊕(α)),

– U⊕ : α→ C⊕(α) is its unit injection for any type variable α.

Examples of familiar monoids of both kinds are given in Table 2 in terms of the above
characteristic attributes.35

D The Typed Polymorphic λ-Calculus

We assume a set C of pregiven constants ususally denoted by a, b . . ., and a countably
infinite set of variable symbols V usually denoted by x, y, The syntax of a term
expression e of the λ-Calculus is given by the grammar shown in Fig. 5. We shall call
TΣ the set of term expressions e defined by this grammar. These terms are also called
raw term expressions.

35 If the theory is {I}—i.e., idempotent but not commutative—this defines yet another, though
unfamiliar, type of collection monoid where there may be redundant elements but only if not
adjacent.

156 H. Aı̈t-Kaci

Table 2. Attributes of a few common monoids

⊕ T⊕ 11⊕ Θ⊕
+ Int 0 {C}
∗ Int 1 {C}

max Int 0 {C, I}
∨ Boolean false {C, I}
∧ Boolean true {C, I}

⊕ C⊕ T⊕ 11⊕ U⊕(x) Θ⊕
∪ set set(α) {} {x} {C, I}
� bag bag(α) {{}} {{x}} {C}

++ list list(α) [] [x] ∅

Some primitive monoids Familiar Collection monoids

e ::= a (a ∈ C) constant

| x (x ∈ V) variable

| λx. e (x ∈ V) abstraction

| e e application

Fig. 5. Basic λ-Calculus Expressions

An abstraction λx. e defines a lexical scope for its bound variable x, whose extent is
its body e. Thus, the notion of free occurrence of a variable in a term is defined as usual,
and so is the operation e1[x← e2] of substituting a term e2 for all the free occurrences
of a variable x in a term e1. Thus, a bound variable may be renamed to a new one in its
scope without changing the abstraction.

The computation rule defined on λ-terms is the so-called β-reduction:

(λx. e1) e2 −→ e1[x← e2]. (48)

We assume a set B of basic type symbols denoted by A, B, . . ., and a countably
infinite set of type variables T V denoted by α, β, The syntax of a type τ of the
Typed Polymorphic λ-Calculus is given by the following grammar:

τ ::= A (A ∈ B) basic type
| α (α ∈ T V) type variable
| τ → τ function type

(49)

We shall call T the set of types τ defined by this grammar. A monomorphic type is a
type that contains no variable types. Any type containing at least one variable type is
called a polymorphic type.

The typing rules for the Typed Polymorphic λ-Calculus are given in Fig. 6. These
rules can be readily translated into a Logic Programming language based on Horn-
clauses such as Prolog, and used as an effective means to infer the types of expressions
based on the Typed Polymorphic λ-Calculus.

The basic syntax of the Typed Polymorphic λ-Calculus may be extended with other
operators and convenient data structures as long as typing rules for the new constructs

An Abstract, Reusable, and Extensible Programming Language Design Architecture 157

Γ � a : τ
if type(a) = τ, for any type environment Γ constant

Γ � x : τ
if Γ (x) = τ variable

Γ [x : τ1] � t : τ2

Γ � λx. t : τ1 → τ2
abstraction

Γ � t1 : τ1 → τ2, Γ � t2 : τ1

Γ � t1 t2 : τ2
application

Fig. 6. Typing rules for the typed polymorphic λ-calculus

are provided. Typically, one provides at least the set N of integer constants and B =
{true, false} of boolean constants, along with basic arithmetic and boolean operators,
pairing (or tupling), a conditional operator, and a fix-point operator. The usual arith-
metic and boolean operators are denoted by constant symbols (e.g., +, ∗,−, /,∨,∧,
etc.). Let O be this set.

The computation rules for these operators are based on their usual semantics as one
might expect, modulo transforming the usual binary infix notation to a “curryed” appli-
cation. For example, e1 + e2 is implicitly taken to be the application (+ e1) e2. Note
that this means that all such operators are implicitly “curryed.”36

For example, we may augment the grammar for the terms given in Fig. 5 with the
addiional rules in Fig. 7.

e ::= . . . λ-calculus expression

| 〈e, · · · , e〉 tupling

| e.n (n ∈ N) projection

| if e then e else e conditional

| fix e fixpoint

Fig. 7. Additional syntax for the extended λ-calculus (with Fig. 5)

36 Recall that a curryed form of an n-ary function f is obtained when f is applied to less argu-
ments than it expects; i.e., f(e1, . . . , ek), for 1 ≤ k < n. In the λ-calculus, this form is simply
interpreted as the abstraction λx1. . . . λxn−k. f(e1, . . . , ek, x1, . . . , xn−k). In their fully cur-
ried form, all n-ary functions can be seen as unary functions; indeed, with this interpretation
of curried forms, it is clear that f(e1, . . . , en) = (. . . (f e1) . . . en−1) en.

158 H. Aı̈t-Kaci

The computation rules for the other new constructs are:

〈e1, · · · , ek〉.i −→
{

ei if 1 ≤ i ≤ k
undefined otherwise

if e then e1 else e2 −→

⎧⎨
⎩

e1 if e = true

e2 if e = false

undefined otherwise

fix e −→ e (fix e)

(50)

To account for the new constructs, the syntax of types is extended accordingly to:

τ ::= Int | Boolean basic type
| α (α ∈ T V) type variable
| 〈τ, · · · , τ〉 tuple type
| τ → τ function type

(51)

We are given that type(n) = Int for all n ∈ N and that type(true) = Boolean

and type(false) = Boolean. The (fully curried) types of the built-in operators are
given similarly; namely, integer addition has type type(+) = Int → (Int→ Int),
Boolean disjuction has type type(∨) = Boolean→ (Boolean→ Boolean), etc., . . .
The additional typing rules for this extended calculus are given in Fig. 8.

Γ � t1 : τ1, · · · Γ � tk : τk

Γ � 〈t1, · · · , tk〉 : 〈τ1, · · · , τk〉 tupling

Γ � t : 〈τ1, · · · , τk〉
Γ � t.i : τi

if 1 ≤ i ≤ k tuple projection

Γ � t1 : Boolean, Γ � t2 : τ, Γ � t3 : τ

Γ � if t1 then t2 else t3 : τ
conditional

Γ � t : τ → τ

Γ � fix t : τ
fixpoint

Fig. 8. Additional typing rules for the extended typed polymorphic λ-calculus (with Fig. 6)

E Object Query Language Formalisms

In this section, I review a formal syntax for processiong collections due to Peter Bune-
man et al. [5,6] and elaborated by Leonidas Fegaras and David Maier [8] using the
notion of Monoid Comprehensions.

An Abstract, Reusable, and Extensible Programming Language Design Architecture 159

E.1 Monoid Homomorphisms and Comprehensions

The formalism presented here is based on [8] and assumes familiarity with the notions
and notations summarized in Appendix Section C. I will use the programming view of
monoids exposed there using the specific notation of monoid attributes, in particular
for sets, bags, and lists. I will also assume basic familiarity with naive λ-calculus and
associated typing as presented in Appendix Section D.

Monoid Homomorphisms. Because many operations and data structures are monoids,
it is interesting to use the associated concepts as the computational building block of
an essential calculus. In particular, iteration over collection types can be elegantly for-
mulated as computing a monoid homomorphism. This notion coincides with the usual
mathematical notion of homomorphism, albeit given here from an operational stand-
point and biased toward collection monoids. Basically, a monoid homomorphism hom

�
⊕

maps a function f from a collection monoid ⊕ to any monoid � by collecting all the
f -images of elements of a⊕-collection using the� operation. For example, the expres-
sion hom

∪
++[λx. x + 1] applied to the list [1, 2, 1, 3, 2] returns the set {2, 3, 4}.37

In other words, the monoid homomorphism hom
∪
++ of a function f applied to a list

L corresponds to the following loop computation collecting the f -images of the list
elements into a set (each f -image being a set):

result ← {};
foreach x in L do result ← result∪ f(x);
return result;

This is formalized as follows:

Definition 1 (Monoid Homomorphism). A Monoid Homomorphism hom
�
⊕ defines a

mapping from a collection homomorphism⊕ to any monoid� such that Θ⊕ ⊆ Θ� by:

hom
�
⊕[f](11⊕) def= 11�

hom
�
⊕[f](U⊕(x)) def= f(x)

hom
�
⊕[f](x⊕ y) def= hom

�
⊕[f](x)� hom

�
⊕[f](y)

for any function f : α→ T�, x : α, and y : α, where T⊕ = C⊕(α).

Again, computationally, this amounts to executing the following iteration:

result ← 11�;
foreach xi in U⊕(x1)⊕ · · · ⊕ U⊕(xn) do result ← result� f(xi);
return result;

The reader may be puzzled by the condition Θ⊕ ⊆ Θ� in Definition 1. It means that
a monoid homomorphism may only be defined from a collection monoid to a monoid
that has at least the same equational theory. In other words, one can only go from an

37 See Table 2 for notation of a few common monoids.

160 H. Aı̈t-Kaci

empty theory monoid, to either a {C}-monoid or an {I}-monoid, or yet to a {C, I}-
monoid. This requirement is due to an algebraic technicality, and relaxing it would
cause a monoid homomorphism to be ill-defined. To see this, consider going from, say,
a commutative-idempotent monoid to one that is commutative but not idempotent. Let
us take, for example, hom

+
∪ . Then, this entails:

1 = hom
+
∪ [λx. 1]({a})

= hom
+
∪ [λx. 1]({a} ∪ {a})

= hom
+
∪ [λx. 1]({a}) + hom

+
∪ [λx. 1]({a})

= 1 + 1

= 2.

The reader may have noticed that this restriction has the unfortunate consequence
of disallowing potentially useful computations, notable examples being computing the
cardinality of a set, or converting a set into a list. However, this drawback can be easily
overcome with a suitable modification of the third clause in Definition 1, and other
expressions based on it, ensuring that anomalous cases such as the above are dealt with
by appropriate tests.

It is important to note that, for the consistency of Definition 1, a non-idempotent
monoid must actually be anti-idempotent, and a non-commutative monoid must be anti-
commutative. Indeed, if ⊕ is non-idempotent as well as non-anti-idempotent (say, x0⊕
x0 = x0 for some x0), then this entails:

hom
�
⊕[f](x0) = hom

�
⊕[f](x0 ⊕ x0)

= hom
�
⊕[f](x0) � hom

�
⊕[f](x0)

which is not necessarily true for non-idempotent �. A similar argument may be given
for commutativity. This consistency condition is in fact not restrictive operationally as it
is always verified (e.g., a list will not allow partial commutation of any of its element).

Here are a few familar functions expressed with well-defined monoid
homomorphisms:

length(l) = hom
+
++[λx. 1](l)

e ∈ s = hom
∨
∪[λx. x = e](s)

s× t = hom
∪
∪[λx. hom

∪
∪[λy. {〈x, y〉}](t)](s)

map(f, s) = hom
∪
∪[λx. {f(x)}](s)

filter(p, s) = hom
∪
∪[λx. if p(x) then {x} else {}](s).

Monoid Comprehensions. The concept of monoid homomorphism is useful for ex-
pressing a formal semantics of iteration over collections. However, it is not very conve-
nient as a programming construct. A natural notation for such a construct that is both

An Abstract, Reusable, and Extensible Programming Language Design Architecture 161

conspicuous and can be expressed in terms of monoid homomorphisms is a monoid
comprehension. This notion generalizes the familiar notation used for writing a set in
comprehension (as opposed to writing it in extension) using a pattern and a formula
describing its elements (as oppposed to listing all its elements). For example, the set
comprehension {〈x, x2〉 | x ∈ N, ∃n.x = 2n} describes the set of pairs 〈x, x2〉 (the
pattern), verifying the formula x ∈ N, ∃n.x = 2n (the qualifier).

This notation can be extended to any (primitive or collection) monoid⊕. The syntax
of a monoid comprehension is an expression of the form ⊕{e [] Q} where e is an
expression called the head of the comprehension, and Q is called its qualifier and is a
sequence q1, . . . , qn, n ≥ 0, where each qi is either:

– a generator of the form x ← e, where x is a variable and e is an expression; or,

– a filter φ which is a boolean condition.

In a monoid comprehension expression⊕{e [] Q}, the monoid operation⊕ is called the
accumulator.

As for semantics, the meaning of a monoid comprehension is defined in terms of
monoid homomorphisms.

Definition 2 (Monoid Comprehension). The meaning of a monoid comprehension
over a monoid⊕ is defined inductively as follows:

⊕{e [] } def=

⎧⎨
⎩

U⊕(e) if ⊕ is a collection monoid

e if ⊕ is a primitive monoid

⊕{e [] x ← e′, Q} def= hom
⊕
�[λx. ⊕ {e [] Q}](e′)

⊕{e [] c, Q} def= if c then ⊕ {e [] Q} else 11⊕

such that e : T⊕, e′ : T�, and � is a collection monoid.

Note that although the input monoid ⊕ is explicit, each generator x ← e′ in the
qualifier has an implicit collection monoid� whose characteristics can be inferred with
polymorphic typing rules.

Note that relational joins are immediately expressible as monoid comprehensions.
Indeed, the join of two sets S and T using a function f and a predicate p is simply:

S ��f
p T

def= ∪{f(x, y) [] x ← S, y ← T, p(x, y)}. (52)

Typically, a relational join will take f to be a record constructor. For example, if we
write a record whose fields li have values ei for i = 1, . . . , n, as 〈l1 = e1, , . . . , ln =
en〉, then a standard relational join can be obtained with, say, f(x, y) = 〈name =
y.name, age = 2 ∗ x.age〉, and p(x, y) may be any condition such as x.name =
y.name, x.age ≥ 18.

162 H. Aı̈t-Kaci

Clearly, monoid comprehensions can immediately express queries using all usual
relational operators (and, indeed, object queries as well) and most usual functions. For
example,

∃x ∈ s.e
def
= ∨{e [] x ← s}

∀x ∈ s.e
def
= ∧{e [] x ← s}

x ∈ s
def
= ∨{x = y [] y ← s}

s ∩ t
def
= ∪{x [] x ← s, x ∈ t}

count(a, s)
def
= +{1 [] x ← s, x = a}

length(s)
def
= +{1 [] x ← s}

sum(s)
def
= +{x [] x ← s}

max(s)
def
= max{x [] x ← s}

filter(p, s)
def
= ∪{x [] x ← s, p(x)}

flatten(s)
def
= ∪{x [] t ← s, x ← t}

Note that some of these functions will work only on appropriate types of their argu-
ments. For example, the type of the argument of sum must be a non-idempotent monoid,
and so must the type of the second argument of count. Thus, sum will add up the ele-
ments of a bag or a list, and count will tally the number of occurrences of an element
in a bag or a list. Applying either sum or count to a set will be caught as a type error.

We are now in a position to propose a programming calculus using monoid com-
prehensions. Fig. 9 defines an abstract grammar for an expression e of the Monoid
Comprehension Calculus and amounts to adding comprehensions to an extended Typed
Polymorphic λ-Calculus. Fig. 10 gives the typing rules for this calculus.

e ::= . . . extended λ-calculus expression

| 11⊕ monoid identity

| U⊕(e) monoid unit injection

| e1 ⊕ e2 monoid composition

| ⊕{e [] Q} monoid comprehension

Fig. 9. Additional Syntax for the monoid comprehension calculus (with Fig. 7)

F Backend System

Our generic backend system comprises classes for managing runtime events and ob-
jects, a display manager, and an error manager. As an example, we describe the organi-
zation of a runtime object.

The class 〈backend〉.Runtime.java defines what a runtime context consists of
as an object of this class. Such an object serves as the common execution environment
context shared by 〈instructions〉.Instruction objects being executed. It encap-
sulates a state of comptutation that is effected by each instruction as it is executed in its
context.

Thus, a 〈backend〉.Runtime.java object consists of attributes and structures
that together define a state of computation, and methods that are used by instruc-
tions to effect this state as they are executed. Thus, each instruction subclass of 〈ins-
tructions〉.Instruction defines an execute(〈backend〉.Runtime) method

An Abstract, Reusable, and Extensible Programming Language Design Architecture 163

Γ � 11⊕ : T⊕
11⊕ monoid identity

Γ � e1 : T⊕, Γ � e2 : T⊕
Γ � e1 ⊕ e2 : T⊕

⊕ primitive monoid

Γ � e : T⊕
Γ � ⊕{e [] } : T⊕

⊕ primitive monoid

Γ � e : τ

Γ � U⊕(e) : C⊕(τ)
⊕ collection monoid

Γ � e1 : C⊕(τ), Γ � e2 : C⊕(τ)

Γ � e1 ⊕ e2 : C⊕(τ)
⊕ collection monoid

Γ � e : τ

Γ � ⊕{e [] } : C⊕(τ)
⊕ collection monoid

Γ � e2 : C�(τ2), Γ [x : τ2] � ⊕{e1 [] Q} : τ1

Γ � ⊕{e1 [] x ← e2, Q} : τ1
if Θ� ⊆ Θ⊕ subtheory

Γ � e2 : Boolean, Γ � ⊕{e1 [] Q} : τ

Γ � ⊕{e1 [] e2, Q} : τ

Fig. 10. Additional typing rules for the monoid comprehension calculus (with Fig. 6)

that specifies its operational semantics as a state transformation of its given runtime
context.

Initiating execution of a 〈backend〉.Runtime.java object consists of setting its
code array to a given instruction sequence, setting its instruction pointer ip to its
code’s first instruction and repeatedly calling and invokingexecute(this) on what-
ever instruction in the current code array for this Runtime.java object is currently
at address ip. The final state is reached when a flag indicating that it is so is set to
true. Each instruction is responsible for appropriately setting the next state according
to its semantics, including saving and restoring states, and (re)setting the code array and
the various runtime registers pointing into the state’s structures.

Runtime states encapsulated by objects in this class are essentially those of a stack
automaton, specifically conceived to support the computations of a higher-order func-
tional language with lexical closures—i.e., a λ-Calculus machine—extended to support
additional features—e.g., assignment side-effects, objects, automatic currying. . . As
such it may viewed as an optimized variant of Peter Landin’s SECD machine [13]—in
the same spirit as Luca Cardelli’s Functional Abstract Machine (FAM) [14], although
our design is quite different from Cardelli’s in its structure and operations.

Because this is a Java implementation, in order to avoid the space and performance
overhead of being confined to boxed values for primitive type computations, three con-
current sets of structures are maintained: in addition to those needed for boxed (Java
object) values, two extra ones are used to support unboxed integer and floating-point
values, respectively. The runtime operations performed by instructions on a 〈back-
end〉.Runtime object are guaranteed to be type-safe in that each state is always such

164 H. Aı̈t-Kaci

as it must be expected for the correct accessing and setting of values. Such a guarantee
must be (and is!) provided by the 〈types〉.TypeChecker and the 〈kernel〉.Sani-
tizer, which ascertain all the conditions that must be met prior to having a 〈ker-
nel〉.Compiler proceed to generating instructions which will safely act on the ap-
propriate stacks and environments of the correct sort (integer, floating-point, or object).

Display manager objects and error manager objects are similarly organized.

References

1. Aı̈t-Kaci, H.: An Abstract and Reusable Programming Language Architecture. Keynote pre-
sentation, LDTA 2003 (April 6, 2003)38

2. Landin, P.J.: The next 700 programming languages. Communications of the ACM 9(3),
157–166 (1966)39

3. Sethi, R.: Programming Languages—Concepts and Constructs, 2nd edn. Addison-Wesley,
Reading (1996)

4. Johnson, S.: Yacc: Yet another compiler compiler. Computer Science Technical Report 32,
AT&T Bell Labs, Murray Hill, NJ (1975); Reprinted in the 4.3BSD Unix Programmer’s
Manual, Supplementary Documents 1, PS1:15, UC Berkeley (1986)

5. Buneman, P., Libkin, L., Suciu, D., Tannen, V., Wong, L.: Comprehension syntax. ACM
SIGMOD Record 23(1), 87–96 (1994) 40

6. Buneman, P., Naqvi, S., Tannen, V., Wong, L.: Principles of programming with complex
objects and collection types. Theoretical Computer Science 149(1), 3–48 (1995) 41

7. Brodky, A., Segal, V.E., Chen, J., Exarkhopoulo, P.A.: The CCUBE system object-oriented
database system. In: Ramakrishnan, R., Stuckey, P.J. (eds.) Constraints and Databases, pp.
245–277. Kluwer Academic Publishers, Norwell (1998); Special Issue on Constraints: An
International Journal 2(3&4) (1997)

8. Fegaras, L., Maier, D.: Optimizing object queries using an effective calculus. ACM Transac-
tions on Database Systems 25(4), 457–516 (2000) 42

9. Aı̈t-Kaci, H.: An introduction to LIFE—Programming with Logic, Inheritance, Functions,
and Equations. In: Miller, D. (ed.) Proceedings of the International Symposium on Logic
Programming, pp. 52–68. MIT Press (October 1993)

10. Aı̈t-Kaci, H., Di Cosmo, R.: Compiling order-sorted feature term unification. PRL Technical
Note 7, Digital Paris Research Laboratory, Rueil-Malmaison, France (December 1993)

11. DeRemer, F., Pennello, T.: Efficient computation of LALR(1) look-ahead sets. ACM Trans-
actions on Programming Languages and Systems 4(4), 615–649 (1982) 43

12. Park, J., Choe, K.M., Chang, C.: A new analysis of LALR formalisms. ACM Transactions
on Programming Languages and Systems 7(1), 159–175 (1985) 44

13. Landin, P.J.: The mechanical evaluation of expressions. Computer Journal 6(4), 308–320
(1963) 45

38 http://ldta.info/2003/
39 http://www.thecorememory.com/Next 700.pdf
40 http://www.acm.org/sigs/sigmod/record/issues/9403/
Comprehension.ps

41 http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.41.5516

42 http://lambda.uta.edu/tods00.ps.gz
43 http://dl.acm.org/citation.cfm?id=69622.357187
44 http://dl.acm.org/citation.cfm?id=69622.357187
45 http://www.cs.cmu.edu/ crary/819-f09/Landin64.pdf

http://ldta.info/2003/
http://www.thecorememory.com/Next_700.pdf
http://www.acm.org/sigs/sigmod/record/issues/9403/Comprehension.ps
http://www.acm.org/sigs/sigmod/record/issues/9403/Comprehension.ps
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.5516
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.5516
http://lambda.uta.edu/tods00.ps.gz
http://dl.acm.org/citation.cfm?id=69622.357187
http://dl.acm.org/citation.cfm?id=69622.357187
http://www.cs.cmu.edu/~crary/819-f09/Landin64.pdf

An Abstract, Reusable, and Extensible Programming Language Design Architecture 165

14. Cardelli, L.: The functional abstract machine. Technical Report TR-107, AT&T Bell Labo-
ratories, Murray Hill, New Jersey (May 1983) 46

15. Banâtre, J.P., Le Métayer, D.: A new computational model and its discipline of program-
ming. INRIA Technical Report 566, Institut National de Recherche en Informatique et
Automatique, Le Chesnay, France (1986)

16. Berry, G., Boudol, G.: The chemical abstract machine. In: Proceedings of the 17th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 1990, pp.
81–94. ACM Press, New York (1990)47

17. Aı̈t-Kaci, H.: Warren’s Abstract Machine—A Tutorial Reconstruction. Logic Programming.
MIT Press, Cambridge (1991)

18. Grust, T.: Monad comprehensions—a versatile representation for queries. In: Gray, P.,
Kerschberg, L., King, P., Poulovassilis, A. (eds.) The Functional Approach to Data Man-
agement: Modeling, Analyzing and Integrating Heterogeneous Data. Springer (September
2003)48

19. Bothner, P.: XQuery tutorial. Online tutorial49

20. Nic, M., Jirat, J.: XPath tutorial. Online tutorial50

21. Gesbert, N., Genevès, P., Layaı̈da, N.: Parametric polymorphism and semantic subtyping: the
logical connection. In: Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2011), Tokyo Japan, September 19-21, pp. 107–116. Asso-
ciation for Computing Machinery, New York (2011) 51

22. Gesbert, N., Genevès, P., Layaı̈da, N.: Parametric polymorphism and semantic subtyping: the
logical connection. SIGPLAN Notices 46(9) (September 2011); N.B.: full version of [21]

23. Bierman, G.M., Gordon, A.D., Hri�cu, C., Langworthy, D.: Semantic subtyping with an
SMT solver. In: Proceedings of the 15th ACM SIGPLAN International Conference on Func-
tional Programmingm (ICFP 2010), Baltimore, MA USA, September 27-29, pp. 105–116.
Association for Computing Machinery, New York (2010)52

24. Bierman, G.M., Gordon, A.D., Hri�cu, C., Langworthy, D.: Semantic subtyping with an
SMT solver. Journal of Functional Programming, 1–75 (2012); N.B.: full version of [23]53

25. Jaffar, J., Maher, M.J.: Constraint Logic Programming: A survey. Journal of Logic Program-
ming 19/20, 503–581 (1994)54

26. Leroy, X.: Unboxed objects and polymorphic typing. In: Proceedings of the 19th Sympo-
sium on Principles of Programming Languages (POPL 1992), pp. 177–188. Association for
Computing Machinary. ACM Press (1992)55

27. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers—Principles, Techniques, and Tools. Addison-
Wesley (1986)

28. Choe, K.M.: Personal communication. Korean Advanced Institute of Science and Technol-
ogy, Seoul, South Korea (December 2000), choecompiler.kaist.ac.kr

46 http://lucacardelli.name/Papers/FAM.pdf
47 citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.127.3782
48 http://www-db.in.tum.de/ grust/files/monad-comprehensions.pdf
49 http://www.gnu.org/software/qexo/XQuery-Intro.html
50 http://www.zvon.org/xxl/XPathTutorial/General/examples.html
51 http://hal.inria.fr/inria-00585686/fr/
52 http://research.microsoft.com/apps/pubs/?id=135577
53 http://www-infsec.cs.uni-saarland.de/˜hritcu/publications/
dminor-jfp2012.pdf

54 http://citeseer.ist.psu.edu/jaffar94constraint.html
55 http://gallium.inria.fr/ xleroy/bibrefs/Leroy-unboxed.html

http://lucacardelli.name/Papers/FAM.pdf
file:citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.127.3782
http://www-db.in.tum.de/~grust/files/monad-comprehensions.pdf
http://www.gnu.org/software/qexo/XQuery-Intro.html
http://www.zvon.org/xxl/XPathTutorial/General/examples.html
http://hal.inria.fr/inria-00585686/fr/
http://research.microsoft.com/apps/pubs/?id=135577
http://www-infsec.cs.uni-saarland.de/~{}hritcu/publications/dminor-jfp2012.pdf
http://www-infsec.cs.uni-saarland.de/~{}hritcu/publications/dminor-jfp2012.pdf
http://citeseer.ist.psu.edu/jaffar94constraint.html
http://gallium.inria.fr/~xleroy/bibrefs/Leroy-unboxed.html

166 H. Aı̈t-Kaci

29. Aı̈t-Kaci, H.: A generic XML-generating metacompiler. Part of the documentation of the
Jaccpackage (July 2008)56

30. Cardelli, L.: Typeful programming. In: Neuhold, E.J., Paul, M. (eds.) Formal Description of
Programming Concepts. Springer (1991)57

31. Hentenryck, P.: The OPL Optimization Programming Language. The MIT Press (1999)
32. Wong, L.: Querying Nested Collections. PhD thesis, University of Pennsylvania (Computer

and Information Science) (1994)58

33. Fegaras, L.: An experimental optimizer for OQL. Technical Report TR-CSE-97-007, Uni-
versity of Texas at Arlington (May 1997)59

34. Visser, E.: Syntax Definition for Language Prototyping. PhD thesis, Faculteit Wiskunde,
Informatics, Natuurkunde en Strenkunde, Universiteit van Amsterdam, Amsterdam, The
Netherlands (September 1997)60

35. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading (1974)

36. Plotkin, G.D.: A structural approach to operational semantics. Technical Report DAIMI FN-
19, University of Århus, Århus, Denmark (1981) 61

37. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and Algebraic
Programming 60-61, 17–139 (2004); N.B.: Published version of [36] 62

38. Dershowitz, N.: A taste of rewrite systems. In: Lauer, P.E. (ed.) Functional Programming,
Concurrency, Simulation and Automated Reasoning. LNCS, vol. 693, pp. 199–228. Springer,
Heidelberg (1993) 63

39. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.)
Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970);
Reprinted in Automatic Reasoning 2, pp. 342–276. Springer (1983)

56 http://www.hassan-ait-kaci.net/jacc-xml.pdf
57 http://lucacardelli.name/Papers/TypefulProg.A4.pdf
58 ftp://ftp.cis.upenn.edu/pub/ircs/tr/94-09.ps.Z
59 http://lambda.uta.edu/oqlopt.ps.gz
60 http://eelcovisser.org/wiki/thesis
61 http://citeseer.ist.psu.edu/673965.html
62 http://homepages.inf.ed.ac.uk/gdp/publications/sos jlap.pdf
63 http://www-sal.cs.uiuc.edu/ nachum/papers/taste-fixed.ps.gz

http://www.hassan-ait-kaci.net/jacc-xml.pdf
http://lucacardelli.name/Papers/TypefulProg.A4.pdf
ftp://ftp.cis.upenn.edu/pub/ircs/tr/94-09.ps.Z
http://lambda.uta.edu/oqlopt.ps.gz
http://eelcovisser.org/wiki/thesis
http://citeseer.ist.psu.edu/673965.html
http://homepages.inf.ed.ac.uk/gdp/publications/sos_jlap.pdf
http://www-sal.cs.uiuc.edu/~nachum/papers/taste-fixed.ps.gz

	An Abstract, Reusable, and ExtensibleProgramming Language Design Architecture
	1 Introduction
	1.1 Motivation—Programming Language Design?
	1.2 Our Approach—Abstract Programming Language Design
	1.3 Organization of Paper

	2 Syntax Processing
	2.1 Jacc—Just Another Compiler Compiler
	2.2 LR-Parsing with Dynamic Operators

	3 The Kernel Language
	3.1 Processing a Kernel Expression

	4 Types
	4.1 Type Language
	4.2 Type Processing

	5 Computing with Collections
	6 Conclusion
	6.1 Recapitulation
	6.2 What’s next?

	References

