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Abstract. One of the fundamental tasks in information integration is to specify
the relationships, called schema mappings, between database schemas. Schema
mappings specify how data structured under a source schema is to be transformed
into data structured under a target schema. The design of schema mappings is
usually a non-trivial and time-intensive process and the task of designing schema
mappings is exacerbated by the fact that schemas that occur in real life tend to be
large and heterogeneous. Traditional approaches for designing schema mappings
are either manual or performed through a user interface from which a schema
mapping is interpreted from correspondences between attributes of the source
and target schemas. These correspondences are either specified by the user or
automatically derived by applying schema matching on the two schemas.

In this paper, we examine an alternative approach that allows a user to follow
the “divide-design-merge” paradigm for specifying a schema mapping. The user
can choose to independently design schema mappings for smaller portions of the
source and target schema. Afterwards, the user can interact with the system to
refine and further design schema mappings through the use of data examples.
Finally, in the merge phase, a global schema mapping is generated through the
correlation of the individual schema mappings.

Keywords: Schema mappings, data examples, merge.

1 Introduction

The need to combine information that resides in heterogeneous, and typically inde-
pendently created data sources often arises in enterprises. In today’s information age,
where vast amounts of (un)structured data is available on the Web, and where many
data sources collected or curated by different organizations are made publicly available
(e.g., [20, 34]), the demand for technology that can effectively combine disparate data
sources goes well beyond enterprises. The process of combining different data sources
into one is called information integration, which is a broad term that encompasses data
integration and data exchange. The goal of data integration is to create a single vir-
tual view of the underlying data sources and provide seamless and transparent access to
these data sources through the virtual view. On the other hand, the goal of data exchange
is to create a materialized view of the underlying data sources.

Systems such as Multibase [32] and EXPRESS [31] have pioneered the study of data
integration and data exchange respectively and considerable research effort has been
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Fig. 1. Screenshot of a mapping design tool (from [12])

put into addressing information integration challenges since Multibase and EXPRESS.
In practice, information integration is still a difficult and time-consuming process that
incurs high costs in terms of money and human effort and recent reports provide strong
evidence of this. For example, [12] stated that information integration is frequently
“the biggest and most expensive challenge that information-technology shops face” and
“information integration is thought to consume about 40% of their budget”.

Even though data integration and data exchange differ in their goals, they share a
common abstraction, called schema mappings, which describe the relationship between
database schemas. In research prototypes such as Clio [16] and HePToX [15], the term
schema mappings is used to refer to the high-level declarative specfication that spec-
ifies the semantics of translating data from the source schema to the target schema.
However, commercial data transformation systems such as Altova Mapforce [25], Sty-
lus Studio [33] and Microsoft BizTalk Mapper [13] often refer to schema mappings or
data mappings as the executable script (e.g., XQuery or SQL) that can be used to trans-
late data from the source schema to the target schema. Regardless of terminology, most
of these tools work in two steps. First, a visual interface is used to solicit all known
attribute correspondences between elements of the two schemas from the user. Such
correspondences are usually depicted as arrows between the attributes of the source and
target schemas. For illustration, Figure 1 presents a screenshot of a mapping design tool
with a number of correspondences between attributes of a source schema on the left and
a target schema on the right. Once the correspondences are established, systems such as
Altova MapForce, Stylus Studio, and Microsoft Biztalk Mapper, interpret them directly
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Fig. 2. Generic architecture of schema mapping design systems

into an executable script (e.g., XQuery or SQL query), which can be executed on an
instance of the source schema to obtain an instance of the target schema. Other systems
such as Clio or HePToX, interpret the correpondences into an internal representation
(which we refer to as schema mappings in this article), and this representation can be
compiled over different runtimes. Often, the user will need to refine the schema map-
ping (whether as an internal representation or an executable script) that is derived from
such tools in order to achieve the desired transformation semantics.

The previously outlined two-step schema mapping design framework is illustrated in
Figure 2. While this framework provides a method for end users to visually specify a
schema mapping, it lacks support for reusability and for modularity in design; A schema
mapping between two schemas must always be designed all-at-once. In particular, this
methodology does not allow the design of a schema mapping to be divided up and
designed modularly in different steps with intermediate schemas. Furthermore, the user
must be familiar with the language of schema mappings in order to refine them. For the
rest of this article, we will describe a new framework for designing schema mappings
that will overcome some of the limitations of existing schema mapping design tools.
Details of this framework can be found in the dissertation of Bogdan Alexe [8].

2 Our Divide-Design-Merge Framework

Our framework for designing schema mappings between two schemas follows three
main steps: Divide, Design, and Merge, as outlined in Figure 3. This new framework
overcomes some of the aforementioned limitations of the existing mapping design
paradigm.

Since smaller mappings tend to be easier to create and understand, our framework
allows a schema mapping between large source and target schemas to be divided up
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Fig. 3. Divide-Design-Merge Workflow

and designed through independent components. Furthermore, the design of each such
schema mapping can be broken up into multiple smaller intermediate steps which in-
volve intermediate schemas. Each of the schema mappings can either be designed with
existing approaches (i.e., via attribute correspondences) or via our new approach (i.e.,
Eirene component system) that requires the user to specify data examples, which are
pairs of source instance and expected target instance. After this, various components
of a schema mapping can be refined through our Muse component system. Finally,
in the merge phase, a global schema mapping is generated through the correlation of
the individual mapping components (i.e., MapMerge component system). In this new
framework, schema mappings that have been previously designed for some of the com-
ponents can be saved, reused, and customized further at a later time.

We note that in the divide phase, the process of dividing or breaking up schema
mappings into smaller “chunks” that are more amenable to design and understanding
is entirely driven by the user. It will be interesting work to further design a component
that will suggest strategies for such divisions.

2.1 An Example

As mentioned before, the user may choose to divide the design task into smaller com-
ponents that can be designed independently. For instance, in Figure 4, the design of a
schema mapping from schema S1 to schema S4 can be divided into a sequence of steps,
involving the intermediate schemas S2 and S3. Existing schema mapping design tools
would only allow designing a monolithic end-to-end schema mapping from S1 to S4.
In our framework, the user can design smaller mappings independently and merge them
together at the end. For instance, the user can start by designing the mapping, denoted
by t1, from Group in S1 to Dept in S2, then the mapping t2 relating a join of Works and
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Fig. 4. Designing a schema mapping from the first schema S1 to the last schema S4

Group to Emp and Dept, and so on. For this toy example, it is conceivable that the user
would successfully design a mapping directly from S1 to S4 (or even S1 to S2) with rel-
atively little effort. However, in real-life scenarios, it is typically difficult to understand
the entire schemas and to grasp the complexities of the desired global transformation
all at once.

Eirene. The design of each component mapping can be driven by data examples. A data
example is a pair of input and output instances. Intuitively, a data example specifies the
expected output for a given input and represents a partial specification of the desired
semantics. This is beneficial, since users may be familiar with their data and the use of
data examples is akin to specifying test cases during program debugging to ensure that
programs behave as intended.

The Eirene component of our system is a schema mapping design component that
takes as input a set of data examples provided by the user. In turn, Eirene outputs a
schema mapping that “fits” the set of data examples, if such schema mapping exists.
Referring back to Figure 4, the design of t2 can be achieved through Eirene by providing
a data example that reflects the transformation semantics that the user expects from the
mapping. In this case, the source instance of the data example may consist of a Group
tuple and a Works tuple that agree on their gno attributes, while the target instance may
consist of an Emp tuple and a Dept tuple that have the same did value. Furthermore, the
tuples may be specified in such a way that the gname and dname values are the same
across the Group and Dept tuple. In addition, the ename and addr of the Works tuple
are identical, respectively, to the ename and addr of the Emp tuple in the target. This
reflects that the desired transformation semantics is to migrate gname, ename, addr
to the corresponding “locations” in the target. For this data example, the system will
determine that a fitting schema mapping exists, and it will generate such mapping that
will produce the desired target instance on the corresponding source instance of each
data example.

Eirene can also be used to refine a schema mapping that already exists. To do this,
Eirene will first generate a set of canonical data examples for the existing mapping.
The user can then “tweak” the canonical data examples, and Eirene will generate a new
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mapping that fits, if possible. Alternatively, a schema mapping can also be designed
using the traditional methodology via attribute correspondences, imported from pre-
vious design work, and augmented with new attribute correspondences and additional
customizations.

Muse. The Muse component of our system assists the user with refining the existing
schema mappings. The focus of Muse is to use data examples to help the user refine
two important mapping features: grouping semantics and disambiguation. The basic
idea behind Muse is to present the user with different data examples, where each data
example represents a specific (grouping/disambiguation) semantics of the underlying
specification. The choices made by the user will allow the Muse system to automatically
refine the underlying specification.

Referring to Figure 4 again, Muse can assist the user with specifying how the nested
Staff set of tuples should be grouped under the CompSci root of schema S4. The se-
mantics of grouping Staff is determined by its set identifier, which consists of a Skolem
function parameterized by some of the attributes in schemas S2 and S3. By presenting
differentiating examples that can be used to distinguish among alternative grouping se-
mantics, Muse helps the user determine which attributes should be used to parameterize
the nested set identifier of Staff.

In addition, Muse can also help the user understand the right interpretation of a vi-
sual specification. This part of Muse works with traditional schema mapping design
systems, where the user specifies a set of attribute correspondences between a source
and a target schema. (A visual specification consists of the source and target schema,
and the attribute correspondences.) A visual specification is ambiguous if more than
one schema mapping can be interpreted from the visual specification1. In case a visual
specification is ambiguous, our Muse system will detect the ambiguity and present the
user with a carefully constructed “data example” that essentially represents the transfor-
mation semantics of all alternative schema mappings. The target instance of the “data
example” contains choices of data values on certain attributes of tuples. Each selection
of a value from a choice by the user will prune away some schema mappings among
the set of all possible schema mappings that can be interpreted from the visual speci-
fication. At the end, when all choices have been made, only one schema mapping will
remain.

MapMerge. When all component schema mappings are designed, the MapMerge
schema mapping operator [6] can be invoked to automatically generate a meaningful
overall mapping between each pair of source and target schemas. MapMerge takes as
input a set of schema mappings between the same source and target schema, and it re-
turns a schema mapping that correlates the specifications given by the individual map-
ping components. As we shall show, this orchestration phase is necessary since simply
considering the union of input mappings is inadequate in general; in the context of data
exchange, simply taking the union of input schema mappings may result in the loss

1 In systems such as Clio, a default schema mapping is generated when a visual specification
is ambiguous. The user can choose among alternative mappings by manually inspecting the
alternatives and picking one of the alternatives.
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of certain data associations and also lead to a more “redundant” target instance. These
deficiencies can be easily avoided if the relationships across input mappings are care-
fully considered in the context of source and target schemas. A schema mapping that
results from a MapMerge of input mappings is experimentally shown to overcome these
deficiencies when compared with a simple union of the input mappings [6].

Finally, the end-to-end mapping for flows of mappings, such as from the first schema
S1 to the last schemaS4 in Figure 4 can be obtained using a new algorithm that combines
MapMerge with mapping composition [18] to correlate flows of schema mappings.

3 Background and Related Work

We define the basic concepts and terminology that will be used, as well as discuss prior
approaches to schema mapping design.

Schemas and Instances. A relational schemaR is a finite sequence (P1, . . . , Pk) of re-
lation symbols, each of a fixed arity. An instanceK overR is a sequence (PK

1 , . . . , PK
k ),

where each PK
i is a relation of the same arity as Pi. We shall often write Pi to denote

both the relation symbol and the relation PK
i that interprets it. Here, we assume that all

values occurring in relations belong to some fixed infinite set dom of values. A fact (or
tuple) of an instance K over a schema R is an expression P (a1, . . . , am) such that P
is a relation symbol of R and (a1, . . . , am) ∈ PK . We denote by adom(K) the active
domain of an instanceK , that is to say, the set of all values from dom occurring in facts
of K . A relational schema can be associated with a set of key/foreign key constraints.

Referring back to Figure 4, schema S1 consists of two relation symbols Group and
Works. The key/foreign key constraint associated with S1, denoted in the figure via the
dashed line, requires that in each instance of S1, for each Works tuple, there must exist
a unique Group tuple such that they agree on the value of the gno attribute. An example
of a possible valid instance of S1 is shown below, where John works in group number
123 and the name of group 123 is CS.

{Group(123,CS),Works(John,NY,Web, 123)}
In Muse and MapMerge, we use an extension of the relational model that allows

for the representation of nested data: the nested relational (NR) model [19, 28]. The
NR model generalizes the relational model where tuples and relations are modeled as
records and respectively, sets of records. In the NR model however, an element, such
as a set of records, may be nested inside another element, such as a record, to form
hierarchies. In the following we will use the terms record and tuple, as well as set and
relation, interchangeably. To simplify our discussions, we assume that XML schemas
are modeled using a single schema root of record type whose elements are all of set
type. We also assume strict alternation of set and record types. As an example, con-
sider schema S4 in Figure 4. This is a nested schema, where each root CompSci record
contains nested Staff and Projects sets.

In a nested relational schema, nested sets have associated identifiers called SetIDs,
also referred to as grouping functions. They are Skolem functions. In an instance of a
nested relational schema, the parameters of each Skolem function serving as a grouping
function are instantiated with actual data values, hence providing unique set identifiers
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for each nested set in the instance. By convention, we use SKN to denote the SetID
name of a nested set N in a schema. For example, the SetID name of the nested set
Projects in the schema S4 mentioned above is SKProjects (or SKProjs, or simply SK
when there is no ambiguity). We sometimes refer to a nested set N simply as SKN . We
assume that every nested set in a schema has a different SetID name.

Schema Mappings. A schema mapping or mapping is a triple (S,T, Σ) where S is a
source schema, T is a target schema that is disjoint from S, andΣ is a set of constraints.
The largest class of constraints we consider is a subset of second-order tuple generating
dependencies (SO tgds) [18]. One way to express this type of constraints is through the
following logical formalism expressed in a query-like notation:

for x in S̄ satisfying B1(x) exists y in T̄ where B2(y) and C(x, y)

Here, the symbol S̄ represents a vector of relation symbols (possibly repeated), while
x represents the tuple variables that are bound, correspondingly, to these relations. A
similar notation applies to the exists clause for the vector T̄ of target relation symbols
and y of tuple variables that are bound to these relations. The conditions B1(x) and
B2(y) are conjunctions of equalities over the source and, respectively, target variables.
Note that these conditions may equate variables with constants, allowing the definition
of user-defined filters. The condition C(x,y) is a conjunction of equalities that equate
target expressions (e.g., y.A) with either source expressions (e.g., x.B) or Skolem terms
of the form F [x1, . . . , xi], where F is a function symbol and x1, . . . , xi are source
variables or other Skolem terms. Skolem terms are used to relate target expressions
across different SO tgds.

Both Muse and MapMerge components of our system use the language of schema
mappings specified by SO tgds over nested relational source and target schemas, while
the Eirene component focuses on SO tgds without Skolem terms over relational source
and target schemas. A constraint of this type may also be called, simply, a tuple-
generating dependency or tgd [17]. In some situations we will refer to a tgd by the
equivalent term GLAV (Global-Local-As-View) constraint. GLAV constraints have been
extensively studied in the context of data exchange and data integration [21, 22]. In
cases where S̄ and T̄ refer to source and, respectively, target relation symbols, then the
tgd is referred to as source-to-target tgds or s-t tgds in short. They are also used in such
systems as Clio [16] and HePToX [15].

Two examples of SO tgds that relate schemas S1 and S2 in Figure 4 are given below:

(t1):
for g in Group
exists d in Dept
where d.dname=g.gname

(t2):
for w in Works, g in Group
satisfying w.gno = g.gno and w.addr=“NY”
exists e in Emp
where e.ename=w.ename and

e.addr=w.addr and e.did=F [g]

The constraint t1 is a tgd that states that for every record g in the relation Group,
there must be a record d in Dept where dname of d is the same as gname of g. Here,
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g and d are record variables that range over records in Group and, respectively, Dept.
The second assertion t2 is an SO tgd that states that for every record g in Group and
every recordw in Works, where their gnos are identical and the addr value of the Works
record is “NY”, there must be a record e in Emp where the conditions in the where
clause are satisfied. Note that “e.did = F[g]” states that the did value of e is dependent
on g through the Skolem function F . Thus, F [g] is a Skolem term.

Note that our SO tgds do not allow equalities between or with Skolem terms in the
satisfying clause. While such equalities may be needed for more general purposes [18],
they do not play a role for data exchange and can be eliminated, as observed in [36].

Solutions. Let M = (S,T, Σ) be a schema mapping. An instance I of S will be called
a source instance, and an instance J of T will be called a target instance.

We say that J is a solution of I w.r.t. M if (I, J) |= Σ, i.e., if (I, J) satisfies every
constraint in Σ. In general, there are many possible solutions for a source instance I
under a schema mapping M = (S,T, Σ).

To illustrate, in line with the previous examples, suppose the source schema consists
of the relation symbol Group, the target schema consists of the relation symbol Dept ,
and the schema mapping M is specified by the constraint t1 given as an example above.
Consider the source instance I = {Group(123,CS),Group(456,EE)} and the target
instances

J1 = {Dept(N1,CS),Dept(N2,EE)}
J2 = {Dept(N1,CS),Dept(456,EE)}
J3 = {Dept(N1,CS)}.

Both J1 and J2 are solutions for I w.r.t. M, but J3 is not. Observe that the solutions
J1 and J2 contain values (namely, N1 and N2) that do not occur in the active domain
of the source instance I . Intuitively, these values can be thought of as labeled nulls.

As we shall describe later, a central concept in both Eirene and Muse is the concept
of a data example. Given a source schema S and a target schema T respectively, a data
example is a pair (I, J) such that I is an instance of S and J is an instance of T.

Data Exchange, Homomorphisms, and Universal Solutions. Data exchange is the
following problem: given a schema mapping M = (S,T, Σ) and a source instance I ,
construct a solution J for I such that (I, J) |= Σ. As we just saw, a source instance
may have more than one solution with respect to a given GLAV schema mapping. We
will be interested in universal solutions, which were identified in [17] as the preferred
solutions for data exchange purposes. Universal solutions are defined in terms of homo-
morphisms, as follows.

Let I1 and I2 be two instances over the same relational schema R. A homomor-
phism h : I1 → I2 is a function from adom(I1) to adom(I2) such that for every fact
P (a1, . . . , am) of I1, we have that P (h(a1), . . . , h(am)) is a fact of I2. We write I1 →
I2 to denote the existence of a homomorphism h : I1 → I2. In our previous example,
we have that J1 → J2 since the function {N1 → N1, CS → CS, N2 → 456, EE → EE}
is a homomorphism from J1 to J2. We say that I1 and I2 are homomorphically equiva-
lent if there is a homomorphism from I1 to I2 and a homomorphism from I2 to I1.
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Let M = (S,T, Σ) be a schema mapping and let I be a source instance. A target
instance J is a universal solution for I w.r.t. M if the following hold:

1. J is a solution for I w.r.t. M.

2. For every solution J ′ of I w.r.t. M, there is a homomorphism h : J → J ′ that
is constant on adom(I) ∩ adom(J), that is to say, h(a) = a, for every value a ∈
adom(I) ∩ adom(J).

Intuitively, universal solutions are the “most general” solutions. Furthermore, in a
precise sense, they represent the entire space of solutions (see [17]). For this reason,
universal solutions have become the standard semantics for data exchange. Going back
to our previous example, note that J1 is a universal solution for I w.r.t the schema
mapping M specified by the constraint t1. In contrast, J2 is not a universal solution
for I w.r.t. M, since there is no homomorphism from J2 to J1 that is constant on
adom(I) ∩ adom(J2).

Chase and Canonical Universal Solutions. For GLAV schema mappings M (and in
fact for the wider class of SO tgds), a variant of the chase procedure can be used to
compute, given a source instance I , a canonical universal solution for I w.r.t. M in
time bounded by a polynomial in the size of I (see [17]).

Intuitively, the chase provides a way of populating the target instance J in a minimal
way, by adding the tuples that are required by Σ. For every instantiation of the for
clause of a dependency in Σ such that the satisfying clause is satisfied but the exists and
where clauses are not, the chase adds corresponding tuples to the target relations. Fresh
new values (also called labeled nulls) are used to give values for the target attributes
for which the dependency does not provide a source expression. Additionally, Skolem
terms are instantiated by nulls in a consistent way: a term F [x1, . . . , xi] is replaced by
the same null every time x1, . . . , xi are instantiated with the same source tuples. Finally,
to obtain a valid target instance, we must chase (if needed) with any target schema
constraints. For our earlier example, the target instance J1 is the result of chasing the
source instance I with the constraint t1. The tuple Dept(N1,CS) appears in J1 since
it is asserted by the exists clause of t1, when the for clause of t1 is instantiated with
the tuple Group(123,CS) from I . The CS value is propagated from the source Group
tuple to the target Dept tuple because of the equality condition in the where clause of t1.
Furthermore, the fresh labeled null N1 is introduced since t1 does not provide a source
expression for the did attribute of the target Dept tuple. The tuple Dept(N2,EE) in J1
is obtained in a similar fashion. Since J1 is the result of chasing I with t1, we have that
J1 is a canonical universal solution for I w.r.t. the schema mapping specified by the
constraint t1.

In practice, mapping systems such as Clio do not necessarily implement the chase
with Σ, but generate queries to achieve a similar result [19, 28].

3.1 Prior Schema Mapping Design Systems

A mapping system is a graphical user interface that allows a user to visually specify a
schema mapping (i.e., data transformation) that translates data from one schema into
another. Mapping systems can be categorized as either function-based or relationship-
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based [30]. In function-based mapping systems, schema mappings are specified opera-
tionally, as a workflow of operators, which is very similar to the way Extract-Transform-
Load (ETL) processes are specified in ETL tools. These systems tend to be highly ex-
pressive since the user is allowed to define custom operators. At the same time, these
systems are aimed at relatively advanced technical users, as users are required to spec-
ify and understand the workflow of operations that constitute the overall semantics of
the data transformation at hand.

Relationship-Based Mapping Systems. In contrast, the only type of input required of
users of relationship-based mapping systems is the specification of high-level relation-
ships between elements (i.e., attributes or sets of attributes) of the source and target
schemas. The design methodology of relationship-based mapping systems is shown in
Figure 2. The user starts the mapping design process by providing, through a graphical
interface, all known attribute correspondences (i.e., lines between elements) between
elements of a source schema S (typically shown on the left of the graphical interface)
and a target schema T (typically shown on the right of the graphical interface). An
example of a graphical interface typical of a relationship-based mapping system was
presented in Figure 1. Sometimes, a schema matching module [29] is used to suggest
or derive attribute correspondences.

The source and target schemas, together with the attribute correspondences, form
a visual specification of the schema mapping intended by the user. Since all that is
required as input is the specification of attribute correspondences, this methodology is
generally more accessible to non-technical users who may understand their data and the
relationships between schema elements.

For commercial mapping systems (e.g., Altova Mapforce [25], Stylus Studio [33],
and Microsoft BizTalk Mapper [13]), the visual specification is compiled directly into a
runtime executable code (e.g., in XSLT or XQuery or SQL or Java) that implements the
intended relationships that are captured by the visual specification. Data exchange can
be achieved by applying the generated executable code on an instance I of the source
schema S to derive an instance J of the target schema T.

On the other hand, research prototypes such as Clio [16], HePToX [15], and
Spicy++ [26] first compile the visual specification into SO tgds or GLAV constraints.
To illustrate, consider schemas S1 and S2 in Figure 4, and the visual specifications rep-
resented by the groups of arrows denoted by t1 and t2, respectively. From the visual
specification, the declarative schema mappings (t1) and (t2) which are expressed as
constraints described earlier are first generated. These schema mappings (t1) and (t2)
can then be compiled into runtime executable code.

One advantage of using schema mappings to specify the relationship between two
schemas as an intermediate form is that they are more amenable to the formal study
of data exchange and data integration. Many properties of data integration and data
exchange, and rigorous studies of operators for manipulating schema mappings have
been investigated as a consequence of such logical formalisms [21].

Limitations of Existing Schema Mapping Design Methodologies. Existing schema
mapping design systems do not provide the capability for automatically combining pre-
existing schema mappings that are independently designed over different and possibly
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overlapping parts of a source and target schema. To derive the overall schema mapping
between the two schemas, the pre-existing schema mappings are typically “integrated”
manually or the overall schema mapping is re-designed from scratch.

The ability to automatically combine different schema mappings that are designed
over the same source and target schema allows one to design a schema mapping between
two schemas by focussing on smaller components of the schemas. Such a feature is
especially useful when the schemas are large and far too complex for the entire mapping
to be designed all-at-once. On a similar note, relationship-based mapping systems offer
very little support for designing a schema mapping through designing a workflow of
(smaller) schema mapping steps. In other words, the procedural methodology offered
by function-based mapping systems is sometimes desirable when schemas are large and
too complex to be designed in one step.

Finally, even though relationship-based mapping systems tend to be more user-
friendly, they cannot be used to generate any arbitrary schema mapping. These sys-
tems derive a fixed set of possible schema mappings from a given visual specification,
and the derived schema mappings may not correspond to what a user desires. It is typ-
ically the case that the user will have to manually tweak or create a schema mapping
with the desired semantics.

For the rest of this article, we overview our new framework for designing schema
mappings, which overcomes the limitations described earlier. Section 4 describes how
data examples can be used to derive and refine a schema mapping interactively. Sec-
tion 5 describes our MapMerge operator which correlates different schema mappings
over the same source and target schema to produce an overall schema mapping which
preserves “data associations”. In the same section, we also describe how MapMerge to-
gether with the composition operator can be leveraged to allow one to design a schema
mapping between a source and target schema by designing a workflow of small schema
mapping steps. Details of these subsystems can be found in [1–3, 5, 10].

4 Interactive Mapping Design and Refinement via Data Examples

In our new framework, a schema mapping can be designed with existing approaches or
interactively with our new approach through the Eirene component system. In Eirene,
the user specifies data examples, which are pairs of source instance and expected target
instance and the Eirene component system will provide a schema mapping that “fits”
the given data examples, if possible. The user can continue to refine various components
of a schema mapping through our Muse component system.

4.1 Eirene

The Eirene system supports the design of GLAV (Global-and-Local-As-View) schema
mappings over a relational source and a relational target schema interactively via data
examples. For the rest of this section, we shall use the term schema mappings to refer
to GLAV schema mappings.

Recall that a data example is a pair (I, J) consisting of a source instance and a target
instance that conform to a source and target relational schema. The Eirene workflow is
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I1 J1
…

Fitting GLAV schema mapping or report “none exists”

Ik Jk

User inserts/deletes/modifies 
data examples

Eirene Fitting Algorithm

S T

Data Examples Source and Target Schemas

Fig. 5. Workflow for interactive design of schema mappings via data examples

depicted in Figure 5. The interaction between the user and Eirene begins with the user
providing an initial finite set E of data examples, where each data example in E provides
a partial specification of the semantics of the desired schema mapping. Furthermore,
the user stipulates that, for each data example (I, J), the target instance J is a universal
solution for I w.r.t. the desired schema mapping. Intuitively, the target instance J is a
“most general” target instance that, together with I , satisfies the specifications of the
desired schema mapping. Eirene responds by generating a schema mapping that fits
the data examples in E or by reporting that no such schema mapping exists. Here, we
say that a schema mapping M fits a set E of data examples if for every data example
(I, J) ∈ E , the target instance J is a universal solution of the source instance I w.r.t.
M. The refinement process can continue where the user may modify the data examples
in E to arrive at another finite set E ′ of data examples. Again, Eirene responds by testing
whether or not there is a schema mapping that fits E ′. Eirene reports a fitting schema
mapping if one exists. Otherwise, it reports that no fitting schema mappings exist. The
process of modifying data examples and generating fitting schema mappings can be
repeated until the user is satisfied.

Data examples were considered in [3, 7, 35] as a means to illustrate and help un-
derstand schema mappings. In [9], several different notions of “fitting” were explored,
including the just defined notion of fitting in terms of universal examples. However, uni-
versal solutions, being the most general solutions, are natural as data examples because
they contain just the information needed to represent the desired outcome of migrating
data from source to target. In particular, they contain no extraneous or overspecified
facts, unlike arbitrary solutions. In addition, note that the alternative notion of “fitting”
with solutions in place of universal solutions gives rise to a trivial “fitting” problem
since, in this case, the schema mapping with an empty set of constraints would “fit” ev-
ery data example (I, J). In fact, it would be the “most general fitting schema mapping”.

Logical Formalism for Schema Mappings. We will often express GLAV constraints
using a logical formalism, which is syntactically different, but equivalent to the query-
like notation described in Section 3. In this logical formalism, a constraint is a first-order
sentence of the form

∀x(ϕ(x) → ∃yψ(x,y))
where ϕ(x) is a conjunction of atoms over the source schema S, each variable in x
occurs in at least one atom in ϕ(x), and ψ(x,y) is a conjunction of atoms over the
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Source schema S
Patient(pid, name, healthplan, date)
Doctor(pid, docid)

Target schema T
History(pid, plan, date, docid)
Physician(docid, name, office)

(a) Patient(123, Joe, Plus, Jan)
Doctor(123, Anna)

History(123, Plus, Jan, Anna)

(a) Patient(123, Joe, Plus, Jan)
Doctor(123, Anna)

History(123, Plus, Jan, N1)
Physician(N1, Anna, N2)

(a) Patient(123, Joe, Plus, Jan)
Doctor(123, Anna)

(b) Doctor(392, Bob)

History(123, Plus, Jan, N1)
Physician(N1, Anna, N2)

Physician(Bob, 392, N3)

Step 1

Step 2

Step 3

Step 4

User adds data example 
(a)

User modifies existing data 
example (a)

User adds another data 
example (b)

User modifies (b) and adds
data example (c)

Fitting
Patient(x,y,z,u) Æ Doctor(x,v) →

History(x,z,u,v)

Patient(x,y,z,u) Æ Doctor(x,v) →
∃w,w’ (History(x,z,u,w) Æ Physician(w,v,w’))

No fitting schema mapping exists

Fitting GLAV schema mapping

Fitting

Fitting

(a) Patient(123, Joe, Plus, Jan)
Doctor(123, Anna)

(b) Doctor(392, Bob)

(c) Patient(653, Cathy, Basic, Feb)

History(123, Plus, Jan, N1)
Physician(N1, Anna, N2)

Physician(N3, Bob, N4)

History(653, Basic, Feb, N5)

Patient(x,y,z,u) Æ Doctor(x,v) →
∃w,w’ (History(x,z,u,w) Æ Physician(w,v,w’))

Doctor(x,y)→ ∃w,w’ Physician(w,y,w’)
Patient(x,y,z,u) → ∃w History(x,z,u,w)

Fitting

Fig. 6. An example of the workflow in Figure 5

target schema T with variables from x and y. By an atom over a schema R, we mean
a formula P (x1, . . . , xm), where P ∈ R and x1, . . . , xm are variables, not necessarily
distinct. For notational simplicity, we will often drop the universal quantifiers ∀x in the
front of GLAV constraints. To draw an analogy to the query-like notation introduced in
Section 3, the atoms in the ϕ(x) conjunction correspond to the atoms in the for clause,
while repeated appearances of a variable fromx correspond to equalities specified in the
satisfying clause. A similar analogy holds between the ψ(x,y) formula and the exists
and where clauses.

An Example Run of Eirene. Suppose a user wishes to design a schema mapping be-
tween the source schema and target schema shown in the top-left corner of Figure 6.
The source schema has two relations: Patient and Doctor, and the target schema has two
relations: History and Physician.

Step 1. The user adds a single data example, shown in the first box, which essentially
states that Anna is the doctor of Joe, whose health plan is Plus, and date-of-visit is
Jan. In the target relation, there is a single fact that consolidates this information, omit-
ting the patient name. Based on this single data example, Eirene will infer the schema
mapping shown on the right of the box. This schema mapping states that whenever a
Patient tuple and Doctor tuple agree on the pid value (i.e., a natural join between Patient
and Doctor), create a target tuple with the pid, healthplan, date, and docid values from
Patient and Doctor.



70 B. Alexe and W.-C. Tan

Step 2. The user may choose to refine the data example further, perhaps after a realiza-
tion that there was a typographical error in the data example that is just entered. The
modified data example is shown in the second box. For this data example, the source in-
stance remains unchanged, but the user has now modified the target instance to consist
of two tuples: a History tuple and a Physician tuple which are “connected” through the
value N1. Observe that the values N1 and N2 in the target instance do not occur among
the values of the source instance and they, intuitively, represent unknown and possi-
bly different values. Based on this single data example, our system infers the desired
schema mapping shown on the right. The new schema mapping asserts that information
from the inner join of Patient and Doctor should be migrated to the target relations, with
appropriate nulls to represent unknown and possibly different values.

Step 3. In the third box of Figure 6, the user adds a second data example (b). Eirene
now reports that no schema mapping can fit the two data examples (a) and (b). This
is because the pattern of data migration in data examples (a) and (b) are inconsistent.
According to (b), every Doctor(pid,docid) fact in the source must have a corresponding
Physician(docid,pid,office) fact in the target. Observe that the pid value is copied to the
second column of the corresponding Physician fact. However, this is inconsistent with
what (a) states: a Doctor(pid, docid) has a corresponding Physician( ,docid, ) fact in
the target, and docid gets copied to the second column of the corresponding Physician
fact instead.

Step 4. In the fourth box, the user modifies data example (b) and adds a third data
example (c). Based on these data examples, Eirene reports the schema mapping shown
to the right of the fourth box. Essentially, the schema mapping migrates information
from the outer join of Doctor and Patient to the corresponding relations in the target.

Our algorithm that underlies Eirene is shown in Figure 7. It solves the fitting gen-
eration problem and relies on a homomorphism extension test that is a necessary and
sufficient condition for the fitting decision problem.

Given a source schema S, a target schema T, and a finite set E of data examples that
conform to the schemas, the GLAV Fitting Decision Problem asks to tell whether or not
there is a GLAV schema mapping M that fits E . The GLAV Fitting Generation Problem
asks to construct a GLAV schema mapping M that fits E , if such a schema mapping
exists, or to report that “None exists”, otherwise.

The GLAV Fitting Algorithm. As seen in Figure 7, our algorithm has two main steps.
Given a finite set E of data examples, the first step of the algorithm uses the homomor-
phism extension test to check whether there exists a GLAV schema mapping that fits E .
If no such fitting GLAV schema mapping exists, then the algorithm simply reports that
none exists. Otherwise, the second step of the algorithm proceeds to construct a GLAV
schema mapping that fits the set E .

Homomorphism Extension Test Let (I, J) and (I ′, J ′) be two data examples. We say
that a homomorphism h : I → I ′ extends to a homomorphism ̂h : J → J ′ if for all
a ∈ adom(I)∩adom(J), we have that ̂h(a) = h(a). The homomorphism extension test
checks the following: for every pair of data examples from the given set E , test whether
every homomorphism between the source instances of the two examples extends to
a homomorphism between the corresponding target instances. If this homomorphism
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Algorithm: GLAV Fitting
Input: A source schema S, a target schema T, and a finite set E of data examples
(I1, J1) . . . (In, Jn) over S,T.
Output: Either a fitting GLAV schema mapping or ‘None exists’

// Homomorphism Extension Test: Test for existence of a fitting GLAV schema mapping

for all i, j ≤ n do
for all homomorphisms h : Ii → Ij do

if not(h extends to a homomorphism ̂h : Ji → Jj ) then
fail(‘None exists’)

// Construct a fitting canonical GLAV schema mapping

Σ := ∅
for all i ≤ n do

add to Σ the canonical GLAV constraint of (Ii, Ji)
return (S, T, Σ)

Fig. 7. The GLAV Fitting Generation Algorithm

extension test fails, the algorithm immediately reports that no GLAV schema mapping
can fit the set E of data examples.

To illustrate the failure of the homomorphism extension test, we refer back to Fig-
ure 6 and the set of data examples resulting after Step 3 of the depicted workflow. The
homomorphism {392 → 123, Bob → Anna} from the source instance of data example
(b) to the source instance of data example (a) cannot be extended to a homomorphism
between the corresponding target instances. Any such homomorphism would neces-
sarily map the value Bob to N1, as well as 392 to Anna. Consequently, in this case,
the homomorphism extension test fails, and the algorithm terminates. If the homomor-
phism extension test succeeds, the fitting algorithm proceeds to construct the fitting
schema mapping.

Constructing a Fitting Canonical GLAV Schema Mapping In this step, the algorithm
proceeds to construct the canonical GLAV schema mapping of E . The concept of a
canonical GLAV schema mapping is similar to that of a canonical conjunctive query.
If (I, J) is a data example, then the canonical GLAV constraint of (I, J) is the GLAV
constraint ∀x(qI(x) → ∃yqJ (x,y)), where qI(x) is the conjunction of all facts of
I (with each value from the active domain of I replaced by a universally quantified
variable from x) and qJ (x,y) is the conjunction of all facts of J (with each value
from adom(J) \ adom(I) replaced by an existentially quantified variable from y). The
canonical GLAV schema mapping of E is the schema mapping M = (S,T, Σ), where
Σ consists of the canonical GLAV constraints of each data example in E . For example,
the canonical GLAV schema mapping for the set of data examples resulting after Step 4
of the workflow in Figure 6 is specified by the three GLAV constraints depicted on the
right of the box containing the data examples. Notice that this step takes time linear in
the size of the given set E of data examples.
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It is important to point out that the canonical GLAV schema mapping of a given set
of data examples need not fit this set of examples. In fact, this is what makes the GLAV
fitting generation problem interesting and nontrivial. Consider the set E consisting of
the data examples

({S(a, b)}, {T (a)}) and ({S(c, c)}, {U(c, d)}).
The canonical GLAV schema mapping of E is specified by the GLAV constraints

∀xy(S(x, y) → T (x))

∀x(S(x, x) → ∃zU(x, z))

This schema mapping does not fit E , as the second data example violates the first con-
straint. Note also that our homomorphism extension test in the first step of the algorithm
would detect this: the homomorphism h that maps S(a, b) to S(c, c) does not extend to
any target homomorphism from T (a) to U(c, d). Hence, in this case, our algorithm will
terminate after the first step and report that “None exists”.

Next, we report results that show the correctness of our algorithm, that our algorithm
returns the “most general” fitting schema mapping, if a fitting schema mapping exists,
that our algorithm is complete for GLAV schema mapping design, the complexity of
our algorithm, and our implementation.

Correctness. The correctness of the GLAV fitting generation algorithm is given by the
following result.

Theorem 1. Let E be a finite set of data examples. The following are equivalent:

1. The canonical GLAV schema mapping of E fits E .

2. There is a GLAV schema mapping that fits E .

3. (Homomorphism Extension Test) For all (I, J), (I ′, J ′) ∈ E , every homomorphism
h : I → I ′ extends to a homomorphism ̂h : J → J ′.

Theorem 1 shows that the homomorphism extension test is a necessary and suffi-
cient condition for determining whether GLAV schema mapping fitting E exists. Fur-
thermore, this condition is also a necessary and sufficient condition for determining
whether the canonical GLAV schema mapping of E fits E .

Most General Fitting GLAV Schema Mapping. Given a finite set E of data examples,
there may be many GLAV schema mappings that fit E . If there is a GLAV schema
mapping that fits E , we showed that the canonical GLAV schema mapping is the most
general GLAV schema mapping that fits E .

Let M = (S,T, Σ) and M′ = (S,T, Σ′) be two schema mappings over the same
source and target schemas. We say that M is more general than M′ if Σ′ logically im-
plies Σ, i.e., if for every data example (I, J) such that (I, J) satisfies Σ′, we have that
(I, J) also satisfies Σ. For example, both R(x, y) → P (x, y) and R(x, x) → P (x, x)
fit the data example ({R(a, a)}, {P (a, a)}) with the latter mapping being more gen-
eral. In this case, the GLAV fitting algorithm will return the latter mapping R(x, x) →
P (x, x).



A New Framework for Designing Schema Mappings 73

This result, along with the correctness of the GLAV fitting algorithm, imply that if a
fitting GLAV schema mapping exists for a given set E of data examples, then our GLAV
fitting algorithm returns the most general GLAV schema mapping that fits E . Note that
this most general schema mapping is unique up to logical equivalence.

Completeness for Design. Our method of designing schema mappings via data exam-
ples is complete for schema-mapping design.

Theorem 2. For every GLAV schema mappingM, there is a finite set of data examples
EM, such that, when given EM as input, the GLAV fitting algorithm returns a schema
mapping that is logically equivalent to M.

In other words, every GLAV schema mapping can be produced (up to logical equiv-
alence) by our GLAV fitting algorithm with an appropriate set of data examples.

Complexity. The most general schema mapping produced by our GLAV fitting gener-
ation algorithm has size linear in the size of the input set of data examples. We showed
that this linear bound on the size of the most general schema mapping cannot be im-
proved in general. In contrast, the first step of the GLAV fitting algorithm can be ex-
ponential, since the number of homomorphisms between two database instances can be
exponential. Hence, the GLAV fitting algorithm runs in exponential time in the worst
case. We showed that the GLAV fitting decision problem is complete for the second
level Πp

2 of the polynomial hierarchy, hence, in all likelihood, it is harder than NP-
complete.

Implementation. We implemented our approach as a prototype in Java 6, with IBM
DB2 Express-C v9.7 as the underlying database engine, running on a Dual Intel Xeon
3.4GHz Linux workstation with 4GB RAM. Eirene stores data examples in the IBM
DB2 database system and implements the homomorphism extension test as a set of DB2
user-defined functions. Intuitively, each function is associated with a data example and
it tries to find a witness to the failure of the homomorphism extension.

The high worst-case complexity of the GLAV fitting problem notwithstanding, the
experimental results that we have obtained demonstrate the feasibility of interactively
designing schema mappings using data examples. In particular, our experiments show
that our system achieves very good performance in real-life scenarios. For more details,
we refer the interested reader to the experimental evaluation presented in [1].

4.2 Muse

Muse allows a user to refine various aspects of an existing schema mapping specifica-
tion, based on the choices made by users on a series of data examples that are presented
by the system. The Muse workflow is shown in Figure 8. In contrast, the Eirene system
derives schema mappings from data examples provided by the user.

The Muse system is largely inspired by the work of Yan et al. [35], which was the
first to present data examples to users so that users’ feedback can be used for refining
schema mappings. Like [35], Muse uses data examples to differentiate between alterna-
tive mapping specifications and infer the desired mapping semantics based on a user’s
actions. However, we go significantly beyond the techniques and space of alternative
mappings supported by [35].
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I User makes choices 

I1 J1 Ik Jk 

Fig. 8. Interactive refinement of various aspects of schema mappings via data examples

First, Muse is capable of helping a user derive the desired grouping semantics for a
mapping specification through choices made on data examples. For instance, to infer
whether a user wishes to group projects by a a company’s name and location or only
by a company’s name, Muse will construct a sequence of choice questions with data
examples. The selection of data examples made by the user allows Muse to infer the
desired grouping semantics. The number of choice questions and the size of each data
example are usually small. They correspond roughly to the number schema elements
that could be used for grouping and each data example consists of at most two tuples
per (nested) relation.

Second, as in [35], Muse helps a user choose among alternative interpretations of
an ambiguous mapping. Intuitively, a schema mapping is ambiguous if it specifies, in
more than one way, how an atomic target schema element (or attribute) is to be obtained.
For example, the schema mapping that is generated from the visual specification could
be ambiguous because the visual specification may assert (through attribute correspon-
dences) that a project supervisor is a project manager and a project tech-lead at the
same time. In other words, it is not clear whether to extract the manager’s name or the
tech-lead’s name (or both) from the source database as the supervisor of a project in the
target database and hence the ambiguity. When this happens, the user is asked to select
among a small set of data choices to fill in the target instance of a data example that is
constructed by Muse. The data example and choices are carefully chosen so that they
reflect all possible interpretations of the ambiguous mapping. Furthermore, the user’s
actions on these choices translate into a unique interpretation. Apart from our ability
to handle nested XML-like data, Muse is also different from [35] in that we show all
possible interpretations of an ambiguous schema mapping in one compact representa-
tion (i.e., the data example together with data choices in the target instance of the data
example). In contrast, all different target instances are shown to the user in [35]. The
discussion of ambigious mappings will be omitted from this article. However, details
can be found in [8].

Finally, unlike previous work which relies exclusively on an available source instance
to illustrate mappings, Muse can construct its own synthetic data example whenever a
meaningful data example cannot be drawn from the actual source instance or when the
source instance is unavailable. It is important to note that for a given source instance,
schema mappings that are logically inequivalent may produce the same target instance
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CompDB:
Companies

cid
cname
location

Projects
pid
pname
cid
manager

Employees
eid
ename
contact

OrgDB:
Orgs

oname
Projects

pname
manager

Employees
eid
ename

f1

f2

m1: for c in CompDB.Companies exists o in OrgDB.Orgs
where c.cname=o.oname and

o.Projects = SKProjs(c.cid,c.cname,c.location)

m2: for c in CompDB.Companies, p in CompDB.Projects, 
e in CompDB.Employees

satisfying p.cid=c.cid and e.eid=p.manager
exists o in OrgDB.Orgs, p1 in o.Projects, 

e1 in OrgDB.Employees
where p1.manager=e1.eid and

c.cname=o.oname and e.eid=e1.eid and
e.ename=e1.ename and p.pname=p1.pname and
o.Projects = SKProjs(<all attributes of c, p and e>)

m3: for e in CompDB.Employees 
exists e1 in OrgDB.Employees 1 g p y
where e.eid = e1.eid and e.ename=e1.ename

Fig. 9. A mapping scenario

on the given source instance. Muse is able to automatically detect such situations and
construct a synthetic source instance that will illustrate differences in all design alter-
natives as needed. In fact, our experiments justify that this feature of Muse is necessary
to help design mappings for some real mapping settings and instances.

Naturally, an advanced user can always choose to tweak or specify the desired schema
mapping function directly without using Muse. Muse is useful for cases where such di-
rect manipulation of code is not preferred.

Design of Grouping Functions. Grouping or combining related data together is an
essential functionality of many integration systems. We now describe how the grouping
design wizard Muse-G of Muse can be used to infer the desired grouping function
through a sequence of choices made by the user on data examples.

The Muse-G wizard is always able to infer a grouping function that has the same
grouping semantics as the actual grouping function that the user has in mind. As the
data examples illustrate the different possibilities of grouping, Muse-G can also be very
useful when the user only has a partial understanding of the desired grouping semantics.

In what follows, we overview the basic algorithm behind Muse-G when there are
no functional dependencies (FDs) in the source schema. Details of this algorithm and
extensions to handle keys (and FDs in general) in the source schema, as well as our
experimental results can be found in [8].

Except for topmost-level sets, every nested set in the target schema of mapping gen-
eration tools (e.g., [14, 19, 28]) has a default grouping function, where the arguments
consist of only atomic attributes. For example, there are no grouping functions for Orgs
and Employees in the target schema of Figure 9. However, the default grouping function
for Projects in m2 according to [19] is

SKProjs(c.cid, c.cname, c.location, p.pid, p.pname, p.cid, p.manager, e.eid, e.ename, e.contact)

This means that Projects records are grouped according to the values of all attributes
of the Companies, Projects and Employees source records. If SKProjs(cname) is the
grouping function instead, then Projects records are grouped according to cname of
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Companies records (i.e., oname of Orgs records). (We write SKProjs(cname) instead of
SKProjs(c.cname) when there is no ambiguity.)

In tools such as Mapforce, Stylus Studio and [14, 19, 28] the arguments of the group-
ing function have to be explicitly modified or specified. This can be difficult when
schemas are large and the number of possible arguments for a grouping function tends
to be large as a consequence. Indeed, if there are n possible attributes to group by, then
there are in fact 2n choices of grouping functions. Furthermore, it may not be obvious
to a user, what the n possible grouping attributes are (see [19, 28]).

Muse-G takes as input a schema mapping (S, T, Σ). The user can choose to design
any grouping function that occurs in Σ. We assume that there is a real source instance
I from which Muse-G can draw real data examples whenever possible, and show how
Muse-G constructs its own examples otherwise. To illustrate our algorithm, we use the
schema mapping (S, T, {m2}), where S, T and m2 are the source and target schemas
and respectively, mapping, of Figure 9.

Step 1. The first step is to determine an order to the set of grouping functions that the
user wishes to (re)design in a mapping in Σ by performing a breadth-first traversal
of T starting from the root. This yields, for our example, the order Orgs, Employees,
and Projects. Since Orgs and Employees are top-level sets without grouping functions,
Muse-G will only prompt the design of grouping functions for Projects (i.e., SKProjs)
in m2.

Step 2. Next, we determine the set poss(m2, SKProjs) of all possible arguments for
SKProjs according to m2. According to the schema of OrgDB, a Projects SetID is
nested inside an Orgs tuple. According to the for clause ofm2, the existence of an Orgs
tuple is dependent on the existence of a Companies tuple, an Employees tuple, and a
Projects tuple which agrees with the Companies and Employees tuples on the values of
pid and manager, respectively.

This means that poss(m2,SKProjs) consists of the set of attributes in the Companies,
Projects and Employees records, which is {cid, cname, location, pid, pname, pid,
manager, eid, ename, contact}. Note that the sets poss(m,SK) are in fact identical for
all nested sets SK occurring in m. In other mapping formalisms, however, they may be
different (see [19] for details). However, to simplify our subsequent discussion, we will
assume that poss(m2,SKProjs)={cid,cname,location}.

Step 3. Suppose the user has SKProjs(Z) in mind, where Z ⊆ poss(m2, SKProjs). In
what follows, we show how Muse-G proceeds to construct data examples to present
choices to the user in order to infer the desired grouping function.

Construct Data Examples. To determine whether or not an attribute A from poss(m2,
SKProjs) is to be included in the grouping function of SKProjs, Muse-G carefully con-
structs a small source instance Ie such that two differentiating target instances are ob-
tained: regardless of what the rest of the grouping attributes might be, one is the result
of including the attribute A as part of SKProjs in m2, and the other omits it.

Suppose the attribute under consideration is cid. An example source instance Ie with
two tuples, as shown below, will be constructed:

Ie : {Companies(c1, n1, l1), Projects(p1, pn1, c1, e1), Employees(e1, en1, cn1),
Companies(c2, n1, l1), Projects(p2, pn2, c2, e2), Employees(e2, en2, cn2)}
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Observe that each relation in Ie has two tuples. Furthermore, every attribute value
of every tuple is distinct, except for cname and location values of Companies tuples.
The reason for this is so that the target instances generated by m2 with SKProjs(cid,y),
where y ⊆ {cname,location}, versus m2 with SKProjs(y) will be non-isomorphic.
Indeed, the former target instance will contain two distinct Projects sets, while the latter
consists of only one Projects set.

To obtain a real source instance, Muse-G generates the following query that will be
executed against the actual source instance, if available, to retrieve real tuples for the
example instance Ie.

QIe : Companies(c1, n1, l1) ∧ Companies(c2, n1, l1)∧
Projects(p1, pn1, c1, e1) ∧ Projects(p2, pn2, c2, e2)∧
Employees(e1, en1, cn1) ∧ Employees(e2, en2, cn2) ∧ c1 	= c2

All variables of QIe are universally-quantified. The two Companies tuples must dis-
agree on cid (the probed attribute) and agree on cname and location as explained earlier.

If QIe(I) returns an empty result, Muse-G will present the user with the synthetic
instance Ie, shown earlier. Alternatively, a “semi-real” Ie may also be constructed by
putting together various real values drawn from I (e.g., use cid, cname and location
values drawn from the corresponding columns of the Companies relation to create a
Companies tuple in Ie, regardless of whether these values participate in a real Companies
tuple). However, this may lead to combinations that are misleading to the user. On the
other hand, if QIe(I) returns a non-empty result, Muse-G constructs a real example
based on the returned values. A possible real example constructed in this way is shown
in Figure 10(a), where each tuple in Companies, Projects and Employees exists in I .

Next, Muse-G obtains two differentiating target instances shown in Scenarios 1 and
2 in Figure 10(a), by chasing Ie with mappings d1 and respectively, d2. Here, d1 and
d2 are identical to m2 except they have SKProjs(cid) and respectively, SKProjs() as
grouping functions for Projects. Now, Muse-G asks the user “which target instance
looks correct”?

Note that the instance Ie has been carefully crafted so that the chase of Ie with d1
is isomorphic to the chase of Ie with d′1, where d′1 is a mapping obtained from m2

by replacing SKProjs with SKProjs({cid} ∪ Y ), where Y ⊆ {cname, location}. Since
cname and location values are identical for the two Comp tuples in Ie, the mapping d1
has the same effect as d′1 on Ie. Similarly, d2 has the same effect as d′2 on Ie, where
d′2 is obtained from d2 by replacing SKProjs with SKProjs(Y ). Hence, based on the
user’s choice of Scenario 1 or 2, Muse-G correctly determines whether cid is part of the
user’s desired grouping function. So with one question, we either eliminate all mappings
using cid (not only SKProjs(cid), but SKProjs(cid, cname), SKProjs(cid, location), and
SKProjs(cid, cname, location)), or we eliminate all mappings that do not use cid in the
skolem function for Projects.

Continuing with our example, suppose the user has the grouping function
SKProjs(cname) in mind. She would select Scenario 2 in Figure 10(a). We now repeat
the process for the other attributes cname and location. Figure 10(b) shows the example
source instance and the two scenarios obtained by considering the attribute cname. The
two source Companies tuples must differ on the values of cname and agree on the val-
ues of location. Note that the cid values of the two Companies tuples are not required
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Example source:
Companies

11 IBM NY
12 IBM NY

Projects
P1 DB   11 e4
P2 Web 12 e5

Employees
e4 Jon   x234
e5 Anna x888

Target instances:
Scenario 1:
OrgDB

Orgs
IBM
Projects:SK(11,y)

DB   e4
IBM
Projects:SK(12,y)

Web e5
Employees

e4 Jon 
e5 Anna

Scenario 2:
OrgDB

Orgs
IBM
Projects:SK(y)

DB    e4
Web e5

Employees
e4 Jon 
e5 Anna

(a)
Note:

y ⊆ {IBM NY}y ⊆ {IBM,NY}

Example source:
Companies

11 IBM   NY
14 SBC  NY

Projects
P1 DB   11 e4
P4 WiFi 14 e6

Employees
e4 Jon   x234
e6 Kat    x331

Target instances:
Scenario 1:
OrgDB

Orgs
IBM
Projects:SK(IBM,y)

DB   e4
SBC
Projects:SK(SBC,y)

WiFi e6
Employees

e4 Jon 
e6 Kat

Scenario 2:
OrgDB

Orgs
IBM
Projects:SK(y)

DB    e4
WiFi e6

SBC
Projects:SK(y)

DB    e4
WiFi e6

Employees
e4 Jon 
e6 Kat

(b)
Note:

y ⊆ {NY} e6 Katy ⊆ {NY}

Example source:
Companies

11 IBM  NY
13 IBM  SF

Projects
P1 DB   11  e4
P2 Web 13 e5

Employees
e4 Jon   x234
e5 Anna x888

Target instances:
Scenario 1:
OrgDB

Orgs
IBM
Projects:SK(IBM,NY)

DB   e4
IBM
Projects:SK(IBM,SF)

Web e5
Employees

e4 Jon
e5 Anna

Scenario 2:
OrgDB

Orgs
IBM
Projects:SK(IBM)

DB   e4
Web e5

Employees
e4 Jon
e5 Anna

(c)

Fig. 10. Probing on (a) cid, (b) cname, and (c) location when the user has SKProjs(cname) in
mind
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to be identical, since cid is not an argument of SKProjs. The user will pick Scenario 1
in Figure 10(b), since she wants to group Projects by cname, and Muse-G infers that
cname is an argument to SKProjs. Figure 10(c) shows the data examples that are pre-
sented to the user when the attribute location is under consideration. The user will pick
Scenario 2. Since cname is part of the grouping, the Companies tuples must agree on
the cname values, otherwise, Muse-G would not be able to infer whether location is part
of the groping from the user’s choice in Figure 10(c). At this point, Muse-G concludes
and returns SKProjs(cname).

Recall that we have assumed above that poss(m2, SKProjs) is {cid,cname,location}
for simplicity, when in fact it consists of all attributes of Companies, Projects and
Employees records. In this case, Muse-G concludes only after subsequently probing
all the attributes of Projects and Employees records (the user will choose Scenario 2 in
each case). Note also that it is conceivable for Muse-G to generate homomorphically
equivalent target instances (i.e., target instances with a homormophisms into each other)
for Scenarios 1 and 2 (e.g., Figure 10(b)). However, it is always possible for the user to
distinguish between such instances, as they are non-isomorphic.

Muse-G infers the desired grouping function by presenting the user a small number
of choice questions, where each choice question consists of a small source instance with
two target instances that correspond to the two possible choices in this question.

Small Number of Choices, Small Data Examples. For each nested set SK in a map-
ping m, there are 2n different grouping functions where n = |poss(m, SK)|. However,
Muse-G determines the desired grouping function by asking the user only |poss(m, SK)|
questions. In fact, if there is at most one key per nested set, then Muse-G performs a
careful reordering of the questions posed to the user. The questions pertaining to the
attributes in the key are asked first. In general, using this strategy, at most n questions
are needed to infer the desired grouping function. If the user decides to include the key
attributes in the grouping function, then the number of questions is equal to the number
of key attributes. It is also important to note that all real source schemas that we have
encountered in our experimental evaluation fall into this category.

Furthermore, for each choice, Muse-G constructs a small source example. The size
of the source example is twice the number of “x ∈ X” clauses in for clauses ofm. This
typically means that there are at most two tuples in each nested set.

We refer the interested reader to [2] for a report on our experience with Muse on
publicly available mapping scenarios.

5 Modular Design of Schema Mappings

5.1 Overview

As outlined in Section 2, in our Divide-Design-Merge methodology, the user can choose
to design a schema mapping by focusing on designing smaller and easier to understand
mappings, using data examples as much as possible. In the previous section, we have
presented our techniques for designing and refining schema mappings via data exam-
ples. However, simply taking the independently designed schema mapping components
and using them as the specification for the global schema mapping may not achieve the
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desired semantics. This may lead, as it will be explained later, to problems such as data
redundancies and loss of data associations. Hence, the design workflow is not complete
without a mechanism for correlating the set of independent schema mappings resulting
after the previous phase into a meaningful global schema mapping (see Figure 3). This
is the role of the MapMerge schema mapping operator, presented in this section. This
operator allows for the modular construction of complex and larger schema mappings
from multiple “smaller” schema mappings between the same source and target schemas
into an arguably better overall schema mapping.

Since the mappings given as input to MapMerge can be as simple as individual
attribute correspondences, MapMerge supersedes previous mapping generation algo-
rithms such as the ones in Clio [16]. In addition, as we will show later, MapMerge can
be used in conjunction with the schema mapping composition operator [18, 23, 27] to
correlate flows of schema mappings in a meaningful way.

5.2 Motivating Example

To illustrate the ideas behind MapMerge, consider first a mapping scenario between the
schemas S1 and S2 shown in the left part of Figure 4. The goal is data restructuring
from two source relations, Group and Works, to three target relations, Emp, Dept, and
Proj. In this example, Group (similar to Dept) represents groups of scientists sharing
a common area (e.g., a database group, a CS group, etc.) The dotted arrows represent
foreign key constraints in the schemas.

Independent Mappings. Assume the existence of the following (independent) schema
mappings from S1 to S2. The first mapping is the constraint t1 in Figure 11(a), and
corresponds to the arrow t1 in Figure 4. This constraint requires every tuple in Group
to be mapped to a tuple in Dept such that the group name (gname) becomes department
name (dname). The second mapping is more complex and corresponds to the group of
arrows t2 in Figure 4. This constraint involves a custom filter condition; every pair of
joining tuples of Works and Group for which the addr value is “NY” must be mapped
into two tuples of Emp and Dept, sharing the same did value, and with corresponding
ename, addr and dname values. (Note that did is a target-specific field that must exist
and plays the role of key / foreign key). Intuitively, t2 illustrates a pre-existing mapping
that a user may have spent time in the past to create, possibly using the techniques
based on data examples from Section 4. Finally, the third constraint in Figure 11(a)
corresponds to the arrow t3 and maps pname from Works to Proj. This is an example
of a correspondence that is introduced by a user after loading t1 and the pre-existing
mapping t2 into the mapping tool.

The goal of the system is now to (re)generate a “good” overall schema mapping
from S1 to S2 based on its input mappings. We note first that the input mappings, when
considered in isolation, do not generate an ideal target instance.

Indeed, consider the source instance I in Figure 12. The target instance that is
obtained by minimally enforcing the constraints {t1, t2, t3} is the instance J1 also
shown in the figure. The first Dept tuple is obtained by applying t1 on the Group tuple
(123, CS). There, D1 represents some did value that must be associated with CS in
this tuple. Similarly, the Proj tuple, with some unspecified valueB for budget and a did
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Fig. 11. (a) Schema mappings from S1 to S2 in the scenario of Figure 4. (b) Output of Map-
Merge.

Group
gno gname
123 CS   

Works
ename addr pname gno
John NY Web 123

Source instance I

Emp
ename addr did
John NY D2

Dept
did dname
D1 CS 
D2 CS
D3 N

Target instance J
1

Proj
pname budget did

Web B D3

{t1,t2,t3}

MapMerge({t1,t2,t3})

Emp
ename addr did
John NY D

Dept
did dname
D CS

Target instance J
2

Proj
pname budget did

Web B’ D

Fig. 12. An instance of S1 and two instances of S2

value of D3 is obtained via t3. The Emp tuple together with the second Dept tuple are
obtained based on t2. As required by t2, these tuples are linked via the same did value
D2. Finally, to obtain a target instance that satisfies all the foreign key constraints, we
must also have a third tuple in Dept that includes D3 together with some unspecified
department name N .

Since the three mapping constraints are not correlated, the three did values (D1,D2,
D3) are distinct. (There is no requirement that they must be equal.) As a result, the target
instance J1 exhibits the typical problems that arise when uncorrelated mappings are
used to transform data: (1) duplication of data (e.g., multiple Dept tuples for CS with
different did values), and (2) loss of associations where tuples are not linked correctly to
each other (e.g., we have lost the association between project nameWeb and department
name CS that existed in the source).
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Correlated Mappings via MapMerge. Consider now the schema mappings that are
shown in Figure 11(b) and that are the result of MapMerge applied on {t1, t2, t3}. The
notable difference from the input mappings is that all mappings consistently use the
same expression, namely the Skolem term F [g] where g denotes a Group tuple, to give
values for the did field. The first mapping is the same as t1 but makes explicit the fact
that did is F [g]. This mapping creates a unique Dept tuple for each distinct Group tu-
ple. The second mapping is (almost) like t2 with the additional use of the same Skolem
term F [g]. Moreover, it also drops the existence requirement for Dept (since this is now
implied by the first mapping). Finally, the third mapping differs from t3 by incorporat-
ing a join with Group before it can actually use the Skolem term F [g]. Furthermore, it
inherits the filter on the addr field, which applies to all such Works tuples according to
t2. As an additional artifact of MapMerge, it also includes a Skolem term H1[w] that
assigns values to the budget attribute, which was initially left unspecified. The target
instance that is obtained by applying the result of MapMerge is the instance J2 shown
in Figure 12. The data associations that exist in the source are now correctly preserved
in the target. For example, Web is linked to the CS tuple (via D) and also John is
linked to the CS tuple (via the same D). Furthermore, there is no duplication of Dept
tuples.

Flows of Mappings. Taking the idea of mapping reuse and modularity one step further,
an even more compelling use case for MapMerge in conjunction with mapping com-
position [18, 23, 27], is the flow-of-mappings scenario [4]. The key idea here is that to
design a data transformation from the source to the target, one can decompose the pro-
cess, in line with the Divide-Design-Merge approach, into several simpler stages, where
each stage maps from or into some intermediate, possibly simpler schema. Moreover,
the simpler mappings and schemas play the role of reusable components that can be ap-
plied to build other flows. Such abstraction is directly motivated by the development of
real-life, large-scale ETL flows such as those typically developed with IBM Information
Server (Datastage), Oracle Warehouse Builder and others.

To illustrate, suppose the goal is to transform data from the schema S1 to the nested
schema S4 of Figure 4, where Staff and Projects information are grouped under Comp-
Sci. The mapping or ETL designer, following the divide-and-merge methodology, may
find it easier to first construct the mapping between S1 and S2 (it may also be that this
mapping may have been derived in a prior design). Furthermore, the schema S2 is a
normalized representation of the data, where Dept, Emp and Proj correspond directly to
the main concepts (or types of data) that are being manipulated. Based on this schema,
the designer can then produce a mapping mCS from Dept to a schema S3 containing
a more specialized object CSDept, by applying some customized filter condition (e.g.,
based on the name of the department). The next step is to create the mapping m from
CSDept to the target schema S4. Other independent mappings are similarly defined for
Emp and Proj (see m1 and m2).

Once these individual mappings are established, the same problem of correlating
the mappings arises. In particular, one has to correlate mCS ◦ m, which is the result
of applying mapping composition to mCS and m, with the mappings m1 for Emp and
m2 for Proj. This correlation will ensure that all employees and projects of computer
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science departments will be correctly mapped under their correct departments, in the
target schema.

In this example, composition itself gives another source of mappings to be correlated
by MapMerge. While similar with composition in that it is an operator on schema map-
pings, MapMerge is fundamentally different in that it correlates mappings that share
the same source schema and the same target schema. In contrast, composition takes
two sequential mappings where the target of the first mapping is the source of the sec-
ond mapping. Nevertheless, the two operators are complementary and together they can
play a fundamental role in building data flows. In Section 5.4 we will give an overview
of an algorithm that can be used to correlate flows of mappings.

5.3 Correlating Mappings: Key Ideas

How do we achieve the systematic and, moreover, correct construction of correlated
mappings? After all, we do not want arbitrary correlations between mappings, but rather
only to the extent that the natural data associations in the source are preserved and no
extra associations are introduced.

There are two key ideas behind MapMerge. The first idea is to exploit the structure
and the constraints in the schemas in order to define what natural associations are (for
the purpose of the algorithm). Two data elements are considered associated if they are
in the same tuple or in two different tuples that are linked via constraints. This idea has
been used before in Clio [28], and provides the first (conceptual) step towards Map-
Merge. For our example, the input mapping t3 in Figure 11(a) is equivalent, in the
presence of the source and target constraints, to the following enriched mapping:

t′3: for w in Works, g in Group satisfying w.gno = g.gno
exists p in Proj, d in Dept where p.pname = w.pname and p.did = d.did

Intuitively, if we have a w tuple in Works, we also have a joining tuple g in Group,
since gno is a foreign key from Works to Group. Similarly, a tuple p in Proj implies the
existence of a joining tuple in Dept, since did is a foreign key from Proj to Dept.

Formally, the above rewriting from t3 to t′3 is captured by the well-known chase
procedure [11, 24]. The chase is a convenient tool to group together, syntactically, ele-
ments of the schema that are associated. The chase by itself, however, does not change
the semantics of the mapping. In particular, the above t′3 does not include any additional
mapping behavior from Group to Dept.

The second key idea behind MapMerge is that of reusing or borrowing mapping
behavior from a more general mapping to a more specific mapping. This is a heuristic
that changes the semantics of the entire schema mapping and produces an arguably
better one, with consolidated semantics.

To illustrate, consider the first mapping constraint in Figure 11(b). This constraint
(obtained by skolemizing the input t1) specifies a general mapping behavior from Group
to Dept. In particular, it specifies how to create dname and did from the input record.
On the other hand, the above t′3 can be seen as a more specific mapping from a subset
of Group (i.e., those groups that have associated Works tuples) to a subset of Dept
(i.e., those departments that have associated Proj tuples). At the same time, t′3 does
not specify any concrete mapping for the dname and did fields of Dept. We can then
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borrow the mapping behavior that is already specified by the more general mapping.
Thus, t′3 can be enriched to:

t′′3 : for w in Works, g in Group satisfying w.gno = g.gno
exists p in Proj, d in Dept
where p.pname = w.pname and p.did = d.did and

d.dname = g.gname and d.did = F [g] and p.did = F [g]

where two of the last three equalities represent the “borrowed” behavior, while the last
equality is obtained automatically by transitivity. The other borrowed behavior that we
will add to t′′3 is the user-defined filter on addr. This filter already applies, according to
t2, to all tuples in Works that join with Group tuples, and are mapped to Emp and Dept
tuples. The resulting constraint t′′′3 has the following form:

t′′′3 : for w in Works, g in Group satisfying w.gno = g.gno and w.addr = “NY”

exists p in Proj, d in Dept
where p.pname = w.pname and p.did = d.did and

d.dname = g.gname and d.did = F [g] and p.did = F [g]

Finally, we can drop the existence of d in Dept with the two conditions for dname
and did, since this is repeated behavior that is already captured by the more general
mapping from Group to Dept. The resulting constraint is identical2 to the third con-
straint in Figure 11(b), now correlated with the first one via F [g]. A similar explanation
applies for the second constraint in Figure 11(b).

The MapMerge Algorithm. MapMerge takes as input a set {(S,T, Σ1), ...,(S,T, Σn)}
of schema mappings over the same source and target schemas, which is equivalent to
taking a single schema mapping (S, T, Σ1 ∪ ... ∪ Σn) as input. The algorithm is di-
vided into four phases. The first phase decomposes each input mapping assertion into
basic components that are, intuitively, easier to merge. In Phase 2, we apply the chase
algorithm to compute associations (which we call tableaux), from the source and target
schemas, as well as from the source and target assertions of the input mappings. The
latter type of tableaux is necessary to support user defined joins that may not follow
foreign key constraints. By pairing source and target tableaux, we obtain all the possi-
ble skeletons of mappings. The actual work of constructing correlated mappings takes
place in Phase 3, where for each skeleton, we take the union of all the basic components
generated in Phase 1 that “match” the skeleton. Phase 4 is a simplification phase that
also flags conflicts that may arise and that need to be addressed by the user. These con-
flicts occur when multiple mappings that map to the same portion of the target schema
contribute with different, irreconcilable behaviors. For a complete presentation of the
MapMerge algorithm, we refer the interested reader to [5].

Evaluation. To evaluate the quality of the data generated based on MapMerge, we in-
troduced a measure that captures the similarity between a source and target instance

2 Modulo the absence of H1[w], which is introduced to ensure that no target attributes are left
unassigned.
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by measuring the amount of data associations that are preserved by the transformation
from the source to the target instance. We used this similarity measure in our experi-
ments, on a mix of real-life and synthetic mapping scenarios, to show that the mappings
derived by MapMerge are better than the input mappings. Our experiemental results are
presented in [5].

5.4 Correlating Flows of Schema Mappings with MapMerge and Composition

As discussed in the introduction, we can bring modular design of mappings beyond sets
of parallel mappings between the same pair of schemas, towards assembling general
flows of mappings. To generate meaningful end-to-end transformation specifications for
such flows, we have to bring along into the picture the sequential mapping composition
operator [18]. This operator can be used to obtain end-to-end mappings from chains
of successive mappings. In contrast, MapMerge assembles sets of “parallel” mappings.
These two operators can be leveraged in conjunction to correlate flows of mappings.

Recall the example of the flow of mappings in Figure 4. The individual mappings
can be assembled into an end-to-end mapping from the schema S1 to the schema S4

through repeated applications of the MapMerge and composition operators. To exem-
plify, the specialized mapping for Dept records between S2 and S4 is a result of com-
posing the mCS and m mappings. Furthermore, the right correlations among the Dept,
Emp, and Proj records that are migrated into S4 can be achieved by applying MapMerge
on m1,m2, and the result mCS ◦m of the previous composition.

Flow Correlation Algorithm. We provide here an overview of our flow correlation
algorithm. The complete details of this algorithm can be found in [5]. A flow of map-
pings can be modeled as a multigraph whose nodes are the schemas and whose edges
are the mappings between the schemas. Recall that a mapping consists of a pair of
source and target schemas as well as a set of constraints specified by SO tgds. In this
algorithm, a mapping between a source and a target schema is either part of the input, or
a consequence of applying MapMerge or mapping composition. Our algorithm assumes
that the graph of mappings is acyclic. In addition, for the purposes of this algorithm,
we assume that the MapMerge operator does not lead to outstanding residual equality
constraints. Integrating such constraints with the mapping composition operator is a
problem we plan to investigate in future work.

The flow correlation algorithm, which is shown in Figure 13, proceeds through al-
ternative phases of applying the MapMerge and mapping composition operators, and
terminates when no further progress can be made. In a MapMerge phase, the multi-
graph modeling the flow is essentially transformed into a regular graph. For any pair of
schemas Si,Sj , the set of mappings Mij going from Si to Sj is replaced by the re-
sult of applying MapMerge on Mij . In a mapping composition phase, for any distinct
schemas Si,Sj ,Sk in the flow such that M1 is a mapping from Si to Sj and M2 is a
mapping from Sj to Sk, the result M = M1 ◦M2 of composing M1 and M2 is added
to the flow. We use here the mapping composition algorithm in [18], since it applies to
schema mappings specified by SO tgds.

Our correlation algorithm keeps track, via the set C, of the mappings being added to
the flow in the composition phase. As a result, a mapping is not re-added to the flow
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Algorithm CorrelateFlow(M)
Input: A set of schema mappings M.
Output: The set of schema mappings M after correlation.

Let S be the set of schemas that are either source or target schemas for the mappings in M.
Initialize C = ∅
Repeat

[Phase 1] MapMerge
For every pair (Si,Sj) of distinct schemas in S

Let Mij be the set of mappings from Si to Sj in M.
Remove the mappings in Mij from M
Add MapMerge(Mij ) to M

[Phase 2] Composition
Initialize N = ∅
For every triple (Si,Sj ,Sk) of distinct schemas in S

where there exist in M a mapping M1 from Si to Sj and
a mapping M2 from Sj to Sk

Let M = M1 ◦M2

If M �∈ C (this composition was not considered before), add M to N
Add the mappings in N to M, and to C

Until N is empty.
Return M.

Fig. 13. The mapping flow correlation algorithm

if the result of composing the same mappings was computed and added to the flow
previously in the execution of the algorithm. The algorithm terminates when no new
mappings can be added to the flow in the composition phase, and returns the correlated
flow of mappings M. After executing this algorithm, the flow of mappings will contain
at most one mapping between each pair of schemas (with each mapping typically being
a set of correlated formulas).

6 Conclusion

This article presents a new framework for designing schema mappings between large
schemas. This new framework allows a user to divide-and-conquer the design of large
schema mappings by designing the schema mappings between smaller portions of the
participating schemas. These smaller schema mappings can be designed independently
of the rest through the specification of data examples or through the use of traditional
schema mapping design tools. Such individually designed schema mappings can then
be correlated and merged into one that better represents the associations in the source
data, whenever possible.
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