
Provenance in a Modifiable Data Set

Jing Zhang and H.V. Jagadish

University of Michigan
{jingzh,jag}@umich.edu

Abstract. Provenance of data is now widely recognized as being of great im-
portance, thanks in large part to pioneering work [4, 6] by Peter Buneman and
his collaborators in a stream that continues to produce influential papers today
[1–3, 7]. When we consume data from a database, we often care about where
these data come from, how they were derived, and so forth. We may desire an-
swers to such questions to establish trust in the data, to investigate suspicious
values, to debug code in the system, or for a host of other reasons. Considerable
recent work has addressed many issues related to provenance. However, the stan-
dard assumption is that data sources, from which result data have been derived,
are static. In reality, we know that most data are modified over time, including
data sources used for deriving results of interest. When we consider provenance
in the context of such modifications, many new problems arise. This chapter ad-
dresses two key problems in this context:

1. Result data may no longer be valid after a source update. How can we effi-
ciently determine whether a given result tuple is valid? When a result tuple
is invalidated, can we explain what caused this invalidation?

2. We may have lost access to (some) source data. In such a situation, can
we determine what is the missing source data on which some result tuple
depends?

1 Validating an Answer

In a modern scientific project, there frequently is a huge body of raw data collected
from experiments. Usually, this body of data is stored in a database, and processed by
SQL queries to make it ready for further analysis. These derived data are vital for the
final scientific conclusions the scientists draw from the experiments. When the raw data
change, e.g., due to a re-collection or a curation of the raw data, in the form of database
inserts, deletes and updates, it is important to know whether previously derived data and
results are still valid or derivable.

Previously derived data can be validated by incrementally maintaining [11] the de-
rived data set with regard to the updated database. However, scientists are often inter-
ested in only some particular portion of the derived data set, possibly even a single
tuple. For example, this may be a specific result quoted in some publication or used in
follow-on work. In such cases, one desires a more efficient way to validate the part in
question without refreshing the whole derived data set, especially when the derived data
set is large.

We propose an approach to validating the selected answer tuples derived from a
nested query in case of modifications to the source database, and provide an explanation

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 557–567, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



558 J. Zhang and H.V. Jagadish

of the invalidation of any of these tuples that is invalidated. For the former part, we
base our approach on the incremental evaluation of materialized views enhanced with
pruning predicates derived from the selected tuples and tailored for both positive and
negative tuples1 in delta tables; for the latter part, we treat the invalidated tuples as
negative tuples in the delta result table and retrieve their provenance as a set of both
positive and negative tuples within original and/or delta source tables.

Consider the following illustrative scenario, which we have designed using cus-
tomers and orders, as is so common in the database literature. We use this as our running
example, to make it accessible to the reader without requiring domain knowledge in any
scientific discipline.

Example 1. Assume we have two simple tables Orders and Customers as shown in
Figure 1. Every order in Orders consists of a unique order ID, a customer ID and the
cost of the order. Every customer in Customers consists of a unique customer ID and
a nation ID. There are four simple ASPJ queries QcMax, QoCnt , Qdist and QcMaxNation as
shown in Figure 2. QcMax computes the the maximum cost of a single order for each
customer; QoCnt computes the order count for each customer; QoCnt ◦ Qdist computes
the distribution of customers for each count of orders; QcMax ◦ QcMaxNation computes
the maximum cost of a single order for each nation. The derived tables are CostMax,
OrderCount, CustomerDistribution and CostMaxNation are also shown in Figure 1.

�������

�	
�� �	
� �����

��� ��� ����

��� ��� ����

��� ��� ����

��� ��� ����

��� ��� ���

�����������

�	
� �����

��� ��

��� ��

��� ��

�
������

��������
����������

����� �����

�� ��

�� ��


�

������

��������

�	
� �����

��� ����

��� ����

��� ����

����������

����������

�	
� �	
��

��� ���

��� � �

��� � �

�������������

�	
� �����

��� ����

� � ����

������

�

�������

�����������

a: oID is a unique ID for each order.
b: cID is a unique ID for each customer.
c: nID is a unique ID for each nation.

Fig. 1. Source Table And Derived Tables

Suppose we have updates to Orders table as ΔOrders, shown in Figure 3. The CNT
attribute in ΔOrders is the number of derivations of each tuple. Tuples with positive
CNT are to-be-inserted tuples and tuples with negative CNT are to-be-removed tu-
ples. ΔOrders leads to the update ΔCostMax to the result table CostMax. For example,

1 Tuples in delta tables can have positive counts or negative counts [11]. We call tuples with
positive counts positive tuples, and tuples with negative counts negative tuples.



Provenance in a Modifiable Data Set 559

QoCnt:
SELECT cID, count(oID) as oCnt
FROM Orders WHERE cost >= 100
GROUP BY cID
roCnt:
OrderCount(cID, count(〈oID〉) AS oCnt) � Orders(oID, cID, cost)
? − OrderCount(cID, oCnt)
Qdist:
SELECT oCnt, count(cID) as cCnt
FROM OrderCount GROUP BY oCnt
rdist:
CustomerDistribution(oCnt, count(〈cID〉) AS cCnt) � OrderCount(cID, oCnt)
? −CustomerDistribution(oCnt, cCnt)
QcMax:
SELECT cID, max(cost) as cMax
FROM Orders
GROUP BY cID
rcMax:
CostMax(cID,max(〈cost〉) AS cMax) � Orders(oID, cID, cost)
? −CostMax(cID, cMax)
QcMaxNation:
SELECT nID, max(cMax) as cMaxNation
FROM CostMax, Customers
WHERE CostMax.cID = Customers.cID
GROUP BY nID
rcMaxNation :
CostMaxNation(nID,max(〈cMax〉) AS cMaxNation) �
CostMax(cID, cMax),Customers(cID, nID)
? −CostMaxNation(nID, cMaxNation)

Fig. 2. Example Queries

(o6, c3, 150) ∈ ΔOrders is inserted into the source table Orders, and then (c3, 100) ∈
CostMax is replaced with (c3, 150). We say that (o6, c3, 150) contradicts the previ-
ous answer (c3, 100), and (o6, c3, 150) serves as an explanation of the invalidation of
(c3, 100) from CostMax.

Note that upon the insertion of (o6, c3, 150), the derivation that produced (c3, 100) is
still in Orders. However, (c3, 100) is no longer an answer in CostMax. Thus, the exis-
tence of contributory derivations is not sufficient to form an answer. Moreover, it is ob-
vious that there is more than one way to contradict an answer. For example, (o7, c3, 200)
can contradict (c3, 100) as well. On the other hand, the removal of contributory source
tuples, e.g., (o4, c3, 100) can invalidate (c3, 100) too.

In general, an answer’s validity can be changed by the insertion of contradictory
source tuples or by the removal of contributory source tuples. The contributory prove-
nance and the contradictory provenance have an interesting duality and correspondence.
When an answer is invalidated, a negative version of it shows up in the delta answer set,
e.g., (c1, 500,−1) in ΔCostMax indicates the invalidation of (c1, 500) in the original
answer set CostMax. Therefore, the contributory provenance of the negative version of
an answer in the delta answer set is in fact the contradictory provenance of the answer.



560 J. Zhang and H.V. Jagadish

Orders
oIDa cIDb cost CNT

o1 c1 500 1
o2 c2 100 1
o3 c2 150 1
o4 c3 100 1

ΔOrders
oIDa cIDb cost CNT

o6 c3 150 1
o1 c1 500 -1

ΔOrderCount
cID oCnt CNT
c1 1 -1
c3 1 -1
c3 2 1

ΔCustomerDistribution
oCnt cCnt CNT

2 1 -1
1 2 -1
2 2 1

ΔCostMax
cID cMax CNT
c1 500 -1
c3 100 -1
c3 150 1

Fig. 3. (Delta) Tables Extended With CNT

The contributory provenance of the negative version consists of tuples from delta source
tables and/or original source tables, and consists of both positive tuples and negative tu-
ples. The queries that produce the negative version are delta query rules [11], which
are derived from the original query. Then, the contributory provenance of the negative
version of an answer can be retrieved by tracing queries based on the delta query rules
that produced the negative version.

In general, we can validate selected answers in the following two steps.

Step 1. compute the delta result table by incrementally evaluating the (nested) query
with pruning predicates;

Step 2. check the delta result table against the original result table to see if the given
answers are invalidated, and explain the invalidation with the positive and/or neg-
ative tuples in the delta source tables (and possibly tuples in the original source
tuples)

In Step 1, the key point is the construction of pruning predicates. The goal is to prune
irrelevant source tuples in the (delta) source tables. The source tuples that can not pos-
sibly affect the selected answer(s) are considered irrelevant. Note that the view update
results computed from the incremental evaluation with and without pruning predicates
are possibly different, since the former does not care for updating answers other than
the selected ones.

Since the pruning predicates are constructed for the delta rules and the delta rules
evaluate over delta tables, the pruning predicates have to deal with both the positive
tuples (i.e., to-be-inserted tuples) and the negative tuples (i.e., to-be-deleted tuples) in
the delta tables. The positive tuples and negative tuples in the delta source tables af-
fect the given answer in different ways. For example, if the given answer is the current
maximum, then the positive tuples with a greater value have the potential to invali-
date the current maximum while the negative tuples with the same value as the current
maximum have the potential to invalidate the current maximum. Therefore, a pruning
predicate is a disjunction of two predicates, one for the positive tuples and one for the
negative tuples.

If the answer is derived through a single query rule, the pruning predicates are con-
structed directly based on the given answer. If the answer is derived through a strati-
fied Datalog program consisting of multiple rules, and the single rule with the highest



Provenance in a Modifiable Data Set 561

stratum produces the final answer. Then the pruning predicates for the rule with highest
stratum is constructed directly based on the given answer; and the pruning predicates
for any other rule are inferred from the pruning predicates for rules with higher strata.

In Step 2, if we find a negative version of the selected answer in the delta result table,
we know that the given answer is invalidated. Since this negative version is produced
by the delta rules from the delta source tables and possibly original source tables, we
can find the contributory provenance of this negative version in the delta source ta-
bles (and original source tables) using classical tracing queries derived from the delta
rules. This contributory provenance of the negative version, also being the contradictory
provenance of the given answer, explains the invalidation of the given answer.

A related problem has also been studied in [10]. The update techniques given there
for the count of the derivations of each view tuple can easily be generalized to update the
complete provenance of the view tuple instead. However, the update technique in [10]
only applies to SPJU queries without aggregations. Furthermore, this technique also
updates the entire derived dataset instead of just the subset of interest to the user.

1.1 Explanation of the Absence of Expected Answer

We considered above the question of identifying updates to source data that caused a
result tuple to be invalidated. We have previously studied a closely related question of
explaining why some expected result tuple is missing from the answer set [8]. In this
previous work, we are not specifically looking at source updates.

When some answer tuples that are expected to be in the result set are missing, we
seek to identify particular source tuples or particular manipulations in the derivation
responsible for their absence. Such input data are defined to be unpicked and such ma-
nipulations are defined to be picky manipulations for these unpicked data. We proposed
both top-down and bottom-up approaches to search over the derivation process to find
the picky manipulations.

In other related work, [13] showed that proper changes can be made to some attribute
values in the source data that have previously failed to produce the expected result
tuples, such that these modified source data can now go through the query evaluation
and produce the expected result tuples. [14] introduced the concept of functional causes,
which explains the presence and absence of answers. Similar to [13], [12] also provides
instance-based explanations for missing answers, but is more general since its technique
can apply to a set of SPJUA queries instead of SPJ queries.

2 Lost Source Provenance

Modifications to a source data set may delete (or update/overwrite) some or all of the
source data from which a result of interest was derived. Even in the absence of modi-
fications, it is possible that a data source becomes unavailable, for instance because it
is remote and goes off-line or because it is owned by an entity that decides to take it
private.

In consequence, the provenance of an answer can be (partially) removed from the
source data set. In order to retrieve this (partially) lost provenance when requested,



562 J. Zhang and H.V. Jagadish

we have two possible strategies with different trade offs between the provenance we
can provide and the storage/time overhead we are willing to pay.

One way to avoid this problem is to store a version of the source at the time the
result was derived. We can thereby guarantee no provenance will be lost, but there
is storage cost for keeping a duplicate of the source, and this cost could be substantial.
Moreover, if we operate in an environment in which result tuples are lazily updated from
the source, we may have to keep multiple versions of the source to meet the provenance
needs of all result tuples.

In this section, we develop a second strategy. We show how we can add three (small)
extra data structures to the database, and use these to recover the lost provenance.

First, we define the provenance of a given derived tuple as follows. It is a modified
version of the definition introduced in [9].

Definition 1. Given a database D of tables T1, ..., Tn, a query Q and a derived tuple t,
there exists a set of tables T ′1, ..., T

′
n such that

– T ′i ⊆ Ti, where i = 1, ..., n
– {t} = Q(T ′1, ..., T

′
n)

– ∀T ′k : ∀t′ ∈ T ′k : Q(T ′1, ..., T
′
k−1, {t′}, T ′k+1, ..., T

′
n) � ∅

Notice that if a single table has more than one instance in the query, each instance is
considered a separate table.

Second, we describe the three extra data structures we need to retrieve the possibly
overwritten provenance. With these three data structures, we can have standard tracing
queries modified to make use of them and retrieve the lost provenance. We refer to these
queries as extended tracing queries.

1. We need a log, denoted as provenance log, recording the operations that have taken
place over a time period till the current time point, beginning from some defined
origin. Every entry records one operation and each entry has a unique log ID, which
can be used to identify the operation in this entry.

2. We associate with each tuple in the current database an extra attribute, denoted as
since, storing a log ID, which indicates the operation that introduced this tuple into
the database.

3. We also associate with each table in the current database a so-called shadow table
that keeps the tuples that were once in the database table but have been removed
at some time point. In particular, the shadow table has the same schema as the
database table except for two extra attributes storing log IDs, denoted as begin and
end, with begin indicating the operation that introduced the tuple into the database
and end indicating the operation that removed the tuple from the database.

The provenance log, denoted as Plog, consists of a sequence of log entries. Each
entry corresponds to an operation executed in the database system. Each entry has the
structure (ID, timestamp, user, sqlS tatement). ID is an unique ID assigned to every
entry in the log, and an operation that is committed later has a greater ID for its cor-
responding log entry. That is to say, the ID indicates the order of the commission of
all the operations. sqlS tatement stores the SQL statement of the committed operation.



Provenance in a Modifiable Data Set 563

timestamp is the time when the operation is committed. user specifies the user who
commits the operation.

The shadow tables are for the historical tuples. For each regular table in the database,
we define a corresponding shadow table. For example, if a regular table is of schema
T : 〈a1, a2〉, then the shadow table of T is Tsh : 〈a1, a2, begin, end〉. The attributes
begin and end are foreign keys referring to the attribute ID in the provenance log. The
attribute begin stores an ID whose corresponding entry in the provenance log records the
operation that generates this tuple. The attribute end stores an ID whose corresponding
entry in the provenance log records the operation that removes this tuple.

The attributes begin and end are to specify the time period when the historical tuple
was current. We choose to use the IDs of log entries instead of the actual times to avoid
ambiguity: two committed operations can have the same time of commit but can not
have a same log entry ID.

Current tuples are stored in regular tables. An extra annotation attribute called since
is added to each regular table, which is a foreign key referring to the attribute ID in
the provenance log. The attribute since stores an ID whose correspondent entry in the
provenance log stores the operation that generates this tuple.

This extra annotation attribute is not visible to the users of the database, and thus
it can not be manipulated by the users. Provenance capture and retrieval are the only
procedures that can set its value or query it.

All the auxiliary data structures are populated whenever a database operation takes
place.

1. When a database operation takes place, a new entry is created in the provenance
log and a unique ID is assigned to this new entry.

2. When a tuple is inserted into a table due to this database operation, the value of its
since attribute is set with the ID of the newly created entry in the provenance log.

3. When a tuple is removed from a table due to this database operation, either by
a delete or by an update, the removed tuple is inserted into the corresponding
shadow table. For this new tuple in the shadow table, the value of the begin at-
tribute is set with the value of the since attribute in the removed tuple; the value of
the end attribute is set with the value of the ID of the newly created entry in the
provenance log.

This populating of auxiliary data structures is in fact our provenance capture proce-
dure. All the provenance information we need is recorded in these auxiliary structures.

Given a derived tuple t, if its provenance is not current in the database, we can retrieve
its provenance with our extended tracing queries. Compared to the standard tracing
query, the extended tracing query need an extra piece of information, i.e., the ID of the
provenance log entry that records the original query. The IDs of provenance log entries
can be used as timestamps to indicate time points or periods of time, e.g., storing these
IDs in the attributes begin, end and since. These IDs are even better than real timestamps
since they incur no ambiguity.

Similarly, the ID of the provenance log entry that records the original query repre-
sents the derivation time, i.e., the time when the original query was executed. Therefore,
with this ID, our extended tracing query is able to decide which historical data to re-
trieve provenance from, i.e., the data values that were current in the database at the



564 J. Zhang and H.V. Jagadish

derivation time. In particular, if a source tuple’s life span (identified by begin and end)
covers the derivation time, this source tuple is eligible to be in the provenance. The
extended tracing query only uses those eligible source tuples and retrieves the (lost)
provenance from them.

In general, the construction of an extended tracing query needs three pieces of
information:

1. the derived tuple
2. the original query
3. the ID of the provenance log entry recording the original query

Given a tuple t, suppose it is derived from the original query Q shown in Equation 1,
and further suppose Q is logged in a provenance log entry with ID being id, then the
extended tracing query to retrieve provenance in the table Tk is as shown in Equation 2.

{
t : 〈A1, ..., An,G AS agg(An+1)〉 |
∃s1, ..., sm(
T1(s1) ∧ ... ∧ Tm(sm) ∧ f (s1, ..., sm, t)

) } (1)

{
sk : 〈B1, ..., Bl〉 |
∃t, s1, ..., sk−1, sk+1, ..., sm(
T H

1 (s1) ∧ ... ∧ T H
m (sm) ∧ f (s1, ..., sm, t)

∧t.A1 = a1 ∧ ... ∧ t.An = an
) }

(2)

where T H
k , assuming the shadow table of Tk is Tk sh, is

{
sk : 〈B1, ..., Bl〉 |(
Tk(sk) ∧ sk.since < id

)∨
∃s′k
(
Tk sh(s′k) ∧ s′k.begin < id ∧ s′k.end >= id

∧s′k.B1 = sk.B1 ∧ ... ∧ s′k.Bl = sk.Bl
) }

(3)

Notice that, although the original query is a conjunctive query, with aggregation in
this case, the extended tracing query is not a conjunctive query, because of the union
connective used in Equation 3.

These three data structures incur some space overhead. We discuss next how to min-
imize this overhead.

First of all, the provenance log does not need to take extra space in practice, since
all database management systems keep some kind of log and the provenance log can be
implemented as a view over the system maintained logs. This is almost always possible
since the really vital attributes in the provenance log are the log ID and the operation,
which are very basic information a typical system log will keep.

As for the space overhead due to the attribute since, the number of cells of this
attribute is equal to the number of tuples in the database. Since the database tuples
usually have multiple attributes and some of them are of more space-costly data types
than integer type, the total cost of this extra attribute in integer type is only a fraction of
the total size of the database.



Provenance in a Modifiable Data Set 565

The shadow tables are the costliest of the three auxiliary data structures in terms
of space. The size of shadow tables grows with the number of tuples that have been
updated or removed. In a database with a moderate amount of change to data, the space
cost due to shadow tables may be acceptable. Intuitively, this cost is unavoidable: if
there is change to data and we need past values, we have to store them somewhere.
The cost of shadow tables is much less than the cost of storing a version of the source
database for each derived value.

In general, the archiving of historical data can be done at different granularities.
For example, if one attribute in one tuple in a table in a database is updated, to store
the historical data, before the update, we can back up (i) the whole database, (ii) the
updated table, (iii) the updated tuple, or (iv) just the updated attribute in the tuple.

The size of the storage of historical data obviously depends on the granularity used in
archiving [5, 15]. In the above example, each way of archiving can enable the recovering
of the database before update, however, the last one incurs the minimum amount of
storage.

In our approach, we archive the historical data at the granularity level of tuples, i.e.,
we archive a tuple in a proper shadow table when one or multiple attributes in this
tuple are updated. Assume the average size of a tuple is sizet, and the number of tuples
affected by an operation is n. Thus, after this operation, the size of the shadow tables is
increased by (sizet + C) × n, where C is a constant being the size of the two attributes
begin and end.

Notice that decreasing the space cost also means increasing the time cost of recon-
structing previous versions using historical data. For example, if the whole database is
archived, the reconstruction of any table in the database at a previous time involves no
complex queries but almost merely selecting. Comparatively, since we only archive the
updated tuple when one or more attributes in it are changed, the reconstruction of the
involved table needs to run a query as shown in Equation 3.

The book-keeping of these three data structures also incurs some time overhead dur-
ing the execution of an operation.

There are two types of time cost: the time cost of provenance capture and the time
cost of provenance retrieval. The time cost of provenance capture is relatively smaller
and more straightforward than that of provenance retrieval.

Provenance capture for every database operation is a two-step procedure: computing
one new provenance log entry and/or new shadow table tuples; and inserting them into
the provenance log and/or shadow tables.

The computation time is negligible, since the computation of both the log entry and
the shadow table tuples is fairly simple. The insertion time of the log entry is constant,
since there is always one log entry with a fixed size. The insertion time of shadow
table tuples depends on the number of shadow table tuples generated by this operation.
Assume n tuples are updated during an operation, and
insert timet is the average time of inserting one shadow table tuple. Then the time of
inserting into shadow tables for this operation will be insert timet × n.

The time cost of our provenance retrieval primarily consists of constructing an ex-
tended tracing query and executing it. The construction of an extended tracing query



566 J. Zhang and H.V. Jagadish

takes roughly a constant amount of time. On the other hand, the time to execute it
varies with the reconstructed historical versions.

The historical version of a table consists of tuples from the current table and from the
shadow table. The execution time of the extended tracing query is affected by both the
number of tuples in the historical version and the location of these tuples. The former
is easier to understand, since retrieving from a table/view with more tuples takes more
time than retrieving from a table/view with less tuples. However, the second relationship
is not so obvious. If most of the tuples in the output of concatenation are from the same
table, (the sort at the heart of) the union may be faster than in the case where tuples
come evenly from the two tables.

3 Conclusions

We live in a dynamic world and the digital artifacts we rely on must change to keep
pace with the world we live in. Provenance is more difficult to specify and to work with
when we cannot rely on immutable objects and data sources. However, it is possible to
do and, in any case, we have no choice in the matter given that we live in a dynamic
world. This chapter considered some of the challenges that arise due to change, and
suggested solutions to these challenges.

References

1. Buneman, P., Chapman, A., Cheney, J.: Provenance management in curated databases. In:
Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data,
pp. 539–550 (2006)

2. Buneman, P., Cheney, J., Lindley, S., Müller, H.: Dbwiki: A structured wiki for curated data
and collaborative data management. In: Proceedings of the 2011 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 1335–1338 (2011)

3. Buneman, P., Cheney, J., Tan, W.-C., Vansummeren, S.: Curated databases. In: Proceedings
of the 27th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, pp. 1–12 (2008)

4. Buneman, P., Khanna, S., Tan, W.C.: Data provenance: Some basic issues. In: Foundations
of Software Technology and Theoretical Computer Science, pp. 87–93 (2000)

5. Buneman, P., Khanna, S., Tajima, K., Tan, W.C.: Archiving scientific data. ACM Trans.
Database Syst. 29, 2–42 (2004)

6. Buneman, P., Khanna, S., Tan, W.-C.: Why and where: A characterization of data prove-
nance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 316–330.
Springer, Heidelberg (2000)

7. Buneman, P., Tan, W.-C.: Provenance in databases. In: Proceedings of the 2007 ACM SIG-
MOD International Conference on Management of Data, pp. 1171–1173 (2007)

8. Chapman, A., Jagadish, H.V.: Why not? In: Proceedings of the 35th SIGMOD International
Conference on Management of Data, pp. 523–534 (2009)

9. Cui, Y., Widom, J.: Practical lineage tracing in data warehouses. In: Proceedings of the 15th
International Conference on Data Engineering, pp. 367–378 (1999)

10. Green, T.J., Karvounarakis, G., Ives, Z.G., Tannen, V.: Update exchange with mappings and
provenance. In: Proceedings of the 33rd International Conference on Very Large Data Bases,
pp. 675–686 (2007)



Provenance in a Modifiable Data Set 567

11. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally. In: Pro-
ceedings of the 1993 ACM SIGMOD International Conference on Management of Data,
pp. 157–166 (1993)

12. Herschel, M., Hernández, M.A.: Explaining missing answers to spjua queries. Proc. VLDB
Endow. 3, 185–196 (2010)

13. Huang, J., Chen, T., Doan, A., Naughton, J.F.: On the provenance of non-answers to queries
over extracted data. Proc. VLDB Endow. 1(1), 736–747 (2008)

14. Meliou, A., Gatterbauer, W., Moore, K.F., Suciu, D.: Why so? or why no? functional causal-
ity for explaining query answers. In: CoRR (2009)

15. Müller, H., Buneman, P., Koltsidas, I.: Xarch: Archiving scientific and reference data. In:
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data,
pp. 1295–1298 (2008)


	Provenance in a Modifiable Data Set
	1 Validating an Answer
	1.1 Explanation of the Absence of Expected Answer

	2 Lost Source Provenance
	3 Conclusions
	References




