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Abstract. Recent work on data quality has primarily focused on data
repairing algorithms for improving data consistency and record matching
methods for data deduplication. This paper accentuates several other
challenging issues that are essential to developing data cleaning systems,
namely, error correction with performance guarantees, unification of data
repairing and record matching, relative information completeness, and
data currency. We provide an overview of recent advances in the study
of these issues, and advocate the need for developing a logical framework
for a uniform treatment of these issues.

1 Introduction

Data quality has been a longstanding line of research for decades [20]. It is esti-
mated that dirty data costs us companies alone 600 billion dollars each year [9].
With this comes the need for data cleaning systems to improve data quality, and
to add accuracy and value to business processes. As an example, data cleaning
tools deliver “an overall business value of more than 600 million GBP” each year
at BT [31]. In light of this, the market for data cleaning systems is growing at
17% annually, substantially outpacing the 7% average of other IT segments [21].

There has been a host of work on data quality. Recent work has primarily
focused on two central issues:

– Recording matching: to identify tuples that refer to the same real-world en-
tity [10], for data deduplication.

– Data repairing: to find a repair (database) that is consistent w.r.t. integrity
constraints and minimally differs from the original data, by detecting and
fixing (semantic) errors, to improve data consistency [1].

Most data cleaning systems on the market support record matching, e.g., ETL
tools (extraction, transformation, loading; see [24] for a survey). Some prototype
systems also provide a data repairing functionality [3, 6, 28, 37].
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There are other data quality issues that are not limited to algorithms for
record matching or data repairing, but are also essential to developing practi-
cal data cleaning systems. Unfortunately, these issues have not received much
attention from the research community. In particular, we highlight the following.

(1) Certain fixes. Prior data repairing methods are typically heuristic. They at-
tempt to fix all the errors in the data, but do not guarantee that the generated
fixes are correct. Worse still, new errors may be introduced when trying to re-
pair the data. In practice, we often want to find certain fixes, i.e., fixes that are
guaranteed to be correct, although we might not be able to fix all the errors
in the data. The need for certain fixes is particularly evident when repairing
critical data, e.g., medical data, in which a seemingly minor error may mean life
or death.

(2) Unification of data repairing and record matching. Data repairing and
record matching are typically treated as independent processes. However,
the two processes often interact with each other: repairing helps us identify
matches, and vice versa. This suggests that we unify repairing and matching by
interleaving their operations.

(3) Information completeness. A data cleaning system should be able to tell
us, given a database D and a query Q, whether D has complete information
to answer Q. If the information is missing from D, the answer to Q in D is
hardly sensible. Information completeness is as important as data consistency
and deduplication. Indeed, pieces of information perceived as being needed for
clinical decisions were missing from 13.6% to 81% of the time [29]. Traditionally
we deal with this issue by adopting either the Closed World Assumption (CWA)
or the Open World Assumption (OWA). However, real-life databases are often
neither entirely closed-world nor entirely open-world. This asks for a revision of
the CWA, OWA and the model of information completeness.

(4) Data currency. The quality of data in a real-life database quickly degener-
ates over time. It is estimated that “2% of records in a customer file become
obsolete in one month” [9]. That is, in a database of 500 000 customer records,
10 000 records may go stale per month, 120 000 records per year, and within two
years about 50% of all the records may be obsolete. As a result, we often find
that multiple values of the same entity reside in a database, which were once
correct, i.e., they were true values of the entity at some time, but most of them
have become obsolete and inaccurate. This highlights the need for studying data
currency, to identify the current values of entities in a database, and to answer
queries with the current values.

This paper aims to bring attention to these issues. We present an overview
of recent work on these four issues (in Sections 2– 5, respectively). We argue
that these issues interact with each other and also interact with data repairing
and record matching; they should be uniformly treated in a logical framework
(Section 6). We refer to the monograph [15] for a more complete treatment of
these issues.
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fn ln AC phn type str city zip item when where
t1: Bob Brady 020 079172485 2 null Edi EH7 4AH cd 7pm, 28/08/2010 UK
t2: Max Smith 131 6884593 1 5 Oak St Ldn EH8 9HL cd 06/11/2009 UK
t3: Mark Smith 131 6884563 1 null Edi null dvd 1pm, 06/11/2009 US

(a) Example input tuples t1 and t2

fn ln AC Hphn Mphn str city zip gender
s1: Robert Brady 131 6682845 079172485 51 Elm Row Edi EH7 4AH M
s2: Mark Smith 131 6884563 075568485 5 Oak St Edi EH8 9HL M

(b) Example master relation Dm

Fig. 1. Example input tuples and master relation

2 Certain Fixes Instead of Heuristics Repairs

Data repairing detects and fixes errors by using integrity constraints, such that
data conflicts and errors emerge as violations of the constraints. A variety of
constraints have been studied for data repairing, such as denial constraints [3],
traditional functional and inclusion dependencies [1], and conditional dependen-
cies [4, 6, 16, 37].

Integrity constraints are capable of detecting whether the data is dirty, i.e., the
presence of errors in the data. However, they do not tell us which attributes of
a tuple have errors and how we should correct the errors.

Example 1: Consider an input tuple t1 given in Fig. 1(a). It specifies a trans-
action record (tran) of a credit card: an item purchased at place where and time
when, by a uk customer who is identified by name (fn, ln), phone number (area
code AC and phone phn) and address (street str, city, zip code). Here phn is
either home phone or mobile phone, indicated by type (1 or 2, respectively). It
is known that when AC is 020, city should be London (Ldn), and when AC is
131, city must be Edinburgh (Edi). This semantics of the data can be expressed
as conditional functional dependencies (CFDs [16]). The CFDs detect that tuple
t1 is inconsistent : t1[AC] = 020 but t1[city] = Edi. However, they do not tell us
which of t1[AC] and t1[city] is wrong, and to what value it should be changed.

In light of this, prior data repairing methods are heuristic: they do not guar-
antee to find correct fixes in data repairing. Worse still, they may introduce new
errors when trying to repair the data. Indeed, the correct values of t1[AC, city]
are (131, Edi). Nevertheless, all of the prior methods may opt to change t1[city]
to Ldn; this does not fix the erroneous attribute t1[AC] and worse still, messes
up the correct attribute t[city]. �

In practice it is often necessary to guarantee each fix to be certain, i.e., assured
correct (validated). This can done by using master data and editing rules. Mas-
ter data (a.k.a. reference data) is a single repository of high-quality data that
provides various applications in an enterprise with a synchronized, consistent
view of its core business entities [27]. It is increasingly common for enterprises
to maintain master data. Editing rules tell us which attributes of a tuple are
wrong and what values from master data they should take, provided that some
attributes are validated. As opposed to integrity constraints, they specify up-
dates and have a dynamic semantics.
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Example 2: A master relation Dm is shown in Fig. 1(b). Each tuple in Dm

specifies a uk credit card holder (card) in terms of the name, home phone (Hphn),
mobile phone (Mphn), address and gender. Consider the following editing rules:

– eR1: for an input tuple t, if there exists a master tuple s in Dm such that
s[zip] = t[zip], then t should be updated by t[AC, str, city] := s[AC, str, city],
provided that t[zip] is validated (e.g., assured by the users).

– eR2: if t[type] = 2 (indicating mobile phone) and if there exists a master tuple
s with s[phn] = t[Mphn], then t[FN, LN] := s[FN, LN], as long as t[phn, type]
are already validated.

When t1[zip] is assured correct, eR1 corrects attribute t1[AC] and enriches t1[str]
by taking values from master data s1[AC, str]. Note that when the editing rule
and t1[zip] are validated, the fix to t1[AC] is certainly correct. Similarly, when
t1[Mphn, type] are validated, eR2 standardizes t1[FN] by changing Bob to Robert.

�

Certain Fixes. More specifically, we define certain fixes as follows (see [19] for
details). Consider an input tuple t and a set Z of attributes such that t[Z] is
validated. We use t →(ϕ,tm,Z) t

′ to denote that tuple t′ is obtained from t by
means of updates specified in an editing rule ϕ with a master tuple tm. We
denote by ext(Z,ϕ, tm) the validated region of t′, which includes attributes in Z
and the attributes updated by ϕ with tm.

Given a set Θ of editing rules and master data Dm, we say that a tuple t′ is
a fix of t by (Θ,Dm), denoted by t→∗

(Θ,Dm,Z) t
′, if there exists a finite sequence

t0 = t, t1, . . ., tk = t′ of tuples, and for each i ∈ [1, k], there exists an editing
rule ϕi ∈ Θ and a master tuple tmi ∈ Dm such that (a) ti−1 →(ϕi,tmi

,Zi−1) ti,
where Zi = ext(Zi−1, ϕi, tmi−1); (b) ti[Z] = t[Z]; and (c) for all ϕ ∈ Θ and
tm ∈ Dm, t′ →(ϕ,tm,Zm) t

′. Intuitively, (a) each step of the correcting process
is justified; (b) t[Z] is validated and hence, remains unchanged; and (c) t′ is
a fixpoint and cannot be further updated, i.e., the changes incurred to t by
(Θ,Dm) are “maximum”.

We say that t has a certain fix by (Θ,Dm) w.r.t. Z if there exists a unique t′

such that t→∗
(Θ,Dm,Z) t

′.
Given a set Θ of editing rules and master data Dm, one can monitor input

tuples and find their certain fixes. For each tuple t, the user may assure that a
(possible empty) set t[Z] of attributes is correct. There is an algorithm that, given
Z, iteratively employs Θ and Dm to find a certain fix for as many attributes in t
as possible. The correctness of the fix is guaranteed by master data and editing
rules. As opposed to data repairing, we do not stress fixing all the attributes
of t by requiring the users to validate a large region t[Z]. Nevertheless, when
the users opt to find a certain fix for the entire t, there is an algorithm that,
given Z, identifies a minimal set Z ′ of attributes such that when t[Z ∪ Z ′] is
validated, a certain fix for t is warranted [19]. One can recommend t[Z ′] to the
users for validating, and the users may respond with more validated attributes
(not necessarily t[Z ′]). From these an interactive process readily follows that
proceeds until all the attributes of t are validated.
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Fundamental Problems. There are several important problems associated
with certain fixes. Consider tuples of a relation schema R. One problem is to
determine, given a set Θ of editing rules, master data Dm, and a set Z of
attributes of schema R, whether for all tuples t of R, if t[Z] is validated then t
has a certain fix by (Θ,Dm). In other words, it is to determine whether Θ and
Dm have conflicts. Another problem is to find, given Θ and Dm, a minimal set Z
of attributes such that for all tuples t of schema R, if t[Z] is validated then all the
attributes of t can be validated by (Θ,Dm). Intuitively, it is to find a minimal
region for the users to validate. It is shown that these are intractable [19], but
efficient heuristic algorithms have been developed for these problems.

3 Interaction between Repairing and Record Matching

Current data cleaning systems typically treat data repairing and record matching
as separate processes, executed consecutively one after another. In practice, the
two processes often interact with each other, as illustrated below.

Example 3: Consider the transaction records of Fig. 1(a) and master data
for credit card holders given in Fig. 1(b), referred to as tran and card tuples,
respectively. Following [11,16], we use CFDs [16] ϕ1–ϕ2 to specify the consistency
of the tran data, and a matching dependency (MD) [11] ψ as a rule for matching
tran records and card tuples:

ϕ1: tran([AC = 131] → [city = Edi]),
ϕ2: tran([type = 1, city, phn] → [str,AC, zip]),
ψ: tran[LN, city, str, zip] = card[LN, city, str, zip] ∧ tran[FN] ≈ card[FN]

∧ tran[type] = 1 → tran[FN, phn] � card[FN,Hphn]

Here (1) CFD ϕ1 asserts that if the area code is 131, the city must be Edi; (2)
CFD ϕ2 states that when type = 1 (i.e., phn is mobile phone), city and home
phone uniquely determine street, area code and zip code; and (3) MD ψ assures
that for any tran record t and any card tuple, if they have the same last name
and address, and if their first names are similar, then their home phone and FN
attributes can be identified (when t[type] = 1).

Consider tuples t2 and t3 in Fig. 1(a). One suspects that the two refer to the
same person. If so, then these records show that the same person made purchases
in the UK and in the US at about the same time (taking into account the 5-hour
time difference between the two countries), indicating that a fraud has likely
been committed.

Observe that t2 and t3 are quite different in their FN, city, str, zip and phn
attributes. No rule allows us to identify the two directly. Nonetheless, they can
be matched by interleaved matching and repairing operations:

(a) get a repair t′2 of t2 such that t′2[city] =Edi by applying CFD ϕ1 to t2;

(b) match t′2 with master tuple s2, to which MD ψ can be applied; as a result of
the matching operation, get a repair t′′2 of t2 by correcting t′′2 [phn] with the
master data s2[Hphn] = 6884563;
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(c) find a repair t′3 of t3 by applying CFD ϕ2 to t
′′
2 and t3: since t

′′
2 and t3 agree on

their city and phn attributes and t′′2 [type] = t3[type] = 1, ϕ2 can be applied.
This allows us to enrich t3[str] and fix t3[zip] by taking corresponding values
from t′′2 , which have been confirmed correct with the master data in step (b).

Note that t′′2 and t′3 agree on every attribute in connection with personal infor-
mation. It is evident that they indeed refer to the same person; hence a fraud.
Observe that not only repairing helps matching (e.g., from step (a) to (b)), but
matching also helps us repair the data (e.g., step (c) is doable only after the
matching in (b)). �

Unification. The example tells us the following. (1) When taken together,
record matching and data repairing perform much better than being treated
as separate processes. (2) To make practical use of their interaction, matching
and repairing operations should be interleaved, rather than executing the two
processes one after another. Unifying matching and repairing, we state the data
cleaning problem as follows.

Given a database D, master data Dm, integrity constraints Σ and matching
rules Γ , the data cleaning problem is to find a repair Dr of D such that (a) Dr

is consistent (i.e., satisfying Σ), (b) no more tuples in Dr can be matched to
master tuples in Dm by matching rules of Γ , and (c) Dr minimally differs from
the original data D.

The interaction between repairing and matching has been observed in,
e.g., [8, 18, 36]. Here, [8, 36] investigate record matching in the presence of er-
ror data, and suggest to integrate matching and data merge/fusion. In [18], a
rule-based framework is proposed in which CFDs and MDs are both treated as
cleaning rules. These rules tell us how to fix errors by updating the data, and
allow us to interleave repairing and matching operations. Based on these rules,
algorithms have been developed to clean data, in the presence or in the absence
of master data. It has been shown that by unifying repairing and matching, these
algorithms substantially improve the accuracy of repairing and matching taken
as separate processes [18].

Fundamental Problems. When integrity constraints (for data repairing) and
matching rules (for record matching) are taken together, the classical consistency
and implication problems for constraints need to be revisited. These issues are
investigated for CFDs and MDs in [18], which shows that these problems remain
to be NP-complete and coNP-complete, respectively, the same as their counter-
parts for CFDs alone.

There are two fundamental questions about rule-based data cleaning. The
termination problem is to decide whether a cleaning process stops, i.e., it reaches
a fixpoint, such that no more rules can be applied. The determinism problem asks
whether all terminating cleaning processes end up with the same repair, i.e., all
of them reach a unique fixpoint. When CFDs and MDs are treated as cleaning
rules, both problems are PSPACE-complete [18].
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4 Relative Information Completeness

Given a database D and a query Q, we want to know whether a complete answer
to Q can be found in D. Traditional work on this issue adopts either the CWA or
the OWA. The CWA assumes that a database contains all the tuples representing
real-world entities, but the values of some attributes in those tuples are possibly
missing. The OWA assumes that tuples may also be missing [35]. As remarked
earlier, few real-life databases are closed-world. Under the OWA, one can often
expect few sensible queries to find complete answers.

Databases in real world are often neither entirely closed-world nor entirely
open-world. This is particularly evident in the presence of master data. Master
data of an enterprise contains complete information about the enterprise in cer-
tain aspects, e.g., employees and projects, and can be regarded as a closed-world
database. Meanwhile a number of other databases may be in use in the enter-
prise. On one hand, these databases may not be complete, e.g., some sale trans-
actions may be missing. On the other hand, certain parts of the databases are
constrained by the master data, e.g., employees. In other words, these databases
are partially closed.

Example 4: Consider a company that maintains DCust(cid, name, AC, phn),
a master data relation consisting of all its domestic customers, in which a
tuple (c, n, a, p) specifies the id c, name n, area code a and phone num-
ber p of a customer. In addition, the company also has databases (a)
Cust(cid, name,CC,AC, phn) of all customers of the company, domestic (with
country code CC = 01) or international; and (b) Supt(eid, dept, cid), indicat-
ing that employee eid in dept supports customer cid. Neither Cust nor Supt is
part of the master data.

Consider queryQ1 posed on Supt to find all the customers in nj with AC = 908
who are supported by the employee with eid = e0. The query may not get a
complete answer since some tuples may be missing from Supt. However, if Q1

returns all nj customers with AC = 908 found in master data DCust, then we
can safely conclude that Supt is complete for Q1 and hence, there is no need to
add more tuples to Supt to answer Q1.

Now consider a query Q2 to find all customers supported by e0. Note that
the international customers of Cust are not constrained by master data. As a
result, we are not able to tell whether any Supt tuples in connection with e0
are missing. Worse still, we do not even know what tuples should be added to
Supt to make the answer to Q2 in Supt complete. Nevertheless, if we know that
(eid → dept, cid) is a functional dependency (FD) on Supt, then we can also
conclude that the answer to Q2 in Supt is complete as long as it is nonempty. �

Relative Information Completeness. A practical data cleaning system
should be able to decide whether a database has complete information to answer
a query. To this end, as shown by the example, we need a model to specify par-
tially closed databases. There has been a host of work on incomplete information,
notably representation systems (e.g., c-tables, v-tables [23, 25]) and models for
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missing tuples [22,26,30] (see [35] for a survey). However, the prior work neither
considers master data nor studies the question mentioned above.

Given a database D and master data Dm, we specify a set V of containment
constraints [13]. A containment constraint is of the form q(D) ⊆ p(Dm), where
q is a query posed on D, and p is a simple projection query on Dm. Intuitively,
the part of D that is constrained by V is bounded by Dm, while the rest is open-
world. We refer to a database D that satisfies V as a partially closed database
w.r.t. (Dm, V ). A database D′ is a partially closed extension of D if D ⊆ D′ and
D is partially closed w.r.t. (Dm, V ) itself.

A partially closed database D is said to be complete for a query Q rela-
tive to (Dm, V ) if for all partially closed extensions D′ of D w.r.t. (Dm, V ),
Q(D′) = Q(D). That is, there is no need for adding new tuples to D, since they
either violate the containment constraints, or do not change the answer to Q. In
other words, D already contains complete information necessary for answering
Q (see [12, 13] for details).

Fundamental Problems. One problem is to determine, given a query Q, mas-
ter data Dm, a set V of containment constraints, and a partially closed database
D w.r.t. (Dm, V ), whether D is complete for Q relatively to (Dm, V ). Another
problem is to decide, given Q, Dm and V , whether there exists a partially closed
database D that is complete for Q relatively to (Dm, V ). The analyses of these
problems help us identify what data should be collected in order to answer a
query. These problems are investigated in [12, 13]. As indicated by Example 4,
the complexity of these problems varies depending on different queries and con-
tainment constraints [12, 13].

5 Data Currency

A data cleaning system should support data currency analysis: among multiple
(possibly obsolete) values of an entity, it is to identify the latest value of the
entity, and to answer queries using the latest values only. The question of data
currency would be trivial if all data values carried valid timestamps. In practice,
however, timestamps are often unavailable or imprecise [38]. Add to this the
complication that data values are often copied or imported from other sources
[2, 7], which may not support a uniform scheme of timestamps.

Not all is lost. It is often possible to deduce currency orders from the semantics
of the data. Moreover, data copied from other sources inherit currency orders in
those sources. Taken together, these often allow us to deduce sufficient current
values of the data to answer certain queries, as illustrated below.

Example 5: Consider two relations of a company shown in Fig. 2. Each Emp
tuple is an employee record with name, address (country, zip code, street), salary
and marital status. A Dept tuple specifies the name, manager and budget of a
department. Records in these relations may be stale, and do not carry times-
tamps. Here tuples t1, t2 and t3 refer to the same employee Mary, while t4 does
not refer to Mary. Consider the following queries posed on these relations.

(1) Query Q1 is to find Mary’s current salary. No timestamps are available for
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FN LN country zip street salary status
t1: Mary Smith UK OX1 3QD 2 Small St 50k single
t2: Mary Dupont UK EB21 5FX 10 Elm Ave 50k married
t3: Mary Dupont UK EH9 1SU 6 Main St 80k married
t4: Bob Luth UK DB9 FJ8 8 Cowan St 80k married

(a) Relation Emp

dname mgrFN mgrLN mgrAddr budget
s1: R&D Mary Smith 2 Small St, OX1 3QD, UK 6500k
s2: R&D Mary Smith 2 Small St, OX1 3QD, UK 7000k
s3: R&D Mary Dupont 6 Main St,EH9 1SU, UK 6000k
s4: R&D Ed Luth 8 Cowan St, DB9 FJ8, UK 6000k

(b) Relation Dept

Fig. 2. A company database

us to tell which of 50k or 80k is more current. However, we may know that the
salary of each employee in the company does not decrease, as commonly found
in the real world. This yields currency orders t1 ≺salary t3 and t2 ≺salary t3, i.e.,
t3 is more current than t1 and t2 in attribute salary; in other words, t3[salary] is
more current than both t1[salary] and t2[salary]. Hence the answer to Q1 is 80k.

(2) Query Q2 is to find Mary’s current last name. We can no longer answer
Q2 as above. Nonetheless, we may know the following: (a) marital status can
only change from single to married and from married to divorced; but not from
married to single; and (b) Emp tuples with the most current marital status also
contain the most current last name. Therefore, t1 ≺LN t2 and t1 ≺LN t3, and the
answer to Q2 is Dupont.

(3) Query Q3 is to find Mary’s current address. We may know that Emp tuples
with the most current salary contain the most current address. From this and
(1) above, we know that the answer to Q3 is “6 Main St”.

(4) Finally, query Q4 is to find the current budget of department R&D. Again
no timestamps are available for us to evaluate the query. However, we may know
the following: (a) Dept tuples s1 and s2 have copied their mgrAddr values from
t1[street, zip, county] in Emp; similarly, s3 has copied from t3, and s4 from t4; and
(b) in Dept, tuples with the most current address also have the most current
budget. Taken together, these tell us that s1 ≺budget s3 and s2 ≺budget s3. Observe
that we do not know which budget in s3 or s4 is more current. Nevertheless, in
either case the most current budget is 6000k, and hence it is the answer to Q4.

�

Modeling Data Currency. To study data currency we need to specify currency
orders on data values in the absence of timestamps but in the presence of copy
relationships. Such a model is recently proposed in [17].

(1) To model partially available currency information in a databaseD, it assumes
a currency order ≺A for each attribute A, such that for tuples t1 and t2 in D
that represent the same real-world entity, t1 ≺A t2 indicates that t2 is more
up-to-date than t1 in the A attribute value.
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(2) It uses denial constraints [1] to express currency relationships derived from
the semantics of the data. For instance, all the currency relations we have seen
in Example 5 can be expressed as denial constraints.

(3) A copy function from a data source to another is defined in terms of a partial
mapping that preserves the currency order in the source. Based on these, one can
define consistent completions Dc of D, which extend ≺A in D to a total order
on all tuples pertaining to the same entity, such that Dc satisfies the denial
constraints and constraints imposed by the copy functions.

One can construct from Dc the current tuple for each entity w.r.t. ≺A, which
contains the entity’s most current A value for each attribute A. This yields the
current instance of Dc consisting of only the current tuples of the entities in D,
from which currency orders can be removed. In light of this, one can compute
certain current answers of a query Q in D, i.e., tuples that are the answers to
Q in all consistent completions Dc of D (see [17] for details).

The study of data currency is related to temporal databases, which assume the
availability of timestamps (see [32] for a survey). Also related is the line of work
on querying indefinite data (see, e.g., [34]), which considers data that is linearly
ordered but only provides a partial order, but does not evaluate queries using
current instances. Algorithms for discovering copy dependencies and functions
are developed in [2, 7].

Fundamental Problems. Given a database D on which partial currency or-
ders, denial constraints and copy functions ρ are defined, we want to determine
(1) whether a value is more up-to-date than another, and (2) whether a tuple
is a certain current answer to a query. In addition, about copy functions ρ, we
want to determine (3) whether ρ is currency preserving for a query Q, i.e., no
matter how we extend ρ by copying more values of those entities in D, the cer-
tain current answers to Q in D remain unchanged; and (4) whether ρ can be
extended to be currency preserving for Q. These problems have been studied
in [17] for different queries.

6 Open Research Issues

It is evident that functionalities for handling these issues should logically become
part of a data cleaning system. We envisage that a data cleaning system should
be able not only to detect data inconsistencies and duplicates, but it should
also be able to compute certain fixes that are guaranteed correct. Moreover, it
should also be able to improve data currency and information completeness, be-
yond data consistency and deduplication. Indeed, we naturally want data qual-
ity management to tell us whether the answers to our queries in a database
are trustable or not. This requires that we take data consistency, currency and
information completeness together, as illustrated in the example below.

Example 6: Consider the relation Emp shown in Fig. 2, and a master relation
EmpHistory consisting of all the historical information of its employees, as shown
in Fig. 3. Each EmpHistory tuple is an employee record with name, address
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FN LN country zip street phone grade salary status
r1: Mary Smith UK OX1 3QD 2 Small St 66757574 10 50k single
r2: Mary Dupont UK EB21 5FX 10 Elm Ave 66757574 10 50k married
r3: Mary Dupont UK EH9 1SU 6 Main St 66757574 11 80k married
r4: Bob Luth UK DB9 FJ8 8 Cowan St 46357642 11 80k married
r5: Bob Luth UK DB9 FJ8 8 Cowan St 46357642 12 100k married

Fig. 3. Relation EmpHistory

(country, zip code, street), phone, grade, salary and marital status. Two constant
CFDs are posed on relations Emp and EmpHistory: ϕ1 : Emp([country = UK, zip =
“EH9 1SU”] → [street = “6 Main St”]), and ϕ2 : Emp([country =UK, zip = “DB9
FJ8”] → [street = “8 Crown St”]), where ϕ1 states that in the UK, if one’s zip
code is “EH9 1SU”, its street should be “6 Main St”; similarly, ϕ2 states that
in the UK, if one’s zip code is “DB9 FJ8”, its street should be “8 Crown St”.

(1) Query Q1 is to find Mary’s current salary. Recall from Example 5(1) that
Mary’s most current salary is derived to be 80k, drawn from tuple t3 in relation
Emp. Observe the following: (a) t3 is consistent as it satisfies the CFDs. (b) Mary’s
salary information gathered in relation Emp is complete w.r.t. EmpHistory, since
it contains all Mary’s employment records in EmpHistory table. Hence we can
trust that the answer to Q1 is 80k, since the data is consistent and the informa-
tion about Mary is complete.

(2) Query Q2 is to find Bob’s current salary. The only record about Bob in Emp
is t4. Note that t4 is consistent since it satisfies the CFDs. The answer to Q2 is
55K in Emp. However, the information about Bob is not complete: there are more
records about Bob in EmpHistory, with higher salaries. In other words, relation
Emp alone is not sufficient to answer Q2 correctly. Hence we cannot trust 55K
to be the answer to Q2.

This example demonstrates that to determine whether our queries can be
answered correctly, all of data consistency, data currency and information com-
pleteness have to be taken into account. �

No matter how important, however, we are not aware of any data cleaning
system that supports functionalities to handle all these central data quality
issues. The study of these issues is still in its infancy, and it has raised as many
questions as it has answered. Below we highlight some of the open issues.

Certain fixes. One question is how to find certain fixes in the absence of master
data. Another question concerns methods for discovering editing rules. Indeed,
it is unrealistic to rely solely on human experts to design editing rules via an
expensive and long manual process. It is likely, however, that editing rules can
be deduced from master data and constraints such as CFDs and MDs, for which
discovery algorithms are already in place [5, 33].

Relative information completeness and data currency. While the fundamental
problems for these issues have been studied, efficient algorithms have yet to
be developed and incorporated into data cleaning systems.
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A uniform logical framework. To answer a query using a database D, one natu-
rally wants D to be both complete and consistent for Q, and moreover, does not
contain duplicates and stale data. In addition, there are intimate connections
between these issues. (1) Improving data completeness provides us with more
information to repair and match the data, and conversely, data repairing and
record matching help us enrich the data as shown in Example 2. (2) Identifying
the current value of an entity helps resolve data inconsistencies and duplication,
and repairing and matching help us remove obsolete data. (3) Data currency is
essentially to deal with missing temporal information, and hence can naturally
capitalize on techniques for relative information completeness such as contain-
ment constraints and master data. All these highlight the need for developing a
uniform framework to handle certain fixes, data repairing, record matching, rela-
tive information completeness and data currency. The framework should support
the interaction of these processes, to improve the accuracy of data cleaning.

It is both natural and feasible to develop such a framework based on con-
straints and master data (see e.g., [14] for a initial attempt in this direction). In-
deed, (1) constraints are typically used to capture inconsistencies (e.g., [1,4,16]).
(2) Record matching rules [11] and editing rules [19] can be expressed as dynamic
constraints. (3) It is shown [13] that constraints for data consistency, such as de-
nial constraints [1] and conditional dependencies [4, 16], are expressible as sim-
ple containment constraints studied for relative information completeness. As
a result, we can assure that only consistent and partially closed databases are
considered by enforcing containment constraints. (4) It suffices to express data
currency commonly found in practice as denial constraints [17], the same class of
constraints for data consistency. (5) As remarked earlier, master data has proved
effective in dealing with each and every of these issues.
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