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Foreword

When we started this project we contacted a number of Peter Buneman’s PhD
students, postdocs, and colleagues, both in the academic departments that Peter
belonged to, and in the larger scientific communities to which he contributed.
We asked them if they would contribute a chapter to this Festschrift and we
were deeply moved by the enthusiasm our query elicited. So here we are, a group
of people for whom Peter was, and still is, a teacher, a mentor, a collaborator,
or a colleague, sometimes several of these, with our scientific offerings. All of us,
moreover, are fervent admirers of Peter Buneman the computer scientist and are
proud to consider ourselves friends of Peter Buneman the wonderful man.

Let us mention briefly some of Peter’s seminal scientific achievements. We
cannot do justice in this preface to the depth and breadth of Peter’s long, dis-
tinguished, and continuing career. By necessity, and perhaps selfishly, we shall
choose a few items about which we might be better prepared to write.

A dominant theme in Peter Buneman’s work is the quest to unite the fields of
databases and programming languages. We expect that the majority of the read-
ers of this Festschrift will come from these two communities. For these readers,
it is interesting to note that Peter’s early work was in two completely different
areas: brain modeling (see his articles in Nature) and mathematical phylogeny.
His work in the latter area underlies most modern techniques that evolutionary
biologists use to reconstruct phylogenies.

Peter has made many seminal contributions to the field of databases. In his
quest to bring richer data models and more flexible query constructs to database
systems, he made comprehensive use of ideas from the field of programming
languages, in the process making signal contributions to that field as well. He
extended ideas from functional programming languages and from type theory to
show how one can unify and enrich various querying paradigms for relational and
post-relational data models such as complex values. This led to his study of the
principles that underlie Web-like data, and he is a co-author of the first textbook
on this subject. All this work, as well as his more recent investigations of the
principles of modeling data provenance and of data archiving, is characterized
by a most seductive mathematical elegance. For those of us who already had
such a proclivity, it was encouraging and reassuring that a scientist of Peter’s
stature would lead us in this style!

In addition to his masterful work on the theory of computing, Peter Buneman
always saw the computer scientist as a contributing citizen to the larger field of
science. We already mentioned that he worked on mathematical models for neu-
roscience. He started working on phylogenies in order to help scholars who were
studying the transmission of medieval manuscripts (but the biologists ended up
benefitting most from his work). The work he did in the 1990’s on monad-based
query languages was very successfully used in the integration “on-the-fly” of non-
relational genomics data sources (to the great surprise of some participants in the
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Human Genome Project). It was again motivation from scientists and scholars
as Web-users that led Peter to study the provenance of data that are continually
copied and transformed. More generally, he became one of the founders of the
field of digital curation including the creation at the University of Edinburgh of
a center with this name. Recent years have seen Peter initiating and successfuly
completing a project to bring broadband Internet to one of the more remote
corners of the Scottish Highlands. With this he took one more step: from citi-
zen of science to citizen of the society at large. Peter is now playing an active
role in spreading high-speed Internet access to the less well-connected, lobbying
government and providing advice and practical assistance to communities.

Many of the contributions to this Festschrift belong to the field of databases.
Some belong to the field of programming languages and a few to other fields.
When we contacted the potential contributors we offered them free choice of
topic(s). We feel that the final result displays an exciting variety, just as Peter
Buneman’s career does! We also encouraged the contributors to choose their co-
authors as they felt appropriate. The result is that the complete list of authors
includes many more people and we are delighted that they agreed to help us
celebrate Peter. We would be remiss, however, if we didn’t provide an exact list
of the principals (one or more for each paper), since this foreword is also written
on their behalf.

August 2013 Val Tannen
Limsoon Wong

Leonid Libkin

Wenfei Fan

Wang-Chiew Tan

Michael Fourman
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Models for Data-Centric Workflows*

Serge Abiteboul! and Victor Vianu?

! INRIA Saclay
2 UC San Diego and INRIA Saclay

Abstract. We present two models for data-centric workflows: the first based on
business artifacts and the second on Active XML. We then compare the two
models and argue that Active XML is strictly more expressive, based on a natu-
ral semantics and choice of observables. Finally, we mention several verification
results for the two models.

1 Introduction

Workflows and database systems are two essential software components that often have
difficulties interoperating. Data-centric workflow systems alleviate this problem by
providing an integrated approach to data management and workflows. They allow the
management of data evolution by tasks with complex sequencing constraints, as encoun-
tered for instance in scientific workflow systems, information manufacturing systems,
e-government, e-business or healthcare global systems.

Data-centric workflows have evolved from process-centric formalisms, which tra-
ditionally focus on control flow while under-specifying the underlying data and its
manipulations by the process tasks, often abstracting them away completely. In con-
trast, data-aware formalisms treat data as first-class citizens. A notable exponent of
this class is the business artifact model pioneered in [17]], deployed by IBM in com-
mercial products and consulting services, and further studied in a line of follow-up
works [416/9010I5I1501314]]. Business artifacts (or simply “artifacts””) model key busi-
ness-relevant entities that evolve in response to events in their life-cycle. See [11]] for a
brief survey on the topic.

Another effort at modeling data-centric workflows relies on Active XML (AXML).
An AXML document consists of an XML document with embedded function calls,
modeling tasks in the workflow. Each call generates a data-carrying task which in turn
can spawn additional sub-tasks. The functions are specified using queries based on tree
patterns [3U1]]. See [2]] for a discussion on how Active XML can serve as a workflow
model.

Business artifacts and AXML provide two different paradigms for specifying data-
centric workflows. A natural question concerns their relative expressive power. We
describe a semantics introduced in [[7] for comparing the expressiveness of workflow
systems relative to a set of observables, and argue that Active XML is strictly more
expressive than the variant of business artifacts presented here.

* This work has been partially funded by the European Research Council under the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant Webdam,
agreement 226513. http://webdam. inria.fr/

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 1 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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Several recent works have considered the problem of verifying business artifacts
[8I7] and Active XML systems [3]]. The verification problem consists of statically check-
ing whether all runs satisfy desirable properties expressed in an extension of linear-time
temporal logic (LTL). The presence of data results in a challenging infinite-state verifi-
cation problem, due to the infinite data domain. Rather than relying on general-purpose
software verification tools suffering from well-known limitations, the above works ad-
dress this problem by identifying relevant classes of business artifacts and Active XML
systems for which fully automatic verification is possible. We briefly summarize these
results.

2 The Business Artifact Model

We describe a minimalistic variant of the business artifact model, adequate for con-
veying the flavor of the approach. The presentation is informal, relying mainly on a
running example (the formal development is provided in [8l7]). The example models
an e-commerce business process in which the customer chooses a product and a ship-
ment method and applies various kinds of coupons to the order. After the order is filled,
the system awaits for the customer to submit a payment. If the payment matches the
amount owed, the system proceeds to shipping the product.

In the minimalistic model, an artifact is simply an evolving record of values. The
values are referred to by variables (sometimes called attributes). In general, an artifact
system consists of several artifacts, evolving under the action of services, specified by
pre- and post-conditions. For simplicity, we use a single artifact with the following
variables

status, prod_id, ship_type, coupon, amount_owed,
amount_paid, amount_refunded.
The status variable tracks the status of the order and can take values such as
“edit_product”, “received_payment”, “shipping”, “canceling”, etc. Thus, status can
be viewed as recording the current stage of the order processing. In conjunction with
pre-and-post conditions of services, this allows simulating a classical form of sequenc-
ing based on finte-state automata. However, unlike classical process-centric approaches,
the sequencing can also depend on properties of the data.

The artifact system is equipped with a database including the following tables, where
underlined attributes denote keys. Recall that a key is an attribute that uniquely identi-
fies each tuple in a relation.

PRODUCTS(id, price,availability, weight),
COUPONS(code, type, value,min_value, free_shiptype),
SHIPPING(type, cost,max_weight),
OFFERS(prod_id,discounted_price,active).

The database also satisfies the following foreign keys:

COUPONS[free_shiptype] C SHIPPING[type] and
OFFERS[prod_id] C PRODUCTS[id].
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The starting configuration of every artifact system is constrained by an initialization
condition, which here states that status initialized to “edit_prod”, and all other vari-
ables to “undefined”. By convention, we model undefined variables using the reserved
constant \.

The Services. Recall that artifacts evolve under the action of services. Each service is
specified by a pre-condition 7 and a postcondition v, both existential first-order (3FO)
sentences. The pre-condition refers to the current values of the artifact variables and
the database. The post-condition ¢ refers simultaneously to the current and next artifact
values, as well as the database. In addition, both 7 and 1) may use arithmetic constraints
on the variables, limited to linear inequalities over the rationals.

The following services model two of the business process tasks of the example. We
use primed artifact variables z’ to refer to the next value of variable .

choose_product. The customer chooses a product.

7 : status = “edit_prod”
¥ : 3p, a, w(PRODUCTS(prod_id’, p,a, w) A a > 0)
Astatus’' = "edit_shiptype”

choose_shiptype. The customer chooses a shipping option.

T : status = “edit_ship”

¥ : 3¢, 1, p,a, w(SHIPPING(ship_type’, ¢, [)A
PRODUCTS(prod_id, p,a,w) Al > w)A
status’ = “edit_coupon” A prod_id’ = prod_id

Notice that the pre-conditions of the services check the value of the status variable.
For instance, according to choose_product, the customer can only input her product
choice while the order is in “edit_prod” status.

Also notice that the post-conditions constrain the next values of the artifact variables
(denoted by a prime). For instance, according to choose_product, once a product has
been picked, the next value of the status variable is “edit_shiptype”, which will at a sub-
sequent step enable the choose_shiptype service (by satisfying its pre-condition). The
interplay of pre- and post-conditions achieves a sequential filling of the order, starting
from the choice of product and ending with the claim of a coupon. A post-condition
may refer to both the current and next values of the artifact variables. For instance, con-
sider the service choose_shiptype. The fact that only the shipment type is picked while
the product remains unchanged, is modeled by preserving the product id: the next and
current values of the corresponding artifact variable are set equal.

Pre- and post-conditions may query the database. For instance, consider the function
choose_product. The post-condition ensures that the product id chosen by the customer
is that of an available product (by checking that it appears in a PRODUCTS tuple, whose
availability attribute is positive).

Semantics. The semantics of an artifact system consists of its runs. Given a database
D, arun is an infinite sequence {p;}>o of artifact records such that py and D satisfy
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the initial condition of the system, and for each ¢ > 0 there is a service S of the system
such that p; and D satisfy the pre-condition of S and p;, p;+1 and D satisfy its post-
condition. For uniformity, blocking prefixes of runs are extended to infinite runs by
repeating forever their last record.

We note that the full business artifact model is still in flux. In its current state (e.g., see
[12]), the model allows artifact attributes containing collections, rather than just atomic
atoms. It also provides richer forms of control, achieved by a hierarchy of services.

3 Active XML Workflows

We next describe the specification of workflows in Active XML. We use a model called
Guard Active XML (GAXML for short) [317].

GAXML documents are abstractions of XML with embedded service calls. A
GAXML document is a forest of unordered, unranked trees, whose internal nodes are
labeled with tags from a finite alphabet and whose leaves are labeled with tags, data val-
ues, or function symbols. More precisely, a function symbol ! f indicates a node where
function f can be called, and a function symbol 7 f indicates that a call to f has been
made but the answer has not yet been returned. For example, a GAXML document is
shown in Figure[1l

/Main
Catalog !Mailorder MailOrder
| >~ N
Product Product Product Order-Id Cname Pname !Bill !Deliver !Reject
Pname Price Pname Price Pname Price 1234567 Serge  Nikon

Canon 120 Nikon 199  Sony 175

Fig.1. A GAXML document

The GAXML document may be subject to constraints specified by a DTD, as well
as Boolean combinations of tree patterns. For example, the negation of the pattern in
Figure[3l(a) says that an Order ID uniquely determines the product and customer names.
In patterns, double edges denote descendant and single edges the child relation.

A GAXML document evolves as a result of making function calls and receiving their
results. A call can be made at any point, as long as a specified pre-condition, called a
call guard, is satisfied. The argument of the call is specified by a query on the document,
producing a forest. Both the call guard and input query may refer to the node at which
the call is made (denoted self), so the location of the call in the document is important.
The result of a function call consists of another GAXML document, so a forest, whose
trees are added as siblings of the node = where the call was made. After the answer of
a call at node z is returned, the call may be kept or the node = may be deleted. This is
specified by the schema, for each function. If calls to ! f are kept, f is called continuous,
otherwise it is non-continuous.
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For example, consider the Mai10rder function in Figure[ll Intuitively, its role is to
fetch new mail orders from customers. For instance, one result of a call to the function
!MailOrder may consist of the subtree with root MailOrder in Figure [l Since
new orders should be fetched indefinitely, the call !MailOrder is maintained after
each result is returned, so MailOrder is specified to be continuous. On the other
hand, consider the function !Bill occurring in a MailOrder. This is meant to be
called only once, in order to carry out the billing task. Once the task is finished, the call
can be removed. Therefore, Bi11 is specified as a non-continuous function.

Consider again the function MailOrder, whose role is to fetch new orders from
external users or services. Since the function is processed externally, the semantics of
its evaluation is not known. We call such a function external. Its specification consists
only of its call guard and input query, and its answer is only constrained by signature in-
formation provided by the schema. In addition to external functions, there are functions
processed internally by the GAXML system. These are called internal. For example,
Bill is such a function. When a call to Bi1l1 is made at a node z labeled 'Bi11,
the label of x turns to ?Bil1l (to indicate that a call has been made whose answer
is still pending) and the call is processed internally. Specifically, the call generates a
new GAXML document (a running call) that evolves until it satisfies a condition called
return guard. Intuitively, the return guard indicates that the task corresponding to the
call has been completed and the result can be returned. The contents of the result is
specified by a return query. For example, the answer to a call to Bi11 can be returned
once payment has been received. The answer, specified by the return query, provides
the product paid for and amount of payment (see Example[T).

Once the result of a call has been returned, the GAXML document of the completed
running call is removed. In order for the result to be returned at the correct location (next
to node x), a mapping called eval is maintained between nodes where calls have been
made and GAXML document corresponding to the running call (e.g., see Figure2)). The
system evolves by repeated function calls and answer returns, occurring one at a time
non-deterministically. This may reach a blocking instance in which no function can be
called and no result can be returned, or may continue forever, leading to an infinite run.
For example, runs of the Mail Order system are always infinite since new mail orders
can always be fetched. For uniformity, we make all runs infinite by repeating blocking
instances forever.

Main \ e . _7a15e|711,1,
Catalog  !Mailorder MailOrder .- Process-bill
| = N <1
s Order-Id  Cname Pname ?Bill !Deliver !Reject Pname Amount !Invoice
I I I I I
1234567  Serge  Nikon Nikon 199

Fig.2. An instance with an eval link
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Note that call guards provide a very useful form of control. In particular, they are
instrumental in enforcing desired ordering among tasks. For instance, in the Mail Order
example, to enforce that delivery of a product can only occur after billing has been
completed, it is sufficient for the call guard of ! Deliver to check that neither ! Bi11
nor ?Bil1 occur in the subtree corresponding to the order.

Example 1. The function Bil1l used in Figure [[is specified as follows. It is internal
and non-continuous. Its call guard is the pattern in Figure [3| (b), checking that the or-
dered product is available. The input query is the query in Figure @l Assuming that
Invoice is an external function eventually returning Payment (with product and
amount paid), the return guard and return query of Bi11 are shown in Figure[3l

Main Main
MailOrder MailOrder Product MailOrder
I ™ PR TN |
Order-Id  Cname  Pname  Order-Id  Cname  Pname Pname Pname  self: |Bill
X Y Z X Y’ z X X

Y#Y orZ#7Z

(@) (b)
Fig. 3. Two patterns

/Main\

ZE\\ .

Catalog MailOrder {Process-bill}
| / \ PN

— .
Product Pname self: IBill Pmime Ami)“m !Invoice

Pname Price X X Y

X Y

Fig. 4. Argument query for !Bill

ag;l aTill - {Paid}

Payment Payment Pn](me Amrunt

o
[

Return guard Return query

Fig. 5. Return guard and query for !Bi11
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In GAXML, workflow control is provided by the guards associated with functions.
There are many other possible ways to control sequencing of tasks. In [[7], the following
alternative workflow control mechanisms are also discussed:

Automata. The automata are non-deterministic finite-state transition systems, in which
states have associated tree pattern formulas with free variables acting as parameters.
A transition into a state can only occur if its associated formula is true. In addition,
the automaton may constrain the values of the parameters in consecutive states.

Temporal Properties. These are expressed in a temporal logic with tree patterns and
Past LTL operators. A temporal formula constrains the next instance based on the
history of the run.

Subject to some minor technical assumptions, it is shown in [7] that the power
of guards, automata, and temporal logic as workflow specification mechanisms is the
same. More surprisingly, static constraints alone can largely simulate all three control
mechanisms.

4 Comparing Business Artifacts and Active XML Workflows

We have discussed two models of data-centric workflows: business artifacts and Ac-
tive XML. A natural question is whether their expressiveness can be measured and
compared. The models are quite different in their representation of data and events, so
a direct comparison is meaningless. In [1]], a framework is developed for comparing
workflow specification languages, by mapping different models to a common abstrac-
tion using the notion of workflow view. Depending on the specific needs, a workflow
view might retain information about some abstract state of the system and its evolution,
about some particular events and their sequencing, about the entire history of the system
so far, or a combination of these and other aspects. Even if not made explicit, a view is
often the starting point in the design of workflow specifications. This further motivates
using views to bridge the gap between different specification languages.

To see how this might be done, consider a workflow W specified by tasks and
pre/post conditions and another workflow W' specified as a state-transition system,
both pertaining to the same application. One way to render the two workflows compa-
rable is to define a view of W as a state-transition system compatible with W’. This
can be done by defining states using queries on the current instance and state transitions
induced by the tasks. To make the comparison meaningful, the view of W should re-
tain in states the information relevant to the semantics of the application, restructured
to make it compatible with the representation used in W’. More generally, views may
be used to map given workflows models to an entirely different model appropriate for
the comparison. In [1]], the general notion of workflow view is defined and a form of
bisimulation over views is introduced to capture the fact that one workflow simulates
another. The bisimulation applies to the tree of runs of the systems to be compared.

Using the framework based on views, it is shown in [1]] that Active XML is strictly
more expressive than business artifacts (without arithmetic and data depedencies).
Specifically, Active XML can simulate business artifacts, but the converse is false.
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The first result uses views mapping XML to relations and functions to services, so that
artifacts become views of Active XML systems. For the negative result we use views
retaining just the trace of function and service calls from the Active XML and the ar-
tifact system. This is a powerful result, since it extends to any views exposing more
information than the function/service traces.

5 Verification

The verification problem for business artifacts as well as Active XML workflows has
been considered in several recent works [3U8U7]. The problem consists of checking, for
a given workflow specification and temporal property, whether all runs of the workflow
system satisfy the property. For instance, one may want to verify whether some static
property (e.g., all ordered products are available) and some dynamic property (e.g. an
order is never delivered before payment is received) always hold. The temporal proper-
ties are specified in extensions of LTL, linear-time temporal logic. The presence of an
unbounded data domain yields a challenging infinite-state verification problem.

In order to specify temporal properties we use an extension of LTL. Recall that LTL
is propositional logic augmented with temporal operators such as G (always), F (even-
tually), X (next) and U (until) (e.g., see [[18]]). For example, Gp says that p holds at all
times in the run, Fp says that p will eventually hold, and G(p — Fq) says that when-
ever p holds, ¢ must hold sometime in the future. In order to take into account data, we
consider extensions of LTL in which propositions are interpreted by statements on cur-
rent snapshots of the system. The language used to express the statements is dependent
on the particular data model. For business artifacts, the language is FO, yielding the
extension LTL(FO). For Active XML, the language consists of tree patterns, yielding
LTL(Tree). We consider each model in turn.

Verification for Business Artifacts. For business artifacts, propositions are interpreted
as quantifier-free FO formulas using current and next artifact values, constants, and
the database. For example, suppose we wish to specify the property that if a correct
payment is submitted then at some time in the future either the product is shipped or
the customer is refunded the correct amount. The property is of the form G(p — Fq),
where p says that a correct payment is submitted and q states that either the product
is shipped or the customer is refunded the correct amount. Moreover, if the customer
is refunded, the amount of the correct payment (given in p) should be the same as the
amount of the refund (given in ¢). This requires using a global variable x in both p and
q. More precisely, p is interpreted as the formula amount_paid = z Aamount_paid =
amount_owed and q as status = “shipped” V amount_refunded = x. This yields
the LTL(FO) property

VG ((amount_paid = x A amount_paid = amount_owed)
— F(status = “shipped” V amount_refunded = z))

Note that, as one would expect, the global variable x is universally quantified at the
end.
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For artifact systems and properties without arithmetic constraints or data dependen-
cies it was shown that verification is decidable [8]. The complexity is PSPACE-complete
for a fixed number of attributes, and EXPSPACE otherwise. This is the best one can ex-
pect, given that even very simple static analysis problems for finite-state systems are
already PSPACE-complete.

It turns out that the verification algorithm can be extended to specifications and prop-
erties that use a total order on the data domain, which is useful in many cases. This
however complicates the algorithm considerably, since the order imposes global con-
straints on runs. The verification algorithm was first extended in [§]] for the case of a
dense countable order with no end-points (such as the rationals). This was later general-
ized to an arbitrary total order by Segoufin and Torunczyk [16] using automata-theoretic
techniques. In both cases, the worst-case complexity remains PSPACE.

Unfortunately, the above decidability result fails even in the presence of simple data
dependencies or arithmetic. As shown in [8/7]], verification becomes undecidable as
soon as the database has at least one key dependency, or if the specification of the
artifact system uses simple arithmetic constraints allowing to increment and decrement
by one the value of some atributes. Therefore, a restriction is imposed in [[7] to achieve
decidability.

The restriction is designed to limit the data flow between occurrences of the same
artifact attribute throughout runs of the system that satisfy the desired property. As
a first cut, a possible restriction would prevent any data flow path between unequal
occurrences of the same artifact attribute. Let us call this restriction acyclicity. While
acyclicity would achieve the goal of rendering verification decidable, it is too strong
for many practical situations. In the example of Section 2] a customer can choose a
shipping type and coupon and repeatedly change her mind and start over. Such repeated
performance of a task is useful in many scenarios, but would be prohibited by acyclicity
of the data flow.

To this end, we define in [[7] a more permissive restriction called feedback freedom.
Intuitively, paths among different occurrences of the same attribute are permitted, but
only as long as each value of the attribute is independent on its previous values. This
is ensured by a syntactic condition that takes into account both the artifact system and
the property to be verified. We omit here the rather technical details. It is shown in [7]
that feedback freedom of an artifact system together with an LTL(FO) property can be
checked in PSPACE by reduction to a test of emptiness of a two-way alternating finite-
state automaton. Feedback freedom turns out to ensure decidability of verification in
the presence of linear constraints, and also under a large class of data dependencies
including keys and foreign keys.

Verification of Active XML Workflows. Properties of Active XML workflows are ex-
pressed in LTL(7ree), an extension of LTL in which propositions are interpreted by tree
patterns. For example, suppose that we wish to verify the following property:

Every product for which a correct amount has been paid is eventually delivered.

To formulate the property, we use tree patterns with variables binding to data values
(without going into details, let us denote such a language of tree patterns by Tree).



10 S. Abiteboul and V. Vianu

The above property can be expressed in the language LTL(7ree) as follows. We start out
with the LTL formula G(p — Fgq). The proposition p is replaced by the tree pattern

Main
Catalog MailOrder
PrO(Iiuct Paid Order-Id
Pname Price Pnan{ b‘nount Y

z

checking that the payment received for product X of order Y is in the right amount Z.
The proposition q is replaced by the tree pattern

Main
MailOrder
Pnamé  Order-Id  Delivered
X Y
checking that product X of the same order Y is eventually delivered. Note that we wish
X and Y to be the same in the tree patterns for p and g, so these are globally quantified;

in contrast, Z is locally quantified. The resulting LTL(7ree) formula is shown in Figure
6]

VXVYIG( Main %F( Main ))I
I
Catalog MailOrder MailOrder
I /7 \ PR
Product Paid Order-1d Pname Order-Id Delivered
/\ / N\
Pname Price Pname Amount Y X Y
[ I
X Z X Z

Fig.6. An LTL(Tree) formula

It is shown in [3] that verification of LTL(Tree) properties of Active XML workflows
is decidable in 2-EXPTIME, under a syntactic restriction ensuring that the workflow has
only runs of bounded length.

6 Conclusion

Data-centric workflows are increasingly prevalent and there is a need for high-level
models and languages for specifying and reasoning about them. In this note, we pre-
sented two such models: business artifacts (initiated at IBM Research), and Active XML
(developed at INRIA). In both models, data is a first-class citizen, and it evolves as a
result of events in its life cycle. However, there are significant differences in the two
approaches. The data in business artifacts is relational, while in Active XML it is an
extension of XML. Events in the life-cycle are modeled in business artifacts by services
specified by pre-and-post conditions, while Active XML models events by function
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calls embedded in the data. To compare such distinct models, we proposed an approach
based on workflow views that map different models to a common abstraction, and a
notion of bisimulation on the trees of runs of the abstracted systems. Using this frame-
work, we showed that Active XML is strictly more expressive than business artifacts
(for the variants presented here). This is not suprising given that Active XML is a much
richer model. A more detailed discussion of the ability of Active XML to capture the
facets of an artifact model, as informally described in [17], is presented in [2], where
it is argued that Active XML can in fact capture all aspects of the artifact approach.
Moreover, the notions of subtask and of collection of artifacts are naturally built into
the model, whereas the business artifact model as in [8l/7]] has to be extended in order to
model them. Such extensions are indeed discussed in [12]].

We finally reviewed some recent results on the automatic verification of workflows
in both languages. These suggest that automatic verification may be feasible for a prac-
tically significant class of workflows and properties.
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Abstract. Our aim in this paper is to point out a surprising formal
connection, between two topics which seem on face value to have noth-
ing to do with each other: relational database theory, and the study of
non-locality and contextuality in the foundations of quantum mechanics.
We shall show that there is a remarkably direct correspondence between
central results such as Bell’s theorem in the foundations of quantum me-
chanics, and questions which arise naturally and have been well-studied
in relational database theory.

1 Introduction

Our aim in this paper is to point out a surprising formal connection, between
two topics which seem on face value to have nothing to do with each other:

— Relational database theory.
— The study of non-locality and contextuality in the foundations of quantum
mechanics.

We shall show, using the unified treatment of the latter developed in [3],
that there is a remarkably direct correspondence between central results such as
Bell’s theorem in the foundations of quantum mechanics, and questions which
arise naturally and have been well-studied in relational database theory.

In particular, we shall see that the question of whether an “empirical model”,
of the kind which can be obtained by making observations of measurements per-
formed on a physical system, admits a classical physical explanation in terms of
a local hidden variable model, is mathematically equivalent to the question of
whether a database instance admits a universal relation. The content of Bell’s
theorem and related results is that there are empirical models, predicted by
quantum mechanics and confirmed by experiment, which do not admit such
a universal relation. Moreover, while the original formulation of Bell’s theorem
involved probabilities, there are “probability-free” versions, notably Hardy’s con-
struction, which correspond directly to relational databases.

In fact, we shall show more broadly that there is a common mathematical
language which can be used to described the key notions of both database theory,
in the standard relational case and in a more general “algebraic” form covering
e.g. a notion of probabilistic databases, and also of the theory of non-locality and
contextuality, two of the key quantum phenomena. These features are central to

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 13-B5] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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current discussions of quantum foundations, and provide non-classical resources
for quantum information processing.

The present paper is meant to be an introduction to these two topics, em-
phasizing their common content, presented in a manner which hopefully will be
accessible to readers without prior knowledge of either.

How should this unexpected connection be interpreted? One idea is that the
notion of contextuality is rather fundamental, and we can see some outlines
of a common ‘logic of contextuality’ arising from this appearance of common
structure in very different settings.

Ideally, some deeper connections can also be found, leading to interesting
transfers of results and methods. A first step in this direction has already been
taken, in joint work with Georg Gottlob and Phokion Kolaitis [4], in the closely
related field of constraint satisfaction. An algorithmic question which arises nat-
urally from the quantum side (see [2]) leads to a refined version of the constraint
satisfaction paradigm, robust constraint satisfaction, and to interesting new com-
plexity results.

2 Relational Databases

2.1 Review of Basic Notions

We shall begin by reviewing some basic notions of relational database theory.
We start with an example to show the concrete scenario which is to be for-
malized.

Example. Consider the following data table:

branch-name account-no customer-name balance

Cambridge 10991-06284 Newton £2,567.53
Hanover 10992-35671 Leibniz €11,245.75

Let us anatomize this table. There are a set of attributes,
{branch-name, account-no, customer-name, balance}

which name the columns of the table. The entries in the table are ‘tuples’ which
specify a value for each of the attributes. The table is a set of such tuples.
A database will in general have a set of such tables, each with a given set of
attributes. The schema of the database — a static, syntactic specification of the
kind of information which can reside in the database — is given by specifying
the set of attributes for each of the tables. The state of the database at a given
time will be given by a set of tuples of the appropriate type for each of the tables
in the schema.

We now proceed to formalize these notions.

We fix some set .4 which will serve as a universe of attributes. A database
schema X over A is a finite family X' = {41, ..., Ax} of finite subsets of A.
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At this — surprisingly early! — point, we come to an interesting juncture.
There are two standard approaches to formalising the notion of relation which
can be found in the relational database literature. One — the ‘unnamed per-
spective’ [I] — is to formalize the notion of tuple as an ordered n-tuple in D™
for some set D of data values; a relation is then a subset of D™. This is moti-
vated by the desire to make the connection to the standard notion of relational
structure in first-order logic as direct as possible. This choice creates a certain
distance between the formal notion of relation, and the informal notion of table;
in practice this is not a problem.

For our purposes, however, we wish to make a different choice — the ‘named
perspective’ [I]: we shall formalize the notion of tuple, and hence of relation, in a
fashion which directly reflects the informal notion. As we shall see, this will have
both mathematical and conceptual advantages for our purposes. At the same
time, there is no real problem in relating this formalism to the alternative one
found in the literature. Note that the style of formalization we shall use is also
commonly found in the older literature on relational databases, see e.g. [26].

We shall assume that for each a € A there is a set D, of possible data values for
that attribute. Thus for example the possible values for customer-name should
be character strings, perhaps with some lexical constraints; while for balance the
values should be pairs (currency, amount), where currency comes from some
fixed list (£, €, ...), and amount is a number. These correspond to domain
integrity constraints in the usual database terminology.

Given A € X, we define the set of A-tuples to be [[,. 4 Do. Thus an A-tuple
is a function which assigns a data value in D, to each a € A.

In our example above, the first tuple in the table corresponds to the function

{branch-name — Cambridge, account-no — 10991—-06284,

customer-name — Newton, balance — £2,567.53}

A relation of type A is a finite set of A-tuples. Given a schema X', an instance
of the schema, representing a possible state of the database, is given by specifying
a relation of type A for each A € X.

Operations on Relations. We consider some of the fundamental operations
on relations, which play a central role in relational databases. Firstly, relations of
type A live in the powerset P(]],c 4 Da), which is a boolean algebra; so boolean
operations such as union, intersection, and set difference can be applied to them.

Note that the set of data values may in general be infinite, whereas the rela-
tions considered in database theory are finite. Thus one must use set difference
rather than an ‘absolute’ notion of set complement.

Next, we consider the operation of projection. In the language of A-tuples,
projection is function restriction. That is, given an A-relation R, and a subset
B C A, we define:

R|p :={t|lp : t € R}.
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Here, since t € [],c 4 Da, t|p just means restriction of the function ¢ to B, which
is a subset of its domain. This operation is then lifted pointwise to relations.

Now we consider the independent combination of relations, which is cartesian
product in the standard formalism. The representation of tuples as functions
leads to a ‘logarithmic shift’ in the representatiorﬂ, whereby this operation is
represented by disjoint union of attribute sets.

Given an A-relation R and a B-relation S, we form the disjoint union ALl B,
and the A Ll B-relation

RS :={te [[ Da:tlacR Atlpes}
acAUB

Of course, as concrete sets A and B may overlap. We can force them to be
disjoint by ‘tagging’ them appropriately, e.g.

AuB = {0} x A U {1} x B.

The minor housekeeping details of such tagging can safely be ignoredE We shall
henceforth do so without further comment.

This is only a subset of the operations available in standard relational algebra
[26]. A more complete discussion could be given in the present setting, but this
will suffice for our purposes.

2.2 The Functorial View

We shall now show how the relational database formalism, in the style we have
developed it, has a direct expression in functorial terms. This immediately brings
a great deal of mathematical structure into play, and will allow us to relate some
important database notions to concepts of much more general standing.

We shall assume the rudiments of the language of categories, functors and
natural transformations. All the background we shall need is covered in the
charming (and succinct) text [25].

We shall consider the partial order Att of finite subsets of A, ordered by
inclusion, as a category.

We shall define a functor 7 : Att°P » Set where 7T (A) is the set of
A-tuples. Formally, we define

T(4) = [] Do

a€A
and if A C B, we define the restriction map p§ : T(B) ~ T(A) by

ph it t|a.

! Think of 292° = 29*° and hence log(zy) = log(z) + log(y).
2 The relevant result is the coherence theorem for monoidal categories [20].
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It is easy to verify functoriality of 7, which means that, whenever A C B C C,
pA©pE =%,

and also that p4 = id4. Thus T is a presheaf, and restriction is exactly function
restriction.

We also have the covariant powerset functor P : Set » Set, which acts on
functions by direct image: if f: X » Y, then

Pf:PX »PY =S {f(x) : x €S}
We can compose P with 7 to obtain another presheaf
R:=PoT:Att® » Set.

This presheaf assigns the set of A-relations to each set of attributes A; while the
restriction map
PEiR(B) - R(A)

is exactly the operation of relation restriction, equivalent to the standard notion
of projection in relation algebra, which we defined previously:

pf:Rl—)R|A.

Natural Join. One of the most important operations in relational algebra is
natural join. Given an A-relation R and a B-relation S, we define an (A U B)-
relation R S:

RS = {te [] Da:tlacR A tlpeS}
acAUB

We shall now show how this operation can be characterized in categorical terms.
Note firstly that since the powerset is naturally ordered by set inclusion, we
can consider R as a functor

R : AttP » Pos

where Pos is the category of posets and monotone maps. Pos is order-enriched;
given monotone maps f,g: P — @, we can define the pointwise order:

f<g =VzeP f(x) <gz).

Now suppose we are given attribute sets A and B. We consider the following
diagram arising from the universal property of product in Set.
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R(A) ™ R(A) x R(B) 2 - R(B)
A4 A <
AUB ,AUB Q
'?7“\70@ (pa~7, p5"") : Q%
R(AUB)

Proposition 1. The natural join <. R(A) x R(B) — R(A U B) is uniquely
characterized as the left adjoint of (p4“B, pa“B); that is, as the unique map
satisfying

AUB _AUB

498, : (pa " pp 7)o < idr(a)xR(B)-

idraup) < o (py 5°7)

PB

The fact that in general a relation R € R(A U B) satisfies only
R C R|a™=R|p,

with strict inclusion possible, corresponds to the fact that natural join is in
general a ‘lossy’ operation. Lossless joins correspond exactly to the case when
equality holds.

2.3 The Sheaf-Theoretic View

We shall now show, building on the presheaf structure described in the previous
sub-section, how a number of important database notions can be interpreted
geometrically, in the language of sheaves and presheaves.

Schemas as Covers and Gluing Conditions. We shall interpret a schema
Y = {A,..., A} of finite subsets of A as a cover. That is, we think of the
attribute sets A; as ‘open sets’ expressing some local information in the sense
of related clusters of attributes; these sets cover A := Ule A;, the global set
of attributes for the schema. Conversely, we think of the global set A as being
decomposed into the local clusters A;; which is exactly the standard point of
view in databases.
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The basic idea of sheaf theory is to analyze the passage from local to global be-
haviour in mathematical structures. A number of important notions in databases
have exactly this character, and can be described naturally in sheaf-theoretic
terms.

An instance (Ri,...,Rg) of a schema X' is given by specifying a relation
R; € R(A;) for each A; € X. In sheaf-theoretic language, this is a family of local
sections, defined over the open sets in the cover. A central issue in geometric
terms is whether we can glue these local sections together into a global section
defined over A := Ule A;.

More precisely, we can ask:

Does there exist a relation R € R(A) such that R

A, =Ry i=1,...,k

We say that the gluing condition is satisfied for the instance (R, ..., Ry) if such
a relation exists.

This has been studied as an algorithmic question in database theory, where
it is referred to as the join consistency property; it is shown in [I7] that it is
NP-complete.

Note that a necessary condition for this to hold is that, for all 7,5 =1,...,k:

R;

AiNA; = Rj AiNA;- (].)
Indeed, if such an R exists, then

R;

aina; = (Rla))|aina; = Rlana;,

using the functoriality of restriction, and similarly for R;|;na4;-

We shall say that a database instance (Ry, . .., Ry) for which this condition ()
holds has consistent projections, and refer to the family of relations in the in-
stance as a compatible family.

These notions can be generalized to apply to any presheaf. If the gluing condi-
tion can always be satisfied, for any cover and any family of compatible elements,
and moreover there is a unique element which satisfies it, then the presheaf is a
sheaf.

It is of course a well-known fact of life in databases, albeit expressed in a
different language, that our relational presheaf R is not a sheaf.

In fact, we have the following:

Proposition 2. An instance (Ry,...,Ry) satisfies the gluing condition if and
only if there is a universal relation R for the instance.

Here we take a universal relation for the instance by definition to be a relation
defined on the whole set of attributes from which each of the relations in the
instance can be recovered by projection. This notion, and various related ideas,
played an important role in early developments in relational database theory;
see e.g. [22/T2IT9I27126].

Thus the standard notion of universal relation in databases corresponds ex-
actly to the standard notion of solution to the gluing condition in sheaf theory,
for the particular case of the relational presheaf R.
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It is also standard that a universal relation need not exist in general, and even
if it exists, it need not be unique. There is a substantial literature devoted to
the issue of finding conditions under which these properties do hold.

There is a simple connection between universal relations and lossless joins.

Proposition 3. Let (Ri,...,Rr) be an instance for the schema X =
{Ai1,..., Ay}, Define R :=<*_| R;. Then a universal relation for the instance
exists if and only if Rla, = Ri, i = 1,...,k, and in this case R is the largest
relation in R(|J,; A;) satisfying the gluing condition.

Proof. We note that, if a relation S satisfies S|4, = R;, i =1,...,k, then § C
¥, R; by the adjoint property of the natural join. Moreover, since projection
is monotone, in this case R; C S|4, C (<¥_; R;)|a, C Ri. O

There are further categorical aspects of relational databases which it might
prove interesting to pursue. In particular, one can define categories of schemas
and of instances and their morphisms, and the construction of colimits in these
categories may be applicable to issues of data integration. However, we shall
not pursue these ideas here. Instead, we will turn to a natural generalization of
relational databases which arises rather effortlessly from the formalism we have
developed to this point.

3 Algebraic Databases

We begin by revisiting the definition of the relational presheaf R in terms of
the covariant powerset functor P. An alternative presentation of subsets is in
terms of characteristic functions. That is, we have the familiar isomorphism
P(X) 22X where 2 := {0, 1} is the 2-element boolean algebra.

We can also use this representation to define the functorial action of powerset.
Given s: X - 2 and f: X — Y, we define f*(s): Y — 2 by

f(s) iy \ s(a). (2)
F(x)=y
It is easy to see that this is equivalent to
f ) y)=1 < xS f(x)=y.

Here S is the subset of X whose characteristic function is s.
We can specialise this to the case of an inclusion function ¢ : A € » B which
induces a map 28 — 24 by restriction:

s:B—=2 +— (s|la): A—2.

What we obtain in this case is exactly the notion of projection of a relation, as
defined in the previous section.
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The advantage of this ‘matrix’ style of definition of the powerset is that it can
immediately be generalized rather widely. There is a minor caveat. In the above
definition, we used the fact that 2 is a complete boolean algebra, since there was
no restriction on the cardinality of the preimages of f. In the database context,
of course, all sets are typically finite[] We shall enforce a finiteness condition
explicitly in our general definition.

We recall that a commutative semiring is a structure (R,+,0,-,1), where
(R,+,0) and (R,-, 1) are commutative monoids, and moreover multiplication
distributes over addition:

z-(y+z)=z-y+z-z

Many examples of commutative semirings arise naturally in Computer Science:
we list a few of the most common.

— The reals
(R,+,0, x,1).

More generally, any commutative ring is a commutative semiring.
The non-negative reals

(Rzo, 4,0, X, 1).

— The booleans
2 =({0,1},V,0,A,1).

More generally, idempotent commutative semirings are exactly the distribu-
tive lattices.
— The min-plus semiring

(R>0 U {00}, min, 0o, +, 0).

We also note the réle played by provenance semirings in database theory [T4J9JTT].
We fix a semiring R. Given a set X, the support of a function v : X — R is
the set of x € X such that v(z) # 0. We write supp(v) for the support of v. We
shall write Vg(X) for the set of functions v : X — R of finite support. We shall
write Dr(X) for the subset of Vg(X) of those functions d : X — R such that

Z d(z) =1.

zeX

Note that the finite support condition ensures that this sum is well-defined.
We shall refer to elements of Vg(X) as R-valuations on X, and of Dr(X) as
R-distributions.
We consider a few examples:

— If we take R = 2, then Vg(X) is the set of finite subsets of X, and Dr(X)
is the set of finite non-empty subsets.

3 The sets of data values D, may be infinite, but only finitely many values will appear
in a database instance.
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— If we take R = (R>0,+,0, %, 1), then Dr(X) is the set of discrete (finite-
support) probability distributions on X.

Algebraically, Vr(X) is the free R-semimodule over the set X [I3].
These constructions extend to functors on Set. Given f: X — Y, we define

Va(f) : Va(X) = Ve(Y) zv e [y— > o(@)].
fz)=y

This restricts to Dg in a well-defined fashion. Taking R = 2, we see that Vg(f)
is exactly the direct image of f, defined as in (2)).

We can now generalize databases from the standard relational case to ‘rela-
tions valued in a semiring’ by replacing P by Vg (or Dg) in our definition of
R; that is, we take R := F o T, where F' is Vg or Dy for some commutative
semiring R. We recover the standard notion exactly when R = 2. In the case
where R = (R>o,+,0, X,1) and F = Dpg, we obtain a notion of probabilistic
database, where each relation specifies a probability distribution over the set of
tuples for its attribute-set.

Moreover, our descriptions of the key database operations all generalise to
any semiring. If we apply the definition of the functorial action of Vi or Dy to
the case of restriction maps induced by inclusions, we obtain the right notion of
generalised projection, which can be applied to any algebraic database. We have
already seen that we recover the standard notion of projection in the Boolean
case. In the case where the semiring is the non-negative reals, so we are dealing
with probability distributions, projection is exactly marginalization.

We also note an important connection between probabilistic and relational
databases. We can always pass from a probabilistic to a relational instance by
taking the support of the distribution. Algebraically, this corresponds to mapping
all positive probabilities to 1; this is in fact the action of the unique semiring
homomorphism from the non-negative reals to the booleans.

In general, many natural properties of databases will be preserved by this
homomorphic mapping. This means that if we show that such a property is
not satisfied by the support, we can conclude that it is not satisfied by the
probabilistic instance. Thus we can leverage negative results at the relational
level, and lift them to the probabilistic setting.

We shall see a significant example of a probabilistic database in the next
section.

4 From Databases to Observational Scenarios

We shall now offer an alternative interpretation of the relational database formal-
ism, with a very different motivation. This will expose a surprising connection
between database theory, and on face value a completely different topic, namely
Bell’s theorem in the foundations of quantum mechanics [§].

Our starting point is the idealized situation depicted in the following diagram.
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£ K™

Q Q
O (o
C C/

Alice Bob

There are several agents or experimenters, who can each select one of sev-
eral different measurements a, b, c,d, ... to perform, and observe one of several
different outcomes. These agents may or may not be spatially separated. When
a system is prepared in a certain fashion and measurements are selected, some
corresponding outcomes will be observed. These individual occurrences or ‘runs’
of the system are the basic events. Repeated runs allow relative frequencies to
be tabulated, which can be summarized by a probability distribution on events
for each selection of measurements. We shall call such a family of probability
distributions, one for each choice of measurements, an empirical model.

As an example of such a model, consider the following table.

(0,0) (1,0) (0,1) (1,1)
ab 1/2 0 0 1/2
a'b 3/8 1/8 1/8 3/8
al/ 3/8 1/8 1/8 3/8
a'b 1/8 3/8 3/8 1/8

The intended scenario here is that Alice can choose between measurement set-
tings a and a’, and Bob can choose b or b'. These will correspond to different
quantities which can be measured] We assume that these choices are made
independently. Thus the measurement contexts are

{a,0}, {d',0}, {a,0}, {d',V'},

and these index the rows of the table. Each measurement has possible outcomes
Oorl.

Note that, with a small change of perspective, we can see this in database
terms. Take the global set of attributes A = {a, a’, b, '}, and consider the schema

Y = ({a,b}, {d’, b}, {a,V'}, {d',b'}).
For each a € A, we take D, := {0, 1}.

4 For example, in the quantum case these settings may correspond to different direc-
tions along which to measure ‘Spin Up’ or ‘Spin Down’ [29].
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For each A € X, we have a ‘table’ in the algebraically generalized sense
discussed in the previous section. That is, we have a distribution d4 € DgoT (A),
where R = R>¢ is the semiring of non-negative reals. Thus d4 is a probability
distribution on 7 (A), the set of A-tuples.

To make a direct connection with standard relational databases, we can pass
to the support of the above table, which yields the following:

(0,0) (1,0) (0,1) (1,1)

ab 1 0 0 1
ab 1 1 1 1
alt 1 1 1 1
adt 1 1 1 1

This corresponds to the instance of the schema X where for each A = {«, 8} €
X\ {{a,b}}, there is the ‘full’ table of all possible tuples:

af
00
01
10
11

while for {a, b} we have the table with only two tuples:

ab

00
11

Thus we have a formal passage between empirical models and relational
databases. To go further, we must understand how empirical models such as
these can be used to draw striking conclusions about the foundations of physics.

5 Empirical Models and Hidden Variables

Most of our discussion is independent of any particular physical theory. How-
ever, it is important to understand how quantum mechanics, as our most highly
confirmed theory, gives rise to a class of empirical models of the kind we have
been discussing.

To obtain such a model, we must provide the following ingredients:

— A quantum state.

— For each of the ‘measurement settings’, which correspond to attributes in
database terms, a physical observable or measurable quantity. Each such
observable will have a set of associated possible outcomes, which will corre-
spond to the set of data values associated with that attribute.

The ‘statistical algorithm’ of quantum mechanics will then prescribe a probabil-
ity for each measurement outcome when the given state is measured with that
observable.

Although we shall not really need the details of this, we briefly recall some
basic definitions. For further details, see e.g. [24129].
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A Crash Course in Qubits

Whereas a classical bit register has possible states 0 or 1, a qubit state is given
by a superposition of these states. More precisely, a (pure) qubit state is given
by a vector in the 2-dimensional complex vector space C2, i.e. a complex linear
combination ap|0)+a;|1), subject to the normalization constraint |ag|?+|ay|? =
1. Here |0), |1) is standard Dirac notation for the basis vectors [1,0]7 and [0, 1]7.

Measurement of such a state (in the |0), |1) basis) is inherently probabilistic;
we get |i) with probability |a;|?.

There is a beautiful geometric picture of this complex 2-dimensional geometry
in real three-dimensional space. This is the Bloch sphere representation:

The pure qubit states correspond to points on the surface of the sphere. How-
ever, this one-qubit case does not yet provide non-classical resources for infor-
mation processing. Things get interesting with n-qubit registers

Zai|i>, ie{0,1}"™

It is at this point, in particular, that entanglement phenomena arise.
A typical example of an entangled state is the Bell state:

. 100) + [11) .

We can think of two particles, each with a qubit state, held by Alice and Bob.
However, these two particles are entangled. If Alice measures her qubit, then if
she gets the answer |0), the state will collapse to |00), and if Bob measures his
qubit, he will get the answer |0) with certainty; similarly if the result of Alice’s
measurement is |1). This non-local effect creates new possibilities for quantum
information processing.

Mathematically, compound systems are represented by the tensor product,
H1 ® Ha, with typical element

ZM'%@HM

Superposition encodes correlation.

Entanglement is the physical phenomenon underlying Einstein’s ‘spooky ac-
tion at a distance’. Even if the particles are spatially separated, measuring one
has an effect on the state of the other.
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Bell’s achievement was to turn this puzzling feature of quantum mechanics
into a theorem: quantum mechanics is essentially non-local.

5.1 Bell’s Theorem

We look again at the empirical model

(0,0) (1,0) (0,1) (1,1)
(a,b) 1/2 0 0 1/2
(a,b') 3/8 1/8 1/8 3/8
(a,b) 3/8 1/8 1/8 3/8
(b)) 1/8 3/8 3/8 1/8

This can be realized in quantum mechanics, using a Bell state

\00) + \11)
V2o

subjected to measurements in the XY -plane of the Bloch sphere, at relative
angle /3. Systems of this kind have been the subject of extensive experimental
investigation, and the predictions of quantum mechanics can be taken to be very
highly confirmed.

The question we shall ask, following Bell, is this: Can we explain these
empirical findings by a theory which is local and realistic in the following sense.

— A theory is realistic if it ascribes definite values to all observables for every
physical state, independently of the activities of any external observers.

— A theory is local if the outcomes of measurements on spatially separated
subsystems depend only on common causal factors. In particular, for space-
like separated measurements, the outcomes of the measurements should be
independent of each other.

We allow for the fact that there may be salient features in the theory determining
the outcomes of measurements of which we are not aware. These features are
embodied in the notion of hidden variable. Thus we take measurement outcomes
to be determined, given some value of this hidden variable. Moreover, we assume
that this hidden variable acts in a local fashion with respect to spatially separated
subsystems.

This gives a general notion of theory which behaves in a fashion broadly
consistent with classical physical intuitions. The import of Bell’s theorem is
exactly that no such theory can account for the empirical predictions of quan-
tum mechanics. Hence, given that these predictions are so well-confirmed, we
must abandon the classical world-view which underpins the assumptions of local
realism.

To give a precise statement of Bell’s theorem, we must formalize the notion of
local hidden variable theory. We shall give this in a streamlined form, which can
be shown to be equivalent to more general definitions which have been considered
(see e.g. Theorem 7.1 in [3]).
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We shall explain this notion in relation to the Bell table given above. We have
a total set of four measurement settings we are considering, two for Alice and
two for Bob:
{a,a’,b,b'}.

A simultaneous assignment of outcomes (0 or 1) to each of these is given by a
function

s:{a,d,b,b'}y  »{0,1}.

The fact that an (unknown) hidden variable may be affecting the outcome is
captured by saying that we have a probability distribution d on the set of all
such functions s. Such a probability distribution can be taken to be a canonical
form for a hidden variable.

The requirement on this distribution d to be consistent with the empirical data
is that, for each of the experimentally accessible combinations of measurement

settings
{a,b}, {d'b}, {a ¥}, {d,V},

the restriction (or marginalization) of d to this set of measurements yields exactly
the observed distribution on outcomes from the corresponding row of the table.
For example, we must have d|{a,b} = di, where

d1(0,0) = dy(1,1) = 1/2, dy(0,1) = dy(1,0) = 0.

A precise statement of a particular instance of Bell’s theorem can now be
given as follows:

Proposition 4. There is no distribution d on the whole set of measurements
which yields the observable distributions by restriction.

Proof. Assume for a contradiction that such a distribution d exists. It will
assign a number X; € [0,1] to each s; : {a,ad’,b,0'} » {0,1}. There are 16
such functions: we enumerate them by viewing them as binary strings, where
the j’th bit indicates the assignment of an outcome to the j’th measurement,
listed as a,a’,b,b'.

The requirement that this distribution projects onto the distributions in the
empirical model translates into 16 equations, one for each entry in the table. It
suffices to consider 4 of these equations:

X1+ Xo+ X5 + Xy =1/2
Xo+ Xy + X +Xg =1/8
X3+ X4+ X1+ X12=1/8
X1+ X5+ X9 +X13=1/8

Adding the last three equations yields
Xi+Xo+Xg+2Xy + X5+ Xg+ Xg+ Xg+ X1+ X120+ Xq3 = 3/8.

Since all these terms must be non-negative, the left-hand side of this equation
must be greater than or equal to the left-hand side of the first equation, yielding
the required contradiction. O
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This argument seems very specific to the probabilistic nature of the empirical
model. However, an important theme in the work on no-go theorems in quantum
mechanics is to prove results of this kind in a probability-free fashion [I5IT6].
This will bring us directly into the arena of relational databases.

5.2 Hardy’s Construction

Hardy’s construction [16] yields a family of empirical models which can be real-
ized in quantum mechanics in similar fashion to the Bell model. However, these
families exhibit a stronger form of non-locality property, which does not depend
on the probabilities, but only on the support.

We exhibit an example of a support table arising from Hardy’s construction.

(0,0) (1,0) (0,1) (1,1)

(@b) 1 1 1 1
(@pb o0 1 1 1
(@v) 0 1 1 1
@m) 1 1 1 0

This arises from a probability table by replacing all positive probabilites by 1.

Note that we can view this table as encoding a small relational database, as
in our discussion in the previous section. There will be four relation tables in
this database, one for each of the above rows. The table corresponding to the
first row will have the full set of tuples over {0,1}. The tables for the second
and third rows will have the form

af
01
10
11

while that for the fourth row will have the form

a' b

= o O

0
1
0

The property which shows the non-locality of this model is the exact relational
analogue of the probabilistic version we considered in relation to the Bell model.

Proposition 5. There is no A-relation R, where A = {a,a’,b,b'}, which is
consistent with the empirical observable supports; that is, for which R|{«a, B}
yields the relational table for all {a, B}, o € {a,a’}, B € {b,b'}.

In database language, this says exactly that there is no ‘universal relation’
on the whole set of attributes which yields each of the ‘observable relations’ by
projection.
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Proof. We argue similarly to the case of the Bell model, except that we are
now working over the Boolean semiring rather than the non-negative reals. The
existence of a relation R thus reduces to a Boolean satisfiability problem. An
equation ), X; = 1 simply asserts the disjunction of the boolean variables, while
an equation ) |, X; = 0 asserts the conjunction of the negated variables. Again it
suffices to consider four of the equations which can be read off the Hardy table:

X1 vV Xo V X3 V Xy
X1 AN X3 A X5 A X7
X1 A 2Xo A 2 Xg A X7
X4 N Xg A X9 A = Xqs

Since every disjunct in the first formula appears as a negated conjunct in one of
the other three formulas, there is no satisfying assignment. O

There is a precise sense in which the Hardy result is stronger than the Bell
result. In fact, we have the following.

Proposition 6. If an empirical model has a local hidden-variable model in the
probabilistic sense, then its support table has a universal relation. Thus failure
to have a universal relation implies failure to have a local hidden-variable model
in the probabilistic sense.

Proof. This follows simply from the fact that the map from the non-negative
reals to the booleans which takes all non-zero elements to 1 is a semiring homo-
morphism. (I

The converse to this result is false. For example, the support table arising
from the Bell model does have a universal relation, as can easily be verified.

Note that the Hardy table, and indeed all such tables arising from quan-
tum mechanics, satisfies the compatibility condition which we discussed in Sec-
tion In fact, compatibility corresponds precisely to the physical condition
of no-signalling, and the fact that quantum models satisfy the condition is ex-
actly the content of the No-Signalling theorem of quantum mechanics. See [3]
Section 8 for an extended discussion of this point.

6 No-Go Theorems, Global Sections and Universal
Relations

We shall now develop a more general perspective on the results we have discussed
in the previous section.

Following the geometric language we introduced in Section 2.3 we see that
the existence of a hidden-variable model is equivalently expressed as the exis-
tence of a global section which glues together the family of empirical accessible
distributions or relations.

Thus non-locality and related no-go results can be understood in terms of
obstructions to the existence of global sections, a central issue in the pervasive
applications of sheaves in geometry, topology, analysis and number theory.
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In terms of databases, such results can be understood as expressing obstruc-
tions to the existence of universal relations for given instances of the database.

We shall now discuss two further types of no-go results, which can be under-
stood in terms of yet stronger forms of obstruction.

6.1 Strong Contextuality

If we consider the argument for the Hardy construction, it can be understood as
saying that there is no relation over the global tuples which ‘covers’ all (and only)
the observable tuples. But now suppose we consider a much weaker requirement:
we simply ask for one global tuple which projects consistently into all the relations
in the database instance.

Note that the Hardy model does meet this condition. The global assignment

{a—1,d =0, b1 00}

does project consistently into the support table for this model. The Bell model
similarly meets this condition.

If even this, much weaker requirement cannot be met, then we have a much
stronger form of no-go theorem. We say that such a situation exhibits strong
contextuality.

The question now arises: are there models coming from quantum mechanics
which are strongly contextual in this sense?

We shall now show that the well-known GHZ models [I5], of type (n,2,2) for
all n > 2, are strongly contextual. This will establish a strict hierarchy

Bell < Hardy < GHZ

of increasing strengths of obstructions to non-contextual behaviour for these
salient models.

The GHZ model of type (n,2,2) can be specified as follows. We label the
two measurements at each part as X and Y, and the outcomes as 0 and 1.
For each context C, every s in the support of the model satisfies the following
conditions:

— If the number of Y measurements in C' is a multiple of 4, the number of 1’s
in the outcomes specified by s is even.

— If the number of Y measurements is 4k+2, the number of 1’s in the outcomes
is odd.

A model with these properties can be realized in quantum mechanics, using the
GHZ state
0---0) + [1---1)

V2

Proposition 7. The GHZ models are strongly contezxtual, for all n > 3.
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Proof. We consider the case where n = 4k, k > 1. Assume for a contradiction
that we have a global section s € S, for the GHZ model e.

If we take Y measurements at every part, the number of 1 outcomes under the
assignment is even. Replacing any two Y’s by X’s changes the residue class mod 4
of the number of Y’s, and hence must result in the opposite parity for the number
of 1 outcomes under the assignment. Thus for any Y9, V) assigned the same
value, if we substitute X’s in those positions they must receive different values
under s. Similarly, for any Y*), Y9) assigned different values, the corresponding
X® XU must receive the same value.

Suppose firstly that not all Y () are assigned the same value by s. Then for
some 7, j, k, YV is assigned the same value as Y, and Y is assigned a
different value to Y(®¥). Thus Y is also assigned a different value to Y *), Then
X is assigned the same value as X®) and X() is assigned the same value
as X®_ By transitivity, X is assigned the same value as X, yielding a
contradiction.

The remaining cases are where all Y’s receive the same value. Then any pair
of X’s must receive different values. But taking any 3 X’s, this yields a con-
tradiction, since there are only two values, so some pair must receive the same
value.

The case when n = 4k+2, k > 1, is proved in the same fashion, interchanging
the parities. When n > 5 is odd, we start with a context containing one X, and
again proceed similarly.

The most familiar case, for n = 3, does not admit this argument, which relies
on having at least 4 Y’s in the initial configuration. However, for this case one
can easily adapt the well-known argument of Mermin using ‘instruction sets’ [23]
to prove strong contextuality. This uses a case analysis to show that there are
8 possible global sections satisfying the parity constraint on the 3 measurement
combinations with 2 Y’s and 1 X; and all of these violate the constraint for the
X X X measurement. (Il

6.2 The Kochen-Specker Theorem

Kochen-Specker-type theorems [I8] can be understood as generic strong contez-
tuality results. In database terms, they say that, if the database schema has a
certain combinatorial structure, then every instance satisfying some conditions
is strongly contextual. This can be interpreted in the quantum context in such
a way that the conditions will be satisfied by every quantum state, and hence
we obtain a state-independent form of strong contextuality result.

The condition which is typically imposed on the instances, assuming that
the possible data values for each attribute lie in {0, 1}, is that every tuple con-
tains exactly one 1. If we think in terms of satisfiability, this corresponds to a
‘POSITIVE ONE-IN-£-SAT’ condition.

To show that the Kochen-Specker result holds is exactly to show that there
is no satisfying assignment for the corresponding set of clauses.
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The simplest example of this situation is the ‘triangle’, i.e. the schema with

elements
{a,b},{b,c},{a,c}.

However, this example cannot be realized in quantum mechanics [3].

An example which can be realized in quantum mechanics, where A has 18
elements, and there are 9 sets in the database schema, each with four elements,
such that each element of A is in two of these, appears in the 18-vector proof of
the Kochen-Specker Theorem in [I0].

Uy Us Us Uy Us Ug Uz Us Uy
AAHHBTIPPQ

BEIKFEKOQRR
CFCGMNDTFM
DGJLNOJLO

Here the schema is X' = {Uy,...,Ug}.

We shall give a simple combinatorial condition on the schema X' which is
implied by the existence of a global section s satisfying the ‘POSITIVE ONE-
IN-£-SAT’ condition. Violation of this condition therefore suffices to prove that
no such global section exists.

For each a € A, we define

Y(a)={Ae X :ac A}

Proposition 8. If a global section satisfying the condition exists, then every
common diwvisor of {|X(a)| : a € A} must divide | X|.

Proof. Suppose there is a global section s : A — {0, 1} satisfying the condition.
Consider the set X C A of those a such that s(a) = 1. Exactly one element of
X must occur in every A € Y. Hence there is a partition of X into the subsets
XY(a) indexed by the elements of X. Thus

2= 2@

aceX

It follows that, if there is a common divisor of the numbers |X'(a)|, it must divide
| 2]. |

For example, if every a € A appears in an even number of elements of X/,
while Y has an odd number of elements, then there is no global section. This
corresponds to the ‘parity proofs’ which are often used in verifying Kochen-
Specker-type results [10J28]. For example, in the 18-attribute schema with 9
relations given above, each attribute appears in two relations in the schema;
hence the argument applies.

For further discussion of these ideas, including connections with graph theory,
see [3].
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7 Further Directions

We mention some further directions for developing the connections between
databases and the study of non-locality and contextuality in quantum mechanics.

— We may consider conditions on the database schema which guarantees that
global sections can be found. The important notion of acyclicity in database
theory [7] is relevant here. On the probabilistic side there is a result by
Vorob’ev [27] (motivated by game theory), which gives necessary and suffi-
cient combinatorial conditions on a schema for any assignment of probability
distributions on the tuples for each relation in the schema to have a global
section; that is, for a universal relation in the probabilistic sense to always
exist for any probabilistic instance of the database. Rui Soares Barbosa (per-
sonal communication) has shown that the Vorob’ev condition is equivalent
to acyclicity in the database sense. This provides another striking connec-
tion between database theory and the theory of quantum non-locality and
contextuality.

— A logical approach to Bell inequalities in terms of logical consistency condi-
tions is developed in [5]. It would be interesting to interpret and apply this
notion of Bell inequalities in the database context.

— The tools of sheaf cohomology are used to characterize the obstructions to
global sections in a large family of cases in [6]. In principle, these sophisti-
cated tools can be applied to databases. There may be interesting connec-
tions with acyclicity in the database sense.

We can summarise the connections which we have exposed between database
theory and quantum non-locality and contextually in the following table:

Relational databases measurement scenarios

attribute measurement

set of attributes defining a relation table compatible set of measurements
database schema measurement cover

tuple local section (joint outcome)
relation/set of tuples boolean distribution on joint outcomes
universal relation instance global section/hidden variable model
acyclicity Vorob’ev condition
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1 Introduction and Motivation

Data integration remains a perenially difficult task. The need to access, inte-
grate and make sense of large amounts of data has, in fact, accentuated in
recent years. There are now many publicly available sources of data that can
provide valuable information in various domains. Concrete examples of public
data sources include: bibliographic repositories (DBLP, Cora, Citeseer), online
movie databases (IMDB), knowledge bases (Wikipedia, DBpedia, Freebase), so-
cial media data (Facebook and Twitter, blogs). Additionally, a number of more
specialized public data repositories are starting to play an increasingly impor-
tant role. These repositories include, for example, the U.S. federal government
data, congress and census data, as well as financial reports archived by the U.S.
Securities and Exchange Commission (SEC).

However, in all of these cases, the data has become increasingly more hetero-
geneous and less structured. Even within one source (e.g., SEC or DBpedia),
bits and pieces of data about the same real-world entity (such as a person, a
company or a product) are often buried in text, html, XML, or other formats,
and spread over many documents. In order to make sense of all this data at the
aggregated level, it is necessary to build an entity or concept-centric view [10] of
the domain, where clean and rich entities, together with their relationships, are
aggregated from the myriad of unstructured or semi-structured pieces of data.
It is these entities and relationships that will provide the real value to a human
user or to the subsequent applications that need to consume information. In
fact, many companies (so called data aggregators) have started to emerge in this
space, aiming to create integrated value on top of the underlying raw data.

However, achieving the level of integration that is required in such practical
scenarios is a challenge. There are many types of techniques that need to be put
together in a complex data processing flow. These techniques include: informa-
tion extraction [11] (to produce structured records from text or semi-structured
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data), cleansing and normalization (to be able to even compare string values
of the same type, such as a dollar amount or a job title), entity resolution [13]
(to link records that correspond to the same real-world entity or that are re-
lated via some other type of semantic relationship), mapping [14] (to bring the
extracted and linked records to a uniform schematic representation), and data
fusion [6] (to merge all the related facts into one integrated, clean object). In
practice, these steps are often implemented in general purpose languages (e.g.,
Java, Perl), using ETL tools, or using general data manipulation languages (e.g.,
XSLT, Pig Latin). Often, the emphasis is on the low-level operations (sort, pipe,
duplicate elimination, join, string matching, etc.) without a high-level view of
the data integration steps. Most of the time, there is no explicit entity or object
view, but rather tuples, arrays, key/value pairs.

In this paper, we advocate the need for a high-level language or framework to
describe the main logical operations of data integration (e.g., entity extraction,
entity resolution, mapping, fusion) and analysis (e.g., aggregation, view creation,
temporal analysis). We emphasize the logical specification aspects rather than
the physical implementation. In addition to ease of specification or programma-
bility, such a framework would also enable better readability, better reuse and
better customization of data integration and analysis (to other domains, other
tasks, other views). The target users of such framework are developers that need
to perform complex, industrial-strength data integration tasks.

We will illustrate the paper with an end-to-end scenario of integration that
is focused on people and company entities. This scenario is drawn from our
own experience, as part of the Midas project [3[7] at IBM, with integrating
data from DBpedia and especially SEC, which we have used extensively as a
source for integration in the financial domain. Similar challenges or technologies
will apply to other scenarios of integration from public data sources. We will
focus our discussion on the high-level rules and declarations that are needed
to accomplish the various integration steps. For each of the important tasks,
the rules are shown in a candidate syntax that takes inspiration from existing
formalisms, languages and tools for information extraction, entity resolution and
schema mapping. However, rather than fixing on a concrete language, the goal is
to illustrate the features that need to be supported in such a language, as well as
the challenges. Coming up with an actual integrated language that combines all
these features together is a separate challenge in itself with many design choices.

This is mostly a vision paper, with the goal of raising the attention of inter-
ested researchers towards this area.

Note Some of the ideas and desiderata described in this article have sub-
sequently led to the development at IBM of a high-level integration language
called HIL [22] This language includes declarative constructs for entity reso-
lution and for mapping and fusion of data, and is now extensively used within
IBM for large-scale integration over structured and unstructured data (e.g., so-
cial media, news articles, financial disclosures, enterprise data, etc.). The exact

! Thus, from a timeline point of view, this book chapter describes work that precedes
the development of HIL.
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language design choices and primitives of HIL, as well as its compilation and
execution, are described in [22]. While HIL answers some of the research chal-
lenges outlined in this article, several important problems remain largely open,
such as the need for tools or systems to support large-scale data exploration or
to assist users with the actual development of a good set of data analysis rules.

1.1 Overview of the Paper

We start in Section [2] by describing some of the features of the data in DBpedia,
as well as the challenges involved in data exploration, which is a phase that
precedes the actual writing of the rules. We then illustrate some concrete rules
for extracting facts from DBpedia. Here, the output of an extraction rule has
a relatively simple structure (or schema), but the input is semi-structured and
largely heterogeneous. Extraction from completely unstructured data (i.e., text)
[11] is highly related in this context; however, in this paper, we focus our atten-
tion specifically on extraction from semi-structured data (e.g., RDF, or XML,
or JSON). We also note that extraction from text, technically, is of a different
nature and is discussed extensively elsewhere (e.g., [§]).

In addition to giving examples of extraction rules, we also include a discussion
of the need for automatic or semi-automatic extraction of structured records
that is based on data examples. Such technology, while non-trivial, would be
particularly useful when the developer is in the exploration phase and does not
know enough about the data and its peculiarities. Based on a few examples
that are representative of the type of entities that the developer is interested
to extract, the system must first be able to derive all the other entries that are
“similar” to the given examples. More challenging, the system should come up
with a set of extraction rules that would result in such entries. While existing
work on query discovery based on data instances [I8J27] or on schema mapping
design based on examples [II2I] may provide a starting point here, new types of
algorithms will have to be developed to account for highly heterogeneous data
with “less” schema (such as DBpedia).

The next integration component that we address is entity resolution, in Sec-
tion Bl Rather than looking at specific algorithms or implementations that match
records based on various similarity measures on their fields, we take a higher-
level approach where the goal is to provide the specification framework for entity
resolution. We advocate a framework that is based on logical constraints that
are similar, in spirit, to the dependencies used in data exchange [15]. However,
different from data exchange where the dependencies are source-to-target, our
entity resolution constraints are target-to-source: they define declaratively all the
desired properties of the target (i.e., of the links) in terms of the sources. Fur-
thermore, these constraints incorporate disjunction (of the alternative matching
rules that may apply), rely on user-defined functions for computing similarity
of values, and can include cardinality constraints (e.g., to express many-to-one
type of links). We include a discussion to illustrate the differences between this
framework and previous approaches such as the Dedupalog language [2].
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One of the main research problems that we outline, as part of declarative entity
resolution, is the compilation of the declarative constraints into an execution plan
that produces a good instantiation of the links. An important related question
is formulating the semantics of the declarative constraints, which then needs
to be implemented by the execution plan. Finally, a major challenge for entity
resolution, which goes beyond the design of the specification language, is the
development of methods and tools to help users interactively resolve the inherent
ambiguities in their specification. These tools can help users refine the declarative
constraints, based on the actual data sets that need to be linked, to ultimately
achieve a high quality specification for entity resolution.

We discuss mapping and transformation, as well as data fusion and aggre-
gation aspects in Section @l While there is work on schema mapping tools [14],
data exchange semantics [I5], and data fusion methods [6], our goal is to develop
an expressive scripting language that allows developers to combine non-trivial
mapping, fusion and aggregation tasks (e.g., that are often not possible within
a schema mapping tool paradigm) with the declarative entity resolution and ex-
traction operations discussed earlier. At the same time, we emphasize simplicity
and ease of programming as important requirements for the language design.

We discuss several other related papers and systems in Section[5and conclude
the paper in Section[fl where we reiterate the need for a single, unified framework
that incorporates all the aspects outlined in the previous sections.

2 Data Exploration and Extraction

The first step before the actual writing of extraction and integration rules is the
exploration phase, where a human user needs to understand what is in the source
data and what can be extracted. This step is usually expensive; any help that a
system or tool can provide in assisting the human user can be valuable. Even if
the user has an idea of what concepts need to be extracted, the form in which
these concepts manifest in the actual data source can vary significantly. Hence,
heterogeneity is a challenge.

We start with an example from DBpedia to illustrate the issues. We focus on
financial companies (e.g., Bank of America, Citigroup); the goal here will be to
extract structured records that are relevant for such financial companies and that
are deemed useful towards building the final integrated view. First, we assume
that the DBpedia data set is given as a set of JSON records, each corresponding
to one entity. A record has a subject field (which is also the identifier of that
entity), and then all the various properties recorded for that entity. This JSON
representation can be easily obtained from the RDF version of Dbpedia, which
records RDF triples of the form (subject, property, Value)g The conversion from
RDF to JSON is already a step towards a more unified view of the data, since it
yields full objects rather triples. However, the format of these objects is wildly
heterogeneous, even for the same “type” of entity, as we shall see shortly. A large

2 See the Ontology Infobox Properties data set at
http://wiki.dbpedia.org/Downloads.
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1
"assets™: “US$ 2.264 trillion", "areaServed": "Worldwide",
"foundation": “1904", "assets": "$ 1.119 trillion (2007)",
"homepage": [ "http://www.bankofamerica.com", "companyName": "Goldman_Sachs",
“http://www.bofa.com” ], "companySlogan": "Our clients\' interests always come first",
"industry": [ "Banking", “Financial services” ] "companyType": "Public_company",
"keyPeople": [ "foundation": "1869",
“Bryan Moynihan", "founder": ["Marcus_Goldman®, “Samuel Sachs™],
“(President and CEO)", "homepage": "http://www.gs.com/",
“Charles Holliday", "industry": "Finance_and_insurance",
“(Chairman)" "keyPeople": [
1 "Lloyd_Blankfein",
"location": [ (Chairman & CEO)”,
"Charlotte,_North_Carolina", "Gary_Cohn",
"United_States", “(President & COO)”,
"North_Carolina" “David Viniar*,
N “(Executive VP & CFO)”
"name": "Bank of America Corporation", 1,
"numEmployees": "288000", "location": [ "United_States", "New_York_City" ],
"slogan": "Bank of Opportunity", "marketCap": "$ 65.91 billion (2007)",
"subject": "Bank_of_America", "numEmployees": "30,522 (2007)",
"type": "Public_company", "products": [
"wikiPageUsesTemplate": "Template:infobox_company" "Financial_services",
}, "Investment_bank"

1
"revenue": "$ 87.968 billion (2007)",
"subject": "Goldman_Sachs",

"wikiPageUsesTemplate": "Template:infobox_company"

I3

Fig. 1. Sample DBpedia records

part of the subsequent processing will be devoted to extracting the relevant parts
of the objects of interest, bringing the extracted parts to a uniform format, and
then linking and integrating them with data from other sources (e.g., SEC).

Figure [l illustrates two sample input records, in JSON, corresponding to the
DBpedia entries for Bank of America and Goldman Sachs. Even though both of
these records represent entities of a similar type (i.e., financial institutions), there
is significant variation in the structure of the records (i.e., the attributes that are
present, their types), in the naming of the attributes, and in the values and for-
mat of the values that populate the attributes. For example, Goldman Sachs has
attributes such as “founder” and “marketCap”, while Bank of America does not
include these attributes. Goldman Sachs has a “companyName” attribute, while
the equivalent attribute for Bank of America is “name”. The “homepage” at-
tribute for Goldman Sachs is a single string, while the similar attribute for Bank
of America is an array of strings. Finally, the values themselves are not always
clean or cleanly organized. For example, Bank of America includes “Banking”
and “Financial services” under the “industry” attribute; the corresponding infor-
mation for Goldman Sachs is actually distributed over two attributes (“industry”
and “products”). Furthermore, the entries under the “keyPeople” attribute, in
both records, are a mixture of person names and positions (titles), without an
explicit tagging of the data.

After exploring several more representative DBPedia entries for financial com-
panies, the user may decide on a set of important concepts to be extracted from
this collection of heterogeneous records. Each concept is based on a subset of
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FinancialCompany =
for (r in DBpedia)
let industryTerms = extractIndustries (r industry),
compName = extractCompanyName (r)
where contains (compName, “Bank]|Insurance|Investment”) or
(some (i in industryTerms) satisfies
contains (i, “bank|banking|insurance|finance|financial))

return {company id: r subject,
name: compName,
foundation: r foundation,
industry: industryTerms,
revenue: cleanDollarAmount (r revenue)

}

Fig. 2. Extraction rule for financial companies

attributes and, hence, it is a piece of a schema. In our scenario, the user may be
interested in the following three concepts.

FinancialCompany (company id, name, foundation, industry, revenue, ...)
CompanyAddress (company id, streetl, street2, zipcode, city, state, country)
KeyPeople (person name, titles, company name, age, biography, ...)

Note that, in general, the schema for these concepts must be open (see the
above ... notation) to account for possibly other attributes of interest that may
be added later. The high-level integration language will have to be flexible and
account for such open schema by either not requiring the user to explicitly hav-
ing to define the schemas of the concepts, or by using advanced programming
language features such as record polymorphism to represent extensible record
types [24J25128)].

Finally, other concepts can be defined later from either the same source (DB-
Pedia) or from other sources (e.g., SEC, as we will see later). All of these ex-
tracted concepts will then be processed together, in the subsequent integration
flow, to generate clean target entities with richer structure.

We focus next on how to extract the data to populate such concepts from the
underlying collection of heterogeneous records.

2.1 Extraction Rules: Examples

FigureP gives a first example of a rule that extracts data for financial companies
from DBpedia. This rule populates into the FinancialCompany concept. There
may be other rules to further populate into this same concept (and possibly add
new attributes). Thus, the actual instance of a concept will be given by a union
of extraction rules.

The rule uses an XQuery-like syntax (although other types of syntax could
also be used) to express the search for DBPedia records that match the charac-
teristics of a financial company and also to express the extraction of the relevant
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attributes. Note the complex predicate that is used in the where clause to rec-
ognize a financial company. This predicate includes multiple string matching
conditions that are based on financial keywords. Note also the extensive pres-
ence of user-defined functions (UDFs) that are used for various purposes:

— to clean the data in the individual attributes. For example, cleanDollarAmount
is a function that transforms various heterogeneous string values that rep-
resent dollar amounts into a standardized form. Concretely, strings such as
“$ 87.968 billion (2007)” and “US$ 2.264 trillion” could be transformed into
“$87.96 billion” and “$2.26 trillion”, respectively.

— to extract certain expected strings from an input record or value (e.g., ex-
tractCompanyName from r and extractIndustries from r.industry).

— more generally, to account for the heterogeneity in the input data or struc-
ture. For example, extractIndustries must account for the fact that the input
r.industry could be a string such as “Finance and insurance” or an array such
as [“Banking”, “Financial services”]. The function must uniformly generate
an array of terms identifying the various relevant industries (i.e., [ “finance”,
“insurance”] from the first input and [“banking”, “financial services” | from
the second input).

As another example, extractCompanyName has to account for the fact that
the company name can appear under various attributes in the input record r
(e.g., sometime name, and sometime companyName). Furthermore, the value
itself must be normalized (e.g., “Goldman Sachs” must be transformed to
“Goldman Sachs”).

Note that the extracted and normalized industry terms and company
name are used both in the predicate in the where clause that identifies a
financial company and in the output of the rule.

In Figure[3] we show another example of an extraction rule from DBPedia, to
produce records for the key people that are associated with the financial compa-
nies. As before, the rule makes use of UDF's to restrict to financial companies. An
additional UDF extractNameTitles is used to convert an array of strings into a set
of structured records with explicit name and titles fields. For example, the array
of uninterpreted strings that is the value of the keyPeople field in the “Goldman
Sachs” record in Figure [Ilis converted into a set of three records:

{ name: “Lloyd Blankfein”, titles: [“Chairman”, "CEO"] }
{ name: “Gary Cohn", titles: [“President”, “CEQ"] }
{ name: “David Viniar", titles: ["“Executive VP", “CFO"] }

Note that the above UDF must employ a name recognizer as well as a title
recognizer. Also, it must take into account the sequence in which the names and
the titles appear in the input string. In particular, the function must detect that
the titles of a person follow the actual person name, and also it must be able to
handle the absence of title information (e.g., two consecutive names).
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KeyPeople =
for (r in Dbpedia)
let industryTerms = extractindustries (r.industry),
compName = extractCompanyName (r),
peopleTitles = extractNameTitles (r.keyPeople)
for (p in peopleTitles)
where contains (compName, “Bank|Insurance|Investment”) or
(some (i in industryTerms) satisfies
contains (i, “bank|banking|insurance|finance|financial”))
return {person_name: p.name,
titles: p.titles,
company_name: compName,
age: null,
biography: null
b

Fig. 3. Extraction rule for key people

2.2 Challenges in Data Extraction

In general, extraction rules can be fairly complex and the development time can
be extensive. On the one hand, they can be seen as a form of mapping rules that
require many UDFs. On the other hand, however, they differ from traditional
schema mappings in that the source schema, here, is very loose or non-existent.
This makes it harder to benefit from schema mapping tools [14], which assume
that the source schema and the target schema are both manageable and matched
within a user interface, which is then used to drive the generation of the mapping
rules. Generating a meaningful schema for DBpedia, even for a small portion of
it, would mean generating a large number of union or choice types to account for
the variation in the structure (even for the same type of entity). The ability to
load, use and manage such schema within a mapping tool is a research challenge
in itself.

A somewhat different research question is the following: Can we generate or
learn extraction rules directly from the data and/or from examples? The start-
ing points for such generation would be: the input source data (e.g., DBpedia),
an existing library of UDFs (for normalization, cleansing, etc.), and a set of
representative examples of the intended output data. Existing work on query
discovery based on data instances [I827] or on schema mapping design and re-
finement based on examples [121] may provide some foundations towards solving
this problem. However, most of the existing work on query or mapping discov-
ery has been restricted to the case of fixed, strictly relational, schemas; it is not
clear to what extent their methods or ideas generalize to a highly heterogeneous
environment.

The Lixto [20] system, aimed at extracting data from heterogeneous web doc-
uments, takes a different approach where a visual tool can be used to specify
the various patterns that navigate a tree-like structure and select the relevant
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subsets of nodes. Although it uses example documents as a starting point, this
framework is closer in spirit to the paradigm of visual query builders. One down-
side of Lixto is that, in a highly heterogeneous environment (like DBpedia), a
user may end up having to specify a large number of navigation and selection
patterns to account for all the variations in the structure (or instance values) of
the objects to be extracted. Being able to further automate the process and to
reduce the amount of user interaction is left as an open question.

Coming back to data examples, a related and possibly simpler research ques-
tion than that of generating the extraction rules is the following: Given the
input source data, and a set of representative examples of the output data, is
there a procedure that directly extracts all output records that are similar to the
given examples? In other words, instead of generating rules to extract data, one
could employ a procedure that performs the extraction starting from the given
examples. In more concrete terms, a developer manually extracts records for,
say, “Bank of America”, “Goldman Sachs”, “American Express” and “Visa”,
and then asks the procedure to extract all other “similar” such records from the
input. Of course, defining what similar means is one of the challenges here.

3 Entity Resolution

To illustrate the problem of entity resolution, assume now that another extrac-
tion process uses SEC (rather than DBpedia) as a data source and extracts facts
about key executives of public companies. The relation SecPerson, shown below,
associates with each person a set of employment records that span, possibly,
multiple companies over many years.

SecPerson (name, cik, employment: (company, position, date), ...)

Note that the relation is nested in that the employment attribute is itself a
relation (i.e., a set of records with attributes for company, position and date). In
general, the support for a nested data model is a pre-requisite for any system or
language that aims at integrating richly structured entities from heterogeneous
data sources.

Specific to SEC data, each person is associated with a unique key (cik) that
is globally identifies a person across multiple SEC filings. In contrast, such key
does not always exist for DBpedia. Hence, before we can merge the information
about people extracted from the two data sources (SEC and DBpedia), we need
to be able to link or relate corresponding records in the two data sources that
refer to the same person. This problem is widely known as entity resolution. Let
us assume that we add a record id field (rid) to each KeyPeople record. Then,
in an abstract sense, the problem of entity resolution becomes one of creating
links of the form (rid, cik). Note that we use cik on the right side, since we know
that cik is a key that identifies a person entity in SecPerson. However, on the left
side, we use the entire record id, since we do not have a key of a person there.
Essentially, we need to link multiple records, in general, in KeyPeople to exactly
one person entity in SecPerson, by exploiting information such as name and also
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Structured facts extracted from DBpedia

KeyPeople (
person_name

titles
company_name

N— Link
..... rld
i cik
SecPerson ( e
name Result of entity resolution
employment:
(company
position

date)

)

Structured facts extracted from SEC

Fig. 4. Entity resolution diagram

other contextual information such as employment. Figured depicts schematically
the concrete entity resolution scenario that we are considering.

3.1 Declarative Constraints for Entity Resolution

We now illustrate the logic that is needed to express the above entity resolution
problem. We advocate a declarative formalism where one specifies the properties
or constraints that the outcome of entity resolution (i.e., the link table) must
satisfy, without having to specify a concrete procedure or implementation for
computing this outcome. It will be the role of the underlying system to materi-
alize a good solution (i.e., a set of links) that satisfies the specified constraints
in the best possible way.

For our entity resolution example, we show in Figure Bl a set of declarative
constraints that can be used to specify the desired properties of the link table.
We believe that such constraints (and their extensions) should form the basic
ingredients of any language that attempts to specify entity resolution at a high-
level | We explain the constraints first and then discuss the issues involved in
building a language and system that implements such specification.

First, we have provenance or identification constraints that specify the at-
tributes or combinations of attributes that identify the source objects to be

3 However, the syntax of the actual language does not have to have follow the logical
notation we use here. Furthermore, some of these constraints may be implicit in the
semantics of the language.
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Link [rid] < KeyPeople [rid]
Link [cik] < SecPerson [cik]

Link : rid — cik

(m) every Link
satisfies
KeyPeople.person_name = SecPerson.name
or
(KeyPeople. person_name ~,,... SecPerson.name
and
KeyPeople.company_name in SecPerson.employment [company]

)

Fig. 5. Declarative constraints for entity resolution

linked. In this example, the two inclusion dependencies from Link to the sources
specify that the projection of Link on rid must be a subset of the projection of
KeyPeople on rid and, similarly, the projection of Link on cik must be a subset
of the projection of SecPerson on cik. Thus, the intention behind Link is to be
a subset of all the pairs of rid and cik values that appear in the two sources. In
general, it is up to the user to define what constitutes the identifier of an object
of interest for entity resolution. The framework we suggest is independent of
what makes the identifier of an object. As a result, we can naturally capture
most types of entity resolution described in the literature, from record linkage
and deduplication [I7I23] to reference reconciliation [I2] and to more general,
semantic type of linkage among entities (e.g., the relationship between compa-
nies and subsidiaries). To follow some of the terminology in the literature, in our
example, the first type of object that participates in Link can be viewed as an
entity reference (since it refers indirectly to an actual person, via person name
and other non-identifying attributes), while the second type of object can be
viewed as an entity (since it identifies a person in SEC).

The next constraint in the specification is a functional dependency (on the
Link table) to specify that an rid from the first source must be linked to a unique
cik in the second source. Note that, in this example, it is is ok to have multiple
rid’s linked to the same person cik. Thus, by using a functional dependency, we
encode an N:1 type of entity resolution (where multiple objects of interest in
one source must be linked to a single object in another source). For 1:1 type of
entity resolution, we would write a functional dependency in the other direction
as well. For an N:M type of entity resolution, we do not need to specify any
functional dependencies.

The final constraint in this example, probably the most important, is used
to declare a disjunction of all the valid reasons for why two objects can match.
Essentially this constraint specifies that a link can exist only if at least one of
several matching conditions holds. The matching conditions are formulated with
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respect to the source tuples that are related via the link. In the example, we can
have a match because of exact equality of person names, or because of similarity
of person names (via a user-defined similarity predicate) and, moreover, because
the company name in the KeyPeople record appears in the employer set in the
SecPerson record. Note that the second matching condition relaxes the equality
on person names, when compared to the first matching rule, but at the same adds
a strenghtening condition that is based on employment information. Note that
the employment-based condition, although a strengthening, may apply to less
tuples (those that have a non-empty employment set in SecPerson). In practice,
one will have to formulate multiple matching conditions, in order to improve
the recall of entity resolution. Furthermore, each matching condition has to be
strong enough to prevent the generation of accidental links.

Other types of constraints that appear in practice are structural type of con-
straints requiring properties such as transitivity of matching or variations of it.
Such constraints are needed to specify clustering behavior or to specify the link-
ing of two objects in two sources due to another object in a third source that
links to them.

A slight extension to this basic framework of constraints allows us to express
collective entity resolution [5], where the task is to create multiple, inter-related
types of links (rather than to create a single type of link). For example, assume
that we have the following two source relations:

Paper (pid, title, venue, year, ...)
Venue (venue, conferenceOrJournal, sponsor, ...)

In this context, we may want to specify links between papers and links between
venues. Assume that the first type of link is represented as a binary relation
PaperLink(pidl, pid2), while the second type of link is represented as a binary
relation VenueLink(venuel, venue2). Then, the matching rules for one type of link
may depend on the other type of link. For example, we can declare the matching
conditions for Venuelink as follows:

every Venuelink satisfies
.. (some similarity condition on venue names) ...
or
.. (other condition) ...
or
exists (pl in Paper, p2 in Paper)
pl.venue = Venuelink.venuel and p2.venue = Venuelink.venue2 and
PaperLink (pl.pid, p2.pid)

In particular, the last condition says that a possible reason for a venue link is
that there exist two papers that are linked via PaperLink and whose venues are
the two venues related by the link.

Note that in the framework we suggest, we do not force the generation of
links, but rather define them implicitly through a declaration of the possible
matching rules. For example, satisfying the last matching condition in the above



48 B. Alexe et al.

constraint does not mean that a VenuelLink tuple will necessarily be created,
since the existence of such tuple may be prevented due to other constraints. In
fact, creating such link may be the wrong choice sometimes (e.g., a conference
version and a journal version of a paper may be linked via PaperLink, but that
does not mean that the conference and the journal represent the same venue).
The disjunction allows us to enumerate, declaratively, all the possible reasons
for why a link may exist without forcing the link generation. It is then the job
of the underlying system to take into account all the constraints to reach a good
set of links, as we discuss in the next section.

Other frameworks aimed at declarative entity resolution exist. Perhaps, the
most comprehensive one is the Dedupalog [2] language which allows the use of
constraints, expressed in a Datalog style of syntax, to drive the identification of
duplicate entities. Several remarks are in order here. First, Dedupalog limits itself
to links that are equivalence relations, thus focusing strictly on deduplication.
In contrast, we require a more flexible framework for links that represent more
general semantic relationships, going beyond the “same-as” type of relationship.
Furthermore, Dedupalog rules are not entirely declarative. Generally speaking,
rules in Dedupalog are a guideline for the implementation, and the intention of a
rule is to populate links based on conditions on the sources or other links. Since
forcing links may create inconsistencies in the result, Dedupalog compensates
by allowing some rules to be soft: for such rules, links are “likely” to be gen-
erated. The system then figures out to what extent to satisfy these rules (e.g.,
by attempting to minimize the overall number of constraint violations). As a
consequence, an important downside is that the result of Dedupalog evaluation
does not satisfy, in a precise first-order logic sense, the Dedupalog rules that
were given as a specification. Furthermore, it may not be easy for a user of the
system to understand the properties of the final result.

In contrast, the matching constraints that we envision have a purely declar-
ative flavor, where we specify all the desired properties on the target links,
without worrying about how to actually generate the links. This achieves a bet-
ter separation between specification and execution. Furthermore, we require all
the declarative constraints to be satisfied, in a precise first-order logic sense, by
any solution that implements the specification. Ultimately, we believe that such
framework forms a better foundation for entity resolution that is transparent
and high-quality while at the same time high-level.

3.2 From Declarative Constraints to Execution: Challenges

There are many foundational and architectural challenges that need to be solved,
in order to achieve a functional framework for declarative entity resolution. The
main research questions here will be to define precisely the language that cap-
tures all of the above types of constraints, to formulate its semantics, and to
investigate the expressive power and computational aspects of the language. We
outline some of the issues here, and leave further details, solutions or algorithms
for future work.
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One of the main problems for declarative entity resolution is the ability to ex-
ecute or compile the declarative constraints that specify the desired properties of
entity resolution into a more procedural plan that implements the specification.
But what do we want this implementation to actually compute? Ultimately, we
need one instance for Link that is a good solution, satisfying all the constraints.
But there may be many such good solutions. This is similar, in some aspects,
to data exchange semantics [I5], where we can also have multiple solutions. For
our example in Figure B we could have an instance (Solution 1) with one link
satisfying the first disjunct in constraint (m), and another instance (Solution 2)
that is exactly identical but replaces that one link with a new link satisfying both
disjuncts in constraint (m). Intuitively, Solution 2 is a better solution, since it
contains a stronger link (a link for which there is a stronger matching evidence).

While in the previous example, Solution 1 is dominated by Solution 2 and
could be replaced by it, it is easy to come up with “good” instances for Link
that are incomparable. For example, there could be multiple candidate links,
satisfying the same disjuncts of constraint (m), each linking a KeyPeople record
to a different cik. Since all of these links cannot co-exist together due to the
functional dependency rid — cik, each of these links will be in a different good
solution. The presence of incomparable “good” solutions is a more challenging
situation than in data exchange, where universal solutions (i.e., the “good” so-
lutions in data exchange) are all equivalent, and furthermore there is always a
unique core universal solution. Thus, the entity resolution problem is inherently
more ambiguous than the data exchange problem.

One of the more challenging aspects is therefore to design an interactive sytem
for entity resolution that brings the human user in the loop in order to resolve
ambiguity. Conceptually, the interactive system must take the initial specifica-
tion (i.e., the constraints) and then enumerate through multiple good solutions
for Link. In particular, the differences between these solutions must be pinpointed
to the user, which can then decide how to further resolve these differences (for
example, by adding stronger matching clauses to (m)). An essential part of the
problem is being able to compactly represent and efficiently navigate through
the space of all different solutions. This problem of efficient, interactive enumer-
ation of a space of solutions, is similar in spirit to the problem addressed in [9]
in the context of schema integration. There, multiple solutions for the schema
integration problem are defined implicitly via a set of constraints (of a simpler
nature than here), and the question is how to interactively explore and refine the
space of solutions, in order to reach one final integrated schema. While similar in
spirit, the problem of navigating through solutions for entity resolution is likely
more challenging, especially due to the fact that the size of the data, in general,
is much larger than the size of schemas.

4 Mapping and Fusion

We illustrate next how mapping and fusion operations can be used to put all
the extracted facts together into rich entities, by also making use of the result of
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Fig. 6. From extracted facts and links to integrated entities

entity resolution. While there is extensive work on schema mapping tools [14],
data exchange semantics [I5], and data fusion methods [6], there is not much
work towards developing an actual scripting language that allows developers
to combine all the necessary ingredients (mapping, fusion, aggregation, entity
resolution, schema definition), while still maintaining simplicity and ease of use.
An important aspect behind such desired language is the ability to express non-
trivial ways of fusion and aggregation of data that are often not possible in a
typical schema mapping tool, but are essential for developing industrial-strength
data integration flows.

4.1 An Example of Transformation

To illustrate the issues, consider the (simplified) scenario shown in Figure
where the goal is to take the extracted facts (i.e., KeyPeople and SecPerson) as
well as all the links generated so far, and create unified entities that conform
to a target Person type or schema. The desired target entity type contains,
in general, a union of many of the attributes from the sources. However, the
structure is generally richer than in the sources, with various nesting levels to
better aggregate and organize information. Furthermore, it is often the case
that a target attribute represents a non-trivial aggregation over a set of source
values. In this example, the employment history of Person has a two-level nesting
where, for each company, we want a listing of all known positions with the given
company, together with the start/end dates (as best as they can be inferred from
the sources.) Part of the task here is to construct the nested structure, where
we list the unique companies for which a person works, the unique positions the
person held, and also to compute the start/end dates from the input facts.
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Person =
for (s in SecPerson)
return {name: s.name,
cik: s.cik,
employment::for (e in s.employment)
group by comp = normalizeCompanyName (e.company)
return { company: comp,
positions: for (g in Group) // Group is the group of all (company, position, date)
// records having the same normalized company value
group by pos = normalizeTitle (g.position)
return { title : pos,
start_date: minDate (Group),
/I Group is now the group of all (company, position, date)
// records having the same normalized company and position
end_date: maxDate (Group)

1

Fig. 7. Transformation from SecPerson to Person

Computing the start/end date for a position is an example of temporal ag-
gregation. These values that must be aggregated from all the input evidence
(i.e., input dates) for a person working for a given company in a given position.
Concretely, the fact that person X worked for a company C in some position P
may be appear in multiple extracted records (possibly from many documents,
each with a different date). This is especially true for SEC, which is a temporal
archive that keeps track of past history, and where information must be peri-
odically filed by the companies and their executives (even if nothing changed).
Thus, in order to infer the start date for position P, we must look globally across
all the sources and all the extracted records that mention person X as working
for company C in position P and return the earliest known date.

Figure[@shows an example of transformation that achieves the intended result
for Person when considering the SecPerson in isolation (thus, ignoring KeyPeo-
ple and Link). The transformation is written in an pseudo-query language that
abstracts features from query languages such as XQuery and Jaql [4]. The trans-
formation consists of multiple levels of for statements that construct the structure
of the target. To start with, the top-level part populates the name and the cik
fields in Person. The rest of the transformation then makes essential use of the
group by operation to put the target data into the desired form and also to per-
form aggregation. First, the employment records under SecPerson are grouped by
the company name. Notably, the company name must be normalized to account
for name variations for the same company. As a result of normalization and
grouping, we obtain a set of unique company entries, each with an associated
group containing all the records that share the same normalized company name.
The group itself can then be further accessed by using the reserved word Group.
A second level of grouping, this time by normalized position, produces the list-
ing of unique positions. Finally, start date can now be computed by taking the
minDate function over the current group of records. A symmetric computation
takes place for maxDate.
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4.2 Mapping and Fusion: Making It Easier

Even though it achieves the intended result, given SecPerson alone, the transfor-
mation in Figure [Tis neither declarative nor easy to write. The programmer has
to be quite familiar with the semantics of group by and has to understand the
implicit collections over which aggregation needs to be performed. Furthermore,
things become a lot more complex when additional data (e.g., KeyPeople from
DBpedia, or other extracted records from other types of filings in SEC) need also
to be fused into the Person entity. In such case, the above transformation has to
be either rewritten to account for the new sources (and links), or its result must
be integrated with the result of similar transformations from the other sources.
However, the integration itself is low-level and complex, since the target com-
ponents in Person, at various levels in the hierarchy, must be merged with the
new data, and the values for start/end dates must be re-aggregated to account
for the new data.

So, how do we make all this easier? The solution that has been tried in the past
is to use graphical schema mapping tools [I4] to help generate or re-generate the
transformations. However, the process becomes clumsy when the transformations
are complex and require a lot of aggregation and, ultimately, customization that
is beyond the realm of the tool. Hence, we still need a language-level solution, but
one that is more declarative and easier to use than writing raw transformations
such as the one above.

The alternative that we are investigating is a rule language that allows for
decorrelation of complex transformations via a mechanism that is similar to
Skolem functions. As an example, the earlier transformation in Figure [7 can be
rewritten as a simple rule where the value of employment is given by an explicit
function call Employment(s.cik) that replaces the entire query block in the box.
In other words, we would write:

Person = for (s in SecPerson)
return {
name: s.name,
cik: s.cik,
employment: Employment (s.cik)

}

Of course, explicit rules have to be written to define the value of the Employment
function. The advantage is that the rule to populate the top-level part of Person
does not need to know about how Employment is defined. The actual definition
of Employment as a function parameterized by cik is delegated to separate rules
that use possibly different data sources and that could rely themselves on other
similar Skolem functions. Hence, we achieve a separation of concerns that can
make the entire specification process more scalable and easier to evolve.
Another advantage of the decorrelation approach is that the Skolem functions
themselves become first-class objects in the language, and can be used to express
important parts of the integration logic that otherwise would be implicit. For
example, the aggregation start date: minDate(Group) can be rewritten as:
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start date: minDate ( EmploymentProvenance (cik, comp, pos) )

where EmploymentProvenance is now an explicit function that associates a triplet
(cik, company, position) to the set of all source records that mention the fact
that the person given by cik worked for company in the given position. As before,
separate rules have to be written out to explicitly define EmploymentProvenance.
But, again, the rule to aggregate and compute start date need not know about
how the provenance function is defined. Hence, we achieve the same separation
of concerns.

Fleshing out the concrete details for this language, such as the type system,
the allowed constructs, the efficient support for the functions that decorrelate the
rules, as well as the integration with declarative entity resolution and extraction
operations, falls outside the scope of this paper. Here, we outlined the issues
as well as some of the motivation for why there is, still, a need for a good
programmable language to address mapping and fusion in the context of the
larger data integration.

5 Further Related Work

We have already discussed some of the relevant and recent work in the areas of
entity resolution, schema mapping, data exchange and data fusion. We mention
now a few other related research papers and systems. Ajax [19] is an early data
cleaning framework. However, it was focused on matching and clustering and
less on mapping and fusion. In particular, Ajax had no high-level constructs to
support complex fusion and temporal aggregation, and had no notion of logical
entities. On the other end of the spectrum, iFuice [26] combines mapping with
fusion of data. However, iFuice includes no entity resolution (it assumes instead
that the links are given), and fusion is focused narrowly on individual atomic
attributes rather than applying on richer entity types.

More recently, the work on the interaction between matching dependencies
and data repairs [I6] combines record matching and data repairing for better data
quality. As part of the high-level specification, matching dependencies (MDs)
are used to identify or equate components of tuples in different data sets, while
conditional functional dependencies (CFDs) are used to specify certain equalities
of values within a given relation. In order to achieve a clean data set, cleaning
rules implement the collection of MDs and CFDs by following certain pre-defined
strategies (e.g., by using master data) to actually force the correction of the data.
However, like in Dedupalog, matching dependencies only look at equivalence
(same-as) type of linkage. Moreover, the notion of an entity (or entity link) is only
implicit with matching dependencies. Furthermore, there is no notion of mapping
or transformation from one entity type to another. In contrast, we are interested
in a framework where entities have rich types and their properties (including the
links) are first-class citizens. Additionally, we emphasize the programmability
and customization aspect behind the cleansing, merging, transformation and
aggregation of complex entities from the input data and the links.
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6 Concluding Remarks

In summary, we outlined a vision of a high-level framework that covers multiple
important steps in data integration. We exemplified rules and UDF's for extrac-
tion from semi-structured, heterogeneous data, which is complementary to text
extraction. We outlined the need for and the challenges involved in learning or
generating the extraction rules from examples. We illustrated the use of con-
straints as a foundation for declarative entity resolution, and outlined the chal-
lenges involved in defining the semantics and the compilation methodology for
the declarative constraints. We further illustrated the types of rules for mapping
and fusion that are needed to generate clean, unified entities.

It is important to emphasize that it is the combination of all these ingredi-
ents together (extraction, entity resolution, mapping, fusion) that gives enough
expressive power to tackle complex, end-to-end data integration tasks. It is of-
ten the case that different types of rules must be interleaved together as part
of the integration flow. Therefore, all the outlined components must be, ideally,
part of a single framework that can be easily used by domain experts to specify
and deploy sophisticated data integration flows for various scenarios. A further
important factor that permeates all aspects of such framework is the need for
tools that will assist users in various phases such as the data exploration or the
development and refinement of the actual rules for entity resolution, for fusion,
or for further analysis of the data.
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Abstract. One of the fundamental tasks in information integration is to specify
the relationships, called schema mappings, between database schemas. Schema
mappings specify how data structured under a source schema is to be transformed
into data structured under a target schema. The design of schema mappings is
usually a non-trivial and time-intensive process and the task of designing schema
mappings is exacerbated by the fact that schemas that occur in real life tend to be
large and heterogeneous. Traditional approaches for designing schema mappings
are either manual or performed through a user interface from which a schema
mapping is interpreted from correspondences between attributes of the source
and target schemas. These correspondences are either specified by the user or
automatically derived by applying schema matching on the two schemas.

In this paper, we examine an alternative approach that allows a user to follow
the “divide-design-merge” paradigm for specifying a schema mapping. The user
can choose to independently design schema mappings for smaller portions of the
source and target schema. Afterwards, the user can interact with the system to
refine and further design schema mappings through the use of data examples.
Finally, in the merge phase, a global schema mapping is generated through the
correlation of the individual schema mappings.

Keywords: Schema mappings, data examples, merge.

1 Introduction

The need to combine information that resides in heterogeneous, and typically inde-
pendently created data sources often arises in enterprises. In today’s information age,
where vast amounts of (un)structured data is available on the Web, and where many
data sources collected or curated by different organizations are made publicly available
(e.g., [20, 134]), the demand for technology that can effectively combine disparate data
sources goes well beyond enterprises. The process of combining different data sources
into one is called information integration, which is a broad term that encompasses data
integration and data exchange. The goal of data integration is to create a single vir-
tual view of the underlying data sources and provide seamless and transparent access to
these data sources through the virtual view. On the other hand, the goal of data exchange
is to create a materialized view of the underlying data sources.

Systems such as Multibase [32] and EXPRESS [31] have pioneered the study of data
integration and data exchange respectively and considerable research effort has been
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Fig. 1. Screenshot of a mapping design tool (from [12])

put into addressing information integration challenges since Multibase and EXPRESS.
In practice, information integration is still a difficult and time-consuming process that
incurs high costs in terms of money and human effort and recent reports provide strong
evidence of this. For example, [[12] stated that information integration is frequently
“the biggest and most expensive challenge that information-technology shops face” and
“information integration is thought to consume about 40% of their budget”.

Even though data integration and data exchange differ in their goals, they share a
common abstraction, called schema mappings, which describe the relationship between
database schemas. In research prototypes such as Clio [[16] and HePToX [[15], the term
schema mappings is used to refer to the high-level declarative specfication that spec-
ifies the semantics of translating data from the source schema to the target schema.
However, commercial data transformation systems such as Altova Mapforce [25], Sty-
lus Studio [33] and Microsoft BizTalk Mapper [[13] often refer to schema mappings or
data mappings as the executable script (e.g., XQuery or SQL) that can be used to trans-
late data from the source schema to the target schema. Regardless of terminology, most
of these tools work in two steps. First, a visual interface is used to solicit all known
attribute correspondences between elements of the two schemas from the user. Such
correspondences are usually depicted as arrows between the attributes of the source and
target schemas. For illustration, Figure [l presents a screenshot of a mapping design tool
with a number of correspondences between attributes of a source schema on the left and
a target schema on the right. Once the correspondences are established, systems such as
Altova MapForce, Stylus Studio, and Microsoft Biztalk Mapper, interpret them directly
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into an executable script (e.g., XQuery or SQL query), which can be executed on an
instance of the source schema to obtain an instance of the target schema. Other systems
such as Clio or HePToX, interpret the correpondences into an internal representation
(which we refer to as schema mappings in this article), and this representation can be
compiled over different runtimes. Often, the user will need to refine the schema map-
ping (whether as an internal representation or an executable script) that is derived from
such tools in order to achieve the desired transformation semantics.

The previously outlined two-step schema mapping design framework is illustrated in
Figure 2l While this framework provides a method for end users to visually specify a
schema mapping, it lacks support for reusability and for modularity in design; A schema
mapping between two schemas must always be designed all-at-once. In particular, this
methodology does not allow the design of a schema mapping to be divided up and
designed modularly in different steps with intermediate schemas. Furthermore, the user
must be familiar with the language of schema mappings in order to refine them. For the
rest of this article, we will describe a new framework for designing schema mappings
that will overcome some of the limitations of existing schema mapping design tools.
Details of this framework can be found in the dissertation of Bogdan Alexe [8].

2 Our Divide-Design-Merge Framework

Our framework for designing schema mappings between two schemas follows three
main steps: Divide, Design, and Merge, as outlined in Figure Bl This new framework
overcomes some of the aforementioned limitations of the existing mapping design
paradigm.

Since smaller mappings tend to be easier to create and understand, our framework
allows a schema mapping between large source and target schemas to be divided up
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and designed through independent components. Furthermore, the design of each such
schema mapping can be broken up into multiple smaller intermediate steps which in-
volve intermediate schemas. Each of the schema mappings can either be designed with
existing approaches (i.e., via attribute correspondences) or via our new approach (i.e.,
Eirene component system) that requires the user to specify data examples, which are
pairs of source instance and expected target instance. After this, various components
of a schema mapping can be refined through our Muse component system. Finally,
in the merge phase, a global schema mapping is generated through the correlation of
the individual mapping components (i.e., MapMerge component system). In this new
framework, schema mappings that have been previously designed for some of the com-
ponents can be saved, reused, and customized further at a later time.

We note that in the divide phase, the process of dividing or breaking up schema
mappings into smaller “chunks” that are more amenable to design and understanding
is entirely driven by the user. It will be interesting work to further design a component
that will suggest strategies for such divisions.

2.1 An Example

As mentioned before, the user may choose to divide the design task into smaller com-
ponents that can be designed independently. For instance, in Figure 4l the design of a
schema mapping from schema S; to schema S, can be divided into a sequence of steps,
involving the intermediate schemas S, and S3. Existing schema mapping design tools
would only allow designing a monolithic end-to-end schema mapping from S; to Sy.
In our framework, the user can design smaller mappings independently and merge them
together at the end. For instance, the user can start by designing the mapping, denoted
by t1, from Group in S; to Dept in So, then the mapping ¢ relating a join of Works and
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Fig. 4. Designing a schema mapping from the first schema S, to the last schema Sy

Group to Emp and Dept, and so on. For this toy example, it is conceivable that the user
would successfully design a mapping directly from S; to S4 (or even S; to So) with rel-
atively little effort. However, in real-life scenarios, it is typically difficult to understand
the entire schemas and to grasp the complexities of the desired global transformation
all at once.

Eirene. The design of each component mapping can be driven by data examples. A data
example is a pair of input and output instances. Intuitively, a data example specifies the
expected output for a given input and represents a partial specification of the desired
semantics. This is beneficial, since users may be familiar with their data and the use of
data examples is akin to specifying test cases during program debugging to ensure that
programs behave as intended.

The Eirene component of our system is a schema mapping design component that
takes as input a set of data examples provided by the user. In turn, Eirene outputs a
schema mapping that “fits” the set of data examples, if such schema mapping exists.
Referring back to Figure[d] the design of 5 can be achieved through Eirene by providing
a data example that reflects the transformation semantics that the user expects from the
mapping. In this case, the source instance of the data example may consist of a Group
tuple and a Works tuple that agree on their gno attributes, while the target instance may
consist of an Emp tuple and a Dept tuple that have the same did value. Furthermore, the
tuples may be specified in such a way that the gname and dname values are the same
across the Group and Dept tuple. In addition, the ename and addr of the Works tuple
are identical, respectively, to the ename and addr of the Emp tuple in the target. This
reflects that the desired transformation semantics is to migrate gname, ename, addr
to the corresponding “locations” in the target. For this data example, the system will
determine that a fitting schema mapping exists, and it will generate such mapping that
will produce the desired target instance on the corresponding source instance of each
data example.

Eirene can also be used to refine a schema mapping that already exists. To do this,
Eirene will first generate a set of canonical data examples for the existing mapping.
The user can then “tweak” the canonical data examples, and Eirene will generate a new
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mapping that fits, if possible. Alternatively, a schema mapping can also be designed
using the traditional methodology via attribute correspondences, imported from pre-
vious design work, and augmented with new attribute correspondences and additional
customizations.

Muse. The Muse component of our system assists the user with refining the existing
schema mappings. The focus of Muse is to use data examples to help the user refine
two important mapping features: grouping semantics and disambiguation. The basic
idea behind Muse is to present the user with different data examples, where each data
example represents a specific (grouping/disambiguation) semantics of the underlying
specification. The choices made by the user will allow the Muse system to automatically
refine the underlying specification.

Referring to Figure d again, Muse can assist the user with specifying how the nested
Staff set of tuples should be grouped under the CompSci root of schema S,4. The se-
mantics of grouping Staff is determined by its set identifier, which consists of a Skolem
function parameterized by some of the attributes in schemas S and S3. By presenting
differentiating examples that can be used to distinguish among alternative grouping se-
mantics, Muse helps the user determine which attributes should be used to parameterize
the nested set identifier of Staff.

In addition, Muse can also help the user understand the right interpretation of a vi-
sual specification. This part of Muse works with traditional schema mapping design
systems, where the user specifies a set of attribute correspondences between a source
and a target schema. (A visual specification consists of the source and target schema,
and the attribute correspondences.) A visual specification is ambiguous if more than
one schema mapping can be interpreted from the visual speciﬁcatiorﬂ. In case a visual
specification is ambiguous, our Muse system will detect the ambiguity and present the
user with a carefully constructed “data example” that essentially represents the transfor-
mation semantics of all alternative schema mappings. The target instance of the “data
example” contains choices of data values on certain attributes of tuples. Each selection
of a value from a choice by the user will prune away some schema mappings among
the set of all possible schema mappings that can be interpreted from the visual speci-
fication. At the end, when all choices have been made, only one schema mapping will
remain.

MapMerge. When all component schema mappings are designed, the MapMerge
schema mapping operator [6] can be invoked to automatically generate a meaningful
overall mapping between each pair of source and target schemas. MapMerge takes as
input a set of schema mappings between the same source and target schema, and it re-
turns a schema mapping that correlates the specifications given by the individual map-
ping components. As we shall show, this orchestration phase is necessary since simply
considering the union of input mappings is inadequate in general; in the context of data
exchange, simply taking the union of input schema mappings may result in the loss

"' In systems such as Clio, a default schema mapping is generated when a visual specification
is ambiguous. The user can choose among alternative mappings by manually inspecting the
alternatives and picking one of the alternatives.
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of certain data associations and also lead to a more “redundant” target instance. These
deficiencies can be easily avoided if the relationships across input mappings are care-
fully considered in the context of source and target schemas. A schema mapping that
results from a MapMerge of input mappings is experimentally shown to overcome these
deficiencies when compared with a simple union of the input mappings [|6].

Finally, the end-to-end mapping for flows of mappings, such as from the first schema
S to the last schema S, in FigureMlcan be obtained using a new algorithm that combines
MapMerge with mapping composition [18] to correlate flows of schema mappings.

3 Background and Related Work

We define the basic concepts and terminology that will be used, as well as discuss prior
approaches to schema mapping design.

Schemas and Instances. A relational schema R is a finite sequence (P, . .., Py) of re-
lation symbols, each of a fixed arity. An instance K over R is a sequence (P[X, ..., PK),
where each PZ-K is a relation of the same arity as P;. We shall often write P; to denote
both the relation symbol and the relation P that interprets it. Here, we assume that all
values occurring in relations belong to some fixed infinite set dom of values. A fact (or
tuple) of an instance K over a schema R is an expression P (a1, ..., a,,) such that P
is a relation symbol of R and (ay, . . ., a,,) € PX. We denote by adom(K) the active
domain of an instance K, that is to say, the set of all values from dom occurring in facts
of K. A relational schema can be associated with a set of key/foreign key constraints.

Referring back to Figure M schema S; consists of two relation symbols Group and
Works. The key/foreign key constraint associated with S, denoted in the figure via the
dashed line, requires that in each instance of S1, for each Works tuple, there must exist
a unique Group tuple such that they agree on the value of the gno attribute. An example
of a possible valid instance of S; is shown below, where John works in group number
123 and the name of group 123 is CS.

{Group(123, CS), Works(John, NY, Web, 123)}

In Muse and MapMerge, we use an extension of the relational model that allows
for the representation of nested data: the nested relational (NR) model [[19, [28]. The
NR model generalizes the relational model where tuples and relations are modeled as
records and respectively, sets of records. In the NR model however, an element, such
as a set of records, may be nested inside another element, such as a record, to form
hierarchies. In the following we will use the terms record and tuple, as well as set and
relation, interchangeably. To simplify our discussions, we assume that XML schemas
are modeled using a single schema root of record type whose elements are all of set
type. We also assume strict alternation of set and record types. As an example, con-
sider schema S, in Figure[dl This is a nested schema, where each root CompSci record
contains nested Staff and Projects sets.

In a nested relational schema, nested sets have associated identifiers called SetIDs,
also referred to as grouping functions. They are Skolem functions. In an instance of a
nested relational schema, the parameters of each Skolem function serving as a grouping
function are instantiated with actual data values, hence providing unique set identifiers
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for each nested set in the instance. By convention, we use SK/V to denote the SetID
name of a nested set N in a schema. For example, the SetID name of the nested set
Projects in the schema S, mentioned above is SKProjects (or SKProjs, or simply SK
when there is no ambiguity). We sometimes refer to a nested set [V simply as SKN. We
assume that every nested set in a schema has a different SetID name.

Schema Mappings. A schema mapping or mapping is a triple (S, T, X') where S is a
source schema, T is a target schema that is disjoint from S, and X is a set of constraints.
The largest class of constraints we consider is a subset of second-order tuple generating
dependencies (SO tgds) [18]. One way to express this type of constraints is through the
following logical formalism expressed in a query-like notation:

forx in S satisfying By(x) exists y in T where By(y) and C(x, y)

Here, the symbol S represents a vector of relation symbols (possibly repeated), while
x represents the tuple variables that are bound, correspondingly, to these relations. A
similar notation applies to the exists clause for the vector T of target relation symbols
and y of tuple variables that are bound to these relations. The conditions B;(x) and
Bs(y) are conjunctions of equalities over the source and, respectively, target variables.
Note that these conditions may equate variables with constants, allowing the definition
of user-defined filters. The condition C'(x,y) is a conjunction of equalities that equate
target expressions (e.g., y.A) with either source expressions (e.g., z.B) or Skolem terms
of the form Flxy,...,x;], where F is a function symbol and 1, ..., z; are source
variables or other Skolem terms. Skolem terms are used to relate target expressions
across different SO tgds.

Both Muse and MapMerge components of our system use the language of schema
mappings specified by SO tgds over nested relational source and target schemas, while
the Eirene component focuses on SO tgds without Skolem terms over relational source
and target schemas. A constraint of this type may also be called, simply, a tuple-
generating dependency or tgd [17]. In some situations we will refer to a tgd by the
equivalent term GLAV (Global-Local-As-View) constraint. GLAV constraints have been
extensively studied in the context of data exchange and data integration [21), 22]. In
cases where S and T refer to source and, respectively, target relation symbols, then the
tgd is referred to as source-to-target tgds or s-t tgds in short. They are also used in such
systems as Clio [16] and HePToX [15].

Two examples of SO tgds that relate schemas Sy and Sy in Figure@lare given below:

(t1): (t2):

for g in Group for w in Works, g in Group
exists d in Dept satisfying w.gno = g.gno and w.addr="NY”
where d.dname=g.gname exists e in Emp

where e.ename=w.ename and
e.addr=w.addr and e.did=F'[g]

The constraint ¢; is a tgd that states that for every record ¢ in the relation Group,
there must be a record d in Dept where dname of d is the same as gname of g. Here,
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g and d are record variables that range over records in Group and, respectively, Dept.
The second assertion ¢4 is an SO tgd that states that for every record g in Group and
every record w in Works, where their gnos are identical and the addr value of the Works
record is “NY”, there must be a record e in Emp where the conditions in the where
clause are satisfied. Note that “e.did = F[g]” states that the did value of e is dependent
on g through the Skolem function F'. Thus, F'[g] is a Skolem term.

Note that our SO tgds do not allow equalities between or with Skolem terms in the
satisfying clause. While such equalities may be needed for more general purposes [18],
they do not play a role for data exchange and can be eliminated, as observed in [36].

Solutions. Let M = (S, T, ') be a schema mapping. An instance I of S will be called
a source instance, and an instance J of T will be called a target instance.

We say that J is a solution of I w.rt. M if (I,J) = X, ie., if (I, J) satisfies every
constraint in Y. In general, there are many possible solutions for a source instance 1
under a schema mapping M = (S, T, X).

To illustrate, in line with the previous examples, suppose the source schema consists
of the relation symbol Group, the target schema consists of the relation symbol Dept,
and the schema mapping M is specified by the constraint ¢; given as an example above.
Consider the source instance I = {Group(123, CS), Group(456, EE)} and the target
instances

J1 = {Dept(N1,CS),Dept(N2,EE)}
Ja = {Dept(N1, CS), Dept (456, EE)}
J3 = {Dept(N1,CS)}.

Both J; and J are solutions for I w.r.t. M, but J3 is not. Observe that the solutions
Ji and J, contain values (namely, N1 and N2) that do not occur in the active domain
of the source instance . Intuitively, these values can be thought of as labeled nulls.

As we shall describe later, a central concept in both Eirene and Muse is the concept
of a data example. Given a source schema S and a target schema T respectively, a data
example is a pair (I, J) such that I is an instance of S and J is an instance of T.

Data Exchange, Homomorphisms, and Universal Solutions. Data exchange is the
following problem: given a schema mapping M = (S, T, X') and a source instance I,
construct a solution J for I such that (I, J) = X. As we just saw, a source instance
may have more than one solution with respect to a given GLAV schema mapping. We
will be interested in universal solutions, which were identified in [[17] as the preferred
solutions for data exchange purposes. Universal solutions are defined in terms of homo-
morphisms, as follows.

Let I; and I be two instances over the same relational schema R. A homomor-
phism h : I — I is a function from adom(1;) to adom(I3) such that for every fact
P(ay,...,an) of I, we have that P(h(a1),...,h(an)) is a fact of I. We write I; —
I5 to denote the existence of a homomorphism h : I; — I5. In our previous example,
we have that J; — J since the function {N1 — N1, CS — CS, N2 — 456, EE — EE}
is a homomorphism from J; to J,. We say that I; and I are homomorphically equiva-
lent if there is a homomorphism from I; to I> and a homomorphism from I5 to [;.
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Let M = (S, T, X) be a schema mapping and let I be a source instance. A target
instance J is a universal solution for I w.r.t. M if the following hold:

1. J is a solution for I w.r.t. M.

2. For every solution J' of I w.r.t. M, there is a homomorphism A : J — J’ that
is constant on adom(I) N adom(.J), that is to say, h(a) = a, for every value a €
adom(I) N adom(.J).

Intuitively, universal solutions are the “most general” solutions. Furthermore, in a
precise sense, they represent the entire space of solutions (see [[17]). For this reason,
universal solutions have become the standard semantics for data exchange. Going back
to our previous example, note that J; is a universal solution for I w.r.t the schema
mapping M specified by the constraint ¢;. In contrast, Jo is not a universal solution
for I w.r.t. M, since there is no homomorphism from J; to J; that is constant on
adom(I) Nadom(Jz).

Chase and Canonical Universal Solutions. For GLAV schema mappings M (and in
fact for the wider class of SO tgds), a variant of the chase procedure can be used to
compute, given a source instance I, a canonical universal solution for I w.r.t. M in
time bounded by a polynomial in the size of I (see [[17]).

Intuitively, the chase provides a way of populating the target instance J in a minimal
way, by adding the tuples that are required by Y. For every instantiation of the for
clause of a dependency in X such that the satisfying clause is satisfied but the exists and
where clauses are not, the chase adds corresponding tuples to the target relations. Fresh
new values (also called labeled nulls) are used to give values for the target attributes
for which the dependency does not provide a source expression. Additionally, Skolem
terms are instantiated by nulls in a consistent way: a term F'[z1, .. ., z;] is replaced by
the same null every time 1, . . . , z; are instantiated with the same source tuples. Finally,
to obtain a valid target instance, we must chase (if needed) with any target schema
constraints. For our earlier example, the target instance .J; is the result of chasing the
source instance I with the constraint ¢1. The tuple Dept(N7, CS) appears in J; since
it is asserted by the exists clause of ¢1, when the for clause of ¢; is instantiated with
the tuple Group(123, CS) from I. The CS value is propagated from the source Group
tuple to the target Dept tuple because of the equality condition in the where clause of ¢;.
Furthermore, the fresh labeled null /V; is introduced since ¢; does not provide a source
expression for the did attribute of the target Dept tuple. The tuple Dept (N2, EE) in J;
is obtained in a similar fashion. Since J; is the result of chasing I with ¢;, we have that
J1 is a canonical universal solution for I w.r.t. the schema mapping specified by the
constraint ¢;.

In practice, mapping systems such as Clio do not necessarily implement the chase
with X, but generate queries to achieve a similar result [19, 28].

3.1 Prior Schema Mapping Design Systems

A mapping system is a graphical user interface that allows a user to visually specify a
schema mapping (i.e., data transformation) that translates data from one schema into
another. Mapping systems can be categorized as either function-based or relationship-
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based [30]. In function-based mapping systems, schema mappings are specified opera-
tionally, as a workflow of operators, which is very similar to the way Extract-Transform-
Load (ETL) processes are specified in ETL tools. These systems tend to be highly ex-
pressive since the user is allowed to define custom operators. At the same time, these
systems are aimed at relatively advanced technical users, as users are required to spec-
ify and understand the workflow of operations that constitute the overall semantics of
the data transformation at hand.

Relationship-Based Mapping Systems. In contrast, the only type of input required of
users of relationship-based mapping systems is the specification of high-level relation-
ships between elements (i.e., attributes or sets of attributes) of the source and target
schemas. The design methodology of relationship-based mapping systems is shown in
Figure[2l The user starts the mapping design process by providing, through a graphical
interface, all known attribute correspondences (i.e., lines between elements) between
elements of a source schema S (typically shown on the left of the graphical interface)
and a target schema T (typically shown on the right of the graphical interface). An
example of a graphical interface typical of a relationship-based mapping system was
presented in Figure[[l Sometimes, a schema matching module [29] is used to suggest
or derive attribute correspondences.

The source and target schemas, together with the attribute correspondences, form
a visual specification of the schema mapping intended by the user. Since all that is
required as input is the specification of attribute correspondences, this methodology is
generally more accessible to non-technical users who may understand their data and the
relationships between schema elements.

For commercial mapping systems (e.g., Altova Mapforce [25], Stylus Studio [33],
and Microsoft BizTalk Mapper [13]), the visual specification is compiled directly into a
runtime executable code (e.g., in XSLT or XQuery or SQL or Java) that implements the
intended relationships that are captured by the visual specification. Data exchange can
be achieved by applying the generated executable code on an instance I of the source
schema S to derive an instance J of the target schema T.

On the other hand, research prototypes such as Clio [16], HePToX [15], and
Spicy++ [26] first compile the visual specification into SO tgds or GLAV constraints.
To illustrate, consider schemas S; and S, in Figure[d] and the visual specifications rep-
resented by the groups of arrows denoted by ¢; and ¢o, respectively. From the visual
specification, the declarative schema mappings (¢1) and (¢2) which are expressed as
constraints described earlier are first generated. These schema mappings (¢;) and (¢2)
can then be compiled into runtime executable code.

One advantage of using schema mappings to specify the relationship between two
schemas as an intermediate form is that they are more amenable to the formal study
of data exchange and data integration. Many properties of data integration and data
exchange, and rigorous studies of operators for manipulating schema mappings have
been investigated as a consequence of such logical formalisms [21].

Limitations of Existing Schema Mapping Design Methodologies. Existing schema
mapping design systems do not provide the capability for automatically combining pre-
existing schema mappings that are independently designed over different and possibly
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overlapping parts of a source and target schema. To derive the overall schema mapping
between the two schemas, the pre-existing schema mappings are typically “integrated”
manually or the overall schema mapping is re-designed from scratch.

The ability to automatically combine different schema mappings that are designed
over the same source and target schema allows one to design a schema mapping between
two schemas by focussing on smaller components of the schemas. Such a feature is
especially useful when the schemas are large and far too complex for the entire mapping
to be designed all-at-once. On a similar note, relationship-based mapping systems offer
very little support for designing a schema mapping through designing a workflow of
(smaller) schema mapping steps. In other words, the procedural methodology offered
by function-based mapping systems is sometimes desirable when schemas are large and
too complex to be designed in one step.

Finally, even though relationship-based mapping systems tend to be more user-
friendly, they cannot be used to generate any arbitrary schema mapping. These sys-
tems derive a fixed set of possible schema mappings from a given visual specification,
and the derived schema mappings may not correspond to what a user desires. It is typ-
ically the case that the user will have to manually tweak or create a schema mapping
with the desired semantics.

For the rest of this article, we overview our new framework for designing schema
mappings, which overcomes the limitations described earlier. Section ] describes how
data examples can be used to derive and refine a schema mapping interactively. Sec-
tion [3 describes our MapMerge operator which correlates different schema mappings
over the same source and target schema to produce an overall schema mapping which
preserves “data associations”. In the same section, we also describe how MapMerge to-
gether with the composition operator can be leveraged to allow one to design a schema
mapping between a source and target schema by designing a workflow of small schema
mapping steps. Details of these subsystems can be found in [1-3, 3, [10].

4 Interactive Mapping Design and Refinement via Data Examples

In our new framework, a schema mapping can be designed with existing approaches or
interactively with our new approach through the Eirene component system. In Eirene,
the user specifies data examples, which are pairs of source instance and expected target
instance and the Eirene component system will provide a schema mapping that “fits”
the given data examples, if possible. The user can continue to refine various components
of a schema mapping through our Muse component system.

4.1 Eirene

The Eirene system supports the design of GLAV (Global-and-Local-As-View) schema
mappings over a relational source and a relational target schema interactively via data
examples. For the rest of this section, we shall use the term schema mappings to refer
to GLAV schema mappings.

Recall that a data example is a pair (I, J) consisting of a source instance and a target
instance that conform to a source and target relational schema. The Eirene workflow is
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Fig. 5. Workflow for interactive design of schema mappings via data examples

depicted in Figure 3l The interaction between the user and Eirene begins with the user
providing an initial finite set £ of data examples, where each data example in £ provides
a partial specification of the semantics of the desired schema mapping. Furthermore,
the user stipulates that, for each data example (I, J), the target instance J is a universal
solution for I w.r.t. the desired schema mapping. Intuitively, the target instance J is a
“most general” target instance that, together with I, satisfies the specifications of the
desired schema mapping. Eirene responds by generating a schema mapping that fits
the data examples in £ or by reporting that no such schema mapping exists. Here, we
say that a schema mapping M fits a set £ of data examples if for every data example
(I,J) € &, the target instance .J is a universal solution of the source instance I w.r.t.
M. The refinement process can continue where the user may modify the data examples
in £ to arrive at another finite set £’ of data examples. Again, Eirene responds by testing
whether or not there is a schema mapping that fits £’. Eirene reports a fitting schema
mapping if one exists. Otherwise, it reports that no fitting schema mappings exist. The
process of modifying data examples and generating fitting schema mappings can be
repeated until the user is satisfied.

Data examples were considered in [3, [7, 35] as a means to illustrate and help un-
derstand schema mappings. In [9], several different notions of “fitting” were explored,
including the just defined notion of fitting in terms of universal examples. However, uni-
versal solutions, being the most general solutions, are natural as data examples because
they contain just the information needed to represent the desired outcome of migrating
data from source to target. In particular, they contain no extraneous or overspecified
facts, unlike arbitrary solutions. In addition, note that the alternative notion of “fitting”
with solutions in place of universal solutions gives rise to a trivial “fitting” problem
since, in this case, the schema mapping with an empty set of constraints would “fit” ev-
ery data example (7, J). In fact, it would be the “most general fitting schema mapping”.

Logical Formalism for Schema Mappings. We will often express GLAV constraints
using a logical formalism, which is syntactically different, but equivalent to the query-
like notation described in Section[3] In this logical formalism, a constraint s a first-order
sentence of the form

Vx(p(x) = Jyy(x,y))
where ¢(x) is a conjunction of atoms over the source schema S, each variable in x
occurs in at least one atom in ¢(x), and ¥(x,y) is a conjunction of atoms over the



A New Framework for Designing Schema Mappings 69

Source schema S Target schema T
Patient(pid, name, healthplan, date) History(pid, plan, date, docid)
Doctor(pid, docid) Physician(docid, name, office)
Step 1 l User adds data example Fitting GLAV schema mapping
(a)
. . Fitting .
(a) Patient(123, Joe, Plus, Jan) History(123, Plus, Jan, Anna) Patient(x,y,z,u) A Doctor(x,v) —
Doctor(123, Anna) - History(x,z,u,v)
User modifies existing data
Step 2 example (a)
(a) Patient(123, Joe, Plus, Jan) Histo.r).'(123, Plus, Jan, N1) Fitting Patient(x,y,z,u) A Doctor(x,v) —
Doctor(123, Anna) Physician(N1, Anna, N2) Jw,w’ (History(x,z,u,w) A Physician(w,v,w’))
User adds another data
Step 3 example (b)
(a) Patient(123, Joe, Plus, Jan) History(123, Plus, Jan, N1) | Fitting
Doctor(123, Anna) Physician(NI, Anna, N2) ‘ No fitting schema mapping exists
(b) Doctor(392, Bob) Physician(Bob, 392, N3)
Step 4 User modifies (b) and adds
data example (c)
(a) Patient(123, Joe, Plus, Jan) History(123, Plus, Jan, N1) Patient(x,y,z,u) A Doctor(x,v) —
Doctor(123, Anna) Physician(N1, Anna, N2) Fitting Jw,w’ (History(x,z,u,w) A Physician(wyw’))
(b) Doctor(392, Bob) Physician(N3, Bob, N4) ‘ Doctor(x,y) — Jw,w’ Physician(w,y,w’)
(c) Patient(653, Cathy, Basic, Feb)  History(653, Basic, Feb, N5) Patient(x,y,z,u) — 3w History(x,z,u,w)

Fig. 6. An example of the workflow in Figure[3]

target schema T with variables from x and y. By an atom over a schema R, we mean
aformula P(zy,..., %), where P € R and 21, . .., x,, are variables, not necessarily
distinct. For notational simplicity, we will often drop the universal quantifiers Vx in the
front of GLAV constraints. To draw an analogy to the query-like notation introduced in
Section[3] the atoms in the ¢(x) conjunction correspond to the atoms in the for clause,
while repeated appearances of a variable from x correspond to equalities specified in the
satisfying clause. A similar analogy holds between the v (x,y) formula and the exists
and where clauses.

An Example Run of Eirene. Suppose a user wishes to design a schema mapping be-
tween the source schema and target schema shown in the top-left corner of Figure
The source schema has two relations: Patient and Doctor, and the target schema has two
relations: History and Physician.

Step 1. The user adds a single data example, shown in the first box, which essentially
states that Anna is the doctor of Joe, whose health plan is Plus, and date-of-visit is
Jan. In the target relation, there is a single fact that consolidates this information, omit-
ting the patient name. Based on this single data example, Eirene will infer the schema
mapping shown on the right of the box. This schema mapping states that whenever a
Patient tuple and Doctor tuple agree on the pid value (i.e., a natural join between Patient
and Doctor), create a target tuple with the pid, healthplan, date, and docid values from
Patient and Doctor.
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Step 2. The user may choose to refine the data example further, perhaps after a realiza-
tion that there was a typographical error in the data example that is just entered. The
modified data example is shown in the second box. For this data example, the source in-
stance remains unchanged, but the user has now modified the target instance to consist
of two tuples: a History tuple and a Physician tuple which are “connected” through the
value NI. Observe that the values N/ and N2 in the target instance do not occur among
the values of the source instance and they, intuitively, represent unknown and possi-
bly different values. Based on this single data example, our system infers the desired
schema mapping shown on the right. The new schema mapping asserts that information
from the inner join of Patient and Doctor should be migrated to the target relations, with
appropriate nulls to represent unknown and possibly different values.

Step 3. In the third box of Figure[6] the user adds a second data example (b). Eirene
now reports that no schema mapping can fit the two data examples (a) and (b). This
is because the pattern of data migration in data examples (a) and (b) are inconsistent.
According to (b), every Doctor(pid,docid) fact in the source must have a corresponding
Physician(docid,pid,office) fact in the target. Observe that the pid value is copied to the
second column of the corresponding Physician fact. However, this is inconsistent with
what (a) states: a Doctor(pid, docid) has a corresponding Physician( ,docid, ) fact in
the target, and docid gets copied to the second column of the corresponding Physician
fact instead.

Step 4. In the fourth box, the user modifies data example (b) and adds a third data
example (c). Based on these data examples, Eirene reports the schema mapping shown
to the right of the fourth box. Essentially, the schema mapping migrates information
from the outer join of Doctor and Patient to the corresponding relations in the target.

Our algorithm that underlies Eirene is shown in Figure [7l It solves the fitting gen-
eration problem and relies on a homomorphism extension test that is a necessary and
sufficient condition for the fitting decision problem.

Given a source schema S, a target schema T, and a finite set £ of data examples that
conform to the schemas, the GLAV Fitting Decision Problem asks to tell whether or not
there is a GLAV schema mapping M that fits £. The GLAV Fitting Generation Problem
asks to construct a GLAV schema mapping M that fits &, if such a schema mapping
exists, or to report that “None exists”, otherwise.

The GLAV Fitting Algorithm. As seen in Figure[7] our algorithm has two main steps.
Given a finite set £ of data examples, the first step of the algorithm uses the homomor-
phism extension test to check whether there exists a GLAV schema mapping that fits £.
If no such fitting GLAV schema mapping exists, then the algorithm simply reports that
none exists. Otherwise, the second step of the algorithm proceeds to construct a GLAV
schema mapping that fits the set £.

Homomorphism Extension Test Let (I, .J) and (I, J') be two data examples. We say
that a homomorphism h : I — I’ extends to a homomorphism/ﬁ . J — J'if for all
a € adom(I)Nadom(J), we have that/ﬁ(a) = h(a). The homomorphism extension test
checks the following: for every pair of data examples from the given set £, test whether
every homomorphism between the source instances of the two examples extends to
a homomorphism between the corresponding target instances. If this homomorphism
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Algorithm: GLAV Fitting

Input: A source schema S, a target schema T, and a finite set € of data examples
(I1,J1) ... (In, Jn) over S, T.

Output: Either a fitting GLAV schema mapping or ‘None exists’

/I Homomorphism Extension Test: Test for existence of a fitting GLAV schema mapping

forall 7,7 <ndo
for all homomorphisms & : I; — I; do
if not(h extends to a homomorphism h: Ji — J;) then
fail(‘None exists’)

/I Construct a fitting canonical GLAV schema mapping

»:=0
for all: < ndo

add to X' the canonical GLAV constraint of (I;, J;)
return (S, T, X))

Fig.7. The GLAV Fitting Generation Algorithm

extension test fails, the algorithm immediately reports that no GLAV schema mapping
can fit the set £ of data examples.

To illustrate the failure of the homomorphism extension test, we refer back to Fig-
ure 6l and the set of data examples resulting after Step 3 of the depicted workflow. The
homomorphism {392 — 123, Bob — Anna} from the source instance of data example
(b) to the source instance of data example (a) cannot be extended to a homomorphism
between the corresponding target instances. Any such homomorphism would neces-
sarily map the value Bob to N1, as well as 392 to Anna. Consequently, in this case,
the homomorphism extension test fails, and the algorithm terminates. If the homomor-
phism extension test succeeds, the fitting algorithm proceeds to construct the fitting
schema mapping.

Constructing a Fitting Canonical GLAV Schema Mapping In this step, the algorithm
proceeds to construct the canonical GLAV schema mapping of £. The concept of a
canonical GLAV schema mapping is similar to that of a canonical conjunctive query.
If (I, J) is a data example, then the canonical GLAV constraint of (I, J) is the GLAV
constraint Vx(q;(x) — 3Jygqs(x,y)), where g;(x) is the conjunction of all facts of
I (with each value from the active domain of I replaced by a universally quantified
variable from x) and ¢s(x,y) is the conjunction of all facts of J (with each value
from adom(J) \ adom(I) replaced by an existentially quantified variable from y). The
canonical GLAV schema mapping of £ is the schema mapping M = (S, T, X), where
27 consists of the canonical GLAV constraints of each data example in £. For example,
the canonical GLAV schema mapping for the set of data examples resulting after Step 4
of the workflow in Figurel6lis specified by the three GLAV constraints depicted on the
right of the box containing the data examples. Notice that this step takes time linear in
the size of the given set £ of data examples.
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It is important to point out that the canonical GLAV schema mapping of a given set
of data examples need not fit this set of examples. In fact, this is what makes the GLAV
fitting generation problem interesting and nontrivial. Consider the set £ consisting of
the data examples

({5(a,0)},{T(a)}) and ({S(c, ¢)}, {U(c, d)}).
The canonical GLAV schema mapping of £ is specified by the GLAV constraints

Vay(S(z,y) = T(x))
Va(S(z,z) — F2U(x, 2))

This schema mapping does not fit £, as the second data example violates the first con-
straint. Note also that our homomorphism extension test in the first step of the algorithm
would detect this: the homomorphism A that maps S(a, b) to S(c, ¢) does not extend to
any target homomorphism from 7'(a) to U (¢, d). Hence, in this case, our algorithm will
terminate after the first step and report that “None exists”.

Next, we report results that show the correctness of our algorithm, that our algorithm
returns the “most general” fitting schema mapping, if a fitting schema mapping exists,
that our algorithm is complete for GLAV schema mapping design, the complexity of
our algorithm, and our implementation.

Correctness. The correctness of the GLAV fitting generation algorithm is given by the
following result.

Theorem 1. Let £ be a finite set of data examples. The following are equivalent:

1. The canonical GLAV schema mapping of € fits .

2. There is a GLAV schema mapping that fits &.

3. (Homomorphism Extension Test) For all (I,J),(I',J") € &, every homomorphism

o~

h: I — I extends to a homomorphism h : J — J'.

Theorem [1] shows that the homomorphism extension test is a necessary and suffi-
cient condition for determining whether GLAV schema mapping fitting £ exists. Fur-
thermore, this condition is also a necessary and sufficient condition for determining
whether the canonical GLAV schema mapping of & fits £.

Most General Fitting GLAV Schema Mapping. Given a finite set £ of data examples,
there may be many GLAV schema mappings that fit £. If there is a GLAV schema
mapping that fits £, we showed that the canonical GLAV schema mapping is the most
general GLAV schema mapping that fits £.

Let M = (S, T, X) and M’ = (S, T, X’) be two schema mappings over the same
source and target schemas. We say that M is more general than M’ if X’/ logically im-
plies X, i.e., if for every data example (I, J) such that (1, J) satisfies X', we have that
(I,J) also satisfies X. For example, both R(x,y) — P(z,y) and R(x,x) — P(z,x)
fit the data example ({R(a,a)}, {P(a,a)}) with the latter mapping being more gen-
eral. In this case, the GLAV fitting algorithm will return the latter mapping R(z, x) —
P(z,x).
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This result, along with the correctness of the GLAV fitting algorithm, imply that if a
fitting GLAV schema mapping exists for a given set £ of data examples, then our GLAV
fitting algorithm returns the most general GLAV schema mapping that fits £. Note that
this most general schema mapping is unique up to logical equivalence.

Completeness for Design. Our method of designing schema mappings via data exam-
ples is complete for schema-mapping design.

Theorem 2. For every GLAV schema mapping M, there is a finite set of data examples
Em, such that, when given € as input, the GLAV fitting algorithm returns a schema
mapping that is logically equivalent to M.

In other words, every GLAV schema mapping can be produced (up to logical equiv-
alence) by our GLAV fitting algorithm with an appropriate set of data examples.

Complexity. The most general schema mapping produced by our GLAV fitting gener-
ation algorithm has size linear in the size of the input set of data examples. We showed
that this linear bound on the size of the most general schema mapping cannot be im-
proved in general. In contrast, the first step of the GLAV fitting algorithm can be ex-
ponential, since the number of homomorphisms between two database instances can be
exponential. Hence, the GLAV fitting algorithm runs in exponential time in the worst
case. We showed that the GLAV fitting decision problem is complete for the second
level Hg of the polynomial hierarchy, hence, in all likelihood, it is harder than NP-
complete.

Implementation. We implemented our approach as a prototype in Java 6, with IBM
DB2 Express-C v9.7 as the underlying database engine, running on a Dual Intel Xeon
3.4GHz Linux workstation with 4GB RAM. Eirene stores data examples in the IBM
DB2 database system and implements the homomorphism extension test as a set of DB2
user-defined functions. Intuitively, each function is associated with a data example and
it tries to find a witness to the failure of the homomorphism extension.

The high worst-case complexity of the GLAV fitting problem notwithstanding, the
experimental results that we have obtained demonstrate the feasibility of interactively
designing schema mappings using data examples. In particular, our experiments show
that our system achieves very good performance in real-life scenarios. For more details,
we refer the interested reader to the experimental evaluation presented in [1]].

4.2 Muse

Muse allows a user to refine various aspects of an existing schema mapping specifica-
tion, based on the choices made by users on a series of data examples that are presented
by the system. The Muse workflow is shown in Figure[8l In contrast, the Eirene system
derives schema mappings from data examples provided by the user.

The Muse system is largely inspired by the work of Yan et al. [35], which was the
first to present data examples to users so that users’ feedback can be used for refining
schema mappings. Like [35], Muse uses data examples to differentiate between alterna-
tive mapping specifications and infer the desired mapping semantics based on a user’s
actions. However, we go significantly beyond the techniques and space of alternative
mappings supported by [35].



74 B. Alexe and W.-C. Tan

Real source instance
(if available)
Schema mapping
(ST,3)

B | 3
e —

Fig. 8. Interactive refinement of various aspects of schema mappings via data examples

User makes choices

\

First, Muse is capable of helping a user derive the desired grouping semantics for a
mapping specification through choices made on data examples. For instance, to infer
whether a user wishes to group projects by a a company’s name and location or only
by a company’s name, Muse will construct a sequence of choice questions with data
examples. The selection of data examples made by the user allows Muse to infer the
desired grouping semantics. The number of choice questions and the size of each data
example are usually small. They correspond roughly to the number schema elements
that could be used for grouping and each data example consists of at most two tuples
per (nested) relation.

Second, as in [35], Muse helps a user choose among alternative interpretations of
an ambiguous mapping. Intuitively, a schema mapping is ambiguous if it specifies, in
more than one way, how an atomic target schema element (or attribute) is to be obtained.
For example, the schema mapping that is generated from the visual specification could
be ambiguous because the visual specification may assert (through attribute correspon-
dences) that a project supervisor is a project manager and a project tech-lead at the
same time. In other words, it is not clear whether to extract the manager’s name or the
tech-lead’s name (or both) from the source database as the supervisor of a project in the
target database and hence the ambiguity. When this happens, the user is asked to select
among a small set of data choices to fill in the target instance of a data example that is
constructed by Muse. The data example and choices are carefully chosen so that they
reflect all possible interpretations of the ambiguous mapping. Furthermore, the user’s
actions on these choices translate into a unique interpretation. Apart from our ability
to handle nested XML-like data, Muse is also different from [35] in that we show all
possible interpretations of an ambiguous schema mapping in one compact representa-
tion (i.e., the data example together with data choices in the target instance of the data
example). In contrast, all different target instances are shown to the user in [35]. The
discussion of ambigious mappings will be omitted from this article. However, details
can be found in [8].

Finally, unlike previous work which relies exclusively on an available source instance
to illustrate mappings, Muse can construct its own synthetic data example whenever a
meaningful data example cannot be drawn from the actual source instance or when the
source instance is unavailable. It is important to note that for a given source instance,
schema mappings that are logically inequivalent may produce the same target instance



A New Framework for Designing Schema Mappings 75

m;: for ¢ in CompDB.Companies exists o in OrgDB.Orgs
where c.cname=0.oname and

CompDB: OrgDB: o.Projects = SKProjs(c.cid,c.cname,c.location)

Companies Orgs
cid . oname m,: for ¢ in CompDB.Companies, p in CompDB.Projects,
cname Projects e in CompDB.Employees

f, Iocatlon pname satisfying p.cid=c.cid and e.eid=p.manager

Projects manager exists o in OrgDB.Orgs, p, in 0.Projects,
pid mployees e, in OrgDB.Employees
pname eid where p,.manager=e;.eid and
cid ename c.cname=o.oname and e.eid=e,.eid and
manager e.ename=e,.ename and p.pname=p,.pname and
PLOyeeS o.Projects = SKProjs(<all attributes of ¢, p and e>)
ei
ename mj: for e in CompDB.Employees
contact exists e, in OrgDB.Employees

where e.eid = e,.eid and e.ename=e,.ename

Fig.9. A mapping scenario

on the given source instance. Muse is able to automatically detect such situations and
construct a synthetic source instance that will illustrate differences in all design alter-
natives as needed. In fact, our experiments justify that this feature of Muse is necessary
to help design mappings for some real mapping settings and instances.

Naturally, an advanced user can always choose to tweak or specify the desired schema
mapping function directly without using Muse. Muse is useful for cases where such di-
rect manipulation of code is not preferred.

Design of Grouping Functions. Grouping or combining related data together is an
essential functionality of many integration systems. We now describe how the grouping
design wizard Muse-G of Muse can be used to infer the desired grouping function
through a sequence of choices made by the user on data examples.

The Muse-G wizard is always able to infer a grouping function that has the same
grouping semantics as the actual grouping function that the user has in mind. As the
data examples illustrate the different possibilities of grouping, Muse-G can also be very
useful when the user only has a partial understanding of the desired grouping semantics.

In what follows, we overview the basic algorithm behind Muse-G when there are
no functional dependencies (FDs) in the source schema. Details of this algorithm and
extensions to handle keys (and FDs in general) in the source schema, as well as our
experimental results can be found in [8].

Except for topmost-level sets, every nested set in the target schema of mapping gen-
eration tools (e.g., 14, 119, [28]) has a default grouping function, where the arguments
consist of only atomic attributes. For example, there are no grouping functions for Orgs
and Employees in the target schema of Figure[0l However, the default grouping function
for Projects in mo according to [19] is

SKProjs(c.cid, c.cname, c.location, p.pid, p.pname, p.cid, p.manager, e.eid, e.ename, e.contact)

This means that Projects records are grouped according to the values of all attributes
of the Companies, Projects and Employees source records. If SKProjs(cname) is the
grouping function instead, then Projects records are grouped according to cname of
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Companies records (i.e., oname of Orgs records). (We write SKProjs(cname) instead of
SKProjs(c.cname) when there is no ambiguity.)

In tools such as Mapforce, Stylus Studio and [14,119,128] the arguments of the group-
ing function have to be explicitly modified or specified. This can be difficult when
schemas are large and the number of possible arguments for a grouping function tends
to be large as a consequence. Indeed, if there are n possible attributes to group by, then
there are in fact 2" choices of grouping functions. Furthermore, it may not be obvious
to a user, what the n possible grouping attributes are (see [[19, 28]).

Muse-G takes as input a schema mapping (S, T, X'). The user can choose to design
any grouping function that occurs in X'. We assume that there is a real source instance
I from which Muse-G can draw real data examples whenever possible, and show how
Muse-G constructs its own examples otherwise. To illustrate our algorithm, we use the
schema mapping (S, T, {mz}), where S, T and ms, are the source and target schemas
and respectively, mapping, of Figure [0

Step 1. The first step is to determine an order to the set of grouping functions that the
user wishes to (re)design in a mapping in X' by performing a breadth-first traversal
of T starting from the root. This yields, for our example, the order Orgs, Employees,
and Projects. Since Orgs and Employees are top-level sets without grouping functions,
Muse-G will only prompt the design of grouping functions for Projects (i.e., SKProjs)
in mo.

Step 2. Next, we determine the set poss(msa, SKProjs) of all possible arguments for
SKProjs according to mo. According to the schema of OrgDB, a Projects SetID is
nested inside an Orgs tuple. According to the for clause of mo, the existence of an Orgs
tuple is dependent on the existence of a Companies tuple, an Employees tuple, and a
Projects tuple which agrees with the Companies and Employees tuples on the values of
pid and manager, respectively.

This means that poss(ms,SKProjs) consists of the set of attributes in the Companies,
Projects and Employees records, which is {cid, cname, location, pid, pname, pid,
manager, eid, ename, contact}. Note that the sets poss(m,SK) are in fact identical for
all nested sets SK occurring in m. In other mapping formalisms, however, they may be
different (see [19] for details). However, to simplify our subsequent discussion, we will
assume that poss(ma,SKProjs)={cid,cname,location}.

Step 3. Suppose the user has SKProjs(Z) in mind, where Z C poss(mz, SKProjs). In
what follows, we show how Muse-G proceeds to construct data examples to present
choices to the user in order to infer the desired grouping function.

Construct Data Examples. To determine whether or not an attribute A from poss(msa,
SKProjs) is to be included in the grouping function of SKProjs, Muse-G carefully con-
structs a small source instance I. such that two differentiating target instances are ob-
tained: regardless of what the rest of the grouping attributes might be, one is the result
of including the attribute A as part of SKProjs in my, and the other omits it.

Suppose the attribute under consideration is cid. An example source instance I, with
two tuples, as shown below, will be constructed:

I, : {Companies(c1,n1,11), Projects(p1,pni,c1, e1), Employees(e1, eny, cny),
Companies(ca,n1,11), Projects(pa, pne, c2, e2), Employees(ea, enz, cna)}
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Observe that each relation in /. has two tuples. Furthermore, every attribute value
of every tuple is distinct, except for cname and location values of Companies tuples.
The reason for this is so that the target instances generated by meo with SKProjs(cid,y),
where y C {cname,location}, versus mo with SKProjs(y) will be non-isomorphic.
Indeed, the former target instance will contain two distinct Projects sets, while the latter
consists of only one Projects set.

To obtain a real source instance, Muse-G generates the following query that will be
executed against the actual source instance, if available, to retrieve real tuples for the
example instance /.

Q' : Companies(cy,n1,11) A Companies(ca,ny,11)A
Projects(p1,pna, c1,e1) A Projects(pa, pna, c2, e2) A
Employees(e1, eny, cny) A Employees(ea, eng, cng) A c1 # ca

All variables of Q¢ are universally-quantified. The two Companies tuples must dis-
agree on cid (the probed attribute) and agree on cname and location as explained earlier.
If Q’<(I) returns an empty result, Muse-G will present the user with the synthetic
instance I., shown earlier. Alternatively, a “semi-real” I, may also be constructed by
putting together various real values drawn from I (e.g., use cid, cname and location
values drawn from the corresponding columns of the Companies relation to create a
Companies tuple in I, regardless of whether these values participate in a real Companies
tuple). However, this may lead to combinations that are misleading to the user. On the
other hand, if Q' (I) returns a non-empty result, Muse-G constructs a real example
based on the returned values. A possible real example constructed in this way is shown
in Figure [I0(a), where each tuple in Companies, Projects and Employees exists in I.

Next, Muse-G obtains two differentiating target instances shown in Scenarios 1 and
2 in Figure [[(a), by chasing I, with mappings d; and respectively, do. Here, d; and
ds are identical to mo except they have SKProjs(cid) and respectively, SKProjs() as
grouping functions for Projects. Now, Muse-G asks the user “which target instance
looks correct”?

Note that the instance I. has been carefully crafted so that the chase of I, with d;
is isomorphic to the chase of I, with d, where d} is a mapping obtained from ms
by replacing SKProjs with SKProjs({cid} UY), where Y C {cname, location}. Since
cname and location values are identical for the two Comp tuples in I., the mapping d;
has the same effect as d} on I.. Similarly, d2 has the same effect as d/, on I., where

%, is obtained from ds by replacing SKProjs with SKProjs(Y). Hence, based on the
user’s choice of Scenario 1 or 2, Muse-G correctly determines whether cid is part of the
user’s desired grouping function. So with one question, we either eliminate all mappings
using cid (not only SKProjs(cid), but SKProjs(cid, cname), SKProjs(cid, location), and
SKProjs(cid, cname, location)), or we eliminate all mappings that do not use cid in the
skolem function for Projects.

Continuing with our example, suppose the user has the grouping function
SKProjs(cname) in mind. She would select Scenario 2 in Figure[10(a). We now repeat
the process for the other attributes cname and location. Figure[I0(b) shows the example
source instance and the two scenarios obtained by considering the attribute cname. The
two source Companies tuples must differ on the values of cname and agree on the val-
ues of location. Note that the cid values of the two Companies tuples are not required
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Example source: Target instances:

Companies Scenario 1: Scenario 2:

11 IBM NY OrgDB OrgDB

12 IBM NY Orgs Orgs
Projects IBM IBM

P1 DB 11e4 Projects:SK(11,y) Projects:SK(y)

P2 Web 12 e5 DB e4 DB e4
Employees IBM Web e5

e4 Jon x234 Projects:SK(12,y) = Employees

e5 Anna x888 Web e5 e4 Jon

Employees e5 Anna
e4 Jon
(a) e5 Anna
Note:
y C {IBM,NY}

Example source: Target instances:

Companies Scenario 1: Scenario 2:
111BM NY OrgDB OrgDB
14 SBC NY Orgs Orgs
Projects IBM IBM
P1 DB 11e4 Projects:SK(IBM,y) Projects:SK(y)
P4 WiFi 14 e6 DB e4 DB e4
Employees SBC WiFi e6
e4 Jon x234 Projects:SK(SBC,y) SBC
e6 Kat x331 WiFi e6 Projects:SK(y)
Employees DB e4
e4 Jon WiFi e6
(b) e6 Kat Employees
Note: e4 Jon

y C{NY} e6 Kat

Example source: Target instances:

Companies Scenario 1: Scenario 2:
111BM NY  OrgDB OrgDB
131BM SF Orgs Orgs

Projects IBM IBM
P1DB 11 e4 Projects:SK(IBM,NY)  Projects:SK(IBM
P2 Web 13 e5 DB e4 DB e4

Employees IBM Web e5
e4 Jon x234 Projects:SK(IBM,SF) Employees
e5 Anna x888 Web e5 e4 Jon

Employees e5 Anna
e4 Jon
(C) e5 Anna

Fig.10. Probing on (a) cid, (b) cname, and (c) location when the user has SKProjs(cname) in
mind
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to be identical, since cid is not an argument of SKProjs. The user will pick Scenario 1
in Figure [[0(b), since she wants to group Projects by cname, and Muse-G infers that
cname is an argument to SKProjs. Figure [[0(c) shows the data examples that are pre-
sented to the user when the attribute location is under consideration. The user will pick
Scenario 2. Since cname is part of the grouping, the Companies tuples must agree on
the cname values, otherwise, Muse-G would not be able to infer whether location is part
of the groping from the user’s choice in Figure[T0(c). At this point, Muse-G concludes
and returns SKProjs(cname).

Recall that we have assumed above that poss(ma, SKProjs) is {cid,cname,location}
for simplicity, when in fact it consists of all attributes of Companies, Projects and
Employees records. In this case, Muse-G concludes only after subsequently probing
all the attributes of Projects and Employees records (the user will choose Scenario 2 in
each case). Note also that it is conceivable for Muse-G to generate homomorphically
equivalent target instances (i.e., target instances with a homormophisms into each other)
for Scenarios 1 and 2 (e.g., Figure[I0(b)). However, it is always possible for the user to
distinguish between such instances, as they are non-isomorphic.

Muse-G infers the desired grouping function by presenting the user a small number
of choice questions, where each choice question consists of a small source instance with
two target instances that correspond to the two possible choices in this question.

Small Number of Choices, Small Data Examples. For each nested set SK in a map-
ping m, there are 2" different grouping functions where n = |poss(m, SK)|. However,
Muse-G determines the desired grouping function by asking the user only |poss(m, SK)
questions. In fact, if there is at most one key per nested set, then Muse-G performs a
careful reordering of the questions posed to the user. The questions pertaining to the
attributes in the key are asked first. In general, using this strategy, at most n questions
are needed to infer the desired grouping function. If the user decides to include the key
attributes in the grouping function, then the number of questions is equal to the number
of key attributes. It is also important to note that all real source schemas that we have
encountered in our experimental evaluation fall into this category.

Furthermore, for each choice, Muse-G constructs a small source example. The size
of the source example is twice the number of “z € X clauses in for clauses of m. This
typically means that there are at most two tuples in each nested set.

We refer the interested reader to [2] for a report on our experience with Muse on
publicly available mapping scenarios.

5 Modular Design of Schema Mappings

5.1 Overview

As outlined in Section[2] in our Divide-Design-Merge methodology, the user can choose
to design a schema mapping by focusing on designing smaller and easier to understand
mappings, using data examples as much as possible. In the previous section, we have
presented our techniques for designing and refining schema mappings via data exam-
ples. However, simply taking the independently designed schema mapping components
and using them as the specification for the global schema mapping may not achieve the
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desired semantics. This may lead, as it will be explained later, to problems such as data
redundancies and loss of data associations. Hence, the design workflow is not complete
without a mechanism for correlating the set of independent schema mappings resulting
after the previous phase into a meaningful global schema mapping (see Figure[3). This
is the role of the MapMerge schema mapping operator, presented in this section. This
operator allows for the modular construction of complex and larger schema mappings
from multiple “smaller” schema mappings between the same source and target schemas
into an arguably better overall schema mapping.

Since the mappings given as input to MapMerge can be as simple as individual
attribute correspondences, MapMerge supersedes previous mapping generation algo-
rithms such as the ones in Clio [16]. In addition, as we will show later, MapMerge can
be used in conjunction with the schema mapping composition operator [[18, 23, 27] to
correlate flows of schema mappings in a meaningful way.

5.2 Motivating Example

To illustrate the ideas behind MapMerge, consider first a mapping scenario between the
schemas S; and So shown in the left part of Figure @l The goal is data restructuring
from two source relations, Group and Works, to three target relations, Emp, Dept, and
Proj. In this example, Group (similar to Dept) represents groups of scientists sharing
a common area (e.g., a database group, a CS group, etc.) The dotted arrows represent
foreign key constraints in the schemas.

Independent Mappings. Assume the existence of the following (independent) schema
mappings from Sy to Sz. The first mapping is the constraint ¢; in Figure [[1a), and
corresponds to the arrow ¢; in Figure 4l This constraint requires every tuple in Group
to be mapped to a tuple in Dept such that the group name (gname) becomes department
name (dname). The second mapping is more complex and corresponds to the group of
arrows to in Figure @l This constraint involves a custom filter condition; every pair of
joining tuples of Works and Group for which the addr value is “NY” must be mapped
into two tuples of Emp and Dept, sharing the same did value, and with corresponding
ename, addr and dname values. (Note that did is a target-specific field that must exist
and plays the role of key / foreign key). Intuitively, ¢- illustrates a pre-existing mapping
that a user may have spent time in the past to create, possibly using the techniques
based on data examples from Section [l Finally, the third constraint in Figure [[1la)
corresponds to the arrow t3 and maps pname from Works to Proj. This is an example
of a correspondence that is introduced by a user after loading ¢; and the pre-existing
mapping ¢ into the mapping tool.

The goal of the system is now to (re)generate a “good” overall schema mapping
from S; to Sz based on its input mappings. We note first that the input mappings, when
considered in isolation, do not generate an ideal target instance.

Indeed, consider the source instance I in Figure [[2] The target instance that is
obtained by minimally enforcing the constraints {t1,t2,t3} is the instance J; also
shown in the figure. The first Dept tuple is obtained by applying ¢; on the Group tuple
(123,C'S). There, D1 represents some did value that must be associated with C'S in
this tuple. Similarly, the Proj tuple, with some unspecified value B for budget and a did
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Input mappings from S, to S,: Output of MapMerge(S,, S,, {t;, t,, t3}):
(t,) for g in Group exists d in Dept for g in Group exists d in Dept
where d.dname = g.gname where d.dname = g.gname, d.did = F[g]
(t,) for w in Works, g in Group forw in Works, g in Group
satisfying w.gno = g.gno, w.addr = “NY” satisfying w.gno = g.gno, w.addr = “NY”
exists e in Emp, d in Dept exists e in Emp
where e.did = d.did, where e.ename = w.ename, e.addr = w.addr,
e.ename = w.ename, e.addr = w.addr, e.did = F[g]

d.dname = g.gname
for w in Works, g in Group

(t,) for w in Works exists p in Proj satisfying w.gno = g.gno, w.addr = “NY”
where p.pname = w.pname exists p in Proj
where p.pname = w.pname, p.budget = H,[w],
p.did = F[g]

(a) (b)

Fig. 11. (a) Schema mappings from S; to Sz in the scenario of Figure @ (b) Output of Map-
Merge.

Target instance J;

{t,tyts} | ____Emp N Dept § _ Proj _ |
| ename addr did did dname pname budget did
John NY D2 D1 CS Web B D3
Source instance [ D2 CS
D3 N
gno gname ename addr pname gno
123 ¢S John NY  Web 123 Target instance J,
[ ____Emp _ | | ____Proj |
| ename addr did did dname pname budget did
MapMerge({t,,t, t;}) John NY D D C Web B D

Fig. 12. An instance of S; and two instances of S»

value of D3 is obtained via ¢3. The Emp tuple together with the second Dept tuple are
obtained based on 5. As required by %o, these tuples are linked via the same did value
D2. Finally, to obtain a target instance that satisfies all the foreign key constraints, we
must also have a third tuple in Dept that includes D3 together with some unspecified
department name N.

Since the three mapping constraints are not correlated, the three did values (D1, D2,
D3) are distinct. (There is no requirement that they must be equal.) As aresult, the target
instance J; exhibits the typical problems that arise when uncorrelated mappings are
used to transform data: (1) duplication of data (e.g., multiple Dept tuples for C'S with
different did values), and (2) loss of associations where tuples are not linked correctly to
each other (e.g., we have lost the association between project name W eb and department
name C'S that existed in the source).
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Correlated Mappings via MapMerge. Consider now the schema mappings that are
shown in Figure[[TIb) and that are the result of MapMerge applied on {¢1, t2,t3}. The
notable difference from the input mappings is that all mappings consistently use the
same expression, namely the Skolem term F'[g] where g denotes a Group tuple, to give
values for the did field. The first mapping is the same as ¢; but makes explicit the fact
that did is F'[g]. This mapping creates a unique Dept tuple for each distinct Group tu-
ple. The second mapping is (almost) like ¢ with the additional use of the same Skolem
term F'[g]. Moreover, it also drops the existence requirement for Dept (since this is now
implied by the first mapping). Finally, the third mapping differs from ¢3 by incorporat-
ing a join with Group before it can actually use the Skolem term F'[g]. Furthermore, it
inherits the filter on the addr field, which applies to all such Works tuples according to
to. As an additional artifact of MapMerge, it also includes a Skolem term H;[w] that
assigns values to the budget attribute, which was initially left unspecified. The target
instance that is obtained by applying the result of MapMerge is the instance .J, shown
in Figure[12l The data associations that exist in the source are now correctly preserved
in the target. For example, Web is linked to the C'S tuple (via D) and also John is
linked to the C'S tuple (via the same D). Furthermore, there is no duplication of Dept
tuples.

Flows of Mappings. Taking the idea of mapping reuse and modularity one step further,
an even more compelling use case for MapMerge in conjunction with mapping com-
position [18, 123, [27], is the flow-of-mappings scenario [4]. The key idea here is that to
design a data transformation from the source to the target, one can decompose the pro-
cess, in line with the Divide-Design-Merge approach, into several simpler stages, where
each stage maps from or into some intermediate, possibly simpler schema. Moreover,
the simpler mappings and schemas play the role of reusable components that can be ap-
plied to build other flows. Such abstraction is directly motivated by the development of
real-life, large-scale ETL flows such as those typically developed with IBM Information
Server (Datastage), Oracle Warehouse Builder and others.

To illustrate, suppose the goal is to transform data from the schema S; to the nested
schema S, of Figure ] where Stajff and Projects information are grouped under Comp-
Sci. The mapping or ETL designer, following the divide-and-merge methodology, may
find it easier to first construct the mapping between S; and S, (it may also be that this
mapping may have been derived in a prior design). Furthermore, the schema Sq is a
normalized representation of the data, where Dept, Emp and Proj correspond directly to
the main concepts (or types of data) that are being manipulated. Based on this schema,
the designer can then produce a mapping mcs from Dept to a schema S3 containing
a more specialized object CSDept, by applying some customized filter condition (e.g.,
based on the name of the department). The next step is to create the mapping m from
CSDept to the target schema S,4. Other independent mappings are similarly defined for
Emp and Proj (see m1 and my).

Once these individual mappings are established, the same problem of correlating
the mappings arises. In particular, one has to correlate mcs o m, which is the result
of applying mapping composition to mcs and m, with the mappings m; for Emp and
my for Proj. This correlation will ensure that all employees and projects of computer
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science departments will be correctly mapped under their correct departments, in the
target schema.

In this example, composition itself gives another source of mappings to be correlated
by MapMerge. While similar with composition in that it is an operator on schema map-
pings, MapMerge is fundamentally different in that it correlates mappings that share
the same source schema and the same target schema. In contrast, composition takes
two sequential mappings where the target of the first mapping is the source of the sec-
ond mapping. Nevertheless, the two operators are complementary and together they can
play a fundamental role in building data flows. In Section[5.4] we will give an overview
of an algorithm that can be used to correlate flows of mappings.

5.3 Correlating Mappings: Key Ideas

How do we achieve the systematic and, moreover, correct construction of correlated
mappings? After all, we do not want arbitrary correlations between mappings, but rather
only to the extent that the natural data associations in the source are preserved and no
extra associations are introduced.

There are two key ideas behind MapMerge. The first idea is to exploit the structure
and the constraints in the schemas in order to define what natural associations are (for
the purpose of the algorithm). Two data elements are considered associated if they are
in the same tuple or in two different tuples that are linked via constraints. This idea has
been used before in Clio [28], and provides the first (conceptual) step towards Map-
Merge. For our example, the input mapping ¢3 in Figure [[1(a) is equivalent, in the
presence of the source and target constraints, to the following enriched mapping:

th: for w in Works, g in Group satisfying w.gno = g.gno
exists p in Proj, d in Dept where p.pname = w.pname and p.did = d.did

Intuitively, if we have a w tuple in Works, we also have a joining tuple g in Group,
since gno is a foreign key from Works to Group. Similarly, a tuple p in Proj implies the
existence of a joining tuple in Dept, since did is a foreign key from Proj to Dept.

Formally, the above rewriting from t3 to ¢4 is captured by the well-known chase
procedure [[L1}, 24]. The chase is a convenient tool to group together, syntactically, ele-
ments of the schema that are associated. The chase by itself, however, does not change
the semantics of the mapping. In particular, the above ¢4 does not include any additional
mapping behavior from Group to Dept.

The second key idea behind MapMerge is that of reusing or borrowing mapping
behavior from a more general mapping to a more specific mapping. This is a heuristic
that changes the semantics of the entire schema mapping and produces an arguably
better one, with consolidated semantics.

To illustrate, consider the first mapping constraint in Figure [[1(b). This constraint
(obtained by skolemizing the input ¢1) specifies a general mapping behavior from Group
to Dept. In particular, it specifies how to create dname and did from the input record.
On the other hand, the above t/; can be seen as a more specific mapping from a subset
of Group (i.e., those groups that have associated Works tuples) to a subset of Dept
(i.e., those departments that have associated Proj tuples). At the same time, t5 does
not specify any concrete mapping for the dname and did fields of Dept. We can then
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borrow the mapping behavior that is already specified by the more general mapping.
Thus, t5 can be enriched to:

4. for w in Works, g in Group satisfying w.gno = g.gno
exists p in Proj, d in Dept
where p.pname = w.pname and p.did = d.did and
d.dname = g.gname and d.did = F'[g] and p.did = Fg]

where two of the last three equalities represent the “borrowed” behavior, while the last
equality is obtained automatically by transitivity. The other borrowed behavior that we
will add to ¢4 is the user-defined filter on addr. This filter already applies, according to
to, to all tuples in Works that join with Group tuples, and are mapped to Emp and Dept
tuples. The resulting constraint ;" has the following form:

t4": for w in Works, g in Group satisfying w.gno = g.gno and w.addr = “NY”
exists p in Proj, d in Dept
where p.pname = w.pname and p.did = d.did and
d.dname = g.gname and d.did = F'[g] and p.did = F[g]

Finally, we can drop the existence of d in Dept with the two conditions for dname
and did, since this is repeated behavior that is already captured by the more general
mapping from Group to Dept. The resulting constraint is identicall to the third con-
straint in Figure[[TIb), now correlated with the first one via F'[g]. A similar explanation
applies for the second constraint in Figure [[T(b).

The MapMerge Algorithm. MapMerge takes as inputaset { (S, T, >1), ...,(S, T, X},)}
of schema mappings over the same source and target schemas, which is equivalent to
taking a single schema mapping (S, T, >, U ... U X)) as input. The algorithm is di-
vided into four phases. The first phase decomposes each input mapping assertion into
basic components that are, intuitively, easier to merge. In Phase 2, we apply the chase
algorithm to compute associations (which we call tableaux), from the source and target
schemas, as well as from the source and target assertions of the input mappings. The
latter type of tableaux is necessary to support user defined joins that may not follow
foreign key constraints. By pairing source and target tableaux, we obtain all the possi-
ble skeletons of mappings. The actual work of constructing correlated mappings takes
place in Phase 3, where for each skeleton, we take the union of all the basic components
generated in Phase 1 that “match” the skeleton. Phase 4 is a simplification phase that
also flags conflicts that may arise and that need to be addressed by the user. These con-
flicts occur when multiple mappings that map to the same portion of the target schema
contribute with different, irreconcilable behaviors. For a complete presentation of the
MapMerge algorithm, we refer the interested reader to [5].

Evaluation. To evaluate the quality of the data generated based on MapMerge, we in-
troduced a measure that captures the similarity between a source and target instance

% Modulo the absence of H; [w], which is introduced to ensure that no target attributes are left
unassigned.
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by measuring the amount of data associations that are preserved by the transformation
from the source to the target instance. We used this similarity measure in our experi-
ments, on a mix of real-life and synthetic mapping scenarios, to show that the mappings
derived by MapMerge are better than the input mappings. Our experiemental results are
presented in [5].

5.4 Correlating Flows of Schema Mappings with MapMerge and Composition

As discussed in the introduction, we can bring modular design of mappings beyond sets
of parallel mappings between the same pair of schemas, towards assembling general
flows of mappings. To generate meaningful end-to-end transformation specifications for
such flows, we have to bring along into the picture the sequential mapping composition
operator [18]. This operator can be used to obtain end-to-end mappings from chains
of successive mappings. In contrast, MapMerge assembles sets of “parallel” mappings.
These two operators can be leveraged in conjunction to correlate flows of mappings.

Recall the example of the flow of mappings in Figure 4l The individual mappings
can be assembled into an end-to-end mapping from the schema S; to the schema Sy
through repeated applications of the MapMerge and composition operators. To exem-
plify, the specialized mapping for Dept records between Sy and Sy is a result of com-
posing the mcs and m mappings. Furthermore, the right correlations among the Dept,
Emp, and Proj records that are migrated into S, can be achieved by applying MapMerge
on mj, me, and the result mcg o m of the previous composition.

Flow Correlation Algorithm. We provide here an overview of our flow correlation
algorithm. The complete details of this algorithm can be found in [5]. A flow of map-
pings can be modeled as a multigraph whose nodes are the schemas and whose edges
are the mappings between the schemas. Recall that a mapping consists of a pair of
source and target schemas as well as a set of constraints specified by SO tgds. In this
algorithm, a mapping between a source and a target schema is either part of the input, or
a consequence of applying MapMerge or mapping composition. Our algorithm assumes
that the graph of mappings is acyclic. In addition, for the purposes of this algorithm,
we assume that the MapMerge operator does not lead to outstanding residual equality
constraints. Integrating such constraints with the mapping composition operator is a
problem we plan to investigate in future work.

The flow correlation algorithm, which is shown in Figure [[3] proceeds through al-
ternative phases of applying the MapMerge and mapping composition operators, and
terminates when no further progress can be made. In a MapMerge phase, the multi-
graph modeling the flow is essentially transformed into a regular graph. For any pair of
schemas S;, S;, the set of mappings M,; going from S; to S; is replaced by the re-
sult of applying MapMerge on M,;. In a mapping composition phase, for any distinct
schemas S;, S;, Sy, in the flow such that M, is a mapping from S; to S; and M, is a
mapping from S; to Sy, the result M = M o M, of composing M and My is added
to the flow. We use here the mapping composition algorithm in [18], since it applies to
schema mappings specified by SO tgds.

Our correlation algorithm keeps track, via the set C, of the mappings being added to
the flow in the composition phase. As a result, a mapping is not re-added to the flow
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Algorithm CorrelateFlow(M)
Input: A set of schema mappings M.
Output: The set of schema mappings M after correlation.

Let S be the set of schemas that are either source or target schemas for the mappings in M.
Initialize C =
Repeat
[Phase 1] MapMerge
For every pair (S;, S;) of distinct schemas in S
Let M ; be the set of mappings from S; to S; in M.
Remove the mappings in M;; from M
Add MapMerge(M ;) to M
[Phase 2] Composition
Initialize V" = ()
For every triple (S;, S;, Si) of distinct schemas in S
where there exist in M a mapping M; from S; to S; and
a mapping M from S; to S,
Let M = M; o M
If M ¢ C (this composition was not considered before), add M to N
Add the mappings in V' to M, and to C
Until NV is empty.
Return M.

Fig. 13. The mapping flow correlation algorithm

if the result of composing the same mappings was computed and added to the flow
previously in the execution of the algorithm. The algorithm terminates when no new
mappings can be added to the flow in the composition phase, and returns the correlated
flow of mappings M. After executing this algorithm, the flow of mappings will contain
at most one mapping between each pair of schemas (with each mapping typically being
a set of correlated formulas).

6 Conclusion

This article presents a new framework for designing schema mappings between large
schemas. This new framework allows a user to divide-and-conquer the design of large
schema mappings by designing the schema mappings between smaller portions of the
participating schemas. These smaller schema mappings can be designed independently
of the rest through the specification of data examples or through the use of traditional
schema mapping design tools. Such individually designed schema mappings can then
be correlated and merged into one that better represents the associations in the source
data, whenever possible.
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Abstract. We focus on human-in-the-loop, information-integration settings
where users gather and evaluate data from a broad variety of sources and where
the levels of trust in sources and users change dynamically. In such settings,
users must use their judgment as they collect and modify data. As an example,
a battlefield information officer preparing a report to inform his or her superiors
about the current state of affairs must gather and integrate data from many
(including non-computerized) sources. By tracking multiple sources for
individual values, the officer may eliminate a value from the current state
whenever all of the sources where this value was found are no longer trusted.
We define a conceptual model for a curated database with provenance for such
settings, the Multi-granularity, Multi-provenance Model (MMP), which
supports multiple insertions and multiple (copy-and-)paste operations for a
single database element, captures the external source for all operations, and
includes a Data Confidence Language that allows users to confirm or doubt
values to record their atomic judgments about the data. In this paper, we briefly
summarize the MMP model and show how it can be extended to support
potentially complex operations including compound judgment operators (such
as merging tuples to achieve entity resolution), while capturing a complete
record of data provenance.

1 Introduction: Our Data-Curation Setting

Our work is motivated by our interest in a data curation setting — typically a human-
in-the-loop setting — where a user is continually making judgments about the
trustworthiness of data items. Green et al. point out that users often consider where
data came from and how or by whom it has been modified in making such judgments
[Green07]. As observed by Buneman er al., [Buneman06] data curators are quite
naturally performing information integration as they “use a wide variety of sources to
select, organize, classify and annotate existing data into a database on some topic.”
Buneman and his colleagues also identified copy-and-paste as one of the key
operations performed by data curators and noted that keeping track of the provenance
due to user actions (in the form of data manipulations) is as important as keeping
track of the resulting data. Their work was motivated, in part, by settings where the
collective scientific community works together to evolve local copies of a single,
shared database.

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 89-J[11] 2013.
© Springer-Verlag Berlin Heidelberg 2013
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Our focus is on a somewhat different setting for curation where there are many
competing and perhaps conflicting sources for (ordinary) data and where users may
prepare different data products (from the same contributing data) to support different
purposes. As an example, a battlefield information officer must collect and verify
data for use by the local commander to decide on near-term actions. Alliances and
allegiances can change, so a data source trusted yesterday might be in question today.
In the same way, operations performed on data by a particular user during a particular
time period may be in question. A user in this setting integrates data largely through
manual, curatorial activities and each decision that he or she makes embodies his or
her judgment.

The setting we envision has the following requirements:

¢ track provenance of all operations that create or modify data — The provenance
record should include: the source of the information, the user (or automated
process) who performed the operation, and the timestamp. The system must track
queries (including materialized queries) and all data manipulation (DML)
operations including copy-and-paste. We consider copy-and-paste as using an
internal source (a value elsewhere in the same database) and insert as using an
external source (some separate file or system). Since the schema may evolve over
time, the provenance record should also track data definition (DDL) operations
such as create or alter table statements.

¢ record multiple internal and external sources for values — Allowing users to
indicate multiple sources for values is important in this setting. Consider a
schema: Employee(Name, ID) with a relation instance containing one tuple <Bob,
8>. The source of this tuple could be recorded in the provenance record when it
was originally inserted. User Betty could then find an additional external or
internal source of information that confirms that Bob’s ID is 8 and record this
source as additional provenance for the tuple. In such a system, a single value in
the database may have multiple histories based on DML operations alone.

¢ provide full access to provenance and data — Since users are aware of the actions
performed on the data as well as the sources, they may find it useful to browse and
query both data and provenance, including selecting data based on provenance. For
example, user Candice might query Betty’s database in order to search for data
about Bob that was inserted from source S. Users may also wish to see the
database as it existed at previous points in time.

e allow users to record their confidence in data — In this setting, users are often
engaged in checking or corroborating data. Thus, it is useful to allow users to
(simply) record their confidence (or lack thereof) in a value. For example, Candice
might choose to record in the database that she has confidence in <Bob, 8>,
perhaps because Bob told her that his ID is 8. Similarly, she might choose to record
that she has reason to doubt some other data. Other users may consider these
expressions of confidence and doubt when making their own judgments about the
data.
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We define trustworthiness of data to be a function of the user’s trust in the sources
from which the data came, the operations performed on it, the users who performed
those operations, and the time periods when they were performed. Calculating a value
of trustworthiness for an item of data thus requires that we: capture its provenance (as
described above); allow the user to express levels of trust in the information sources,
operations, and users represented in that provenance; and provide a method for
computing a consistent mathematical valuation over that provenance and those levels
of trust. These needs lead to one additional requirement:

e determine user trust in external sources, users and timestamps with
trustworthiness calculations — By recording the level of trust in sources,
(earlier) users who manipulated data, and in time periods, a user should be able to
compute the current trustworthiness of data. Thus the system should support a
systematic calculation of trustworthiness of data based on the provenance record
much like the provenance polynomials developed by Green et al. [Green07b].

This paper presents the Multi-granularity, Multi-Provenance (MMP) Model
[Archerl1], a conceptual model designed to support this setting for data in a relational
database. As a conceptual model, MMP is designed to make it easy for a user to
browse and understand the complete record of the database as it evolved, with a
complete record of its provenance. The state of the database at a point in time is
called a face. MMP represents the complete record of user actions as a series of
faces, ordered by timestamp, where each face is labeled with the identity of the user
who performed the operation that created the face, the operation performed, and the
timestamp at which the operation was applied. MMP includes a Data Confidence
Language (DCL) that allows a user to confirm or doubt a given value; such operations
are reflected in the provenance record (with the user and the date) but do not modify
the value. Provenance is represented explicitly in MMP as links from components
(i.e., relations, attributes, tuples, or values) in the current face to the components in
the immediately preceding face from which the component was derived. MMP
records provenance for query, data manipulation (DML), data definition (DDL), and
data confidence (DCL) operations at various levels of granularity (i.e., table, attribute,
tuple, and value) as appropriate for each operator in the model (multi-granularity) and
explicitly allows for values to be inserted or (copy-and-)pasted multiple times, from
different sources (multi-provenance). MMP represents external sources explicitly;
provenance links are also used to connect each component (e.g., that was inserted) to
the external source referent from which it was taken. MMP also includes a sub-
language for use with traditional relational selection and projection operators that
allows a user to select data based on its provenance [Archer10].

MMP builds on prior work in database provenance that records the provenance of
tuples in a query answer, and prior work in curated databases that records the
provenance of DML operations including the copy-and-paste operation. These
previous works treat provenance as part of the data, affected by the same operations
that affect data, and stored as additional schema elements (typically an additional
attribute value for each tuple) along with data. Such an approach has several
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shortcomings with respect to how we expect provenance to be used. Because these
models do not distinguish provenance from data, a user is left to manage and maintain
provenance explicitly. For example, the user must take care not to delete or over-write
provenance during each operation he or she performs. For the same reason,
provenance must be queried using the query language for data, instead of allowing
query language specifically for querying provenance. In these previous works it is
possible to write a query that returns the provenance of selected data, but it is difficult
to write a query that selects data based on its provenance. This difficulty arises
because provenance is typically encoded in some sort of expression (e.g., polynomial)
in an ordinary attribute; accessing data based on provenance would require parsing
the provenance expressions. Because provenance in these models is treated as
additional attribute values stored with data, deletion of the data leaves no place to
retain its provenance, yet that provenance may be an important part of the provenance
record of other data (previously derived from the deleted data) that is still present in
the database. Because provenance in these models is stored as individual attribute
values along with the data, these approaches limit data to having a single “history”,
preventing the system from representing, for example, multiple insertions of the same
data from distinct sources. Because the relational model used in this prior work does
not provide for recording provenance of all granularities of the data, it is not possible
to represent some aspects of provenance. For example, this prior work does not
support provenance for entire relations or entire attributes within relations. These
models require complex computation and recursion over the database to convert “one-
step” histories into a representation suitable for querying the full lineage of data.
MMP addresses each of these shortcomings by providing a conceptual model where
provenance has its own representation, semantics, and query language, and is
managed independently of the data it describes. MMP also goes beyond these
existing approaches by capturing additional information in the provenance record,
including the external source (that was consulted), the user, and timestamp of each
operation, by introducing data confidence operators, and by supporting multiple insert
and paste operations for a value, a tuple, or a relation.

This paper contributes an overview of the MMP conceptual model and its formal
definition and an explanation of how MMP operations can be easily combined in
transactions to support complex operations including compound judgment operations.
We illustrate this capability via an entity resolution operation (where two tuples are
combined based on user judgment).

We describe the MMP model in Section 2 and provide an overview of its formal
definition in Section 3. The formal definition allows us to demonstrate that MMP
correctly supports polynomials [Green(07b], extended to handle the additional features
of external sources, DDL, DCL, and multiple insert and copy-and-paste operations.
In Section 4, we describe how complex operations can be defined in MMP and we
show how MMP supports trust-evaluation using polynomial expressions. Section 5
compares the work to related work in the field. Section 6 provides conclusions and a
discussion of future work.
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2 The Multi-granularity, Multi-Provenance Model (MMP)

The goal for MMP is to show the end-user a complete picture of both data and
provenance in an understandable manner. MMP represents data and provenance
orthogonally, with data accessible for users to create, modify, or delete but with
provenance created as a by-product of the user operations and never modified. An
MMP instance consists of a set of external sources (each represented as an un-
interpreted token), a series of faces where each face is one instance of the database,
and a set of provenance links from components in a face to components in the
preceding face or to external sources.

Figure 1 shows two simple MMP instances with the current face shown in front
with predecessor faces ordered. The left side of Figure 1 shows provenance links to
an external source based on a tuple being inserted from that source (for example,
based on user Betty inserting tuple <Bob, 8> into relation A from source X). The right
side of Figure 1 shows provenance links introduced from the new face to the
immediately preceding face when a relation is (copied and) pasted from another
relation (for example, based on Betty copying the entirety of relation A from an
existing relation B). In each case, the newly introduced face is labeled with the
operation, user, and timestamp that led to the face. (The user is omitted in Figure 1 for
brevity.) The left side of Figure 1 shows the provenance links for the tuple as well as
inherited provenance links (described below and shown as dotted lines) for the
attribute values in the tuple. The right side of Figure 1 shows provenance links at all
four levels of granularity; relation A has a provenance link to relation B and
additional provenance links (shown as dotted lines) are inherited as follows. Each
attribute in relation A has a provenance link to the corresponding attribute in B; the
tuple in A has a provenance link to the corresponding tuple in B; and each value in the
tuple has a provenance link to its corresponding value. MMP defines provenance at
the highest appropriate level of granularity for each supported operation and includes
a set of inheritance rules that can compute the complete set of provenance links. As a
result, MMP instances store the minimum explicit provenance links to represent
complete provenance. For example, for the right hand side of Figure 1, an MMP
instance need only store the single relation-level provenance link. For the left hand
side of Figure 1, an MMP instance need only store the single tuple-level provenance
link. The remaining links may be inferred from those links. In this paper, we focus on
provenance links for tuples and values (assuming those links have been either induced
directly by an MMP operation or deduced using the inheritance rules). Note that the
database schema may change from one face to the next, based on DDL operations.
The details of the inheritance rules for provenance and how DDL operations are
supported in MMP can be found elsewhere [Archerll]. Once created, provenance
links are permanent' and immutable.

In MMP, implicit, automatically derived provenance links, called continuity links,
connect an unchanged component in one face to the identical component in the

"' In an operational system, a user (with the appropriate privileges) should be able to delete the
oldest faces and the associated provenance links that are deemed no longer useful.
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Fig. 1. Successive faces of two different MMP instances, with explicit and inherited links to an
external source (left) for an insert operation and with explicit and inherited provenance links
(right) for a (copy-and-)paste operation. Inherited links are shown as dotted lines.

Table 1. MMP operators (new operators shown in bold)

Note: r = relation, ¢ = tuple, a = attribute, v = value, s = (external) source
Note: for the paste operations: subscript s indicates source and subscript ¢ indicates target
Data Definition Operators (DDL) Data Manipulation Operators (DML)
Create Relation(r) Insert Value(r, t, a, v, s)
Create Source(name) Drop Value(r, t, a, s)
Create Attribute(r, a) Insert Tuple(r, (a, v[, a, v, ...], 5))
Drop Relation(r) Drop Tuple(r, t, s)
Drop Attribute(r, a) Paste Value(r, t, a, 1y, t, ay)
Data Confidence Operators (DCL) Paste Tuple(r, ry t,)
Confirm Value(r, t, a, v, s) Paste Relation(r, ry)
Doubt Value(r, t, a, v, s) Query Operators
select, project, join, union

immediately preceding face, called the predecessor of the component in the new face.
Continuity links to predecessors are not shown in Figure 1 and are generally not
shown to the user, though they are available when querying provenance.

The MMP operators are shown in Table 1, with new operators (beyond those found
in a relational DBMS) shown in bold. Each operator takes an MMP instance and
creates a new MMP instance with at most one additional face, where the effect of the
operator is reflected in the newly introduced face using the standard definition of
relational database operators. MMP includes operators that create or drop attributes
in a relational schema and operators that insert and drop values in a tuple, with the
obvious semantics. The new Create Source DDL operator allows the user to introduce
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Fig. 2. MMP example showing three Inserts, one (materialized) query, a Paste, and a Confirm
operation

a new external source reference (which is represented as an uninterpreted text string,
in the current model). Create Source is the only operator that does not add a face to its
input instance—it only augments the set of external sources. MMP includes new
DML operators that allow a user to insert or drop individual values and that allow a
user to paste a value, tuple, or relation. In MMP, a user can issue multiple insertions
and pastes of data, with each represented as an additional source in the data’s
provenance, as long as the data inserted or pasted is identical to the existing data. A
data component appears in all faces following the one in which it was created.
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Every data item in a face has an associated expired flag that is initially set to false.
When data is dropped (i.e., deleted) by an MMP operator, the expired flag is set to
true in succeeding faces. MMP operators that correspond to standard relational
operators” consider only the data that has the expired flag equal to false.

Figure 2 shows a more complex example using MMP, with seven successive faces.
In this example, user Candice starts with a database containing relation A (with tuple
<Bob, 8>), relation D (with tuple <John, 6>), and empty relation B. Candice first
inserts <John, 6> into A from external source X. She then inserts <Sue, 7> into
relation B from external source Y, and then inserts <John, 6> into relation B from
external source Z. Next, Candice executes the query “C = SELECT Name, ID FROM
A WHERE Name = “John” UNION SELECT Name, ID FROM B WHERE Name =
“John”. As a result, relation C is created, containing the single tuple <John, 6>. Next,
Candice re-pastes the ID value “6” into this tuple from relation D, to indicate that D is
another source of the same data. Finally, Candice indicates that she has additional
confidence in “6” as John’s ID because of information she found in external source
“W”. (The user and the timestamp are omitted from the labels in this example.) We
see that insert operations and the confirm and doubt operations induce provenance
links only to external sources. Queries induce provenance links at the relation,
attribute, tuple, and value levels. For example, the value 6 in the query result has
provenance links to the 6 from each of the relations involved in the query. A Confirm
operation, the last one shown, induces only a provenance link to the external source
used. (Continuity links to predecessors, as well as inherited links, are not shown in
Figure 2.)

3 Overview of the Formal Definition of MMP

An MMP instance M consists of the following:

o A finite sequence of relational databases instances D = (d}, d, ..., d,,), where n
is the current number of database instances. Each database instance in D is called
a face. Each face d; consists of a finite set of relations. Each relation consists of a
finite set of tuples sharing a common schema consisting of a finite set of
attributes. Each tuple includes at most one value from the domain of each
attribute of the schema for the relation. The set of components C; in a face d; is
the union of the relations, attributes, tuples, and values in d;. Note that
components are distinguished by the face in which they appear. For example, if a
relation is present in face i (prior to an operation on the database) and is also
present in face i + 1 (after that operation is applied), then an MMP instance
would include two distinct components (one belonging to C; and one belonging to
C;,1) to represent the relation appearing in the two faces. C = U7, C; is the set of
components in D.

2 MMP includes a predicate sublanguage for use in the relational algebra select and project
operators; this sublanguage supports inspection of the expired flag. All other MMP operators
work only with unexpired data.
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o A set of labels I = TS x OpD x U. For a label <ts, op, u> in Ip, ts € TS is a
timestamp, op € OpD describes an operation from the MMP language as it was
invoked, and u € U identifies a user of M.

e A labeling function A;: D — I that associates a label with each face d € D,
which indicates when the face was created, the operation involved, and the the
user who applied the operation. We require that D is ordered by increasing
timestamps of the labels of its faces.

e A finite set S of external source referents that represent external sources.

e A finite set of provenance links L, where each [, € L is a hyper-edge from a
component ¢,;; € d,; to a non-empty set of components in d, or an edge from a
component ¢,,; € d,,; to an external source referent s € S. A provenance link
L(cy+1, By) indicates that the components in B, , where B, c C,, collectively give
rise to component c,,; as a result of the operation that induced d,,;. A provenance
link /,(c,+1, s) indicates that external source s gave rise to c¢,,; as a result of an
operation that induced d,,.

e A finite set of continuity links, each from a component in one face to the
corresponding component in the immediately preceding face (if it exists), which
is called the predecessor. The (partial) function predecessor: C — C delivers the
predecessor of a component. Continuity links represent the implicit, trivial
derivation of a component in d,,; from its existence in d,. All components in d,;
not affected directly by the operation that created d,,,, have such a link.

Each MMP (non-query) operator and each composition of MMP query operators
that constitute a single query takes an instance M with current database face d, and
produces a new instance M’ with the following items added, as appropriate for the
operator: zero or one additional face d,;;, zero or more additional provenance links
(from components in d,,; to components in d, or from components in d,,; to external
sources), a new labeling function Ap (identical to the existing labeling function except
that it is defined for one additional face, if the operator introduced a new face), a new
set S with zero or one additional sources, and a new predecessor function (extending
the existing predecessor function to the newly introduced components in d,,,; to define
the new continuity links). An initial instance M consists of a single empty face, an
empty set of sources (S), an empty set of provenance links (L), a labeling function
defined only for the first face with a label <time = 0, null, null> and an empty
predecessor function.

3.1 Provenance Induced by MMP Operations

The provenance links that we introduce from components in one face to components
in the immediately preceding face can be viewed as an explicit representation of the
polynomials introduced by Green, et al. [Green07b], extended to handle the MMP
operators, to represent provenance links from a component to an external source
reference (when appropriate), and to support the labels associated with each
operation. In MMP, we introduce one provenance link from a component cto a set B,
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of components to represent each distinct derivation for c. When the set B, consists of
more than one component, all of the components in B,, collectively, are required for
the derivation of c. The detailed description of the semantics of the MMP operations
is defined elsewhere [Archerl1]; we briefly describe how the MMP operators induce
provenance here. Let M be an MMP instance with current face d,,. All of the operators
(except Create Source) induce a new face d,.,; into M with the following
modifications.

MMP DDL Operations:

Create Relation(r) adds a new empty relation named r to face d,.,. Create
Attribute(r, a) adds a new attribute to relation r in face d,,;. The Drop Relation and
Drop Attribute operations set the expired flag for the relevant component in d,.; to
true. None of these DDL operators induce provenance links. Note that Create
Source(name) simply adds name to S and does not induce a new face and thus does
not induce a label.

MMP DCL and DML Operations:

The Confirm Value(r, t, a, v, s) operation (and similarly Doubt Value) creates face
d,, identical to face d, and introduces a provenance link from the value v (for
attribute a in tuple ¢ in relation r) in face d,,; to external source referent s.

The Insert Value(r, t, a, v, s) operation adds the new value v (for attribute a in tuple
t in relation r), in face d,,; and creates a provenance link from v to external source
referent s, in the case when a value does not exist for attribute a in tuple ¢ in relation r
in face d,. Similarly, Insert Tuple(r, (a, v[, a, v, ...], s)) introduces a new tuple into
face d,,, for relation r with a provenance link to s if the tuple does not yet exist in face
d,. If the value or the tuple exists in d,, then the existing value or the tuple must be
identical to the inserted value or tuple. In this case, the effect of the Insert Value or
Insert Tuple operator is to introduce a new face with the a provenance link from the
value or tuple in the new face to the designated source referent s (effectively a re-
insert operation).

Drop Value(r, t, a, s) and Drop Tuple(r, t, s) set the expired flag to true for the
value or tuple, respectively, and introduce a provenance link from the value or tuple
to source s.

The three paste operations, Paste Value(r, t, a, 1y t;, a,), Paste Tuple(r, r, t;), and
Paste Relation(r, r,), where subscript ¢ indicates the target and subscript s indicates
the source, insert the source value (for relation r, tuple ¢, attribute a), tuple (for
relation 7, tuple 7), or relation (for relation 7)—in the case when it does not exist—and
creates a provenance link from the target value, tuple, or relation to the source value,
tuple, or relation. If the component exists in d,, then it must be identical to the pasted
component. In this case, the paste operation creates a provenance link, as described
above, from the component in d,,, to the component from which it was copied in d,
(effectively a re-paste operation).
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MMP Queries:

All relations mentioned in a query must be in the current face, d,, of an MMP instance
M. A query in this form produces a new face d,,; with the query result relation r,,,,
(assuming that r,,, is not yet in face d,,;), using the normal semantics of these
operators. Although the MMP model induces provenance for relations, attributes,
tuples, and attribute values as described elsewhere [Archerl1], we describe here only
the provenance for tuples in the query answer. We define the provenance links
introduced by query operators, recursively.

The cross product operator, 7,,, = 7,1 X ... X1;,4, for input relations r,,, | <x <A,
on face d,, induces one provenance link for each tuple ¢, in the query result r,,,,.
Each result tuple is linked by this provenance link to all of the tuples, one from each
Fuw 1 <x <A, that contributed to t,,,. MMP introduces a single provenance link for
each tuple ¢, in the query result because all of the tuples from face d, together are
needed to derive t,,,, for the cross product operator.

The select operator, O,nairion(rr;), for some input relation r; on face d,, induces one
provenance link for each tuple #,.,, in the query answer that connects #,.,, to the
identical tuple 7,,; in d,. There is at most one such tuple.

The project operator, ruew = TonumnLisi(ty;), for some input relation r; on face d,,
induces one provenance link for each tuple ¢,,, in the query result that connects t,,,, to
one of the tuples in r; that resulted in ¢,.,. The project operator introduces one
provenance link for each tuple in face d, from which t,,, was derived because they
each represent an independent derivation for #,,,,.

The union operator, 7,,, = rh1 U ... U Fya, for input relations r,, 1 <x <A, on face
d,, induces multiple provenance links for each tuple ¢, in the query result, one for
each tuple in an input relation that is identical to t,.,. MMP introduces multiple
provenance links because any one of the identical tuples from an input relation can
independently result in £,,,,.

To represent the provenance of complex queries in MMP, SPJU queries are first
converted to the following form, with A terms in a multiway union:

“101(7’1,1 X . X T1,q1) Uu..u ‘ITAO'A(T'A‘l X o X rA‘qA)

The attribute list for the project operators (7;, 1 <i < A) and the conditions for the
select operators (G;, 1 <i < A) are not shown in this expression. All input relations
are on the current face and the result relation is created on the new face introduced by
this query; we omit the subscript for face on the relations shown here, for simplicity.
One can view the provenance induced by a query of this form as the provenance
induced in four successive faces where the first face contains the results of the
multiway cross-product operators, the second face contains the result of the select
operators (each with the result from the appropriate cross-product operator as input),
the third face contains the result of the project operators (each with the result from the
appropriate select operator as input), and the fourth face contains the result of the
multiway union. In MMP, without loss of generality, we compose the provenance
links from these four faces; the resulting provenance links are induced from tuples in
the final query answer in d,,,, to the appropriate tuples in d,,.
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3.2  Provenance Polynomials in MMP

Green et al. [Green07b] show how to express several forms of database provenance
using algebraic expressions from various underlying semi-rings. The resulting
polynomial expressions can be stored as text strings in an annotation field that is
added to the tuples to represent provenance. The explicit and implicit (inherited and
continuity) provenance links in MMP, with provenance represented separately from
relational data, capture the information present in the most expressive polynomials
defined by Green et al. for use in Orchestra. In MMP, we extend the work of Green et
al. in the following ways:

e We represent multi-generation (not just single-generation) provenance by
composing polynomials.

e We include the operations performed, identity of users performing them, and time
at which they were performed.

e We include provenance due to DDL and DML in addition to query operations.

e We allow for polynomials at all levels of granularity: relation, tuple, and attribute
value.

Since MMP allows multiple insert and paste operations for a single tuple or value
and since each such insert or paste operation can independently contribute the tuple or
value in question, the polynomial expressions for MMP use the + operation to
combine the provenance from such multiple insert and paste operations. Also, as in
Green et al.’s approach, the + operation is used to combine the provenance links
induced by the union and project query operators.

Consider an MMP instance M with components C and external source referents S.
In the following discussion we refer to components in C and S and variables that
represent those components in our polynomial expressions interchangeably. Let V =
C U S. We define Prov™ to be a semi-ring (V, +, e, 0, 1), where + is algebraic
addition and e is algebraic multiplication. The provenance of ¢ € C is represented by
a polynomial expression in Prov®" where + represents that any of its terms alone gives
rise to ¢, and e represents that all of its terms together give rise to c. For example, if
the provenance of ¢ is x; ® x, + x3, for c € C and x;, x,, and x; € V, then c is present in
V because both x; and x, were present as inputs to an operation that had c as output,
and is independently present because x; was present as an input to a (possibly distinct)
operation that gave rise to c.

Let K be the set of constants, if any, introduced by queries that have previously run
on M. Assume that we want to compute the provenance of a component c. Let Cy,,
be a set of components® of the same type as ¢ in M specified by the user beyond
which no provenance should be represented in the polynomial expression. Let B be
the subset of C that appears in the face of the MMP instance immediately preceding
the face in which c appears. Let ¢’ = predecessor(c), if it is defined. Note that any
component has at most one predecessor consisting of the identical copy of the

3 Typically, all of the components in C, siop are in the same face, but they need not be.
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component ¢ in the immediately preceding face (based on the continuity link between
components unaffected by the operation that created the new face). Let c originate N
provenance links, [;(¢c, B;), ..., Ix(c, By), where link Iy, I <X < N, has a terminal at
each byy e By, 1 <Y <|Bxl. For a component c in face d, of M, the provenance of c in
Prov™" is defined recursively as

ProvS¥(c) =
¢ ifc € (SUKUCgop)

N |BX|
Z ( ProvSN (byy) + ProvSN(c") if ¢ € (S U KU Csop)
x=1 1 ly—y

and c¢' = predecessor(c),if predecessor(c) is defined

N |BX|
Z (1_[ ProvsN (byy)) otherwise
: x=1 1 ly=

Here, summation indicates the + operation in ProvSN, and product indicates the o
operation in Prov*". Recursion stops when original sources, constants induced by
queries, or stopping points specified by the user are encountered. By including the
option for stopping points, we can represent as many generations of a component's
provenance as the user wishes to see. If Cy,, is the set of components in the face
immediately preceding the one where ¢ first appears, then Prov®"(c) is the single-
generation provenance of ¢, comparable to most provenance representations from the
literature. If Cy,, is the empty set, then ProvSN(c) is the complete multi-generation
provenance of ¢, which traces back every provenance path to a query constant or an
external source.

As an example, consider the MMP instance in Figure 2. Assume that the attribute
value 6 for the ID attribute value in tuple 1 of relation D on face n is a constant
induced by a previous query. Let § = {W, X, Y, Z} represent the external sources
shown in Figure 2. Let c be the attribute value of 6 for the attribute ID in the first
tuple of relation C at time = n + 6. Then

Prov®™ ()= ProvSN(nl) + W

where nl = predecessor (c) (i.e., the value 6 in the first tuple of relation C in face n
+5), and W is the source for the Confirm value operation shown in the label for face
n + 6. Expanding further, we see that

Prov™ (¢) = (Prov*"(n2) + Prov®"(n3)) + W
where n2 = predecessor(nl) (i.e., the value 6 in the first tuple of relation C in face n
+ 4) and n3 is the value 6 in first tuple of relation D based on the provenance link to

face n + 4. Following another step of expansion, we see then that

Prov™" (¢) = (Prov™(n4) + Prov®"(n3)) + Prov**(n6) + W
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where n4 is the value 6 in the first tuple of relation A in face n + 3 and n5 is the
value 6 in the first tuple of relation B in face n + 3 based on the provenance links for
the query shown in the label for face n + 4. And n6 = predecessor(n3) (i.e., the value
6 in relation the first tuple in relation D in face n + 3). Continuing, we see that

Prov™" (c) = Prov™™(n7) + Z + Prov*"(n8) + W
where n7 = predecessor(n4) (i.e., the value 6 in the second tuple of relation A in
face n + 2), Z is the source of the Insert tuple operation shown in the label of face n +
3, and n8 = predecessor(n6) (i.e., the value 6 in the first tuple of relation D in face n +
2). Next, we see that

Prov™" (¢) = Prov®™(n9) + Z + Prov**(n10) + W

where n9 = predecessor(n7) (i.e., the value 6 in relation A in face n + 1) and n10 =
predecessor(n8) (i.e., the value 6 in the first tuple of relation B in face n + 1). Finally,

Prov™N (©)=X+Z+nll +W

where X is the source of the Insert tuple operation shown in the label of face n + 1
and nl1 = predecessor(nl0) (i.e., the value 6 in the first tuple in relation D in face n).
As described above, nl1 was introduced by an earlier query; thus nl1 € K.

The recursive expansion of Prov®" expressions terminates in polynomial time,
because provenance graphs are acyclic, traversal follows the indicated direction of the
directed edges in our graphs, (i.e., from d,,; to d,), and no provenance links originate
from external source or query-constant nodes.

We extend the definition of Prov®" to include variables representing the label
associated with the provenance link. To do so, we introduce the function
LabelToVars, which maps the label on the relevant face to a product of representative
variables:

ProvSN(c) =
¢ ifc € (SUKUCyop)

N |BX|
Z (1_[ LabelToVars(Ap(d,))ProvsN (byy) + ProvSV(c) if
x=1

Y=1
c € (S U KU Cstop) and
¢’ = predecessor(c),if predecessor(c) is defined
N 1BX|
Z (1_[ LabelToVars(Ap(dy,)) ProvsN (byy)) otherwise
X=1

Y=1

Face d, in the above expressions is the face in D that contains the component by y.
Simply stated, each step through an ancestor by y of ¢ induces a product of variables
LabelToVars(Ap(d,)) where one variable represents the user, one represents the
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operation, and one represents the timestamp of the label applied at that step. As an
example, for the face with the label <n+1, ‘Insert tuple’, ‘Candice’>:

LabelToVars(<n+1, ‘Insert tuple’, ‘Candice’>) = Tjime® Tiop® Tuser

where 74y represents the timestamp n+1, 7., represents the operations ‘Insert
tuple’, and 7y, represents ‘Candice’. Thus the value of PVOVSN(C) from the example
above is:
Titime ® Tlop ® Tjuser ® X+
Dotime ® TZop ® Duser ® Z+
Btime ® %op. BGuser ® nll +
Tatime ® Zlop. Tyuser @ N

4 Exploiting Judgments in MMP

The DDL, DML, DCL and query language of MMP allow users to manipulate a
curated database with provenance. We view each such action as embodying the
judgment of a user or a (possibly automated) proxy of a user. Thus we view the MMP
model as providing the capability to support and capture basic, atomic judgments of
users. Here we describe how additional, compound judgment operations can be
supported in MMP.

Defining a priori the allowable set of judgment operations assumes that we could
anticipate the needs of a wide variety of users. Instead, we augment the MMP model
with a means to implement such higher-level operations via sequences of primitive
operations in a transaction or compound operation. We also show how MMP data and
provenance can be used to make a trust assessment about components based on user
valuations of trustworthiness for sources, users, operations, and timestamps that
appear in the provenance. These two extensions are described in the subsections
below followed by an example of a compound judgment operation for entity
resolution.

4.1 Compound Operations (Transactions) in MMP

An MMP transaction consists of a sequence of MMP operations. The intermediate
and final results of a transaction are thus represented by a sequence of consecutive
faces in an MMP instance. To distinguish transactions in MMP, we add two
components to the label associated with each face in an MMP: a transaction type and
a transaction identifier. The transaction type is a string representing the name of the
compound operation that was performed. For example, the transaction type might be
“entity resolution”. The transaction ID is a natural number (distinct from the
timestamp) and is strictly monotonically increasing across transactions. Note that, for
simplicity, we assume here that users issue transactions one at a time. All of the faces
in a given transaction have the same transaction type, identifier, and user and, as a
result, all of the faces for one transaction are consecutive in an MMP instance.
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Recall from Section 3 that an MMP instance includes a labeling function Ap: D
—Ip, which associates a label drawn from a set of labels I, = TS X OpD X U with each
newly introduced face d € D. We introduce transactions into MMP by extending Ip:

Ip=TS X OpD x UXTT X ID

where 7T is a set of strings identifying recognized transaction types and ID is a
natural number representing the transaction’s unique identity. We correspondingly
extend the LabelToVars function to accept our new definition of face labels as input
and produce two additional variables in the product (one variable for transaction type
and one for transaction ID).

4.2  Provenance Polynomial Evaluation in MMP

For a given component ¢ in an MMP instance and a given set of stopping points, the
provenance polynomial for the component, Prov®"(c), follows from the MMP
instance, as described in Section 3.2. Each polynomial expression includes symbols
that represent provenance constituents: external sources, users, timestamps,
operations, transaction types, transaction IDs, and constants introduced by queries. If
the set of stopping points is empty, then these symbols are the only ones that can
appear in the polynomial expression. If the set of stopping points is non-empty, then
the polynomial expression may also include symbols that represent individual
components, just as the symbols in a polynomial expression as defined by Green ef al.
represent individual tuples.

There are many ways to evaluate trust using a polynomial. One way to do so is to
replace each symbol in the polynomial by its current trust value. As a simple
example, consider a trust value as either O or 1, indicating that a constituent is not
trusted (0) or is trusted (1). Using the approach of Green et al. where trust values are 0
or 1 and + and e have the ordinary semantics of arithmetic, evaluating a polynomial
results in a value that is O (if the component that corresponds to this polynomial
expression cannot be derived from trusted components based on the current trust
values) or a natural number ¢ greater than O (if the component that corresponds to this
polynomial expression can be derived in ¢ distinct ways from trusted components). In
general, all trust values must be known in order to compute the current state of the
database. In practice, trust values need only be supplied for the symbols that appear
in the polynomials for the components of interest.

Recall that in Section 3.2 we defined V = C U S to be the variables in our
provenance semi-ring Prov™". One simple way to define trust is as a function trust: V
— {0, 1} that delivers the trust value for each symbol in V, assuming a simple binary
trust model. The trust function could also use values in the range [0, 1] to represent a
finer granularity of trust. Given a component ¢ in the latest face of M, a set of
stopping points Cy,,, and a trust function, we define the ProvEval operator as follows.
ProvEval(c, Cy,p, trust) is the value resulting from evaluation of PrOVSN(C) using the
function trust. The evaluation proceeds by normal substitution of values taken from
trust(c) for each variable representing c. The resulting mathematical expression is
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then evaluated in the MMP provenance semi-ring to produce a numerical value,
which is the valuation of ProvEval(c, Cy,p, trust).

As an example of provenance evaluation, recall that Candice was the user who
applied all the operations in Figure 2 in our earlier example. Assume that Betty is
interested in establishing the trustworthiness of Bob’s ID value of 6, recorded in the
first tuple of relation C in Figure 2. Let component d be a stopping point for
provenance computation. Assume that each operation is in a distinct transaction, with
no predefined transaction type. Then:

Titime® T1op® Tiuser® Tittype® Titid =
LabelToVars(<n+1, “Insert tuple”, “Candice”, null, T1>)
Dotime® D20p® Duser® Ditype® D2tid =
LabelToVars(<n+3, “Insert tuple”, “Candice”, null, T2>)

Btime® T30p. Buser® ﬁnype. Bid =

LabelToVars(<n+4, “Query”, “Candice”, null, T3>)

Titime® /Elop. Thuser® z:mype. Tatid =
LabelToVars(<n+5, “Paste value”, “Candice”, null, T4>)

T5time® TSOp. T5user® TSnype. T5tid =
LabelToVars(<n+6, “Confirm value”, “Candice”, null, T5>)

Let ¢ be the component that is the value 6 in the first tuple of relation C on face
n+6 in Figure 2. Then the provenance polynomial for c is:

SN,
Prov (C) = Biime® T30p. Buser® T3nype. %tid(( Titime® Tlop. Tiuser® Tlttype. Tltid.X ) ®
( Dotime® TZop. Touser® TZttype. TZtid.Z)) + Titime® /Elop. Thuser® z:htype. z:ltid.n] 1

*+ B5time® TSop. T5user® TSttype. T5tiq® w

Here we show three possible definitions for the trust function:

Element of Trust function A | Trust function B | Trust function for
Prov®™(c) entity-resolution
example

X 1 0 1

V4 1 1 0

nll 1 1 1

W 1 1 1

all 7 variables 1 1 1

Using trust function A from the above table, Prov®"(c) evaluates to 3 indicating
that there are three independent, trusted derivations that give rise to c. If, for
example, we modify the trust function such that X maps to O to indicate that X is not
trustworthy, as shown in trust function B in the above table, then the resulting value
of the Prov®" expression is 2. If Betty chooses B as her model of trustworthiness, then
she might reasonably interpret the resulting value as an indication that Bob’s ID value
of 6 is trustworthy. Had the value of the provenance expression evaluated to 0, Betty
might have reasonably decided that she should not trust that Bob’s ID was 6.
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4.3  Example: Entity Resolution in MMP

In an earlier provenance model [Archer08], we formally defined and implemented an
operator for entity resolution. The operator required that the user indicate the two
tuples to be resolved. Then for each attribute where the values for the two tuples were
different, the user was required to indicate which of the two values he or she preferred
to retain in the resolved tuple. The provenance of the entity resolution was recorded
in a history table in our earlier model. That model also included an “undo” operator
that could reverse an entity resolution provided that none of the contributing attribute
values had been changed in the interval between the original entity resolution
operation and the undo operation. In MMP, an entity resolution can be implemented
as a series of lower-level MMP operations. Consider an example schema:
Employee(empNo, name, age, phone), and a relation C implementing an instance of
this schema, and containing two tuples:

1 =<107, “Joe”, 25, 555-5555>, the first tuple in relation C
t, = <107, “Joe”, 27, 555-5555>, the second tuple in relation C

Suppose that the user wishes to resolve these tuples, and wishes to choose the

value for age by selecting the value with the highest trust value. Suppose also that
Prov®™((C, 1, age)) = X + W, and Prov®™((C, 2, age)) =X +Z

and that the trust function yields trust values as shown in the fourth column of the
table above. (We omit the labels from this expression, for brevity.)

We can accomplish entity resolution for this case in MMP by the following series
of operations, expressed in an informal syntax, which taken together comprise an
MMP transaction. In the example, comments are prefaced by ‘//’:

// begin transaction to resolve t1 and t2 from C into a new t3

// first, evaluate trust we have in the differing candidate attribute values

trustInTuplel = ProvEval(C, t1, Cy,, = &, T); // in our example, value is 2

trustInTuple2 = ProvEval(C, t2, Cy,, =, T); // in our example, value is 1

// next, formulate a new tuple in C, and return an identifier for it

tuplelD =

Insert Tuple(C, (empNo, null, age, null, name, null, phone, null),null); // create new tuple

Paste Value (C, tupleID, empNo, C, t1, empNo); // empNo set by and has provenance from t1

Paste Value (C, tupleID, empNo, C, t2, empNo); // empNo also has provenance from t2

Paste Value (C, tuplelD, phone, C, t1, phone); // as above, for phone attribute

Paste Value (C, tuplelD, phone, C, t2, phone);

Paste Value (C, tupleID, name, C, t1, name); // as above, for name attribute

Paste Value (C, tupleID, name, C, t2, name); //

If (trustInTuple2 > trustInTuplel) // choose origin of age by using more trusted tuple
Then Paste Value (C, tuplelD, age, C, t2, age);
Else Paste Value (C, tuplelD, age, C, t1, age);

// now delete the original tuples, leaving the resolved tuple in their place

Drop Tuple (C, t1, null);

Drop Tuple (C, t2, null);

// end transaction
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5 Related Work

Much of the work on models for provenance and relational data has focused on
describing the connection from items (e.g., tuples) in a query answer to the items
(e.g., tuples) in the input database from which it was derived. As an aid in contrasting
such provenance models, we define the following distinguishing attributes. History.
An ancestry-only model documents only the identity of data items contributing to a
derived item. An abstract history model includes ancestry-only history as well as a
representation of how the ancestors combined to form the derived item. A full history
model provides enough information to fully reproduce the query result given query
inputs. For example, a full history model might document the entire query text in
addition to the source data for the query. Eagerness. We characterize provenance
models by whether they compute and record provenance at the time an operation
derives a result, or whether provenance is derived later, when a user wishes to inspect
it. We call the former eager provenance and the latter /azy provenance.
Independence. We classify provenance models by whether provenance is recorded as
an annotation to data (including annotations stored in auxiliary relations), or has an
independent existence in the model. We call the former provenance-as-attribute and
the latter provenance-as-entity. Granularity. Some-granularity models record
provenance for only some of the granularities of data supported by the data model,
while all-granularity models support provenance for all granularities supported by the
data model.

Cui and Widom [CuiOO0] address the problem of tracing data items in a data
warehouse back to the source items from which they were derived. The resulting
provenance model, called the Lineage model, is lazy, computing provenance by use of
inverse queries run when users wish to trace provenance. The model is ancestry-only,
recording only the set of tuples that causes a result tuple to appear. Lineage is a
provenance-as-attribute model, recording provenance as an extra attribute for each
tuple. In contrast, MMP is an eager, full-history, provenance-as-entity model. Because
only provenance of tuples is recorded, Lineage is a some-granularity model, while
MMP is an all-granularity model. Lineage also differs from MMP in that it computes
provenance only for relational algebra operators (i.e., queries), while MMP
additionally addresses DML and DDL operators.

Bhagwat et al. [Bhagwat04] present a general-purpose annotation-management
system for relational databases. The system they describe acts as a provenance model
when annotations consist of the identities of ancestor data. These annotations attach to
each attribute value, rather than entire tuples. The model is thus a some-granularity,
provenance-as-attribute model. Because the system is intended for general
annotations, an implementation of the model could use any history approach. This
model is eager, but addresses only provenance due to query operations.

Copy-Paste Database (CPDB) [Buneman06] defined the data curation setting.
Curated databases in disciplines such as bioinformatics are typically maintained by
significant manual correction, integration, and manipulation. Buneman noted that as a
result, provenance information for such data is a key factor in assessing data quality.
The CPDB provenance model was motivated by the provenance needs of users
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operating in such settings. Unlike other models in the literature, CPDB is a full-
history model, although it only addresses DML operations, not queries or DDL
operations. In work subsequent to CPDB, Buneman et al. developed a framework
based on CPDB for managing provenance due to queries as well as data
manipulations in a single model [Buneman0O8]. CPDB is an eager, provenance-as-
attribute model. CPDB is unique among the models we consider in that, like MMP, it
is an all-granularity model. CPDB does not address multiple insertions of identical
data (nor tracking of multiple histories) as MMP does.

Trio supports both data uncertainty and provenance [Agrawal06]. We restrict our
consideration of Trio to data operations without uncertainty. Trio is an eager, some-
granularity, provenance-as-attribute model. Like Lineage, this provenance includes
where data came from, but not what manipulations were done, nor who performed
them: an ancestry-only model. Trio's language supports queries as well as data
manipulation, but does not support multiple insertions as MMP does. Trio is the only
current model besides MMP that retains deleted data. It is also the only current model
that provides a provenance-specific built-in function, Lineage(), to help users in
writing provenance-related queries.

Orchestra [Green(7] is a system designed to allow sharing of data among peer
databases. The provenance representation used in Orchestra expresses both ancestor
data and a loose (algebraic) description of how data was derived, so we classify it as
an abstract-history model. This representation uses semi-rings of polynomials
[Green07b], similar to MMP provenance polynomials but not as expressive. In
Orchestra, these polynomials are restricted so that there is no concept of derivations
that include multiple operations applied over time. Because of this restriction,
multiple insertions are not part of the Orchestra model, and there is no notion of
multi-generation provenance in Orchestra. In contrast, MMP supports both of these
capabilities.

The models discussed here are typical of models in the literature in that they
specify how provenance is stored and how it is internally represented. MMP is a
notable exception, specifying only what information is recorded and what its
semantics are. MMP also specifies limits on how provenance may be manipulated.
These differences lead us to categorize MMP as a conceptual provenance model, and
the others as logical provenance models.

We evaluated the Lineage, Bhagwat, CPDB, Trio, and Orchestra models discussed
above and discovered four gaps of interest that motivated our work on MMP: 1) these
models do not model provenance resulting from a mix of DDL, DML, and query
operations; 2) in each of these models, users must parse and interpret each provenance
representation manually in order to select data or make other decisions based on
provenance; 3) in each of these models, users must assemble multi-generation
provenance manually before querying or browsing it; and 4) query languages used in
implementations of these models are designed for relational data, and so are not well-
suited to phrase queries over provenance. MMP addresses the first of these gaps by
modeling provenance for all operations. MMP addresses gaps 2, 3, and 4 in several
ways. First, MMP includes provenance graphs that show an intuitive representation of
provenance that requires no user parsing or reconstruction. The MMP predicate
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language (described elsewhere) allows users to describe the characteristics of
provenance that are required for their query, which MMP uses to compare against
MMP-stored provenance information, so that users need not interpret nor parse
provenance representations. The MMP model natively represents multiple-generation
provenance, so that users need not manually assemble multiple generations of
provenance information before using it.

6 Conclusions

MMP is a conceptual model for data and provenance in relational databases that
addresses several shortcomings of other provenance models. MMP models data and
provenance orthogonally, giving provenance first-class status. MMP models
provenance at all levels of data granularity. MMP also allows for multiple insertions
of identical data, allowing users to represent the case of data appearing in multiple
sources. MMP also includes a Data Confidence Language that allows users to confirm
or doubt values to record users’ atomic judgments about the data. In this paper, we
extend MMP to support potentially complex operations such as merging tuples, while
capturing a complete record of provenance.

This paper contributes an overview of the MMP model and two extensions to
support compound judgment operations. In our entity-resolution example, note that
although the operation requires multiple primitive operations on the database, a single
transaction in our extended MMP model associates all of these operators. Also note
that the operations within the transaction are explicit about how attribute values are
selected, because they reference immutable provenance state, fixed constants for trust
valuation, and an explicit comparison of resulting trustworthiness to select attribute
values. This combination of transactions and explicit evaluation of provenance is
more expressive than our original MMP model in two ways. First, association of all
primitive operations that comprise the complex operation makes the extent of the
manipulations in the compound operation explicit in the model, where in MMP this
information must be recorded outside the model. Second, decision criteria used in the
compound operation are made explicit in the model, where in MMP these criteria are
also not expressible.

Other work on MMP [Archerl1] includes the definition of a logical model that
supports the full MMP model without redundant storage embodied in the faces and
provenance links. We proved that the effect of each MMP operation in the conceptual
model is equivalent to the effect of the corresponding operation at the logical level.
We demonstrated the existence of a surjective homomorphism between our
provenance semi-ring, ProvSN, and that of Green, N[X], to show that Prov>N is at least
as expressive as N[X]. We further showed that there can be no surjective mapping
from N[X] to Prov®", due to the presence in Prov®" of variables representing
operators, users, and timestamps, thus showing that Prov®" is more expressive. We
classified provenance-related queries over relational data, and developed sample
queries for each class, stated in the language of MMP and the language of one or
more of the CPDB (in Datalog), Trio (in TriQL), and Orchestra (also in TriQL)
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models. We showed that MMP can express at least some queries in all classes of
provenance-related queries we defined, while the other models we considered cannot
express queries in all classes. We also evaluated the complexity of provenance-
related queries by writing queries for MMP, CPDB, Trio, and Orchestra in eight of
the classes of queries considered using Levitin’s token count [Levitin86] as a metric
for the complexity of queries. We found that queries written in Datalog for
Buneman’s model were uniformly more complex that those written for MMP by
Levitin’s metric and that queries for Trio and Green’s model were comparable in
complexity to those written for MMP.

There are several interesting questions that we intend to pursue with regard to
MMP. For example, our choices for construction of provenance polynomials and their
trust evaluation are by no means the only ones possible. We may also examine other
semi-rings for polynomial evaluation. Users in a data curation setting may wish to
represent multiple possible values for data when a single value is not clearly the
correct one. We plan to explore the addition of multi-valued attribute values to MMP,
and to study how our provenance model evolves with this addition. At present, trust
(and other) evaluations of data in MMP are constrained to be viewed “one granularity
at a time.” For example, trust evaluation of tuples is done independently of trust
evaluation of attribute values in tuples. We plan to explore ways to make such
evaluations that take into account different evaluation results at varying granularities
within the data. MMP currently models insertions from outside the relational structure
by using tokens that represent external data sources. It may be that users insert data
into an MMP instance from another MMP instance, in which case that inserted data
may have associated provenance from its original MMP instance. We plan to explore
how provenance inherited across multiple MMP instances can be meaningfully
composed and evaluated.
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Abstract. There are a few basic computational concepts that are at the core of all
programming languages. The exact elements making out such a set of concepts
determine (1) the specific nature of the computational services such a language is
designed for, (2) for what users it is intended, and (3) on what devices and in what
environment it is to be used. It is therefore possible to propose a set of basic build-
ing blocks and operations thereon as combination procedures to enable program-
ming software by specifying desired tasks using a tool-box of generic constructs
and meta-operations. Syntax specified through LALR(k) grammar technology
can be enhanced with greater recognizing power thanks to a simple augmentation
of yacc technology. Upon this basis, a set of implementable formal operational
semantics constructs may be simply designed and generated (syntax and seman-
tics) a la carte, by simple combination of its desired features. The work presented
here, and the tools derived from it, may be viewed as a tool box for generating lan-
guage implementations with a desired set of features. It eases the automatic prac-
tical generation of programming language pioneered by Peter Landin’s SECD
Machine. What is overviewed constitutes a practical computational algebra ex-
tending the polymorphically typed A-Calculus with object/classes and monoid
comprehensions. This paper describes a few of the most salient parts of such a
system, stressing most specifically any innovative features—formal syntax and
semantics. It may be viewed as a high-level tour of a few reusable programming
language design techniques prototyped in the form of a set of composable abstract
machine constructs and operations
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The languages people use to communicate with computers differ in their
intended aptitudes towards either a particular application area, or in a par-
ticular phase of computer use (high level programming, program assem-
bly, job scheduling, etc., ...). They also differ in physical appearance,
and more important, in logical structure. The question arises, do the id-
iosyncrasies reflect basic logical properties of the situations that are be-
ing catered for? Or are they accidents of history and personal background
that may be obscuring fruitful developments? This question is clearly im-
portant if we are trying to predict or influence language evolution.

To answer it we must think in terms, not of languages, but of families
of languages. That is to say we must systematize their design so that a
new language is a point chosen from a well-mapped space, rather than a
laboriously devised construction.

PETER J. LANDIN—"“The Next 700 Programming Languages” [2]

1 Introduction

1.1 Motivation—Programming Language Design?

Today, programming languages are designed more formally than they used to be fifty
years ago. This is thanks to linguistic research that has led to syntactic science (beget-
ting parser technology) and research in the formal semantics of programming constructs
(begetting compiler technology—semantics-preserving translation from human-usable
surface syntax to low-level instruction-based machine language). As in the case of a nat-
ural language, a grammar is used to control the formation of sentences (programs) that
will be understood (interpreted/executed) according to the language’s intended (deno-
tational/operational) semantics. Design based on formal syntax and semantics can thus
be made operational.

Designing a programming language is difficult because it requires being aware of
all the overwhelmingly numerous consequences of the slightest design decision that
may occur anytime during the lexical or syntactical analyses, and the static or dynamic
semantics phases. To this, we must add the potentially high design costs investing in
defining and implementing a new language. These costs affect not only time and effort
of design and development, but also the quality of the end product—viz., performance
and reliability of the language being designed, not to mention how to justify, let alone
guarantee, the correctness of the design’s implementation [3]].

Fortunately, there have been design tools to help in the process. So-called meta-
compilers have been used to great benefit to systematize the design and guarantee a
higher quality of language implementation. The “meta” part actually applies to the
lexical and syntactic phases of the language design. Even then, the metasyntactic tools
are often restricted to specific classes of grammars and/or parsing algorithms. Still fewer
propose tools for abstract syntax. Most that do confine the abstract syntax language to
some form of idiosyncratic representation of an attributed tree language with some ad
hoc attribute co-dependence interpretation. Even rarer are language design systems that
propose abstract and reusable components in the form of expressions of a formal typed
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kernel calculus. It is such a system that this work proposes; it gives an essential overview
of its design principle and the sort of services it has been designed to render.

This document describes the design of an abstract, reusable, and extensible, pro-
gramming language architecture and its implementation in Java. What is described
represents a generic basis insofar as these abstract and reusable constructs, and any
well-typed compositions thereof, may be instantiated in various modular language con-
figurations. It also offers a practical discipline for extending the framework with ad-
ditional building blocks for new language features as per need. The first facet was the
elaboration of Jacc, an advanced system for syntax-directed compiler generation ex-
tending yacc technology [418 A second facet was the design of a well-typed set of
abstract-machine constructs complete enough to represent higher-order functional pro-
gramming in the form of an object-oriented A-Calculus, extended with monoid compre-
hensions [Sl6)708]]. A third facet could be the integration of logic-relational (from Logic
Programming) and object-relational (from Database Programming) enabling LIFE-
technology [9I10] and/or any other CP/LP technology to cohabit.

What is described here is therefore a metadesign: it is the design of a design tool.
The novelty of what is described here is both in the lexical/syntactical phase and in the
typing/execution semantic phase.

The lexical and syntactic phases are innovative in many respects. In particular, they
are conservative extensions considerably enhancing the conventional 1ex/yacc tech-
nology (or, similarly, f1ex/bison) meta-lexico-syntactical tools [4/11] with more
efficient implementation algorithms [12]] and recognizing power (viz., overloaded gram-
mar symbols, dynamic operator properties a la Prolog). This essentially gives Jacc the
recognizing power of LALR(k) grammars, for any k& > 1. Sections 2.1] and 2.2] give
more details on that part of the system.

The interpretation is essentially the same approach as the one advocated by Landin
for his Store-Environment-Code-Dump (SECD) machine [13]] and optimzed by Luca
Cardelli in his Functional Abstract Machine (FAM) [14]H The abstract machine we
present here is but a systematic taking advantage of Java’s object-oriented tool-set to put
together a modular and extensible set of building blocks for language design. It is suf-
ficiently powerful for expressing higher-order polymorphic object-oriented functional
and/or  imperative programming languages. This includes declarative

2 See Section 211

3 Other formally derived abstract machines like the Categorical Abstract Machine (CAM) also
led to variants of formal compilation of functional languages (e.g., Caml). This approach was
also adopted for the chemical metaphor formalizing concurrent computation as chemical re-
action originally proposed by Banatre and Le Métayer [15] and later adapted by Berry and
Boudol to define their Chemical Abstract Machine (ChAM) [16]. The same also happened for
Logic Programming [17].


http://en.wikipedia.org/wiki/SECD_machine
http://en.wikipedia.org/wiki/Categorical_abstract_machine
http://en.wikipedia.org/wiki/Caml
http://fsl.cs.uiuc.edu/images/a/ab/CS522-Spring-2011-PL-book-cham.pdf
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collection-processing based on the concept of Monoid Comprehensions as used in
object-oriented databases [SU647!8I18]). H

This machine was implemented and used by the author to generate several exper-
imental 100%-java implementation of various language prototypes. Thus, what was
actually implemented in this toolkit was done following a “by need” priority order. It is
not so complete as to already encompass all the necessary building blocks needed for
all known styles of programming and type semantics. It is meant as an open set of tools
to be extended as the needs arise. For example, there is no support yet for LP [17],
nor—more generally—CLP [25].

However, as limited as it may be, it already encompasses most of the basic familiar
constructs from imperative and functional programming, including declarative aggre-
gation (so-called “comprehensions”). Therefore, it is clearly impossible—not to say
boring!—to cover all the nitty-gritty details of all the facets of the complete abtract ma-
chine generation system. This article is therefore organized as an informal stroll over
the most interesting novel features or particularities of our design as it stands to date.

1.2 Our Approach—Abstract Programming Language Design

The approach we follow is that of compiling a specific relatively more sophisticated
outer syntax into a simpler instruction-based “machine” language. However, for porta-
bility, this inner language is that of an “abstract” machine. In other words, it is just an
intermediate language that can be either interpreted more efficiently on an emulator of
that abstract machine, and/or be mapped to actual instruction-based assembly code of a
specific machine more easily.

Thus, as for most compiled typed programming languages, there are actually several
languages:

— a surface language—the syntax used by users to compose programs;

— a kernel language—the “essential” language into which the surface language is
normalized;

— a type language—the language describing the types of expressions;

— an intermediate language—the language that is executable on an instruction-based
abstract machine.

4 As an example, we used our system to generate a prototype Algebraic Query Language (AQL
v0.00) as a functional language augmented with a calculus of compehensions a la Fegaras-
Maier [8]], or a la Grust [18]]. In other words, it is a complete query language, powerful enough
to express most of ODMG's OQL, and thus many of its derivatives such as, e.g., XQuery [[19]
and XPathl [20], etc., ... This version of AQL can be run both interactively and in batch
mode. In the former case, a user can define top-level constructs and evaluate expressions.
AQL v0.00 supports 2nd-order (ML-like) type polymorphism, automatic currying, associative
arrays, multiple type overloading, dynamic operator overloading, as well as (polymorphic)
type definition (both aliasing and hiding), classes and objects, and (of course) monoid homo-
morphisms and comprehensions (N.B.: no subtyping nor inheritance yet—but this is next on
the agenda [21122/23124]).


http://www.odmg.org/
http://www.mm.di.uoa.gr/~toobis/seminar/OQL/tsld001.htm
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath

116 H. Ait-Kaci

Although we will not develop it into much detail in this paper, the Java execution
backend for carrying out the operational semantics of the above a la carte design con-
sists of:

— An operational semantic language—interpreting an abstract instruction set having
effects on a set of runtime structures. The latter defining the state of an execution
automaton. The objects operated on and stored in these structures are the basic data
representation all surface language constructs.

— A type-directed display manager—maintaining a trace emulation of abstract ma-
chine code execution in relation to the source code it was generated from. This is
also useful for debugging purposes while managing three sorted stacks (depending
on the nature of Java data pushed on the various sorted stacks—int, double, or
Objec t)E

— A type-directed data reader—management for reading three sorts of data (int,
double, or Object).

The same applies for pragmatics as well:

— Concrete vs. abstract error handling—delegation of error reporting by inheritance
along (design).backend.Error.java class hierarchylé)

— Concrete vs. abstract vocabulary—handling of errors according to the most specif-
ically phrased error-handling messaging.

1.3 Organization of Paper

The rest of this document is organized as follows. Section[2| overviews original generic
syntax-processing tools that have been conceived, implemented, and used to ease the
experimental front-end development for language processing systems. Section 3 gives
a high-level description of the architectural attributes of a set of kernel classes of pro-
gramming language constructs and how they are processed for typing, compiling, and
executing. Section [] discusses the type system, which is made operational as a poly-
morphic type inference abstract machine enabling multiple-type overloading, type en-
capsulation, object-orientation, and type (un)boxing analysis. Section [3] sums up the
essentials of how declarative iteration over collections may be specified using the no-
tion of monoid homomorphism and comprehension as used in object-oriented databases

5 This is essentiially a three-way SECD/FAM used to avoid systematically having to “box”
into objects primitive Java values (viz., of type int and double). This enables precious
optimization that is particularly needed when dealing with variables of static polymorphic
types but dynamically instantiated into int and double [26].

® Here and in what follows, we shall use the following abbreviated class path notation:

e “(syntax).” for “hlt.language.syntax.”
e “(design).” for “hlt.language.design.” and this latter package’s sub-packages:
x “(kernel).” for “(design) .kernel.”
x “(types).” for “(design) . types.”
* “(instructions) .” for “(design) . instructions.”
x “(backend) .” for “(design) .backend.”
when referring to actual classes’ package paths (h1t stands for “hak’s language tools.”).
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query languages to generate efficient collection-processing code. Section [6] concludes
with a quick recapitulation of the contents and future perspectives.

In order to make this paper as self-contained as possible, the above overview of
salient aspects of the system that has been implemented is followed by an Appendix of
brief tutorials on essential key concepts and terminology this work relies upon, and/or
extends.

2 Syntax Processing

2.1 Jacc—Just Another Compiler Compiler

At first sight, Jacc may be seen as a “100% Pure Java” implementation of an LALR(1)
parser generator [27]] in the fashion of the well-known UNIX tool yacc—*“yet another
compiler compiler” [4]. However, Jacc is much more than... just another compiler
compiler: it extends yacc to enable the generation of flexible and efficient Java-based
parsers and provides enhanced functionality not so commonly available in other similar
systems.

The fact that Jacc uses yacc’s metasyntax makes it readily usable on most yacc
grammars. Other Java-based parser generators all depart from yacc’s format, requiring
nontrivial metasyntactic preprocessing to be used on existing yacc grammars—which
abound in the world, yacc being by far the most popular tool for parser generation. Im-
portantly, Jacc is programmed in pure Java—this makes it fully portable to all existing
platforms, and immediately exploitable for web-based software applications.

Jacc further stands out among other known parser generators, whether Java-based or
not, thanks to several additional features. The most notable are:

— Jacc uses the most efficient algorithm known to date for its most critical compu-
tation (viz., the propagation of LALR(1) lookahead sets). Traditional yacc im-
plementations use the method originally developed by DeRemer and Penello [11]].
Jacc uses an improved method due to Park, Choe, and Chang [[12]], which dras-
tically ameliorates the method of by DeRemer and Penello. To this author’s best
knowledge, no other Java-based metacompiler system implements the Park, Choe,
and Chang method [28]).

— Jacc allows the user to define a complete class hierarchy of parse node classes (the
objects pushed on the parse stack and that make up the parse tree: nonterminal
and terminal symbols), along with any Java attributes to be used in semantic ac-
tions annotating grammar rules. All these attributes are accessible directly on any
pseudo-variable associated with a grammar rule constituents (i.e., $$, $1, $2, etc.).

— Jacc makes use of all the well-known conveniences defining precedences and asso-
ciativity associated to some terminal symbols for resolving parser conflicts that may
arise. While such conflicts may in theory be eliminated for any LALR(1) grammar,
such a grammar is rarely completely obtainable. In that case, yacc technology
falls short of providing a safe parser for non-LALR grammar. Yet, Jacc can accom-
modate any such eventual unresolved conflict using non-deterministic parse actions
that may be tried and undone.
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— Further still, Jacc can also tolerate non-deterministic tokens. In other words, the
same token may be categorized as several distinct lexical units to be tried in turn.
This allows, for example, parsing languages that use no reserved keywords (or more
precisely, whose keywords may also be tokenized as identifiers, for instance).

— Better yet, Jacc allows dynamically (re-)definable operators in the style of the Pro-
log language (i.e., at parse-time and run-time). This offers great flexibility for on-
the-fly syntax customization, as well as a much greater recognition power, even
where operator symbols may be overloaded (i.e., specified to have several prece-
dences and/or associativity for different arities).

— Jacc supports partial parsing. In other words, in a grammar, one may indicate any
nonterminal as a parse root. Then, constructs from the corresponding sublanguage
may be parsed independently from a reader stream or a string.

— Jacc automatically generates a full HTML documentation of a grammar as a set
of interlinked files from annotated /= .../ javadoc-style comments in the
grammar file, including a navigatable pure grammar in “yacc form,” obtained after
removing all semantic and serialization annotations, leaving only the bare syntactic
rules.

— Jacc may be directed to build a parse-tree automatically (for the concrete syntax,
but also for a more implicit form which rids a concrete syntax tree of most of its
useless information). By contrast, regular yacc necessitates that a programmer add
explicit semantic actions for this purpose.

— Jacc supports a simple annotational scheme for automatic XML serialization of
complex Abstract Syntax Trees (AST’s) [29]. Grammar rules and non-punctuation
terminal symbols (i.e., any meaning-carrying tokens such as, e.g., identifiers, num-
bers, etc.) may be annotated with simple XML templates expressing their XML
forms. Jacc may then use these templates to transform the Concrete Parse Tree
(CST) into an AST of radically different structure, constructed as a jdom XML
document[] This yields a convenient declarative specification of a tree transduction
process guided by just a few simple annotations, where Jacc’s “sensible” behav-
ior on unannotated rules and terminals works “as expected.” This greatly eases the
task of retargeting the serialization of a language depending on variable or evolving
XML vocabularies.

With Jacc, a grammar can be specified using the usual familiar yacc syntax with
semantic actions specified as Java code. The format of the grammar file is essentially
the same as that required by yacc, with some minor differences, and a few additional
powerful features. Not using the additional features makes it essentially similar to the
yacc format.

For the intrigued reader curious to know how one may combine dynamic operator
with a static parser generator, Section explains in some detail how Jacc extends
yacc to support Prolog-style dynamic operators.

7 http://www.jdom.org/
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2.2 LR-Parsing with Dynamic Operators

In this section, we explain, justify, and specify the modifications that need to be made
to a classical table-driven LALR(1) parser generator a la yacc [4]. For such a compiler
generator to allow Prolog-style dynamic operators, it is necessary that it be adapted to
account statically (i.e., at compile-time) for runtime information. Indeed, in Prolog, op-
eratorig may be declared either at compile-time or at runtime using the built-in predicate
op/3

How Jacc Enables Static LR-parsing with Dynamic Operators. In an LR-parser
such as one generated by yacc, precedence and associativity information is no longer
available at parse-time. It is used statically at parser generation-time to resolve potential
conflicts in the parser’s actions. Then, a fixed table of unambiguous actions is passed to
drive the parser, which therefore always knows what to do in a given state for a given
input token.

Thus, although they can recognize a much larger class of context-free languages,
conventional shift-reduce parsers for LR grammars cannot accommodate parse-time
ambiguity resolution. Although this makes parsing more efficient, it also forbids a
parser generated by a yacc-like parser generator to support Prolog style operators.

In what follows, we propose to reorganize the structure of the implementation of
a yacc-style parser generator to accommodate Prolog-style dynamic operators. We
do so:

— increasing the user’s convenience to define and use new syntax dynamically without
changing the parser;
— adding new features while preserving the original yacc metasyntax;

— retaining the same efficiency as yacc-parsing for grammars which do not use dy-
namic operators;

— augmenting the recognizing power of bottom-up LALR parsing to languages that
support dynamically (re)definable operators;

— making full use of the object-oriented capabilities of Java to allow the grammar
specifier to tune the parser generation using user-defined classes and attributes.

Declaring Dynamic Operators. The first issue pertains to the way we may specify how
dynamic operators are connected with the grammar’s production rules. The command:

$dynamic op

is used to declare that the parser of the grammar being specified will allow defining, or
redefining, dynamic operators of category op. The effect of this declaration is to create
a non-terminal symbol named op that stands for this token category. Three implicit
grammar rules are also defined:

op : ‘op_’ | " _op_’ | "_op’ ;

8 See Appendix Section[A]for a quick review of Prolog-style dynamic operators.
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which introduce, respectively, prefix, infix, and postfix, subcategories for operators of
category op. These are terminal symbols standing as generic tokens that denote spe-
cific operators for each fixity. Specific operators on category op may be defined in the
grammar specification as follows:

%op <operator> <specifier> <precedence>
For example,
%op '+’ yfx 500

declares the symbol ‘+’ to be an infix binary left-associative operator of category op,
with binding tightness 500, just as in Prolog.
In addition, the generated parser defines the following method:

public final static void op ( String operator
, String specifier
, 1int precedence)

whose effect is to define, or redefine, an operator for the token category op dynam-
ically using the given (Prolog-style) specifier and (Prolog-style) precedence. It is this
method that can be invoked in a parser’s semantic action at parse time, or by the runtime
environment as a static method.

An operator’s category name may be used in a grammar specification wherever an
operator of that category is expected. Namely, it may be used in grammar rules such as:

expression : op expression
| expression op
| expression op expression

’

Using the non-terminal symbol op in a rule such as above allows operators of any
fixity declared in the op category to appear where op appears. However, if an occur-
rence must be limited to an op of specific fixity only, then one may use:

— ‘op ’ for a prefix operator of category op;

3

— ‘ op’ for a postfix operator of category op;

3

— ‘ op ’ for an infix operator of category op.

For example, the above rules can be better restricted to:

expression : ‘op_’' expression
| expression ’_op’
| expression '_op_’' expression

’

A consequence of the above observations is that a major modification in the parser
generator and the generic parser must also be made regarding the parser actions they
generate for dynamic operators. A state may have contending actions on a given input.
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Such a state is deemed conflictual if and only if the input creating the conflict is a
dynamic operator, or if one of its conflicting actions is a reduction with a rule whose
tag is a dynamic operator. All other states can be treated as usual, resolving potential
conflicts using the conventional method based on precedence and associativity. Clearly,
a dynamic operator token category does not have this information but delegates it to the
specific token, which will be known only at parse time. At parser-construction time, a
pseudo-action is generated for conflictual states which delays decision until parse time.
It uses the state’s table associating a set of actions with the token creating the conflict in
this state. These sets of conflicting actions are thus recorded for each conflictual state.
When a token is identified and the current state is a conflictual state, which action
to perform is determined by choosing in the action set associated to the state according
to the same disambiguation rules followed by the static table construction but using
the current precedence and associativity values of the specific operator being read. If
a “reduce” action in the set involves a rule tagged with a dynamic operator, which
precedence and associativity values to use for the rule are those of the specific operator
tag for that rule, which can be obtained in the current stack. The stack offset of that
operator will depend on which of the dynamic operator’s rules is being considered.

Ambiguous Tokens. Note that in general, the tokenizer may return a set of possible
tokens for a single operator. Consider for example the following grammar:

$token ‘!’
$dynamic opl
Sopl !’ yf 200
$dynamic op2

op2 !’ yfx 500

o°

oo
oo

expression : expressionl _opl_ expressionl
| expression2 _op2
| "1’ expression

’

oo
oo

[ G

For this grammar, the character may be tokenized as either ‘!’, ‘opl’, or ‘op2’.
The tokenizer can therefore be made to dispense with guaranteeing a token’s lexical
category. Looking up its token category tables, the parser then determines the set of
admissible lexical categories for this token in the current state (i.e., those for which it
has an action defined). If more than one token remain in the set, a choice point for this
state is created. Such a choice point records the current state of parsing for backtracking
purposes. Namely, the grammar state, and the token set. The tokens are then tried in the
order of the set, and upon error, backtracking resets the parser at the latest choice point
deprived of the token that was chosen for it.

Note that the use of backtracking for token identification is not a guarantee of com-
plete recovery. First, full backtracking is generally not a feasible nor desirable option as
it would entail possibly keeping an entire input stream in memory as the buffer grows.
The option is to keep only a fixed-size buffer and flush from the choice point stack any
choice point that becomes stale when this buffer overflows. In effect, this enforces an
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automatic commit whenever a token choice is not invalidated within the time it takes to
read further tokens as allowed by the buffer size.

Second, although backtracking restores the parser’s state, it does not automatically
undo the side effects that may have been performed by the execution of any semantic
action encountered between the failure state and the restored state. If there are any, these
must be undone manually. Thus, Jacc allows specifying undo actions to be executed
when a rule is backtracked over.

The only limitation—shallow backtracking—is not serious, and in fact the choice-
point stack’s size can be specified arbitrarily large if need be. Moreover, any input that
overuns the choice-point stack’s default depth is in fact cleaning up space by getting
rid of older and less-likely-to-be-used choice-points. Indeed, failure occurs generally
shortly after a wrong choice has been made. We give separately a more detailed speci-
fication of the implementation of the shallow backtracking scheme that is adequate for
this purpose.

Token Declarations. In order to declare tokens’ attributes in yacc, one may use the
commands $token, $right, $left, and $nonassoc. These commands also give
the tokens they define a precedence level according to the order of declarations, tokens
of equal precedence being declared in the same command. Since we wish to preserve
compatibility with yacc’s notations and conventions, we keep these commands to have
the same effect. Therefore, these commands are used as usual to declare static tokens.
However, we must explicate how the implicit precedence level of static token declara-
tions may coexist with the explicit precedence information specified by the Prolog-like
dynamic operator declarations.

We also wish to preserve compatibility with Prolog’s conventions. Recall that the
number argument in a Prolog ‘op/3’ declaration denotes the binding tightness of the
operator, which is inversely related to parsing precedence. The range of these numbers
is the interval [1, 1200]. To make this compatible with the foregoing yacc commands,
the (syntaz) . Grammar . java class defines two constants:

static final int MIN_PRECEDENCE 1;
static final int MAX_PRECEDENCE = 1200;

In order to have the binding tightness to be such that 1200 corresponds to minimum
precedence and 1 to maximum precedence, we simply define the precedence level of
binding tightness n to be 1200 — n + 1. Thus, a declaration such as:

$op '+’ yfx 500

assigns to binary ‘+’ a precedence level of 701 (viz., 1200 — 500 + 1).
We also allow dynamic operators to be declared with the form:

%0p <operator> <specifier>

leaving the precedence implicit, and defaulting to the precedence level effective at the
command’s execution time.

The first encountered token declaration with implicit precedence (i.e., a conventional
yacc token command or a two-argument dynamic operator command) uses the initial
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precedence level set to a defaultﬂ then increments it by a fixed increment. This incre-
ment is 10 by default, but the command:

$precstep <number>

may be used to set the increment to the given number. This command may be used
several times. Each subsequent declaration with implicit precedence uses the current
precedence level, then increments the precedence level by the current precedence incre-
ment. Any attempt to set a precedence level outside the [1, 1200] range is ignored: the
closest bound is used instead (i.e., 1 if less and 1200 if more), and a warning is issued.

3 The Kernel Language

A language construct is said to be primitive (or “built-in”) if is not expressed in terms
of other language constructs['§ The kernel language is the set of primitive language
constructs. It is sometimes also called the “desugared” language. This is because non-
primitive constructs that are often-used combinations of primitive stuctures are both
easier to use and read by human programmers. Hence, before being given any mean-
ing, a program expressed using the “sugared” language syntax is first translated into
its equivalent “desugared” form in the kernel language containing only primitive
expressions.

3.1 Processing a Kernel Expression

Fig. [l gives the complete processing diagram from reading a (kernel) . Expression
denoting a program to executing it.
Typically, upon being read, such a (kernel) . Expression will be:

1. “name-sanitized”—in the context of a (kernel) . Sanitizer to discriminate be-
tween local names and global names, and establish pointers from the local variable
occurrences to the abstraction that introduces them, and from global names to en-
tries in the global symbol table;

2. type-checked—in the context of a (types) . TypeChecker to discover whether
it has a type at all, or several possible ones (only expressions that have a unique
unambiguous type are further processed);

3. “sort-sanitized”—in the context of a (kernel).Sanitizer to discriminate be-
tween those local variables that are of primitive Java types (int or double) or of
Object type (this is necessary because the set-up means to use unboxed values of
primitive types for efficiency reasons); this second “sanitization” phase is also used
to compute offsets for local names (i.e., so-called de Bruijn indices) for each of the
three type sorts (int, double, Object);

4. compiled—in the context of a (kernel).Compiler to generate the sequence of
instructions whose execution in an appropriate runtime environment will evaluate
the expression;

° This value is a system constant called (syntaz) .Grammar .MIN PRECEDENCE.
10 This does not mean that it could not be. It just means that it is provided natively, either to ease
oft-used syntax, and/or make it more efficient operationally.
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Fig. 1. Processing diagram

5. executed—in the context of a (backend) . Runtime denoting the appropriate run-
time environment in the context of which to execute its sequence of instructions.

The Syntax Sanitizer. A sanitizer is an object that “cleans up”—so to speak—an ex-
pression of any possibly remaining ambiguities as it is being parsed and further pro-
cessed. There are two kinds of ambiguities that must be “sanitized:”

— after parsing, it must be determined which identifiers are the names of local vari-
ables vs. those of global variables;

— after type-checking, it must be determined the runtime sort of every abstraction
parameter and use this to compute the local variable environment offsets of each
local variable[']

Thus, a sanitizer is a discriminator of names and sorts@

The Type Checker. The type checker is in fact a type inference machine that synthesizes
missing type information by type unification. It may be (and often is) used as a type-
checking automaton when types are (partially) present.

Each expression must specify its own (kernel).Expression.TypeCheck
({types) . TypeChecker) method that encodes its formal typing rule.

" These offsets are the so-called de Bruijn indices of A-calculus [13]—Or rather, their sorted
version.

12 Tt has occurred to this author that the word “sanitizer” is perhaps a tad of a misnomer. Perhaps
“discriminator” might have been a better choice. This also goes for the (kernel) . Sanitiz-
er . java class’ method names (i.e., discriminateNames and discriminateSorts
rather than sanitizeNames and sanitizeSorts).
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The Compiler. This is the class defining a compiler object. Such an object serves as
the common compilation context shared by an (kernel) . Expression and the subex-
pressions comprising it. Each type of expression representing a syntactic construct of
the kernel language defines a (kernel) . Expression.compile ((kernel).Com-
piler) method that specifies the way the construct is to be compiled in the context
of a given compiler. Such a compiler object consists of attributes and methods for gen-
erating straightline code which consists of a sequence of instructions, each of specific
subtype of abstract type (instructions) . Instruction, corresponding to a top-level
expression and its subexpressions.

Upon completion of the compilation of a top-level expression, a resulting code array
is extracted from the sequence of instructions, which may then be executed in the con-
text of a (backend) . Runtime object, or, in the case of a (kernel) .Definition,be
saved in the code array in the (kernel).Definition’s (kernel).codeEntry ()
field of type (types).DefinedEntry, which is an object that encapsulates its code
entry point, and which may in turn then be used to access the defined symbol’s code for
execution.

Each expression construct of the kernel must therefore specify a compiling rule.
Such a rule expresses how the abstract syntax construct maps into a straight-line code
sequence.

In Appendix Section[Bl this process is illustrated in more detail on a few typical as
well as less typical expressions.

4 Types

We have illustrated a style of programming based on the use of rich type
systems. This is not new in general, but the particularly rich type system
we have described, based on type quantifiers and subtypes, extends the
state of the art. This rich type structure can account for functional, im-
perative, algebraic, and object-oriented programming in a unified frame-
work, and extends to programming in the large and, with care, to system
programming.

LucA CARDELLI—"Typeful Programming” [30]

4.1 Type Language

We first define some basic terminology regarding the type system and operations on
types.

Polymorphism. Here, by “polymorphism,” we mean ML-polymorphism (i.e., 2nd-
order universal), with a few differences that will be explained along the way. The syntax
of types is defined with a grammar such as:

[1] Type SimpleType | TypeScheme

[2] SimpleType ::

BasicType | FunctionType | TypeParameter
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[3] BasicType = Jnt | Real | Boolean | ...
[4] FunctionType := SimpleType — SimpleType
[5] TypeParameter ::= o | o | ... | 5| 5" | ...
[6] TypeScheme ::= Y TypeParameter. Type

that ensures that universal type quantifiers occur only at the outset of a polymorphic
type@

Multiple Type Overloading. This is also often called ad hoc polymorphism. When
enabled (the default), this allows a same identifier to have several unrelated types. Gen-
erally, it is restricted to names with functional types. However, since functions are first-
class citizens, this restriction makes no sense, and therefore the default is to enable
multiple type overloading for all types.

To this author’s knowledge, there is no established prevailing technology for sup-
porting both ML-polymorphic type inference and multiple type overloading. So here,
as in a few other parts of this overall design, I have had to innovate. I essentially imple-
mented a type proving logic using techniques from (Constraint) Logic Programming in
order to handle the combination of types supportable by this architecture.

Currying. Currying is an operation that exploits the following mathematical isomor-
phism of typesé

T, T"—-T" ~T—(T'—>T") (1)
which can be generalized for a function type of any number of arguments to any of its
multiple curryed forms—i.e., forallk = 1,...,n—1:

Ty,....,T, =T ~ Ty,.... Ty = (Tht1,---, T, —1T) 2)

When function currying is enabled, this means that type-checking/inference must
build this equational theory into the type unification rules in order to consider types
equal modulo this isomorphism.

13 Or more precisely that V never occurs nested inside a function type arrow —. This apparently
innocuous detail ensures decidability of type inference. BTW, the 2nd order comes from the
fact that the quantifier applies to type parameters (as opposed to 1st order, if it had applied to
value parameters). The universal comes from V, of course.

14 For the intrigued reader curious to know what deep connection there might be between func-
tional types and Indian cooking, the answer is, “None whatsoever!” The word was coined
after Prof. Haskell B. Curry’s last name. Curry was one of the two mathematicians/logicians
(along with Robert Feys) who conceived Combinator Logic and Combinator Calculus, and
made extensive use of the isomorphism of Equation (I)—hence the folklore’s use of the verb
to curry—(currying, curryed),— in French: curryfier—(curryfication, curryfié), to mean trans-
forming a function type of several arguments into that of a function of one argument. The
homonymy is often amusingly mistaken for an exotic way of [un]spicing functions.
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Standardizing. As aresult of, e.g., currying, the shape of a function type may change in
the course of a type-checking/inference process. Type comparison may thus be tested on
various structurally different, although syntactically congruent, forms of a same type.
A type must therefore assume a canonical form in order to be compared. This is what
standardizing a type does.

Standardizing is a two-phase operation that first flattens the domains of function
types, then renames the type parameters. The flattening phase simply amounts to un-
currying as much as possible by applying Equation (I)) as a rewrite rule, although back-
wards (i.e., from right to left) as long as it applies. The second phase (renaming) consists
in making a consistent copy of all types reachable from a type’s root.

Copying. Copying a type is simply taking a duplicate twin of the graph reachable
from the type’s root. Sharing of pointers coming from the fact that type parameters
co-occur are recorded in a parameter substitution table (in our implementation, simply
a java.util.HashMap) along the way, and thus consistent pointer sharing can be
easily made effective.

Equality. Testing for equality must be done modulo a parameter substitution table (in
our implementation, simply a java.util.HashMap) that records pointer equalities
along the way, and thus equality up to parameter renaming can be easily made effective.

A tableless version of equality also exists for which each type parameter is consid-
ered equal only to itself.

Unifying. Unifying two types is the operation of filling in missing information (i.e.,
type parameters) in each with existing information from the other by side-effecting
(i.e., binding) the missing information (i.e., the type parameters) to point to the part of
the existing information from the other type they should be equal to (i.e., their values).
Note that, like logical variables in Logic Programming, type parameters can be bound
to one another and thus must be dereferenced to their values.

Boxing/Unboxing. The kernel language is polymorphically typed. Therefore, a func-
tion expression that has a polymorphic type must work for all instantiations of this
type’s type parameters into either primitive unboxed types (e.g., Int, Jeal, etc.) or
boxed types. The problem this poses is: how can we compile a polymorphic function
into code that would correctly know what the actual runtime sorts of the function’s run-
time arguments and returned value are, before the function type is actually instantiated
into a (possibly monomorphic) type This problem was addressed by Xavier Lero
and he proposed a solution, which has been implemented in the CAML compiler [26]]
Leroy’s method is based on the use of type annotation that enables a source-to-source

15 The alternative would be either to compile distinct copies for all possible runtime sort instan-
tiations (like, e.g., C++ template functions), or compiling each specific instantiation as it is
needed. The former is not acceptable because it tends to inflate the code space explosively.
The latter can neither be envisaged because it goes against a few (rightfully) sacrosanct prin-
ciples like separate compilation and abstract library interfacing—imagine having to recompile
a library everytime you want to use it!

16 See http://caml.inria.fr/
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transformation. This source transformation is the automatic generation of wrappers and
unwrappers for boxing and unboxing expressions whenever necessary. After that, com-
piling the transformed source as usual will be guaranteed to be correct on all types.

For our purpose, the main idea from Leroy’s solution was adapted and improved so
that:

— the type annotation and rules are greatly simplified;
— no source-to-source transformation is needed;
— un/wrappers generation is done at code-generation time.

This saves a great amount of space and time.

4.2 Type Processing

The type system consists of two complementary parts: a static and a dynamic part
The former takes care of verifying all type constraints that are statically decidable (i.e.,
before actually running the program). The latter pertains to type constraints that must
wait until execution time to decide whether those (involving runtime values) may be
decided. This is called dynamic type-checking and is best seen (and conceived) as an
incremental extension of the static part.

A type is either a static type, or a dynamic type. A static type is a type that is checked
before runtime by the type-checker. A dynamic type is a wrapper around a type that may
need additional runtime information in order to be fully verified. Its static part must be
(and is!) checked statically by the static type checker, but the compiler may complete
this by issuing runtime tests at appropriate places in the code it generates; namely, when:

— binding abstraction parameters of this type in an application, or
— assigning to local and global variable of this type, or
— updating an array slot, a tuple component, or an object’s field, of this type.

There are two kinds of dynamic types:

— Extensional types—defined with explicit extensions (either statically provided or
dynamically computed runtime values):
e Set extension type;
e Int range extension type (close interval of integers);
e Real range extension type (close interval of floating-point numbers).
A special kind of set of Int type is used to define enumeration types (from actual
symbol sets) through opaque type definitions.
— Intensional types—defined using any runtime Boolean condition to be checked at
runtime, calls to which are tests generated statically; e.g.non-negative numbers (i.e.,
int+, double+).

Static Types. The static type system is the part of the type system that is effective at
compile-time.

' For the complete class hierarchy of types in the package (design) . types, see Fig.
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Primitive Types

— Boxable types (‘Uoio, Int, Real, Char, and Boolean)
— Boxed types (i.e., boxed versions of Boxable types or non-primitive types)

Non-primitive Types

Built-in type constants (e.g., String, etc., ...)
Type constructors
Function types
Tuple types:
e Position tuple types
e Named tuple types
Array types:
e (-based int-indexed arrays
e Int range-indexed arrays
e Set-indexed arrays
e Multidimensional arrays
Collection types (Set(«a), Bag(a), and List(a)).
Class types

The classtype This is the type of object structures. It declares an interface (or mem-
ber type signature) for a class of objects and the members comprising its structure.
It holds information for compiling field access and update, and enables specifying an
implementation for methods manipulating objects of this type.

A class implementation uses the information declared in its interface. It is interpreted
as follows: only non-method members—hereafter called fields—correspond to actual
slots in an object structure that is an instance of the class and thus may be updated.
On the other hand, all members (i.e., both fields and method members) are defined as
global functions whose first argument stands for the object itself (that may be referred
to as ‘this’).

The syntax we shall use for a class definition is of the form:

class classname { interface } [ { implementation} ] 3)

The interface block specifies the type signatures of the members (fields and methods)
of the class and possibly initial values for fields. The implementation block is optional
and gives the definition of (some or all of) the methods.

For example, one can declare a class to represent a simple counter as follows:

class Counter { value : Jnt = 1;
metho0 set : Jnt — Counter;
) ~ 4)
{ set(value: Jnt) : Counter)
= (this.value = value);

}

The first block specifies the interface for the class type Counter defining two mem-
bers: a field value of type Jnt and a method set taking an argument of type Jnt
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and returning a Counter object. It also specifies an initialization expression (1) for
the value field. Specifying a field’s initialization is optional—when missing, the field
will be initialized to a null value of appropriate type: 0 for an Jnt, 0.0 for a Real, false
for a Boolean, "\000O' for a Char, " for a Gtring, void for Q?oib@ and nully for any
other type 7'. The implementation block for the Counter class defines the body of the
set method. Note that a method’s implementation can also be given outside the class
declaration as a function whose first argument’s type is the class. For example, we could
have defined the set method of the class Counter as:

O¢f set(x : Counter,n: Jnt) : Counter = (x.value =n); 3)

On the other hand, although a field is also semantically a function whose first argu-
ment’s type is a class, it may not be defined outside its class. Defining a declared field
outside a class declaration causes an error. This is because the code of a field is always
fixed and defined to return the value of an object’s slot corresponding to the field. Note
however that one may define a unary function whose argument is a class type outside
this class when it is not a declared field for this class. It will be understood as a method
for the class (even though it takes no extra argument and may be invoked in “dot no-
tation” without parentheses as a field is) and thus act as a ”static field” for the class.
Of course field updates using dot notation will not be allowed on these pseudo fields.
However, they (like any global variable) may be (re)set using a global (re)definition at
the top level, or a nested global assignment.

Note also that a field may be functional without being a method—the essential differ-
ence being that a field is part of the structure of every object instance of a class and thus
may be updated within an object instance, while a method is common to all instances
of a class and may not be updated within a particular instance, but only globally for all
the class’ instances.

Thus, everytime a Counter object is created with netv, as in, for example:

c = netw Counter; (6)

the slot that corresponds to the location of the value field will be initialized to the
value 1 of type Jnt. Then, field and method invocation can be done using the familiar
“dot notation;” viz.:

c.set(c.value + 2);
write(c.value);

)

This will set ¢’s value field to 3 and print out this value. This code is exactly
equivalent to:

set(c,value(c) + 2);
write(value(c));

®)

Indeed, field and method invocation simply amounts to functional application. This
scheme offers the advantage that an object’s fields and methods may be manipulated

18 Strictly speaking, a field of type 20id is useless since it can only have the unique value of this
type (i.e., v0i0). Thus, a void field should arguably be disallowed. On the other hand, allowing
it is not semantically unsound and may be tolerated for the sake of uniformity.
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as functions (i.e., as first-class citizens) and no additional setup is needed for type-
checking and/or type inference when it comes to objects.

Incidentally, some or all type information may be omitted while specifying a class’s
implementation (though not its interface) as long as non-ambiguous types may be in-
ferred. Thus, the implementation block for class Counter in class definition @) could
be specified more simply as:

{ set(n) = (value =n); } )
Declaring a class type and defining its implementation causes the following:

— the name of the class is entered with a new type for it in the type table (an ob-
ject comprising symbol tables, of type (types).Tables . java; this ensures that
its type definition links it to an appropriate ClassType object; namely, a class
structure reprensented by an object of type (types).ClassInfo.java where
the code entries for all its members’ types are recorded;

— each field of a distinct type is assigned an offset in an array of slots (per sort);

— each method and field expression is name-sanitized, type-checked, and sort-sani-
tized after closing it into an abstraction taking this as first argument;

— each method definition is then compiled into a global definition, and each field
is compiled into a global function corresponding to accessing its value from the
appropriate offset;

— finally, each field’s initialization expression is compiled and recorded in an object
of type ClassType to be used at object creation time. An object may be created
at run-time (using the netv operator followed by a class name).

The Type System. Fig. Dl shows the hierarchy of Java classes representing the cate-
gories of types currently comprising the type system. The classes represented in boxes
are abstract classes. There could be more, of course.

Structure of TypeChecker. An object of the class (types) . TypeChecker . java
is a backtracking prover that establishes various kinds of goals. The most common goal
kind established by a type checker is a typing goal—but there are others.

A (types) . TypingGoal object is a pair consisting of an expression and a type.
Proving a typing goal amounts to unifying its expression component’s type with its type
component. Such goals are spawned by the type checking method of expressions as per
their type checking rules['J Some globally defined symbols having multiple types, it is
necessary to keep choices of these and backtrack to alternative types upon failure. Thus,
a TypeChecker object maintains all the necessary structures for undoing the effects
that happened since the last choice point. These effects are:

1. type variable binding,
2. function type currying,

19 See Appendix Section (Bl
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3. application expression currying.

In addition, it is also necessary to remember all Goal objects that were proven since
the last choice point in order to prove them anew upon backtracking to an alternative
choice. This is necessary because the goals are spawned by calls to the typeCheck
method of expressions that may be exited long before a failure occurs. Then, all the orig-
inal typing goals that were spawned in the mean time since the current choice point’s
goal must be reestablished. In order for this to work, any choice points that were associ-
ated to these original goals must also be recovered. To enable this, when a choice point
is created for a (kernel) . GLobal symbol, choices are linked in the reverse order (i.e.,
ending in the original goal) to enable reinstating all choices that were tried for this goal.
This amounts to the on-the-fly compiling of type-checking rules into “typing-goal” in-
structions that must be stored for potential retrial upon subsequent failure. Fig. [3] lists
some typing goals making up the instruction set of the type inference abstract machine
generated by the type checker.

— EmptyGoal — PruningGoal

- TypingGoal — PushExitableGoal

— UnifyGoal — PopExitableGoal

— GlobalTypingGoal — CheckExitableGoal

— SubTypeGoal — ResiduatedGoal

— BaseTypeGoal — ShadowUnifyGoal

— ArrayIndexTypeGoal — UnifyBaseTypeGoal
— NoVoidTypeGoal

Fig. 3. Typing goals instruction set for the type inference abstract machine

In order to coordinate type proving in a common context, the same typechecker ob-
ject is passed to all type checking and unification methods as an argument in order to
record any effect in the appropriate trail.

To recapitulate, the structures of a (types) . TypeChecker object are:

— a goal stack containing goal objects (e.g., (types) . TypingGoal) that are yet to
be proven;

— a binding trail stack containing type variables and boxing masks to reset to ~un-
bound” upon backtracking;

— a function type currying trail containing 4-tuples of the form (function type, previ-
ous domains, previous range, previous boxing mask) for resetting the function type
to the recorded domains, range, and mask upon backtracking;

— an application currying trail containing triples of the form (application type, pre-
vious function, previous arguments) for resetting the application to the recorded
function and arguments upon backtracking;

— a goal trail containing (types) . TypingGoal objects that have been proven since
the last choice point, and must be reproven upon backtracking;
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— a choice-point stack whose entries consists of:
e a queue of TypingGoalEntry objects from where to constructs new Typ-
ingGoal objects to try upon failure;

e pointers to all trails up to which to undo effects.

Type definitions Before we review dynamic types, we shall describe how one can
define new types using existing types. Type definitions are provided both for (1) con-
venience of making programs more legible by giving terser “logical” names (or terms)
to otherwise verbose type expressions, and (2) that of hiding information details of a
type and making it act as a new type altogether. The former facility is that of providing
aliases to types (exactly like a preprocessor’s macros get expanded right away into their
textual equivalents), while the latter offers the convenience of defining new types in
terms of existing ones, but hiding this information. It follows from this distinction that
a type alias is always structurally equivalent to its value (in fact an alias disappears as
soon as it is read in, being parsed away into the structure defining it). By contrast, a
defined type is never structurally equivalent to its value nor any other type—it is only
equivalent to itself. To enable meaningful computation with a defined type, two meta-
(de/con)structors are thus provided: one for explicitly casting a defined type into the
type that defines it, and one explicitly seeing a type as a specified defined type (if such
a defined type does exist and with this type as definition).

The class (types) . Tables . java contains the symbol tables for global names and
types. The name spaces of the identifiers denoting type and non-type (global or local)
names (which are kept in the global symbol table) are disjoint—so there are no name
conflicts between types and non-type identifiers.

The (types).Tables.java.typeTable variable contains the naming table for
types and the (types) . Tables.java.symbolTable variable contains the naming
table for other (non-type) global names.

This section will overview some type-related data-structures starting from the class
that manages symbols: (types).Tables.java. The names can be those of types
and values. They are global names P4 The type namespace is independent of the value
namespace—i.e., the same name can denote a value and a type.

Dynamic Types. Dynamic types are to be checked, if possible statically (at least their
static part is), at least in two particular places of an expression. Namely,

— at assignment/update time; and,
— at (function) parameter-binding time.

This will ensure that the actual value placed in the slot expecting a certain type does
respect additionnal constraints that may only be verified with some runtime values.
Generally, as soon as a type’s structure depends on a runtime value, is is necessar-
ily a dynamic type. These are also often referred to as dependent types. For example,
array of size(int n), where n is the size of the array and is a runtime value. It

20 At the moment, there is no name qualification or namespace management. When this service
is provided, it will also be through the (types) . Tables . java class.



An Abstract, Reusable, and Extensible Programming Language Design Architecture 135

denotes a “safe” array type depending on the array size that may be only computed at
runtime From this, we require that a class implementing the DynamicType inter-
face provides a method:

public boolean verifyCondition ()

that is invoked systematically by code generated for dynamically typed function pa-
rameters and for locations that are the target of updates (i.e., array slot update, object
field update, tuple field update) at compilation of abstractions and various assignment
constructs. Of this class, three subclasses derive their properties:

— extensional types;
— Boolean-assertion types;
— non-negative number types.

We shall consider here a few such dynamic types (motivated esssentially by the typ-
ing needs of for OPL, or similar constraint languages [31]). Namely,

— extensional types;
— intensional types (e.g., non-negative numbers)

An extensional type is a type whose elements are determined to be members of a
predetermined and fixed extension (i.e., any runtime value that denotes a collection—
such as a set, an integer range, a floating-point number range, or an enumeration).
Such types pose the additional problem of being usable at compile-time to restrict
the domains of other variables. However, some of those variables’ values may only
fully be determined at runtime. These particular dynamic types have therefore a sim-
ple verifyCondition () method that is automatically run as soon as the extension
is known. This method simply verifies that the element is a bona fide member of the
extension, Otherwise, it relies on a more complicated scheme based on the notion of
contract. Basically, a contract-based type is an extensional type that does not have an
extension (as yet) but already carries the obligation that some particular individual con-
stants be part of their extensions. Those elements constitute “contracts” that must be
honored as soon as the type’s extension becomes known (either positively—removing
the honored contract; or, negatively—causing a type error).

Extensional types that have been included are set types, range types (integer and
floating-point), and enumeration types. Other dynamic types could of course be added
as needed (e.g., lists, bags, etc.).

Intensional types can be accommodated by defining new opaque types—e.g., in or-
der to define non-negative numbers, we introduce a new (opaque) type Nat as a dy-
namically constrained Jnt type whose veri fyCondition method ensures that only
non-negative integer values may be used for this type.

5 Computing with Collections

There are two classes defined for such expressions: (kernel) . Homomorphism. java
and (kernel) .Comprehension.java. These classes are based on the formal no-

2l e.g., 4 la Java arrays.
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tion of monoid homomorphisms and comprehension as defined in query-language for-
malisms [5/6/718] 3

These two classes of expressions use monoid homomorphisms as declarative iter-
ators. Thus, henceforth, by homomorphism we mean specifically monoid homomor-
phism. For our purposes, a monoid is a set of data values or structures (i.e., a data type)
endowed with an associative binary operation and an identity element. Examples are
given in Fig. @l Monoid homomorphisms are quite useful for expressing a certain kind
of iteration declaratively.

Type Operation Identity
Int +Int 0

Jnt *Jnt 1

JInt magyng —O0gnt
Jnt mingng +0073n¢
Real Foreal 0.0
NReal *Real 1.0
Real MALR cal —O0O0Real
Real Mingcar 4009 cal
Boolean OtBoolean false
Boolean andxoolean true

set data structures set union the empty set { }

list data structures list concatenation the empty list ]

Fig. 4. Examples of some familiar monoids

The class Homomorphism is the class of objects denoting (monoid) homomor-
phisms. An instance of such a class defines all the needed parameters for representing
and iterating through a collection, applying a function to each element, accumulating
the results along the way with an operation, and returning the end result. More pre-
cisely, it is the built-in version of the general computation scheme whose instance is the
following “hom” functional, which may be formulated recursively, for the case of a
list collection, as:

1
homg? (f)[] =1g .
1 1
homg® (f)[H|T] = f(H) © homg® ()T

Clearly, this scheme extends a function f to a homomorphism of monoids, from the
monoid of lists to the monoid defined by (P, 1 ).

22 See Appendix Section[Elfor a refresher on monoid homomorphisms and comprehensions.
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Thus, an object of this class denotes the result of applying such a homomorphic
extension of a function (f) to an element of collection monoid (i.e., a data structure
such as a set, a list, or a bag), the image monoid being implicitly defined by the binary
operation (¢&)—also called the accumulation operation. It is made to work iteratively.

For technical reasons, we need to treat specially so-called collection homomor-
phisms; i.e., those whose accumulation operation constructs a collection, such as a set.
Although a collection homomorphism can conceptually be expressed with the general
scheme, the function applied to an element of the collection will return a collection
(i.e., a free monoid) element, and the result of the homomorphism is then the result of
tallying the partial collections coming from applying the function to each element into
a final “concatenation.”

Other (non-collection) homomorphisms are called primitive homomorphisms. For
those, the function applied to all elements of the collection will return a computed ele-
ment that may be directly composed with the other results. Thus, the difference between
the two kinds of (collection or primitive) homomorphisms will appear in the typing and
the code generated (collection homomorphism requiring an extra loop for tallying par-
tial results into the final collection). It is easy to make the distinction between the two
kinds of homomorphisms thanks to the type of the accumulation operation (see below).

Therefore, a collection homomorphism expression constructing a collection of type
coll(T) consists of:

— the collection iterated over—of type coll’(T");
— the iterated function applied to each element—of type 7" — coll(T'); and,
— the operation “adding” an element to a collection—of type 7, coll(T") — coll(T").

A primitive homomorphism computing a value of type 7' consists of:

— the collection iterated over—of type coll’(T");
— the iterated function applied to each element—of type 7" — T'; and,
— the monoid operation—of type 7', T" — T'.

Even though the scheme of computation for homomorphisms described above is
correct, it is not often used, especially when the function already encapsulates the ac-
cumulation operation, as is always the case when the homomorphism comes from the
desugaring of a comprehension—(see below). Then, such a homomorphism will di-
rectly side-effect the collection structure specified as the identity element with a func-
tion of the form junx - x@® llg (i.e., adding element x to the collection) and dis-
pense altogether with the need to accumulate intermediate results. We shall call those
homomorphisms in-place homomorphisms. To distinguish them and enable the sup-
pression of intermediate computations, a flag indicating that the homomorphism is to
be computed in-place is provided. Both primitive and collection homomorphisms can
be specified to be in-place. If nothing regarding in-place computation is specified for a
homomorphism, the default behavior will depend on whether the homomorphism is col-
lection (default is in-place), or primitive (default is not in-place). Methods to override
the defaults are provided.

For an in-place homomorphism, the iterated function encapsulates the operation,
which affects the identity element, which thus accumulates intermediate results and no
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further composition using the operation is needed. This is especially handy for collec-
tions that are often represented, for (space and time) efficiency reasons, by iteratable
bulk structures constructed by allocating an empty structure that is filled in-place with
elements using a built-in “add” method guaranteeing that the resulting data structure is
canonical—i.e., that it abides by the algebraic properties of its type of collection (e.g.,
adding an element to a set will not create duplicates, etc.).

Although monoid homomorphisms are defined as expressions in the kernel, they
are not meant to be represented directly in a surface syntax (although they could, but
would lead to rather cumbersome and not very legible expressions). Rather, they are
meant to be used for expressing higher-level expressions known as monoid comprehen-
sions, which offer the advantage of the familar (set) comprehension notation used in
mathematics, and can be translated into monoid homomorphisms to be type-checked
and evaluated. This is what the kernel class Comprehension encapsulates, as it is
defined relying on the class Homomorpism, exactly as its formal definition does.

A monoid comprehension is an expression of the form:

(@, Ig){e|q, - qn} an

where (@, 1) define a monoid, e is an expression, and the ¢ #’s are qualifiers. A qual-
ifier is either an expression e or a pair z < e, where x is a variable and e is an expres-
sion. The sequence of qualifiers may also be empty. Such a monoid comprehension is
just syntactic sugar that can be expressed in terms of homomorphisms as follows:

(@, 1g){e|} Zedlg
(@, La)e|r — ¢,Q} £ homi® (@, La){e | Q}(e) (12)
(@, Tg){e|c,Q} £ if e then (B, Ig){e | Q} else lg

In other words, a comprehension is fully expressible in terms of compositions of
homomorphims. Comprehensions are also interesting as they may be subject to trans-
formations leading to more efficient evaluation than their simple “nested loops” oper-
ational semantics (by using “unnesting” techniques and using relational operations as
implementation instructions [32|33])).

Although a monoid comprehension can be effectively computed using nested loops
(i.e., using a simple iteration semantics), such would be in general rather inefficient.
Rather, an optimized implementation can be achieved by various syntactic transforma-
tion expressed as rewrite rules. Thus, the principal benefit of using monoid comprehen-
sions is to formulate efficient optimizations on a simple and uniform general syntax of
expressions irrespective of specific monoids [Sl6I32/7/33]]. All the attributes of the syn-
tax of monoid comprehensions derived from monoid homomorphisms are represented
in these type classes.

Thus, monoid comprehensions allow the formulation of “declarative iteration.” Note
the fact mentioned earlier that a homomorphism coming from the translation of a com-
prehension encapsulates the operation in its function. Thus, this is generally taken to
advantage with operations that cause a side-effect on their second argument to enable
an in-place homomorphism to dispense with unneeded intermediate computation.
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6 Conclusion

6.1 Recapitulation

In this document we summarized the main characteristics of an abstract, reusable,
and extensible programming language architecture, and its implementation in Java. We
overviewed original generic syntax-processing tools that have been conceived, imple-
mented, and used to ease the experimental front-end development for language process-
ing systems. This consisted of Jacc, a flexible metacompiler all done in 100%-pure Java.
We explained the machinery needed to extend LALR-parsing to enable dynamic opera-
tors a la Prolog. We gave a high-level description of the architectural attributes of a set
of kernel classes of programming language constructs and how they are processed for
typing, compiling, and executing. We presented our architecture general processing dia-
gram taking a kernel expression into straightline abstract-machine code. We discussed a
type system that is the basis for a polymorphic type inference abstract machine enabling
multiple-type overloading, type encapsulation, object-orientation, and type (un)boxing
analysis. We described the type language primitives and constructors, and how they
were analyzed for efficient code generation and execution. We explained our implemen-
tation of type-checking and how execution of declarative iteration over collections may
be specified using the notion of monoid homomorphism and comprehension as used
in object-oriented database query languages to generate efficient collection-processing
code.

For the sake of making this document self-contained, we append below a set of sec-
tions of tutorial nature giving background material and finer-point discussions regarding
what was presented.

6.2 What’s next?

This architecture offers a compromise between formal executable specification systems
(e.g., [34423]]) and pragmatic needs for practical language prototyping backward com-
patible with popular existing tools (yvacc, Java), while staying an extensible system—a
poor man’s language kit?. .. It enables fast and low-cost development of programming
languages with basic and advanced features using familiar programming idioms like
yacc and Java with a relatively high efficiency and confidence of correctness.

Importantly, it is open and favors ease of extension as well as interoperability with
popular representation standards such as the W3C’s. As mentioned several times, and
made explicit in the title, this is work to be continued. Indeed, more tools and capa-
bilities are to be added as this author’s sees the need. The system has shown itself a
practical and useful experimental tool. However, much more remains to be done (e.g.,
namespace and access management, rule-based programming, logic programming, finer
type logics, etc., ...). Here are a few of the most immediate on our agenda.

— Notation—The next step is to extend Jacc by providing other structure-generating
options besides XML, such as the JavaScript Object Notation (JSON)-] and its

3 http://www.Jjson.org/
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version for Linked Data (JSON—LD) With this tool, it will then be easier to ex-
periment using Jacc to generate RDF-triples (or variations thereof) as compilation
schemes from high-level (i.e., more legible and user-friendly) KR languages (such
as, e.g., OSF or L1FE syntax—or even higher level; e.g., NL dialects).

— Typing—Truly polymorphic object-oriented subtyping a Ia Gesberg, et al. [21122],
or Satisfiability Modulo Theories a la Bierman et al. [23l24]. This is indeed a most
desired set of type-analytical capabilities to enable subtyping and class inheritance
in our type logic. The type-checking rules given for these systems are the best
candidates to use for this objective.

— Semantics— The most ambitious next step in terms of semantics, would be to ex-
tend the current design with additional abstract meta-constructs for LP [[17] and
CLP [25] (and L1rE [OU10] in particular).

— Pragmatics—Not much has been said about the backend system Among the most
desired to be done is a graphical front end based on Eclipse Wrapping all the
backend tools and services in such a front-end would greatly help further meta-
development.

— Implementation—Once abstracted into stable interfaces, any design may then be
made more efficient where needed since implementation has thus been made inde-
pendent. Attention may then be safely given to clever optimization of any type of
algorithms used in the implementation of these interfaces, relying on time-tested
techniques [35].

Appendix

In order to make this article self-contained, we include next a set of tutorials that over-
view essential background notions. Thus, this appendix consists of the following sec-
tions. Section[Alrecalls the peculiar way that Prolog uses to enable changing the syntac-
tic properties of its operators dynamically—i.e., at run time. Section [Bldescribes how a
few familiar programming language contructs may be specified as classes of objects and
how these classes are processed in various syntax, typing, or execution contexts. Sec-
tion (] recounts notions on algebraic monoids. Section [D]is a reminder of the abstract
syntax and type inference logic for a basic typed polymorphic A-calculus with tupling.
Section[Elpresents OQL, an Object Query Language extending this basic A-calculus into
a monoid comprehension calculus dealing with collection data in a declarative manner
thanks to monoid homomorphisms. Section [F is a brief specification of the backend
tooling needed to complete the system,

A Prolog-style Dynamic Operators

In Prolog, the built-in operator ‘op/3’ offers the user the means to declare or modify
the syntax of some of its operators. For example, as will be explained below:

Xhttp://json-1d.org/
% See Appendix Section[H
26 http://www.eclipse.org/
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?- op(500,yfx,+).

declares the symbol ‘+’ to be an infix binary left-associative operator with binding tight-
ness 500. The second argument of the built-in predicate op/3 is called the operator’s
specifier. It is a symbol that encodes three kinds of information concerning the operator;
namely:

— arity (unary or binary),
— “fixity” (prefix, infix, or postfix),
— associativity (left-, right-, or non-associative).

The specifier is an identifier consisting of either two or three of the letters ‘f’, ‘x’, and
‘y’, which are interpreted as follows. The letter ‘£’ stands for the operator’s position in
an expression (its fixity), and the letters ‘x’ and ‘y’ stand for the arguments’ positions.
These letters are mnemonics for “functor,” (‘£’) “yes,” (‘y’) and “no” (‘x’). A y’
occurring on the left (resp., right) of ‘f£’, means that the operator associates to the left
(resp., right). An ‘x’ occurring on the left (resp., right) of ‘£’, means that the operator
does not associate to the left (resp., right). Thus, the possible operator specifiers are
shown in Table

Table 1. Mnemonic operator specifiers in Prolog

Specifier Arity Fixity Associativity

fx unary prefix non-associative
fy unary prefix right-associative
xf unary postfix non-associative
yvf unary postfix left-associative
xfx binary infix non-associative
xfy binary infix right-associative

yvEx binary infix left-associative

The binding tightness used by Prolog’s ‘op/3’ works in fact as the opposite of
the precedence level used in parsing: the smaller a Prolog operator’s binding tightness
measure is, the more it takes precedence for parsing. These binding tightness measures
range inclusively from 1 (maximum precedence) to 1200 (minimum precedence).

The third argument of ‘op/3’ can be any syntactically well-formed Prolog functor.
In particular, these need not be known as operator prior to runtime. Prolog’s tokenizer
only recognizes such a token as a functor. Thus, any functor, whether declared operator
or not, can always be parsed as a prefix operator preceding a parenthesized comma-
separated sequence of arguments. Whether it is a declared operator determines how it
may be parsed otherwise. In Sicstus Prolog, for example:

% Note that “y £y’ is not allowed as an operator specifier because that would mean an ambiguous
way of parsing the operator by associating either to the left or to the right.
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Prolog’s parser can accommodate dynamic operators for two reasons:

1. The syntax of Prolog is completely uniform - there is only one syntactic construct:
the first-order term. Even what appear to be punctuation symbols are in fact func-
tors (e.g., ‘: =", ¢,’, ‘;’, etc., ...). Indeed, in Prolog everything is either a logical
variable or a structure of the form f(¢1, ..., ).

2. Prolog parser’s is an operator-precedence parser where precedence and associativ-

ity information is kept as a dynamic structure &

Operator-precedence parsing is a bottom-up shift-reduce method that works sim-
ply by shifting over the input looking for a handle in a sentential form being built on
the stack, and reducing when such a handle is recognized. A handle is the substring
of a sentential form whose right end is the leftmost operator whose following opera-
tor has smaller precedence, and whose left end is the rightmost operator to the left of
this right-end operator (inclusive), whose preceding operator has smaller precedence.
This substring includes any nonterminals on either ends. For example, if ‘+” has higher
precedence than ‘+°, the handlein ‘E + E * E + E'is‘E % E’.

Operator-precedence parsing is possible only for a very restricted class of grammars
- the so-called “Operator Grammars.” A context-free grammar is an Operator Grammar
if and only if no production’s right-hand side is empty or contains two adjacent non-
terminals. For example, the grammar:

E: 'did" | PE| EOE | "(" E ") ;
P -7
O : "+ | [ | r_ | 7 / 7 ;

is not an operator grammar. But the equivalent grammar:

E: 'id" | '-" E | E '+ E | E 'x" E| E '-' E
|EI/IE| I(IEI)I :

is. It is not difficult to see that a Prolog term can easily be recognized by an operator
grammar. Namely,

T : 'var’ | ‘fun’ | ‘fun’ ‘(' B ')’
| "fun’ T | T "fun’ | T “fun’ T | ‘(' T ")’ ;
B:T | T"','"B;

which can thus easily accommodate dynamic operators.

8 See “the Dragon Book,” [27]—Section 4.6, pp. 203-215.
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B Structure of Kernel Expressions

The class (kernel) . Expression. javais the mother of all expressions in the kernel
language. It specifies the prototypes of the methods that must be implemented by all
expression subclasses. The subclasses of Expression are:

— Constant: constant (void, boolean, integer, real number, object);

— Abstraction: functional abstraction (a la A-calculus);

— Application: functional application;

— Local: local name;

— Parameter: a function’s formal parameter (really a pseudo-expression as it is
not fully processed as a real expression and is used as a shared type information
repository for all occurrences in a function’s body of the variable it stands for);

— Global: global name;

— Dummny: temporary place holder in lieu of a name prior to being discriminated into
a local or global one.

— Definition: definition of a global name with an expression defining it in a
global store;

— IfThenElse: conditional;

— AndOr: non-strict Boolean conjunction and disjunction;

— Sequence: sequence of expressions (presumably with side-effects);

— Let: lexical scoping construct;

— Loop: conditional iteration construct;

— ExitWithvalue: non-local function exit;

— Assignment: construct to set the value of a 1ocal or a global variable;

— NewArray: construct to create a new (multidimensional) array;

— ArraySlot: construct to access the element of an array,

— ArraySlotUpdate: construct to update the element of an array;

— Tuple: construct to create a new position-indexed tuple;

— NamedTuple: construct to create a new name-indexed tuple;

— TupleProjection: construct to access the component of a tuple;

— TupleUpdate: construct to update the component of a tuple;

— NewObject: construct to create a new object;

— DottedNotation: construct to emulate traditional object-oriented “dot” deref-
erencing notation;

— FieldUpdate: construct to update the value of an object’s field;

— ArrayExtension: construct denoting a literal array;

— ArrayInitializer: construct denoting a syntactic convenience for specifying
initialization of an array from an extension;

— Homomorphi sm: construct denoting a monoid homomorphism;

— Comprehension: construct denoting a monoid comprehension;

To illustrate the process, we next describe a few kernel constructs. A kernel expres-
sion description usually consist of some of the following items:

— ABSTRACT SYNTAX—describes the abstract syntax form of the kernel expression.
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OPERATIONAL SEMANTICS—Tfor unfamiliar expressions, this describes informally
the meaning of the expression. The notation [e], where e is an abstract syntax ex-
pression, denotes the (mathematical) semantic denotation of e. The notation [77],
where 7' is a type, denotes the (mathematical) semantic denotation of T—namely,
[T] is the set of all abstract denotations [e]’s such that kernel expression e has
type 7.

TYPING RULE—this describes more formally how a type should be verified or in-
ferred using formal rules a la Plotkin’s Structural Operational Semantics for typing
the kernel expression, whose notation is briefly recalled as follows [36/37]].

A typing judgment is a formula of the form I F e : 7T, and is read as: “under
typing context I", expression e has type T.”

In its simplest form, a typing context I' is a function mapping the parameters of A-
abstractions to their types. In the formal presentation of an expression’s typing rule,
the context keeps the type binding under which the typing derivation has progressed
up to applying the rule in which it occurs.

The notation I'[x : T'] denotes the context defined from I” as follows:

) w T ify=uwx;
Ple:T)ly) = { I'(x) otherwise. (13)

A typing rule is a formula of the form:
Jla . J ) Jn (14)

where J and the J;’s, 7 = 0,...,n, n > 0, are typing judgments. This “fraction”
notation expresses essentially an implication: when all the formulae of the rule’s
premises (the J;’s in the fraction’s “numerator”) hold, then the formula in the rule’s
conclusion (the fraction’s “denominator”) holds too. When n = 0, the rule has no
premise—i.e., the premise is tautologically true (e.g., 0 = 0)—the rule is called an
axiom and is written with an empty “numerator.”

A conditional typing rule is a typing rule of the form:

I

S s ) (15)

where c is a Boolean metacondition involving the rule’s judgments.

A typing rule (or axiom), whether or not in conditional form, is usually read back-
wards (i.e., upwards) from the rule’s conclusion (the bottom part, or “denomina-
tor”) to the rule’s premises (the top part, or “numerator”’). Namely, the rule of the
form:

Inre Ty, ..., I Fe, : T,

1
I't+e: T (16)

is read thus:
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“The expression e has type T under typing context I i f the expression e
has type T' under typing context I';, and ..., the expression e,, has type
T, under typing context I,.”

For example:
't c: DBoolean, ' F ey : T, ' ey : T
I' - ifctheneg elsees @ T
is read thus:

“The expression if c then e; else es has type T' under typing context " i f
the expression ¢ has type Boolean under typing context I' and if both
expressions e and es have the same type T" under the same typing context
F"’

With judgments spelled-out, a conditional typing rule (I3) looks like:

ke Ty, ..., ke, o T,
! ! Fl S ; ! if cond( T, I,..., Iy, (17)
€, €1, ..., €n,
T,Th,...,Tp)
where “cond(I', I, ..., Ih,e,e1, ..., e, T, T1, ..., T,,)” is a Boolean meta-

condition involving the contexts, expressions, and types. Such a rule is read thus:

“if the meta-condition holds, then the expression e has type I’ under
typing context I' if the expression e; has type T' under typing context
I, and ..., the expression e,, has type T}, under typing context I},.”

An example of a conditional rule is that of abstractions that must take into account
whether or not the abstraction is exitable—i.e., it may be exited non-locally:

ey Ty en:Th) Fe: T

if funxy,...,T, - €
'k junay,...,on -e:Th,..., T, =T f o

is not exitable.

Similarly, a typing axiom:

18
I'+e: T (18)
is read as: “The expression e has type T" under typing context I'”” and a conditional
typing axiom is a typing axiom of the form:

if c(le,T 19
rre.r dbeD (19)
where ¢(I',e, T') is a Boolean meta-condition on typing context I, expression e,
and type T and is read as, “if the meta-condition c(I',e,T') holds then the ex-
pression e has type T" under typing context I".”
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— CoOMPILING RULE—describes the way the expression’s components are mapped into
a straightline sequence of instructions. The compiling rule for expression e is given
as a function compile[ | of the form:

compile[e] = rnsTrRUCTION
(20)

INSTRUCTIONp,

The constant Expression. Constants represents the built-in primitive (unconstructed)
data elements of the kernel language.

— ABSTRACT SYNTAX A Constant expression is an atomic literal. Objects of class
Constant denote literal constants: the integers (e.g., —1, 0, 1, etc.), the real num-
bers (e.g., —1.23, ..., 0.0, ..., 1.23, etc.), the characters (e.g., 'a’, 't/, 'Q’, '#/,
etc.), and the constants Uoib, ttue, and false. The constant void is of type Loio,
such that:

[Void] = {[void]}

and the constants:

true and false of type Boolean, such that:

[Boolean] = {[false], [teue]}.

Other built-in types are:

Pod 2z = (o, 1L [ )

[ {-..,[-1.23],...,[0.0],...,]1.23],...}
[¢hat] = set of all Unicode characters
[

Real] = R

String] < set of all finite strings of Unicode characters.

Thus, the Constant expression class is further subclassed into: Int, Real,
Char,NewObject,and BuiltinObjectConstant, whose instances denote,
respectively: integers, floating-point numbers, characters, new objects, and built-in
object constants (e.g., strings).
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— TyYPING RULE The typing rules for each kind of constant are:

voidl b voio - Woid
[true] I' - teue @ Boolean
[false] I' + false : Boolean
[int] - if nis an integer (21)
[reall e o el if nis a floating-point number
[char] I'Foec: Cha if c1is acharacter
[string] if sis astring

I' F s : Gtring

— CoMmPILING RULE Compiling a constant consists in pushing the value it denotes on
the stack of corresponding sort.

[void] compile[uoid] = No op

[true] compile[true] = Pusu Trum
[false] compile[false] = Pusu FaLse
[int] compile[n] = Pusu In if nisan integer (22)
[real] compile[n] = Puse Rn  if n is a floating-point number
[char] compile[c] = Pusu I ¢  if cisacharacter
[string] compile[s] = Pusn 0s if sisastring

The Abstraction Expression

— ABSTRACT SYNTAX This is the standard A-calculus functional abstraction, possibly
with multiple parameters. Rather than using the conventional A notation, we write
an abstraction as:

funzy,...,xy - € (23)
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where the x;’s are abstraction parameters—identifiers denoting variables local to
the expression e, the abstraction’s body.

— TyPING RULE There are two cases to consider depending on whether the abstraction
is or not exitable. An exitable abstraction is one that corresponds to a real source
language’s function from which a user may exit non-locally. Other (non-exitable)
abstractions are those that are implicitly generated by syntactic desugaring of sur-
face syntax. It is the responsibility of the parser to identify the two kinds of abstrac-
tions and mark as exitable all and only those abstractions that should be.

ey Ty en:Th) Fe: T

I b ofunay,...;n e T Ty —T 15 0T @ e (24)

is not exitable.

If the abstraction is exitable however, we must record it in the typing context.
Namely,let a = fun x1,...,2, - e;then:

Iveglzy ) v en T F e T

L e , T if a is exitable (25)
a Tyeoeydpn —

where I'y._, is the same context as I" except that X, = a.

— CowmPILING RULE Compiling an abtraction consists in compiling a flattened version
of its body (uncurrying and computing parameters offsets), and then generating an
instruction pushing a closure on the stack.

compile[fun 1, ..., 2, - €] = compile[(fatten(e), offsets(z1, ..., xy)] 26)
PusH CLOSURE
The Application Expression
— ABSTRACT SYNTAX This is the familiar function call:
flet, . en) 27)

— TyprING RULE The type rule is as expected, modulo all potential un/currying that
may be needed:

I'+e : Ty, I'+e, :T,, I'+ f:Ty,....7, =T
(28)
I+ fler,...,en) = T
— COMPILING RULE
compile[f(e1,...,en)] = compile[ey]
compile[eq] (29)
compile[ f]

APPLY
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The IfThenElse Expression

— ABSTRACT SYNTAX This is the familiar conditional:

if ¢ then e else e

— TYPING RULE

't c: DBoolean, ' ey : T, ' ey : T

. 30
I' - ifcthene; elseey : T (30)
— COMPILING RULE
compile[if ¢ then ey else es] = compile[c]
JumMp ON FALSE jof
compile[eq] 31)
JUMP Jmp
Jjof : compile[ez]
Jmp: ...
The Andor Expression
— ABSTRACT SYNTAX
e1 and/ot ey
— TYPING RULE
I' F ey : Boolean, I' F ey : Boolean (32)
I' - e; and/otes @ Boolean
— COMPILING RULE
compile[e; and ex] = compile[eq]
JuMp ON FALSE jof
compile[ez]
JuMp ON TRUE joOt
jof : PusH FALSE (33)
JuMp jmp
jot : PusH TRUE
Jmp ;...
compile[er ot eq] = compile[eq]
JuMp ON TRUE jot
compile[ez]
JuMp ON FALSE jof (34)

jot : PusH TRUE

JuMP jmp
jof : PusH FALSE
Jmp: ...
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The Sequence Expression

— ABSTRACT SYNTAX

{e; ...;en }

— TYPING RULE

F|_€12T1, ...,Fl—en:Tn

35
't {e;...;en} : Ty (33)
— COMPILING RULE
compile[{ e1; ...;en }] = compile[er]
Pop sort(ey)
(36)
compile[e,]
The whileDo Expression
— ABSTRACT SYNTAX
while cdo e (37)
where c and e are expressions.
— TYPING RULE
I' - c: Boolean, I' - e : T
c ea e (38)

I' + whbhile cooe : Yoid

— COMPILING RULE

compile[tohile ¢ 9o ¢] = Ioop : compile[c]
JumMp ON FALSE jof
compile[e] (39)
Jump 10o0p
jof:



An Abstract, Reusable, and Extensible Programming Language Design Architecture 151

The ExitwithValue Expression. This is a primitive for so-called non-local exit,
and may be used to express more complicated control structures such as exception
handling.

— ABSTRACT SYNTAX
erit oith v (40)
where v is an expression.

— OPERATIONAL SEMANTICS Normally, exiting from an abstraction is done simply by
“falling off” (one of) the tip(s) of the expression tree of the abstraction’s body.
This operation is captured by the simple operational semantics of each of the three
ReTURN instructions. Namely, when executing a Rerurn instruction, the runtime
performs the following three-step procedure:

1. it pops the result from its result stack{*J

2. it restores the latest saved runtime state (popped off the saved-state stack);

3. it pushes the result popped in Step 1 onto the restored state’s own result stack.
Then, control follows up with the next instruction.
However, it is also often desirable, under certain circumstances, that computation
not be let to proceed further at its current level of nesting of exitable abstractions.
Then, computation may be allowed to return right away from this current nesting
(i.e., as if having fallen off this level of exitable abstraction) when the conditions
for this to happen are met. Exiting an abstraction thus must also return a specific
value that may be a function of the context. This is what the kernel construction
erit toith v expresses. This kernel construction is provided in order to specify that
the current local computation should terminate without further ado, and exit with
the value denoted by the specified expression.

— TyYPING RULE Now, there are several notions in the above paragraphs that need some
clarification. For example, what an “exitable” abstraction is, and why worry about
a dedicated construct in the kernel language for such a notion if it does nothing
more than what is done by a ReTurw instruction.

First of all, from its very name erit toith v assumes that computation has entered
that from which it must exit. This is an exitable abstraction; that is, the latest
A-abstraction having the property of being exitable. Not all abstractions are ex-
itable. For example, any abstraction that is generated as part of the target of some
other kernel expression’s syntacting sugar (e.g., let 1 = e1;...; 2, = €,; ine or
(®,1g){e|z1 < e1,...,xn < e,}, and generally any construct that hide im-
plicit abstractions within), will not be deemed exitable.

Secondly, exiting with a value v means that the type 7" of v must be congruent with
what the return type of the abstraction being exited is. In other words:

'+ :T7T T, I'ov:T
I' F oeritwitho : T

where N denotes the latest exitable abstraction in the context I”.
The above scheme indicates the following necessities:

(41)

» Where stack here means “stack of appropriate runtime sort;” approppriate, that is, as per the
instruction’s runtime sort—viz., ending in I for InT, R for REAL, or O for oBJECT.
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1. The typing rules for an abstraction deemed exitable must record in its typing
context I the latest exitable abstraction, if any such exists; (if none does, a
static semantics error is triggered to indicate that it is impossible to exit from
anywhere before first entering somewhere)

2. Congruently, the Arprv instruction of an exitable closure must take care of
chaining this exitable closure before it pushes a new state for it in the saved
state stack of the runtime system with the last saved exitable closure, and mark
the saved state as being exitable; dually, this exitable state stack must also be
popped upon “falling off”—i.e., normally exiting—an exitable closure. That
is, whenever an exitable state is restored.

3. New non-local return instructions NL. Rerurn (for each runtime sort) must be
defined like their corresponding ReTurn instructions except that the runtime
state to restore is the one popped out of the exitable state stack.

— COMPILING RULE

compile[erit with v] = compile[v]

NL RETURN sort(v) (42)

C Monoids

In this section, all notions and notations relating to monoids as they are used in this
paper are recalled and justified.

Mathematically, a monoid is a non-empty set equipped with an associative internal
binary operation and an identity element for this operation. Formally, let S be a set,
* a function from S x S to S, and € € S; then, (S, *,¢€) is a monoid iff, for any
z,y,zin S:

*(yxz)=(xxy)*z (43)
and
THx€E=€ExT = €. (44)

Most familiar mathematical binary operations define monoids. For example, taking
the set of natural numbers N, and the set of boolean values B = {true, false}, the
following are monoids:

,0),
N*l)

(N,
(
(N, max, 0),
(
(

B, V, false),
B, A, true).

30 This is why Typing Rule (Z3)) needs to treat both kinds of abstractions.
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The operations of these monoids are so familiar that they need not be explicated. For
us, they have a “built -in” semantics that allows us to compute with them since pri-
mary school. Indeed, we shall refer to such readily interpreted monoids as primitive
monoidsf]

Note that the definition of a monoid does not preclude additional algebraic structure.
Such structure may be specified by other equations augmenting the basic monoid equa-
tional theory given by the conjunction of equations (@3) and (@4)). For example, all five
monoids listed above are commutative; namely, they also obey equation (43):

EhY— YT (45)

for any z, y. In addition, the three last ones (i.e., max, V, and A) are also idempotent;
namely, they also obey equation (8):

TxT =21 (46)

for any .

Not all monoids are primitive monoids. That is, one may define a monoid purely syn-
tactically whose operation only builds a syntactic structure rather than being interpreted
using some semantic computation. For example, linear lists have such a structure: the
operation is list concatenation and builds a list out of two lists; its identity element is
the empty list. A syntactic monoid may also have additional algebraic structure. For
example, the monoid of bags is also defined as a commutative syntactic monoid with
the disjunct union operation and the empty bag as identity. Or, the monoid of sets is a
commutative and idempotent syntactic monoid with the union operation and the empty
set as identity.

Because they are not interpreted, syntactic monoids pose a problem as far as repre-
sentation of its elements is concerned. To illustrate this, let us consider an empty-theory
algebraic structure; that is, one without any equations—not even associativity nor iden-
tity. Let us take such a structure with one binary operation % on, say, the natural numbers
N. Saying that % is a “‘syntactic” operation means that it constructs a syntactic term (i.e.,
an expression tree) by composing two other syntactic terms. We thus can define the
set T, of x-terms on some base set, say the natural numbers, inductively as the limit
Un>0Ty where,

N ifn=20
T, = 47)
{tl * to ‘ t; € Tn_l,i = 1,2} ifn > 0.

31 We call these monoids “primitive” following the presentation of Fegaras and Maier [8] as it ad-
heres to a more operational (as opposed to mathematical) approach more suitable to computer-
scientists. Mathematically, however, these should be called “semantic”” monoids since they are
interpreted by the computation semantics of their operations. See Appendix Section[EJlfor an
overview of this formalism.
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Clearly, the set T, is well defined and so is the x operation over it. Indeed, x is a bona
fide function from T} x T, to T}, mapping two terms ¢; and ¢, in T}, into a unique term
in T,—namely, t1 % to. This is why T, is called the syntactic algebra

Let us now assume that the x operation is associative—i.e., that x-terms verify Equa-
tion (43). Note that this equation defines a (syntactic) congruence on T}, which identifies
terms such as, say, 1 x (2 x 3) and (1 * 2) = 3. In fact, for such an associative x opera-
tion, the set T}, defined in Equation (7)) is not the appropriate domain. Rather, the right
domain is the quotient set whose elements are (syntactic) congruence classes modulo
associativity of x. Therefore, this creates an ambiguity of representation of the syntactic
structures

Similarly, more algebraic structure defined by larger equational theories induces
coarser quotients of the empty-theory algebra by putting together in common congru-
ence classes all the syntactic expressions that can be identified modulo the theory’s
equations. The more equations, the more ambiguous the syntactic structures of expres-
sions. Mathematically, this poses no problem as one can always abstract away from
individuals to congruence classes. However, operationally one must resort to some con-
crete artifact to obtain a unique representation for all members of the same congru-
ence class. One way is to devise a canonical representation into which to transform all
terms. For example, an associative operation could systematically “move” nested sub-
trees from its left argument to its right argument—in effect using Equation (@3} as a
one-way rewrite rule. However, while this is possible for some equational theories, it is
not so in general—e.g., take commutativity

From a programming standpoint (which is ours), we can abstract away from the am-
biguity of canonical representations of syntactic monoid terms using a flat notation. For
example, in LISP and Prolog, a list is seen as the (flat) sequence of its constituents.
Typically, a programmer writes [1, 2, 1] to represent the list whose elements are 1, 2
and 1 in this order, and does not care (nor need s/he be aware) of its concrete repre-
sentation. A set—i.e., a commutative idempotent syntactic monoid—is usually denoted
by the usual mathematical notation {1, 2}, implicitly relying on disallowing duplicate
elements, not minding the order in which the elements appear. A bag, or multiset—i.e.,
a commutative but non-idempotent syntactic monoid—uses a similar notation, allowing
duplicate elements but paying no heed to the order in wich they appear; i.e., {1,2,1}
is the bag containing 1 twice, and 2 once.

¥ For a fixed set of base elements and operations (which constitute what is formally called a
signature), the syntactic algebra is unique (up to isomorphism). This algebra is also called the
free, or the initial, algebra for its signature.

3 Note that this ambiguity never arises for semantic algebras whose operations are interpreted
into a unique result.

3* Such are important considerations in the field of term rewriting [38]], where the problem of
finding canonical term representations for equational theories was originally addressed by
Donald Knuth and Peter Bendix in a seminal paper proposing a general effective method—
the so-called Knuth-Bendix Completion Algorithm [39]]. The problem, incidentally, is only
semi-decidable. In other words, the Knuth-Bendix algorithm may diverge, although several
interesting variations have been proposed for a wide extent of practical uses (see [38] for a
good introduction and bibliography).
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Syntactic monoids are quite useful for programming as they provide adquate data
structures to represent collections of objects of a given type. Thus, we refer to them
as collection monoids. Now, a definition such as Equation (7)) for a syntactic monoid,
although sound mathematically, is not quite adequate for programming purposes. This
is because it defines the x operations on two distinct types of elements; namely, the
base elements (here natural numbers) and constructed elements. In programming, it is
desirable that operations be given a crisp type. A way to achieve this is by systematically
“wrapping” each base element x into a term such as xx¢. This “wrapping” is achieve by
associating to the monoid a function 4{, from the base set into the monoid domain called
its unit injection. For example, if ++ is the list monoid operation for concatenating two
lists, 4y (x) = [z] and one may view the list [a, b, c] as [a] ++[b] ++[c]. Similarly, the
set {a, b, c} is viewed as {a} U {b} U {c}, and the bag {a, b, c} as {a} W {b}} & {c}.
Clearly, this bases the constructions on an isomorphic view of the base set rather than
the base set itself, while using a uniform type for the monoid operator. Also, because
the type of the base elements is irrelevant for the construction other than imposing the
constraint that all such elements be of the same type, we present a collection monoid as
a polymorphic data type. This justifies the formal view of monoids we give next using
the programming notion of polymorphic type.

Because it is characterized by its operation &, a monoid is often simply referred to as
@. Thus, a monoid operation is used as a subscript to denote its characteristic attributes.
Namely, for a monoid &,

- Tgisitstype (i.e., B : Tg X T — Ta),
— 1g : T is its identity element,

— Og is its equational theory (i.e., a subset of the set {C, I}, where C stands for
“commutative” and I for “idempotent”);

and, if it is a collection monoid,

- Cg is its type constructor (i.e., Tg = €q (),

- Mg : @ — €g(a) is its unit injection for any type variable a.

Examples of familiar monoids of both kinds are given in Table 2]in terms of the above
characteristic attributes P

D The Typed Polymorphic A-Calculus

We assume a set C of pregiven constants ususally denoted by a,b. . ., and a countably
infinite set of variable symbols V usually denoted by x,y, .... The syntax of a term
expression e of the A-Calculus is given by the grammar shown in Fig. [Sl We shall call
T 5, the set of term expressions e defined by this grammar. These terms are also called
raw term expressions.

35 If the theory is {I'}—i.e., idempotent but not commutative—this defines yet another, though
unfamiliar, type of collection monoid where there may be redundant elements but only if not
adjacent.
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Table 2. Attributes of a few common monoids

&) T@ Il@ 9@ D Q@ T@ Il@ u@ (a:) @@

+ Jnt 0 {C} U set set(a) {} {z} {C,I}

*  Jnt 1 {C} W bag bag(a) {} {=} {C}
max Jnt 0 {C, I} + listlist(a) [ [z] 0

V. Boolean false {C, I}
A Boolean teue {C, I}

Some primitive monoids Familiar Collection monoids

ex=a  (a€C) constant
|z (x €V) variable
| Az.e (x € V) abstraction

|ee application

Fig. 5. Basic A-Calculus Expressions

An abstraction \z. e defines a lexical scope for its bound variable =, whose extent is
its body e. Thus, the notion of free occurrence of a variable in a term is defined as usual,
and so is the operation e [x < e3] of substituting a term e5 for all the free occurrences
of a variable x in a term e;. Thus, a bound variable may be renamed to a new one in its
scope without changing the abstraction.

The computation rule defined on A-terms is the so-called 3-reduction:

(Ax.e1) ea — ez «— ea]. (48)

We assume a set B of basic type symbols denoted by A, B, ..., and a countably
infinite set of type variables 7V denoted by «, (3, . ... The syntax of a type 7 of the
Typed Polymorphic A-Calculus is given by the following grammar:

Tu=A (A € B) basic type
| o (v € TV) type variable (49)
|7 — 7 function type

We shall call ¥ the set of types 7 defined by this grammar. A monomorphic type is a
type that contains no variable types. Any type containing at least one variable type is
called a polymorphic type.

The typing rules for the Typed Polymorphic A-Calculus are given in Fig. [l These
rules can be readily translated into a Logic Programming language based on Horn-
clauses such as Prolog, and used as an effective means to infer the types of expressions
based on the Typed Polymorphic A-Calculus.

The basic syntax of the Typed Polymorphic A-Calculus may be extended with other
operators and convenient data structures as long as typing rules for the new constructs
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if type(a) = 7, for any type environment I" constant

I'ta:7

e o2: 7 if I'(@)=rT1 variable

I'z:m]lFt: 7 '

'k Xet:m—m abstraction

'+t :nn—mn,I'Ft 7 o
application

I'F tity : ™

Fig. 6. Typing rules for the typed polymorphic A-calculus

are provided. Typically, one provides at least the set N of integer constants and B =
{true, false} of boolean constants, along with basic arithmetic and boolean operators,
pairing (or tupling), a conditional operator, and a fix-point operator. The usual arith-
metic and boolean operators are denoted by constant symbols (e.g., +,*, —, /,V, A,
etc.). Let O be this set.

The computation rules for these operators are based on their usual semantics as one
might expect, modulo transforming the usual binary infix notation to a “curryed” appli-
cation. For example, e; + es is implicitly taken to be the application (+ e1) es. Note
that this means that all such operators are implicitly “curryed.’

For example, we may augment the grammar for the terms given in Fig. [5l with the
addiional rules in Fig.[7l

en=... A-calculus expression
| (e,-,€e) tupling
| e.n (n € N) projection
| if e then e else e conditional
| fir e fixpoint

Fig. 7. Additional syntax for the extended A-calculus (with Fig.[3)

3 Recall that a curryed form of an n-ary function f is obtained when f is applied to less argu-
ments than it expects; i.e., f(e1,...,ex), for 1 < k < n.Inthe A-calculus, this form is simply
interpreted as the abstraction Az1. ... Atn_k. f(€1,..., €k, T1,...,Tn_k). In their fully cur-
ried form, all n-ary functions can be seen as unary functions; indeed, with this interpretation
of curried forms, it is clear that f(e1,...,en) = (... (f €1)...€n—1) €n.
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The computation rules for the other new constructs are:

(o1, en)i — e; ifl1<i<k
€1 1Ok undefined otherwise
e1 if e = true
if e then ey else e — es if e = false (50)

undefined otherwise

fite — e (fire)

To account for the new constructs, the syntax of types is extended accordingly to:

:= Jnt | Boolean basic type
\ a (o € TV) type variable
| {7, 7) tuple type (51)
|7 — 7 function type

We are given that type(n) = Jnt for all n € N and that type(ttue) = Boolean
and type(false) = Boolean. The (fully curried) types of the built-in operators are
given similarly; namely, integer addition has type type(+) = Int — (Int — Jnt),
Boolean disjuction has type type(V) = Boolean — (Boolean — Boolean), etc., ...
The additional typing rules for this extended calculus are given in Fig.[8

F|_t127‘1 A e tuplin
F '_ <t1a I > : <Tl7 7Tk> p g
L T if 1<i<k tuple projection
i
'k ti:n - = P Pro)
I' bty : Boolean, I' - to = 7, ' b t3 : 7T ..
. conditional
I+ 1f tl then tg else t3 T
I'et:r7—r71 .
fixpoint

't fiet o 7

Fig. 8. Additional typing rules for the extended typed polymorphic A-calculus (with Fig. [6)

E Object Query Language Formalisms

In this section, I review a formal syntax for processiong collections due to Peter Bune-
man et al. [5l6] and elaborated by Leonidas Fegaras and David Maier [8] using the
notion of Monoid Comprehensions.



An Abstract, Reusable, and Extensible Programming Language Design Architecture 159

E.1 Monoid Homomorphisms and Comprehensions

The formalism presented here is based on [8] and assumes familiarity with the notions
and notations summarized in Appendix Section[d I will use the programming view of
monoids exposed there using the specific notation of monoid attributes, in particular
for sets, bags, and lists. I will also assume basic familiarity with naive A-calculus and
associated typing as presented in Appendix Section Dl

Monoid Homomorphisms. Because many operations and data structures are monoids,
it is interesting to use the associated concepts as the computational building block of
an essential calculus. In particular, iteration over collection types can be elegantly for-
mulated as computing a monoid homomorphism. This notion coincides with the usual
mathematical notion of homomorphism, albeit given here from an operational stand-
point and biased toward collection monoids. Basically, a monoid homomorphism f)omg
maps a function f from a collection monoid & to any monoid ® by collecting all the
f-images of elements of a ©-collection using the ® operation. For example, the expres-
sion homy, [Az. z + 1] applied to the list [1,2, 1,3, 2] returns the set {2, 3, 43P

In other words, the monoid homomorphism f)omjiL of a function f applied to a list
L corresponds to the following lIoop computation collecting the f-images of the list
elements into a set (each f-image being a set):

result — {};
foreach z in L do result <« resultU f(z);
return result;

This is formalized as follows:

Definition 1 (Monoid Homomorphism). A Monoid Homomorphism f)omg defines a
mapping from a collection homomorphism @ to any monoid ® such that ©g C Og by:

bom3[f(le) = g
homZ[f](Us () = f(o)
bomE[fl(z @y) = bomd[f)(x) © homE[f](y)
Sor any function f : o« — %, ©: o, and y : o, where Tgy = Cg(av).
Again, computationally, this amounts to executing the following iteration:

result « Ig;
foreach z; in Ug(x1) ® - @ Ug(x,) doresult «— result ® f(x;);
return result;

The reader may be puzzled by the condition O C O in Definition[ll It means that
a monoid homomorphism may only be defined from a collection monoid to a monoid
that has at least the same equational theory. In other words, one can only go from an

37 See Table Pl for notation of a few common monoids.
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empty theory monoid, to either a {C'}-monoid or an {I}-monoid, or yet to a {C, I'}-
monoid. This requirement is due to an algebraic technicality, and relaxing it would
cause a monoid homomorphism to be ill-defined. To see this, consider going from, say,
a commutative-idempotent monoid to one that is commutative but not idempotent. Let
us take, for example, f)omar . Then, this entails:

1= hom{;[Az.1]({a})
= hom{ Az 1]({a} U {a})
= hom{j[Az.1]({a}) + bom[Az.1]({a})
=1+1
=2.

The reader may have noticed that this restriction has the unfortunate consequence
of disallowing potentially useful computations, notable examples being computing the
cardinality of a set, or converting a set into a list. However, this drawback can be easily
overcome with a suitable modification of the third clause in Definition [I] and other
expressions based on it, ensuring that anomalous cases such as the above are dealt with
by appropriate tests.

It is important to note that, for the consistency of Definition [Il a non-idempotent
monoid must actually be anti-idempotent, and a non-commutative monoid must be anti-

commutative. Indeed, if & is non-idempotent as well as non-anti-idempotent (say, xo G
xo = x¢ for some x), then this entails:

bomg [f](z0) = bomg [f](z0 & o)
= hom3[f](z0) © homg[f](zo)

which is not necessarily true for non-idempotent ®. A similar argument may be given
for commutativity. This consistency condition is in fact not restrictive operationally as it
is always verified (e.g., a list will not allow partial commutation of any of its element).

Here are a few familar functions expressed with well-defined monoid
homomorphisms:

length(l) = hom} [Az.1](0)
I(s)
s %t = homg[Aa. homg[hy. {{z, ) H(®)](s)
map(f,s) = homg[ha. {f(z)}](s)
filter(p, s) = homp[\z. if p(x) then {z} else {}](s).

eEs = hom)[A\r.z = e

Monoid Comprehensions. The concept of monoid homomorphism is useful for ex-
pressing a formal semantics of iteration over collections. However, it is not very conve-
nient as a programming construct. A natural notation for such a construct that is both
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conspicuous and can be expressed in terms of monoid homomorphisms is a monoid
comprehension. This notion generalizes the familiar notation used for writing a set in
comprehension (as opposed to writing it in extension) using a pattern and a formula
describing its elements (as oppposed to listing all its elements). For example, the set
comprehension {(z,z?) | * € N,3In.x = 2n} describes the set of pairs (z,z?) (the
pattern), verifying the formula x € N, In.z = 2n (the qualifier).

This notation can be extended to any (primitive or collection) monoid &. The syntax
of a monoid comprehension is an expression of the form ©{e | Q} where e is an
expression called the head of the comprehension, and () is called its qualifier and is a
sequence qi, . . ., gn, 1 > 0, where each g; is either:

— a generator of the form x <+ e, where z is a variable and e is an expression; or,

— a filter ¢ which is a boolean condition.

In a monoid comprehension expression &4{e | Q}, the monoid operation & is called the
accumulator.

As for semantics, the meaning of a monoid comprehension is defined in terms of
monoid homomorphisms.

Definition 2 (Monoid Comprehension). The meaning of a monoid comprehension
over a monoid @ is defined inductively as follows:

g (e) if ® is a collection monoid

alel) -

e if @ is a primitive monoid
ole]z — €,Q} £ homSA\z. & {e | Q}(€)
@{e] e, Q} 2 ifcthen @ {e] Q} else I

suchthate : g, €' : T, and © is a collection monoid.

Note that although the input monoid @ is explicit, each generator x <« ¢’ in the
qualifier has an implicit collection monoid ® whose characteristics can be inferred with
polymorphic typing rules.

Note that relational joins are immediately expressible as monoid comprehensions.
Indeed, the join of two sets S and 7" using a function f and a predicate p is simply:

St T = U{f(zy) [z « Sy « T,pla,y)} (52)

Typically, a relational join will take f to be a record constructor. For example, if we
write a record whose fields 1; have values e; fori = 1,...,n,as (11 = e1,,...,1, =
en), then a standard relational join can be obtained with, say, f(z,y) = (name =
y.name,age = 2 * x.age), and p(z,y) may be any condition such as xz.name =
y.name, r.age > 18.



162 H. Ait-Kaci

Clearly, monoid comprehensions can immediately express queries using all usual
relational operators (and, indeed, object queries as well) and most usual functions. For
example,

Jz € s.e = Ve|z « s} length(s) = +{l1]z < s}

Vx € s.e = AMelz — s} sum(s) L Ha]x — s}

TES L Vfr=yly « s} max(s) £ max{z |z — s}
sNt L Uz |z « s,zety  filter(p,s) = U{z]z — s,p(z)}
count(a,s) = +{l]xz — s,z=a} flatten(s) = Uf{z|t — s,z — t}

Note that some of these functions will work only on appropriate types of their argu-
ments. For example, the type of the argument of sum must be a non-idempotent monoid,
and so must the type of the second argument of count. Thus, sum will add up the ele-
ments of a bag or a list, and count will tally the number of occurrences of an element
in a bag or a list. Applying either sum or count to a set will be caught as a type error.

We are now in a position to propose a programming calculus using monoid com-
prehensions. Fig. [0 defines an abstract grammar for an expression e of the Monoid
Comprehension Calculus and amounts to adding comprehensions to an extended Typed
Polymorphic A\-Calculus. Fig. [10 gives the typing rules for this calculus.

en=... extended A-calculus expression
| 1o monoid identity
| Ug(e)  monoid unit injection
| e1 @ e2 monoid composition

| ®{e | @} monoid comprehension

Fig. 9. Additional Syntax for the monoid comprehension calculus (with Fig. [7)

F Backend System

Our generic backend system comprises classes for managing runtime events and ob-
jects, a display manager, and an error manager. As an example, we describe the organi-
zation of a runtime object.

The class (backend) .Runtime . java defines what a runtime context consists of
as an object of this class. Such an object serves as the common execution environment
context shared by (instructions) . Instruction objects being executed. It encap-
sulates a state of comptutation that is effected by each instruction as it is executed in its
context.

Thus, a (backend).Runtime.java object consists of attributes and structures
that together define a state of computation, and methods that are used by instruc-
tions to effect this state as they are executed. Thus, each instruction subclass of (ins-
tructions) . Instruction defines an execute ((backend).Runtime) method
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Ik 1g : So 14 monoid identity
I+ €1 S(D: I+ €2 ! (I(D

Ik eite : To & primitive monoid

Fl—e:‘f(p

 primitive monoid
'+ ofe|}: % P

I'+e:r

I E tele) : €olr) & collection monoid

!

Fe : Cq(r), I' F ez : Co(r)

Pk e@es : Ca(r) @ collection monoid

I'+e:r

& collection monoid
I |_ @{6”} : Q:(p(’f‘)

'k e : Cy(n), MNe:m] - &{en [QF : 7

if O C O bth
I+ @{61Hx — QQ’Q} C T i o & ©g subtheory

'+ e : Boolean, I' = &{e1 | Q} : 7
I ofer]eQ} - 7

Fig. 10. Additional typing rules for the monoid comprehension calculus (with Fig. )

that specifies its operational semantics as a state transformation of its given runtime
context.

Initiating execution of a (backend) . Runtime. java object consists of setting its
code array to a given instruction sequence, setting its instruction pointer ip to its
code’s first instruction and repeatedly calling and invoking execute (this) on what-
ever instruction in the current code array for this Runtime. java object is currently
at address ip. The final state is reached when a flag indicating that it is so is set to
true. Each instruction is responsible for appropriately setting the next state according
to its semantics, including saving and restoring states, and (re)setting the code array and
the various runtime registers pointing into the state’s structures.

Runtime states encapsulated by objects in this class are essentially those of a stack
automaton, specifically conceived to support the computations of a higher-order func-
tional language with lexical closures—i.e., a A-Calculus machine—extended to support
additional features—e.g., assignment side-effects, objects, automatic currying... As
such it may viewed as an optimized variant of Peter Landin’s SECD machine [13]—in
the same spirit as Luca Cardelli’s Functional Abstract Machine (FAM) [14], although
our design is quite different from Cardelli’s in its structure and operations.

Because this is a Java implementation, in order to avoid the space and performance
overhead of being confined to boxed values for primitive type computations, three con-
current sets of structures are maintained: in addition to those needed for boxed (Java
object) values, two extra ones are used to support unboxed integer and floating-point
values, respectively. The runtime operations performed by instructions on a (back-
end) .Runtime object are guaranteed to be type-safe in that each state is always such
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as it must be expected for the correct accessing and setting of values. Such a guarantee
must be (and is!) provided by the (types) . TypeChecker and the (kernel) . Sani-
tizer, which ascertain all the conditions that must be met prior to having a (ker-
nel) .Compiler proceed to generating instructions which will safely act on the ap-
propriate stacks and environments of the correct sort (integer, floating-point, or object).
Display manager objects and error manager objects are similarly organized.
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Abstract. There exists a growing market for structured data on the
Internet today, and this motivates a theoretical study of how relational
data should be priced. We advocate for a framework where the seller
defines a pricing scheme, by essentially stipulating the price of some
queries, and the buyer is allowed to purchase data expressed by any
query they wish: the system will derive the price automatically from
the pricing scheme. We show that, in order to understand pricing, one
needs to understand determinacy first. We also discuss some other open
problems in pricing relational data.

Keywords: relational databases, pricing.

1 Introduction

In the summer of 2007, Peter Buneman posed the following question to one of the
authors of this article. How should one set a price for data on the Internet? A lot
of data is freely available today, but for some data the production costs are quite
high, and it makes sense to charge for its usage in order to recover the production
costs. Peter’s original motivation came from the IUPHAR database [1, a repos-
itory of receptor nomenclature and drug classifications contributed by a large
community of experts in the field. Observing that this data is extremely valuable
to pharmaceutical companies, Peter reasoned that one could recover some of the
costs of producing and maintaining the data by charging these pharmaceutical
companies a price for accessing it. Some technical developments resulting from
those initial discussions with Peter are available in a separate manuscript [7].

Today, Peter’s question applies to a large number of datasets, both from the
scientific and commercial domains; increasingly, one finds data for sale on the
Internet. In fact, in recent years, one has witnessed the emergence of market-
place services for data, which are Websites whose purpose is to facilitate buying
and selling data. Examples of such data marketplaces are the Windows Azure
Marketplace [5], a data marketplace that contains over 100 data sources for sale,
Infochimps [I0], which contains about 15,000 data sets for sale, and Xignite [17],
which sells financial data.

The database group at the University of Washington has started a research
project on data markets. Funded by a partnership between NSF and Microsoft,
the project plans to investigate several aspects of data markets, ranging from
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(© Springer-Verlag Berlin Heidelberg 2013
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systems issues arising from monitoring data usage for billing purposes, to un-
derstanding the principles of the interaction between data and prices [2J611]. In
this paper, we outline our initial investigation into the latter: how to mix data
and prices in a principled way. Our thinking was, in part, informed by those
early discussions with Peter in 2007.

2 Of Versions and Views

On the surface, buying and selling data is not much different from buying and
selling any other products. An agent produces the data and incurs some cost in
doing so; the data has some value to a buyer; the seller and buyer agree on a price.
This is a problem studied extensively by economists over centuries. However, as
explained by Shapiro and Varian [16], digital goods, of which data sets are one
instance, have unique characteristics that cause traditional pricing mechanisms
to fail: they have a high and irrecoverable fixed cost (producing the data is
expensive) and a very low variable cost (copying the data is almost free). The
fixed and irrecoverable cost of data is quite distinct from that of physical goods.
Shapiro and Varian illustrate this with a large airplane manufacturing company
investing in a new factory: if the business plan turns sour, the company can still
recover some of its investment by reselling the building and the manufacturing
machinery. In contrast, if a company invests in acquiring detailed satellite data,
and is undercut by a competitor selling similar data at a much lower price, it
cannot recover anything from its now worthless satellite data. The low cost of
copying digital goods further exacerbate the problem, allowing competitors to
churn out copies in unrestricted quantities. The sharp skew towards fixed costs
makes traditional cost-based pricing models inapplicable. This can lead either
to fortunes for the producer (if she has no competition), or to total ruin.

Shapiro and Varian [16] argue that pricing on the Internet should be based on
the value that a customer places on the information. They argue that versioning
digital products is the solution to pricing digital goods. Even pricing traditional
information products included some form of versioning. In the case of movies,
the “new-release” version costs $12/person to watch, but renting the “DVD”
version that comes out six month later costs $3/family; the two versions target
two kinds of buyers, the must-see-it-now buyers willing to pay an extra price,
and the price-conscious buyers who can wait six months.

The analog to versions in data markets are views. A view over a data instance
is the same as a version of that instance. The view may contain only a subset
of the data, or only some columns, or may contain information at a coarser
granularity. All these can be seen as different versions of the digital product,
and sold at different prices.

Consider, for example, a dataset stored in a single relation R(x,y,z). The
seller could set two price levels: a price p; for the entire dataset, and a price
po for an individual tuple. Presumably, the former price is much higher than
the latter, p; > po. As a concrete example, it is possible today to buy either
entire databases of curated business addresses [9] or to check the correctness of
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individual addresses [I3]. This corresponds to two versions, one for the power
customers, who need the entire dataset and are willing to pay a high price, and
a second version for the occasional customer interested in only one or just a few
records.

Dataset versions are commonly used today. For example, CustomLists.net [9)]
sells a database of 28.6 million American businesses for $399. The price is only
$199 for a single state and it is only $299 for the subset of American businesses
that also have an email address. Such versions add significant flexibility, but
what if a user wants some other subset of the data such as only large businesses
with more than 1000 employees? Or businesses within 1 mile of a Home Depot?
Or businesses in cities that experience frequent flooding? Today, buyers must
either purchase supersets of the data they need or they must negotiate custom
data products. AggData [4] is an example data seller that provides such custom
solutions. Negotiating custom solutions, however, does not scale: If a human
must look at each custom view and must price that view, possibly negotiating
with the buyer, the total number of distinct views that can be priced is limited.

We envision a solution that allows the seller to assign a price to any possible
view that the buyer may be willing to buy. This requires a study of how database
views can be adorned with prices. We start with the following definition.

Definition 1. Let D be a database instance. A pricing scheme for D is a set of
view, price pairs: S ={(Vi,p1), ..., Vi, pk)}.

The data seller decides to create k “versions” of her digital product, defined
by k views, and price each of them differently. The goal is to define some high-
value views (for example, the entire dataset) to be sold to a few high rollers, yet
define sufficiently many lower quality views that can be sold to a large number
of customers. From these k views, the goal is to automatically derive the price
of any other view V defined by the buyer. This is also the direction in which the
initial discussion with Peter was heading in 2007: set the prices of some subsets,
and infer automatically the prices of all other subsets [7].

An important problem that needs to be studied in pricing data is the choice
of the view language in which we express the views Vi, ...,V in [Definition 1}
This is non-trivial: we discuss here three dimensions of this problem, leaving a
solution to future work.

Relational View. Any selections or projections should be available to the seller
if she decides to set a price on that selection or projection. We argue that
joins are needed too. For example, suppose the seller wants to set a certain
price for the personal information of all CEQO’s of companies with a revenue
> $10M: this requires a semijoin of the CEO relation with the Company
relation. In general, one can make the argument that the seller should be
allowed to use arbitrary relational views to define versions of the data.

Increasing/Decreasing Accuracy. Decreasing the accuracy or adding noise
to the data can produce a version that is less valuable, and, hence, can be
sold at a lower price, to a larger number of buyers. For example, weather data
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for standard, city-wide weather forecast is virtually free, but detailed precip-
itation information required by commercial farmers can only be purchased at
a cost. There is an interesting connection here to data privacy: private data
is sold today at a price, but properly anonymized data is free. The converse
is also true: by performing data cleaning, the seller may increase the value
of her data product. Views that add noise to the data should be available to
the seller to set prices.

User-defined Functions. The seller may own a domain specific algorithm for
enhancing the data; by applying that function, the seller can produce new
data that is more valuable than the raw data. For example, the seller may
have a proprietary algorithm for image processing; by applying this function
to all images in a collection it may produce a more valuable data set. Another
example consists of a sophisticated data mining algorithm: the result of the
data mining is much more valuable that the raw data itself. The seller should
be able to define views with user-defined functions.

3 Arbitrage in Data Pricing

Consider a pricing scheme S given by [Definition 1l Two problems may arise.

The first is consistency. One expects that every price point (V;, p;) will make
sense. For example, it does not make sense to charge more for a single tuple than
for the entire dataset. In similar spirit, if the entire relation R costs p; and a
single tuple in R costs po, then it does not make sense to have |R| - ps < p1, or,
else, no buyer will buy the entire dataset, but would instead buy one tuple at a
time. We say that a pricing scheme S = {(V1,p1), ..., (Vi,pk)} is consistent if no
view V; can be obtained at a price lower than p; by purchasing and combining
some of the other views in S. The consistency problem is this: Given a pricing
scheme S, check whether it is consistent.

The second problem is pricing a new view. Continuing the example where p;
is the price for the entire data set and ps is the price for each individual record,
how much should a buyer pay if she wants to buy half of the data records? On
one hand she could buy the entire dataset and pay p;, then retain only the half
she needs. On the other hand, she could purchase one record at a time, and pay
|R|-p2/2. Clearly, the buyer will choose whichever is cheaper. In general, the price
computation problem is this: given a pricing scheme S = {(V1,p1),..., (Vk,pr)}
and a new view V (not necessarily mentioned in S), determine the cheapest way
for a user to obtain V by purchasing views available in S.

Both problems are facets of arbitrage. Arbitrage occurs if the pricing scheme
sets a price p for a view V (possibly a new view not explicitly priced by the
seller), but a buyer has the option of answering V' from Vi,...,V,, such that
their combined price is less than p: not only can the buyer get away by paying
less than p, but she could even profit by reselling V' at a price lower than p,
which is traditionally called arbitrage.
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The key technical difficulty in studying arbitrage is determining when a buyer
can answer a view V using the information in other views, say Vi,...V,,. Let us
write:

Viyoo i Vin >V (1)

if V' can be answered from the views Vi, ..., V,,. This is just a notation, not a
formal definition; the intuition is that a buyer who needs the view V' would rather
purchase the views Vi, ..., V,, and compute V, if these m views are cheaper than
the price of V. We will discuss later how to define —. Assuming that — is given,
one can define both consistency and the price function.

Definition 2. A pricing scheme S = {(V1,p1),...,(Vi,pr)} is consistent if,
whenever Vi, Vi,, ..., Vi, = Vi, then p; <pi, +piy, + ...+ i, -

Given a view V' and a pricing scheme S = {(V1,p1),..., Vi, pr)}, let S - V
indicate {V1,Va,...,Vi} — V. Then the price function defined by S is

ps(V) = min Z Di

TCS, TV
(Vi,pi)€T

In other words, S is consistent if a buyer cannot obtain V; by paying less than
pi- Moreover, the price of an arbitrary view V is obtained by choosing the least
expensive subset of S that can be used to answer V', where the price of T C S
is just the sum of the prices of the views it contains.

We can also formally express the property that a pricing function does not
allow arbitrage.

Definition 3. A pricing function p is arbitrage-free if, whenever Vi,...,Vy, —
V, then p(V) <3702, p(Va).

Note that this definition does not assume any pricing scheme S; for exam-
ple, the constant pricing function that assigns the same price to every view is
arbitrage-free. On the other hand, if a pricing scheme S is given, then we seek
an arbitrage-free pricing function p that agrees with S on all price points in 5,
in other words p(V;) = p; for all (V;,p;) € S. It is easy to see that, if such a
function p exists, then S is consistent. We also proved recently [I1] two interest-
ing facts. Fix a pricing scheme S and consider the pricing function pg defined
in [Definifion 21 Then, assuming some some natural properties for —: (1) pg is
arbitrage-free (even if S is inconsistent); and (2) S is consistent iff for every price
point (V;,p;) is S, the following holds: ps(V;) = p;.

We end this section with a discussion on the key technical difficulty of pricing:
How should we define —» in Database theoreticians have studied
query answering using views for almost two decades, starting with Levy [12],
and Abiteboul and Duschka [3]. More recently, Segoufin and Vianu [I5] and
Nash, Segoufin, and Vianu [14] have revisited the notion of query answering
using information-content. Their formal definition of determinacy is equivalent
to the following: Vi,...,V,, — V if there exists a function f such that, for any
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database instance D, f(Vi(D),..., V(D)) = V(D). Let us call this definition
of determinacy NSV. If one adopts NSV for pricing, then, given any pricing
scheme S, the equation from [Definition 2 extends it uniquely to a global pricing
function pg. We argue, however, that NSV is not the right notion for defining pg,
and therefore a different definition for — is needed in order to compute prices.
Specifically:

— NSV is insensitive to the data instance. That means that the pricing function
ps(V) depends only on the view V', and not on the database instance D. In
practice, the database instance is also a variable, and should be considered
as input to the pricing function. For example the seller may add more data
to her raw dataset; as a consequence, she wants her pricing function to in-
crease. The determinacy relation — should somehow depend on the database
instance too. Instance-based determinacy has been much less studied in the
literature; one such definition can be found in Calvanese et al. [§].

— Unfortunately, NSV is difficult to check: it is undecidable for unions of con-
junctive queries, and its decidability is open for conjunctive queries [I4]. This
means that we do not have any practical means for computing the pricing
function pg(V).

— NSV deals incorrectly with user-defined functions. For example, consider a
view V(z, f(y,z)) = R(x,y, z) that applies a proprietary user-defined func-
tion f to the attributes y and z. Naturally, the seller would like to charge
more for V than for R, but R determines V', because, mathematically, one
can compute V from R. NSV does not capture the fact that f is a propri-
etary function, which cannot be applied by the user interested in computing
V from R.

— Noise and levels of accuracy are not captured by NSV either, because the
latter is, in essence, a deterministic definition. We are not aware of any
natural extension of the determinacy relation — that can deal with noise in
the data.

To summarize, in order to understand the price of data one must understand
the notion of determinacy first. NSV is an elegant definition for the latter, but
it does not seem to be the right choice for setting prices.

4 Open Problems

Data markets motivate a new direction of research in database theory. While we
have discussed the determinacy relation as the first step of this research, it is by
far not the only one. Several other open problems exists, we briefly mention a
few here.

Pricing Updates. The interaction between updates and prices is interesting.
The seller expects its prices to increase once the data is updated (assuming
tuples are being inserted), which seems to impose additional requirements
on a pricing function. At a more practical level, one question is how to
charge the buyer for incremental updates: if he already purchased data from
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the old version, he expects to pay a reduced price for the updates. Finally,
it is unclear how consistency or arbitrage are affected by updates: if S is
consistent, can it become inconsistent after an update?

Pricing Integrated Data. The interraction between multiple vendors affects

the pricing function in interesting ways. For example, different vendors may
add value in different ways to same data: the first vendor provides raw im-
ages, the second runs a proprietary face recognition algorithm, and the third
integrates the extracted faces with a social network database, thus putting
names on pictures. Each vendor adds some value to the data, by integrating
it with her own dataset or her proprietary tools. It will be quite challenging
to define pricing functions in such complex scenarios.

Pricing Competing Data Sources. There are often multiple vendors for

quite similar data sources. For example, today one can buy data about busi-
nesses from several vendors. There are subtle relationships between these
sources: some are more complete, others are more accurate, others are more
up to date, while others yet are more reliable. Another major challenge is to
understand how prices are affected by competing data sources.
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Abstract. Ontological query answering amounts to returning the an-
swers to a query, that are logically entailed by the union of a set of mem-
bership assertions and an ontology, where the latter is a set of logical
assertions. Ontological query answering has applications, for instance, in
the Semantic Web and in semantic data integration. We propose as on-
tology language a new description logic, called DLR*, allowing for roles
of arbitrary arity and role inclusion assertions with permutation, as well
as functionality assertions, which generalizes the most widely-adopted
tractable ontology languages. The interaction between functionality as-
sertions and other constructs in ontology languages has been shown to
lead easily to intractability and even undecidability. The absence of such
interaction is characterized by separability, a semantic property which
has been studied in different contexts. With the aim of finding expressive
ontology languages that are also tractable, we give a precise characteriza-
tion of separable DLRT ontologies by providing a syntactic condition that
is necessary and sufficient for separability. We also present an exhaus-
tive complexity analysis of reasoning, here intended as conjunctive query
answering and satisfiability checking, under separable DLR* ontologies.

1 Introduction

An ontology is a set of logical sentences on a signature or schema; rather than
enforcing constraints on instances (sets of facts) for the same signature, an on-
tology is to infer new knowledge from an instance. In particular, given a query
¢, an ontology T, and an instance A, the problem of ontological query answering
amounts to provide the answers to ¢ which are logically entailed by the theory
T UA. Notice that we refer to the standard entailment, that is, entailment under
arbitrary, not necessarily finite, models. Ontologies are also gaining importance
in the area of databases, for example, in data integration [I6], where query an-
swering is the central issue. In such context, rather than on decidability issues,
the focus is on scalability of query answering w.r.t. the data instance size.

Description Logics. Description Logics (DLs), a popular ontology formalism,
are decidable fragments of first-order logic, where predicates are concepts (classes
of objects) and roles (binary relations on classes). In DLs, a knowledge base

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 174-[[92] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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consists of a TBox (terminological component, that is, ontology assertions on
concepts and roles) and an ABox (assertional component, i.e., ontology asser-
tions on instances of concepts and roles); a TBox and an ABox can therefore
be seen as a schema with constraints and a data instance for it, respectively. A
central issue in DLs is the trade-off between expressive power and computational
complexity of reasoning services. DL-based data-intensive applications have been
gaining importance recently, therefore special attention is given to data complez-
ity of query answering, that is, the complexity w.r.t. the data instance size, while
all other inputs (query and ontology) are considered fixed.

Ontology Formalisms. The DL-Lite family [2I8/19] has the advantage of
ACo data complexity of conjunctive query answering and of knowledge base
satisfiability. We remind the reader that the low complexity class ACq is the
complexity class of recognizing words in languages defined by constant-depth
Boolean circuits with an unlimited fan-in AND and OR gates; it is strictly con-
tained in LOGSPACE. This low complexity is due to first-order rewritability (FO-
rewritability), i.e., the possibility of answering every query ¢ against a TBox T
and an ABox A by rewriting ¢ into a first-order query ¢y, which takes into
account the TBox 7, and simply evaluating ¢y over A.

The well-known Entity-Relationship (ER) [12] model has recently gained im-
portance in ontology specification, due to the fact that it is comprehensible to
theorists and practitioners, while having good expressive power. The ER* family
of ER-like languages [4], in particular, comprises several FO-rewritable ontology
languages, which properly generalize the main languages of the DL-Lite family.

Another relevant, more general class of ontology languages, is the Data-
log* family, that is, a family of rule-based languages derived from Datalog (see,
e.g., [3]) whose rules are (function-free) Horn rules, possibly with existentially
quantified variables in the head, called tuple-generating dependencies, enriched
with functionality constraints in the form of equality-generating dependencies,
and negative constraints, a form of denial constraints.

Separability. A central issue in this context is the interaction between func-
tionality constraints and the other constraints in the ontology. In general, func-
tionality constraints impose a uniqueness of some sort; functional participation
of instances of a set to a relation (e.g., in DLs or ERT), or more general equality
constraints (e.g., in Datalog®). In all the aforementioned formalisms, the key
notion that ensures FO-rewritability is separability [B]: an ontology T is sepa-
rable if, for every query ¢ and for every instance A, assuming that the theory
T U A is satisfiable, the answers to g over T U A coincide with the answers to ¢
over T'U A, where T is obtained from 7 by removing functionality constraints.
In other words, in separable cases, if the theory is satisfiable, then the presence
of functionality constraints does not play any role in query answering, and can
therefore be ignored. Separability is normally enforced by a syntactic condition
which prevents the functionality constraints from interacting with other con-
straints. Early separability conditions have been studied in [5/14] for inclusion
and key dependencies, and, e.g., in [3] for tuple-generating and key dependencies.
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Summary of Contributions. Studying efficient query answering under on-
tologies with functionality constraints, we tackle two fundamental challenges:
(i) What language should we use for ontology modeling, so that it is expressive
enough for applications? (#) Under what (syntactic) conditions is a knowledge
base in the chosen language separable? We aim at proposing a DL-based ontol-
ogy formalism, which is at least as expressive as other well-established ontology
formalisms, and to provide a separability condition that is as general as possible.
The contributions of the paper can be summarized as follows.

1. We propose the DL DLR* with roles of arbitrary arity, which is equipped,
among other constructs, with functionality constraints, role inclusions with
arbitrary permutation of the arguments, and negative assertions (which
prohibit certain existentially-quantified conjunctions of atoms to be true).
DLR* is inspired by (and close to) the variant of the ER model studied in [4],
and it is incomparable to the DL DLR of [9] (hence the symbol “+”).

2. We exhibit a graph-based condition for separability of DLR* TBoxes; we
define the DL non-conflicting DLR, called NCDLR®, by means of a syntactic
condition. Such condition is sufficient for all TBoxes, a result that is implicit
in [4], where an analogous condition is proposed. In this paper, we prove that
it is also necessary for those without negative assertions, and for those with
negative assertions but which are strongly consistent, i.e., they admit at least
one model where each concept and role is non-empty. We also investigate
the complexity of deciding whether an NCDLR* TBox is strongly consistent
(which is a natural property); in particular, we establish that this problem
is PSPACE-complete.

3. We show that CQ answering is NP-complete in combined complexity for two
variants of NCDLRE. The first variant is obtained by prohibiting arbitrary
permutations of arguments in role inclusions, and imposing the identity per-
mutation, while the second one is obtained by assuming the arity of roles to
be bounded by an integer constant.

4. Finally, we study the complexity of knowledge base satisfiability in NCDLR®,
and show that it is in ACq in data complexity. Moreover, we study the com-
bined complexity, and we show that the problem is PSPACE-complete if we
consider arbitrary NCDLR* knowledge bases, and coNP-complete if we re-
strict to the two variants mentioned above.

Notice that since DLRT is similar to the ER variant of [4], all our novel results
can be straightforwardly ported to the formalism of [4].

2 Theoretical Background

As already said, DLs are logics that model the domain of interest in terms of
concepts, representing sets of individuals, and roles, representing relations on
sets of individuals. A DL knowledge base encodes subset relationships between
concepts, subset relationships between roles, functional dependencies on roles,
the membership of individuals to concepts, and the membership of tuples of
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individuals to roles. In this section, we introduce the DL DLRi7 inspired by an
extended version of the ER model considered, e.g., in [7]. Typically, DLs are
usable for binary roles only. However, the proposed formalism allows for n-ary
roles as, for instance, the DL DLR proposed in [9], and the DLs of the DLR-Lite
family [10], that is, an extension of the DL-Lite family to roles of arbitrary arity.
Let us clarify that DLRT is incomparable to the aforementioned DLs (hence the
symbol ”£7).

Syntax. Let A, R and I be pairwise disjoint sets of atomic concepts, atomic
roles of arbitrary arity and individuals, respectively. We write R/n to assert that
the atomic role R € R has arity n > 2. In the rest of the paper, let [n] be the set
{1,...,n}, for an integer n > 1. A DL knowledge base K = (T, A), represents the
domain of interest in terms of two parts, a TBox 7T, specifying the intensional
knowledge, and an ABox A, specifying the extensional data. A DLRT TBox is a
finite set of assertions which have one of the following forms; in the sequel, we
assume that roles have arity n > 2, and also A and R (possibly with subscripts)
to be atomic concepts and roles, respectively:

1. Ay £ Ay

A C 3RJi], where i € [n];

JR[i] T A, where i € [n];

Rili1, ... yin] © Ralj1,...,dn], where {i1, ... in} = {j1,. .-, dn} = [n];
#»(X) C L, where ¢(X) is a conjunction of atoms of the form A(X) and
R(Xla ceey Xn)v

6. (funct R[i]), where i € [n].

CU 0N

Assertions of the form X C Y are called inclusion assertions, while assertions of
the form (funct R[i]) are called functionality assertions. We denote by sig(7T) the
set of atomic concepts and roles in the TBox T, and by arity(7) the maximum
arity over all roles in 7. An ABox is a finite set of membership assertions of the
form A(c) and R(cq, ..., c,) stating that the individual ¢ € I is an instance of A,
and the n-tuple (c1,...,¢,) € I" of individuals is an instance of R, respectively.

Semantics. The semantics of a DL is given in terms of interpretations, where
an interpretation Z = (AZ,.T) consists of a non-empty interpretation domain
AT and an interpretation function . For the constructs of DLR* we have:
(L)f=o
AT C AT
RI C (AI)n
(EIR[i])i ={t; | (t1,...,tn) € RT}
(Rlit, - yin))” = {(tiys-- - ti,) | (t1,... tn) € RT}
(6(X)) = {0}, IXo(X) %s true i'n 7
@, IX #(X) is false in T.

7 is a model of an inclusion assertion X C Y iff X7 C Y7, while it is a model
of a functionality assertion (funct R[i]) iff (ti,...,ti_1,ti,tit1,...,tn) € R
and (t],...,t_y, bt ..., t,) € RT implies t; = t, for each j € [n] \ {i}.
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(1,1)
Res 12

(LD

Fig. 1. Extended ER Schema

To specify the semantics of membership assertions, -Z is extended to constants

by assigning to each ¢ € I a distinct element ¢z € AT (unique name assumption).
T is a model of a membership assertion A(c) (resp., R(ci,...,c,)) iff & € AT
(resp., (cF,...,cL) € RT).

Given an (inclusion, functionality or membership) assertion ¢ and an inter-
pretation Z, we denote the fact that Z is a model of o by Z | 0. A model of
a TBox T (resp., an ABox A) is an interpretation Z such that Z = o, for each
o €T (resp., 0 € A). A model of a KB K = (T, .A) is an interpretation Z such
that Z = 7 and Z = A; we write Z = K if 7 is a model of K. A KB K is

satisfiable if it has at least one model; K is unsatisfiable if it has no model.
Example 1. Consider the DLR* TBox T constituted by

Prof T Res  Group C 3LedBy|[1]
Stud C Res  (funct LedByl[1])
Res T 3WorksIn[l]  3LedBy[2] C Prof
(funct WorksIn[l])  LedBy[1,2] C WorksIn[2,1]
Group C IWorksIn[2]  Prof (X), Stud(X) C L.

T asserts that professors and students, who are researchers, work in exactly one
(mandatory and functional participation) research group, while research groups
have at least one (but typically more than one) researcher. Moreover, research
groups have exactly one leader who is himself a professor. Also, each professor
works in the research group that (s)he leads. Finally, professors and students are
disjoint sets. The ABox counstituted by Group(g), LedBy(g,p) and Professor(p),
asserts that the individual g is a research group led by the professor p.

It is easy to verify that DLRT is expressive enough to be able to capture
an extended version of the ER model (see, e.g., [7]), which comprises is-a con-
straints among entities and relationships, functional and mandatory participa-
tion constraints, as well as disjointness among entities and relationships, and non-
participation of an entity to a relationship. For instance, by adding to the TBox
given in Example [] the assertions 3 WorksIn[l] C Res, 3WorksIn[2] © Group
and JLedBy[1] C Group, what we obtain corresponds to the extended ER schema
depicted in Figure [Il, where the reader will recognize the familiar notation of
Chen’s ER model [12].
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Conjunctive Queries. We now define queries over a KB. In this work, we focus
on conjunctive queries. A conjunctive query (CQ) q of arity n > 0 over a KB
K is an assertion of the form p(X) + ¢(X,Y), where ¢(X,Y) is a conjunction
of atoms of the form A(X) and R(Xy,...,X,,) with A € A, R/m € R and
p € (A UR) is an n-ary predicate. ¢(X,Y) is called the body of ¢, denoted as
body(q). A Boolean CQ (BCQ) is a CQ of arity zero. Given an interpretation Z,
the answer to an n-ary CQ ¢ of the form p(X) + ¢(X,Y) over Z, denoted as
q%, is the set of all n-tuples t of domain elements such that, when assigning t to
X, the first-order formula IY ¢(X,Y) evaluates to true in Z. A BCQ has only
the empty tuple () as possible answer, in which case it is said that it has positive
answer. Formally, a BCQ ¢ has positive answer over Z, denoted as Z = ¢, if
() € q*, or, equivalently, ¢ # @. We are now ready to define the notion of
query answering over a KB. Given an n-ary CQ ¢ and a KB K, the answer to ¢
w.r.t. K, denoted as ans(q, K), is the set of n-tuples t of constants appearing in
K such that t™ € g™, for every model M of K. The answer to a BCQ ¢ w.r.t. €
is positive, denoted as K |= g, if () € ans(q, K), or, equivalently, ans(q,K) # @.
Notice that, if I is unsatisfiable, then ans(q, K) is trivially the set of all possible
n-tuples of constants occurring in K.

Reasoning Services. The reasoning services we are interested in are query an-
swering over KBs and KB satisfiability. The decision problem CQAns is defined
as follows: given a KB K, an n-ary CQ ¢ over K, and an n-tuple t of constants
in K, decide whether t € ans(g,K). If the given query is Boolean, then the
above problem is called BCQAns. It is known that CQAns can be easily reduced
to BCQAns (see, e.g., [13]), and thus CQAns and BCQAns are equivalent prob-
lems. Hence, for technical clarity, we focus on BCQAns. The decision problem
KBSat associated to KB satisfiability is defined as follows: given a KB K, decide
whether K admits at least one model. Following Vardi’s taxonomy [20], the data
complezity of the above decision problems is calculated w.r.t. the size of the
ABox only, while combined complezity w.r.t. the size of all inputs.

Canonical Interpretation. Using the chase procedure (see, e.g., [T4I7]) we
can construct the so-called canonical interpretation of a DLR* KB constituted
by positive inclusions (Pls), that is, assertions of the form X C Y, where Y # L.
Notice that an assertion of the form X T L is called negative inclusion (NI). The
chase works on an ABox through the chase rule. We define a set N of labeled
nulls, used as placeholders for unknown values. A lexicographic order is defined
on TUN, such that every value of N follows all those in I.

Definition 1. Consider an ABox A, and a PI o. The membership assertion «
is defined as follows:

—If o = A1 C Ay and A;(c) € A, then a = Az(c).

—If o = AC 3R[i] and A(c) € A, then a = R(21,...,2i-1,C, Zit1s- -+ 2n)s
where each z; € N is a “fresh” labeled null not occurring in A.

— If o =3R[i{| C A and R(ey,...,cn) € A, then a = A(c;).
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—If 0 = Rili1,...,in] E Ro[j1,...,Jn) and Ryi(t1) € A, then o = Ry(t2),
Where <t1[i1}, ey tl [Z”D = <t2[j1], ey t2[]n]>
— If none of the above cases applies, then a = € (the empty assertion).

If a # €, then o is applicable to A, and « is added to \A.

Consider a DLRT KB K = (T, A}, where T contains only positive inclusions.
The chase algorithm for I consists of an exhaustive application of the chase rule,
which leads to a (possibly infinite) ABox, denoted as chase(K). We assume that
the chase algorithm is fair, i.e., each PI that must be applied during the con-
struction of chase(K) eventually it is applied. By exploiting the chase algorithm,
we can define the central notion of the canonical interpretation of a KB.

Definition 2 (Canonical Interpretation). Let K = (7, A) be a DLR* KB,
where T contains only PIs. The canonical interpretation of K, denoted can(KC),
is defined as the interpretation (Ace™(K) .can(K)) " where:

— AcK) is the set of terms occurring in chase(K),

— tea(K) = ¢ for each term t occurring in chase(K),

— Acon(K) = Lt | A(t) € chase(K)}, and

- R = (b1, t) | Rty ta) € chase(K)}.

Interestingly, the canonical interpretation of a KB K = (T, .A), where T con-
tains only positive inclusions, is a universal model of IC, i.e., for every model Z
of K, there exists a substitution s : A°"(X) — AT such that: (i) h is the iden-
tity on I, (i) if t € A°™F) then h(t) € AT, and (iii) if (t1,...,t,) € ReK)
then (h(t1),...,h(t,)) € RE. The substitution h is called a homomorphism from
can(K) to Z; the notion of homomorphism among sets of membership assertions
can be defined analogously. By exploiting the above universality property, it is
not difficult to show that the canonical interpretation of a KB is a very useful
technical tool for BCQAnRs.

Theorem 1. Consider a DLRT KB K = (T, A), where T contains only positive
inclusions. Then, for every BCQ q over K, K = q iff can(K) = q.

3 Non-Conflicting Condition

In this section, we introduce a novel description logic, called non-conflicting
DLR* (NCDLRj[)7 obtained by applying syntactic restrictions on the DL pre-
sented in the previous section. Intuitively, given an NCDLR* TBox T, the inclu-
sion and functionality assertions of 7" do not interact. This implies that answers
to queries can be computed by considering the PIs only of 7, and ignoring the
NIs and the functionality assertions, once it is known that the KB is satisfiable.
This semantic property, whose definition is given below, is known as separabil-
ity [0]. In the rest of the paper, for notational convenience, given a DLR* TBox
T, let T+ be the PIs of 7, 7~ be the NIs of 7, and 7= be the functionality
assertions of 7.
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Definition 3 (Separability). A DLR* TBox 7 is said to be separable if, for
every ABox A, either L = (T, .A) is unsatisfiable or, for every BCQ ¢ over K,
K qiff (T+ A) = g

Notice that DLR* TBoxes are, in general, non-separable. Before defining for-
mally NCDLRi, we need some preliminary technical definitions.

Definition 4. The dependency graph for a DLR* TBox 7 is a directed multi-
graph (V, E, A), where V is the node set, E is the edge set, and \ is a labeling
function £ — T . For each atomic concept A € A in T we have the node A[1]
which is called concept node (c-node). For each atomic n-ary role R € R in T,
and for each i € [n], we have the node R[i] which is called role node (r-node). If
(funct R[i]) occurs in T, then R[i] is also a functionality node (f-node). The edge
set E is defined as follows. For each o € T+ of the form A; C A, there exists an
edge (A1[1], A2[1]) labeled by o. For each o € T+ of the form A C 3R[i], where
R has arity n, there exists an edge (A[1], R[i]) labeled by o, and also there exists
a special edge (A[1], R[j]), for each j € [n] \ {i}, labeled by o. For each 0 € T
of the form 3R[i] C A, there exists an edge (R[i], A[1]) labeled by o. Finally, for
each o € T of the form Ry[i,...,in] T Ra[j1,...,Jn], and for each k € [n],
there exists an edge (Ry[ig], Rz[jx]) labeled by o.

Intuitively, the non-special edges in a dependency graph G keep track of the
fact that a term propagates from some concept or role to some other concept
or role during the construction of the chase. The special edges keep track of the
fact that the propagation of a term to some attribute of a role R, also creates a
labeled null in all the other attributes of R. Consider now an edge e of G which
is labeled by an assertion of the form Ril[i1,...,%,] C Ra[j1,...,jn]. Roughly,
the above assertion states that the ig-th object of Ry is the ji-th object of
Ry. This can be formally represented by the bijective function f, : [n] — [n]
defined as follows: for each k € [n], fe(ix) = jir. We can now introduce the so-
called propagation function associated to a cycle constituted by r-nodes of G.
Intuitively, the propagation function associated to such a cycle C describes how
terms are propagated during the construction of the chase due to C' (hence the
name “propagation” function).

Definition 5. Let G be the dependency graph for a DLRT TBox 7. Consider a
cycle C' = v1v3 ... vv1 of only r-nodes of G. The propagation function associated
to C is the bijective function g : [n] — [n] defined as the composition f.,  o...of,,
where e; = (v;,v;4+1), for each i € [m — 1], and ey, = (v, v1).

Ezample 2. Consider the DLR* TBox 7T constituted by

o1 : AC3R[3] o4 : R3[1,2,3]C Ry[3,1,2]
o9 ¢ R1[1,2,3] C R2[2,1,3] o5 : (funct R3[l]).
g3 R2[1,2,3} ER3[3,2,1}

The dependency graph G for T is depicted in Figure 2l where the f-nodes are
shaded and the special edges are represented using dashed arrows. Clearly, the
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T4

— T

oy > R[1]—2—> Ry2] —"— R[2]

A1 > Ri[2] %> Ri[1] > Ry[3]

R3] > R3] > Ril]

04

Fig. 2. The dependency graph G, and the propagation function associated to C

cycle C = R1[3]R2[3]R3[1]R1[3] occurs in G. The propagation function associated
to C, which is shown graphically in Figure 2 is the function g = fer o fer o fe,
where e = (R1[3], R2[3]), ¢ = (R2[3], R3[1]) and e” = (Rs[1], R1[3]); clearly, g is
the identity on {1,2,3}.

Having the notion of the dependency graph and the notion of the propagation
function in place, we are now ready to give the formal definition of NCDLR®.

Definition 6 (Non-Conflicting DLR*). Let 7 be a DLR* TBox, and let G
be the dependency graph for 7. T is non-conflicting if, for each path vivs ... vm,
where m > 2, in G such that v is a c-node, vs, ..., v,,_1 are r-nodes, and v,, is
an f-node, the following conditions are satisfied:

1. for each cycle C of only r-nodes going through v,,, the propagation function
associated to C' is the identity on [n], where n is the arity of the role of v,,,

2. if m > 3 and (v, v2) is non-special, then there exists a path of only r-nodes
from v,, to vs.

Example 3. Consider the DLR* TBox T° given in Example[2l Recall that the cy-
cle C = R1[3|R2[3]R3[1]R1[3], of only r-nodes, occurs in the dependency graph
for T. Since the propagation function associated to C is the identity on {1,2, 3},
the first condition in the Definition [0l is satisfied. Furthermore, due to the exis-
tence of the edge (Rs[1], R1[3]) in the dependency graph for T, also the second
condition is satisfied. Consequently, 7 is non-conflicting.

The non-conflicting condition ensures separability, i.e., every NCDLR* TBox
is separable. This result is implicit in [4], where a very similar condition on a
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variant of ER schemata is presented. Rather than presenting a complete proof,
we explain intuitively why this result holds. The first condition in the Definition [G]
guarantees that it is not possible to violate a functional assertion of the form
(funct RJ[i]), during the construction of the chase, because of a cycle of only r-
nodes (in the underlying dependency graph) that goes through the f-node RJ[i].
Now, a functional assertion (funct R[i]) may be violated, during the construction
of the chase, due to a “bad” path of the form v1vs ... vy, where m > 3, (v1,v2)
is a non-special edge, vy is a c-node, va, . .., vy, are r-nodes, and v,, is the f-node
RJ[i]. Once (funct R[i]) is violated, one has to unify some terms in order to satisfy
it. However, such a unification may generate new atoms. The existence of the
“good” path of only r-nodes from the f-node RJ[i] to ve, which is ensured by the
second condition in the Definition [G, guarantees that the new atoms mentioned
above eventually will be obtained during the construction of the chase, even
without considering (funct RJ[i]). We can now state our result.

Theorem 2. Every NCDLRT TBoz is separable.

Characterizing Separability. An interesting question for DLR* TBoxes is
whether the property of being non-conflicting it is also necessary for separability.
As we establish below, the answer to this question is affirmative, providing that
the set of negative inclusions is empty.

Theorem 3. Consider a DLRT TBoz T such that T~ = @. If T is separable,
then it is also non-conflicting.

Proof (sketch). We can show that, if 7 is not non-conflicting, then it is always
possible to construct an ABox A and a BCQ ¢ such that (7, A) is satisfiable, and
also (T, A) E q but (T, A) ¥ q. This implies that if 7 is not non-conflicting,
then it is not separable, and the claim follows.

Unfortunately, for DLR* TBoxes with a non-empty set of NIs, the property
of being non-conflicting is not necessary for separability. For instance, it is not
difficult to verify that the DLR* TBox {3R;[1] T A1, Ay T 3Ry[1], Ra[1,2] C
R1[1,2], (funct Ry[1]), A1(X), A2(X) C L} is not non-conflicting but it is sep-
arable. We are interested to identify particular cases where, for DLR* TBoxes
with a non-empty set of NIs, the non-conflicting condition is also necessary for
separability. The argument to show that the TBox 7 given above is separable,
it is heavily based on the fact that AZ = &, for each model Z of 7. This ob-
servation led us to conjecture that the non-conflicting property is necessary for
separability if we consider strongly consistent TBoxes.

Definition 7 (Strong Consistency). A DLR* TBox 7 is said to be strongly
consistent if there exists a (finite or infinite) interpretation Z such that Z = T,
and for each atomic concept A and role R in T, AT # @ and RT # @.

Let us now show that our conjecture holds.

Theorem 4. Consider a strongly consistent DLR* TBoz T. If T is separable,
then it is non-conflicting.
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Proof (sketch). The proof is analogous to that of Theorem [3] i.e., we can show
that, if T is not non-conflicting, then it is always possible to construct an ABox
A and a BCQ ¢ such that (T, .A) is satisfiable, and (T, A) = ¢ but (T, A) £~ q.
Notice that membership assertions of the form A(c) and R(cy,...,c,) occur in
A, where A is an atomic concept and R is an atomic role occurring in 7. Such an
ABox always exists if we assume that there are no NIs in 7 (as in Theorem [3)).
However, if 7~ # @&, then the existence of such an ABox is not guaranteed. The
assumption that 7 is strongly consistent allows us always to construct such an
ABox, even in the presence of NIs.

An interesting question concerns the computational complexity of deciding
whether an NCDLR* TBox is strongly consistent. We show that this problem
is PSPACE-complete. The desired lower bound is obtained by exploiting a deci-
sion problem, called finite function generation, denoted as FFG, introduced and
studied in [I5]: given a pair (F, f), where F'U {f} is a (finite) set of functions
from a set to itself, decide whether f can be obtained by composing functions
of F. It is known that FFG is PSPACE-complete, even for bijective functions.

Theorem 5. The problem of deciding whether an NCDLR* TBoz is strongly
consistent is PSPACE-complete.

Proof (sketch). Consider an NCDLR* TBox 7. It is possible to show that 7~
is strongly consistent iff there exists an ABox A such that, for each atomic
concept A and atomic role R in 7, A contains exactly one membership assertion
of the form A(c) and one of the form R(ey,...,¢y), respectively, and (T, .A) is
satisfiable. Therefore, the problem under consideration can be solved by applying
the following non-deterministic algorithm: guess an ABox A as described above,
and if (T, A) is satisfiable, then accept; otherwise, reject. Clearly, the above
algorithm runs in non-deterministic polynomial time with an oracle C, where
C is a complexity class powerful enough for deciding whether the KB (7, .A)
is satisfiable. As we shall see (Theorem [IT]), KBSat under NCDLR* TBoxes is
feasible in PSPACE; since NPPSPACE — pSpACE, the claim follows.

The PSPACE-hardness is established by a reduction from the complement of
FFG. Let (F, f) be an instance of FFG, where F' = {f1,..., fin} with m > 1;
w.l.o.g. assume that F'U{f} is a set of bijective functions from [n] to [n], where
n > 2. Let T be the NCDLR™ TBox constituted by

AC 3R[]
{R[L s 7n} C R[fi(l)v BERE) fi(n)}}ie[m]
R(X1,..., X0), R(X 51y, Xpm) C L,

where A is an atomic concept and R is an n-ary atomic role. Clearly, the above
construction can be carried out in polynomial time. Moreover, T is trivially
non-conflicting since in the underlying dependency graph there is no f-node. It
is easy to see that there exists an ABox A as described above iff the function f
cannot be obtained by composing functions of F', and the claim follows.
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Notice that if we consider NCDLRT TBoxes where in inclusion assertions
among roles only the identity permutation is used, or the arity of roles is bounded
by an integer constant, then the problem of satisfiability is in coNP (Theorem [I2]).
This implies that the algorithm proposed in the proof of Theorem [l runs in
NP “and thus the problem of deciding whether a TBox is strongly consistent
is feasible in X%. However, the exact complexity of the problem remains open.

4 Query Answering

In this section, we investigate the data and combined complexity of BCQAns un-
der NCDLRT KBs. Recall that the data complexity is calculated by considering
only the ABox as part of the input, while the combined complexity by consid-
ering also the query and the TBox as part of the input.

Data Complexity. We show that our problem is in the highly tractable class
ACq in data complexity. This is shown by establishing that NCDLR® is first-order
rewritable. To define formally first-order rewritable DLs, the so-called database
interpretation of an ABox is needed.

Definition 8 (Database Interpretation). The database interpretation of an
ABox A, denoted db(A), is defined as the interpretation (A% .4(A)) "where:

— A s the set of terms occurring in A,

— t%(A) = ¢ for each term ¢ occurring in A,
— AP = 11| A(t) € A}, and

~ R®A) = {(t), ... t,) | R(t1,...,tn) € A}.

Let us now define first-order rewritable DLs.

Definition 9 (First-Order Rewritability). A DL L is first-order rewritable,
henceforth abbreviated as FO-rewritable, if for every TBox T expressed in L,

and for every BCQ ¢, it is possible to construct a (finite) first-order query ¢r
such that (T, A) = ¢ iff db(A) |= ¢r, for every ABox A.

Notice that the notion of FO-rewritability was introduced in [8] under the
name first-order reducibility.

Theorem 6. BCQAns under NCDLRT KBs is in ACy in data complezxity.

Proof (sketch). Consider an NCDLRE TBox 7, and an ABox A; let K = (T, A).
If K is unsatisfiable, then K |= ¢, for every BCQ ¢ over K. Assume now that K is
satisfiable. By Theorem[2 K k= ¢ iff (T, A) | g, for every BCQ q over K. It is
not difficult to show that a (finite) first-order query ¢’ can be constructed such
that (71, A) E ¢ iff db(A) | ¢'; in fact, this follows by observing that 7 is
equivalent to a set of inclusions dependencies which are first-order rewritable [6].
Evaluating first-order queries is in ACp in data complexity [2I]. The claim fol-
lows since, as we shall see (Theorem [I0)), the problem of deciding whether K is
satisfiable is also in ACq.
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Before we proceed further, we show that DLR* is not FO-rewritable. This re-
sult descends straightforwardly from [4]; however, here we provide an alternative
proof based on a simple complexity argument.

Lemma 1. DLR™ is not FO-rewritable.

Proof (sketch). Suppose that DLRT is FO-rewritable, and thus BCQAns under
DLR* KBsis in ACy in data complexity. It can be shown that the same problem is
PTIME-hard in data complexity, by a reduction from BCQAns under DL-Lite’t”.
KBs [2]. This implies that the complexity classes ACy and PTIME coincide which
is a contradiction since ACo C PTIME (see, e.g., [18]). Thus, DLR* is not FO-

rewritable.

Combined Complexity. We now investigate the combined complexity of
BCQAns under NCDLR® KBs. In particular, we show that the problem under
consideration is PSPACE-complete.

Theorem 7. BCQAns under NCDLR* KBs is PSPACE-complete in combined
complezity.

Proof (sketch). Consider an NCDLRE TBox 7, and an ABox A; let K = (T, A).
If K is unsatisfiable, then K = ¢, for every BCQ ¢ over K. Assume now that K
is satisfiable. By Theorem 2 K & ¢ iff (T, A) = q, for every BCQ g over K.
Recall that the problem of deciding whether (71, A) = ¢ can be reduced to the
problem of query answering under inclusion dependencies which is in PSPACE in
combined complexity [I4]. The desired upper bound follows since, as we shall
see (Theorem [IT]), the problem of deciding whether K is satisfiable is in PSPACE.
The PSPACE-hardness is established by a reduction from FFG.

Interestingly, the combined complexity of query answering decreases to non-
deterministic polynomial time if we consider the DLs obtained from NCDLR™ ei-
ther by allowing only the identity permutation in inclusion assertions among
roles, or by allowing only roles of bounded arity; the formal definitions follow.

Definition 10. A non-conflicting DLR (NCDLRY) TBox is an NCDLR™ TBox
where all the inclusion assertions of the form Ri[i1,...,i,] © Ralj1,.-.,Jnls
where {R1, Re} C R, are such that i = ji, for each k € [n]. A non-conflicting
DLR{ (NCDLR{) TBox is an NCDLR* TBox where the arity of atomic roles is
bounded by an integer constant.

The NP-completeness of BCQAns under NCDLRbi KBs can be easily estab-
lished by exploiting known results. In particular, as we shall see (Theorem [I2)),
we can decide whether K is unsatisfiable in NP in combined complexity. More-
over, given an NCDLRbjE TBox T, 7T can be translated into a set of IDs where the
arity is bounded; it is well-known that query answering under IDs, in the case of
bounded arity, is in NP [I4]. Finally, the desired lower bound follows immediately
from the NP-hardness of query evaluation over relational databases [11].
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R(a,b)

HR[ZW] C R[2.1]

A(b) R(b,a)
AC EIR[I]i i

R(b,2)

HR[2W] C R[2.1]
A(2) R(z,b)

Fig. 3. The chase forest for IC; z is a labeled null of N

Theorem 8. BCQAns under NCDLRbi KBs is NP-complete in combined com-
plexity.

Let us now establish the NP-completeness of BCQAns under NCDLR?S KBs.
The desired lower bound is inherited from the NP-hardness of query evaluation
over relational databases [I1]. However, the desired upper bound does not follow
from the fact that query answering under IDs, in the case of bounded arity, is
in NP (as for NCDLle), since we have to deal with roles of unbounded arity. In
order to establish the desired upper bound, several auxiliary technical notions
and results are needed.

Definition 11. Consider a DLR* KB K = (T, A). The chase forest for K is a
directed graph (V| E, A), where V is the node set, E is the edge set, and )\ is a
labeling function E — T +. There exists a node for each membership assertion
of chase({T T, A)). Also, for each pair of assertions oy and ag of chase((T+,.A)),
there exists an edge e = (aq,as), with A(e) = o € T, if ay is obtained from
a1 during the construction of the chase by a single-step application of o. For an
assertion o € chase((T*,A)), we denote by subtree(a) the subtree of the chase
forest for K rooted at a.

Ezample 4. Consider the KB K = (T, A), where
T = {3R[2JC A, AC 3R[1], R[1,2]C R[2,1]}

and A = {R(a,b)} with A € A and R/2 € R. An initial segment of the (infinite)
chase forest for K is depicted in Figure Bl

We denote by d(«) the set of constants and nulls occurring in the membership
assertion a. Given a finite set S of constants and nulls, two assertions a; and as
are S-isomorphic, denoted ay ~g aq, if there exists a bijection h : §(a1) — §(a2),
such that h (resp., h~1) is a homomorphism from «; to ag (resp., @z to a1), and
h(X) = h=}(X) = X, for each X € S. The notion of S-isomorphism naturally
extends to pairs of subtrees of a chase forest. It is not difficult to show, by
induction on the number of applications of the inclusion chase rule, that if two
assertions are S-isomorphic, then their subtrees are also S-isomorphic.
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Lemma 2. Consider a DLR* KB K = (T, A). If oy ~s az, where {a1,as} C
chase({TT,A)), then subtree(ay) ~g subtree(as).

It is also possible to show that there exists an upper bound on the number of
non-J(«)-isomorphic assertions, where « is a membership assertion, that can be
constructed during the chase. This result can be established by providing a com-
binatorial argument which exploits the fact that only the identity permutation
can be employed in inclusion assertions among atomic roles.

Lemma 3. Consider an NCDLRE KB K = (T, A). Let a € chase((T+, A))
and S C chase((T,A)) such that, for each o/ € S, §(¢/) C §(a) UN. If
IS| > |sig(T)| - ((arity(T))? + 2), then S contains at least two &(c)-isomorphic
assertions.

We can now establish that for query answering purposes it suffices to em-
ploy a “pseudo-canonical” interpretation, that is, an interpretation obtained by
considering an initial finite segment of the chase up to a certain level which
is polynomial w.r.t. the query and the TBox, and constant w.r.t. the ABox.
For an assertion a € chase((T ", A)), the level of o, denoted as level(), is the
number of inclusion chase rule applications that are needed to construct it. Let
can®((T*, A)) be the interpretation obtained by considering chase”((T+, A)),
that is, the set of assertions {« | a € chase({T+,.A)) and level(a) < k}.

Lemma 4. Consider an NCDLRﬁ KB K = (T, A) and a BCQ q over K. If
can((T+, A)) | q, then can*((T*,A)) = ¢, where k = |body(q)] - |sig(T)] -
((arity(T))? + 2).

Proof. Since, by hypothesis, can((T ", A)) [ g, it is easy to see that there ex-
ists a homomorphism A that maps body(q) to chase({T+, A)). Let h be of this
kind such that level(h) = 3_ oy (q) level(h(e)) is minimal. It suffices to show

that h(body(q)) is contained in chase®((T+,.A)). Towards a contradiction, sup-
pose that h(body(q)) is not contained in chase”((T+, A)). Consider the tree T
consisting of all atoms of h(body(q)) and their ancestors in the chase forest for
K. Since h(body(q)) is not contained in chase®((T+, A)), a path P = a; ... apn,
where m—1 > |sig(T)|-((arity(7))%?+2) and {as, . . ., am—1}Nh(body(q)) = @, oc-
curs in 7. By Lemma[3] there are two d(aq )-isomorphic assertions § and v on P.
Lemmallimplies that subtree(3) and subtree(y) are d(aq )-isomorphic. Therefore,
we can remove /3 and the path to 7, obtaining a path P’ that is at least one edge
shorter than P. Clearly, there exists a homomorphism p that maps subtree(3) to
subtree(wy). Then, the homomorphism k' = poh maps body(q) to chase({T T, A)).
Observe that level(h') < level(h) which is a contradiction since h is such that
level(h) is minimal. We conclude that h(body(q)) C chase™((T+, A)).

We are now ready to establish the desired complexity result.

Theorem 9. BCQAns under NCDLRijd[ KBs is NP-complete in combined
complezity.
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Proof (sketch). As already mentioned, the desired lower bound is obtained di-
rectly from the NP-hardness of query evaluation over relational databases [11].
Consider now an NCDLRﬁ KB K = (T, A) and a BCQ g over K. By Theo-
rem[2] we can decide whether K |= ¢ by applying the following algorithm: if K is
unsatisfiable or (T, A) = ¢, then accept; otherwise, reject. As we shall see (The-
orem[I2)), we can decide whether K is unsatisfiable in NP in combined complexity.
It remains to show that the problem of deciding whether (7, A) = ¢ is in NP in
combined complexity. By Lemma [l (T, A) & q iff can®((T+, A)) |= q, where
k = |body(q)|-|sig(T)|- ((arity(T))?+2). Observe that, if can®((T+, A)) = g, then
q is entailed due to a finite part of can®((T+,A)) of size at most |body(q)| - k.
To decide whether can®((T+,A)) = ¢ we can construct non-deterministically
a finite part P of can®((T+,.A)) of size at most |body(q)| - k, and then check
whether P = ¢. Obviously, this is feasible in non-deterministic polynomial time,
and the claim follows.

5 Knowledge Base Satisfiability

In this section, we investigate the data and combined complexity of KBSat under
NCDLR* KBs. Let us first establish an auxiliary technical lemma which states
that unsatisfiability can be reduced to query answering. This lemma builds upon
an analogous one in [4], from which it can be derived without difficulties; how-
ever, for the sake of completeness, we provide a proof sketch here, since several
details are different from the case of [4]. We assume that the reader is familiar
with the notion of union of BCQs (see, e.g., [1]).

Lemma 5. Consider an NCDLRT KB K = (T, A). If T is fized (resp., non-
fized), then we can construct an ABox A" and a union of BCQs Q in ACq (resp.,
PTIME) such that K is unsatisfiable iff (TT, A") = Q.

Proof (sketch). Let A’ be the ABox obtained from .4 by adding a membership
assertion Neg(ci,ca), where Neq is an auxiliary binary role not occurring in
IC, for each pair of distinct constants ¢; and ¢s in A. The union of BCQs @ is
constructed as follows. For every NI of the form ¢(X) C L occurring in 7, add
to @ the BCQ p + ¢(X). Moreover, for every functionality assertion of the form
(funct RJ[i]) occurring in 7=, where R is an n-ary role, add to @ the BCQ p «
R(Xl, ey Xz;l,Y, Xi+1, e ,Xn), R(Zl, ey Zz‘,l,Y, Zi+1, ey Zn), Neq(Xj,Yj),
for each j € [n] \ {i}. We can show that K is unsatisfiable iff (71, A") = Q.
Suppose now that 7 is fixed, and let C7 = sig(7T) N A and Ry = sig(T) NR.
The required membership assertions can be obtained by evaluating a first-order
query, which depends only on T, over db(A). Evaluation of first-order queries
is feasible in ACy in data complexity [21], and thus the required membership
assertions can be constructed in Acy w.r.t. A. Since () depends only on 7 can
be constructed in constant time. In the case of a non-fixed TBox, it is obvious
that both A’ and @ can be constructed in PTIME. In particular, the number of
membership assertions in A’ is at most n?, where n is the number of constants
in A, while the number of BCQs in @ is at most |7~ | + arity(T) - |[T—|.
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In the sequel, given an NCDLR® KB K = (T, A), we will refer to the ABox A’
and the union of BCQs @, provided by Lemma [l as Ax and Qx, respectively.

Data Complexity. We are now ready to investigate the data complexity of
KBSat under NCDLR* KBs.

Theorem 10. KBSat under NCDLRT KBs is in ACq in data complezity.

Proof. Let K = (T, A) be an NCDLR® KB. By Lemma 5, K is unsatisfiable iff
(TT,Ax) E Qx. As already discussed in the proof of Theorem [ the problem
of deciding whether (7", Ax) | Qx is in ACy in data complexity. Since both
Ax and Qx can be constructed in ACq, the claim follows.

Combined Complexity. We now investigate the combined complexity of
KBSat under NCDLR® KBs. We establish that, in the general case, the problem
under consideration is PSPACE-complete.

Theorem 11. KBSat under NCDLRT KBs is PSPACE-complete in combined
complexity.

Proof (sketch). By providing an argument similar to the one given in the proof
of Theorem [I0] we get that the problem of deciding whether an NCDLRT KB
is unsatisfiable is in PSPACE, and the desired upper bound follows. The PSPACE-
hardness is established by a reduction from BCQAns under NCDLR* KBs. No-
tice that the aforementioned problem remains PSPACE-hard even in the case of
TBoxes which contain only PIs (implicit in the proof of Theorem [T). Consider a
KB K = (T, .A), where both T~ and 7= are empty, and a BCQ ¢ over K of the
form p < ¢(X). Let K' = (T U{¢(X) C L}, A). Tt is easy to see that K | ¢ iff
K’ is unsatisfiable, and the claim follows.

The combined complexity of KBSat decreases if we restrict our attention on
NCDLR)i( KBs, where X € {id, b}. By providing a proof similar to that of Theo-
rem[IT] and also by exploiting the fact that BCQAns under NCDLRf( KBs, where
X € {id, b}, is NP-complete we get the following result.

Theorem 12. KBSat under NCDLR)i(, where X € {id, b}, is coNP-complete in
combined complezity.

6 Conclusions

In this paper, we have presented the DL DLR* with roles of arbitrary arity, which
is equipped, among other constructs, with functionality constraints, role inclu-
sions with arbitrary permutation of the arguments, and negative assertions. We
have provided a syntactic condition which is necessary and sufficient for the sep-
arability of DLR* TBoxes, thus identifying a fragment, which we call NCDLR*,
which offers highly tractable (in data complexity) CQ answering and KB sat-
isfiability. We have also investigated the combined complexity of reasoning in
NCDLR® (and variants of it).
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Since DLR® is very similar to the ER variant proposed in [], called ER*, our
result are straightforwardly applicable to ER*. It is also possible to show that
every DL-Liter or DL-Liteg TBox T can be transformed into an NCDLR* TBox
T such that, for every ABox A and BCQ ¢, (T, A) E qiff (T', A) = q. Moreover,
the NCDLR* TBox {R[1,2] C R[2,1], (funct R[1])} cannot be expressed neither
in DL-Liter nor in DL-Liter. We can therefore state the result below.

Theorem 13. NCDLRi, even with binary roles only, is strictly more expressive
than DL-Litex, where X € {F,R}.

Finally, in this work we have considered arbitrary (finite or infinite) models.
Determining the complexity of CQ answering and KB satisfiability under finite
models only remains an open problem, and will be the subject of future research.
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Abstract. Provenance techniques aim to increase the reliability of hu-
man judgments about data by making its origin and derivation pro-
cess explicit. Originally motivated by the needs of scientific databases
and scientific computation, provenance has also become a major issue
for business and government data on the Web. However, so far prove-
nance has been studied only in relatively restrictive settings: typically,
for data stored in databases or scientific workflow systems, and processed
by query or workflow languages of limited expressiveness. Long-term
provenance solutions require an understanding of provenance in other
settings, particularly the general-purpose programming or scripting lan-
guages that are used to glue different components such as databases,
Web services and workflows together. Moreover, what is required is not
only an account of mechanisms for recording provenance, but also a the-
ory of what it means for provenance information to explain or justify
a computation. In this paper, we begin to outline a such a theory of
self-explaining computation. We introduce a model of provenance for a
simple imperative language based on operational derivations and explore
its properties.

1 Introduction

Scientific data (including both raw data and processed results) is now being pub-
lished and shared online in unprecedented quantities. Understanding the signifi-
cance, validity, or accuracy of this data depends on understanding its provenance.
When data is not confined to a single user, system, or intended application, it is
essential to make the origin, ownership history, processing steps, and context or
assumptions about the data explicit, to avoid misinterpretation and aid repro-
ducibility. Over the last decade, a wide variety of techniques aimed at addressing
this provenance problem have been proposed, including new data formats [46l47]
and mechanisms for generating provenance to accompany computations.
Buneman, Khanna and Tan’s 2001 paper “Why and Where: A Characteri-
zation of Data Provenance” [9] was among the first publications to investigate
the problem of provenance in database systems. Although provenance was stud-
ied earlier by Wang and Madnick [56], Woodruff and Stonebraker [59] and Cui
et al. [20], Buneman et al. [9] has had greater influence (at least measured in
terms of citations) than these other works. We conjecture that one reason for
this is that Buneman et al. went beyond proposing mechanisms for provenance:

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 193-EI6] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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they also considered the question of the meaning of provenance. By considering
and comparing two models, why-provenance and where-provenance, they made
it clear that there might be many different models of provenance, with different
advantages and disadvantages, and suitable for different applications.

Provenance techniques have since been studied in the context of databases
[9129], scientific workflow systems [43[7], operating systems [48], and inference
systems [38] (including recent interest in the Semantic Web community, culmi-
nating in a W3C Working Group on Provenance [27/47]). In each of these con-
texts, there is a large design space for provenance mechanisms, yet at the same
time there is not a clear consensus on the requirements or policies that these
mechanisms ought to satisfy. Sometimes even the specifications of the techniques
are unclear, or illustrated mainly through intuitive examples.

Instead, a wide variety of informal motivations have been cited, usually not
accompanied by precise definitions or proofs of correctness. Such motivations
include:

— To record a complete derivation of a program or inference process execu-
tion. [Z3I60I4R]

— To guarantee repeatability, replayability or reproducibility. [23/45]

— To explain causal structure, history, influence or dependence. [A0JT7IT3IT5]

— To show where result data has been copied from, how result records were
composed from input records, or why results were produced. [9829/16]

— To validate a computation to ensure it is correct. [41]

— To diagnose and repair errors in computations involving components that
are not believed to be reliable. [39]

— To facilitate efficient recomputation and comparison of computations, in-
cluding recomputation from different inputs or in different computational
environments. [23517/29]

As of 2010, there were over 400 research papers on provenance in computer sys-
tems to date [44]. However, not all of them observe Lamport’s rule “State the
Problem Before Describing the Solution” [35]: instead, many present a proposed
solution and then argue that it is a solution on its own terms, without making
the problem it solves explicit. This state of affairs should be compared with the
state of security research twenty-five years ago, when a wide variety of (often
proprietary) security solutions were being proposed without a clear understand-
ing of what problems they solved (or were meant to solve). In an influential essay,
Good [28] argued that foundational understanding (theories and mathematical
models) were necessary for computer security. We believe provenance research
is in a similar state today: there are few formal models or crisp definitions of
the requirements for provenance or proofs that actual techniques achieve their
purported goals.

In previous work [I7], we highlighted several hazards implicit in this state
of affairs, which we called provenance failures. A provenance failure is a loss or
risk exposed by failure to properly manage provenance: for example, losses due
to outdated information in online trading [I1] or due to inaccurate scientific re-
sults [42]. Government agencies may also view leaks as provenance failures [55],
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and as of this writing (June 2013), it is widely reported [30] that intelligence
agencies are combining massive computing resources with unfettered access to
metadata about phone calls and Internet use. Whether one views these develop-
ments as essential tools for fighting terrorism or unacceptable hazards to privacy
and individual liberty, one cannot deny that the problems of protecting and se-
curing metadata are becoming just as important as those for raw data.

Since 2009, there has been a major effort to define standards for provenance
on the World Wide Web [47]. Provenance techniques are now being widely advo-
cated as a basis for trusting online data and scientific results. However, if these
techniques are not placed on a firm foundation, then this effort is doomed to
failure: if the problems to be solved by provenance are not formulated precisely,
then proposed solutions will, at best, provide a false sense of security.

For the purposes of this paper, we consider provenance to be any information,
usually not already provided by the system, describing some aspect of a system’s
run-time behavior (or of data flowing through it). Our view is that general-
purpose systems, including programming languages, should be equipped with
general-purpose notions of provenance that are (a) clearly specified, (b) suitable
for a variety of typical applications, and (¢) equipped with a formal correctness
property relating the behavior of the real system to the provenance description.

The first two criteria are relatively easy to satisfy. The aim of this paper is
to bring the third requirement into focus and study it. Many of the commonly-
stated requirements for provenance amount to a form of explanation that ade-
quately accounts for the behavior of the system [22]. However, the precise sense
in which some auxiliary data (which we call provenance) actually explains a com-
putational process is seldom explicitly stated. In this paper, we begin to outline
a theory of self-explaining computation, in which the semantics of provenance
and its relationship to the conventional semantics of a programming language
(or behavior of a system) are the objects of study.

What are the open questions that a theory of self-explaining computation
should address? These are just a few possibilities:

1. If a system’s actual behavior is described by explicit records, how do these
constitute explanations? What are different appropriate definitions of expla-
nation and how are they related?

2. Provenance can be recorded according to several different strategies, ranging
from coarse-grained to fine-grained. Fine-grained provenance seems more
useful or “complete” but can easily grow to dwarf the raw data. How can we
understand and quantify the tradeoff between granularity and usefulness?

3. The full provenance record often includes far too much information to be
useful. How can we extract subsets of this information that correctly ap-
proximates the full record?

4. Some provenance techniques (e.g. minimal witnesses in why-provenance) are
extensional, or invariant with respect to a conventional semantics of the sys-
tem, and others are intensional, meaning that their behavior can be different
for conventionally-equivalent expressions (e.g. where-provenance). What are
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the advantages and disadvantages of these different approaches? How can
we justify intensional provenance semantics?

The behavior of computer systems can be described programmatically. The
study of the semantics of programming languages has explored a large number
of alternative approaches to defining the meaning of programs, ranging from
denotational techniques [53] that interpret program text as an abstract, math-
ematical object such as a function, to operational techniques [50] that explain
the behavior of complex program constructs via rules that describe how to eval-
uate a program step-by-step. We take the view that the theory of self-explaining
computation should build on programming language semantics, in order to en-
sure that the specifications of provenance techniques are clear, and in order to
facilitate formalization and proof of correctness properties.

We focus on an operational approach to provenance in the context of an
imperative core-language IMP [57]. We explore the implications of taking a
large-step operational derivation (that is, an explicit natural semantics proof
tree [33]) as a form of provenance. We define a semantics for programs that
produces both a standard result and an operational derivation tree, which we
view as recording all of the information that could be relevant to understanding
the program and how it executed (at the IMP level of abstraction).

We then consider the problem of formalizing some of the requirements above
and extracting information from traces in order to meet these requirements.
For example, we give a candidate definition of source locations (inspired by
where-provenance [9]) and then show how this can be extracted from derivations.
We also describe the use of derivations for a form of incremental computation
(loosely inspired by self-adjusting computation [5]), in order to demonstrate that
derivations are expressive enough to meet this strong requirement. We have made
additional contributions since the first version of this paper was written [3J49],
and we conclude with a discussion of these results and future steps.

2 Background

To illustrate our approach, we employ a simple imperative programming lan-
guage IMP [57], augmented with pairs as a simple form of data structure. The
syntax of IMP expressions e € Exp, commands ¢ € Comm and values v € Val
is as follows:

ex=x|let x =e; ines | (e1,e2) | fst(e) | snd(e) |i|b|ei1 =ea|er +ea]| -
cu=skip|z:=e|c1;c2 | if e then ¢; else ¢y | while e do ¢

vu=1i|b]| (v1,v2)

where x € Var denotes variables, ¢ € Z denotes integers, and b € B denotes
boolean values. We will also write @ for an arbitrary binary operation, including
+, =, and possibly others.

The meaning of expressions and commands is defined via operational seman-
tics rules as shown in Figures [l and 2l Our semantics is essentially a standard
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ger v ofzi=wvl,e2 d v2 icZ oger i1 o,exlia

o,z o(x) o,let x = e1 in ez |} v2 o, i1 o,e1 +e2 || i1 + 12

o,e1dvi o6l va o,e | (vi,v2) o,e | (v1,v2) b € {true,false}
o, (e1,e2) | (v1,v2) o,fst(e) | v o,snd(e) | v1 o,b|lb

Fig. 1. Operational semantics derivation rules for IMP expressions

o,elv o,callo’ o el o”
o,skip | o o,x:=e| oz :=1] o,ciica o’
o,el true o,c1 | o’ o,ell false o,co |l o’
0,if e then c1 else c2 || o’ 0,if e then c; else c2 | o’
o,eltrue o,cllo’ o',while edoc o” o,e || false
o,while e do c | o” o,while edocl o

Fig. 2. Operational semantics derivation rules for IMP commands

large-step operational semantics. We consider the set of stores Store = Var —
Val and use functions ¢ € Store to store the values of variables. We write ||
for the empty store, [z1 := v1,..., &, = v,] for a store binding z; to v;, and
o[z := v] for a store o updated by replacing the value of 2 with v. More generally,
we write o[o’] for o updated with ¢’, that is, o[o’](z) = o'(z) if z € dom(c")
and o(x) otherwise.

In this paper, we view the derivations as explicit data structures, that is, as
ordered, ranked trees with nodes labeled with judgments J. The judgments we
will consider are:

Ju=oelv]|oclo

The judgment o,e || v indicates that an expression e evaluates to value v in
store . The judgment o, ¢ |} ¢’ indicates that a command ¢ evaluates in store o
to store o’.

The rules in Figures[Iland 2 thus essentially define construction rules for valid
derivations. We write D :: 0, e || v to indicate that D is a valid derivation whose
root is labeled with o, e || v. We may also write patterns of the form

D, --- D,
J

to describe a valid derivation tree whose root is labeled with J and whose im-
mediate subderivations are D, ..., D,,. Figure[3 shows three sample operational
semantics derivations.
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t=4y=2,zl4 [z=4y=2],2]2
[r=4,y=2],2 =2 false [x=4,y=2,y:=4{ [z =4,y =4]
[x=4,y=2],if r=2thenx :=yx2elsey:=4 | [x =4,y =4]

[x=4y=2}z4 [zr=4,y=2],202
[x=4,y=2],z =2 false x=4,y=2l,y:=z | [z =4,y =4
[x=4,y=2,if ct=2thenz:=yx2elsey:=x | [zr =4,y = 4]

[z=3y=2,z43 [r=3y=2[,202
[x=3,y =2,z =2 false =3 y=2L,y:=z | [z =3,y=23
[x=3,y=2,if t=2thenz:=yx2elsey:=x | [z =3,y =3]

Fig. 3. Example derivation trees

For illustration purposes, we also give the standard denotational semantics of
IMP programs. Recall that a denotational semantics assigns to each program
expression or command a mathematical meaning. Here, we interpret expressions
e as functions E[e]— : Store — Val, from stores to values, and commands ¢
as functions C[c]— : Store — Store;. Here, we use the standard notation S|
to abbreviate S W { L}, that is, the set S augmented with a special “undefined”
value L. One can equivalently think of the interpretations as partial functions
Store — Val or Store — Store respectively. The denotational semantics is defined
in Figures [ and

Theorem 1 ([67]). The denotational and operational semantics are equivalent
in the sense that:

1. &e]o = v holds if and only if there exists a deriwation D of o,e |} v, and
2. Clc]o = o' holds if and only if there exists a derivation D of o,¢ | o’.

The proof is standard, but in the interest of precision we exhibit functions that
witness the forward direction by constructing explicit derivations. These are
shown in Figures[Gland[7l The function £P[e]o yields a pair (D, v) of a derivation
of D :: o, e || v along with the actual value v. Likewise, the function CP[c]o yields
a pair (D, o’), where D :: 0,c¢ || o’. (The second components of the respective
return values, v and ¢/, are redundant, but this formulation makes the definition
more uniform).

In the rest of this paper, we explore the consequences of viewing the derivation
obtained by evaluating an IMP expression or command as a form of provenance
in its own right.

2.1 A Note on the Overhead and Scale of Provenance Tracking

Our IMP language incorporates standard primitive operations found in most
general-purpose programming languages, such as arithmetic and booleans. The
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Ele] : Store — Val

Elz]o = o(x)
Elet x = ey in ezx]o = Efez]ofz := E]er]o]
Elile =1

Eler + ex]lo = E[er] o + Efez]o

El(e1,e2)]o = (E]ei]o, E]ez]o)

Eltst(e)]o = v (Ele]o = (v, v2))

E[snd(e)]o = v2 (Ele]o = (v, v2))
Eblo=0b

B [ true Eler]o = Efea]o
Eler = ex]o = {false Eler]o # Ele2]o

Fig. 4. Denotational semantics of expressions

Clc] : Store — Store
Clz :=e]o = olz := E[e]o]
Cler; c2]o = Cle2](Clei]o)
Clei]o Ele]o = true
Clez]lo Ele]o = false
{C[[while e do cJ(C[c]o) Ele]o = true
o Ele]o = false

C[if e then ¢ else c2]o = {

C[while e do cJo =

Fig. 5. Denotational semantics of commands

derivation trace model we propose above could be prohibitively expensive in
raw computational terms if we instrument the program to generating a new
derivation step node for each primitive operation. Furthermore, the space needed
for such a trace is likely to be large, in direct proportion to the running time.
In this paper we do not consider this practical aspect of provenance, which is
obviously important. Our goal is to understand what information, in principle,
one might consider as a “most precise” form of provenance, in order to under-
stand what is lost by adopting more practical techniques. Moreover, it may be
that the time and space overhead of naive derivation-trace provenance can be
avoided, either through finding a more compact representation of the trace, or
using standard compression techniques to compress the trace (which may have
a lot of redundancy). Naturally, for a deterministic program, one such com-
pressed representation is the original program itself plus its input: this requires
no run-time or space overhead for provenance tracking, but requires completely



200

EPe] :
EPz]o
EPlile
EPb]o

EP[e1 @ ea]o

EPlet & = 1 in ex]o

ED[[(elv 62)]]0

EP[£st(e)]o

£P [snd(e)]o
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Store — Deriv X Val
(mxua@yU@ﬁ
(oivini)
CD

let (D1,i1) = EX[e1]o in

D1 Do
o,e1 Bex i Dia

alin

let (Da,is) = EP[ez]o in (

7i1@i2>

D1 Do

o,let x = ey in ez | va’

let (D1, v1) = EP[ex]o in

let (Da,v2) = EP[ea]o[x :

; )

let (D1, v1) = EF[e1]o in

D, D

let (D2, v2) = €7 [ez]o in <a (er,e3) ¥ (o szwhW))
D

let (D, (v1,v2)) = £ [e]o in <g, fst(e) § v1 ,v1>

D

let (D, (v1,v2)) = EX[e]o in (07 snd(e) I va ,v2>

Fig. 6. Extracting derivations for expressions

Pl :
CPlz = eJo

c? [er; ea]o

cP [if e then c; else ca2]o

cP [while e do c]o

Fig.

Store — Deriv x Store
let (D,v) = &7 [ b =
et (D,v) = [e]o in 0,x:=el}0[x:=v]’a[m'7v]
let (D1,0") =CP[ci]o in
Dy D
let (Dz,0”) = CP[ez]o’ in < ! 2 » ,o’”)
o,ci5c2 o
let (D,b) = EP[e]o in
let (D', 0") = if b then CP[c1]o else CP[cz]o in
D D ,

o, if e then c; else c3 | o’ i
let (D,b) = EP[e]o in
if b
then let (D', 0") = CP[c]o in
D DI D//

let (D", ¢") = CP[uhile e do c]o’ in "
(D70 [ ] o,while e do c |} o'’

o )

D
o,while edo c | o

7. Extracting derivations for commands
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recomputing the program to perform provenance analysis. Exploring the tradeoff
between time and space overhead of provenance tracking vs. provenance analysis
is an important area for future work; here, we focus only on defining different
provenance analyses in terms of derivation traces.

Another important observation about the overhead and scalabilty of our ap-
proach is that our approach is parametric over the primitive operations: they may
be (as in our examples) fine-grained, machine arithmetic operations, but they
could just as well be coarser-grained, macroscopic steps. Consider, for example,
an alternative variant of IMP in which the primitive operations include entire
external programs. In other words, instead of performing all of our numerically-
intensive computation explicitly using IMP-level arithmetic, we can consider
it as a scripting language for orchestrating larger computational steps that are
treated as primitive operations from the point of view of IMP’s provenance
records. Another interesting area for future work could be to understand how
to combine efficient coarse-grained provenance with more-precise, on-demand
fine-grained provenance tracking.

3 Finding Sources of Copied Data

As noted in the introduction, our goal is to use operational derivations as a
starting point for formalizing various requirements on provenance. We start with
the notion of where-provenance [9§]. Essentially, where-provenance is intended
to track the sources of data copied from the input of a computation to the
output. We will define where-provenance for while-programs in two stages: first,
we will define where-provenance for straight-line code, and then we will lift the
definition to arbitrary programs by erasing derivations to straight-line programs.

Since we have been using abstract syntax trees for values and expression
trees, it seems natural to employ paths that can be used to address parts of
expressions and values. We write paths(v) for the set of paths that are valid for
a value. Specifically, paths : Val — {1,2}* is defined as:

paths(b) = paths(i) = {e}
paths((v1,v2)) = 1 - paths(vy) U 2 - paths(vz)

Here, if P is a set of paths, we write i- P for {i-p | p € P}. Similarly, we use paths
of the form z.p to point to parts of variable values in stores. We write v[p] for the
value located at path p in v, and we write v[p := v'] for the result of replacing
the value at path p in v with v'. We extend these notations to environments and
environment paths in the obvious way.

Now we first consider the problem of identifying the source path (if any) of a
path in the result of an expression.

Definition 1. Suppose E[e]lo = v and p € paths(v). A source path ¢ is a path
such that olq] = v[p] and for any v, we have if E[e]olq := v'|[p] = v'.

In other words, a source path ¢ points to an input value o[g| that is a copy of the
value v[p] at result path p: if we change the input ¢ at ¢ to v’ then the change
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is mirrored at the output v at p. (Note that v may also differ at other places
besides p; consider the expression (x,x).)

This definition of source path is based on the denotational semantics, and so
for example two denotationally equivalent expressions such as z + 0 and z have
the same source path behavior. Because of this, in general it appears difficult
to determine source paths exactly: for example, if the primitive operations can
encode Boolean formulas, then we can reduce the Boolean satisfiability problem
to the problem of determining whether a Boolean variable is always an exact
copy of a part of the input. With richer primitive operations such as arithmetic,
determining whether source path relationships exist can become undecidable,
reducing from Diophantine equation satisfiability.

Nevertheless, we can safely under-approximate the source paths of an expres-
sion, as shown in the src (e, p) function:

: Var x Path — Path

src (e, L
p

src (z,

src (i, €

src (b, e

src (e @ eg, €

)
)
)
)
src ((e1, e2), €)
)
p)
p)
p)=

I I
I—}—I—I—H}—

(eiap)
src(e,1-p)
src(e,2-p)

src(e1,q

src (ea,
The cases for constants and primitive functions are obvious. For pair expressions,
if the path is €, then we return | since the pair value was created by the pair
expression. If the pair is i - p for some i € {1,2}, then we find the source of p
in the appropriate subderivation. For projection operations fst or snd, we find
the source of 7 - p where ¢ = 1 or ¢ = 2 respectively. For let-binding, we first
find the source of p in the second subderivation. There are then two cases: either
the source path is of the form x.q where x was the bound variable, or it is L or

some other path y.q. In the first case, we find the source path of x.q in ey; in the
second, we just return the source path we have already found (or L).

src ((e1,€2),%-p
src (fst(e),
src (snd(e),

if src (e2,p) = z.q

src(let x =e; in eg,p % otherwise

Theorem 2. If D :: g,e | v and p € paths(v) and src(e,p) = ¢ # L then q is
a source path for p.

Next, we consider commands. The definition of source path above extends
naturally to straight-line code involving only sequential composition and
assignment:

su=skip|xz:=e] $1;82
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Again, source paths for commands can be extracted syntactically:

: Var x Path — Path |
src (s 1
src (skip, z.p) = z.p

src(y :=e,x.p) =x.p (x #vy)

)
)=

src(x :=e,x.p) = src(e,p)
)

src (s1; $2,9) =

= src(s1,src(s2,q))

The idea is similar to where-provenance for expressions. The assignment com-
mand is handled similar to a let. Sequential composition is handled by compos-
ing src on subexpressions.

Theorem 3. If D :: 0,c | 0’ and p € paths(c’) and src(¢,p) = ¢ # L then q is
a source path for p.

However, the above notion of source path does not transfer directly
to commands with control-flow. For example, in a conditional
if x =1 then y =x else y = 2 there is no source path for the value of y,
even in the case where x = 1 and y seems to be copied from z. As a compromise,
we consider a weaker notion, based on the idea of “freezing” the control-flow of
a derivation to obtain a straight-line program.

freeze (0’ skip | 0') skip

freeze( o —6U0)

Dy
freeze( . @0 ) = freeze (D1) ; freeze (D5)
f DD =f
reeze o,if ethency elsecy o’ | reeze (D)
‘ D :o,e| false i
recze o,while e do ¢ = SEIP

D:oyeltrue D' D" , )
freeze ( o while e do c = freeze (D’) ; freeze (D")
The function freeze (D) gives a straight-line code approximation of the pro-
gram based on its derivation. We have:

Theorem 4. If D :: o,c || o’ then o,freeze (D) | o’.

Note, however, that freeze () is still an intensional concept: two derivations of
equivalent programs on equal inputs need not have the same straight-line ap-
proximation, as illustrated by Dy :: [x := 1],if 2 =1 then = := 1 else skip |}
[ := 1] and [z := 1],z | [z := 1]. Moreover, the above theorem does not
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uniquely characterize the behavior of freeze (); for example, an alternative def-
inition that simply collects the assignments needed to map o to ¢’ would also
have the given property. Thus, freeze () represents an intuitive tradeoff between
concreteness (avoiding control-flow) and faithfulness to the shape of the original
derivation.

Given a derivation D :: 0,e || v and path p in the result value v, we can then
define the source path of p in a general IMP program c as src (freeze (D), p).

Actually, very little of the derivation is needed to compute sources. Inspecting
each rule, we never need to examine the input store of any judgment and we
seldom need to inspect the return value: we only do this for while, and we could
potentially avoid this by inferring whether the loop test holds from the structure
of the subtree (i.e., a while-subderivation with only one child must correspond
to a loop test that evaluates to false). So, in general, if we only want to extract
source information then all we really need is the straight-line approximation of
the derivation (i.e., freeze (D)), not the (usually much larger) full derivation with
explicit store, expression, and value annotations. The straight-line approximation
freeze (D) might be viewed as an interesting form of provenance in its own right.
We can extract more than just source information from it; for example, we can
determine whether an output value was computed by adding two inputs.

A straight-line program could also be viewed as a DAG, following many con-
ventional approaches to provenance such as OPM [46]. Clearly, we could ex-
tract an OPM-style DAG from a straight-line program. Moreover, as argued by
Cheney [13] and Moreau [45], provenance DAGs can be viewed as a model of
computation for the purpose of analyzing the causality or reproducibility of the
computation they represent. However, the DAG approximation corresponding
to freeze (D) does not necessarily provide enough information for full recompu-
tation. In the next section, we consider the related issue of using the derivation
as a basis for efficient recomputation based on caching.

4 Dependence and Change Propagation

Another common motivation for provenance is to understand how parts of the
result depend on intermediate computation steps or source data. The notion
of dependence plays an important role in programming languages, particularly
dependency tracking [1J2], information flow security [51] and change propaga-
tion [5l4]. As argued in [I2JTI5], we believe that this is a good starting point
for understanding how provenance should link results to the source data they
depend on.

Analyzing dependence requires us to consider not just how an expression
did evaluate but how its evaluation might change if the inputs were modified.
If we expect provenance to explain the results, then what metric should we
use to compare different explanations? We believe that an explanation should
have predictive value in the sense that it can be used to effectively predict how
the result might change if the inputs were modified. Of course, the original
program also provides this ability, but full recomputation may involve redoing
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subcomputations where nothing has changed. Thus, a further requirement is that
the explanation be concise in the sense that it avoids details of uninteresting parts
of the computation that do not change.

Derivation trees already provide all of the information needed to predict the
results of changes. In fact, for a deterministic language, the root judgment of a
derivation tree already contains the whole program, and we can simply rerun this
on any new input and compare the old derivation and result value with the new
ones. However, we argue that this does not provide a satisfying explanation.
Derivation trees are verbose and it is not easy to propagate changes through
them. For example, in Figure B if we change the value of x from 4 to 3, the
structure of the derivation does not change. A large number of parts of the
derivation need to change, because there are many copies of the value of = in
the store and return values. In some sense, all we really need to know about the
result is that it is a copy of x, and the control flow depended on the fact that
x = 2 was false. This gives us enough information to predict the result of any
change to x that maintains the invariant x # 2.

To make this precise, consider the function £2 (D, §) that takes a derivation D
of 0,e |} v and a partial environment § and constructs the new value v’ resulting
from evaluating e on o[d]. Here, ¢ is an environment that provides new values for
some of the variables in 0. We write o[d] to indicate the environment that takes
values d(x) if z € dom(d) and o(z) otherwise. We also consider an analogous
function C4 (D, d) that propagates changes through commands.

In Figure[, we define functions £2 (—, —) : Deriv xStore — Val and C2 (—.—) :
Deriv x Store — Store; that attempt to reuse values cached in subderivations
wherever possible. Specifically, whenever we can detect that the changed values
in § do not overlap with the free variables of an expression or command, we
simply reuse the cached value (for an expression) or return § (for a command).
The following lemma shows that this is safe:

Lemma 1. If dom(6) N FV(e) = 0 and o,e | v then o[d],e |} v. Moreover, if
dom(8) N FV(c) =0 and o,¢ || o’ then o[d],c | o'[d].

The first rule for expressions says that we can reuse a cached subexpression
provided none of its variables have changed in value (that is, F'V(e) Ndom(d) =
(). The next few rules essentially just replay evaluation. The rule for let deserves
discussion: essentially, we recompute the bound expression and compare its value
with the previous value cached in the trace. If the values are equal, we recompute
the body of the let using §, otherwise, we add the new binding for = to §. This
makes it possible to use cached subderivations more often than if we always
added z to 4.

For commands, the rules follow a similar pattern. The first rule indicates
that it is safe to skip recomputation of a command whose free variables have
not been changed. Assignment follows a pattern similar to let. However, we
need to recompute subexpressions using the cached stores when the control flow
changes, for example if the change affects the result of a conditional test. The
rules for conditionals require re-starting evaluation when the control flow changes
(we use the denotational semantics for brevity). For example, if a conditional
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EADoelv,d)=v  (dom(6) N FV(e)=0)
&a (J,x U U,é) =6(z) (z € dom(d))

D1 D
5A<125

o,e1Dex v’ :gA(Dl’é)@gA(D%é) @®e{=+,...}

D1 Do
A oA A
£ (U,(€1,€2)U(U1,U2)’5) _(5 (Dlaé)vg (DZ»(S))
D ! ! . !
4 (U’fst(e) M,é) = let (v}, v5) = £2 (D, d) in v}
4 D §) = let (v}, vh) = E2(D,6) in v}
O',Snd(@)ll’l]’ - 1, Y2) — ) 2
AfDioer v Da 5) = EA(DQ,(S) (5A(D1»5):U)
oletx=e;ines ’ &8 (Dg,é[a: = g4 (Dl,é)}) otherwise

Fig. 8. Update propagation for expressions

5 (dom(8) N FV(c) = 0)
)~ {iem 200y e o=y

: DI-CQDQU c
a D::eUtgli;q’DlU )
c ( )
)
)

0,if e then ¢ else c2 | o

/0

D : o, fal D
cA ( ocfalse Do —if £2(D, ) then Cle1](0[6]) else C2 (Ds, 6)

0,if e then ¢ else c2 | o

if £ (D, ) then ¢* (D", ¢ (I',4)) else 8

oA D:oeltrue D' D"
o,while e do c |} o’

A( D :o,el false

oA :
o while e do c |} 0,5) =if £ (D, d) then C[while e do c[(c[d]) else §

Fig. 9. Update propagation for commands
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test changes from true to false, then we cannot use the subderivation stored
for the then-branch; we have to execute the else-branch “from scratch” using
ordinary evaluation on the updated store o[6]. Composition and while also follow
predictable patterns; here, we use the denotational semantics for commands as
shorthand for computing commands “from scratch”.

Theorem 5. If D :: o,¢ |} v then o[6],e || £2 (D, 6). Similarly, if D :: o,c || o’
and o8], c 1} 0" then 0" = o'[C? (D, 0)].

Note that the second part needs to be stated carefully because there is no guar-
antee that recomputing a command on a changed input will terminate.

The correctness theorem above essentially states that the functions £4 (—, —)
and C2 (—, —) can be used to correctly compute the updated result. We could
go further, and augment these functions to calculate the new derivation as well,
or the changed part of the derivation. The latter could serve as a rough measure
of the amount of “work” needed to recompute; obviously, in many cases the
changed part of the derivation will be much smaller than the whole derivation,
just as the changed part of the store obtained by C* (—, —) can be smaller than
the whole result store.

Propagating updates through computations efficiently is a subtle issue with
a large, still-growing literature (particularly for self-adjusting computation in
functional programming [5l4]). Our goal here is not to introduce a new approach
to incremental recomputation that we claim will be more efficient, but only to
establish a formal link between derivations-as-provenance and the notions of
trace used in incremental recomputation. In particular, the C4 (D, §) function
highlights one qualitative difference between replaying the whole expression from
scratch and derivation-based change propagation: only by recording some infor-
mation about what happened in a previous run can we avoid fully recomputing
each part of the program.

We could also push this idea further in several ways: we could allow finer-
grained changes such as updates that change a specific path in a variable’s value,
not just the whole value; we could consider techniques for controlling the cost
of caching by marking subexpressions with checkpointing annotations; we could
improve the precision of update propagation for commands by static analysis
of assignments; or we could incrementally recompute both the new value and
its derivation (or the difference between derivations). Many of these ideas have
already been explored in the context of self-adjusting computation, and it is
intriguing to consider the possibility of unifying the notion of traces used in
efficient self-adjusting computation systems with that needed for provenance.

5 Discussion

Pragmatic concerns, such as ease of use and extensibility, are often cited for em-
ploying operational semantics instead of denotational semantics. In particular,
extensions such as nondeterminism, concurrency, additional type constructors,



208 J. Cheney, U.A. Acar, and R. Perera

object-oriented features, and higher-order functions can be added to an opera-
tional semantics comparatively easily. Following the recipe in this paper, each
such extension comes equipped with one or more standard notions of “opera-
tional derivation” which could be used as a form of provenance. However, the
reality is not quite so simple: for example, adding sum types or collection types
poses problems for our use of paths to address parts of result values. We discuss
the ramifications of these extensions in the rest of this section.

5.1 Sum Types

Functional languages such as ML and Haskell support algebraic datatypes, based
on type-theoretic sum types. The type 13 + 7o represents the disjoint union of
types 71 and 7. Its introduction forms are injection functions inl : 73 — 7 + 7o
and inr : 7o — 71 + T2, and its elimination form is a case construct that performs
pattern matching.

e:=---|1inl(e) | inr(e) | case e of {z.e1 | y.ea}

v u=---|inl(v) | inr(v)

Sum types and the associated programming constructs can be handled similarly
to booleans and conditionals:

oelv o,e |l inl(v) oz :=v],e1 | 11
o,inl(e) | inl(v) o,case e of {x.e1 | y.ea} | 11
oelv oyell inr(v) ofy:=v],e2 | vo
o,inr(e) | inr(v) o,case e of {x.ey | y.ea} | va

Sum types complicate the issue of how to refer to parts of the input or output.
A naive approach would simply be to add inl and inr as possible path steps,
so that the path 1.in1.2 refers to 42 in the value (inl(17,42),0). However, this
leads to problems with the definition of source path, since changes to the input
might change the structure of the output in ways that invalidate paths involving
inl or inr.

5.2 Higher-Order Functions and Other Control Abstractions

Modern programming languages increasingly support first-class higher-order
functions, either explicitly (as in functional languages such as ML, Haskell, or
Scheme, and more recently in object-oriented languages such as C#, Java or
Scala), or implicitly via other constructs such as function objects or inner classes
(available in older versions of Java).

en=---| Axr.e|ey en

vi=---| {Az.e, o)
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Here, (A\z.e,0) is a closure packaging a function body up with the environment
in which it was constructed. We extend the operational semantics as follows (in
the standard way):

o,e1 ) (Ax.e,0’y o,ea fva o[x:=wvs],e v
o,e1 ea Jv o, Ax.e || (\x.e, o)

Higher-order functions pose a significant challenge to provenance tracking,
because now the control flow (corresponding to the shape of the derivation tree)
depends on evaluation: when evaluating a first-class function call, we first eval-
uate the function part to find the body of the function, which is in general not
known until run time. Also, similarly to sums, it is difficult to use paths to refer
to “parts” of closure values.

5.3 Collection Types

Now consider an extension to the language to permit simple collections (such as
sets, lists, or bags), as in Nested Relational Calculus [10]:

ex=--|0|{e}|e1Ues
vu=---| 0] {v,...,vn}
The operational semantics of collection operations can be defined as follows:
oer v o,ea v oelv
a0y o,e1Ueg | v1 Uwg o, {e} | {v}

We could also add a set comprehension operation | J, . ¢, € to obtain an expressive
comprehension query language, but the problems we want to discuss do not
require this. (Naturally, this would introduce additional complications due to
variable binding).

The prospect of using paths to refer to parts of data structures is significantly
complicated in the presence of collections, especially unordered collections. For
lists, we have similar issues to those for sums. For sets, it is technically possible
to refer to set elements via their values, although this can be unwieldy when
sets are nested. But for multisets, paths are no longer sufficient to address each
part of a value if we view multiset expressions as equal modulo reordering of
elements.

As a simple example, consider a multiset expression {z —y} U {z + 1} which
evaluates to {1,1}. If we want to ask for the provenance of one of the output
elements, there is no location scheme for pure multiset values that lets us distin-
guish between the two copies of ‘1’ in the output. This means that in order to
support correct source tracking we need to impose some kind of location struc-
ture on multisets. Of course, we can avoid this problem in a simple way, by
treating collection values as lists and using integer indices. However, this index-
ing approach becomes rather complex if we wish to propagate changes from the
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input to the output, because the paths are not stable with respect to changes
that affect the sizes of subcollections.

For example, suppose we have an expression {a} Uz U{d}. If we first evaluate
it with = {b} then the result will be {a, b, d} where v[3] = d. But if we update
x to be {b,c}, then the result is v’ = {a,b, ¢,d}, where v'[3] = ¢ and 