
Val Tannen Limsoon Wong
Leonid Libkin Wenfei Fan
Wang-Chiew Tan Michael Fourman (Eds.)

In Search of Elegance
in the Theory and Practice
of Computation

Fe
st

sc
hr

ift
LN

CS
 8

00
0

Essays Dedicated to Peter Buneman

 123

why

Lecture Notes in Computer Science 8000
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Val Tannen Limsoon Wong
Leonid Libkin Wenfei Fan
Wang-Chiew Tan Michael Fourman (Eds.)

In Search of Elegance
in the Theory and Practice
of Computation

Essays Dedicated to Peter Buneman

13

Volume Editors

Val Tannen
University of Pennsylvania, Department of Computer and Information Science
3330 Walnut Street, Philadelphia, PA 19104, USA
E-mail: val@cis.upenn.edu

Limsoon Wong
National University of Singapore, School of Computing
13 Computing Drive, Singapore 117417, Singapore
E-mail: wongls@comp.nus.edu.sg

Leonid Libkin
Wenfei Fan
Michael Fourman
The University of Edinburgh, School of Informatics
10 Crichton Street, Edinburgh EH8 9AB, UK
E-mail: {libkin; wenfei@inf.ed.ac.uk}, michael.fourman@ed.ac.uk

Wang-Chiew Tan
University of California, Department of Computer Science
1156 High Street, Santa Cruz, CA 95064, USA
E-mail: wctan@cs.ucsc.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-41659-0 e-ISBN 978-3-642-41660-6
DOI 10.1007/978-3-642-41660-6
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: : 2013951160

CR Subject Classification (1998): H.2, D.3, H.3, F.3, F.4.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

dhfhj

Foreword

When we started this project we contacted a number of Peter Buneman’s PhD
students, postdocs, and colleagues, both in the academic departments that Peter
belonged to, and in the larger scientific communities to which he contributed.
We asked them if they would contribute a chapter to this Festschrift and we
were deeply moved by the enthusiasm our query elicited. So here we are, a group
of people for whom Peter was, and still is, a teacher, a mentor, a collaborator,
or a colleague, sometimes several of these, with our scientific offerings. All of us,
moreover, are fervent admirers of Peter Buneman the computer scientist and are
proud to consider ourselves friends of Peter Buneman the wonderful man.

Let us mention briefly some of Peter’s seminal scientific achievements. We
cannot do justice in this preface to the depth and breadth of Peter’s long, dis-
tinguished, and continuing career. By necessity, and perhaps selfishly, we shall
choose a few items about which we might be better prepared to write.

A dominant theme in Peter Buneman’s work is the quest to unite the fields of
databases and programming languages. We expect that the majority of the read-
ers of this Festschrift will come from these two communities. For these readers,
it is interesting to note that Peter’s early work was in two completely different
areas: brain modeling (see his articles in Nature) and mathematical phylogeny.
His work in the latter area underlies most modern techniques that evolutionary
biologists use to reconstruct phylogenies.

Peter has made many seminal contributions to the field of databases. In his
quest to bring richer data models and more flexible query constructs to database
systems, he made comprehensive use of ideas from the field of programming
languages, in the process making signal contributions to that field as well. He
extended ideas from functional programming languages and from type theory to
show how one can unify and enrich various querying paradigms for relational and
post-relational data models such as complex values. This led to his study of the
principles that underlie Web-like data, and he is a co-author of the first textbook
on this subject. All this work, as well as his more recent investigations of the
principles of modeling data provenance and of data archiving, is characterized
by a most seductive mathematical elegance. For those of us who already had
such a proclivity, it was encouraging and reassuring that a scientist of Peter’s
stature would lead us in this style!

In addition to his masterful work on the theory of computing, Peter Buneman
always saw the computer scientist as a contributing citizen to the larger field of
science. We already mentioned that he worked on mathematical models for neu-
roscience. He started working on phylogenies in order to help scholars who were
studying the transmission of medieval manuscripts (but the biologists ended up
benefitting most from his work). The work he did in the 1990’s on monad-based
query languages was very successfully used in the integration“on-the-fly”of non-
relational genomics data sources (to the great surprise of some participants in the

VIII Foreword

Human Genome Project). It was again motivation from scientists and scholars
as Web-users that led Peter to study the provenance of data that are continually
copied and transformed. More generally, he became one of the founders of the
field of digital curation including the creation at the University of Edinburgh of
a center with this name. Recent years have seen Peter initiating and successfuly
completing a project to bring broadband Internet to one of the more remote
corners of the Scottish Highlands. With this he took one more step: from citi-
zen of science to citizen of the society at large. Peter is now playing an active
rôle in spreading high-speed Internet access to the less well-connected, lobbying
government and providing advice and practical assistance to communities.

Many of the contributions to this Festschrift belong to the field of databases.
Some belong to the field of programming languages and a few to other fields.
When we contacted the potential contributors we offered them free choice of
topic(s). We feel that the final result displays an exciting variety, just as Peter
Buneman’s career does! We also encouraged the contributors to choose their co-
authors as they felt appropriate. The result is that the complete list of authors
includes many more people and we are delighted that they agreed to help us
celebrate Peter. We would be remiss, however, if we didn’t provide an exact list
of the principals (one or more for each paper), since this foreword is also written
on their behalf.

August 2013 Val Tannen
Limsoon Wong
Leonid Libkin

Wenfei Fan
Wang-Chiew Tan
Michael Fourman

also on behalf of

Serge Abiteboul Bertram Ludaescher
Samson Abramsky David Maier
Hassan Aı̈t-Kaci Renée Miller
James Cheney Tova Milo
Vassilis Christophides Heiko Müller
Susan Davidson Rishiyur Nikhil
Alin Deutsch Atsushi Ohori
Irini Fundulaki Gordon Plotkin
Floris Geerts Lucian Popa
Georg Gottlob Dan Suciu
Martin Grohe Keishi Tajima
Carmem Hara Jan Van den Bussche
Rick Hull Stijn Vansummeren
H.V. Jagadish Victor Vianu
Anastasios Kementsietsidis Stratis Viglas
Sanjeev Khanna Scott Weinstein

Table of Contents

Models for Data-Centric Workflows . 1
Serge Abiteboul and Victor Vianu

Relational Databases and Bell’s Theorem . 13
Samson Abramsky

High-Level Rules for Integration and Analysis of Data: New
Challenges . 36

Bogdan Alexe, Douglas Burdick, Mauricio A. Hernández,
Georgia Koutrika, Rajasekar Krishnamurthy, Lucian Popa,
Ioana R. Stanoi, and Ryan Wisnesky

A New Framework for Designing Schema Mappings 56
Bogdan Alexe and Wang-Chiew Tan

User Trust and Judgments in a Curated Database with Explicit
Provenance . 89

David W. Archer, Lois M.L. Delcambre, and David Maier

An Abstract, Reusable, and Extensible Programming Language Design
Architecture . 112

Hassan Aı̈t-Kaci

A Discussion on Pricing Relational Data . 167
Magdalena Balazinska, Bill Howe, Paraschos Koutris,
Dan Suciu, and Prasang Upadhyaya

Tractable Reasoning in Description Logics with Functionality
Constraints . 174

Andrea Cal̀ı, Georg Gottlob, and Andreas Pieris

Toward a Theory of Self-explaining Computation . 193
James Cheney, Umut A. Acar, and Roly Perera

To Show or Not to Show in Workflow Provenance . 217
Susan B. Davidson, Sanjeev Khanna, and Tova Milo

Provenance-Directed Chase&Backchase . 227
Alin Deutsch and Richard Hull

Data Quality Problems beyond Consistency and Deduplication 237
Wenfei Fan, Floris Geerts, Shuai Ma, Nan Tang, and Wenyuan Yu

X Table of Contents

Hitting Buneman Circles . 250
Michael Paul Fourman

Looking at the World Thru Colored Glasses . 259
Floris Geerts, Anastasios Kementsietsidis, and Heiko Müller

Static Analysis and Query Answering for Incomplete Data Trees
with Constraints . 273

Amélie Gheerbrant, Leonid Libkin, and Juan Reutter

Using SQL for Efficient Generation and Querying of Provenance
Information . 291

Boris Glavic, Renée J. Miller, and Gustavo Alonso

Bounds and Algorithms for Joins via Fractional Edge Covers 321
Martin Grohe

Incremental Data Fusion Based on Provenance Information 339
Carmem Satie Hara, Cristina Dutra de Aguiar Ciferri, and
Ricardo Rodrigues Ciferri

Provenance for Linked Data . 366
Grigoris Karvounarakis, Irini Fundulaki, and Vassilis Christophides

First-Order Provenance Games . 382
Sven Köhler, Bertram Ludäscher, and Daniel Zinn

Querying an Integrated Complex-Object Dataflow Database 400
Natalia Kwasnikowska and Jan Van den Bussche

Types, Functional Programming and Atomic Transactions in Hardware
Design . 418

Rishiyur S. Nikhil

Record Polymorphism: Its Development and Applications 432
Atsushi Ohori

A Calculus of Chemical Systems . 445
Gordon D. Plotkin

Schemaless Semistructured Data Revisited—Reinventing Peter
Buneman’s Deterministic Semistructured Data Model— 466

Keishi Tajima

Provenance Propagation in Complex Queries . 483
Val Tannen

Well-Defined NRC Queries Can Be Typed (Extended Abstract) 494
Jan Van den Bussche and Stijn Vansummeren

Table of Contents XI

Nine Years with Peter Buneman . 507
Stratis D. Viglas

Modal Logic for Preference Based on Reasons . 516
Daniel Osherson and Scott Weinstein

The Dichotomous Intensional Expressive Power of the Nested Relational
Calculus with Powerset . 542

Limsoon Wong

Provenance in a Modifiable Data Set . 557
Jing Zhang and H.V. Jagadish

Author Index . 569

Models for Data-Centric Workflows�

Serge Abiteboul1 and Victor Vianu2

1 INRIA Saclay
2 UC San Diego and INRIA Saclay

Abstract. We present two models for data-centric workflows: the first based on
business artifacts and the second on Active XML. We then compare the two
models and argue that Active XML is strictly more expressive, based on a natu-
ral semantics and choice of observables. Finally, we mention several verification
results for the two models.

1 Introduction

Workflows and database systems are two essential software components that often have
difficulties interoperating. Data-centric workflow systems alleviate this problem by
providing an integrated approach to data management and workflows. They allow the
management of data evolution by tasks with complex sequencing constraints, as encoun-
tered for instance in scientific workflow systems, information manufacturing systems,
e-government, e-business or healthcare global systems.

Data-centric workflows have evolved from process-centric formalisms, which tra-
ditionally focus on control flow while under-specifying the underlying data and its
manipulations by the process tasks, often abstracting them away completely. In con-
trast, data-aware formalisms treat data as first-class citizens. A notable exponent of
this class is the business artifact model pioneered in [17], deployed by IBM in com-
mercial products and consulting services, and further studied in a line of follow-up
works [4,6,9,10,5,15,13,14]. Business artifacts (or simply “artifacts”) model key busi-
ness-relevant entities that evolve in response to events in their life-cycle. See [11] for a
brief survey on the topic.

Another effort at modeling data-centric workflows relies on Active XML (AXML).
An AXML document consists of an XML document with embedded function calls,
modeling tasks in the workflow. Each call generates a data-carrying task which in turn
can spawn additional sub-tasks. The functions are specified using queries based on tree
patterns [3,1]. See [2] for a discussion on how Active XML can serve as a workflow
model.

Business artifacts and AXML provide two different paradigms for specifying data-
centric workflows. A natural question concerns their relative expressive power. We
describe a semantics introduced in [7] for comparing the expressiveness of workflow
systems relative to a set of observables, and argue that Active XML is strictly more
expressive than the variant of business artifacts presented here.

� This work has been partially funded by the European Research Council under the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant Webdam,
agreement 226513. http://webdam.inria.fr/

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://webdam.inria.fr/

2 S. Abiteboul and V. Vianu

Several recent works have considered the problem of verifying business artifacts
[8,7] and Active XML systems [3]. The verification problem consists of statically check-
ing whether all runs satisfy desirable properties expressed in an extension of linear-time
temporal logic (LTL). The presence of data results in a challenging infinite-state verifi-
cation problem, due to the infinite data domain. Rather than relying on general-purpose
software verification tools suffering from well-known limitations, the above works ad-
dress this problem by identifying relevant classes of business artifacts and Active XML
systems for which fully automatic verification is possible. We briefly summarize these
results.

2 The Business Artifact Model

We describe a minimalistic variant of the business artifact model, adequate for con-
veying the flavor of the approach. The presentation is informal, relying mainly on a
running example (the formal development is provided in [8,7]). The example models
an e-commerce business process in which the customer chooses a product and a ship-
ment method and applies various kinds of coupons to the order. After the order is filled,
the system awaits for the customer to submit a payment. If the payment matches the
amount owed, the system proceeds to shipping the product.

In the minimalistic model, an artifact is simply an evolving record of values. The
values are referred to by variables (sometimes called attributes). In general, an artifact
system consists of several artifacts, evolving under the action of services, specified by
pre- and post-conditions. For simplicity, we use a single artifact with the following
variables

status, prod_id, ship_type, coupon, amount_owed,
amount_paid, amount_refunded.

The status variable tracks the status of the order and can take values such as
“edit_product”, “received_payment”, “shipping”, “canceling”, etc. Thus, status can
be viewed as recording the current stage of the order processing. In conjunction with
pre-and-post conditions of services, this allows simulating a classical form of sequenc-
ing based on finte-state automata. However, unlike classical process-centric approaches,
the sequencing can also depend on properties of the data.

The artifact system is equipped with a database including the following tables, where
underlined attributes denote keys. Recall that a key is an attribute that uniquely identi-
fies each tuple in a relation.

PRODUCTS(id, price, availability, weight),
COUPONS(code, type, value, min_value, free_shiptype),
SHIPPING(type, cost, max_weight),
OFFERS(prod_id, discounted_price, active).

The database also satisfies the following foreign keys:

COUPONS[free_shiptype] ⊆ SHIPPING[type] and
OFFERS[prod_id] ⊆ PRODUCTS[id].

Models for Data-Centric Workflows 3

The starting configuration of every artifact system is constrained by an initialization
condition, which here states that status initialized to “edit_prod”, and all other vari-
ables to “undefined”. By convention, we model undefined variables using the reserved
constant λ.

The Services. Recall that artifacts evolve under the action of services. Each service is
specified by a pre-condition π and a postcondition ψ, both existential first-order (∃FO)
sentences. The pre-condition refers to the current values of the artifact variables and
the database. The post-conditionψ refers simultaneously to the current and next artifact
values, as well as the database. In addition, both π and ψ may use arithmetic constraints
on the variables, limited to linear inequalities over the rationals.

The following services model two of the business process tasks of the example. We
use primed artifact variables x′ to refer to the next value of variable x.

choose_product. The customer chooses a product.

π : status = “edit_prod”
ψ : ∃p, a, w(PRODUCTS(prod_id′, p, a, w) ∧ a > 0)

∧status′ = ”edit_shiptype”

choose_shiptype. The customer chooses a shipping option.

π : status = “edit_ship”
ψ : ∃c, l, p, a, w(SHIPPING(ship_type′, c, l)∧

PRODUCTS(prod_id, p, a, w) ∧ l > w)∧
status′ = “edit_coupon”∧ prod_id′ = prod_id

Notice that the pre-conditions of the services check the value of the status variable.
For instance, according to choose_product, the customer can only input her product
choice while the order is in “edit_prod” status.

Also notice that the post-conditions constrain the next values of the artifact variables
(denoted by a prime). For instance, according to choose_product, once a product has
been picked, the next value of the status variable is “edit_shiptype”, which will at a sub-
sequent step enable the choose_shiptype service (by satisfying its pre-condition). The
interplay of pre- and post-conditions achieves a sequential filling of the order, starting
from the choice of product and ending with the claim of a coupon. A post-condition
may refer to both the current and next values of the artifact variables. For instance, con-
sider the service choose_shiptype. The fact that only the shipment type is picked while
the product remains unchanged, is modeled by preserving the product id: the next and
current values of the corresponding artifact variable are set equal.

Pre- and post-conditions may query the database. For instance, consider the function
choose_product. The post-condition ensures that the product id chosen by the customer
is that of an available product (by checking that it appears in a PRODUCTS tuple, whose
availability attribute is positive).

Semantics. The semantics of an artifact system consists of its runs. Given a database
D, a run is an infinite sequence {ρi}≥0 of artifact records such that ρ0 and D satisfy

4 S. Abiteboul and V. Vianu

the initial condition of the system, and for each i ≥ 0 there is a service S of the system
such that ρi and D satisfy the pre-condition of S and ρi, ρi+1 and D satisfy its post-
condition. For uniformity, blocking prefixes of runs are extended to infinite runs by
repeating forever their last record.

We note that the full business artifact model is still in flux. In its current state (e.g., see
[12]), the model allows artifact attributes containing collections, rather than just atomic
atoms. It also provides richer forms of control, achieved by a hierarchy of services.

3 Active XML Workflows

We next describe the specification of workflows in Active XML. We use a model called
Guard Active XML (GAXML for short) [3,7].

GAXML documents are abstractions of XML with embedded service calls. A
GAXML document is a forest of unordered, unranked trees, whose internal nodes are
labeled with tags from a finite alphabet and whose leaves are labeled with tags, data val-
ues, or function symbols. More precisely, a function symbol !f indicates a node where
function f can be called, and a function symbol ?f indicates that a call to f has been
made but the answer has not yet been returned. For example, a GAXML document is
shown in Figure 1.

Main

Catalog

Product

Pname

Canon

Price

120

Product

Pname

Nikon

Price

199

Product

Pname

Sony

Price

175

!Mailorder MailOrder

Order-Id

1234567

Cname

Serge

Pname

Nikon

!Bill !Deliver !Reject

Fig. 1. A GAXML document

The GAXML document may be subject to constraints specified by a DTD, as well
as Boolean combinations of tree patterns. For example, the negation of the pattern in
Figure 3 (a) says that an Order ID uniquely determines the product and customer names.
In patterns, double edges denote descendant and single edges the child relation.

A GAXML document evolves as a result of making function calls and receiving their
results. A call can be made at any point, as long as a specified pre-condition, called a
call guard, is satisfied. The argument of the call is specified by a query on the document,
producing a forest. Both the call guard and input query may refer to the node at which
the call is made (denoted self), so the location of the call in the document is important.
The result of a function call consists of another GAXML document, so a forest, whose
trees are added as siblings of the node x where the call was made. After the answer of
a call at node x is returned, the call may be kept or the node x may be deleted. This is
specified by the schema, for each function. If calls to !f are kept, f is called continuous,
otherwise it is non-continuous.

Models for Data-Centric Workflows 5

For example, consider the MailOrder function in Figure 1. Intuitively, its role is to
fetch new mail orders from customers. For instance, one result of a call to the function
!MailOrder may consist of the subtree with root MailOrder in Figure 1. Since
new orders should be fetched indefinitely, the call !MailOrder is maintained after
each result is returned, so MailOrder is specified to be continuous. On the other
hand, consider the function !Bill occurring in a MailOrder. This is meant to be
called only once, in order to carry out the billing task. Once the task is finished, the call
can be removed. Therefore, Bill is specified as a non-continuous function.

Consider again the function MailOrder, whose role is to fetch new orders from
external users or services. Since the function is processed externally, the semantics of
its evaluation is not known. We call such a function external. Its specification consists
only of its call guard and input query, and its answer is only constrained by signature in-
formation provided by the schema. In addition to external functions, there are functions
processed internally by the GAXML system. These are called internal. For example,
Bill is such a function. When a call to Bill is made at a node x labeled !Bill,
the label of x turns to ?Bill (to indicate that a call has been made whose answer
is still pending) and the call is processed internally. Specifically, the call generates a
new GAXML document (a running call) that evolves until it satisfies a condition called
return guard. Intuitively, the return guard indicates that the task corresponding to the
call has been completed and the result can be returned. The contents of the result is
specified by a return query. For example, the answer to a call to Bill can be returned
once payment has been received. The answer, specified by the return query, provides
the product paid for and amount of payment (see Example 1).

Once the result of a call has been returned, the GAXML document of the completed
running call is removed. In order for the result to be returned at the correct location (next
to node x), a mapping called eval is maintained between nodes where calls have been
made and GAXML document corresponding to the running call (e.g., see Figure 2). The
system evolves by repeated function calls and answer returns, occurring one at a time
non-deterministically. This may reach a blocking instance in which no function can be
called and no result can be returned, or may continue forever, leading to an infinite run.
For example, runs of the Mail Order system are always infinite since new mail orders
can always be fetched. For uniformity, we make all runs infinite by repeating blocking
instances forever.

Main

Catalog

· · ·

!Mailorder MailOrder

Order-Id

1234567

Cname

Serge

Pname

Nikon

?Bill !Deliver !Reject

aBill

Process-bill

Pname

Nikon

Amount

199

!Invoice

Fig. 2. An instance with an eval link

6 S. Abiteboul and V. Vianu

Note that call guards provide a very useful form of control. In particular, they are
instrumental in enforcing desired ordering among tasks. For instance, in the Mail Order
example, to enforce that delivery of a product can only occur after billing has been
completed, it is sufficient for the call guard of !Deliver to check that neither !Bill
nor ?Bill occur in the subtree corresponding to the order.

Example 1. The function Bill used in Figure 1 is specified as follows. It is internal
and non-continuous. Its call guard is the pattern in Figure 3 (b), checking that the or-
dered product is available. The input query is the query in Figure 4. Assuming that
Invoice is an external function eventually returning Payment (with product and
amount paid), the return guard and return query of Bill are shown in Figure 5.

Main

MailOrder

Order-Id

X

Cname

Y

Pname

Z

MailOrder

Order-Id

X

Cname

Y’

Pname

Z’

Y �= Y’ or Z �= Z’

(a) (b)

Main

Product

Pname

X

MailOrder

Pname

X

self: !Bill

Fig. 3. Two patterns

Main

Catalog

Product

Pname

X

Price

Y

MailOrder

Pname

X

self: !Bill

{Process-bill}

Pname

X

Amount

Y

!Invoice

Fig. 4. Argument query for !Bill

aBill

Payment

aBill

Payment

Pname

X

Amount

Y

−→ {Paid}

Pname

X

Amount

Y

Return guard Return query

Fig. 5. Return guard and query for !Bill

Models for Data-Centric Workflows 7

In GAXML, workflow control is provided by the guards associated with functions.
There are many other possible ways to control sequencing of tasks. In [7], the following
alternative workflow control mechanisms are also discussed:

Automata. The automata are non-deterministic finite-state transition systems, in which
states have associated tree pattern formulas with free variables acting as parameters.
A transition into a state can only occur if its associated formula is true. In addition,
the automaton may constrain the values of the parameters in consecutive states.

Temporal Properties. These are expressed in a temporal logic with tree patterns and
Past LTL operators. A temporal formula constrains the next instance based on the
history of the run.

Subject to some minor technical assumptions, it is shown in [7] that the power
of guards, automata, and temporal logic as workflow specification mechanisms is the
same. More surprisingly, static constraints alone can largely simulate all three control
mechanisms.

4 Comparing Business Artifacts and Active XML Workflows

We have discussed two models of data-centric workflows: business artifacts and Ac-
tive XML. A natural question is whether their expressiveness can be measured and
compared. The models are quite different in their representation of data and events, so
a direct comparison is meaningless. In [1], a framework is developed for comparing
workflow specification languages, by mapping different models to a common abstrac-
tion using the notion of workflow view. Depending on the specific needs, a workflow
view might retain information about some abstract state of the system and its evolution,
about some particular events and their sequencing, about the entire history of the system
so far, or a combination of these and other aspects. Even if not made explicit, a view is
often the starting point in the design of workflow specifications. This further motivates
using views to bridge the gap between different specification languages.

To see how this might be done, consider a workflow W specified by tasks and
pre/post conditions and another workflow W ′ specified as a state-transition system,
both pertaining to the same application. One way to render the two workflows compa-
rable is to define a view of W as a state-transition system compatible with W ′. This
can be done by defining states using queries on the current instance and state transitions
induced by the tasks. To make the comparison meaningful, the view of W should re-
tain in states the information relevant to the semantics of the application, restructured
to make it compatible with the representation used in W ′. More generally, views may
be used to map given workflows models to an entirely different model appropriate for
the comparison. In [1], the general notion of workflow view is defined and a form of
bisimulation over views is introduced to capture the fact that one workflow simulates
another. The bisimulation applies to the tree of runs of the systems to be compared.

Using the framework based on views, it is shown in [1] that Active XML is strictly
more expressive than business artifacts (without arithmetic and data depedencies).
Specifically, Active XML can simulate business artifacts, but the converse is false.

8 S. Abiteboul and V. Vianu

The first result uses views mapping XML to relations and functions to services, so that
artifacts become views of Active XML systems. For the negative result we use views
retaining just the trace of function and service calls from the Active XML and the ar-
tifact system. This is a powerful result, since it extends to any views exposing more
information than the function/service traces.

5 Verification

The verification problem for business artifacts as well as Active XML workflows has
been considered in several recent works [3,8,7]. The problem consists of checking, for
a given workflow specification and temporal property, whether all runs of the workflow
system satisfy the property. For instance, one may want to verify whether some static
property (e.g., all ordered products are available) and some dynamic property (e.g. an
order is never delivered before payment is received) always hold. The temporal proper-
ties are specified in extensions of LTL, linear-time temporal logic. The presence of an
unbounded data domain yields a challenging infinite-state verification problem.

In order to specify temporal properties we use an extension of LTL. Recall that LTL
is propositional logic augmented with temporal operators such as G (always), F (even-
tually), X (next) and U (until) (e.g., see [18]). For example, Gp says that p holds at all
times in the run, Fp says that p will eventually hold, and G(p → Fq) says that when-
ever p holds, q must hold sometime in the future. In order to take into account data, we
consider extensions of LTL in which propositions are interpreted by statements on cur-
rent snapshots of the system. The language used to express the statements is dependent
on the particular data model. For business artifacts, the language is FO, yielding the
extension LTL(FO). For Active XML, the language consists of tree patterns, yielding
LTL(Tree). We consider each model in turn.

Verification for Business Artifacts. For business artifacts, propositions are interpreted
as quantifier-free FO formulas using current and next artifact values, constants, and
the database. For example, suppose we wish to specify the property that if a correct
payment is submitted then at some time in the future either the product is shipped or
the customer is refunded the correct amount. The property is of the form G(p → Fq),
where p says that a correct payment is submitted and q states that either the product
is shipped or the customer is refunded the correct amount. Moreover, if the customer
is refunded, the amount of the correct payment (given in p) should be the same as the
amount of the refund (given in q). This requires using a global variable x in both p and
q. More precisely, p is interpreted as the formula amount_paid = x∧amount_paid =
amount_owed and q as status = ”shipped” ∨ amount_refunded = x. This yields
the LTL(FO) property

∀xG((amount_paid = x ∧ amount_paid = amount_owed)
→ F(status = ”shipped” ∨ amount_refunded = x))

Note that, as one would expect, the global variable x is universally quantified at the
end.

Models for Data-Centric Workflows 9

For artifact systems and properties without arithmetic constraints or data dependen-
cies it was shown that verification is decidable [8]. The complexity is PSPACE-complete
for a fixed number of attributes, and EXPSPACE otherwise. This is the best one can ex-
pect, given that even very simple static analysis problems for finite-state systems are
already PSPACE-complete.

It turns out that the verification algorithm can be extended to specifications and prop-
erties that use a total order on the data domain, which is useful in many cases. This
however complicates the algorithm considerably, since the order imposes global con-
straints on runs. The verification algorithm was first extended in [8] for the case of a
dense countable order with no end-points (such as the rationals). This was later general-
ized to an arbitrary total order by Segoufin and Torunczyk [16] using automata-theoretic
techniques. In both cases, the worst-case complexity remains PSPACE.

Unfortunately, the above decidability result fails even in the presence of simple data
dependencies or arithmetic. As shown in [8,7], verification becomes undecidable as
soon as the database has at least one key dependency, or if the specification of the
artifact system uses simple arithmetic constraints allowing to increment and decrement
by one the value of some atributes. Therefore, a restriction is imposed in [7] to achieve
decidability.

The restriction is designed to limit the data flow between occurrences of the same
artifact attribute throughout runs of the system that satisfy the desired property. As
a first cut, a possible restriction would prevent any data flow path between unequal
occurrences of the same artifact attribute. Let us call this restriction acyclicity. While
acyclicity would achieve the goal of rendering verification decidable, it is too strong
for many practical situations. In the example of Section 2, a customer can choose a
shipping type and coupon and repeatedly change her mind and start over. Such repeated
performance of a task is useful in many scenarios, but would be prohibited by acyclicity
of the data flow.

To this end, we define in [7] a more permissive restriction called feedback freedom.
Intuitively, paths among different occurrences of the same attribute are permitted, but
only as long as each value of the attribute is independent on its previous values. This
is ensured by a syntactic condition that takes into account both the artifact system and
the property to be verified. We omit here the rather technical details. It is shown in [7]
that feedback freedom of an artifact system together with an LTL(FO) property can be
checked in PSPACE by reduction to a test of emptiness of a two-way alternating finite-
state automaton. Feedback freedom turns out to ensure decidability of verification in
the presence of linear constraints, and also under a large class of data dependencies
including keys and foreign keys.

Verification of Active XML Workflows. Properties of Active XML workflows are ex-
pressed in LTL(Tree), an extension of LTL in which propositions are interpreted by tree
patterns. For example, suppose that we wish to verify the following property:

Every product for which a correct amount has been paid is eventually delivered.

To formulate the property, we use tree patterns with variables binding to data values
(without going into details, let us denote such a language of tree patterns by Tree).

10 S. Abiteboul and V. Vianu

The above property can be expressed in the language LTL(Tree) as follows. We start out
with the LTL formula G(p → Fq). The proposition p is replaced by the tree pattern

Main

Catalog

Product

Pname

X

Price

Z

MailOrder

Paid

Pname

X

Amount

Z

Order-Id

Y

checking that the payment received for product X of order Y is in the right amount Z .
The proposition q is replaced by the tree pattern

Main

MailOrder

Pname

X

Order-Id

Y

Delivered

checking that productX of the same order Y is eventually delivered. Note that we wish
X and Y to be the same in the tree patterns for p and q, so these are globally quantified;
in contrast, Z is locally quantified. The resulting LTL(Tree) formula is shown in Figure
6.

∀X∀Y [G(Main

Catalog

Product

Pname

X

Price

Z

MailOrder

Paid

Pname

X

Amount

Z

Order-Id

Y

→ F(Main

MailOrder

Pname

X

Order-Id

Y

Delivered

))]

Fig. 6. An LTL(Tree) formula

It is shown in [3] that verification of LTL(Tree) properties of Active XML workflows
is decidable in 2-EXPTIME, under a syntactic restriction ensuring that the workflow has
only runs of bounded length.

6 Conclusion

Data-centric workflows are increasingly prevalent and there is a need for high-level
models and languages for specifying and reasoning about them. In this note, we pre-
sented two such models: business artifacts (initiated at IBM Research), and Active XML
(developed at INRIA). In both models, data is a first-class citizen, and it evolves as a
result of events in its life cycle. However, there are significant differences in the two
approaches. The data in business artifacts is relational, while in Active XML it is an
extension of XML. Events in the life-cycle are modeled in business artifacts by services
specified by pre-and-post conditions, while Active XML models events by function

Models for Data-Centric Workflows 11

calls embedded in the data. To compare such distinct models, we proposed an approach
based on workflow views that map different models to a common abstraction, and a
notion of bisimulation on the trees of runs of the abstracted systems. Using this frame-
work, we showed that Active XML is strictly more expressive than business artifacts
(for the variants presented here). This is not suprising given that Active XML is a much
richer model. A more detailed discussion of the ability of Active XML to capture the
facets of an artifact model, as informally described in [17], is presented in [2], where
it is argued that Active XML can in fact capture all aspects of the artifact approach.
Moreover, the notions of subtask and of collection of artifacts are naturally built into
the model, whereas the business artifact model as in [8,7] has to be extended in order to
model them. Such extensions are indeed discussed in [12].

We finally reviewed some recent results on the automatic verification of workflows
in both languages. These suggest that automatic verification may be feasible for a prac-
tically significant class of workflows and properties.

References

1. Abiteboul, S., Bourhis, P., Vianu, V.: Comparing workflow specification languages: A matter
of views. In: ICDT (2011)

2. Abiteboul, S., Bourhis, P., Galland, A., Marinoiu, B.: The axml artifact model. In: TIME,
Symposium on Temporal Representation and Reasoning, pp. 11–17 (2009)

3. Abiteboul, S., Segoufin, L., Vianu, V.: Static analysis of active XML systems. ACM Trans.
Database Syst. 34(4) (2009)

4. Bhattacharya, K., Caswell, N.S., Kumaran, S., Nigam, A., Wu, F.Y.: Artifact-centered opera-
tional modeling: Lessons from customer engagements. IBM Systems Journal 46(4), 703–721
(2007)

5. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards formal analysis of artifact-
centric business process models. In: Proc. Int. Conf. on Business Process Management
(BPM), pp. 288–304 (2007)

6. Bhattacharya, K., et al.: A model-driven approach to industrializing discovery processes in
pharmaceutical research. IBM Systems Journal 44(1), 145–162 (2005)

7. Damaggio, E., Deutsch, A., Vianu, V.: Artifact systems with data dependencies and arith-
metic. In: ICDT (2011)

8. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric business
processes. In: ICDT, pp. 252–267 (2009)

9. Gerede, C.E., Bhattacharya, K., Su, J.: Static analysis of business artifact-centric operational
models. In: IEEE International Conference on Service-Oriented Computing and Applications
(2007)

10. Gerede, C.E., Su, J.: Specification and verification of artifact behaviors in business process
models. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749,
pp. 181–192. Springer, Heidelberg (2007), http://www.springerlink.com/
content/c371144007878627

11. Hull, R.: Artifact-centric business process models: Brief survey of research results and chal-
lenges. In: OTM Conferences (2), pp. 1152–1163 (2008)

12. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath, F.T., Hobson, S., Linehan, M.H.,
Maradugu, S., Nigam, A., Sukaviriya, P., Vaculín, R.: Introducing the guard-stage-milestone
approach for specifying business entity lifecycles. In: Proc. of 7th Intl. Workshop on Web
Services and Formal Methods, WS-FM (2010)

http://www.springerlink.com/content/c371144007878627
http://www.springerlink.com/content/c371144007878627

12 S. Abiteboul and V. Vianu

13. Kumaran, S., Liu, R., Wu, F.Y.: On the duality of information-centric and activity-centric
models of business processes. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 32–47. Springer, Heidelberg (2008)

14. Küster, J.M., Ryndina, K., Gall, H.C.: Generation of business process models for object
life cycle compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 165–181. Springer, Heidelberg (2007)

15. Liu, R., Bhattacharya, K., Wu, F.Y.: Modeling business contexture and behavior using busi-
ness artifacts. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES 2007.
LNCS, vol. 4495, pp. 324–339. Springer, Heidelberg (2007)

16. Segoufin, L., Torunczyk, S.: Automata based verification over linearly ordered data domains.
In: Int’l. Symp. on Theoretical Aspects of Computer Science, STACS (2011)

17. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Systems Journal 42(3), 428–445 (2003)

18. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)

Relational Databases and Bell’s Theorem

Samson Abramsky

University of Oxford
samson.abramsky@cs.ox.ac.uk

Abstract. Our aim in this paper is to point out a surprising formal
connection, between two topics which seem on face value to have noth-
ing to do with each other: relational database theory, and the study of
non-locality and contextuality in the foundations of quantum mechanics.
We shall show that there is a remarkably direct correspondence between
central results such as Bell’s theorem in the foundations of quantum me-
chanics, and questions which arise naturally and have been well-studied
in relational database theory.

1 Introduction

Our aim in this paper is to point out a surprising formal connection, between
two topics which seem on face value to have nothing to do with each other:

– Relational database theory.
– The study of non-locality and contextuality in the foundations of quantum

mechanics.

We shall show, using the unified treatment of the latter developed in [3],
that there is a remarkably direct correspondence between central results such as
Bell’s theorem in the foundations of quantum mechanics, and questions which
arise naturally and have been well-studied in relational database theory.

In particular, we shall see that the question of whether an “empirical model”,
of the kind which can be obtained by making observations of measurements per-
formed on a physical system, admits a classical physical explanation in terms of
a local hidden variable model, is mathematically equivalent to the question of
whether a database instance admits a universal relation. The content of Bell’s
theorem and related results is that there are empirical models, predicted by
quantum mechanics and confirmed by experiment, which do not admit such
a universal relation. Moreover, while the original formulation of Bell’s theorem
involved probabilities, there are “probability-free” versions, notably Hardy’s con-
struction, which correspond directly to relational databases.

In fact, we shall show more broadly that there is a common mathematical
language which can be used to described the key notions of both database theory,
in the standard relational case and in a more general “algebraic” form covering
e.g. a notion of probabilistic databases, and also of the theory of non-locality and
contextuality, two of the key quantum phenomena. These features are central to

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 13–35, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

14 S. Abramsky

current discussions of quantum foundations, and provide non-classical resources
for quantum information processing.

The present paper is meant to be an introduction to these two topics, em-
phasizing their common content, presented in a manner which hopefully will be
accessible to readers without prior knowledge of either.

How should this unexpected connection be interpreted? One idea is that the
notion of contextuality is rather fundamental, and we can see some outlines
of a common ‘logic of contextuality’ arising from this appearance of common
structure in very different settings.

Ideally, some deeper connections can also be found, leading to interesting
transfers of results and methods. A first step in this direction has already been
taken, in joint work with Georg Gottlob and Phokion Kolaitis [4], in the closely
related field of constraint satisfaction. An algorithmic question which arises nat-
urally from the quantum side (see [2]) leads to a refined version of the constraint
satisfaction paradigm, robust constraint satisfaction, and to interesting new com-
plexity results.

2 Relational Databases

2.1 Review of Basic Notions

We shall begin by reviewing some basic notions of relational database theory.
We start with an example to show the concrete scenario which is to be for-

malized.

Example. Consider the following data table:

branch-name account-no customer-name balance

Cambridge 10991-06284 Newton £2,567.53
Hanover 10992-35671 Leibniz e11,245.75
.

Let us anatomize this table. There are a set of attributes,

{branch-name, account-no, customer-name,balance}

which name the columns of the table. The entries in the table are ‘tuples’ which
specify a value for each of the attributes. The table is a set of such tuples.
A database will in general have a set of such tables, each with a given set of
attributes. The schema of the database — a static, syntactic specification of the
kind of information which can reside in the database — is given by specifying
the set of attributes for each of the tables. The state of the database at a given
time will be given by a set of tuples of the appropriate type for each of the tables
in the schema.

We now proceed to formalize these notions.
We fix some set A which will serve as a universe of attributes. A database

schema Σ over A is a finite family Σ = {A1, . . . , Ak} of finite subsets of A.

Relational Databases and Bell’s Theorem 15

At this — surprisingly early! — point, we come to an interesting juncture.
There are two standard approaches to formalising the notion of relation which
can be found in the relational database literature. One — the ‘unnamed per-
spective’ [1] — is to formalize the notion of tuple as an ordered n-tuple in Dn

for some set D of data values; a relation is then a subset of Dn. This is moti-
vated by the desire to make the connection to the standard notion of relational
structure in first-order logic as direct as possible. This choice creates a certain
distance between the formal notion of relation, and the informal notion of table;
in practice this is not a problem.

For our purposes, however, we wish to make a different choice — the ‘named
perspective’ [1]: we shall formalize the notion of tuple, and hence of relation, in a
fashion which directly reflects the informal notion. As we shall see, this will have
both mathematical and conceptual advantages for our purposes. At the same
time, there is no real problem in relating this formalism to the alternative one
found in the literature. Note that the style of formalization we shall use is also
commonly found in the older literature on relational databases, see e.g. [26].

We shall assume that for each a ∈ A there is a setDa of possible data values for
that attribute. Thus for example the possible values for customer-name should
be character strings, perhaps with some lexical constraints; while for balance the
values should be pairs (currency, amount), where currency comes from some
fixed list (£, e, . . .), and amount is a number. These correspond to domain
integrity constraints in the usual database terminology.

Given A ∈ Σ, we define the set of A-tuples to be
∏

a∈ADa. Thus an A-tuple
is a function which assigns a data value in Da to each a ∈ A.

In our example above, the first tuple in the table corresponds to the function

{branch-name
→ Cambridge, account-no
→ 10991−06284,

customer-name
→ Newton,balance
→ £2, 567.53}

A relation of type A is a finite set of A-tuples. Given a schema Σ, an instance
of the schema, representing a possible state of the database, is given by specifying
a relation of type A for each A ∈ Σ.

Operations on Relations. We consider some of the fundamental operations
on relations, which play a central rôle in relational databases. Firstly, relations of
type A live in the powerset P(

∏
a∈ADa), which is a boolean algebra; so boolean

operations such as union, intersection, and set difference can be applied to them.
Note that the set of data values may in general be infinite, whereas the rela-

tions considered in database theory are finite. Thus one must use set difference
rather than an ‘absolute’ notion of set complement.

Next, we consider the operation of projection. In the language of A-tuples,
projection is function restriction. That is, given an A-relation R, and a subset
B ⊆ A, we define:

R|B := {t|B : t ∈ R}.

16 S. Abramsky

Here, since t ∈
∏

a∈ADa, t|B just means restriction of the function t to B, which
is a subset of its domain. This operation is then lifted pointwise to relations.

Now we consider the independent combination of relations, which is cartesian
product in the standard formalism. The representation of tuples as functions
leads to a ‘logarithmic shift’ in the representation1, whereby this operation is
represented by disjoint union of attribute sets.

Given an A-relation R and a B-relation S, we form the disjoint union A�B,
and the A �B-relation

R ⊗ S := {t ∈
∏

a∈A�B

Da : t|A ∈ R ∧ t|B ∈ S}.

Of course, as concrete sets A and B may overlap. We can force them to be
disjoint by ‘tagging’ them appropriately, e.g.

A �B := {0} ×A ∪ {1} ×B.

The minor housekeeping details of such tagging can safely be ignored.2 We shall
henceforth do so without further comment.

This is only a subset of the operations available in standard relational algebra
[26]. A more complete discussion could be given in the present setting, but this
will suffice for our purposes.

2.2 The Functorial View

We shall now show how the relational database formalism, in the style we have
developed it, has a direct expression in functorial terms. This immediately brings
a great deal of mathematical structure into play, and will allow us to relate some
important database notions to concepts of much more general standing.

We shall assume the rudiments of the language of categories, functors and
natural transformations. All the background we shall need is covered in the
charming (and succinct) text [25].

We shall consider the partial order Att of finite subsets of A, ordered by
inclusion, as a category.

We shall define a functor T : Attop � Set where T (A) is the set of
A-tuples. Formally, we define

T (A) :=
∏
a∈A

Da,

and if A ⊆ B, we define the restriction map ρBA : T (B) � T (A) by

ρBA : t
→ t|A.

1 Think of 2a2b = 2a+b, and hence log(xy) = log(x) + log(y).
2 The relevant result is the coherence theorem for monoidal categories [20].

Relational Databases and Bell’s Theorem 17

It is easy to verify functoriality of T , which means that, whenever A ⊆ B ⊆ C,

ρBA ◦ ρCB = ρCA,

and also that ρAA = idA. Thus T is a presheaf, and restriction is exactly function
restriction.

We also have the covariant powerset functor P : Set � Set, which acts on
functions by direct image: if f : X � Y , then

Pf : PX � PY :: S
→ {f(x) : x ∈ S}.

We can compose P with T to obtain another presheaf

R := P ◦ T : Attop � Set.

This presheaf assigns the set of A-relations to each set of attributes A; while the
restriction map

ρBA : R(B) � R(A)

is exactly the operation of relation restriction, equivalent to the standard notion
of projection in relation algebra, which we defined previously:

ρBA : R
→ R|A.

Natural Join. One of the most important operations in relational algebra is
natural join. Given an A-relation R and a B-relation S, we define an (A ∪ B)-
relation R �� S:

R �� S := {t ∈
∏

a∈A∪B

Da : t|A ∈ R ∧ t|B ∈ S}.

We shall now show how this operation can be characterized in categorical terms.
Note firstly that since the powerset is naturally ordered by set inclusion, we

can consider R as a functor

R : Attop � Pos

where Pos is the category of posets and monotone maps. Pos is order-enriched;
given monotone maps f, g : P → Q, we can define the pointwise order:

f ≤ g ≡ ∀x ∈ P. f(x) ≤ g(x).

Now suppose we are given attribute sets A and B. We consider the following
diagram arising from the universal property of product in Set.

18 S. Abramsky

R(A) � π1 R(A) ×R(B)
π2 � R(B)

R(A ∪B)

〈ρA∪B
A , ρA∪B

B 〉

�
..

ρ

A
∪B

B

�

�

ρ A∪
B

A

Proposition 1. The natural join ��: R(A) × R(B) → R(A ∪ B) is uniquely
characterized as the left adjoint of 〈ρA∪B

A , ρA∪B
B 〉; that is, as the unique map

satisfying

idR(A∪B) ≤ �� ◦ 〈ρA∪B
A , ρA∪B

B 〉, 〈ρA∪B
A , ρA∪B

B 〉 ◦ �� ≤ idR(A)×R(B).

The fact that in general a relation R ∈ R(A ∪B) satisfies only

R ⊆ R|A �� R|B,

with strict inclusion possible, corresponds to the fact that natural join is in
general a ‘lossy’ operation. Lossless joins correspond exactly to the case when
equality holds.

2.3 The Sheaf-Theoretic View

We shall now show, building on the presheaf structure described in the previous
sub-section, how a number of important database notions can be interpreted
geometrically, in the language of sheaves and presheaves.

Schemas as Covers and Gluing Conditions. We shall interpret a schema
Σ = {A1, . . . , Ak} of finite subsets of A as a cover. That is, we think of the
attribute sets Ai as ‘open sets’ expressing some local information in the sense
of related clusters of attributes; these sets cover A :=

⋃k
i=1Ai, the global set

of attributes for the schema. Conversely, we think of the global set A as being
decomposed into the local clusters Ai; which is exactly the standard point of
view in databases.

Relational Databases and Bell’s Theorem 19

The basic idea of sheaf theory is to analyze the passage from local to global be-
haviour in mathematical structures. A number of important notions in databases
have exactly this character, and can be described naturally in sheaf-theoretic
terms.

An instance (R1, . . . , Rk) of a schema Σ is given by specifying a relation
Ri ∈ R(Ai) for each Ai ∈ Σ. In sheaf-theoretic language, this is a family of local
sections, defined over the open sets in the cover. A central issue in geometric
terms is whether we can glue these local sections together into a global section
defined over A :=

⋃k
i=1Ai.

More precisely, we can ask:

Does there exist a relation R ∈ R(A) such that R|Ai = Ri, i = 1, . . . , k.

We say that the gluing condition is satisfied for the instance (R1, . . . , Rk) if such
a relation exists.

This has been studied as an algorithmic question in database theory, where
it is referred to as the join consistency property; it is shown in [17] that it is
NP-complete.

Note that a necessary condition for this to hold is that, for all i, j = 1, . . . , k:

Ri|Ai∩Aj = Rj |Ai∩Aj . (1)

Indeed, if such an R exists, then

Ri|Ai∩Aj = (R|Ai)|Ai∩Aj = R|Ai∩Aj ,

using the functoriality of restriction, and similarly for Rj |Ai∩Aj .
We shall say that a database instance (R1, . . . , Rk) for which this condition (1)

holds has consistent projections, and refer to the family of relations in the in-
stance as a compatible family.

These notions can be generalized to apply to any presheaf. If the gluing condi-
tion can always be satisfied, for any cover and any family of compatible elements,
and moreover there is a unique element which satisfies it, then the presheaf is a
sheaf.

It is of course a well-known fact of life in databases, albeit expressed in a
different language, that our relational presheaf R is not a sheaf.

In fact, we have the following:

Proposition 2. An instance (R1, . . . , Rk) satisfies the gluing condition if and
only if there is a universal relation R for the instance.

Here we take a universal relation for the instance by definition to be a relation
defined on the whole set of attributes from which each of the relations in the
instance can be recovered by projection. This notion, and various related ideas,
played an important rôle in early developments in relational database theory;
see e.g. [22,12,19,21,26].

Thus the standard notion of universal relation in databases corresponds ex-
actly to the standard notion of solution to the gluing condition in sheaf theory,
for the particular case of the relational presheaf R.

20 S. Abramsky

It is also standard that a universal relation need not exist in general, and even
if it exists, it need not be unique. There is a substantial literature devoted to
the issue of finding conditions under which these properties do hold.

There is a simple connection between universal relations and lossless joins.

Proposition 3. Let (R1, . . . , Rk) be an instance for the schema Σ =
{A1, . . . , Ak}. Define R := ��ki=1 Ri. Then a universal relation for the instance
exists if and only if R|Ai = Ri, i = 1, . . . , k, and in this case R is the largest
relation in R(

⋃
iAi) satisfying the gluing condition.

Proof. We note that, if a relation S satisfies S|Ai = Ri, i = 1, . . . , k, then S ⊆
��ki=1 Ri by the adjoint property of the natural join. Moreover, since projection
is monotone, in this case Ri ⊆ S|Ai ⊆ (��ki=1 Ri)|Ai ⊆ Ri. �

There are further categorical aspects of relational databases which it might
prove interesting to pursue. In particular, one can define categories of schemas
and of instances and their morphisms, and the construction of colimits in these
categories may be applicable to issues of data integration. However, we shall
not pursue these ideas here. Instead, we will turn to a natural generalization of
relational databases which arises rather effortlessly from the formalism we have
developed to this point.

3 Algebraic Databases

We begin by revisiting the definition of the relational presheaf R in terms of
the covariant powerset functor P . An alternative presentation of subsets is in
terms of characteristic functions. That is, we have the familiar isomorphism
P(X) ∼= 2X , where 2 := {0, 1} is the 2-element boolean algebra.

We can also use this representation to define the functorial action of powerset.
Given s : X → 2 and f : X → Y , we define f∗(s) : Y → 2 by

f∗(s) : y
→
∨

f(x)=y

s(x). (2)

It is easy to see that this is equivalent to

f∗(s)(y) = 1 ⇐⇒ ∃x ∈ S. f(x) = y.

Here S is the subset of X whose characteristic function is s.
We can specialise this to the case of an inclusion function ι : A ⊂ � B which

induces a map 2B → 2A by restriction:

s : B → 2
→ (s|A) : A→ 2.

What we obtain in this case is exactly the notion of projection of a relation, as
defined in the previous section.

Relational Databases and Bell’s Theorem 21

The advantage of this ‘matrix’ style of definition of the powerset is that it can
immediately be generalized rather widely. There is a minor caveat. In the above
definition, we used the fact that 2 is a complete boolean algebra, since there was
no restriction on the cardinality of the preimages of f . In the database context,
of course, all sets are typically finite.3 We shall enforce a finiteness condition
explicitly in our general definition.

We recall that a commutative semiring is a structure (R,+, 0, ·, 1), where
(R,+, 0) and (R, ·, 1) are commutative monoids, and moreover multiplication
distributes over addition:

x · (y + z) = x · y + x · z.

Many examples of commutative semirings arise naturally in Computer Science:
we list a few of the most common.

– The reals
(R,+, 0,×, 1).

More generally, any commutative ring is a commutative semiring.
– The non-negative reals

(R≥0,+, 0,×, 1).
– The booleans

2 = ({0, 1},∨, 0,∧, 1).
More generally, idempotent commutative semirings are exactly the distribu-
tive lattices.

– The min-plus semiring

(R≥0 ∪ {∞},min,∞,+, 0).

We also note the rôle played by provenance semirings in database theory [14,9,11].
We fix a semiring R. Given a set X , the support of a function v : X → R is

the set of x ∈ X such that v(x) �= 0. We write supp(v) for the support of v. We
shall write VR(X) for the set of functions v : X → R of finite support. We shall
write DR(X) for the subset of VR(X) of those functions d : X → R such that∑

x∈X

d(x) = 1.

Note that the finite support condition ensures that this sum is well-defined.
We shall refer to elements of VR(X) as R-valuations on X , and of DR(X) as

R-distributions.
We consider a few examples:

– If we take R = 2, then VR(X) is the set of finite subsets of X , and DR(X)
is the set of finite non-empty subsets.

3 The sets of data values Da may be infinite, but only finitely many values will appear
in a database instance.

22 S. Abramsky

– If we take R = (R≥0,+, 0,×, 1), then DR(X) is the set of discrete (finite-
support) probability distributions on X .

Algebraically, VR(X) is the free R-semimodule over the set X [13].
These constructions extend to functors on Set. Given f : X → Y , we define

VR(f) : VR(X)→ VR(Y) :: v
→ [y
→
∑

f(x)=y

v(x)].

This restricts to DR in a well-defined fashion. Taking R = 2, we see that VR(f)
is exactly the direct image of f , defined as in (2).

We can now generalize databases from the standard relational case to ‘rela-
tions valued in a semiring’ by replacing P by VR (or DR) in our definition of
R; that is, we take R := F ◦ T , where F is VR or DR for some commutative
semiring R. We recover the standard notion exactly when R = 2. In the case
where R = (R≥0,+, 0,×, 1) and F = DR, we obtain a notion of probabilistic
database, where each relation specifies a probability distribution over the set of
tuples for its attribute-set.

Moreover, our descriptions of the key database operations all generalise to
any semiring. If we apply the definition of the functorial action of VR or DR to
the case of restriction maps induced by inclusions, we obtain the right notion of
generalised projection, which can be applied to any algebraic database. We have
already seen that we recover the standard notion of projection in the Boolean
case. In the case where the semiring is the non-negative reals, so we are dealing
with probability distributions, projection is exactly marginalization.

We also note an important connection between probabilistic and relational
databases. We can always pass from a probabilistic to a relational instance by
taking the support of the distribution. Algebraically, this corresponds to mapping
all positive probabilities to 1; this is in fact the action of the unique semiring
homomorphism from the non-negative reals to the booleans.

In general, many natural properties of databases will be preserved by this
homomorphic mapping. This means that if we show that such a property is
not satisfied by the support, we can conclude that it is not satisfied by the
probabilistic instance. Thus we can leverage negative results at the relational
level, and lift them to the probabilistic setting.

We shall see a significant example of a probabilistic database in the next
section.

4 From Databases to Observational Scenarios

We shall now offer an alternative interpretation of the relational database formal-
ism, with a very different motivation. This will expose a surprising connection
between database theory, and on face value a completely different topic, namely
Bell’s theorem in the foundations of quantum mechanics [8].

Our starting point is the idealized situation depicted in the following diagram.

Relational Databases and Bell’s Theorem 23

a

b
c

d ·
a′

b′

c′
d′ ·

Alice Bob

There are several agents or experimenters, who can each select one of sev-
eral different measurements a, b, c, d, . . . to perform, and observe one of several
different outcomes. These agents may or may not be spatially separated. When
a system is prepared in a certain fashion and measurements are selected, some
corresponding outcomes will be observed. These individual occurrences or ‘runs’
of the system are the basic events. Repeated runs allow relative frequencies to
be tabulated, which can be summarized by a probability distribution on events
for each selection of measurements. We shall call such a family of probability
distributions, one for each choice of measurements, an empirical model.

As an example of such a model, consider the following table.

(0, 0) (1, 0) (0, 1) (1, 1)
a b 1/2 0 0 1/2
a′ b 3/8 1/8 1/8 3/8
a b′ 3/8 1/8 1/8 3/8
a′ b′ 1/8 3/8 3/8 1/8

The intended scenario here is that Alice can choose between measurement set-
tings a and a′, and Bob can choose b or b′. These will correspond to different
quantities which can be measured.4 We assume that these choices are made
independently. Thus the measurement contexts are

{a, b}, {a′, b}, {a, b′}, {a′, b′},

and these index the rows of the table. Each measurement has possible outcomes
0 or 1.

Note that, with a small change of perspective, we can see this in database
terms. Take the global set of attributes A = {a, a′, b, b′}, and consider the schema

Σ := ({a, b}, {a′, b}, {a, b′}, {a′, b′}).

For each a ∈ A, we take Da := {0, 1}.
4 For example, in the quantum case these settings may correspond to different direc-
tions along which to measure ‘Spin Up’ or ‘Spin Down’ [29].

24 S. Abramsky

For each A ∈ Σ, we have a ‘table’ in the algebraically generalized sense
discussed in the previous section. That is, we have a distribution dA ∈ DR◦T (A),
where R = R≥0 is the semiring of non-negative reals. Thus dA is a probability
distribution on T (A), the set of A-tuples.

To make a direct connection with standard relational databases, we can pass
to the support of the above table, which yields the following:

(0, 0) (1, 0) (0, 1) (1, 1)
a b 1 0 0 1
a′ b 1 1 1 1
a b′ 1 1 1 1
a′ b′ 1 1 1 1

This corresponds to the instance of the schema Σ where for each A = {α, β} ∈
Σ \ {{a, b}}, there is the ‘full’ table of all possible tuples:

α β

0 0
0 1
1 0
1 1

while for {a, b} we have the table with only two tuples:

a b

0 0
1 1

Thus we have a formal passage between empirical models and relational
databases. To go further, we must understand how empirical models such as
these can be used to draw striking conclusions about the foundations of physics.

5 Empirical Models and Hidden Variables

Most of our discussion is independent of any particular physical theory. How-
ever, it is important to understand how quantum mechanics, as our most highly
confirmed theory, gives rise to a class of empirical models of the kind we have
been discussing.

To obtain such a model, we must provide the following ingredients:

– A quantum state.
– For each of the ‘measurement settings’, which correspond to attributes in

database terms, a physical observable or measurable quantity. Each such
observable will have a set of associated possible outcomes, which will corre-
spond to the set of data values associated with that attribute.

The ‘statistical algorithm’ of quantum mechanics will then prescribe a probabil-
ity for each measurement outcome when the given state is measured with that
observable.

Although we shall not really need the details of this, we briefly recall some
basic definitions. For further details, see e.g. [24,29].

Relational Databases and Bell’s Theorem 25

A Crash Course in Qubits

Whereas a classical bit register has possible states 0 or 1, a qubit state is given
by a superposition of these states. More precisely, a (pure) qubit state is given
by a vector in the 2-dimensional complex vector space C2, i.e. a complex linear
combination α0|0〉+α1|1〉, subject to the normalization constraint |α0|2+|α1|2 =
1. Here |0〉, |1〉 is standard Dirac notation for the basis vectors [1, 0]T and [0, 1]T .

Measurement of such a state (in the |0〉, |1〉 basis) is inherently probabilistic;
we get |i〉 with probability |αi|2.

There is a beautiful geometric picture of this complex 2-dimensional geometry
in real three-dimensional space. This is the Bloch sphere representation:

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

-1 1

-i

i

N

S

P

x

z

(a) (b) y

P’

θ

ϕ

The pure qubit states correspond to points on the surface of the sphere. How-
ever, this one-qubit case does not yet provide non-classical resources for infor-
mation processing. Things get interesting with n-qubit registers∑

i

αi|i〉, i ∈ {0, 1}n.

It is at this point, in particular, that entanglement phenomena arise.
A typical example of an entangled state is the Bell state:

|00〉+ |11〉

We can think of two particles, each with a qubit state, held by Alice and Bob.
However, these two particles are entangled. If Alice measures her qubit, then if
she gets the answer |0〉, the state will collapse to |00〉, and if Bob measures his
qubit, he will get the answer |0〉 with certainty; similarly if the result of Alice’s
measurement is |1〉. This non-local effect creates new possibilities for quantum
information processing.

Mathematically, compound systems are represented by the tensor product,
H1 ⊗H2, with typical element ∑

i

λi · φi ⊗ ψi.

Superposition encodes correlation.
Entanglement is the physical phenomenon underlying Einstein’s ‘spooky ac-

tion at a distance’. Even if the particles are spatially separated, measuring one
has an effect on the state of the other.

26 S. Abramsky

Bell’s achievement was to turn this puzzling feature of quantum mechanics
into a theorem: quantum mechanics is essentially non-local.

5.1 Bell’s Theorem

We look again at the empirical model

(0, 0) (1, 0) (0, 1) (1, 1)
(a, b) 1/2 0 0 1/2
(a, b′) 3/8 1/8 1/8 3/8
(a′, b) 3/8 1/8 1/8 3/8
(a′, b′) 1/8 3/8 3/8 1/8

This can be realized in quantum mechanics, using a Bell state

|00〉 + |11〉√
2

,

subjected to measurements in the XY -plane of the Bloch sphere, at relative
angle π/3. Systems of this kind have been the subject of extensive experimental
investigation, and the predictions of quantum mechanics can be taken to be very
highly confirmed.

The question we shall ask, following Bell, is this: Can we explain these
empirical findings by a theory which is local and realistic in the following sense.

– A theory is realistic if it ascribes definite values to all observables for every
physical state, independently of the activities of any external observers.

– A theory is local if the outcomes of measurements on spatially separated
subsystems depend only on common causal factors. In particular, for space-
like separated measurements, the outcomes of the measurements should be
independent of each other.

We allow for the fact that there may be salient features in the theory determining
the outcomes of measurements of which we are not aware. These features are
embodied in the notion of hidden variable. Thus we take measurement outcomes
to be determined, given some value of this hidden variable. Moreover, we assume
that this hidden variable acts in a local fashion with respect to spatially separated
subsystems.

This gives a general notion of theory which behaves in a fashion broadly
consistent with classical physical intuitions. The import of Bell’s theorem is
exactly that no such theory can account for the empirical predictions of quan-
tum mechanics. Hence, given that these predictions are so well-confirmed, we
must abandon the classical world-view which underpins the assumptions of local
realism.

To give a precise statement of Bell’s theorem, we must formalize the notion of
local hidden variable theory. We shall give this in a streamlined form, which can
be shown to be equivalent to more general definitions which have been considered
(see e.g. Theorem 7.1 in [3]).

Relational Databases and Bell’s Theorem 27

We shall explain this notion in relation to the Bell table given above. We have
a total set of four measurement settings we are considering, two for Alice and
two for Bob:

{a, a′, b, b′}.
A simultaneous assignment of outcomes (0 or 1) to each of these is given by a
function

s : {a, a′, b, b′} � {0, 1}.
The fact that an (unknown) hidden variable may be affecting the outcome is
captured by saying that we have a probability distribution d on the set of all
such functions s. Such a probability distribution can be taken to be a canonical
form for a hidden variable.

The requirement on this distribution d to be consistent with the empirical data
is that, for each of the experimentally accessible combinations of measurement
settings

{a, b}, {a′, b}, {a, b′}, {a′, b′},
the restriction (or marginalization) of d to this set of measurements yields exactly
the observed distribution on outcomes from the corresponding row of the table.
For example, we must have d|{a, b} = d1, where

d1(0, 0) = d1(1, 1) = 1/2, d1(0, 1) = d1(1, 0) = 0.

A precise statement of a particular instance of Bell’s theorem can now be
given as follows:

Proposition 4. There is no distribution d on the whole set of measurements
which yields the observable distributions by restriction.

Proof. Assume for a contradiction that such a distribution d exists. It will
assign a number Xi ∈ [0, 1] to each si : {a, a′, b, b′} � {0, 1}. There are 16
such functions: we enumerate them by viewing them as binary strings, where
the j’th bit indicates the assignment of an outcome to the j’th measurement,
listed as a, a′, b, b′.

The requirement that this distribution projects onto the distributions in the
empirical model translates into 16 equations, one for each entry in the table. It
suffices to consider 4 of these equations:

X1 + X2 + X3 + X4 = 1/2
X2 + X4 + X6 + X8 = 1/8
X3 + X4 + X11 + X12 = 1/8
X1 + X5 + X9 + X13 = 1/8

Adding the last three equations yields

X1 +X2 +X3 + 2X4 +X5 +X6 +X8 +X9 +X11 +X12 +X13 = 3/8.

Since all these terms must be non-negative, the left-hand side of this equation
must be greater than or equal to the left-hand side of the first equation, yielding
the required contradiction. �

28 S. Abramsky

This argument seems very specific to the probabilistic nature of the empirical
model. However, an important theme in the work on no-go theorems in quantum
mechanics is to prove results of this kind in a probability-free fashion [15,16].
This will bring us directly into the arena of relational databases.

5.2 Hardy’s Construction

Hardy’s construction [16] yields a family of empirical models which can be real-
ized in quantum mechanics in similar fashion to the Bell model. However, these
families exhibit a stronger form of non-locality property, which does not depend
on the probabilities, but only on the support.

We exhibit an example of a support table arising from Hardy’s construction.

(0, 0) (1, 0) (0, 1) (1, 1)
(a, b) 1 1 1 1
(a′, b) 0 1 1 1
(a, b′) 0 1 1 1
(a′, b′) 1 1 1 0

This arises from a probability table by replacing all positive probabilites by 1.
Note that we can view this table as encoding a small relational database, as

in our discussion in the previous section. There will be four relation tables in
this database, one for each of the above rows. The table corresponding to the
first row will have the full set of tuples over {0, 1}. The tables for the second
and third rows will have the form

α β

0 1
1 0
1 1

while that for the fourth row will have the form

a′ b′

0 0
0 1
1 0

The property which shows the non-locality of this model is the exact relational
analogue of the probabilistic version we considered in relation to the Bell model.

Proposition 5. There is no A-relation R, where A = {a, a′, b, b′}, which is
consistent with the empirical observable supports; that is, for which R|{α, β}
yields the relational table for all {α, β}, α ∈ {a, a′}, β ∈ {b, b′}.

In database language, this says exactly that there is no ‘universal relation’
on the whole set of attributes which yields each of the ‘observable relations’ by
projection.

Relational Databases and Bell’s Theorem 29

Proof. We argue similarly to the case of the Bell model, except that we are
now working over the Boolean semiring rather than the non-negative reals. The
existence of a relation R thus reduces to a Boolean satisfiability problem. An
equation

∑
iXi = 1 simply asserts the disjunction of the boolean variables, while

an equation
∑

iXi = 0 asserts the conjunction of the negated variables. Again it
suffices to consider four of the equations which can be read off the Hardy table:

X1 ∨ X2 ∨ X3 ∨ X4

¬X1 ∧ ¬X3 ∧ ¬X5 ∧ ¬X7

¬X1 ∧ ¬X2 ∧ ¬X9 ∧ ¬X10

¬X4 ∧ ¬X8 ∧ ¬X12 ∧ ¬X16

Since every disjunct in the first formula appears as a negated conjunct in one of
the other three formulas, there is no satisfying assignment. �

There is a precise sense in which the Hardy result is stronger than the Bell
result. In fact, we have the following.

Proposition 6. If an empirical model has a local hidden-variable model in the
probabilistic sense, then its support table has a universal relation. Thus failure
to have a universal relation implies failure to have a local hidden-variable model
in the probabilistic sense.

Proof. This follows simply from the fact that the map from the non-negative
reals to the booleans which takes all non-zero elements to 1 is a semiring homo-
morphism. �

The converse to this result is false. For example, the support table arising
from the Bell model does have a universal relation, as can easily be verified.

Note that the Hardy table, and indeed all such tables arising from quan-
tum mechanics, satisfies the compatibility condition which we discussed in Sec-
tion 2.3. In fact, compatibility corresponds precisely to the physical condition
of no-signalling, and the fact that quantum models satisfy the condition is ex-
actly the content of the No-Signalling theorem of quantum mechanics. See [3]
Section 8 for an extended discussion of this point.

6 No-Go Theorems, Global Sections and Universal
Relations

We shall now develop a more general perspective on the results we have discussed
in the previous section.

Following the geometric language we introduced in Section 2.3, we see that
the existence of a hidden-variable model is equivalently expressed as the exis-
tence of a global section which glues together the family of empirical accessible
distributions or relations.

Thus non-locality and related no-go results can be understood in terms of
obstructions to the existence of global sections, a central issue in the pervasive
applications of sheaves in geometry, topology, analysis and number theory.

30 S. Abramsky

In terms of databases, such results can be understood as expressing obstruc-
tions to the existence of universal relations for given instances of the database.

We shall now discuss two further types of no-go results, which can be under-
stood in terms of yet stronger forms of obstruction.

6.1 Strong Contextuality

If we consider the argument for the Hardy construction, it can be understood as
saying that there is no relation over the global tuples which ‘covers’ all (and only)
the observable tuples. But now suppose we consider a much weaker requirement:
we simply ask for one global tuple which projects consistently into all the relations
in the database instance.

Note that the Hardy model does meet this condition. The global assignment

{a
→ 1, a′
→ 0, b
→ 1, b′
→ 0}

does project consistently into the support table for this model. The Bell model
similarly meets this condition.

If even this, much weaker requirement cannot be met, then we have a much
stronger form of no-go theorem. We say that such a situation exhibits strong
contextuality.

The question now arises: are there models coming from quantum mechanics
which are strongly contextual in this sense?

We shall now show that the well-known GHZ models [15], of type (n, 2, 2) for
all n > 2, are strongly contextual. This will establish a strict hierarchy

Bell < Hardy < GHZ

of increasing strengths of obstructions to non-contextual behaviour for these
salient models.

The GHZ model of type (n, 2, 2) can be specified as follows. We label the
two measurements at each part as X(i) and Y (i), and the outcomes as 0 and 1.
For each context C, every s in the support of the model satisfies the following
conditions:

– If the number of Y measurements in C is a multiple of 4, the number of 1’s
in the outcomes specified by s is even.

– If the number of Y measurements is 4k+2, the number of 1’s in the outcomes
is odd.

A model with these properties can be realized in quantum mechanics, using the
GHZ state

|0 · · · 0〉 + |1 · · · 1〉√
2

.

Proposition 7. The GHZ models are strongly contextual, for all n ≥ 3.

Relational Databases and Bell’s Theorem 31

Proof. We consider the case where n = 4k, k ≥ 1. Assume for a contradiction
that we have a global section s ∈ Se for the GHZ model e.

If we take Y measurements at every part, the number of 1 outcomes under the
assignment is even. Replacing any two Y ’s byX ’s changes the residue class mod 4
of the number of Y ’s, and hence must result in the opposite parity for the number
of 1 outcomes under the assignment. Thus for any Y (i), Y (j) assigned the same
value, if we substitute X ’s in those positions they must receive different values
under s. Similarly, for any Y (i), Y (j) assigned different values, the corresponding
X(i), X(j) must receive the same value.

Suppose firstly that not all Y (i) are assigned the same value by s. Then for
some i, j, k, Y (i) is assigned the same value as Y (j), and Y (j) is assigned a
different value to Y (k). Thus Y (i) is also assigned a different value to Y (k). Then
X(i) is assigned the same value as X(k), and X(j) is assigned the same value
as X(k). By transitivity, X(i) is assigned the same value as X(j), yielding a
contradiction.

The remaining cases are where all Y ’s receive the same value. Then any pair
of X ’s must receive different values. But taking any 3 X ’s, this yields a con-
tradiction, since there are only two values, so some pair must receive the same
value.

The case when n = 4k+2, k ≥ 1, is proved in the same fashion, interchanging
the parities. When n ≥ 5 is odd, we start with a context containing one X , and
again proceed similarly.

The most familiar case, for n = 3, does not admit this argument, which relies
on having at least 4 Y ’s in the initial configuration. However, for this case one
can easily adapt the well-known argument of Mermin using ‘instruction sets’ [23]
to prove strong contextuality. This uses a case analysis to show that there are
8 possible global sections satisfying the parity constraint on the 3 measurement
combinations with 2 Y ’s and 1 X ; and all of these violate the constraint for the
XXX measurement. �

6.2 The Kochen-Specker Theorem

Kochen-Specker-type theorems [18] can be understood as generic strong contex-
tuality results. In database terms, they say that, if the database schema has a
certain combinatorial structure, then every instance satisfying some conditions
is strongly contextual. This can be interpreted in the quantum context in such
a way that the conditions will be satisfied by every quantum state, and hence
we obtain a state-independent form of strong contextuality result.

The condition which is typically imposed on the instances, assuming that
the possible data values for each attribute lie in {0, 1}, is that every tuple con-
tains exactly one 1. If we think in terms of satisfiability, this corresponds to a
‘POSITIVE ONE-IN-k-SAT’ condition.

To show that the Kochen-Specker result holds is exactly to show that there
is no satisfying assignment for the corresponding set of clauses.

32 S. Abramsky

The simplest example of this situation is the ‘triangle’, i.e. the schema with
elements

{a, b}, {b, c}, {a, c}.

However, this example cannot be realized in quantum mechanics [3].
An example which can be realized in quantum mechanics, where A has 18

elements, and there are 9 sets in the database schema, each with four elements,
such that each element of A is in two of these, appears in the 18-vector proof of
the Kochen-Specker Theorem in [10].

U1 U2 U3 U4 U5 U6 U7 U8 U9

A A H H B I P P Q
B E I K E K Q R R
C F C G M N D F M
D G J L N O J L O

Here the schema is Σ = {U1, . . . , U9}.
We shall give a simple combinatorial condition on the schema Σ which is

implied by the existence of a global section s satisfying the ‘POSITIVE ONE-
IN-k-SAT’ condition. Violation of this condition therefore suffices to prove that
no such global section exists.

For each a ∈ A, we define

Σ(a) := {A ∈ Σ : a ∈ A}.

Proposition 8. If a global section satisfying the condition exists, then every
common divisor of {|Σ(a)| : a ∈ A} must divide |Σ|.
Proof. Suppose there is a global section s : A → {0, 1} satisfying the condition.
Consider the set X ⊆ A of those a such that s(a) = 1. Exactly one element of
X must occur in every A ∈ Σ. Hence there is a partition of Σ into the subsets
Σ(a) indexed by the elements of X . Thus

|Σ| =
∑
a∈X

|Σ(a)|.

It follows that, if there is a common divisor of the numbers |Σ(a)|, it must divide
|Σ|. �

For example, if every a ∈ A appears in an even number of elements of Σ,
while Σ has an odd number of elements, then there is no global section. This
corresponds to the ‘parity proofs’ which are often used in verifying Kochen-
Specker-type results [10,28]. For example, in the 18-attribute schema with 9
relations given above, each attribute appears in two relations in the schema;
hence the argument applies.

For further discussion of these ideas, including connections with graph theory,
see [3].

Relational Databases and Bell’s Theorem 33

7 Further Directions

We mention some further directions for developing the connections between
databases and the study of non-locality and contextuality in quantum mechanics.

– We may consider conditions on the database schema which guarantees that
global sections can be found. The important notion of acyclicity in database
theory [7] is relevant here. On the probabilistic side there is a result by
Vorob’ev [27] (motivated by game theory), which gives necessary and suffi-
cient combinatorial conditions on a schema for any assignment of probability
distributions on the tuples for each relation in the schema to have a global
section; that is, for a universal relation in the probabilistic sense to always
exist for any probabilistic instance of the database. Rui Soares Barbosa (per-
sonal communication) has shown that the Vorob’ev condition is equivalent
to acyclicity in the database sense. This provides another striking connec-
tion between database theory and the theory of quantum non-locality and
contextuality.

– A logical approach to Bell inequalities in terms of logical consistency condi-
tions is developed in [5]. It would be interesting to interpret and apply this
notion of Bell inequalities in the database context.

– The tools of sheaf cohomology are used to characterize the obstructions to
global sections in a large family of cases in [6]. In principle, these sophisti-
cated tools can be applied to databases. There may be interesting connec-
tions with acyclicity in the database sense.

We can summarise the connections which we have exposed between database
theory and quantum non-locality and contextually in the following table:

Relational databases measurement scenarios
attribute measurement
set of attributes defining a relation table compatible set of measurements
database schema measurement cover
tuple local section (joint outcome)
relation/set of tuples boolean distribution on joint outcomes
universal relation instance global section/hidden variable model
acyclicity Vorob’ev condition

Acknowledgements. Discussions with and detailed comments by Phokion Ko-
laitis are gratefully acknowledged. Leonid Libkin also gave valuable feedback.
This paper was written while in attendance at the program on ‘Semantics and
Syntax: the legacy of Alan Turing’ at the Isaac Newton Institute, Cambridge,
April–May 2012.

34 S. Abramsky

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Abramsky, S.: Relational Hidden Variables and Non-Locality. Studia Logica 101(2),
411–452 (2013)

3. Abramsky, S., Brandenburger, A.: The sheaf-theoretic structure of non-locality and
contextuality. New Journal of Physics 13(2011), 113036 (2011)

4. Abramsky, S., Gottlob, G., Kolaitis, P.: Robust constraint satisfaction and local
hidden variables in quantum mechanics. In: Rossi, F. (ed.) Proceedings of the
International Joint Conference in Artificial Intelligence (IJCAI) (2013)

5. Abramsky, S., Hardy, L.: Logical Bell Inequalities. Physical Review A 85, 062114
(2012)

6. Abramsky, S., Mansfield, S., Barbosa, R.S.: The cohomology of non-locality and
contextuality. In: Proceedings of Quantum Physics and Logic 2011. EPTCS, vol. 95,
pp. 1–15 (2012)

7. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic
database schemes. Journal of the ACM (JACM) 30(3), 479–513 (1983)

8. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1(3), 195–200 (1964)
9. Buneman, P., Tan, W.C.: Provenance in databases. In: Proceedings of the 2007

ACM SIGMOD International Conference on Management of Data, pp. 1171–1173.
ACM (2007)

10. Cabello, A., Estebaranz, J.M., Garćıa-Alcaine, G.: Bell-Kochen-Specker theorem:
A proof with 18 vectors. Physics Letters A 212(4), 183–187 (1996)

11. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: Why, how, and
where. Foundations and Trends in Databases 1(4), 379–474 (2009)

12. Fagin, R., Mendelzon, A.O., Ullman, J.D.: A simplified universal relation assump-
tion and its properties. ACM Transactions on Database Systems (TODS) 7(3),
343–360 (1982)

13. Golan, J.S.: Semirings and their Applications. Springer (1999)
14. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings

of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pp. 31–40. ACM (2007)

15. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bell’s theorem. In:
Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory, and Conceptions of the Uni-
verse, pp. 69–72. Kluwer (1989)

16. Hardy, L.: Quantum mechanics, local realistic theories, and Lorentz-invariant re-
alistic theories. Physical Review Letters 68(20), 2981–2984 (1992)

17. Honeyman, P., Ladner, R.E., Yannakakis, M.: Testing the universal instance as-
sumption. Information Processing Letters 10(1), 14–19 (1980)

18. Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics.
Journal of Mathematics and Mechanics 17(1), 59–87 (1967)

19. Korth, H.F., Kuper, G.M., Feigenbaum, J., Van Gelder, A., Ullman, J.D.: SYS-
TEM/U: A database system based on the universal relation assumption. ACM
Transactions on Database Systems (TODS) 9(3), 331–347 (1984)

20. Mac Lane, S.: Categories for the working mathematician, vol. 5. Springer (1998)
21. Maier, D., Ullman, J.D.: Maximal objects and the semantics of universal relation

databases. ACM Transactions on Database Systems (TODS) 8(1), 1–14 (1983)
22. Maier, D., Ullman, J.D., Vardi, M.Y.: On the foundations of the universal relation

model. ACM Transactions on Database Systems (TODS) 9(2), 283–308 (1984)

Relational Databases and Bell’s Theorem 35

23. Mermin, N.D.: Quantum mysteries revisited. Am. J. Phys. 58(8), 731–734 (1990)
24. Nielsen, M.Q.C., Chuang, I.: Quantum Computation and Quantum Information.

Cambridge University Press (2000)
25. Pierce, B.C.: Basic category theory for computer scientists. The MIT Press (1991)
26. Ullman, J.D.: Principles of database systems. Prentice-Hall (1983)
27. Vorob’ev, N.N.: Consistent families of measures and their extensions. Theory of

Probability and its Applications 7, 147 (1962)
28. Waegell, M., Aravind, P.K.: Parity proofs of the Kochen-Specker theorem based

on the 24 rays of Peres. Arxiv preprint arXiv:1103.6058v1 (2011)
29. Yanofsky, N.S., Mannucci, M.A.: Quantum computing for computer scientists,

vol. 20. Cambridge University Press, Cambridge (2008)

High-Level Rules for Integration

and Analysis of Data: New Challenges

Bogdan Alexe1, Douglas Burdick1, Mauricio A. Hernández1,
Georgia Koutrika2, Rajasekar Krishnamurthy1, Lucian Popa1,

Ioana R. Stanoi1, and Ryan Wisnesky3

1 IBM Almaden Research Center
{balexe,drburdic,mahernan,rajase,lpopa,irs}@us.ibm.com

2 HP Labs
koutrika@hp.com

3 Harvard University
School of Engineering and Applied Sciences

ryan@cs.harvard.edu

1 Introduction and Motivation

Data integration remains a perenially difficult task. The need to access, inte-
grate and make sense of large amounts of data has, in fact, accentuated in
recent years. There are now many publicly available sources of data that can
provide valuable information in various domains. Concrete examples of public
data sources include: bibliographic repositories (DBLP, Cora, Citeseer), online
movie databases (IMDB), knowledge bases (Wikipedia, DBpedia, Freebase), so-
cial media data (Facebook and Twitter, blogs). Additionally, a number of more
specialized public data repositories are starting to play an increasingly impor-
tant role. These repositories include, for example, the U.S. federal government
data, congress and census data, as well as financial reports archived by the U.S.
Securities and Exchange Commission (SEC).

However, in all of these cases, the data has become increasingly more hetero-
geneous and less structured. Even within one source (e.g., SEC or DBpedia),
bits and pieces of data about the same real-world entity (such as a person, a
company or a product) are often buried in text, html, XML, or other formats,
and spread over many documents. In order to make sense of all this data at the
aggregated level, it is necessary to build an entity or concept-centric view [10] of
the domain, where clean and rich entities, together with their relationships, are
aggregated from the myriad of unstructured or semi-structured pieces of data.
It is these entities and relationships that will provide the real value to a human
user or to the subsequent applications that need to consume information. In
fact, many companies (so called data aggregators) have started to emerge in this
space, aiming to create integrated value on top of the underlying raw data.

However, achieving the level of integration that is required in such practical
scenarios is a challenge. There are many types of techniques that need to be put
together in a complex data processing flow. These techniques include: informa-
tion extraction [11] (to produce structured records from text or semi-structured

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 36–55, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

High-Level Rules for Integration and Analysis of Data: New Challenges 37

data), cleansing and normalization (to be able to even compare string values
of the same type, such as a dollar amount or a job title), entity resolution [13]
(to link records that correspond to the same real-world entity or that are re-
lated via some other type of semantic relationship), mapping [14] (to bring the
extracted and linked records to a uniform schematic representation), and data
fusion [6] (to merge all the related facts into one integrated, clean object). In
practice, these steps are often implemented in general purpose languages (e.g.,
Java, Perl), using ETL tools, or using general data manipulation languages (e.g.,
XSLT, Pig Latin). Often, the emphasis is on the low-level operations (sort, pipe,
duplicate elimination, join, string matching, etc.) without a high-level view of
the data integration steps. Most of the time, there is no explicit entity or object
view, but rather tuples, arrays, key/value pairs.

In this paper, we advocate the need for a high-level language or framework to
describe the main logical operations of data integration (e.g., entity extraction,
entity resolution, mapping, fusion) and analysis (e.g., aggregation, view creation,
temporal analysis). We emphasize the logical specification aspects rather than
the physical implementation. In addition to ease of specification or programma-
bility, such a framework would also enable better readability, better reuse and
better customization of data integration and analysis (to other domains, other
tasks, other views). The target users of such framework are developers that need
to perform complex, industrial-strength data integration tasks.

We will illustrate the paper with an end-to-end scenario of integration that
is focused on people and company entities. This scenario is drawn from our
own experience, as part of the Midas project [3,7] at IBM, with integrating
data from DBpedia and especially SEC, which we have used extensively as a
source for integration in the financial domain. Similar challenges or technologies
will apply to other scenarios of integration from public data sources. We will
focus our discussion on the high-level rules and declarations that are needed
to accomplish the various integration steps. For each of the important tasks,
the rules are shown in a candidate syntax that takes inspiration from existing
formalisms, languages and tools for information extraction, entity resolution and
schema mapping. However, rather than fixing on a concrete language, the goal is
to illustrate the features that need to be supported in such a language, as well as
the challenges. Coming up with an actual integrated language that combines all
these features together is a separate challenge in itself with many design choices.

This is mostly a vision paper, with the goal of raising the attention of inter-
ested researchers towards this area.

Note Some of the ideas and desiderata described in this article have sub-
sequently led to the development at IBM of a high-level integration language
called HIL [22].1 This language includes declarative constructs for entity reso-
lution and for mapping and fusion of data, and is now extensively used within
IBM for large-scale integration over structured and unstructured data (e.g., so-
cial media, news articles, financial disclosures, enterprise data, etc.). The exact

1 Thus, from a timeline point of view, this book chapter describes work that precedes
the development of HIL.

38 B. Alexe et al.

language design choices and primitives of HIL, as well as its compilation and
execution, are described in [22]. While HIL answers some of the research chal-
lenges outlined in this article, several important problems remain largely open,
such as the need for tools or systems to support large-scale data exploration or
to assist users with the actual development of a good set of data analysis rules.

1.1 Overview of the Paper

We start in Section 2 by describing some of the features of the data in DBpedia,
as well as the challenges involved in data exploration, which is a phase that
precedes the actual writing of the rules. We then illustrate some concrete rules
for extracting facts from DBpedia. Here, the output of an extraction rule has
a relatively simple structure (or schema), but the input is semi-structured and
largely heterogeneous. Extraction from completely unstructured data (i.e., text)
[11] is highly related in this context; however, in this paper, we focus our atten-
tion specifically on extraction from semi-structured data (e.g., RDF, or XML,
or JSON). We also note that extraction from text, technically, is of a different
nature and is discussed extensively elsewhere (e.g., [8]).

In addition to giving examples of extraction rules, we also include a discussion
of the need for automatic or semi-automatic extraction of structured records
that is based on data examples. Such technology, while non-trivial, would be
particularly useful when the developer is in the exploration phase and does not
know enough about the data and its peculiarities. Based on a few examples
that are representative of the type of entities that the developer is interested
to extract, the system must first be able to derive all the other entries that are
“similar” to the given examples. More challenging, the system should come up
with a set of extraction rules that would result in such entries. While existing
work on query discovery based on data instances [18,27] or on schema mapping
design based on examples [1,21] may provide a starting point here, new types of
algorithms will have to be developed to account for highly heterogeneous data
with “less” schema (such as DBpedia).

The next integration component that we address is entity resolution, in Sec-
tion 3. Rather than looking at specific algorithms or implementations that match
records based on various similarity measures on their fields, we take a higher-
level approach where the goal is to provide the specification framework for entity
resolution. We advocate a framework that is based on logical constraints that
are similar, in spirit, to the dependencies used in data exchange [15]. However,
different from data exchange where the dependencies are source-to-target, our
entity resolution constraints are target-to-source: they define declaratively all the
desired properties of the target (i.e., of the links) in terms of the sources. Fur-
thermore, these constraints incorporate disjunction (of the alternative matching
rules that may apply), rely on user-defined functions for computing similarity
of values, and can include cardinality constraints (e.g., to express many-to-one
type of links). We include a discussion to illustrate the differences between this
framework and previous approaches such as the Dedupalog language [2].

High-Level Rules for Integration and Analysis of Data: New Challenges 39

One of the main research problems that we outline, as part of declarative entity
resolution, is the compilation of the declarative constraints into an execution plan
that produces a good instantiation of the links. An important related question
is formulating the semantics of the declarative constraints, which then needs
to be implemented by the execution plan. Finally, a major challenge for entity
resolution, which goes beyond the design of the specification language, is the
development of methods and tools to help users interactively resolve the inherent
ambiguities in their specification. These tools can help users refine the declarative
constraints, based on the actual data sets that need to be linked, to ultimately
achieve a high quality specification for entity resolution.

We discuss mapping and transformation, as well as data fusion and aggre-
gation aspects in Section 4. While there is work on schema mapping tools [14],
data exchange semantics [15], and data fusion methods [6], our goal is to develop
an expressive scripting language that allows developers to combine non-trivial
mapping, fusion and aggregation tasks (e.g., that are often not possible within
a schema mapping tool paradigm) with the declarative entity resolution and ex-
traction operations discussed earlier. At the same time, we emphasize simplicity
and ease of programming as important requirements for the language design.

We discuss several other related papers and systems in Section 5 and conclude
the paper in Section 6, where we reiterate the need for a single, unified framework
that incorporates all the aspects outlined in the previous sections.

2 Data Exploration and Extraction

The first step before the actual writing of extraction and integration rules is the
exploration phase, where a human user needs to understand what is in the source
data and what can be extracted. This step is usually expensive; any help that a
system or tool can provide in assisting the human user can be valuable. Even if
the user has an idea of what concepts need to be extracted, the form in which
these concepts manifest in the actual data source can vary significantly. Hence,
heterogeneity is a challenge.

We start with an example from DBpedia to illustrate the issues. We focus on
financial companies (e.g., Bank of America, Citigroup); the goal here will be to
extract structured records that are relevant for such financial companies and that
are deemed useful towards building the final integrated view. First, we assume
that the DBpedia data set is given as a set of JSON records, each corresponding
to one entity. A record has a subject field (which is also the identifier of that
entity), and then all the various properties recorded for that entity. This JSON
representation can be easily obtained from the RDF version of Dbpedia, which
records RDF triples of the form (subject, property, value).2 The conversion from
RDF to JSON is already a step towards a more unified view of the data, since it
yields full objects rather triples. However, the format of these objects is wildly
heterogeneous, even for the same “type” of entity, as we shall see shortly. A large

2 See the Ontology Infobox Properties data set at
http://wiki.dbpedia.org/Downloads.

http://wiki.dbpedia.org/Downloads.

40 B. Alexe et al.

{
"assets”: “US$ 2.264 trillion",
"foundation": “1904",
"homepage": ["http://www.bankofamerica.com",

“http://www.bofa.com”],
"industry": ["Banking", “Financial services”]
"keyPeople": [
“Bryan Moynihan",
“(President and CEO)",
“Charles Holliday",
“(Chairman)"
],
"location": [
"Charlotte,_North_Carolina",
"United_States",
"North_Carolina"

],
"name": "Bank of America Corporation",
"numEmployees": "288000",
"slogan": "Bank of Opportunity",
"subject": "Bank_of_America",
"type": "Public_company",
"wikiPageUsesTemplate": "Template:infobox_company"

},

{
"areaServed": "Worldwide",
"assets": "$ 1.119 trillion (2007)",
"companyName": "Goldman_Sachs",
"companySlogan": "Our clients\' interests always come first",
"companyType": "Public_company",
"foundation": "1869",
"founder": ["Marcus_Goldman“, “Samuel Sachs”],
"homepage": "http://www.gs.com/",
"industry": "Finance_and_insurance",
"keyPeople": [
"Lloyd_Blankfein",
(Chairman & CEO)”,
"Gary_Cohn",
“(President & COO)”,

“David Viniar“,
“(Executive VP & CFO)”

],
"location": ["United_States", "New_York_City"],
"marketCap": "$ 65.91 billion (2007)",
"numEmployees": "30,522 (2007)",
"products": [
"Financial_services",
"Investment_bank"

],
"revenue": "$ 87.968 billion (2007)",
"subject": "Goldman_Sachs",
"wikiPageUsesTemplate": "Template:infobox_company"

},

Fig. 1. Sample DBpedia records

part of the subsequent processing will be devoted to extracting the relevant parts
of the objects of interest, bringing the extracted parts to a uniform format, and
then linking and integrating them with data from other sources (e.g., SEC).

Figure 1 illustrates two sample input records, in JSON, corresponding to the
DBpedia entries for Bank of America and Goldman Sachs. Even though both of
these records represent entities of a similar type (i.e., financial institutions), there
is significant variation in the structure of the records (i.e., the attributes that are
present, their types), in the naming of the attributes, and in the values and for-
mat of the values that populate the attributes. For example, Goldman Sachs has
attributes such as “founder” and “marketCap”, while Bank of America does not
include these attributes. Goldman Sachs has a “companyName” attribute, while
the equivalent attribute for Bank of America is “name”. The “homepage” at-
tribute for Goldman Sachs is a single string, while the similar attribute for Bank
of America is an array of strings. Finally, the values themselves are not always
clean or cleanly organized. For example, Bank of America includes “Banking”
and “Financial services” under the “industry” attribute; the corresponding infor-
mation for Goldman Sachs is actually distributed over two attributes (“industry”
and “products”). Furthermore, the entries under the “keyPeople” attribute, in
both records, are a mixture of person names and positions (titles), without an
explicit tagging of the data.

After exploring several more representative DBPedia entries for financial com-
panies, the user may decide on a set of important concepts to be extracted from
this collection of heterogeneous records. Each concept is based on a subset of

High-Level Rules for Integration and Analysis of Data: New Challenges 41

FinancialCompany =

for (r in DBpedia)

let industryTerms = extractIndustries (r.industry),

compName = extractCompanyName (r)

where contains (compName, “Bank|Insurance|Investment”) or

(some (i in industryTerms) satisfies

contains (i, “bank|banking|insurance|finance|financial”))

return {company_id: r.subject,

name: compName,

foundation: r.foundation,

industry: industryTerms,

revenue: cleanDollarAmount (r.revenue)

}

Fig. 2. Extraction rule for financial companies

attributes and, hence, it is a piece of a schema. In our scenario, the user may be
interested in the following three concepts.

FinancialCompany (company id, name, foundation, industry, revenue, ...)
CompanyAddress (company id, street1, street2, zipcode, city, state, country)
KeyPeople (person name, titles, company name, age, biography, ...)

Note that, in general, the schema for these concepts must be open (see the
above ... notation) to account for possibly other attributes of interest that may
be added later. The high-level integration language will have to be flexible and
account for such open schema by either not requiring the user to explicitly hav-
ing to define the schemas of the concepts, or by using advanced programming
language features such as record polymorphism to represent extensible record
types [24,25,28].

Finally, other concepts can be defined later from either the same source (DB-
Pedia) or from other sources (e.g., SEC, as we will see later). All of these ex-
tracted concepts will then be processed together, in the subsequent integration
flow, to generate clean target entities with richer structure.

We focus next on how to extract the data to populate such concepts from the
underlying collection of heterogeneous records.

2.1 Extraction Rules: Examples

Figure 2 gives a first example of a rule that extracts data for financial companies
from DBpedia. This rule populates into the FinancialCompany concept. There
may be other rules to further populate into this same concept (and possibly add
new attributes). Thus, the actual instance of a concept will be given by a union
of extraction rules.

The rule uses an XQuery-like syntax (although other types of syntax could
also be used) to express the search for DBPedia records that match the charac-
teristics of a financial company and also to express the extraction of the relevant

42 B. Alexe et al.

attributes. Note the complex predicate that is used in the where clause to rec-
ognize a financial company. This predicate includes multiple string matching
conditions that are based on financial keywords. Note also the extensive pres-
ence of user-defined functions (UDFs) that are used for various purposes:

– to clean the data in the individual attributes. For example, cleanDollarAmount
is a function that transforms various heterogeneous string values that rep-
resent dollar amounts into a standardized form. Concretely, strings such as
“$ 87.968 billion (2007)” and “US$ 2.264 trillion” could be transformed into
“$87.96 billion” and “$2.26 trillion”, respectively.

– to extract certain expected strings from an input record or value (e.g., ex-
tractCompanyName from r and extractIndustries from r.industry).

– more generally, to account for the heterogeneity in the input data or struc-
ture. For example, extractIndustries must account for the fact that the input
r.industry could be a string such as “Finance and insurance” or an array such
as [“Banking”, “Financial services”]. The function must uniformly generate
an array of terms identifying the various relevant industries (i.e., [“finance”,
“insurance”] from the first input and [“banking”, “financial services”] from
the second input).

As another example, extractCompanyName has to account for the fact that
the company name can appear under various attributes in the input record r
(e.g., sometime name, and sometime companyName). Furthermore, the value
itself must be normalized (e.g., “Goldman Sachs” must be transformed to
“Goldman Sachs”).

Note that the extracted and normalized industry terms and company
name are used both in the predicate in the where clause that identifies a
financial company and in the output of the rule.

In Figure 3, we show another example of an extraction rule from DBPedia, to
produce records for the key people that are associated with the financial compa-
nies. As before, the rule makes use of UDFs to restrict to financial companies. An
additional UDF extractNameTitles is used to convert an array of strings into a set
of structured records with explicit name and titles fields. For example, the array
of uninterpreted strings that is the value of the keyPeople field in the “Goldman
Sachs” record in Figure 1 is converted into a set of three records:

{ name: “Lloyd Blankfein”, titles: [“Chairman”, “CEO”] }
{ name: “Gary Cohn”, titles: [“President”, “CEO”] }
{ name: “David Viniar”, titles: [“Executive VP”, “CFO”] }

Note that the above UDF must employ a name recognizer as well as a title
recognizer. Also, it must take into account the sequence in which the names and
the titles appear in the input string. In particular, the function must detect that
the titles of a person follow the actual person name, and also it must be able to
handle the absence of title information (e.g., two consecutive names).

High-Level Rules for Integration and Analysis of Data: New Challenges 43

���������	
	

���
�	�� ��������	

��� �������������	
	�����������������
������������	
��������	
	������� ����������
���	
������������
	�����������������	
��!���������	

���
�	�� �������������

"#��� ��������	
���������	$%��!&���������&��'�������(�	��

����
�	�� ��������������	���������

��������	
��	$���!&���!��)&���������&�������&���������(��

������ *������+����,	�������		

������,	���������	

�������+����,	���������	

�)�,	�����	

���)���#�,	����			

-																					

Fig. 3. Extraction rule for key people

2.2 Challenges in Data Extraction

In general, extraction rules can be fairly complex and the development time can
be extensive. On the one hand, they can be seen as a form of mapping rules that
require many UDFs. On the other hand, however, they differ from traditional
schema mappings in that the source schema, here, is very loose or non-existent.
This makes it harder to benefit from schema mapping tools [14], which assume
that the source schema and the target schema are both manageable and matched
within a user interface, which is then used to drive the generation of the mapping
rules. Generating a meaningful schema for DBpedia, even for a small portion of
it, would mean generating a large number of union or choice types to account for
the variation in the structure (even for the same type of entity). The ability to
load, use and manage such schema within a mapping tool is a research challenge
in itself.

A somewhat different research question is the following: Can we generate or
learn extraction rules directly from the data and/or from examples? The start-
ing points for such generation would be: the input source data (e.g., DBpedia),
an existing library of UDFs (for normalization, cleansing, etc.), and a set of
representative examples of the intended output data. Existing work on query
discovery based on data instances [18,27] or on schema mapping design and re-
finement based on examples [1,21] may provide some foundations towards solving
this problem. However, most of the existing work on query or mapping discov-
ery has been restricted to the case of fixed, strictly relational, schemas; it is not
clear to what extent their methods or ideas generalize to a highly heterogeneous
environment.

The Lixto [20] system, aimed at extracting data from heterogeneous web doc-
uments, takes a different approach where a visual tool can be used to specify
the various patterns that navigate a tree-like structure and select the relevant

44 B. Alexe et al.

subsets of nodes. Although it uses example documents as a starting point, this
framework is closer in spirit to the paradigm of visual query builders. One down-
side of Lixto is that, in a highly heterogeneous environment (like DBpedia), a
user may end up having to specify a large number of navigation and selection
patterns to account for all the variations in the structure (or instance values) of
the objects to be extracted. Being able to further automate the process and to
reduce the amount of user interaction is left as an open question.

Coming back to data examples, a related and possibly simpler research ques-
tion than that of generating the extraction rules is the following: Given the
input source data, and a set of representative examples of the output data, is
there a procedure that directly extracts all output records that are similar to the
given examples? In other words, instead of generating rules to extract data, one
could employ a procedure that performs the extraction starting from the given
examples. In more concrete terms, a developer manually extracts records for,
say, “Bank of America”, “Goldman Sachs”, “American Express” and “Visa”,
and then asks the procedure to extract all other “similar” such records from the
input. Of course, defining what similar means is one of the challenges here.

3 Entity Resolution

To illustrate the problem of entity resolution, assume now that another extrac-
tion process uses SEC (rather than DBpedia) as a data source and extracts facts
about key executives of public companies. The relation SecPerson, shown below,
associates with each person a set of employment records that span, possibly,
multiple companies over many years.

SecPerson (name, cik, employment: (company, position, date), ...)

Note that the relation is nested in that the employment attribute is itself a
relation (i.e., a set of records with attributes for company, position and date). In
general, the support for a nested data model is a pre-requisite for any system or
language that aims at integrating richly structured entities from heterogeneous
data sources.

Specific to SEC data, each person is associated with a unique key (cik) that
is globally identifies a person across multiple SEC filings. In contrast, such key
does not always exist for DBpedia. Hence, before we can merge the information
about people extracted from the two data sources (SEC and DBpedia), we need
to be able to link or relate corresponding records in the two data sources that
refer to the same person. This problem is widely known as entity resolution. Let
us assume that we add a record id field (rid) to each KeyPeople record. Then,
in an abstract sense, the problem of entity resolution becomes one of creating
links of the form (rid, cik). Note that we use cik on the right side, since we know
that cik is a key that identifies a person entity in SecPerson. However, on the left
side, we use the entire record id, since we do not have a key of a person there.
Essentially, we need to link multiple records, in general, in KeyPeople to exactly
one person entity in SecPerson, by exploiting information such as name and also

High-Level Rules for Integration and Analysis of Data: New Challenges 45

Structured facts extracted from DBpedia

Structured facts extracted from SEC

Link
rid
cik

SecPerson (
name
cik
employment:

(company
position
date)

…
)

KeyPeople (
person_name
titles
company_name
…
rid

)

Result of entity resolution

Fig. 4. Entity resolution diagram

other contextual information such as employment. Figure 4 depicts schematically
the concrete entity resolution scenario that we are considering.

3.1 Declarative Constraints for Entity Resolution

We now illustrate the logic that is needed to express the above entity resolution
problem. We advocate a declarative formalism where one specifies the properties
or constraints that the outcome of entity resolution (i.e., the link table) must
satisfy, without having to specify a concrete procedure or implementation for
computing this outcome. It will be the role of the underlying system to materi-
alize a good solution (i.e., a set of links) that satisfies the specified constraints
in the best possible way.

For our entity resolution example, we show in Figure 5 a set of declarative
constraints that can be used to specify the desired properties of the link table.
We believe that such constraints (and their extensions) should form the basic
ingredients of any language that attempts to specify entity resolution at a high-
level.3 We explain the constraints first and then discuss the issues involved in
building a language and system that implements such specification.

First, we have provenance or identification constraints that specify the at-
tributes or combinations of attributes that identify the source objects to be

3 However, the syntax of the actual language does not have to have follow the logical
notation we use here. Furthermore, some of these constraints may be implicit in the
semantics of the language.

46 B. Alexe et al.

Link [rid] � KeyPeople [rid]

Link [cik] � SecPerson [cik]

Link : rid � cik

(m) every Link
satisfies

KeyPeople.person_name = SecPerson.name

or

(KeyPeople. person_name ����name SecPerson.name
and
KeyPeople.company_name in SecPerson.employment [company]

)

Fig. 5. Declarative constraints for entity resolution

linked. In this example, the two inclusion dependencies from Link to the sources
specify that the projection of Link on rid must be a subset of the projection of
KeyPeople on rid and, similarly, the projection of Link on cik must be a subset
of the projection of SecPerson on cik. Thus, the intention behind Link is to be
a subset of all the pairs of rid and cik values that appear in the two sources. In
general, it is up to the user to define what constitutes the identifier of an object
of interest for entity resolution. The framework we suggest is independent of
what makes the identifier of an object. As a result, we can naturally capture
most types of entity resolution described in the literature, from record linkage
and deduplication [17,23] to reference reconciliation [12] and to more general,
semantic type of linkage among entities (e.g., the relationship between compa-
nies and subsidiaries). To follow some of the terminology in the literature, in our
example, the first type of object that participates in Link can be viewed as an
entity reference (since it refers indirectly to an actual person, via person name
and other non-identifying attributes), while the second type of object can be
viewed as an entity (since it identifies a person in SEC).

The next constraint in the specification is a functional dependency (on the
Link table) to specify that an rid from the first source must be linked to a unique
cik in the second source. Note that, in this example, it is is ok to have multiple
rid’s linked to the same person cik. Thus, by using a functional dependency, we
encode an N:1 type of entity resolution (where multiple objects of interest in
one source must be linked to a single object in another source). For 1:1 type of
entity resolution, we would write a functional dependency in the other direction
as well. For an N:M type of entity resolution, we do not need to specify any
functional dependencies.

The final constraint in this example, probably the most important, is used
to declare a disjunction of all the valid reasons for why two objects can match.
Essentially this constraint specifies that a link can exist only if at least one of
several matching conditions holds. The matching conditions are formulated with

High-Level Rules for Integration and Analysis of Data: New Challenges 47

respect to the source tuples that are related via the link. In the example, we can
have a match because of exact equality of person names, or because of similarity
of person names (via a user-defined similarity predicate) and, moreover, because
the company name in the KeyPeople record appears in the employer set in the
SecPerson record. Note that the second matching condition relaxes the equality
on person names, when compared to the first matching rule, but at the same adds
a strenghtening condition that is based on employment information. Note that
the employment-based condition, although a strengthening, may apply to less
tuples (those that have a non-empty employment set in SecPerson). In practice,
one will have to formulate multiple matching conditions, in order to improve
the recall of entity resolution. Furthermore, each matching condition has to be
strong enough to prevent the generation of accidental links.

Other types of constraints that appear in practice are structural type of con-
straints requiring properties such as transitivity of matching or variations of it.
Such constraints are needed to specify clustering behavior or to specify the link-
ing of two objects in two sources due to another object in a third source that
links to them.

A slight extension to this basic framework of constraints allows us to express
collective entity resolution [5], where the task is to create multiple, inter-related
types of links (rather than to create a single type of link). For example, assume
that we have the following two source relations:

Paper (pid, title, venue, year, ...)
Venue (venue, conferenceOrJournal, sponsor, ...)

In this context, we may want to specify links between papers and links between
venues. Assume that the first type of link is represented as a binary relation
PaperLink(pid1, pid2), while the second type of link is represented as a binary
relation VenueLink(venue1, venue2). Then, the matching rules for one type of link
may depend on the other type of link. For example, we can declare the matching
conditions for VenueLink as follows:

every VenueLink satisfies
... (some similarity condition on venue names) ...

or
... (other condition) ...

or
exists (p1 in Paper, p2 in Paper)
p1.venue = VenueLink.venue1 and p2.venue = VenueLink.venue2 and
PaperLink (p1.pid, p2.pid)

In particular, the last condition says that a possible reason for a venue link is
that there exist two papers that are linked via PaperLink and whose venues are
the two venues related by the link.

Note that in the framework we suggest, we do not force the generation of
links, but rather define them implicitly through a declaration of the possible
matching rules. For example, satisfying the last matching condition in the above

48 B. Alexe et al.

constraint does not mean that a VenueLink tuple will necessarily be created,
since the existence of such tuple may be prevented due to other constraints. In
fact, creating such link may be the wrong choice sometimes (e.g., a conference
version and a journal version of a paper may be linked via PaperLink, but that
does not mean that the conference and the journal represent the same venue).
The disjunction allows us to enumerate, declaratively, all the possible reasons
for why a link may exist without forcing the link generation. It is then the job
of the underlying system to take into account all the constraints to reach a good
set of links, as we discuss in the next section.

Other frameworks aimed at declarative entity resolution exist. Perhaps, the
most comprehensive one is the Dedupalog [2] language which allows the use of
constraints, expressed in a Datalog style of syntax, to drive the identification of
duplicate entities. Several remarks are in order here. First, Dedupalog limits itself
to links that are equivalence relations, thus focusing strictly on deduplication.
In contrast, we require a more flexible framework for links that represent more
general semantic relationships, going beyond the “same-as” type of relationship.
Furthermore, Dedupalog rules are not entirely declarative. Generally speaking,
rules in Dedupalog are a guideline for the implementation, and the intention of a
rule is to populate links based on conditions on the sources or other links. Since
forcing links may create inconsistencies in the result, Dedupalog compensates
by allowing some rules to be soft: for such rules, links are “likely” to be gen-
erated. The system then figures out to what extent to satisfy these rules (e.g.,
by attempting to minimize the overall number of constraint violations). As a
consequence, an important downside is that the result of Dedupalog evaluation
does not satisfy, in a precise first-order logic sense, the Dedupalog rules that
were given as a specification. Furthermore, it may not be easy for a user of the
system to understand the properties of the final result.

In contrast, the matching constraints that we envision have a purely declar-
ative flavor, where we specify all the desired properties on the target links,
without worrying about how to actually generate the links. This achieves a bet-
ter separation between specification and execution. Furthermore, we require all
the declarative constraints to be satisfied, in a precise first-order logic sense, by
any solution that implements the specification. Ultimately, we believe that such
framework forms a better foundation for entity resolution that is transparent
and high-quality while at the same time high-level.

3.2 From Declarative Constraints to Execution: Challenges

There are many foundational and architectural challenges that need to be solved,
in order to achieve a functional framework for declarative entity resolution. The
main research questions here will be to define precisely the language that cap-
tures all of the above types of constraints, to formulate its semantics, and to
investigate the expressive power and computational aspects of the language. We
outline some of the issues here, and leave further details, solutions or algorithms
for future work.

High-Level Rules for Integration and Analysis of Data: New Challenges 49

One of the main problems for declarative entity resolution is the ability to ex-
ecute or compile the declarative constraints that specify the desired properties of
entity resolution into a more procedural plan that implements the specification.
But what do we want this implementation to actually compute? Ultimately, we
need one instance for Link that is a good solution, satisfying all the constraints.
But there may be many such good solutions. This is similar, in some aspects,
to data exchange semantics [15], where we can also have multiple solutions. For
our example in Figure 5, we could have an instance (Solution 1) with one link
satisfying the first disjunct in constraint (m), and another instance (Solution 2)
that is exactly identical but replaces that one link with a new link satisfying both
disjuncts in constraint (m). Intuitively, Solution 2 is a better solution, since it
contains a stronger link (a link for which there is a stronger matching evidence).

While in the previous example, Solution 1 is dominated by Solution 2 and
could be replaced by it, it is easy to come up with “good” instances for Link
that are incomparable. For example, there could be multiple candidate links,
satisfying the same disjuncts of constraint (m), each linking a KeyPeople record
to a different cik. Since all of these links cannot co-exist together due to the
functional dependency rid → cik, each of these links will be in a different good
solution. The presence of incomparable “good” solutions is a more challenging
situation than in data exchange, where universal solutions (i.e., the “good” so-
lutions in data exchange) are all equivalent, and furthermore there is always a
unique core universal solution. Thus, the entity resolution problem is inherently
more ambiguous than the data exchange problem.

One of the more challenging aspects is therefore to design an interactive sytem
for entity resolution that brings the human user in the loop in order to resolve
ambiguity. Conceptually, the interactive system must take the initial specifica-
tion (i.e., the constraints) and then enumerate through multiple good solutions
for Link. In particular, the differences between these solutions must be pinpointed
to the user, which can then decide how to further resolve these differences (for
example, by adding stronger matching clauses to (m)). An essential part of the
problem is being able to compactly represent and efficiently navigate through
the space of all different solutions. This problem of efficient, interactive enumer-
ation of a space of solutions, is similar in spirit to the problem addressed in [9]
in the context of schema integration. There, multiple solutions for the schema
integration problem are defined implicitly via a set of constraints (of a simpler
nature than here), and the question is how to interactively explore and refine the
space of solutions, in order to reach one final integrated schema. While similar in
spirit, the problem of navigating through solutions for entity resolution is likely
more challenging, especially due to the fact that the size of the data, in general,
is much larger than the size of schemas.

4 Mapping and Fusion

We illustrate next how mapping and fusion operations can be used to put all
the extracted facts together into rich entities, by also making use of the result of

50 B. Alexe et al.

Link
rid
cik

SecPerson (
name
cik
employment:

(company
position
date)

…
)

KeyPeople (
person_name
titles
company_name
…

rid
)

Integrated
Entity Type

Person (
name
cik
employment:

(company
positions:

(title
start_date
end_date

)
…

)

Fig. 6. From extracted facts and links to integrated entities

entity resolution. While there is extensive work on schema mapping tools [14],
data exchange semantics [15], and data fusion methods [6], there is not much
work towards developing an actual scripting language that allows developers
to combine all the necessary ingredients (mapping, fusion, aggregation, entity
resolution, schema definition), while still maintaining simplicity and ease of use.
An important aspect behind such desired language is the ability to express non-
trivial ways of fusion and aggregation of data that are often not possible in a
typical schema mapping tool, but are essential for developing industrial-strength
data integration flows.

4.1 An Example of Transformation

To illustrate the issues, consider the (simplified) scenario shown in Figure 6
where the goal is to take the extracted facts (i.e., KeyPeople and SecPerson) as
well as all the links generated so far, and create unified entities that conform
to a target Person type or schema. The desired target entity type contains,
in general, a union of many of the attributes from the sources. However, the
structure is generally richer than in the sources, with various nesting levels to
better aggregate and organize information. Furthermore, it is often the case
that a target attribute represents a non-trivial aggregation over a set of source
values. In this example, the employment history of Person has a two-level nesting
where, for each company, we want a listing of all known positions with the given
company, together with the start/end dates (as best as they can be inferred from
the sources.) Part of the task here is to construct the nested structure, where
we list the unique companies for which a person works, the unique positions the
person held, and also to compute the start/end dates from the input facts.

High-Level Rules for Integration and Analysis of Data: New Challenges 51

Person =
for (s in SecPerson)
return {name: s.name,

cik: s.cik,
employment: for (e in s.employment)

group by comp = normalizeCompanyName (e.company)
return { company: comp,

positions: for (g in Group) // Group is the group of all (company, position, date)
// records having the same normalized company value

group by pos = normalizeTitle (g.position)
return { title : pos,

start_date: minDate (Group),
// Group is now the group of all (company, position, date)
// records having the same normalized company and position

end_date: maxDate (Group)
}

}
}

Fig. 7. Transformation from SecPerson to Person

Computing the start/end date for a position is an example of temporal ag-
gregation. These values that must be aggregated from all the input evidence
(i.e., input dates) for a person working for a given company in a given position.
Concretely, the fact that person X worked for a company C in some position P
may be appear in multiple extracted records (possibly from many documents,
each with a different date). This is especially true for SEC, which is a temporal
archive that keeps track of past history, and where information must be peri-
odically filed by the companies and their executives (even if nothing changed).
Thus, in order to infer the start date for position P , we must look globally across
all the sources and all the extracted records that mention person X as working
for company C in position P and return the earliest known date.

Figure 7 shows an example of transformation that achieves the intended result
for Person when considering the SecPerson in isolation (thus, ignoring KeyPeo-
ple and Link). The transformation is written in an pseudo-query language that
abstracts features from query languages such as XQuery and Jaql [4]. The trans-
formation consists of multiple levels of for statements that construct the structure
of the target. To start with, the top-level part populates the name and the cik
fields in Person. The rest of the transformation then makes essential use of the
group by operation to put the target data into the desired form and also to per-
form aggregation. First, the employment records under SecPerson are grouped by
the company name. Notably, the company name must be normalized to account
for name variations for the same company. As a result of normalization and
grouping, we obtain a set of unique company entries, each with an associated
group containing all the records that share the same normalized company name.
The group itself can then be further accessed by using the reserved word Group.
A second level of grouping, this time by normalized position, produces the list-
ing of unique positions. Finally, start date can now be computed by taking the
minDate function over the current group of records. A symmetric computation
takes place for maxDate.

52 B. Alexe et al.

4.2 Mapping and Fusion: Making It Easier

Even though it achieves the intended result, given SecPerson alone, the transfor-
mation in Figure 7 is neither declarative nor easy to write. The programmer has
to be quite familiar with the semantics of group by and has to understand the
implicit collections over which aggregation needs to be performed. Furthermore,
things become a lot more complex when additional data (e.g., KeyPeople from
DBpedia, or other extracted records from other types of filings in SEC) need also
to be fused into the Person entity. In such case, the above transformation has to
be either rewritten to account for the new sources (and links), or its result must
be integrated with the result of similar transformations from the other sources.
However, the integration itself is low-level and complex, since the target com-
ponents in Person, at various levels in the hierarchy, must be merged with the
new data, and the values for start/end dates must be re-aggregated to account
for the new data.

So, how do we make all this easier? The solution that has been tried in the past
is to use graphical schema mapping tools [14] to help generate or re-generate the
transformations. However, the process becomes clumsy when the transformations
are complex and require a lot of aggregation and, ultimately, customization that
is beyond the realm of the tool. Hence, we still need a language-level solution, but
one that is more declarative and easier to use than writing raw transformations
such as the one above.

The alternative that we are investigating is a rule language that allows for
decorrelation of complex transformations via a mechanism that is similar to
Skolem functions. As an example, the earlier transformation in Figure 7 can be
rewritten as a simple rule where the value of employment is given by an explicit
function call Employment(s.cik) that replaces the entire query block in the box.
In other words, we would write:

Person = for (s in SecPerson)
return {

name: s.name,
cik: s.cik,
employment: Employment (s.cik)

}

Of course, explicit rules have to be written to define the value of the Employment
function. The advantage is that the rule to populate the top-level part of Person
does not need to know about how Employment is defined. The actual definition
of Employment as a function parameterized by cik is delegated to separate rules
that use possibly different data sources and that could rely themselves on other
similar Skolem functions. Hence, we achieve a separation of concerns that can
make the entire specification process more scalable and easier to evolve.

Another advantage of the decorrelation approach is that the Skolem functions
themselves become first-class objects in the language, and can be used to express
important parts of the integration logic that otherwise would be implicit. For
example, the aggregation start date: minDate(Group) can be rewritten as:

High-Level Rules for Integration and Analysis of Data: New Challenges 53

start date: minDate (EmploymentProvenance (cik, comp, pos))

where EmploymentProvenance is now an explicit function that associates a triplet
(cik, company, position) to the set of all source records that mention the fact
that the person given by cik worked for company in the given position. As before,
separate rules have to be written out to explicitly define EmploymentProvenance.
But, again, the rule to aggregate and compute start date need not know about
how the provenance function is defined. Hence, we achieve the same separation
of concerns.

Fleshing out the concrete details for this language, such as the type system,
the allowed constructs, the efficient support for the functions that decorrelate the
rules, as well as the integration with declarative entity resolution and extraction
operations, falls outside the scope of this paper. Here, we outlined the issues
as well as some of the motivation for why there is, still, a need for a good
programmable language to address mapping and fusion in the context of the
larger data integration.

5 Further Related Work

We have already discussed some of the relevant and recent work in the areas of
entity resolution, schema mapping, data exchange and data fusion. We mention
now a few other related research papers and systems. Ajax [19] is an early data
cleaning framework. However, it was focused on matching and clustering and
less on mapping and fusion. In particular, Ajax had no high-level constructs to
support complex fusion and temporal aggregation, and had no notion of logical
entities. On the other end of the spectrum, iFuice [26] combines mapping with
fusion of data. However, iFuice includes no entity resolution (it assumes instead
that the links are given), and fusion is focused narrowly on individual atomic
attributes rather than applying on richer entity types.

More recently, the work on the interaction between matching dependencies
and data repairs [16] combines record matching and data repairing for better data
quality. As part of the high-level specification, matching dependencies (MDs)
are used to identify or equate components of tuples in different data sets, while
conditional functional dependencies (CFDs) are used to specify certain equalities
of values within a given relation. In order to achieve a clean data set, cleaning
rules implement the collection of MDs and CFDs by following certain pre-defined
strategies (e.g., by using master data) to actually force the correction of the data.
However, like in Dedupalog, matching dependencies only look at equivalence
(same-as) type of linkage. Moreover, the notion of an entity (or entity link) is only
implicit with matching dependencies. Furthermore, there is no notion of mapping
or transformation from one entity type to another. In contrast, we are interested
in a framework where entities have rich types and their properties (including the
links) are first-class citizens. Additionally, we emphasize the programmability
and customization aspect behind the cleansing, merging, transformation and
aggregation of complex entities from the input data and the links.

54 B. Alexe et al.

6 Concluding Remarks

In summary, we outlined a vision of a high-level framework that covers multiple
important steps in data integration. We exemplified rules and UDFs for extrac-
tion from semi-structured, heterogeneous data, which is complementary to text
extraction. We outlined the need for and the challenges involved in learning or
generating the extraction rules from examples. We illustrated the use of con-
straints as a foundation for declarative entity resolution, and outlined the chal-
lenges involved in defining the semantics and the compilation methodology for
the declarative constraints. We further illustrated the types of rules for mapping
and fusion that are needed to generate clean, unified entities.

It is important to emphasize that it is the combination of all these ingredi-
ents together (extraction, entity resolution, mapping, fusion) that gives enough
expressive power to tackle complex, end-to-end data integration tasks. It is of-
ten the case that different types of rules must be interleaved together as part
of the integration flow. Therefore, all the outlined components must be, ideally,
part of a single framework that can be easily used by domain experts to specify
and deploy sophisticated data integration flows for various scenarios. A further
important factor that permeates all aspects of such framework is the need for
tools that will assist users in various phases such as the data exploration or the
development and refinement of the actual rules for entity resolution, for fusion,
or for further analysis of the data.

References

1. Alexe, B., ten Cate, B., Kolaitis, P.G., Tan, W.C.: Designing and Refining Schema
Mappings via Data Examples. In: SIGMOD, pp. 133–144 (2011)

2. Arasu, A., Ré, C., Suciu, D.: Large-Scale Deduplication with Constraints Using
Dedupalog. In: ICDE, pp. 952–963 (2009)

3. Balakrishnan, S., Chu, V., Hernández, M.A., Ho, H., Krishnamurthy, R., Liu,
S., Pieper, J., Pierce, J.S., Popa, L., Robson, C., Shi, L., Stanoi, I.R., Ting,
E.L., Vaithyanathan, S., Yang, H.: Midas: Integrating Public Financial Data. In:
SIGMOD, pp. 1187–1190 (2010)

4. Beyer, K., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh, M., Kanne, C.C.,
Ozcan, F., Shekita, E.: Jaql: A Scripting Language for Large Scale Semistructured
Data Analysis. In: VLDB (2011)

5. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data.
TKDD 1(1) (2007)

6. Bleiholder, J., Naumann, F.: Data Fusion. ACM Comput. Surv. 41(1) (2008)
7. Burdick, D., Hernández, M.A., Ho, H., Koutrika, G., Krishnamurthy, R., Popa, L.,

Stanoi, I.R., Vaithyanathan, S., Das, S.: Extracting, Linking and Integrating Data
from Public Sources: A Financial Case Study. IEEE Data Eng. Bull. 34(3), 60–67
(2011)

8. Chiticariu, L., Krishnamurthy, R., Li, Y., Raghavan, S., Reiss, F., Vaithyanathan.,
S.: SystemT: An Algebraic Approach to Declarative Information Extraction. In:
ACL, pp. 128–137 (2010)

9. Chiticariu, L., Kolaitis, P.G., Popa, L.: Interactive Generation of Integrated
Schemas. In: SIGMOD Conference, pp. 833–846 (2008)

High-Level Rules for Integration and Analysis of Data: New Challenges 55

10. Dalvi, N.N., Kumar, R., Pang, B., Ramakrishnan, R., Tomkins, A., Bohannon, P.,
Keerthi, S., Merugu, S.: A Web of Concepts. In: PODS, pp. 1–12 (2009)

11. Doan, A., Naughton, J.F., Ramakrishnan, R., Baid, A., Chai, X., Chen, F., Chen,
T., Chu, E., DeRose, P., Gao, B.J., Gokhale, C., Huang, J., Shen, W., Vuong,
B.Q.: Information Extraction Challenges in Managing Unstructured Data. SIG-
MOD Record 37(4), 14–20 (2008)

12. Dong, X., Halevy, A.Y., Madhavan, J.: Reference Reconciliation in Complex Infor-
mation Spaces. In: SIGMOD Conference, pp. 85–96 (2005)

13. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate Record Detection: A
Survey. IEEE TKDE 19(1), 1–16 (2007)

14. Fagin, R., Haas, L.M., Hernández, M., Miller, R.J., Popa, L., Velegrakis, Y.: Clio:
Schema Mapping Creation and Data Exchange. In: Borgida, A.T., Chaudhri, V.K.,
Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications.
LNCS, vol. 5600, pp. 198–236. Springer, Heidelberg (2009)

15. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics and
Query Answering. TCS 336(1), 89–124 (2005)

16. Fan, W., Li, J., Ma, S., Tang, N., Yu, W.: Interaction between Record Matching
and Data Repairing. In: SIGMOD Conference, pp. 469–480 (2011)

17. Fellegi, I.P., Sunter, A.B.: A Theory for Record Linkage. J. Am. Statistical As-
soc. 64(328), 1183–1210 (1969)

18. Fletcher, G.H.L., Gyssens, M., Paredaens, J., Gucht, D.V.: On the Expres-
sive Power of the Relational Algebra on Finite Sets of Relation Pairs. IEEE
TKDE 21(6), 939–942 (2009)

19. Galhardas, H., Florescu, D., Shasha, D., Simon, E., Saita, C.A.: Declarative Data
Cleaning: Language, Model, and Algorithms. In: VLDB, pp. 371–380 (2001)

20. Gottlob, G., Koch, C., Baumgartner, R., Herzog, M., Flesca, S.: The Lixto Data
Extraction Project - Back and Forth between Theory and Practice. In: PODS, pp.
1–12 (2004)

21. Gottlob, G., Senellart, P.: Schema Mapping Discovery from Data Instances. Journal
of the Association for Computing Machinery (JACM) 57(2) (2010)

22. Hernández, M.A., Koutrika, G., Krishnamurthy, R., Popa, L., Wisnesky, R.: HIL:
A High-Level Scripting Language for Entity Integration. In: EDBT, pp. 549–560
(2013)

23. Hernández, M.A., Stolfo, S.J.: The Merge/Purge Problem for Large Databases. In:
SIGMOD Conference, pp. 127–138 (1995)

24. Ohori, A.: A Polymorphic Record Calculus and Its Compilation. ACM Trans. Pro-
gram. Lang. Syst. 17(6), 844–895 (1995)

25. Ohori, A., Buneman, P.: Type Inference in a Database Programming Language.
In: LISP and Functional Programming, pp. 174–183 (1988)

26. Rahm, E., Thor, A., Aumueller, D., Do, H.H., Golovin, N., Kirsten, T.: iFuice
- Information Fusion utilizing Instance Correspondences and Peer Mappings. In:
WebDB, pp. 7–12 (2005)

27. Sarma, A.D., Parameswaran, A.G., Garcia-Molina, H., Widom, J.: Synthesizing
View Definitions from Data. In: ICDT, pp. 89–103 (2010)

28. Wand, M.: Complete Type Inference for Simple Objects. In: LICS, pp. 37–44 (1987)

A New Framework for Designing Schema Mappings

Bogdan Alexe1 and Wang-Chiew Tan2

1 IBM Research - Almaden, San Jose, CA
balexe@us.ibm.com

2 University of California, Santa Cruz, CA
tan@cs.ucsc.edu

Abstract. One of the fundamental tasks in information integration is to specify
the relationships, called schema mappings, between database schemas. Schema
mappings specify how data structured under a source schema is to be transformed
into data structured under a target schema. The design of schema mappings is
usually a non-trivial and time-intensive process and the task of designing schema
mappings is exacerbated by the fact that schemas that occur in real life tend to be
large and heterogeneous. Traditional approaches for designing schema mappings
are either manual or performed through a user interface from which a schema
mapping is interpreted from correspondences between attributes of the source
and target schemas. These correspondences are either specified by the user or
automatically derived by applying schema matching on the two schemas.

In this paper, we examine an alternative approach that allows a user to follow
the “divide-design-merge” paradigm for specifying a schema mapping. The user
can choose to independently design schema mappings for smaller portions of the
source and target schema. Afterwards, the user can interact with the system to
refine and further design schema mappings through the use of data examples.
Finally, in the merge phase, a global schema mapping is generated through the
correlation of the individual schema mappings.

Keywords: Schema mappings, data examples, merge.

1 Introduction

The need to combine information that resides in heterogeneous, and typically inde-
pendently created data sources often arises in enterprises. In today’s information age,
where vast amounts of (un)structured data is available on the Web, and where many
data sources collected or curated by different organizations are made publicly available
(e.g., [20, 34]), the demand for technology that can effectively combine disparate data
sources goes well beyond enterprises. The process of combining different data sources
into one is called information integration, which is a broad term that encompasses data
integration and data exchange. The goal of data integration is to create a single vir-
tual view of the underlying data sources and provide seamless and transparent access to
these data sources through the virtual view. On the other hand, the goal of data exchange
is to create a materialized view of the underlying data sources.

Systems such as Multibase [32] and EXPRESS [31] have pioneered the study of data
integration and data exchange respectively and considerable research effort has been

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 56–88, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A New Framework for Designing Schema Mappings 57

Fig. 1. Screenshot of a mapping design tool (from [12])

put into addressing information integration challenges since Multibase and EXPRESS.
In practice, information integration is still a difficult and time-consuming process that
incurs high costs in terms of money and human effort and recent reports provide strong
evidence of this. For example, [12] stated that information integration is frequently
“the biggest and most expensive challenge that information-technology shops face” and
“information integration is thought to consume about 40% of their budget”.

Even though data integration and data exchange differ in their goals, they share a
common abstraction, called schema mappings, which describe the relationship between
database schemas. In research prototypes such as Clio [16] and HePToX [15], the term
schema mappings is used to refer to the high-level declarative specfication that spec-
ifies the semantics of translating data from the source schema to the target schema.
However, commercial data transformation systems such as Altova Mapforce [25], Sty-
lus Studio [33] and Microsoft BizTalk Mapper [13] often refer to schema mappings or
data mappings as the executable script (e.g., XQuery or SQL) that can be used to trans-
late data from the source schema to the target schema. Regardless of terminology, most
of these tools work in two steps. First, a visual interface is used to solicit all known
attribute correspondences between elements of the two schemas from the user. Such
correspondences are usually depicted as arrows between the attributes of the source and
target schemas. For illustration, Figure 1 presents a screenshot of a mapping design tool
with a number of correspondences between attributes of a source schema on the left and
a target schema on the right. Once the correspondences are established, systems such as
Altova MapForce, Stylus Studio, and Microsoft Biztalk Mapper, interpret them directly

58 B. Alexe and W.-C. Tan

Fig. 2. Generic architecture of schema mapping design systems

into an executable script (e.g., XQuery or SQL query), which can be executed on an
instance of the source schema to obtain an instance of the target schema. Other systems
such as Clio or HePToX, interpret the correpondences into an internal representation
(which we refer to as schema mappings in this article), and this representation can be
compiled over different runtimes. Often, the user will need to refine the schema map-
ping (whether as an internal representation or an executable script) that is derived from
such tools in order to achieve the desired transformation semantics.

The previously outlined two-step schema mapping design framework is illustrated in
Figure 2. While this framework provides a method for end users to visually specify a
schema mapping, it lacks support for reusability and for modularity in design; A schema
mapping between two schemas must always be designed all-at-once. In particular, this
methodology does not allow the design of a schema mapping to be divided up and
designed modularly in different steps with intermediate schemas. Furthermore, the user
must be familiar with the language of schema mappings in order to refine them. For the
rest of this article, we will describe a new framework for designing schema mappings
that will overcome some of the limitations of existing schema mapping design tools.
Details of this framework can be found in the dissertation of Bogdan Alexe [8].

2 Our Divide-Design-Merge Framework

Our framework for designing schema mappings between two schemas follows three
main steps: Divide, Design, and Merge, as outlined in Figure 3. This new framework
overcomes some of the aforementioned limitations of the existing mapping design
paradigm.

Since smaller mappings tend to be easier to create and understand, our framework
allows a schema mapping between large source and target schemas to be divided up

A New Framework for Designing Schema Mappings 59

Divide mapping task in smaller components

Use traditional
approach

(start with attribute
correspondences)

Use data examples
(EIRENE)

DIVIDE

Design
Independent
Components

Refine aspects of generated mappings (MUSE)

Correlate independent mappings into global
specification (MapMerge)

MERGE

Fig. 3. Divide-Design-Merge Workflow

and designed through independent components. Furthermore, the design of each such
schema mapping can be broken up into multiple smaller intermediate steps which in-
volve intermediate schemas. Each of the schema mappings can either be designed with
existing approaches (i.e., via attribute correspondences) or via our new approach (i.e.,
Eirene component system) that requires the user to specify data examples, which are
pairs of source instance and expected target instance. After this, various components
of a schema mapping can be refined through our Muse component system. Finally,
in the merge phase, a global schema mapping is generated through the correlation of
the individual mapping components (i.e., MapMerge component system). In this new
framework, schema mappings that have been previously designed for some of the com-
ponents can be saved, reused, and customized further at a later time.

We note that in the divide phase, the process of dividing or breaking up schema
mappings into smaller “chunks” that are more amenable to design and understanding
is entirely driven by the user. It will be interesting work to further design a component
that will suggest strategies for such divisions.

2.1 An Example

As mentioned before, the user may choose to divide the design task into smaller com-
ponents that can be designed independently. For instance, in Figure 4, the design of a
schema mapping from schema S1 to schema S4 can be divided into a sequence of steps,
involving the intermediate schemas S2 and S3. Existing schema mapping design tools
would only allow designing a monolithic end-to-end schema mapping from S1 to S4.
In our framework, the user can design smaller mappings independently and merge them
together at the end. For instance, the user can start by designing the mapping, denoted
by t1, from Group in S1 to Dept in S2, then the mapping t2 relating a join of Works and

60 B. Alexe and W.-C. Tan

Proj
pname
budget
did

Dept
did
dname

Emp
ename
addr
did

Group
gno
gname

Works
ename
addr
pname
gno

t1

t3

t2

CSDept
did
dname

CompSci
did
dname
Staff

ename
address

Projects
pname
budget

Schema S1 Schema S2 Schema S4Schema S3

mCS

m

m1

m2

Fig. 4. Designing a schema mapping from the first schema S1 to the last schema S4

Group to Emp and Dept, and so on. For this toy example, it is conceivable that the user
would successfully design a mapping directly from S1 to S4 (or even S1 to S2) with rel-
atively little effort. However, in real-life scenarios, it is typically difficult to understand
the entire schemas and to grasp the complexities of the desired global transformation
all at once.

Eirene. The design of each component mapping can be driven by data examples. A data
example is a pair of input and output instances. Intuitively, a data example specifies the
expected output for a given input and represents a partial specification of the desired
semantics. This is beneficial, since users may be familiar with their data and the use of
data examples is akin to specifying test cases during program debugging to ensure that
programs behave as intended.

The Eirene component of our system is a schema mapping design component that
takes as input a set of data examples provided by the user. In turn, Eirene outputs a
schema mapping that “fits” the set of data examples, if such schema mapping exists.
Referring back to Figure 4, the design of t2 can be achieved through Eirene by providing
a data example that reflects the transformation semantics that the user expects from the
mapping. In this case, the source instance of the data example may consist of a Group
tuple and a Works tuple that agree on their gno attributes, while the target instance may
consist of an Emp tuple and a Dept tuple that have the same did value. Furthermore, the
tuples may be specified in such a way that the gname and dname values are the same
across the Group and Dept tuple. In addition, the ename and addr of the Works tuple
are identical, respectively, to the ename and addr of the Emp tuple in the target. This
reflects that the desired transformation semantics is to migrate gname, ename, addr
to the corresponding “locations” in the target. For this data example, the system will
determine that a fitting schema mapping exists, and it will generate such mapping that
will produce the desired target instance on the corresponding source instance of each
data example.

Eirene can also be used to refine a schema mapping that already exists. To do this,
Eirene will first generate a set of canonical data examples for the existing mapping.
The user can then “tweak” the canonical data examples, and Eirene will generate a new

A New Framework for Designing Schema Mappings 61

mapping that fits, if possible. Alternatively, a schema mapping can also be designed
using the traditional methodology via attribute correspondences, imported from pre-
vious design work, and augmented with new attribute correspondences and additional
customizations.

Muse. The Muse component of our system assists the user with refining the existing
schema mappings. The focus of Muse is to use data examples to help the user refine
two important mapping features: grouping semantics and disambiguation. The basic
idea behind Muse is to present the user with different data examples, where each data
example represents a specific (grouping/disambiguation) semantics of the underlying
specification. The choices made by the user will allow the Muse system to automatically
refine the underlying specification.

Referring to Figure 4 again, Muse can assist the user with specifying how the nested
Staff set of tuples should be grouped under the CompSci root of schema S4. The se-
mantics of grouping Staff is determined by its set identifier, which consists of a Skolem
function parameterized by some of the attributes in schemas S2 and S3. By presenting
differentiating examples that can be used to distinguish among alternative grouping se-
mantics, Muse helps the user determine which attributes should be used to parameterize
the nested set identifier of Staff.

In addition, Muse can also help the user understand the right interpretation of a vi-
sual specification. This part of Muse works with traditional schema mapping design
systems, where the user specifies a set of attribute correspondences between a source
and a target schema. (A visual specification consists of the source and target schema,
and the attribute correspondences.) A visual specification is ambiguous if more than
one schema mapping can be interpreted from the visual specification1. In case a visual
specification is ambiguous, our Muse system will detect the ambiguity and present the
user with a carefully constructed “data example” that essentially represents the transfor-
mation semantics of all alternative schema mappings. The target instance of the “data
example” contains choices of data values on certain attributes of tuples. Each selection
of a value from a choice by the user will prune away some schema mappings among
the set of all possible schema mappings that can be interpreted from the visual speci-
fication. At the end, when all choices have been made, only one schema mapping will
remain.

MapMerge. When all component schema mappings are designed, the MapMerge
schema mapping operator [6] can be invoked to automatically generate a meaningful
overall mapping between each pair of source and target schemas. MapMerge takes as
input a set of schema mappings between the same source and target schema, and it re-
turns a schema mapping that correlates the specifications given by the individual map-
ping components. As we shall show, this orchestration phase is necessary since simply
considering the union of input mappings is inadequate in general; in the context of data
exchange, simply taking the union of input schema mappings may result in the loss

1 In systems such as Clio, a default schema mapping is generated when a visual specification
is ambiguous. The user can choose among alternative mappings by manually inspecting the
alternatives and picking one of the alternatives.

62 B. Alexe and W.-C. Tan

of certain data associations and also lead to a more “redundant” target instance. These
deficiencies can be easily avoided if the relationships across input mappings are care-
fully considered in the context of source and target schemas. A schema mapping that
results from a MapMerge of input mappings is experimentally shown to overcome these
deficiencies when compared with a simple union of the input mappings [6].

Finally, the end-to-end mapping for flows of mappings, such as from the first schema
S1 to the last schemaS4 in Figure 4 can be obtained using a new algorithm that combines
MapMerge with mapping composition [18] to correlate flows of schema mappings.

3 Background and Related Work

We define the basic concepts and terminology that will be used, as well as discuss prior
approaches to schema mapping design.

Schemas and Instances. A relational schemaR is a finite sequence (P1, . . . , Pk) of re-
lation symbols, each of a fixed arity. An instanceK overR is a sequence (PK

1 , . . . , PK
k),

where each PK
i is a relation of the same arity as Pi. We shall often write Pi to denote

both the relation symbol and the relation PK
i that interprets it. Here, we assume that all

values occurring in relations belong to some fixed infinite set dom of values. A fact (or
tuple) of an instance K over a schema R is an expression P (a1, . . . , am) such that P
is a relation symbol of R and (a1, . . . , am) ∈ PK . We denote by adom(K) the active
domain of an instanceK , that is to say, the set of all values from dom occurring in facts
of K . A relational schema can be associated with a set of key/foreign key constraints.

Referring back to Figure 4, schema S1 consists of two relation symbols Group and
Works. The key/foreign key constraint associated with S1, denoted in the figure via the
dashed line, requires that in each instance of S1, for each Works tuple, there must exist
a unique Group tuple such that they agree on the value of the gno attribute. An example
of a possible valid instance of S1 is shown below, where John works in group number
123 and the name of group 123 is CS.

{Group(123,CS),Works(John,NY,Web, 123)}
In Muse and MapMerge, we use an extension of the relational model that allows

for the representation of nested data: the nested relational (NR) model [19, 28]. The
NR model generalizes the relational model where tuples and relations are modeled as
records and respectively, sets of records. In the NR model however, an element, such
as a set of records, may be nested inside another element, such as a record, to form
hierarchies. In the following we will use the terms record and tuple, as well as set and
relation, interchangeably. To simplify our discussions, we assume that XML schemas
are modeled using a single schema root of record type whose elements are all of set
type. We also assume strict alternation of set and record types. As an example, con-
sider schema S4 in Figure 4. This is a nested schema, where each root CompSci record
contains nested Staff and Projects sets.

In a nested relational schema, nested sets have associated identifiers called SetIDs,
also referred to as grouping functions. They are Skolem functions. In an instance of a
nested relational schema, the parameters of each Skolem function serving as a grouping
function are instantiated with actual data values, hence providing unique set identifiers

A New Framework for Designing Schema Mappings 63

for each nested set in the instance. By convention, we use SKN to denote the SetID
name of a nested set N in a schema. For example, the SetID name of the nested set
Projects in the schema S4 mentioned above is SKProjects (or SKProjs, or simply SK
when there is no ambiguity). We sometimes refer to a nested set N simply as SKN . We
assume that every nested set in a schema has a different SetID name.

Schema Mappings. A schema mapping or mapping is a triple (S,T, Σ) where S is a
source schema, T is a target schema that is disjoint from S, andΣ is a set of constraints.
The largest class of constraints we consider is a subset of second-order tuple generating
dependencies (SO tgds) [18]. One way to express this type of constraints is through the
following logical formalism expressed in a query-like notation:

for x in S̄ satisfying B1(x) exists y in T̄ where B2(y) and C(x, y)

Here, the symbol S̄ represents a vector of relation symbols (possibly repeated), while
x represents the tuple variables that are bound, correspondingly, to these relations. A
similar notation applies to the exists clause for the vector T̄ of target relation symbols
and y of tuple variables that are bound to these relations. The conditions B1(x) and
B2(y) are conjunctions of equalities over the source and, respectively, target variables.
Note that these conditions may equate variables with constants, allowing the definition
of user-defined filters. The condition C(x,y) is a conjunction of equalities that equate
target expressions (e.g., y.A) with either source expressions (e.g., x.B) or Skolem terms
of the form F [x1, . . . , xi], where F is a function symbol and x1, . . . , xi are source
variables or other Skolem terms. Skolem terms are used to relate target expressions
across different SO tgds.

Both Muse and MapMerge components of our system use the language of schema
mappings specified by SO tgds over nested relational source and target schemas, while
the Eirene component focuses on SO tgds without Skolem terms over relational source
and target schemas. A constraint of this type may also be called, simply, a tuple-
generating dependency or tgd [17]. In some situations we will refer to a tgd by the
equivalent term GLAV (Global-Local-As-View) constraint. GLAV constraints have been
extensively studied in the context of data exchange and data integration [21, 22]. In
cases where S̄ and T̄ refer to source and, respectively, target relation symbols, then the
tgd is referred to as source-to-target tgds or s-t tgds in short. They are also used in such
systems as Clio [16] and HePToX [15].

Two examples of SO tgds that relate schemas S1 and S2 in Figure 4 are given below:

(t1):
for g in Group
exists d in Dept
where d.dname=g.gname

(t2):
for w in Works, g in Group
satisfying w.gno = g.gno and w.addr=“NY”
exists e in Emp
where e.ename=w.ename and

e.addr=w.addr and e.did=F [g]

The constraint t1 is a tgd that states that for every record g in the relation Group,
there must be a record d in Dept where dname of d is the same as gname of g. Here,

64 B. Alexe and W.-C. Tan

g and d are record variables that range over records in Group and, respectively, Dept.
The second assertion t2 is an SO tgd that states that for every record g in Group and
every recordw in Works, where their gnos are identical and the addr value of the Works
record is “NY”, there must be a record e in Emp where the conditions in the where
clause are satisfied. Note that “e.did = F[g]” states that the did value of e is dependent
on g through the Skolem function F . Thus, F [g] is a Skolem term.

Note that our SO tgds do not allow equalities between or with Skolem terms in the
satisfying clause. While such equalities may be needed for more general purposes [18],
they do not play a role for data exchange and can be eliminated, as observed in [36].

Solutions. Let M = (S,T, Σ) be a schema mapping. An instance I of S will be called
a source instance, and an instance J of T will be called a target instance.

We say that J is a solution of I w.r.t. M if (I, J) |= Σ, i.e., if (I, J) satisfies every
constraint in Σ. In general, there are many possible solutions for a source instance I
under a schema mapping M = (S,T, Σ).

To illustrate, in line with the previous examples, suppose the source schema consists
of the relation symbol Group, the target schema consists of the relation symbol Dept ,
and the schema mappingM is specified by the constraint t1 given as an example above.
Consider the source instance I = {Group(123,CS),Group(456,EE)} and the target
instances

J1 = {Dept(N1,CS),Dept(N2,EE)}
J2 = {Dept(N1,CS),Dept(456,EE)}
J3 = {Dept(N1,CS)}.

Both J1 and J2 are solutions for I w.r.t. M, but J3 is not. Observe that the solutions
J1 and J2 contain values (namely, N1 and N2) that do not occur in the active domain
of the source instance I . Intuitively, these values can be thought of as labeled nulls.

As we shall describe later, a central concept in both Eirene and Muse is the concept
of a data example. Given a source schema S and a target schema T respectively, a data
example is a pair (I, J) such that I is an instance of S and J is an instance of T.

Data Exchange, Homomorphisms, and Universal Solutions. Data exchange is the
following problem: given a schema mapping M = (S,T, Σ) and a source instance I ,
construct a solution J for I such that (I, J) |= Σ. As we just saw, a source instance
may have more than one solution with respect to a given GLAV schema mapping. We
will be interested in universal solutions, which were identified in [17] as the preferred
solutions for data exchange purposes. Universal solutions are defined in terms of homo-
morphisms, as follows.

Let I1 and I2 be two instances over the same relational schema R. A homomor-
phism h : I1 → I2 is a function from adom(I1) to adom(I2) such that for every fact
P (a1, . . . , am) of I1, we have that P (h(a1), . . . , h(am)) is a fact of I2. We write I1 →
I2 to denote the existence of a homomorphism h : I1 → I2. In our previous example,
we have that J1 → J2 since the function {N1→ N1, CS→ CS, N2→ 456, EE→ EE}
is a homomorphism from J1 to J2. We say that I1 and I2 are homomorphically equiva-
lent if there is a homomorphism from I1 to I2 and a homomorphism from I2 to I1.

A New Framework for Designing Schema Mappings 65

Let M = (S,T, Σ) be a schema mapping and let I be a source instance. A target
instance J is a universal solution for I w.r.t. M if the following hold:

1. J is a solution for I w.r.t. M.

2. For every solution J ′ of I w.r.t. M, there is a homomorphism h : J → J ′ that
is constant on adom(I) ∩ adom(J), that is to say, h(a) = a, for every value a ∈
adom(I) ∩ adom(J).

Intuitively, universal solutions are the “most general” solutions. Furthermore, in a
precise sense, they represent the entire space of solutions (see [17]). For this reason,
universal solutions have become the standard semantics for data exchange. Going back
to our previous example, note that J1 is a universal solution for I w.r.t the schema
mapping M specified by the constraint t1. In contrast, J2 is not a universal solution
for I w.r.t. M, since there is no homomorphism from J2 to J1 that is constant on
adom(I) ∩ adom(J2).

Chase and Canonical Universal Solutions. For GLAV schema mappings M (and in
fact for the wider class of SO tgds), a variant of the chase procedure can be used to
compute, given a source instance I , a canonical universal solution for I w.r.t. M in
time bounded by a polynomial in the size of I (see [17]).

Intuitively, the chase provides a way of populating the target instance J in a minimal
way, by adding the tuples that are required by Σ. For every instantiation of the for
clause of a dependency in Σ such that the satisfying clause is satisfied but the exists and
where clauses are not, the chase adds corresponding tuples to the target relations. Fresh
new values (also called labeled nulls) are used to give values for the target attributes
for which the dependency does not provide a source expression. Additionally, Skolem
terms are instantiated by nulls in a consistent way: a term F [x1, . . . , xi] is replaced by
the same null every time x1, . . . , xi are instantiated with the same source tuples. Finally,
to obtain a valid target instance, we must chase (if needed) with any target schema
constraints. For our earlier example, the target instance J1 is the result of chasing the
source instance I with the constraint t1. The tuple Dept(N1,CS) appears in J1 since
it is asserted by the exists clause of t1, when the for clause of t1 is instantiated with
the tuple Group(123,CS) from I . The CS value is propagated from the source Group
tuple to the target Dept tuple because of the equality condition in the where clause of t1.
Furthermore, the fresh labeled null N1 is introduced since t1 does not provide a source
expression for the did attribute of the target Dept tuple. The tuple Dept(N2,EE) in J1
is obtained in a similar fashion. Since J1 is the result of chasing I with t1, we have that
J1 is a canonical universal solution for I w.r.t. the schema mapping specified by the
constraint t1.

In practice, mapping systems such as Clio do not necessarily implement the chase
with Σ, but generate queries to achieve a similar result [19, 28].

3.1 Prior Schema Mapping Design Systems

A mapping system is a graphical user interface that allows a user to visually specify a
schema mapping (i.e., data transformation) that translates data from one schema into
another. Mapping systems can be categorized as either function-based or relationship-

66 B. Alexe and W.-C. Tan

based [30]. In function-based mapping systems, schema mappings are specified opera-
tionally, as a workflow of operators, which is very similar to the way Extract-Transform-
Load (ETL) processes are specified in ETL tools. These systems tend to be highly ex-
pressive since the user is allowed to define custom operators. At the same time, these
systems are aimed at relatively advanced technical users, as users are required to spec-
ify and understand the workflow of operations that constitute the overall semantics of
the data transformation at hand.

Relationship-Based Mapping Systems. In contrast, the only type of input required of
users of relationship-based mapping systems is the specification of high-level relation-
ships between elements (i.e., attributes or sets of attributes) of the source and target
schemas. The design methodology of relationship-based mapping systems is shown in
Figure 2. The user starts the mapping design process by providing, through a graphical
interface, all known attribute correspondences (i.e., lines between elements) between
elements of a source schema S (typically shown on the left of the graphical interface)
and a target schema T (typically shown on the right of the graphical interface). An
example of a graphical interface typical of a relationship-based mapping system was
presented in Figure 1. Sometimes, a schema matching module [29] is used to suggest
or derive attribute correspondences.

The source and target schemas, together with the attribute correspondences, form
a visual specification of the schema mapping intended by the user. Since all that is
required as input is the specification of attribute correspondences, this methodology is
generally more accessible to non-technical users who may understand their data and the
relationships between schema elements.

For commercial mapping systems (e.g., Altova Mapforce [25], Stylus Studio [33],
and Microsoft BizTalk Mapper [13]), the visual specification is compiled directly into a
runtime executable code (e.g., in XSLT or XQuery or SQL or Java) that implements the
intended relationships that are captured by the visual specification. Data exchange can
be achieved by applying the generated executable code on an instance I of the source
schema S to derive an instance J of the target schema T.

On the other hand, research prototypes such as Clio [16], HePToX [15], and
Spicy++ [26] first compile the visual specification into SO tgds or GLAV constraints.
To illustrate, consider schemas S1 and S2 in Figure 4, and the visual specifications rep-
resented by the groups of arrows denoted by t1 and t2, respectively. From the visual
specification, the declarative schema mappings (t1) and (t2) which are expressed as
constraints described earlier are first generated. These schema mappings (t1) and (t2)
can then be compiled into runtime executable code.

One advantage of using schema mappings to specify the relationship between two
schemas as an intermediate form is that they are more amenable to the formal study
of data exchange and data integration. Many properties of data integration and data
exchange, and rigorous studies of operators for manipulating schema mappings have
been investigated as a consequence of such logical formalisms [21].

Limitations of Existing Schema Mapping Design Methodologies. Existing schema
mapping design systems do not provide the capability for automatically combining pre-
existing schema mappings that are independently designed over different and possibly

A New Framework for Designing Schema Mappings 67

overlapping parts of a source and target schema. To derive the overall schema mapping
between the two schemas, the pre-existing schema mappings are typically “integrated”
manually or the overall schema mapping is re-designed from scratch.

The ability to automatically combine different schema mappings that are designed
over the same source and target schema allows one to design a schema mapping between
two schemas by focussing on smaller components of the schemas. Such a feature is
especially useful when the schemas are large and far too complex for the entire mapping
to be designed all-at-once. On a similar note, relationship-based mapping systems offer
very little support for designing a schema mapping through designing a workflow of
(smaller) schema mapping steps. In other words, the procedural methodology offered
by function-based mapping systems is sometimes desirable when schemas are large and
too complex to be designed in one step.

Finally, even though relationship-based mapping systems tend to be more user-
friendly, they cannot be used to generate any arbitrary schema mapping. These sys-
tems derive a fixed set of possible schema mappings from a given visual specification,
and the derived schema mappings may not correspond to what a user desires. It is typ-
ically the case that the user will have to manually tweak or create a schema mapping
with the desired semantics.

For the rest of this article, we overview our new framework for designing schema
mappings, which overcomes the limitations described earlier. Section 4 describes how
data examples can be used to derive and refine a schema mapping interactively. Sec-
tion 5 describes our MapMerge operator which correlates different schema mappings
over the same source and target schema to produce an overall schema mapping which
preserves “data associations”. In the same section, we also describe how MapMerge to-
gether with the composition operator can be leveraged to allow one to design a schema
mapping between a source and target schema by designing a workflow of small schema
mapping steps. Details of these subsystems can be found in [1–3, 5, 10].

4 Interactive Mapping Design and Refinement via Data Examples

In our new framework, a schema mapping can be designed with existing approaches or
interactively with our new approach through the Eirene component system. In Eirene,
the user specifies data examples, which are pairs of source instance and expected target
instance and the Eirene component system will provide a schema mapping that “fits”
the given data examples, if possible. The user can continue to refine various components
of a schema mapping through our Muse component system.

4.1 Eirene

The Eirene system supports the design of GLAV (Global-and-Local-As-View) schema
mappings over a relational source and a relational target schema interactively via data
examples. For the rest of this section, we shall use the term schema mappings to refer
to GLAV schema mappings.

Recall that a data example is a pair (I, J) consisting of a source instance and a target
instance that conform to a source and target relational schema. The Eirene workflow is

68 B. Alexe and W.-C. Tan

I1 J1
…

Fitting GLAV schema mapping or report “none exists”

Ik Jk

User inserts/deletes/modifies
data examples

Eirene Fitting Algorithm

S T

Data Examples Source and Target Schemas

Fig. 5. Workflow for interactive design of schema mappings via data examples

depicted in Figure 5. The interaction between the user and Eirene begins with the user
providing an initial finite set E of data examples, where each data example in E provides
a partial specification of the semantics of the desired schema mapping. Furthermore,
the user stipulates that, for each data example (I, J), the target instance J is a universal
solution for I w.r.t. the desired schema mapping. Intuitively, the target instance J is a
“most general” target instance that, together with I , satisfies the specifications of the
desired schema mapping. Eirene responds by generating a schema mapping that fits
the data examples in E or by reporting that no such schema mapping exists. Here, we
say that a schema mapping M fits a set E of data examples if for every data example
(I, J) ∈ E , the target instance J is a universal solution of the source instance I w.r.t.
M. The refinement process can continue where the user may modify the data examples
in E to arrive at another finite set E ′ of data examples. Again, Eirene responds by testing
whether or not there is a schema mapping that fits E ′. Eirene reports a fitting schema
mapping if one exists. Otherwise, it reports that no fitting schema mappings exist. The
process of modifying data examples and generating fitting schema mappings can be
repeated until the user is satisfied.

Data examples were considered in [3, 7, 35] as a means to illustrate and help un-
derstand schema mappings. In [9], several different notions of “fitting” were explored,
including the just defined notion of fitting in terms of universal examples. However, uni-
versal solutions, being the most general solutions, are natural as data examples because
they contain just the information needed to represent the desired outcome of migrating
data from source to target. In particular, they contain no extraneous or overspecified
facts, unlike arbitrary solutions. In addition, note that the alternative notion of “fitting”
with solutions in place of universal solutions gives rise to a trivial “fitting” problem
since, in this case, the schema mapping with an empty set of constraints would “fit” ev-
ery data example (I, J). In fact, it would be the “most general fitting schema mapping”.

Logical Formalism for Schema Mappings. We will often express GLAV constraints
using a logical formalism, which is syntactically different, but equivalent to the query-
like notation described in Section 3. In this logical formalism, a constraint is a first-order
sentence of the form

∀x(ϕ(x) → ∃yψ(x,y))
where ϕ(x) is a conjunction of atoms over the source schema S, each variable in x
occurs in at least one atom in ϕ(x), and ψ(x,y) is a conjunction of atoms over the

A New Framework for Designing Schema Mappings 69

Source schema S
Patient(pid, name, healthplan, date)
Doctor(pid, docid)

Target schema T
History(pid, plan, date, docid)
Physician(docid, name, office)

(a) Patient(123, Joe, Plus, Jan)
Doctor(123, Anna)

History(123, Plus, Jan, Anna)

(a) Patient(123, Joe, Plus, Jan)
Doctor(123, Anna)

History(123, Plus, Jan, N1)
Physician(N1, Anna, N2)

(a) Patient(123, Joe, Plus, Jan)
Doctor(123, Anna)

(b) Doctor(392, Bob)

History(123, Plus, Jan, N1)
Physician(N1, Anna, N2)

Physician(Bob, 392, N3)

Step 1

Step 2

Step 3

Step 4

User adds data example
(a)

User modifies existing data
example (a)

User adds another data
example (b)

User modifies (b) and adds
data example (c)

Fitting
Patient(x,y,z,u) Æ Doctor(x,v) →

History(x,z,u,v)

Patient(x,y,z,u) Æ Doctor(x,v) →
∃w,w’ (History(x,z,u,w) Æ Physician(w,v,w’))

No fitting schema mapping exists

Fitting GLAV schema mapping

Fitting

Fitting

(a) Patient(123, Joe, Plus, Jan)
Doctor(123, Anna)

(b) Doctor(392, Bob)

(c) Patient(653, Cathy, Basic, Feb)

History(123, Plus, Jan, N1)
Physician(N1, Anna, N2)

Physician(N3, Bob, N4)

History(653, Basic, Feb, N5)

Patient(x,y,z,u) Æ Doctor(x,v) →
∃w,w’ (History(x,z,u,w) Æ Physician(w,v,w’))

Doctor(x,y)→ ∃w,w’ Physician(w,y,w’)
Patient(x,y,z,u) → ∃w History(x,z,u,w)

Fitting

Fig. 6. An example of the workflow in Figure 5

target schema T with variables from x and y. By an atom over a schema R, we mean
a formula P (x1, . . . , xm), where P ∈ R and x1, . . . , xm are variables, not necessarily
distinct. For notational simplicity, we will often drop the universal quantifiers ∀x in the
front of GLAV constraints. To draw an analogy to the query-like notation introduced in
Section 3, the atoms in the ϕ(x) conjunction correspond to the atoms in the for clause,
while repeated appearances of a variable fromx correspond to equalities specified in the
satisfying clause. A similar analogy holds between the ψ(x,y) formula and the exists
and where clauses.

An Example Run of Eirene. Suppose a user wishes to design a schema mapping be-
tween the source schema and target schema shown in the top-left corner of Figure 6.
The source schema has two relations: Patient and Doctor, and the target schema has two
relations: History and Physician.

Step 1. The user adds a single data example, shown in the first box, which essentially
states that Anna is the doctor of Joe, whose health plan is Plus, and date-of-visit is
Jan. In the target relation, there is a single fact that consolidates this information, omit-
ting the patient name. Based on this single data example, Eirene will infer the schema
mapping shown on the right of the box. This schema mapping states that whenever a
Patient tuple and Doctor tuple agree on the pid value (i.e., a natural join between Patient
and Doctor), create a target tuple with the pid, healthplan, date, and docid values from
Patient and Doctor.

70 B. Alexe and W.-C. Tan

Step 2. The user may choose to refine the data example further, perhaps after a realiza-
tion that there was a typographical error in the data example that is just entered. The
modified data example is shown in the second box. For this data example, the source in-
stance remains unchanged, but the user has now modified the target instance to consist
of two tuples: a History tuple and a Physician tuple which are “connected” through the
value N1. Observe that the values N1 and N2 in the target instance do not occur among
the values of the source instance and they, intuitively, represent unknown and possi-
bly different values. Based on this single data example, our system infers the desired
schema mapping shown on the right. The new schema mapping asserts that information
from the inner join of Patient and Doctor should be migrated to the target relations, with
appropriate nulls to represent unknown and possibly different values.

Step 3. In the third box of Figure 6, the user adds a second data example (b). Eirene
now reports that no schema mapping can fit the two data examples (a) and (b). This
is because the pattern of data migration in data examples (a) and (b) are inconsistent.
According to (b), every Doctor(pid,docid) fact in the source must have a corresponding
Physician(docid,pid,office) fact in the target. Observe that the pid value is copied to the
second column of the corresponding Physician fact. However, this is inconsistent with
what (a) states: a Doctor(pid, docid) has a corresponding Physician(,docid,) fact in
the target, and docid gets copied to the second column of the corresponding Physician
fact instead.

Step 4. In the fourth box, the user modifies data example (b) and adds a third data
example (c). Based on these data examples, Eirene reports the schema mapping shown
to the right of the fourth box. Essentially, the schema mapping migrates information
from the outer join of Doctor and Patient to the corresponding relations in the target.

Our algorithm that underlies Eirene is shown in Figure 7. It solves the fitting gen-
eration problem and relies on a homomorphism extension test that is a necessary and
sufficient condition for the fitting decision problem.

Given a source schema S, a target schema T, and a finite set E of data examples that
conform to the schemas, the GLAV Fitting Decision Problem asks to tell whether or not
there is a GLAV schema mappingM that fits E . The GLAV Fitting Generation Problem
asks to construct a GLAV schema mapping M that fits E , if such a schema mapping
exists, or to report that “None exists”, otherwise.

The GLAV Fitting Algorithm. As seen in Figure 7, our algorithm has two main steps.
Given a finite set E of data examples, the first step of the algorithm uses the homomor-
phism extension test to check whether there exists a GLAV schema mapping that fits E .
If no such fitting GLAV schema mapping exists, then the algorithm simply reports that
none exists. Otherwise, the second step of the algorithm proceeds to construct a GLAV
schema mapping that fits the set E .

Homomorphism Extension Test Let (I, J) and (I ′, J ′) be two data examples. We say
that a homomorphism h : I → I ′ extends to a homomorphism ĥ : J → J ′ if for all
a ∈ adom(I)∩adom(J), we have that ĥ(a) = h(a). The homomorphism extension test
checks the following: for every pair of data examples from the given set E , test whether
every homomorphism between the source instances of the two examples extends to
a homomorphism between the corresponding target instances. If this homomorphism

A New Framework for Designing Schema Mappings 71

Algorithm: GLAV Fitting
Input: A source schema S, a target schema T, and a finite set E of data examples
(I1, J1) . . . (In, Jn) over S,T.
Output: Either a fitting GLAV schema mapping or ‘None exists’

// Homomorphism Extension Test: Test for existence of a fitting GLAV schema mapping

for all i, j ≤ n do
for all homomorphisms h : Ii → Ij do

if not(h extends to a homomorphism ĥ : Ji → Jj) then
fail(‘None exists’)

// Construct a fitting canonical GLAV schema mapping

Σ := ∅
for all i ≤ n do

add to Σ the canonical GLAV constraint of (Ii, Ji)
return (S, T, Σ)

Fig. 7. The GLAV Fitting Generation Algorithm

extension test fails, the algorithm immediately reports that no GLAV schema mapping
can fit the set E of data examples.

To illustrate the failure of the homomorphism extension test, we refer back to Fig-
ure 6 and the set of data examples resulting after Step 3 of the depicted workflow. The
homomorphism {392→ 123, Bob→ Anna} from the source instance of data example
(b) to the source instance of data example (a) cannot be extended to a homomorphism
between the corresponding target instances. Any such homomorphism would neces-
sarily map the value Bob to N1, as well as 392 to Anna. Consequently, in this case,
the homomorphism extension test fails, and the algorithm terminates. If the homomor-
phism extension test succeeds, the fitting algorithm proceeds to construct the fitting
schema mapping.

Constructing a Fitting Canonical GLAV Schema Mapping In this step, the algorithm
proceeds to construct the canonical GLAV schema mapping of E . The concept of a
canonical GLAV schema mapping is similar to that of a canonical conjunctive query.
If (I, J) is a data example, then the canonical GLAV constraint of (I, J) is the GLAV
constraint ∀x(qI(x) → ∃yqJ (x,y)), where qI(x) is the conjunction of all facts of
I (with each value from the active domain of I replaced by a universally quantified
variable from x) and qJ (x,y) is the conjunction of all facts of J (with each value
from adom(J) \ adom(I) replaced by an existentially quantified variable from y). The
canonical GLAV schema mapping of E is the schema mapping M = (S,T, Σ), where
Σ consists of the canonical GLAV constraints of each data example in E . For example,
the canonical GLAV schema mapping for the set of data examples resulting after Step 4
of the workflow in Figure 6 is specified by the three GLAV constraints depicted on the
right of the box containing the data examples. Notice that this step takes time linear in
the size of the given set E of data examples.

72 B. Alexe and W.-C. Tan

It is important to point out that the canonical GLAV schema mapping of a given set
of data examples need not fit this set of examples. In fact, this is what makes the GLAV
fitting generation problem interesting and nontrivial. Consider the set E consisting of
the data examples

({S(a, b)}, {T (a)}) and ({S(c, c)}, {U(c, d)}).

The canonical GLAV schema mapping of E is specified by the GLAV constraints

∀xy(S(x, y) → T (x))

∀x(S(x, x) → ∃zU(x, z))

This schema mapping does not fit E , as the second data example violates the first con-
straint. Note also that our homomorphism extension test in the first step of the algorithm
would detect this: the homomorphism h that maps S(a, b) to S(c, c) does not extend to
any target homomorphism from T (a) to U(c, d). Hence, in this case, our algorithm will
terminate after the first step and report that “None exists”.

Next, we report results that show the correctness of our algorithm, that our algorithm
returns the “most general” fitting schema mapping, if a fitting schema mapping exists,
that our algorithm is complete for GLAV schema mapping design, the complexity of
our algorithm, and our implementation.

Correctness. The correctness of the GLAV fitting generation algorithm is given by the
following result.

Theorem 1. Let E be a finite set of data examples. The following are equivalent:

1. The canonical GLAV schema mapping of E fits E .

2. There is a GLAV schema mapping that fits E .

3. (Homomorphism Extension Test) For all (I, J), (I ′, J ′) ∈ E , every homomorphism
h : I → I ′ extends to a homomorphism ĥ : J → J ′.

Theorem 1 shows that the homomorphism extension test is a necessary and suffi-
cient condition for determining whether GLAV schema mapping fitting E exists. Fur-
thermore, this condition is also a necessary and sufficient condition for determining
whether the canonical GLAV schema mapping of E fits E .

Most General Fitting GLAV Schema Mapping. Given a finite set E of data examples,
there may be many GLAV schema mappings that fit E . If there is a GLAV schema
mapping that fits E , we showed that the canonical GLAV schema mapping is the most
general GLAV schema mapping that fits E .

Let M = (S,T, Σ) and M′ = (S,T, Σ′) be two schema mappings over the same
source and target schemas. We say that M is more general than M′ if Σ′ logically im-
plies Σ, i.e., if for every data example (I, J) such that (I, J) satisfies Σ′, we have that
(I, J) also satisfies Σ. For example, both R(x, y) → P (x, y) and R(x, x) → P (x, x)
fit the data example ({R(a, a)}, {P (a, a)}) with the latter mapping being more gen-
eral. In this case, the GLAV fitting algorithm will return the latter mapping R(x, x) →
P (x, x).

A New Framework for Designing Schema Mappings 73

This result, along with the correctness of the GLAV fitting algorithm, imply that if a
fitting GLAV schema mapping exists for a given set E of data examples, then our GLAV
fitting algorithm returns the most general GLAV schema mapping that fits E . Note that
this most general schema mapping is unique up to logical equivalence.

Completeness for Design. Our method of designing schema mappings via data exam-
ples is complete for schema-mapping design.

Theorem 2. For every GLAV schema mappingM, there is a finite set of data examples
EM, such that, when given EM as input, the GLAV fitting algorithm returns a schema
mapping that is logically equivalent to M.

In other words, every GLAV schema mapping can be produced (up to logical equiv-
alence) by our GLAV fitting algorithm with an appropriate set of data examples.

Complexity. The most general schema mapping produced by our GLAV fitting gener-
ation algorithm has size linear in the size of the input set of data examples. We showed
that this linear bound on the size of the most general schema mapping cannot be im-
proved in general. In contrast, the first step of the GLAV fitting algorithm can be ex-
ponential, since the number of homomorphisms between two database instances can be
exponential. Hence, the GLAV fitting algorithm runs in exponential time in the worst
case. We showed that the GLAV fitting decision problem is complete for the second
level Πp

2 of the polynomial hierarchy, hence, in all likelihood, it is harder than NP-
complete.

Implementation. We implemented our approach as a prototype in Java 6, with IBM
DB2 Express-C v9.7 as the underlying database engine, running on a Dual Intel Xeon
3.4GHz Linux workstation with 4GB RAM. Eirene stores data examples in the IBM
DB2 database system and implements the homomorphism extension test as a set of DB2
user-defined functions. Intuitively, each function is associated with a data example and
it tries to find a witness to the failure of the homomorphism extension.

The high worst-case complexity of the GLAV fitting problem notwithstanding, the
experimental results that we have obtained demonstrate the feasibility of interactively
designing schema mappings using data examples. In particular, our experiments show
that our system achieves very good performance in real-life scenarios. For more details,
we refer the interested reader to the experimental evaluation presented in [1].

4.2 Muse

Muse allows a user to refine various aspects of an existing schema mapping specifica-
tion, based on the choices made by users on a series of data examples that are presented
by the system. The Muse workflow is shown in Figure 8. In contrast, the Eirene system
derives schema mappings from data examples provided by the user.

The Muse system is largely inspired by the work of Yan et al. [35], which was the
first to present data examples to users so that users’ feedback can be used for refining
schema mappings. Like [35], Muse uses data examples to differentiate between alterna-
tive mapping specifications and infer the desired mapping semantics based on a user’s
actions. However, we go significantly beyond the techniques and space of alternative
mappings supported by [35].

74 B. Alexe and W.-C. Tan

I User makes choices

I1 J1 Ik Jk

Fig. 8. Interactive refinement of various aspects of schema mappings via data examples

First, Muse is capable of helping a user derive the desired grouping semantics for a
mapping specification through choices made on data examples. For instance, to infer
whether a user wishes to group projects by a a company’s name and location or only
by a company’s name, Muse will construct a sequence of choice questions with data
examples. The selection of data examples made by the user allows Muse to infer the
desired grouping semantics. The number of choice questions and the size of each data
example are usually small. They correspond roughly to the number schema elements
that could be used for grouping and each data example consists of at most two tuples
per (nested) relation.

Second, as in [35], Muse helps a user choose among alternative interpretations of
an ambiguous mapping. Intuitively, a schema mapping is ambiguous if it specifies, in
more than one way, how an atomic target schema element (or attribute) is to be obtained.
For example, the schema mapping that is generated from the visual specification could
be ambiguous because the visual specification may assert (through attribute correspon-
dences) that a project supervisor is a project manager and a project tech-lead at the
same time. In other words, it is not clear whether to extract the manager’s name or the
tech-lead’s name (or both) from the source database as the supervisor of a project in the
target database and hence the ambiguity. When this happens, the user is asked to select
among a small set of data choices to fill in the target instance of a data example that is
constructed by Muse. The data example and choices are carefully chosen so that they
reflect all possible interpretations of the ambiguous mapping. Furthermore, the user’s
actions on these choices translate into a unique interpretation. Apart from our ability
to handle nested XML-like data, Muse is also different from [35] in that we show all
possible interpretations of an ambiguous schema mapping in one compact representa-
tion (i.e., the data example together with data choices in the target instance of the data
example). In contrast, all different target instances are shown to the user in [35]. The
discussion of ambigious mappings will be omitted from this article. However, details
can be found in [8].

Finally, unlike previous work which relies exclusively on an available source instance
to illustrate mappings, Muse can construct its own synthetic data example whenever a
meaningful data example cannot be drawn from the actual source instance or when the
source instance is unavailable. It is important to note that for a given source instance,
schema mappings that are logically inequivalent may produce the same target instance

A New Framework for Designing Schema Mappings 75

CompDB:
Companies

cid
cname
location

Projects
pid
pname
cid
manager

Employees
eid
ename
contact

OrgDB:
Orgs

oname
Projects

pname
manager

Employees
eid
ename

f1

f2

m1: for c in CompDB.Companies exists o in OrgDB.Orgs
where c.cname=o.oname and

o.Projects = SKProjs(c.cid,c.cname,c.location)

m2: for c in CompDB.Companies, p in CompDB.Projects,
e in CompDB.Employees

satisfying p.cid=c.cid and e.eid=p.manager
exists o in OrgDB.Orgs, p1 in o.Projects,

e1 in OrgDB.Employees
where p1.manager=e1.eid and

c.cname=o.oname and e.eid=e1.eid and
e.ename=e1.ename and p.pname=p1.pname and
o.Projects = SKProjs(<all attributes of c, p and e>)

m3: for e in CompDB.Employees
exists e1 in OrgDB.Employees 1 g p y
where e.eid = e1.eid and e.ename=e1.ename

Fig. 9. A mapping scenario

on the given source instance. Muse is able to automatically detect such situations and
construct a synthetic source instance that will illustrate differences in all design alter-
natives as needed. In fact, our experiments justify that this feature of Muse is necessary
to help design mappings for some real mapping settings and instances.

Naturally, an advanced user can always choose to tweak or specify the desired schema
mapping function directly without using Muse. Muse is useful for cases where such di-
rect manipulation of code is not preferred.

Design of Grouping Functions. Grouping or combining related data together is an
essential functionality of many integration systems. We now describe how the grouping
design wizard Muse-G of Muse can be used to infer the desired grouping function
through a sequence of choices made by the user on data examples.

The Muse-G wizard is always able to infer a grouping function that has the same
grouping semantics as the actual grouping function that the user has in mind. As the
data examples illustrate the different possibilities of grouping, Muse-G can also be very
useful when the user only has a partial understanding of the desired grouping semantics.

In what follows, we overview the basic algorithm behind Muse-G when there are
no functional dependencies (FDs) in the source schema. Details of this algorithm and
extensions to handle keys (and FDs in general) in the source schema, as well as our
experimental results can be found in [8].

Except for topmost-level sets, every nested set in the target schema of mapping gen-
eration tools (e.g., [14, 19, 28]) has a default grouping function, where the arguments
consist of only atomic attributes. For example, there are no grouping functions for Orgs
and Employees in the target schema of Figure 9. However, the default grouping function
for Projects in m2 according to [19] is

SKProjs(c.cid, c.cname, c.location, p.pid, p.pname, p.cid, p.manager, e.eid, e.ename, e.contact)

This means that Projects records are grouped according to the values of all attributes
of the Companies, Projects and Employees source records. If SKProjs(cname) is the
grouping function instead, then Projects records are grouped according to cname of

76 B. Alexe and W.-C. Tan

Companies records (i.e., oname of Orgs records). (We write SKProjs(cname) instead of
SKProjs(c.cname) when there is no ambiguity.)

In tools such as Mapforce, Stylus Studio and [14, 19, 28] the arguments of the group-
ing function have to be explicitly modified or specified. This can be difficult when
schemas are large and the number of possible arguments for a grouping function tends
to be large as a consequence. Indeed, if there are n possible attributes to group by, then
there are in fact 2n choices of grouping functions. Furthermore, it may not be obvious
to a user, what the n possible grouping attributes are (see [19, 28]).

Muse-G takes as input a schema mapping (S, T, Σ). The user can choose to design
any grouping function that occurs in Σ. We assume that there is a real source instance
I from which Muse-G can draw real data examples whenever possible, and show how
Muse-G constructs its own examples otherwise. To illustrate our algorithm, we use the
schema mapping (S, T, {m2}), where S, T and m2 are the source and target schemas
and respectively, mapping, of Figure 9.

Step 1. The first step is to determine an order to the set of grouping functions that the
user wishes to (re)design in a mapping in Σ by performing a breadth-first traversal
of T starting from the root. This yields, for our example, the order Orgs, Employees,
and Projects. Since Orgs and Employees are top-level sets without grouping functions,
Muse-G will only prompt the design of grouping functions for Projects (i.e., SKProjs)
in m2.

Step 2. Next, we determine the set poss(m2, SKProjs) of all possible arguments for
SKProjs according to m2. According to the schema of OrgDB, a Projects SetID is
nested inside an Orgs tuple. According to the for clause ofm2, the existence of an Orgs
tuple is dependent on the existence of a Companies tuple, an Employees tuple, and a
Projects tuple which agrees with the Companies and Employees tuples on the values of
pid and manager, respectively.

This means that poss(m2,SKProjs) consists of the set of attributes in the Companies,
Projects and Employees records, which is {cid, cname, location, pid, pname, pid,
manager, eid, ename, contact}. Note that the sets poss(m,SK) are in fact identical for
all nested sets SK occurring in m. In other mapping formalisms, however, they may be
different (see [19] for details). However, to simplify our subsequent discussion, we will
assume that poss(m2,SKProjs)={cid,cname,location}.

Step 3. Suppose the user has SKProjs(Z) in mind, where Z ⊆ poss(m2, SKProjs). In
what follows, we show how Muse-G proceeds to construct data examples to present
choices to the user in order to infer the desired grouping function.

Construct Data Examples. To determine whether or not an attribute A from poss(m2,
SKProjs) is to be included in the grouping function of SKProjs, Muse-G carefully con-
structs a small source instance Ie such that two differentiating target instances are ob-
tained: regardless of what the rest of the grouping attributes might be, one is the result
of including the attribute A as part of SKProjs in m2, and the other omits it.

Suppose the attribute under consideration is cid. An example source instance Ie with
two tuples, as shown below, will be constructed:

Ie : {Companies(c1, n1, l1), Projects(p1, pn1, c1, e1), Employees(e1, en1, cn1),
Companies(c2, n1, l1), Projects(p2, pn2, c2, e2), Employees(e2, en2, cn2)}

A New Framework for Designing Schema Mappings 77

Observe that each relation in Ie has two tuples. Furthermore, every attribute value
of every tuple is distinct, except for cname and location values of Companies tuples.
The reason for this is so that the target instances generated by m2 with SKProjs(cid,y),
where y ⊆ {cname,location}, versus m2 with SKProjs(y) will be non-isomorphic.
Indeed, the former target instance will contain two distinct Projects sets, while the latter
consists of only one Projects set.

To obtain a real source instance, Muse-G generates the following query that will be
executed against the actual source instance, if available, to retrieve real tuples for the
example instance Ie.

QIe : Companies(c1, n1, l1) ∧ Companies(c2, n1, l1)∧
Projects(p1, pn1, c1, e1) ∧ Projects(p2, pn2, c2, e2)∧
Employees(e1, en1, cn1) ∧ Employees(e2, en2, cn2) ∧ c1 �= c2

All variables of QIe are universally-quantified. The two Companies tuples must dis-
agree on cid (the probed attribute) and agree on cname and location as explained earlier.

If QIe(I) returns an empty result, Muse-G will present the user with the synthetic
instance Ie, shown earlier. Alternatively, a “semi-real” Ie may also be constructed by
putting together various real values drawn from I (e.g., use cid, cname and location
values drawn from the corresponding columns of the Companies relation to create a
Companies tuple in Ie, regardless of whether these values participate in a real Companies
tuple). However, this may lead to combinations that are misleading to the user. On the
other hand, if QIe(I) returns a non-empty result, Muse-G constructs a real example
based on the returned values. A possible real example constructed in this way is shown
in Figure 10(a), where each tuple in Companies, Projects and Employees exists in I .

Next, Muse-G obtains two differentiating target instances shown in Scenarios 1 and
2 in Figure 10(a), by chasing Ie with mappings d1 and respectively, d2. Here, d1 and
d2 are identical to m2 except they have SKProjs(cid) and respectively, SKProjs() as
grouping functions for Projects. Now, Muse-G asks the user “which target instance
looks correct”?

Note that the instance Ie has been carefully crafted so that the chase of Ie with d1
is isomorphic to the chase of Ie with d′1, where d′1 is a mapping obtained from m2

by replacing SKProjs with SKProjs({cid} ∪ Y), where Y ⊆ {cname, location}. Since
cname and location values are identical for the two Comp tuples in Ie, the mapping d1
has the same effect as d′1 on Ie. Similarly, d2 has the same effect as d′2 on Ie, where
d′2 is obtained from d2 by replacing SKProjs with SKProjs(Y). Hence, based on the
user’s choice of Scenario 1 or 2, Muse-G correctly determines whether cid is part of the
user’s desired grouping function. So with one question, we either eliminate all mappings
using cid (not only SKProjs(cid), but SKProjs(cid, cname), SKProjs(cid, location), and
SKProjs(cid, cname, location)), or we eliminate all mappings that do not use cid in the
skolem function for Projects.

Continuing with our example, suppose the user has the grouping function
SKProjs(cname) in mind. She would select Scenario 2 in Figure 10(a). We now repeat
the process for the other attributes cname and location. Figure 10(b) shows the example
source instance and the two scenarios obtained by considering the attribute cname. The
two source Companies tuples must differ on the values of cname and agree on the val-
ues of location. Note that the cid values of the two Companies tuples are not required

78 B. Alexe and W.-C. Tan

Example source:
Companies

11 IBM NY
12 IBM NY

Projects
P1 DB 11 e4
P2 Web 12 e5

Employees
e4 Jon x234
e5 Anna x888

Target instances:
Scenario 1:
OrgDB

Orgs
IBM
Projects:SK(11,y)

DB e4
IBM
Projects:SK(12,y)

Web e5
Employees

e4 Jon
e5 Anna

Scenario 2:
OrgDB

Orgs
IBM
Projects:SK(y)

DB e4
Web e5

Employees
e4 Jon
e5 Anna

(a)
Note:

y ⊆ {IBM NY}y ⊆ {IBM,NY}

Example source:
Companies

11 IBM NY
14 SBC NY

Projects
P1 DB 11 e4
P4 WiFi 14 e6

Employees
e4 Jon x234
e6 Kat x331

Target instances:
Scenario 1:
OrgDB

Orgs
IBM
Projects:SK(IBM,y)

DB e4
SBC
Projects:SK(SBC,y)

WiFi e6
Employees

e4 Jon
e6 Kat

Scenario 2:
OrgDB

Orgs
IBM
Projects:SK(y)

DB e4
WiFi e6

SBC
Projects:SK(y)

DB e4
WiFi e6

Employees
e4 Jon
e6 Kat

(b)
Note:

y ⊆ {NY} e6 Katy ⊆ {NY}

Example source:
Companies

11 IBM NY
13 IBM SF

Projects
P1 DB 11 e4
P2 Web 13 e5

Employees
e4 Jon x234
e5 Anna x888

Target instances:
Scenario 1:
OrgDB

Orgs
IBM
Projects:SK(IBM,NY)

DB e4
IBM
Projects:SK(IBM,SF)

Web e5
Employees

e4 Jon
e5 Anna

Scenario 2:
OrgDB

Orgs
IBM
Projects:SK(IBM)

DB e4
Web e5

Employees
e4 Jon
e5 Anna

(c)

Fig. 10. Probing on (a) cid, (b) cname, and (c) location when the user has SKProjs(cname) in
mind

A New Framework for Designing Schema Mappings 79

to be identical, since cid is not an argument of SKProjs. The user will pick Scenario 1
in Figure 10(b), since she wants to group Projects by cname, and Muse-G infers that
cname is an argument to SKProjs. Figure 10(c) shows the data examples that are pre-
sented to the user when the attribute location is under consideration. The user will pick
Scenario 2. Since cname is part of the grouping, the Companies tuples must agree on
the cname values, otherwise, Muse-G would not be able to infer whether location is part
of the groping from the user’s choice in Figure 10(c). At this point, Muse-G concludes
and returns SKProjs(cname).

Recall that we have assumed above that poss(m2, SKProjs) is {cid,cname,location}
for simplicity, when in fact it consists of all attributes of Companies, Projects and
Employees records. In this case, Muse-G concludes only after subsequently probing
all the attributes of Projects and Employees records (the user will choose Scenario 2 in
each case). Note also that it is conceivable for Muse-G to generate homomorphically
equivalent target instances (i.e., target instances with a homormophisms into each other)
for Scenarios 1 and 2 (e.g., Figure 10(b)). However, it is always possible for the user to
distinguish between such instances, as they are non-isomorphic.

Muse-G infers the desired grouping function by presenting the user a small number
of choice questions, where each choice question consists of a small source instance with
two target instances that correspond to the two possible choices in this question.

Small Number of Choices, Small Data Examples. For each nested set SK in a map-
ping m, there are 2n different grouping functions where n = |poss(m, SK)|. However,
Muse-G determines the desired grouping function by asking the user only |poss(m, SK)|
questions. In fact, if there is at most one key per nested set, then Muse-G performs a
careful reordering of the questions posed to the user. The questions pertaining to the
attributes in the key are asked first. In general, using this strategy, at most n questions
are needed to infer the desired grouping function. If the user decides to include the key
attributes in the grouping function, then the number of questions is equal to the number
of key attributes. It is also important to note that all real source schemas that we have
encountered in our experimental evaluation fall into this category.

Furthermore, for each choice, Muse-G constructs a small source example. The size
of the source example is twice the number of “x ∈ X” clauses in for clauses of m. This
typically means that there are at most two tuples in each nested set.

We refer the interested reader to [2] for a report on our experience with Muse on
publicly available mapping scenarios.

5 Modular Design of Schema Mappings

5.1 Overview

As outlined in Section 2, in our Divide-Design-Merge methodology, the user can choose
to design a schema mapping by focusing on designing smaller and easier to understand
mappings, using data examples as much as possible. In the previous section, we have
presented our techniques for designing and refining schema mappings via data exam-
ples. However, simply taking the independently designed schema mapping components
and using them as the specification for the global schema mapping may not achieve the

80 B. Alexe and W.-C. Tan

desired semantics. This may lead, as it will be explained later, to problems such as data
redundancies and loss of data associations. Hence, the design workflow is not complete
without a mechanism for correlating the set of independent schema mappings resulting
after the previous phase into a meaningful global schema mapping (see Figure 3). This
is the role of the MapMerge schema mapping operator, presented in this section. This
operator allows for the modular construction of complex and larger schema mappings
from multiple “smaller” schema mappings between the same source and target schemas
into an arguably better overall schema mapping.

Since the mappings given as input to MapMerge can be as simple as individual
attribute correspondences, MapMerge supersedes previous mapping generation algo-
rithms such as the ones in Clio [16]. In addition, as we will show later, MapMerge can
be used in conjunction with the schema mapping composition operator [18, 23, 27] to
correlate flows of schema mappings in a meaningful way.

5.2 Motivating Example

To illustrate the ideas behind MapMerge, consider first a mapping scenario between the
schemas S1 and S2 shown in the left part of Figure 4. The goal is data restructuring
from two source relations, Group and Works, to three target relations, Emp, Dept, and
Proj. In this example, Group (similar to Dept) represents groups of scientists sharing
a common area (e.g., a database group, a CS group, etc.) The dotted arrows represent
foreign key constraints in the schemas.

Independent Mappings. Assume the existence of the following (independent) schema
mappings from S1 to S2. The first mapping is the constraint t1 in Figure 11(a), and
corresponds to the arrow t1 in Figure 4. This constraint requires every tuple in Group
to be mapped to a tuple in Dept such that the group name (gname) becomes department
name (dname). The second mapping is more complex and corresponds to the group of
arrows t2 in Figure 4. This constraint involves a custom filter condition; every pair of
joining tuples of Works and Group for which the addr value is “NY” must be mapped
into two tuples of Emp and Dept, sharing the same did value, and with corresponding
ename, addr and dname values. (Note that did is a target-specific field that must exist
and plays the role of key / foreign key). Intuitively, t2 illustrates a pre-existing mapping
that a user may have spent time in the past to create, possibly using the techniques
based on data examples from Section 4. Finally, the third constraint in Figure 11(a)
corresponds to the arrow t3 and maps pname from Works to Proj. This is an example
of a correspondence that is introduced by a user after loading t1 and the pre-existing
mapping t2 into the mapping tool.

The goal of the system is now to (re)generate a “good” overall schema mapping
from S1 to S2 based on its input mappings. We note first that the input mappings, when
considered in isolation, do not generate an ideal target instance.

Indeed, consider the source instance I in Figure 12. The target instance that is
obtained by minimally enforcing the constraints {t1, t2, t3} is the instance J1 also
shown in the figure. The first Dept tuple is obtained by applying t1 on the Group tuple
(123, CS). There, D1 represents some did value that must be associated with CS in
this tuple. Similarly, the Proj tuple, with some unspecified valueB for budget and a did

A New Framework for Designing Schema Mappings 81

�������	��
����
�����
�
����

�
�

��
�

����� ���� 	
��
�����	� ���� ��
��

���� ������� ���������

��
�

����� ���� ��
�������� 	
��

��	���
��� ����� ��������������
 ������

����	� ���� ��
������ ��
�

���� ����� ���������

������� ����������������
 �������
�

������� ���������

��
�

����� ���� ��
�������	�
��� �
�

����
�
���� ����
����

��������
��	��������
�
���

�
����

�
���

�
���

�
���

��� ���� 	
��
�����	� ���� ��
��

���� ������� ���������������� ����	

��� ���� ��
�������� 	
��

��	���
��� ����� ��������������
 ������

����	� ���� ��

���� ������� ����������������
 �������
��

����� ����	

��� ���� ��
�������� 	
��

��	���
��� ����� ��������������
 ������

����	�
��� �
�

����
�
���� ����
������
�!����� ��"
�

#�$��

����� ����	

�	� ���

Fig. 11. (a) Schema mappings from S1 to S2 in the scenario of Figure 4. (b) Output of Map-
Merge.

Group
gno gname
123 CS

Works
ename addr pname gno
John NY Web 123

Source instance I

Emp
ename addr did
John NY D2

Dept
did dname
D1 CS
D2 CS
D3 N

Target instance J
1

Proj
pname budget did

Web B D3

{t1,t2,t3}

MapMerge({t1,t2,t3})

Emp
ename addr did
John NY D

Dept
did dname
D CS

Target instance J
2

Proj
pname budget did

Web B’ D

Fig. 12. An instance of S1 and two instances of S2

value of D3 is obtained via t3. The Emp tuple together with the second Dept tuple are
obtained based on t2. As required by t2, these tuples are linked via the same did value
D2. Finally, to obtain a target instance that satisfies all the foreign key constraints, we
must also have a third tuple in Dept that includes D3 together with some unspecified
department name N .

Since the three mapping constraints are not correlated, the three did values (D1,D2,
D3) are distinct. (There is no requirement that they must be equal.) As a result, the target
instance J1 exhibits the typical problems that arise when uncorrelated mappings are
used to transform data: (1) duplication of data (e.g., multiple Dept tuples for CS with
different did values), and (2) loss of associations where tuples are not linked correctly to
each other (e.g., we have lost the association between project nameWeb and department
name CS that existed in the source).

82 B. Alexe and W.-C. Tan

Correlated Mappings via MapMerge. Consider now the schema mappings that are
shown in Figure 11(b) and that are the result of MapMerge applied on {t1, t2, t3}. The
notable difference from the input mappings is that all mappings consistently use the
same expression, namely the Skolem term F [g] where g denotes a Group tuple, to give
values for the did field. The first mapping is the same as t1 but makes explicit the fact
that did is F [g]. This mapping creates a unique Dept tuple for each distinct Group tu-
ple. The second mapping is (almost) like t2 with the additional use of the same Skolem
term F [g]. Moreover, it also drops the existence requirement for Dept (since this is now
implied by the first mapping). Finally, the third mapping differs from t3 by incorporat-
ing a join with Group before it can actually use the Skolem term F [g]. Furthermore, it
inherits the filter on the addr field, which applies to all such Works tuples according to
t2. As an additional artifact of MapMerge, it also includes a Skolem term H1[w] that
assigns values to the budget attribute, which was initially left unspecified. The target
instance that is obtained by applying the result of MapMerge is the instance J2 shown
in Figure 12. The data associations that exist in the source are now correctly preserved
in the target. For example, Web is linked to the CS tuple (via D) and also John is
linked to the CS tuple (via the same D). Furthermore, there is no duplication of Dept
tuples.

Flows of Mappings. Taking the idea of mapping reuse and modularity one step further,
an even more compelling use case for MapMerge in conjunction with mapping com-
position [18, 23, 27], is the flow-of-mappings scenario [4]. The key idea here is that to
design a data transformation from the source to the target, one can decompose the pro-
cess, in line with the Divide-Design-Merge approach, into several simpler stages, where
each stage maps from or into some intermediate, possibly simpler schema. Moreover,
the simpler mappings and schemas play the role of reusable components that can be ap-
plied to build other flows. Such abstraction is directly motivated by the development of
real-life, large-scale ETL flows such as those typically developed with IBM Information
Server (Datastage), Oracle Warehouse Builder and others.

To illustrate, suppose the goal is to transform data from the schema S1 to the nested
schema S4 of Figure 4, where Staff and Projects information are grouped under Comp-
Sci. The mapping or ETL designer, following the divide-and-merge methodology, may
find it easier to first construct the mapping between S1 and S2 (it may also be that this
mapping may have been derived in a prior design). Furthermore, the schema S2 is a
normalized representation of the data, where Dept, Emp and Proj correspond directly to
the main concepts (or types of data) that are being manipulated. Based on this schema,
the designer can then produce a mapping mCS from Dept to a schema S3 containing
a more specialized object CSDept, by applying some customized filter condition (e.g.,
based on the name of the department). The next step is to create the mapping m from
CSDept to the target schema S4. Other independent mappings are similarly defined for
Emp and Proj (see m1 and m2).

Once these individual mappings are established, the same problem of correlating
the mappings arises. In particular, one has to correlate mCS ◦ m, which is the result
of applying mapping composition to mCS and m, with the mappings m1 for Emp and
m2 for Proj. This correlation will ensure that all employees and projects of computer

A New Framework for Designing Schema Mappings 83

science departments will be correctly mapped under their correct departments, in the
target schema.

In this example, composition itself gives another source of mappings to be correlated
by MapMerge. While similar with composition in that it is an operator on schema map-
pings, MapMerge is fundamentally different in that it correlates mappings that share
the same source schema and the same target schema. In contrast, composition takes
two sequential mappings where the target of the first mapping is the source of the sec-
ond mapping. Nevertheless, the two operators are complementary and together they can
play a fundamental role in building data flows. In Section 5.4 we will give an overview
of an algorithm that can be used to correlate flows of mappings.

5.3 Correlating Mappings: Key Ideas

How do we achieve the systematic and, moreover, correct construction of correlated
mappings? After all, we do not want arbitrary correlations between mappings, but rather
only to the extent that the natural data associations in the source are preserved and no
extra associations are introduced.

There are two key ideas behind MapMerge. The first idea is to exploit the structure
and the constraints in the schemas in order to define what natural associations are (for
the purpose of the algorithm). Two data elements are considered associated if they are
in the same tuple or in two different tuples that are linked via constraints. This idea has
been used before in Clio [28], and provides the first (conceptual) step towards Map-
Merge. For our example, the input mapping t3 in Figure 11(a) is equivalent, in the
presence of the source and target constraints, to the following enriched mapping:

t′3: for w in Works, g in Group satisfying w.gno = g.gno
exists p in Proj, d in Dept where p.pname = w.pname and p.did = d.did

Intuitively, if we have a w tuple in Works, we also have a joining tuple g in Group,
since gno is a foreign key from Works to Group. Similarly, a tuple p in Proj implies the
existence of a joining tuple in Dept, since did is a foreign key from Proj to Dept.

Formally, the above rewriting from t3 to t′3 is captured by the well-known chase
procedure [11, 24]. The chase is a convenient tool to group together, syntactically, ele-
ments of the schema that are associated. The chase by itself, however, does not change
the semantics of the mapping. In particular, the above t′3 does not include any additional
mapping behavior from Group to Dept.

The second key idea behind MapMerge is that of reusing or borrowing mapping
behavior from a more general mapping to a more specific mapping. This is a heuristic
that changes the semantics of the entire schema mapping and produces an arguably
better one, with consolidated semantics.

To illustrate, consider the first mapping constraint in Figure 11(b). This constraint
(obtained by skolemizing the input t1) specifies a general mapping behavior from Group
to Dept. In particular, it specifies how to create dname and did from the input record.
On the other hand, the above t′3 can be seen as a more specific mapping from a subset
of Group (i.e., those groups that have associated Works tuples) to a subset of Dept
(i.e., those departments that have associated Proj tuples). At the same time, t′3 does
not specify any concrete mapping for the dname and did fields of Dept. We can then

84 B. Alexe and W.-C. Tan

borrow the mapping behavior that is already specified by the more general mapping.
Thus, t′3 can be enriched to:

t′′3 : for w in Works, g in Group satisfying w.gno = g.gno
exists p in Proj, d in Dept
where p.pname = w.pname and p.did = d.did and

d.dname = g.gname and d.did = F [g] and p.did = F [g]

where two of the last three equalities represent the “borrowed” behavior, while the last
equality is obtained automatically by transitivity. The other borrowed behavior that we
will add to t′′3 is the user-defined filter on addr. This filter already applies, according to
t2, to all tuples in Works that join with Group tuples, and are mapped to Emp and Dept
tuples. The resulting constraint t′′′3 has the following form:

t′′′3 : for w in Works, g in Group satisfying w.gno = g.gno and w.addr = “NY”

exists p in Proj, d in Dept
where p.pname = w.pname and p.did = d.did and

d.dname = g.gname and d.did = F [g] and p.did = F [g]

Finally, we can drop the existence of d in Dept with the two conditions for dname
and did, since this is repeated behavior that is already captured by the more general
mapping from Group to Dept. The resulting constraint is identical2 to the third con-
straint in Figure 11(b), now correlated with the first one via F [g]. A similar explanation
applies for the second constraint in Figure 11(b).

The MapMerge Algorithm. MapMerge takes as input a set {(S,T, Σ1), ...,(S,T, Σn)}
of schema mappings over the same source and target schemas, which is equivalent to
taking a single schema mapping (S, T, Σ1 ∪ ... ∪ Σn) as input. The algorithm is di-
vided into four phases. The first phase decomposes each input mapping assertion into
basic components that are, intuitively, easier to merge. In Phase 2, we apply the chase
algorithm to compute associations (which we call tableaux), from the source and target
schemas, as well as from the source and target assertions of the input mappings. The
latter type of tableaux is necessary to support user defined joins that may not follow
foreign key constraints. By pairing source and target tableaux, we obtain all the possi-
ble skeletons of mappings. The actual work of constructing correlated mappings takes
place in Phase 3, where for each skeleton, we take the union of all the basic components
generated in Phase 1 that “match” the skeleton. Phase 4 is a simplification phase that
also flags conflicts that may arise and that need to be addressed by the user. These con-
flicts occur when multiple mappings that map to the same portion of the target schema
contribute with different, irreconcilable behaviors. For a complete presentation of the
MapMerge algorithm, we refer the interested reader to [5].

Evaluation. To evaluate the quality of the data generated based on MapMerge, we in-
troduced a measure that captures the similarity between a source and target instance

2 Modulo the absence of H1[w], which is introduced to ensure that no target attributes are left
unassigned.

A New Framework for Designing Schema Mappings 85

by measuring the amount of data associations that are preserved by the transformation
from the source to the target instance. We used this similarity measure in our experi-
ments, on a mix of real-life and synthetic mapping scenarios, to show that the mappings
derived by MapMerge are better than the input mappings. Our experiemental results are
presented in [5].

5.4 Correlating Flows of Schema Mappings with MapMerge and Composition

As discussed in the introduction, we can bring modular design of mappings beyond sets
of parallel mappings between the same pair of schemas, towards assembling general
flows of mappings. To generate meaningful end-to-end transformation specifications for
such flows, we have to bring along into the picture the sequential mapping composition
operator [18]. This operator can be used to obtain end-to-end mappings from chains
of successive mappings. In contrast, MapMerge assembles sets of “parallel” mappings.
These two operators can be leveraged in conjunction to correlate flows of mappings.

Recall the example of the flow of mappings in Figure 4. The individual mappings
can be assembled into an end-to-end mapping from the schema S1 to the schema S4

through repeated applications of the MapMerge and composition operators. To exem-
plify, the specialized mapping for Dept records between S2 and S4 is a result of com-
posing the mCS and m mappings. Furthermore, the right correlations among the Dept,
Emp, and Proj records that are migrated into S4 can be achieved by applying MapMerge
on m1,m2, and the result mCS ◦m of the previous composition.

Flow Correlation Algorithm. We provide here an overview of our flow correlation
algorithm. The complete details of this algorithm can be found in [5]. A flow of map-
pings can be modeled as a multigraph whose nodes are the schemas and whose edges
are the mappings between the schemas. Recall that a mapping consists of a pair of
source and target schemas as well as a set of constraints specified by SO tgds. In this
algorithm, a mapping between a source and a target schema is either part of the input, or
a consequence of applying MapMerge or mapping composition. Our algorithm assumes
that the graph of mappings is acyclic. In addition, for the purposes of this algorithm,
we assume that the MapMerge operator does not lead to outstanding residual equality
constraints. Integrating such constraints with the mapping composition operator is a
problem we plan to investigate in future work.

The flow correlation algorithm, which is shown in Figure 13, proceeds through al-
ternative phases of applying the MapMerge and mapping composition operators, and
terminates when no further progress can be made. In a MapMerge phase, the multi-
graph modeling the flow is essentially transformed into a regular graph. For any pair of
schemas Si,Sj , the set of mappings Mij going from Si to Sj is replaced by the re-
sult of applying MapMerge on Mij . In a mapping composition phase, for any distinct
schemas Si,Sj ,Sk in the flow such that M1 is a mapping from Si to Sj and M2 is a
mapping from Sj to Sk, the result M = M1 ◦M2 of composing M1 and M2 is added
to the flow. We use here the mapping composition algorithm in [18], since it applies to
schema mappings specified by SO tgds.

Our correlation algorithm keeps track, via the set C, of the mappings being added to
the flow in the composition phase. As a result, a mapping is not re-added to the flow

86 B. Alexe and W.-C. Tan

Algorithm CorrelateFlow(M)
Input: A set of schema mappings M.
Output: The set of schema mappings M after correlation.

Let S be the set of schemas that are either source or target schemas for the mappings in M.
Initialize C = ∅
Repeat

[Phase 1] MapMerge
For every pair (Si,Sj) of distinct schemas in S

Let Mij be the set of mappings from Si to Sj in M.
Remove the mappings in Mij from M
Add MapMerge(Mij) to M

[Phase 2] Composition
Initialize N = ∅
For every triple (Si,Sj ,Sk) of distinct schemas in S

where there exist in M a mapping M1 from Si to Sj and
a mapping M2 from Sj to Sk

Let M = M1 ◦M2

If M �∈ C (this composition was not considered before), add M to N
Add the mappings in N to M, and to C

Until N is empty.
Return M.

Fig. 13. The mapping flow correlation algorithm

if the result of composing the same mappings was computed and added to the flow
previously in the execution of the algorithm. The algorithm terminates when no new
mappings can be added to the flow in the composition phase, and returns the correlated
flow of mappingsM. After executing this algorithm, the flow of mappings will contain
at most one mapping between each pair of schemas (with each mapping typically being
a set of correlated formulas).

6 Conclusion

This article presents a new framework for designing schema mappings between large
schemas. This new framework allows a user to divide-and-conquer the design of large
schema mappings by designing the schema mappings between smaller portions of the
participating schemas. These smaller schema mappings can be designed independently
of the rest through the specification of data examples or through the use of traditional
schema mapping design tools. Such individually designed schema mappings can then
be correlated and merged into one that better represents the associations in the source
data, whenever possible.

Acknowledgements. This article presents an overview of work that has been inves-
tigated in the dissertation of Bogdan Alexe, whose academic genealogy can be traced
back to Peter Buneman.

A New Framework for Designing Schema Mappings 87

The authors are grateful to Balder ten Cate, Laura Chiticariu, Mauricio A. Hernández,
Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa for their collaboration on various
aspects of this work. This work is supported by NSF Grant IIS-0905276 and a Google
Faculty Award. Part of this work was done while Tan was at IBM Research - Almaden.

References

1. Alexe, B., ten Cate, B., Kolaitis, P.G., Tan, W.C.: Designing and Refining Schema Mappings
via Data Examples. In: SIGMOD Conference (2011)

2. Alexe, B., Chiticariu, L., Miller, R.J., Pepper, D., Tan, W.C.: Muse: a System for Under-
standing and Designing Mappings. In: SIGMOD Conference, pp. 1281–1284 (2008)

3. Alexe, B., Chiticariu, L., Miller, R.J., Tan, W.C.: Muse: Mapping Understanding and deSign
by Example. In: ICDE, pp. 10–19 (2008)

4. Alexe, B., et al.: Simplifying Information Integration: Object-Based Flow-of-Mappings
Framework for Integration. In: Castellanos, M., Dayal, U., Sellis, T. (eds.) BIRTE 2008.
LNBIP, vol. 27, pp. 108–121. Springer, Heidelberg (2009)

5. Alexe, B., Hernández, M.A., Popa, L., Tan, W.C.: MapMerge: Correlating Independent
Schema Mappings. PVLDB 3(1), 81–92 (2010)

6. Alexe, B., Hernández, M.A., Popa, L., Tan, W.C.: MapMerge: Correlating Independent
Schema Mappings. VLDB Journal 21(1), 1–21 (2012)

7. Alexe, B., Kolaitis, P.G., Tan, W.C.: Characterizing Schema Mappings via Data Examples.
In: ACM PODS, pp. 261–272 (2010)

8. Alexe, B.: Interactive and Modular Design of Schema Mappings. Ph.D. thesis, University of
California, Santa Cruz (2011)

9. Alexe, B., ten Cate, B., Kolaitis, P.G., Tan, W.C.: Characterizing schema mappings via data
examples. ACM TODS 36(4) (2011)

10. Alexe, B., ten Cate, B., Kolaitis, P.G., Tan, W.C.: Eirene: Interactive design and refinement
of schema mappings via data examples. PVLDB (Demonstration Track) (2011)

11. Beeri, C., Vardi, M.Y.: A Proof Procedure for Data Dependencies. JACM 31(4), 718–741
(1984)

12. Bernstein, P.A., Haas, L.M.: Information Integration in the Enterprise. Commun. ACM 51(9),
72–79 (2008)

13. Microsoft BizTalk Server, http://www.microsoft.com/biztalk
14. Bonifati, A., Chang, E.Q., Ho, T., Lakshmanan, L.V.S.: HepToX: Heterogeneous Peer to Peer

XML Databases (2005),
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0506002

15. Bonifati, A., Chang, E.Q., Ho, T., Lakshmanan, V.S., Pottinger, R.: HePToX: Marrying XML
and Heterogeneity in Your P2P Databases. In: VLDB, pp. 1267–1270 (2005)

16. Fagin, R., Haas, L.M., Hernández, M., Miller, R.J., Popa, L., Velegrakis, Y.: Clio: Schema
Mapping Creation and Data Exchange. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu,
E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 198–
236. Springer, Heidelberg (2009)

17. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics and Query An-
swering. TCS 336(1), 89–124 (2005)

18. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing Schema Mappings: Second-Order
Dependencies to the Rescue. TODS 30(4), 994–1055 (2005)

19. Fuxman, A., Hernández, M.A., Ho, H., Miller, R.J., Papotti, P., Popa, L.: Nested Mappings:
Schema Mapping Reloaded. In: VLDB, pp. 67–78 (2006)

20. International Nucleotide Sequence Database Collection, http://www.insdc.org

http://www.microsoft.com/biztalk
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0506002
http://www.insdc.org

88 B. Alexe and W.-C. Tan

21. Kolaitis, P.G.: Schema Mappings, Data Exchange, and Metadata Management. In: PODS,
pp. 61–75 (2005)

22. Lenzerini, M.: Data Integration: A Theoretical Perspective. In: PODS, pp. 233–246 (2002)
23. Madhavan, J., Halevy, A.Y.: Composing Mappings Among Data Sources. In: VLDB, pp.

572–583 (2003)
24. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing Implications of Data Dependencies.

TODS 4(4), 455–469 (1979)
25. Altova MapForce, http://www.altova.com
26. Marnette, B., Mecca, G., Papotti, P., Raunich, S., Santoro, D.: ++spicy: an opensource

tool for second-generation schema mapping and data exchange. PVLDB 4(12), 1438–1441
(2011)

27. Nash, A., Bernstein, P.A., Melnik, S.: Composition of Mappings Given by Embedded De-
pendencies. In: PODS, pp. 172–183 (2005)

28. Popa, L., Velegrakis, Y., Miller, R.J., Hernández, M.A., Fagin, R.: Translating Web Data. In:
VLDB, pp. 598–609 (2002)

29. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching. VLDB
Journal 10(4), 334–350 (2001)

30. Roth, M., Hernández, M.A., Coulthard, P., Yan, L., Popa, L., Ho, H.C.T., Salter, C.C.:
XML Mapping Technology: Making Connections in an XML-centric World. IBM Sys. Jour-
nal 45(2), 389–410 (2006)

31. Shu, N.C., Housel, B.C., Taylor, R.W., Ghosh, S.P., Lum, V.Y.: EXPRESS: A Data EX-
traction, Processing, and REStructuring System. ACM Trans. Database Syst. 2(2), 134–174
(1977)

32. Smith, J.M., Bernstein, P.A., Dayal, U., Goodman, N., Landers, T.A., Lin, K.W.T., Wong,
E.: Multibase: Integrating Heterogeneous Distributed Database Systems. In: AFIPS National
Computer Conference, pp. 487–499 (1981)

33. Stylus Studio, http://www.stylusstudio.com
34. U.S. Census Bureau, http://www.census.gov
35. Yan, L., Miller, R., Haas, L., Fagin, R.: Data-Driven Understanding and Refinement of

Schema Mappings. In: SIGMOD, pp. 485–496 (2001)
36. Yu, C., Popa, L.: Semantic Adaptation of Schema Mappings when Schemas Evolve. In:

VLDB, pp. 1006–1017 (2005)

http://www.altova.com
http://www.stylusstudio.com
http://www.census.gov

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 89–111, 2013.
© Springer-Verlag Berlin Heidelberg 2013

User Trust and Judgments
in a Curated Database with Explicit Provenance

David W. Archer1, Lois M.L. Delcambre2, and David Maier2

1 Galois Inc., Portland, OR 97204
2 Portland State University, Portland, OR 97207-0751
dwa@galois.com, {lmd, maier}@cs.pdx.edu

Abstract. We focus on human-in-the-loop, information-integration settings
where users gather and evaluate data from a broad variety of sources and where
the levels of trust in sources and users change dynamically. In such settings,
users must use their judgment as they collect and modify data. As an example,
a battlefield information officer preparing a report to inform his or her superiors
about the current state of affairs must gather and integrate data from many
(including non-computerized) sources. By tracking multiple sources for
individual values, the officer may eliminate a value from the current state
whenever all of the sources where this value was found are no longer trusted.
We define a conceptual model for a curated database with provenance for such
settings, the Multi-granularity, Multi-provenance Model (MMP), which
supports multiple insertions and multiple (copy-and-)paste operations for a
single database element, captures the external source for all operations, and
includes a Data Confidence Language that allows users to confirm or doubt
values to record their atomic judgments about the data. In this paper, we briefly
summarize the MMP model and show how it can be extended to support
potentially complex operations including compound judgment operators (such
as merging tuples to achieve entity resolution), while capturing a complete
record of data provenance.

1 Introduction: Our Data-Curation Setting

Our work is motivated by our interest in a data curation setting – typically a human-
in-the-loop setting – where a user is continually making judgments about the
trustworthiness of data items. Green et al. point out that users often consider where
data came from and how or by whom it has been modified in making such judgments
[Green07]. As observed by Buneman et al., [Buneman06] data curators are quite
naturally performing information integration as they “use a wide variety of sources to
select, organize, classify and annotate existing data into a database on some topic.”
Buneman and his colleagues also identified copy-and-paste as one of the key
operations performed by data curators and noted that keeping track of the provenance
due to user actions (in the form of data manipulations) is as important as keeping
track of the resulting data. Their work was motivated, in part, by settings where the
collective scientific community works together to evolve local copies of a single,
shared database.

90 D.W. Archer, L.M.L. Delcambre, and D. Maier

Our focus is on a somewhat different setting for curation where there are many
competing and perhaps conflicting sources for (ordinary) data and where users may
prepare different data products (from the same contributing data) to support different
purposes. As an example, a battlefield information officer must collect and verify
data for use by the local commander to decide on near-term actions. Alliances and
allegiances can change, so a data source trusted yesterday might be in question today.
In the same way, operations performed on data by a particular user during a particular
time period may be in question. A user in this setting integrates data largely through
manual, curatorial activities and each decision that he or she makes embodies his or
her judgment.

The setting we envision has the following requirements:

• track provenance of all operations that create or modify data – The provenance
record should include: the source of the information, the user (or automated
process) who performed the operation, and the timestamp. The system must track
queries (including materialized queries) and all data manipulation (DML)
operations including copy-and-paste. We consider copy-and-paste as using an
internal source (a value elsewhere in the same database) and insert as using an
external source (some separate file or system). Since the schema may evolve over
time, the provenance record should also track data definition (DDL) operations
such as create or alter table statements.

• record multiple internal and external sources for values – Allowing users to
indicate multiple sources for values is important in this setting. Consider a
schema: Employee(Name, ID) with a relation instance containing one tuple <Bob,
8>. The source of this tuple could be recorded in the provenance record when it
was originally inserted. User Betty could then find an additional external or
internal source of information that confirms that Bob’s ID is 8 and record this
source as additional provenance for the tuple. In such a system, a single value in
the database may have multiple histories based on DML operations alone.

• provide full access to provenance and data – Since users are aware of the actions
performed on the data as well as the sources, they may find it useful to browse and
query both data and provenance, including selecting data based on provenance. For
example, user Candice might query Betty’s database in order to search for data
about Bob that was inserted from source S. Users may also wish to see the
database as it existed at previous points in time.

• allow users to record their confidence in data – In this setting, users are often
engaged in checking or corroborating data. Thus, it is useful to allow users to
(simply) record their confidence (or lack thereof) in a value. For example, Candice
might choose to record in the database that she has confidence in <Bob, 8>,
perhaps because Bob told her that his ID is 8. Similarly, she might choose to record
that she has reason to doubt some other data. Other users may consider these
expressions of confidence and doubt when making their own judgments about the
data.

 User Trust and Judgments in a Curated Database with Explicit Provenance 91

We define trustworthiness of data to be a function of the user’s trust in the sources
from which the data came, the operations performed on it, the users who performed
those operations, and the time periods when they were performed. Calculating a value
of trustworthiness for an item of data thus requires that we: capture its provenance (as
described above); allow the user to express levels of trust in the information sources,
operations, and users represented in that provenance; and provide a method for
computing a consistent mathematical valuation over that provenance and those levels
of trust. These needs lead to one additional requirement:

• determine user trust in external sources, users and timestamps with

trustworthiness calculations – By recording the level of trust in sources,
(earlier) users who manipulated data, and in time periods, a user should be able to
compute the current trustworthiness of data. Thus the system should support a
systematic calculation of trustworthiness of data based on the provenance record
much like the provenance polynomials developed by Green et al. [Green07b].

This paper presents the Multi-granularity, Multi-Provenance (MMP) Model

[Archer11], a conceptual model designed to support this setting for data in a relational
database. As a conceptual model, MMP is designed to make it easy for a user to
browse and understand the complete record of the database as it evolved, with a
complete record of its provenance. The state of the database at a point in time is
called a face. MMP represents the complete record of user actions as a series of
faces, ordered by timestamp, where each face is labeled with the identity of the user
who performed the operation that created the face, the operation performed, and the
timestamp at which the operation was applied. MMP includes a Data Confidence
Language (DCL) that allows a user to confirm or doubt a given value; such operations
are reflected in the provenance record (with the user and the date) but do not modify
the value. Provenance is represented explicitly in MMP as links from components
(i.e., relations, attributes, tuples, or values) in the current face to the components in
the immediately preceding face from which the component was derived. MMP
records provenance for query, data manipulation (DML), data definition (DDL), and
data confidence (DCL) operations at various levels of granularity (i.e., table, attribute,
tuple, and value) as appropriate for each operator in the model (multi-granularity) and
explicitly allows for values to be inserted or (copy-and-)pasted multiple times, from
different sources (multi-provenance). MMP represents external sources explicitly;
provenance links are also used to connect each component (e.g., that was inserted) to
the external source referent from which it was taken. MMP also includes a sub-
language for use with traditional relational selection and projection operators that
allows a user to select data based on its provenance [Archer10].

MMP builds on prior work in database provenance that records the provenance of
tuples in a query answer, and prior work in curated databases that records the
provenance of DML operations including the copy-and-paste operation. These
previous works treat provenance as part of the data, affected by the same operations
that affect data, and stored as additional schema elements (typically an additional
attribute value for each tuple) along with data. Such an approach has several

92 D.W. Archer, L.M.L. Delcambre, and D. Maier

shortcomings with respect to how we expect provenance to be used. Because these
models do not distinguish provenance from data, a user is left to manage and maintain
provenance explicitly. For example, the user must take care not to delete or over-write
provenance during each operation he or she performs. For the same reason,
provenance must be queried using the query language for data, instead of allowing
query language specifically for querying provenance. In these previous works it is
possible to write a query that returns the provenance of selected data, but it is difficult
to write a query that selects data based on its provenance. This difficulty arises
because provenance is typically encoded in some sort of expression (e.g., polynomial)
in an ordinary attribute; accessing data based on provenance would require parsing
the provenance expressions. Because provenance in these models is treated as
additional attribute values stored with data, deletion of the data leaves no place to
retain its provenance, yet that provenance may be an important part of the provenance
record of other data (previously derived from the deleted data) that is still present in
the database. Because provenance in these models is stored as individual attribute
values along with the data, these approaches limit data to having a single “history”,
preventing the system from representing, for example, multiple insertions of the same
data from distinct sources. Because the relational model used in this prior work does
not provide for recording provenance of all granularities of the data, it is not possible
to represent some aspects of provenance. For example, this prior work does not
support provenance for entire relations or entire attributes within relations. These
models require complex computation and recursion over the database to convert “one-
step” histories into a representation suitable for querying the full lineage of data.
MMP addresses each of these shortcomings by providing a conceptual model where
provenance has its own representation, semantics, and query language, and is
managed independently of the data it describes. MMP also goes beyond these
existing approaches by capturing additional information in the provenance record,
including the external source (that was consulted), the user, and timestamp of each
operation, by introducing data confidence operators, and by supporting multiple insert
and paste operations for a value, a tuple, or a relation.

This paper contributes an overview of the MMP conceptual model and its formal
definition and an explanation of how MMP operations can be easily combined in
transactions to support complex operations including compound judgment operations.
We illustrate this capability via an entity resolution operation (where two tuples are
combined based on user judgment).

We describe the MMP model in Section 2 and provide an overview of its formal
definition in Section 3. The formal definition allows us to demonstrate that MMP
correctly supports polynomials [Green07b], extended to handle the additional features
of external sources, DDL, DCL, and multiple insert and copy-and-paste operations.
In Section 4, we describe how complex operations can be defined in MMP and we
show how MMP supports trust-evaluation using polynomial expressions. Section 5
compares the work to related work in the field. Section 6 provides conclusions and a
discussion of future work.

 User Trust and Judgments in a Curated Database with Explicit Provenance 93

2 The Multi-granularity, Multi-Provenance Model (MMP)

The goal for MMP is to show the end-user a complete picture of both data and
provenance in an understandable manner. MMP represents data and provenance
orthogonally, with data accessible for users to create, modify, or delete but with
provenance created as a by-product of the user operations and never modified. An
MMP instance consists of a set of external sources (each represented as an un-
interpreted token), a series of faces where each face is one instance of the database,
and a set of provenance links from components in a face to components in the
preceding face or to external sources.

Figure 1 shows two simple MMP instances with the current face shown in front
with predecessor faces ordered. The left side of Figure 1 shows provenance links to
an external source based on a tuple being inserted from that source (for example,
based on user Betty inserting tuple <Bob, 8> into relation A from source X). The right
side of Figure 1 shows provenance links introduced from the new face to the
immediately preceding face when a relation is (copied and) pasted from another
relation (for example, based on Betty copying the entirety of relation A from an
existing relation B). In each case, the newly introduced face is labeled with the
operation, user, and timestamp that led to the face. (The user is omitted in Figure 1 for
brevity.) The left side of Figure 1 shows the provenance links for the tuple as well as
inherited provenance links (described below and shown as dotted lines) for the
attribute values in the tuple. The right side of Figure 1 shows provenance links at all
four levels of granularity; relation A has a provenance link to relation B and
additional provenance links (shown as dotted lines) are inherited as follows. Each
attribute in relation A has a provenance link to the corresponding attribute in B; the
tuple in A has a provenance link to the corresponding tuple in B; and each value in the
tuple has a provenance link to its corresponding value. MMP defines provenance at
the highest appropriate level of granularity for each supported operation and includes
a set of inheritance rules that can compute the complete set of provenance links. As a
result, MMP instances store the minimum explicit provenance links to represent
complete provenance. For example, for the right hand side of Figure 1, an MMP
instance need only store the single relation-level provenance link. For the left hand
side of Figure 1, an MMP instance need only store the single tuple-level provenance
link. The remaining links may be inferred from those links. In this paper, we focus on
provenance links for tuples and values (assuming those links have been either induced
directly by an MMP operation or deduced using the inheritance rules). Note that the
database schema may change from one face to the next, based on DDL operations.
The details of the inheritance rules for provenance and how DDL operations are
supported in MMP can be found elsewhere [Archer11]. Once created, provenance
links are permanent1 and immutable.

In MMP, implicit, automatically derived provenance links, called continuity links,
connect an unchanged component in one face to the identical component in the

1 In an operational system, a user (with the appropriate privileges) should be able to delete the

oldest faces and the associated provenance links that are deemed no longer useful.

94 D.W. Archer, L.M.L. Delcambre, and D. Maier

Fig. 1. Successive faces of two different MMP instances, with explicit and inherited links to an
external source (left) for an insert operation and with explicit and inherited provenance links
(right) for a (copy-and-)paste operation. Inherited links are shown as dotted lines.

Table 1. MMP operators (new operators shown in bold)

Note: r = relation, t = tuple, a = attribute, v = value, s = (external) source
Note: for the paste operations: subscript s indicates source and subscript t indicates target
Data Definition Operators (DDL) Data Manipulation Operators (DML)
Create Relation(r) Insert Value(r, t, a, v, s)
Create Source(name) Drop Value(r, t, a, s)
Create Attribute(r, a) Insert Tuple(r, (a, v[, a, v, …], s))

Drop Relation(r) Drop Tuple(r, t, s)

Drop Attribute(r, a) Paste Value(rt, tt, at, rs, ts, as)
Data Confidence Operators (DCL) Paste Tuple(rt, rs, ts)
Confirm Value(r, t, a, v, s) Paste Relation(rt, rs)
Doubt Value(r, t, a, v, s) Query Operators
 select, project, join, union

immediately preceding face, called the predecessor of the component in the new face.
Continuity links to predecessors are not shown in Figure 1 and are generally not
shown to the user, though they are available when querying provenance.

The MMP operators are shown in Table 1, with new operators (beyond those found
in a relational DBMS) shown in bold. Each operator takes an MMP instance and
creates a new MMP instance with at most one additional face, where the effect of the
operator is reflected in the newly introduced face using the standard definition of
relational database operators. MMP includes operators that create or drop attributes
in a relational schema and operators that insert and drop values in a tuple, with the
obvious semantics. The new Create Source DDL operator allows the user to introduce

 User Trust and Judgments in a Curated Database with Explicit Provenance 95

Fig. 2. MMP example showing three Inserts, one (materialized) query, a Paste, and a Confirm
operation

a new external source reference (which is represented as an uninterpreted text string,
in the current model). Create Source is the only operator that does not add a face to its
input instance—it only augments the set of external sources. MMP includes new
DML operators that allow a user to insert or drop individual values and that allow a
user to paste a value, tuple, or relation. In MMP, a user can issue multiple insertions
and pastes of data, with each represented as an additional source in the data’s
provenance, as long as the data inserted or pasted is identical to the existing data. A
data component appears in all faces following the one in which it was created.

96 D.W. Archer, L.M.L. Delcambre, and D. Maier

Every data item in a face has an associated expired flag that is initially set to false.
When data is dropped (i.e., deleted) by an MMP operator, the expired flag is set to
true in succeeding faces. MMP operators that correspond to standard relational
operators2 consider only the data that has the expired flag equal to false.

Figure 2 shows a more complex example using MMP, with seven successive faces.
In this example, user Candice starts with a database containing relation A (with tuple
<Bob, 8>), relation D (with tuple <John, 6>), and empty relation B. Candice first
inserts <John, 6> into A from external source X. She then inserts <Sue, 7> into
relation B from external source Y, and then inserts <John, 6> into relation B from
external source Z. Next, Candice executes the query “C = SELECT Name, ID FROM
A WHERE Name = “John” UNION SELECT Name, ID FROM B WHERE Name =
“John”. As a result, relation C is created, containing the single tuple <John, 6>. Next,
Candice re-pastes the ID value “6” into this tuple from relation D, to indicate that D is
another source of the same data. Finally, Candice indicates that she has additional
confidence in “6” as John’s ID because of information she found in external source
“W”. (The user and the timestamp are omitted from the labels in this example.) We
see that insert operations and the confirm and doubt operations induce provenance
links only to external sources. Queries induce provenance links at the relation,
attribute, tuple, and value levels. For example, the value 6 in the query result has
provenance links to the 6 from each of the relations involved in the query. A Confirm
operation, the last one shown, induces only a provenance link to the external source
used. (Continuity links to predecessors, as well as inherited links, are not shown in
Figure 2.)

3 Overview of the Formal Definition of MMP

An MMP instance M consists of the following:

• A finite sequence of relational databases instances D = (d1, d2, …, dn), where n
is the current number of database instances. Each database instance in D is called
a face. Each face di consists of a finite set of relations. Each relation consists of a
finite set of tuples sharing a common schema consisting of a finite set of
attributes. Each tuple includes at most one value from the domain of each
attribute of the schema for the relation. The set of components ܥ௜ in a face di is
the union of the relations, attributes, tuples, and values in di. Note that
components are distinguished by the face in which they appear. For example, if a
relation is present in face i (prior to an operation on the database) and is also
present in face i + 1 (after that operation is applied), then an MMP instance
would include two distinct components (one belonging to Ci and one belonging to
Ci+1) to represent the relation appearing in the two faces. C = ڂ ௜௡௜ୀଵܥ is the set of
components in D.

2 MMP includes a predicate sublanguage for use in the relational algebra select and project

operators; this sublanguage supports inspection of the expired flag. All other MMP operators
work only with unexpired data.

 User Trust and Judgments in a Curated Database with Explicit Provenance 97

• A set of labels lD = TS × OpD × U. For a label <ts, op, u> in lD, ts ∈ TS is a
timestamp, op ∈ OpD describes an operation from the MMP language as it was
invoked, and u ∈ U identifies a user of M.

• A labeling function λD: D → lD that associates a label with each face d ∈ D,
which indicates when the face was created, the operation involved, and the the
user who applied the operation. We require that D is ordered by increasing
timestamps of the labels of its faces.

• A finite set S of external source referents that represent external sources.
• A finite set of provenance links L, where each lp ∈ L is a hyper-edge from a

component cn+1 ∈ dn+1 to a non-empty set of components in dn or an edge from a
component cn+1 ∈ dn+1 to an external source referent s ∈ S. A provenance link
lp(cn+1, Bn) indicates that the components in Bn , where Bn ⊆ Cn, collectively give
rise to component cn+1 as a result of the operation that induced dn+1. A provenance
link lp(cn+1, s) indicates that external source s gave rise to cn+1 as a result of an
operation that induced dn+1.

• A finite set of continuity links, each from a component in one face to the
corresponding component in the immediately preceding face (if it exists), which
is called the predecessor. The (partial) function predecessor: C → C delivers the
predecessor of a component. Continuity links represent the implicit, trivial
derivation of a component in dn+1 from its existence in dn. All components in dn+1

not affected directly by the operation that created dn+1 have such a link.

Each MMP (non-query) operator and each composition of MMP query operators
that constitute a single query takes an instance M with current database face dn and
produces a new instance M' with the following items added, as appropriate for the
operator: zero or one additional face dn+1, zero or more additional provenance links
(from components in dn+1 to components in dn or from components in dn+1 to external
sources), a new labeling function λD (identical to the existing labeling function except
that it is defined for one additional face, if the operator introduced a new face), a new
set S with zero or one additional sources, and a new predecessor function (extending
the existing predecessor function to the newly introduced components in dn+1 to define
the new continuity links). An initial instance M consists of a single empty face, an
empty set of sources (S), an empty set of provenance links (L), a labeling function
defined only for the first face with a label <time = 0, null, null> and an empty
predecessor function.

3.1 Provenance Induced by MMP Operations

The provenance links that we introduce from components in one face to components
in the immediately preceding face can be viewed as an explicit representation of the
polynomials introduced by Green, et al. [Green07b], extended to handle the MMP
operators, to represent provenance links from a component to an external source
reference (when appropriate), and to support the labels associated with each
operation. In MMP, we introduce one provenance link from a component c to a set Bn

98 D.W. Archer, L.M.L. Delcambre, and D. Maier

of components to represent each distinct derivation for c. When the set Bn consists of
more than one component, all of the components in Bn, collectively, are required for
the derivation of c. The detailed description of the semantics of the MMP operations
is defined elsewhere [Archer11]; we briefly describe how the MMP operators induce
provenance here. Let M be an MMP instance with current face dn. All of the operators
(except Create Source) induce a new face dn+1 into M with the following
modifications.

MMP DDL Operations:
Create Relation(r) adds a new empty relation named r to face dn+1. Create
Attribute(r, a) adds a new attribute to relation r in face dn+1. The Drop Relation and
Drop Attribute operations set the expired flag for the relevant component in dn+1 to
true. None of these DDL operators induce provenance links. Note that Create
Source(name) simply adds name to S and does not induce a new face and thus does
not induce a label.

MMP DCL and DML Operations:
The Confirm Value(r, t, a, v, s) operation (and similarly Doubt Value) creates face
dn+1 identical to face dn and introduces a provenance link from the value v (for
attribute a in tuple t in relation r) in face dn+1 to external source referent s.

The Insert Value(r, t, a, v, s) operation adds the new value v (for attribute a in tuple
t in relation r), in face dn+1 and creates a provenance link from v to external source
referent s, in the case when a value does not exist for attribute a in tuple t in relation r
in face dn. Similarly, Insert Tuple(r, (a, v[, a, v, …], s)) introduces a new tuple into
face dn+1 for relation r with a provenance link to s if the tuple does not yet exist in face
dn. If the value or the tuple exists in dn, then the existing value or the tuple must be
identical to the inserted value or tuple. In this case, the effect of the Insert Value or
Insert Tuple operator is to introduce a new face with the a provenance link from the
value or tuple in the new face to the designated source referent s (effectively a re-
insert operation).

Drop Value(r, t, a, s) and Drop Tuple(r, t, s) set the expired flag to true for the
value or tuple, respectively, and introduce a provenance link from the value or tuple
to source s.

The three paste operations, Paste Value(rt, tt, at, rs, ts, as), Paste Tuple(rt, rs, ts), and
Paste Relation(rt, rs), where subscript t indicates the target and subscript s indicates
the source, insert the source value (for relation r, tuple t, attribute a), tuple (for
relation r, tuple t), or relation (for relation r)—in the case when it does not exist—and
creates a provenance link from the target value, tuple, or relation to the source value,
tuple, or relation. If the component exists in dn, then it must be identical to the pasted
component. In this case, the paste operation creates a provenance link, as described
above, from the component in dn+1 to the component from which it was copied in dn

(effectively a re-paste operation).

 User Trust and Judgments in a Curated Database with Explicit Provenance 99

MMP Queries:
All relations mentioned in a query must be in the current face, dn, of an MMP instance
M. A query in this form produces a new face dn+1 with the query result relation rnew
(assuming that rnew is not yet in face dn+1), using the normal semantics of these
operators. Although the MMP model induces provenance for relations, attributes,
tuples, and attribute values as described elsewhere [Archer11], we describe here only
the provenance for tuples in the query answer. We define the provenance links
introduced by query operators, recursively.

The cross product operator, rnew = rn,1 × … × rn,A, for input relations rn,x, 1 ≤ x ≤ A,
on face dn, induces one provenance link for each tuple tnew in the query result rnew.
Each result tuple is linked by this provenance link to all of the tuples, one from each
rn,x, 1 ≤ x ≤ A, that contributed to tnew. MMP introduces a single provenance link for
each tuple tnew in the query result because all of the tuples from face dn together are
needed to derive tnew, for the cross product operator.

The select operator, σcondition(rn,i), for some input relation ri on face dn, induces one
provenance link for each tuple tnew in the query answer that connects tnew to the
identical tuple told in dn. There is at most one such tuple.

The project operator, rnew = πcolumnList(rn,i), for some input relation ri on face dn,
induces one provenance link for each tuple tnew in the query result that connects tnew to
one of the tuples in ri that resulted in tnew. The project operator introduces one
provenance link for each tuple in face dn from which tnew was derived because they
each represent an independent derivation for tnew.

The union operator, rnew = rn,1 ∪ … ∪ rn,A, for input relations rx, 1 ≤ x ≤ A, on face
dn, induces multiple provenance links for each tuple tnew in the query result, one for
each tuple in an input relation that is identical to tnew. MMP introduces multiple
provenance links because any one of the identical tuples from an input relation can
independently result in tnew.

To represent the provenance of complex queries in MMP, SPJU queries are first
converted to the following form, with A terms in a multiway union: πଵߪଵ൫ݎଵ,ଵ ൈ … ൈ ଵ,௤భ൯ݎ ׫ ׫ … π஺σ஺൫ݎ஺,ଵ ൈ … ൈ ஺,௤ಲ൯ݎ

The attribute list for the project operators (πi, 1 ≤ i ≤ A) and the conditions for the
select operators (σi, 1 ≤ i ≤ A) are not shown in this expression. All input relations
are on the current face and the result relation is created on the new face introduced by
this query; we omit the subscript for face on the relations shown here, for simplicity.
One can view the provenance induced by a query of this form as the provenance
induced in four successive faces where the first face contains the results of the
multiway cross-product operators, the second face contains the result of the select
operators (each with the result from the appropriate cross-product operator as input),
the third face contains the result of the project operators (each with the result from the
appropriate select operator as input), and the fourth face contains the result of the
multiway union. In MMP, without loss of generality, we compose the provenance
links from these four faces; the resulting provenance links are induced from tuples in
the final query answer in dn+1 to the appropriate tuples in dn.

100 D.W. Archer, L.M.L. Delcambre, and D. Maier

3.2 Provenance Polynomials in MMP

Green et al. [Green07b] show how to express several forms of database provenance
using algebraic expressions from various underlying semi-rings. The resulting
polynomial expressions can be stored as text strings in an annotation field that is
added to the tuples to represent provenance. The explicit and implicit (inherited and
continuity) provenance links in MMP, with provenance represented separately from
relational data, capture the information present in the most expressive polynomials
defined by Green et al. for use in Orchestra. In MMP, we extend the work of Green et
al. in the following ways:

• We represent multi-generation (not just single-generation) provenance by

composing polynomials.
• We include the operations performed, identity of users performing them, and time

at which they were performed.
• We include provenance due to DDL and DML in addition to query operations.
• We allow for polynomials at all levels of granularity: relation, tuple, and attribute

value.

Since MMP allows multiple insert and paste operations for a single tuple or value
and since each such insert or paste operation can independently contribute the tuple or
value in question, the polynomial expressions for MMP use the + operation to
combine the provenance from such multiple insert and paste operations. Also, as in
Green et al.’s approach, the + operation is used to combine the provenance links
induced by the union and project query operators.

Consider an MMP instance M with components C and external source referents S.
In the following discussion we refer to components in C and S and variables that
represent those components in our polynomial expressions interchangeably. Let V =
C ∪ S. We define ProvSN to be a semi-ring (V, +, •, 0, 1), where + is algebraic
addition and • is algebraic multiplication. The provenance of c ∈ C is represented by
a polynomial expression in ProvSN where + represents that any of its terms alone gives
rise to c, and • represents that all of its terms together give rise to c. For example, if
the provenance of c is x1 • x2 + x3, for c ∈ C and x1, x2, and x3 ∈ V, then c is present in
V because both x1 and x2 were present as inputs to an operation that had c as output,
and is independently present because x3 was present as an input to a (possibly distinct)
operation that gave rise to c.

Let K be the set of constants, if any, introduced by queries that have previously run
on M. Assume that we want to compute the provenance of a component c. Let Cstop
be a set of components3 of the same type as c in M specified by the user beyond
which no provenance should be represented in the polynomial expression. Let B be
the subset of C that appears in the face of the MMP instance immediately preceding
the face in which c appears. Let c' = predecessor(c), if it is defined. Note that any
component has at most one predecessor consisting of the identical copy of the

3 Typically, all of the components in Cstop are in the same face, but they need not be.

 User Trust and Judgments in a Curated Database with Explicit Provenance 101

component c in the immediately preceding face (based on the continuity link between
components unaffected by the operation that created the new face). Let c originate N
provenance links, l1(c, B1), …, lN(c, BN), where link lX, 1 ≤ X ≤ N, has a terminal at
each bX,Y ∈ BX, 1 ≤ Y ≤ |BX|. For a component c in face dn of M, the provenance of c in
ProvSN is defined recursively as

 = ௌே(c)ݒ݋ݎܲ

ێێۏ
ێێێ
ۍ ܿ if ܿ א ൫ܵ ׫ ܭ ׫ ௦௧௢௣൯෍ܥ ሺෑ ௌே|஻௑|௒ୀଵே௑ୀଵݒ݋ݎܲ ሺܾ௑,௒ሻ ൅ ܲݒ݋ݎௌேሺܿᇱሻ ݂݅ ܿ א ሺܵ ׫ ܭ ׫ ௦௧௢௣ሻܽ݊݀ ܿᇱܥ ൌ ,ሺܿሻݎ݋ݏݏ݁ܿ݁݀݁ݎ݌ ෍݂݀݁݊݅݁݀ ݏ݅ ሺܿሻݎ݋ݏݏ݁ܿ݁݀݁ݎ݌ ݂݅ ሺෑ ௌே|஻௑|௒ୀଵே௑ୀଵݒ݋ݎܲ ሺܾ௑,௒ሻሻ ݁ݏ݅ݓݎ݄݁ݐ݋

Here, summation indicates the + operation in ܲݒ݋ݎௌே, and product indicates the •

operation in ProvSN. Recursion stops when original sources, constants induced by
queries, or stopping points specified by the user are encountered. By including the
option for stopping points, we can represent as many generations of a component's
provenance as the user wishes to see. If Cstop is the set of components in the face
immediately preceding the one where c first appears, then ProvSN(c) is the single-
generation provenance of c, comparable to most provenance representations from the
literature. If Cstop is the empty set, then ProvSN(c) is the complete multi-generation
provenance of c, which traces back every provenance path to a query constant or an
external source.

As an example, consider the MMP instance in Figure 2. Assume that the attribute
value 6 for the ID attribute value in tuple 1 of relation D on face n is a constant
induced by a previous query. Let S = {W, X, Y, Z} represent the external sources
shown in Figure 2. Let c be the attribute value of 6 for the attribute ID in the first
tuple of relation C at time = n + 6. Then

ProvSN (c) = ProvSN(n1) + W

where n1 = predecessor (c) (i.e., the value 6 in the first tuple of relation C in face n
+ 5), and W is the source for the Confirm value operation shown in the label for face
n + 6. Expanding further, we see that

ProvSN (c) = (ProvSN(n2) + ProvSN(n3)) + W

where n2 = predecessor(n1) (i.e., the value 6 in the first tuple of relation C in face n
+ 4) and n3 is the value 6 in first tuple of relation D based on the provenance link to
face n + 4. Following another step of expansion, we see then that

ProvSN (c) = (ProvSN(n4) + ProvSN(n5)) + ProvSN(n6) + W

102 D.W. Archer, L.M.L. Delcambre, and D. Maier

where n4 is the value 6 in the first tuple of relation A in face n + 3 and n5 is the
value 6 in the first tuple of relation B in face n + 3 based on the provenance links for
the query shown in the label for face n + 4. And n6 = predecessor(n3) (i.e., the value
6 in relation the first tuple in relation D in face n + 3). Continuing, we see that

ProvSN (c) = ProvSN(n7) + Z + ProvSN(n8) + W
where n7 = predecessor(n4) (i.e., the value 6 in the second tuple of relation A in

face n + 2), Z is the source of the Insert tuple operation shown in the label of face n +
3, and n8 = predecessor(n6) (i.e., the value 6 in the first tuple of relation D in face n +
2). Next, we see that

ProvSN (c) = ProvSN(n9) + Z + ProvSN(n10) + W

where n9 = predecessor(n7) (i.e., the value 6 in relation A in face n + 1) and n10 =
predecessor(n8) (i.e., the value 6 in the first tuple of relation B in face n + 1). Finally,

ProvSN (c) = X + Z + n11 + W

where X is the source of the Insert tuple operation shown in the label of face n + 1
and n11 = predecessor(n10) (i.e., the value 6 in the first tuple in relation D in face n).
As described above, n11 was introduced by an earlier query; thus n11 ∈ K.

The recursive expansion of ProvSN expressions terminates in polynomial time,
because provenance graphs are acyclic, traversal follows the indicated direction of the
directed edges in our graphs, (i.e., from dn+1 to dn), and no provenance links originate
from external source or query-constant nodes.

We extend the definition of ProvSN to include variables representing the label
associated with the provenance link. To do so, we introduce the function
LabelToVars, which maps the label on the relevant face to a product of representative
variables:

 ProvSN(c) =

ێێۏ
ێێێ
ۍێ ܿ if ܿ א ൫ܵ ׫ ܭ ׫ ௦௧௢௣൯෍ܥ ሺෑ ௌே|஻௑|௒ୀଵே௑ୀଵݒ݋ݎ஽ሺ݀௡ሻሻܲߣሺݏݎܸܽ݋݈ܾܶ݁ܽܮ ൫ܾ௑,௒൯ ൅ א ܿ ݂݅ ௌேሺܿᇱሻݒ݋ݎܲ ൫ܵ ׫ ܭ ׫ ௦௧௢௣൯ ܽ݊݀ܿᇱܥ ൌ ,ሺܿሻݎ݋ݏݏ݁ܿ݁݀݁ݎ݌ ෍݂݀݁݊݅݁݀ ݏ݅ ሺܿሻݎ݋ݏݏ݁ܿ݁݀݁ݎ݌ ݂݅ ሺෑ ௌே|஻௑|௒ୀଵே௑ୀଵݒ݋ݎܲ ஽ሺ݀௡ሻሻߣሺݏݎܸܽ݋݈ܾܶ݁ܽܮ ሺܾ௑,௒ሻሻ ݁ݏ݅ݓݎ݄݁ݐ݋

Face dn in the above expressions is the face in D that contains the component bX,Y.

Simply stated, each step through an ancestor bX,Y of c induces a product of variables
LabelToVars(λD(dn)) where one variable represents the user, one represents the

 User Trust and Judgments in a Curated Database with Explicit Provenance 103

operation, and one represents the timestamp of the label applied at that step. As an
example, for the face with the label <n+1, ‘Insert tuple’, ‘Candice’>:

LabelToVars(<n+1, ‘Insert tuple’, ‘Candice’>) = τ1time • τ1op • τ1user

where τ1time represents the timestamp n+1, τ1op represents the operations ‘Insert

tuple’, and τ1user represents ‘Candice’. Thus the value of ProvSN(c) from the example
above is:

τ1time • τ1op • τ1user • X +
τ2time • τ2op • τ2user • Z +

τ3time • τ3op • τ3user • n11 +
τ4time • τ4op • τ4user • W

4 Exploiting Judgments in MMP

The DDL, DML, DCL and query language of MMP allow users to manipulate a
curated database with provenance. We view each such action as embodying the
judgment of a user or a (possibly automated) proxy of a user. Thus we view the MMP
model as providing the capability to support and capture basic, atomic judgments of
users. Here we describe how additional, compound judgment operations can be
supported in MMP.

Defining a priori the allowable set of judgment operations assumes that we could
anticipate the needs of a wide variety of users. Instead, we augment the MMP model
with a means to implement such higher-level operations via sequences of primitive
operations in a transaction or compound operation. We also show how MMP data and
provenance can be used to make a trust assessment about components based on user
valuations of trustworthiness for sources, users, operations, and timestamps that
appear in the provenance. These two extensions are described in the subsections
below followed by an example of a compound judgment operation for entity
resolution.

4.1 Compound Operations (Transactions) in MMP

An MMP transaction consists of a sequence of MMP operations. The intermediate
and final results of a transaction are thus represented by a sequence of consecutive
faces in an MMP instance. To distinguish transactions in MMP, we add two
components to the label associated with each face in an MMP: a transaction type and
a transaction identifier. The transaction type is a string representing the name of the
compound operation that was performed. For example, the transaction type might be
“entity resolution”. The transaction ID is a natural number (distinct from the
timestamp) and is strictly monotonically increasing across transactions. Note that, for
simplicity, we assume here that users issue transactions one at a time. All of the faces
in a given transaction have the same transaction type, identifier, and user and, as a
result, all of the faces for one transaction are consecutive in an MMP instance.

104 D.W. Archer, L.M.L. Delcambre, and D. Maier

Recall from Section 3 that an MMP instance includes a labeling function λD: D
→lD, which associates a label drawn from a set of labels lD = TS × OpD × U with each
newly introduced face d ∈ D. We introduce transactions into MMP by extending lD:

 lD = TS × OpD × U × TT × ID

where TT is a set of strings identifying recognized transaction types and ID is a
natural number representing the transaction’s unique identity. We correspondingly
extend the LabelToVars function to accept our new definition of face labels as input
and produce two additional variables in the product (one variable for transaction type
and one for transaction ID).

4.2 Provenance Polynomial Evaluation in MMP

For a given component c in an MMP instance and a given set of stopping points, the
provenance polynomial for the component, ProvSN(c), follows from the MMP
instance, as described in Section 3.2. Each polynomial expression includes symbols
that represent provenance constituents: external sources, users, timestamps,
operations, transaction types, transaction IDs, and constants introduced by queries. If
the set of stopping points is empty, then these symbols are the only ones that can
appear in the polynomial expression. If the set of stopping points is non-empty, then
the polynomial expression may also include symbols that represent individual
components, just as the symbols in a polynomial expression as defined by Green et al.
represent individual tuples.

There are many ways to evaluate trust using a polynomial. One way to do so is to
replace each symbol in the polynomial by its current trust value. As a simple
example, consider a trust value as either 0 or 1, indicating that a constituent is not
trusted (0) or is trusted (1). Using the approach of Green et al. where trust values are 0
or 1 and + and • have the ordinary semantics of arithmetic, evaluating a polynomial
results in a value that is 0 (if the component that corresponds to this polynomial
expression cannot be derived from trusted components based on the current trust
values) or a natural number t greater than 0 (if the component that corresponds to this
polynomial expression can be derived in t distinct ways from trusted components). In
general, all trust values must be known in order to compute the current state of the
database. In practice, trust values need only be supplied for the symbols that appear
in the polynomials for the components of interest.

Recall that in Section 3.2 we defined V = C ∪ S to be the variables in our
provenance semi-ring ProvSN. One simple way to define trust is as a function trust: V
→ {0, 1} that delivers the trust value for each symbol in V, assuming a simple binary
trust model. The trust function could also use values in the range [0, 1] to represent a
finer granularity of trust. Given a component c in the latest face of M, a set of
stopping points Cstop, and a trust function, we define the ProvEval operator as follows.
ProvEval(c, Cstop, trust) is the value resulting from evaluation of ProvSN(c) using the
function trust. The evaluation proceeds by normal substitution of values taken from
trust(c) for each variable representing c. The resulting mathematical expression is

 User Trust and Judgments in a Curated Database with Explicit Provenance 105

then evaluated in the MMP provenance semi-ring to produce a numerical value,
which is the valuation of ProvEval(c, Cstop, trust).

As an example of provenance evaluation, recall that Candice was the user who
applied all the operations in Figure 2 in our earlier example. Assume that Betty is
interested in establishing the trustworthiness of Bob’s ID value of 6, recorded in the
first tuple of relation C in Figure 2. Let component d be a stopping point for
provenance computation. Assume that each operation is in a distinct transaction, with
no predefined transaction type. Then:

τ1time•τ1op•τ1user•τ1ttype•τ1tid =
LabelToVars(<n+1, “Insert tuple”, “Candice”, null, T1>)

τ2time•τ2op•τ2user•τ2ttype•τ2tid =
LabelToVars(<n+3, “Insert tuple”, “Candice”, null, T2>)

τ3time•τ3op•τ3user•τ3ttype•τ3tid =
LabelToVars(<n+4, “Query”, “Candice”, null, T3>)

τ4time•τ4op•τ4user•τ4ttype•τ4tid =
LabelToVars(<n+5, “Paste value”, “Candice”, null, T4>)

τ5time•τ5op•τ5user•τ5ttype•τ5tid =
LabelToVars(<n+6, “Confirm value”, “Candice”, null, T5>)

Let c be the component that is the value 6 in the first tuple of relation C on face

n+6 in Figure 2. Then the provenance polynomial for c is:

ProvSN(c) = τ3time•τ3op•τ3user•τ3ttype•τ3tid((τ1time•τ1op•τ1user•τ1ttype•τ1tid•X) •
(τ2time•τ2op•τ2user•τ2ttype•τ2tid•Z)) +τ4time•τ4op•τ4user•τ4ttype•τ4tid•n11

+τ5time•τ5op•τ5user•τ5ttype•τ5tid• W

Here we show three possible definitions for the trust function:

Element of
ProvSN(c)

Trust function A Trust function B Trust function for
entity-resolution

example
X 1 0 1
Z 1 1 0

n11 1 1 1

W 1 1 1
all τ variables 1 1 1

Using trust function A from the above table, ProvSN(c) evaluates to 3 indicating

that there are three independent, trusted derivations that give rise to c. If, for
example, we modify the trust function such that X maps to 0 to indicate that X is not
trustworthy, as shown in trust function B in the above table, then the resulting value
of the ProvSN expression is 2. If Betty chooses B as her model of trustworthiness, then
she might reasonably interpret the resulting value as an indication that Bob’s ID value
of 6 is trustworthy. Had the value of the provenance expression evaluated to 0, Betty
might have reasonably decided that she should not trust that Bob’s ID was 6.

106 D.W. Archer, L.M.L. Delcambre, and D. Maier

4.3 Example: Entity Resolution in MMP

In an earlier provenance model [Archer08], we formally defined and implemented an
operator for entity resolution. The operator required that the user indicate the two
tuples to be resolved. Then for each attribute where the values for the two tuples were
different, the user was required to indicate which of the two values he or she preferred
to retain in the resolved tuple. The provenance of the entity resolution was recorded
in a history table in our earlier model. That model also included an “undo” operator
that could reverse an entity resolution provided that none of the contributing attribute
values had been changed in the interval between the original entity resolution
operation and the undo operation. In MMP, an entity resolution can be implemented
as a series of lower-level MMP operations. Consider an example schema:
Employee(empNo, name, age, phone), and a relation C implementing an instance of
this schema, and containing two tuples:

t1 = <107, “Joe”, 25, 555-5555>, the first tuple in relation C
t2 = <107, “Joe”, 27, 555-5555>, the second tuple in relation C

Suppose that the user wishes to resolve these tuples, and wishes to choose the
value for age by selecting the value with the highest trust value. Suppose also that

ProvSN((C, 1, age)) = X + W, and ProvSN((C, 2, age)) = X + Z
and that the trust function yields trust values as shown in the fourth column of the

table above. (We omit the labels from this expression, for brevity.)
We can accomplish entity resolution for this case in MMP by the following series

of operations, expressed in an informal syntax, which taken together comprise an
MMP transaction. In the example, comments are prefaced by ‘//’:

// begin transaction to resolve t1 and t2 from C into a new t3
// first, evaluate trust we have in the differing candidate attribute values
trustInTuple1 = ProvEval(C, t1, Cstop = ∅, T); // in our example, value is 2
trustInTuple2 = ProvEval(C, t2, Cstop = ∅, T); // in our example, value is 1
// next, formulate a new tuple in C, and return an identifier for it
tupleID =
Insert Tuple(C, (empNo, null, age, null, name, null, phone, null),null); // create new tuple
Paste Value (C, tupleID, empNo, C, t1, empNo); // empNo set by and has provenance from t1
Paste Value (C, tupleID, empNo, C, t2, empNo); // empNo also has provenance from t2
Paste Value (C, tupleID, phone, C, t1, phone); // as above, for phone attribute
Paste Value (C, tupleID, phone, C, t2, phone);
Paste Value (C, tupleID, name, C, t1, name); // as above, for name attribute
Paste Value (C, tupleID, name, C, t2, name); //
If (trustInTuple2 > trustInTuple1) // choose origin of age by using more trusted tuple
 Then Paste Value (C, tupleID, age, C, t2, age);
 Else Paste Value (C, tupleID, age, C, t1, age);
// now delete the original tuples, leaving the resolved tuple in their place
Drop Tuple (C, t1, null);
Drop Tuple (C, t2, null);
// end transaction

 User Trust and Judgments in a Curated Database with Explicit Provenance 107

5 Related Work

Much of the work on models for provenance and relational data has focused on
describing the connection from items (e.g., tuples) in a query answer to the items
(e.g., tuples) in the input database from which it was derived. As an aid in contrasting
such provenance models, we define the following distinguishing attributes. History.
An ancestry-only model documents only the identity of data items contributing to a
derived item. An abstract history model includes ancestry-only history as well as a
representation of how the ancestors combined to form the derived item. A full history
model provides enough information to fully reproduce the query result given query
inputs. For example, a full history model might document the entire query text in
addition to the source data for the query. Eagerness. We characterize provenance
models by whether they compute and record provenance at the time an operation
derives a result, or whether provenance is derived later, when a user wishes to inspect
it. We call the former eager provenance and the latter lazy provenance.
Independence. We classify provenance models by whether provenance is recorded as
an annotation to data (including annotations stored in auxiliary relations), or has an
independent existence in the model. We call the former provenance-as-attribute and
the latter provenance-as-entity. Granularity. Some-granularity models record
provenance for only some of the granularities of data supported by the data model,
while all-granularity models support provenance for all granularities supported by the
data model.

Cui and Widom [Cui00] address the problem of tracing data items in a data
warehouse back to the source items from which they were derived. The resulting
provenance model, called the Lineage model, is lazy, computing provenance by use of
inverse queries run when users wish to trace provenance. The model is ancestry-only,
recording only the set of tuples that causes a result tuple to appear. Lineage is a
provenance-as-attribute model, recording provenance as an extra attribute for each
tuple. In contrast, MMP is an eager, full-history, provenance-as-entity model. Because
only provenance of tuples is recorded, Lineage is a some-granularity model, while
MMP is an all-granularity model. Lineage also differs from MMP in that it computes
provenance only for relational algebra operators (i.e., queries), while MMP
additionally addresses DML and DDL operators.

Bhagwat et al. [Bhagwat04] present a general-purpose annotation-management
system for relational databases. The system they describe acts as a provenance model
when annotations consist of the identities of ancestor data. These annotations attach to
each attribute value, rather than entire tuples. The model is thus a some-granularity,
provenance-as-attribute model. Because the system is intended for general
annotations, an implementation of the model could use any history approach. This
model is eager, but addresses only provenance due to query operations.

Copy-Paste Database (CPDB) [Buneman06] defined the data curation setting.
Curated databases in disciplines such as bioinformatics are typically maintained by
significant manual correction, integration, and manipulation. Buneman noted that as a
result, provenance information for such data is a key factor in assessing data quality.
The CPDB provenance model was motivated by the provenance needs of users

108 D.W. Archer, L.M.L. Delcambre, and D. Maier

operating in such settings. Unlike other models in the literature, CPDB is a full-
history model, although it only addresses DML operations, not queries or DDL
operations. In work subsequent to CPDB, Buneman et al. developed a framework
based on CPDB for managing provenance due to queries as well as data
manipulations in a single model [Buneman08]. CPDB is an eager, provenance-as-
attribute model. CPDB is unique among the models we consider in that, like MMP, it
is an all-granularity model. CPDB does not address multiple insertions of identical
data (nor tracking of multiple histories) as MMP does.

Trio supports both data uncertainty and provenance [Agrawal06]. We restrict our
consideration of Trio to data operations without uncertainty. Trio is an eager, some-
granularity, provenance-as-attribute model. Like Lineage, this provenance includes
where data came from, but not what manipulations were done, nor who performed
them: an ancestry-only model. Trio's language supports queries as well as data
manipulation, but does not support multiple insertions as MMP does. Trio is the only
current model besides MMP that retains deleted data. It is also the only current model
that provides a provenance-specific built-in function, Lineage(), to help users in
writing provenance-related queries.

Orchestra [Green07] is a system designed to allow sharing of data among peer
databases. The provenance representation used in Orchestra expresses both ancestor
data and a loose (algebraic) description of how data was derived, so we classify it as
an abstract-history model. This representation uses semi-rings of polynomials
[Green07b], similar to MMP provenance polynomials but not as expressive. In
Orchestra, these polynomials are restricted so that there is no concept of derivations
that include multiple operations applied over time. Because of this restriction,
multiple insertions are not part of the Orchestra model, and there is no notion of
multi-generation provenance in Orchestra. In contrast, MMP supports both of these
capabilities.

The models discussed here are typical of models in the literature in that they
specify how provenance is stored and how it is internally represented. MMP is a
notable exception, specifying only what information is recorded and what its
semantics are. MMP also specifies limits on how provenance may be manipulated.
These differences lead us to categorize MMP as a conceptual provenance model, and
the others as logical provenance models.

We evaluated the Lineage, Bhagwat, CPDB, Trio, and Orchestra models discussed
above and discovered four gaps of interest that motivated our work on MMP: 1) these
models do not model provenance resulting from a mix of DDL, DML, and query
operations; 2) in each of these models, users must parse and interpret each provenance
representation manually in order to select data or make other decisions based on
provenance; 3) in each of these models, users must assemble multi-generation
provenance manually before querying or browsing it; and 4) query languages used in
implementations of these models are designed for relational data, and so are not well-
suited to phrase queries over provenance. MMP addresses the first of these gaps by
modeling provenance for all operations. MMP addresses gaps 2, 3, and 4 in several
ways. First, MMP includes provenance graphs that show an intuitive representation of
provenance that requires no user parsing or reconstruction. The MMP predicate

 User Trust and Judgments in a Curated Database with Explicit Provenance 109

language (described elsewhere) allows users to describe the characteristics of
provenance that are required for their query, which MMP uses to compare against
MMP-stored provenance information, so that users need not interpret nor parse
provenance representations. The MMP model natively represents multiple-generation
provenance, so that users need not manually assemble multiple generations of
provenance information before using it.

6 Conclusions

MMP is a conceptual model for data and provenance in relational databases that
addresses several shortcomings of other provenance models. MMP models data and
provenance orthogonally, giving provenance first-class status. MMP models
provenance at all levels of data granularity. MMP also allows for multiple insertions
of identical data, allowing users to represent the case of data appearing in multiple
sources. MMP also includes a Data Confidence Language that allows users to confirm
or doubt values to record users’ atomic judgments about the data. In this paper, we
extend MMP to support potentially complex operations such as merging tuples, while
capturing a complete record of provenance.

This paper contributes an overview of the MMP model and two extensions to
support compound judgment operations. In our entity-resolution example, note that
although the operation requires multiple primitive operations on the database, a single
transaction in our extended MMP model associates all of these operators. Also note
that the operations within the transaction are explicit about how attribute values are
selected, because they reference immutable provenance state, fixed constants for trust
valuation, and an explicit comparison of resulting trustworthiness to select attribute
values. This combination of transactions and explicit evaluation of provenance is
more expressive than our original MMP model in two ways. First, association of all
primitive operations that comprise the complex operation makes the extent of the
manipulations in the compound operation explicit in the model, where in MMP this
information must be recorded outside the model. Second, decision criteria used in the
compound operation are made explicit in the model, where in MMP these criteria are
also not expressible.

Other work on MMP [Archer11] includes the definition of a logical model that
supports the full MMP model without redundant storage embodied in the faces and
provenance links. We proved that the effect of each MMP operation in the conceptual
model is equivalent to the effect of the corresponding operation at the logical level.
We demonstrated the existence of a surjective homomorphism between our
provenance semi-ring, ProvSN, and that of Green, ℕ[X], to show that ProvSN is at least
as expressive as ℕ[X]. We further showed that there can be no surjective mapping
from ℕ[X] to ProvSN, due to the presence in ProvSN of variables representing
operators, users, and timestamps, thus showing that ProvSN is more expressive. We
classified provenance-related queries over relational data, and developed sample
queries for each class, stated in the language of MMP and the language of one or
more of the CPDB (in Datalog), Trio (in TriQL), and Orchestra (also in TriQL)

110 D.W. Archer, L.M.L. Delcambre, and D. Maier

models. We showed that MMP can express at least some queries in all classes of
provenance-related queries we defined, while the other models we considered cannot
express queries in all classes. We also evaluated the complexity of provenance-
related queries by writing queries for MMP, CPDB, Trio, and Orchestra in eight of
the classes of queries considered using Levitin’s token count [Levitin86] as a metric
for the complexity of queries. We found that queries written in Datalog for
Buneman’s model were uniformly more complex that those written for MMP by
Levitin’s metric and that queries for Trio and Green’s model were comparable in
complexity to those written for MMP.

There are several interesting questions that we intend to pursue with regard to
MMP. For example, our choices for construction of provenance polynomials and their
trust evaluation are by no means the only ones possible. We may also examine other
semi-rings for polynomial evaluation. Users in a data curation setting may wish to
represent multiple possible values for data when a single value is not clearly the
correct one. We plan to explore the addition of multi-valued attribute values to MMP,
and to study how our provenance model evolves with this addition. At present, trust
(and other) evaluations of data in MMP are constrained to be viewed “one granularity
at a time.” For example, trust evaluation of tuples is done independently of trust
evaluation of attribute values in tuples. We plan to explore ways to make such
evaluations that take into account different evaluation results at varying granularities
within the data. MMP currently models insertions from outside the relational structure
by using tokens that represent external data sources. It may be that users insert data
into an MMP instance from another MMP instance, in which case that inserted data
may have associated provenance from its original MMP instance. We plan to explore
how provenance inherited across multiple MMP instances can be meaningfully
composed and evaluated.

References

[Agrawal06] Agrawal, P., Benjelloun, O., Das Sarma, A., Hayworth, C., Nabar, S., Sugihara,
T., Widom, J.: Trio: a system for data, uncertainty, and lineage. In: Proceedings of the 32nd
International Conference on Very Large Data Bases, VLDB 2006. VLDB Endowment
(2006)

[Archer08] Archer, D.W., Delcambre, L.M.L.: Definition and Formalization of Entity
Resolution Functions for Everyday Information Integration. In: Schewe, K.-D., Thalheim,
B. (eds.) SDKB 2008. LNCS, vol. 4925, pp. 126–142. Springer, Heidelberg (2008)

[Archer10] Archer, D., Delcambre, L.: A Conceptual Model and Predicate Language for Data
Selection and Projection Based on Provenance. In: Proceedings of the Second Workshop on
the Theory and Practiceof Provenance (TaPP 2010), San Jose, CA (February 2010)

[Archer10] Archer, D.: Conceptual Modeling of Data with Provenance. PhD dissertation.
Portland State University (2011)

[Bhagwat04] Bhagwat, D., Chiticariu, L., Tan, W., Vijayvargiya, G.: An annotation
management system for relational databases.In Proceedings of the 30thInternational
Conference on Very Large Data Bases, VLDB 2004. VLDB Endowment (2004)

 User Trust and Judgments in a Curated Database with Explicit Provenance 111

[Buneman06] Buneman, P., Chapman, A., Cheney, J., Vansummeren, S.: A provenance model
for manually curated data. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145,
pp. 162–170. Springer, Heidelberg (2006)

[Buneman08] Buneman, P., Cheney, J., Vansummeren, S.: On the expressivenesss of implicit
provenance in query and update languages. ACM Transactions on Database Systems 33(4)
(2008)

[Cui00] Cui, Y., Widom, J., Wiener, J.: Tracing the lineage of view data in a warehousing
environment. ACM Transactions on Database Systems 25(2) (2000)

[Green07] Green, T., Karvounarakis, G., Taylor, N., Biton, O., Ives, Z., Tannen, V.: Orchestra:
facilitating collaborative data sharing. In: SIGMOD 2007: Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data. ACM, New York (2007)

[Green07b] Green, T., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS 2007:
Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACTSIGART Symposium on
Principles of Database Systems, ACM, New York (2007)

[Levitin86] Levitin, A.: How to measure size, and how not to. In: Proceedings of the Tenth
COMPSAC Conference. IEEE Computer Society Press, Washington DC (1986)

An Abstract, Reusable, and Extensible
Programming Language Design Architecture�

Hassan Aı̈t-Kaci

Université Claude Bernard Lyon 1
Villeurbanne, France

hassan.ait-kaci@univ-lyon1.fr

Abstract. There are a few basic computational concepts that are at the core of all
programming languages. The exact elements making out such a set of concepts
determine (1) the specific nature of the computational services such a language is
designed for, (2) for what users it is intended, and (3) on what devices and in what
environment it is to be used. It is therefore possible to propose a set of basic build-
ing blocks and operations thereon as combination procedures to enable program-
ming software by specifying desired tasks using a tool-box of generic constructs
and meta-operations. Syntax specified through LALR(k) grammar technology
can be enhanced with greater recognizing power thanks to a simple augmentation
of yacc technology. Upon this basis, a set of implementable formal operational
semantics constructs may be simply designed and generated (syntax and seman-
tics) à la carte, by simple combination of its desired features. The work presented
here, and the tools derived from it, may be viewed as a tool box for generating lan-
guage implementations with a desired set of features. It eases the automatic prac-
tical generation of programming language pioneered by Peter Landin’s SECD
Machine. What is overviewed constitutes a practical computational algebra ex-
tending the polymorphically typed λ-Calculus with object/classes and monoid
comprehensions. This paper describes a few of the most salient parts of such a
system, stressing most specifically any innovative features—formal syntax and
semantics. It may be viewed as a high-level tour of a few reusable programming
language design techniques prototyped in the form of a set of composable abstract
machine constructs and operations.1

Keywords: Programming Language Design, Object-Oriented Programming,
Bottom-up Parsing, LALR Parser Generation, Denotational Semantics, Opera-
tional Semantics, λ-Calculus, Polymorphic Types, Static/Dynamic Type Check-
ing/Inference, Declarative Collections, Monoid Comprehensions, Intermediate
Language, Abstract Machines.

This article is dedicated to Peter Buneman, a teacher and a friend—for sharing the fun! With
fond memories of our Penn days and those Friday afternoon seminars in his office . . .

� Thanks to Val Tannen for his patience, Nabil Layaı̈da for his comments, and the anonymous
referee for catching many glitches and giving good advice in general.

1 Some of this material was presented as part of the author’s keynote address at LDTA 2003 [1].

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 112–166, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Abstract, Reusable, and Extensible Programming Language Design Architecture 113

The languages people use to communicate with computers differ in their
intended aptitudes towards either a particular application area, or in a par-
ticular phase of computer use (high level programming, program assem-
bly, job scheduling, etc., . . .). They also differ in physical appearance,
and more important, in logical structure. The question arises, do the id-
iosyncrasies reflect basic logical properties of the situations that are be-
ing catered for? Or are they accidents of history and personal background
that may be obscuring fruitful developments? This question is clearly im-
portant if we are trying to predict or influence language evolution.

To answer it we must think in terms, not of languages, but of families
of languages. That is to say we must systematize their design so that a
new language is a point chosen from a well-mapped space, rather than a
laboriously devised construction.

PETER J. LANDIN—“The Next 700 Programming Languages” [2]

1 Introduction

1.1 Motivation—Programming Language Design?

Today, programming languages are designed more formally than they used to be fifty
years ago. This is thanks to linguistic research that has led to syntactic science (beget-
ting parser technology) and research in the formal semantics of programming constructs
(begetting compiler technology—semantics-preserving translation from human-usable
surface syntax to low-level instruction-based machine language). As in the case of a nat-
ural language, a grammar is used to control the formation of sentences (programs) that
will be understood (interpreted/executed) according to the language’s intended (deno-
tational/operational) semantics. Design based on formal syntax and semantics can thus
be made operational.

Designing a programming language is difficult because it requires being aware of
all the overwhelmingly numerous consequences of the slightest design decision that
may occur anytime during the lexical or syntactical analyses, and the static or dynamic
semantics phases. To this, we must add the potentially high design costs investing in
defining and implementing a new language. These costs affect not only time and effort
of design and development, but also the quality of the end product—viz., performance
and reliability of the language being designed, not to mention how to justify, let alone
guarantee, the correctness of the design’s implementation [3].

Fortunately, there have been design tools to help in the process. So-called meta-
compilers have been used to great benefit to systematize the design and guarantee a
higher quality of language implementation. The “meta” part actually applies to the
lexical and syntactic phases of the language design. Even then, the metasyntactic tools
are often restricted to specific classes of grammars and/or parsing algorithms. Still fewer
propose tools for abstract syntax. Most that do confine the abstract syntax language to
some form of idiosyncratic representation of an attributed tree language with some ad
hoc attribute co-dependence interpretation. Even rarer are language design systems that
propose abstract and reusable components in the form of expressions of a formal typed

114 H. Aı̈t-Kaci

kernel calculus. It is such a system that this work proposes; it gives an essential overview
of its design principle and the sort of services it has been designed to render.

This document describes the design of an abstract, reusable, and extensible, pro-
gramming language architecture and its implementation in Java. What is described
represents a generic basis insofar as these abstract and reusable constructs, and any
well-typed compositions thereof, may be instantiated in various modular language con-
figurations. It also offers a practical discipline for extending the framework with ad-
ditional building blocks for new language features as per need. The first facet was the
elaboration of Jacc, an advanced system for syntax-directed compiler generation ex-
tending yacc technology [4].2 A second facet was the design of a well-typed set of
abstract-machine constructs complete enough to represent higher-order functional pro-
gramming in the form of an object-oriented λ-Calculus, extended with monoid compre-
hensions [5,6,7,8]. A third facet could be the integration of logic-relational (from Logic
Programming) and object-relational (from Database Programming) enabling LIFE-
technology [9,10] and/or any other CP/LP technology to cohabit.

What is described here is therefore a metadesign: it is the design of a design tool.
The novelty of what is described here is both in the lexical/syntactical phase and in the
typing/execution semantic phase.

The lexical and syntactic phases are innovative in many respects. In particular, they
are conservative extensions considerably enhancing the conventional lex/yacc tech-
nology (or, similarly, flex/bison) meta-lexico-syntactical tools [4,11] with more
efficient implementation algorithms [12] and recognizing power (viz., overloaded gram-
mar symbols, dynamic operator properties à la Prolog). This essentially gives Jacc the
recognizing power of LALR(k) grammars, for any k ≥ 1. Sections 2.1 and 2.2 give
more details on that part of the system.

The interpretation is essentially the same approach as the one advocated by Landin
for his Store-Environment-Code-Dump (SECD) machine [13] and optimzed by Luca
Cardelli in his Functional Abstract Machine (FAM) [14].3 The abstract machine we
present here is but a systematic taking advantage of Java’s object-oriented tool-set to put
together a modular and extensible set of building blocks for language design. It is suf-
ficiently powerful for expressing higher-order polymorphic object-oriented functional
and/or imperative programming languages. This includes declarative

2 See Section 2.1.
3 Other formally derived abstract machines like the Categorical Abstract Machine (CAM) also

led to variants of formal compilation of functional languages (e.g., Caml). This approach was
also adopted for the chemical metaphor formalizing concurrent computation as chemical re-
action originally proposed by Banâtre and Le Métayer [15] and later adapted by Berry and
Boudol to define their Chemical Abstract Machine (ChAM) [16]. The same also happened for
Logic Programming [17].

http://en.wikipedia.org/wiki/SECD_machine
http://en.wikipedia.org/wiki/Categorical_abstract_machine
http://en.wikipedia.org/wiki/Caml
http://fsl.cs.uiuc.edu/images/a/ab/CS522-Spring-2011-PL-book-cham.pdf

An Abstract, Reusable, and Extensible Programming Language Design Architecture 115

collection-processing based on the concept of Monoid Comprehensions as used in
object-oriented databases [5,6,7,8,18]. 4

This machine was implemented and used by the author to generate several exper-
imental 100%-java implementation of various language prototypes. Thus, what was
actually implemented in this toolkit was done following a “by need” priority order. It is
not so complete as to already encompass all the necessary building blocks needed for
all known styles of programming and type semantics. It is meant as an open set of tools
to be extended as the needs arise. For example, there is no support yet for LP [17],
nor—more generally—CLP [25].

However, as limited as it may be, it already encompasses most of the basic familiar
constructs from imperative and functional programming, including declarative aggre-
gation (so-called “comprehensions”). Therefore, it is clearly impossible—not to say
boring!—to cover all the nitty-gritty details of all the facets of the complete abtract ma-
chine generation system. This article is therefore organized as an informal stroll over
the most interesting novel features or particularities of our design as it stands to date.

1.2 Our Approach—Abstract Programming Language Design

The approach we follow is that of compiling a specific relatively more sophisticated
outer syntax into a simpler instruction-based “machine” language. However, for porta-
bility, this inner language is that of an “abstract” machine. In other words, it is just an
intermediate language that can be either interpreted more efficiently on an emulator of
that abstract machine, and/or be mapped to actual instruction-based assembly code of a
specific machine more easily.

Thus, as for most compiled typed programming languages, there are actually several
languages:

– a surface language—the syntax used by users to compose programs;

– a kernel language—the “essential” language into which the surface language is
normalized;

– a type language—the language describing the types of expressions;

– an intermediate language—the language that is executable on an instruction-based
abstract machine.

4 As an example, we used our system to generate a prototype Algebraic Query Language (AQL
v0.00) as a functional language augmented with a calculus of compehensions à la Fegaras-
Maier [8], or à la Grust [18]. In other words, it is a complete query language, powerful enough
to express most of ODMG’s OQL, and thus many of its derivatives such as, e.g., XQuery [19]
and XPath [20], etc., . . . This version of AQL can be run both interactively and in batch
mode. In the former case, a user can define top-level constructs and evaluate expressions.
AQL v0.00 supports 2nd-order (ML-like) type polymorphism, automatic currying, associative
arrays, multiple type overloading, dynamic operator overloading, as well as (polymorphic)
type definition (both aliasing and hiding), classes and objects, and (of course) monoid homo-
morphisms and comprehensions (N.B.: no subtyping nor inheritance yet—but this is next on
the agenda [21,22,23,24]).

http://www.odmg.org/
http://www.mm.di.uoa.gr/~toobis/seminar/OQL/tsld001.htm
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath

116 H. Aı̈t-Kaci

Although we will not develop it into much detail in this paper, the Java execution
backend for carrying out the operational semantics of the above à la carte design con-
sists of:

– An operational semantic language—interpreting an abstract instruction set having
effects on a set of runtime structures. The latter defining the state of an execution
automaton. The objects operated on and stored in these structures are the basic data
representation all surface language constructs.

– A type-directed display manager—maintaining a trace emulation of abstract ma-
chine code execution in relation to the source code it was generated from. This is
also useful for debugging purposes while managing three sorted stacks (depending
on the nature of Java data pushed on the various sorted stacks—int, double, or
Object).5

– A type-directed data reader—management for reading three sorts of data (int,
double, or Object).

The same applies for pragmatics as well:

– Concrete vs. abstract error handling—delegation of error reporting by inheritance
along 〈design〉.backend.Error.java class hierarchy.6

– Concrete vs. abstract vocabulary—handling of errors according to the most specif-
ically phrased error-handling messaging.

1.3 Organization of Paper

The rest of this document is organized as follows. Section 2 overviews original generic
syntax-processing tools that have been conceived, implemented, and used to ease the
experimental front-end development for language processing systems. Section 3 gives
a high-level description of the architectural attributes of a set of kernel classes of pro-
gramming language constructs and how they are processed for typing, compiling, and
executing. Section 4 discusses the type system, which is made operational as a poly-
morphic type inference abstract machine enabling multiple-type overloading, type en-
capsulation, object-orientation, and type (un)boxing analysis. Section 5 sums up the
essentials of how declarative iteration over collections may be specified using the no-
tion of monoid homomorphism and comprehension as used in object-oriented databases

5 This is essentiially a three-way SECD/FAM used to avoid systematically having to “box”
into objects primitive Java values (viz., of type int and double). This enables precious
optimization that is particularly needed when dealing with variables of static polymorphic
types but dynamically instantiated into int and double [26].

6 Here and in what follows, we shall use the following abbreviated class path notation:
• “〈syntax〉.” for “hlt.language.syntax.”
• “〈design〉.” for “hlt.language.design.” and this latter package’s sub-packages:
∗ “〈kernel〉.” for “〈design〉.kernel.”
∗ “〈types〉.” for “〈design〉.types.”
∗ “〈instructions〉.” for “〈design〉.instructions.”
∗ “〈backend〉.” for “〈design〉.backend.”

when referring to actual classes’ package paths (hlt stands for “hak’s language tools.”).

An Abstract, Reusable, and Extensible Programming Language Design Architecture 117

query languages to generate efficient collection-processing code. Section 6 concludes
with a quick recapitulation of the contents and future perspectives.

In order to make this paper as self-contained as possible, the above overview of
salient aspects of the system that has been implemented is followed by an Appendix of
brief tutorials on essential key concepts and terminology this work relies upon, and/or
extends.

2 Syntax Processing

2.1 Jacc—Just Another Compiler Compiler

At first sight, Jacc may be seen as a “100% Pure Java” implementation of an LALR(1)
parser generator [27] in the fashion of the well-known UNIX tool yacc—“yet another
compiler compiler” [4]. However, Jacc is much more than. . . just another compiler
compiler: it extends yacc to enable the generation of flexible and efficient Java-based
parsers and provides enhanced functionality not so commonly available in other similar
systems.

The fact that Jacc uses yacc’s metasyntax makes it readily usable on most yacc
grammars. Other Java-based parser generators all depart from yacc’s format, requiring
nontrivial metasyntactic preprocessing to be used on existing yacc grammars—which
abound in the world, yacc being by far the most popular tool for parser generation. Im-
portantly, Jacc is programmed in pure Java—this makes it fully portable to all existing
platforms, and immediately exploitable for web-based software applications.

Jacc further stands out among other known parser generators, whether Java-based or
not, thanks to several additional features. The most notable are:

– Jacc uses the most efficient algorithm known to date for its most critical compu-
tation (viz., the propagation of LALR(1) lookahead sets). Traditional yacc im-
plementations use the method originally developed by DeRemer and Penello [11].
Jacc uses an improved method due to Park, Choe, and Chang [12], which dras-
tically ameliorates the method of by DeRemer and Penello. To this author’s best
knowledge, no other Java-based metacompiler system implements the Park, Choe,
and Chang method [28].

– Jacc allows the user to define a complete class hierarchy of parse node classes (the
objects pushed on the parse stack and that make up the parse tree: nonterminal
and terminal symbols), along with any Java attributes to be used in semantic ac-
tions annotating grammar rules. All these attributes are accessible directly on any
pseudo-variable associated with a grammar rule constituents (i.e., $$, $1, $2, etc.).

– Jacc makes use of all the well-known conveniences defining precedences and asso-
ciativity associated to some terminal symbols for resolving parser conflicts that may
arise. While such conflicts may in theory be eliminated for any LALR(1) grammar,
such a grammar is rarely completely obtainable. In that case, yacc technology
falls short of providing a safe parser for non-LALR grammar. Yet, Jacc can accom-
modate any such eventual unresolved conflict using non-deterministic parse actions
that may be tried and undone.

118 H. Aı̈t-Kaci

– Further still, Jacc can also tolerate non-deterministic tokens. In other words, the
same token may be categorized as several distinct lexical units to be tried in turn.
This allows, for example, parsing languages that use no reserved keywords (or more
precisely, whose keywords may also be tokenized as identifiers, for instance).

– Better yet, Jacc allows dynamically (re-)definable operators in the style of the Pro-
log language (i.e., at parse-time and run-time). This offers great flexibility for on-
the-fly syntax customization, as well as a much greater recognition power, even
where operator symbols may be overloaded (i.e., specified to have several prece-
dences and/or associativity for different arities).

– Jacc supports partial parsing. In other words, in a grammar, one may indicate any
nonterminal as a parse root. Then, constructs from the corresponding sublanguage
may be parsed independently from a reader stream or a string.

– Jacc automatically generates a full HTML documentation of a grammar as a set
of interlinked files from annotated /**...*/ javadoc-style comments in the
grammar file, including a navigatable pure grammar in “yacc form,” obtained after
removing all semantic and serialization annotations, leaving only the bare syntactic
rules.

– Jacc may be directed to build a parse-tree automatically (for the concrete syntax,
but also for a more implicit form which rids a concrete syntax tree of most of its
useless information). By contrast, regular yacc necessitates that a programmer add
explicit semantic actions for this purpose.

– Jacc supports a simple annotational scheme for automatic XML serialization of
complex Abstract Syntax Trees (AST’s) [29]. Grammar rules and non-punctuation
terminal symbols (i.e., any meaning-carrying tokens such as, e.g., identifiers, num-
bers, etc.) may be annotated with simple XML templates expressing their XML
forms. Jacc may then use these templates to transform the Concrete Parse Tree
(CST) into an AST of radically different structure, constructed as a jdom XML
document.7 This yields a convenient declarative specification of a tree transduction
process guided by just a few simple annotations, where Jacc’s “sensible” behav-
ior on unannotated rules and terminals works “as expected.” This greatly eases the
task of retargeting the serialization of a language depending on variable or evolving
XML vocabularies.

With Jacc, a grammar can be specified using the usual familiar yacc syntax with
semantic actions specified as Java code. The format of the grammar file is essentially
the same as that required by yacc, with some minor differences, and a few additional
powerful features. Not using the additional features makes it essentially similar to the
yacc format.

For the intrigued reader curious to know how one may combine dynamic operator
with a static parser generator, Section 2.2 explains in some detail how Jacc extends
yacc to support Prolog-style dynamic operators.

7 http://www.jdom.org/

An Abstract, Reusable, and Extensible Programming Language Design Architecture 119

2.2 LR-Parsing with Dynamic Operators

In this section, we explain, justify, and specify the modifications that need to be made
to a classical table-driven LALR(1) parser generator à la yacc [4]. For such a compiler
generator to allow Prolog-style dynamic operators, it is necessary that it be adapted to
account statically (i.e., at compile-time) for runtime information. Indeed, in Prolog, op-
erators may be declared either at compile-time or at runtime using the built-in predicate
op/3.8

How Jacc Enables Static LR-parsing with Dynamic Operators. In an LR-parser
such as one generated by yacc, precedence and associativity information is no longer
available at parse-time. It is used statically at parser generation-time to resolve potential
conflicts in the parser’s actions. Then, a fixed table of unambiguous actions is passed to
drive the parser, which therefore always knows what to do in a given state for a given
input token.

Thus, although they can recognize a much larger class of context-free languages,
conventional shift-reduce parsers for LR grammars cannot accommodate parse-time
ambiguity resolution. Although this makes parsing more efficient, it also forbids a
parser generated by a yacc-like parser generator to support Prolog style operators.

In what follows, we propose to reorganize the structure of the implementation of
a yacc-style parser generator to accommodate Prolog-style dynamic operators. We
do so:

– increasing the user’s convenience to define and use new syntax dynamically without
changing the parser;

– adding new features while preserving the original yacc metasyntax;

– retaining the same efficiency as yacc-parsing for grammars which do not use dy-
namic operators;

– augmenting the recognizing power of bottom-up LALR parsing to languages that
support dynamically (re)definable operators;

– making full use of the object-oriented capabilities of Java to allow the grammar
specifier to tune the parser generation using user-defined classes and attributes.

Declaring Dynamic Operators. The first issue pertains to the way we may specify how
dynamic operators are connected with the grammar’s production rules. The command:

%dynamic op

is used to declare that the parser of the grammar being specified will allow defining, or
redefining, dynamic operators of category op. The effect of this declaration is to create
a non-terminal symbol named op that stands for this token category. Three implicit
grammar rules are also defined:

op : ’op_’ | ’_op_’ | ’_op’ ;

8 See Appendix Section A for a quick review of Prolog-style dynamic operators.

120 H. Aı̈t-Kaci

which introduce, respectively, prefix, infix, and postfix, subcategories for operators of
category op. These are terminal symbols standing as generic tokens that denote spe-
cific operators for each fixity. Specific operators on category op may be defined in the
grammar specification as follows:

%op <operator> <specifier> <precedence>

For example,

%op ’+’ yfx 500

declares the symbol ‘+’ to be an infix binary left-associative operator of category op,
with binding tightness 500, just as in Prolog.

In addition, the generated parser defines the following method:

public final static void op (String operator
, String specifier
, int precedence)

whose effect is to define, or redefine, an operator for the token category op dynam-
ically using the given (Prolog-style) specifier and (Prolog-style) precedence. It is this
method that can be invoked in a parser’s semantic action at parse time, or by the runtime
environment as a static method.

An operator’s category name may be used in a grammar specification wherever an
operator of that category is expected. Namely, it may be used in grammar rules such as:

expression : op expression
| expression op
| expression op expression
;

Using the non-terminal symbol op in a rule such as above allows operators of any
fixity declared in the op category to appear where op appears. However, if an occur-
rence must be limited to an op of specific fixity only, then one may use:

– ‘op ’ for a prefix operator of category op;
– ‘ op’ for a postfix operator of category op;
– ‘ op ’ for an infix operator of category op.

For example, the above rules can be better restricted to:

expression : ’op_’ expression
| expression ’_op’
| expression ’_op_’ expression
;

A consequence of the above observations is that a major modification in the parser
generator and the generic parser must also be made regarding the parser actions they
generate for dynamic operators. A state may have contending actions on a given input.

An Abstract, Reusable, and Extensible Programming Language Design Architecture 121

Such a state is deemed conflictual if and only if the input creating the conflict is a
dynamic operator, or if one of its conflicting actions is a reduction with a rule whose
tag is a dynamic operator. All other states can be treated as usual, resolving potential
conflicts using the conventional method based on precedence and associativity. Clearly,
a dynamic operator token category does not have this information but delegates it to the
specific token, which will be known only at parse time. At parser-construction time, a
pseudo-action is generated for conflictual states which delays decision until parse time.
It uses the state’s table associating a set of actions with the token creating the conflict in
this state. These sets of conflicting actions are thus recorded for each conflictual state.

When a token is identified and the current state is a conflictual state, which action
to perform is determined by choosing in the action set associated to the state according
to the same disambiguation rules followed by the static table construction but using
the current precedence and associativity values of the specific operator being read. If
a “reduce” action in the set involves a rule tagged with a dynamic operator, which
precedence and associativity values to use for the rule are those of the specific operator
tag for that rule, which can be obtained in the current stack. The stack offset of that
operator will depend on which of the dynamic operator’s rules is being considered.

Ambiguous Tokens. Note that in general, the tokenizer may return a set of possible
tokens for a single operator. Consider for example the following grammar:

%token ’!’
%dynamic op1
%op1 ’!’ yf 200
%dynamic op2
%op2 ’!’ yfx 500
%%
expression : expression1 _op1_ expression1

| expression2 _op2
| ’!’ expression
;

%%

For this grammar, the character ‘!’ may be tokenized as either ‘!’, ‘op1’, or ‘op2’.
The tokenizer can therefore be made to dispense with guaranteeing a token’s lexical
category. Looking up its token category tables, the parser then determines the set of
admissible lexical categories for this token in the current state (i.e., those for which it
has an action defined). If more than one token remain in the set, a choice point for this
state is created. Such a choice point records the current state of parsing for backtracking
purposes. Namely, the grammar state, and the token set. The tokens are then tried in the
order of the set, and upon error, backtracking resets the parser at the latest choice point
deprived of the token that was chosen for it.

Note that the use of backtracking for token identification is not a guarantee of com-
plete recovery. First, full backtracking is generally not a feasible nor desirable option as
it would entail possibly keeping an entire input stream in memory as the buffer grows.
The option is to keep only a fixed-size buffer and flush from the choice point stack any
choice point that becomes stale when this buffer overflows. In effect, this enforces an

122 H. Aı̈t-Kaci

automatic commit whenever a token choice is not invalidated within the time it takes to
read further tokens as allowed by the buffer size.

Second, although backtracking restores the parser’s state, it does not automatically
undo the side effects that may have been performed by the execution of any semantic
action encountered between the failure state and the restored state. If there are any, these
must be undone manually. Thus, Jacc allows specifying undo actions to be executed
when a rule is backtracked over.

The only limitation—shallow backtracking—is not serious, and in fact the choice-
point stack’s size can be specified arbitrarily large if need be. Moreover, any input that
overuns the choice-point stack’s default depth is in fact cleaning up space by getting
rid of older and less-likely-to-be-used choice-points. Indeed, failure occurs generally
shortly after a wrong choice has been made. We give separately a more detailed speci-
fication of the implementation of the shallow backtracking scheme that is adequate for
this purpose.

Token Declarations. In order to declare tokens’ attributes in yacc, one may use the
commands %token, %right, %left, and %nonassoc. These commands also give
the tokens they define a precedence level according to the order of declarations, tokens
of equal precedence being declared in the same command. Since we wish to preserve
compatibility with yacc’s notations and conventions, we keep these commands to have
the same effect. Therefore, these commands are used as usual to declare static tokens.
However, we must explicate how the implicit precedence level of static token declara-
tions may coexist with the explicit precedence information specified by the Prolog-like
dynamic operator declarations.

We also wish to preserve compatibility with Prolog’s conventions. Recall that the
number argument in a Prolog ‘op/3’ declaration denotes the binding tightness of the
operator, which is inversely related to parsing precedence. The range of these numbers
is the interval [1, 1200]. To make this compatible with the foregoing yacc commands,
the 〈syntax〉.Grammar.java class defines two constants:

static final int MIN_PRECEDENCE = 1;
static final int MAX_PRECEDENCE = 1200;

In order to have the binding tightness to be such that 1200 corresponds to minimum
precedence and 1 to maximum precedence, we simply define the precedence level of
binding tightness n to be 1200− n + 1. Thus, a declaration such as:

%op ’+’ yfx 500

assigns to binary ‘+’ a precedence level of 701 (viz., 1200− 500 + 1).
We also allow dynamic operators to be declared with the form:

%op <operator> <specifier>

leaving the precedence implicit, and defaulting to the precedence level effective at the
command’s execution time.

The first encountered token declaration with implicit precedence (i.e., a conventional
yacc token command or a two-argument dynamic operator command) uses the initial

An Abstract, Reusable, and Extensible Programming Language Design Architecture 123

precedence level set to a default,9 then increments it by a fixed increment. This incre-
ment is 10 by default, but the command:

%precstep <number>

may be used to set the increment to the given number. This command may be used
several times. Each subsequent declaration with implicit precedence uses the current
precedence level, then increments the precedence level by the current precedence incre-
ment. Any attempt to set a precedence level outside the [1, 1200] range is ignored: the
closest bound is used instead (i.e., 1 if less and 1200 if more), and a warning is issued.

3 The Kernel Language

A language construct is said to be primitive (or “built-in”) if is not expressed in terms
of other language constructs.10 The kernel language is the set of primitive language
constructs. It is sometimes also called the “desugared” language. This is because non-
primitive constructs that are often-used combinations of primitive stuctures are both
easier to use and read by human programmers. Hence, before being given any mean-
ing, a program expressed using the “sugared” language syntax is first translated into
its equivalent “desugared” form in the kernel language containing only primitive
expressions.

3.1 Processing a Kernel Expression

Fig. 1 gives the complete processing diagram from reading a 〈kernel〉.Expression
denoting a program to executing it.

Typically, upon being read, such a 〈kernel〉.Expression will be:

1. “name-sanitized”—in the context of a 〈kernel〉.Sanitizer to discriminate be-
tween local names and global names, and establish pointers from the local variable
occurrences to the abstraction that introduces them, and from global names to en-
tries in the global symbol table;

2. type-checked—in the context of a 〈types〉.TypeChecker to discover whether
it has a type at all, or several possible ones (only expressions that have a unique
unambiguous type are further processed);

3. “sort-sanitized”—in the context of a 〈kernel〉.Sanitizer to discriminate be-
tween those local variables that are of primitive Java types (int or double) or of
Object type (this is necessary because the set-up means to use unboxed values of
primitive types for efficiency reasons); this second “sanitization” phase is also used
to compute offsets for local names (i.e., so-called de Bruijn indices) for each of the
three type sorts (int, double, Object);

4. compiled—in the context of a 〈kernel〉.Compiler to generate the sequence of
instructions whose execution in an appropriate runtime environment will evaluate
the expression;

9 This value is a system constant called 〈syntax〉.Grammar.MIN PRECEDENCE.
10 This does not mean that it could not be. It just means that it is provided natively, either to ease

oft-used syntax, and/or make it more efficient operationally.

124 H. Aı̈t-Kaci

Parsing Name Resolution

Boxing Analysis Type Checking

Code Generation Execution

Fig. 1. Processing diagram

5. executed—in the context of a 〈backend〉.Runtime denoting the appropriate run-
time environment in the context of which to execute its sequence of instructions.

The Syntax Sanitizer. A sanitizer is an object that “cleans up”—so to speak—an ex-
pression of any possibly remaining ambiguities as it is being parsed and further pro-
cessed. There are two kinds of ambiguities that must be “sanitized:”

– after parsing, it must be determined which identifiers are the names of local vari-
ables vs. those of global variables;

– after type-checking, it must be determined the runtime sort of every abstraction
parameter and use this to compute the local variable environment offsets of each
local variable.11

Thus, a sanitizer is a discriminator of names and sorts.12

The Type Checker. The type checker is in fact a type inference machine that synthesizes
missing type information by type unification. It may be (and often is) used as a type-
checking automaton when types are (partially) present.

Each expression must specify its own 〈kernel〉.Expression.TypeCheck
(〈types〉.TypeChecker) method that encodes its formal typing rule.

11 These offsets are the so-called de Bruijn indices of λ-calculus [13]—Or rather, their sorted
version.

12 It has occurred to this author that the word “sanitizer” is perhaps a tad of a misnomer. Perhaps
“discriminator” might have been a better choice. This also goes for the 〈kernel〉.Sanitiz-
er.java class’ method names (i.e., discriminateNames and discriminateSorts
rather than sanitizeNames and sanitizeSorts).

An Abstract, Reusable, and Extensible Programming Language Design Architecture 125

The Compiler. This is the class defining a compiler object. Such an object serves as
the common compilation context shared by an 〈kernel〉.Expression and the subex-
pressions comprising it. Each type of expression representing a syntactic construct of
the kernel language defines a 〈kernel〉.Expression.compile(〈kernel〉.Com-
piler) method that specifies the way the construct is to be compiled in the context
of a given compiler. Such a compiler object consists of attributes and methods for gen-
erating straightline code which consists of a sequence of instructions, each of specific
subtype of abstract type 〈instructions〉.Instruction, corresponding to a top-level
expression and its subexpressions.

Upon completion of the compilation of a top-level expression, a resulting code array
is extracted from the sequence of instructions, which may then be executed in the con-
text of a 〈backend〉.Runtime object, or, in the case of a 〈kernel〉.Definition, be
saved in the code array in the 〈kernel〉.Definition’s 〈kernel〉.codeEntry()
field of type 〈types〉.DefinedEntry, which is an object that encapsulates its code
entry point, and which may in turn then be used to access the defined symbol’s code for
execution.

Each expression construct of the kernel must therefore specify a compiling rule.
Such a rule expresses how the abstract syntax construct maps into a straight-line code
sequence.

In Appendix Section B, this process is illustrated in more detail on a few typical as
well as less typical expressions.

4 Types

We have illustrated a style of programming based on the use of rich type
systems. This is not new in general, but the particularly rich type system
we have described, based on type quantifiers and subtypes, extends the
state of the art. This rich type structure can account for functional, im-
perative, algebraic, and object-oriented programming in a unified frame-
work, and extends to programming in the large and, with care, to system
programming.

LUCA CARDELLI—“Typeful Programming” [30]

4.1 Type Language

We first define some basic terminology regarding the type system and operations on
types.

Polymorphism. Here, by “polymorphism,” we mean ML-polymorphism (i.e., 2nd-
order universal), with a few differences that will be explained along the way. The syntax
of types is defined with a grammar such as:

[1] Type ::= SimpleType | TypeScheme

[2] SimpleType ::= BasicType | FunctionType | TypeParameter

126 H. Aı̈t-Kaci

[3] BasicType ::= Int | Real | Boolean | . . .

[4] FunctionType ::= SimpleType→ SimpleType

[5] TypeParameter ::= α | α′ | . . . | β | β′ | . . .

[6] TypeScheme ::= ∀ TypeParameter . Type

that ensures that universal type quantifiers occur only at the outset of a polymorphic
type.13

Multiple Type Overloading. This is also often called ad hoc polymorphism. When
enabled (the default), this allows a same identifier to have several unrelated types. Gen-
erally, it is restricted to names with functional types. However, since functions are first-
class citizens, this restriction makes no sense, and therefore the default is to enable
multiple type overloading for all types.

To this author’s knowledge, there is no established prevailing technology for sup-
porting both ML-polymorphic type inference and multiple type overloading. So here,
as in a few other parts of this overall design, I have had to innovate. I essentially imple-
mented a type proving logic using techniques from (Constraint) Logic Programming in
order to handle the combination of types supportable by this architecture.

Currying. Currying is an operation that exploits the following mathematical isomor-
phism of types:14

T, T ′ → T ′′ � T → (T ′ → T ′′) (1)

which can be generalized for a function type of any number of arguments to any of its
multiple curryed forms—i.e., for all k = 1, . . . , n− 1:

T1, . . . , Tn → T � T1, . . . , Tk → (Tk+1, . . . , Tn → T) (2)

When function currying is enabled, this means that type-checking/inference must
build this equational theory into the type unification rules in order to consider types
equal modulo this isomorphism.

13 Or more precisely that ∀ never occurs nested inside a function type arrow→. This apparently
innocuous detail ensures decidability of type inference. BTW, the 2nd order comes from the
fact that the quantifier applies to type parameters (as opposed to 1st order, if it had applied to
value parameters). The universal comes from ∀, of course.

14 For the intrigued reader curious to know what deep connection there might be between func-
tional types and Indian cooking, the answer is, “None whatsoever!” The word was coined
after Prof. Haskell B. Curry’s last name. Curry was one of the two mathematicians/logicians
(along with Robert Feys) who conceived Combinator Logic and Combinator Calculus, and
made extensive use of the isomorphism of Equation (1)—hence the folklore’s use of the verb
to curry—(currying, curryed),— in French: curryfier—(curryfication, curryfié), to mean trans-
forming a function type of several arguments into that of a function of one argument. The
homonymy is often amusingly mistaken for an exotic way of [un]spicing functions.

An Abstract, Reusable, and Extensible Programming Language Design Architecture 127

Standardizing. As a result of, e.g., currying, the shape of a function type may change in
the course of a type-checking/inference process. Type comparison may thus be tested on
various structurally different, although syntactically congruent, forms of a same type.
A type must therefore assume a canonical form in order to be compared. This is what
standardizing a type does.

Standardizing is a two-phase operation that first flattens the domains of function
types, then renames the type parameters. The flattening phase simply amounts to un-
currying as much as possible by applying Equation (1) as a rewrite rule, although back-
wards (i.e., from right to left) as long as it applies. The second phase (renaming) consists
in making a consistent copy of all types reachable from a type’s root.

Copying. Copying a type is simply taking a duplicate twin of the graph reachable
from the type’s root. Sharing of pointers coming from the fact that type parameters
co-occur are recorded in a parameter substitution table (in our implementation, simply
a java.util.HashMap) along the way, and thus consistent pointer sharing can be
easily made effective.

Equality. Testing for equality must be done modulo a parameter substitution table (in
our implementation, simply a java.util.HashMap) that records pointer equalities
along the way, and thus equality up to parameter renaming can be easily made effective.

A tableless version of equality also exists for which each type parameter is consid-
ered equal only to itself.

Unifying. Unifying two types is the operation of filling in missing information (i.e.,
type parameters) in each with existing information from the other by side-effecting
(i.e., binding) the missing information (i.e., the type parameters) to point to the part of
the existing information from the other type they should be equal to (i.e., their values).
Note that, like logical variables in Logic Programming, type parameters can be bound
to one another and thus must be dereferenced to their values.

Boxing/Unboxing. The kernel language is polymorphically typed. Therefore, a func-
tion expression that has a polymorphic type must work for all instantiations of this
type’s type parameters into either primitive unboxed types (e.g., Int, Real, etc.) or
boxed types. The problem this poses is: how can we compile a polymorphic function
into code that would correctly know what the actual runtime sorts of the function’s run-
time arguments and returned value are, before the function type is actually instantiated
into a (possibly monomorphic) type?15 This problem was addressed by Xavier Leroy
and he proposed a solution, which has been implemented in the CAML compiler [26].16

Leroy’s method is based on the use of type annotation that enables a source-to-source

15 The alternative would be either to compile distinct copies for all possible runtime sort instan-
tiations (like, e.g., C++ template functions), or compiling each specific instantiation as it is
needed. The former is not acceptable because it tends to inflate the code space explosively.
The latter can neither be envisaged because it goes against a few (rightfully) sacrosanct prin-
ciples like separate compilation and abstract library interfacing—imagine having to recompile
a library everytime you want to use it!

16 See http://caml.inria.fr/

128 H. Aı̈t-Kaci

transformation. This source transformation is the automatic generation of wrappers and
unwrappers for boxing and unboxing expressions whenever necessary. After that, com-
piling the transformed source as usual will be guaranteed to be correct on all types.

For our purpose, the main idea from Leroy’s solution was adapted and improved so
that:

– the type annotation and rules are greatly simplified;
– no source-to-source transformation is needed;
– un/wrappers generation is done at code-generation time.

This saves a great amount of space and time.

4.2 Type Processing

The type system consists of two complementary parts: a static and a dynamic part.17

The former takes care of verifying all type constraints that are statically decidable (i.e.,
before actually running the program). The latter pertains to type constraints that must
wait until execution time to decide whether those (involving runtime values) may be
decided. This is called dynamic type-checking and is best seen (and conceived) as an
incremental extension of the static part.

A type is either a static type, or a dynamic type. A static type is a type that is checked
before runtime by the type-checker. A dynamic type is a wrapper around a type that may
need additional runtime information in order to be fully verified. Its static part must be
(and is!) checked statically by the static type checker, but the compiler may complete
this by issuing runtime tests at appropriate places in the code it generates; namely, when:

– binding abstraction parameters of this type in an application, or
– assigning to local and global variable of this type, or
– updating an array slot, a tuple component, or an object’s field, of this type.

There are two kinds of dynamic types:

– Extensional types—defined with explicit extensions (either statically provided or
dynamically computed runtime values):
• Set extension type;
• Int range extension type (close interval of integers);
• Real range extension type (close interval of floating-point numbers).

A special kind of set of Int type is used to define enumeration types (from actual
symbol sets) through opaque type definitions.

– Intensional types—defined using any runtime Boolean condition to be checked at
runtime, calls to which are tests generated statically; e.g.non-negative numbers (i.e.,
int+, double+).

Static Types. The static type system is the part of the type system that is effective at
compile-time.

17 For the complete class hierarchy of types in the package 〈design〉.types, see Fig. 2.

An Abstract, Reusable, and Extensible Programming Language Design Architecture 129

Primitive Types

– Boxable types (Void, Int, Real, Char, and Boolean)
– Boxed types (i.e., boxed versions of Boxable types or non-primitive types)

Non-primitive Types

– Built-in type constants (e.g., String, etc., . . .)
– Type constructors
– Function types
– Tuple types:
• Position tuple types
• Named tuple types

– Array types:
• 0-based int-indexed arrays
• Int range-indexed arrays
• Set-indexed arrays
• Multidimensional arrays

– Collection types (Set(α), Bag(α), and List(α)).
– Class types

The Class type This is the type of object structures. It declares an interface (or mem-
ber type signature) for a class of objects and the members comprising its structure.
It holds information for compiling field access and update, and enables specifying an
implementation for methods manipulating objects of this type.

A class implementation uses the information declared in its interface. It is interpreted
as follows: only non-method members—hereafter called fields—correspond to actual
slots in an object structure that is an instance of the class and thus may be updated.
On the other hand, all members (i.e., both fields and method members) are defined as
global functions whose first argument stands for the object itself (that may be referred
to as ‘this’).

The syntax we shall use for a class definition is of the form:

class classname { interface } [{ implementation}] (3)

The interface block specifies the type signatures of the members (fields and methods)
of the class and possibly initial values for fields. The implementation block is optional
and gives the definition of (some or all of) the methods.

For example, one can declare a class to represent a simple counter as follows:

class Counter { value : Int = 1;
method set : Int→ Counter;
}
{ set(value : Int) : Counter)

= (this.value = value);
}

(4)

The first block specifies the interface for the class type Counter defining two mem-
bers: a field value of type Int and a method set taking an argument of type Int

130 H. Aı̈t-Kaci

and returning a Counter object. It also specifies an initialization expression (1) for
the value field. Specifying a field’s initialization is optional—when missing, the field
will be initialized to a null value of appropriate type: 0 for an Int, 0.0 for a Real, false

for a Boolean, ′\000′ for a Char, "" for a String, void for Void,18 and nullT for any
other type T . The implementation block for the Counter class defines the body of the
set method. Note that a method’s implementation can also be given outside the class
declaration as a function whose first argument’s type is the class. For example, we could
have defined the set method of the class Counter as:

def set(x : Counter,n : Int) : Counter = (x.value = n); (5)

On the other hand, although a field is also semantically a function whose first argu-
ment’s type is a class, it may not be defined outside its class. Defining a declared field
outside a class declaration causes an error. This is because the code of a field is always
fixed and defined to return the value of an object’s slot corresponding to the field. Note
however that one may define a unary function whose argument is a class type outside
this class when it is not a declared field for this class. It will be understood as a method
for the class (even though it takes no extra argument and may be invoked in ”dot no-
tation” without parentheses as a field is) and thus act as a ”static field” for the class.
Of course field updates using dot notation will not be allowed on these pseudo fields.
However, they (like any global variable) may be (re)set using a global (re)definition at
the top level, or a nested global assignment.

Note also that a field may be functional without being a method—the essential differ-
ence being that a field is part of the structure of every object instance of a class and thus
may be updated within an object instance, while a method is common to all instances
of a class and may not be updated within a particular instance, but only globally for all
the class’ instances.

Thus, everytime a Counter object is created with new, as in, for example:

c = new Counter; (6)

the slot that corresponds to the location of the value field will be initialized to the
value 1 of type Int. Then, field and method invocation can be done using the familiar
“dot notation;” viz.:

c.set(c.value+ 2);
write(c.value); (7)

This will set c’s value field to 3 and print out this value. This code is exactly
equivalent to:

set(c,value(c) + 2);
write(value(c)); (8)

Indeed, field and method invocation simply amounts to functional application. This
scheme offers the advantage that an object’s fields and methods may be manipulated

18 Strictly speaking, a field of type Void is useless since it can only have the unique value of this
type (i.e., void). Thus, a void field should arguably be disallowed. On the other hand, allowing
it is not semantically unsound and may be tolerated for the sake of uniformity.

An Abstract, Reusable, and Extensible Programming Language Design Architecture 131

as functions (i.e., as first-class citizens) and no additional setup is needed for type-
checking and/or type inference when it comes to objects.

Incidentally, some or all type information may be omitted while specifying a class’s
implementation (though not its interface) as long as non-ambiguous types may be in-
ferred. Thus, the implementation block for class Counter in class definition (4) could
be specified more simply as:

{ set(n) = (value = n); } (9)

Declaring a class type and defining its implementation causes the following:

– the name of the class is entered with a new type for it in the type table (an ob-
ject comprising symbol tables, of type 〈types〉.Tables.java; this ensures that
its type definition links it to an appropriate ClassType object; namely, a class
structure reprensented by an object of type 〈types〉.ClassInfo.java where
the code entries for all its members’ types are recorded;

– each field of a distinct type is assigned an offset in an array of slots (per sort);

– each method and field expression is name-sanitized, type-checked, and sort-sani-
tized after closing it into an abstraction taking this as first argument;

– each method definition is then compiled into a global definition, and each field
is compiled into a global function corresponding to accessing its value from the
appropriate offset;

– finally, each field’s initialization expression is compiled and recorded in an object
of type ClassType to be used at object creation time. An object may be created
at run-time (using the new operator followed by a class name).

The Type System. Fig. 2 shows the hierarchy of Java classes representing the cate-
gories of types currently comprising the type system. The classes represented in boxes
are abstract classes. There could be more, of course.

Structure of TypeChecker. An object of the class 〈types〉.TypeChecker.java
is a backtracking prover that establishes various kinds of goals. The most common goal
kind established by a type checker is a typing goal—but there are others.

A 〈types〉.TypingGoal object is a pair consisting of an expression and a type.
Proving a typing goal amounts to unifying its expression component’s type with its type
component. Such goals are spawned by the type checking method of expressions as per
their type checking rules.19 Some globally defined symbols having multiple types, it is
necessary to keep choices of these and backtrack to alternative types upon failure. Thus,
a TypeChecker object maintains all the necessary structures for undoing the effects
that happened since the last choice point. These effects are:

1. type variable binding,
2. function type currying,

19 See Appendix Section B.

132 H. Aı̈t-Kaci

C
la

ss
hi

er
ar

ch
y

of
ty

pe
s

in
th

e
pa

ck
ag

e
h
l
t
.
l
a
n
g
u
a
g
e
.
d
e
s
i
g
n
.
t
y
p
e
s

T
y
p
e

S
t
a
t
i
c
T
y
p
e

D
y
n
a
m
i
c
T
y
p
e

N
a
m
e
d
T
y
p
e

T
y
p
e
P
a
r
a
m
e
t
e
r

C
o
n
s
t
r
u
c
t
e
d
T
y
p
e

E
x
t
e
n
s
i
o
n
a
l
T
y
p
e

I
n
t
e
n
s
i
o
n
a
l
T
y
p
e

B
o
x
a
b
l
e
T
y
p
e
C
o
n
s
t
a
n
t

F
u
n
c
t
i
o
n
T
y
p
e

T
u
p
l
e
T
y
p
e

A
r
r
a
y
T
y
p
e

C
o
l
l
e
c
t
i
o
n
T
y
p
e

T
y
p
e
C
o
n
s
t
a
n
t

T
y
p
e
T
e
r
m

N
a
m
e
d
T
u
p
l
e
T
y
p
e

S
e
t
T
y
p
e

B
a
g
T
y
p
e

L
i
s
t
T
y
p
e

C
o
l
l
e
c
t
i
o
n
T
y
p
e
C
o
n
s
t
a
n
t

C
l
a
s
s
T
y
p
e

D
e
f
i
n
e
d
T
y
p
e

Fig. 2. The type system—Metaclass Hierarchy

An Abstract, Reusable, and Extensible Programming Language Design Architecture 133

3. application expression currying.

In addition, it is also necessary to remember all Goal objects that were proven since
the last choice point in order to prove them anew upon backtracking to an alternative
choice. This is necessary because the goals are spawned by calls to the typeCheck
method of expressions that may be exited long before a failure occurs. Then, all the orig-
inal typing goals that were spawned in the mean time since the current choice point’s
goal must be reestablished. In order for this to work, any choice points that were associ-
ated to these original goals must also be recovered. To enable this, when a choice point
is created for a 〈kernel〉.Global symbol, choices are linked in the reverse order (i.e.,
ending in the original goal) to enable reinstating all choices that were tried for this goal.
This amounts to the on-the-fly compiling of type-checking rules into “typing-goal” in-
structions that must be stored for potential retrial upon subsequent failure. Fig. 3 lists
some typing goals making up the instruction set of the type inference abstract machine
generated by the type checker.

– EmptyGoal
– TypingGoal
– UnifyGoal
– GlobalTypingGoal
– SubTypeGoal
– BaseTypeGoal
– ArrayIndexTypeGoal

– PruningGoal
– PushExitableGoal
– PopExitableGoal
– CheckExitableGoal
– ResiduatedGoal
– ShadowUnifyGoal
– UnifyBaseTypeGoal
– NoVoidTypeGoal

Fig. 3. Typing goals instruction set for the type inference abstract machine

In order to coordinate type proving in a common context, the same typechecker ob-
ject is passed to all type checking and unification methods as an argument in order to
record any effect in the appropriate trail.

To recapitulate, the structures of a 〈types〉.TypeChecker object are:

– a goal stack containing goal objects (e.g., 〈types〉.TypingGoal) that are yet to
be proven;

– a binding trail stack containing type variables and boxing masks to reset to ”un-
bound” upon backtracking;

– a function type currying trail containing 4-tuples of the form (function type, previ-
ous domains, previous range, previous boxing mask) for resetting the function type
to the recorded domains, range, and mask upon backtracking;

– an application currying trail containing triples of the form (application type, pre-
vious function, previous arguments) for resetting the application to the recorded
function and arguments upon backtracking;

– a goal trail containing 〈types〉.TypingGoal objects that have been proven since
the last choice point, and must be reproven upon backtracking;

134 H. Aı̈t-Kaci

– a choice-point stack whose entries consists of:
• a queue of TypingGoalEntry objects from where to constructs new Typ-
ingGoal objects to try upon failure;

• pointers to all trails up to which to undo effects.

Type definitions Before we review dynamic types, we shall describe how one can
define new types using existing types. Type definitions are provided both for (1) con-
venience of making programs more legible by giving terser “logical” names (or terms)
to otherwise verbose type expressions, and (2) that of hiding information details of a
type and making it act as a new type altogether. The former facility is that of providing
aliases to types (exactly like a preprocessor’s macros get expanded right away into their
textual equivalents), while the latter offers the convenience of defining new types in
terms of existing ones, but hiding this information. It follows from this distinction that
a type alias is always structurally equivalent to its value (in fact an alias disappears as
soon as it is read in, being parsed away into the structure defining it). By contrast, a
defined type is never structurally equivalent to its value nor any other type—it is only
equivalent to itself. To enable meaningful computation with a defined type, two meta-
(de/con)structors are thus provided: one for explicitly casting a defined type into the
type that defines it, and one explicitly seeing a type as a specified defined type (if such
a defined type does exist and with this type as definition).

The class 〈types〉.Tables.java contains the symbol tables for global names and
types. The name spaces of the identifiers denoting type and non-type (global or local)
names (which are kept in the global symbol table) are disjoint—so there are no name
conflicts between types and non-type identifiers.

The 〈types〉.Tables.java.typeTable variable contains the naming table for
types and the 〈types〉.Tables.java.symbolTable variable contains the naming
table for other (non-type) global names.

This section will overview some type-related data-structures starting from the class
that manages symbols: 〈types〉.Tables.java. The names can be those of types
and values. They are global names.20 The type namespace is independent of the value
namespace—i.e., the same name can denote a value and a type.

Dynamic Types. Dynamic types are to be checked, if possible statically (at least their
static part is), at least in two particular places of an expression. Namely,

– at assignment/update time; and,
– at (function) parameter-binding time.

This will ensure that the actual value placed in the slot expecting a certain type does
respect additionnal constraints that may only be verified with some runtime values.
Generally, as soon as a type’s structure depends on a runtime value, is is necessar-
ily a dynamic type. These are also often referred to as dependent types. For example,
array of size(int n), where n is the size of the array and is a runtime value. It

20 At the moment, there is no name qualification or namespace management. When this service
is provided, it will also be through the 〈types〉.Tables.java class.

An Abstract, Reusable, and Extensible Programming Language Design Architecture 135

denotes a “safe” array type depending on the array size that may be only computed at
runtime.21 From this, we require that a class implementing the DynamicType inter-
face provides a method:

public boolean verifyCondition ()

that is invoked systematically by code generated for dynamically typed function pa-
rameters and for locations that are the target of updates (i.e., array slot update, object
field update, tuple field update) at compilation of abstractions and various assignment
constructs. Of this class, three subclasses derive their properties:

– extensional types;
– Boolean-assertion types;
– non-negative number types.

We shall consider here a few such dynamic types (motivated esssentially by the typ-
ing needs of for OPL, or similar constraint languages [31]). Namely,

– extensional types;
– intensional types (e.g., non-negative numbers)

An extensional type is a type whose elements are determined to be members of a
predetermined and fixed extension (i.e., any runtime value that denotes a collection—
such as a set, an integer range, a floating-point number range, or an enumeration).
Such types pose the additional problem of being usable at compile-time to restrict
the domains of other variables. However, some of those variables’ values may only
fully be determined at runtime. These particular dynamic types have therefore a sim-
ple verifyCondition() method that is automatically run as soon as the extension
is known. This method simply verifies that the element is a bona fide member of the
extension, Otherwise, it relies on a more complicated scheme based on the notion of
contract. Basically, a contract-based type is an extensional type that does not have an
extension (as yet) but already carries the obligation that some particular individual con-
stants be part of their extensions. Those elements constitute “contracts” that must be
honored as soon as the type’s extension becomes known (either positively—removing
the honored contract; or, negatively—causing a type error).

Extensional types that have been included are set types, range types (integer and
floating-point), and enumeration types. Other dynamic types could of course be added
as needed (e.g., lists, bags, etc.).

Intensional types can be accommodated by defining new opaque types—e.g., in or-
der to define non-negative numbers, we introduce a new (opaque) type Nat as a dy-
namically constrained Int type whose verifyConditionmethod ensures that only
non-negative integer values may be used for this type.

5 Computing with Collections

There are two classes defined for such expressions: 〈kernel〉.Homomorphism.java
and 〈kernel〉.Comprehension.java. These classes are based on the formal no-

21 e.g., à la Java arrays.

136 H. Aı̈t-Kaci

tion of monoid homomorphisms and comprehension as defined in query-language for-
malisms [5,6,7,8].22

These two classes of expressions use monoid homomorphisms as declarative iter-
ators. Thus, henceforth, by homomorphism we mean specifically monoid homomor-
phism. For our purposes, a monoid is a set of data values or structures (i.e., a data type)
endowed with an associative binary operation and an identity element. Examples are
given in Fig. 4. Monoid homomorphisms are quite useful for expressing a certain kind
of iteration declaratively.

Type Operation Identity

Int +Int 0

Int ∗Int 1

Int maxInt −∞Int

Int minInt +∞Int

Real +Real 0.0

Real ∗Real 1.0

Real maxReal −∞Real

Real minReal +∞Real

Boolean orBoolean false

Boolean andBoolean true

set data structures set union the empty set {}
list data structures list concatenation the empty list []
. . .

Fig. 4. Examples of some familiar monoids

The class Homomorphism is the class of objects denoting (monoid) homomor-
phisms. An instance of such a class defines all the needed parameters for representing
and iterating through a collection, applying a function to each element, accumulating
the results along the way with an operation, and returning the end result. More pre-
cisely, it is the built-in version of the general computation scheme whose instance is the
following “hom” functional, which may be formulated recursively, for the case of a
list collection, as:

hom11⊕
⊕ (f)[] = 11⊕

hom11⊕
⊕ (f)[H |T] = f(H)⊕ hom11⊕

⊕ (f)T
(10)

Clearly, this scheme extends a function f to a homomorphism of monoids, from the
monoid of lists to the monoid defined by 〈⊕, 11⊕〉.
22 See Appendix Section E for a refresher on monoid homomorphisms and comprehensions.

An Abstract, Reusable, and Extensible Programming Language Design Architecture 137

Thus, an object of this class denotes the result of applying such a homomorphic
extension of a function (f) to an element of collection monoid (i.e., a data structure
such as a set, a list, or a bag), the image monoid being implicitly defined by the binary
operation (⊕)—also called the accumulation operation. It is made to work iteratively.

For technical reasons, we need to treat specially so-called collection homomor-
phisms; i.e., those whose accumulation operation constructs a collection, such as a set.
Although a collection homomorphism can conceptually be expressed with the general
scheme, the function applied to an element of the collection will return a collection
(i.e., a free monoid) element, and the result of the homomorphism is then the result of
tallying the partial collections coming from applying the function to each element into
a final “concatenation.”

Other (non-collection) homomorphisms are called primitive homomorphisms. For
those, the function applied to all elements of the collection will return a computed ele-
ment that may be directly composed with the other results. Thus, the difference between
the two kinds of (collection or primitive) homomorphisms will appear in the typing and
the code generated (collection homomorphism requiring an extra loop for tallying par-
tial results into the final collection). It is easy to make the distinction between the two
kinds of homomorphisms thanks to the type of the accumulation operation (see below).

Therefore, a collection homomorphism expression constructing a collection of type
coll(T) consists of:

– the collection iterated over—of type coll′(T ′);
– the iterated function applied to each element—of type T ′ → coll(T); and,
– the operation “adding” an element to a collection—of type T, coll(T)→ coll(T).

A primitive homomorphism computing a value of type T consists of:

– the collection iterated over—of type coll′(T ′);
– the iterated function applied to each element—of type T ′ → T ; and,
– the monoid operation—of type T, T → T .

Even though the scheme of computation for homomorphisms described above is
correct, it is not often used, especially when the function already encapsulates the ac-
cumulation operation, as is always the case when the homomorphism comes from the
desugaring of a comprehension—(see below). Then, such a homomorphism will di-
rectly side-effect the collection structure specified as the identity element with a func-
tion of the form fun x · x⊕ 11⊕ (i.e., adding element x to the collection) and dis-
pense altogether with the need to accumulate intermediate results. We shall call those
homomorphisms in-place homomorphisms. To distinguish them and enable the sup-
pression of intermediate computations, a flag indicating that the homomorphism is to
be computed in-place is provided. Both primitive and collection homomorphisms can
be specified to be in-place. If nothing regarding in-place computation is specified for a
homomorphism, the default behavior will depend on whether the homomorphism is col-
lection (default is in-place), or primitive (default is not in-place). Methods to override
the defaults are provided.

For an in-place homomorphism, the iterated function encapsulates the operation,
which affects the identity element, which thus accumulates intermediate results and no

138 H. Aı̈t-Kaci

further composition using the operation is needed. This is especially handy for collec-
tions that are often represented, for (space and time) efficiency reasons, by iteratable
bulk structures constructed by allocating an empty structure that is filled in-place with
elements using a built-in “add” method guaranteeing that the resulting data structure is
canonical—i.e., that it abides by the algebraic properties of its type of collection (e.g.,
adding an element to a set will not create duplicates, etc.).

Although monoid homomorphisms are defined as expressions in the kernel, they
are not meant to be represented directly in a surface syntax (although they could, but
would lead to rather cumbersome and not very legible expressions). Rather, they are
meant to be used for expressing higher-level expressions known as monoid comprehen-
sions, which offer the advantage of the familar (set) comprehension notation used in
mathematics, and can be translated into monoid homomorphisms to be type-checked
and evaluated. This is what the kernel class Comprehension encapsulates, as it is
defined relying on the class Homomorpism, exactly as its formal definition does.

A monoid comprehension is an expression of the form:

〈⊕, 11⊕〉{e | q1, . . . , qn} (11)

where 〈⊕, 11⊕〉 define a monoid, e is an expression, and the q i’s are qualifiers. A qual-
ifier is either an expression e or a pair x ← e, where x is a variable and e is an expres-
sion. The sequence of qualifiers may also be empty. Such a monoid comprehension is
just syntactic sugar that can be expressed in terms of homomorphisms as follows:

〈⊕, 11⊕〉{e | } def= e⊕ 11⊕

〈⊕, 11⊕〉{e | x ← e′, Q} def= hom
11⊕
⊕ [λx.〈⊕, 11⊕〉{e | Q}](e′)

〈⊕, 11⊕〉{e | c, Q} def= if c then 〈⊕, 11⊕〉{e | Q} else 11⊕

(12)

In other words, a comprehension is fully expressible in terms of compositions of
homomorphims. Comprehensions are also interesting as they may be subject to trans-
formations leading to more efficient evaluation than their simple “nested loops” oper-
ational semantics (by using “unnesting” techniques and using relational operations as
implementation instructions [32,33]).

Although a monoid comprehension can be effectively computed using nested loops
(i.e., using a simple iteration semantics), such would be in general rather inefficient.
Rather, an optimized implementation can be achieved by various syntactic transforma-
tion expressed as rewrite rules. Thus, the principal benefit of using monoid comprehen-
sions is to formulate efficient optimizations on a simple and uniform general syntax of
expressions irrespective of specific monoids [5,6,32,7,33]. All the attributes of the syn-
tax of monoid comprehensions derived from monoid homomorphisms are represented
in these type classes.

Thus, monoid comprehensions allow the formulation of “declarative iteration.” Note
the fact mentioned earlier that a homomorphism coming from the translation of a com-
prehension encapsulates the operation in its function. Thus, this is generally taken to
advantage with operations that cause a side-effect on their second argument to enable
an in-place homomorphism to dispense with unneeded intermediate computation.

An Abstract, Reusable, and Extensible Programming Language Design Architecture 139

6 Conclusion

6.1 Recapitulation

In this document we summarized the main characteristics of an abstract, reusable,
and extensible programming language architecture, and its implementation in Java. We
overviewed original generic syntax-processing tools that have been conceived, imple-
mented, and used to ease the experimental front-end development for language process-
ing systems. This consisted of Jacc, a flexible metacompiler all done in 100%-pure Java.
We explained the machinery needed to extend LALR-parsing to enable dynamic opera-
tors à la Prolog. We gave a high-level description of the architectural attributes of a set
of kernel classes of programming language constructs and how they are processed for
typing, compiling, and executing. We presented our architecture general processing dia-
gram taking a kernel expression into straightline abstract-machine code. We discussed a
type system that is the basis for a polymorphic type inference abstract machine enabling
multiple-type overloading, type encapsulation, object-orientation, and type (un)boxing
analysis. We described the type language primitives and constructors, and how they
were analyzed for efficient code generation and execution. We explained our implemen-
tation of type-checking and how execution of declarative iteration over collections may
be specified using the notion of monoid homomorphism and comprehension as used
in object-oriented database query languages to generate efficient collection-processing
code.

For the sake of making this document self-contained, we append below a set of sec-
tions of tutorial nature giving background material and finer-point discussions regarding
what was presented.

6.2 What’s next?

This architecture offers a compromise between formal executable specification systems
(e.g., [34,23]) and pragmatic needs for practical language prototyping backward com-
patible with popular existing tools (yacc, Java), while staying an extensible system—a
poor man’s language kit?. . . It enables fast and low-cost development of programming
languages with basic and advanced features using familiar programming idioms like
yacc and Java with a relatively high efficiency and confidence of correctness.

Importantly, it is open and favors ease of extension as well as interoperability with
popular representation standards such as the W3C’s. As mentioned several times, and
made explicit in the title, this is work to be continued. Indeed, more tools and capa-
bilities are to be added as this author’s sees the need. The system has shown itself a
practical and useful experimental tool. However, much more remains to be done (e.g.,
namespace and access management, rule-based programming, logic programming, finer
type logics, etc., . . .). Here are a few of the most immediate on our agenda.

– Notation—The next step is to extend Jacc by providing other structure-generating
options besides XML, such as the JavaScript Object Notation (JSON)23 and its

23 http://www.json.org/

http://www.json.org/

140 H. Aı̈t-Kaci

version for Linked Data (JSON-LD).24 With this tool, it will then be easier to ex-
periment using Jacc to generate RDF-triples (or variations thereof) as compilation
schemes from high-level (i.e., more legible and user-friendly) KR languages (such
as, e.g.,OSF or LIFE syntax—or even higher level; e.g., NL dialects).

– Typing—Truly polymorphic object-oriented subtyping à la Gesberg, et al. [21,22],
or Satisfiability Modulo Theories à la Bierman et al. [23,24]. This is indeed a most
desired set of type-analytical capabilities to enable subtyping and class inheritance
in our type logic. The type-checking rules given for these systems are the best
candidates to use for this objective.

– Semantics— The most ambitious next step in terms of semantics, would be to ex-
tend the current design with additional abstract meta-constructs for LP [17] and
CLP [25] (and LIFE [9,10] in particular).

– Pragmatics—Not much has been said about the backend system.25 Among the most
desired to be done is a graphical front end based on Eclipse.26 Wrapping all the
backend tools and services in such a front-end would greatly help further meta-
development.

– Implementation—Once abstracted into stable interfaces, any design may then be
made more efficient where needed since implementation has thus been made inde-
pendent. Attention may then be safely given to clever optimization of any type of
algorithms used in the implementation of these interfaces, relying on time-tested
techniques [35].

Appendix

In order to make this article self-contained, we include next a set of tutorials that over-
view essential background notions. Thus, this appendix consists of the following sec-
tions. Section A recalls the peculiar way that Prolog uses to enable changing the syntac-
tic properties of its operators dynamically—i.e., at run time. Section B describes how a
few familiar programming language contructs may be specified as classes of objects and
how these classes are processed in various syntax, typing, or execution contexts. Sec-
tion C recounts notions on algebraic monoids. Section D is a reminder of the abstract
syntax and type inference logic for a basic typed polymorphic λ-calculus with tupling.
Section E presents OQL, an Object Query Language extending this basic λ-calculus into
a monoid comprehension calculus dealing with collection data in a declarative manner
thanks to monoid homomorphisms. Section F is a brief specification of the backend
tooling needed to complete the system,

A Prolog-style Dynamic Operators

In Prolog, the built-in operator ‘op/3’ offers the user the means to declare or modify
the syntax of some of its operators. For example, as will be explained below:

24 http://json-ld.org/
25 See Appendix Section F
26 http://www.eclipse.org/

http://json-ld.org/
http://www.eclipse.org/

An Abstract, Reusable, and Extensible Programming Language Design Architecture 141

?- op(500,yfx,+).

declares the symbol ‘+’ to be an infix binary left-associative operator with binding tight-
ness 500. The second argument of the built-in predicate op/3 is called the operator’s
specifier. It is a symbol that encodes three kinds of information concerning the operator;
namely:

– arity (unary or binary),
– “fixity” (prefix, infix, or postfix),
– associativity (left-, right-, or non-associative).

The specifier is an identifier consisting of either two or three of the letters ‘f’, ‘x’, and
‘y’, which are interpreted as follows. The letter ‘f’ stands for the operator’s position in
an expression (its fixity), and the letters ‘x’ and ‘y’ stand for the arguments’ positions.
These letters are mnemonics for “functor,” (‘f’) “yes,” (‘y’) and “no” (‘x’). A ‘y’
occurring on the left (resp., right) of ‘f’, means that the operator associates to the left
(resp., right). An ‘x’ occurring on the left (resp., right) of ‘f’, means that the operator
does not associate to the left (resp., right). Thus, the possible operator specifiers are
shown in Table 1.27

Table 1. Mnemonic operator specifiers in Prolog

Specifier Arity Fixity Associativity

fx unary prefix non-associative

fy unary prefix right-associative

xf unary postfix non-associative

yf unary postfix left-associative

xfx binary infix non-associative

xfy binary infix right-associative

yfx binary infix left-associative

The binding tightness used by Prolog’s ‘op/3’ works in fact as the opposite of
the precedence level used in parsing: the smaller a Prolog operator’s binding tightness
measure is, the more it takes precedence for parsing. These binding tightness measures
range inclusively from 1 (maximum precedence) to 1200 (minimum precedence).

The third argument of ‘op/3’ can be any syntactically well-formed Prolog functor.
In particular, these need not be known as operator prior to runtime. Prolog’s tokenizer
only recognizes such a token as a functor. Thus, any functor, whether declared operator
or not, can always be parsed as a prefix operator preceding a parenthesized comma-
separated sequence of arguments. Whether it is a declared operator determines how it
may be parsed otherwise. In Sicstus Prolog, for example:
27 Note that ‘yfy’ is not allowed as an operator specifier because that would mean an ambiguous

way of parsing the operator by associating either to the left or to the right.

142 H. Aı̈t-Kaci

| ?- X = 1 + 2.
X = 1+2 ?
yes
| ?- X = +(1,2).
X = 1+2 ?
yes

Prolog’s parser can accommodate dynamic operators for two reasons:

1. The syntax of Prolog is completely uniform - there is only one syntactic construct:
the first-order term. Even what appear to be punctuation symbols are in fact func-
tors (e.g., ‘:-’, ‘,’, ‘;’, etc., . . .). Indeed, in Prolog everything is either a logical
variable or a structure of the form f(t1, . . . , tn).

2. Prolog parser’s is an operator-precedence parser where precedence and associativ-
ity information is kept as a dynamic structure.28

Operator-precedence parsing is a bottom-up shift-reduce method that works sim-
ply by shifting over the input looking for a handle in a sentential form being built on
the stack, and reducing when such a handle is recognized. A handle is the substring
of a sentential form whose right end is the leftmost operator whose following opera-
tor has smaller precedence, and whose left end is the rightmost operator to the left of
this right-end operator (inclusive), whose preceding operator has smaller precedence.
This substring includes any nonterminals on either ends. For example, if ‘*’ has higher
precedence than ‘+’, the handle in ‘E + E * E + E’ is ‘E * E’.

Operator-precedence parsing is possible only for a very restricted class of grammars
- the so-called “Operator Grammars.” A context-free grammar is an Operator Grammar
if and only if no production’s right-hand side is empty or contains two adjacent non-
terminals. For example, the grammar:

E : ’id’ | P E | E O E | ’(’ E ’)’ ;
P : ’-’ ;
O : ’+’ | ’*’ | ’-’ | ’/’ ;

is not an operator grammar. But the equivalent grammar:

E : ’id’ | ’-’ E | E ’+’ E | E ’*’ E | E ’-’ E
| E ’/’ E | ’(’ E ’)’ ;

is. It is not difficult to see that a Prolog term can easily be recognized by an operator
grammar. Namely,

T : ’var’ | ’fun’ | ’fun’ ’(’ B ’)’
| ’fun’ T | T ’fun’ | T ’fun’ T | ’(’ T ’)’ ;

B : T | T ’,’ B ;

which can thus easily accommodate dynamic operators.

28 See “the Dragon Book,” [27]—Section 4.6, pp. 203–215.

An Abstract, Reusable, and Extensible Programming Language Design Architecture 143

B Structure of Kernel Expressions

The class 〈kernel〉.Expression.java is the mother of all expressions in the kernel
language. It specifies the prototypes of the methods that must be implemented by all
expression subclasses. The subclasses of Expression are:

– Constant: constant (void, boolean, integer, real number, object);
– Abstraction: functional abstraction (à la λ-calculus);
– Application: functional application;
– Local: local name;
– Parameter: a function’s formal parameter (really a pseudo-expression as it is

not fully processed as a real expression and is used as a shared type information
repository for all occurrences in a function’s body of the variable it stands for);

– Global: global name;
– Dummy: temporary place holder in lieu of a name prior to being discriminated into

a local or global one.
– Definition: definition of a global name with an expression defining it in a

global store;
– IfThenElse: conditional;
– AndOr: non-strict Boolean conjunction and disjunction;
– Sequence: sequence of expressions (presumably with side-effects);
– Let: lexical scoping construct;
– Loop: conditional iteration construct;
– ExitWithValue: non-local function exit;
– Assignment: construct to set the value of a local or a global variable;
– NewArray: construct to create a new (multidimensional) array;
– ArraySlot: construct to access the element of an array;
– ArraySlotUpdate: construct to update the element of an array;
– Tuple: construct to create a new position-indexed tuple;
– NamedTuple: construct to create a new name-indexed tuple;
– TupleProjection: construct to access the component of a tuple;
– TupleUpdate: construct to update the component of a tuple;
– NewObject: construct to create a new object;
– DottedNotation: construct to emulate traditional object-oriented “dot” deref-

erencing notation;
– FieldUpdate: construct to update the value of an object’s field;
– ArrayExtension: construct denoting a literal array;
– ArrayInitializer: construct denoting a syntactic convenience for specifying

initialization of an array from an extension;
– Homomorphism: construct denoting a monoid homomorphism;
– Comprehension: construct denoting a monoid comprehension;

To illustrate the process, we next describe a few kernel constructs. A kernel expres-
sion description usually consist of some of the following items:

– ABSTRACT SYNTAX—describes the abstract syntax form of the kernel expression.

144 H. Aı̈t-Kaci

– OPERATIONAL SEMANTICS—for unfamiliar expressions, this describes informally
the meaning of the expression. The notation [[e]], where e is an abstract syntax ex-
pression, denotes the (mathematical) semantic denotation of e. The notation [[T]],
where T is a type, denotes the (mathematical) semantic denotation of T—namely,
[[T]] is the set of all abstract denotations [[e]]’s such that kernel expression e has
type T .

– TYPING RULE—this describes more formally how a type should be verified or in-
ferred using formal rules à la Plotkin’s Structural Operational Semantics for typing
the kernel expression, whose notation is briefly recalled as follows [36,37].
A typing judgment is a formula of the form Γ
 e : T , and is read as: “under
typing context Γ , expression e has type T .”
In its simplest form, a typing context Γ is a function mapping the parameters of λ-
abstractions to their types. In the formal presentation of an expression’s typing rule,
the context keeps the type binding under which the typing derivation has progressed
up to applying the rule in which it occurs.
The notation Γ [x : T] denotes the context defined from Γ as follows:

Γ [x : T](y) def=
{

T if y = x;
Γ (x) otherwise.

(13)

A typing rule is a formula of the form:

J1, . . . , Jn

J
(14)

where J and the Ji’s, i = 0, . . . , n, n ≥ 0, are typing judgments. This “fraction”
notation expresses essentially an implication: when all the formulae of the rule’s
premises (the Ji’s in the fraction’s “numerator”) hold, then the formula in the rule’s
conclusion (the fraction’s “denominator”) holds too. When n = 0, the rule has no
premise—i.e., the premise is tautologically true (e.g., 0 = 0)—the rule is called an
axiom and is written with an empty “numerator.”
A conditional typing rule is a typing rule of the form:

J1, . . . , Jn

J
if c(J1, . . . , Jn) (15)

where c is a Boolean metacondition involving the rule’s judgments.
A typing rule (or axiom), whether or not in conditional form, is usually read back-
wards (i.e., upwards) from the rule’s conclusion (the bottom part, or “denomina-
tor”) to the rule’s premises (the top part, or “numerator”). Namely, the rule of the
form:

Γ1
 e1 : T1, . . . , Γn
 en : Tn

Γ
 e : T
(16)

is read thus:

An Abstract, Reusable, and Extensible Programming Language Design Architecture 145

“The expression e has type T under typing context Γ if the expression e1

has type T1 under typing context Γ1, and . . . , the expression en has type
Tn under typing context Γn.”

For example:

Γ
 c : Boolean, Γ
 e1 : T , Γ
 e2 : T

Γ
 if c then e1 else e2 : T

is read thus:

“The expression if c then e1 else e2 has type T under typing context Γ if
the expression c has type Boolean under typing context Γ and if both
expressions e1 and e2 have the same type T under the same typing context
Γ .”

With judgments spelled-out, a conditional typing rule (15) looks like:

Γ1
 e1 : T1, . . . , Γn
 en : Tn

Γ
 e : T
if cond(Γ, Γ1, . . . , Γn,

e, e1, . . . , en,
T , T1, . . . , Tn)

(17)

where “cond(Γ, Γ1, . . . , Γn, e, e1, . . . , en, T , T1, . . . , Tn)” is a Boolean meta-
condition involving the contexts, expressions, and types. Such a rule is read thus:

“if the meta-condition holds, then the expression e has type T under
typing context Γ if the expression e1 has type T1 under typing context
Γ1, and . . . , the expression en has type Tn under typing context Γn.”

An example of a conditional rule is that of abstractions that must take into account
whether or not the abstraction is exitable—i.e., it may be exited non-locally:

Γ [x1 : T1] · · · [xn : Tn]
 e : T

Γ
 fun x1, . . . , xn · e : T1, . . . , Tn → T
if fun x1, . . . , xn · e

is not exitable.

Similarly, a typing axiom:

Γ
 e : T
(18)

is read as: “The expression e has type T under typing context Γ ” and a conditional
typing axiom is a typing axiom of the form:

Γ
 e : T
if c(Γ, e, T) (19)

where c(Γ, e, T) is a Boolean meta-condition on typing context Γ , expression e,
and type T and is read as, “if the meta-condition c(Γ, e, T) holds then the ex-
pression e has type T under typing context Γ .”

146 H. Aı̈t-Kaci

– COMPILING RULE—describes the way the expression’s components are mapped into
a straightline sequence of instructions. The compiling rule for expression e is given
as a function compile[[]] of the form:

compile[[e]] = INSTRUCTION 1

...
INSTRUCTIONn

(20)

The ConstantExpression. Constants represents the built-in primitive (unconstructed)
data elements of the kernel language.

– ABSTRACT SYNTAX A Constant expression is an atomic literal. Objects of class
Constant denote literal constants: the integers (e.g.,−1, 0, 1, etc.), the real num-
bers (e.g., −1.23, . . . , 0.0, . . . , 1.23, etc.), the characters (e.g., ′a′, ′b′, ′@′, ′#′,
etc.), and the constants void, true, and false. The constant void is of type Void,
such that:

[[Void]] def= {[[void]]}

and the constants:

true and false of type Boolean, such that:

[[Boolean]] def= {[[false]], [[true]]}.

Other built-in types are:

[[Int]] def= Z = {. . . , [[−1]], [[0]], [[1]], . . .}

[[Real]] def= R = {. . . , [[−1.23]], . . . , [[0.0]], . . . , [[1.23]], . . .}

[[Char]] def= set of all Unicode characters

[[String]] def= set of all finite strings of Unicode characters.

Thus, the Constant expression class is further subclassed into: Int, Real,
Char, NewObject, and BuiltinObjectConstant, whose instances denote,
respectively: integers, floating-point numbers, characters, new objects, and built-in
object constants (e.g., strings).

An Abstract, Reusable, and Extensible Programming Language Design Architecture 147

– TYPING RULE The typing rules for each kind of constant are:

[void]
Γ
 void : Void

[true]
Γ
 true : Boolean

[false]
Γ
 false : Boolean

[int]
Γ
 n : Int

if n is an integer

[real]
Γ
 n : Real

if n is a floating-point number

[char]
Γ
 c : Char

if c is a character

[string]
Γ
 s : String

if s is a string

(21)

– COMPILING RULE Compiling a constant consists in pushing the value it denotes on
the stack of corresponding sort.

[void] compile[[void]] = NO OP

[true] compile[[true]] = PUSH TRUE

[false] compile[[false]] = PUSH FALSE

[int] compile[[n]] = PUSH I n if n is an integer

[real] compile[[n]] = PUSH R n if n is a floating-point number

[char] compile[[c]] = PUSH I c if c is a character

[string] compile[[s]] = PUSH O s if s is a string

(22)

The Abstraction Expression

– ABSTRACT SYNTAX This is the standard λ-calculus functional abstraction, possibly
with multiple parameters. Rather than using the conventional λ notation, we write
an abstraction as:

fun x1, . . . , xn · e (23)

148 H. Aı̈t-Kaci

where the xi’s are abstraction parameters—identifiers denoting variables local to
the expression e, the abstraction’s body.

– TYPING RULE There are two cases to consider depending on whether the abstraction
is or not exitable. An exitable abstraction is one that corresponds to a real source
language’s function from which a user may exit non-locally. Other (non-exitable)
abstractions are those that are implicitly generated by syntactic desugaring of sur-
face syntax. It is the responsibility of the parser to identify the two kinds of abstrac-
tions and mark as exitable all and only those abstractions that should be.

Γ [x1 : T1] · · · [xn : Tn]
 e : T

Γ
 fun x1, . . . , xn · e : T1, . . . , Tn → T
if fun x1, . . . , xn · e

is not exitable.
(24)

If the abstraction is exitable however, we must record it in the typing context.
Namely,let a = fun x1, . . . , xn · e; then:

Γℵ←a[x1 : T1] · · · [xn : Tn]
 e : T

Γ
 a : T1, . . . , Tn → T
if a is exitable (25)

where Γℵ←a is the same context as Γ except that ℵΓℵ←a

def= a.

– COMPILING RULE Compiling an abtraction consists in compiling a flattened version
of its body (uncurrying and computing parameters offsets), and then generating an
instruction pushing a closure on the stack.

compile[[fun x1, . . . , xn · e]] = compile[[(flatten(e), offsets(x1, . . . , xn)]]
PUSH CLOSURE

(26)

The Application Expression

– ABSTRACT SYNTAX This is the familiar function call:

f(e1, . . . , en) (27)

– TYPING RULE The type rule is as expected, modulo all potential un/currying that
may be needed:

Γ
 e1 : T1, · · · , Γ
 en : Tn, Γ
 f : T1, . . . , Tn → T

Γ
 f(e1, . . . , en) : T
(28)

– COMPILING RULE

compile[[f(e1, . . . , en)]] = compile[[en]]
...
compile[[e1]]
compile[[f]]
APPLY

(29)

An Abstract, Reusable, and Extensible Programming Language Design Architecture 149

The IfThenElse Expression

– ABSTRACT SYNTAX This is the familiar conditional:

if c then e1 else e2

– TYPING RULE

Γ
 c : Boolean, Γ
 e1 : T , Γ
 e2 : T

Γ
 if c then e1 else e2 : T
(30)

– COMPILING RULE

compile[[if c then e1 else e2]] = compile[[c]]
JUMP ON FALSE jof
compile[[e1]]
JUMP jmp

jof : compile[[e2]]
jmp : . . .

(31)

The AndOr Expression

– ABSTRACT SYNTAX

e1 and/or e2

– TYPING RULE

Γ
 e1 : Boolean, Γ
 e2 : Boolean

Γ
 e1 and/or e2 : Boolean
(32)

– COMPILING RULE

compile[[e1 and e2]] = compile[[e1]]
JUMP ON FALSE jof
compile[[e2]]
JUMP ON TRUE jot

jof : PUSH FALSE

JUMP jmp
jot : PUSH TRUE

jmp : . . .

(33)

compile[[e1 or e2]] = compile[[e1]]
JUMP ON TRUE jot
compile[[e2]]
JUMP ON FALSE jof

jot : PUSH TRUE

JUMP jmp
jof : PUSH FALSE

jmp : . . .

(34)

150 H. Aı̈t-Kaci

The Sequence Expression

– ABSTRACT SYNTAX

{ e1; . . . ; en }

– TYPING RULE

Γ
 e1 : T1, . . . , Γ
 en : Tn

Γ
 { e1; . . . ; en } : Tn
(35)

– COMPILING RULE

compile[[{ e1; . . . ; en }]] = compile[[e1]]
POP sort(e1)
...
compile[[en]]

(36)

The WhileDo Expression

– ABSTRACT SYNTAX

while c do e (37)

where c and e are expressions.

– TYPING RULE

Γ
 c : Boolean, Γ
 e : T

Γ
 while c do e : Void
(38)

– COMPILING RULE

compile[[while c do e]] = loop : compile[[c]]
JUMP ON FALSE jof
compile[[e]]
JUMP loop

jof :

(39)

An Abstract, Reusable, and Extensible Programming Language Design Architecture 151

The ExitWithValue Expression. This is a primitive for so-called non-local exit,
and may be used to express more complicated control structures such as exception
handling.

– ABSTRACT SYNTAX

exit with v (40)

where v is an expression.

– OPERATIONAL SEMANTICS Normally, exiting from an abstraction is done simply by
“falling off” (one of) the tip(s) of the expression tree of the abstraction’s body.
This operation is captured by the simple operational semantics of each of the three
RETURN instructions. Namely, when executing a RETURN instruction, the runtime
performs the following three-step procedure:
1. it pops the result from its result stack;29

2. it restores the latest saved runtime state (popped off the saved-state stack);
3. it pushes the result popped in Step 1 onto the restored state’s own result stack.

Then, control follows up with the next instruction.
However, it is also often desirable, under certain circumstances, that computation
not be let to proceed further at its current level of nesting of exitable abstractions.
Then, computation may be allowed to return right away from this current nesting
(i.e., as if having fallen off this level of exitable abstraction) when the conditions
for this to happen are met. Exiting an abstraction thus must also return a specific
value that may be a function of the context. This is what the kernel construction
exit with v expresses. This kernel construction is provided in order to specify that
the current local computation should terminate without further ado, and exit with
the value denoted by the specified expression.

– TYPING RULE Now, there are several notions in the above paragraphs that need some
clarification. For example, what an “exitable” abstraction is, and why worry about
a dedicated construct in the kernel language for such a notion if it does nothing
more than what is done by a RETURN instruction.
First of all, from its very name exit with v assumes that computation has entered
that from which it must exit. This is an exitable abstraction; that is, the latest
λ-abstraction having the property of being exitable. Not all abstractions are ex-
itable. For example, any abstraction that is generated as part of the target of some
other kernel expression’s syntacting sugar (e.g., let x1 = e1; . . . ; xn = en; in e or
〈⊕, 11⊕〉{e | x1 ← e1, . . . , xn ← en}, and generally any construct that hide im-
plicit abstractions within), will not be deemed exitable.
Secondly, exiting with a value v means that the type T of v must be congruent with
what the return type of the abstraction being exited is. In other words:

Γ
 ℵΓ : T ′ → T , Γ
 v : T

Γ
 exit with v : T
(41)

where ℵΓ denotes the latest exitable abstraction in the context Γ .
The above scheme indicates the following necessities:

29 Where stack here means “stack of appropriate runtime sort;” approppriate, that is, as per the
instruction’s runtime sort—viz., ending in I for INT, R for REAL, or O for OBJECT.

152 H. Aı̈t-Kaci

1. The typing rules for an abstraction deemed exitable must record in its typing
context Γ the latest exitable abstraction, if any such exists; (if none does, a
static semantics error is triggered to indicate that it is impossible to exit from
anywhere before first entering somewhere).30

2. Congruently, the APPLY instruction of an exitable closure must take care of
chaining this exitable closure before it pushes a new state for it in the saved
state stack of the runtime system with the last saved exitable closure, and mark
the saved state as being exitable; dually, this exitable state stack must also be
popped upon “falling off”—i.e., normally exiting—an exitable closure. That
is, whenever an exitable state is restored.

3. New non-local return instructions NL RETURN (for each runtime sort) must be
defined like their corresponding RETURN instructions except that the runtime
state to restore is the one popped out of the exitable state stack.

– COMPILING RULE

compile[[exit with v]] = compile[[v]]
NL RETURN sort(v) (42)

C Monoids

In this section, all notions and notations relating to monoids as they are used in this
paper are recalled and justified.

Mathematically, a monoid is a non-empty set equipped with an associative internal
binary operation and an identity element for this operation. Formally, let S be a set,
� a function from S × S to S, and ε ∈ S; then, 〈S, �, ε〉 is a monoid iff, for any
x, y, z in S:

x � (y � z) = (x � y) � z (43)

and

x � ε = ε � x = ε. (44)

Most familiar mathematical binary operations define monoids. For example, taking
the set of natural numbers N, and the set of boolean values B = {true, false}, the
following are monoids:

– 〈N, +, 0〉,
– 〈N, ∗, 1〉,
– 〈N, max, 0〉,
– 〈B,∨, false〉,
– 〈B,∧, true〉.

30 This is why Typing Rule (25) needs to treat both kinds of abstractions.

An Abstract, Reusable, and Extensible Programming Language Design Architecture 153

The operations of these monoids are so familiar that they need not be explicated. For
us, they have a “built -in” semantics that allows us to compute with them since pri-
mary school. Indeed, we shall refer to such readily interpreted monoids as primitive
monoids.31

Note that the definition of a monoid does not preclude additional algebraic structure.
Such structure may be specified by other equations augmenting the basic monoid equa-
tional theory given by the conjunction of equations (43) and (44). For example, all five
monoids listed above are commutative; namely, they also obey equation (45):

x � y = y � x (45)

for any x, y. In addition, the three last ones (i.e., max, ∨, and ∧) are also idempotent;
namely, they also obey equation (46):

x � x = x (46)

for any x.
Not all monoids are primitive monoids. That is, one may define a monoid purely syn-

tactically whose operation only builds a syntactic structure rather than being interpreted
using some semantic computation. For example, linear lists have such a structure: the
operation is list concatenation and builds a list out of two lists; its identity element is
the empty list. A syntactic monoid may also have additional algebraic structure. For
example, the monoid of bags is also defined as a commutative syntactic monoid with
the disjunct union operation and the empty bag as identity. Or, the monoid of sets is a
commutative and idempotent syntactic monoid with the union operation and the empty
set as identity.

Because they are not interpreted, syntactic monoids pose a problem as far as repre-
sentation of its elements is concerned. To illustrate this, let us consider an empty-theory
algebraic structure; that is, one without any equations—not even associativity nor iden-
tity. Let us take such a structure with one binary operation � on, say, the natural numbers
N. Saying that � is a “syntactic” operation means that it constructs a syntactic term (i.e.,
an expression tree) by composing two other syntactic terms. We thus can define the
set T� of �-terms on some base set, say the natural numbers, inductively as the limit
∪n≥0Tn where,

Tn
def=

⎧⎨⎩
N if n = 0

{t1 � t2 | ti ∈ Tn−1, i = 1, 2} if n > 0.
(47)

31 We call these monoids “primitive” following the presentation of Fegaras and Maier [8] as it ad-
heres to a more operational (as opposed to mathematical) approach more suitable to computer-
scientists. Mathematically, however, these should be called “semantic” monoids since they are
interpreted by the computation semantics of their operations. See Appendix Section E.1 for an
overview of this formalism.

154 H. Aı̈t-Kaci

Clearly, the set T� is well defined and so is the � operation over it. Indeed, � is a bona
fide function from T� × T� to T� mapping two terms t1 and t2 in T� into a unique term
in T�—namely, t1 � t2. This is why T� is called the syntactic algebra.32

Let us now assume that the � operation is associative—i.e., that �-terms verify Equa-
tion (43). Note that this equation defines a (syntactic) congruence on T� which identifies
terms such as, say, 1 � (2 � 3) and (1 � 2) � 3. In fact, for such an associative � opera-
tion, the set T� defined in Equation (47) is not the appropriate domain. Rather, the right
domain is the quotient set whose elements are (syntactic) congruence classes modulo
associativity of �. Therefore, this creates an ambiguity of representation of the syntactic
structures.33

Similarly, more algebraic structure defined by larger equational theories induces
coarser quotients of the empty-theory algebra by putting together in common congru-
ence classes all the syntactic expressions that can be identified modulo the theory’s
equations. The more equations, the more ambiguous the syntactic structures of expres-
sions. Mathematically, this poses no problem as one can always abstract away from
individuals to congruence classes. However, operationally one must resort to some con-
crete artifact to obtain a unique representation for all members of the same congru-
ence class. One way is to devise a canonical representation into which to transform all
terms. For example, an associative operation could systematically “move” nested sub-
trees from its left argument to its right argument—in effect using Equation (43) as a
one-way rewrite rule. However, while this is possible for some equational theories, it is
not so in general—e.g., take commutativity.34

From a programming standpoint (which is ours), we can abstract away from the am-
biguity of canonical representations of syntactic monoid terms using a flat notation. For
example, in LISP and Prolog, a list is seen as the (flat) sequence of its constituents.
Typically, a programmer writes [1, 2, 1] to represent the list whose elements are 1, 2
and 1 in this order, and does not care (nor need s/he be aware) of its concrete repre-
sentation. A set—i.e., a commutative idempotent syntactic monoid—is usually denoted
by the usual mathematical notation {1, 2}, implicitly relying on disallowing duplicate
elements, not minding the order in which the elements appear. A bag, or multiset—i.e.,
a commutative but non-idempotent syntactic monoid—uses a similar notation, allowing
duplicate elements but paying no heed to the order in wich they appear; i.e., {{1, 2, 1}}
is the bag containing 1 twice, and 2 once.

32 For a fixed set of base elements and operations (which constitute what is formally called a
signature), the syntactic algebra is unique (up to isomorphism). This algebra is also called the
free, or the initial, algebra for its signature.

33 Note that this ambiguity never arises for semantic algebras whose operations are interpreted
into a unique result.

34 Such are important considerations in the field of term rewriting [38], where the problem of
finding canonical term representations for equational theories was originally addressed by
Donald Knuth and Peter Bendix in a seminal paper proposing a general effective method—
the so-called Knuth-Bendix Completion Algorithm [39]. The problem, incidentally, is only
semi-decidable. In other words, the Knuth-Bendix algorithm may diverge, although several
interesting variations have been proposed for a wide extent of practical uses (see [38] for a
good introduction and bibliography).

An Abstract, Reusable, and Extensible Programming Language Design Architecture 155

Syntactic monoids are quite useful for programming as they provide adquate data
structures to represent collections of objects of a given type. Thus, we refer to them
as collection monoids. Now, a definition such as Equation (47) for a syntactic monoid,
although sound mathematically, is not quite adequate for programming purposes. This
is because it defines the � operations on two distinct types of elements; namely, the
base elements (here natural numbers) and constructed elements. In programming, it is
desirable that operations be given a crisp type. A way to achieve this is by systematically
“wrapping” each base element x into a term such as x�ε. This “wrapping” is achieve by
associating to the monoid a function U� from the base set into the monoid domain called
its unit injection. For example, if++ is the list monoid operation for concatenating two
lists, U++(x) = [x] and one may view the list [a, b, c] as [a]++[b]++[c]. Similarly, the
set {a, b, c} is viewed as {a} ∪ {b} ∪ {c}, and the bag {{a, b, c}} as {{a}} � {{b}} � {{c}}.
Clearly, this bases the constructions on an isomorphic view of the base set rather than
the base set itself, while using a uniform type for the monoid operator. Also, because
the type of the base elements is irrelevant for the construction other than imposing the
constraint that all such elements be of the same type, we present a collection monoid as
a polymorphic data type. This justifies the formal view of monoids we give next using
the programming notion of polymorphic type.

Because it is characterized by its operation⊕, a monoid is often simply referred to as
⊕. Thus, a monoid operation is used as a subscript to denote its characteristic attributes.
Namely, for a monoid⊕,

– T⊕ is its type (i.e., ⊕ : T⊕ × T⊕ → T⊕),

– 11⊕ : T⊕ is its identity element,

– Θ⊕ is its equational theory (i.e., a subset of the set {C, I}, where C stands for
“commutative” and I for “idempotent”);

and, if it is a collection monoid,

– C⊕ is its type constructor (i.e., T⊕ = C⊕(α)),

– U⊕ : α→ C⊕(α) is its unit injection for any type variable α.

Examples of familiar monoids of both kinds are given in Table 2 in terms of the above
characteristic attributes.35

D The Typed Polymorphic λ-Calculus

We assume a set C of pregiven constants ususally denoted by a, b . . ., and a countably
infinite set of variable symbols V usually denoted by x, y, The syntax of a term
expression e of the λ-Calculus is given by the grammar shown in Fig. 5. We shall call
TΣ the set of term expressions e defined by this grammar. These terms are also called
raw term expressions.

35 If the theory is {I}—i.e., idempotent but not commutative—this defines yet another, though
unfamiliar, type of collection monoid where there may be redundant elements but only if not
adjacent.

156 H. Aı̈t-Kaci

Table 2. Attributes of a few common monoids

⊕ T⊕ 11⊕ Θ⊕
+ Int 0 {C}
∗ Int 1 {C}

max Int 0 {C, I}
∨ Boolean false {C, I}
∧ Boolean true {C, I}

⊕ C⊕ T⊕ 11⊕ U⊕(x) Θ⊕
∪ set set(α) {} {x} {C, I}
� bag bag(α) {{}} {{x}} {C}

++ list list(α) [] [x] ∅

Some primitive monoids Familiar Collection monoids

e ::= a (a ∈ C) constant

| x (x ∈ V) variable

| λx. e (x ∈ V) abstraction

| e e application

Fig. 5. Basic λ-Calculus Expressions

An abstraction λx. e defines a lexical scope for its bound variable x, whose extent is
its body e. Thus, the notion of free occurrence of a variable in a term is defined as usual,
and so is the operation e1[x← e2] of substituting a term e2 for all the free occurrences
of a variable x in a term e1. Thus, a bound variable may be renamed to a new one in its
scope without changing the abstraction.

The computation rule defined on λ-terms is the so-called β-reduction:

(λx. e1) e2 −→ e1[x← e2]. (48)

We assume a set B of basic type symbols denoted by A, B, . . ., and a countably
infinite set of type variables T V denoted by α, β, The syntax of a type τ of the
Typed Polymorphic λ-Calculus is given by the following grammar:

τ ::= A (A ∈ B) basic type
| α (α ∈ T V) type variable
| τ → τ function type

(49)

We shall call T the set of types τ defined by this grammar. A monomorphic type is a
type that contains no variable types. Any type containing at least one variable type is
called a polymorphic type.

The typing rules for the Typed Polymorphic λ-Calculus are given in Fig. 6. These
rules can be readily translated into a Logic Programming language based on Horn-
clauses such as Prolog, and used as an effective means to infer the types of expressions
based on the Typed Polymorphic λ-Calculus.

The basic syntax of the Typed Polymorphic λ-Calculus may be extended with other
operators and convenient data structures as long as typing rules for the new constructs

An Abstract, Reusable, and Extensible Programming Language Design Architecture 157

Γ � a : τ
if type(a) = τ, for any type environment Γ constant

Γ � x : τ
if Γ (x) = τ variable

Γ [x : τ1] � t : τ2

Γ � λx. t : τ1 → τ2
abstraction

Γ � t1 : τ1 → τ2, Γ � t2 : τ1

Γ � t1 t2 : τ2
application

Fig. 6. Typing rules for the typed polymorphic λ-calculus

are provided. Typically, one provides at least the set N of integer constants and B =
{true, false} of boolean constants, along with basic arithmetic and boolean operators,
pairing (or tupling), a conditional operator, and a fix-point operator. The usual arith-
metic and boolean operators are denoted by constant symbols (e.g., +, ∗,−, /,∨,∧,
etc.). Let O be this set.

The computation rules for these operators are based on their usual semantics as one
might expect, modulo transforming the usual binary infix notation to a “curryed” appli-
cation. For example, e1 + e2 is implicitly taken to be the application (+ e1) e2. Note
that this means that all such operators are implicitly “curryed.”36

For example, we may augment the grammar for the terms given in Fig. 5 with the
addiional rules in Fig. 7.

e ::= . . . λ-calculus expression

| 〈e, · · · , e〉 tupling

| e.n (n ∈ N) projection

| if e then e else e conditional

| fix e fixpoint

Fig. 7. Additional syntax for the extended λ-calculus (with Fig. 5)

36 Recall that a curryed form of an n-ary function f is obtained when f is applied to less argu-
ments than it expects; i.e., f(e1, . . . , ek), for 1 ≤ k < n. In the λ-calculus, this form is simply
interpreted as the abstraction λx1. . . . λxn−k. f(e1, . . . , ek, x1, . . . , xn−k). In their fully cur-
ried form, all n-ary functions can be seen as unary functions; indeed, with this interpretation
of curried forms, it is clear that f(e1, . . . , en) = (. . . (f e1) . . . en−1) en.

158 H. Aı̈t-Kaci

The computation rules for the other new constructs are:

〈e1, · · · , ek〉.i −→
{

ei if 1 ≤ i ≤ k
undefined otherwise

if e then e1 else e2 −→

⎧⎨⎩
e1 if e = true

e2 if e = false

undefined otherwise

fix e −→ e (fix e)

(50)

To account for the new constructs, the syntax of types is extended accordingly to:

τ ::= Int | Boolean basic type
| α (α ∈ T V) type variable
| 〈τ, · · · , τ〉 tuple type
| τ → τ function type

(51)

We are given that type(n) = Int for all n ∈ N and that type(true) = Boolean

and type(false) = Boolean. The (fully curried) types of the built-in operators are
given similarly; namely, integer addition has type type(+) = Int → (Int→ Int),
Boolean disjuction has type type(∨) = Boolean→ (Boolean→ Boolean), etc., . . .
The additional typing rules for this extended calculus are given in Fig. 8.

Γ � t1 : τ1, · · · Γ � tk : τk

Γ � 〈t1, · · · , tk〉 : 〈τ1, · · · , τk〉 tupling

Γ � t : 〈τ1, · · · , τk〉
Γ � t.i : τi

if 1 ≤ i ≤ k tuple projection

Γ � t1 : Boolean, Γ � t2 : τ, Γ � t3 : τ

Γ � if t1 then t2 else t3 : τ
conditional

Γ � t : τ → τ

Γ � fix t : τ
fixpoint

Fig. 8. Additional typing rules for the extended typed polymorphic λ-calculus (with Fig. 6)

E Object Query Language Formalisms

In this section, I review a formal syntax for processiong collections due to Peter Bune-
man et al. [5,6] and elaborated by Leonidas Fegaras and David Maier [8] using the
notion of Monoid Comprehensions.

An Abstract, Reusable, and Extensible Programming Language Design Architecture 159

E.1 Monoid Homomorphisms and Comprehensions

The formalism presented here is based on [8] and assumes familiarity with the notions
and notations summarized in Appendix Section C. I will use the programming view of
monoids exposed there using the specific notation of monoid attributes, in particular
for sets, bags, and lists. I will also assume basic familiarity with naive λ-calculus and
associated typing as presented in Appendix Section D.

Monoid Homomorphisms. Because many operations and data structures are monoids,
it is interesting to use the associated concepts as the computational building block of
an essential calculus. In particular, iteration over collection types can be elegantly for-
mulated as computing a monoid homomorphism. This notion coincides with the usual
mathematical notion of homomorphism, albeit given here from an operational stand-
point and biased toward collection monoids. Basically, a monoid homomorphism hom

�
⊕

maps a function f from a collection monoid ⊕ to any monoid � by collecting all the
f -images of elements of a⊕-collection using the� operation. For example, the expres-
sion hom

∪
++[λx. x + 1] applied to the list [1, 2, 1, 3, 2] returns the set {2, 3, 4}.37

In other words, the monoid homomorphism hom
∪
++ of a function f applied to a list

L corresponds to the following loop computation collecting the f -images of the list
elements into a set (each f -image being a set):

result ← {};
foreach x in L do result ← result∪ f(x);
return result;

This is formalized as follows:

Definition 1 (Monoid Homomorphism). A Monoid Homomorphism hom
�
⊕ defines a

mapping from a collection homomorphism⊕ to any monoid� such that Θ⊕ ⊆ Θ� by:

hom
�
⊕[f](11⊕) def= 11�

hom
�
⊕[f](U⊕(x)) def= f(x)

hom
�
⊕[f](x⊕ y) def= hom

�
⊕[f](x)� hom

�
⊕[f](y)

for any function f : α→ T�, x : α, and y : α, where T⊕ = C⊕(α).

Again, computationally, this amounts to executing the following iteration:

result ← 11�;
foreach xi in U⊕(x1)⊕ · · · ⊕ U⊕(xn) do result ← result� f(xi);
return result;

The reader may be puzzled by the condition Θ⊕ ⊆ Θ� in Definition 1. It means that
a monoid homomorphism may only be defined from a collection monoid to a monoid
that has at least the same equational theory. In other words, one can only go from an

37 See Table 2 for notation of a few common monoids.

160 H. Aı̈t-Kaci

empty theory monoid, to either a {C}-monoid or an {I}-monoid, or yet to a {C, I}-
monoid. This requirement is due to an algebraic technicality, and relaxing it would
cause a monoid homomorphism to be ill-defined. To see this, consider going from, say,
a commutative-idempotent monoid to one that is commutative but not idempotent. Let
us take, for example, hom

+
∪ . Then, this entails:

1 = hom
+
∪ [λx. 1]({a})

= hom
+
∪ [λx. 1]({a} ∪ {a})

= hom
+
∪ [λx. 1]({a}) + hom

+
∪ [λx. 1]({a})

= 1 + 1

= 2.

The reader may have noticed that this restriction has the unfortunate consequence
of disallowing potentially useful computations, notable examples being computing the
cardinality of a set, or converting a set into a list. However, this drawback can be easily
overcome with a suitable modification of the third clause in Definition 1, and other
expressions based on it, ensuring that anomalous cases such as the above are dealt with
by appropriate tests.

It is important to note that, for the consistency of Definition 1, a non-idempotent
monoid must actually be anti-idempotent, and a non-commutative monoid must be anti-
commutative. Indeed, if ⊕ is non-idempotent as well as non-anti-idempotent (say, x0⊕
x0 = x0 for some x0), then this entails:

hom
�
⊕[f](x0) = hom

�
⊕[f](x0 ⊕ x0)

= hom
�
⊕[f](x0) � hom

�
⊕[f](x0)

which is not necessarily true for non-idempotent �. A similar argument may be given
for commutativity. This consistency condition is in fact not restrictive operationally as it
is always verified (e.g., a list will not allow partial commutation of any of its element).

Here are a few familar functions expressed with well-defined monoid
homomorphisms:

length(l) = hom
+
++[λx. 1](l)

e ∈ s = hom
∨
∪[λx. x = e](s)

s× t = hom
∪
∪[λx. hom

∪
∪[λy. {〈x, y〉}](t)](s)

map(f, s) = hom
∪
∪[λx. {f(x)}](s)

filter(p, s) = hom
∪
∪[λx. if p(x) then {x} else {}](s).

Monoid Comprehensions. The concept of monoid homomorphism is useful for ex-
pressing a formal semantics of iteration over collections. However, it is not very conve-
nient as a programming construct. A natural notation for such a construct that is both

An Abstract, Reusable, and Extensible Programming Language Design Architecture 161

conspicuous and can be expressed in terms of monoid homomorphisms is a monoid
comprehension. This notion generalizes the familiar notation used for writing a set in
comprehension (as opposed to writing it in extension) using a pattern and a formula
describing its elements (as oppposed to listing all its elements). For example, the set
comprehension {〈x, x2〉 | x ∈ N, ∃n.x = 2n} describes the set of pairs 〈x, x2〉 (the
pattern), verifying the formula x ∈ N, ∃n.x = 2n (the qualifier).

This notation can be extended to any (primitive or collection) monoid⊕. The syntax
of a monoid comprehension is an expression of the form ⊕{e [] Q} where e is an
expression called the head of the comprehension, and Q is called its qualifier and is a
sequence q1, . . . , qn, n ≥ 0, where each qi is either:

– a generator of the form x ← e, where x is a variable and e is an expression; or,

– a filter φ which is a boolean condition.

In a monoid comprehension expression⊕{e [] Q}, the monoid operation⊕ is called the
accumulator.

As for semantics, the meaning of a monoid comprehension is defined in terms of
monoid homomorphisms.

Definition 2 (Monoid Comprehension). The meaning of a monoid comprehension
over a monoid⊕ is defined inductively as follows:

⊕{e [] } def=

⎧⎨⎩U⊕(e) if ⊕ is a collection monoid

e if ⊕ is a primitive monoid

⊕{e [] x ← e′, Q} def= hom
⊕
�[λx. ⊕ {e [] Q}](e′)

⊕{e [] c, Q} def= if c then ⊕ {e [] Q} else 11⊕

such that e : T⊕, e′ : T�, and � is a collection monoid.

Note that although the input monoid ⊕ is explicit, each generator x ← e′ in the
qualifier has an implicit collection monoid� whose characteristics can be inferred with
polymorphic typing rules.

Note that relational joins are immediately expressible as monoid comprehensions.
Indeed, the join of two sets S and T using a function f and a predicate p is simply:

S ��f
p T

def= ∪{f(x, y) [] x ← S, y ← T, p(x, y)}. (52)

Typically, a relational join will take f to be a record constructor. For example, if we
write a record whose fields li have values ei for i = 1, . . . , n, as 〈l1 = e1, , . . . , ln =
en〉, then a standard relational join can be obtained with, say, f(x, y) = 〈name =
y.name, age = 2 ∗ x.age〉, and p(x, y) may be any condition such as x.name =
y.name, x.age ≥ 18.

162 H. Aı̈t-Kaci

Clearly, monoid comprehensions can immediately express queries using all usual
relational operators (and, indeed, object queries as well) and most usual functions. For
example,

∃x ∈ s.e
def
= ∨{e [] x ← s}

∀x ∈ s.e
def
= ∧{e [] x ← s}

x ∈ s
def
= ∨{x = y [] y ← s}

s ∩ t
def
= ∪{x [] x ← s, x ∈ t}

count(a, s)
def
= +{1 [] x ← s, x = a}

length(s)
def
= +{1 [] x ← s}

sum(s)
def
= +{x [] x ← s}

max(s)
def
= max{x [] x ← s}

filter(p, s)
def
= ∪{x [] x ← s, p(x)}

flatten(s)
def
= ∪{x [] t ← s, x ← t}

Note that some of these functions will work only on appropriate types of their argu-
ments. For example, the type of the argument of sum must be a non-idempotent monoid,
and so must the type of the second argument of count. Thus, sum will add up the ele-
ments of a bag or a list, and count will tally the number of occurrences of an element
in a bag or a list. Applying either sum or count to a set will be caught as a type error.

We are now in a position to propose a programming calculus using monoid com-
prehensions. Fig. 9 defines an abstract grammar for an expression e of the Monoid
Comprehension Calculus and amounts to adding comprehensions to an extended Typed
Polymorphic λ-Calculus. Fig. 10 gives the typing rules for this calculus.

e ::= . . . extended λ-calculus expression

| 11⊕ monoid identity

| U⊕(e) monoid unit injection

| e1 ⊕ e2 monoid composition

| ⊕{e [] Q} monoid comprehension

Fig. 9. Additional Syntax for the monoid comprehension calculus (with Fig. 7)

F Backend System

Our generic backend system comprises classes for managing runtime events and ob-
jects, a display manager, and an error manager. As an example, we describe the organi-
zation of a runtime object.

The class 〈backend〉.Runtime.java defines what a runtime context consists of
as an object of this class. Such an object serves as the common execution environment
context shared by 〈instructions〉.Instruction objects being executed. It encap-
sulates a state of comptutation that is effected by each instruction as it is executed in its
context.

Thus, a 〈backend〉.Runtime.java object consists of attributes and structures
that together define a state of computation, and methods that are used by instruc-
tions to effect this state as they are executed. Thus, each instruction subclass of 〈ins-
tructions〉.Instruction defines an execute(〈backend〉.Runtime) method

An Abstract, Reusable, and Extensible Programming Language Design Architecture 163

Γ � 11⊕ : T⊕
11⊕ monoid identity

Γ � e1 : T⊕, Γ � e2 : T⊕
Γ � e1 ⊕ e2 : T⊕

⊕ primitive monoid

Γ � e : T⊕
Γ � ⊕{e [] } : T⊕

⊕ primitive monoid

Γ � e : τ

Γ � U⊕(e) : C⊕(τ)
⊕ collection monoid

Γ � e1 : C⊕(τ), Γ � e2 : C⊕(τ)

Γ � e1 ⊕ e2 : C⊕(τ)
⊕ collection monoid

Γ � e : τ

Γ � ⊕{e [] } : C⊕(τ)
⊕ collection monoid

Γ � e2 : C�(τ2), Γ [x : τ2] � ⊕{e1 [] Q} : τ1

Γ � ⊕{e1 [] x ← e2, Q} : τ1
if Θ� ⊆ Θ⊕ subtheory

Γ � e2 : Boolean, Γ � ⊕{e1 [] Q} : τ

Γ � ⊕{e1 [] e2, Q} : τ

Fig. 10. Additional typing rules for the monoid comprehension calculus (with Fig. 6)

that specifies its operational semantics as a state transformation of its given runtime
context.

Initiating execution of a 〈backend〉.Runtime.java object consists of setting its
code array to a given instruction sequence, setting its instruction pointer ip to its
code’s first instruction and repeatedly calling and invokingexecute(this) on what-
ever instruction in the current code array for this Runtime.java object is currently
at address ip. The final state is reached when a flag indicating that it is so is set to
true. Each instruction is responsible for appropriately setting the next state according
to its semantics, including saving and restoring states, and (re)setting the code array and
the various runtime registers pointing into the state’s structures.

Runtime states encapsulated by objects in this class are essentially those of a stack
automaton, specifically conceived to support the computations of a higher-order func-
tional language with lexical closures—i.e., a λ-Calculus machine—extended to support
additional features—e.g., assignment side-effects, objects, automatic currying. . . As
such it may viewed as an optimized variant of Peter Landin’s SECD machine [13]—in
the same spirit as Luca Cardelli’s Functional Abstract Machine (FAM) [14], although
our design is quite different from Cardelli’s in its structure and operations.

Because this is a Java implementation, in order to avoid the space and performance
overhead of being confined to boxed values for primitive type computations, three con-
current sets of structures are maintained: in addition to those needed for boxed (Java
object) values, two extra ones are used to support unboxed integer and floating-point
values, respectively. The runtime operations performed by instructions on a 〈back-
end〉.Runtime object are guaranteed to be type-safe in that each state is always such

164 H. Aı̈t-Kaci

as it must be expected for the correct accessing and setting of values. Such a guarantee
must be (and is!) provided by the 〈types〉.TypeChecker and the 〈kernel〉.Sani-
tizer, which ascertain all the conditions that must be met prior to having a 〈ker-
nel〉.Compiler proceed to generating instructions which will safely act on the ap-
propriate stacks and environments of the correct sort (integer, floating-point, or object).

Display manager objects and error manager objects are similarly organized.

References

1. Aı̈t-Kaci, H.: An Abstract and Reusable Programming Language Architecture. Keynote pre-
sentation, LDTA 2003 (April 6, 2003)38

2. Landin, P.J.: The next 700 programming languages. Communications of the ACM 9(3),
157–166 (1966)39

3. Sethi, R.: Programming Languages—Concepts and Constructs, 2nd edn. Addison-Wesley,
Reading (1996)

4. Johnson, S.: Yacc: Yet another compiler compiler. Computer Science Technical Report 32,
AT&T Bell Labs, Murray Hill, NJ (1975); Reprinted in the 4.3BSD Unix Programmer’s
Manual, Supplementary Documents 1, PS1:15, UC Berkeley (1986)

5. Buneman, P., Libkin, L., Suciu, D., Tannen, V., Wong, L.: Comprehension syntax. ACM
SIGMOD Record 23(1), 87–96 (1994) 40

6. Buneman, P., Naqvi, S., Tannen, V., Wong, L.: Principles of programming with complex
objects and collection types. Theoretical Computer Science 149(1), 3–48 (1995) 41

7. Brodky, A., Segal, V.E., Chen, J., Exarkhopoulo, P.A.: The CCUBE system object-oriented
database system. In: Ramakrishnan, R., Stuckey, P.J. (eds.) Constraints and Databases, pp.
245–277. Kluwer Academic Publishers, Norwell (1998); Special Issue on Constraints: An
International Journal 2(3&4) (1997)

8. Fegaras, L., Maier, D.: Optimizing object queries using an effective calculus. ACM Transac-
tions on Database Systems 25(4), 457–516 (2000) 42

9. Aı̈t-Kaci, H.: An introduction to LIFE—Programming with Logic, Inheritance, Functions,
and Equations. In: Miller, D. (ed.) Proceedings of the International Symposium on Logic
Programming, pp. 52–68. MIT Press (October 1993)

10. Aı̈t-Kaci, H., Di Cosmo, R.: Compiling order-sorted feature term unification. PRL Technical
Note 7, Digital Paris Research Laboratory, Rueil-Malmaison, France (December 1993)

11. DeRemer, F., Pennello, T.: Efficient computation of LALR(1) look-ahead sets. ACM Trans-
actions on Programming Languages and Systems 4(4), 615–649 (1982) 43

12. Park, J., Choe, K.M., Chang, C.: A new analysis of LALR formalisms. ACM Transactions
on Programming Languages and Systems 7(1), 159–175 (1985) 44

13. Landin, P.J.: The mechanical evaluation of expressions. Computer Journal 6(4), 308–320
(1963) 45

38 http://ldta.info/2003/
39 http://www.thecorememory.com/Next 700.pdf
40 http://www.acm.org/sigs/sigmod/record/issues/9403/
Comprehension.ps

41 http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.41.5516

42 http://lambda.uta.edu/tods00.ps.gz
43 http://dl.acm.org/citation.cfm?id=69622.357187
44 http://dl.acm.org/citation.cfm?id=69622.357187
45 http://www.cs.cmu.edu/ crary/819-f09/Landin64.pdf

http://ldta.info/2003/
http://www.thecorememory.com/Next_700.pdf
http://www.acm.org/sigs/sigmod/record/issues/9403/Comprehension.ps
http://www.acm.org/sigs/sigmod/record/issues/9403/Comprehension.ps
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.5516
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.5516
http://lambda.uta.edu/tods00.ps.gz
http://dl.acm.org/citation.cfm?id=69622.357187
http://dl.acm.org/citation.cfm?id=69622.357187
http://www.cs.cmu.edu/~crary/819-f09/Landin64.pdf

An Abstract, Reusable, and Extensible Programming Language Design Architecture 165

14. Cardelli, L.: The functional abstract machine. Technical Report TR-107, AT&T Bell Labo-
ratories, Murray Hill, New Jersey (May 1983) 46

15. Banâtre, J.P., Le Métayer, D.: A new computational model and its discipline of program-
ming. INRIA Technical Report 566, Institut National de Recherche en Informatique et
Automatique, Le Chesnay, France (1986)

16. Berry, G., Boudol, G.: The chemical abstract machine. In: Proceedings of the 17th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 1990, pp.
81–94. ACM Press, New York (1990)47

17. Aı̈t-Kaci, H.: Warren’s Abstract Machine—A Tutorial Reconstruction. Logic Programming.
MIT Press, Cambridge (1991)

18. Grust, T.: Monad comprehensions—a versatile representation for queries. In: Gray, P.,
Kerschberg, L., King, P., Poulovassilis, A. (eds.) The Functional Approach to Data Man-
agement: Modeling, Analyzing and Integrating Heterogeneous Data. Springer (September
2003)48

19. Bothner, P.: XQuery tutorial. Online tutorial49

20. Nic, M., Jirat, J.: XPath tutorial. Online tutorial50

21. Gesbert, N., Genevès, P., Layaı̈da, N.: Parametric polymorphism and semantic subtyping: the
logical connection. In: Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2011), Tokyo Japan, September 19-21, pp. 107–116. Asso-
ciation for Computing Machinery, New York (2011) 51

22. Gesbert, N., Genevès, P., Layaı̈da, N.: Parametric polymorphism and semantic subtyping: the
logical connection. SIGPLAN Notices 46(9) (September 2011); N.B.: full version of [21]

23. Bierman, G.M., Gordon, A.D., Hri�cu, C., Langworthy, D.: Semantic subtyping with an
SMT solver. In: Proceedings of the 15th ACM SIGPLAN International Conference on Func-
tional Programmingm (ICFP 2010), Baltimore, MA USA, September 27-29, pp. 105–116.
Association for Computing Machinery, New York (2010)52

24. Bierman, G.M., Gordon, A.D., Hri�cu, C., Langworthy, D.: Semantic subtyping with an
SMT solver. Journal of Functional Programming, 1–75 (2012); N.B.: full version of [23]53

25. Jaffar, J., Maher, M.J.: Constraint Logic Programming: A survey. Journal of Logic Program-
ming 19/20, 503–581 (1994)54

26. Leroy, X.: Unboxed objects and polymorphic typing. In: Proceedings of the 19th Sympo-
sium on Principles of Programming Languages (POPL 1992), pp. 177–188. Association for
Computing Machinary. ACM Press (1992)55

27. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers—Principles, Techniques, and Tools. Addison-
Wesley (1986)

28. Choe, K.M.: Personal communication. Korean Advanced Institute of Science and Technol-
ogy, Seoul, South Korea (December 2000), choecompiler.kaist.ac.kr

46 http://lucacardelli.name/Papers/FAM.pdf
47 citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.127.3782
48 http://www-db.in.tum.de/ grust/files/monad-comprehensions.pdf
49 http://www.gnu.org/software/qexo/XQuery-Intro.html
50 http://www.zvon.org/xxl/XPathTutorial/General/examples.html
51 http://hal.inria.fr/inria-00585686/fr/
52 http://research.microsoft.com/apps/pubs/?id=135577
53 http://www-infsec.cs.uni-saarland.de/˜hritcu/publications/
dminor-jfp2012.pdf

54 http://citeseer.ist.psu.edu/jaffar94constraint.html
55 http://gallium.inria.fr/ xleroy/bibrefs/Leroy-unboxed.html

http://lucacardelli.name/Papers/FAM.pdf
file:citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.127.3782
http://www-db.in.tum.de/~grust/files/monad-comprehensions.pdf
http://www.gnu.org/software/qexo/XQuery-Intro.html
http://www.zvon.org/xxl/XPathTutorial/General/examples.html
http://hal.inria.fr/inria-00585686/fr/
http://research.microsoft.com/apps/pubs/?id=135577
http://www-infsec.cs.uni-saarland.de/~{}hritcu/publications/dminor-jfp2012.pdf
http://www-infsec.cs.uni-saarland.de/~{}hritcu/publications/dminor-jfp2012.pdf
http://citeseer.ist.psu.edu/jaffar94constraint.html
http://gallium.inria.fr/~xleroy/bibrefs/Leroy-unboxed.html

166 H. Aı̈t-Kaci

29. Aı̈t-Kaci, H.: A generic XML-generating metacompiler. Part of the documentation of the
Jaccpackage (July 2008)56

30. Cardelli, L.: Typeful programming. In: Neuhold, E.J., Paul, M. (eds.) Formal Description of
Programming Concepts. Springer (1991)57

31. Hentenryck, P.: The OPL Optimization Programming Language. The MIT Press (1999)
32. Wong, L.: Querying Nested Collections. PhD thesis, University of Pennsylvania (Computer

and Information Science) (1994)58

33. Fegaras, L.: An experimental optimizer for OQL. Technical Report TR-CSE-97-007, Uni-
versity of Texas at Arlington (May 1997)59

34. Visser, E.: Syntax Definition for Language Prototyping. PhD thesis, Faculteit Wiskunde,
Informatics, Natuurkunde en Strenkunde, Universiteit van Amsterdam, Amsterdam, The
Netherlands (September 1997)60

35. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading (1974)

36. Plotkin, G.D.: A structural approach to operational semantics. Technical Report DAIMI FN-
19, University of Århus, Århus, Denmark (1981) 61

37. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and Algebraic
Programming 60-61, 17–139 (2004); N.B.: Published version of [36] 62

38. Dershowitz, N.: A taste of rewrite systems. In: Lauer, P.E. (ed.) Functional Programming,
Concurrency, Simulation and Automated Reasoning. LNCS, vol. 693, pp. 199–228. Springer,
Heidelberg (1993) 63

39. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.)
Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970);
Reprinted in Automatic Reasoning 2, pp. 342–276. Springer (1983)

56 http://www.hassan-ait-kaci.net/jacc-xml.pdf
57 http://lucacardelli.name/Papers/TypefulProg.A4.pdf
58 ftp://ftp.cis.upenn.edu/pub/ircs/tr/94-09.ps.Z
59 http://lambda.uta.edu/oqlopt.ps.gz
60 http://eelcovisser.org/wiki/thesis
61 http://citeseer.ist.psu.edu/673965.html
62 http://homepages.inf.ed.ac.uk/gdp/publications/sos jlap.pdf
63 http://www-sal.cs.uiuc.edu/ nachum/papers/taste-fixed.ps.gz

http://www.hassan-ait-kaci.net/jacc-xml.pdf
http://lucacardelli.name/Papers/TypefulProg.A4.pdf
ftp://ftp.cis.upenn.edu/pub/ircs/tr/94-09.ps.Z
http://lambda.uta.edu/oqlopt.ps.gz
http://eelcovisser.org/wiki/thesis
http://citeseer.ist.psu.edu/673965.html
http://homepages.inf.ed.ac.uk/gdp/publications/sos_jlap.pdf
http://www-sal.cs.uiuc.edu/~nachum/papers/taste-fixed.ps.gz

A Discussion on Pricing Relational Data

Magdalena Balazinska, Bill Howe, Paraschos Koutris,
Dan Suciu, and Prasang Upadhyaya

University of Washington,
Seattle, USA

Abstract. There exists a growing market for structured data on the
Internet today, and this motivates a theoretical study of how relational
data should be priced. We advocate for a framework where the seller
defines a pricing scheme, by essentially stipulating the price of some
queries, and the buyer is allowed to purchase data expressed by any
query they wish: the system will derive the price automatically from
the pricing scheme. We show that, in order to understand pricing, one
needs to understand determinacy first. We also discuss some other open
problems in pricing relational data.

Keywords: relational databases, pricing.

1 Introduction

In the summer of 2007, Peter Buneman posed the following question to one of the
authors of this article. How should one set a price for data on the Internet? A lot
of data is freely available today, but for some data the production costs are quite
high, and it makes sense to charge for its usage in order to recover the production
costs. Peter’s original motivation came from the IUPHAR database [1], a repos-
itory of receptor nomenclature and drug classifications contributed by a large
community of experts in the field. Observing that this data is extremely valuable
to pharmaceutical companies, Peter reasoned that one could recover some of the
costs of producing and maintaining the data by charging these pharmaceutical
companies a price for accessing it. Some technical developments resulting from
those initial discussions with Peter are available in a separate manuscript [7].

Today, Peter’s question applies to a large number of datasets, both from the
scientific and commercial domains; increasingly, one finds data for sale on the
Internet. In fact, in recent years, one has witnessed the emergence of market-
place services for data, which are Websites whose purpose is to facilitate buying
and selling data. Examples of such data marketplaces are the Windows Azure
Marketplace [5], a data marketplace that contains over 100 data sources for sale,
Infochimps [10], which contains about 15,000 data sets for sale, and Xignite [17],
which sells financial data.

The database group at the University of Washington has started a research
project on data markets. Funded by a partnership between NSF and Microsoft,
the project plans to investigate several aspects of data markets, ranging from

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 167–173, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

168 M. Balazinska et al.

systems issues arising from monitoring data usage for billing purposes, to un-
derstanding the principles of the interaction between data and prices [2,6,11]. In
this paper, we outline our initial investigation into the latter: how to mix data
and prices in a principled way. Our thinking was, in part, informed by those
early discussions with Peter in 2007.

2 Of Versions and Views

On the surface, buying and selling data is not much different from buying and
selling any other products. An agent produces the data and incurs some cost in
doing so; the data has some value to a buyer; the seller and buyer agree on a price.
This is a problem studied extensively by economists over centuries. However, as
explained by Shapiro and Varian [16], digital goods, of which data sets are one
instance, have unique characteristics that cause traditional pricing mechanisms
to fail: they have a high and irrecoverable fixed cost (producing the data is
expensive) and a very low variable cost (copying the data is almost free). The
fixed and irrecoverable cost of data is quite distinct from that of physical goods.
Shapiro and Varian illustrate this with a large airplane manufacturing company
investing in a new factory: if the business plan turns sour, the company can still
recover some of its investment by reselling the building and the manufacturing
machinery. In contrast, if a company invests in acquiring detailed satellite data,
and is undercut by a competitor selling similar data at a much lower price, it
cannot recover anything from its now worthless satellite data. The low cost of
copying digital goods further exacerbate the problem, allowing competitors to
churn out copies in unrestricted quantities. The sharp skew towards fixed costs
makes traditional cost-based pricing models inapplicable. This can lead either
to fortunes for the producer (if she has no competition), or to total ruin.

Shapiro and Varian [16] argue that pricing on the Internet should be based on
the value that a customer places on the information. They argue that versioning
digital products is the solution to pricing digital goods. Even pricing traditional
information products included some form of versioning. In the case of movies,
the “new-release” version costs $12/person to watch, but renting the “DVD”
version that comes out six month later costs $3/family; the two versions target
two kinds of buyers, the must-see-it-now buyers willing to pay an extra price,
and the price-conscious buyers who can wait six months.

The analog to versions in data markets are views. A view over a data instance
is the same as a version of that instance. The view may contain only a subset
of the data, or only some columns, or may contain information at a coarser
granularity. All these can be seen as different versions of the digital product,
and sold at different prices.

Consider, for example, a dataset stored in a single relation R(x, y, z). The
seller could set two price levels: a price p1 for the entire dataset, and a price
p2 for an individual tuple. Presumably, the former price is much higher than
the latter, p1 � p2. As a concrete example, it is possible today to buy either
entire databases of curated business addresses [9] or to check the correctness of

A Discussion on Pricing Relational Data 169

individual addresses [13]. This corresponds to two versions, one for the power
customers, who need the entire dataset and are willing to pay a high price, and
a second version for the occasional customer interested in only one or just a few
records.

Dataset versions are commonly used today. For example, CustomLists.net [9]
sells a database of 28.6 million American businesses for $399. The price is only
$199 for a single state and it is only $299 for the subset of American businesses
that also have an email address. Such versions add significant flexibility, but
what if a user wants some other subset of the data such as only large businesses
with more than 1000 employees? Or businesses within 1 mile of a Home Depot?
Or businesses in cities that experience frequent flooding? Today, buyers must
either purchase supersets of the data they need or they must negotiate custom
data products. AggData [4] is an example data seller that provides such custom
solutions. Negotiating custom solutions, however, does not scale: If a human
must look at each custom view and must price that view, possibly negotiating
with the buyer, the total number of distinct views that can be priced is limited.

We envision a solution that allows the seller to assign a price to any possible
view that the buyer may be willing to buy. This requires a study of how database
views can be adorned with prices. We start with the following definition.

Definition 1. Let D be a database instance. A pricing scheme for D is a set of
view, price pairs: S = {(V1, p1), . . . , (Vk, pk)}.

The data seller decides to create k “versions” of her digital product, defined
by k views, and price each of them differently. The goal is to define some high-
value views (for example, the entire dataset) to be sold to a few high rollers, yet
define sufficiently many lower quality views that can be sold to a large number
of customers. From these k views, the goal is to automatically derive the price
of any other view V defined by the buyer. This is also the direction in which the
initial discussion with Peter was heading in 2007: set the prices of some subsets,
and infer automatically the prices of all other subsets [7].

An important problem that needs to be studied in pricing data is the choice
of the view language in which we express the views V1, . . . , Vk in Definition 1.
This is non-trivial: we discuss here three dimensions of this problem, leaving a
solution to future work.

Relational View. Any selections or projections should be available to the seller
if she decides to set a price on that selection or projection. We argue that
joins are needed too. For example, suppose the seller wants to set a certain
price for the personal information of all CEO’s of companies with a revenue
> $10M : this requires a semijoin of the CEO relation with the Company
relation. In general, one can make the argument that the seller should be
allowed to use arbitrary relational views to define versions of the data.

Increasing/Decreasing Accuracy. Decreasing the accuracy or adding noise
to the data can produce a version that is less valuable, and, hence, can be
sold at a lower price, to a larger number of buyers. For example, weather data

170 M. Balazinska et al.

for standard, city-wide weather forecast is virtually free, but detailed precip-
itation information required by commercial farmers can only be purchased at
a cost. There is an interesting connection here to data privacy: private data
is sold today at a price, but properly anonymized data is free. The converse
is also true: by performing data cleaning, the seller may increase the value
of her data product. Views that add noise to the data should be available to
the seller to set prices.

User-defined Functions. The seller may own a domain specific algorithm for
enhancing the data; by applying that function, the seller can produce new
data that is more valuable than the raw data. For example, the seller may
have a proprietary algorithm for image processing; by applying this function
to all images in a collection it may produce a more valuable data set. Another
example consists of a sophisticated data mining algorithm: the result of the
data mining is much more valuable that the raw data itself. The seller should
be able to define views with user-defined functions.

3 Arbitrage in Data Pricing

Consider a pricing scheme S given by Definition 1. Two problems may arise.
The first is consistency. One expects that every price point (Vi, pi) will make

sense. For example, it does not make sense to charge more for a single tuple than
for the entire dataset. In similar spirit, if the entire relation R costs p1 and a
single tuple in R costs p2, then it does not make sense to have |R| · p2 < p1, or,
else, no buyer will buy the entire dataset, but would instead buy one tuple at a
time. We say that a pricing scheme S = {(V1, p1), . . . , (Vk, pk)} is consistent if no
view Vi can be obtained at a price lower than pi by purchasing and combining
some of the other views in S. The consistency problem is this: Given a pricing
scheme S, check whether it is consistent.

The second problem is pricing a new view. Continuing the example where p1
is the price for the entire data set and p2 is the price for each individual record,
how much should a buyer pay if she wants to buy half of the data records? On
one hand she could buy the entire dataset and pay p1, then retain only the half
she needs. On the other hand, she could purchase one record at a time, and pay
|R|·p2/2. Clearly, the buyer will choose whichever is cheaper. In general, the price
computation problem is this: given a pricing scheme S = {(V1, p1), . . . , (Vk, pk)}
and a new view V (not necessarily mentioned in S), determine the cheapest way
for a user to obtain V by purchasing views available in S.

Both problems are facets of arbitrage. Arbitrage occurs if the pricing scheme
sets a price p for a view V (possibly a new view not explicitly priced by the
seller), but a buyer has the option of answering V from V1, . . . , Vm such that
their combined price is less than p: not only can the buyer get away by paying
less than p, but she could even profit by reselling V at a price lower than p,
which is traditionally called arbitrage.

A Discussion on Pricing Relational Data 171

The key technical difficulty in studying arbitrage is determining when a buyer
can answer a view V using the information in other views, say V1, . . . Vm. Let us
write:

V1, . . . , Vm � V (1)

if V can be answered from the views V1, . . . , Vm. This is just a notation, not a
formal definition; the intuition is that a buyer who needs the view V would rather
purchase the views V1, . . . , Vm and compute V , if these m views are cheaper than
the price of V . We will discuss later how to define �. Assuming that � is given,
one can define both consistency and the price function.

Definition 2. A pricing scheme S = {(V1, p1), . . . , (Vk, pk)} is consistent if,
whenever Vi1 , Vi2 , . . . , Vik � Vi, then pi ≤ pi1 + pi2 + . . .+ pik .
Given a view V and a pricing scheme S = {(V1, p1), . . . , (Vk, pk)}, let S � V
indicate {V1, V2, . . . , Vk} � V . Then the price function defined by S is

pS(V) = min
T⊆S,T�V

∑
(Vi,pi)∈T

pi

In other words, S is consistent if a buyer cannot obtain Vi by paying less than
pi. Moreover, the price of an arbitrary view V is obtained by choosing the least
expensive subset of S that can be used to answer V , where the price of T ⊆ S
is just the sum of the prices of the views it contains.

We can also formally express the property that a pricing function does not
allow arbitrage.

Definition 3. A pricing function p is arbitrage-free if, whenever V1, . . . , Vm �
V , then p(V) ≤

∑m
i=1 p(Vi).

Note that this definition does not assume any pricing scheme S; for exam-
ple, the constant pricing function that assigns the same price to every view is
arbitrage-free. On the other hand, if a pricing scheme S is given, then we seek
an arbitrage-free pricing function p that agrees with S on all price points in S,
in other words p(Vi) = pi for all (Vi, pi) ∈ S. It is easy to see that, if such a
function p exists, then S is consistent. We also proved recently [11] two interest-
ing facts. Fix a pricing scheme S and consider the pricing function pS defined
in Definition 2. Then, assuming some some natural properties for �: (1) pS is
arbitrage-free (even if S is inconsistent); and (2) S is consistent iff for every price
point (Vi, pi) is S, the following holds: pS(Vi) = pi.

We end this section with a discussion on the key technical difficulty of pricing:
How should we define � in Equation 1? Database theoreticians have studied
query answering using views for almost two decades, starting with Levy [12],
and Abiteboul and Duschka [3]. More recently, Segoufin and Vianu [15] and
Nash, Segoufin, and Vianu [14] have revisited the notion of query answering
using information-content. Their formal definition of determinacy is equivalent
to the following: V1, . . . , Vm � V if there exists a function f such that, for any

172 M. Balazinska et al.

database instance D, f(V1(D), . . . , Vm(D)) = V (D). Let us call this definition
of determinacy NSV. If one adopts NSV for pricing, then, given any pricing
scheme S, the equation from Definition 2 extends it uniquely to a global pricing
function pS . We argue, however, that NSV is not the right notion for defining pS ,
and therefore a different definition for � is needed in order to compute prices.
Specifically:

– NSV is insensitive to the data instance. That means that the pricing function
pS(V) depends only on the view V , and not on the database instance D. In
practice, the database instance is also a variable, and should be considered
as input to the pricing function. For example the seller may add more data
to her raw dataset; as a consequence, she wants her pricing function to in-
crease. The determinacy relation� should somehow depend on the database
instance too. Instance-based determinacy has been much less studied in the
literature; one such definition can be found in Calvanese et al. [8].

– Unfortunately, NSV is difficult to check: it is undecidable for unions of con-
junctive queries, and its decidability is open for conjunctive queries [14]. This
means that we do not have any practical means for computing the pricing
function pS(V).

– NSV deals incorrectly with user-defined functions. For example, consider a
view V (x, f(y, z)) = R(x, y, z) that applies a proprietary user-defined func-
tion f to the attributes y and z. Naturally, the seller would like to charge
more for V than for R, but R determines V , because, mathematically, one
can compute V from R. NSV does not capture the fact that f is a propri-
etary function, which cannot be applied by the user interested in computing
V from R.

– Noise and levels of accuracy are not captured by NSV either, because the
latter is, in essence, a deterministic definition. We are not aware of any
natural extension of the determinacy relation � that can deal with noise in
the data.

To summarize, in order to understand the price of data one must understand
the notion of determinacy first. NSV is an elegant definition for the latter, but
it does not seem to be the right choice for setting prices.

4 Open Problems

Data markets motivate a new direction of research in database theory. While we
have discussed the determinacy relation as the first step of this research, it is by
far not the only one. Several other open problems exists, we briefly mention a
few here.

Pricing Updates. The interaction between updates and prices is interesting.
The seller expects its prices to increase once the data is updated (assuming
tuples are being inserted), which seems to impose additional requirements
on a pricing function. At a more practical level, one question is how to
charge the buyer for incremental updates: if he already purchased data from

A Discussion on Pricing Relational Data 173

the old version, he expects to pay a reduced price for the updates. Finally,
it is unclear how consistency or arbitrage are affected by updates: if S is
consistent, can it become inconsistent after an update?

Pricing Integrated Data. The interraction between multiple vendors affects
the pricing function in interesting ways. For example, different vendors may
add value in different ways to same data: the first vendor provides raw im-
ages, the second runs a proprietary face recognition algorithm, and the third
integrates the extracted faces with a social network database, thus putting
names on pictures. Each vendor adds some value to the data, by integrating
it with her own dataset or her proprietary tools. It will be quite challenging
to define pricing functions in such complex scenarios.

Pricing Competing Data Sources. There are often multiple vendors for
quite similar data sources. For example, today one can buy data about busi-
nesses from several vendors. There are subtle relationships between these
sources: some are more complete, others are more accurate, others are more
up to date, while others yet are more reliable. Another major challenge is to
understand how prices are affected by competing data sources.

References

1. http://www.iuphar-db.org/
2. The Data Ecoytem project: Data management and pricing in the cloud,

http://data-pricing.cs.washington.edu/
3. Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized

views. In: PODS, pp. 254–263. ACM Press (1998)
4. http://www.aggdata.com/
5. https://datamarket.azure.com/
6. Balazinska, M., Howe, B., Suciu, D.: Data markets in the cloud: An opportunity

for the database community. Proc. of the VLDB Endowment 4(12) (2011)
7. Buneman, P., Suciu, D.: Censoring and pricing data (manuscript, July 2007)
8. Calvanese, D., Giacomo, G.D., Lenzerini, M., Vardi, M.Y.: Lossless regular views.

In: Popa, L. (ed.) PODS, pp. 247–258. ACM (2002)
9. http://www.customlists.net/

10. http://www.infochimps.com/
11. Koutris, P., Upadhyaya, P., Balazinska, M., Howe, B., Suciu, D.: Query-based

data pricing. In: PODS 2012: Proceedings of the 31st Symposium on Principles of
Database Systems of Data, Scottsdale, AZ, USA (2012)

12. Levy, A.Y., Mendelzon, A.O., Sagiv, Y., Srivastava, D.: Answering queries using
views. In: PODS, pp. 95–104 (1995)

13. https://datamarket.azure.com/dataset/59a168b8-6d66-4f85-b000-

38abcad310a2
14. Nash, A., Segoufin, L., Vianu, V.: Determinacy and rewriting of conjunctive queries

using views: A progress report. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007.
LNCS, vol. 4353, pp. 59–73. Springer, Heidelberg (2006)

15. Segoufin, L., Vianu, V.: Views and queries: determinacy and rewriting. In: Li, C.
(ed.) PODS, pp. 49–60. ACM (2005)

16. Shapiro, C., Varian, H.R.: Versioning: The smart way to sell information. Harvard
Business Review 76, 106–114 (1998)

17. http://www.xignite.com/

http://www.iuphar-db.org/
http://data-pricing.cs.washington.edu/
http://www.aggdata.com/
https://datamarket.azure.com/
http://www.customlists.net/
http://www.infochimps.com/
https://datamarket.azure.com/dataset/59a168b8-6d66-4f85-b000-38abcad310a2
https://datamarket.azure.com/dataset/59a168b8-6d66-4f85-b000-38abcad310a2
http://www.xignite.com/

Tractable Reasoning in Description Logics

with Functionality Constraints

Andrea Cal̀ı1,3, Georg Gottlob2,3, and Andreas Pieris2

1 Dept. of Computer Science and Inf. Syst., Birkbeck, University of London, UK
2 Department of Computer Science, University of Oxford, UK

3 Oxford-Man Institute of Quantitative Finance, University of Oxford, UK
andrea@dcs.bbk.ac.uk,

{georg.gottlob,andreas.pieris}@cs.ox.ac.uk

Abstract. Ontological query answering amounts to returning the an-
swers to a query, that are logically entailed by the union of a set of mem-
bership assertions and an ontology, where the latter is a set of logical
assertions. Ontological query answering has applications, for instance, in
the Semantic Web and in semantic data integration. We propose as on-
tology language a new description logic, called DLR±, allowing for roles
of arbitrary arity and role inclusion assertions with permutation, as well
as functionality assertions, which generalizes the most widely-adopted
tractable ontology languages. The interaction between functionality as-
sertions and other constructs in ontology languages has been shown to
lead easily to intractability and even undecidability. The absence of such
interaction is characterized by separability, a semantic property which
has been studied in different contexts. With the aim of finding expressive
ontology languages that are also tractable, we give a precise characteriza-
tion of separable DLR± ontologies by providing a syntactic condition that
is necessary and sufficient for separability. We also present an exhaus-
tive complexity analysis of reasoning, here intended as conjunctive query
answering and satisfiability checking, under separable DLR± ontologies.

1 Introduction

An ontology is a set of logical sentences on a signature or schema; rather than
enforcing constraints on instances (sets of facts) for the same signature, an on-
tology is to infer new knowledge from an instance. In particular, given a query
q, an ontology T , and an instance A, the problem of ontological query answering
amounts to provide the answers to q which are logically entailed by the theory
T ∪A. Notice that we refer to the standard entailment, that is, entailment under
arbitrary, not necessarily finite, models. Ontologies are also gaining importance
in the area of databases, for example, in data integration [16], where query an-
swering is the central issue. In such context, rather than on decidability issues,
the focus is on scalability of query answering w.r.t. the data instance size.

Description Logics. Description Logics (DLs), a popular ontology formalism,
are decidable fragments of first-order logic, where predicates are concepts (classes
of objects) and roles (binary relations on classes). In DLs, a knowledge base

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 174–192, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Tractable Reasoning in Description Logics with Functionality Constraints 175

consists of a TBox (terminological component, that is, ontology assertions on
concepts and roles) and an ABox (assertional component, i.e., ontology asser-
tions on instances of concepts and roles); a TBox and an ABox can therefore
be seen as a schema with constraints and a data instance for it, respectively. A
central issue in DLs is the trade-off between expressive power and computational
complexity of reasoning services. DL-based data-intensive applications have been
gaining importance recently, therefore special attention is given to data complex-
ity of query answering, that is, the complexity w.r.t. the data instance size, while
all other inputs (query and ontology) are considered fixed.

Ontology Formalisms. The DL-Lite family [2,8,19] has the advantage of
ac0 data complexity of conjunctive query answering and of knowledge base
satisfiability. We remind the reader that the low complexity class ac0 is the
complexity class of recognizing words in languages defined by constant-depth
Boolean circuits with an unlimited fan-in and and or gates; it is strictly con-
tained in logspace. This low complexity is due to first-order rewritability (FO-
rewritability), i.e., the possibility of answering every query q against a TBox T
and an ABox A by rewriting q into a first-order query qT , which takes into
account the TBox T , and simply evaluating qT over A.

The well-known Entity-Relationship (ER) [12] model has recently gained im-
portance in ontology specification, due to the fact that it is comprehensible to
theorists and practitioners, while having good expressive power. The ER± family
of ER-like languages [4], in particular, comprises several FO-rewritable ontology
languages, which properly generalize the main languages of the DL-Lite family.

Another relevant, more general class of ontology languages, is the Data-
log± family, that is, a family of rule-based languages derived from Datalog (see,
e.g., [3]) whose rules are (function-free) Horn rules, possibly with existentially
quantified variables in the head, called tuple-generating dependencies, enriched
with functionality constraints in the form of equality-generating dependencies,
and negative constraints, a form of denial constraints.

Separability. A central issue in this context is the interaction between func-
tionality constraints and the other constraints in the ontology. In general, func-
tionality constraints impose a uniqueness of some sort; functional participation
of instances of a set to a relation (e.g., in DLs or ER±), or more general equality
constraints (e.g., in Datalog±). In all the aforementioned formalisms, the key
notion that ensures FO-rewritability is separability [5]: an ontology T is sepa-
rable if, for every query q and for every instance A, assuming that the theory
T ∪A is satisfiable, the answers to q over T ∪ A coincide with the answers to q
over T ′∪A, where T ′ is obtained from T by removing functionality constraints.
In other words, in separable cases, if the theory is satisfiable, then the presence
of functionality constraints does not play any role in query answering, and can
therefore be ignored. Separability is normally enforced by a syntactic condition
which prevents the functionality constraints from interacting with other con-
straints. Early separability conditions have been studied in [5,14] for inclusion
and key dependencies, and, e.g., in [3] for tuple-generating and key dependencies.

176 A. Cal̀ı, G. Gottlob, and A. Pieris

Summary of Contributions. Studying efficient query answering under on-
tologies with functionality constraints, we tackle two fundamental challenges:
(i) What language should we use for ontology modeling, so that it is expressive
enough for applications? (ii) Under what (syntactic) conditions is a knowledge
base in the chosen language separable? We aim at proposing a DL-based ontol-
ogy formalism, which is at least as expressive as other well-established ontology
formalisms, and to provide a separability condition that is as general as possible.
The contributions of the paper can be summarized as follows.

1. We propose the DL DLR± with roles of arbitrary arity, which is equipped,
among other constructs, with functionality constraints, role inclusions with
arbitrary permutation of the arguments, and negative assertions (which
prohibit certain existentially-quantified conjunctions of atoms to be true).
DLR± is inspired by (and close to) the variant of the ER model studied in [4],
and it is incomparable to the DL DLR of [9] (hence the symbol “±”).

2. We exhibit a graph-based condition for separability of DLR± TBoxes; we
define the DL non-conflicting DLR±, called NCDLR±, by means of a syntactic
condition. Such condition is sufficient for all TBoxes, a result that is implicit
in [4], where an analogous condition is proposed. In this paper, we prove that
it is also necessary for those without negative assertions, and for those with
negative assertions but which are strongly consistent, i.e., they admit at least
one model where each concept and role is non-empty. We also investigate
the complexity of deciding whether an NCDLR± TBox is strongly consistent
(which is a natural property); in particular, we establish that this problem
is pspace-complete.

3. We show that CQ answering is np-complete in combined complexity for two
variants of NCDLR±. The first variant is obtained by prohibiting arbitrary
permutations of arguments in role inclusions, and imposing the identity per-
mutation, while the second one is obtained by assuming the arity of roles to
be bounded by an integer constant.

4. Finally, we study the complexity of knowledge base satisfiability in NCDLR±,
and show that it is in ac0 in data complexity. Moreover, we study the com-
bined complexity, and we show that the problem is pspace-complete if we
consider arbitrary NCDLR± knowledge bases, and conp-complete if we re-
strict to the two variants mentioned above.

Notice that since DLR± is similar to the ER variant of [4], all our novel results
can be straightforwardly ported to the formalism of [4].

2 Theoretical Background

As already said, DLs are logics that model the domain of interest in terms of
concepts, representing sets of individuals, and roles, representing relations on
sets of individuals. A DL knowledge base encodes subset relationships between
concepts, subset relationships between roles, functional dependencies on roles,
the membership of individuals to concepts, and the membership of tuples of

Tractable Reasoning in Description Logics with Functionality Constraints 177

individuals to roles. In this section, we introduce the DL DLR±, inspired by an
extended version of the ER model considered, e.g., in [7]. Typically, DLs are
usable for binary roles only. However, the proposed formalism allows for n-ary
roles as, for instance, the DL DLR proposed in [9], and the DLs of the DLR-Lite
family [10], that is, an extension of the DL-Lite family to roles of arbitrary arity.
Let us clarify that DLR± is incomparable to the aforementioned DLs (hence the
symbol ”±”).

Syntax. Let A, R and I be pairwise disjoint sets of atomic concepts, atomic
roles of arbitrary arity and individuals, respectively. We write R/n to assert that
the atomic role R ∈ R has arity n � 2. In the rest of the paper, let [n] be the set
{1, . . . , n}, for an integer n � 1. A DL knowledge base K = 〈T ,A〉, represents the
domain of interest in terms of two parts, a TBox T , specifying the intensional
knowledge, and an ABox A, specifying the extensional data. A DLR± TBox is a
finite set of assertions which have one of the following forms; in the sequel, we
assume that roles have arity n � 2, and also A and R (possibly with subscripts)
to be atomic concepts and roles, respectively:

1. A1 � A2;
2. A � ∃R[i], where i ∈ [n];
3. ∃R[i] � A, where i ∈ [n];
4. R1[i1, . . . , in] � R2[j1, . . . , jn], where {i1, . . . , in} = {j1, . . . , jn} = [n];
5. φ(X) � ⊥, where φ(X) is a conjunction of atoms of the form A(X) and

R(X1, . . . , Xn);
6. (funct R[i]), where i ∈ [n].

Assertions of the form X � Y are called inclusion assertions, while assertions of
the form (funct R[i]) are called functionality assertions. We denote by sig(T) the
set of atomic concepts and roles in the TBox T , and by arity(T) the maximum
arity over all roles in T . An ABox is a finite set of membership assertions of the
form A(c) and R(c1, . . . , cn) stating that the individual c ∈ I is an instance of A,
and the n-tuple 〈c1, . . . , cn〉 ∈ In of individuals is an instance of R, respectively.

Semantics. The semantics of a DL is given in terms of interpretations, where
an interpretation I = 〈ΔI , ·I〉 consists of a non-empty interpretation domain
ΔI and an interpretation function ·I . For the constructs of DLR± we have:

(⊥)I = ∅

AI ⊆ ΔI

RI ⊆ (ΔI)n

(∃R[i])I = {ti | 〈t1, . . . , tn〉 ∈ RI}
(R[i1, . . . , in])

I
= {〈ti1 , . . . , tin〉 | 〈t1, . . . , tn〉 ∈ RI}

(φ(X))I =

{
{〈〉}, ∃Xφ(X) is true in I
∅, ∃Xφ(X) is false in I.

I is a model of an inclusion assertion X � Y iff XI ⊆ Y I , while it is a model
of a functionality assertion (funct R[i]) iff 〈t1, . . . , ti−1, ti, ti+1, . . . , tn〉 ∈ RI

and 〈t′1, . . . , t′i−1, ti, t
′
i+1, . . . , t

′
n〉 ∈ RI implies tj = t′j , for each j ∈ [n] \ {i}.

178 A. Cal̀ı, G. Gottlob, and A. Pieris

Fig. 1. Extended ER Schema

To specify the semantics of membership assertions, ·I is extended to constants
by assigning to each c ∈ I a distinct element cI ∈ ΔI (unique name assumption).
I is a model of a membership assertion A(c) (resp., R(c1, . . . , cn)) iff cI ∈ AI

(resp., 〈cI1 , . . . , cIn〉 ∈ RI).
Given an (inclusion, functionality or membership) assertion σ and an inter-

pretation I, we denote the fact that I is a model of σ by I |= σ. A model of
a TBox T (resp., an ABox A) is an interpretation I such that I |= σ, for each
σ ∈ T (resp., σ ∈ A). A model of a KB K = 〈T ,A〉 is an interpretation I such
that I |= T and I |= A; we write I |= K if I is a model of K. A KB K is
satisfiable if it has at least one model; K is unsatisfiable if it has no model.

Example 1. Consider the DLR± TBox T constituted by

Prof � Res Group � ∃LedBy [1]
Stud � Res (funct LedBy [1])

Res � ∃WorksIn [1] ∃LedBy [2] � Prof
(funct WorksIn [1]) LedBy [1, 2] � WorksIn [2, 1]

Group � ∃WorksIn [2] Prof (X), Stud(X) � ⊥.

T asserts that professors and students, who are researchers, work in exactly one
(mandatory and functional participation) research group, while research groups
have at least one (but typically more than one) researcher. Moreover, research
groups have exactly one leader who is himself a professor. Also, each professor
works in the research group that (s)he leads. Finally, professors and students are
disjoint sets. The ABox constituted by Group(g), LedBy(g, p) and Professor (p),
asserts that the individual g is a research group led by the professor p.

It is easy to verify that DLR± is expressive enough to be able to capture
an extended version of the ER model (see, e.g., [7]), which comprises is-a con-
straints among entities and relationships, functional and mandatory participa-
tion constraints, as well as disjointness among entities and relationships, and non-
participation of an entity to a relationship. For instance, by adding to the TBox
given in Example 1 the assertions ∃WorksIn [1] � Res, ∃WorksIn [2] � Group
and ∃LedBy [1] � Group, what we obtain corresponds to the extended ER schema
depicted in Figure 1, where the reader will recognize the familiar notation of
Chen’s ER model [12].

Tractable Reasoning in Description Logics with Functionality Constraints 179

Conjunctive Queries. We now define queries over a KB. In this work, we focus
on conjunctive queries. A conjunctive query (CQ) q of arity n � 0 over a KB
K is an assertion of the form p(X) ← φ(X,Y), where φ(X,Y) is a conjunction
of atoms of the form A(X) and R(X1, . . . , Xm) with A ∈ A, R/m ∈ R and
p �∈ (A ∪R) is an n-ary predicate. φ(X,Y) is called the body of q, denoted as
body(q). A Boolean CQ (BCQ) is a CQ of arity zero. Given an interpretation I,
the answer to an n-ary CQ q of the form p(X) ← φ(X,Y) over I, denoted as
qI , is the set of all n-tuples t of domain elements such that, when assigning t to
X, the first-order formula ∃Y φ(X,Y) evaluates to true in I. A BCQ has only
the empty tuple 〈〉 as possible answer, in which case it is said that it has positive
answer. Formally, a BCQ q has positive answer over I, denoted as I |= q, if
〈〉 ∈ qI , or, equivalently, qI �= ∅. We are now ready to define the notion of
query answering over a KB. Given an n-ary CQ q and a KB K, the answer to q
w.r.t. K, denoted as ans(q,K), is the set of n-tuples t of constants appearing in
K such that tM ∈ qM, for every modelM of K. The answer to a BCQ q w.r.t. K
is positive, denoted as K |= q, if 〈〉 ∈ ans(q,K), or, equivalently, ans(q,K) �= ∅.
Notice that, if K is unsatisfiable, then ans(q,K) is trivially the set of all possible
n-tuples of constants occurring in K.

Reasoning Services. The reasoning services we are interested in are query an-
swering over KBs and KB satisfiability. The decision problem CQAns is defined
as follows: given a KB K, an n-ary CQ q over K, and an n-tuple t of constants
in K, decide whether t ∈ ans(q,K). If the given query is Boolean, then the
above problem is called BCQAns. It is known that CQAns can be easily reduced
to BCQAns (see, e.g., [13]), and thus CQAns and BCQAns are equivalent prob-
lems. Hence, for technical clarity, we focus on BCQAns. The decision problem
KBSat associated to KB satisfiability is defined as follows: given a KB K, decide
whether K admits at least one model. Following Vardi’s taxonomy [20], the data
complexity of the above decision problems is calculated w.r.t. the size of the
ABox only, while combined complexity w.r.t. the size of all inputs.

Canonical Interpretation. Using the chase procedure (see, e.g., [14,17]) we
can construct the so-called canonical interpretation of a DLR± KB constituted
by positive inclusions (PIs), that is, assertions of the form X � Y , where Y �= ⊥.
Notice that an assertion of the form X � ⊥ is called negative inclusion (NI). The
chase works on an ABox through the chase rule. We define a set N of labeled
nulls, used as placeholders for unknown values. A lexicographic order is defined
on I ∪N, such that every value of N follows all those in I.

Definition 1. Consider an ABox A, and a PI σ. The membership assertion α
is defined as follows:

– If σ = A1 � A2 and A1(c) ∈ A, then α = A2(c).
– If σ = A � ∃R[i] and A(c) ∈ A, then α = R(z1, . . . , zi−1, c, zi+1, . . . , zn),

where each zi ∈ N is a “fresh” labeled null not occurring in A.
– If σ = ∃R[i] � A and R(c1, . . . , cn) ∈ A, then α = A(ci).

180 A. Cal̀ı, G. Gottlob, and A. Pieris

– If σ = R1[i1, . . . , in] � R2[j1, . . . , jn] and R1(t1) ∈ A, then α = R2(t2),
where 〈t1[i1], . . . , t1[in]〉 = 〈t2[j1], . . . , t2[jn]〉.

– If none of the above cases applies, then α = ε (the empty assertion).

If α �= ε, then σ is applicable to A, and α is added to A.

Consider a DLR± KB K = 〈T ,A〉, where T contains only positive inclusions.
The chase algorithm for K consists of an exhaustive application of the chase rule,
which leads to a (possibly infinite) ABox, denoted as chase(K). We assume that
the chase algorithm is fair, i.e., each PI that must be applied during the con-
struction of chase(K) eventually it is applied. By exploiting the chase algorithm,
we can define the central notion of the canonical interpretation of a KB.

Definition 2 (Canonical Interpretation). Let K = 〈T ,A〉 be a DLR± KB,
where T contains only PIs. The canonical interpretation of K, denoted can(K),
is defined as the interpretation 〈Δcan(K), ·can(K)〉, where:

– Δcan(K) is the set of terms occurring in chase(K),
– tcan(K) = t, for each term t occurring in chase(K),
– Acan(K) = {t | A(t) ∈ chase(K)}, and
– Rcan(K) = {〈t1, . . . , tn〉 | R(t1, . . . , tn) ∈ chase(K)}.

Interestingly, the canonical interpretation of a KB K = 〈T ,A〉, where T con-
tains only positive inclusions, is a universal model of K, i.e., for every model I
of K, there exists a substitution h : Δcan(K) → ΔI such that: (i) h is the iden-
tity on I, (ii) if t ∈ Acan(K), then h(t) ∈ AI , and (iii) if 〈t1, . . . , tn〉 ∈ Rcan(K),
then 〈h(t1), . . . , h(tn)〉 ∈ RI . The substitution h is called a homomorphism from
can(K) to I; the notion of homomorphism among sets of membership assertions
can be defined analogously. By exploiting the above universality property, it is
not difficult to show that the canonical interpretation of a KB is a very useful
technical tool for BCQAns.

Theorem 1. Consider a DLR± KB K = 〈T ,A〉, where T contains only positive
inclusions. Then, for every BCQ q over K, K |= q iff can(K) |= q.

3 Non-Conflicting Condition

In this section, we introduce a novel description logic, called non-conflicting
DLR± (NCDLR±), obtained by applying syntactic restrictions on the DL pre-
sented in the previous section. Intuitively, given an NCDLR± TBox T , the inclu-
sion and functionality assertions of T do not interact. This implies that answers
to queries can be computed by considering the PIs only of T , and ignoring the
NIs and the functionality assertions, once it is known that the KB is satisfiable.
This semantic property, whose definition is given below, is known as separabil-
ity [5]. In the rest of the paper, for notational convenience, given a DLR± TBox
T , let T + be the PIs of T , T − be the NIs of T , and T = be the functionality
assertions of T .

Tractable Reasoning in Description Logics with Functionality Constraints 181

Definition 3 (Separability). A DLR± TBox T is said to be separable if, for
every ABox A, either K = 〈T ,A〉 is unsatisfiable or, for every BCQ q over K,
K |= q iff 〈T +,A〉 |= q.

Notice that DLR± TBoxes are, in general, non-separable. Before defining for-
mally NCDLR±, we need some preliminary technical definitions.

Definition 4. The dependency graph for a DLR± TBox T is a directed multi-
graph 〈V,E, λ〉, where V is the node set, E is the edge set, and λ is a labeling
function E → T +. For each atomic concept A ∈ A in T we have the node A[1]
which is called concept node (c-node). For each atomic n-ary role R ∈ R in T ,
and for each i ∈ [n], we have the node R[i] which is called role node (r-node). If
(funct R[i]) occurs in T , then R[i] is also a functionality node (f-node). The edge
set E is defined as follows. For each σ ∈ T + of the form A1 � A2, there exists an
edge (A1[1], A2[1]) labeled by σ. For each σ ∈ T + of the form A � ∃R[i], where
R has arity n, there exists an edge (A[1], R[i]) labeled by σ, and also there exists
a special edge (A[1], R[j]), for each j ∈ [n] \ {i}, labeled by σ. For each σ ∈ T +

of the form ∃R[i] � A, there exists an edge (R[i], A[1]) labeled by σ. Finally, for
each σ ∈ T + of the form R1[i1, . . . , in] � R2[j1, . . . , jn], and for each k ∈ [n],
there exists an edge (R1[ik], R2[jk]) labeled by σ.

Intuitively, the non-special edges in a dependency graph G keep track of the
fact that a term propagates from some concept or role to some other concept
or role during the construction of the chase. The special edges keep track of the
fact that the propagation of a term to some attribute of a role R, also creates a
labeled null in all the other attributes of R. Consider now an edge e of G which
is labeled by an assertion of the form R1[i1, . . . , in] � R2[j1, . . . , jn]. Roughly,
the above assertion states that the ik-th object of R1 is the jk-th object of
R2. This can be formally represented by the bijective function fe : [n] → [n]
defined as follows: for each k ∈ [n], fe(ik) = jk. We can now introduce the so-
called propagation function associated to a cycle constituted by r-nodes of G.
Intuitively, the propagation function associated to such a cycle C describes how
terms are propagated during the construction of the chase due to C (hence the
name “propagation” function).

Definition 5. Let G be the dependency graph for a DLR± TBox T . Consider a
cycle C = v1v2 . . . vmv1 of only r-nodes ofG. The propagation function associated
to C is the bijective function g : [n]→ [n] defined as the composition fem◦. . .◦fe1 ,
where ei = (vi, vi+1), for each i ∈ [m− 1], and em = (vm, v1).

Example 2. Consider the DLR± TBox T constituted by

σ1 : A � ∃R1[3] σ4 : R3[1, 2, 3] � R1[3, 1, 2]
σ2 : R1[1, 2, 3] � R2[2, 1, 3] σ5 : (funct R3[1]).
σ3 : R2[1, 2, 3] � R3[3, 2, 1]

The dependency graph G for T is depicted in Figure 2, where the f-nodes are
shaded and the special edges are represented using dashed arrows. Clearly, the

182 A. Cal̀ı, G. Gottlob, and A. Pieris

Fig. 2. The dependency graph G, and the propagation function associated to C

cycle C = R1[3]R2[3]R3[1]R1[3] occurs inG. The propagation function associated
to C, which is shown graphically in Figure 2, is the function g = fe′′ ◦ fe′ ◦ fe,
where e = (R1[3], R2[3]), e

′ = (R2[3], R3[1]) and e
′′ = (R3[1], R1[3]); clearly, g is

the identity on {1, 2, 3}.

Having the notion of the dependency graph and the notion of the propagation
function in place, we are now ready to give the formal definition of NCDLR±.

Definition 6 (Non-Conflicting DLR±). Let T be a DLR± TBox, and let G
be the dependency graph for T . T is non-conflicting if, for each path v1v2 . . . vm,
where m � 2, in G such that v1 is a c-node, v2, . . . , vm−1 are r-nodes, and vm is
an f-node, the following conditions are satisfied:

1. for each cycle C of only r-nodes going through vm, the propagation function
associated to C is the identity on [n], where n is the arity of the role of vm,

2. if m � 3 and (v1, v2) is non-special, then there exists a path of only r-nodes
from vm to v2.

Example 3. Consider the DLR± TBox T given in Example 2. Recall that the cy-
cle C = R1[3]R2[3]R3[1]R1[3], of only r-nodes, occurs in the dependency graph
for T . Since the propagation function associated to C is the identity on {1, 2, 3},
the first condition in the Definition 6 is satisfied. Furthermore, due to the exis-
tence of the edge (R3[1], R1[3]) in the dependency graph for T , also the second
condition is satisfied. Consequently, T is non-conflicting.

The non-conflicting condition ensures separability, i.e., every NCDLR± TBox
is separable. This result is implicit in [4], where a very similar condition on a

Tractable Reasoning in Description Logics with Functionality Constraints 183

variant of ER schemata is presented. Rather than presenting a complete proof,
we explain intuitively why this result holds. The first condition in the Definition 6
guarantees that it is not possible to violate a functional assertion of the form
(funct R[i]), during the construction of the chase, because of a cycle of only r-
nodes (in the underlying dependency graph) that goes through the f-node R[i].
Now, a functional assertion (funct R[i]) may be violated, during the construction
of the chase, due to a “bad” path of the form v1v2 . . . vm, where m � 3, (v1, v2)
is a non-special edge, v1 is a c-node, v2, . . . , vm are r-nodes, and vm is the f-node
R[i]. Once (funct R[i]) is violated, one has to unify some terms in order to satisfy
it. However, such a unification may generate new atoms. The existence of the
“good” path of only r-nodes from the f-node R[i] to v2, which is ensured by the
second condition in the Definition 6, guarantees that the new atoms mentioned
above eventually will be obtained during the construction of the chase, even
without considering (funct R[i]). We can now state our result.

Theorem 2. Every NCDLR± TBox is separable.

Characterizing Separability. An interesting question for DLR± TBoxes is
whether the property of being non-conflicting it is also necessary for separability.
As we establish below, the answer to this question is affirmative, providing that
the set of negative inclusions is empty.

Theorem 3. Consider a DLR± TBox T such that T − = ∅. If T is separable,
then it is also non-conflicting.

Proof (sketch). We can show that, if T is not non-conflicting, then it is always
possible to construct an ABox A and a BCQ q such that 〈T ,A〉 is satisfiable, and
also 〈T ,A〉 |= q but 〈T +,A〉 �|= q. This implies that if T is not non-conflicting,
then it is not separable, and the claim follows.

Unfortunately, for DLR± TBoxes with a non-empty set of NIs, the property
of being non-conflicting is not necessary for separability. For instance, it is not
difficult to verify that the DLR± TBox {∃R1[1] � A1, A2 � ∃R2[1], R2[1, 2] �
R1[1, 2], (funct R1[1]), A1(X), A2(X) � ⊥} is not non-conflicting but it is sep-
arable. We are interested to identify particular cases where, for DLR± TBoxes
with a non-empty set of NIs, the non-conflicting condition is also necessary for
separability. The argument to show that the TBox T given above is separable,
it is heavily based on the fact that AI

2 = ∅, for each model I of T . This ob-
servation led us to conjecture that the non-conflicting property is necessary for
separability if we consider strongly consistent TBoxes.

Definition 7 (Strong Consistency). A DLR± TBox T is said to be strongly
consistent if there exists a (finite or infinite) interpretation I such that I |= T ,
and for each atomic concept A and role R in T , AI �= ∅ and RI �= ∅.

Let us now show that our conjecture holds.

Theorem 4. Consider a strongly consistent DLR± TBox T . If T is separable,
then it is non-conflicting.

184 A. Cal̀ı, G. Gottlob, and A. Pieris

Proof (sketch). The proof is analogous to that of Theorem 3, i.e., we can show
that, if T is not non-conflicting, then it is always possible to construct an ABox
A and a BCQ q such that 〈T ,A〉 is satisfiable, and 〈T ,A〉 |= q but 〈T +,A〉 �|= q.
Notice that membership assertions of the form A(c) and R(c1, . . . , cn) occur in
A, where A is an atomic concept and R is an atomic role occurring in T . Such an
ABox always exists if we assume that there are no NIs in T (as in Theorem 3).
However, if T − �= ∅, then the existence of such an ABox is not guaranteed. The
assumption that T is strongly consistent allows us always to construct such an
ABox, even in the presence of NIs.

An interesting question concerns the computational complexity of deciding
whether an NCDLR± TBox is strongly consistent. We show that this problem
is pspace-complete. The desired lower bound is obtained by exploiting a deci-
sion problem, called finite function generation, denoted as FFG, introduced and
studied in [15]: given a pair 〈F, f〉, where F ∪ {f} is a (finite) set of functions
from a set to itself, decide whether f can be obtained by composing functions
of F . It is known that FFG is pspace-complete, even for bijective functions.

Theorem 5. The problem of deciding whether an NCDLR± TBox is strongly
consistent is pspace-complete.

Proof (sketch). Consider an NCDLR± TBox T . It is possible to show that T
is strongly consistent iff there exists an ABox A such that, for each atomic
concept A and atomic role R in T , A contains exactly one membership assertion
of the form A(c) and one of the form R(c1, . . . , cn), respectively, and 〈T ,A〉 is
satisfiable. Therefore, the problem under consideration can be solved by applying
the following non-deterministic algorithm: guess an ABox A as described above,
and if 〈T ,A〉 is satisfiable, then accept ; otherwise, reject. Clearly, the above
algorithm runs in non-deterministic polynomial time with an oracle C, where
C is a complexity class powerful enough for deciding whether the KB 〈T ,A〉
is satisfiable. As we shall see (Theorem 11), KBSat under NCDLR± TBoxes is
feasible in pspace; since np

pspace = pspace, the claim follows.
The pspace-hardness is established by a reduction from the complement of

FFG. Let 〈F, f〉 be an instance of FFG, where F = {f1, . . . , fm} with m � 1;
w.l.o.g. assume that F ∪ {f} is a set of bijective functions from [n] to [n], where
n � 2. Let T be the NCDLR± TBox constituted by

A � ∃R[1]
{R[1, . . . , n] � R[fi(1), . . . , fi(n)]}i∈[m]

R(X1, . . . , Xn), R(Xf(1), . . . , Xf(n)) � ⊥,

where A is an atomic concept and R is an n-ary atomic role. Clearly, the above
construction can be carried out in polynomial time. Moreover, T is trivially
non-conflicting since in the underlying dependency graph there is no f-node. It
is easy to see that there exists an ABox A as described above iff the function f
cannot be obtained by composing functions of F , and the claim follows.

Tractable Reasoning in Description Logics with Functionality Constraints 185

Notice that if we consider NCDLR± TBoxes where in inclusion assertions
among roles only the identity permutation is used, or the arity of roles is bounded
by an integer constant, then the problem of satisfiability is in conp (Theorem 12).
This implies that the algorithm proposed in the proof of Theorem 5 runs in
np

conp, and thus the problem of deciding whether a TBox is strongly consistent
is feasible in Σp

2 . However, the exact complexity of the problem remains open.

4 Query Answering

In this section, we investigate the data and combined complexity of BCQAns un-
der NCDLR± KBs. Recall that the data complexity is calculated by considering
only the ABox as part of the input, while the combined complexity by consid-
ering also the query and the TBox as part of the input.

Data Complexity. We show that our problem is in the highly tractable class
ac0 in data complexity. This is shown by establishing that NCDLR± is first-order
rewritable. To define formally first-order rewritable DLs, the so-called database
interpretation of an ABox is needed.

Definition 8 (Database Interpretation). The database interpretation of an
ABox A, denoted db(A), is defined as the interpretation 〈Δdb(A), ·db(A)〉, where:

– Δdb(A) is the set of terms occurring in A,
– tdb(A) = t, for each term t occurring in A,
– Adb(A) = {t | A(t) ∈ A}, and
– Rdb(A) = {〈t1, . . . , tn〉 | R(t1, . . . , tn) ∈ A}.

Let us now define first-order rewritable DLs.

Definition 9 (First-Order Rewritability). A DL L is first-order rewritable,
henceforth abbreviated as FO-rewritable, if for every TBox T expressed in L,
and for every BCQ q, it is possible to construct a (finite) first-order query qT
such that 〈T ,A〉 |= q iff db(A) |= qT , for every ABox A.

Notice that the notion of FO-rewritability was introduced in [8] under the
name first-order reducibility.

Theorem 6. BCQAns under NCDLR± KBs is in ac0 in data complexity.

Proof (sketch). Consider an NCDLR± TBox T , and an ABox A; let K = 〈T ,A〉.
If K is unsatisfiable, then K |= q, for every BCQ q over K. Assume now that K is
satisfiable. By Theorem 2, K |= q iff 〈T +,A〉 |= q, for every BCQ q over K. It is
not difficult to show that a (finite) first-order query q′ can be constructed such
that 〈T +,A〉 |= q iff db(A) |= q′; in fact, this follows by observing that T + is
equivalent to a set of inclusions dependencies which are first-order rewritable [6].
Evaluating first-order queries is in ac0 in data complexity [21]. The claim fol-
lows since, as we shall see (Theorem 10), the problem of deciding whether K is
satisfiable is also in ac0.

186 A. Cal̀ı, G. Gottlob, and A. Pieris

Before we proceed further, we show that DLR± is not FO-rewritable. This re-
sult descends straightforwardly from [4]; however, here we provide an alternative
proof based on a simple complexity argument.

Lemma 1. DLR± is not FO-rewritable.

Proof (sketch). Suppose that DLR± is FO-rewritable, and thus BCQAns under
DLR± KBs is in ac0 in data complexity. It can be shown that the same problem is
ptime-hard in data complexity, by a reduction from BCQAns under DL-LiteHF

core

KBs [2]. This implies that the complexity classes ac0 and ptime coincide which
is a contradiction since ac0 � ptime (see, e.g., [18]). Thus, DLR± is not FO-
rewritable.

Combined Complexity. We now investigate the combined complexity of
BCQAns under NCDLR± KBs. In particular, we show that the problem under
consideration is pspace-complete.

Theorem 7. BCQAns under NCDLR± KBs is pspace-complete in combined
complexity.

Proof (sketch). Consider an NCDLR± TBox T , and an ABox A; let K = 〈T ,A〉.
If K is unsatisfiable, then K |= q, for every BCQ q over K. Assume now that K
is satisfiable. By Theorem 2, K |= q iff 〈T +,A〉 |= q, for every BCQ q over K.
Recall that the problem of deciding whether 〈T +,A〉 |= q can be reduced to the
problem of query answering under inclusion dependencies which is in pspace in
combined complexity [14]. The desired upper bound follows since, as we shall
see (Theorem 11), the problem of deciding whether K is satisfiable is in pspace.
The pspace-hardness is established by a reduction from FFG.

Interestingly, the combined complexity of query answering decreases to non-
deterministic polynomial time if we consider the DLs obtained from NCDLR± ei-
ther by allowing only the identity permutation in inclusion assertions among
roles, or by allowing only roles of bounded arity; the formal definitions follow.

Definition 10. A non-conflicting DLR±
id (NCDLR±

id) TBox is an NCDLR± TBox
where all the inclusion assertions of the form R1[i1, . . . , in] � R2[j1, . . . , jn],
where {R1, R2} ⊆ R, are such that ik = jk, for each k ∈ [n]. A non-conflicting
DLR±

b (NCDLR±
b) TBox is an NCDLR± TBox where the arity of atomic roles is

bounded by an integer constant.

The np-completeness of BCQAns under NCDLR±
b KBs can be easily estab-

lished by exploiting known results. In particular, as we shall see (Theorem 12),
we can decide whether K is unsatisfiable in np in combined complexity. More-
over, given an NCDLR±

b TBox T , T + can be translated into a set of IDs where the
arity is bounded; it is well-known that query answering under IDs, in the case of
bounded arity, is in np [14]. Finally, the desired lower bound follows immediately
from the np-hardness of query evaluation over relational databases [11].

Tractable Reasoning in Description Logics with Functionality Constraints 187

Fig. 3. The chase forest for K; z is a labeled null of N

Theorem 8. BCQAns under NCDLR±
b KBs is np-complete in combined com-

plexity.

Let us now establish the np-completeness of BCQAns under NCDLR±
id KBs.

The desired lower bound is inherited from the np-hardness of query evaluation
over relational databases [11]. However, the desired upper bound does not follow
from the fact that query answering under IDs, in the case of bounded arity, is
in np (as for NCDLR±

b), since we have to deal with roles of unbounded arity. In
order to establish the desired upper bound, several auxiliary technical notions
and results are needed.

Definition 11. Consider a DLR± KB K = 〈T ,A〉. The chase forest for K is a
directed graph 〈V,E, λ〉, where V is the node set, E is the edge set, and λ is a
labeling function E → T +. There exists a node for each membership assertion
of chase(〈T +,A〉). Also, for each pair of assertions α1 and α2 of chase(〈T +,A〉),
there exists an edge e = (α1, α2), with λ(e) = σ ∈ T +, if α2 is obtained from
α1 during the construction of the chase by a single-step application of σ. For an
assertion α ∈ chase(〈T +,A〉), we denote by subtree(α) the subtree of the chase
forest for K rooted at α.

Example 4. Consider the KB K = 〈T ,A〉, where

T = {∃R[2] � A, A � ∃R[1], R[1, 2] � R[2, 1]}

and A = {R(a, b)} with A ∈ A and R/2 ∈ R. An initial segment of the (infinite)
chase forest for K is depicted in Figure 3.

We denote by δ(α) the set of constants and nulls occurring in the membership
assertion α. Given a finite set S of constants and nulls, two assertions α1 and α2

are S-isomorphic, denoted α1 �S α2, if there exists a bijection h : δ(α1) → δ(α2),
such that h (resp., h−1) is a homomorphism from α1 to α2 (resp., α2 to α1), and
h(X) = h−1(X) = X , for each X ∈ S. The notion of S-isomorphism naturally
extends to pairs of subtrees of a chase forest. It is not difficult to show, by
induction on the number of applications of the inclusion chase rule, that if two
assertions are S-isomorphic, then their subtrees are also S-isomorphic.

188 A. Cal̀ı, G. Gottlob, and A. Pieris

Lemma 2. Consider a DLR± KB K = 〈T ,A〉. If α1 �S α2, where {α1, α2} ⊆
chase(〈T +,A〉), then subtree(α1) �S subtree(α2).

It is also possible to show that there exists an upper bound on the number of
non-δ(α)-isomorphic assertions, where α is a membership assertion, that can be
constructed during the chase. This result can be established by providing a com-
binatorial argument which exploits the fact that only the identity permutation
can be employed in inclusion assertions among atomic roles.

Lemma 3. Consider an NCDLR±
id KB K = 〈T ,A〉. Let α ∈ chase(〈T +,A〉)

and S ⊆ chase(〈T +,A〉) such that, for each α′ ∈ S, δ(α′) ⊆ δ(α) ∪ N. If
|S| � |sig(T)| · ((arity(T))2 + 2), then S contains at least two δ(α)-isomorphic
assertions.

We can now establish that for query answering purposes it suffices to em-
ploy a “pseudo-canonical” interpretation, that is, an interpretation obtained by
considering an initial finite segment of the chase up to a certain level which
is polynomial w.r.t. the query and the TBox, and constant w.r.t. the ABox.
For an assertion α ∈ chase(〈T +,A〉), the level of α, denoted as level (α), is the
number of inclusion chase rule applications that are needed to construct it. Let
cank(〈T +,A〉) be the interpretation obtained by considering chasek(〈T +,A〉),
that is, the set of assertions {α | α ∈ chase(〈T +,A〉) and level(α) � k}.

Lemma 4. Consider an NCDLR±
id KB K = 〈T ,A〉 and a BCQ q over K. If

can(〈T +,A〉) |= q, then cank(〈T +,A〉) |= q, where k = |body(q)| · |sig(T)| ·
((arity(T))2 + 2).

Proof. Since, by hypothesis, can(〈T +,A〉) |= q, it is easy to see that there ex-
ists a homomorphism h that maps body(q) to chase(〈T +,A〉). Let h be of this
kind such that level (h) =

∑
α∈body(q) level(h(α)) is minimal. It suffices to show

that h(body(q)) is contained in chasek(〈T +,A〉). Towards a contradiction, sup-
pose that h(body(q)) is not contained in chasek(〈T +,A〉). Consider the tree T
consisting of all atoms of h(body(q)) and their ancestors in the chase forest for
K. Since h(body(q)) is not contained in chasek(〈T +,A〉), a path P = α1 . . . αm,
wherem−1 > |sig(T)|·((arity(T))2+2) and {α2, . . . , αm−1}∩h(body(q)) = ∅, oc-
curs in T . By Lemma 3, there are two δ(α1)-isomorphic assertions β and γ on P .
Lemma 2 implies that subtree(β) and subtree(γ) are δ(α1)-isomorphic. Therefore,
we can remove β and the path to γ, obtaining a path P ′ that is at least one edge
shorter than P . Clearly, there exists a homomorphism μ that maps subtree(β) to
subtree(γ). Then, the homomorphism h′ = μ◦h maps body(q) to chase(〈T +,A〉).
Observe that level (h′) < level (h) which is a contradiction since h is such that
level(h) is minimal. We conclude that h(body(q)) ⊆ chasek(〈T +,A〉).

We are now ready to establish the desired complexity result.

Theorem 9. BCQAns under NCDLR±
id KBs is np-complete in combined

complexity.

Tractable Reasoning in Description Logics with Functionality Constraints 189

Proof (sketch). As already mentioned, the desired lower bound is obtained di-
rectly from the np-hardness of query evaluation over relational databases [11].
Consider now an NCDLR±

id KB K = 〈T ,A〉 and a BCQ q over K. By Theo-
rem 2, we can decide whether K |= q by applying the following algorithm: if K is
unsatisfiable or 〈T +,A〉 |= q, then accept ; otherwise, reject. As we shall see (The-
orem 12), we can decide whether K is unsatisfiable in np in combined complexity.
It remains to show that the problem of deciding whether 〈T +,A〉 |= q is in np in
combined complexity. By Lemma 4, 〈T +,A〉 |= q iff cank(〈T +,A〉) |= q, where
k = |body(q)|·|sig(T)|·((arity(T))2+2). Observe that, if cank(〈T +,A〉) |= q, then
q is entailed due to a finite part of cank(〈T +,A〉) of size at most |body(q)| · k.
To decide whether cank(〈T +,A〉) |= q we can construct non-deterministically
a finite part P of cank(〈T +,A〉) of size at most |body(q)| · k, and then check
whether P |= q. Obviously, this is feasible in non-deterministic polynomial time,
and the claim follows.

5 Knowledge Base Satisfiability

In this section, we investigate the data and combined complexity of KBSat under
NCDLR± KBs. Let us first establish an auxiliary technical lemma which states
that unsatisfiability can be reduced to query answering. This lemma builds upon
an analogous one in [4], from which it can be derived without difficulties; how-
ever, for the sake of completeness, we provide a proof sketch here, since several
details are different from the case of [4]. We assume that the reader is familiar
with the notion of union of BCQs (see, e.g., [1]).

Lemma 5. Consider an NCDLR± KB K = 〈T ,A〉. If T is fixed (resp., non-
fixed), then we can construct an ABox A′ and a union of BCQs Q in ac0 (resp.,
ptime) such that K is unsatisfiable iff 〈T +,A′〉 |= Q.

Proof (sketch). Let A′ be the ABox obtained from A by adding a membership
assertion Neq(c1, c2), where Neq is an auxiliary binary role not occurring in
K, for each pair of distinct constants c1 and c2 in A. The union of BCQs Q is
constructed as follows. For every NI of the form φ(X) � ⊥ occurring in T −, add
to Q the BCQ p← φ(X). Moreover, for every functionality assertion of the form
(funct R[i]) occurring in T =, where R is an n-ary role, add to Q the BCQ p←
R(X1, . . . , Xi−1, Y,Xi+1, . . . , Xn), R(Z1, . . . , Zi−1, Y, Zi+1, . . . , Zn),Neq(Xj , Yj),
for each j ∈ [n] \ {i}. We can show that K is unsatisfiable iff 〈T +,A′〉 |= Q.
Suppose now that T is fixed, and let CT = sig(T) ∩ A and RT = sig(T) ∩R.
The required membership assertions can be obtained by evaluating a first-order
query, which depends only on T , over db(A). Evaluation of first-order queries
is feasible in ac0 in data complexity [21], and thus the required membership
assertions can be constructed in ac0 w.r.t. A. Since Q depends only on T can
be constructed in constant time. In the case of a non-fixed TBox, it is obvious
that both A′ and Q can be constructed in ptime. In particular, the number of
membership assertions in A′ is at most n2, where n is the number of constants
in A, while the number of BCQs in Q is at most |T −|+ arity(T) · |T =|.

190 A. Cal̀ı, G. Gottlob, and A. Pieris

In the sequel, given an NCDLR± KB K = 〈T ,A〉, we will refer to the ABox A′

and the union of BCQs Q, provided by Lemma 5, as AK and QK, respectively.

Data Complexity. We are now ready to investigate the data complexity of
KBSat under NCDLR± KBs.

Theorem 10. KBSat under NCDLR± KBs is in ac0 in data complexity.

Proof. Let K = 〈T ,A〉 be an NCDLR± KB. By Lemma 5, K is unsatisfiable iff
〈T +,AK〉 |= QK. As already discussed in the proof of Theorem 6, the problem
of deciding whether 〈T +,AK〉 |= QK is in ac0 in data complexity. Since both
AK and QK can be constructed in ac0, the claim follows.

Combined Complexity. We now investigate the combined complexity of
KBSat under NCDLR± KBs. We establish that, in the general case, the problem
under consideration is pspace-complete.

Theorem 11. KBSat under NCDLR± KBs is pspace-complete in combined
complexity.

Proof (sketch). By providing an argument similar to the one given in the proof
of Theorem 10, we get that the problem of deciding whether an NCDLR± KB
is unsatisfiable is in pspace, and the desired upper bound follows. The pspace-
hardness is established by a reduction from BCQAns under NCDLR± KBs. No-
tice that the aforementioned problem remains pspace-hard even in the case of
TBoxes which contain only PIs (implicit in the proof of Theorem 7). Consider a
KB K = 〈T ,A〉, where both T − and T = are empty, and a BCQ q over K of the
form p← φ(X). Let K′ = 〈T ∪ {φ(X) � ⊥},A〉. It is easy to see that K |= q iff
K′ is unsatisfiable, and the claim follows.

The combined complexity of KBSat decreases if we restrict our attention on
NCDLR±

X KBs, where X ∈ {id, b}. By providing a proof similar to that of Theo-
rem 11, and also by exploiting the fact that BCQAns under NCDLR±

X KBs, where
X ∈ {id, b}, is np-complete we get the following result.

Theorem 12. KBSat under NCDLR±
X , where X ∈ {id, b}, is conp-complete in

combined complexity.

6 Conclusions

In this paper, we have presented the DL DLR± with roles of arbitrary arity, which
is equipped, among other constructs, with functionality constraints, role inclu-
sions with arbitrary permutation of the arguments, and negative assertions. We
have provided a syntactic condition which is necessary and sufficient for the sep-
arability of DLR± TBoxes, thus identifying a fragment, which we call NCDLR±,
which offers highly tractable (in data complexity) CQ answering and KB sat-
isfiability. We have also investigated the combined complexity of reasoning in
NCDLR± (and variants of it).

Tractable Reasoning in Description Logics with Functionality Constraints 191

Since DLR± is very similar to the ER variant proposed in [4], called ER±, our
result are straightforwardly applicable to ER±. It is also possible to show that
every DL-LiteF or DL-LiteR TBox T can be transformed into an NCDLR± TBox
T ′ such that, for every ABoxA and BCQ q, 〈T ,A〉 |= q iff 〈T ′,A〉 |= q. Moreover,
the NCDLR± TBox {R[1, 2] � R[2, 1], (funct R[1])} cannot be expressed neither
in DL-LiteF nor in DL-LiteR. We can therefore state the result below.

Theorem 13. NCDLR±, even with binary roles only, is strictly more expressive
than DL-LiteX , where X ∈ {F ,R}.

Finally, in this work we have considered arbitrary (finite or infinite) models.
Determining the complexity of CQ answering and KB satisfiability under finite
models only remains an open problem, and will be the subject of future research.

Acknowledgements. This research has received funding from the European
Research Council under the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) / ERC grant agreement DIADEM no. 246858.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. Artif. Intell. Res. 36, 1–69 (2009)

3. Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: A fam-
ily of logical knowledge representation and query languages for new applications.
In: Proc. of LICS, pp. 228–242 (2010)

4. Cal̀ı, A., Gottlob, G., Pieris, A.: Ontological query answering under expressive
entity-relationship schemata. Inf. Syst. 37(4), 320–335 (2012)

5. Cal̀ı, A., Lembo, D., Rosati, R.: On the decidability and complexity of query
answering over inconsistent and incomplete databases. In: Proc. of PODS, pp.
260–271 (2003)

6. Cal̀ı, A., Lembo, D., Rosati, R.: Query rewriting and answering under constraints
in data integration systems. In: Proc. of IJCAI, pp. 16–21 (2003)

7. Cal̀ı, A., Martinenghi, D.: Querying incomplete data over extended ER schemata.
TPLP 10(3), 291–329 (2010)

8. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-lite family.
J. Autom. Reasoning 39(3), 385–429 (2007)

9. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query con-
tainment under constraints. In: Proc. of PODS, pp. 149–158 (1998)

10. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. Artif. Intell. 195, 335–360 (2013)

11. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational data bases. In: Proc. of STOCS, pp. 77–90 (1977)

12. Chen, P.P.: The Entity-Relationship model: Towards a unified view of data. ACM
TODS 1(1), 124–131 (1976)

192 A. Cal̀ı, G. Gottlob, and A. Pieris

13. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the
description logic SHIQ. In: Proc. of IJCAI, pp. 399–404 (2007)

14. Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under func-
tional and inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167–189 (1984)

15. Kozen, D.: Lower bounds for natural proof systems. In: Proc. of FOCS, pp. 254–266
(1977)

16. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of PODS, pp.
233–246 (2002)

17. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies.
ACM Trans. Database Syst. 4(4), 455–469 (1979)

18. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
19. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:

Linking data to ontologies. J. Data Semantics 10, 133–173 (2008)
20. Vardi, M.Y.: The complexity of relational query languages. In: Proc. of STOC, pp.

137–146 (1982)
21. Vardi, M.Y.: On the complexity of bounded-variable queries. In: Proc. of PODS,

pp. 266–276 (1995)

Toward a Theory of Self-explaining Computation

James Cheney1, Umut A. Acar2,3, and Roly Perera1

1 University of Edinburgh
2 Carnegie Mellon University

3 INRIA-Rocquencourt

Abstract. Provenance techniques aim to increase the reliability of hu-
man judgments about data by making its origin and derivation pro-
cess explicit. Originally motivated by the needs of scientific databases
and scientific computation, provenance has also become a major issue
for business and government data on the Web. However, so far prove-
nance has been studied only in relatively restrictive settings: typically,
for data stored in databases or scientific workflow systems, and processed
by query or workflow languages of limited expressiveness. Long-term
provenance solutions require an understanding of provenance in other
settings, particularly the general-purpose programming or scripting lan-
guages that are used to glue different components such as databases,
Web services and workflows together. Moreover, what is required is not
only an account of mechanisms for recording provenance, but also a the-
ory of what it means for provenance information to explain or justify
a computation. In this paper, we begin to outline a such a theory of
self-explaining computation. We introduce a model of provenance for a
simple imperative language based on operational derivations and explore
its properties.

1 Introduction

Scientific data (including both raw data and processed results) is now being pub-
lished and shared online in unprecedented quantities. Understanding the signifi-
cance, validity, or accuracy of this data depends on understanding its provenance.
When data is not confined to a single user, system, or intended application, it is
essential to make the origin, ownership history, processing steps, and context or
assumptions about the data explicit, to avoid misinterpretation and aid repro-
ducibility. Over the last decade, a wide variety of techniques aimed at addressing
this provenance problem have been proposed, including new data formats [46,47]
and mechanisms for generating provenance to accompany computations.

Buneman, Khanna and Tan’s 2001 paper “Why and Where: A Characteri-
zation of Data Provenance” [9] was among the first publications to investigate
the problem of provenance in database systems. Although provenance was stud-
ied earlier by Wang and Madnick [56], Woodruff and Stonebraker [59] and Cui
et al. [20], Buneman et al. [9] has had greater influence (at least measured in
terms of citations) than these other works. We conjecture that one reason for
this is that Buneman et al. went beyond proposing mechanisms for provenance:

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 193–216, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

194 J. Cheney, U.A. Acar, and R. Perera

they also considered the question of the meaning of provenance. By considering
and comparing two models, why-provenance and where-provenance, they made
it clear that there might be many different models of provenance, with different
advantages and disadvantages, and suitable for different applications.

Provenance techniques have since been studied in the context of databases
[9,29], scientific workflow systems [43,7], operating systems [48], and inference
systems [38] (including recent interest in the Semantic Web community, culmi-
nating in a W3C Working Group on Provenance [27,47]). In each of these con-
texts, there is a large design space for provenance mechanisms, yet at the same
time there is not a clear consensus on the requirements or policies that these
mechanisms ought to satisfy. Sometimes even the specifications of the techniques
are unclear, or illustrated mainly through intuitive examples.

Instead, a wide variety of informal motivations have been cited, usually not
accompanied by precise definitions or proofs of correctness. Such motivations
include:

– To record a complete derivation of a program or inference process execu-
tion. [23,60,48]

– To guarantee repeatability, replayability or reproducibility. [23,45]
– To explain causal structure, history, influence or dependence. [40,17,13,15]
– To show where result data has been copied from, how result records were

composed from input records, or why results were produced. [9,8,29,16]
– To validate a computation to ensure it is correct. [41]
– To diagnose and repair errors in computations involving components that

are not believed to be reliable. [39]
– To facilitate efficient recomputation and comparison of computations, in-

cluding recomputation from different inputs or in different computational
environments. [23,5,17,29]

As of 2010, there were over 400 research papers on provenance in computer sys-
tems to date [44]. However, not all of them observe Lamport’s rule “State the
Problem Before Describing the Solution” [35]: instead, many present a proposed
solution and then argue that it is a solution on its own terms, without making
the problem it solves explicit. This state of affairs should be compared with the
state of security research twenty-five years ago, when a wide variety of (often
proprietary) security solutions were being proposed without a clear understand-
ing of what problems they solved (or were meant to solve). In an influential essay,
Good [28] argued that foundational understanding (theories and mathematical
models) were necessary for computer security. We believe provenance research
is in a similar state today: there are few formal models or crisp definitions of
the requirements for provenance or proofs that actual techniques achieve their
purported goals.

In previous work [17], we highlighted several hazards implicit in this state
of affairs, which we called provenance failures. A provenance failure is a loss or
risk exposed by failure to properly manage provenance: for example, losses due
to outdated information in online trading [11] or due to inaccurate scientific re-
sults [42]. Government agencies may also view leaks as provenance failures [55],

Toward a Theory of Self-explaining Computation 195

and as of this writing (June 2013), it is widely reported [30] that intelligence
agencies are combining massive computing resources with unfettered access to
metadata about phone calls and Internet use. Whether one views these develop-
ments as essential tools for fighting terrorism or unacceptable hazards to privacy
and individual liberty, one cannot deny that the problems of protecting and se-
curing metadata are becoming just as important as those for raw data.

Since 2009, there has been a major effort to define standards for provenance
on the World Wide Web [47]. Provenance techniques are now being widely advo-
cated as a basis for trusting online data and scientific results. However, if these
techniques are not placed on a firm foundation, then this effort is doomed to
failure: if the problems to be solved by provenance are not formulated precisely,
then proposed solutions will, at best, provide a false sense of security.

For the purposes of this paper, we consider provenance to be any information,
usually not already provided by the system, describing some aspect of a system’s
run-time behavior (or of data flowing through it). Our view is that general-
purpose systems, including programming languages, should be equipped with
general-purpose notions of provenance that are (a) clearly specified, (b) suitable
for a variety of typical applications, and (c) equipped with a formal correctness
property relating the behavior of the real system to the provenance description.

The first two criteria are relatively easy to satisfy. The aim of this paper is
to bring the third requirement into focus and study it. Many of the commonly-
stated requirements for provenance amount to a form of explanation that ade-
quately accounts for the behavior of the system [22]. However, the precise sense
in which some auxiliary data (which we call provenance) actually explains a com-
putational process is seldom explicitly stated. In this paper, we begin to outline
a theory of self-explaining computation, in which the semantics of provenance
and its relationship to the conventional semantics of a programming language
(or behavior of a system) are the objects of study.

What are the open questions that a theory of self-explaining computation
should address? These are just a few possibilities:

1. If a system’s actual behavior is described by explicit records, how do these
constitute explanations? What are different appropriate definitions of expla-
nation and how are they related?

2. Provenance can be recorded according to several different strategies, ranging
from coarse-grained to fine-grained. Fine-grained provenance seems more
useful or “complete” but can easily grow to dwarf the raw data. How can we
understand and quantify the tradeoff between granularity and usefulness?

3. The full provenance record often includes far too much information to be
useful. How can we extract subsets of this information that correctly ap-
proximates the full record?

4. Some provenance techniques (e.g. minimal witnesses in why-provenance) are
extensional, or invariant with respect to a conventional semantics of the sys-
tem, and others are intensional, meaning that their behavior can be different
for conventionally-equivalent expressions (e.g. where-provenance). What are

196 J. Cheney, U.A. Acar, and R. Perera

the advantages and disadvantages of these different approaches? How can
we justify intensional provenance semantics?

The behavior of computer systems can be described programmatically. The
study of the semantics of programming languages has explored a large number
of alternative approaches to defining the meaning of programs, ranging from
denotational techniques [53] that interpret program text as an abstract, math-
ematical object such as a function, to operational techniques [50] that explain
the behavior of complex program constructs via rules that describe how to eval-
uate a program step-by-step. We take the view that the theory of self-explaining
computation should build on programming language semantics, in order to en-
sure that the specifications of provenance techniques are clear, and in order to
facilitate formalization and proof of correctness properties.

We focus on an operational approach to provenance in the context of an
imperative core-language IMP [57]. We explore the implications of taking a
large-step operational derivation (that is, an explicit natural semantics proof
tree [33]) as a form of provenance. We define a semantics for programs that
produces both a standard result and an operational derivation tree, which we
view as recording all of the information that could be relevant to understanding
the program and how it executed (at the IMP level of abstraction).

We then consider the problem of formalizing some of the requirements above
and extracting information from traces in order to meet these requirements.
For example, we give a candidate definition of source locations (inspired by
where-provenance [9]) and then show how this can be extracted from derivations.
We also describe the use of derivations for a form of incremental computation
(loosely inspired by self-adjusting computation [5]), in order to demonstrate that
derivations are expressive enough to meet this strong requirement. We have made
additional contributions since the first version of this paper was written [3,49],
and we conclude with a discussion of these results and future steps.

2 Background

To illustrate our approach, we employ a simple imperative programming lan-
guage IMP [57], augmented with pairs as a simple form of data structure. The
syntax of IMP expressions e ∈ Exp, commands c ∈ Comm and values v ∈ Val
is as follows:

e ::= x | let x = e1 in e2 | (e1, e2) | fst(e) | snd(e) | i | b | e1 = e2 | e1 + e2 | · · ·
c ::= skip | x := e | c1; c2 | if e then c1 else c2 | while e do c
v ::= i | b | (v1, v2)

where x ∈ Var denotes variables, i ∈ Z denotes integers, and b ∈ B denotes
boolean values. We will also write ⊕ for an arbitrary binary operation, including
+, =, and possibly others.

The meaning of expressions and commands is defined via operational seman-
tics rules as shown in Figures 1 and 2. Our semantics is essentially a standard

Toward a Theory of Self-explaining Computation 197

σ, x ⇓ σ(x)

σ, e1 ⇓ v1 σ[x := v1], e2 ⇓ v2

σ, let x = e1 in e2 ⇓ v2

i ∈ Z

σ, i ⇓ i

σ, e1 ⇓ i1 σ, e2 ⇓ i2

σ, e1 + e2 ⇓ i1 + i2

σ, e1 ⇓ v1 σ, e2 ⇓ v2

σ, (e1, e2) ⇓ (v1, v2)

σ, e ⇓ (v1, v2)

σ, fst(e) ⇓ v1

σ, e ⇓ (v1, v2)

σ, snd(e) ⇓ v1

b ∈ {true, false}
σ, b ⇓ b

Fig. 1. Operational semantics derivation rules for IMP expressions

σ, skip ⇓ σ

σ, e ⇓ v

σ, x := e ⇓ σ[x := v]

σ, c1 ⇓ σ′ σ′, c2 ⇓ σ′′

σ, c1; c2 ⇓ σ′′

σ, e ⇓ true σ, c1 ⇓ σ′

σ, if e then c1 else c2 ⇓ σ′
σ, e ⇓ false σ, c2 ⇓ σ′

σ, if e then c1 else c2 ⇓ σ′

σ, e ⇓ true σ, c ⇓ σ′ σ′, while e do c ⇓ σ′′

σ, while e do c ⇓ σ′′
σ, e ⇓ false

σ, while e do c ⇓ σ

Fig. 2. Operational semantics derivation rules for IMP commands

large-step operational semantics. We consider the set of stores Store = Var →
Val and use functions σ ∈ Store to store the values of variables. We write []
for the empty store, [x1 := v1, . . . , xn := vn] for a store binding xi to vi, and
σ[x := v] for a store σ updated by replacing the value of x with v. More generally,
we write σ[σ′] for σ updated with σ′, that is, σ[σ′](x) = σ′(x) if x ∈ dom(σ′)
and σ(x) otherwise.

In this paper, we view the derivations as explicit data structures, that is, as
ordered, ranked trees with nodes labeled with judgments J . The judgments we
will consider are:

J ::= σ, e ⇓ v | σ, c ⇓ σ′

The judgment σ, e ⇓ v indicates that an expression e evaluates to value v in
store σ. The judgment σ, c ⇓ σ′ indicates that a command c evaluates in store σ
to store σ′.

The rules in Figures 1 and 2 thus essentially define construction rules for valid
derivations. We write D :: σ, e ⇓ v to indicate that D is a valid derivation whose
root is labeled with σ, e ⇓ v. We may also write patterns of the form

D1 · · · Dn

J

to describe a valid derivation tree whose root is labeled with J and whose im-
mediate subderivations are D1, . . . , Dn. Figure 3 shows three sample operational
semantics derivations.

198 J. Cheney, U.A. Acar, and R. Perera

[x = 4, y = 2], x ⇓ 4 [x = 4, y = 2], 2 ⇓ 2

[x = 4, y = 2], x = 2 ⇓ false [x = 4, y = 2], y := 4 ⇓ [x = 4, y = 4]

[x = 4, y = 2], if x = 2 then x := y ∗ 2 else y := 4 ⇓ [x = 4, y = 4]

[x = 4, y = 2], x ⇓ 4 [x = 4, y = 2], 2 ⇓ 2

[x = 4, y = 2], x = 2 ⇓ false [x = 4, y = 2], y := x ⇓ [x = 4, y = 4]

[x = 4, y = 2], if x = 2 then x := y ∗ 2 else y := x ⇓ [x = 4, y = 4]

[x = 3, y = 2], x ⇓ 3 [x = 3, y = 2], 2 ⇓ 2

[x = 3, y = 2], x = 2 ⇓ false [x = 3, y = 2], y := x ⇓ [x = 3, y = 3]

[x = 3, y = 2], if x = 2 then x := y ∗ 2 else y := x ⇓ [x = 3, y = 3]

Fig. 3. Example derivation trees

For illustration purposes, we also give the standard denotational semantics of
IMP programs. Recall that a denotational semantics assigns to each program
expression or command a mathematical meaning. Here, we interpret expressions
e as functions E�e�− : Store → Val⊥ from stores to values, and commands c
as functions C�c�− : Store → Store⊥. Here, we use the standard notation S⊥
to abbreviate S ! {⊥}, that is, the set S augmented with a special “undefined”
value ⊥. One can equivalently think of the interpretations as partial functions
Store⇀ Val or Store⇀ Store respectively. The denotational semantics is defined
in Figures 4 and 5.

Theorem 1 ([57]). The denotational and operational semantics are equivalent
in the sense that:

1. E�e�σ = v holds if and only if there exists a derivation D of σ, e ⇓ v, and
2. C�c�σ = σ′ holds if and only if there exists a derivation D of σ, c ⇓ σ′.

The proof is standard, but in the interest of precision we exhibit functions that
witness the forward direction by constructing explicit derivations. These are
shown in Figures 6 and 7. The function ED�e�σ yields a pair (D, v) of a derivation
ofD :: σ, e ⇓ v along with the actual value v. Likewise, the function CD�c�σ yields
a pair (D, σ′), where D :: σ, c ⇓ σ′. (The second components of the respective
return values, v and σ′, are redundant, but this formulation makes the definition
more uniform).

In the rest of this paper, we explore the consequences of viewing the derivation
obtained by evaluating an IMP expression or command as a form of provenance
in its own right.

2.1 A Note on the Overhead and Scale of Provenance Tracking

Our IMP language incorporates standard primitive operations found in most
general-purpose programming languages, such as arithmetic and booleans. The

Toward a Theory of Self-explaining Computation 199

E�e� : Store → Val

E�x�σ = σ(x)

E�let x = e1 in e2�σ = E�e2�σ[x := E�e1�σ]

E�i�σ = i

E�e1 + e2�σ = E�e1�σ + E�e2�σ

E�(e1, e2)�σ = (E�e1�σ, E�e2�σ)

E�fst(e)�σ = v1 (E�e�σ = (v1, v2))

E�snd(e)�σ = v2 (E�e�σ = (v1, v2))

E�b�σ = b

E�e1 = e2�σ =

{
true E�e1�σ = E�e2�σ
false E�e1�σ �= E�e2�σ

Fig. 4. Denotational semantics of expressions

C�c� : Store → Store

C�x := e�σ = σ[x := E�e�σ]

C�c1; c2�σ = C�e2�(C�e1�σ)

C�if e then c1 else c2�σ =

{
C�c1�σ E�e�σ = true

C�c2�σ E�e�σ = false

C�while e do c�σ =

{
C�while e do c�(C�c�σ) E�e�σ = true

σ E�e�σ = false

Fig. 5. Denotational semantics of commands

derivation trace model we propose above could be prohibitively expensive in
raw computational terms if we instrument the program to generating a new
derivation step node for each primitive operation. Furthermore, the space needed
for such a trace is likely to be large, in direct proportion to the running time.

In this paper we do not consider this practical aspect of provenance, which is
obviously important. Our goal is to understand what information, in principle,
one might consider as a “most precise” form of provenance, in order to under-
stand what is lost by adopting more practical techniques. Moreover, it may be
that the time and space overhead of naive derivation-trace provenance can be
avoided, either through finding a more compact representation of the trace, or
using standard compression techniques to compress the trace (which may have
a lot of redundancy). Naturally, for a deterministic program, one such com-
pressed representation is the original program itself plus its input: this requires
no run-time or space overhead for provenance tracking, but requires completely

200 J. Cheney, U.A. Acar, and R. Perera

ED�e� : Store → Deriv × Val

ED�x�σ =
(
σ, x ⇓ σ(x) , σ(x)

)

ED�i�σ =
(
σ, i ⇓ i , i

)

ED�b�σ =
(
σ, b ⇓ b , b

)

ED
�e1 ⊕ e2�σ = let (D1, i1) = ED

�e1�σ in

let (D2, i2) = ED�e2�σ in

(
D1 D2

σ, e1 ⊕ e2 ⇓ i1 ⊕ i2
, i1 ⊕ i2

)

ED�let x = e1 in e2�σ = let (D1, v1) = ED�e1�σ in

let (D2, v2) = ED
�e2�σ[x := v1] in

(
D1 D2

σ, let x = e1 in e2 ⇓ v2
, v2

)

ED�(e1, e2)�σ = let (D1, v1) = ED�e1�σ in

let (D2, v2) = ED
�e2�σ in

(
D1 D2

σ, (e1, e2) ⇓ (v1, v2)
, (v1, v2)

)

ED
�fst(e)�σ = let (D, (v1, v2)) = ED

�e�σ in

(
D

σ, fst(e) ⇓ v1
, v1

)

ED
�snd(e)�σ = let (D, (v1, v2)) = ED

�e�σ in

(
D

σ, snd(e) ⇓ v2
, v2

)

Fig. 6. Extracting derivations for expressions

CD
�c� : Store → Deriv × Store

CD�x := e�σ = let (D, v) = ED�e�σ in

(
D

σ, x := e ⇓ σ[x := v]
, σ[x := v]

)

CD�c1; c2�σ = let (D1, σ
′) = CD�c1�σ in

let (D2, σ
′′) = CD�c2�σ′ in

(
D1 D2

σ, c1; c2 ⇓ σ′′ , σ
′′
)

CD�if e then c1 else c2�σ = let (D, b) = ED�e�σ in

let (D′, σ′) = if b then CD�c1�σ else CD�c2�σ in
(

D D′

σ, if e then c1 else c2 ⇓ σ′ , σ
′
)

CD�while e do c�σ = let (D, b) = ED�e�σ in

if b

then let (D′, σ′) = CD�c�σ in

let (D′′, σ′′) = CD�while e do c�σ′ in

(
D D′ D′′

σ, while e do c ⇓ σ′′ , σ
′′
)

else

(
D

σ, while e do c ⇓ σ
, σ

)

Fig. 7. Extracting derivations for commands

Toward a Theory of Self-explaining Computation 201

recomputing the program to perform provenance analysis. Exploring the tradeoff
between time and space overhead of provenance tracking vs. provenance analysis
is an important area for future work; here, we focus only on defining different
provenance analyses in terms of derivation traces.

Another important observation about the overhead and scalabilty of our ap-
proach is that our approach is parametric over the primitive operations: they may
be (as in our examples) fine-grained, machine arithmetic operations, but they
could just as well be coarser-grained, macroscopic steps. Consider, for example,
an alternative variant of IMP in which the primitive operations include entire
external programs. In other words, instead of performing all of our numerically-
intensive computation explicitly using IMP-level arithmetic, we can consider
it as a scripting language for orchestrating larger computational steps that are
treated as primitive operations from the point of view of IMP’s provenance
records. Another interesting area for future work could be to understand how
to combine efficient coarse-grained provenance with more-precise, on-demand
fine-grained provenance tracking.

3 Finding Sources of Copied Data

As noted in the introduction, our goal is to use operational derivations as a
starting point for formalizing various requirements on provenance. We start with
the notion of where-provenance [9,8]. Essentially, where-provenance is intended
to track the sources of data copied from the input of a computation to the
output. We will define where-provenance for while-programs in two stages: first,
we will define where-provenance for straight-line code, and then we will lift the
definition to arbitrary programs by erasing derivations to straight-line programs.

Since we have been using abstract syntax trees for values and expression
trees, it seems natural to employ paths that can be used to address parts of
expressions and values. We write paths(v) for the set of paths that are valid for
a value. Specifically, paths : Val→ {1, 2}∗ is defined as:

paths(b) = paths(i) = {ε}
paths((v1, v2)) = 1 · paths(v1) ∪ 2 · paths(v2)

Here, if P is a set of paths, we write i·P for {i·p | p ∈ P}. Similarly, we use paths
of the form x.p to point to parts of variable values in stores. We write v[p] for the
value located at path p in v, and we write v[p := v′] for the result of replacing
the value at path p in v with v′. We extend these notations to environments and
environment paths in the obvious way.

Now we first consider the problem of identifying the source path (if any) of a
path in the result of an expression.

Definition 1. Suppose E�e�σ = v and p ∈ paths(v). A source path q is a path
such that σ[q] = v[p] and for any v′, we have if E�e�σ[q := v′][p] = v′.

In other words, a source path q points to an input value σ[q] that is a copy of the
value v[p] at result path p: if we change the input σ at q to v′ then the change

202 J. Cheney, U.A. Acar, and R. Perera

is mirrored at the output v′′ at p. (Note that v′′ may also differ at other places
besides p; consider the expression (x, x).)

This definition of source path is based on the denotational semantics, and so
for example two denotationally equivalent expressions such as x+ 0 and x have
the same source path behavior. Because of this, in general it appears difficult
to determine source paths exactly: for example, if the primitive operations can
encode Boolean formulas, then we can reduce the Boolean satisfiability problem
to the problem of determining whether a Boolean variable is always an exact
copy of a part of the input. With richer primitive operations such as arithmetic,
determining whether source path relationships exist can become undecidable,
reducing from Diophantine equation satisfiability.

Nevertheless, we can safely under-approximate the source paths of an expres-
sion, as shown in the src (e, p) function:

src : Var× Path→ Path⊥

src (e,⊥) = ⊥
src (x, p) = x.p

src (i, ε) = ⊥
src (b, ε) = ⊥

src (e1 ⊕ e2, ε) = ⊥
src ((e1, e2), ε) = ⊥

src ((e1, e2), i · p) = src (ei, p)

src (fst(e), p) = src (e, 1 · p)
src (snd(e), p) = src (e, 2 · p)

src (let x = e1 in e2, p) =

{
src (e1, q) if src (e2, p) = x.q
src (e2, p) otherwise

The cases for constants and primitive functions are obvious. For pair expressions,
if the path is ε, then we return ⊥ since the pair value was created by the pair
expression. If the pair is i · p for some i ∈ {1, 2}, then we find the source of p
in the appropriate subderivation. For projection operations fst or snd, we find
the source of i · p where i = 1 or i = 2 respectively. For let-binding, we first
find the source of p in the second subderivation. There are then two cases: either
the source path is of the form x.q where x was the bound variable, or it is ⊥ or
some other path y.q. In the first case, we find the source path of x.q in e1; in the
second, we just return the source path we have already found (or ⊥).

Theorem 2. If D :: σ, e ⇓ v and p ∈ paths(v) and src (e, p) = q �= ⊥ then q is
a source path for p.

Next, we consider commands. The definition of source path above extends
naturally to straight-line code involving only sequential composition and
assignment:

s ::= skip | x := e | s1; s2

Toward a Theory of Self-explaining Computation 203

Again, source paths for commands can be extracted syntactically:

src : Var× Path→ Path⊥

src (s,⊥) = ⊥
src (skip, x.p) = x.p

src (x := e, x.p) = src (e, p)

src (y := e, x.p) = x.p (x �= y)

src (s1; s2, q) = src (s1, src (s2, q))

The idea is similar to where-provenance for expressions. The assignment com-
mand is handled similar to a let. Sequential composition is handled by compos-
ing src on subexpressions.

Theorem 3. If D :: σ, c ⇓ σ′ and p ∈ paths(σ′) and src (c, p) = q �= ⊥ then q is
a source path for p.

However, the above notion of source path does not transfer directly
to commands with control-flow. For example, in a conditional
if x = 1 then y = x else y = 2 there is no source path for the value of y,
even in the case where x = 1 and y seems to be copied from x. As a compromise,
we consider a weaker notion, based on the idea of “freezing” the control-flow of
a derivation to obtain a straight-line program.

freeze
(
σ, skip ⇓ σ

)
= skip

freeze

(
D

σ, x := e ⇓ σ′

)
= x := e

freeze

(
D1 D2

σ, c1; c2 ⇓ σ′′

)
= freeze (D1) ; freeze (D2)

freeze

(
D D′

σ, if e then c1 else c2 ⇓ σ′

)
= freeze (D′)

freeze

(
D :: σ, e ⇓ false

σ, while e do c

)
= skip

freeze

(
D :: σ, e ⇓ true D′ D′′

σ, while e do c

)
= freeze (D′) ; freeze (D′′)

The function freeze (D) gives a straight-line code approximation of the pro-
gram based on its derivation. We have:

Theorem 4. If D :: σ, c ⇓ σ′ then σ, freeze (D) ⇓ σ′.

Note, however, that freeze () is still an intensional concept: two derivations of
equivalent programs on equal inputs need not have the same straight-line ap-
proximation, as illustrated by D1 :: [x := 1], if x = 1 then x := 1 else skip ⇓
[x := 1] and [x := 1], x ⇓ [x := 1]. Moreover, the above theorem does not

204 J. Cheney, U.A. Acar, and R. Perera

uniquely characterize the behavior of freeze (); for example, an alternative def-
inition that simply collects the assignments needed to map σ to σ′ would also
have the given property. Thus, freeze () represents an intuitive tradeoff between
concreteness (avoiding control-flow) and faithfulness to the shape of the original
derivation.

Given a derivation D :: σ, e ⇓ v and path p in the result value v, we can then
define the source path of p in a general IMP program c as src (freeze (D) , p).

Actually, very little of the derivation is needed to compute sources. Inspecting
each rule, we never need to examine the input store of any judgment and we
seldom need to inspect the return value: we only do this for while, and we could
potentially avoid this by inferring whether the loop test holds from the structure
of the subtree (i.e., a while-subderivation with only one child must correspond
to a loop test that evaluates to false). So, in general, if we only want to extract
source information then all we really need is the straight-line approximation of
the derivation (i.e., freeze (D)), not the (usually much larger) full derivation with
explicit store, expression, and value annotations. The straight-line approximation
freeze (D) might be viewed as an interesting form of provenance in its own right.
We can extract more than just source information from it; for example, we can
determine whether an output value was computed by adding two inputs.

A straight-line program could also be viewed as a DAG, following many con-
ventional approaches to provenance such as OPM [46]. Clearly, we could ex-
tract an OPM-style DAG from a straight-line program. Moreover, as argued by
Cheney [13] and Moreau [45], provenance DAGs can be viewed as a model of
computation for the purpose of analyzing the causality or reproducibility of the
computation they represent. However, the DAG approximation corresponding
to freeze (D) does not necessarily provide enough information for full recompu-
tation. In the next section, we consider the related issue of using the derivation
as a basis for efficient recomputation based on caching.

4 Dependence and Change Propagation

Another common motivation for provenance is to understand how parts of the
result depend on intermediate computation steps or source data. The notion
of dependence plays an important role in programming languages, particularly
dependency tracking [1,2], information flow security [51] and change propaga-
tion [5,4]. As argued in [12,15], we believe that this is a good starting point
for understanding how provenance should link results to the source data they
depend on.

Analyzing dependence requires us to consider not just how an expression
did evaluate but how its evaluation might change if the inputs were modified.
If we expect provenance to explain the results, then what metric should we
use to compare different explanations? We believe that an explanation should
have predictive value in the sense that it can be used to effectively predict how
the result might change if the inputs were modified. Of course, the original
program also provides this ability, but full recomputation may involve redoing

Toward a Theory of Self-explaining Computation 205

subcomputations where nothing has changed. Thus, a further requirement is that
the explanation be concise in the sense that it avoids details of uninteresting parts
of the computation that do not change.

Derivation trees already provide all of the information needed to predict the
results of changes. In fact, for a deterministic language, the root judgment of a
derivation tree already contains the whole program, and we can simply rerun this
on any new input and compare the old derivation and result value with the new
ones. However, we argue that this does not provide a satisfying explanation.
Derivation trees are verbose and it is not easy to propagate changes through
them. For example, in Figure 3 if we change the value of x from 4 to 3, the
structure of the derivation does not change. A large number of parts of the
derivation need to change, because there are many copies of the value of x in
the store and return values. In some sense, all we really need to know about the
result is that it is a copy of x, and the control flow depended on the fact that
x = 2 was false. This gives us enough information to predict the result of any
change to x that maintains the invariant x �= 2.

To make this precise, consider the function EΔ (D, δ) that takes a derivationD
of σ, e ⇓ v and a partial environment δ and constructs the new value v′ resulting
from evaluating e on σ[δ]. Here, δ is an environment that provides new values for
some of the variables in σ. We write σ[δ] to indicate the environment that takes
values δ(x) if x ∈ dom(δ) and σ(x) otherwise. We also consider an analogous
function CΔ (D, δ) that propagates changes through commands.

In Figure 8, we define functions EΔ (−,−) : Deriv×Store→ Val and CΔ (−.−) :
Deriv × Store → Store⊥ that attempt to reuse values cached in subderivations
wherever possible. Specifically, whenever we can detect that the changed values
in δ do not overlap with the free variables of an expression or command, we
simply reuse the cached value (for an expression) or return δ (for a command).
The following lemma shows that this is safe:

Lemma 1. If dom(δ) ∩ FV (e) = ∅ and σ, e ⇓ v then σ[δ], e ⇓ v. Moreover, if
dom(δ) ∩ FV (c) = ∅ and σ, c ⇓ σ′ then σ[δ], c ⇓ σ′[δ].

The first rule for expressions says that we can reuse a cached subexpression
provided none of its variables have changed in value (that is, FV (e)∩ dom(δ) =
∅). The next few rules essentially just replay evaluation. The rule for let deserves
discussion: essentially, we recompute the bound expression and compare its value
with the previous value cached in the trace. If the values are equal, we recompute
the body of the let using δ, otherwise, we add the new binding for x to δ. This
makes it possible to use cached subderivations more often than if we always
added x to δ.

For commands, the rules follow a similar pattern. The first rule indicates
that it is safe to skip recomputation of a command whose free variables have
not been changed. Assignment follows a pattern similar to let. However, we
need to recompute subexpressions using the cached stores when the control flow
changes, for example if the change affects the result of a conditional test. The
rules for conditionals require re-starting evaluation when the control flow changes
(we use the denotational semantics for brevity). For example, if a conditional

206 J. Cheney, U.A. Acar, and R. Perera

EΔ (D :: σ, e ⇓ v, δ) = v (dom(δ) ∩ FV (e) = ∅)

EΔ
(
σ, x ⇓ v , δ

)
= δ(x) (x ∈ dom(δ))

EΔ

(
D1 D2

σ, e1 ⊕ e2 ⇓ v
, δ

)
= EΔ (D1, δ)⊕ EΔ (D2, δ) (⊕ ∈ {=,+, . . .}

EΔ

(
D1 D2

σ, (e1, e2) ⇓ (v1, v2)
, δ

)
= (EΔ (D1, δ) , EΔ (D2, δ))

EΔ

(
D

σ, fst(e) ⇓ v
, δ

)
= let (v′1, v

′
2) = EΔ (D, δ) in v′1

EΔ

(
D

σ, snd(e) ⇓ v
, δ

)
= let (v′1, v

′
2) = EΔ (D, δ) in v′2

EΔ

(
D1 :: σ, e1 ⇓ v D2

σ, let x = e1 in e2
, δ

)
=

{
EΔ (D2, δ) (EΔ (D1, δ) = v)

EΔ
(
D2, δ[x := EΔ (D1, δ)]

)
otherwise

Fig. 8. Update propagation for expressions

CΔ
(
D :: σ, c ⇓ σ′, δ

)
= δ (dom(δ) ∩ FV (c) = ∅)

CΔ

(
D :: σ, e ⇓ v

σ, x := e ⇓ σ′ , δ

)
=

{
δ (EΔ (D, δ) = v)
δ[x := EΔ (D, δ)] otherwise

CΔ

(
D1 D2

σ, c1; c2 ⇓ σ′ , δ

)
= CΔ

(
D2, CΔ (D1, δ)

)
CΔ

(
D :: e ⇓ true D1

σ, if e then c1 else c2 ⇓ σ′ , δ

)
= if EΔ (D, δ) then CΔ (D1, δ) else C�c2�(σ[δ])

CΔ

(
D :: σ, e ⇓ false D2

σ, if e then c1 else c2 ⇓ σ′ , δ

)
= if EΔ (D, δ) then C�c1�(σ[δ]) else CΔ (D2, δ)

CΔ

(
D :: σ, e ⇓ true D′ D′′

σ, while e do c ⇓ σ′ , δ

)
= if EΔ (D, δ) then CΔ

(
D′′, CΔ (

D′, δ
))

else δ

CΔ

(
D :: σ, e ⇓ false

σ, while e do c ⇓ σ
, δ

)
= if EΔ (D, δ) then C�while e do c�(σ[δ]) else δ

Fig. 9. Update propagation for commands

Toward a Theory of Self-explaining Computation 207

test changes from true to false, then we cannot use the subderivation stored
for the then-branch; we have to execute the else-branch “from scratch” using
ordinary evaluation on the updated store σ[δ]. Composition and while also follow
predictable patterns; here, we use the denotational semantics for commands as
shorthand for computing commands “from scratch”.

Theorem 5. If D :: σ, e ⇓ v then σ[δ], e ⇓ EΔ (D, δ). Similarly, if D :: σ, c ⇓ σ′

and σ[δ], c ⇓ σ′′ then σ′′ = σ′[CΔ (D, δ)].

Note that the second part needs to be stated carefully because there is no guar-
antee that recomputing a command on a changed input will terminate.

The correctness theorem above essentially states that the functions EΔ (−,−)
and CΔ (−,−) can be used to correctly compute the updated result. We could
go further, and augment these functions to calculate the new derivation as well,
or the changed part of the derivation. The latter could serve as a rough measure
of the amount of “work” needed to recompute; obviously, in many cases the
changed part of the derivation will be much smaller than the whole derivation,
just as the changed part of the store obtained by CΔ (−,−) can be smaller than
the whole result store.

Propagating updates through computations efficiently is a subtle issue with
a large, still-growing literature (particularly for self-adjusting computation in
functional programming [5,4]). Our goal here is not to introduce a new approach
to incremental recomputation that we claim will be more efficient, but only to
establish a formal link between derivations-as-provenance and the notions of
trace used in incremental recomputation. In particular, the CΔ (D, δ) function
highlights one qualitative difference between replaying the whole expression from
scratch and derivation-based change propagation: only by recording some infor-
mation about what happened in a previous run can we avoid fully recomputing
each part of the program.

We could also push this idea further in several ways: we could allow finer-
grained changes such as updates that change a specific path in a variable’s value,
not just the whole value; we could consider techniques for controlling the cost
of caching by marking subexpressions with checkpointing annotations; we could
improve the precision of update propagation for commands by static analysis
of assignments; or we could incrementally recompute both the new value and
its derivation (or the difference between derivations). Many of these ideas have
already been explored in the context of self-adjusting computation, and it is
intriguing to consider the possibility of unifying the notion of traces used in
efficient self-adjusting computation systems with that needed for provenance.

5 Discussion

Pragmatic concerns, such as ease of use and extensibility, are often cited for em-
ploying operational semantics instead of denotational semantics. In particular,
extensions such as nondeterminism, concurrency, additional type constructors,

208 J. Cheney, U.A. Acar, and R. Perera

object-oriented features, and higher-order functions can be added to an opera-
tional semantics comparatively easily. Following the recipe in this paper, each
such extension comes equipped with one or more standard notions of “opera-
tional derivation” which could be used as a form of provenance. However, the
reality is not quite so simple: for example, adding sum types or collection types
poses problems for our use of paths to address parts of result values. We discuss
the ramifications of these extensions in the rest of this section.

5.1 Sum Types

Functional languages such as ML and Haskell support algebraic datatypes, based
on type-theoretic sum types. The type τ1 + τ2 represents the disjoint union of
types τ1 and τ2. Its introduction forms are injection functions inl : τ1 → τ1 + τ2
and inr : τ2 → τ1+τ2, and its elimination form is a case construct that performs
pattern matching.

e ::= · · · | inl(e) | inr(e) | case e of {x.e1 | y.e2}
v ::= · · · | inl(v) | inr(v)

Sum types and the associated programming constructs can be handled similarly
to booleans and conditionals:

σ, e ⇓ v
σ, inl(e) ⇓ inl(v)

σ, e ⇓ inl(v) σ[x := v], e1 ⇓ v1
σ, case e of {x.e1 | y.e2} ⇓ v1

σ, e ⇓ v
σ, inr(e) ⇓ inr(v)

σ, e ⇓ inr(v) σ[y := v], e2 ⇓ v2
σ, case e of {x.e1 | y.e2} ⇓ v2

Sum types complicate the issue of how to refer to parts of the input or output.
A naive approach would simply be to add inl and inr as possible path steps,
so that the path 1.inl.2 refers to 42 in the value (inl(17, 42), 0). However, this
leads to problems with the definition of source path, since changes to the input
might change the structure of the output in ways that invalidate paths involving
inl or inr.

5.2 Higher-Order Functions and Other Control Abstractions

Modern programming languages increasingly support first-class higher-order
functions, either explicitly (as in functional languages such as ML, Haskell, or
Scheme, and more recently in object-oriented languages such as C#, Java or
Scala), or implicitly via other constructs such as function objects or inner classes
(available in older versions of Java).

e ::= · · · | λx.e | e1 e2
v ::= · · · | 〈λx.e, σ〉

Toward a Theory of Self-explaining Computation 209

Here, 〈λx.e, σ〉 is a closure packaging a function body up with the environment
in which it was constructed. We extend the operational semantics as follows (in
the standard way):

σ, e1 ⇓ 〈λx.e, σ′〉 σ, e2 ⇓ v2 σ′[x := v2], e ⇓ v
σ, e1 e2 ⇓ v σ, λx.e ⇓ 〈λx.e, σ〉

Higher-order functions pose a significant challenge to provenance tracking,
because now the control flow (corresponding to the shape of the derivation tree)
depends on evaluation: when evaluating a first-class function call, we first eval-
uate the function part to find the body of the function, which is in general not
known until run time. Also, similarly to sums, it is difficult to use paths to refer
to “parts” of closure values.

5.3 Collection Types

Now consider an extension to the language to permit simple collections (such as
sets, lists, or bags), as in Nested Relational Calculus [10]:

e ::= · · · | ∅ | {e} | e1 ∪ e2
v ::= · · · | ∅ | {v1, . . . , vn}

The operational semantics of collection operations can be defined as follows:

σ, ∅ ⇓ ∅
σ, e1 ⇓ v1 σ, e2 ⇓ v2
σ, e1 ∪ e2 ⇓ v1 ∪ v2

σ, e ⇓ v
σ, {e} ⇓ {v}

We could also add a set comprehension operation
⋃

x∈e0
e to obtain an expressive

comprehension query language, but the problems we want to discuss do not
require this. (Naturally, this would introduce additional complications due to
variable binding).

The prospect of using paths to refer to parts of data structures is significantly
complicated in the presence of collections, especially unordered collections. For
lists, we have similar issues to those for sums. For sets, it is technically possible
to refer to set elements via their values, although this can be unwieldy when
sets are nested. But for multisets, paths are no longer sufficient to address each
part of a value if we view multiset expressions as equal modulo reordering of
elements.

As a simple example, consider a multiset expression {x− y} ∪ {z + 1} which
evaluates to {1, 1}. If we want to ask for the provenance of one of the output
elements, there is no location scheme for pure multiset values that lets us distin-
guish between the two copies of ‘1’ in the output. This means that in order to
support correct source tracking we need to impose some kind of location struc-
ture on multisets. Of course, we can avoid this problem in a simple way, by
treating collection values as lists and using integer indices. However, this index-
ing approach becomes rather complex if we wish to propagate changes from the

210 J. Cheney, U.A. Acar, and R. Perera

input to the output, because the paths are not stable with respect to changes
that affect the sizes of subcollections.

For example, suppose we have an expression {a}∪x∪{d}. If we first evaluate
it with x = {b} then the result will be {a, b, d} where v[3] = d. But if we update
x to be {b, c}, then the result is v′ = {a, b, c, d}, where v′[3] = c and v′[4] = d.
We would like to be able to say that changing x from {b} to {b, c} did not affect
the d value at v[3]. Intuitively, the d value in v[3] is the same as the d value at
v′[4], but they have different paths. Thus, we need to maintain a partial mapping
{(1, 1), (3, 4)} relating the paths in v to identical parts of v′. Now consider an
expression such as {a} ∪ x ∪ {b} ∪ x ∪ {c}. If x is changed from {d} to {d, e},
then we need to reindex both the b and c elements, that is, the partial mapping
would be {(1, 1), (3, 4), (5, 7)}.

These examples illustrate that paths based on positional indices are not stable
under changes to the input. Although indexing can be made to work using partial
mappings, it is notationally heavy, and it seems much cleaner instead to use
collections that maintain explicit, unique labels for their elements. These labels
can be used in paths, and have two further advantages over indices: we can still
treat labeled multisets as equivalent up to reordering, and we do not have to
keep track of partial mappings among results. These advantages also hold for
lists and sets, for which it is technically possible to use numbers or element values
in paths instead of labels. On the other hand, using labels requires generating
fresh labels for newly-created collections, which essentially makes the rules for
creating collections nondeterministic, which in turn complicates matters for the
same reason as other forms of nondeterminism. We are currently investigating
this problem.

5.4 Nondeterminism

We model a simple form of nondeterminism by adding a coin-flip expression
flip whose semantics is as follows:

σ, flip ⇓ true σ, flip ⇓ false

Obviously, nondeterminism makes it impossible to predict the result of a program
or its derivation.

Nondeterminism has little impact on the source-location extraction function:
a value constructed by flip simply has source ⊥. However, nondeterminism has
interesting consequences for the update-propagation semantics. Basically, the
question is how we should deal with changes to computations involving flip.
Should all coin flips that might affect the result of a computation be re-done?
In this case, we would constrain the caching rules to apply only if e does not
contain flip.

Or should we avoid this as much as possible, to try to preserve the structure
of the derivation as much as we can? In this case, we would allow caching to
reuse the results of coin-flips stored in the derivation. Only if a subexpression is
re-evaluated (e.g. as the result of a control flow change) would new random coin
flips be performed.

Toward a Theory of Self-explaining Computation 211

Either choice may be sensible, depending on the situation. If we want change
propagation to simulate what actually happened as much as possible (e.g. to
track down the source of an error), we would opt for the first design, reusing as
many cached coin flips as possible. If we want change propagation to simulate all
possible behaviors of the program, while reusing deterministic subcomputations,
then we need the second semantics. If we interpret flip probabilistically instead
of nondeterministically, there may be additional choices.

5.5 Arrays, References, Dynamic Allocation, and Concurrency

It is interesting to note that most approaches to provenance have focused on
relatively high-level languages or abstractions such as database queries, scien-
tific workflows, or operating system calls. In contrast, most work on program
slicing [54], and much work on information flow in language-based security [51],
has focused on small imperative languages similar to IMP extended with fea-
tures such as arrays, references, and dynamic memory allocation. These features
are, of course, still essential parts of programming most real-world systems writ-
ten in C, C++, or Java, and are also present in many scripting or numerical
computation languages used by scientists, such as Python, Matlab or R. Thus,
to understand provenance in general, we will need to understand provenance
for these features. Since these are exactly the features that tend to make pro-
gram analysis, typechecking, and debugging difficult, we can predict with some
confidence that they will pose challenges for provenance as well.

The approach taken in this paper should provide at least a starting point for
understanding provenance in the presence of arrays, references or dynamic mem-
ory allocation. Concurrency may also be tackled using operational techniques.
However, simply using some kind of derivation as a form of provenance leaves a
lot of questions unanswered, especially in the case of concurrency: How can we
efficiently record a full operational derivation? Is this even desirable in general,
or can we formulate specifications that make it clear that we can make do with
less? How can we recover a full operational derivation of a concurrent execution
given that each concurrently-executing part only has access to part of the full
derivation?

6 Related Work

There is some prior work discussing requirements or design philosophies for
provenance systems (e.g. [32,37,39,31]). This work, like a great deal of work on
provenance, has invoked informal motivations such as that provenance should
identify data that are “relevant to”, “caused” or “influenced” an output and
provide “repeatability”, “transparency”, or “explanation”. There has been little
attempt to define these terms carefully or formally with respect to the seman-
tics of the programs or systems being studied. As argued previously in some of
our prior work [15,8,17], we believe that while these informal motivations are
important, they are not enough on their own to explain what provenance is and

212 J. Cheney, U.A. Acar, and R. Perera

why it is challenging to define, collect and manage it. There is a danger that
different users and implementers may interpret these terms differently, leading
to miscommunication and confusion. As was once common in computer secu-
rity, there are many provenance mechanisms being designed without adequate
understanding of the policies that they are meant to satisfy.

Some work on provenance in databases has considered whether certain forms
of provenance can be extracted from others, including some negative results. For
example, the semiring provenance model of Green et al. [29] can express some
other models such as why-provenance and lineage, but cannot express where-
provenance and vice versa (as discussed in [24,16]). However, the design space
for techniques to track and manage provenance for data and computations that
span databases, workflows, or general-purpose programming languages, remains
largely unexplored. Our workshop paper [6] gives one approach to a unified model
of provenance for database queries and workflows. A subsequent paper [3] investi-
gates provenance extraction and security issues for a trace model for functional
programs. We are interested in developing analogous techniques for database
query languages, building on language-integrated query techniques [18].

In a previous paper [15], we identified a connection between dependence in
information-flow security and provenance, and developed a new form of prove-
nance based on dependence tracking. Our paper [17] explored connections to
programming languages, security, incremental, and bidirectional computation
research [1,5,25]. More recently, we have investigated foundations for prove-
nance security [14], building on work by Chong [19]. We believe language-based
provenance security to be a fruitful area for future work, possibly extending the
derivation trace model in this paper.

Our recent work [3,49] considers traces and trace slicing for a pure, call-by-
value calculus with product, sum and recursive types, and recursive functions,
using a conventional large-step semantics; paths become unwieldy in this setting,
and we adopt an alternative approach based on partial values. Other features
such as exceptions, laziness, and first-class continuations (call/cc) pose similar,
and possibly greater, challenges from the point of view of provenance. These chal-
lenges may require us to abandon the idea of using large-step derivations in favor
of the small-step operational techniques typically used for these features [50].

Aside from a few papers on provenance techniques in concurrency calculi
[52,21], the theory of self-explaining computation in the presence of compu-
tational effects, concurrency, or laziness is unexplored. General approaches to
the denotational or operational semantics of effects [36,34] provide an intrigu-
ing starting point for the study of provenance in the presence of effects. Ideas
from concurrency theory, particularly Winskel’s event structures [58], may be a
good place to start in understanding the meaning of provenance in concurrent
or distributed settings.

7 Conclusions

To date, research on provenance has focused on particular classes of systems
or computational models, such as databases, workflow management systems or

Toward a Theory of Self-explaining Computation 213

operating systems. Real scientific data and processing pipelines are typically not
confined to a single kind of system but instead use a combination of these systems
as well as ad hoc programs written in general-purpose or scripting languages that
glue these different systems together. We therefore argue here that provenance
needs to be understood for general-purpose programming languages.

In this paper, we have proposed a simple (perhaps too simple) model of prove-
nance in general-purpose programming language: the provenance trace of a com-
putation is simply a full operational derivation, i.e. a “proof” that the program
executed and produced a given value. This approach has both advantages and
drawbacks. It seems reasonable to expect that we can extract any other form of
provenance from such a trace: even in the presence of nondeterminism, the trace
records all inputs, outputs and intermediate choices. Thus, we can extract other
forms of provenance, such as source location information, as well as adapting
traces to changes to the input. However, this generality (at least, if interpreted
naively) comes at a high cost: the memory and processing overhead of storing
such full traces for nontrivial programs appears prohibitive, strongly motivating
compression or slicing techniques that can mitigate this cost while still provid-
ing detailed provenance. Another possible drawback, compared to, for example,
the elegant semiring framework used in relational databases [29,24], is the ab-
sence of strong semantic properties that can be used to optimize programs in
the presence of provenance.

Nevertheless, our contribution helps to frame the problem of provenance man-
agement in general-purpose languages, by proposing an idealized “most general”
form of provenance that can be used to define and compare other, more practi-
cal techniques. Many other questions remain to be investigated in developing a
theory of self-explaining computation, including:

– Can we compress or slice the full derivation trace efficiently enough to make
it a practical approach? If not, what are the limits of efficient provenance
for general-purpose programs?

– How can we extend derivation traces to handle complex features such as
concurrency, side-effects or collections?

– Can we identify intermediate forms of provenance that retain a high degree
of generality while remaining efficiently implementable?

– Can we develop an appropriate compositional model of provenance building
on denotational semantics (and admitting standard program equivalences)?

Acknowledgments. Effort sponsored by the Air Force Office of Scientific Re-
search, Air Force Material Command, USAF, under grant number FA8655-13-1-
3006. The U.S Government is authorized to reproduce and distribute reprints for
Governmental purpose notwithstanding any copyright notation thereon. Cheney
is supported by a Royal Society University Research Fellowship, by the EU FP7
DIACHRON project, and EPSRC grant EP/K020218/1. Parts of this research
were done while Acar and Perera were at Max-Planck Institute for Software
Systems, Kaiserslautern, Germany, and while Perera was a PhD student at the
University of Birmingham.

214 J. Cheney, U.A. Acar, and R. Perera

References

1. Abadi, M., Banerjee, A., Heintze, N., Riecke, J.G.: A core calculus of dependency.
In: POPL, pp. 147–160. ACM Press (1999)

2. Abadi, M., Lampson, B., Lévy, J.-J.: Analysis and caching of dependencies. In:
ICFP, pp. 83–91. ACM Press (1996)

3. Acar, U.A., Ahmed, A., Cheney, J., Perera, R.: A core calculus for provenance.
In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS, vol. 7215, pp. 410–429.
Springer, Heidelberg (2012)

4. Acar, U.A., Blelloch, G.E., Blume, M., Harper, R., Tangwongsan, K.: An experi-
mental analysis of self-adjusting computation. ACM Trans. Prog. Lang. Sys. 32(1),
3:1–3:53 (2009)

5. Acar, U.A., Blelloch, G.E., Harper, R.: Adaptive functional programming. ACM
Trans. Program. Lang. Syst. 28(6), 990–1034 (2006)

6. Acar, U.A., Buneman, P., Cheney, J., Kwasnikowska, N., Van den Bussche, J.,
Vansummeren, S.: A graph model of data and workflow provenance. In: TAPP
(2010), http://www.usenix.org/event/tapp10

7. Bowers, S., McPhillips, T.M., Riddle, S., Anand, M.K., Ludäescher, B.: Ke-
pler/pPOD: Scientific workflow and provenance support for assembling the tree
of life. In: Freire, et al. (eds.) [26], pp. 70–77.

8. Buneman, P., Cheney, J., Vansummeren, S.: On the expressiveness of implicit
provenance in query and update languages. ACM Transactions on Database Sys-
tems 33(4), 28 (2008)

9. Buneman, P., Khanna, S., Tan, W.-C.: Why and where: A characterization of data
provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973,
pp. 316–330. Springer, Heidelberg (2000)

10. Buneman, P., Libkin, L., Suciu, D., Tannen, V., Wong, L.: Comprehension syntax.
SIGMOD Record 23(1), 87–96 (1994)

11. Carey, S., Rogow, G.: UAL shares fall as old story surfaces online. Wall Street
Journal (September 2008),
http://online.wsj.com/article/SB122088673738010213.html

12. Cheney, J.: Program slicing and data provenance. IEEE Data Engineering Bulletin,
22–28 (December 2007) Invited paper

13. Cheney, J.: Causality and the semantics of provenance. In: Proceedings of the 2010
Workshop on Developments in Computational Models (2010)

14. Cheney, J.: A formal framework for provenance security. In: CSF, pp. 281–293.
IEEE (2011)

15. Cheney, J., Ahmed, A., Acar, U.A.: Provenance as dependency analysis. Mathe-
matical Structures in Computer Science 21(6), 1301–1337 (2011)

16. Cheney, J., Chiticariu, L., Tan, W.: Provenance in databases: Why, how, and where.
Foundations and Trends in Databases 1(4), 379–474 (2009)

17. Cheney, J., Chong, S., Foster, N., Seltzer, M., Vansummeren, S.: Provenance: A
future history. In: OOPSLA Companion (Onward! 2009), pp. 957–964 (2009)

18. Cheney, J., Lindley, S., Wadler, P.: A practical theory of language-integrated query.
In: ICFP (to appear, 2013)

19. Chong, S.: Towards semantics for provenance security. In: Workshop on
the Theory and Practice of Provenance (2009), Informal online proceedings,
http://www.usenix.org/events/tapp09/

20. Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a warehousing
environment. ACM Trans. Database Syst. 25(2), 179–227 (2000)

http://www.usenix.org/event/tapp10
http://online.wsj.com/article/SB122088673738010213.html
http://www.usenix.org/events/tapp09/

Toward a Theory of Self-explaining Computation 215

21. Dezani-Ciancaglini, M., Horne, R., Sassone, V.: Tracing where and who provenance
in linked data: A calculus. Theor. Comput. Sci. 464, 113–129 (2012)

22. Dourish, P.: Accounting for System Behaviour: Representation, Reflection and Re-
sourceful Action. In: Computers and Design in Context, pp. 145–170. MIT Press
(1997)

23. Foster, I., Vockler, J., Wilde, M., Zhao, Y.: Chimera: A virtual data system for
representing, querying, and automating data derivation. In: SSDBM, pp. 1–10 (July
2002)

24. Foster, J.N., Green, T.J., Tannen, V.: Annotated XML: queries and provenance.
In: PODS, pp. 271–280 (2008)

25. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bidirectional tree transformations: A linguistic approach to the view-update
problem. ACM Trans. Program. Lang. Syst. 29(3), 17 (2007)

26. Freire, J., Koop, D., Moreau, L. (eds.): IPAW 2008. LNCS, vol. 5272. Springer,
Heidelberg (2008)

27. Gil, Y., Cheney, J., Groth, P., Hartig, O., Miles, S., Moreau, L., da Silva, P.P.,
Coppens, S., Garijo, D., Gomez, J.M., Missier, P., Myers, J., Sahoo, S., Zhao, J.:
Provenance XG final report (December 2010),
http://www.w3.org/2005/Incubator/prov/XGR-prov-20101214/

28. Good, D.I.: The foundations of computer security: we need some (1986),
http://www.ieee-security.org/CSFWweb/goodessay.html

29. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS, pp.
31–40. ACM (2007)

30. Greenwald, G., MacAskill, E.: NSA Prism program taps in to user data of Apple,
Google and others. The Guardian (June 2013),
http://www.guardian.co.uk/world/2013/jun/06/us-tech-giants-nsa-data

31. Groth, P., Gil, Y., Cheney, J., Miles, S.: Requirements for provenance on the web.
International Journal of Digital Curation 7(1), 39–56 (2012)

32. Groth, P., Miles, S., Munroe, S.: Principles of high quality documentation for
provenance: A philosophical discussion. In: Moreau, L., Foster, I. (eds.) IPAW
2006. LNCS, vol. 4145, pp. 278–286. Springer, Heidelberg (2006)

33. Kahn, G.: Natural semantics. In: Brandenburg, F.J., Wirsing, M., Vidal-Naquet,
G. (eds.) STACS 1987. LNCS, vol. 247, pp. 22–39. Springer, Heidelberg (1987)

34. Kammar, O., Lindley, S., Oury, N.: Handlers in action. In: ICFP (to appear, 2013)

35. Lamport, L.: State the problem before describing the solution. SIGSOFT Softw.
Eng. Notes 3, 26–26 (1978)

36. Levy, P.B.: Call-By-Push-Value: A Functional/Imperative Synthesis. Semantic
Structures in Computation, vol. 2. Springer (2004)

37. Lynch, C.A.: When documents deceive: trust and provenance as new factors for
information retrieval in a tangled web. J. Am. Soc. Inf. Sci. Technol. 52(1), 12–17
(2001)

38. McGuinness, D.L., Pinheiro da Silva, P.: Explaining answers from the semantic
web: the inference web approach. Web Semant. 1, 397–413 (2004)

39. Miles, S., Groth, P., Branco, M., Moreau, L.: The requirements of using prove-
nance in e-science experiments. Journal of Grid Computing 5, 1–25 (2007),
doi:10.1007/s10723-006-9055-3

40. Miles, S., Groth, P.T., Munroe, S., Jiang, S., Assandri, T., Moreau, L.: Extracting
causal graphs from an open provenance data model. Concurrency and Computa-
tion: Practice and Experience 20(5), 577–586 (2008)

http://www.w3.org/2005/Incubator/prov/XGR-prov-20101214/
http://www.ieee-security.org/CSFWweb/goodessay.html
http://www.guardian.co.uk/world/2013/jun/06/us-tech-giants-nsa-data

216 J. Cheney, U.A. Acar, and R. Perera

41. Miles, S., Wong, S.C., Fang, W., Groth, P.T., Zauner, K.-P., Moreau, L.:
Provenance-based validation of e-science experiments. J. Web Sem. 5(1), 28–38
(2007)

42. Miller, G.: A scientist’s nightmare: Software problem leads to five retractions. Sci-
ence 314(5807), 1856–1857 (2006)

43. Missier, P., Belhajjame, K., Zhao, J., Roos, M., Goble, C.A.: Data lineage model
for Taverna workflows with lightweight annotation requirements. In: Freire, et al.
(eds.), pp. 17–30

44. Moreau, L.: The foundations for provenance on the web. Foundations and Trends
in Web Science 2(2-3), 99–241 (2010)

45. Moreau, L.: Provenance-based reproducibility in the semantic web. J. Web
Sem. 9(2), 202–221 (2011)

46. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P.T., Kwasnikowska,
N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E.G., den
Bussche, J.V.: The open provenance model core specification (v1.1). Future Gen-
eration Comp. Syst. 27(6), 743–756 (2011)

47. Moreau, L., Missier, P. (eds.): PROV-DM: The PROV data model. W3C Recom-
mendation (April 2013), http://www.w3.org/TR/2013/REC-prov-dm-20130430/

48. Muniswamy-Reddy, K.-K., Holland, D.A., Braun, U., Seltzer, M.: Provenance-
aware storage systems. In: USENIX Annual Technical Conference, pp. 43–56.
USENIX (June 2006)

49. Perera, R., Acar, U.A., Cheney, J., Levy, P.B.: Functional programs that explain
their work. In: ICFP, pp. 365–376. ACM (2012)

50. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60-61, 17–139 (2004)

51. Sabelfeld, A., Myers, A.: Language-based information-flow security. IEEE Journal
on Selected Areas in Communications 21(1), 5–19 (2003)

52. Souilah, I., Francalanza, A., Sassone, V.: A formal model of provenance in dis-
tributed systems. In: Workshop on the Theory and Practice of Provenance (2009)

53. Stoy, J.: Denotational Semantics: The Scott-Strachey Approach to Programming
Language Semantics. MIT Press (1981)

54. Tip, F.: A survey of program slicing techniques. J. Prog. Lang. 3(3) (1995)
55. Varghese, S.: UK government gets bitten by Microsoft Word. Sydney Morning

Herald (July 2003),
http://www.smh.com.au/articles/2003/07/02/1056825430340.html

56. Wang, Y.R., Madnick, S.E.: A polygen model for heterogeneous database systems:
The source tagging perspective. In: VLDB, pp. 519–538 (1990)

57. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press (1993)

58. Winskel, G.: Events, causality and symmetry. Comput. J. 54(1), 42–57 (2011)
59. Woodruff, A., Stonebraker, M.: Supporting fine-grained data lineage in a database

visualization environment. In: ICDE, pp. 91–102 (1997)
60. Zhao, Y., Wilde, M., Foster, I.: Applying the virtual data provenance model. In:

Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 148–161. Springer,
Heidelberg (2006)

http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://www.smh.com.au/articles/2003/07/02/1056825430340.html

To Show or Not to Show

in Workflow Provenance

Susan B. Davidson, Sanjeev Khanna, and Tova Milo

Computer and Information Science Department
University of Pennsylvania, Philadelphia, PA, USA

School of Computer Science
Tel Aviv University, Israel

{susan,sanjeev}@cis.upenn.edu, milo@post.tau.ac.il

1 Introduction

Science has been revolutionalized by the development and use of high-throughput
technologies, which generate large amounts of experimental data. This data must
then be analyzed to create knowledge, and for this scientists are increasingly
turning to scientific workflow systems. Scientific workflow systems not only help
conceptualize and visualize the analysis process, but enable the sharing and
reuse of subworkflows between analysis processes by maintaining repositories of
workflows.

Once a workflow has been designed it will be executed many times, generating
a large amount of “in-silico” experimental data which must also be managed by
the system. To help users understand how this data was generated, tools for cap-
turing provenance are being developed in systems such as myGrid/Taverna, Ke-
pler and VisTrails. By maintaining provenance information about the sequence
of processing steps (module executions) used to produce a data item, as well as
the parameter settings and intermediate data items passed between module exe-
cutions, the validity and reliability of data can be better understood and results
can be made reproducible. In particular, users can ask queries over this prove-
nance information such as: “What were the input data and parameter settings
for BLAST (a particular processing step) in this workflow execution?” (direct
provenance information), “What downstream data was affected by this particular
data?” (direct and transitive provenance information), “Does this data depend
directly or indirectly on that data?” (a reachability query), or “In how many
executions of this workflow was the alternative BLAST chosen to implement
the alignment search?” (an aggregate query over all executions of a particular
workflow).

However, as observed in our previous work [6,5], authors/owners of workflows
may wish to keep some of this provenance information private. For example, in-
termediate data within an execution may contain sensitive information, such as
the social security number, a medical record, or financial information about an
individual. Although users with the appropriate level of access may be allowed
to see such confidential data, making it available to all users through a workflow

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 217–226, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

218 S.B. Davidson, S. Khanna, and T. Milo

repository, even for scientific purposes, is an unacceptable breach of privacy. Be-
yond data privacy, a module itself may be proprietary, and hiding its description
may not be enough: users without the appropriate level of access should not be
able to infer its behavior if they are allowed to see the inputs and outputs of the
module. Finally, details of how certain modules in the workflow are connected
may be proprietary, and therefore showing how data is passed between modules
may reveal too much of the structure of the workflow. There is thus an inher-
ent tradeoff between the utility of the information shown in response
to a search/query and the privacy guarantees that authors/owners
desire.

In this paper, we discuss the issues associated with and our recent progress
on module and structural privacy. We start in Section 2 by giving a model of
workflow provenance, and reviewing our approach to module privacy. We follow
in Section 3 by discussing ideas related to structural privacy. We conclude in
Section 4.

2 Module Privacy

Module privacy assumes that the structure of the workflow is known, but that the
functionality of certain private modules is unknown and should not be revealed
through the visible provenance information. In contrast, the names and behavior
of public modules may be completely known by users. Public modules are the
norm in workflows, since users typically want to know what a module does and
whether or not it is behaving correctly. However, private modules may arise
when software has been developed at a significant cost to the owner; while the
owner may be willing to share their software for use, possibly for a fee, they
do not want it pirated and reproduced. In such cases, the software is typically
certified by trusted third parties (e.g., as is the case for the software controlling
your car).

We start our discussion of module privacy by providing a simple model of
workflow provenance as a relational table, and discussing the approach we take
to module privacy. We then highlight our initial results for workflows in which
all modules are private (all-private workflows) and workflows in which there is
a mixture of public and private modules (public/private workflows).

2.1 Provenance as a Relation

Workflow provenance is defined as a “depends-on” relationship between output
data, and the module, input data and parameters that produced the output data.
It is typically represented as a graph. For simplicity, in this section we will assume
that the workflow specification is a rooted directed acyclic graph (DAG) in which
the nodes are modules and edges denote potential dataflow. In an execution, all
modules are executed and data flows on all edges, i.e., there is no looping or
alternation. Thus the specification also defines the structure of the execution,
and we can represent provenance as a database table (relation), in which the

To Show or Not to Show in Workflow Provenance 219

attributes represent the names of data edges in the workflow specification and a
row represents the values of data flowing over the edges in an execution of the
workflow.

For example, consider the specification in Figure 1 (to the left), in which there
are three modules represented as boxes (m1, m2 and m3), and seven data edges
(a1, ..., a7). Data a1 and a2 are initial input to the workflow and a6 and a7 are
final input. Data a3,..., a5 are intermediate data; note that a4 is input to both
m2 and m3 and indicates data sharing. In this example, all data is boolean, and
the complete provenance relation for this workflow can be found in the table to
the right. Since each module is a function, functional dependencies are defined
from each module’s input to its output (far right).

������

���

��� �	��

���

�	�

�� ���

�

�	 �
� ���

��

��� ��� ��� ��� ��� �	� �
�

�
�
�
� �� ��
�

� �� �� ��
�
� ��

��
� �� ��
�
� ��

�� �� ��
� �� �� ��

��������	�
�

�	�
������
�
��������

Fig. 1. Sample Workflow Specification and Provenance Relation

2.2 Privacy Approach

We start by observing that if complete provenance information is given for mul-
tiple executions of a workflow on different initial inputs, then partial or complete
functionality of modules may be revealed. For example, in the provenance rela-
tion in Figure 1 the functionality of module m1 is completely revealed since all
possible inputs are shown (a1, a2) along with the output for each input (a3,..,a5).

The approach that we take in [4] is to hide a carefully chosen subset of inter-
mediate data, thereby limiting the amount of provenance data shown to the user
and guaranteeing some desired level of privacy. Formally, we define a module m
to be Γ -private iff for every input x to m, the output value m(x) is indistin-
guishable from Γ − 1 other possible values w.r.t. the visible data.

For example, if we hide a2 and a4 in the provenance relation in Figure 1, then
4-privacy is achieved for m1. Taking the input (x) as a vector (a1, a2) and the
output m1(x) as a vector (a3, a4, a5), m1(0, 0) could be (0,0,1), (0,1,1), (1,0,0)
or (1,1,0); the same holds for m1(0, 1). Similarly, m1(1, 0) and m1(1, 1) could be
(1,0,0), (1,1,0), (1,0,1) or (1,1,1).

We assume that a certain level of privacy is desired for the workflow as a whole
(e.g., Γ = 4), and that the owner of each (private) module specifies the subsets
of attributes (safe sets) whose hiding guarantees Γ -privacy when the module
is executed in isolation (standalone privacy).1 The safe sets may represent both

1 We also study the communication and computation complexity of finding these sub-
sets in [4].

220 S.B. Davidson, S. Khanna, and T. Milo

input and output data. The workflow designer must then decide which attributes
to hide in the provenance relation for the workflow so as to guarantee Γ -privacy
for each individual private module (the workflow secure-view problem). The same
data is then hidden over all executions of the workflow, i.e., users are presented
a view of the workflow provenance relation which is a projection over the visible
(non-hidden) attributes.

Note that there may be several safe sets for each private module, each of which
guarantees its Γ -privacy. Furthermore, each data item in the workflow may have
a different value to users in terms of provenance, represented as a “cost”. In the
associated workflow secure-view optimization problem, the goal is therefore to
minimize the cost of the hidden provenance data (i.e., maximize the value of the
visible data) while guaranteeing Γ -privacy for each private module.

2.3 All-Private Workflows

In [4] we studied the setting in which all modules in the workflow are private.
Although the privacy of a module within the workflow is inherently linked to the
workflow topology and functionality of other modules, we were able to show that
module privacy in all-private workflows is compositional, i.e., ensuring the stan-
dalone privacy of each module guarantees its privacy when placed in a workflow.
Thus any set of attributes chosen to hide in the workflow provenance relation
that includes at least one safe set for each private module guarantees its privacy
in the workflow setting. The workflow secure-view problem was shown to be
NP-hard in the number of attributes in the relation R, which may be very large.
However, under a natural restriction, the problem is approximable to within a
logarithmic factor in poly-time.

Returning to the example in Figure 1, let Γ = 4, {a4, a6} be a safe set for m2

and {a4, a5} be a safe set for m3. Then hiding {a2, a4, a5, a6} in the provenance
relation for the sample workflow guarantees 4-privacy for m1, m2 and m3 and is
therefore a solution to the workflow secure-view problem. (Whether or not it is
optimal depends on additional information, i.e., the costs of the attributes and
the set of all safe sets for m1, m2 and m3).

2.4 Public/Private Networks

We have also studied the setting in which only some of the modules in a workflow
are private and the rest are public, and here compositionality does not hold. For
example, consider the workflow in Figure 2 in which the middle module (m2) is
private whereas the upstream and downstream modules, m1 and m3, are public
identity modules. Certainly, hiding all the data associated with private module
m2 (indicated by the “X” on edges) would guarantee standalone privacy for any
Γ . However, the hidden data is exposed by the input to m1 and output of m3.

It is therefore necessary to hide additional information in the workflow in order
to guarantee Γ -privacy for private modules. One idea is to privatize certain public
modules, i.e., to hide their name and function, an approach that we pursued in
[4]. Returning to our example, ifm1 andm3 were privatized then hiding the input

To Show or Not to Show in Workflow Provenance 221

�������� ��������

������	� �
�����

��������

�
�����

Fig. 2. Public/Private Example

to and output of m2 would now suffice. However, since much is known about
public modules it may be possible to infer the names of privatized modules by
the types of inputs/outputs, the structure of the network, or other available
information.

Another idea is to propagate hiding through public modules. Returning to our
example, if the input to m2 were hidden then the input to m1 would also be
hidden (upward propagation), although the user would still know that m1 were
the equality function. Similarly, if the output of m2 were hidden then the output
of m3 would also be hidden (downward propagation); again, the user would still
know that m3 was the equality function. While in this example things appear
to be simple, several technically challenging issues must be addressed when em-
ploying such a propagation model in the general case: 1) whether to propagate
hiding upward (e.g., to m1) or downward (e.g., to m3); 2) how far to propagate
data hiding; and 3) which data of public modules must be hidden. Overall the
goal is the same as in the all-private secure view problem: guaranteeing that the
functionality of private modules is not revealed while minimizing the amount of
hidden data.

In recent work [3], we have focussed on downward propagation and have ob-
tained the following strong results: For a special class of common workflows,
single (private)-predecessor workflows, or simply single-predecessor workflows
(which include the common tree and chain workflows), taking a safe set for each
private module augmented with specially chosen input/output data of public
modules in their public closure (modules reachable up to a successor private mod-
ule) that is rendered upstream-downstream safe by the data hiding2 and hiding
the union of data in the augmented solutions for each private module will ensure
Γ -workflow privacy for all private modules. Furthermore, for tree-structured or
chain workflows (which are common in practice), the minimum cost such solu-
tion can be found in poly-time; for other types of single-predecessor workflows,
the problem is NP-complete in the number of modules in the public closure. We
also show that single-predecessor workflows is the largest class of workflows for
which propagation of data hiding only within the public closure suffices.

In contrast to single-predecessor workflows, for general workflows, hiding data
within a public closure of each private module no longer suffices; data hiding
must continue through other private modules to the entire downstream workflow.

2 Downstream safety ensures that if two tuples look the same on the visible input,
then they look the same on the visible output; upstream safety ensures that if two
tuples look the same on the visible output, then they look the same on the visible
input.

222 S.B. Davidson, S. Khanna, and T. Milo

In return, the data hiding requirement for public modules is somewhat weaker
here: hiding must only ensure that the module is downstream-safe, which typi-
cally involves fewer input/output data than upstream-downstream-safety.

Discussion. In this work, we have adopted the notion of �-diversity[12] to
define Γ -privacy for modules. However, �-diversity is susceptible to attack when
the user has background knowledge [9,10]. Differential privacy [7,8] gives a much
stronger privacy guarantee. Originally proposed for statistical databases and ag-
gregate queries, differential privacy requires that the output distribution is almost
invariant to the inclusion of any particular record. However, it is well-known
that no deterministic algorithm can guarantee differential privacy, and the stan-
dard approach of including random noise is not suitable for our purposes —
provenance queries are typically not aggregate queries, and we need the output
views to be consistent (e.g., the same module must map the same input to the
same output in all executions of the workflow). It is possible that the Exponential
Mechanism [13], which implements differential privacy in non-numeric domains,
can be applied to our problem by suitably defining the feasible output space.
However, our initial research shows that even if we ignore the time complexity of
implementing this mechanism, the utility guarantee provided is often trivial due
to the nature of provenance queries. Defining an appropriate notion of differen-
tial privacy for module functionality with respect to provenance queries remains
an interesting open problem.

In the next section, we explore the use of differential privacy for hiding struc-
tural information about a workflow execution.

3 Structural Privacy

The goal of structural privacy is to keep information about the structure of an
execution private. For example, we may wish to keep private the information
that some module M contributes to the generation of a data item d, output
by another module M ′, or we may wish to keep private all details of some
subworkflow of the workflow. Alternatively, we may assume that the workflow
specification and therefore its structure is known, but that an execution may
take only some of the paths in the specification (a departure from our model of
the previous section). In this case, we may wish to hide details of a particular
execution, i.e., which set of paths in the workflow specification were taken during
the execution.

We start by discussing structural privacy as it relates to connections and sub-
workflows, and introduce hierarchical workflow specifications. We then discuss
structural privacy as it relates to execution paths, and pursue an approach based
on differential privacy.

3.1 Hiding Connections and Subworkflows

Our approach to module privacy in the previous section was to present a view
of provenance information to users. However, we assumed that users knew the

To Show or Not to Show in Workflow Provenance 223

structure of the specification and therefore that data was passed between two
module executions, even if they did not know what value the data had. Returning
to the example in Figure 1, users would know that data was passed m1 −→ m2

and m2 −→ m3, and that therefore a7 depends on a1 via m1, even if they cannot
see the actual data flowing over the edges. In structural privacy, we may wish
to keep such dependencies private.

���

���

������

���� ����

���

�
�
���

���

����

���

���

���

��� ���

�
�

���

���

���

���

�������������� �

Fig. 3. Hierarchical Workflow Specification

For example, consider the sample workflow in Figure 3, in which modules
now have input ports (dark circles) and output ports (white circles), and in-
put/output to the workflow as a whole is indicated by thick edges. Now suppose
that we wish to keep certain connections private, for example, the connection
between m4 and m5. One possible approach is to delete edges and vertices from
the specification that is seen by the user so as to eliminate all paths from m4

to m5, e.g., in this example to delete the edge d7. However, by doing so, we
may hide additional provenance information that does not need be hidden, e.g.,
the existence of a path from m3 to m5. Another approach is to use clustering,
where certain modules are hidden in a composite module so that modules and
edges contained in the new composite module are no longer visible to the user.
Returning to our example, we could cluster m4 and m5 into a single composite
module (indicated by the dotted box labeled W1). However, if we still assume
that all outputs depend on all outputs, we may now infer incorrect provenance
information. In our example, since d8 is an output ofW1, the assumption is that
it depends on d6, which is input to W1. There is also now a path from m2 to
m7. This is called an unsound view in [11,2]. Both the deletion and clustering
approaches yield challenging optimization problems: guaranteeing an adequate
level of privacy while preserving soundness and minimizing unnecessary loss of
information.

224 S.B. Davidson, S. Khanna, and T. Milo

Note that the clustering approach builds on a hierarchical model of workflows,
i.e., one in which composite modules may themselves expand to subworkflows.
For example, in Figure 3 the root workflow is W0, which expands to a subwork-
flow consisting of modules m1, m2, m3, W1, m6 and m7, and dataflow edges
d1,..., d6, d8,...,d12. W1 is a composite module and itself expands to a subwork-
flow consisting of m4, m5 and the edge d7; the inputs to W1 are d5 and d6, and
its outputs are d8, d9. In our work [1], we model hierarchical workflows as graph
grammars in which composite modules expand to one or more subworkflows via
production rules. This also allows recursion and alternation to be modeled. Views
of workflow specifications are then defined to allow users to expand only a subset
of the production rules. One such view in our example would be to allow the
expansion of W0 but disallow that of W1. Furthermore, we allow fine-grained
dependencies between the inputs and outputs of a module to be captured by
explicitly modeling the dependencies between input/output ports. These depen-
dencies can also be specified for composite modules, which can be used to avoid
the problem of unsound views. Returning to our example, suppose that m4 and
m5 had full dependencies between their inputs and outputs, as shown by the
dotted lines within the module boxes. Then the dependencies specified for W1

could be that d9 depends on both inputs, d5 and d6, but that d8 depends only
on d5.

3.2 Hiding Execution Paths

We now turn to the problem of hiding which paths were taken during an exe-
cution of the workflow. The motivation for this is that in some applications, a
breach of privacy may occur merely by revealing information about the actual
sequence of executed modules even when all data is hidden. For example, the set
of diagnostic tests conducted on a patient reveals information about her medical
condition even when the results of these tests are kept private. We focus here on
applications where a user is familiar with the structure of the entire workflow,
but for which an execution of a workflow may take only some of the paths repre-
sented in the specification. The goal is to reveal aggregate statistics for the set of
all workflow executions while keeping private the details about which modules
were executed in a particular execution.

We again assume that the workflow is given by a DAG, where the nodes
correspond to modules and the edges correspond to potential dataflow. A valid
execution of a workflow is a set of paths from the root, representing the mod-
ules that were executed and the actual data that was passed between module
executions.

The structure of an execution of the workflow is represented by a boolean
vector in {0, 1}N , where N is the number of modules in the workflow, indicating
the set of modules that were executed. Given a set of executions of the workflow,
we would like to publish the values Xm representing the number of executions in
which a particular module m was involved. Unfortunately, publishing the exact
value of Xm for every module m may compromise privacy in certain situations.
For example, if the value of Xm for a module m that is executed only if a

To Show or Not to Show in Workflow Provenance 225

patient has a particular medical condition changes after inclusion of a new pa-
tient’s record, it can be inferred that the patient is suffering from that condition.
This example exhibits a breach of differential privacy (discussed at the end of
the previous section), which requires that the output distribution changes only
nominally with the inclusion/deletion of a single record. Our goal, therefore, is
to output a sequence of estimates for 〈Xm〉 that is ε-differentially private for a
given privacy-parameter ε.

We also observe that additional constraints may be imposed by the workflow
structure. For instance, a control structure (conditional if-then-else module)
imposes the restriction that only one of its children in the workflow graph can
be executed. The solution returned by our mechanism must be consistent with
such restrictions (e.g., the count of a conditional module in the published answer
should be sum of the counts of its children). It is not difficult to show that if
a workflow consists of only conditional modules, then privacy and consistency
can be simultaneously guaranteed with O(Nh/ε) error in the L1-accuracy of the
counts returned, where N is the number of modules and h is the longest path
in the workflow. Our ongoing work aims at extending this initial observation to
a comprehensive understanding of the interplay between structural privacy and
accuracy for general workflows.

4 Conclusions

The ability to capture, manage and query workflow provenance is increasingly
important for scientific as well as business applications. In this paper we dis-
cussed the problem of providing useful answers to provenance queries while en-
suring that privacy concerns are met. Specifically, we have focused on module
and structural privacy and discussed issues associated with our recent progress
in these two directions.

We addressed the problem of preserving module privacy in workflows by pro-
viding a view of provenance information in which the input-to-output mapping
of private modules remains hidden. As the examples in this paper show, the
workflow-privacy of a module critically depends on the structure (connection
patterns) of the workflow, the behavior/functionality of other modules in the
workflow, and the selection of hidden attributes. We formalized the tradeoff
between the utility of the provided provenance information and the privacy it
guarantees for modules, and studied the related optimization problems.

For structural privacy we consider two approaches. The first, targeted at
reachability queries, is based on fine grained hierarchical workflow specifications
as well as the definition of privacy-preserving views over them. The second, tar-
geted at aggregate queries, employs differential privacy. Our ongoing work aims
at extending these results to develop a comprehensive understanding of the inter-
play between structural privacy and accuracy for general workflows. Determining
whether differential privacy is applicable also for module privacy is of particular
interest here. Finally, the design of efficient query evaluation algorithms in this
context is a challenging research direction.

226 S.B. Davidson, S. Khanna, and T. Milo

References

1. Bao, Z., Davidson, S., Milo, T.: View-adaptive labeling for fine-grained workflows
(submitted)

2. Biton, O., Davidson, S.B., Khanna, S., Roy, S.: Optimizing user views for work-
flows. In: ICDT 2009: Proceedings of the 12th International Conference on
Database Theory, pp. 310–323 (2009)

3. Davidson, S., Milo, T., Roy, S.: A propagation model for provenance views of
public/private workflows (submitted)

4. Davidson, S.B., Khanna, S., Milo, T., Panigrahi, D., Roy, S.: Provenance views
for module privacy. In: Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pp. 175–186 (2011)

5. Davidson, S.B., Khanna, S., Roy, S., Stoyanovich, J., Tannen, V., Chen, Y.: On
provenance and privacy. In: ICDT, pp. 3–10 (2011)

6. Davidson, S.B., Khanna, S., Tannen, V., Roy, S., Chen, Y., Milo, T., Stoyanovich,
J.: Enabling privacy in provenance-aware workflow systems. In: CIDR, pp. 215–218
(2011), http://www.crdrdb.org

7. Dwork, C.: Differential privacy: A survey of results. In: Agrawal, M., Du, D.-Z.,
Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008)

8. Dwork, C.: The differential privacy frontier (Extended abstract). In: Reingold, O.
(ed.) TCC 2009. LNCS, vol. 5444, pp. 496–502. Springer, Heidelberg (2009)

9. Ganta, S.R., Kasiviswanathan, S.P., Smith, A.: Composition attacks and auxil-
iary information in data privacy. In: Proceeding of the 14th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, KDD 2008, pp.
265–273. ACM, New York (2008)

10. Kifer, D.: Attacks on privacy and de Finetti’s theorem. In: SIGMOD Conference,
pp. 127–138 (2009)

11. Liu, Z., Davidson, S.B., Chen, Y.: Generating sound workflow views for correct
provenance analysis. ACM Trans. Database Syst. 36(1), 6 (2011)

12. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity:
Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 3 (2007)

13. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: Proceed-
ings of the 48th Annual IEEE Symposium on Foundations of Computer Science,
pp. 94–103. IEEE Computer Society, Washington, DC (2007)

http://www.crdrdb.org

Provenance-Directed Chase&Backchase

Alin Deutsch and Richard Hull

1 University of California, San Diego
2 IBM Watson Research Center

Abstract. The Chase&Backchase algorithm for rewriting queries using
views is based on constructing a canonical rewriting candidate called a
universal plan (during the chase phase), then chasing its exponentially
many subqueries in search for minimal rewritings (during the backchase
phase). We show that the backchase phase can be sped up significantly if
we instrument the standard chase to maintain provenance information.
The particular provenance flavor required is known as minimal why-
provenance in the literature, and it can be computed by exploiting the
analogy between a chase step execution and query evaluation.

1 Chase&Backchase

The Chase&Backchase (C&B) is an algorithm for rewriting queries using views
while exploiting integrity constraints. It was introduced in [DPT99] for queries
and views expressed as conjunctive queries (CQ) and integrity constraints ex-
pressed as embedded dependencies [AHV95] ([DPT99] extends the C&B to con-
junctive queries over complex-valued and OO data models, not treated here).

The C&B algorithm is based on expressing the view definitions as a set V of
embedded dependencies, then chasing with these as well as with the integrity
constraints I. Let us denote the result of chasing a query Q with a set of em-
bedded dependencies D as QD. 1 The C&B algorithm proceeds in two phases:

Chase: The input query Q is chased with the view constraints V and integrity
constraints I, to obtain a chase result QV∪I . Next, the subquery U of QV∪I is
produced by restricting QV∪I to the vocabulary of views. U is called the uni-
versal plan U .

Backchase: The subqueries of the universal plan U are checked for equiva-
lence (under I and V) to Q, and all equivalent subqueries are output (as long
as they are minimal, i.e. contain no subqueries that are already equivalent to Q).

1 We confine ourselves here to the case when the chase terminates, thus yielding a
finite result. It is well-known that this result is not necessarily unique, as it depends
on the non-deterministic choices made during the chase sequence among simultae-
nously applicable chase steps. However, the result is unique up to homomorphic
equivalence [AHV95], which suffices for our purposes. We will therefore refer to
“the” chase result in the remainder of this paper.

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 227–236, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

228 A. Deutsch and R. Hull

The equivalence check involves chasing each subquery sq “back” to Q (more
precisely, checking that Q has a containment mapping into sqV∪I).

We illustrate the C&B algorithm on the following running example (for sim-
plicity, without integrity constraints).

Example 1.1. Consider the query

Q(x) : −R(x,w, y), S(y, z), T (z, u)

and assume that the following views have been defined:

VR(x, y) : − R(x,w, y)

VS(y, z) : − S(y, z)

VRS(x, z) : − R(x,w, y), S(y, z)

VT (z, u) : − T (z, u)

It is easy to see that

R1(x) : − VR(x, y), VS(y, z), VT (z, u)

R2(x) : − VRS(x, z), VT (z, u)

are equivalent rewritings of Q using the views. Also, each rewriting is minimal,
in the sense that no atom of its definition can be removed while preserving equiv-
alence to Q.

To find these rewritings, the C&B algorithm prescribes capturing the view def-
initions by a set V of embedded dependencies. These are obtained canonically by
stating the inclusion (in both directions) between the result of the query defining
each view and the view’s extent. For the example, V is the following set of de-
pendencies (as usual in the literature, free variables are to be read as universally
quantified):

cVR : R(x,w, y) → VR(x, y)

bVR : VR(x, y) → ∃w R(x,w, y)

cVS : S(y, z)→ VS(y, z)

bVS : VS(y, z)→ S(y, z)

cVRS : R(x,w, y) ∧ S(y, z)→ VRS(x, z)

bVRS : VRS(x, z)→ ∃w, y R(x,w, y) ∧ S(y, z)

cVT : T (z, u)→ VT (z, u)

bVT : VT (z, u)→ T (z, u)

Provenance-Directed Chase&Backchase 229

The Chase Phase. When chasing Q with V, the only chase steps that apply
involve cVR , cVS , cVT , cVRS , yielding chase result

QV(x) : −R(x,w, y), S(y, z), T (z, u), VR(x, y), VS(y, z), VT (z, u), VRS(x, z).

The restriction of QV to the schema of the views yields the universal plan

U(x) : −VR(x, y), VS(y, z), VT (z, u), VRS(x, z).

The Backchase Phase. In this phase, the subqueries of U are inspected. Notice
that R1, R2 above are among them.

We illustrate only for the suqbquery of U corresponding to R2. To show that
R2 is equivalent to Q, we chase R2 with V and we search for a containment
mapping from Q into RV

2 . The only applicable chase steps involve bVRS , bVT ,
yielding the result

RV
2 (x) : −VRS(x, z), VT (z, u), R(x,w, y), S(y, z), T (z, u).

Since the identity mapping on variables is a containment mapping from Q to RV
2 ,

R2 is equivalent to Q, and thus a rewriting. R2 is moreover minimal, since none
of its subqueries is a rewriting of Q (the backchase checks this). R2 is therefore
output by the C&B algorithm.
R1 is discovered analogously.
It turns out that there are no other minimal rewritings of Q. The backchase

phase determines this by systematically checking the other subqueries of U , but
discarding them as not being equivalent to Q, or not being minimal. For instance,
the subquery

sq(x) : −VR(x, u), VT (z, u)

is not a rewriting of Q, and the subquery

sq′(x) : −VS(y, z), VT (z, u), VRS(x, z)

is a rewriting but is not minimal.

Completeness of the C&B Algorithm. The fact that rewritings R1 and R2

in Example 1.1 are discovered among the subqueries of U is not accidental.
In [DPT99], it was shown that all minimal rewritings of Q are (isomorphic to)
subqueries of U , in the absence of integrity constraints. The result was extended
to the presence of integrity constraints expressed as embedded dependencies as
long as the chase with them terminates (Theorem 1 in [DT03b]; the proof can be
found in [Deu02]; see also [DPT06]). The result was further extended to queries
and views expressed as unions of conjunctive queries, and disjunctive embedded
dependencies [DT03b, Deu02].

Implementation of C&B Rewriting. The first C&B implementation is de-
scribed in [PDST00], where the backchase phase is identified as the performance

230 A. Deutsch and R. Hull

bottleneck. This is expected, since exponentially many subqueries of the univer-
sal plan are checked for equivalence with the original query, and each equivalence
check involves a chase. While [DPT99] shows that this brute-force search is op-
timal from a complexity-theoretic point of view, [PDST00] concerns itself with
practical feasibility and proposes techniques for pruning the search while pre-
serving completeness. Essentially, these boil down to enumerating subqueries
of the universal plan U in a bottom-up fashion, starting with all single-atom
subqueries, next with two-atom subqueries, etc. Since the backchase searches
for minimal rewritings, this bottom-up strategy allows pruning the equivalence
check for all subqueries sq of U that already include a rewriting as subquery,
since all such sq are non-minimal. In Example 1.1, subquery sq′ would be pruned
this way.

Even with bottom-up pruning, exponentially many subqueries remain to be
chased in the worst case. In practice, this worst case occurs often, for instance
when there is no rewriting of the query using the views. In this case the pruning
never kicks in and all possible subqueries of U need to be checked. To deal with
this case, [PDST00] proposes first checking that Q has a rewriting, before even
starting the subquery enumeration. This check is performed as follows.

A corollary of the completeness of the C&B algorithm states that Q has a
rewriting using the views if and only if it has a containment mapping into
U ′ = UV∪I , i.e. into the result of chasing the universal plan U with the de-
pendencies in V and I. In practical implementations (e.g. in [PDST00]), the
existence of a containment mapping from Q into U ′ is checked by treating U ′

as a small symbolic database instance (known as “canonical” instance in the
literature [AHV95]), and evaluating Q over it. This amounts to computing the
set of all containment mappings from Q into U ′, and checking its non-emptiness.

Example 1.2. Revisiting Example 1.1, a possible chase sequence of U with V
involves, in order, chase steps with bRS , bR, bS and bT , yielding

UV(x) : − VR(x, y), VS(y, z), VT (z, u), VRS(x, z),

R(x,w1, y), S(y, z), T (z, u), R(x,w2, y2), S(y2, z).

If we evaluate Q over the canonical instance of UV , we obtain the containment
mappings h1 = {x
→ x, y
→ y, w
→ w1, z
→ z, u
→ u} and h2 = {x
→ x, y
→
y2, w
→ w2, z
→ z, u
→ u}. Therefore, U is a (redundant) rewriting of Q, and
it makes sense to start inspecting its subqueries in search of minimal rewritings.

[PDST00], and the follow-up work in [DT03a] show that the effort of chasing
U itself is in practice comparable to that of chasing any subquery of U , since the
chase can be made particularly fast by implementing it as query evaluation over a
canonical database of toy dimensions. The rewriting existence check is therefore
shown to be well worth the effort: it bounds the overhead to an exponential
fraction of the backchase runtime and yields up to exponential speedup (realized
whenever there is no rewriting).

[PDST00] also presents a suite of techniques which further prune the search,
when instead of all minimal rewritings one only seeks a cheapest rewriting ac-
cording to a cost estimator. This setting is relevant in query optimization. It is

Provenance-Directed Chase&Backchase 231

shown how cost estimation can be interleaved with the bottom-up backchase. If
the cost model satisfies reasonable assumptions like monotonicity, the resulting
algorithm is shown to preserve the guarantee of finding a cheapest rewriting
while pruning all subqueries whose cost exceeds the best found so far, even
without chasing them to check if they are rewritings. In this paper we do not
concern ourselves with cost-based pruning, focusing on enumeration of all mini-
mal rewritings.

2 Provenance-Directed C&B
The remainder of this paper shows that significantly more can be done to prune
the search for all minimal rewritings while preserving completeness, assuming
that the chase procedure used in the backchase phase is instrumented to maintain
provenance information.

Intuitively, the original backchase enumerates the subqueries of the universal
plan U in a bottom-up fashion and chases each of them in isolation from the
others, to determine equivalence to the input query Q. This leads to redundant
chasing of the atoms occurring in common within distinct subqueries of U . It also
leads to fruitless chasing when the chosen subquery ends up not being equivalent
to Q.

Example 2.1. In our running example, the bottom-up backchase search prunes
all strict superqueries of R1, R2 except U . This leads to pruning subqueries VR ∧
VRS ∧ VT and VS ∧ VRS ∧ VT .2

In addition, the backchase will prune those subqueries that do not contain the
universal plan’s head variables, as only safe rewritings are of interest (e.g. it will
prune VS , and VS ∧ VT).

However, the backchase still carries out fruitless chases of the following 7
subqueries of U

VR, VRS ,

VR ∧ VS , VR ∧ VT , VR ∧ VRS , VS ∧ VRS ,

VR ∧ VS ∧ VRS

only to determine that none of them are rewritings of Q.
One might wonder why the backchase won’t more aggressively prune away all

subqueries that don’t even mention all relations mentioned by Q. In our exam-
ple, this would immediately dismiss all 7 subqueries listed above. Note that this
aggressive pruning is unsafe in general, in the sense of compromising complete-
ness of the backchase. Indeed, if the set of constraints includes tuple-generating
dependencies (such as foreign key constraints), the minimal rewritings do not

2 To avoid clutter, in the running example we specify universal plan subqueries by
mentioning only the view names of involved atoms. This is not ambiguous since U
contains no distinct atoms with the same view name. We also omit the specification
of the distinguished variables, as these are in all cases (x).

232 A. Deutsch and R. Hull

necessarily mention all relations mentioned by the query. It is easy to construct
such examples: for instance, assume that the second component of S is a foreign
key referencing the first component of T . Then subqueries VR ∧ VS and VRS are
minimal rewritings that would be missed by the aggressive pruning.

Notice how, across rewritings R1 and R2, the common VT atom is chased
redundantly multiple times (once when chasing U , then again when chasing R1,
and also when chasing R2, and in the fruitless chases of the three above-listed
subqueries involving VT).

Our aim is to minimize both fruitless and redundant chasing.
The solution we propose starts from the observation that, while chasing the

universal plan U to check the existence of a rewriting, we simltaneously chase
all of its subqueries, though not in isolation as in original backchase, but collec-
tively. This collective chase will duplicate all chase steps of the isolated chases,
possibly enabling strictly more chase steps that result from the interaction be-
tween simultaneous chases of the subqueries. More formally, the nature of the
chase implies the following fact:

Fact 1. The union of the results of chasing each subquery of U in isolation maps
homomorphically into the result of chasing U itself.

Fact 1 follows immediately from the fact that all chase steps that fire on an
isolated subquery of U also fire on its isomorphic copy in U .

Now note that each containment mapping image i of Q in U ′ must have
been introduced because of the presence of certain atoms in U (which induce a
subquery of U). But by Fact 1 above, those subqueries of U who do not contribute
to the creation of an image of Q even when chased collectively with the other
subqueries, will certainly not do so when chased in isolation. Therefore, they
cannot be rewritings of Q. Our goal is to dismiss these subqueries immediately,
without chasing them in isolation, thus saving the effort when compared to the
original backchase. As it turns out, we can do even better than that, avoiding
the redundant effort across isolated chases of the remaining subqueries.

To this end, we propose a new backchase strategy that keeps track of the
provenance of each atom a in U ′, where the provenance of a gives the set(s)
of view atoms from U whose chasing led to the introduction of a into U ′. This
provenance information enables us to run Q over the canonical instance of U ′,
identify each image i of Q into U ′, and trace it back to the subquery sq of U
that is responsible for the creation of i during the chase of U . The search for
rewriting candidates thus confines itself to the set of provenances of the images
of Q into U ′. This set is significantly smaller than the set of all subqueries of
U . Indeed, in most cases we have encountered in practice, the backchase was
exploring a large fraction of the exponentially many subqueries of U , even when
there were only very few minimal rewritings.

Example 2.2. We illustrate by revisiting Example 1.2. We show again UV ,
this time annotating the atoms of UV with their provenance in terms of the view
atoms in U . Since U contains no two atoms using the same view name, we drop

Provenance-Directed Chase&Backchase 233

the variables from the provenance annotation, to avoid clutter. The provenance
annotations appear as superscripts.

UV(x) : −
VR︷ ︸︸ ︷

VR(x, y),

VS︷ ︸︸ ︷
VS(y, z),

VT︷ ︸︸ ︷
VT (z, u),

VRS︷ ︸︸ ︷
VRS(x, z),

VR︷ ︸︸ ︷
R(x,w1, y),

VS︷ ︸︸ ︷
S(y, z),

VT︷ ︸︸ ︷
T (z, u),

VRS︷ ︸︸ ︷
R(x,w2, y2),

VRS︷ ︸︸ ︷
S(y2, z) .

Note that the view atoms in UV are annotated with themselves, as they are not
introduced by chasing, but instead inherited directly from U . The R,S, T atoms
in UV are introduced by the chase, for instance the first R atom stems from
chasing VR(x, y) with view dependency bVR , while the second R atom stems from
chasing VRS(x, z) with bVRS .

Recall from Example 1.2 that Q has precisely two containment mapping images
into UV : one given by h1, comprising the T atom and the first R and S atoms,
and another given by h2, comprising the T atom and the second R and S atoms.
The provenance of the first image of Q is VR ∧ VS ∧ VT , which corresponds
to rewriting R1 in Example 1.1, while the provenance of the second image is
VT ∧ VRS , corresponding to rewriting R2 in the running example.

Notice how by computing the containment mappings of Q into UV (a step that
is already carried out in the original C&B algorithm), we immediately identify
the two rewritings of Q, saving the fruitless individual chases of the subqueries
listed in Example 2.1.

Also notice how, across the two remaining subqueries, R1 and R2, the common
VT atom is only chased once and for all when chasing U , saving the redundant
chasing that would have resulted from chasing R1 and R2 in isolation (as pre-
scribed by the original backchase).

2.1 Provenance-Aware Chase

We next detail the notion of provenance formula and how to instrument the chase
to keep book of provenance information. We call the resulting chase provenance-
aware. The proposed bookkeeping exploits the analogy between chase step appli-
cation and query evaluation, with the chase-maintained provenance paralleling
the minimal why-provenance flavor introduced for query evaluation in [BKT01].3

Intuitively, the provenance of an atom a is meant to specify the universal
plan subqueries whose chase constructs atom a. This information is captured
in the form of expressions obtained by starting with universal plan atoms as
terms and combining them using logical conjunction and disjunction. To define
the provenance of an atom in the chase result, we introduce some notation first.
Given an atom a, its provenance formula is denoted as π(a). For set/conjunction
of atoms A, the provenance is the logical conjunction of the provenances of A’s
elements: π(A) =

∧
a∈A π(a).

3 This analogy is already exploited in the original C&B implementation, to speed up
standard chase step evaluation.

234 A. Deutsch and R. Hull

We define the provenance-aware chase only for embedded dependencies corre-
sponding to tuple-generating dependencies (tgds), i.e. dependencies in which the
conclusion of the implication contains no equality atoms [AHV95]. This leaves
out equality-generating dependencies (egds) which we do not treat here for sim-
plicity sake. Notice that all dependencies in V are tgds, and in general tgds can
express such integrity constraints as inclusion dependencies and beyond, but
cannot express key constraints and functional dependencies in general.

Provenance-Aware Chase Step. The provenance-aware chase of the univer-
sal plan builds provenance formulae inductively as follows:

• For each atom a of the universal plan U , let π(a) = a.
• Let ρ be an instance. Let d be a tgd of the form

d : premise(x̄)→ ∃ȳ conclusion(x̄, ȳ)

where premise and conclusion are conjunctions of relational atoms and x̄, ȳ
are vectors of variables. Let h be a homomorphism from premise into ρ.
We say that the chase step of ρ with d under h does not apply if there is
an extension h̄ of h to a homomorphism from conclusion into ρ, such that
π(h(premise)) implies π(h̄(conclusion)).
If the chase step does apply, then it yields ρ′ obtained from ρ by adding new
atoms precisely as the standard chase would, and annotating each of them
with π(h(premise)). If ρ already contains atom a with provenance p1, and
the chase step introduces atom a with provenance p2, this is represented in
ρ′ by keeping a single copy of a, with provenance p1 ∨ p2.

Note that the provenance-aware chase constructs atoms just like the standard
chase, but annotates them with provenance formulae, and has a more refined step
applicability test. In the standard chase a step with tgd d under homomorpism
h does not apply when the conclusion is already witnessed by atoms in ρ. In
contrast, in the provenance-aware chase, we need to further make sure that
these witness atoms of d’s conclusion stem from the same view atoms whose
chase yielded the image under h of d’s premise.

Also note that the provenance formulae use logical conjunction and disjunc-
tion with their expected properties such as commutativity, distributivit, idem-
potence and absorption. This corresponds to the minimal why-provenance of
[BKT01] and is a particular case of a provenance semiring [GKT07].

2.2 Provenance-Directed Backchase

Once the universal plan U is provenance-aware-chased into result U ′, it is easy to
“read off” the subqueries of U (if any) that chase into results that accommodate
containment mappings from Q. These subqueries are rewritings of Q using the
views.

To find them, we simply run Q over U ′ to compute all containment mappings
from former to latter. We denote their set withH. For each containment mapping

Provenance-Directed Chase&Backchase 235

h ∈ H, the provenance information of Q’s image under h, π(h(Q), gives the
subquery of U whose chase led to this image (and therefore is a rewriting of Q).
Let us denote this set of rewritings as R = {π(h(Q)) | h ∈ H}. It can be shown
that set R contains all minimal rewritings of Q using the views, but it may also
contain some non-minimal rewritings. These are easily identified, as they contain
as subquery some other rewriting from R. The provenance-directed backchase
purges these rewritings from R and returns the result.

The above processing can be equivalently cast in terms relating to querying
provenance-annotated databases:

The provenance-directed backchase consists in running Q over the canonical
instance of U ′ while keeping track of the minimal why-provenance [BKT01] of the
result. The provenance of the tuple corresponding to Q’s distinguished variables
corresponds straightforwardly to subqueries of U , all of which are returned.

Example 2.3. Recalling Example 2.2, the provenance of tuple (x) in the answer
of Q over UV is (VR∧VS ∧VT)∨ (VRS ∧VT), which is minimal (neither conjunct
contains the other). Each of the conjuncts corresponds to a rewriting of Q: the
first to R2, the second to R1.

2.3 Putting It All Together

We summarize the provenance-aware C&B below.

algorithm C&BI
V

params: set V of CQ views, captured using set V of tgds,
set I of integrity constraints expressed as tgds with terminating chase

input: CQ query Q,
output: all minimal CQ rewritings of Q using views from V under I

//chase phase:
1. compute universal plan U

by standard-chasing Q with V ∪ I and keeping only view atoms

//provenance-directed backchase phase:
2. compute U ′ by provenance-aware-chasing U with V ∪ I
3. run Q over U ′, computing the

minimal why-provenance of the tuple corresponding to Q’s head variables.
4. return the subqueries of U defined by this provenance.

We can show that the directed backchase preserves completeness:

Theorem 2.1. If the set of integrity constraints I consists of tgds only (with
terminating chase), then the provenance-directed C&B is sound and complete.
That is, C&BI

V finds all and only the minimal rewritingsof the input query using
the views V under I.

236 A. Deutsch and R. Hull

3 Conclusion

Chase step execution is in essence query evaluation, and therefore there is a
natural way to extend the standard chase to be provenance-aware. This exention
is particulary useful when the chase is employed within the C&B algorithm for
rewriting queries using views. By using provenance-aware chasing during the
C&B’s backchase phase, we can directly “read” the rewritings from the result
of chasing back the universal plan U , thus saving the effort of running isolated
chases for exponentially many subqueries of U .

Note that instrumenting the standard chase to keep provenance information
introduces ovehead at runtime. We expect this overhead to be negligible, being
more than made up for by the performance savings over the standard backchase.
Definitive confirmation requires experimental evaluation, which we leave for fu-
ture work.

Acknowledgement. This work is dedicated to Peter Buneman. Both the C&B
project and the provenance project starting with [BKT01] originated in Penn’s
Database Lab. At the time, Peter was playing a key leadership role in the lab,
and the first author was a graduate student educating himself on the chase by
reading the chapter in [AHV95] written by the second author.

References

[AHV95] Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-
Wesley (1995)

[BKT01] Buneman, P., Khanna, S., Tan, W.-C.: Why and where: A characterization
of data provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001.
LNCS, vol. 1973, pp. 316–330. Springer, Heidelberg (2000)

[Deu02] Deutsch, A.: XML Query Reformulation Over Mixed and Redundant Stor-
age. PhD thesis, University of Pennsylvania (2002)

[DPT99] Deutsch, A., Popa, L., Tannen, V.: Physical data independence, constraints,
and optimization with universal plans. In: VLDB, pp. 459–470 (1999)

[DPT06] Deutsch, A., Popa, L., Tannen, V.: Query reformulation with constraints.
SIGMOD Record 35(1), 65–73 (2006)

[DT03a] Deutsch, A., Tannen, V.: Mars: A system for publishing xml from mixed
and redundant storage. In: VLDB, pp. 201–212 (2003)

[DT03b] Deutsch, A., Tannen, V.: Reformulation of XML queries and constraints.
In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS,
vol. 2572, pp. 225–238. Springer, Heidelberg (2002)

[GKT07] Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In:
PODS, pp. 31–40 (2007)

[PDST00] Popa, L., Deutsch, A., Sahuguet, A., Tannen, V.: A chase too far? In: ACM
SIGMOD Conference, pp. 273–284 (2000)

Data Quality Problems beyond Consistency

and Deduplication

Wenfei Fan1, Floris Geerts2, Shuai Ma3, Nan Tang4, and Wenyuan Yu1

1 University of Edinburgh, UK
wenfei@inf.ed.ac.uk, wenyuan.yu@ed.ac.uk

2 University of Antwerp, Belgium
floris.geerts@ua.ac.be

3 SKLSDE Lab, Beihang University, China
mashuai@buaa.edu.cn

4 Qatar Computing Research Institute, Qatar
ntang@qf.org.qa

Abstract. Recent work on data quality has primarily focused on data
repairing algorithms for improving data consistency and record matching
methods for data deduplication. This paper accentuates several other
challenging issues that are essential to developing data cleaning systems,
namely, error correction with performance guarantees, unification of data
repairing and record matching, relative information completeness, and
data currency. We provide an overview of recent advances in the study
of these issues, and advocate the need for developing a logical framework
for a uniform treatment of these issues.

1 Introduction

Data quality has been a longstanding line of research for decades [20]. It is esti-
mated that dirty data costs us companies alone 600 billion dollars each year [9].
With this comes the need for data cleaning systems to improve data quality, and
to add accuracy and value to business processes. As an example, data cleaning
tools deliver “an overall business value of more than 600 million GBP” each year
at BT [31]. In light of this, the market for data cleaning systems is growing at
17% annually, substantially outpacing the 7% average of other IT segments [21].

There has been a host of work on data quality. Recent work has primarily
focused on two central issues:

– Recording matching: to identify tuples that refer to the same real-world en-
tity [10], for data deduplication.

– Data repairing: to find a repair (database) that is consistent w.r.t. integrity
constraints and minimally differs from the original data, by detecting and
fixing (semantic) errors, to improve data consistency [1].

Most data cleaning systems on the market support record matching, e.g., ETL
tools (extraction, transformation, loading; see [24] for a survey). Some prototype
systems also provide a data repairing functionality [3, 6, 28, 37].

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 237–249, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

238 W. Fan et al.

There are other data quality issues that are not limited to algorithms for
record matching or data repairing, but are also essential to developing practi-
cal data cleaning systems. Unfortunately, these issues have not received much
attention from the research community. In particular, we highlight the following.

(1) Certain fixes. Prior data repairing methods are typically heuristic. They at-
tempt to fix all the errors in the data, but do not guarantee that the generated
fixes are correct. Worse still, new errors may be introduced when trying to re-
pair the data. In practice, we often want to find certain fixes, i.e., fixes that are
guaranteed to be correct, although we might not be able to fix all the errors
in the data. The need for certain fixes is particularly evident when repairing
critical data, e.g., medical data, in which a seemingly minor error may mean life
or death.

(2) Unification of data repairing and record matching. Data repairing and
record matching are typically treated as independent processes. However,
the two processes often interact with each other: repairing helps us identify
matches, and vice versa. This suggests that we unify repairing and matching by
interleaving their operations.

(3) Information completeness. A data cleaning system should be able to tell
us, given a database D and a query Q, whether D has complete information
to answer Q. If the information is missing from D, the answer to Q in D is
hardly sensible. Information completeness is as important as data consistency
and deduplication. Indeed, pieces of information perceived as being needed for
clinical decisions were missing from 13.6% to 81% of the time [29]. Traditionally
we deal with this issue by adopting either the Closed World Assumption (CWA)
or the Open World Assumption (OWA). However, real-life databases are often
neither entirely closed-world nor entirely open-world. This asks for a revision of
the CWA, OWA and the model of information completeness.

(4) Data currency. The quality of data in a real-life database quickly degener-
ates over time. It is estimated that “2% of records in a customer file become
obsolete in one month” [9]. That is, in a database of 500 000 customer records,
10 000 records may go stale per month, 120 000 records per year, and within two
years about 50% of all the records may be obsolete. As a result, we often find
that multiple values of the same entity reside in a database, which were once
correct, i.e., they were true values of the entity at some time, but most of them
have become obsolete and inaccurate. This highlights the need for studying data
currency, to identify the current values of entities in a database, and to answer
queries with the current values.

This paper aims to bring attention to these issues. We present an overview
of recent work on these four issues (in Sections 2– 5, respectively). We argue
that these issues interact with each other and also interact with data repairing
and record matching; they should be uniformly treated in a logical framework
(Section 6). We refer to the monograph [15] for a more complete treatment of
these issues.

Data Quality Problems beyond Consistency and Deduplication 239

fn ln AC phn type str city zip item when where
t1: Bob Brady 020 079172485 2 null Edi EH7 4AH cd 7pm, 28/08/2010 UK
t2: Max Smith 131 6884593 1 5 Oak St Ldn EH8 9HL cd 06/11/2009 UK
t3: Mark Smith 131 6884563 1 null Edi null dvd 1pm, 06/11/2009 US

(a) Example input tuples t1 and t2

fn ln AC Hphn Mphn str city zip gender
s1: Robert Brady 131 6682845 079172485 51 Elm Row Edi EH7 4AH M
s2: Mark Smith 131 6884563 075568485 5 Oak St Edi EH8 9HL M

(b) Example master relation Dm

Fig. 1. Example input tuples and master relation

2 Certain Fixes Instead of Heuristics Repairs

Data repairing detects and fixes errors by using integrity constraints, such that
data conflicts and errors emerge as violations of the constraints. A variety of
constraints have been studied for data repairing, such as denial constraints [3],
traditional functional and inclusion dependencies [1], and conditional dependen-
cies [4, 6, 16, 37].

Integrity constraints are capable of detecting whether the data is dirty, i.e., the
presence of errors in the data. However, they do not tell us which attributes of
a tuple have errors and how we should correct the errors.

Example 1: Consider an input tuple t1 given in Fig. 1(a). It specifies a trans-
action record (tran) of a credit card: an item purchased at place where and time
when, by a uk customer who is identified by name (fn, ln), phone number (area
code AC and phone phn) and address (street str, city, zip code). Here phn is
either home phone or mobile phone, indicated by type (1 or 2, respectively). It
is known that when AC is 020, city should be London (Ldn), and when AC is
131, city must be Edinburgh (Edi). This semantics of the data can be expressed
as conditional functional dependencies (CFDs [16]). The CFDs detect that tuple
t1 is inconsistent : t1[AC] = 020 but t1[city] = Edi. However, they do not tell us
which of t1[AC] and t1[city] is wrong, and to what value it should be changed.

In light of this, prior data repairing methods are heuristic: they do not guar-
antee to find correct fixes in data repairing. Worse still, they may introduce new
errors when trying to repair the data. Indeed, the correct values of t1[AC, city]
are (131, Edi). Nevertheless, all of the prior methods may opt to change t1[city]
to Ldn; this does not fix the erroneous attribute t1[AC] and worse still, messes
up the correct attribute t[city]. �

In practice it is often necessary to guarantee each fix to be certain, i.e., assured
correct (validated). This can done by using master data and editing rules. Mas-
ter data (a.k.a. reference data) is a single repository of high-quality data that
provides various applications in an enterprise with a synchronized, consistent
view of its core business entities [27]. It is increasingly common for enterprises
to maintain master data. Editing rules tell us which attributes of a tuple are
wrong and what values from master data they should take, provided that some
attributes are validated. As opposed to integrity constraints, they specify up-
dates and have a dynamic semantics.

240 W. Fan et al.

Example 2: A master relation Dm is shown in Fig. 1(b). Each tuple in Dm

specifies a uk credit card holder (card) in terms of the name, home phone (Hphn),
mobile phone (Mphn), address and gender. Consider the following editing rules:

– eR1: for an input tuple t, if there exists a master tuple s in Dm such that
s[zip] = t[zip], then t should be updated by t[AC, str, city] := s[AC, str, city],
provided that t[zip] is validated (e.g., assured by the users).

– eR2: if t[type] = 2 (indicating mobile phone) and if there exists a master tuple
s with s[phn] = t[Mphn], then t[FN, LN] := s[FN, LN], as long as t[phn, type]
are already validated.

When t1[zip] is assured correct, eR1 corrects attribute t1[AC] and enriches t1[str]
by taking values from master data s1[AC, str]. Note that when the editing rule
and t1[zip] are validated, the fix to t1[AC] is certainly correct. Similarly, when
t1[Mphn, type] are validated, eR2 standardizes t1[FN] by changing Bob to Robert.

�

Certain Fixes. More specifically, we define certain fixes as follows (see [19] for
details). Consider an input tuple t and a set Z of attributes such that t[Z] is
validated. We use t →(ϕ,tm,Z) t

′ to denote that tuple t′ is obtained from t by
means of updates specified in an editing rule ϕ with a master tuple tm. We
denote by ext(Z,ϕ, tm) the validated region of t′, which includes attributes in Z
and the attributes updated by ϕ with tm.

Given a set Θ of editing rules and master data Dm, we say that a tuple t′ is
a fix of t by (Θ,Dm), denoted by t→∗

(Θ,Dm,Z) t
′, if there exists a finite sequence

t0 = t, t1, . . ., tk = t′ of tuples, and for each i ∈ [1, k], there exists an editing
rule ϕi ∈ Θ and a master tuple tmi ∈ Dm such that (a) ti−1 →(ϕi,tmi

,Zi−1) ti,
where Zi = ext(Zi−1, ϕi, tmi−1); (b) ti[Z] = t[Z]; and (c) for all ϕ ∈ Θ and
tm ∈ Dm, t′ →(ϕ,tm,Zm) t

′. Intuitively, (a) each step of the correcting process
is justified; (b) t[Z] is validated and hence, remains unchanged; and (c) t′ is
a fixpoint and cannot be further updated, i.e., the changes incurred to t by
(Θ,Dm) are “maximum”.

We say that t has a certain fix by (Θ,Dm) w.r.t. Z if there exists a unique t′

such that t→∗
(Θ,Dm,Z) t

′.
Given a set Θ of editing rules and master data Dm, one can monitor input

tuples and find their certain fixes. For each tuple t, the user may assure that a
(possible empty) set t[Z] of attributes is correct. There is an algorithm that, given
Z, iteratively employs Θ and Dm to find a certain fix for as many attributes in t
as possible. The correctness of the fix is guaranteed by master data and editing
rules. As opposed to data repairing, we do not stress fixing all the attributes
of t by requiring the users to validate a large region t[Z]. Nevertheless, when
the users opt to find a certain fix for the entire t, there is an algorithm that,
given Z, identifies a minimal set Z ′ of attributes such that when t[Z ∪ Z ′] is
validated, a certain fix for t is warranted [19]. One can recommend t[Z ′] to the
users for validating, and the users may respond with more validated attributes
(not necessarily t[Z ′]). From these an interactive process readily follows that
proceeds until all the attributes of t are validated.

Data Quality Problems beyond Consistency and Deduplication 241

Fundamental Problems. There are several important problems associated
with certain fixes. Consider tuples of a relation schema R. One problem is to
determine, given a set Θ of editing rules, master data Dm, and a set Z of
attributes of schema R, whether for all tuples t of R, if t[Z] is validated then t
has a certain fix by (Θ,Dm). In other words, it is to determine whether Θ and
Dm have conflicts. Another problem is to find, given Θ and Dm, a minimal set Z
of attributes such that for all tuples t of schema R, if t[Z] is validated then all the
attributes of t can be validated by (Θ,Dm). Intuitively, it is to find a minimal
region for the users to validate. It is shown that these are intractable [19], but
efficient heuristic algorithms have been developed for these problems.

3 Interaction between Repairing and Record Matching

Current data cleaning systems typically treat data repairing and record matching
as separate processes, executed consecutively one after another. In practice, the
two processes often interact with each other, as illustrated below.

Example 3: Consider the transaction records of Fig. 1(a) and master data
for credit card holders given in Fig. 1(b), referred to as tran and card tuples,
respectively. Following [11,16], we use CFDs [16] ϕ1–ϕ2 to specify the consistency
of the tran data, and a matching dependency (MD) [11] ψ as a rule for matching
tran records and card tuples:

ϕ1: tran([AC = 131] → [city = Edi]),
ϕ2: tran([type = 1, city, phn] → [str,AC, zip]),
ψ: tran[LN, city, str, zip] = card[LN, city, str, zip] ∧ tran[FN] ≈ card[FN]

∧ tran[type] = 1 → tran[FN, phn] � card[FN,Hphn]

Here (1) CFD ϕ1 asserts that if the area code is 131, the city must be Edi; (2)
CFD ϕ2 states that when type = 1 (i.e., phn is mobile phone), city and home
phone uniquely determine street, area code and zip code; and (3) MD ψ assures
that for any tran record t and any card tuple, if they have the same last name
and address, and if their first names are similar, then their home phone and FN
attributes can be identified (when t[type] = 1).

Consider tuples t2 and t3 in Fig. 1(a). One suspects that the two refer to the
same person. If so, then these records show that the same person made purchases
in the UK and in the US at about the same time (taking into account the 5-hour
time difference between the two countries), indicating that a fraud has likely
been committed.

Observe that t2 and t3 are quite different in their FN, city, str, zip and phn
attributes. No rule allows us to identify the two directly. Nonetheless, they can
be matched by interleaved matching and repairing operations:

(a) get a repair t′2 of t2 such that t′2[city] =Edi by applying CFD ϕ1 to t2;

(b) match t′2 with master tuple s2, to which MD ψ can be applied; as a result of
the matching operation, get a repair t′′2 of t2 by correcting t′′2 [phn] with the
master data s2[Hphn] = 6884563;

242 W. Fan et al.

(c) find a repair t′3 of t3 by applying CFD ϕ2 to t
′′
2 and t3: since t

′′
2 and t3 agree on

their city and phn attributes and t′′2 [type] = t3[type] = 1, ϕ2 can be applied.
This allows us to enrich t3[str] and fix t3[zip] by taking corresponding values
from t′′2 , which have been confirmed correct with the master data in step (b).

Note that t′′2 and t′3 agree on every attribute in connection with personal infor-
mation. It is evident that they indeed refer to the same person; hence a fraud.
Observe that not only repairing helps matching (e.g., from step (a) to (b)), but
matching also helps us repair the data (e.g., step (c) is doable only after the
matching in (b)). �

Unification. The example tells us the following. (1) When taken together,
record matching and data repairing perform much better than being treated
as separate processes. (2) To make practical use of their interaction, matching
and repairing operations should be interleaved, rather than executing the two
processes one after another. Unifying matching and repairing, we state the data
cleaning problem as follows.

Given a database D, master data Dm, integrity constraints Σ and matching
rules Γ , the data cleaning problem is to find a repair Dr of D such that (a) Dr

is consistent (i.e., satisfying Σ), (b) no more tuples in Dr can be matched to
master tuples in Dm by matching rules of Γ , and (c) Dr minimally differs from
the original data D.

The interaction between repairing and matching has been observed in,
e.g., [8, 18, 36]. Here, [8, 36] investigate record matching in the presence of er-
ror data, and suggest to integrate matching and data merge/fusion. In [18], a
rule-based framework is proposed in which CFDs and MDs are both treated as
cleaning rules. These rules tell us how to fix errors by updating the data, and
allow us to interleave repairing and matching operations. Based on these rules,
algorithms have been developed to clean data, in the presence or in the absence
of master data. It has been shown that by unifying repairing and matching, these
algorithms substantially improve the accuracy of repairing and matching taken
as separate processes [18].

Fundamental Problems. When integrity constraints (for data repairing) and
matching rules (for record matching) are taken together, the classical consistency
and implication problems for constraints need to be revisited. These issues are
investigated for CFDs and MDs in [18], which shows that these problems remain
to be NP-complete and coNP-complete, respectively, the same as their counter-
parts for CFDs alone.

There are two fundamental questions about rule-based data cleaning. The
termination problem is to decide whether a cleaning process stops, i.e., it reaches
a fixpoint, such that no more rules can be applied. The determinism problem asks
whether all terminating cleaning processes end up with the same repair, i.e., all
of them reach a unique fixpoint. When CFDs and MDs are treated as cleaning
rules, both problems are PSPACE-complete [18].

Data Quality Problems beyond Consistency and Deduplication 243

4 Relative Information Completeness

Given a database D and a query Q, we want to know whether a complete answer
to Q can be found in D. Traditional work on this issue adopts either the CWA or
the OWA. The CWA assumes that a database contains all the tuples representing
real-world entities, but the values of some attributes in those tuples are possibly
missing. The OWA assumes that tuples may also be missing [35]. As remarked
earlier, few real-life databases are closed-world. Under the OWA, one can often
expect few sensible queries to find complete answers.

Databases in real world are often neither entirely closed-world nor entirely
open-world. This is particularly evident in the presence of master data. Master
data of an enterprise contains complete information about the enterprise in cer-
tain aspects, e.g., employees and projects, and can be regarded as a closed-world
database. Meanwhile a number of other databases may be in use in the enter-
prise. On one hand, these databases may not be complete, e.g., some sale trans-
actions may be missing. On the other hand, certain parts of the databases are
constrained by the master data, e.g., employees. In other words, these databases
are partially closed.

Example 4: Consider a company that maintains DCust(cid, name, AC, phn),
a master data relation consisting of all its domestic customers, in which a
tuple (c, n, a, p) specifies the id c, name n, area code a and phone num-
ber p of a customer. In addition, the company also has databases (a)
Cust(cid, name,CC,AC, phn) of all customers of the company, domestic (with
country code CC = 01) or international; and (b) Supt(eid, dept, cid), indicat-
ing that employee eid in dept supports customer cid. Neither Cust nor Supt is
part of the master data.

Consider queryQ1 posed on Supt to find all the customers in nj with AC = 908
who are supported by the employee with eid = e0. The query may not get a
complete answer since some tuples may be missing from Supt. However, if Q1

returns all nj customers with AC = 908 found in master data DCust, then we
can safely conclude that Supt is complete for Q1 and hence, there is no need to
add more tuples to Supt to answer Q1.

Now consider a query Q2 to find all customers supported by e0. Note that
the international customers of Cust are not constrained by master data. As a
result, we are not able to tell whether any Supt tuples in connection with e0
are missing. Worse still, we do not even know what tuples should be added to
Supt to make the answer to Q2 in Supt complete. Nevertheless, if we know that
(eid → dept, cid) is a functional dependency (FD) on Supt, then we can also
conclude that the answer to Q2 in Supt is complete as long as it is nonempty. �

Relative Information Completeness. A practical data cleaning system
should be able to decide whether a database has complete information to answer
a query. To this end, as shown by the example, we need a model to specify par-
tially closed databases. There has been a host of work on incomplete information,
notably representation systems (e.g., c-tables, v-tables [23, 25]) and models for

244 W. Fan et al.

missing tuples [22,26,30] (see [35] for a survey). However, the prior work neither
considers master data nor studies the question mentioned above.

Given a database D and master data Dm, we specify a set V of containment
constraints [13]. A containment constraint is of the form q(D) ⊆ p(Dm), where
q is a query posed on D, and p is a simple projection query on Dm. Intuitively,
the part of D that is constrained by V is bounded by Dm, while the rest is open-
world. We refer to a database D that satisfies V as a partially closed database
w.r.t. (Dm, V). A database D′ is a partially closed extension of D if D ⊆ D′ and
D is partially closed w.r.t. (Dm, V) itself.

A partially closed database D is said to be complete for a query Q rela-
tive to (Dm, V) if for all partially closed extensions D′ of D w.r.t. (Dm, V),
Q(D′) = Q(D). That is, there is no need for adding new tuples to D, since they
either violate the containment constraints, or do not change the answer to Q. In
other words, D already contains complete information necessary for answering
Q (see [12, 13] for details).

Fundamental Problems. One problem is to determine, given a query Q, mas-
ter data Dm, a set V of containment constraints, and a partially closed database
D w.r.t. (Dm, V), whether D is complete for Q relatively to (Dm, V). Another
problem is to decide, given Q, Dm and V , whether there exists a partially closed
database D that is complete for Q relatively to (Dm, V). The analyses of these
problems help us identify what data should be collected in order to answer a
query. These problems are investigated in [12, 13]. As indicated by Example 4,
the complexity of these problems varies depending on different queries and con-
tainment constraints [12, 13].

5 Data Currency

A data cleaning system should support data currency analysis: among multiple
(possibly obsolete) values of an entity, it is to identify the latest value of the
entity, and to answer queries using the latest values only. The question of data
currency would be trivial if all data values carried valid timestamps. In practice,
however, timestamps are often unavailable or imprecise [38]. Add to this the
complication that data values are often copied or imported from other sources
[2, 7], which may not support a uniform scheme of timestamps.

Not all is lost. It is often possible to deduce currency orders from the semantics
of the data. Moreover, data copied from other sources inherit currency orders in
those sources. Taken together, these often allow us to deduce sufficient current
values of the data to answer certain queries, as illustrated below.

Example 5: Consider two relations of a company shown in Fig. 2. Each Emp
tuple is an employee record with name, address (country, zip code, street), salary
and marital status. A Dept tuple specifies the name, manager and budget of a
department. Records in these relations may be stale, and do not carry times-
tamps. Here tuples t1, t2 and t3 refer to the same employee Mary, while t4 does
not refer to Mary. Consider the following queries posed on these relations.

(1) Query Q1 is to find Mary’s current salary. No timestamps are available for

Data Quality Problems beyond Consistency and Deduplication 245

FN LN country zip street salary status
t1: Mary Smith UK OX1 3QD 2 Small St 50k single
t2: Mary Dupont UK EB21 5FX 10 Elm Ave 50k married
t3: Mary Dupont UK EH9 1SU 6 Main St 80k married
t4: Bob Luth UK DB9 FJ8 8 Cowan St 80k married

(a) Relation Emp

dname mgrFN mgrLN mgrAddr budget
s1: R&D Mary Smith 2 Small St, OX1 3QD, UK 6500k
s2: R&D Mary Smith 2 Small St, OX1 3QD, UK 7000k
s3: R&D Mary Dupont 6 Main St,EH9 1SU, UK 6000k
s4: R&D Ed Luth 8 Cowan St, DB9 FJ8, UK 6000k

(b) Relation Dept

Fig. 2. A company database

us to tell which of 50k or 80k is more current. However, we may know that the
salary of each employee in the company does not decrease, as commonly found
in the real world. This yields currency orders t1 ≺salary t3 and t2 ≺salary t3, i.e.,
t3 is more current than t1 and t2 in attribute salary; in other words, t3[salary] is
more current than both t1[salary] and t2[salary]. Hence the answer to Q1 is 80k.

(2) Query Q2 is to find Mary’s current last name. We can no longer answer
Q2 as above. Nonetheless, we may know the following: (a) marital status can
only change from single to married and from married to divorced; but not from
married to single; and (b) Emp tuples with the most current marital status also
contain the most current last name. Therefore, t1 ≺LN t2 and t1 ≺LN t3, and the
answer to Q2 is Dupont.

(3) Query Q3 is to find Mary’s current address. We may know that Emp tuples
with the most current salary contain the most current address. From this and
(1) above, we know that the answer to Q3 is “6 Main St”.

(4) Finally, query Q4 is to find the current budget of department R&D. Again
no timestamps are available for us to evaluate the query. However, we may know
the following: (a) Dept tuples s1 and s2 have copied their mgrAddr values from
t1[street, zip, county] in Emp; similarly, s3 has copied from t3, and s4 from t4; and
(b) in Dept, tuples with the most current address also have the most current
budget. Taken together, these tell us that s1 ≺budget s3 and s2 ≺budget s3. Observe
that we do not know which budget in s3 or s4 is more current. Nevertheless, in
either case the most current budget is 6000k, and hence it is the answer to Q4.

�

Modeling Data Currency. To study data currency we need to specify currency
orders on data values in the absence of timestamps but in the presence of copy
relationships. Such a model is recently proposed in [17].

(1) To model partially available currency information in a databaseD, it assumes
a currency order ≺A for each attribute A, such that for tuples t1 and t2 in D
that represent the same real-world entity, t1 ≺A t2 indicates that t2 is more
up-to-date than t1 in the A attribute value.

246 W. Fan et al.

(2) It uses denial constraints [1] to express currency relationships derived from
the semantics of the data. For instance, all the currency relations we have seen
in Example 5 can be expressed as denial constraints.

(3) A copy function from a data source to another is defined in terms of a partial
mapping that preserves the currency order in the source. Based on these, one can
define consistent completions Dc of D, which extend ≺A in D to a total order
on all tuples pertaining to the same entity, such that Dc satisfies the denial
constraints and constraints imposed by the copy functions.

One can construct from Dc the current tuple for each entity w.r.t. ≺A, which
contains the entity’s most current A value for each attribute A. This yields the
current instance of Dc consisting of only the current tuples of the entities in D,
from which currency orders can be removed. In light of this, one can compute
certain current answers of a query Q in D, i.e., tuples that are the answers to
Q in all consistent completions Dc of D (see [17] for details).

The study of data currency is related to temporal databases, which assume the
availability of timestamps (see [32] for a survey). Also related is the line of work
on querying indefinite data (see, e.g., [34]), which considers data that is linearly
ordered but only provides a partial order, but does not evaluate queries using
current instances. Algorithms for discovering copy dependencies and functions
are developed in [2, 7].

Fundamental Problems. Given a database D on which partial currency or-
ders, denial constraints and copy functions ρ are defined, we want to determine
(1) whether a value is more up-to-date than another, and (2) whether a tuple
is a certain current answer to a query. In addition, about copy functions ρ, we
want to determine (3) whether ρ is currency preserving for a query Q, i.e., no
matter how we extend ρ by copying more values of those entities in D, the cer-
tain current answers to Q in D remain unchanged; and (4) whether ρ can be
extended to be currency preserving for Q. These problems have been studied
in [17] for different queries.

6 Open Research Issues

It is evident that functionalities for handling these issues should logically become
part of a data cleaning system. We envisage that a data cleaning system should
be able not only to detect data inconsistencies and duplicates, but it should
also be able to compute certain fixes that are guaranteed correct. Moreover, it
should also be able to improve data currency and information completeness, be-
yond data consistency and deduplication. Indeed, we naturally want data qual-
ity management to tell us whether the answers to our queries in a database
are trustable or not. This requires that we take data consistency, currency and
information completeness together, as illustrated in the example below.

Example 6: Consider the relation Emp shown in Fig. 2, and a master relation
EmpHistory consisting of all the historical information of its employees, as shown
in Fig. 3. Each EmpHistory tuple is an employee record with name, address

Data Quality Problems beyond Consistency and Deduplication 247

FN LN country zip street phone grade salary status
r1: Mary Smith UK OX1 3QD 2 Small St 66757574 10 50k single
r2: Mary Dupont UK EB21 5FX 10 Elm Ave 66757574 10 50k married
r3: Mary Dupont UK EH9 1SU 6 Main St 66757574 11 80k married
r4: Bob Luth UK DB9 FJ8 8 Cowan St 46357642 11 80k married
r5: Bob Luth UK DB9 FJ8 8 Cowan St 46357642 12 100k married

Fig. 3. Relation EmpHistory

(country, zip code, street), phone, grade, salary and marital status. Two constant
CFDs are posed on relations Emp and EmpHistory: ϕ1 : Emp([country = UK, zip =
“EH9 1SU”]→ [street = “6 Main St”]), and ϕ2 : Emp([country =UK, zip = “DB9
FJ8”] → [street = “8 Crown St”]), where ϕ1 states that in the UK, if one’s zip
code is “EH9 1SU”, its street should be “6 Main St”; similarly, ϕ2 states that
in the UK, if one’s zip code is “DB9 FJ8”, its street should be “8 Crown St”.

(1) Query Q1 is to find Mary’s current salary. Recall from Example 5(1) that
Mary’s most current salary is derived to be 80k, drawn from tuple t3 in relation
Emp. Observe the following: (a) t3 is consistent as it satisfies the CFDs. (b) Mary’s
salary information gathered in relation Emp is complete w.r.t. EmpHistory, since
it contains all Mary’s employment records in EmpHistory table. Hence we can
trust that the answer to Q1 is 80k, since the data is consistent and the informa-
tion about Mary is complete.

(2) Query Q2 is to find Bob’s current salary. The only record about Bob in Emp
is t4. Note that t4 is consistent since it satisfies the CFDs. The answer to Q2 is
55K in Emp. However, the information about Bob is not complete: there are more
records about Bob in EmpHistory, with higher salaries. In other words, relation
Emp alone is not sufficient to answer Q2 correctly. Hence we cannot trust 55K
to be the answer to Q2.

This example demonstrates that to determine whether our queries can be
answered correctly, all of data consistency, data currency and information com-
pleteness have to be taken into account. �

No matter how important, however, we are not aware of any data cleaning
system that supports functionalities to handle all these central data quality
issues. The study of these issues is still in its infancy, and it has raised as many
questions as it has answered. Below we highlight some of the open issues.

Certain fixes. One question is how to find certain fixes in the absence of master
data. Another question concerns methods for discovering editing rules. Indeed,
it is unrealistic to rely solely on human experts to design editing rules via an
expensive and long manual process. It is likely, however, that editing rules can
be deduced from master data and constraints such as CFDs and MDs, for which
discovery algorithms are already in place [5, 33].

Relative information completeness and data currency. While the fundamental
problems for these issues have been studied, efficient algorithms have yet to
be developed and incorporated into data cleaning systems.

248 W. Fan et al.

A uniform logical framework. To answer a query using a database D, one natu-
rally wants D to be both complete and consistent for Q, and moreover, does not
contain duplicates and stale data. In addition, there are intimate connections
between these issues. (1) Improving data completeness provides us with more
information to repair and match the data, and conversely, data repairing and
record matching help us enrich the data as shown in Example 2. (2) Identifying
the current value of an entity helps resolve data inconsistencies and duplication,
and repairing and matching help us remove obsolete data. (3) Data currency is
essentially to deal with missing temporal information, and hence can naturally
capitalize on techniques for relative information completeness such as contain-
ment constraints and master data. All these highlight the need for developing a
uniform framework to handle certain fixes, data repairing, record matching, rela-
tive information completeness and data currency. The framework should support
the interaction of these processes, to improve the accuracy of data cleaning.

It is both natural and feasible to develop such a framework based on con-
straints and master data (see e.g., [14] for a initial attempt in this direction). In-
deed, (1) constraints are typically used to capture inconsistencies (e.g., [1,4,16]).
(2) Record matching rules [11] and editing rules [19] can be expressed as dynamic
constraints. (3) It is shown [13] that constraints for data consistency, such as de-
nial constraints [1] and conditional dependencies [4, 16], are expressible as sim-
ple containment constraints studied for relative information completeness. As
a result, we can assure that only consistent and partially closed databases are
considered by enforcing containment constraints. (4) It suffices to express data
currency commonly found in practice as denial constraints [17], the same class of
constraints for data consistency. (5) As remarked earlier, master data has proved
effective in dealing with each and every of these issues.

References

1. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. TPLP 3(4-5), 393–424 (2003)

2. Berti-Equille, L., Sarma, A.D., Dong, X., Marian, A., Srivastava, D.: Sailing the
information ocean with awareness of currents: Discovery and application of source
dependence. In: CIDR (2009)

3. Bohannon, P., Fan, W., Flaster, M., Rastogi, R.: A cost-based model and effective
heuristic for repairing constraints by value modification. In: SIGMOD (2005)

4. Bravo, L., Fan, W., Ma, S.: Extending dependencies with conditions. In: VLDB
(2007)

5. Chiang, F., Miller, R.: Discovering data quality rules. PVLDB 1(1) (2008)
6. Cong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data quality: Consistency

and accuracy. In: VLDB (2007)
7. Dong, X., Berti-Equille, L., Srivastava, D.: Truth discovery and copying detection

in a dynamic world. In: VLDB (2009)
8. Dong, X., Halevy, A., Madhavan, J.: Reference reconciliation in complex informa-

tion spaces. In: SIGMOD (2005)
9. Eckerson, W.W.: Data quality and the bottom line: Achieving business success

through a commitment to high quality data. The Data Warehousing Institute
(2002)

Data Quality Problems beyond Consistency and Deduplication 249

10. Elmagarmid, A., Ipeirotis, P., Verykios, V.: Duplicate record detection: A survey.
TKDE 19(1), 1–16 (2007)

11. Fan, W., Gao, H., Jia, X., Li, J., Ma, S.: Dynamic constraints for record matching.
VLDB J. 20(4), 495–520 (2011)

12. Fan, W., Geerts, F.: Capturing missing tuples and missing values. In: PODS (2010)
13. Fan, W., Geerts, F.: Relative information completeness. TODS 35(4) (2010)
14. Fan, W., Geerts, F.: Uniform dependency language for improving data quality.

IEEE Data Eng. Bull. 34(3), 34–42 (2011)
15. Fan, W., Geerts, F.: Foundations of Data Quality Management. Synthesis Lectures

on Data Management. Morgan & Claypool Publishers (2012)
16. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional depen-

dencies for capturing data inconsistencies. TODS 33(2) (2008)
17. Fan, W., Geerts, F., Wijsen, J.: Determining the currency of data. In: PODS (2011)
18. Fan, W., Li, J., Ma, S., Tang, N., Yu, W.: Interaction between record matching

and data repairing. In: SIGMOD (2011)
19. Fan, W., Li, J., Ma, S., Tang, N., Yu, W.: Towards certain fixes with editing rules

and master data. VLDB J. 21(2), 213–238 (2012)
20. Fellegi, I., Holt, D.: A systematic approach to automatic edit and imputation. J.

American Statistical Association 71(353), 17–35 (1976)
21. Gartner. Forecast: Data quality tools, worldwide, 2006-2011. Technical report,

Gartner (2007)
22. Gottlob, G., Zicari, R.: Closed world databases opened through null values. In:

VLDB (1988)
23. Grahne, G.: The Problem of Incomplete Information in Relational Databases.

Springer (1991)
24. Herzog, T.N., Scheuren, F.J., Winkler, W.E.: Data Quality and Record Linkage

Techniques. Springer (2009)
25. Imieliński, T., Lipski Jr., W.: Incomplete information in relational databases.

JACM 31(4) (1984)
26. Levy, A.Y.: Obtaining complete answers from incomplete databases. In: VLDB

(1996)
27. Loshin, D.: Master Data Management. Knowledge Integrity, Inc. (2009)
28. Mayfield, C., Neville, J., Prabhakar, S.: ERACER: a database approach for statis-

tical inference and data cleaning. In: SIGMOD (2010)
29. Miller, D.W., et al.: Missing prenatal records at a birth center: A communication

problem quantified. In: AMIA Annu. Symp. Proc. (2005)
30. Motro, A.: Integrity = validity + completeness. TODS 14(4) (1989)
31. Otto, B., Weber, K.: From health checks to the seven sisters: The data quality

journey at BT (September 2009) BT TR-BE HSG/CC CDQ/8
32. Snodgrass, R.T.: Developing Time-Oriented Database Applications in SQL. Mor-

gan Kaufmann (1999)
33. Song, S., Chen, L.: Discovering matching dependencies. In: CIKM (2009)
34. van der Meyden, R.: The complexity of querying indefinite data about linearly

ordered domains. JCSS 54(1) (1997)
35. van der Meyden, R.: Logical approaches to incomplete information: A survey. In:

Chomicki, J., Saake, G. (eds.) Logics for Databases and Information Systems.
Kluwer (1998)

36. Weis, M., Naumann, F.: Dogmatix tracks down duplicates in XML. In: SIGMOD
(2005)

37. Yakout, M., Elmagarmid, A.K., Neville, J., Ouzzani, M., Ilyas, I.F.: Guided data
repair. PVLDB 4(1) (2011)

38. Zhang, H., Diao, Y., Immerman, N.: Recognizing patterns in streams with impre-
cise timestamps. In: VLDB (2010)

Hitting Buneman Circles

Michael Paul Fourman

School of Informatics, The University of Edinburgh
Michael.Fourman@ed.ac.uk

Abstract. We discuss Peter Buneman’s suggestion that a fibre connec-
tion to the internet — a hub — should be available within every circle
enclosing a population of at least 2,000 people (a b-circle). This poses
the problem of finding a small set, H , of hubs, such that every b-circle
contains a hub. We show that a greedy algorithm does not lead to an
optimal set of hubs. Instead it models market forces, which are naturally
greedy. An unfettered market will exploit the most profitable communi-
ties and, just like a greedy algorithm, leave gaps that it is uneconomic to
fill. We describe a geometric heuristic for the discovery of efficient hub
placements satisfying a purely combinatorial analogue of Buneman’s cri-
terion, and apply it to illustrate the inherent inefficiency of gap-funding
in a market-led broadband policy.

Keywords: hitting set, approximation algorithm, facilities location,
broadband, market forces, gap funding.

1 Introduction

In Scotland, as elsewhere, many communi-
ties are too far from an optical connection
to the internet to allow them to benefit from
the low-latency, high-bandwidth, symmet-
ric internet connections that will soon be
routine in metropolitan areas.

This work arose from the Royal Society
of Edinburgh’s Digital Scotland inquiry [8].
It was easy for the inquiry to decide that
Scotland should have enough “fibred points
of presence” (FPOPs, or hubs) to provide
every community in the country with ade-
quate backhaul.

Quantifying where these should be and
where the fibre should be laid, without em-
barking on detailed infrastructure planning,
was more difficult. Our diagram shows the
areas served by a collection of hubs satisfy-
ing a simple, but ingenious criterion, sug-
gested by Peter Buneman. Such provision

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 250–258, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Hitting Buneman Circles 251

would allow every substantial community in Scotland to access next generation
broadband.

The population of Scotland, and other countries, is not randomly distributed.
Most people live in relatively dense clusters, many of which are widely separated.
Because communities are hard to identify objectively, it is difficult to specify an
equitable policy for the provision of a fibre backhaul connection — a hub — to
every community.
Buneman’s criterion,

“Draw any circle (I mean any) on a map of Scotland. If that circle contains
more than 2000 people, then the circle must also contain a fibre point-of-
presence.”1

was adopted as the key recommendation of the Digital Scotland report, intended
to ensure that every community will have access to Scotland’s digital infrastruc-
ture. The rationale for this recommendation is that the aggregate bandwidth
demand from a population of this size will, at peak times, exceed the capacity
of a copper or wireless backhaul connection2.

The Digital Scotland report assumes that a population of 2,000 corresponds to
approximately 800 premises, and that a copper or wireless backhaul connection
is limited to ∼ 512 Mb/s. With these assumptions, the available bandwidth per
subscriber is at most ∼ 16 Mb/s, at a contention ratio3 of 25 : 1.

To a first approximation, the bandwidth available for a communication chan-
nel is proportional to the frequency of the carrier signal. Since the electromag-
netic frequencies used for optical signals are around 105 times those used for
electrical or wireless communications, fibre can carry correspondingly higher
bandwidths. Thus, a single fibre could provide the entire population of the UK
with more bandwidth per caput than a wireless or copper channel can deliver to
a community of 2,000.

Once a community has access to backhaul there are many technologies avail-
able for the creation of a local access network — striking examples are given by
the Tegola network developed by Peter and colleagues [1], and other projects it
has inspired.

The Buneman criterion provides a novel approach to facilities location, in
that it analyses the infrastructure requirements for distribution of a utility good,
rather than the more usual focus on placement for profit.

The methods introduced here should also have application in areas other
than backhaul provision. For example, to find solutions to the wireless base-
station placement problem that, unlike much earlier work (see e.g. [5]), impose
limits on the number of clients served by each base station. Such constraints are
increasingly relevant as contention for spectrum increases.

1 Personal communication, 2010.
2 A backhaul connection is the essential link from a local access network to the internet.
3 Backhaul is typically provisioned on the assumption that most subscribers will be
idle most of the time. Contention is the ratio of the total number of subscribers to
the number that can be served concurrently, at the advertised bandwidth.

252 M.P. Fourman

2 Discussion

Buneman circles (b-circles) are those circles on the map of Scotland that include
a settled population of at least 2,000 individuals. Every b-circle should include a
hub. The beauty of Buneman’s criterion is that any collection of 2,000 or more
individuals (we call such a collection substantial) may be viewed as a community,
and thus every substantial community is guaranteed at least one fibre hub within
any circumscribing circle. Each individual will belong to many such communities.

We now set out a mathematical context for discussion of this criterion. To
begin, let S (Scotland) be a bounded subset of the plane, R2.

Definition 1. A population distribution is a finite measure, π on S.
We identify two special cases:

A population is the counting measure on a finite set of points P ⊆ S.
A census is a discrete measure, given by a finite set of census points, A ⊆ S,

together with a count π(a) > 0 of the population ascribed to each a ∈ A.

It is often helpful to think of a population as a sample from the probability dis-
tribution associated with a more abstract population distribution, and a census
as the result of aggregating a population to a (relatively) small number of census
points. Throughout this paper, we assume a given population distribution, π,
and speak of π(C) as the population of C ⊆ S.

The data used for the Digital Scotland analysis of backhaul requirements is
a census, derived from postcode data by multiplying the number of residential
addresses for each postcode by a factor of 2.5 inhabitants per household.

Definition 2. A Buneman circle is a disc, D, with population π(D) � k (here-
inafter, a b-circle).4

We write Bx for the minimal-radius b-circle centred at x, and β(x) for the
radius of this circle — the b-radius of x.

Buneman computed the b-circle Bp for every one of the 196,273 postcodes, p,
in Scotland. The calculated b-radii range from 84 metres (AB25 1FE, a high-rise
in Aberdeen) to 55 kilometres (ZE2 9JU, the Fair Isle). Buneman’s computation
places the data in a k-d tree, and then uses standard k-nearest neighbour queries
and binary search to determine β(x) for any point x. For UK postcode data, k-d
trees provide adequate performance on standard hardware. See [4] for a recent
review of other methods, suitable for massive data sets.

Recall that any set which includes least one element in every set in a collection
X is called a hitting set for X . The Digital Scotland recommendation stipulates
that the hubs should form a hitting set for the collection of all b-circles. Dually,
for each potential hub location, h we can consider its client set Ch = {x | h ∈ Bx}.
Clearly,

H is a hitting set for {Bx | x ∈ R2} iff {Ch | h ∈ H} covers R2.

4 For the purposes of this note, k can be considered to be a fixed integer, substantially
smaller than the total population, π(S).

Hitting Buneman Circles 253

3 Properties and Anomalies

Lemma 1. β is uniformly continuous. Ch is star-convex.

Proof. Given two points, x, y, we claim that |β(x) − β(y)| � |x − y|. It suffices
to show that β(y) � β(x) − |x− y|.

The result then follows by symmetry.

x

y
s

β(x)
|x-y|

Observe that ∀r, z. π(Dr,z) < k iff r < β(z) (where
Dr,z is the disc of radius r centred at z).

For y ∈ Bx, suppose s < β(x)− |x− y|, then,
s+ |x− y| < β(x), and

Ds,y ⊆ Ds+|x−y|,x

so π(Ds,y) � π(Ds+|x−y|,x) < k.

Thus, s < β(y).

The same construction also shows that Ch is star-convex. If x ∈ Ch (equivalently, if
h ∈ Bx) and y lies on the radius (of length β(x)) from x through h, then |y−h| � β(y),
so y ∈ Ch.
�

Buneman’s intention [personal communication] was universal provision: that a “cir-
cle drawn on the map of Scotland” really should include any circle — “even one centred
in Newfoundland” — on an infinitely extended map. We call this the strong Buneman
criterion.

Interactions between the geometry of circles and a discrete population can be sur-
prising. One consequence of the strong criterion is that there must be hubs near the
boundaries of S . For any ε > 0 and any half-plane H with π(H) � k we must place
a hub within ε of H — since b-circles with arbitrarily distant centres must be hit. In
specially coincidental cases, Bx may have an arbitrarily large population — for exam-
ple, if P contains a large number of individuals all on a circle, such as the shores of
a circular loch. In general, a population will be in general position — a sample from
a distribution almost certainly will — but a census is certainly not. If we take a com-
munity, C ⊆ S , even one of the form Bx, then the circumcircle of the population of C
may contain many more individuals than does C.

Clearly, the Buneman criterion is satisfied if every disc Bx contains a hub. However,
this set of discs is infinite, and so is the set of possible hub locations.

We have not attempted to produce hub sets satisying the strong criterion. Instead,
we weaken the condition, by interpreting a “circle drawn on the map of Scotland” to
mean a disc Dr,x whose centre, x ∈ supp(π), belongs to the support of π — we call this
the egocentric interpretation. For a discrete population, or census, this simply means
that x ranges over the sample points, so we now have only finitely many (O(n)) circles
to hit.

This replaces universal provision with egocentric guarantees. Wherever you live in
Scotland, your nearest hub should be among your 800 nearest neighbours. It is also
natural to strengthen the criterion by requiring that hubs should be built only in
habitable regions — so we look for a hitting set that is also contained in supp(π).

A more appealing, but less tractable, community-focussed guarantee would stipulate
that for every substantial community C ⊆ S the circumcircle of C should contain a
hub. A substantial community distributed around the shores of a circular loch would
then be guaranteed a loch-side hub — or a floating one — whereas the egocentric
criterion might only place hubs well inland.

254 M.P. Fourman

Nevertheless, in the interest of tractability, and because we are not aware of a need
for a community-centric guarantee arising in practice, we use the egocentric version,
with hubs located in populated sites. Let P = supp(π). For p ∈ P we define

Np = Bp ∩ P Kp = Cp ∩ P

H ⊆ P is a hitting set for {Np | p ∈ P} iff {Kh | h ∈ H} covers P.

We want to find small hitting sets, H , such that {Kh | h ∈ H} covers P . For a discrete
population distribution, this is a purely combinatorial problem.

4 Selecting Hubs

Standard approaches to the hitting-set problem include a näıve greedy algorithm and
linear programming relaxation (LPR) (see [10], Ch. 1). We tried both on Buneman’s
postcode data. They did not perform well. A geometrically-motivated heuristic pro-
duces much better results.

We used various types of synthetic data, as well as the postcode data, to under-
stand why these approaches fail and to evaluate alternative methods. These data sets
included:

– a uniform lattice of n2 points in the unit square,
– samples of size n2 drawn from the uniform distribution on the unit square,
– samples of size n2 drawn from the bivariate normal distribution N2(0, 1).

The randomised examples are chosen to model the kinds of local variation (and in
some areas local uniformity) that we see in our population data. Uniform density across
a region with a sharp boundary is often seen near a coastline, and a unimodal peak
characterises many isolated communities.

Consider covering a uniform n × n square lattice with discs containing k lattice
points.. Take k = n and let n → ∞, then, away from the boundary, we approach the
well-known geometric problem of covering the plane with uniform discs. The familiar
regular hexagonal cover always gives a baseline solution (which may sometimes be
improved upon by exploiting quantisation gaps in the lattice).

The greedy algorithm first chooses a maximal disjoint set of circles, and then fills in
the gaps, normally producing a sub-baseline solution. LPR uses randomised rounding to
derive a cover from a non-integral solution to an integer linear program (ILP) expressing
the constraints. Away from the boundary, our problem is regular. Solution of the LP
relaxation gives equal weight to indistinguishable candidates, and so provides no useful
information — randomised rounding amounts to random selection.

A geometric heuristic: Our heuristic is initially designed to produce good solutions
for the uniform lattice, where we are guided by a clear geometric picture. We find that,
with a minor modification described below, it also performs well on randomised and
real-life data.

Consider the continuous limiting case of a uniform population distribution extending
infinitely. The b-radius is uniform. Without loss, assume that β(x) = 1. We write Bx

for the b-circle D1,x of x, and note that each client set is also a unit disc Ch = D1,h.
For this idealised setting, we want to produce a regular hexagonal covering of the plane
by discs Ch, using an algorithm that only has access to the combinatorial relationship
x ∈ Ch or, equivalently, h ∈ Bx.

Suppose we have already placed two hubs, a, b, which are (by magic)
√
3 apart.

What discs might we add to extend our cover?

Hitting Buneman Circles 255

a b

h

It is clear that we need to cover the uncovered points
near the intersections of our two circles. We identify these
as points that are hard to cover.

We write U for the set of uncovered points. In general,
a point p can be covered by any disc Ch centred at h ∈ Bp,
but we can characterise the particular points we want to
identify if we only consider discs with uncovered centres,
h ∈ Bp∩U . For p near a covering circle, many points in Bp

are already covered by that circle. For uncovered points,
p ∈ U , near to both circles few points in Bp remain uncovered.

For uncovered points, p, near a cusp where the two circles meet Bp ∩ U is smaller
than it is for uncovered points further from the cusp — the points nearer the cusp are
harder to cover. So, we say that, ‘covering p is hard’, if p is not yet covered and there
are few uncovered h such that h ∈ Bp (or, equivalently, p ∈ Ch) (the fewer, the harder).
Then we restrict our attention, temporarily, to those h that cover the hardest p, and
from these select, greedily, an h such that Ch covers as many uncovered q as possible.

The diagram shows our two original discs, with centres a, b, together with a few
of the potential Ch we have to consider — with their centres, h, sized to indicate the
relative size of Ch∩U . The candidate covering circles, Ch, shown all cover all uncovered
points in a neighbourhood of the upper cusp. Choosing greedily from among these
candidates selects the central one, because it includes the largest uncovered area.

θ

h

a b

θʹ2π/3

If we start from our magical initial configuration and re-
peat this procedure indefinitely we will incrementally gen-
erate the regular covering of the plane. If we start instead
from a pair of discs that overlap, but have less than the
magic separation, what then? Our new circle, centred at h,
includes the hard to reach points and passes through one
intersection of the original two circles. It is placed symmet-
rically with respect to the originals. If the angle between
the two original radii is θ, then the angle between the new
radius and either original is

θ′ = θ + (2π/3− θ)/2.

The same formula applies if we start with two discs marginally too far apart. So, as
we iterate our construction, successive values of θ approach the ideal value, 2π/3. This
explains how our algorithm adapts to variations in population density, and why it
produces reasonable solutions for our synthetic data.

In the next section we transfer this idea to our discrete setting and report on our
real-world application.

5 An Algorithm

We use the heuristic introduced above to select new hubs, while keeping track of the
set U of uncovered sites.

Iteration: One step of the algorithm consists of choosing a site, p, to cover; choosing
a hub, h ∈ Np, so that Kh will cover p (we will say, ‘h covers p’) ; then updating U .
We take such steps until U is empty.

First, for each uncovered p, the set of uncovered candidates that would cover it is
given by N(p) = U ∩ Np. The difficulty of covering p ∈ U is given by the reciprocal

256 M.P. Fourman

of the number of uncovered sites potentially available to cover it d(p) = 1/|N(p)|. For
q �∈ U set d(q) = 0. We will cover some p of maximal difficulty, chosen from the set
M =

{
p|d(p) = maxq∈U d(q)

}
.

Second, we must choose h from
⋃

p∈M Np. For the purely geometric version of our
problem described in the previous section, a greedy selection, based solely on maximis-
ing the number of newly covered sites, will choose the ’correct’ hub for each p. For
the discrete version of the problem, we find that quantisation introduces enough noise
to perturb this effect: a purely greedy choice will often leave a hard-to-cover site that
can only be inefficiently covered. To overcome this effect, we again favour choices that
cover difficult sites, using d(q)2 as a measure of the value of covering q.5 So, we choose
a hub, h ∈

⋃
p∈M Np, to maximize

∑
q∈Kh

d(q)2. Finally, we remove Kh from U .

Initialisation: We can start our procedure with an empty collection of hubs, and every
site uncovered, or with an arbitrary collection of hubs, with the sites already covered
computed accordingly. In the geometric setting, starting from an empty set of hubs,
the initial moves introduce two tangential circles, then a third circle centred at their
meeting point. To produce a uniform cover we could use a few iterations to produce a
pair with near-perfect separation, and only then start to produce our cover. In practice,
we have found that this does not give perceptibly improved results on noisy data.

Completion: Once all sites are covered, we may find that a handful (typically � 1%)
of client sets in our chosen covering are double-covered: some chosen hubs have been
rendered redundant by later choices. As long as any such remain, we prune one, and
so eventually arrive at an irredundant cover.

6 Results

The picture illustrates a covering, H , of a sample of 40,000 points drawn from a 2D
Gaussian, with k = 200, by showing the convex hull of each Kh for h ∈ H .

First, we used synthetic data to develop and tune
our heuristic. The uniform hexagonal cover of the
plane by discs has a multiplicity of 2π

3
√

3
≈ 1.21. We

take this as a baseline against which we compare the
efficiency of our coverings.

We used random samples of 40,000 points, from
normal and uniform distributions, to compare the
use of different exponents, w, in our measure, d(q)w,
of the value of covering q. The table below shows the
multiplicities of typical covers.

w 0 1 2 3 4

2D Gaussian 1.48 1.45 1.36 1.35 1.4
Uniform 1.45 1.375 1.315 1.35 1.35

As discussed earlier our population data can be modelled informally as a mix of
synthetic data from these two distributions. This justifies the choice of a quadratic
exponent for our hardness measure. Pragmatically, we find that it gives lower multi-
plicities (smaller covers), on our data, than other small integer values.

5 We have no principled justification for the quadratic exponent used here. It was
chosen following the experimentation described in our results.

Hitting Buneman Circles 257

Applying the same algorithm to Buneman’s circles for Scotland, we obtain a cover
with 4,224 hubs. However, a further relaxation of the Buneman criterion, to guarantee
that every b-circle includes some site with a hub within 500 metres of it, dramatically
reduces the number of hubs we require. We implement this relaxation by simply adding
any site within 500m of a site in Nx to Nx. This clearly has the greatest effect in the
most densely populated areas. The diagram on our title page of this article depicts the
convex hull of Kh for each of the resulting collection of 1,652 hubs.

A näıve greedy algorithm, applied to this relaxed problem, produces a cover with
1,803 hubs. For the sake of comparison, we have run a less näıve greedy algorithm
on the same data. For this, we modified the code to omit the first part of each step
(restricting our choice to hubs that cover the hardest sites), so at each step we consider
every site not yet used as a potential hubs, then make a greedy choice favouring hubs
that cover difficult sites. With a quadratic weighting, this gave a cover with 1,734 hubs.

We have shown that a greedy algorithm does not lead to an optimal cover. Market
forces, however, are greedy. An unfettered market will exploit the most profitable com-
munities and, just like the greedy algorithm, leave gaps that it is uneconomic to fill. Our
next experiment suggests that market-led greed, which will focus initial investment on
the most compact communities, is even less efficient than näıve greed, which looks for
hubs that serve as many premises as possible, even if these premises are thinly spread.

Scotland’s current broadband policy, developed in consultation with the incumbent
supplier, is to provide next generation access to over 80% of the population by 2015.
Roughly 72% of Scotland’s postcodes have b-radii � 700m. We call these compact
communities. They account for just over 80% of Scotland’s residential addresses.

We have run our algorithm to find a set of hubs that will serve just these compact
communities, to try to model the likely impact of government policy. Our algorithm
produces 1,092 hubs that cover these communities. If we then rerun the algorithm to
cover all the communities not served by these 1,092 hubs, we find we need a further
707 hubs to complete the job. So, in toto this two-step approach would require over
10% more than the 1,652 hubs in our one-step plan for universal provision; and public
support would be required for 707 hubs — over 25% more than the gap of 560 between
our 1,652 requirement and the 1,092 financed by the market.

Clearly, what we have just sketched is a very simplistic, indeed over-simplistic, model
of the complex planning and investment decisions negotiated between government and
incumbent. Nevertheless, we believe that even this simple model captures a key chal-
lenge that policy-makers face in trying to ensure universal provision while being com-
mitted to a gap-funding policy that waits for gaps in market-driven provision to appear,
before intervening to fill them.

Market-led provision is, by definition and design, greedy, and thus becomes inefficient
beyond a certain point. Where it will not deliver universal provision, post hoc gap-filling
will be inefficient.

7 Related Work

The idea of using distance to nearest neighbours to study the spatial distribution of
populations is not new. Clark and Evans [2] use distance to nearest neighbour to study
how the distributions exhibited by populations of living organisms differ from a Poisson
ideal. Loftsgaarden and Quesenberry ([6]) introduce the key idea of using distance to
kth-nearest event for density estimation. In Smoothed Particle Hydrodynamics (SPH)
[7] “the mass of each point is distributed according to a smoothing function W whose

258 M.P. Fourman

size adapts to the local value of the density of points.” For the visualisation of galaxies
Colberg ([3]) uses a grid-based adaptation of SPH. The Delaunay Triangulation Field
Estimator (DTFE) introduced by Schaap and van der Weygaert ([9]), takes a Delau-
nay triangulation, and then considers the n-simplices incident at a point as a natural
neighbourhood of that point. These examples are not exhaustive, but this brief list
gives some idea of the range of applications where related ideas have been considered.

Buneman’s insight that we could use this estimator of local density as a basis for
the provisioning of a rate-limited resource appears to be novel. We hope his ideas may
find further application in some of these other domains.

References

1. Bernardi, G., Buneman, P., Marina, M.K.: Tegola tiered mesh network testbed in
rural Scotland. In: WiNS-DR 2008: Proceedings of the 2008 ACM Workshop on
Wireless Networks and Systems for Developing Regions, pp. 9–16. ACM (Septem-
ber 2008), http://dl.acm.org/citation.cfm?id=1410067

2. Clark, P.J., Evans, F.C.: Distance to nearest neighbor as a measure
of spatial relationships in populations. Ecology 35(4), 445–453 (1954),
http://www.jstor.org/stable/10.2307/1931034

3. Colberg, J.: Parallel Supercomputer Simulations of Cosmic Evolu-
tion. PhD thesis, Ludwig-Maximilians-Universität München (1999),
http://edoc.ub.uni-muenchen.de/272/1/Colberg_Joerg.pdf

4. Connor, M., Kumar, P.: Fast construction of k-nearest neighbor graphs for point
clouds. IEEE Transactions on Visualization and Computer Graphics 16(4), 599–608
(2009), http://compgeom.com/~piyush/papers/tvcg_stann.pdf

5. Lev-Tov, N., Peleg, D.: Exact algorithms and approximation schemes for
base station placement problems. In: Penttonen, M., Meineche Schmidt, E.
(eds.) SWAT 2002. LNCS, vol. 2368, pp. 90–99. Springer, Heidelberg (2002),
http://dl.acm.org/citation.cfm?id=645901.672620

6. Loftsgaarden, D.O., Quesenberry, C.P.: A nonparametric estimate of a multivari-
ate density function. Annals of Mathematical Statistics 36(3), 1049–1051 (1965),
http://projecteuclid.org/DPubS/Repository/1.0/

Disseminate?view=body&id=pdf 1&handle=euclid.aoms/1177700079

7. Monaghan, J.J.: Smoothed particle hydrodynamics. Annual Review of Astron-
omy and Astrophysics 30, 543–574 (1992), http://www.annualreviews.org/doi/
pdf/10.1146/annurev.aa.30.090192.002551

8. The Royal Society of Edinburgh. Digital Scotland (October 2010)
9. Schaap, W.E., van der Weygaert, R.: Continuous fields and discrete samples: recon-

struction through delaunay tessellations. Astron. Astrophys. 363, L29–L32 (2000),
http://www.astro.rug.nl/~weygaert/tim1publication/dtfeaaletter.pdf

10. Williamson, D.P., Shmoys, D.B.: The design of approximation algorithms.
Cambridge University Press (June 2011),
http://www.designofapproxalgs.com/book.pdf

http://dl.acm.org/citation.cfm?id=1410067
http://www.jstor.org/stable/10.2307/1931034
http://edoc.ub.uni-muenchen.de/272/1/Colberg_Joerg.pdf
http://compgeom.com/~piyush/papers/tvcg_stann.pdf
http://dl.acm.org/citation.cfm?id=645901.672620
http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.aoms/1177700079
http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.aoms/1177700079
http://www.annualreviews.org/doi/pdf/10.1146/annurev.aa.30.090192.002551
http://www.annualreviews.org/doi/pdf/10.1146/annurev.aa.30.090192.002551
http://www.astro.rug.nl/~weygaert/tim1publication/dtfeaaletter.pdf
http://www.designofapproxalgs.com/book.pdf

Looking at the World Thru Colored Glasses

Floris Geerts1, Anastasios Kementsietsidis2, and Heiko Müller3

1 ADReM Research Group, University of Antwerp, Antwerpen, Belgium
floris.geerts@ua.ac.be

2 IBM Research - Thomas J. Watson Research Ctr, Hawthorne, NY, USA
akement@us.ibm.com

3 Intelligent Sensing and Systems Laboratory, CSIRO, Hobart, Australia
heiko.mueller@csiro.au

Abstract. There are two central issues in the curation of (scientific)
databases: annotation management and archiving. Both issues have been
addressed by the Edinburgh database group and led to the MONDRIAN
annotation management system and the XArch archiving system, re-
spectively. In this paper, we present an application of MONDRIAN to
represent and query the history of evolving databases. We show how the
annotation model and query language underlying MONDRIAN not only
allows to answer queries about how individual data values change over
time, but also allows to capture and query structural changes that occur
in a database over time, beyond the querying functionalities that XArch

currently offers.

1 Introduction

In recent years, one has seen a vast increase in the number of curated databases.
This is particularly true for databases that originate from scientific research
and from governmental agencies. Common examples include IUPHARDB, the
official database of the IUPHAR Committee on Receptor Nomenclature and
Drug Classification [2], and the CIA World Factbook, a comprehensive resource
of demographic data [1], among others.

Annotations play an important role in database curation. Indeed, the curation
process usually involves manual collection, verification, and aggregation of exist-
ing data sources by a dedicated group of curators. Annotations can, for example,
represent opinions of curators about the quality of data or suggested changes,
record information about the provenance of data, as well as indicate temporal
information with regards to the validity of data. In general, annotations can
be regarded as additions to the core data for which there is no dedicated place
within the database schema. The importance of annotations has been recognized
by several research efforts in which the problems of maintaining and querying
annotated databases have been addressed [7,3,13,14,20,9,16].

Equally important in the curation process is the ability to store, manipulate
and query different versions of the data. Indeed, it is common that curated data
evolves and gets updated at a regular pace and proper archiving of the data is

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 259–272, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

260 F. Geerts, A. Kementsietsidis, and H. Müller

required [4]. Furthermore, users want to query the history of the data, rather than
simply querying a single old version of the data. A prime example of this is the
CIA World Factbook [1] where queries like “How did the population of China
change over the past 15 years?” are common1. To deal with these challenges,
different approaches and systems for archiving and querying data have been
developed in recent years [6,19,8,18,21].

In this paper we marry two ideas, both developed when the authors were doing
time in the database group in Edinburgh. The first idea concerns the modeling
of annotated databases by means of colors, to represent the annotations, and
blocks, to represent the data items to which the colors are associated. The re-
sulting annotation management system, MONDRIAN, was reported in [13,12].
The second idea concerns the archiving of data by means of keys and XML. More
specifically, in the XArch system [19], different versions of an evolving database
are merged into a single well-defined hierarchical data format. Furthermore, tem-
poral information is stored as annotations of elements in the archive. The goal
of this paper is to show that by modeling time-stamped XML as so-called color
relations in the MONDRIAN system, and by using the corresponding color alge-
bra as query language, we obtain a flexible mechanism to store, manipulate and
query annotated historical data. Using the CIA World Factbook as an example,
we show that this approach enables to answer queries over archives that XArch

currently cannot answer.
The remainder of this paper is structured as follows: We review the MON-

DRIAN annotation management system in Section 2. In Section 3, we describe
the archiving system XArch. Finally, in Section 4 we combine both systems to
represent and query annotated evolving databases.

2 The MONDRIAN Annotation System

Most existing approaches for annotation management deal with annotations of
individual values or records [7,3,13,14,20,9,16]. In many cases, however, it is
of importance to be able to annotate sets of values. In data integration, for
example, one wants to use annotations to provide evidence for the correctness
of associations between values. Likewise, it is often important to group and
annotate values that have a semantic or temporal relationship. We illustrate
how the MONDRIAN annotation system models such complex annotations by
means of the following example:

Example 1. Consider the relations in Fig. 1(a)-(c) taken from the CIA World
Factbook of 2011. The relations list for each country (a) the highest-valued im-
ported products; (b) the most important import trading partners; and (c) the
highest-valued exported products. Figure 1(d) shows an integrated relation in
which countries are associated with their trading partners and corresponding im-
ported products. Annotations in this relation represent evidence for associations,

1 This query is one of Peter Buneman’s favorite queries. Others include the shoe and
hat size of individuals, which are outside the scope of this paper.

Looking at the World Thru Colored Glasses 261

country imports

Brazil Chemical prod.
Brazil Electronics
Chile Chemicals
Chile Electrical equip.
Chile Vehicles

country partner

Brazil S. Korea
Brazil US
Chile Germany
Chile S. Korea
Chile US

country exports

Germany Chemicals
Germany Motor vehicles
Korea, South Motor vehicles
Korea, South Semiconductors
United States Organic chemicals

(a) Imported products (b) Import trading partners (c) Exported products

country partner product

Brazil South Korea Electronics
Brazil US Chemicals
Chile Germany Motor vehicles
Chile Germany Chemicals
Chile South Korea Electronics
Chile South Korea Motor vehicles

Verified by Eric
Verified by Mary

$1.5 billion

S. Korea = Korea, South = South Korea

Until June 2011

(d) Integrated relation of imported products

Fig. 1. Three relations (a), (b) and (c) on imports and exports taken from the CIA
World Factbook (2011) and their integrated relation (d)

assumptions that were made during the integration process, as well as temporal
information. Annotations are shown in the form of color blocks. Here, a block is
a set of values for which an annotation exists. Colors are used to represent anno-
tations for this block. In the figure, we also show the semantics of each color. For
example, the -colored block in the fifth tuple is valid “Until June 2011”. In
the first and the last two tuples one block indicates that the association between
Brazil (and Chile resp.) and South Korea is based on the assumption that the
names S. Korea, Korea, South, and South Korea all represent the same country.
As another example, the block in the third tuple indicates that the association
has been verified by curator Eric. Note that not all annotations are shown (e.g.,
US and United States are regarded the same as well). %�

Complex annotations like those shown in the previous example pose inter-
esting challenges in terms of how they can be implemented on top of existing
database management systems (DBMS). In MONDRIAN, a simple albeit effi-
cient relational representation of color databases (i.e., databases that contain
color blocks) was proposed. In a nutshell, the relation schemas are first extended
with so-called block attributes, one for each attribute in the original schema;
and second, a single color attribute (col) is attached to each relation. If A is an
attribute in the original schema, we denote by Ab its corresponding block at-
tribute. Intuitively, if a tuple t has a block covering attribute A, then Ab will be
set to 1. Otherwise, the Ab-attribute of the tuple t is set to 0. Similarly, if t has
a block of a certain color, then this color is simply recorded in its col -attribute.
More specifically, let R be a relation consisting attributes A1, . . . ,An. For any

262 F. Geerts, A. Kementsietsidis, and H. Müller

country partner product countryb partnerb productb col

Brazil South Korea Electronics 1 1 0
Brazil US Chemicals 0 1 1
Chile Germany Motor vehicles 1 1 1
Chile Germany Motor vehicles 1 1 0
Chile Germany Chemicals 1 1 0
Chile South Korea Electronics 0 1 1
Chile South Korea Electronics 1 1 0
Chile South Korea Motor vehicles 1 1 0

Fig. 2. Relational encoding of the color relation shown in Fig. 1(d)

relation scheme R, we define the relation scheme R̄=R∪{Ab
1, . . . ,A

b
n}∪{col}.

Note that R̄ is the schema of the relational representation of the color databases.
More generally, to every color block database schema S we can associate the re-
lational database schema S̄ which has precisely the same relation variables, but
when relation variable x has relation scheme R in S, then x has relation scheme
R̄ in S̄.

Example 2. Consider the color relation shown in Fig. 1(d). The corresponding
relational representation is shown in Fig. 2. In this figure, the colors represent
the annotations as given in Fig. 1(d). %�

The advantage of the relational encoding used by MONDRIAN is that it
requires a minimal restructuring of the existing schema. Indeed, although the
representation shown in Fig. 2 requires the addition of new attributes (for blocks
and colors), one can equivalently work with a representation in which separate
tables for blocks and colors are present. These are then linked by means of tuple,
block and color identifiers as is common practice in DBMSs. In addition, annota-
tions of the database imposes minimum overhead in terms of space [13]. Several
indexing methods, such as bitmaps [17] and multi-dimensional indexes [10], are
in place to better support the presence of color blocks in databases.

In addition to supporting complex annotations, MONDRIAN provides a query
interface in which color blocks are treated as first-class citizens. More specif-
ically, a color algebra was introduced in [13] that allows the user to focus on
the annotated data, without knowing how these annotations are modeled in the
underlying relational database system. More specifically, the color algebra, or
CA for short, consists of the following operators:

– Projection (πcol
X): which behaves like a standard projection on the data

part and simply inherits all color blocks, restricted to the attributes in X ;
– Lower and Upper Block Selection (ΠL

X , ΠU
X): which simply select all

tuples and their color blocks covering all attributes in X (lower), or cover
only attributes in X (upper);

– Color Selection (Σγ): which selects all tuples that contain a color block of
color γ;

– Selection (σA=B): which behaves like the standard selection on the data
part and simply copies all color blocks in the selected tuples;

Looking at the World Thru Colored Glasses 263

Table 1. Simulation of CA by conjunctive queries (CQ). If X is a set of attributes, then
Xb denotes its corresponding set of block attributes. Furthermore, in the case of the
tuple join, x��y, the letter R (S) refers to the relation scheme of the color block relation
x (y), f (resp. g) renames the common block attributes Ab

i in R∩S to attributes of the
form Cb

i (resp. Db
i), and finally, or is the truth table of disjunction in which the third

attribute contains the result of the union of the bits in first two attributes. The latter
is needed to combine all blocks in the joined tuples.

CA �→ CQ

πcol
X (x) �→ πX∪Xb∪{col}(x)

ΠL
X(x) �→ σ∧

A∈X Ab=1(x)

ΠU
X(x) �→ σ∧

A�∈X Ab=0(x)

Σγ(x) �→ σcol=γ(x)
σA=B(x) �→ σA=B(x)
x∪y �→ x∪y
ρA/B(x) �→ ρA/B(ρAb/Bb(x))

x��y �→ πR∪S∪Rb∪Sb∪{col}
(
ρf (x))

)
��ρg(ρcol/col′(y))

)
��p

i=1
or(Cb

i ,D
p
i ,A

p
i)
)

∪ Same expression but with the roles of x and y reversed.
x�y �→ x��y
�A

B (x) �→ ρAb/Bb(x)

– Union (∪): which behaves like the standard union on the data part and
simply copies color blocks in the tuples in the component relations;

– Block Join (�): which joins tuples together that agree on the data part
and share the same color block on common attributes;

– Tuple Join (��): which joins tuples together that agree on the data part,
irregardless of any color blocks that may be present;

– Renaming (ρA/B): which simply renames attributes; and finally
– Block Switch (�A

B): which switches color blocks involving covering at-
tribute A by blocks involving attribute B.

Note that none of these operators access the color blocks explicitly. Indeed,
their semantics does not rely on the relational representation used to model color
databases. However, to make the semantics more precise we provide a transla-
tion from the operators in CA to conjunctive queries (CQ) over the relational
representation described earlier (Table 1).

Example 3. Consider again the color relation shown in Fig. 1(d). Suppose that
we want to find all the tuples that have a block of color “Verified by Mary”, or
concern the country Brazil. Also, assume that we are only interested in keeping
the {country,partner} attributes from these tuples. Then, the CA expression

e=πcol
country,partner((Σ“Verified by Mary”(r))∪(σcountry=“Brazil”(r)))

returns the desired result. As another example, asking for all the tuples that have
an annotation of the attribute product can be simply expressed in CA by means of

264 F. Geerts, A. Kementsietsidis, and H. Müller

country partner countryb partnerb col

Brazil South Korea 1 1
Brazil US 0 1
Chile Germany 1 1

country partner

Brazil South Korea
Brazil US
Chile Germany Verified by Mary

Verified by Eric

S. Korea = Korea, South = South Korea

(a) Relational representation of result (b) Color result relation

Fig. 3. Query result as relational representation (a); and color relation (b)

ΠL
product(r). When interested in all tuples that involve annotations exactly cover-

ing country, partner, then the CA expressionsΠL
country,partner(Π

U
country,partner(r))

would give the desired result. We refer to [13] for more examples. %�
The MONDRIAN system leverages the translation given in Table 1 by trans-

lating the user’s CA query into a CQ query on the underlying relational rep-
resentation. Once the result of the CQ query is obtained, it is converted again
into a color relation that is given to the user. We refer to [12] for more details
of the MONDRIAN system. It is noteworthy to point out that the evaluation of
CA expressions, by means of the intermediate translation step to the underlying
RDBMS, is comparable in terms of query execution time when compared to its
unannotated version [13].

Example 4. Consider the CA expression e from the previous example. To eval-
uate e on the color relation shown in Fig. 1(d), MONDRIAN first translates e
into a CQ query qe as specified by Table 1. It is readily verified that qe equals

πcountry,partner,countryb,partnerb,col(σcol=“Verified by Mary”(r̄)∪σcountry=“Brazil”(r̄))),

where r̄ denotes the schema r extended with block and color attributes. The CQ
query qe is then executed on the relational representation shown in Fig. 2. The
result of the qe and the corresponding color relation is shown in Fig. 3. %�

We conclude the description of the MONDRIAN system by stating that CA
(on color databases) has the same expressive power as CQ (over relational rep-
resentations of color databases), even though CA does not access color blocks
explicitly. Observe that Table 1 implies that for every CA-expression over S,
there exists an equivalent CQ-expression over S̄. The converse is also true:

Theorem 1 ([13]). For every conjunctive query over S̄ whose result relation
scheme is of the form R̄ for some relation scheme R, there exists an equivalent
CA expression over S.
As final remark, we note that in the setting that blocks cover all the attributes,
and thus only the colors matter, Theorem 1 is shown to hold even in the presence
of negation [11].

3 The XArch Archiving System

Curated databases are predominantly kept in well-organized hierarchical data
formats. These data formats are often equipped with a key structure that pro-

Looking at the World Thru Colored Glasses 265

vides a canonical identification for each element in the hierarchical data. For
instance, a key for an element can be taken as the combination of the path in
which the element occurs together with the values of some of its sub-elements.
Buneman et al. [6] developed an archiving approach that takes advantage of
such keys to maintain multiple versions of an evolving curated databases. The
archiving system XArch implements an extended version of the original ap-
proach that allows archiving databases of arbitrary size [15]. More specifically,
in XArch, multiple snapshots of an evolving database are merged into a single
archive. Corresponding elements in different snapshots are identified based on
their key values and stored only once in the resulting archive. Each snapshot is
then given a unique identifier and each element is annotated with a timestamp
that represents the sequence of snapshots in which the particular element was
contained in. Archives in XArch are currently stored as XML documents. We
next provide a high-level description of the archiving process by means of the
following example and refer to [6,15] for more details.

Example 5. Consider the following two (XML) entries from two releases of the
CIA Factbook in 1992 (left) and 1998 (right). These entries concern the number
of airports in Kazakhstan:

<country>

<name>Kazakhstan</name>
<category>

<name>Communications</name>
<property>

<name>Airports</name>
<value>NA</value>

</property>

</category>

<country>

<country>
<name>Kazakhstan</name>
<category>

<name>Transportation</name>
<property>

<name>Air Transport</name>
<subprop>

<name>Airports</value>
<value>10</value>

</subprop>

</property>

</category>

</country>

In order to compare, merge and archive these two entries, a key specification
is required to tell what the corresponding elements are in these two releases. The
keys relevant for this fragment of the CIA Factbook are as follows:

k1 = (/country,{name})
k2 = (/country/name,{})
k3 = (/country/category,{name})
k4 = (/country/category/name,{})
k5 = (/country/category/property,{name})
k6 = (/country/category/property/name ,{})
k7 = (/country/category/property/value,{})
k8 = (/country/category/property/subprop,{name})
k9 = (/country/category/property/subprop/name,{})
k10 = (/country/category/property/subprop/value ,{})

We provide the formal definition of keys below. The archiver will merge corre-
sponding nodes in both entries, in a top-down manner, starting from the country

266 F. Geerts, A. Kementsietsidis, and H. Müller

nodes. The key k1 specifies that elements nodes of type country are uniquely
specified by the value of their name child node. Clearly, in order for this to
make sense /country/name nodes should carry a unique value and have no
further nodes below them (they are frontier nodes). For the two entries given
above, “Kazakhstan” is the key for both country nodes and thus both nodes
correspond to the same country. As a consequence, they will be merged in the
archive. The resulting country node has timestamps {1992,1998}. The key k2
specifies that nodes of type name are identified by their own value. Again, the
archiver merges both name nodes and the corresponding timestamps are inher-
ited from its parent country node. As another example, k3 says that category
nodes are again identified by the value of their name child node. In the archive,
we thus have two distinct nodes for the entries above, one for “Communica-
tions” (with timestamp {1992}) and one for “Transportation” (with timestamp
{1998}). Proceeding along this way, until all nodes are processed, we obtain
a timestamped XML documents that contains both entries. In case that more
versions are available, the archiver will sequentially add each version to the
archive computed so far. Figure 4 shows a minor modification of part of our
current archive of the CIA World Factbook that contains the annual releases
of the Factbook from 1992 to 2002. We only show the information related to
the number of airports in Kazakhstan over these years. In the figure, element
nodes are shown in square boxes together with their label (in angle brackets)
and their key value (in square brackets). Timestamps are shown as edge labels.
Note that elements (or edges) without an explicit timestamp inherit the times-
tamp of their parent. The two entries from 1992 and 1998 are embedded in
the archive and are highlighted by bold edges. As already mentioned, frontier
nodes that are used as key values, e. g., /country/name, can have only one text
node as their child since objects are identified based on this value. Thus, the
key value for each country is the value of this text node. Other frontier nodes,
e. g., /country/category/property/value, may have multiple text nodes as
children, each with a different (disjoint) timestamp. Indeed, these nodes are not
used as key for any node and may have multiple values. %�

More formally, an archive A is a tree with two types of nodes: (i) element
nodes, and (ii) text nodes. Only element nodes may occur as internal nodes.
In addition, each element node has a label and a key value. Element keys are
defined using key constraints. Here, we consider only a limited form of key con-
straints and refer to [5,6] for an extended definition and for further details. A key
specification K is a set of key definitions k=(p,q), where p is an absolute path
of element labels and q is a set of element labels. The key definition specifies for
each element e reachable by path p how the key value is derived from the subtree
of e. If q is empty then key(e)=⊥. Otherwise, key(e) is an array of values; one
for each the children of e reachable by path p/�, for �∈q. Elements whose values
are used as key values are called key path values. Note that (i) there has to be
exactly one child of e for each label �∈q, and (ii) this child is a frontier node, i. e.,
it does not have other element nodes as children. All element keys are relative
keys, i. e., the key identifies an element among its siblings (with the same label).

Looking at the World Thru Colored Glasses 267

/

<country>
[Kazakhstan]

<country>
[Kazakstan]

<name>
[]

<category>
[Communications]

<category>
[Transportation]

<category>
[Economy]

<category>
[Transportation]

<name>
[]

<name>
[]

<property>
[Airports]

<name>
[]

<property>
[Airports]

<name>
[]

<property>
[Air Transport]

<name>
[]

<property>
[Airports]

<property>
[Air Transport]

<name>
[] []

<value> <name>
[] []

<value> <name>
[]

<name>
[] []

<value> <name>
[]

<subprop>
[Airports]

<subprop>
[Airports]

<name>
[] []

<value> <name>
[] []

<value>

Kazakhstan Kazakstan

Communications Economy Transportation Transportation

Airports Airports

Airports

Airports

Airports

Air Transport Air Transport

NA 365

352

10 449

352

352

{1992− 1995, 1998− 2002} {1996− 1997}

{1992− 1994} {1995} {1998− 2002} {1996} {1997}

{1992}{1993− 1994}

{2001− 2002}{1998− 2000}

Fig. 4. Part of the archive of the CIA World Factbook (1992–2002)

Moreover, the concatenation of key values along the path from the root to an
element e forms an absolute key for e. Let T denote the set of snapshot iden-
tifiers. Each node n∈A has a timestamp time(n)⊆T that represents the set of
snapshots that node was present in. Timestamps satisfy the following property:
if a node n is a descendant of a node m in A, then time(n)⊆ time(m). Since
changes to databases are largely accretive and an element is likely to exist for
a long time, we compactly represent its timestamp using time intervals rather
than a sequence of version numbers. As illustrated in the previous example, the
timestamps are assigned when merging different versions of the data.

Merging different snapshots into a single archive has several advantages: (i)
any specific snapshot is retrievable from the archive in a single pass over the data,
(ii) the storage space required is comparable to that of delta-based approaches
that keep a sequence of records of changes between pairs of consecutive versions,
(iii) tracking object history is easy. XArch implements a query language (xaql)
for retrieval of individual database snapshots as well as queries over the history
of data. The query language xaql has a SQL-like syntax and it uses a restricted
form of XPath expressions to filter output elements.

Example 6. The following xaql query returns the name and population of Eu-
ropean countries between years 2000 and 2008 in our current archive of the CIA
World Factbook:
SELECT $c/name, $c/category[name =’People’]/property[name =’Population’]/value

FROM $c IN archive(’CIAWFB’)/country

VERSION 2000-2008

WHERE $c/category[name =’Geography’]/property[name = ’Map references’]/value = ’Europe’ %�

XArch has been successfully used to maintain the history of several curated
databases. While the archiving approach generally works very well, it does make

268 F. Geerts, A. Kementsietsidis, and H. Müller

the critical assumption that the structure of the archived database remains un-
changed. This restriction, however, is almost certainly to become an issue when
archiving over a long period of time.

Figure 4 shows a typical problem the archiver currently faces, that is, the
change of (absolute) key values. Over the history of the Factbook, the informa-
tion about the total number of airports in Kazakhstan (referred to as Kazakstan
in 1996 and 1997) was first located under category Communications, then un-
der category Economy and 1996 moved to category Transportation. In 1997, the
Factbook started to group information about the airports, heliports, and airlines
(not shown in Figure 4) as sub-properties under a new property Air Transport.
Due to the change in its absolute key value the archiver maintains different ele-
ments at different levels of the tree about the number of airports in Kazakhstan.
While this redundancy causes a slight storage overhead, a more severe problem
occurs when querying the archive. Indeed, the same information can now be
found under different paths in different snapshots.

As another example, more recently, the Factbook renamed category People
into People and Society. Thus, the query shown in Example 6 would return an
empty result for the more recent snapshots in our archive. Making matters worse,
the population of China can now be found under different paths in the history
of the Factbook. xaql queries in XArch are currently not able to handle such
changes. That is, in order to retrieve to full history of the population of China
one would have to issue two separate queries and manually merge the results.
Moreover, XArch currently does not provide any mechanism to maintain in-
formation about different key values for the same element. In the following, we
show how MONDRIAN can be used to maintain and query historic data in the
presence of key value changes.

4 Mondrianizing XARCH

We start by showing that an archive in XArch is a special form of a color
database where timestamps are represented as color blocks. That is, we can turn
any archive into a color relation. Annotations in such a relation have temporal
semantics, i. e., they represent the snapshots in which a data value was valid.
Then, the color algebra can be used for temporal queries over the history of
data. We can use additional annotations to capture the semantic relationships
of different elements in an archive, and use this to better answer queries over the
history of data. In comparison to xaql this gives us (a) a formal query language,
and (b) the ability to query data under key value changes.

Consider an archive A following key specification K. For simplicity, assume
that for all key definitions (p,q)∈K, q is either empty or contains exactly one
label. When transforming A into a color database we generate a single color
relation with schema Rk={A1, . . . ,An}∪{Ab

1, . . . ,A
b
n}∪{col}. The schema Rk

has exactly one attribute Ai for each key definition (p,q)∈K where p does not
identify a key path value. That is, if p=p1/� then (p1,{�}) is not in K. We use
Ψ to denote the mapping from path p in the key definition to the corresponding

Looking at the World Thru Colored Glasses 269

attribute Ai∈Rk. Figure 5(a) shows the mapping Ψ for the archive in Figure 4,

while Figures 5(b) and (c) show the schema of the generated relation Rk. For

convenience, in our implementation we split Rk into two relations (as mentioned
in Section 2), one relation for storing the archive raw data and another for storing
just the annotations.

We now turn our attention on how to compute the instances shown in the
figures and concentrate first on the raw data. Let rk be in general the instance
for schema Rk. We create one tuple in rk for each text node n in A that is
not a child of a key path value. Let value(n) denote the text value of n and let
<e1, . . . ,em> denote the sequence of elements on the path to n. Furthermore,
let path(e) denote the path of element e. Then, for the text node n, we create
a tuple t where for each e∈<e1, . . . ,em−1> we set t[Ψ(path(e))]=key(e) and for
em we set t[Ψ(path(em))]=value(n). For attributes A∈Rk where no element e
with Ψ(path(e))=A exists in <e1, . . . ,em>, we set t[A]=⊥. Figure 5(b) shows
an instance rk for the archive in Figure 4.

We next consider the creation of colors and blocks. For each of the tuples
t in rk and each snapshot identifier s in time(e) with e the text element that

warranted the creation of t in rk, we create one tuple rk with t[col] representing
the snapshot identifier s. This sets the color of the tuples. For the blocks, we set
t[Ab

i]=1, for 1≤ i<m if s∈ time(ei). Likewise, for A
b
m we use the timestamp of

text node n to decide the value of t[Ab
m]. We illustrate the above construction

by means of the following example.

Example 7. The instance rk of Rk corresponding the CIA Factbook fragment
shown in Figure 4 consists of the raw data instance shown in Figure 5(b) to-
gether with colored blocks represented by the first 11 tuples in Figure 5(c). For
example, there are two blocks for the tuple with tid=3 of Figure 5(b), since the
corresponding path is present in both 1994 and 1995. Similarly, there are three
blocks for the tuple with tid=6 for the years 1998, 1999 and 2000. %�

In our example the timestamp of every internal node equals the union of
timestamps of its children. This is not true in general, however. For example, in
any snapshot of the CIA World Factbook a country may have a category without
property elements or a property value without a text node child. Note that the
key path values for a node, however, always have to exists, i. e., there are no
missing values in element keys. To ensure that our transformation of an archive
into a color relation is lossless we have to create a tuple in rk for every element
e whose timestamp contains snapshot identifiers that are not contained in the
timestamp of any of e’s children. We set tuple values according to the sequence
of elements on the path to e. That is, for every snapshot identifier s∈ time(e)
that does not appear in any of the timestamps of the children of e we create one
tuple rk such that t[col] represents s.

The advantage of modeling archives by means of color relations is that one can
annotate the archived data, beyond the encoding of timestamps, at no additional
cost.

270 F. Geerts, A. Kementsietsidis, and H. Müller

/country → co
/country/category → ca
/country/category/property → pr
/country/category/property/value → prv
/country/category/property/subprop → sp
/country/category/property/subprop/value → spv

(a) Mapping Ψ of element paths to attributes

tid co ca pr prv sp spv

1 Kazakhstan Communications Airports NA ⊥ ⊥
2 Kazakhstan Communications Airports 365 ⊥ ⊥
3 Kazakhstan Economy Airports 352 ⊥ ⊥
4 Kazakstan Transportation Airports 352 ⊥ ⊥
5 Kazakstan Transportation Air Transport ⊥ Airports 352
6 Kazakhstan Transportation Air Transport ⊥ Airports 10
7 Kazakhstan Transportation Air Transport ⊥ Airports 449

(b) An archive relation for the number of airports in Kazakhstan

tid cob cab prb prvb spb spvb col

1 1 1 1 1 0 0 1992
2 1 1 1 1 0 0 1993
3 1 1 1 1 0 0 1994
3 1 1 1 1 0 0 1995
4 1 1 1 1 0 0 1996
5 1 1 1 0 1 1 1997
6 1 1 1 0 1 1 1998
6 1 1 1 0 1 1 1999
6 1 1 1 0 1 1 2000
7 1 1 1 0 1 1 2001
7 1 1 1 0 1 1 2002
1 1 1 1 1 0 0 KZ
2 1 1 1 1 0 0 KZ
3 1 1 1 1 0 0 KZ
4 1 1 1 1 0 0 KZ
5 1 1 1 0 1 1 KZ
6 1 1 1 0 1 1 KZ
7 1 1 1 0 1 1 KZ
2 0 0 0 1 0 0 APNo
3 0 0 0 1 0 0 APNo
4 0 0 0 1 0 0 APNo
5 0 0 0 0 0 1 APNo
6 0 0 0 0 0 1 APNo
7 0 0 0 0 0 1 APNo

(c) Encoding of timestamps and
semantics using colors/blocks

Fig. 5. A representation of archives in MONDRIAN

Example 8. For example, we already mentioned that there are (at least) two
spellings, namely Kazakstan and Kazakhstan, for the same country. With colors
and blocks, we alleviate such issues by introducing a new color KZ that corre-
sponds to the ISO 3166 country code for this country. Then, we use this color to
define 7 blocks that cover each of the tuples in Figure 5(b). Another semantic
annotation can be used to denote that, in spite of the structural differences, all
tuples in Figure 5(b) actually represent information about the number of airports
in Kazakhstan. For that, we can use a new color APNo (for Airport Number)
to create a block for each column (it can be a different column for each tuple)
that is used to store the number of airports. The last six tuples in Figure 5(c)
define these blocks. Notice that for the tuple with tid=1 in Figure 5(b) there
is no block with color APNo in Figure 5(c) since the number of airports is not
available (NA). %�

We conclude this section by showing that the color algebra allows for the
querying of the archived data beyond current capabilities of xaql.

Example 9. We can use CA to query the annotated relation with timestamps.
The following CA query retrieves the tuples between 1995 and 1997.

Σ“1995”(r
k)∪Σ“1996”(r

k)∪Σ“1997”(r
k)

Notice that while the blocks annotate different columns in different tuples, this
difference is not visible in the query itself. This is unlike the XArch sys-
tem where structural differences manifest themselves in the query expression.
With this in place, the following simple CA expression retrieves all the different
spellings of the country’s name:

Looking at the World Thru Colored Glasses 271

πco(Σ“KZ”(r
k))

Notice that this query is not expressible in the XArch system since unless we
know explicitly the different spellings, we cannot identify the relevant parts of
the tree that refer to this country (and not another one). As another example,
the following CA expression retrieves all the tuples for which the number of
airports in Kazakhstan is stored in the prv column:

Σ“KZ”(Π
U
prv(r

k))

The query returns the tuples with tid=2, tid=3 and tid=4. Again, notice that
we retrieve these numbers for different spellings of the country’s name, and for
values that are located at different paths of the corresponding tree in the XArch

system. %�

All combined, this shows that MONDRIAN naturally allows for the modeling
of curated evolving data and that the color algebra provides an elegant way to
pose historical queries. The current paper provides only a proof-of-concept of
our approach. We leave the experimental validation to future work.

References

1. https://www.cia.gov/library/publications/the-world-factbook/index.html

2. http://www.iuphar-db.org

3. Bhagwat, D., Chiticariu, L., Tan, W.C., Vijayvargiya, G.: An annotation manage-
ment system for relational databases. In: Proceedings of the 30th International
Conference on Very Large Data Bases (VLDB), pp. 900–911 (2004)

4. Buneman, P., Cheney, J., Tan, W.C., Vansummeren, S.: Curated databases. In:
Proceedings of the 27th Symposium on Principles of Database Systems (PODS),
pp. 1–12 (2008)

5. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.C.: Keys for xml. In: Pro-
ceedings of the 10th International Conference on World Wide Web (WWW), pp.
201–210 (2001)

6. Buneman, P., Khanna, S., Tajima, K., Tan, W.C.: Archiving scientific data. ACM
Trans. Database Syst. 29(1), 2–42 (2004)

7. Buneman, P., Khanna, S., Tan, W.C.: On propagation of deletions and annotations
through views. In: Proceedings of the 21st Symposium on Principles of Database
Systems (PODS), pp. 150–158 (2002)

8. Curino, C.A., Moon, H.J., Zaniolo, C.: Graceful database schema evolution: the
prism workbench. Proc. VLDB Endow. 1(1), 761–772 (2008)

9. Eltabakh, M.Y., Aref, W.G., Elmagarmid, A.K., Ouzzani, M., Silva, Y.N.: Sup-
porting annotations on relations. In: Proceedings of 12th International Conference
on Extending Database Technology (EDBT), pp. 379–390 (2009)

10. Eltabakh, M.Y., Ouzzani, M., Aref, W.G., Elmagarmid, A.K., Laura-Silva, Y.,
Arshad, M.U., Salt, D., Baxter, I.: Managing biological data using bdbms. In:
Proceedings of the 25th International Conference on Data Engineering (ICDE),
pp. 1600–1603 (2008)

11. Geerts, F., den Bussche, J.V.: Relational completeness of query languages for an-
notated databases. J. Comput. Syst. Sci. 77(3), 491–504 (2011)

https://www.cia.gov/library/publications/the-world-factbook/index.html
http://www.iuphar-db.org

272 F. Geerts, A. Kementsietsidis, and H. Müller

12. Geerts, F., Kementsietsidis, A., Milano, D.: iMONDRIAN: A visual tool to an-
notate and query scientific databases. In: Ioannidis, Y., et al. (eds.) EDBT 2006.
LNCS, vol. 3896, pp. 1168–1171. Springer, Heidelberg (2006)

13. Geerts, F., Kementsietsidis, A., Milano, D.: Mondrian: Annotating and querying
databases through colors and blocks. In: Proceedings of the 22nd International
Conference on Data Engineering, ICDE (2006)

14. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings
of the 26th Symposium on Principles of Database Systems (PODS), pp. 31–40
(2007)

15. Koltsidas, I., Müller, H., Viglas, S.D.: Sorting hierarchical data in external memory
for archiving. Proc. VLDB Endow. 1(1), 1205–1216 (2008)

16. Kostylev, E., Buneman, P.: Combining dependent annotations for relational al-
gebra. In: Proceedings of the 15th International Conference on Database Theory,
ICDT (2012)

17. Mavromatis, M.: Indexing in the MONDRIAN annotation management system.
Master’s thesis, University of Edinburgh, United Kingdom (2006)

18. Moon, H.J., Curino, C.A., Deutsch, A., Hou, C.Y., Zaniolo, C.: Managing and
querying transaction-time databases under schema evolution. Proc. VLDB En-
dow. 1(1), 882–895 (2008)

19. Müller, H., Buneman, P., Koltsidas, I.: Xarch: archiving scientific and reference
data. In: Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD), pp. 1295–1298 (2008)

20. Srivastava, D., Velegrakis, Y.: Intensional associations between data and metadata.
In: Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD), pp. 401–412 (2007)

21. Wang, H.(W.), Liu, R., Theodoratos, D., Wu, X.: Efficient storage and temporal
query evaluation in hierarchical data archiving systems. In: Bayard Cushing, J.,
French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp. 109–128. Springer,
Heidelberg (2011)

Static Analysis and Query Answering

for Incomplete Data Trees with Constraints

Amélie Gheerbrant1,2, Leonid Libkin1, and Juan Reutter1,3

1 School of Informatics, University of Edinburgh
2 LIAFA (Université Paris Diderot - Paris 7 & CNRS)

3 Department of Computer Science, Pontificia Universidad Catolica de Chile

Abstract. Data trees serve as an abstraction of XML documents: in
such trees, every node comes with a label from a finite alphabet, as
well as a data value from an infinite set. Incomplete data trees model
XML documents with incomplete information; they may include both
structural incompleteness and incompleteness of data. Here we study two
basic problems for incomplete data trees under typical constraints such as
keys and foreign keys. The first problem is consistency of specifications of
incomplete data trees. We show that many of recently established results
on consistency of constraints and schema descriptions can be transferred
to the consistency of incomplete tree specifications without any increase
in complexity. After that we examine query answering over incomplete
data trees under constraints, and show that tractable bounds can be
recovered under key constraints, but are lost under foreign keys.

1 Introduction

In this paper we examine two basic problems about XML documents with incom-
plete information: namely their consistency (or satisfiability), and query answer-
ing. The first problem asks whether a description of an incomplete document is
consistent, under some schema restrictions: that is, whether a completion satisfy-
ing the schema requirement exists. The second problem is to find certain answers,
i.e., answers independent of a particular interpretation of missing features of the
incomplete document. These are standard data management problems and they
have been studied extensively, in particular in the context of incomplete XML
documents. Our main contribution here is to study them when the schema de-
scription contains constraints commonly found in databases, such as keys and
foreign keys.

Traditional XML schema descriptions, such as DTDs, can be subsumed by
the power of tree automata [22]; such automata operate on trees labeled with
letters from a finite alphabet. Constraints such as keys and foreign keys, on
the other hand, talk about data in XML documents. Since data values typically
come from infinite domain (e.g., numbers, or strings), they cannot be captured
by traditional automata.

The interplay between finiteness of the description of the structure of XML
document and the infinite domains of data such document carry has been a cen-
tral theme in XML research. A typical object of investigation is the abstraction

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 273–290, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

274 A. Gheerbrant, L. Libkin, and J. Reutter

of XML documents known as data trees: these are finitely-labeled trees that can
carry data from an infinite set. Now we apply some of the developed techniques
to the study of such data trees with incomplete information. In the rest of the
introduction, we explain briefly what incomplete data trees are, and the two
main problems we study.

Incomplete XML Documents. We follow a general approach to incomplete-
ness in XML described in [3]. In relational databases, incompleteness is usually
modeled via null values, which may appear in place of constants. In XML, due
to its more complex structure, two other types of incompleteness may appear:

– structural incompleteness: precise relationships between some nodes may
not be known (for instance, we may know that one node is a descendant of
another without knowing the full path between them);

– labeling incompleteness: some node labels can be replaced by wildcards,
indicating that the exact label is not known at present.

Consistency Problem. For usual XML documents with incomplete informa-
tion, the consistency problem asks whether such an incomplete description t
can represent a complete tree T satisfying some schema constraints, typically
expressed by a tree automaton A. Most versions of this problem range from
tractable to being NP-complete [3].

A different type of consistency problems often arises in the study of static
analysis of XML. A typical formulation is as follows: we are given some schema
information, say an automaton A, and some constraints Δ involving data values
(e.g., keys, foreign keys). The question is whether there is an XML document
that conforms to the schema (is accepted by A) and satisfies Δ.

Simplest versions of this problem (for Δ containing unary keys and foreign
keys, for instance) are known to be NP-complete [13], but by now many other
variations exist, e.g., [2,6,7,8,12,23,24]. Reasoning tasks can be of varying com-
plexity, starting from NP and going up to high but elementary [2,7] or extremely
high (e.g., non-primitive-recursive [14,15]) and even undecidable (e.g., binary
keys and foreign keys [13]).

Our consistency problem is different from a pure static analysis, as it takes an
incomplete data tree t as an input, together with the static information such as
A andΔ. Our result on the consistency problem is that, under mild assumptions,
the complexity of static analysis tasks for complete XML documents applies to
the analysis of incomplete documents. In other words, we show how incomplete
documents can be added into static analysis tasks without any increase in com-
putational complexity. Note of course that an incomplete tree t can be encoded
as an automaton, so in principle static analysis can be extended to handle data.
However, an automaton encoding t may well be of exponential size in t, and to
prove our result we need to find a way around this exponential blow up.

Query Answering. The standard approach to answering queries over databases
with incomplete information is to look for certain answers, i.e., answers inde-
pendent of how particular incomplete features are interpreted. Here we look at

Static Analysis and Query Answering for Incomplete Data Trees 275

analogs of (unions of) conjunctive queries for XML. In the relational case, these
can be evaluated in polynomial time [18], but in the XML case, their complexity
can range from polynomial time to coNP-complete [3]. However, it was shown
in [3] that their complexity drops back to polynomial time in the case of rigid
trees, that do not allow any structural incompleteness. This is true without con-
straints, but the relational case teaches us that constraints are likely to change
the complexity of query answering [10].

We show here that this is true in the XML case too: when we allow just a
single unary inclusion constraint, finding certain answers over rigid trees jumps
to coNP-complete, but with keys it stays in polynomial time.

Organization. In Section 2 we describe data trees and integrity constraints. In
Section 3 we describe the model of incomplete XML documents (or data trees).
In Section 4 we study the consistency problem, and in Section 5 we present our
results on query answering.

2 Preliminaries

Data Trees and Automata. To describe data trees, we assume

– a countably infinite set C of possible data values (notation C stands for
“constants”; later we shall extend data trees to domains that contain both
constants and nulls), and

– a countably infinite set L of node labels (element types). We shall normally
denote labels by lowercase Greek letters.

A data tree over a finite alphabet Σ ⊂ L is a 2-sorted structure

T = 〈D,A, ↓,→, (Pα)α∈Σ , ρ〉, (1)

where

– D is a finite unranked tree domain, i.e., a prefix-closed subset of N∗ such
that w · i ∈ D implies w · j ∈ D for j < i;

– ↓ and → are the child and next-sibling relations, for which we shall use, as is
common, the infix notation: w ↓ w ·i whenever w ·i ∈ D, and w ·i→ w ·(i+1)
whenever w · (i + 1) ∈ D;

– each Pα is the set of elements of D labeled α (of course we require that these
partition D);

– A ⊂ C is a finite set of data values; and
– ρ : D → A assigns to each node w ∈ D a data value.

We refer to D as the domain of T , and denote it by dom(T), and to A as the
active domain (of data values) of T and denote it by adom(T). We always assume
that A has precisely the elements of C used in T , i.e., if v ∈ A then there is a node
w such that v = ρ(w). We denote by Vα(T) the set of all data values assigned
to α-nodes by ρ. That is, Vα(T) = {ρ(w) | Pα(w) holds}.

276 A. Gheerbrant, L. Libkin, and J. Reutter

We shall denote the transitive closure of ↓ by ⇓ and the transitive closure of
→ by ⇒.

An unranked tree automaton [26] over Σ is a tuple A = (Q,Σ, δ, F), where Q
is a finite set of states, F ⊆ Q is the set of final states, and δ : Q×Σ → 2Q

∗
is a

transition function. We require all δ(q, α)’s to be regular languages over alphabet
Q, for all q ∈ Q and α ∈ Σ.

A run of A over a tree T is a function τA : dom(T) → Q, such that for
each node w that is labeled α and has k children w · 0, . . . , w · (k − 1), the word
τA(w · 0) · · · τA(w · (k− 1)) belongs to the language of δ(τA(w), α). In particular,
if w is a leaf, then the empty word belongs to δ(τA(w), α). A run is accepting if
τA(ε) ∈ F , that is, if the root of T is assigned a final state. As customary, we
denote the language of all trees accepted by A by L(A).

XML Integrity Constraints. We consider keys, inclusion constraints and
foreign keys as our basic integrity constraints. They are the most common con-
straints in relational databases, and are common in XML as well, as many doc-
uments are generated from databases. Moreover, these sets of constraints are
similar to, but more general than XML ID/IDREF specifications, and can be
used to model most of the key/keyref specifications of XML Schema used in
practice [20,19]. Here we only deal with constraints specified with element types
rather than those specified by paths, as is done, for instance, in [2,9].

Let Σ ⊂ L. Then a basic XML constraint over Σ is one of the following:

– A key constraint key(α), where α ∈ Σ. An XML tree T satisfies key(α),
denoted by T |= key(α) iff for every distinct α-nodes n and n′ in T , we have
ρ(n) �= ρ(n′), i.e., the data values on n and n′ are different.

– An inclusion constraint α1 ⊆ α2, where α1, α2 ∈ Σ. This constraint is satis-
fied, i.e., T |= α1 ⊆ α2, iff Vα1(T) ⊆ Vα2 (T).

– A foreign key: A combination of an inclusion constraint and a key constraint,
namely α1 ⊆FK α2 holds iff α1 ⊆ α2 and key(α2) both hold.

3 XML with Incomplete Information

To define incomplete XML documents, we assume a countably infinite supply
of null values (or variables) V . Following [3,16], incompleteness can appear in
documents in the following ways.

– Data-values incompleteness. This is the same as incompleteness in relational
models: some data values could be replaced by nulls.

– Labeling incompleteness. Instead of a known label, some nodes can be labeled
with a wildcard.

– Structural incompleteness. Some of the structure of the document may not
be known (e.g., we can use descendant edges in addition to child edges, or
following-sibling edges instead of next-sibling).

Static Analysis and Query Answering for Incomplete Data Trees 277

This can be captured as follows. An incomplete data tree over Σ is a 2-sorted
structure

t = 〈N, V, ↓,⇓,→,⇒, (Pα)α∈Σ , ρ〉, (2)

where

– N is a set of nodes, and V is a set of values from C ∪ V ;
– ↓,⇓,→,⇒ are binary relations on N ;
– Pα’s are disjoint subsets of N ; and
– ρ is a function from N to V .

As before, dom(t) refers to N , and adom(t) to V . We now distinguish between
adomc(t), which refers to elements of C in adom(t), and adom⊥(t), which refers
to elements of V in adom(t).

These represent incompleteness in XML as follows:

– elements of V are the usual null values;
– Pα’s do not necessarily cover all of N ; those nodes in N not assigned a label

can be thought of as labeled with a wildcard;
– structural incompleteness is captured by relations ↓,→, ⇓,⇒ which could be

arbitrary. For example, we may know that w ⇓ w′ without knowing anything
about the path between the two.

Rigid Trees. An incomplete tree t = 〈N, V, ↓,⇓,→,⇒, (Pα)α∈Σ , ρ〉 is called
rigid [3] if its pure “structural part”, i.e., t0 = 〈N, ↓,→, (Pα)α∈Σ〉 is a labeled
unranked tree with wildcards. That is, N is an unranked tree domain, the Pα’s
are disjoint subsets of N , and for nodes n, n′ we have

– n ↓ n′ iff n′ = n · i for some i ∈ N;
– n→ n′ iff n = w · i and n′ = w · (i + 1) for some w ∈ N∗ and i ∈ N.

In other words, in rigid trees we do not permit any structural incompleteness
regarding the axes ↓,→,⇓, and ⇒ (the axes ⇓ and ⇒ will always be interpreted
as the transitive closures of ↓ and → respectively). The only allowed types of
incompleteness are nulls for data values, and wildcards.

Semantics. As is common with incomplete information, we define semantics via
homomorphisms h : t → T from an incomplete data tree t to a complete data
tree T . A homomorphism

h : 〈N, V, ↓,⇓,→,⇒, (Pα)α∈Σ , ρ〉 −→ 〈D,A, ↓,→, (Pα)α∈Σ′ , ρ〉,

where Σ ⊆ Σ′, is a map from N ∪ V to D ∪A such that

– h(n) ∈ D if n ∈ N and h(v) ∈ A if v ∈ V ;
– if wRw′ in t, then h(w)Rh(w′) in T , when R is one of ↓,→,⇓,⇒;
– if w ∈ Pα in t, then h(w) ∈ Pα in T , for each α ∈ Σ;
– h(c) = c whenever c ∈ C; and
– h(ρ(w)) = ρ(h(w)) for each w ∈ N .

278 A. Gheerbrant, L. Libkin, and J. Reutter

Not that homomorphisms are not injective, i.e. two nodes in N can be mapped
to the same node inD. To allow such a situation where two nodes might represent
the same information is standard in incomplete information. The semantics of an
incomplete tree t is the set of all complete trees T that it has a homomorphism
into:

�t� = {T | there exists a homomorphism h : t→ T }.

4 Consistency

In this section we consider the consistency problem for XML incomplete descrip-
tions in the presence of integrity constraints of various forms. More formally, let
I be a class of XML integrity constraints. We consider the following problem:

Problem: IncTree-Consistency(I)
Input: an incomplete tree t,

a tree automaton A;
a set Δ of constraints in I.

Question: is there a tree T ∈ �t� so that T ∈ L(A) and T |= Δ?

4.1 Consistency with Respect to Automata and Constraints

As already mentioned, satisfiability (or consistency) questions arise often in the
XML setting, and substantial progress has been made on solving pure static anal-
ysis problems, i.e., those not involving data. In fact, many decidable formalisms
are known for XML schemas, specified by automata, and constraints or queries
[2,6,7,8,11,12,13,21,23,24]. The complexity of such reasoning problems usually
ranges from NP-complete (since Boolean satisfiability can easily be encoded) to
a stack of exponentials and beyond (e.g., non-primitive-recursive [14,15], or even
undecidable [7,13]).

Many of such static analysis problems studied in the XML context can be
abstracted as follows. Let again I be a class of XML integrity constraints. The
problem we deal with now is:

Problem: Automata-Consistency(I)
Input: A tree automaton A,

a set Δ of constraints in I.
Question: is there a tree T so that T ∈ L(A) and T |= Δ?

For constraints that we deal with here, [13] tells us that Automata-

Consistency(K + IC) is NP-complete, where K + IC is the class of keys and
inclusion constraints. These results have been extended to more powerful con-
straints (and automata as well). For instance, [12] looked at linear data con-
straints and set constraints, that essentially extend basic XML constraints with
the full power of linear equations; these generalize keys and foreign keys.
A different approach was considered in [2], where constraints involving regular

Static Analysis and Query Answering for Incomplete Data Trees 279

expressions were studied, and results extended for constraints that do not hold
in the entire XML document, but in subsets of it. Multiple papers deal with
constraints provided by XPath expressions (e.g., [7,8,11,24]) or more complex
models of automata (e.g., [6]).

Naturally, any lower bound for Automata-Consistency(I) applies directly
as a lower bound for IncTree-Consistency(I), since one can easily construct
incomplete trees that represent the entire universe of XML trees (e.g., a single
root-node). This implies, for example, that IncTree-Consistency(K + IC) is
NP-hard.

What about the upper bounds? We show in the next section that most known
upper bounds for different versions of Automata-Consistency continue to
hold if we add incomplete trees into the mix, as one can reason about incom-
plete trees for free, provided the Automata-Consistency does not trivialize.
Essentially, this says that we can transfer known results on static reasoning about
XML to reasoning about incomplete trees: those come for free.

4.2 General Upper Bound

To achieve the transfer of complexity results from Automata-Consistency to
IncTree-Consistency, we need to impose some mild conditions on the former.
The first is that its complexity should not be too low. The second and third state
that systems of constraints must have some degree of uniformity (for instance,
they should not be tied to just one alphabet, or a particular data value). And
the last condition states that they should be extendable with constraints that
admit modest reasoning complexity. We now formalize these requirements and
demonstrate that many instances of Automata-Consistency satisfy them.

Complexity. Most reasoning tasks involving schema and constraints are at
least NP-hard (e.g., even the simple case of DTDs and unary keys and
inclusion constraints is such [13]). Hence, we shall require that the com-
plexity class to which Automata-Consistency belongs be closed under
NP-reductions.
A complexity class C is closed under NP-reductions if whenever we have
languages A,B ⊆ Γ ∗ such that B ∈ C and there is a polynomial-time
computable function f : Γ ∗ × Γ ∗ → Γ ∗ and a polynomial p such that for
each x ∈ Γ ∗ we have x ∈ A iff f(y, x) ∈ B for some y ∈ Γ ∗ of size at most
p(|x|), then A ∈ C.
Most complexity classes above NP that allow nondterministic guesses rather
trivially satisfy this condition.

Alphabet Extensions. A class I allows for alphabet extension if the following
holds. Let Σ and Σ′ be alphabets of labels, and let γ be a surjective map
Σ′ → Σ. Then for every set Δ of constraints over Σ one can construct, in
polynomial time, a set Δ′ of constraints over Σ′ such that a tree T ′ over Σ′

satisfies Δ′ iff its projection T to Σ satisfies Δ.

280 A. Gheerbrant, L. Libkin, and J. Reutter

Constraint Extensions. Following [13,12], we introduce set and linear con-
straints as follows. Fix variables xα, Vα and |Vα|, for each α ∈ Σ. The
interpretation of xα is #α(T), the number of α-nodes in T ; and the inter-
pretation of Vα and |Vα| is, respectively, Vα(T) and |Vα(T)|, the set of data
values found in α nodes in T , and the cardinality of this set. We shall assume
that the complexity of Automata-Consistency(I) does not change if I is
expanded with the following: linear constraints over variables xα and |Vα|,
and set constraints of form Vα = Vα1 ∩ · · · ∩ Vαp , or Vα ∩ Vα′ = ∅.

We call a class of constraints feasible if it is generic (i.e., invariant under
permutations of the domain of data values) and satisfies the alphabet-extension
and the constraint-extension conditions above.

While these conditions (with the exception of the standard notion of generic-
ity) may look restrictive, they are not: in fact, they apply to a large number of
constraints. For instance, they apply to the following.

– Classes of keys, inclusion constraints, and foreign keys. Indeed, it is well
known that these can be stated as linear and set constraints introduced
above [13], and the complexity of such constraints is in NP [12]. In fact
many other constraints could be for free added too, e.g., denial constraints,
stating that Vα(T) ∩ Vα′(T) = ∅ for α �= α′.

– Extensions of keys and inclusion constraints specified by properties of nodes.
For instance, instead of key(α), one can state a condition key(φ), where φ is a
formula with one free variable over the language of unranked trees. We only
requite that φ be definable in MSO. For instance, φ could be an XPath node
formula. The meaning of such a constraint is that all nodes satisfying φ have
different data values. Such constraints include many constraints considered,
for instance, in [2,9]. Their good properties easily follow from [12].

– Classes of constraints expressed by [25]. Such automata are closed under
adding set and linear constraints, and they capture many existing models of
constraints over data trees (e.g., those expressible in 2-variable logic).

Now we can state our transfer result.

Theorem 1. Let C be a complexity class that is closed under NP-reductions,
and I a feasible class of integrity constraints. If Automata-Consistency(I) is
in C, then so is IncTree-Consistency(I)

Proof. Let I and C be as stated in the theorem. Since by the assumption C is
closed under NP-reductions, it suffices to show that IncTree-Consistency(I)
is NP-reducible to Automata-Consistency(I).

To that extent, let t, A and Δ ∈ I be arbitrary inputs of IncTree-

Consistency(I). The basic idea behind the reduction is to construct a tree
automaton At whose language is exactly �t�, in which case one trivially has that
Automata-Consistency(I) accepts on inputs A × AT and Δ if and only if
IncTree-Consistency(I) accepts on inputs t, A and Δ.

Unfortunately, it is not difficult to show that At might be exponential in the
size of t. In order to avoid the exponential blowup, we use the fact that we can

Static Analysis and Query Answering for Incomplete Data Trees 281

guess with no cost (since C is closed under NP-reductions), and guess first an
intermediate structure describing only the information about �t� that is enough
to show consistency. We denote these structures as tree skeletons, which we define
next.

Tree skeletons are defined just as XML trees, with the difference that instead
of the child relation we can use either ↓ or ↓+, and instead of next sibling relation
one can use either → or →+. As expected, ↓+ and →+ are interpreted as strict
descendant and strict following sibling, respectively. More formally, we define a
tree skeleton as a structure sk = 〈D,A, ↓, ↓+,→,→+, (Pα)α∈Σ , ρ〉, where D is
an unranked tree domain, the relations ↓, ↓+,→,→+, are binary, and relations
Pα’s are unary, and the following are satisfied:

1. Every node w in D can have at most one ↓+-child (i.e., at most one w′ such
that w ↓+ w′ holds), and

2. No node w in D can have ↓-children and ↓+-children at the same time (i.e.,
there could be no nodes w′, w′′ so that w ↓ w′ and w ↓+ w′′ hold).

We define the notion of a homomorphism h from a skeleton to a tree T so that
they preserve all relations, i.e., if w ↓+ w′ in the skeleton, then h(w′) is a strict
descendant of h(w) in T , and so on. With this, the semantics of tree skeletons
is defined using homomorphisms:

�sk� = {T | there exists a homomorphism sk→ T }.

The following lemma captures the intuition that tree skeleton, while possibly
exponentially smaller than trees, carry enough information to solve the consis-
tency problem.

Lemma 1. There exists a polynomial p with the following properties. Let t be
an incomplete tree, T a data tree in �t�, and S a subset of nodes in T . Then,
there exists a skeleton sk of size at most p(|t|+ |S|) such that

1. T ∈ �sk�,
2. �sk� ⊆ �t�, and
3. for each α-node in S with data value c, there is at least one α-node in sk

with data value c.

Proof sketch: Since T ∈ �t�, there is a homomorphism from t to T . The skele-
ton sk is constructed by marking in T all nodes in S, as well as all nodes in
T that witness the homomorphism from t to T . From these marked nodes one
can construct a tree-shaped skeleton by subsequently adding the least common
ancestor of every pair of nodes that are not a direct descendant of a marked
node, and adding first and last siblings if these are not already marked. It is not
difficult, but rather cumbersome, to show that this construction can be done in
polynomial time, and satisfies the desired properties. �

Let sk be a tree skeleton over Σ. Our next task is to define an automaton
that corresponds, at least in some extent, to the set of trees represented by sk.

282 A. Gheerbrant, L. Libkin, and J. Reutter

Recall that we denote the active domain (of data values) by adom(sk), and let
⊥ be a fresh value not in C. We now show how to construct from sk and ⊥ an
unranked tree automaton A(sk,⊥) = (Q, (Σ × (adom(sk) ∪ {⊥}), {qf}, δ), where
Q and δ are defined inductively. We start with Q = {qf} ∪ {qn | n ∈ D}, and
the following transitions in δ:

– (qf , (α,⊥)) → q∗f , for each α in Σ

Next, for each n ∈ D, we add extra states and transitions to A(sk,⊥), according
to the following conditions:

– If n is a leaf, add to δ the transition (qn, (α, ρ(n))) → q∗f .

– Else, if n has a (single) child n · 0 such that n ↓+ n · 0 holds in the skeleton,
then add to Q a fresh state q, and add to δ the transitions (qn, (α, ρ(n))) →
q∗f · q · q∗f , and (q, (α′,⊥))→ q∗f · (q | qn·0) · q∗f , for each α′ in Σ.

– Finally, if n has k children n · 0, . . . , n · (k− 1) under relation ↓, assume that
the children are ordered as n · 0 θ1 n · 1 θ2 . . . θk−1 n · (k − 1), where each
θi is either → or →+. Add to δ the transition

(qn, (α, ρ(n))) → q∗f · qn·0 · r1 · qn·1 · r2 · · · · rk−1 · qn·(k−1) · q∗f ,

where each rj is ε if θj is →, or q∗f if θj is →+.

The intuition is that every tree in the language of A(sk,⊥) represents to some
extent a set of trees in �sk�. The data values used in sk are represented with
labels of the form (α, c), for some α in Σ and c in C, and nodes in which the
data value is not important to witness the membership in �sk� are labeled with
(α′,⊥), for α′ in Σ.

More formally, given a tree T over Σ × (V ∪ {⊥}), we say that a tree T ′ over
Σ is a data projection of T into Σ if T ′ can be formed from T by replacing each
node in T labeled with (α, c) for a node labeled α with data value c, and every
node labeled with (α′,⊥) in T for a node labeled α′ and a data value a ∈ C. The
following is straightforward from the construction:

Lemma 2. Let sk be a tree skeleton over Σ with active domain adom(sk), and
let ⊥ be a fresh data value not in C. A tree T over Σ belongs to �sk� if and only
if there is a tree T ′ over Σ× (V ∪{⊥}) that is accepted by A(sk,⊥), and such that
T is a data projection of T ′ over Σ.

In other words, the set of data projections over Σ of all trees accepted by
A(sk,⊥) corresponds precisely to the set of trees in �sk�. We now have all the
ingredients to state our NP-reduction for consistency.

Checking for Consistency:

Consider an arbitrary incomplete tree t, a tree automaton A over Σ and a set
Δ of constraints.

First, perform the following operations:

1. Guess a tree skeleton sk such that �sk� ⊆ �t�.

Static Analysis and Query Answering for Incomplete Data Trees 283

2. Let adom(sk) be all data values that are mentioned in sk, and let ⊥ a fresh
data value not used in C.

3. Define the alphabet Σ × (adom(sk)∪ {⊥}) and consider its projection to Σ.
Due to feasibility, construct, in polynomial time, the set Δ′ of constraints
over trees over Σ × (adom(sk) ∪ {⊥}) so that such a tree satisfies Δ′ iff its
Σ-projection satisfies Δ.

4. Construct the following set of constraints Γ :
– For each c ∈ adom(sk) and α ∈ Σ such that there is at least one (α, c)-

labeled node in sk, add the constraint |V(α,c)| = 1 to Γ .
– For each c ∈ adom(sk) and α ∈ Σ, if sk does not contain a node labeled
α with data value c, then add the constraint V(α,c) = ∅.

– Moreover, for each pair of values c, c′ in adom(sk) and each α ∈ Σ, such
that there are nodes labeled with α and α′ with data value c in sk, add
the constraints V(α,c) = V(α′,c) to Γ .

– Finally, for each α, α′ ∈ Σ and distinct values c, c′ ∈ adom(sk) ∪ {⊥},
add the constraints V(α,c) ∩ V(α′,c′) = ∅ to Γ .

5. Build an automaton A(adom(sk),⊥) from A by replacing every transition of
form (q, α) → L with the transitions (q, (α, c)) → L for each c ∈ adom(sk)∪
{⊥}.

6. Finally, check whether (A(adom(sk),⊥)×A(sk,⊥)), (Δ
′∪Γ) is consistent. This of

course is possibile due to the feasibility assumption, with the same
complexity.

Correctness and Soundness.

We need to prove that (A, t,Δ) is consistent if and only if there exists a
skeleton sk, with �sk� ⊆ �t�, and such that (A(adom(sk),⊥) × A(sk,⊥)), (Δ

′ ∪ Γ) is
consistent.

(⇒): Let sk be a skeleton such that �sk� ⊆ �t�, and (A(adom(sk),⊥) × A(sk,⊥)),
(Δ′ ∪ Γ) is consistent, and let T be the tree over Σ × (adom(sk) ∪ {⊥}) that
witnesses the consistency.

Let f : adom(T)→ (adom(T) ∪ adom(sk)) be the following renaming of data
values: For each data value d ∈ adom(T), if there is an (α, c)-node in T with
data value d, then f(d) = c; and otherwise f(d) = d. Notice then that f is
an injection. Indeed, since T is consistent with Γ , it satisfies the constraints
V(α,c) = V(α′,c) and V(α,c) ∩ V(α′,c′) = ∅, and |V(α,c)| = 1, for each α, α′ ∈ Σ and
distinct c, c′ ∈ (adom(sk) ∪ {⊥}). Thus, all (α, c)-nodes, for any α ∈ Σ, share
the same, single data value, which is at the same time not used anywhere else
in T .

Next we prove that the data projection f(T)′ of f(T) over Σ is consistent
with Δ, A and t. From the construction of A(adom(sk),⊥), it is obvious that f(T)′

is in the language of A. Furthermore, from feasibility of I we have that f(T)
is consistent with Δ′, and that its data projection f(T)′ is consistent with Δ.
Finally, since T is in the language of A(sk,⊥), so is f(T), and then by Lemma
2 we have that f(T)′ belongs to �sk�, which by the assumption that �sk� ⊆ �t�
entails that f(T)′ belongs to �t�.

284 A. Gheerbrant, L. Libkin, and J. Reutter

(⇐): Assume that (A, t,Δ) is consistent, and let T be a tree witnessing the
consistency, with h a homomorphism from t to T . Construct a set S of nodes
from T as follows. If n is in the image of h, then add n to S. Moreover, for each
α-node n in S with data value c, and for each α′ ∈ Σ such that T has at least
one α′-labeled node with data value c, add one of these nodes to S. By Lemma
1, there is a skeleton sk containing all nodes in S, such that T ∈ �sk� and such
that �sk� ⊆ �t�. Let ⊥ be a value not in C.

We now construct a tree T ′ over the alphabet Σ × (adom(sk) ∪ {⊥}) that
is a witness for the consistency of (A(adom(sk),⊥) × A(sk,⊥)), (Δ

′ ∪ Γ). This is
done as follows. Replace each α-node in T with data value c ∈ adom(sk) with
a (α, c)-labeled node with data value c, and each α-node in T with data value
not in adom(sk) with a (α,⊥)-labeled node with the same original data value.
By construction, it is not difficult to see that T ′ is consistent with Γ . Moreover,
from feasibility of I we obtain that T ′ is consistent with Δ′. Third, given that T
is a data projection of T ′ over Σ, by Lemma 2 we have that T ′ belongs to the
language of A(sk,⊥). Finally, it is straightforward to see that T ′ is in the language

of A(adom(sk),⊥), which finishes the proof.

Membership in C: A simple inspection on the reduction reveals that steps
(3), (4) and (5) can be performed in polynomial time with respect to sk, A,
Σ and Δ. Furthermore, from Lemma 1 and the above remarks we have that
there always exists a skeleton sk of polynomial size with respect to t that suffices
for the correctness of the reduction. This shows that the problem IncTree-

Consistency(I) is NP-reducible to Automata-Consistency(I). The theo-
rem follows from the assumption that C is closed under NP-reductions.

From Theorem 1 and the results from [13] we immediately obtain tight com-
plexity bounds for IncTree-Consistency(K + IC), where K + IC is the class
of basic XML constraints (keys and foreign keys).

Corollary 1. IncTree-Consistency(K + IC) is NP-complete.

In fact, any class of constraints expressible with linear and set constraints
(e.g., denial constraints) can be added for free, without changing the complexity
bound.

4.3 A Tractable Case

The fact that Automata-Consistency(K + IC) is already NP-hard rules out
any possibility of finding tractable classes for IncTree-Consistency problem
without extra restrictions. Following [4], one can look at the consistency prob-
lems without tree automata, in which case, given a set Δ of constraints and an
incomplete tree t, we ask for a T ∈ �t� so that T |= Δ. It is not difficult to adapt
the results in [4] to obtain the following.

Theorem 2. Without automata in the input, IncTree-Consistency(K + IC)
can be solved in Ptime for rigid incomplete data trees, but remains NP-hard for
arbitrary incomplete data trees.

Static Analysis and Query Answering for Incomplete Data Trees 285

5 Query Answering

As is common in the scenarios when one needs to compute certain answers (by
means of intersection) [18,3], we look at queries that can only output tuples of
data values. The queries will be essentially unions of conjunctive queries over
XML trees; however, to avoid the clumsiness of a two-sorted presentation, we
follow the standard approach and define them via patterns.

An example of a pattern is

α(x)/[β(x) → γ(1), δ(y)→ γ(x)].

When evaluated on a tree T , it collects all instantiations of variables x and y so
that a tree has an α-node whose data value is x, together with a β-child with
the same data value x whose next sibling is a γ-node with data value 1, and a
δ-child with data value y whose next sibling is a γ-node with data value x.

Formally, patterns are given by the grammar:

π := α(z̄) | α(z̄)/[μ, . . . , μ] | α(z̄)//[μ, . . . , μ] | α(z̄)/[μ, . . . , μ]//[μ, . . . , μ]
μ := π | π � . . .� π

where each � is either → or ⇒.
Semantics.We define the semantics of a pattern with respect to an XML tree

T = 〈D,A, ↓,→, (Pα)α∈Σ , ρ〉, a node w, and a valuation ν for variables x̄ in C:

– (T,w, ν) |= α(z̄)/[μ1, . . . , μn]//[μ
′
1, . . . , μ

′
k] if w ∈ Pα (whenever α is a Σ-

letter), ρ(w) = ν(z), and there exist n children w1, . . . , wn of w such that
(T,wi, ν) |= μi for each i ≤ n, and there exist k descendants w′

1, . . . , w
′
k of

w such that (T,w′
i, ν) |= μ′

i for each i ≤ k.
– (T,w, ν) |= π1 � . . . � πm if there is a sequence of nodes w = w1, . . . , wm

so that (T,wi, ν) |= πi for each i ≤ m and wi → wi+1 whenever the ith �

is →, and wi ⇒ wi+1 whenever the ith � is ⇒.

We write π(x̄) if x̄ is a tuple of all the variables mentioned in π. Also, to sim-
plify notation, we shall write α(x̄)/β(ȳ) instead of the more formal α(x̄)/[β(ȳ)].
Finally, we write (T,w) |= π(ā) if (T,w, ν) |= π(x̄) where ν assigns values ā to
variables x̄.

Pattern-Based XML Queries. We now define XML analogs of unions of con-
junctive queries based on patterns. First, we need a class of conjunctive queries
(essentially defined in [1,5,17]): these are obtained by closing patterns under
conjunction and existential quantification of variables:

q(x̄) = ∃ȳ1 . . . ȳn π1(x̄, ȳ1) ∧ . . . ∧ πn(x̄, ȳn)

The semantics is defined as follows. Given a tree T and a valuation ā for variables
x̄, we have T |= q(ā) if there exist tuples b̄1, . . . , b̄n of data values and nodes
w1, . . . , wn in T so that (T,wi) |= πi(ā, b̄i) for every i ≤ n. We define UCQ

xml

as queries of the form q1(x̄) ∪ . . . ∪ qm(x̄), where each qi is a conjunctive query.

286 A. Gheerbrant, L. Libkin, and J. Reutter

Example. Consider the query

q1(x) := ∃y, z α(x)/[β(y) → γ(z)]

∨
∃y α(x)//δ(y)

It selects data values x found in α-labeled nodes which either have two consec-
utive children labeled β and γ, or a descendant labeled δ.

Certain Answers. Since queries in languages introduced above produce sets
of tuples of data values, we can define the usual notion of certain answers for
evaluating them over incomplete documents. That is, for a query Q and an
incomplete tree t, we let

certainΔA(Q(x̄), t) =
⋂{

Q(T)
∣∣ T ∈ �t�, T ∈ L(A) and T |= Δ

}
.

We study data complexity of certain answers (where Q, A and Δ are fixed).

Problem: certainΔA(Q)
Input: an incomplete data tree t and a tuple ā of size |x̄|
Question: does ā belong to certainΔA(Q(x̄), t)?

We also consider variations of the problem when the automaton A, the con-
straints Δ, or both are missing from the parameters, referring to them as
certainA, certain

Δ, and just certain. Note that certain(Q(x̄), t) =
⋂
{Q(T) | T ∈

�t�} is the standard notion of certain answers, without constraints and schemas.

5.1 General Upper Bound

Theorem 3. For every query Q(x̄) ∈ UCQ
xml

, tree automaton A and a set Δ
of keys, foreign keys and inclusion constraints, the problem certainΔA(Q) is in
coNP.

Proof sketch: From [3], we know that certainA(Q) is in coNP. We first briefly
recall the idea behind this upper bound and then explain how to extend the
proof to account for an additional set Δ of constraints. The standard way to
obtain an upper bound for a query Q (say, Boolean for this sketch) over t is to
prove that if certain(Q, t) is false, then there is T ∈ �t� with some specific size
bounds in t such that T |= ¬Q.

Our starting point here is as follows: suppose we have T ∈ �t� such that
T |= ¬Q and T ∈ L(A). For the sketch, assume that Q = q1∨. . .∨qn, where each
qi is a conjunctive query; that is, T |= ¬qi for each i ≤ n. Take a homomorphism
h : t→ T , and add to the image of h all nodes which are least common ancestors
of nodes in the image, plus the root. We call it the skeleton. Via careful renaming
of some occurrences of data values in the tree and using a reasoning on types,
the main argument of the proof consists of pruning long vertical and horizontal

Static Analysis and Query Answering for Incomplete Data Trees 287

paths in T in order to obtain a tree which contains every node in the skeleton
of T and hence still belongs to �t�, while it also agrees with T on all the qis, is
still accepted by A and is of polynomial size in t.

This proof can be extended as follows. Since we only have unary constraints
in Δ, we first chase their relational representation, i.e., constraints applied to
unary relations Uα corresponding to labels α. The form of constraints implies
that they are weakly acyclic, and hence the chase terminates in polynomial time
and produces a set of tuples of the form Uα(x) where x is either a data value or
a null. To each of these tuples, we associate a new single node pattern labeled
L(x). We then form the union of all these structures with the incomplete tree t
and call this new structure tΔ. Note that labels, nulls and constants might occur
both in t and in some of the single nodes patterns in tΔ. At this point if tΔ

still does not satisfy some of the constraints in Δ (e.g. some key constraints) we
simply conclude that the certain answer is vacuously true. Otherwise, assume
certainΔA(Q(x̄), t) is false. Then there is T ∈ �tΔ� such that T is accepted by A, T
satisfies Δ and T |= ¬Q. The only difference with the proof for certainA(Q(x̄), t)
is that instead of taking a homomorphism h : t → T , we now consider a homo-
morphism h : tΔ → T and generate the corresponding skeleton. The remainder
of the proof is as in [3]. �

5.2 Rigid Trees

It was shown in [3] that on rigid trees, the problem certain(Q) becomes tractable
as certain answers can be computed by näıve evaluation. Recall that a rigid tree
is a tree in which no structural information is missing; that is, the only types of
missing information are nulls and wildcards. In the following we show that on
rigid trees certainΔ(Q) can become coNP-hard as soon as Δ contains even a
single inclusion constraint, but remains tractable if Δ only contains keys.

coNP-Hardness.

Theorem 4. There exists a query Q(x̄) in UCQ
xml

and a set of constraints Δ
containing one single inclusion constraint such that the problem certainΔ(Q) is
coNP-hard even over rigid incomplete data trees.

Proof. The proof is by reduction from non 3-colorability. Let G = 〈V,E〉 be a
directed graph, with the set of vertices V = {v1, . . . , vn} and the set of edges
E = {e1, . . . , em}, where each edge ei is a pair (vi1, v

i
2) of vertices from V . We

show how to build a rigid incomplete data tree t from G and give a fixed Boolean
query q ∈ UCQ

xml
and a fixed inclusion constraint Δ such that certainΔ(Q, t)

evaluates to true if and only if G is not 3-colorable.
We use root, C, G and E as labels and red, blue, green and a as data values.

We use v1, . . . , vn as null values and construct t as follows. The root, labeled
root(a) has four linearly ordered children:

– the first one labeled C(red),

288 A. Gheerbrant, L. Libkin, and J. Reutter

– the second one labeled C(blue),
– the third one labeled C(green),
– the last one labeled G(a).

The three first children of the root are leaves, but its last G(a)-labeled child has
m linearly ordered G(a)-labeled children where for every i ≤ m the following
holds:

– the ith child has two ordered children, the first one is labeled E(vi1) and the
second one is labeled E(vi2).

Now we let Δ = {E ⊆ C} and Q = q1 ∨ q2 ∨ q3 ∨ q4, where:

q1 = ∃x root(a)/G(a)/G(a)[E(x) → E(x)]
q2 = ∃x∃y∃z∃v∃w root(a)/[(x) → (y) → (z)→ (v) → (w)]
q3 = ∃x root(a)/G(a)//C(x)
q4 = ∃x∃y root(a)/C(x)/ (y)

We show that certainΔ(Q, t) evaluates to true if and only if G is not 3-
colorable.

Assume first that G is 3-colorable and let c : V → {red, blue, green} be a
3-coloring of G. We construct a complete tree T ∈ �t� such that T |= Δ and
T �|= Q by simply replacing every null value vi occurring in t with c(vi). Since
T is a homomorphic image of t, it does not satisfy any of the queries q2, q3, q4.
Also, since c is a 3-coloring of G, we have that T �|= q1 and so T �|= Q. It follows
that certainΔ(Q, t) evaluates to false.

Now assume that certainΔ(Q, t) evaluates to false. Then there exists a tree
T ∈ �t� such that T |= Δ and T �|= Q. As T ∈ �t�, there is a homomorphism
h : t→ T . Since T �|= qi for every 2 ≤ i ≤ 4, it follows that T only contains three
C-labeled nodes, which carry respectively one of the three data values red, blue,
green. Also as T satisfies the constraint E ⊆ C, every E-labeled node carries
one of the data values red, blue, green. As T �|= q1, the homomorphism h gives
a 3-coloring of G.

Tractable Upper Bounds.

Theorem 5. For every query Q ∈ UCQ
xml

and set Δ of keys, the problem
certainΔ(Q) is in Ptime, when restricted to rigid incomplete data trees.

The tractability of certainΔ(Q) follows directly from the proof of tractability
of certain(Q) on rigid trees in [3]. There is only one additional step, in which
we first check whether t |= Δ. By Theorem 2, this can be done in polynomial
time in the size of t. If t �|= Δ, then it is clear that Δ will not be satisfied by
any completion of t and we conclude that the certain answers is vacuously true.
Otherwise t |= Δ and we go on with evaluating Q on t using näıve evaluation,
exactly as in [3].

Acknowledgment. Work partially supported by EPSRC grant G049165 and
FET-Open Project FoX, grant agreement 233599. It was done while all authors
were at the University of Edinburgh.

Static Analysis and Query Answering for Incomplete Data Trees 289

References

1. Arenas, M., Fan, W., Libkin, L.: On the complexity of verifying consistency of
XML specifications. SIAM J. Comput. 38, 841–880 (2008)

2. Arenas, M., Libkin, L.: XML data exchange: consistency and query answering.
Journal of the ACM 55, 2 (2008)

3. Barceló, P., Libkin, L., Poggi, A., Sirangelo, C.: XML with incomplete information.
Journal of the ACM 58, 1 (2010)

4. Barceló, P., Libkin, L., Reutter, J.: On incomplete XML documents with integrity
constraints. In: AMW 2010 (2010)

5. Björklund, H., Martens, W., Schwentick, T.: Conjunctive query containment over
trees. J. Comput. Syst. Sci. 77(3), 450–472 (2011)

6. Bojanczyk, M.: Automata for data words and data trees. In: RTA 2010, pp. 1–4
(2010)

7. Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data words. ACM Trans. Comput. Log. 12(4), 27 (2011)

8. Bojanczyk, M., Lasota, S.: An extension of data automata that captures XPath.
Logical Methods in Computer Science 8(1) (2012)

9. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.-C.: Keys for XML. Com-
puter Networks 39(5), 473–487 (2002)

10. Cal̀ı, A., Lembo, D., Rosati, R.: On the decidability and complexity of query an-
swering over inconsistent and incomplete databases. In: PODS 2003, pp. 260–271
(2003)

11. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Regular XPath: con-
straints, query containment and view-based answering for XML documents. In:
LID (2008)

12. David, C., Libkin, L., Tan, T.: Efficient reasoning about data trees via integer
linear programming. ACM TODS 37(3), 19 (2012)

13. Fan, W., Libkin, L.: On XML integrity constraints in the presence of DTDs. Journal
of the ACM 49, 368–406 (2002)

14. Figueira, D.: Forward-XPath and extended register automata on data-trees. In:
ICDT 2010, pp. 231–241 (2010)

15. Figueira, D.: Bottom-up automata on data trees and vertical XPath. In: STACS
2011, pp. 93–104 (2011)

16. Gheerbrant, A., Libkin, L., Tan, T.: On the complexity of query answering over
incomplete XML documents. In: ICDT 2012, pp. 169–181 (2012)

17. Gottlob, G., Koch, C., Schulz, K.: Conjunctive queries over trees. Journal of the
ACM 53(2), 238–272 (2006)

18. Imieliński, T., Lipski, W.: Incomplete information in relational databases. Journal
of the ACM 31(4), 761–791 (1984)

19. Jan Bex, G., Neven, F., Van den Bussche, J.: DTD versus XML Schema: A Practical
Study. In: WEBDB 2004, pp. 79–84 (2004)

20. Laender, A., Moro, M., Nascimento, C., Martins, P.: An X-Ray on Web-Available
XML Schemas. SIGMOD Record 38(1), 37–42 (2009)

21. Libkin, L., Sirangelo, C.: Reasoning about XML with temporal logics and au-
tomata. J. Applied Logic 8(2), 210–232 (2010)

22. Martens, W., Neven, F., Schwentick, T.: Simple off the shelf abstractions for XML
schema. SIGMOD Record 36(3), 15–22 (2007)

290 A. Gheerbrant, L. Libkin, and J. Reutter

23. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In:
Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)

24. Segoufin, L.: Static analysis of XML processing with data values. SIGMOD
Record 36(1), 31–38 (2007)

25. Tan, T.: An automata model for trees with ordered data values. In: LICS 2012
(2012)

26. Thatcher, J.W.: Characterizing derivation trees of context-free grammars through
a generalization of finite automata theory. JCSS 1, 317–322 (1967)

Using SQL for Efficient Generation

and Querying of Provenance Information

Boris Glavic1, Renée J. Miller2, and Gustavo Alonso3

1 Illinois Institute of Technology
bglavic@iit.edu

2 University of Toronto
miller@cs.toronto.edu

3 ETH Zurich
alonso@inf.ethz.ch

Abstract. In applications such as data warehousing or data exchange,
the ability to efficiently generate and query provenance information is
crucial to understand the origin of data. In this chapter, we review some
of the main contributions of Perm, a DBMS that generates different types
of provenance information for complex SQL queries (including nested and
correlated subqueries and aggregation). The two key ideas behind Perm
are representing data and its provenance together in a single relation and
relying on query rewrites to generate this representation. Through this,
Perm supports fully integrated, on-demand provenance generation and
querying using SQL. Since Perm rewrites a query requesting provenance
into a regular SQL query and generates easily optimizable SQL code,
its performance greatly benefits from the query optimization techniques
provided by the underlying DBMS.

1 Introduction

Peter Buneman was one of the first to recognize the importance of data prove-
nance. With co-authors Khanna and Tan, he introduced the seminal models
of Why- and Where-provenance [7]. Provenance, information about the cre-
ation process or the origin of data, can be used to debug queries and clean
data in data warehouses, to understand and correct complex data integration
transformations, for auditing, and to understand the value of data in curated
databases. Provenance generation has also been used as a supporting technol-
ogy for exchanging updates between heterogeneous databases [21], to provide
access control based on the origin of data [31], and in modeling uncertainty in
databases [35].

While provenance has many applications, these applications often place very
high requirements on a provenance management system to be useful in practice.
In this chapter, we overview the contributions of the Perm provenance manage-
ment system [17]. Perm was designed as a scalable system for the generation
and querying of provenance information over relational data. To understand the
requirements for such a system, we begin with an example and then consider the
foundations in provenance research on which Perm builds.

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 291–320, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

292 B. Glavic, R.J. Miller, and G. Alonso

Customer
SSN name age

u1 1 Gert 34
u2 2 Waltraud 65
u3 3 Joe 19

Purchase
month desc amount creditc import

p1 Jan starbucks 12 4059 1
p2 Jan grandson 3100 1234 1
p3 Jan rent 7000 1235 1
p4 Feb rent 7000 1235 1
p5 Feb tvshop 399 9999 2
p6 Feb starbucks 5 9999 2

Creditcard
number company owner limit

c1 4059 VISA 1 4000
c2 3066 MASTER 2 2000
c3 1234 VISA 2 3000
c4 1235 VISA 3 10000
c5 9999 AE 3 400

Imports
id employee company date

i1 1 Daniel VISA 10.06.2000
i2 2 Petra AE 06.06.2000

Fig. 1. Example Database

Example 1 (Running Example). The example database shown in Figure 1 stores
credit card information: customers, their credit cards, purchases made with
credit cards (Purchase), and from which external database (recorded in the
company attribute) a batch of purchase tuples was imported, when and by whom
(Imports). For convenience, we show an identifier for each tuple in the instance
(e.g., p2). The query q shown in Figure 2 returns the months during which cus-
tomers with at least two credit cards exceeded their credit limit on some card.
To understand from which inputs of q the result tuple t2 (Joe,Feb) is derived,
a user needs access to the data provenance of the query and the ability to query
this information. For example, a user may be interested in knowing if some of
these over-drafts are caused by suspiciously low credit card limits. This question
can be answered by running a query over the provenance of q to retrieve tuples in
the result of q that depend on credit card tuples with low limit values (i.e., these
credit card tuples belong to the data provenance of the tuples to be returned).
Alternatively, if the user realizes that some names are spelled incorrectly in the
query result, she needs to understand where the name attribute values in the
query result have been copied from to trace this error. This requires access to
a different type of provenance that tracks the copying of information instead of
which inputs caused a tuple to appear in the query result.

1.1 Requirements for Provenance Systems

The example and discussion above motivates four requirements for relational
provenance systems. (Requirement 1) Support different types of provenance
with sound semantics. Information from different provenance types is often
needed to best understand the data and how it has been transformed. We would
consider a provenance type to have sound semantics, if it provably captures our
intuitive understanding of provenance. For example, the provenance of a query

Using SQL for Efficient Generation and Querying of Provenance Information 293

SELECT DISTINCT name , month

FROM

(SELECT month, creditc , SUM(amount) AS total

FROM purchase p

GROUP BY month, creditc) AS monthly ,

customer c,

creditcard cc

WHERE p.cc = cc.number

AND cc.owner = c.id

AND total > cc.limit

AND c.id IN (SELECT cc2.owner

FROM creditcard cc2

GROUP BY cc2.id

HAVING count(*) > 1)

Query Result
name month

t1 Waltraud Jan
t2 Joe Feb

Fig. 2. Example Query

result should be sufficient to derive this result through the query. (Require-
ment 2) Support provenance generation for SQL including complex features
such as nested subqueries and aggregation. The example query is relatively sim-
ple in comparison with queries used in data warehouse applications. A system
must support a large subset of SQL to be useful in practice. (Requirement 3)
Support complex queries over provenance information. Provenance is difficult to
interpret without the ability to extract parts of interest. For instance, even iden-
tifying for which tuples the provenance is interesting requires query support to
be feasible for large databases. Generally, users will want to use queries to specify
the characteristics of what provenance they want to see. Many interesting ques-
tions that can be answered using provenance data require the use of advanced
SQL-like features such as aggregation over the provenance. For example, Which
over-drafts are based on a large number of small purchases (high count, but low
average amount)? (Requirement 4) Support efficient generation and querying
of provenance for large database instances. Provenance can easily outgrow the
size of the database for complex queries. Unless a user explicitly requests all the
provenance, the system should efficiently generate only provenance that satisfies
the user’s request (by combining provenance generation with a user’s query over
the provenance). In our example, if a user is only interested in over-drafts due to
low credit limits (a query on provenance), then the system should not generate
provenance for all over-drafts.

1.2 State of the Art

The tremendous amount of work on relational provenance brings us close, but not
all the way, to achieve these requirements. We present the state-of-the-art along
the four dimensions introduced above and discuss how Perm has contributed to
each.

294 B. Glavic, R.J. Miller, and G. Alonso

(1) Support for Different Types of Provenance. The largest body of work
on relational provenance is on semantics. We have a rich literature on different
semantics, along with a rich literature comparing these semantics and analyzing
when they are useful [10]. Data provenance, which represents dependencies be-
tween a query’s output and input data, has been categorized based on the type
of dependency that is modeled. Why-provenance, intuitively, models which input
tuples are used to create an output tuple, though there are different ways to for-
malize this notion. Types of Why-provenance are the original Why-provenance
as pioneered by Buneman et al. [7], Lineage proposed by Cui et al. [12], and PI-
CS (Perm Influence contribution semantics) the original provenance semantics
supported by Perm [16].Where-provenance models where values in an output tu-
ple are copied from. Types of Where-provenance include the Where-provenance
introduced by Buneman et al. [7] and the C-CS semantics (Copy contribution
semantics) of Perm [16]. How -provenance augments Why-provenance with infor-
mation about how input tuples are used to create an output tuple. Provenance
polynomials [22,24] and later versions of the Trio [35] provenance model can
be classified as How -provenance. Provenance polynomials are the most general
form of annotation in the framework of Green et al. [22] that defines the positive
relational algebra for relations annotated with elements from a semiring (called
K-relations). Thus, provenance polynomials generalize all provenance semantics
that can be modeled as semirings such as the original Why-provenance and the
Trio-model [23]. Foster et al. [14] use the semiring model to annotate unordered
XML data and compute provenance for XQuery. Through an XML encoding of
annotated relations and XQuery encoding of relational algebra this approach
provides a type of attribute granularity Where-provenance. The semiring model
has been extended for aggregation [4] and several extensions for set difference
have been proposed [3,20,15]. Recently, Kostylev et al. [29] studied data an-
notated with more than one type of annotation within this framework. Several
other data provenance types have been presented in the literature that do not fall
directly under these categories. For example, causality-based provenance [30,9],
types inspired by program analysis [1,8], and transformation provenance [19]
(which operators of a query contribute to a result). Most provenance systems
implement one type of provenance. DBNotes [11,5,33] is an annotation manage-
ment system that uses Where-provenance [7] to propagate annotations. Trio [35]
is a database system with support for uncertainty and provenance. Boolean for-
mulas over tuple variables are used as provenance. Lineage was implemented in
the WHIPS data-warehouse prototype [12]. The update-exchange system Or-
chestra [21] uses provenance polynomials to record the provenance of updates
exchanged between peers. In principle, Orchestra also supports Why-provenance
and the model of Trio, because these provenance types can be extracted from
provenance polynomials. Green provides a provenance hierarchy showing how
this extraction can be achieved [23].

Perm’s Contribution. To the best of our knowledge, Perm is the first sys-
tem to support a representative set of provenance semantics including the rela-
tional adaptation of the Where-provenance [10] as defined by Buneman et al. [7],

Using SQL for Efficient Generation and Querying of Provenance Information 295

provenance polynomials [22], and new types of Why, Where, and How (defined
further throughout this chapter) that include a new form of transformation
provenance [19]. In contrast to Orchestra, generation of these provenance types is
supported natively instead of deriving them from a more expressive provenance
model. This enables us to use type-specific optimizations during provenance gen-
eration for more efficient execution. Perm also supports propagating user-defined
annotations based on Why semantics.

(2) Support for Provenance Generation for Complex SQL. DBNotes sup-
ports the SQL equivalent of unions of conjunctive queries (set-semantics) [11,5].
WHIPS computes Lineage for ASPJ (aggregate-select-project-join queries) and
set operations (union, intersection and set difference) [12]. Lineage was defined
for set-semantics, but extensions for bag-semantics were discussed by the authors.
Trio supports ASPJ queries with set operations though the released prototype has
stricter limitations (e.g., single aggregation in a query) [35]. Orchestra supports
union of SPJ queries and is the only approach to support recursion [21]. However,
the semiring model used by Orchestra has also been extended for aggregation [4].
In contrast to the Lineage and Perm Why-provenance models, which only record
provenance for each result tuple of an aggregation, this extension of the semirings
model attaches provenance to each aggregated value. This has the advantage of
enabling deletion propagation, but results in increased provenance size and a more
complex provenance model.

Perm’s Contribution. Like WHIPS, Perm supports ASPJ queries and set
operations. Perm is the first provenance system to support nested and correlated
subqueries.

(3) Support for Complex Queries over Provenance Information. Most
systems do not represent provenance relationally. To query provenance, they
provide special query languages over their provenance data model. The query
language of DBNotes, pSQL [11,5], provides some support for querying annota-
tions (provenance) which is equivalent to being able to pose SPJ queries with
unions on the provenance. Orchestra supports ProQL [25], a query language for
the graph representation of provenance polynomials for relations derived though
schema mappings. ProQL queries return a subgraph of the input based on path
expressions used in the query and optionally evaluate the provenance polynomial
of a tuple in a certain semiring, i.e., change the type of annotations attached
to tuples.1 The language does not support aggregation directly. However, some
types of aggregation can be simulated using semiring evaluations. TriQL [34], the
query language of Trio, has a conditional language construct that evaluates to
true if tuples from two specified relations are connected by lineage. WHIPS [12]
does not introduce a new query language for provenance. SQL queries can be
used to query provenance generated by the system. However, the system rep-
resents provenance as a list of relations which makes querying this information
more complicated. WHIPS does not associate data with its provenance.

1 This feature can be used to derive other provenance types from the polynomials.

296 B. Glavic, R.J. Miller, and G. Alonso

Perm’s Contribution. Perm uses a relational representation for provenance
that models the connection between a query result tuple and its provenance.
Hence, Perm supports full SQL for querying data associated with provenance.

(4) Support for Large Databases. DBNotes [5] stores provenance annota-
tions for a relation in additional attributes that are added to the schema of this
relation. The system generates provenance during the execution of a pSQL query.
Such a query is translated into a single SQL query over a relational encoding
of annotated relations. This allows the system to rely on a DBMS to optimize
the execution. However, the SQL query results have to be post-processed to
transform them into DBNotes’s data model which introduces a potential per-
formance bottleneck. A query in Orchestra’s query language ProQL [25] is im-
plemented by running several queries over a materialized relational encoding of
a provenance graph. Orchestra produces provenance during update-exchange.
Update-exchange and provenance generation is expressed in datalog extended
with skolem functions and implemented in a Java middleware which evaluates
the datalog rules over a relational DBMS. Even though some care is taked to
avoid shipping data between Java and the DBMS, using several SQL queries to
implement a single ProQL query and full materialization of provenance informa-
tion limits the scalability of the approach. Trio [2] generates provenance eagerly
during query execution. The system materializes the results of each query and
creates a separate relation to store its provenance as a mapping between input
and output tuple identifiers. Trio is implemented as a Python middleware and a
set of PostgreSQLUDFs (user-defined functions). WHIPS [12] implements prove-
nance generation as stored procedures that split a query q into subexpressions
and execute one or more SQL queries to retrieve the Lineage of each segment.
This separation into multiple queries limits the space of possible optimizations
that the underlying DBMS can apply.

Perm’s Contribution. Provenance generation in Perm is on-demand, mean-
ing that Perm supports simple SQL language extensions (SQL-PLE) to let a
user specify when (and what) provenance to compute. In Perm, a query over
provenance information would usually include a subquery that generates the
provenance. Thus, provenance generation and querying are entangled within a
single SQL-PLE query that is rewritten by the system into a single SQL query.
This approach allows us to take full advantage of the optimizer of the underlying
DBMS. For SQL queries without nesting, we have shown experimentally that the
optimizer can (and does) significantly improve the performance of provenance
queries by, e.g., pushing selections over provenance data into the provenance
generation. For nested subqueries, we present a set of novel un-nesting and de-
correlation optimizations tailored for provenance generation.

In summary, given the maturity of data provenance models, with Perm we
sought to build upon the state-of-the-art in provenance systems to provide a com-
plete relational provenance management system that supports efficient querying
and generation of provenance. Our approach focuses on robust SQL support (in-
cluding correlated subqueries) and full support for querying provenance using
SQL. Approaches that generate and store the complete provenance of a query

Using SQL for Efficient Generation and Querying of Provenance Information 297

Semantics Category Granularity
PI-CS Data (Why) Tuple
C-CS Data (Where) Tuple

Transformation Provenance Transformation Algebra Operator
Where Data (Where) Attribute Value

Polynomials Data (How) Tuple

Fig. 3. Supported Provenance Types

during execution incur large storage costs and runtime overheads, and, thus
may not be applicable to large databases and/or complex queries. We call such
approaches exhaustive to distinguish them from approaches that only generate
provenance on-demand. The main innovation of Perm is to represent a query’s
result and provenance in a single relation which is generated on-demand by
rewriting the original query into a query producing this representation. In the
remainder of this chapter, we overview how this simple idea enabled the de-
velopment of a robust relational provenance system that achieves the advances
towards all four requirements we have presented.

We give an end-to-end overview of our approach in Section 2. Afterwards, we
present three of the provenance types supported by Perm in detail and discuss
how they were implemented within the system (Sections 3 to 5). For each prove-
nance type, we present the formal definition, the algebraic (and SQL) rewrites
used to generate its relational representation, and present some of the optimiza-
tions that can be applied in a provenance system like Perm.

2 The Perm Approach

We now present an overview of the Perm system focusing on its relational prove-
nance representation (Section 2.1), query rewrite techniques (Section 2.2), and
SQL language extensions (Section 2.3). Perm represents provenance information
as relations generated and queried on-demand using standard SQL queries. If
the users requests one of the provenance types supported by Perm for a query
q using the SQL-PLE language extension, the system transforms q into an SQL
query that returns the provenance of q in addition to the regular results of q.
Perm supports the provenance types shown in Figure 3. The initial version sup-
porting PI-CS provenance (Perm Influence contribution semantics, a form of
Why-provenance) for ASPJ queries and set operations was introduced by Glavic
and Alonso [17] and later extended for nested and correlated subqueries [18].
Transformation provenance, provenance that models which operators of a query
influence a query results, was introduced in TRAMP [19], an extension of Perm
for debugging data exchange scenarios. In this chapter, we also present Copy
contribution semantics, a Where-provenance type supported by Perm, and sev-
eral optimizations for PI-CS [16]. To demonstrate the flexibility of our approach
we have also implemented the original Where-provenance [7] and provenance
polynomials [22] in Perm. As mentioned in the introduction, provenance polyno-

298 B. Glavic, R.J. Miller, and G. Alonso

Optimizer

Query
Plan

Execution
Engine

Executor

Query
Results

a prov_a prov_b

123 'hello' 2.45

445 'test' 1.333

Query
Rewriter

Rewritten
Query Tree

Perm
Module

Parser

Query
Tree

Analyser

Parser &
Analyzer

SELECT
PROVENANCE *

FROM ...

JDBC
User

Fig. 4. Perm Architecture

mials generalize several other provenance semantics. We will discuss how PI-CS
relates to this model in Section 3.6.

Perm is implemented as a modified PostgreSQL engine, extending its SQL
dialect with provenance features. Provenance generation in Perm is light-weight
and lazy: no provenance is generated unless explicitly requested. Thus, if the
provenance features of Perm are not used, the system behaves like a normal
Postgres server - clients will observe no overhead in runtime 2 or storage space.
Figure 4 shows the architecture of the system. The parser and analyzer module of
PostgreSQL (extended to recognize SQL-PLE) parse incoming SQL queries and
transform them into an internal tree representation. The output of the analyzer
module is passed to the Perm rewrite module. This module implements the
query rewrite rules as transformations on query trees. The rewritten query tree
produced by the Perm module is handed over to the original Postgres optimizer.
From the optimizer’s point of view the input it retrieves is a regular SQL query.

2.1 Provenance Representation

Perm represents the provenance of a query q as a single relation that contains
both the original query results of q and its provenance. Provenance information
is attached to a query result tuple by extending the tuple with additional at-
tributes that are used to store provenance information. Regular result tuples are
duplicated if necessary to represent the complete provenance.
Data Provenance: PI-CS and C-CS, the two data provenance semantics de-
veloped for Perm, represent provenance as so-called witness lists. A witness-list
for a query is a list of input tuples that were used together to derive an output
tuple; one from each input relation of the query (leaves of the algebra tree) or
the special value ⊥ which indicates that no tuple from the relation at this leaf of

2 Except for an additional traversal of the query tree to search for SQL-PLE constructs.

Using SQL for Efficient Generation and Querying of Provenance Information 299

the tree contributed to the output tuple. The relational representation of PI-CS
and C-CS appends all attributes from the relations accessed by the query to the
query’s result schema. The additional attributes in the provenance representa-
tion are used to extend a result tuple with all tuples from one of its witness
lists. Thus, tuples with more than one witness list in their provenance are du-
plicated and each duplicate is paired with the relational encoding of one witness
list. To distinguish between regular result attributes and provenance attributes,
the later are identified by a prefix and the name of the relation they are derived
from (adding a distinguishing identifier for relations that are accessed more than
once by the query). The special value ⊥ used in witness lists is modeled as NULL
values in the representation.
Transformation Provenance: Transformation provenance models which parts
of a query (that is, which operator) contributed to an output tuple. Provenance
is represented as a single attribute of either type text or XML that stores the
SQL string of the query (or an XML representation thereof) with the transfor-
mation provenance modeled as tags (<NOT>...</NOT>) that surround parts of
the query that did not contribute to a result tuple. We have introduced the XML
representation to enable query access to transformation provenance (using the
XSLT support of PostgreSQL).

Example 2 (Provenance Representation). Consider the query shown in Figure 5
evaluated over the example database and its PI-CS and transformation prove-
nance. The provenance attribute names for PI-CS are given in a separate table
to simplify the exposition. Tuple t2 in the result of the query was derived by
joining tuple u2 with tuples c2 and c3. Thus, the PI-CS provenance of tuple t2
consists of two witness lists < u2, c2,⊥> and < u2, c3,⊥>. These are represented
as two tuples in the relational representation by duplicating t2 and pairing each
duplicate with the tuples from one of the witness lists. Tuple t1 is derived from
the left input of the union without any influence from its right input. Therefore,
the right input is enclosed in a NOT tag in the transformation provenance of t1.

The provenance representation used in Perm has several advantages. (1) Prove-
nance is represented as a standard relation, that can be stored as a view or
queried using SQL. Even more important, the system can often avoid generat-
ing provenance that will be filtered out in later stages of a query using the DBMS
optimizer (see Section 2.2). (2) Representing data provenance as complete tuples
and directly associating a query’s regular result data with its provenance allows
a user to understand how they relate to each other and enables queries that
make use of this information.

However, these advantages come at the price of verbosity and in some cases
loosing the ability to run queries over the regular results. The verbosity is usu-
ally unproblematic, because the user can run queries over this information to
extract parts of interest and instruct the system to only use certain attributes
as provenance instead of complete input tuples. The duplication of regular re-
sult tuples is necessary to be able to pair them with their complete provenance,
but it may restrict the execution of normal queries over this relation (i.e., re-
sult tuple multiplicities may be different from the multiplicities of the original

300 B. Glavic, R.J. Miller, and G. Alonso

(SELECT name

FROM customer c JOIN creditcard cc

ON (c.ssn = cc.owner))

UNION

(SELECT employee FROM imports);

Query Result
name

t1 Gert
t2 Waltraud
t3 Joe
t4 Daniel
t5 Petra

PI-CS Provenance
customer creditcard imports

name p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11
t1 Gert 1 Gert 34 4059 VISA 1 4000
t2 Waltraud 2 Waltraud 65 3066 MASTER 2 2000
t2 Waltraud 2 Waltraud 65 1234 VISA 2 3000
t3 Joe 3 Joe 19 1235 VISA 3 10000
t3 Joe 3 Joe 19 9999 AE 3 400
t4 Daniel 1 Daniel VISA 10.06.2000
t5 Petra 2 Petra AE 06.06.2000

Attribute Names
alias attribute name
p1 prov customer ssn
p2 prov customer name
p3 prov customer age

p4 prov creditcard number
p5 prov creditcard company
p6 prov creditcard owner
p7 prov creditcard limit

p8 prov imports id
p9 prov imports employee
p10 prov imports company
p11 prov imports added

Transformation Provenance
name trans prov

t1 Gert

SELECT c.name

FROM customer c JOIN creditcard cc

ON c.ssn = cc.owner

UNION

<NOT >SELECT imports.employee

FROM imports </NOT >

Fig. 5. Provenance Representation

query). However, the original result multiplicities can be reconstructed from the
provenance and input multiplicities if needed.

2.2 On-demand Provenance Generation Using Query Rewrites

The research underlying Perm has demonstrated that SQL is powerful enough to
express the computation of provenance for a large subset of queries expressible in
SQL. The approach supports aggregations, set operations, nested or correlated
subqueries, and user-defined functions. We do not support non-deterministic
functions that return different results for the same input in the scope of one
query. For example, a random number generator is a non-deterministic function.

Requesting the provenance of a query q through the system’s SQL extensions
(see Section 2.3) instructs Perm to rewrite q into a standard SQL query that
returns one type of provenance for q using the provenance representation intro-
duced in Section 2.1. The query rewrites for each provenance type were developed
following the process shown in Figure 6. (1) We state a provenance type’s se-
mantics as a declarative definition and define a relational representation. This
approach was chosen because correctness criteria one would intuitively expect to
hold for provenance are easily stated declaratively. For instance, for data prove-

Using SQL for Efficient Generation and Querying of Provenance Information 301

Declarative
Definition

Alegebraic
Rewrites

SQL
Rewrites

proven
to generate

canonical
translation

Relational
Representation

define

1
derive

32

Fig. 6. SQL Rewrite Development Process

nance, the provenance of a tuple t from the result of a query q should contain suf-
ficient information to produce the tuple t. (2) From the declarative definition we
derive algebraic rewrites which transform a query into a provenance-generating
query and prove their correctness. (3) A canonical translation is applied to trans-
late the algebraic rewrites into SQL rewrites.

The seamless integration of provenance generation as an SQL language feature
has many advantages. We can provide full SQL query support for provenance in-
formation (Requirement 3). The rewrite rules are unaware of how the provenance
attributes of their input were produced. Thus, they can be used to propagate
provenance information that was created manually or by another provenance
management system. A query over provenance data is implemented as a regular
SQL query with a subquery that implements the provenance generation. Thus,
we fully utilize the DBMS optimizer to speed up provenance computation by,
e.g., pushing selections and projections applied by a query into the provenance
generation (Requirement 4). Since optimizing provenance generation is still in
its infancy, this is a feasible approach for efficient provenance generation and
querying (e.g., we can efficiently compute the PI-CS provenance of the TCP-H
benchmark queries for a 1GB TCP-H instance [16]).

2.3 SQL Language Extension

The provenance language extension (SQL-PLE) of Perm enriches SQL with ad-
ditional keywords to request provenance, control how far to trace provenance,
and to inform the system about existing provenance information. The keyword
PROVENANCE is employed in the SELECT clause of a query q to instruct Perm to
compute the provenance of q. An optional ON CONTRIBUTION modifier is used to
choose the provenance type that is produced (PI-CS is the default). For example,
the query below returns the PI-CS provenance of the query from Figure 2.

SELECT PROVENANCE DISTINCT name , month

FROM (SELECT month, creditc , SUM(amount) AS total

...

Note that all original SQL features provided by PostgreSQL are not affected
by the language extension, and even more important, they can be used in com-
bination with provenance computation. Given the provenance representation of
Perm this enables complex queries that filter provenance based on properties
of the input tuples in the provenance, the results of the query, or both. This
type of query functionality generalizes what has been called backward (track the

302 B. Glavic, R.J. Miller, and G. Alonso

provenance of an output) and forward (which outputs have a certain input in
their provenance) provenance queries in related work [6,27,26].

Example 3 (Querying Provenance). Assume the user expected the running ex-
ample query to return less credit over-drafts. Her assumption is that some over-
drafts are caused by credit card limits which have been recorded too low. The
user runs the following query to determine which over-drafts are caused by (have
tuples in their provenance with) suspiciously low credit card limits (say $500):

SELECT *

FROM (SELECT PROVENANCE DISTINCT name , month

...

HAVING count(*) > 1)) AS orig

WHERE prov creditcard limit < 500;

The default behavior is to generate the provenance of a complete query by tracing
which tuples in a query’s output are affected by which tuples in the query’s input.
Perm also supports limiting the provenance generation to parts of a query to
trace the effect of intermediate query results instead of the input relations. The
keyword BASERELATION is appended to an item in the FROM clause to limit how far
back the provenance is traced.

Example 4 (Limit Provenance Generation). Retrieving the full provenance of
the running example query may return a large number of tuples, because each
aggregated monthly amount (subquery monthly) can depend on a large number
of individual purchases. Questions like the one from Example 3 can be answered
without information about the influence of each individual purchase tuple. The
user can mark the subquery monthly with the BASERELATION keyword to only
investigate the effect of the aggregated monthly amounts.

SELECT PROVENANCE DISTINCT name , month

FROM (SELECT month, creditc , SUM(amount) AS total

FROM purchase p

GROUP BY month, creditc) BASERELATION AS monthly ,

...
Perm can handle existing provenance information that was not produced by the
system itself as long as (1) it is stored in additional attributes of tuples following
the representation used by Perm and (2) the system is made aware of which
attributes store provenance information (by appending the keyword PROVENANCE

followed by a list of attribute names to the FROM-clause item).

Example 5 (External Provenance). The imports relation from the running ex-
ample stores from which data sources each purchase tuple is imported. This is
a type of provenance information for the purchase relation. Joining the imports
relation with the purchase relation and using the PROVENANCE keyword in the
FROM clause, the user makes Perm aware of the existence of the additional prove-
nance data. The system will treat this provenance in the same way as provenance
generated by the system itself. The modified example query is shown below.

Using SQL for Efficient Generation and Querying of Provenance Information 303

SELECT PROVENANCE DISTINCT name , month

FROM (SELECT month, creditc , SUM(amount) AS total

FROM (SELECT *

FROM purchase , imports

WHERE id = import

) PROVENANCE (employee, company, date) AS p

GROUP BY month, creditc) AS monthly ,

...

3 Perm Influence Contribution Semantics (PI-CS)

This and the following sections discuss the provenance types supported by Perm
in more depth. Recall that we follow the process shown in Figure 6 to develop
provenance semantics that are implemented as SQL query rewrites. The PI-
CS provenance semantics was developed based on Lineage [12]. Lineage defines
provenance for single operators declaratively. This definition is extended for
queries with more than one operator by assuming transitivity. Lineage represents
the provenance of a tuple t from the result of a query q as a list of relations; each
element in the list is a subset of one input relation of the query. PI-CS also uses
a declarative per-operator definition and transitivity, but represents provenance
as witness-lists, defines a relational representation (see Section 2.1), and extends
the declarative definition of the semantics with additional constraints to handle
outer-joins, set difference, and nested subqueries correctly. For the proofs of the
theorems we present in this section see Glavic [16].

3.1 Background and Notation

Before discussing the details of PI-CS, we present the relational algebra variant
used in Perm and introduce notational conventions. The algebra (shown in Fig-
ure 7) is an extended relational algebra that operates on bags (multi-sets). We
use tn to denote that tuple t has the multiplicity n (number of duplicates) with
the convention that a tuple with multiplicity smaller than one is not present
in a relation. Let q be a query. We use [[q]] (and sometimes Q) to denote the
result of evaluating q and Q to denote its schema (the same notation is used for
relations). The projection of a tuple t on a list A of attributes (or expressions)
is denoted as t.A. Projection (Π) projects its input on a list of expressions over
attributes, constants, functions and renaming (represented by a→ b). Selection
(σ), joins (��, ��, . . .), and set operations are defined as usual. Duplicate elim-
ination (δ) returns the input relation with all tuple multiplicities set to one.
Aggregation (α) groups its input on a list G of grouping expressions and com-
putes the aggregation functions from list agg for each group. Here Bi denotes
the list of input attributes for aggregation function aggi. Each result tuple of an
aggregation contains the grouping expression values and the aggregation func-
tion results (resi) for one group. The value null is represented as ε and we write
null(q) for a tuple of null-values with schema Q. Due to space limitations we do

304 B. Glavic, R.J. Miller, and G. Alonso

[[ΠA(q)]] ={tn | n =
∑

um∈Q∧u.A=t

m} [[σC (q)]] ={tn | tn ∈ Q ∧ t |= C}

[[αG,agg(q)]] ={(t.G, res1, . . . , resm)1 | tn ∈ Q ∧ ∀
i∈{1,m}

: resi = aggi(ΠBi(σG=t.G(q))}

[[q1 �
C q2)]] ={(t1 	 t2)
n×m | t1n ∈ Q1 ∧ t2

m ∈ Q2 ∧ (t1 	 t2) |= C}
[[q1 �
C q2]] ={(t1 	 t2)

n×m | t1n ∈ Q1 ∧ t2
m ∈ Q2}

∪ {(t1 	 null(q2))
n | t1n ∈ Q1 ∧ (� ∃t2 ∈ Q2 : (t1 	 t2) |= C)}

[[q1 ∪ q2]] = {tn+m | tn ∈ Q1 ∧ tm ∈ Q2} [[q1 ∩ q2]] = {tmin(n,m) | tn ∈ Q1 ∧ tm ∈ Q2}
[[q1 − q2]] = {tn−m | tn ∈ Q1 ∧ tm ∈ Q2} [[δ(q)]] ={t1 | tn ∈ Q}

Fig. 7. Algebra

not include the algebra for nested subqueries [18], but instead present an exam-
ple. The SQL query SELECT * FROM R WHERE R.a IN (SELECT b FROM S) can be
written as σa IN Πb(S)(R). We use < e1, . . . , en > to denote a list with elements
e1 to en and l1 	 l2 to denote the concatenation of lists l1 and l2.

3.2 Declarative Definition

We start by stating the properties of PI-CS as a declarative definition and define
a relational representation for this provenance type. The declarative definition
allows us to directly state the properties we expect to hold for PI-CS. The PI-CS
provenance for a result tuple of a query q is a subset of the multiset of potential
witness lists for q - a set with all possible combinations of input tuples from the
query and the special value ⊥. Recall from Section 2.1 that ⊥ denotes that no
tuple from a specified relation participates in a witness list.

Definition 1 (Potential Witness Lists). For a query q with inputs q1, . . . , qn
the bag W(q) of potential witness lists for q is defined as:

W(q) = {< t1, . . . , tn >
m1×...×mn | ∀

i∈{1,n}
: tmi

i ∈ Qi ∨ (ti =⊥ ∧mi = 1)}
We use w[i] to denote the ith component (tuple) of a witness list w. A witness list
w′ subsumes a witness list w (w ≺ w′) iff w can be derived from w′ by replacing
some tuples with ⊥: (∀i : w[i] = w′[i] ∨ w[i] =⊥) ∧ (∃i : w′[i] �=⊥ ∧w[i] =⊥).

The declarative definition for PI-CS defines the provenance of a tuple t from
the result of a single algebra operator op as a subset of W(op) that fulfills the
following four conditions. (1) Evaluating op over the provenance of t returns t.3

This guarantees that the provenance of t is sufficient to produce t. (2) Each
witness list w in the provenance contributes to the result, that is, evaluating
the operator over w returns a non-empty result. (3) Subsumed witness lists are
excluded from the provenance. This condition is necessary to produce precise

3 Glavic [16] defines a semantics for query evaluation over sets of witness lists.

Using SQL for Efficient Generation and Querying of Provenance Information 305

provenance for outer-joins and set union. (4) The provenance is the maximal
multi-set with these properties, meaning that no witness lists that contribute to
t are left out. The provenance of a query is defined by recursively applying the
per-operator definition to each operator of the query.

Definition 2 (Declarative Definition of PI-CS). Let op be an algebra op-
erator with inputs q1, . . . , qn and t a tuple in the result of op (tx ∈ [[op]]). A
multi-set P ⊆ W(op) is the PI-CS provenance PI(op, t) of t iff:

[[op(P)]] = {tx} (1)

∀w ∈ P : [[op(w)]] �= ∅ (2)

¬∃w,w′ ∈ P : w ≺ w′ (3)

¬∃P ⊂ P ′ ⊆ W(q) : P ′ |= (1), (2), (3) (4)

The PI-CS provenance PI(q, t) of a tuple t from the result of a query q is
defined by transitivity over PI(op, t) for each operator op in q.

For simplicity, we left out additional conditions applied in the definition to
handle nested subqueries and adapted the definition slightly (without changing
its semantics) [16]. We define the relational representation of the PI-CS prove-
nance for a query q which combines each tuple t in Q with all witness lists in
PI(q, t).

Definition 3 (Relational Representation). The relational representation
QPI for the PI-CS provenance of a query q is defined as:

QPI = {(t 	 w[1]′ 	 . . . 	 w[n]′)m | tp ∈ Q ∧ wm ∈ PI(q, t)}

w[i]′ =

{
w[i] if w[i] �=⊥
null(qi) else

3.3 A Compositional Semantics

The declarative definition does not provide a direct way to compute provenance
except for the brute force method of evaluating the conditions of the definition
for each provenance candidate (subset of W(q)). A more algorithmic approach
is needed to simplify the development and correctness proofs for the algebraic
rewrites. We derive compositional rules that define the provenance of an algebra
operator based on the provenance of its inputs and prove that these rules are
equivalent to the declarative definition of PI-CS.

Definition 4 (Compositional Semantics for PI-CS). Figure 8 shows a
compositional definition of PI-CS. Here ⊥ (q) denotes a witness list for q with
⊥ values only.

Note that we omitted the rules for right and full outer-join and for nested sub-
queries [16]. The following theorem states the equivalence between the declara-
tive definition and the compositional rules.

306 B. Glavic, R.J. Miller, and G. Alonso

PI(R, t) = {< t >n| tn ∈ R}
PI(σC(q1), t) = PI(q1, t)

PI(ΠA(q1), t) = {wn | wn ∈ PI(q1, u) ∧ u.A = t}
PI(αG,agg(q1), t) = {wn | wn ∈ PI(q1, u) ∧ u.G = t.G} ∪ {<⊥>| Q1 = ∅ ∧ | G | = 0}
PI(q1 �
C q2, t) = {(w1 	 w2)

n×m | wn
1 ∈ PI(q1, t.Q1) ∧ wm

2 ∈ PI(q2, t.Q2)}

PI(q1 �
C q2, t) =

{
{(w 	⊥ (q2))

n | wn ∈ PI(q1, t.Q1)} if t �|= C

PI(q1 �
C q2, t) else

PI(q1 ∪ q2, t) = {(w 	⊥ (q2))
n | wn ∈ PI(q1, t)} ∪ {(⊥ (q1) 	 w)n | wn ∈ PI(q2, t)}

PI(q1 ∩ q2, t) = {(w1 	 w2)
n×m | wn ∈ PI(q1, t) ∧ wm

2 ∈ PI(q2, t)}
PI(q1 − q2, t) = {(w 	⊥ (q2))

n | wn ∈ PI(q1, t)}

Fig. 8. Compositional Semantics of PI-CS

Theorem 1 (Equivalence with Declarative Semantics). The declarative
and compositional definitions of PI-CS are equivalent.

Example 6. Consider the query from Figure 5 expressed in relational algebra as
q = Πname(customer ��ssn=owner creditcard)∪Πemployee(imports). Recall from
Example 2 that the PI-CS provenance of tuple t2 is {< u2, c2,⊥>,< u2, c3,⊥>}.

3.4 Algebraic Rewrites

Based on the compositional semantics we developed algebraic rewrite rules that
generate the relational representation of PI-CS by propagating provenance tuples
through the rewritten query. These rewrite rules are defined for single algebra op-
erators and are applied recursively to rewrite a query. Each rule modifies both
the structure of the algebra expression and an auxiliary data structure called
the provenance attribute list. The provenance attribute list is the schema for the
relational representation of a witness list (attributes storing provenance informa-
tion). Using single operator rules allows us to support user created provenance
information as long as it uses the same provenance representation as Perm and
to limit provenance generation to parts of a query (see Example 4).

Definition 5 (Algebraic Rewrite Rules for PI-CS). Let q be a query. The
algebraic rewrite rules for PI-CS shown in Figure 7 transform q into a query
q+ that returns the relational representation of the PI-CS provenance for q.
P(q+) denotes the list of provenance attributes for query q+, P (R) is the list
of provenance attribute names for relation R, and =ε is an equality comparison
operator that considers null values to be equal.

Consider the rewrite rules for join (R6) and aggregation (R4) as an example
of how these rules work. The rewrite rule for join rewrites the left and right
input of the join and applies a projection to the result to achieve the correct

Using SQL for Efficient Generation and Querying of Provenance Information 307

Structural Rewrite

q = R : q+ = ΠR,R→P (R)(R) (R1)

q = σC(q1) : q+ = σC(q1
+) (R2)

q = ΠA(q1) : q+ = ΠA,P(q+)(q1
+) (R3)

q = αG,agg(q1) : q+ = ΠG,agg,P(q+)(αG,agg(q1) �
G=εX ΠG→X,P(q1+)(q1
+)) (R4)

q = δ(q1) : q+ = q+1 (R5)

q = q1 �
C q2 : q+ = ΠQ1,Q2,P(q+)(q1
+ �
C q2

+) (R6)

q = q1 �
C q2 : q+ = ΠQ1,Q2,P(q+)(q1
+ �
C q2

+) (R7)

q = q1 ∪ q2 : q+ =(q1
+ × null(P(q2

+))) ∪ (ΠQ1,P(q+)(q2
+ × null(P(q1

+)))) (R8)

q = q1 ∩ q2 : q+ =ΠQ1,P(q+)(δ(q1 ∩ q2) �
Q1=εX ΠQ1→X,P(q1+)(q1
+) (R9)

�
Q1=εY ΠQ2→Y,P(q2+)(q2
+))

q = q1 − q2 : q+ =ΠQ1,P(q+)(δ(q1 − q2) �
Q1=εX ΠQ1→X,P(q1+)(q1
+) (R10)

× null(P(q2
+)))

Provenance Attribute List Rewrite

P(q+) =

⎧⎪⎨⎪⎩
P(q1

+) if q = σC(q1) | ΠA(q1) | αG,agg(q1) | δ(q1)
P (R) if q = R

P(q1
+) 	 P(q2

+) else

Fig. 9. PI-CS Algebraic Rewrite Rules

308 B. Glavic, R.J. Miller, and G. Alonso

QB

SELECT A

FROM q1 ... qn
WHERE C

→
QB+

SELECT A, P(q+)
FROM q1

+ ... qn
+

WHERE C;

Fig. 10. SQL Query Block Rewrite

ordering between regular result attributes and provenance attributes. The list of
provenance attributes for a rewritten join is the concatenation of the provenance
attribute lists of its input. The rewrite rule for aggregation joins the original
aggregation with the rewritten input on the group-by attributes. As can be seen
in Figure 8, the provenance of an output tuple t from an aggregation contains the
witness lists for all tuples from the input that have the same group-by attribute
values as t, as precisely these tuples were used to compute t. The provenance
attribute list for an aggregation is the provenance attribute list of its input. We
refer the interested reader to Glavic [16] for detailed descriptions of the these
rewrites. We presented a generic rewrite strategy [18] (called the Gen strategy)
applicable for all types of nested subqueries by generating W(q) for the nested
subquery using a cross product and filtering out tuples that do not belong to
the provenance using additional nested subqueries and correlation. The following
theorem states the correctness of the rewrite rules for PI-CS.

Theorem 2 (Rewrite Rules Correctness). Given a query q, the query q+

derived after Definition 5 generates the PI-CS provenance of q: Q+ = QPI

3.5 SQL Rewrites

In a final step, the algebraic rewrites are translated into SQL rewrites. First,
we define a canonical translation between SQL queries and relational algebra
expressions. We then classify types of SQL query blocks based on the algebra
operators used in their translation. Finally, we develop an SQL rewrite rule
for each of these block types. A block is translated into a relational algebra
expression q, rewritten into expression q+, and then q+ is translated back into
SQL. The SQL rewrite rule is then inferred from the original and rewritten SQL
query.

Example 7 (SQL Rewrite Rules for PI-CS). Consider an SPJ (select-project-
join) query block without aggregations as shown on the left of Figure 10. Such
a query block is translated into an algebra expression q that is a list of joins
followed by a selection and a projection. Applying the algebraic rewrites, then
pulling and merging projections, we derive a rewritten expression q+ which can
be translated back into a single query block (shown as QB+ in Figure 10).

3.6 Relationship with Provenance Polynomials

Recall from the introduction that the provenance polynomials introduced by
Green et al. [22] generalize several other provenance semantics for positive rela-

Using SQL for Efficient Generation and Querying of Provenance Information 309

tional algebra (USPJ queries). A natural question to ask is how PI-CS is related
to this model. In contrast to Why-provenance [7], the PI-CS provenance of a
tuple can not be derived from its provenance polynomial. The reason is that the
structure of a witness list depends on the structure of the algebra expression
q and this structure is not encoded in a provenance polynomial. However, the
provenance polynomial of a tuple can be derived from its PI-CS provenance.
Note that a polynomial can be written as a sum of products (called monomials).
We transform the PI-CS provenance of a tuple t into a provenance polynomial
by turning each witness list into a monomial and summing up the monomials
for all witness lists of t.

Theorem 3 (Derive Provenance Polynomials from PI-CS). Let N[X](q, t)
denote the provenance polynomial for a tuple t in the result of a query q derived
using the algebra with annotation propagation from Green et al. [22]. There ex-
ists a surjective function h from bags of witness lists to provenance polynomials
so that for every positive relational algebra expression q and tuple t ∈ Q the
following holds:

h(PI(q, t)) = N[X](q, t)

There exists no function h′ such that h′(N[X](q, t)) = PI(q, t) for every such q
and t.

Proof. We construct such a function by deriving a monomial from a witness list
w by multiplying all tuples from w (ignoring ⊥ values) and summing up the
monomials for all witness lists of a tuple. The equivalence of h(PI(q, t)) to N[X]
can be proven by induction over the structure of an algebra expression.

h(PI(q, t)) =
∑

wm∈PI(q,t)

⎛⎝ ∏
i∈{1,n}∧w[i] �=⊥

w[i]

⎞⎠
The non-existence of h′ is disproven by contradiction (see [19] for a similar proof).

Example 8. Reconsider the query q from Example 6. The result tuple t2 was
derived by joining the customer tuple u2 with the credit card tuples c2 and c3.
Thus, the PI-CS provenance of t2 is {< u2, c2,⊥>,< u2, c3,⊥>}. The result of
h(PI(q, t)) is u2 × c2 + u2 × c3, the provenance polynomial for t2.

As mentioned before, the extension of provenance polynomials for aggregation
stores provenance for individual aggregated values. The provenance attached to
an attribute value by this model encapsulates both the influence of input tuples
and the computation of the aggregation function result. Thus, it is not surprising
that this type of provenance can not be derived from the PI-CS provenance.
Similarly, some extensions of semiring provenance for set difference are more
informative than PI-CS with regard to this operation [15,3,15]. Whereas PI-CS
only considers the left input of a set difference to contribute to the result, m-

310 B. Glavic, R.J. Miller, and G. Alonso

semirings [15] capture the positive influence of the right input in cases such as
q = R− (S − T). 4

3.7 Optimizations

The rewrites implemented in Perm use several optimizations to speed up the
execution of provenance queries. For queries without nested subqueries a stan-
dard DBMS optimizer will carry out most of the possible optimizations for us,
e.g., by pushing down selections over provenance data into the provenance gen-
eration. For nested subqueries, the Gen strategy (see Section 3.4) leads to very
complex nested subqueries that are hard to de-correlate and un-nest. Such un-
nesting is necessary to avoid cross-products in the outer query. Therefore, most
of the optimizations for PI-CS target this type of query. Glavic and Alonso [18]
presented two simple un-nesting strategies to optimize provenance computation
for specific types of nested subqueries. The current version of Perm [16] extends
this approach and applies a wide range of un-nesting and de-correlation tech-
niques inspired by approaches for optimizing regular nested queries. For instance,
we de-correlate correlated aggregation subqueries by using group-by and joins,
and inject the outer-query block into a nested subquery to de-correlate uni-
versally quantified subqueries (ALL) with inequality predicates [28,13,32]. New
de-correlation strategies can be applied in provenance computation that are
not applicable to regular queries. For instance, under certain circumstances a
correlated existentially quantified subquery (EXISTS) can be rewritten into a
join without the need to eliminate duplicates as would be required for regular
queries. Rewrite strategies are chosen heuristically, because at the level we ap-
ply the query rewrites we do not have access to cost estimates. We always prefer
un-nesting and de-correlation techniques to other types of rewrites. This is a rea-
sonable heuristic for provenance computation because avoiding the Gen strategy
is almost always beneficial. Experimental results indicate that this heuristic can
drastically improve performance [16].

3.8 Query Rewrite Example

We now demonstrate how Perm computes the provenance of the running exam-
ple query (Figure 2) as specified in Example 4. Recall that the user decided to
limit provenance generation to not trace into subquery monthly. The result of
the SQL rewrites applied by Perm for this query is shown in Figure 11. The
SELECT clause contains additional attributes to store the relational provenance
representation. For simple relation accesses (customer and creditcard relations
in the FROM clause of the outer query) these attributes are just renamed versions
of the attributes of these relations (e.g., c.ssn AS prov_customer_ssn). The same
applies for the monthly subquery, because the user has instructed Perm to limit

4 In this example, a tuple t from relation T can contribute to a result tuple, because
it may cause a tuple s from S to not appear in the result of (S − T) which in turn
causes a tuple r from R to be in the result of q.

Using SQL for Efficient Generation and Querying of Provenance Information 311

Provenance Attributes
for Nested Subquery

Provenance Attributes
for "monthly" Subquery

Provenance Attributes
for "customer"

Provenance Attributes
for "creditcard"

Unnested IN-Subquery
+ Provenance
Computation

Original Aggregation
used by the Nested

Subquery

Provenance
Computation for the
Aggregation's Input

Former IN-condition

SELECT

c.name ,

monthly.month,

cc.number,

monthly.total ,

provsub.prov_creditcard_number ,

provsub.prov_creditcard_company ,

provsub.prov_creditcard_owner ,

provsub.prov_creditcard_limit ,

monthly.month AS prov_monthly_month ,

monthly.cc AS prov_monthly_cc ,

monthly.total AS prov_monthly_total ,

c.ssn AS prov_customer_ssn ,

c.name AS prov_customer_name ,

c.age AS prov_customer_age ,

cc.number AS prov_creditcard_1_number ,

cc.company AS prov_creditcard_1_company ,

cc.owner AS prov_creditcard_1_owner ,

cc.limit AS prov_creditcard_1_limit

FROM

(SELECT p.month, p.cc , sum(p.amount) AS total

FROM purchase p

GROUP BY p.month, p.cc) monthly ,

customer c,

creditcard cc,

(SELECT

agg.owner ,

rewsub.prov_creditcard_number ,

rewsub.prov_creditcard_company ,

rewsub.prov_creditcard_owner ,

rewsub.prov_creditcard_limit

FROM (SELECT cc2.owner

FROM creditcard cc2

GROUP BY cc2.owner

HAVING count (*) > 1) agg

LEFT JOIN

(SELECT

cc2.owner ,

cc2.number AS prov_creditcard_number ,

cc2.company AS prov_creditcard_company ,

cc2.owner AS prov_creditcard_owner ,

cc2.limit AS prov_creditcard_limit

FROM creditcard cc2) rewsub

ON agg.owner IS NOT DISTINCT FROM rewsub.owner

) provsub

WHERE

monthly.cc = cc.number

AND cc.owner = c.ssn

AND monthly.total > cc.limit

AND c.ssn = provsub.owner

Fig. 11. Rewritten SQL query

provenance generation to the results of this subquery using the BASERELATION

keyword. Recall that the original query used an IN-subquery in the WHERE clause.
This subquery was un-nested by turning it into a FROM clause subquery that
implements both the selection condition containing the subquery and the prove-
nance computation for this subquery. The IN condition has been translated into
a simple selection condition (see Figure 11). The provenance computation for
this subquery is realized by applying the rewrite rule for aggregation (joining
the original aggregation with its rewritten input).

4 Copy Contribution Semantics (C-CS)

Copy contribution semantics (C-CS) is a restriction of PI-CS to input tuples that
are copied (partially) to a result tuple. This is similar to Where-provenance [7,5]

312 B. Glavic, R.J. Miller, and G. Alonso

R
a

r1 1
r2 5

S
b

s1 1
s2 3

U
c

u1 1
u2 5

Q
a

t1 1
t2 5

Fig. 12. C-CS Example

except that we track copying at tuple granularity instead of attribute value gran-
ularity. Perm supports four variants of this provenance semantics based on the
distinction of whether to consider equality conditions as an implicit form of copy-
ing values and the distinction between partially and completely copied tuples.
We limit the discussion to the variant that takes partial and implicit copying
into account. For the other variants and correctness theorems see Glavic [16].
Intuitively, it is apparent that the set of input tuples that have been copied to
a tuple t is a subset of the tuples that contributed to t. Thus, it is reasonable
to derive C-CS from PI-CS by filtering out tuples from the PI-CS witness lists
that have not been copied to the output.

Example 9 (PI-CS vs. C-CS). Consider the query q = Πa(R ��a<b S) ∪ U eval-
uated over the database instance shown in Figure 12. The PI-CS provenance of
result tuple t1 is {< r1, s2,⊥>,<⊥,⊥, u1 >}. The a attribute value of t1 has
been copied from the a attribute of tuple r1 and the c attribute of tuple u1. Tuple
s2 was joined with tuple r1 to produce t1, but did not contribute any values to
the result. Therefore, the C-CS provenance of t1 is {< r1,⊥,⊥>,<⊥,⊥, u1 >}.

We use data structures called copy-maps to determine which tuples from a
PI-CS witness list should be removed to form the corresponding witness list for
C-CS. This data structures model from which attributes each result attribute
of a query is copied. Formally, a copy-map is a function that maps an algebra
expression q, one attribute a from one of its input relations, a result tuple t, and
one witness list w in PI(q, t) to the set of result attributes to which a is copied
with respect to t and w. Copy-maps are defined recursively for all operators
of the algebra in a similar fashion as the compositional semantics for PI-CS.
Reconsider tuple t1 from Example 9 as an example of why it is necessary to
include a witness list as an input parameter for copy maps. The two witness lists
in PI(q, t1) exhibit different copy behavior. According to the first witness list,
the result attribute a is copied from the a attribute of tuple r1. According to
the second witness list, the result attribute a is copied from tuple u1.

Definition 6 (C-CS and Copy-Map). The C-CS provenance C(q, t) of a
tuple t from the result of a query q is a multiset of witness lists defined as
follows (the copy-map CM(q, a, w, t) is defined in Figure 13).

C(q, t) = {ŵn | wn ∈ PI(q, t)}

ŵ[i] =

{
w[i] if ∃a ∈ Qi : CM(q, a, w, t) �= ∅
⊥ else

Using SQL for Efficient Generation and Querying of Provenance Information 313

CM(R, a,w, t) ={a}
CM(σC(q1), a, w, t) =CM(q1, a, w, t)∪

{x | ∃y : (x = y) ∈ C ∧ t |= (x = y) ∧ y ∈ CM(q1, a, w, t)}
CM(ΠA(q1), a, w, t) ={x | (x ∈ CM(q1, a, w, y) ∧ x ∈ A ∧ y.A = t)}

∪ {x | (b → x) ∈ A ∧ b ∈ CM(q1, a,w, y) ∧ y.A = t)}
∪ {x | if (C) then (x) else (e) ∈ A ∧ x ∈ CM(q1, a, w, y)

∧ y.A = t ∧ y |= C)}
∪ {x | if (C) then (e) else (x) ∈ A ∧ x ∈ CM(q1, a, w, y)

∧ y.A = t ∧ y �|= C)}
CM(q1 �
C q2, a, w, t) =CM(q1, a, w[q1], t.Q1) ∪ CM(q2, a,w[q2], t.Q2)

∪ {x | ∃y : (x = y) ∈ C ∧ w |= (x = y)

∧ (y ∈ CM(q1, a,w[q1], t.Q1) ∨ y ∈ CM(q2, a, w[q2], t.Q2))}

Fig. 13. Copy-Map Definition

We use w[q1] to denote the part of a witness list corresponding to subquery q1.

As an example, consider the copy-map definition for projection. For a tuple t
and one of its witness lists w, the value of an attribute a has been copied to a
result attribute x if one of the following holds: (1) x is in the copy map of a for
a tuple from the input of the projection that has been projected on t (first line);
(2) the same applies for an attribute b that has been renamed to x (second line);
or (3) the projection contains an if-then-else expression (CASE in SQL) with x
being the result expression for either the “then” respective “else” branch and
the condition is fulfilled respective not fulfilled (third and fourth line).

4.1 Algebraic Rewrites

We use the fact that C-CS is defined as filtering out parts from PI-CS witness
lists to develop rewrite rules for this provenance type. We first apply modified
versions of the PI-CS rewrite rules to generate a rewritten query qC+. These
rules use additional projections expressions, called copy expressions, to itera-
tively build a relational encoding of the copy-map for the query. Afterwards, a
final projection is added to the rewritten query to conditionally replace prove-
nance attribute values with null values based on the copy expression information.
The relational encoding of a copy map is a list of set valued attributes. Each of
these attributes is used to store the result of a copy-map for one input attribute
a (CM(q, a, t, w)). Conditional projection expressions (if-then-else in algebra or
CASE in SQL) are used whenever the inclusion of an output attribute into the
copy-map is conditional. The final projection determines for each input relation
if at least one attribute from this relation has been copied to the output (for
the current tuple and witness list) using a disjunction of comparisons between
copy expressions and the empty-set. If this expression evaluates to false, the
provenance attributes for this input relation are replaced with null values.

314 B. Glavic, R.J. Miller, and G. Alonso

CM(R) = 	
a∈R

{a} → C(a)

CM(σC(q1)) = 	
a∈B(q1)

(C∗(q1, a) ∪ C(a)) → C(a)

CM(q1 �
C q2) = 	
a∈B(q1)

(C∗(q1, a) ∪ C(a)) → C(a) 	
a∈B(q2)

(C∗(q2, a) ∪ C(a)) → C(a)

C∗(q, a) =
⋃

x∈Q∧((x=y)∈C∨(y=x)∈C)

if ((x = y) ∧ x ∈ C(a)) then ({y}) else (∅)

CM(αG,agg(q1)) = 	
a∈B(q1)

(C(a) ∩G) → C(a)

CM(ΠA(q1)) = 	
a∈B(q1)

(⋃
x∈A

C∗(a, x) → C(a)
)

C∗(a, x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{x} ∩ C(a) for x ∈ Q1

if (C) then ({y} ∩ C(a)) else (∅) for x = if (C) then (y) else (e)

if (C) then (∅) else ({y} ∩ C(a)) for x = if (C) then (e) else (y)

if (y ∈ C(a)) then ({z}) else (∅) for x = (y → z)

∅ else

Fig. 14. C-CS Copy Expressions

Definition 7 (C-CS Rewrite Rules). Let B(q) denote the list of all attributes
from the relations accessed by query q. A query q is rewritten into a provenance
generating query qC according to C-CS as shown below. Query qC uses projec-
tion expressions P∗(qC+) to filter out tuples from witness lists over a rewritten
version qC+ of q.

qC = ΠQ,P∗(qC+)(q
C+)

P∗(qC+) = 	
a∈B(q)

if (C+(a)) then (P (a)) else (ε) → P (a)

C+(a) = (C(b1) �= ∅ ∨ . . . ∨ C(bx) �= ∅) for a ∈ Qj = (b1, . . . , bx)

Each of the adapted PI-CS rewrites adds the copy expressions to the rewritten
query. We present the rule for projection as an example:

q = ΠA(q1) : qC+ = ΠA,P(qC+),CM(q)(q1
C+)

The copy expressions CM(q) for a query q are defined in Figure 14.

4.2 Optimizations

Generating the C-CS provenance of a query q requires the generation of copy-
expressions in addition to generating the PI-CS provenance of q. However, for a
wide range of algebra expressions the query that generates C-CS can be simpli-
fied based on the following observations. Instance Independent Copy Expressions :

Using SQL for Efficient Generation and Querying of Provenance Information 315

SELECT PROVENANCE ON CONTRIBUTION (COPY PARTIAL TRANSITIVE)

CASE

WHEN r.a < 20 THEN r.a

ELSE s.c

END AS cleana ,

CASE

WHEN r.b < 30 THEN r.b

ELSE s.c

END AS cleanb

FROM r NATURAL JOIN s;

R
id a b

r1 1 1 40
r2 2 51 60

S
id c

s1 1 10
s2 2 20

Q
cleana cleanb

t1 1 10
t2 20 20

SELECT

CASE

WHEN r.a < 20 THEN r.a

ELSE s.c

END AS cleana ,

CASE

WHEN r.b < 30 THEN r.b

ELSE s.c

END AS cleanb ,

...

CASE

WHEN NOT biteq(bitor(

CASE

WHEN NOT (r.a < 20) THEN B’0010 ’ ELSE B’0000 ’

END ,

CASE

WHEN NOT (r.b < 30) THEN B’0001 ’ ELSE B’0000 ’

END), B’0000 ’)

THEN s.c

ELSE NULL

END AS prov_s_c

FROM

r NATURAL JOIN s

Fig. 15. Example C-CS SQL Rewrite

316 B. Glavic, R.J. Miller, and G. Alonso

Often, we can deduce that some conditional clauses used in copy expressions eval-
uate to a constant result independent of the data. For example, this holds for
projections without conditional expressions. We identify and evaluate constant
copy expressions at query compile time to avoid unnecessary computations at
run-time. Omit Rewrite: If the provenance attributes for an input relation are
guaranteed to be ε, it is not necessary to compute any provenance for this re-
lation. Thus, we can avoid rewriting a sub-expression if it exclusively accesses
input relations with this property.

Example 10 (C-CS Optimizations). Consider the query q = Πa(R ��a<b S) eval-
uated over the instance from Figure 12. The single attribute of each result tuple
of q is copied from the a attribute of a tuple from relation R. Therefore, we can
apply the original PI-CS rewrites to relation R and avoid rewriting S at all.

4.3 SQL Rewrites

The translation of the algebraic C-CS rewrite rules into SQL rewrites is anal-
ogous to the translation for PI-CS except for modeling copy expressions and
filtering provenance attributes in the outermost projection. An efficient way to
model the set-valued attributes used in the copy expressions are bit-arrays (na-
tively supported by PostgreSQL). The copy-expressions for all attributes of one
input relation are represented as a single bit-array using n bits (where n is the
number of query result attributes) to represent the result set for each attribute.
UDFs are used to speed up common operations on the bit-array type.5

Example 11 (Example SQL Rewrite). The query shown in Figure 15 removes
outlier values (values outside some predefined bound) from a relation R by re-
placing them with a per-id default value from a relation S. This kind of query
is similar to queries used in data cleaning or fusion. The user can request the C-
CS provenance of this query to understand from where the values in the result
are copied (Figure 15 shows an excerpt of the rewritten query). Consider the
expression that determines the value for the provenance attribute prov S c. A
bit-array of length four is constructed to store which of the two result attributes
are copied from which of the two attributes of relation S. The construction con-
sists of an outer bitwise-or and inner conditional construction of bit-arrays. For
example, if the condition R.a < 20 holds, then attribute S.c is copied to the
first result attribute (0010). Similar, if R.b < 30 holds, then S.c is copied to the
second result attribute (0001). The outer-most CASE construct checks whether at
least one attribute from relation S has been copied to one of the result attributes,
i.e., if the constructed bit-array is not equal to a sequence of zeros (0000).

5 Transformation Provenance

Transformation provenance models what parts of a transformation contribute
to a result tuple [19]. We represent the transformation provenance of a query q

5 For a DBMS without support for a bit-array datatype or UDFs, we could simulate
a bit-array as a list of boolean attributes.

Using SQL for Efficient Generation and Querying of Provenance Information 317

using annotated algebra trees for q. For a result tuple t and a witness list w in
PI(q,t), the transformation provenance includes an annotated algebra tree for
q with 1 and 0 annotations on the operators. A 1 indicates this operator on w
influences t, a 0 indicates it does not.

Definition 8 (Annotated Algebra Tree). An annotated algebra tree for a
query q is a pair (Treeq, θ) where Treeq = (V,E) is a tree that contains a
node for each algebra operator used in q and θ : V → {0, 1} is a function that
associates each operator in the tree with an annotation from {0, 1}. We define a
preorder on the nodes to give each node an identifier (and to order the children
of binary operators). Let I(op) denote the identifier assigned to node op.

We define transformation provenance based on PI-CS provenance. Intuitively,
each witness list in the PI-CS provenance of a tuple t represents one evaluation of
an algebra expression q. For one witness list, each part of the algebra expression
has either contributed to the result of evaluating q on w or not. We represent
the transformation provenance as a set of annotated algebra trees of q with
one member per witness list w. PI-CS provenance is used to decide whether an
operator op in q is annotated with 0 or 1. If evaluating the subtree subop under
op on w results in the empty set (subop(w) = ∅), then op has contributed nothing
to the result t and should not be included in the transformation provenance.

Definition 9 (Transformation provenance). The transformation provenance
T (q, t) of a tuple t in the result of a query q is a set of annotated trees defined as:

T (q, t) = {(Treeq, θw) | w ∈ PI(q, t)}

θw(op) =

{
0 if subop(w) = ∅
1 else

5.1 Algebraic Rewrites

Transformation provenance is defined by evaluating subexpressions of a query
over the PI-CS provenance. However, we have shown that it is possible to gen-
erate the transformation provenance of a query without instantiating its PI-CS
provenance. The rewrite rules for transformation provenance rewrite a query q
into a query qT adding an additional attribute T to its schema that is used
to store transformation provenance information. Recall that the transformation
provenance of a result tuple t is a set of annotated algebra trees (one tree per
witness list w). The elements of this set represents the same algebra tree with
different annotation functions θw. Therefore, we can factor out the tree and
store only the annotation functions. Each value of attribute T stores θw for one
witness-list w of t (represented as the set of operators that carry a 1-annotation).

Each transformation provenance rewrite rule computes a new set of annota-
tions from the annotation sets of the rewritten inputs of the operator. Fig. 16
presents the rewrite rules for some algebra operators (see Glavic [16] for the re-
maining operators). The rewrite rule for a base relation access adds the singleton
annotation set for the operator {I(R)} as the value for attribute T to all result

318 B. Glavic, R.J. Miller, and G. Alonso

q = R : qT =ΠR,T (qT)→T (R) T (qT) = {R}
q = σC(q1) : qT =ΠQ1,T (qT)→T (σC(q1

T)) T (qT) = {σc(q1)} ∪Q1.T
q = ΠA(q1) : qT =ΠA,T (qT)→T (q1

T) T (qT) = {ΠA(q1)} ∪Q1.T
q = q1 ∪ q2 : qT =ΠQ1,T (qT)→T (q1

T ∪ q2
T) T (qT) = {q1 ∪ q2} ∪Q1.T

Fig. 16. Transformation Provenance Rewrite Rules

tuples. A selection is rewritten by applying the unmodified selection and then
adding the identifier of the selection to the annotation set. The rewrite rules for
projection and union work analogously.

5.2 SQL Rewrites and Optimizations

We represent an annotation set as a bit-array in the SQL rewrites, because
its space requirements are low, and the union operation used frequently in the
rewrite rules is efficient (bit-wise disjunction). Similar to C-CS, we can precom-
pute the transformation provenance for a sub-expression if it is independent of
the input and avoid rewriting this sub-expression. To provide a useful transfor-
mation provenance representation to the user the bit-vector representation is
transformed into either SQL text with markup or XML (chosen by using the
keyword TRANSSQL or TRANSXML to trigger provenance computation) by
applying a UDF fSQL or fXML in the outermost projection of the rewritten
query.6 The SQL representation encloses parts of the original query text with
<NOT> and </NOT> to indicate which parts do not belong to the transforma-
tion provenance. The XML representation is a hierarchical representation of the
query that models each clause as an XML element.

6 Conclusions

We presented an overview of the Perm approach for integrating efficient on-
demand provenance support in relational databases and discussed its contri-
butions with respect to the requirements for a provenance system outlined in
Section 1. Perm stands out for using a pure relational representation of prove-
nance information which is generated and queried by executing standard SQL
queries, thus, taking full advantage of the DBMS optimizer. We demonstrated
the flexibility of the approach by implementing several provenance types in-
cluding Where-provenance and provenance polynomials. The Perm approach
enables a wide range of optimizations such as using algebraic equivalences to
develop more efficient rewrites (used to optimize nested subqueries for PI-CS),

6 UDFs are used to increase performance. In principle, the CASE construct and string
concatenation are sufficient for producing these representations.

Using SQL for Efficient Generation and Querying of Provenance Information 319

static analysis of queries to avoid unnecessary generation of provenance infor-
mation (used for C-CS and transformation provenance), and DBMS specific op-
timizations using specialized data types (mainly used for C-CS, transformation
provenance, and the provenance polynomial implementation). Perm provides a
platform for exploring advanced topics such as provenance-aware physical opera-
tors, cost-based optimization for provenance generation, provenance compression
and summarization, and provenance of updates. In addition to these topics, we
plan to extend the approach to support provenance for complete transactions.

References

1. Acar, U., Buneman, P., Cheney, J., van den Bussche, J., Kwasnikowska, N.,
Vansummeren, S.: A graph model of data and workflow provenance. In: TaPP
(2010)

2. Agrawal, P., Benjelloun, O., Das Sarma, A., Hayworth, C., Nabar, S.U., Sugihara,
T., Widom, J.: Trio: A System for Data, Uncertainty, and Lineage. In: VLDB, pp.
1151–1154 (2006)

3. Amsterdamer, Y., Deutch, D., Tannen, V.: On the Limitations of Provenance for
Queries with Difference. In: TaPP (2011)

4. Amsterdamer, Y., Deutch, D., Tannen, V.: Provenance for Aggregate Queries. In:
PODS, pp. 153–164 (2011)

5. Bhagwat, D., Chiticariu, L., Tan, W.-C., Vijayvargiya, G.: An Annotation Man-
agement System for Relational Databases. VLDB Journal 14(4), 373–396 (2005)

6. Bose, R., Frew, J.: Lineage retrieval for scientific data processing: A survey. ACM
Computing Surveys 37(1), 1–28 (2005)

7. Buneman, P., Khanna, S., Tan, W.-C.: Why and Where: A Characterization of
Data Provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS,
vol. 1973, pp. 316–330. Springer, Heidelberg (2000)

8. Cheney, J.: Program Slicing and Data Provenance. IEEE Data Engineering Bul-
letin 30(4), 22–28 (2007)

9. Cheney, J.: Causality and the Semantics of Provenance. In: DCM, pp. 63–74 (2010)
10. Cheney, J., Chiticariu, L., Tan, W.-C.: Provenance in Databases: Why, How, and

Where. Foundations and Trends in Databases 1(4), 379–474 (2009)
11. Chiticariu, L., Tan, W.-C., Vijayvargiya, G.: DBNotes: a Post-it System for Rela-

tional Databases based on Provenance. In: SIGMOD, pp. 942–944 (2005)
12. Cui, Y., Widom, J., Wiener, J.L.: Tracing the Lineage of View Data in a Ware-

housing Environment. TODS 25(2), 179–227 (2000)
13. Dayal, U.: Of Nests and Trees: A Unified Approach to Processing Queries That

Contain Nested Subqueries, Aggregates, and Quantifiers. In: VLDB, pp. 197–208
(1987)

14. Foster, J.N., Green, T.J., Tannen, V.: Annotated XML: Queries and Provenance.
In: PODS, pp. 271–280 (2008)

15. Geerts, F., Poggi, A.: On database query languages for K-relations. Journal of
Applied Logic 8(2), 173–185 (2010)

16. Glavic, B.: Perm: Efficient Provenance Support for Relational Databases. PhD
thesis, University of Zurich (2010)

17. Glavic, B., Alonso, G.: Perm: Processing Provenance and Data on the same Data
Model through Query Rewriting. In: ICDE, pp. 174–185 (2009)

320 B. Glavic, R.J. Miller, and G. Alonso

18. Glavic, B., Alonso, G.: Provenance for Nested Subqueries. In: EDBT, pp. 982–993
(2009)

19. Glavic, B., Alonso, G., Miller, R.J., Haas, L.M.: TRAMP: Understanding the Be-
havior of Schema Mappings through Provenance. In: VLDB, pp. 1314–1325 (2010)

20. Green, T.J., Ives, Z.G., Tannen, V.: Reconcilable Differences. In: ICDT, pp.
212–224 (2009)

21. Green, T.J., Karvounarakis, G., Ives, Z.G., Tannen, V.: Update Exchange with
Mappings and Provenance. In: VLDB, pp. 675–686 (2007)

22. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance Semirings. In: PODS, pp.
31–40 (2007)

23. Green, T.J.: Containment of conjunctive queries on annotated relations. Theory of
Computing Systems 49(2), 429–459 (2011)

24. Karvounarakis, G., Green, T.J.: Semiring-Annotated Data: Queries and Prove-
nance. SIGMOD Record 41(3), 5–14 (2012)

25. Karvounarakis, G., Ives, Z.G., Tannen, V.: Querying data provenance. In: SIG-
MOD, pp. 951–962 (2010)

26. Kementsietsidis, A., Wang, M.: On the Efficiency of Provenance Queries. In: ICDE,
pp. 1223–1226 (2009)

27. Kementsietsidis, A., Wang, M.: Provenance Query Evaluation: What’s so Special
about it? In: CIKM, pp. 681–690 (2009)

28. Kim, W.: On Optimizing an SQL-like Nested Query. TODS 7(3), 443–469 (1982)
29. Kostylev, E.V., Buneman, P.: Combining dependent annotations for relational al-

gebra. In: ICDT, pp. 196–207 (2012)
30. Meliou, A., Gatterbauer, W., Moore, K.F., Suciu, D.: The Complexity of Causal-

ity and Responsibility for Query Answers and non-Answers. PVLDB 4(1), 34–45
(2010)

31. Park, J., Nguyen, D., Sandhu, R.: A provenance-based access control model. In:
PST, pp. 137–144. IEEE (2012)

32. Seshadri, P., Pirahesh, H., Leung, T.Y.C.: Complex Query Decorrelation. In: ICDE,
pp. 450–458 (1996)

33. Tan, W.-C.: Containment of Relational Queries with Annotation Propagation. In:
DBPL, pp. 37–53 (2003)

34. Widom, J.: Trio: A System for Managing Data, Uncertainty, and Lineage. In:
Managing and Mining Uncertain Data, pp. 113–148 (2008)

35. Widom, J., Theobald, M., Das Sarma, A.: Exploiting Lineage for Confidence Com-
putation in Uncertain and Probabilistic Databases. In: ICDE, pp. 1023–1032 (2008)

Bounds and Algorithms for Joins via Fractional

Edge Covers

Martin Grohe

RWTH Aachen University
grohe@informatik.rwth-aachen.de

1 Introduction

Among the operations of relational algebra, the join operation tends to be the
most costly. There is a wealth of research in the database literature devoted to
efficient join processing. Short of fully computing the result of a join or a sequence
of joins (we use the term join query in the following), in many applications it is
also important to get good bounds on the size of the result.

A relatively new idea exploits the structure of the join query to obtain non-
trivial bounds on the size of the result and to design algorithms computing the
result in time linear in the estimated size of the result. These bounds are based
on a combinatorial parameter known as fractional edge cover number of the
query. The purpose of this paper is to explain this idea and give a survey of the
results based on it.

Consider the natural-join query

Q = R1 �� . . . �� Rm.

Given a database instance D of schema {R1, . . . , Rm}, we want to bound the
size of the query answer Q(D) in terms of the sizes Ni := |Ri(D)| of the input
relations. As a start, suppose that there is a relation Ri that contains all at-
tributes appearing in the query. Then, trivially, the size of the query answer is
bounded by the size of the relation: |Q(D)| ≤ Ni. Suppose next that, instead
of one relation that contains all attributes, we have relations Ri1 , . . . , Rik that

together contain all attributes. Then |Q(D)| ≤
∏k

j=1Nij . We call Ri1 , . . . , Rik

an edge cover of Q. Now we can try to find the edge cover that gives us the
best bound. We can express this as an integer linear program in the variables
x1, . . . , xm, where xi = 1 expresses that Ri is in the edge cover. Suppose that
the attributes appearing in Q are A1, . . . , An.

minimise
∑
i

xi logNi, (1)

where
∑

i such that Aj

attribute of Ri

xi ≥ 1 for j = 1, . . . , n (2)

xi ∈ {0, 1} for i = 1, . . . ,m. (3)

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 321–338, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

322 M. Grohe

Then for every solution x = (x1, . . . , xm) ∈ {0, 1}m of this integer linear pro-
gram, we have

|Q(D)| ≤
m∏
i=1

Nxi

i = 2
∑

i xi logNi . (4)

We call the value ρ(Q,D) =
∑

i xi logNi of an optimal solution of the integer
linear program the edge cover number of Q in D.

So — we have found a complicated way to state a trivial observation. It is hard
to imagine, though, how we can obtain nontrivial bounds on the size of the query
answer if we just know the query and the size of the input relations. Surprisingly,
there are such bounds. Let us look at the LP relaxation of the integer linear
program (1)–(3), where we replace the integrality constraints xi ∈ {0, 1} by the
inequalities

0 ≤ xi for i = 1, . . . ,m. (5)

(There is no need to add inequalities xi ≤ 1, because in an optimal solution it
never makes sense to let xi > 1.) We call a rational solution x = (x1, . . . , xm) ∈
Qm to this linear program a fractional edge cover of Q. We call the value
ρ∗(Q,D) :=

∑
i xi logNi of an optimal solution x to the linear program the

fractional edge cover number of Q in D. It turns out that the bound (4) remains
valid for fractional edge covers and that it is actually tight.

Theorem 1 (Grohe and Marx [6], Atserias, Grohe, and Marx [1]). Let
Q be a join query. Then for every database instance D,

|Q(D)| ≤ 2ρ
∗(Q,D).

Furthermore, there are arbitrarily large database instances D such that |Q(D)| =
2ρ

∗(Q,D).

It is neither obvious why this theorem should hold nor why it is an improve-
ment over the trivial bound (4) for the (integral) edge cover number. I will try
to answer both questions with the following examples. In a way, these examples
form the core of the whole paper.

1.1 Examples

We give two examples. The first illustrates the main idea of the upper bound of
Theorem 1. The second shows that the fractional edge cover number of Q in D
may be substantially smaller than the edge cover number.

Example 1. Let us consider the query

Q(A,B,C) = R(A,B) �� S(B,C) �� T (C,A)

with attributes A,B,C and relation schemas R = R(A,B), S = S(B,C), and
T = T (C,A). LetD be a database instance of this schema, and letNR := |R(D)|,

Bounds and Algorithms for Joins via Fractional Edge Covers 323

NS := |S(D)|, and NT := |T (D)|. We want to give an upper bound on the size
NQ := |Q(D)| of the query answer.

The linear program associated with Q and D looks as follows:

minimise xR logNR + xS logNS + xT logNT ,

where xR + xT ≥ 1

xR + xS ≥ 1

xS + xT ≥ 1

xR, xS , xT ≥ 0.

Observe that xR = xS = xT = 1/2 is a feasible solution to this linear program.
It is an optimal solution if NR = NS = NT . We shall prove that

NQ ≤ 2(1/2) logNR+(1/2) logNS+(1/2) logNT =
√
NR ·NS ·NT . (6)

It is worth thinking about how to prove this bound for a minute. The special
case where D is an undirected graph and R = S = T is the edge relation may be
most intuitive. In this special case, Q asks for all triangles in the graph, and (6)
says that there are at most M3/2 triangles, where M := NR = NS = NT is the
number of edges of the graph. (This bound on the number of triangles appeared
in [2]; the slightly better bound (2M)3/2/6 can be found in [7]). Even in this
special case, I see no obvious direct proof for the bound.

In our proof, we take an information theoretic approach. We ask how many
bits we need on average to describe a tuple chosen from Q(D) uniformly at
random. To be clear what is meant here, let us describe this as a two-player
game: suppose that player (P) wants to inform player (M) about the outcome of
an experiment where a tuple (a, b, c) ∈ Q(D) was drawn uniformly at random.
Both players know the query Q and the database D and thus the query answer
Q(D) in advance, but only (P) knows the outcome (a, b, c) of the experiment. The
players may agree on a coding system that allows (P) to transmit (a, b, c) using as
few bits as possible on average. For example, they may use a Huffman code. The
quantity “average number of bits” we look for is essentially the entropy H(XQ)
of a random variable XQ that, for all (a, b, c) ∈ Q(D), takes value (a, b, c) with
probability 1/NQ.

1 As the distribution is uniform, the best the two players can
do is number the tuples in Q(D) in advance and then have (P) send the number
corresponding to (a, b, c) in binary. This essentially shows that H(XQ) = logNQ.

We now give a different protocol that yields an estimate of H(XQ) in terms
of H(XR), H(XS), and H(XT), where XR is the random variable that picks an
element (a, b) ∈ R(D) uniformly at random and XS , XT are defined similarly.
The same argument that showed H(XQ) = logNQ shows that H(XR) = logNR

and H(XS) = logNS and H(XT) = logNT .
Here is the protocol. (P) transmits the tuple (a, b, c) ∈ Q(D) in three steps. In

the first step, he transmits a using an optimal coding system for the projection

1 To be precise, we have H(XQ) ≤ expected number of transmitted bits of an optimal
coding system < H(XQ)+ 1. This is Shannon’s famous Source Coding Theorem [9].

324 M. Grohe

of XA on the first component. The distribution of the projected random variable
is known as the marginal distribution; note that it is not necessarily uniform,
because some elements a may be contained in more tuples (a, b, c) ∈ Q(D)
than others. In the second step, (P) transmits b, taking into account that (M)
already knows a. He uses an optimal coding system for the random variable
that picks a b such that (a, b) can be extended to a tuple (a, b, c) ∈ Q(D) with
a distribution that takes the number of such extensions into account. In the
third step, (P) transmits c, taking into account that (M) already knows a, b,
and using an optimal coding system for the random variable that picks a c such
that (a, b, c) ∈ Q(D). More formally, we write XQ as a triple (XA, XB, XC)
of random variables describing the first, second, and third component of the
tuple. As indicated above, the random variables XA, XB, XC are not uniformly
distributed. And of course they are not independent. The protocol is based on
the fact that

H(XQ) = H(XA) +H(XB | XA) +H(XC | XA, XB).

Here the conditional entropy H(XB | XA) of “XB given XA” is essentially the
average, taken over all a, of the average number of bits transmitted with an
optimal coding system for b given a. The conditional entropy H(XC | XA, XB)
of “XC given XA and XB” has a similar meaning.

Based on the fact that the uniform distribution on a domain always has the
highest entropy (because there are no clever coding systems that exploit imbal-
ances in the distribution), we make a few crucial observations:

(i) H(XA) +H(XA | XB) = H(XA, XB) ≤ H(XR),
because transmitting (a, b) such that there is a c with (a, b, c) ∈ Q(D)
requires fewer bits than transmitting an arbitrary (a, b) ∈ R(D) chosen
uniformly at random;

(ii) H(XB | XA)+H(XC | XA, XB) ≤ H(XB)+H(XC | XB) = H(XB, XC) ≤
H(XS),
where for the first inequality we note that dropping information can only
increase the entropy and for the second inequality we argue as in (i).

(iii) H(XA) + H(XC | XA, XB) ≤ H(XA) + H(XC | XA) = H(XA, XC) ≤
H(XT).

Putting things together, we see that

2 logNQ =2H(XQ)

= 2
(
H(XA) +H(XB | XA) +H(XC | XA, XB)

)
=
(
H(XA) +H(XB | XA)

)
+
(
H(XB | XA) +H(XC | XA, XB)

)
+
(
H(XA) +H(XC | XA, XB)

)
≤H(XR) +H(XS) +H(XT)

= logNR + logNS + logNT .

This implies (6).

Bounds and Algorithms for Joins via Fractional Edge Covers 325

A formal treatment of the arguments given in Example 1, including definitions
of entropy and conditional entropy, can be found in Section 2.

Example 2 ([6]). Let m ∈ N+ be even, and let n :=
(

m
m/2

)
. For every m/2-

element subset s ⊆ [m] := {1, . . . ,m}, let A(s) be an attribute, and for every
i ∈ [m], let Ri be a relation schema with attributes A(s) for all s that contain i.
Let Q := R1 �� . . . �� Rm, and let D be a database instance with |Ri(D)| = N
for all i ∈ [m]. Then

ρ∗(Q,D) ≤ 2 logN,

because x = (x1, . . . , xm) with xi := 2/m is a solution for the linear program
(1), (2), and (5).

On the other hand,

ρ(Q,D) ≥ (m/2 + 1) logN.

To see this, let x = (x1, . . . , xm) ∈ {0, 1}m be a solution to the integer linear
program (1)–(3). Then at most m/2−1 of the xis are 0, because otherwise there
is a set s ⊆ [m] such that |s| = m/2 and xi = 0 for all i ∈ s, and then equation
(2) is violated for the index j of the attribute A(s). Thus at least (m/2 + 1) of
the xis are 1, and we have

∑
i xi logN ≥ (m/2 + 1) logN .

1.2 Algorithms

It was shown in [6] that there is an algorithm computing the result of a join
query Q in a database D of size N in time

O
(
N +M · 2ρ

∗(Q,D)
)
, (7)

where M := maxR |R(D)| is the maximum size of a relation of D. Here we are
mainly concerned with data complexity and ignore a small polynomial factor
in terms of the query size. It was observed in [1] that for every join query Q
there is a join-project plan (i.e., a relational-algebra expression equivalent to the
query that uses only joins and projections) that can be executed in time (7).
Furthermore, it was shown that there are queries Q such that every join plan
for Q has an execution time that is worse by a factor O(N log |Q|).

Ngo et al. [7] found an algorithm for answering join queries that avoids the
factor M in the running time (7) and is thus worst-case optimal.

Theorem 2 (Ngo, Porat, Ré, and Rudra [7]). There is an algorithm for
answering a join query Q in a database D of size N in time

O
(
N + 2ρ

∗(Q,D)
)
. (8)

Recently, Veldhuizen [11] gave a simpler algorithm for answering join queries
that achieves essentially the same running time

Interestingly, Ngo et al. [7] also showed that the running time (8) cannot be
achieved by executing a join-project plan for the query.

326 M. Grohe

1.3 Further Results

Gottlob, Lee, and Valiant [5,4] extended Theorem 1 from join queries to con-
junctive queries. They obtained similar bounds in a setting that involves key
dependencies. These were extended by Valiant and Valiant [10,4] to a a setting
with arbitrary functional dependencies.

In a completely different direction, Atserias et al. [1] also considered an average
case scenario (all results described so far were worst-case results). In the average
case model, the size of the query answer is governed by a different combinatorial
parameter of the query, themaximum density. Contrasting the worst-case results,
it was shown that for every query there is a join plan whose execution is almost
always optimal (in a precise probabilistic sense).

1.4 The Rest of This Paper

In Section 2, we give a proof of Theorem 1. In Section 3 we discuss extensions
to conjunctive queries. Finally, in Section 4, we sketch the simple algorithm for
answering join queries with running time (7) and discuss query plans.

1.5 Notation

We denote by R, Q, Z, N, N+ the reals, rationals, integers, nonnegative integers,
and positive integers, respectively. For every n ∈ N we let [n] := {1, . . . , n}.

2 Bounds for Join Queries

2.1 Entropy and Shearer’s Lemma

Random variables are mappings defined on some probability space. We only
consider finite probability spaces. For each element a ∈ rg(X) of the range of a
random variable X we have a probability Pr(X = a); this defines a probability
distribution on the range. We allow arbitrary ranges for random variables (and
not just real numbers). In our applications, the ranges will be sets of tuples
of a database instance. If we have random variables X,Y with ranges A,B,
respectively, then we may form a new random variable (X,Y) with range A×B
by letting Pr((X,Y) = (a, b)) := Pr(X = a, Y = b) (the comma in probabilities
means conjunction). Conversely, if we have a random variable Z with range
A× B, then we may decompose it into two random variables X,Y with ranges
A,B, respectively, such that Z = (X,Y). We have Pr(X = a) =

∑
b∈B Pr(Z =

(a, b)) and Pr(Y = b) =
∑

a∈A Pr(Z = (a, b)).
In the following, let X,Y be random variables with ranges A,B, respectively.

The entropy of X is

H(X) :=
∑
a∈A

Pr(X = a) log
1

Pr(X = a)
.

Bounds and Algorithms for Joins via Fractional Edge Covers 327

In Section 1.1, we interpreted H(X) as the expected number of bits needed to
encode a randomly chosen value of X with an optimal coding system. A more
immediate interpretation that also gives a good intuition (at least qualitatively)
is to think of H(X) as a measure for the uncertainty of X . If there is an a ∈ A
such that Pr(X = a) = 1 then there is no uncertainty, and we have H(X) = 0.
On the other hand, if X is uniformly distributed, i.e., Pr(X = a) = 1/|A| for all
a ∈ A, then we have H(X) = log |A|. It is easy to see that this is the maximum
entropy that a random variable X with range A may have, that is,

H(X) ≤ log |A| (9)

for all X with rg(X) = A.
The joint entropy H(X,Y) of X and Y is the entropy of (X,Y), i.e.,

H(X,Y) =
∑

a∈A,b∈B

Pr(X = a, Y = b) log
1

Pr(X = a, Y = b)
.

For b ∈ B with Pr(Y = b) �= 0, the conditional probability of X = a given Y = b

is defined as Pr(X = a | Y = b) := Pr(X=a,Y=b)
Pr(Y=b) , and the conditional entropy of

X given Y = b is

H(X | Y = b) :=
∑
a∈A

Pr(X = a | Y = b) log
1

Pr(X = a | Y = b)
.

Finally, the conditional entropy of X given Y is

H(X | Y) :=
∑
b∈B

Pr(Y = b) ·H(X | Y = b)

=
∑
b∈B

Pr(Y = b) ·
∑
a∈A

Pr(X = a | Y = b) log
1

Pr(X = a | Y = b)
.

A straightforward calculation shows that

H(X,Y) = H(X) +H(Y |X). (10)

Indeed,

H(X, Y) =
∑

a∈A,b∈B

Pr(X = a, Y = b) log
1

Pr(X = a, Y = b)

=
∑
a∈A

Pr(X = a)
∑
b∈B

Pr(Y = b | X = a)

(
log

1

Pr(X = a)
+ log

1

Pr(Y = b | X = a)

)

=
∑
a∈A

Pr(X = a) log
1

Pr(X = a)

∑
b∈B

Pr(Y = b | X = a)

+
∑
a∈A

Pr(X = a)
∑
b∈B

Pr(Y = b | X = a) log
1

Pr(Y = b | X = a)

= H(X) + H(Y | X),

where the last equality holds because
∑

b∈B Pr(Y = b | X = a) = 1.

328 M. Grohe

It is slightly more difficult to prove that

H(X | Y) ≤ H(X). (11)

Intuitively, this is clear because the uncertainty about X can only decrease with
the additional information Y = b. A formal proof uses Jensen’s inequality.

The definitions and equations (10) and (11) can easily be generalised to more
than two random variables. In particular, for random variables X1, . . . , Xn,

H(X1, . . . , Xn) = H(X1) + H(X2 | X1) +H(X3 | X1, X2) (12)

+ . . .+H(Xn | X1, . . . , Xn−1),

and for all J ⊆ [n]

H
(
X
∣∣ X1, . . . , Xn

)
≤ H
(
X
∣∣ (Xj : j ∈ J)

)
. (13)

The following lemma first appeared in [3]. Our formulation and proof of the
lemma are from [8].

Lemma 1 (Shearer’s Lemma). Let I be a finite set, and for each i ∈ I, let
Xi be a random variable. For each J ⊆ I, let XJ := (Xj : j ∈ J). Let J ⊆ 2I be
a multiset of subsets of I such that each i ∈ I appears in at least q members of
J . Then

H(XI) ≤
1

q

∑
J∈J

H(XJ).

Proof. Let < be an arbitrary linear order on I. By (12), for every J ⊆ I we have

H(XJ) =
∑
j∈J

H
(
Xj

∣∣ (Xi : i ∈ J with i < j)
)
.

Thus∑
J∈J

H(XJ) =
∑
J∈J

∑
j∈J

H
(
Xj

∣∣ (Xi : i ∈ J with i < j)
)

≥
∑
J∈J

∑
j∈J

H
(
Xj

∣∣ (Xi : i ∈ I with i < j)
)

by (13)

≥ q ·
∑
j∈I

H
(
Xj

∣∣ (Xi : i ∈ I with i < j)
)

because every j ap-
pears in at least q sets
J ∈ J

= q ·H(XI).

%�

2.2 Proof of the Upper Bound

Consider a join query
Q = R1 �� . . . �� Rm.

Bounds and Algorithms for Joins via Fractional Edge Covers 329

Suppose that the attributes of Q are A1, . . . , An. For each i ∈ [m], let Ji be the
set of all j ∈ [n] such that Aj is an attribute of Ri. Let D be a database instance
of schema {R1, . . . , Rm}. For all i ∈ [m], letNi := |Ri(D)|. Let L(Q,N1, . . . , Nm)
be the linear program

minimise
∑
i∈[m]

xi logNi, (14)

where
∑

i∈[m] with j∈Ji

xi ≥ 1 for all j ∈ [n] (15)

xi ≥ 0 for all i ∈ [m]. (16)

(This is precisely the linear program from the introduction, which we repeat for
the reader’s convenience.) Let x = (x1, . . . , xm) ∈ Qm be a rational solution to
L(Q,N1, . . . , Nm). We shall prove that

|Q(D)| ≤ 2
∑

i∈[m] xi logNi . (17)

This will imply the upper bound of Theorem 1.
Let p1, . . . , pm ∈ N such that xi = pi/q for all i. Let J be a collection of

subsets of [n] that contains pi copies of Ji, for each i ∈ [m]. Then every j ∈ [n]
occurs in at least q sets in J , because∑

i∈[m] with j∈Ji

pi = q ·
∑

i∈[m] with j∈Ji

xi ≥ q

by (15).
Without loss of generality we assume that Q(D) �= ∅; otherwise (17) is trivial.

Let X = (X1, . . . , Xn) be uniformly distributed over Q(D). Then

log |Q(D)| = H(X)

≤ 1

q
·

m∑
i=1

pi ·H(Xj | j ∈ Ji) by Shearer’s Lemma

≤
m∑
i=1

xi logNi.

This implies (17). %�

Remark 1. The proof of the upper bound of Theorem 1 through Shearer’s Lemma
is inherently nonconstructive. As a by-product of their algorithm for answering
join queries (see Theorem 2), Ngo et al. [7] gave a constructive (but far more
complicated) proof of the upper bound.

2.3 LP Duality and Proof of the Lower Bound

Let Q, R1, . . . , Rm, A1, . . . , An, and J1, . . . , Jm be as in the previous subsec-
tion, and let N1, . . . , Nm ∈ N+ be arbitrary. The dual of the linear program

330 M. Grohe

L(Q,N1, . . . , Nm) is the following linear program D(Q,N1, . . . , Nm) in the vari-
ables y1, . . . , yn.

maximise

n∑
j=1

yj , (18)

where
∑
j∈Ji

yj ≤ logNi for all i ∈ [m] (19)

yj ≥ 0 for all j ∈ [n]. (20)

By linear programming duality, for all solutions (x1, . . . , xm) to L(Q,N1, . . . , Nm)
and (y1, . . . , yn) to D(Q,N1, . . . , Nm) we have

m∑
i=1

xi logNi ≥
n∑

j=1

yj,

with equality if both solutions are optimal.
Now suppose that all the Ni are powers of 2, say, Ni = 2Li for some Li ∈ N.

Then all coefficients of D(Q,N1, . . . , Nm) are integers, and hence there exists an
optimal rational solution. Let (y1, . . . , yn) ∈ Qn be such an optimal solution. Let
p1, . . . , pn, q ∈ N such that yj = pj/q. Observe that (p1, . . . , pn) is an optimal
solution to the linear program D(Q,N q

1 , . . . , N
q
m). We shall construct a database

instance D with |Ri(D)| = N q
i and

|Q(D)| = 2
∑n

j=1 pj = 2ρ
∗(Q,D). (21)

This will imply the lower bound of Theorem 1.
To define the instance D, for every i ∈ [m], we first define a relation R′

i(D)
to be the set of all tuples t such that for all j ∈ Ji the projection πAj (t) is in
[2pj]. (So R′

i(D) is the cartesian product of the sets [2pj], for j ∈ Ji, if we forget
about the names of the attributes.) Then

|R′
i(D)| =

∏
j∈Ji

2pj = 2
∑

j∈Ji
pj ≤ 2q logNi = N q

i .

We choose Ri(D) ⊇ R′
i(D) with |Ri(D)| = N q

i arbitrarily. Then Q(D) contains
all tuples t such that for all j ∈ [n] the projection πAj (t) is in [2pj]. Hence

|Q(D)| ≥
n∏

j=1

2pj = 2
∑n

j=1 pj = 2ρ
∗(Q,D).

Actually, we must have equality here because we already know that |Q(D)| ≤
2ρ

∗(Q,D). %�

Remark 2. It would be nicer if for all N1, . . . , Nq ∈ N+ we could construct a
database instance D with Ri(D) = Ni and |Q(D)| = 2ρ

∗(Q,D). We cannot always
do that. However, it was proved in [1] that we can always construct an instance
D with Ri(D) = Ni and |Q(D)| ≥ 2ρ

∗(Q,D)−n. In general, this is best possible.

Bounds and Algorithms for Joins via Fractional Edge Covers 331

2.4 Bounds Depending on the Query Only

The bounds of Theorem 1 depend on the sizes of the individual relations in the
database. Obviously, any reasonable estimate on the size of the query answer
should depend on the size of the database, but maybe we only have an estimate
of the size of the whole database instead of the sizes of the individual relations.
In this situation, we can use the database size as an upper bound on the size of
all relations.

Observe that if Ni = N for all i ∈ [m], then an optimal solution x to the
linear program L(Q,N, . . . , N) no longer depends on N (only its value does).
We let L(Q) be the linear program obtained from L(Q,N, . . . , N) by replacing
the cost function (14) by

∑
i∈[m] xi and let ρ∗(Q) be the optimal value of this

linear program. Then ρ∗(Q) = ρ∗(Q,D)/ logN for all database instances D with
|Ri(D)| = N for all i ∈ [m]. Observe that in the dual D(Q) of L(Q) we replace
inequalities (19) by

∑
j∈Ji

yj ≤ 1.
Defining the size ||D|| of a database instance D as the sum

∑
i∈[m] |Ri(D)| of

the sizes of all relations, we obtain the following corollary to Theorem 1.

Corollary 1. Let Q be a join query. Then for every database instance D

|Q(D)| ≤ ||D||ρ∗(Q).

Furthermore, for every N ∈ N there is a database instance D of size ||D|| ≥ N
such that |Q(D)| ≥ (||D||/m)ρ

∗(Q).

3 Conjunctive Queries

In this section, we extend the bounds of Theorem 1 to conjunctive queries.

3.1 Projections of Join Queries

We start by considering conjunctive queries of the following special form:

P (B1, . . . , Bk) = πB1,...,Bk
Q(A1, . . . , An), (22)

where Q(A1, . . . , An) is a join query and B1, . . . , Bk ∈ {A1, . . . , An}. Here
πB1,...,Bk

is a projection operator. We allow k to be 0, in which case the query
is Boolean.

Consider a conjunctive query P of the form (22). Without loss of generality we
assume that Bj = Aj for all j ∈ [k]. Suppose that Q = R1 �� . . . �� Rm as before,
and let Ji be the set of indices of the attributes of Ri. Let N1, . . . , Nm ∈ N+.
We try to bound the size P (D) of the query answer in a database instance
D with |Ri(D)| = Ni. We modify our linear programs L(Q,N1, . . . , Nm) and
D(Q,N1, . . . , Nm), essentially ignoring the attributes that are “projected out”.

332 M. Grohe

The primal linear program L(P,N1, . . . , Nm) is defined as follows.

minimise
∑
i∈[m]

xi logNi, (23)

where
∑

i∈[m] with j∈Ji

xi ≥ 1 for all j ∈ [k] (24)

xi ≥ 0 for all i ∈ [m]. (25)

This linear program has the following dual D(P,N1, . . . , Nm).

maximise

k∑
j=1

yj, (26)

where
∑

j∈Ji∩[k]

yj ≤ logNi for all i ∈ [m] (27)

yj ≥ 0 for all j ∈ [k]. (28)

For a database instance D with |Ri(D)| = Ni, let ρ
∗(P,D) be the value of the

optimal solution to the linear programs. As an easy consequence of Theorem 1,
we obtain the following bounds for projections of join queries.

Corollary 2. Let P be a conjunctive query of the form (22). Then for every
database instance D,

|P (D)| ≤ 2ρ
∗(P,D).

Furthermore, there are arbitrarily large database instances D such that |P (D)| =
2ρ

∗(P,D).

Proof. Let P , Q, R1, . . . , Rm, A1, . . . , An, Bj = Aj for j ∈ [k], and J1, . . . , Jm
be as above.

For every i ∈ [m], let R′
i be a relation schema with attributes Aj for j ∈

Ji ∩ [k], and let Q′ := R′
1 �� . . . �� R

′
m. For every database instance D of schema

{R1, . . . , Rm}, let D′ be the instance of schema {R′
1, . . . , R

′
m} with R′

i(D
′) :=

πA1,...,Ak
Ri(D). Then P (D) ⊆ Q′(D′). Observe that for all N1, . . . , Nm ∈ N+

we have L(Q′, N1, . . . , Nm) = L(P,N1, . . . , Nm).
For the upper bound, let D be a database instance with |Ri(D)| =: Ni. Then

by Theorem 1, we have

|P (D)| ≤ |Q′(D′)| ≤ 2ρ
∗(Q′,D′).

Here ρ∗(Q′, D′) is the optimal value of the linear program L(Q′, N ′
1, . . . , N

′
m),

where N ′
i := |R′

i(D
′)| ≤ Ni. As the linear programs L(Q′, N ′

1, . . . , N
′
m) and

L(Q′, N1, . . . , Nm) = L(P,N1, . . . , Nm) only differ in their cost functions (23),
we have ρ∗(Q′, D′) ≤ ρ∗(P,D).

For the lower bound, we observe that for every database instanceD′ of schema
{R′

1, . . . , R
′
m} we can construct an instance D of schema {R1, . . . , Rm} such that

|P (D)| = |Q′(D′)| and |Ri(D)| = |R′
i(D

′)| for all i ∈ [m]. We simply choose a

Bounds and Algorithms for Joins via Fractional Edge Covers 333

default value, say 1, and extend all tuples t ∈ R′
i(D

′) by letting t(A) := 1 for
all attributes of Ri not in {A1, . . . , Ak}. Then the lower bound follows from the
lower bound of Theorem 1. %�

Remark 3. As we did in Section 2.4, Gottlob, Lee, and Valiant [5,4] state their
bounds in terms of the query only. For a conjunctive query P as above, they
look at the dual linear program D(P):

maximise
k∑

j=1

yj,

where
∑

j∈Ji∩[k]

yj ≤ 1 for all i ∈ [m]

yj ≥ 0 for all j ∈ [k].

They interpret rational solutions y = (y1, . . . , yk) of D(P) as colourings of the
query in the following sense.

A valid colouring C of P assigns to each j ∈ [k] (or to the attribute Aj) a
finite set C(j) of colours in such a way that C(j) �= ∅ for at least one j ∈ [k].
The value of a colouring C is

v(C) :=

∣∣∣⋃j∈[k] C(j)
∣∣∣

maxi∈[m]

∣∣∣⋃j∈Ji∩[k] C(j)
∣∣∣ .

The colouring number of P is defined to be the maximum of the values of all its
valid colourings. We will see that this maximum always exists and is equal to
the value of the linear program D(P).

Let C be a valid colouring of P . Without loss of generality, we may assume that
C(j) ∩C(j′) = ∅ for all j �= j′ ∈ [k], because if a colour appears in C(j) ∩C(j′)
then dropping this colour from one of the sets gives a colouring with the same or

a better value. Let q := maxi∈[m]

∣∣∣⋃j∈Ji∩[k] C(j)
∣∣∣. For j ∈ [k], let pj := |C(j)|

and yj := pj/q. Then (y1, . . . , yk) is a solution of D(Q) of value
∑k

j=1 yj = v(C).

Conversely, let (y1, . . . , yk) ∈ Qk be a rational solution of D(Q) such that∑
j∈Ji∩[k] = 1 for some i ∈ [m]. Clearly, an optimal solution has this property.

Suppose that yj = pj/q for all j ∈ [k]. We define a valid colouring by letting
C(j) be a set of pj fresh colours (so that C(1), . . . , C(k) are mutually disjoint).

Then v(C) =
∑k

j=1 yj .
As D(Q) has integer coefficients, there is an optimal rational solution, and it

yields a colouring of optimal value.
Th purpose of viewing solutions of the dual linear program as colourings

in this way is that it yields a natural extension to the setting with functional
dependencies.

334 M. Grohe

3.2 Arbitrary Conjunctive Queries

We view a general conjunctive query as an expression

C(X̄)← R1(X̄1), . . . , Rm(X̄m), (29)

where R1, . . . , Rm are (not necessarily distinct) relation names of arities k1, . . . ,
km, respectively, and X̄, X̄i are tuples of not necessarily distinct variables of
lengths k, k1, . . . , km, respectively, such that all variables appearing in X̄ also
appear in some X̄i. Without loss of generality we assume that the set of all vari-
ables appearing in the query C is {X1, . . . , Xn}, where X1, . . . , Xn are pairwise
distinct, and that X̄ = (X1, . . . , Xk). (We can do this because it does not affect
the size of the query answer if we repeat variables in the head C(X̄).) For each
i ∈ [m], let Ji ⊆ [n] be the set of indices of the variables appearing in X̄i.

For a database instance D of schema {R1, . . . , Rm}, the query answer C(D)
is the set of all k-tuples (a1, . . . , ak) that can be extended to an n-tuple ā =
(a1, . . . , an) such that for each i ∈ [m] the projection of ā to the indices of the
variables in X̄i (in the right order) is in Ri(D).

Note that the variables play the role the attributes played so far. Projections
of join queries, as considered in the previous subsection, correspond to the case
that the relations R1, . . . , Rm are pairwise distinct and that for each i ∈ [m] the
variables appearing in X̄i are pairwise distinct.

For all N1, . . . , Nm ∈ N+, we define the following linear program
L(C,N1, . . . , Nm).

minimise
∑
i∈[m]

xi logNi, (30)

where
∑

i∈[m] with j∈Ji

xi ≥ 1 for all j ∈ [k] (31)

xi ≥ 0 for all i ∈ [m]. (32)

Note that if the relations R1, . . . , Rm are pairwise distinct and for each i ∈ [m]
the variables appearing in X̄i are pairwise distinct, then this is precisely the
linear program (23)–(25) defined in the previous subsection.

We let ρ∗(C,N1, . . . , Nm) be the value of an optimal solution of L(C,N1, . . . ,
Nm). The following lemma is an easy consequence of Corollary 2.

Lemma 2. Let C be a conjunctive query of the form (29) such that R1, . . . , Rm

are pairwise distinct. Then for all N1, . . . , Nm ∈ N+ and all database instances
D of schema {R1, . . . , Rm} with |Ri(D)| ≤ Ni,

|C(D)| ≤ 2ρ
∗(C,N1,...,Nm).

Furthermore, there are arbitrarily large N1, . . . , Nm ∈ N+ and databases in-
stances D with |Ri(D)| = Ni such that |C(D)| = 2ρ

∗(C,N1,...,Nm).

Proof. For every i ∈ [m], let �i := |Ji|. Then obviously we have �i ≤ ki, where

equality holds if the variables in X̄i are distinct. For each i ∈ [m], we let R �=
i

Bounds and Algorithms for Joins via Fractional Edge Covers 335

be a fresh �i-ary relation symbol. We let X̄ �=
i be the �i-tuple of variables that

contains the same variables as X̄i, but without repetitions, in the order of their
first appearance in X̄i. We let

C �=(X̄) ← R �=
1 (X̄

�=
1), . . . , R �=

m(X̄ �=
m),

Then C �=(X̄) is a projection of a join query of the type considered in the previous
subsection.

For every database instance D of schema {R1, . . . , Rm} we define an instance

D �= of schema {R �=
1 , . . . , R

�=
m} by letting R �=

i (D) be the set of all X̄ �=
i -tuples

obtained from X̄i-tuples in Ri(D). To make this precise, suppose that X̄i =
(X(i, 1), . . . , X(i, ki)), where of course eachX(i, j) is an element of {X1, . . . , Xn}.
Let J(1), . . . , J(�i) be the partition of [ki] such that X(i, j) = X(i, j′) for all
p ∈ [�i] and j, j′ ∈ J(p), and X(i, j) �= X(i, j′) for all p �= p′ ∈ [�i] and
j ∈ J(p), j′ ∈ J(p′). For each p ∈ [�i], let j(p) be the minimum of J(p).
Without loss of generality we assume that j(1) < j(2) < . . . < j(�i). Then

X̄ �=
i = (X(i, j(1)), . . . , X(i, j(�i))). Now we let R �=

i (D) be the set of all �i-tuples
(a �=(1), . . . , a �=(�i)) such that there is a ki-tuple (a(1), . . . , a(ki)) ∈ Ri(D) with
a(j) = a �=(p) for all p ∈ [�i], j ∈ J(p). It is immediate from the definitions that

C(D) = C �=(D �=) and |Ri(D)| ≥ |R �=
i (D)|.

Now the upper bound follows from Corollary 2 and the observation that

L(C,N1, . . . , Nm) = L(C �=, N1, . . . , Nm).

To prove the lower bound, we start with an instance D′ of schema {R �=
1 , . . . , R

�=
m}

with sufficiently large Ni := |R �=
i (D

′)| such that

|C �=(D′)| = 2ρ
∗(C �=,D′) = 2ρ

∗(C �=,N1,...,Nm) = 2ρ
∗(C,N1,...,Nm).

It is easy to construct an instance D of schema {R1, . . . , Rm} such that D′ = D �=

and |Ri(D)| = |R �=
i (D

′)| = Ni for all i ∈ [m]. Then we have |C(D)| = |C �=(D′)| =
2ρ

∗(C,N1,...,Nm). %�

For general conjunctive queries, we obtain a slightly weaker lower bound that
takes into account the multiplicities with which the relations appear in the query:
the inequalities |Ri(D)| ≤ Ni are replaced by (33).

Theorem 3 (Gottlob, Lee, Valiant [5,4]). Let C be a conjunctive query of
the form (29). Then for all N1, . . . , Nm ∈ N+ and all database instances D of
schema {R1, . . . , Rm} with |Ri(D)| ≤ Ni,

|C(D)| ≤ 2ρ
∗(C,N1,...,Nm).

Furthermore, there are arbitrarily large N1, . . . , Nm ∈ N+ and databases in-
stances D with

|Ri(D)| ≤
∑
j∈[m]

with Rj=Ri

Nj (33)

for all i ∈ [m] such that |C(D)| ≥ 2ρ
∗(C,N1,...,Nm).

336 M. Grohe

Proof. For every i ∈ [m], let R′
i be a fresh ki-ary relation name, and let

C′(X̄) ← R′
1(X̄i), . . . , R

′
m(X̄m).

Observe that for all N1, . . . , Nm ∈ N+ we have L(C,N1, . . . , Nm) = L(C′,
N1, . . . , Nm).

For every database instance D of schema {R1, . . . , Rm}, let D′ be the instance
of schema {R′

1, . . . , R
′
m} with R′

i(D
′) := Ri(D). Then C(D) = C′(D′). As all

relations appearing in C′ are distinct, the upper bound follows directly from
Lemma 2.

To prove the lower bound, we choose a database instance D′ of schema
{R′

1, . . . , R
′
m} for sufficiently large Ni := |R′

i(D
′)| such that

|C′(D′)| = 2ρ
∗(C′,N1,...,Nm) = 2ρ

∗(C,N1,...,Nm).

Such a D′ exists by Lemma 2. We define an instance D∪ of schema {R1, . . . , Rm}
by letting

Ri(D∪) :=
⋃

j∈[m]
with Rj=Ri

R′
j(D

′).

Obviously, D∪ satisfies (33), and we have C(D∪) ⊇ C′(D′) and hence |C(D∪)| ≥
|C′(D′)| ≥ 2ρ

∗(C,N1,...,Nm). %�

As for join queries (see Corollary 1), it is easy to formulate a version of the
theorem where the bounds only depend on the size of the database instance and
the query and not on the sizes of the individual relations. This is how Gottlob
et al. [5] originally phrased their theorem.

4 Query Plans

A query plan for a query Q is an expression ϕ in the relational algebra, using
(binary) join operators, projection operators, and possibly other relational alge-
bra operators, such that Q(D) = ϕ(D) for every database instance D. A query
plan is a join plan if the only operator it uses is the join operator, and it is a
join-project plan if it only uses joins and projections. A subplan of a query plan
is defined in the natural way; all nodes of the parse tree of the plan correspond
to subplans. Executing a query plan ϕ in a database instance means computing
ψ(D) for all subplans ψ, until finally ϕ(D) is computed. As all relational algebra
operations can be implemented with a running time linear in the size of the
input(s) plus the output, the time it takes to execute a query plan is linear in
the size of the maximal intermediate result.

Obviously, for every join query there is a join plan. However, it may happen
that the intermediate results of the executions of all possible join plans for a
query are substantially larger than the final result.

Bounds and Algorithms for Joins via Fractional Edge Covers 337

Example 3. Recall the query Q := R �� S �� T of Example 1. Every join plan
for Q contains either R �� S or R �� T or S �� T as a subplan, and in a
database instance D with R(D) = S(D) = T (D) = N it may happen that
|(R �� S)(D)|, |(R �� T)(D)|, |(S �� T)(D)| = Θ(N2), whereas we have seen in
Example 1 that |Q(D)| ≤ N3/2.

The query of Example 2 is underlying the following theorem.

Theorem 4 ([1]). There are arbitrarily large join queries Q and databases D
such that ρ∗(Q) ≤ 2 and every join plan for Q has a subplan ψ with |ψ(D)| ≥
||D||Ω(log |Q|).

Thus join plans may lead to relatively inefficient algorithms for answering join
queries. Join-project plans, on the other hand, are almost optimal.

Theorem 5 ([1]). For every join query Q there is a join-project plan ϕ such
that for every subplan ψ of ϕ and a every database instance D,

|ψ(D)| ≤ 2ρ
∗(Q,D) ·M,

where M is the maximum size of the projection of a relation in D to a single
attribute.

Proof. Let Q = R1 �� . . . �� Rm. As always, suppose that the attributes of
Q are A1, . . . , An, and let Ji be the set of indices of the attributes of Ri. The
idea is to evaluate Q by iteratively computing the projections πA1,...,AjQ(D), for
j = 1, . . . , n.

We let

ϕ1 :=
(
· · ·

((
πA1(R1) �
 ϕA1(R2)

)
�
 πA1(R3)

)
�
 . . . �
 πA1(Rm)

)
,

and for j = 1, . . . , n− 1,

ϕj+1 :=
(
· · ·

((
ϕj �
 πA1,...,Aj+1(R1)

)
�
 πA1,...,Aj+1(R2)

)
�
 . . . �
 πA1,...,Aj+1(Rm)

)
.

Either by a direct argument or by an application of the upper bound of Corol-
lary 2, it is easy to see that the plan ϕ := ϕn has the desired properties. The
crucial observation is that∣∣(ϕj �� πA1,...,Aj+1(R1)

)
(D)
∣∣ ≤ ∣∣ϕj(D)× πAj+1R1(D)

∣∣ ≤ 2ρ
∗(Q,D) ·M,

because πAj+1R1(D) ≤ M and for the conjunctive query Pj := πA1,...,AjR1 ��
. . . �� Rm, for which ϕj is a query plan, we have ρ∗(Pj , D) ≤ ρ∗(Q,D) and thus
|ϕj(D)| = |Pj(D)| ≤ 2ρ

∗(Pj ,D) ≤ 2ρ
∗(Q,D) by Corollary 2. %�

The execution of the join-project plan of Theorem 5 leads to an algorithm
answering Q in time O(2ρ

∗(Q,D) ·M) (ignoring a small polynomial factor de-
pending on Q). We remind the reader of the algorithm of Theorem 2, which
avoids the factor M in the running time. Ngo et al. [7] showed that a running
time of O(2ρ

∗(Q,D)) cannot be achieved with the execution of a join-project plan.

338 M. Grohe

References

1. Atserias, A., Grohe, M., Marx, D.: Size bounds and query plans for relational joins.
In: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer
Science, pp. 739–748 (2008)

2. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM Journal
on Computing 14, 210–223 (1985)

3. Chung, F., Frank, P., Graham, R., Shearer, J.: Some intersection theorems for
ordered sets and graphs. Journal of Combinatorial Theory, Series A 43, 23–37
(1986)

4. Gottlob, G., Lee, S.T., Valiant, G., Valiant, P.: Size and treewidth bounds for
conjunctive queries. Journal of the ACM 59(3) (2012)

5. Gottlob, G., Lee, S.T., Valiant, G.J.: Size and treewidth bounds for conjunctive
queries. In: Proceedings of the 28th ACM Symposium on Principles of Database
Systems, pp. 45–54 (2009)

6. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. In: Proceedings
of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 289–298
(2006)

7. Ngo, H.Q., Porat, E., Ré, C., Rudra, A.: Worst-case optimal join algorithms. In:
Proceedings of the 31st ACM Symposium on Principles of Database Systems (2012)

8. Radhakrishnan, J.: Entropy and counting. In: Misra, J.C. (ed.) Computational
Mathematics, Modelling and Algorithms. Narosa Pub. House (2003)

9. Shannon, C.E.: A mathematical theory of communication. The Bell System Tech-
nical Journal 27, 379–423, 623–656 (1948)

10. Valiant, G., Valiant, P.: Size bounds for conjunctive queries with general functional
dependencies. Arxiv preprint arXiv:0909.2030 (2009)

11. Veldhuizen, T.L.: Leapfrog triejoin: A worst-case optimal join algorithm. arXiv
e-print archive arXiv:1210.0481 (2012), http://arxiv.org/abs/1210.0481

http://arxiv.org/abs/1210.0481

Incremental Data Fusion
Based on Provenance Information

Carmem Satie Hara1, Cristina Dutra de Aguiar Ciferri2,
and Ricardo Rodrigues Ciferri3

1 Universidade Federal do Paraná – Curitiba, PR, Brazil
carmem@inf.ufpr.br

2 Universidade de São Paulo – São Carlos, SP, Brazil
cdac@icmc.usp.br

3 Universidade Federal de São Carlos – São Carlos, SP, Brazil
ricardo@dc.ufscar.br

Abstract. Data fusion is the process of combining multiple represen-
tations of the same object, extracted from several external sources, into
a single and clean representation. It is usually the last step of an inte-
gration process, which is executed after the schema matching and the
entity identification steps. More specifically, data fusion aims at solv-
ing attribute value conflicts based on user-defined rules. Although there
exist several approaches in the literature for fusing data, few of them
focus on optimizing the process when new versions of the sources be-
come available. In this paper, we propose a model for incremental data
fusion. Our approach is based on storing provenance information in the
form of a sequence of operations. These operations reflect the last fusion
rules applied on the imported data. By keeping both the original source
value and the new fused data in the operations repository, we are able to
reliably detect source value updates, and propagate them to the fusion
process, which reapplies previously defined rules whenever it is possible.
This approach reduces the number of data items affected by source up-
dates and minimizes the amount of user manual intervention in future
fusion processes.

1 Introduction

The huge amount of data available nowadays and the need to integrate data
imported from several external sources continue to be a challenge to the database
community. Although data integration has been investigated for several years,
there is no single solution that suits all applications.

The integration process involves both schema and instance level integration.
At the instance level, the integration process comprises two major problems [28]:
entity identification ambiguity and attribute value conflict. Entity identification
refers to the problem of identifying overlapping data in different sources. It has
been the purpose of extensive research on the relational [24], entity-relationship
[23], and XML [27] data models. Attribute value conflict refers to the problem of

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 339–365, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

340 C.S. Hara, C.D. de Aguiar Ciferri, and R.R. Ciferri

two or more sources containing information on the same entity or attribute, but
with conflicting values. The process of combining several representations of one
real world object into a single, consistent and clean representation is the goal of
data fusion [7], which is the focus of this paper.

Data fusion is based on a set of strategies that determine how value conflicts
are solved. A survey of existing approaches for data fusion can be found in [7].
As an example, when integrating several external sources, one can define that
a conflict on a given numerical attribute should be solved by computing the
average from the values provided by the sources. The data resulting from the
fusion process can be stored in a local database for answering queries based on
clean, mediated data. However, if no additional information is kept in the local
database other than the fused value, when one of the data sources updates its
value, all the other sources will have to be accessed again in order to apply
the same fusion strategy. One approach for avoiding this is to keep the data
provenance [11,12]; that is, copies of the original values provided from the sources
and the strategy applied to obtain the value stored in the database. Following
this approach, the focus of this paper is on provenance-based data fusion.

In our system, provenance information is kept by mapping the application
of fusion strategies to sequences of simple insert-remove-edit-copy operations.
This resembles the works on manually curated data [8,9], in which the system
keeps a log of operations that the user undertakes in order to clean imported
data. Although we consider a similar set of operations, in our system operations
do not keep track of the user’s actions, but keep the original source values and
coordinate them with the local database. By keeping the original values, we are
able to reliably detect source updates and propagate them to the local database.
The problem of updating a database based on changes to an independently
maintained source has recently been referred to as data coordination [22].

In this paper we propose a fusion system for XML which supports incremental
updates based on provenance information. We assume that external sources have
been previously processed for identifying entities, producing fully keyed docu-
ments. Our fusion approach is based on user-defined rules, which are stored in a
rule base. Moreover, provenance information is kept in an operations repository
that consists of simple operations that coordinate external sources with the local
database. The operations repository along with the rule base allows incremental
updates on the local database and minimizes the amount of user intervention in
future fusion processes.

1.1 A Motivating Example

Consider two sources, s1 and s2, containing data on the same paper, but that
disagree on the values reported for its attributes as depicted in Figures 1(a)
and 1(b). In this example, we identify that paper information provided by s1
and s2 refers to the same publication because they coincide on their values for
title and year. That is, title and year are the keys for paper. In order to
generate a database with fused data, the user provides high-level fusion rules
for deciding how value conflicts should be solved. As an example, the user can

Incremental Data Fusion Based on Provenance Information 341

define that conflicts on paper’s author names should be solved as follows: first,
choose the value reported by the majority of the sources; if the conflict cannot
be solved then consider the one reported from the most trustful source. Since
in our example we only have two sources, the first strategy cannot be applied.
Then, considering that we rely more on source s1 than on s2, the value stored
in the database for the paper’s first author is John, and the second author Jack,
based on the values reported by s1. Similarly, we can define that the database
should contain the average number reported for citationQty based on all the
sources. In this case, the resulting value stored in the database is citationQty:
9. The conflict on city is solved by manually choosing the value Philadelphia,
reported by s2. These results are stored in the mediated database, as shown in
Figure 1(d).

When a new version of source s1 or s2 is uploaded, or new sources are inte-
grated to the database, these fusion rules can be automatically reapplied, and
only new conflicts are presented to the user in the fusion process. As an example,
consider that a new version for s1 is uploaded with a value 12 for citationQty.
Given that the average number of citations, considering s1 and s2 is now 10,
the database is updated with this value. Now consider that values from a third
source s3 is integrated to the database. If s3 also contains values for the same
paper, and reports Jack as its first author and John as the second, then the first
strategy defined on the previous fusion process can be applied for updating the
database with the values reported by the majority of the sources. That is, the
name of the first author is updated to Jack, and the second to John, based on
the values reported by s2 and s3.

source s1:venue: ’Int. Conf..’

(c)

 author: order: 1

source s2:
 author: order: 2

source s1:

source s1:name:

name:

’John’
’Jack’

’Jack’
source s2: ’John’

 citationQty: source s1:
source s2:

10
8

 pages: source s2: ’18−29’
(d)

 author: order: 2

 citationQty: 9
 pages: ’18−29’

 author: order: 1
 name: ’John’

 name: ’Jack’

paper title: ’Integration’
 year: 2012

Merged Document

Source s1
paper title: ’Integration’
 year: 2012
 venue: ’Int. Conf..’

Source s2
paper title: ’Integration’
 year: 2012

Mediated DB
paper title: ’Integration’
 year: 2012
 venue: ’Int. Conf..’

city: ’Philadelphia’

source s1:city:

city: ’Philly’

’Philly’
source s2: ’Philadelphia’ city: ’Philadelphia’

 author: order: 1

 author: order: 2

 citationQty: 10

 name: ’John’

 name: ’Jack’

 author: order: 1

 author: order: 2

 citationQty: 8
 pages: ’18−29’

 name: ’Jack’

 name: ’John’

(a) (b)

Fig. 1. Integration of two conflicting sources

Our fusion system offers all the aforementioned functionality, and also allows
the mediated database to be used as an integrated repository of curated data
according to the users’ decisions.

This paper builds on three previous works from the authors. The first pro-
poses a system for XML data fusion, which allows the definition of data cleaning

342 C.S. Hara, C.D. de Aguiar Ciferri, and R.R. Ciferri

rules for solving value conflicts detected during the integration process [14]. The
second presents a model for reapplying user’s decisions in subsequent integration
processes when data is manually curated by insert-remove-edit-copy operations
that are stored in an operations repository [33]. At last, the third work introduces
a data model for XML instance level integration that helps the resolution of value
attribute conflicts by explicitly representing them in a merged document [26].
Here, we consider our previous works in the same setting. However, we focus on
mapping fusion strategies to sequences of simple operations, and reapplying pre-
vious rules for incrementally updating the mediated database when new sources
are uploaded or when sources are updated. The purpose of the system is to
minimize the amount of user input in future fusion processes.

1.2 Organization

The paper is organized as follows. Section 2 describes preliminary definitions.
Section 3 introduces the architecture of our fusion system, followed by the defini-
tion of our data model in Section 4. Section 5 details the modules that compose
the system. Related work are presented in Section 6, and Section 7 concludes
the paper.

2 Preliminary Definitions

Before describing the components of our data fusion system, we present defini-
tions for XML keys (Section 2.1), strategies for data fusion (Section 2.2), and
basic operations (Section 2.3). These notions have been previously proposed in
the literature and we use them as building blocks in our system.

2.1 XML Keys

An XML document is typically modeled as a node-labeled tree T , which can
be depicted in a directory style representation as illustrated in Figures 1(a) and
1(b). We assume that each XML tree has a distinct identifier, such as s1 and
s2, which denotes its source. We refer to attribute and element nodes as objects
throughout the article. Moreover, we say that an object is simple if it corresponds
to a text element or an attribute, and complex otherwise.

Following the syntax proposed in [10], we define an XML key as (context-path,
(target-path, {key-paths})), where the values of the key-paths uniquely identify
nodes reached following a target-path in the context of each subtree defined by
the context-path.

Example 1. Given the XML trees depicted in Figures 1(a) and 1(b), the following
key definitions allow us to uniquely identify a single node in each of the trees.

– k1 : (ε, (paper, {title, year})): in the context of the entire document (ε de-
notes the root), a paper is identified by its title and year of publication;

Incremental Data Fusion Based on Provenance Information 343

– k2 : (paper, (author, {order}): within the context of any subtree rooted at a
paper node, an author is identified by its order;

– k3 : (paper, (citationQty, {})): within the context of any subtree rooted at
a paper node, there exists at most one citationQty element; that is, it
is identified by an empty set of values. Similarly, we can define unique-
ness constraints for venue, city, pages and author name as follows: k4 :
(paper, (venue, {})) and k5 : (paper, (city, {})) and k6 : (paper, (pages, {}))
and k7 : (paper/author, (name, {})).

Observe that based on the key definitions, it is possible to generate a path
expression for obtaining a node using key values as filters. As an example, based
on k1, we can obtain a (single) paper node from the trees in Figures 1(a)
and 1(b) using the expression /paper[title=‘Integration’ and year=‘2012’] and
the first author with the expression /paper[title=‘Integration’ and year=‘2012’]
/author[order=‘1’]. Thus, these path expressions can be considered as the nodes’
keys or object identifiers. We refer to nodes reached by key paths, such as title
and year as key nodes.

2.2 Strategies for Data Fusion

There are a number of strategies proposed in the literature for solving value
conflicts [6,36,16,13,17]. Here, we consider a set of strategies based on those
proposed in [6]. We describe the ones that are used in this article below. However,
the set of strategies can be much larger, with little impact on our fusion approach,
as discussed in Section 6.

Trust Your Friends (TYF). This strategy is based on a reliability criterion.
The user assigns a confidence rate for each source, and a value conflict is solved
by choosing the one provided by the source with the highest confidence rate.

Meet In The Middle (MIM). This is a strategy to mediate the conflict by
generating a new value that is a compromise among all conflicting values, e.g.,
an average of all conflicting numeric values.

Cry With The Wolves (CWW). This strategy is defined for choosing the value
reported by the majority of sources.

Choose a Value (CAV). In this strategy the user manually chooses one value
among those reported from the sources.

Pass It On (PIO). This is a non-resolving strategy. Although in most cases
the user wants a single value for each data item, for some items she may want
to postpone the decision for a future fusion process.

Observe that there are high-level strategies such as TYF, MIM, and CWW, and
also value-based strategies such as CAV. In our approach, we reapply only high-
level strategies on subsequent fusion processes without any user intervention. As
an example, the conflict on citationQty described in Section 1.1 has been solved
by computing the average value from all the ones reported from the sources (MIM
strategy). This strategy can continue to be applied in future fusion processes,
by taking into consideration the value updates and values uploaded from new
sources.

344 C.S. Hara, C.D. de Aguiar Ciferri, and R.R. Ciferri

However, this is not the case for value-based strategies. As an example, con-
sider the conflict on city between sources s1 and s2 depicted in Figure 1(a)
and (b). If the user manually chooses the value ‘Philadelphia’ reported by s2
using the CAV strategy, we can assume that she will continue to do so as long as
the sources keep providing the same values. Once one of them, say s1, modifies
its value to ‘Philadelphia, PA’, it is not clear whether the decision of choos-
ing the value reported from s2 over s1 is correct, and thus the strategy cannot
be reapplied. Otherwise, inconsistencies would be introduced in the database
without the user’s consent.

2.3 Basic Operations

There are a number of definitions for basic operations on XML data, but here
we adopt the ones proposed by [33]. Four operations are considered: edit, copy,
insert, and remove. Edit is an unary operation that operates on simple objects
and has the effect of modifying the object by assigning a value either provided by
the user, or generated by the system as the result of an aggregate function. Copy,
on the other hand, takes the value of a simple object provided from one source,
for copying it to a second source. Insert and remove are operations on complex
objects. Insert is a binary operation that creates a new object in one source, based
on an object already stored in another source. In the newly created object, the
identifiers are filled in with values obtained from the keys of the original object.
Finally, remove is an unary operation that deletes an object from a source, based
on its key.

Regarding the integration process, there are several methodologies for data-
base integration. Here, we adopt a binary ladder strategy [2], in which we first
analyze a first source, then analyze a second source by identifying its incon-
sistencies and managing them with regard to the first source, then analyze a
third source by identifying its inconsistencies and managing them with regard
to the first and second sources, and so on. Furthermore, as stated in Section 1,
we assume that external sources have been previously processed for identifying
entities, producing fully keyed documents. We adopt concepts that are similar
to the notion of “insertion-friendly” set of keys defined in [10]. With insertion-
friendly keys, one can unambiguously determine the position in the tree in which
new elements should be inserted.

3 System Architecture

Our approach for tackling the problem of incrementally fusing XML data is
based on keeping a repository of operations reflecting the user’s decisions and
data provenance, along with a rule base. That is, user-defined high-level fusion
rules are stored in a rule base. The application of a strategy on a data item
is mapped to a sequence of basic operations that are stored in the operations
repository.

The architecture of the system is depicted in Figure 2. We consider the exis-
tence of several XML sources s1, . . . sn, that have been previously transformed

Incremental Data Fusion Based on Provenance Information 345

to documents that follow the database schema. That is, we assume that any
structural discrepancies among sources have been solved by a schema integrator
prior to the fusion process. Moreover, we use key values as a means for entity
identification. More specifically, whenever two elements from distinct sources are
used to populate the same database element, based on their key values, they are
considered to refer to the same entity in the real world. Thus, whenever their
attribute values differ, we conclude that there is an attribute value conflict that
should be solved.

The system is based on three modules: fusion, validation, and update. Data
from each source is uploaded to the database separately by the update module.
This module is responsible for checking whether imported elements already exist
in the database, and if there are attribute value conflicts among them. If so, these
attribute values are combined into a single representation in a merged document.
In a merged document, data imported from several sources are combined when-
ever they are mapped to an object that coincide on their key values. Moreover,
it explicit represents value conflicts among sources, along with the provenance
for each value.

As an example, consider the source documents depicted in Figures 1(a) and
1(b) and the key definitions in Example 1. In the merged document, paper
elements imported from sources s1 and s2 are combined because their title
and year key elements coincide, revealing value conflicts on their citationQty
and city values. Similarly, they disagree on who are the first and second authors
of the paper. The resulting merged document, in which values of non-key simple
objects are associated with their provenance, is depicted in Figure 1(c).

UPDATE

keys

Source sj
v.2

VALIDATION Rule
Base Repository

Operations Mediated
 Database

user
queries

merged

first
upload

source
update

documentv.1
Source s1

v.1
Source sn

rules
fusion

FUSION

Fig. 2. Incremental fusion based on provenance

Value conflicts are solved by the fusion module based on user-defined fusion
rules. Fusion rules are stored in a rule base. They may be defined in the context
of a single element or on a larger context involving multiple elements. Thus, if a
newly detected conflict is within the context of an existing rule then the conflict
can be automatically solved without any manual user intervention. As the result
of applying a rule to a conflict, a value is written in the mediated database, which
consists of fused data. That is, there exists at most one value associated with
any element in the database. Since it contains no value conflicts, user queries are
processed based on data stored in the mediated database.

346 C.S. Hara, C.D. de Aguiar Ciferri, and R.R. Ciferri

In order to be able to reapply the same decisions in future fusion processes,
applications of the rules are mapped to sequences of basic operations that are
kept in the operations repository. Similar to database log files, these operations
contain not only the new value of the data item, but also the original source
values. As an example, consider the conflict on citationQty depicted in Figure
1(c). As a result of the application of the Meet in the Middle strategy, value 9 for
the paper’s citationQty is written in the mediated database, and the following
sequence of basic operations is stored in the operations repository: (i) edit the
mediated database (db) to 9; (ii) copy from db to s1, modifying its value from
10 to 9; and (iii) copy from db to s2, updating it from 8 to 9.

We use the notion of validation for determining when the effects of the oper-
ations in the repository are identical to the ones already executed in previous
fusion processes. Intuitively, we would like to ensure a strict reproduction of the
user’s decisions, guaranteeing that the same rules defined by the user to decide
previous conflicts will be applied to solve conflicts on the same object in the
future. In the example above, if in new versions of s1 and s2 their values for
citationQty remain unchanged, the operations on both sources are considered
valid, since they continue to update 10 to 9 in s1 and 8 to 9 in s2. However, if one
of them updates its value, say s1 updates it to 12, then the operation on s1 that
maps 10 to 9 is invalid since the original value recorded in the operation does
not match the value reported by the new version. As a result, the update mod-
ule includes citationQty and the values reported by s1 and s2 in the merged
document generated as input to a fusion process.

In the new fusion process, for every conflict in the merged document, it is
checked whether there exists a high-level fusion rule already defined for the
object. If this is the case, the conflict is solved, and both the mediated database
and the operations repository are updated. In our running example, the value
for citationQty in the mediated database is updated to 10, and the sequence of
operations in the repository is replaced with new ones that reflect the new value
recorded in the database. On the other hand, if there exists no fusion rules, or the
existing strategy is value-based then a new decision is requested from the user.
Intuitively, if a sequence of operations is valid there is no need for re-executing
them because their effects are already recorded in the system. Invalid operations
indicate source updates, and they can be solved without user intervention if
high-level fusion rules have been defined on the conflicting objects.

4 Data Model

In this section we present the structure of the data involved in our fusion system:
merged document (Section 4.1), rule base (Section 4.2), and operations repos-
itory (Section 4.3). We also define how fusion rules should be mapped to the
operations repository (Section 4.4).

Incremental Data Fusion Based on Provenance Information 347

4.1 Merged Document

There are three categories of XML documents in our system: data source, merged
document, and mediated database. They all follow the same schema which sat-
isfies the following constraint: every element in the schema is associated with a
key that determines how the element is identified in the context of its parent,
based solely on its simple components. As an example, the set of keys in Example
1 is insertion-friendly for all the XML documents in Figure 1 given that every
object is either keyed by a set of simple objects, such as paper objects, or they
are unique in the context of their parent, such as citationQty and name.

A merged document differs from the source and mediated database on the
contents of its simple objects. Instead of having text values, the merged docu-
ment contains a set of pairs (sourceId, value) for every non-key simple object.
Intuitively, a merged document combines into a single node all the values ex-
tracted from a set of sources that are identified by the same key. Discrepancies
among these values indicate a conflict that is solved by fusing them into a single
value, which in turn is stored in the mediated database.

Definition 1. Given a set of sources S and a set K of insertion-friendly XML
keys, we define a merged document Tm as an XML tree with a set of nodes V ,
such that a leaf node v ∈ V is either: (a) a key node, which contains a single text
value; or (b) a non-key node containing a set of pairs (sourceId, value), where
sourceId is the identifier of a source s ∈ S and value is extracted from a node in
s that has the same key that identifies v in Tm according to K.

An example of a merged document is illustrated in Figure 1(c). Given a merged
document Tm and a key k, we define a function value(Tm, k) to return the set
of pairs associated with the node v with key k in Tm. We define a similar function
on sources and the mediated database to return the text value associated with
a simple object.

4.2 Rule Base

Given that a merged document explicitly represents value conflicts, we need a
means for defining how these conflicts are solved. In our system, this is accom-
plished by user-defined fusion rules, stored in the rule base.

Definition 2. A fusion rule is a pair 〈σ,Σ〉, where
(1) σ is a path expression representing the context covered by the strategy;
(2) Σ is a non empty list of strategies for handling value conflicts on nodes

reached by the context path σ.

The context of a rule is defined by a path expression σ and therefore it may
cover not only a single element or attribute node, but also a set of nodes reached
by following σ. Furthermore, a rule may define a list of strategies for solving a
conflict. Thus, if the first strategy is not able to single out a value for a given
data item, the following strategies are considered one by one until either the end
of the list is reached or the conflict is solved.

348 C.S. Hara, C.D. de Aguiar Ciferri, and R.R. Ciferri

Example 2. Consider the value conflicts on paper’s citationQty and author
names depicted in Figure 1(c). The fusion rules described in Section 1.1 can be
defined as follows.

– 〈/paper[title=‘Integration’ and year=‘2012’]/citationQty, [MIM] 〉
– 〈/paper[title=‘Integration’ and year=‘2012’]/author/name, [CWW, TYF]〉

The first rule determines that conflicts on citationQty for the paper iden-
tified by ‘Integration’ as its title and ‘2012’ as its year, is solved by the
Meet in the Middle (MIM) strategy. That is, the average value is computed,
considering the imported values from all sources. The second rule defines that
for any author of the same paper, name conflicts are solved by first finding the
value reported by the majority of the sources (Cry With the Wolves - CWW
strategy). If the strategy does not single out a value then Trust Your Friends
(TYF) strategy is applied. Assuming that the confidence rate of s1 is higher than
s2, the value reported from s1 is chosen over that from s2.

Observe that rules are defined in a context defined by a path expression. Thus,
if conflicts on citationQty of all papers are to be solved by the MIM strategy,
we could define a rule with a larger context as follows: 〈/paper/citationQty,
[MIM]〉. That is, conflicts on any node reached by the path /paper/citationQty
are solved using the same strategy. Besides the notion of rule context, in our
previous work, we introduce the notion of a valid set of rules, based on the
concept of rule overriding. That is, inspired by object-oriented concepts, when
the context of a rule is contained in the context of another, we choose to ap-
ply the one most specific to the node that presents a value conflict. As an ex-
ample, we can define a general rule for solving conflicts on author names as
〈/paper/author/name, [TYF]〉, which can be overrid by a rule that is specific for
2012 papers: 〈/paper[year=‘2012’]/author/name, [CWW]〉.

4.3 Operations Repository

One of the main goals of our proposed system is the ability to reapply user’s
decisions in future fusion processes. Our approach to reach this goal is to map the
application of fusion strategies to sequences of basic operations that are stored
in the operations repository.

Definition 3. An operations repository is a list of records, grouped into
blocks, where each record refers to a basic operation with the following attributes:

– bId: sequential number that identifies a list of records; given two bIds b1
and b2, b1 < b2 if b1 has been executed before b2;

– objId: key value that uniquely identifies an object on which the operation is
executed;

– op: the operation can be an object insertion (in), removal (rm), or a simple
object value edition (ed) or copy (cp);

Incremental Data Fusion Based on Provenance Information 349

– origin: source from which the operation obtains an object (or value) to be
inserted (or copied) to another source. It is set to null for removal and edit
operations;

– target: source updated by the operation;
– prevVal: target object value overwritten by operations edit and copy;
– newVal: new target object value.

In the sequence we present an example of a block of operations that results
from the application of a fusion strategy.

Example 3. Consider the rule defined for attribute citationQty in our running
example. Its value is set to 9 in the mediated database when sources s1 and s2
are uploaded based on the MIM strategy. In the operations repository we store
one edit operation in order to modify the mediated database (db) value to 9,
followed by two copy operations from db to s1 and s2, as illustrated in Figure 3.

bId objId op orig target prevVal newVal
14 paper[..]/citationQty ed null db 10 9
14 paper[..]/citationQty cp db s1 10 9
14 paper[..]/citationQty cp db s2 8 9

Fig. 3. A block of operations resulting from the Meet in the Middle strategy

Observe that the operations keep the original value reported by the sources in
the prevVal field. Thus, when new sources are uploaded or if one of the sources
updates the value, the system can continue to compute the average. For instance,
consider the situation described in Section 1.1, in which a new version for s1 is
uploaded with the value 12 for citationQty. If the value uploaded from s2 were
not kept in the operations repository, we would be unable to compute the new
average value of 10.

Observe also that the three operations belong to the same block, indicated by
the same block identifier (bId: 14). This is because in the validation process each
operation involving the uploaded source is analyzed to check whether the value in
the current version matches the value recorded in the operation. Consider again
the update from 10 to 12 on s1’s citationQty and the operations in Figure 3.
The first copy operation from db to s1 is invalid, since the value of prevVal is
10, while the new version reports 12. However, not only this operation should
be considered invalid, but the whole block, since it reflects the application of
a fusion strategy. Moreover, the reapplication of the MIM strategy affects not
only the value of s1, but all the other sources and the db. Thus, a block is
considered invalid if it contains an invalid operation. In other words, validation
is an operation-based process, but once an operation is found invalid, the whole
block in which it is contained is considered invalid.

350 C.S. Hara, C.D. de Aguiar Ciferri, and R.R. Ciferri

4.4 Mapping Fusion Rules to Operations

In this section we present details on how the application of a fusion strategy is
recorded as a block of operations in the repository. First, observe that as the
result of a rule application either: (a) a rule successfully singles out a value for an
object that presented a conflict or (b) the user decides to postpone the decision
on how to solve it for future fusion processes (Pass it on - PIO strategy).

In case (a) the block of operations has the following structure. First, an opera-
tion for modifying the value in the mediated database (db) is generated followed
by a sequence of operations to copy this value to each of the sources that provide
values for the same object. Observe that there are basically two types of strate-
gies for solving a conflict: choose one value among the conflicting ones, such as
strategies TYF, CWW, and CAV, or generate a new value, such as strategy MIM.
An example of a block generated from the application of the MIM strategy is
presented in Figure 3, in which we modify the value of db using an edit oper-
ation. However, when the strategy chooses one of the values provided from a
source si, instead of an edit operation, we generate a copy operation from si to
db. As an example, if the conflict on citationQty described in Example 3 is
solved by choosing the value provided by s1 over s2, we generate a block with
two operations: a copy from s1 to db followed by a copy from db to s2.

In case (b), in which the user decides to postpone the fusion decision, we keep
the values provided by the sources in the operations repository, by modifying
them to a null value using an edit operation. Since the actual value remains
unknown, no value is recorded in the mediated database. Consider again the
conflict on citationQty. If the user applies the PIO strategy, two edit operations
are recorded in the repository: from 10 (as prevVal) to null on s1, and from 8
to null on s2.

An algorithm for generating a block of operations is given in Figure 4. Pro-
cedure insBlockOp takes as input five parameters: the strategy that has been
applied to solve the conflict; the key objId of the object with conflicting values;
a set allVal of pairs (sourceId, val) with the values reported from the sources,
which may include a pair (db, val) if the mediated database already contains
a value for the node; the value finalVal that results from the application of the
strategy; and the source identification valSource that provides finalVal. After ob-
taining a new block identification bId (Line 1), the procedure keeps in dbPrevVal
the previous value stored in the mediated database (Lines 2 to 4). Lines 7 to 9
considers the case when the strategy is PIO, generating a block of operations to
edit the value of each source to null. The case when a final value for solving
the conflict has been determined is considered in Lines 11 to 17. A valSource
with null value indicates that a new value, not extracted from the sources have
been generated to solve the conflict. In this case, an edit operation is generated
(Lines 11 and 12); otherwise, we generate a copy operation (Lines 14 and 15).
In the sequence, copy operations from the database to all remaining sources are
recorded in the same block (Lines 16 to 17).

Procedure insBlockOp can be executed in O(|S|) time, where |S| denotes
the number of input sources. To see this, observe that the set allVal is of size

Incremental Data Fusion Based on Provenance Information 351

Procedure insBlockOp (strategy, objId, allVal, finalVal, valSource)
Input: strategy applied to solve the value conflict, objId of the node,

allVal: a set of pairs (sourceId, val),
finalVal: the value recorded in the mediated DB,
valSource: the sourceId that provided finalVal

1. bId:= new(block); {generates a new bId}
2. if there exists a pair (db, v′) in allVal then
3. dbPrevVal:= v′;
4. remove (db, v′) from allVal;
5. else
6. dbPrevVal:= null;
7. if strategy is ‘PIO’ then
8. for each (sourceId, val) in allVal do
9. insOpRep([bId, objId, ‘ed’, null, sourceId, val, null]);
10. else
11. if valSource is null then {the strategy created a new value}
12. insOpRep([bId, objId, ‘ed’, null, ‘db’, dbPrevVal, finalVal]);
13. else {the strategy chose a reported value}
14. insOpRep([bId, objId, ‘cp’, valSource, ‘db’, dbPrevVal, finalVal]);
15. remove (valSource, finalVal) from allVal;
16. for all pairs (sourceId, val) in allVal do
17. insOpRep([bId, objId, ‘cp’, ‘db’, sourceId, val, finalVal]);

Fig. 4. Algorithm for inserting a block of operations

O(|S|) since it contains at most one element for each source. Thus, checking
containment in the set (Line 2) and removal from the set (Lines 4 and 15) takes
O(|S|) time. Lines 8-9 and 16-17 also take O(|S|) time since procedure insOpRep
takes constant time for writing a record at the end of operations repository file.

One advantage of keeping the operations repository is the feedback the system
can give back to the sources. That is, after the fusion process, we can easily
generate a sequence of operations for making any source si consistent with the
mediated database simply by selecting the operations in which the target is
si. Considering again the contents of the operation repository in Figure 3, a
feedback for s1 consists of the first copy operation, while for s2 it contains the
second copy operation.

5 System Modules

Given the data model presented in the previous section, we are now ready to de-
scribe the functionality of the fusion, validate, and update modules that compose
our system.

5.1 Fusion Module

The major goal of the fusion module is to generate a mediated database resulting
from the fusion of data imported from several sources. The input to the fusion

352 C.S. Hara, C.D. de Aguiar Ciferri, and R.R. Ciferri

module is a merged document and a set of user-defined fusion rules. Besides
generating the mediated database, rules are stored in the rule base, and the
operations repository is updated in order to reflect to last fusion operations that
produced the values stored in the database.

Figure 5 presents an algorithm for the fusion module. Clean is a recursive
function that traverses a merged document in post-order. Observe that in a
merged document, all value conflicts are in the leaves. Thus, when processing
internal nodes, the algorithm only calls the clean function recursively in order to
collect the set of source identifiers that populate its descendants. This is because
the provenance of the uploaded values in the merged document are recorded only
on the set of pairs (sourceId, val) associated with the leaves. Thus, given obj,
an internal node in a merged document, there exists a correspondent node in a
source if it contributes with at least a value for one of the obj’s descendants. For
each of these sources, we generate an insert operation in the operations repository
by invoking the procedure insObjOpRep (Lines 1 to 7). In this procedure, for
each sourceId in the set, it checks whether an insertion operation for the source
already exists, and if not a new one is recorded.

When processing a simple non-key object, the function first obtains its set
of pairs (sourceId, val) and its set of value providers by calling getValues and
getSourceIds, respectively (Lines 9 and 10). If all sources agree on the reported
value, it is simply stored in the mediated database and a block of operations is
generated in the operations repository (Lines 11 to 14). Otherwise, we first look
if there exists already a fusion rule defined for the node (Line 16) and check
whether the conflict can be solved calling procedure applyRule. Observe that
applyRule only reapplies high-level strategies such as TYF, MIM, and TYF. If
the existing strategy is value-based, such as CAV, then it is removed from the rule
base, without solving the conflict. Thus, if the conflict persists, the definition of
a new rule is requested from the user (Lines 21 to 26), which is stored in the rule
base (Line 23). If after this process, the conflict still persists, we conclude that
the user chooses not the solve it at the moment. Thus, we record a PIO strategy
for the node in the rule base, and remove the node from the database if it exists.
The fusion decision is also recorded in the operations repository by invoking
the insBlockOp procedure (Line 33). It is worth noticing that by allowing the
user to postpone the fusion decision, it is possible to upload several sources to
the system before making any decision on how to solve the conflicts. That is,
although we consider a binary ladder integration approach in which sources are
uploaded to the system one-by-one, the cleansing decisions are not necessarily
made considering one new source at a time. It is also worth noticing that human
input are valuable and should be used whenever possible. Therefore, we designed
our system so that we notify users when previous changes have been invalidated
and allow them to give suggestions on how these changes might be managed.

Algorithm clean can be executed in O(|T |3|R||S|) time, where |T | is the size
of the merged document, |R| is the size of the rule base and |S| is the number
of sources. Observe that each node in the tree is processed once. For internal
nodes, procedure insObjOpRep is invoked to determine whether the collected

Incremental Data Fusion Based on Provenance Information 353

Function clean (obj)
Input: obj: an object with key objId in a merged document mergedDoc
Output: setsIds: set of sourceIds that populate an obj’s descendant in mergedDoc
1. if obj is an internal node then
2. setsIds:= {};
3. for all obj’s children c do
4. if c is not a key object then
5. setsIds:= setsIds ∪ clean(c);
6. insObjOpRep(objId, setsIds);
7. return setsIds;
8. else
9. allVal:= getValues(objId); {return set of pairs (sourceId, val)}
10. setsIds:= getSourceIds(allVal);
11. if all sources provide the same value v then
12. updateDB(objId, v);
13. sourceFinalVal:= smallest sourceId in setsIds;
14. insBlockOp(null, objId, allVal, v, sourceFinalVal);
15. else
16. rule:= getRule(objId); {obtain list of strategies [r1, ..., rn] from rule base}
17. solved:= false;
18. while not solved and rule not empty do
19. r:= extractFirst(rule);
20. solved:= applyRule(r, allVal, finalVal, sourceFinalVal);
21. if not solved then {request new rule from the user}
22. newRule:= getNewRule(objId) from user input;
23. storeRuleBase(newRule);
24. while not solved and newRule not empty do
25. r:= extractFirst(newRule);
26. solved:= applyRule(r, allVal, finalVal, sourceFinalVal);
27. if not solved then
28. r:= ‘PIO’;
29. finalVal:= null;
30. remDB(objId);
31. else
32. updateDB(objId, finalVal);
33. insBlockOp(r, objId, allVal, finalVal, sourceFinalVal);
34. return setsIds;

Fig. 5. Algorithm clean

sourceIds have already been inserted in the operations repository. This takes a
single traversal of the operations repository, which is of size O(|T | ∗ |S|), since
each node in the tree may have at most one record for each source in the set
S. For leaves, on the other hand, the execution of getValues, getSourceIds,
and also for checking whether all sources agree on their values take O(|S|) time,
given that each leaf may have at most one value for each source. If all sources
agree, procedures updateDB and insBlockOp procedures are invoked, which takes
O(|T |) and O(|S|) time, respectively. The existence of value conflicts among

354 C.S. Hara, C.D. de Aguiar Ciferri, and R.R. Ciferri

sources requires the application of a rule. Function getRule can be executed
in O(|R| ∗ |T |2) time. Each rule is considered once, and the path expression σ
in the rule is evaluated on T to check whether it contains the cleaning node.
This is executed in (|T | ∗ |σ|) time [18] which is O(|T |2). Once the rule to be
applied is singled out, each of its strategies are applied by calling applyRule,
which can be executed in time O(|S|) since the rules require scanning through
the values provided by each source. The execution time for getting a new rule
require the same time as the application of a new rule, in addition to storing it
in the rule base, which takes O(1) given that the rule is written at the end of the
file. Updates on the database in lines 30 and 32 takes O(|T |), while the insertion
of a new block of operations in line 33 is O(|S|). Thus, the entire algorithm is
O(|T | ∗ ((|T | ∗ |S|) + |S|+ (|T |+ |S|) + (|R| ∗ |T |2 + |S|+ |T |+ |S|))), which is
O(|T |3|S||R|).

Example 4. Consider again our running example. Suppose that first, source s1
is uploaded to the mediated database. Observe that for the first uploaded source
s1, the merged document is almost identical to the source, but with the non-key
leaves annotated with the provenance of the single element in the set {(s1, val)}.
Since there are no conflicts, algorithm clean generates a document identical to
s1 in the mediated database and records these operations in the operations
repository. The contents of the operations repository at this point is illustrated
in Figure 6. Observe that the insertion operations (blocks 4, 6, and 8) have been
generated by procedure insObjOpRep, while the remaining blocks are recorded
by insBlockOp.

bId objId op orig target prevVal newVal
1 paper[..]/venue cp s1 db null ‘Int. Conf..’
2 paper[..]/city cp s1 db null ‘Philly’
3 paper[..]/author[order=‘1’]/name cp s1 db null ‘John’
4 paper[..]/author[order=‘1’] in s1 db
5 paper[..]/author[order=‘2’]/name cp s1 db null ‘Jack’
6 paper[..]/author[order=‘2’] in s1 db
7 paper[..]/citationQty cp s1 db null ‘10’
8 paper[title=‘Int..] in s1 db

Fig. 6. Operations repository after upload of source s1

If in the sequence s2 is uploaded, the contents of the operations repository
are modified as presented by Figure 7. New operations are generated for s2’s
internal nodes (blocks 11, 13, and 16) but not for s1, because they have already
been generated during s1’s upload. Since value conflicts have been detected on
city, author names, and citationQty, new blocks reflecting the user’s decisions
are recorded (blocks 9, 10, 12, and 14). Observe also that previously existing
blocks involving these objects are removed from the repository (blocks 2, 3, 5,
and 7). These removals are executed by the update module, which is based on
the validation process, described in the next section.

Incremental Data Fusion Based on Provenance Information 355

bId objId op orig target prevVal newVal
1 paper[..]/venue cp s1 db null ‘Int. Conf..’
2 paper[..]/city cp s1 db null ‘Philly’
3 paper[..]/author[order=‘1’]/name cp s1 db null ‘John’
4 paper[..]/author[order=‘1’] in s1 db
5 paper[..]/author[order=‘2’]/name cp s1 db null ‘Jack’
6 paper[..]/author[order=‘2’] in s1 db
7 paper[..]/citationQty cp s1 db null ‘10’
8 paper[title=‘Int..] in s1 db
9 paper[..]/city cp s2 db ‘Philly’ ‘Philadelphia’
9 paper[..]/city cp db s1 ‘Philly’ ‘Philadelphia’
10 paper[..]/author[order=‘1’]/name cp s1 db ‘John’ ‘John’
10 paper[..]/author[order=‘1’]/name cp db s2 ‘Jack’ ‘John’
11 paper[..]/author[order=‘1’] in s2 db
12 paper[..]/author[order=‘2’]/name cp s1 db ‘Jack’ ‘Jack’
12 paper[..]/author[order=‘2’]/name cp db s2 ‘John’ ‘Jack’
13 paper[..]/author[order=‘2’] in s2 db
14 paper[..]/citationQty ed null db 10 9
14 paper[..]/citationQty cp db s1 10 9
14 paper[..]/citationQty cp db s2 8 9
15 paper[..]/pages cp s2 db null ‘18-29’
16 paper[title=‘Int..] in s2 db

Fig. 7. Operations repository after upload of source s2

5.2 Validation Module

The main goal of the validation module is to determine whether the execution of
the operations in the repository have the same effect if executed on new versions
of the sources. That is, if a new version presents no updates then all operations
on the source are valid and thus there is no need for reexecuting them. On
the other hand, an invalid operation indicates a source update which requires
the object to go through a new fusion process. By selecting objects involved in
invalid operations, the validation process can substantially reduce the volume
of data considered in subsequent fusion processes. The validation module is also
responsible for detecting removals and insertions in the source.

An algorithm for the validation module is presented in Figure 8. It takes as
input an XML tree provided by a source identified by sId, and produces as output
three sets, all of them containing objIds: invalidUpdate for invalid operations due
to source value updates, invalidRem for invalid operations due to removals in
the source, and newObjIds for elements inserted in the new version. First, we
initialize the set newObjIds with the keys of all nodes in the document s, and
the remaining sets as empty (Lines 1 to 3). Then each block in the operations
repository is examined. Observe that blocks consist of operations on the same
object and there exists at most one operation involving each source, but multiple
operations involving the mediated database. Recall that a block is considered
invalid if it contains at least one invalid operation. Thus, when validating a

356 C.S. Hara, C.D. de Aguiar Ciferri, and R.R. Ciferri

Function validate (s)
Input: s: an XML tree with a new version for data source sId
Output: invalidUpdate: objIds for invalid operations due to updates,

invalidRem: objIds for invalid operations due to removals
newObjIds: objIds of elements inserted in the new version

1. newObjIds:= set of all objIds in s;
2. invalidUpdate:= {};
3. invalidRem:= {};
4. for each block b in the operations repository do
5. for each record r in b do
6. if r.origin == sId or r.target == sId then
7. if r.objId is not in newObjIds then
8. insert r.objId in invalidRem;
9. else
10. remove r.objId from newObjIds;
11. if (r.op == ‘cp’ or r.op == ‘ed’) and

((r.origin == sId and value(s, r.objId) <> r.newVal) or
(r.target == sId and value(s, r.objId) <> r.prevVal)) then

12. insert r.objId in invalidUpdate;
13. return (invalidUpdate, invalidRem, newObjIds);

Fig. 8. Algorithm for validating operations

block, we first check whether there exists an operation involving sId. If so,
either the object continues to be provided by the source or it has been removed.
In the latter case, we consider the operation invalid and insert the objId in the
invalidRem set (Lines 7 and 8). In the former case, since the object has already
been provided in a previous version, we remove it from newObjIds (Line 10).
Moreover, the algorithm checks if the value provided in the new version remains
unchanged. Recall that in an operation record, newValue refers to the value
provided by the origin source to update the target source, while prevValue
refers to the value previously stored in target. Thus, we consider an operation
invalid either if it contains sId as the origin and the value provided by the new
version disagrees with the operation’s newValue attribute or if it contains sId as
the target and the provided value disagrees with the prevValue attribute (Lines
11 and 12). Recall that function value (s, objId) is responsible for extracting
the value associated with the node with key objId in the document s.

Function validate can be executed in O(|T |2|S|) time. To see this, observe
that the number of blocks in the operations repository is the number of nodes in
the database T , and that each block contains at most |S| records, one for each
source. When processing a record in the repository, we have to check whether
the object is in the set newObjIds, which is of size O(|T |) and possibly obtain
its value in the database, which takes O(|T |) time. Thus, the time complexity of
the algorithm is O(|T | ∗ |S| ∗ |T |).

Example 5. As an example, consider the new version for source s1 (referred to
as s1.v2) presented in Figure 9(a) and the operations repository in Figure 7.

Incremental Data Fusion Based on Provenance Information 357

(a)

 author: order: 1
 name: ’Jack’

 citationQty: 12
 pages: ’1−10’

 name: source s2: ’John’
 citationQty: source s1: 12

source s2: 8
 pages: source s1: ’1−10’

source s2: ’18−29’

(b)

 author: order: 2

Mediated DB

(c)

 author: order: 1
 name: ’Jack’

 author: order: 2
 name: ’John’

 citationQty: 10

paper title: ’Integration’
 year: 2012
 venue: ’Int. Conf..’

city: ’Philadelphia’

Source s1 − new version
paper title: ’Integration’
 year: 2012
 venue: ’Int. Conf..’

Merged Document
paper title: ’Integration’
 year: 2012
 author: order: 1

city: ’Philly’

 name: source s1: ’Jack’
source s2: ’Jack’

Fig. 9. Upload of s1’s new version

The operation in the block with bId:1 is valid because s1 is the origin and
the value in newVal coincides with the value in the new version s1.v2. The
insertion operation in block 4 is also valid because there exists a node with
the same key for the author with order:1 in s1.v2. However, the insertion in
block 6 is invalid because there exists no author with order:2 in s1.v2 and
thus this object is inserted in the invalidRem set. The next block containing
an invalid operation is the one with bId:10. The first operation in this block
has s1 as the origin but the value in newVal (‘John’) disagrees with the value
in s1.v2. Thus, the object is inserted in the invalidUpdate set. After processing
all the operations in the repository, the only remaining object in the newOb-
jIds is /paper[..]/pages given that it is the only new object in the new version.
The final contents of the other two sets are: {/paper[..]/author[order=‘1’]/name,
paper[..]/citationQty} for invalidUpdate, and {/paper[..]/author[order=‘2’], /pa-
per[..]/author[order=‘2’]/name} for the set invalidRem.

The sets resulting from the validate module are then given as input to the
update module, which is responsible for generating a merged document with
conflicts involving the updated objects.

5.3 Update Module

The goal of the update module is twofold. First, it generates a merged document
which explicitly represents conflicts involving elements in a new source or in
elements updated in a new version of a source. This document is the input to the
fusion process described in Section 5.1. Second, it removes from the operations
repository blocks containing invalid operations.

An algorithm for the update module is given in Figure 10. Function update
takes as input a new version of a source sId, represented by an XML tree,
and the three sets generated by the validate function and processes each of
them as follows. First, observe that objIds in the invalidUpdate set are always
simple elements since they are the ones that contain associated values. Thus, we
simply remove the block of operations involving the object from the operations

358 C.S. Hara, C.D. de Aguiar Ciferri, and R.R. Ciferri

repository, and an element in the merged document is generated substituting
the value associated with sId by the one provided by its new version (Lines 2
to 6). Observe that function extractValues receives a list of operation records,
and returns a set of pairs (sourceId, value), where value consists of the original
value provided by sourceId. That is, if in the operation record sourceId is the
origin then value is extracted from the newValue attribute; otherwise, it is
extracted from prevValue. Moreover, procedure insMerged(mergedDoc, objId,
allVal) inserts an element n identified by objId in mergedDoc and all the elements
in the path from the root to n if they do not exist. The values for n are obtained
from the set of pairs in allVal, except the pair associated with the source ‘db’.
The sets invalidRem and newObjIds are processed similarly (Lines 7 to 18, and
19 to 24, respectively). Observe, however, that when an object is removed from
the new version, we must check if sId was the only source that provided it. If
this is the case, we also have to remove it from the mediated database (Lines 11
and 16).

The update module may be invoked both after a validation process or for the
first upload of a new source. For new sources, function update is called with both
invalidUpdate and invalidRem as empty sets, and newObjIds containing the set
of all objIds in the new document.

Function update can be executed in O(|T |2|S|) time. Observe that each object
in the source is either in the set invalidUpdate, invalidRem, or newObjIds. For
each of them, the operations repository, of size O(|T | ∗ |S|) is traversed once in
order to be updated, and either the database or the merged document, both of
size |T |, has to be updated. These operations require a single traversal on the
tree. Thus the entire function is O(|T | ∗ (|T ||S|+ |T |), which is O(|T |2|S|).

Example 6. Consider again the contents of the sets of updated objIds in Example
5 and the operations repository in Figure 7. Based on the contents of invalidUp-
date, block 10 (on paper[..]/author[order=‘1’]/name and block 14 (on pa-
per[..]/citationQty are removed from the repository and elements in the
merged document are inserted with the original values provided by source s2 and
the values in the new version of s1, as depicted in Figure 9(b). Similarly, based
on the contents of invalidRem, block 6 (on paper[..]/author[order=‘2’]) is
removed from the repository. Observe that in this case, the corresponding object
is not removed from the database because the repository still contains an inser-
tion operation based on the author list provided by s2. Moreover, block 12 is
removed, with operations on paper[..]/author[order=‘2’]/name, and an el-
ement is generated in the merged document, containing only the value provided
by s2. Given that the set newObjIds contains a single element paper[..]/pages,
block 15 is removed from the repository, and the value provided by s2 extracted
from the operation is combined with the new element inserted in s1. The result-
ing merged document is presented in Figure 9(b). Observe that elements venue
and city, which remained unchanged in the new version are not inserted in the
merged document since their operations remain valid.

Considering only the fusion rules presented in Example 2, value conflicts on
elements citationQty and author name can be solved without any manual inter-

Incremental Data Fusion Based on Provenance Information 359

Function update (s, invalidUpdate, invalidRem, newObjIds)
Input: s: an XML tree provided by source sId

invalidUpdate, invalidRem, newObjIds: sets of objIds of updates on s
Output: mergedDoc: updated values in s combined with values from other sources
1. mergedDoc:= ε;
2. for each objId in invalidUpdate do
3. newVal:= value(s, objId);
4. extract block b involving objId from the operations repository;
5. allVal:= extractValues(b) − {(sId, _)} ∪ {(sId, newVal)};
6. insMerged(mergedDoc, objId, allVal);
7. for each objId in invalidRem do
8. if objId refers to an internal node then
9. remove [_, objId, ‘in’, sId, ‘db’, null, null] from the operations repository;
10. if there exists no other operation on objId in the operations repository then
11. remDB(objId);
12. else
13. extract block b involving objId from the operations repository;
14. allVal:= extractValues(b) − {(sId, _)};
15. if allVal is empty then
16. remDB(objId);
17. else
18. insMerged(mergedDoc, objId, allVal);
19. for each objId in newObjIds do
20. if object with key objId is a simple object then
21. newVal:= value(s, objId);
22. extract block b involving objId from the operations repository;
23. allVal:= extractValues(b) ∪ {(sId, newVal)};
24. insMerged(mergedDoc, objId, allVal);
25. return mergedDoc;

Fig. 10. Algorithm for the update module

vention, but not on pages. Thus, the fusion module requests a new rule from the
user. If she decides to postpone the decision then the system sets the strategy to
be PIO. The resulting mediated database is presented in Figure 9(c) and the final
contents of the operations repository is given in Figure 11. Here we do not show
the removed blocks, but only the ones that remained from the previous snapshot
and the new blocks, which are above and below the dashed line, respectively.

Although the complexity of the algorithms in the paper had been presented
in terms of the input size, the complexity of an incremental algorithm can also
be measured in terms of the size of changes in the input and output, which
represents the updating costs that are inherent to the incremental problem
itself. With this respect, an incremental algorithm is said to be bounded if
its cost can be expressed as a function of the size of changes. Intuitively, the
algorithm is bounded if it processes only the subset of data input and out-
put that change [29]. Recall that the goal of function validate is to deter-
mine which objects have been changed. That is, |changed| = |invalidUpdate|+

360 C.S. Hara, C.D. de Aguiar Ciferri, and R.R. Ciferri

bId objId op orig target prevVal newVal
1 paper[..]/venue cp s1 db null ‘Int. Conf..’
4 paper[..]/author[order=‘1’] in s1 db
8 paper[title=‘Int..] in s1 db
9 paper[..]/city cp s2 db ‘Philly’ ‘Philadelphia’
9 paper[..]/city cp db s1 ‘Philly’ ‘Philadelphia’
11 paper[..]/author[order=‘1’] in s2 db
13 paper[..]/author[order=‘2’] in s2 db
16 paper[title=‘Int..] in s2 db
17 paper[..]/author[order=‘1’]/name cp s1 db ‘John’ ‘Jack’
17 paper[..]/author[order=‘1’]/name cp db s2 ‘Jack’ ‘Jack’
18 paper[..]/author[order=‘2’]/name cp s2 db ‘Jack’ ‘John’
19 paper[..]/citationQty ed null db 9 10
19 paper[..]/citationQty cp db s1 12 10
19 paper[..]/citationQty cp db s2 8 10
20 paper[..]/pages ed null s1 ‘1-10’ null
20 paper[..]/pages ed null s2 ‘18-29’ null

Fig. 11. Operations Repository after upload of s1’s new version

|invalidRem|+ |newObjIds|. Moreover, these changes affect the value of these
objects in the mediated database and the corresponding records in the oper-
ations repository. Given that the merged document T is built based on these
records, |affected | = |T |. The extraction of these records from the operations
repository and the update of the mediated database can be done in time defined
as a function of |affected | if there exists an appropriate index structure on the
objId both on the operations repository and the mediated database. Similarly,
in order to bound the time complexity of the clear function to |affected | we need
an auxiliary structure to get the fusion rule defined on each object affected by
the changes in the source new version.

6 Related Work

Data integration and cleaning have been studied extensively by the database
community [4,7]. Most of previous works consider data on relational format, but
recently it has been stressed the need for investigating the problem of solving
conflicts on semi-structured data. XClean [34] is a system that allows declara-
tive and modular specification of a cleaning process. It consists of a declarative
language with operators that cover not only the fusion process, but also entity
identification and combination of values that refer to the same object. The main
goal is to provide a modular system that can be easily extended with new oper-
ators. Potter’s Wheel [30] follow a cleaning strategy based on a set of operations
to transform data, such as format, drop, copy, merge, split, divide, fold and se-
lect. However, instead of storing the result of a data transformation, the sources
are stored along with the definition of the transformation. The transformation
is applied on-the-fly whenever a consistent and clean information is required.
Hummer [5] and Fusionplex [25] are systems that focus on the fusion process.

Incremental Data Fusion Based on Provenance Information 361

Hummer proposes an extension for SQL with fusion functions that can be ap-
plied to attributes in the query result. Fusionplex is also a strategy-based system
in which conflicts are solved based both on metadata such as timestamp, cost,
accuracy, and availability, and value-based strategies. However, none of these
systems focus on incremental updates on fused data when sources are updated,
which is the goal of our work.

There are a number of strategies for data fusion proposed in the literature
[6,36,16,13,17], and a survey can be found in [7]. The strategies we described
in Section 2.2 and used throughout the paper were introduced in [6]. However,
extending our system with new strategies have little impact on our incremental
update approach. First, observe that as a result of the application of a strategy,
one of the following sequence of operations is recorded: (case 1) a copy operation
from a source to the mediated database and several copy operations from the
mediated database to each remaining source; and (case 2) an edit operation in
the mediated database and several copy operations from the mediated database
to each source. In the work described in [36], given a large number of facts that
correspond to conflicting information obtained from several websites, it applies
an iterative method to infer the trustworthiness of websites and to determine
the confidence of facts based on the inferred trustworthiness. Solomon [16] is
a system that can detect copying between sources and measure the quality of
sources based on the intuition that copying may change the sources’ quality. It
applies the results to solve data conflicts and to decide true values of entities. In
[13], it is proposed a model for determining the relative accuracy of attributes.
Based on accuracy rules and an inference system, this work determines whenever
possible a unique entity whose attributes are composed of the most accurate
values from all conflicting attributes from the same real world object. If there
is not enough information to generate a complete entity, the work computes the
top-k candidate entities based on a preference model. Another work that focus on
determining a unique entity whose attributes are consistent and store the most
current value is described in [17]. The conflict resolution is solved by specifying
data currency in terms of a partial currency order and currency constraints, and
by enforcing data consistence with conditional functional dependencies. Based
on the results produced by the aforementioned strategies, the user can solve a
value conflict by choosing the most trustworthy fact, the most appropriate true
value, the most appropriate top-k candidate entity, or by simply agreeing with
the result returned by the strategy. As the value that is chosen to solve a value
conflict is always obtained from a given source, our system can be extended
to consider these strategies recording their results in the operations repository
following case 1.

Regarding provenance-based integration systems that have been proposed in
the literature, the ELIT (Exploration and LIneage Tracing) system [32] focuses
on the lineage tracing problem in mediator-based integration systems. It collects
information related to provenance during query processing in order to use this
information to identify the data in the heterogeneous sources that contributed
to a query answer. In Trio [3,35], data provenance is used to estimate the quality

362 C.S. Hara, C.D. de Aguiar Ciferri, and R.R. Ciferri

of imported data. Similar to our approach, the system stores values of the same
piece of data imported from external sources. However, these value conflicts are
solved by attaching confidence rates to values. But ELIT and Trio differ from our
work on how provenance is applied in the integration process. Differently from
our work, neither ELIT nor Trio store provenance on data transformations, which
in our system are based on fusion rules and, therefore, they cannot be used to
reapply previous fusion decisions.

Two systems that follow the operation-based approach, i.e., keep track of prove-
nance related to data and transformations based on operations, are CPDB (Copy-
Paste DataBase) [8,9] and CHIME (Capturing Human Intension Metadata with
Entities) [1]. The main goal of CPDB is to manage provenance for manually cu-
rated databases, as defined by its authors as follows. “Given a definition of the
complete and correct history of a database as it evolves over time, the goal of
CPDB is to store sufficient provenance information to be able to answer queries
about the history given only the provenance information and the final database
state(s)”. Also, Buneman et al. [8] investigate four techniques for storing prove-
nance information, named naive provenance, transactional provenance, hierar-
chical provenance e transactional-hierarchical provenance. These techniques are
aimed to reduce the provenance storage size, by defining different levels of details,
from a higher level of detail (i.e., naive provenance) to a lower level of detail (i.e.,
transactional-hierarchical provenance). On the other hand, in CHIME the user
first integrates heterogeneous sources into a single relation using as a basis a set of
operations. These operations are collected automatically and store the data used
in the integration, as well as which data is correct. Then, the user may query this
integrated relation to extract information about the data collected in order to per-
form data audit. Our model differs from CPDB and CHIME on its purpose. We
aim at reapplying fusion decisions in subsequent source uploads, while this feature
is not supported neither by CPDB nor CHIME.

Orchestra [21] is a system for sharing structured data that is collaboratively au-
thored by a large community of users. It models the exchange of data among sites
as update exchange among peers, which is subject to transformations through
schema mappings. Also, it employs data provenance for enforcing trust policies
that are used to solve conflicts and for performing update exchange incremen-
tally. Panda [19,20] is a generic framework for selectively update the output of
a data-oriented workflow. That is, the user selects the data items she wants to
update, and the system traces back their origin in the workflow in order to recom-
pute their current values. The application of a fusion rule can be considered a data
transformation in the Panda setting. However, Orchestra and Panda are based on
specific characteristics that differs them from our work. Orchestra requires that
each source provides its updates (delta) since the last integration process, while
our approach does not require delta files, and has a much richer set of conflict solv-
ing rules. Panda is generic for any data transformation, and although one of its
goals is similar to the idea of reapplying previous decisions (defined as workflows)
in subsequent ones, it does not provide details on how the reapplication can be
applied for data fusion processes, which is the focus of this paper.

Incremental Data Fusion Based on Provenance Information 363

Data provenance has also been used in the literature to support Extract-
Transform-Load (ETL) processes in data warehousing environments (e.g.,
[15,31]). However, the use of provenance is typically to store metadata that
allows one to trace the data origin and transformations, and not at incremental
application of the transformations.

Finally, incremental updates on a database based on source updates has been
recently referred to as data coordination [22]. However, the approach proposed
in [22] differs from ours on how updates on the sources are detected. While we
rely on the operations validation process, [22] proposes a materialization of the
source data followed by an algorithm for detecting the differences with a new
version. To the best of our knowledge, our approach is the first to apply an
operation-based provenance model in the context of data fusion processes.

7 Conclusion

In this paper we presented a system that tackles the problem of incrementally
updating a database populated with fused data provided by external sources.
The approach is based on storing the data provenance in an operations reposi-
tory that consists of records that contain both the original and new values. Since
the operations coordinate the database with the sources, they can be used to
provide feedback to the sources with the results of the fusion process. We pro-
posed a validation process, which reliably determines whether a source updated
an object provided in previous processes. When an update is identified, the value
is combined with the values provided from other sources, extracted from the op-
erations repository, in order to go through a new fusion process. By filtering out
the objects that remained unchanged in new versions, and reapplying previously
defined fusion rules, we can substantially minimize the need for manual user
intervention in future fusion processes.

We intend to extend the XFusion [14] tool with the functionality presented
in this paper and run some experiments in order to determine the efficacy of
the proposed approach. Efficient storage and index structures to support the
operations repository is also a topic for future investigation. In this paper, we
adopt the where-provenance model [12], by keeping the origin of each data item
that contributed to a value stored in the database, and the fusion rule that
originated the final value. We can extend the proposed model by keeping all the
source updates, so that it would be possible to obtain historical data by tracing
back what have been the updates since their first upload to the system. Another
line of investigation consists of extending the proposed framework for allowing
update operations directly on the mediated database with operations logged
in the operations repository. That is, the mediated database would combine
imported data with local generated data. We intend to investigate how these
direct operations impact those resulting from the application of fusion rules,
possibly extending previous results [33] with characterizations of transitive and
overlapping operations. We also plan to extend our system with the data fusion
strategies surveyed in Section 6.

364 C.S. Hara, C.D. de Aguiar Ciferri, and R.R. Ciferri

Acknowledgement. This work has been supported by the following Brazilian
research agencies: CNPq, FAPESP, CAPES, RNP, and FINEP.

References

1. Archer, D.W., Delcambre, L.M.L., Maier, D.: A framework for fine-grained data
integration and curation, with provenance, in a dataspace. In: Proceedings of the
1st Workshop on the Theory and Practice of Provenance, pp. 1–10 (2009)

2. Batini, C., Lenzerini, M., Navathe, S.B.: Comparative analysis of methodologies
for database schema integration. ACM Computing Surveys 18(4) (December 1986)

3. Benjelloun, O., Sarma, A.D., Hayworth, C., Widom, J.: An introduction to ULDBs
and the Trio system. IEEE Data Engineering Bulletin 29(1), 5–16 (2006)

4. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. IEEE
Data Engineering Bulletin 29(2), 4–12 (2006)

5. Bilke, A., Bleiholder, J., Naumann, F., Böhm, C., Weis, M.: Automatic data fusion
with hummer. In: Proceedings of the 31st VLDB Conference, pp. 1251–1254 (2005)

6. Bleiholder, J., Naumann, F.: Conflict handling strategies in an integrated informa-
tion system. In: Proceedings of the International Workshop on Information Inte-
gration on the Web, IIWeb (2006)

7. Bleiholder, J., Naumann, F.: Data fusion. ACM Computing Survey 41(1), 1–41
(2008)

8. Buneman, P., Chapman, A., Cheney, J.: Provenance management in curated
databases. In: SIGMOD 2006: Proceedings of the 2006 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 539–550 (2006)

9. Buneman, P., Chapman, A., Cheney, J., Vansummeren, S.: A provenance model
for manually curated data. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS,
vol. 4145, pp. 162–170. Springer, Heidelberg (2006)

10. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.C.: Keys for XML. Com-
puter Networks 39(5), 473–487 (2002)

11. Buneman, P., Khanna, S., Tan, W.-C.: Data provenance: Some basic issues. In:
Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 87–93. Springer,
Heidelberg (2000)

12. Buneman, P., Khanna, S., Tan, W.-C.: Why and where: A characterization of data
provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973,
pp. 316–330. Springer, Heidelberg (2000)

13. Cao, Y., Fan, W., Yu, W.: Determining the relative accuracy of attributes. In:
SIGMOD 2013: Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 565–576 (2013)

14. Cecchin, F., de Aguiar Ciferri, C.D., Hara, C.S.: XML data fusion. In: Bach Ped-
ersen, T., Mohania, M.K., Tjoa, A.M. (eds.) DAWAK 2010. LNCS, vol. 6263, pp.
297–308. Springer, Heidelberg (2010)

15. Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations.
The VLDB Journal 12(1), 41–58 (2003)

16. Dong, X., Berti-Equille, L., Hu, Y., Srivastava, D.: SOLOMON: Seeking the truth
via copying detection. PVLDB 3(2), 1617–1620 (2010)

17. Fan, W., Geerts, F., Tang, N., Yu, W.: Inferring data currency and consistency for
conflict resolution. In: ICDE 2013: Proceedings of the IEEE International Confer-
ence on Data Engineering, pp. 470–481 (2013)

18. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing xpath queries.
In: VLDB 2002: Proceedings of the 28th International Conference on Very Large
Data Bases, pp. 95–106 (2002)

Incremental Data Fusion Based on Provenance Information 365

19. Ikeda, R., Widom, J.: Panda: A system for provenance and data. IEEE Data En-
gineering Bulletin 33(3), 42–49 (2010)

20. Ikeda, R., Salihoglu, S., Widom, J.: Provenance-based refresh in data-oriented
workflows. In: Proceedings of the 20th ACM International Conference on Informa-
tion and Knowledge Management, CIKM 2011, pp. 1659–1668. ACM, New York
(2011), http://doi.acm.org/10.1145/2063576.2063816

21. Ives, Z.G., Green, T.J., Karvounarakis, G., Taylor, N.E., Tannen, V., Talukdar,
P.P., Jacob, M., Pereira, F.: The Orchestra collaborative data sharing system.
SIGMOD Record 37(3), 26–32 (2008)

22. Lawrence, M., Pottinger, R., Staub-French, S.: Data coordination: Supporting con-
tingent updates. Proceedings of the VLDB Endowment 4(11), 831–842 (2011)

23. Menestrina, D., Benjelloun, O., Garcia-Molina, H.: Generic entity resolution with
data confidences. In: Proceedings of the International VLDB Workshop on Clean
Databases, Seoul, Korea (2006)

24. Lim, E.P., Srivastava, J., Prabhakar, S., Richardson, J.: Entity identification in
database integration. Information Sciences 89(1) (1996)

25. Motro, A., Anokhin, P.: Fusionplex: resolution of data inconsistencies in the in-
tegration of heterogeneous information sources. Information Fusion 7(2), 176–196
(2006)

26. do Nascimento, A.M., Hara, C.S.: A model for XML instance level integration.
In: SBBD 2008: Proceedings of the 23rd Brazilian Symposium on Databases, pp.
46–60 (2008)

27. Poggi, A., Abiteboul, S.: XML data integration with identification. In: Bierman,
G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 106–121. Springer, Heidelberg
(2005)

28. Prabhakar, S., Richardson, J., Srivastava, J., Lim, E.P.: Instance-level integration
in federated autonomous databases. In: Hawaiian Conference for System Science
(1993)

29. Ramalingam, G., Reps, T.W.: An incremental algorithm for a generalization of the
shortest-path problem. Journal of Algorithms 21(2), 267–305 (1996)

30. Raman, V., Hellerstein, J.M.: Potter’s wheel: An interactive data cleaning system.
In: VLDB 2001: Proceedings of the 27th International Conference on Very Large
Data Bases, pp. 381–390 (2001)

31. Sellis, T.K., Skoutas, D., Simitsis, A., Vassiliadis, P.: Data provenance in ETL
scenarios. In: Proceedings of the 1st Workshop on Principles of Provenance, pp.
1–3 (2007)

32. Shiri, N., Taghizadeh-Azari, A.: Lineage tracing in mediator-based information
integration systems. In: Ramos, F.F., Larios Rosillo, V., Unger, H. (eds.) ISSADS
2005. LNCS, vol. 3563, pp. 267–282. Springer, Heidelberg (2005)

33. Tomazela, B., Hara, C.S., Ciferri, R.R., Ciferri, C.D.A.: Empowering integration
processes with data provenance. Data & Knowledge Engineering 86, 102–123 (2013)

34. Weis, M., Manolescu, I.: Declarative XML data cleaning with XClean. In: Krogstie,
J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495,
pp. 96–110. Springer, Heidelberg (2007)

35. Widom, J.: Trio: A system for data, uncertainty, and lineage. In: Aggarwal, C.
(ed.) Managing and Mining Uncertain Data, ch. 5. Springer (2009)

36. Yin, X., Han, J., Yu, P.S.: Truth discovery with multiple conflicting informa-
tion providers on the web. IEEE Transactions on Knowledge and Data Engineer-
ing 20(6), 796–808 (2008)

http://doi.acm.org/10.1145/2063576.2063816

Provenance for Linked Data�

Grigoris Karvounarakis1, Irini Fundulaki2,��, and Vassilis Christophides3

1 LogicBlox and ICS-FORTH
2 ICS-FORTH

3 ICS-FORTH and Univ. of Crete

Abstract. Assessing the quality of linked data currently published on
the Web is a crucial need of various data-intensive applications. Ex-
tensive work on similar applications for relational data and queries has
shown that data provenance can be used in order to compute trustworthi-
ness, reputation and reliability of query results, based on the source data
and query operators involved in their derivation. In particular, abstract
provenance models can be employed to record information about source
data and query operators during query evaluation, and later be used
e.g., to assess trust for individual query results. In this paper, we investi-
gate the extent to which relational provenance models can be leveraged
for capturing the provenance of SPARQL queries over linked data, and
identify their limitations. To overcome these limitations, we advocate the
need for new provenance models that capture the full expressive power
of SPARQL, and can be used to support assessment of various forms of
data quality for linked data manipulated declaratively by such queries.

1 Introduction

Recently, the W3C Linked Open Data (LOD) Initiative1 has boosted the publi-
cation and interlinkage of massive amounts of scientific, corporate, government
and crowd-sourced data sets on the emerging Data Web for open access, as RDF
data [27] queried with the SPARQL query language [30]. Open data published ac-
cording to the Linked Data Paradigm [23] are essentially transforming the Web
from a document publishing-only environment into a global data space where
yesterday’s passive readers have become active data aggregators and generators
themselves. In this setting, linked open data are freely exchanged, integrated, and
materialized in distributed repositories accessible through SPARQL endpoints2.
Understanding how an RDF triple was created or where it was copied from, is
crucial to assess the data quality and strengthen data accountability (see W3C
Provenance Incubator Group Requirements3). This functionality essentially calls

� An earlier version of this paper appeared in IEEE Internet Computing 15(1): 31-39,
2011.

�� Visiting Researcher at CWI.
1 www.w3.org/standards/semanticweb/data
2 www.w3.org/wiki/SparqlEndpoints
3 www.w3.org/2005/Incubator/prov/wiki/User_Requirements

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 366–381, 2013.
© Springer-Verlag Berlin Heidelberg 2013

www.w3.org/standards/semanticweb/data
www.w3.org/wiki/SparqlEndpoints
www.w3.org/2005/Incubator/prov/wiki/User_Requirements

Provenance for Linked Data 367

for representing and reasoning on the provenance of replicated and incomplete
sets of RDF triples manipulated by SPARQL queries worldwide.

For instance, in the case of trust assessment [3] the trustworthiness of query
results is determined based on the trustworthiness of source datasets from which
they were derived. For simple Boolean trust assessment we only need to deter-
mine which output data should be trusted. For ranked trust assessment we need
to choose the most trusted among competing evidence from diverse sources. Ad-
ditionally, for uncertain and fuzzy data sets, the probabilities of query results
are derived based on the probabilities associated with the original data [26]. In
all these cases, the goal is to compute appropriate annotations for query results
that reflect data quality, based on the annotations of source data. If source an-
notations were static and common for all users, this computation could be done
together with the query evaluation [13,31]. However, in general, different users
may have different beliefs about the trustworthiness, reputation or reliability of
the source RDF triples, and these beliefs may change over time, even when the
relationship of query results with the source data remains unchanged. For this
reason, an alternative approach is to use abstract provenance models to capture
this relationship along with the query operators that combined source data to
derive query results. This information can be recorded [21] in the hosting repos-
itory when the data is imported, and used to compute appropriate annotations
for different applications and users at a later time [25].

Unlike most of the related work in the Semantic Web (see W3C Provenance
Incubator Group State of the Art4), in this paper, we focus on data provenance
in the style of [8,20], i.e. provenance in the result of declarative queries. This
is different from workflow provenance [14] [11] which typically describes proce-
dural data processing, and where operations are usually treated as black boxes
due to their complexity. Moreover, we are interested in implicit provenance [5]
of queries that only manipulate data and are oblivious about the possible anno-
tations thereof. Implicit provenance captures the abstract structure and prop-
erties of query operators and can, thus, be used for various annotation compu-
tations [25,4]. This is in contrast to work on explicit provenance [5], as well as
on RDF named graphs [7]) where queries can also manipulate source annota-
tions and specify explicitly the annotation of the query results. Consequently,
the resulting annotations can be arbitrary and may not reflect the structure and
characteristics of the query operators, as actually needed to support alternative
annotation computations. Finally, [12] has studied implicit data provenance for
a SPARQL fragment that is close to the positive relational algebra. In this pa-
per, we take a first step in specifying an abstract provenance model for arbitrary
SPARQL expressions. In particular, we:

• present the basic characteristics of abstract provenance models and argue on
the benefits of using those to compute annotations for various applications
on Semantic Web data (Section 3).

4 www.w3.org/2005/Incubator/prov/wiki/State_of_the_Art_Report

www.w3.org/2005/Incubator/prov/wiki/State_of_the_Art_Report

368 G. Karvounarakis, I. Fundulaki, and V. Christophides

• review representative abstract provenance models for relational queries that
can be used to capture the provenance of a positive SPARQL fragment over
linked open data (Section 5).

• identify the limitations of these models for capturing the provenance of cer-
tain SPARQL operators (Section 6). The main challenges stem from the
SPARQL OPTIONAL operator, which is crucial for dealing with the incom-
pleteness of linked open data but – as we explain later – cannot be handled
by relational provenance models. For this reason, we advocate the need for
new provenance models for SPARQL queries.

2 Motivating Example

Let us consider the following example of Linked Open Data (LOD) that mo-
tivates our study of provenance. Assume that we are interested in aggregating
through SPARQL queries RDF triples [27] regarding Points of Interest (POI)
and cafes-restaurants published in the LOD Cloud5 and store them locally in a
repository. Figure 1 illustrates a snapshot of such repository with RDF triples
(asserting the fact that subject resource is associated with object through prop-
erty) inspired by the LinkedGeoData project6 aiming to enrich the Web of Data
with spatial information originating from various independent contributors and
knowledge bases (as OpenStreetMap7).

Triple Set T

S P O Contributor

Starbucks lgdo:type Cafe http://linkedgeodata.org/users/John (c1)
Starbucks geo:branchLoc 53rd St http://linkedgeodata.org/users/Alice (c2)
MoMA geo:address 53rd St http://linkedgeodata.org/users/James (c3)

Fig. 1. A repository with RDF triples from LinkedGeoData, with information about
the contributor of each triple

In our example a set of RDF triples is stored in a single relational table,
using attributes S, P and O to represent the subject, predicate and object of a
triple. To capture the origin of each individual RDF triple we employ a fourth
column stating its contributor. In a typical data sharing setting, such provenance
information is fundamental in order to assess the trustworthiness, reputation or
reliability of integrated data. For example, a particular user may only trust a
subset of the contributors (Boolean trust), or may have different levels of trust
for different contributors (ranked trust). In both cases, the goal is to determine
some trust score for SPARQL query results, based on trust scores of source data
and how they were combined through queries to derive each result.

5 lod-cloud.net
6 linkedgeodata.org
7 www.openstreetmap.org

lod-cloud.net
linkedgeodata.org
www.openstreetmap.org

Provenance for Linked Data 369

For example, given the information in Figure 1, Peter may write a SPARQL
query looking for cafes located on the same street as MoMA.8 If Peter trusts all
contributors completely, then he will conclude that there is a Starbucks store
on the same street as MoMA. However, if, for instance, he does not trust Alice and
does not take data she has contributed into account, then he will not be able to
reach this conclusion. To simplify the presentation, in the rest of the paper we
consider that provenance tokens (e.g., c1, c2, etc.) are associated to the actual
contributors depicted in Figure 1 and use those tokens later on to create compact
provenance expressions of SPARQL query results. Note that identifiers similar to
our tokens are actually used in real systems to minimize the provenance storage
space overhead.

3 Requirements for Abstract Provenance Models

In order to support computations such as the trust assessment in the example
above, a common approach in the relational world is to annotate query results
with expressions capturing information about source data and query operators
involved in their derivation, i.e., information about the provenance of query
results. If one is only interested in computing one of the kind of result annotations
(e.g., Boolean trust), and the related annotations of source data are static (e.g.,
we know in advance which users are trusted and which are not), then it is possible
to extend query answering to compute these annotations when data is imported
through queries and materialized. However, in the Web of Data:

• different applications may need to assess various dimensions of data quality
(such as Boolean or ranked trust) of the same linked open datasets;

• different users may have individual perceptions, that may change over time,
regarding the data quality of the same linked open datasets;

• data annotations typically have to be computed for only a (possibly small)
subset of the linked open datasets stored locally;

• source linked open data imported into the repository may be unavailable
when one tries to assess their quality.

As already investigated in the relational world [22,21,25], it appears to be
quite beneficial in such expressive settings to capture the common parts of such
annotation computations by recording abstract provenance information when
data is imported through queries and evaluate them on demand for materializ-
ing specific data annotations along with query results. It should be also stressed
that various other computations, ranging from computing probabilistic event
expressions [15] to Boolean expressions dealing with incompleteness or uncer-
tainty [24], or to tuple multiplicities [28], can also be computed in a similar
manner [22]. Our goal is to determine whether there are abstract provenance
models for SPARQL queries over RDF data that can similarly record sufficient

8 We show later in the paper how to express such queries in SPARQL.

370 G. Karvounarakis, I. Fundulaki, and V. Christophides

information to support such expressive annotation computations on the Web of
Data.

The granularity of the provenance information about source LOD on which
these computations are based typically depends on the main constructs of the
data model. For instance, relational provenance models consider sets of attributes
[6,17], individual tuples [4,22,6,9,19] or even entire relations [6]. For SPARQL
queries and RDF data, we consider the case where source triples are annotated
with information about their contributors abstracted using provenance tokens
(such as in the example of Figure 1).

For some settings, just knowing the set of source RDF triples that are involved
in their derivation may be sufficient. However, to make e.g., trust judgements
such as the ones presented in Section 2, more detailed information is needed. In
particular, we should be able to assert whether relevant source triples provide
alternative justifications for a query result, or if all of them need to be trusted
in order for the result to be trusted. For instance, in our motivating example all
three contributors need to be trusted in order to reach the conclusion that there
is a cafe on the same street as MoMA. On the other hand, for a query such as “is
there any information about businesses on 53rd St”, information from Alice and
John is complementary, i.e., trusting one of them is sufficient to obtain a positive
answer. Thus, for applications such as trust assessment, we need more detailed
provenance expressions, that – in addition to provenance tokens – also record
some information about how they were combined through query operators to
derive each query result, thereby storing information on how input triples were
combined to produce the result in question.

Ideally, one would like to design an abstract provenance model that accom-
modates all the needs of users and applications consuming LOD. However, there
is often a tradeoff between the expressiveness of provenance models [20] and the
cost for storing and manipulating the corresponding provenance expressions [25].
As a result, whenever we need to support only a subset of the above require-
ments, it may be desirable to employ less-informative abstract provenance mod-
els for which the resulting provenance expressions can typically be stored and
manipulated more efficiently.

4 Capturing the Provenance of SPARQL Queries

Before embarking towards our goal of designing abstract provenance models
for SPARQL, we briefly overview the SPARQL query semantics. To leverage
the amount of work on relational provenance models, we identify the SPARQL
operators whose semantics are similar to relational algebra operators and ex-
plain how popular relational provenance models can be adapted to capture their
provenance. Finally, we focus on SPARQL operators, whose semantics cannot
be captured by the existing relational provenance models, raising the need for
new provenance models capturing SPARQL queries computation.

Provenance for Linked Data 371

4.1 SPARQL in a Nutshell

SPARQL presentation in this section is based on the algebra presented in [29,2].
This algebra employs triple patterns for binding variables to values in the dataset
having the form (x, y, z), where x, y, z can be constants or variables (pre-
fixed with “?”) on the subject, predicate and object positions. A set of pairs
(variable, value), i.e. the SPARQL analog of the relational valuation, is called
a mapping. For instance, the pattern (?x, ?y, Cafe) only matches triples whose
object has the value Cafe and the result of matching it to the first triple of T
(Table (a) in Figure 3), is the mapping {(?x, Starbucks), (?y, lgdo:type)} in-
dicating that variables ?x, ?y are bound to values Starbucks and lgdo:type,
respectively. The evaluation of a triple pattern on a set of triples is a bag of map-
pings, i.e. a set of mappings along with a cardinality function, that associates
every mapping of the set with an integer. To simplify the presentation, we will
use the tabular representation of the mapping bags shown in Figure 2, where
each column corresponds to a variable in the mappings.

The SPARQL algebra is comprised of: a) the unary operators σ (filtering) and
π (projection) capturing the SPARQL constructs FILTER and SELECT, respec-
tively and b) the binary operators, ∪, ��, capturing the SPARQL constructs
UNION, AND, and OPTIONAL, respectively.

Filtering on the triple positions specifies the subset of mappings for which
some variable has a specific constant value (literal or URI). For instance, let
Ω (Table (a) of Figure 2) denote the evaluation of (?x, ?y, ?z) over T . Then,
σ?y=“lgdo:type”(Ω) contains only the mapping {(?x, Starbucks), (?y, lgdo:type),
(?z, Cafe)}.

Projection specifies the subset of variables in mappings to be returned in the
query result. For example, Ω1 = π?x,?y(σ?z=“53

rd
St”

(Ω)) is the bag of mappings
obtained from projecting the variables ?x, ?y of σ

?z=“53
rd

St”
(Ω) (Table (b) of

Figure 2). Similarly, Ω2 in Table (c) of Figure 2 denotes the result of query
π?y,?z(σ?x=“Starbucks”(Ω)). To simplify the presentation, we employ symbols μi

in Figure 2 to identify individual mappings.
Unlike relational union that is defined on relations of the same schema, the

union operation (∪) of the SPARQL algebra can be applied on bags of mappings
defined for different variables. In such cases, the result may include mappings
with unbound variables, denoted by “-” in Table (e) of Figure 2 (in SQL that
would be a null value) that shows the result of Ω1 ∪Ω2.

In order to define the semantics of the join operator (��), SPARQL algebra
relies on a notion of compatible mappings. Two mappings are considered compat-
ible if they agree on their common variables. The �� output for two compatible
input mappings is a mapping whose set of variables is the union of their bound
variables. For each variable in the output, its value is the same as in the cor-
responding input mapping(s). It is worth noticing that in contrast to relational
algebra where a null value in an attribute makes any join condition fail, unbound
variables in SPARQL do not affect the compatibility of mappings. Table (f) of

372 G. Karvounarakis, I. Fundulaki, and V. Christophides

Ω = evaluation of (?x, ?y, ?z) over T Ω1 = π?x,?y(σ
?z=“53

rd
St”

(Ω))

?x ?y ?z

Starbucks lgdo:type Cafe c1
Starbucks geo:branchLoc 53rd St c2
MoMA geo:address 53rd St c3

?x ?y
μ1 : Starbucks geo:branchLoc

μ2 : MoMA geo:address

(a) (b)

Ω2 = π?y,?z(σ?x=“Starbucks”(Ω)) Ω3 = π?x(σ
?z=“53

rd
St”

(Ω))

?y ?z
μ3 : lgdo:type Cafe

μ4 : geo:branchLoc 53rd St

?x
μ9 : Starbucks

μ10 : MoMA

(c) (d)

Ω1 ∪ Ω2 (Ω1 ∪ Ω2) �� Ω3

?x ?y ?z
μ5 : Starbucks geo:branchLoc −
μ6 : MoMA geo:address −
μ7 : − lgdo:type Cafe

μ8 : − geo:branchLoc 53rd St

?x ?y ?z
μ11 : Starbucks geo:branchLoc −
μ12 : MoMA geo:address −
μ13 : Starbucks lgdo:type Cafe

μ14 : MoMA lgdo:type Cafe

μ15 : Starbucks geo:branchLoc 53rd St

μ16 : MoMA geo:branchLoc 53rd St

(e) (f)

Ω4 = π?x,?z(σ?y=“lgdo:type”(Ω)) Ω5 = π?x,?z(Ω1 Ω4)

?x ?z
μ17 : Starbucks Cafe

?x ?z
μ19 : Starbucks Cafe

μ20 : MoMA −
(g) (h)

Fig. 2. Example of SPARQL Algebra Operators

Figure 2 shows the result of (Ω1 ∪ Ω2) �� Ω3 where Ω1 ∪ Ω2 is shown in Table
(e), while Ω3 in Table (d). Note that, although ?x is unbound in μ7, SPARQL
considers μ7 to be compatible with μ9 and μ10, for which ?x is bound.

Finally, the application of the optional operator () on two mapping bags
Ωl and Ωr returns the mappings contained in the result of Ωl �� Ωr, as well as
all mappings from Ωl that are not compatible with any mapping in Ωr. In this
manner, is reminiscent of the left outer join operator of the relational algebra.
As shown in [29,2], the following algebraic equivalence holds:

Ωl Ωr = (Ωl �� Ωr) ∪ (Ωl \Ωr) (1)

Figure 2 illustrates the result of Ω1 Ω4 in Table (h), where Ω1 is shown in
Table (b) and Ω4 in Table (g). For instance, μ19 is in the result because of the
join between μ1 and μ17, while μ20 appears in the result because μ2 belongs to
Ω1 and is not compatible with μ17. We denote with Ωl \Ωr the mappings of Ωl

that are not compatible with any Ωr mapping; for instance, Ω1 \Ω4 = {μ2}.

Provenance for Linked Data 373

We should stress that there are some subtle differences between the “\” opera-
tor of [29,2] and the relational minus operator (denoted “−” below). The former
checks mappings (that may have different schemas) for compatibility, while the
latter only compares tuples (of the same schema) for equality. Clearly, compat-
ibility between mappings is an 1–n relationship, i.e. a mapping of Ωl may be
compatible with many mappings of Ωr, while equality between tuples is an 1–1
relationship. Consider for instance, the relational query Rl − Rr. A tuple of Rl

relation can be equal to at most one tuple of Rr. As a consequence, the existence
of multiple copies of a mapping in Ωl and Ωr does not affect the cardinality of
that mapping in the result: if a mapping μ has cardinality m in Ωl and there is
one compatible mapping with cardinality n in Ωr, μ will have cardinality 0 in
the result, i.e., it will not appear in it. On the contrary, in the relational context,
if a tuple t has cardinality m in relation Rl and n in Rr, then the cardinality of
t in Rl −Rr, is m− n, if m > n, and 0, otherwise.

5 Provenance Models for Positive SPARQL

From the previous discussion, there is a clear analogy among the SPARQL al-
gebra operators for projection (π), filter (σ), join (��) and union (∪) with the
corresponding operators of the positive relational algebra and thus we refer to the
fragment of SPARQL consisting only the above operators as positive SPARQL. In
this Section we investigate whether provenance models for the positive fragment
of the relational algebra can be also applied to unions of conjunctive SPARQL
queries, despite their subtle differences.

An obvious difference between them lies in the fact that relational algebra
operates on tuples, while SPARQL algebra operates on mappings. However, this
is easily handled by associating mappings that are returned by triple patterns
with the provenance tokens of the triples they were obtained from. Moreover,
SPARQL algebra adopts bag semantics by default, although set semantics can
be enforced through the use of the operator DISTINCT. Among relational prove-
nance models, only how -provenance can be used to compute correct result mul-
tiplicities under bag semantics [22], while all models can handle set semantics.
Finally, the differences (mentioned in Section 4.1) between SPARQL and rela-
tional algebra for the ∪ and �� operators do not affect the provenance of output
mappings. As a consequence, all abstract provenance models for positive rela-
tional algebra from the literature [9,6,19,4,22] can be also applied to positive
SPARQL under set semantics, while one of them (how -provenance [22]) can be
used when bag semantics is needed. We briefly recall the main features of three
representative provenance models below, while also highlighting their differences
in terms of their ability to support annotation computations such as the ones
we described earlier.

Consider the query Q(Ω) = π?y,?z(π?x,?y(Ω) �� π?x,?z(Ω) ∪ π?y,?z(Ω) ��

π?x,?z(Ω)), where Ω is the mapping set shown in Figure 2, where the anno-
tation for each mapping has been obtained from the corresponding source triple
annotations. From this point on, and for ease of readability we will be referring

374 G. Karvounarakis, I. Fundulaki, and V. Christophides

π?x,?y(Ω) �� π?x,?z(Ω)
?x ?y ?z Why-prov. How-prov.

μa : Starbucks lgdo:type Cafe {{c1}} c1�c1
μb : Starbucks lgdo:type 53rd St {{c1,c2}} c1�c2
μc : Starbucks geo:branchLoc Cafe {{c1,c2}} c1�c2
μd : Starbucks geo:branchLoc 53rd St {{c2}} c2�c2
μe : MoMA geo:address 53rd St {{c3}} c3�c3

(a)

π?y,?z(Ω) �� π?x,?z(Ω)
?x ?y ?z Why-prov. How-prov.

μf : Starbucks lgdo:type Cafe {{c1}} c1�c1
μg : Starbucks geo:branchLoc 53rd St {{c2}} c2�c2
μh : Starbucks geo:address 53rd St {{c2,c3}} c2�c3
μi : MoMA geo:branchLoc 53rd St {{c2,c3}} c2�c3
μj : MoMA geo:address 53rd St {{c3}} c3�c3

(b)

Q(Ω) = π?y,?z(π?x,?y(Ω) �� π?x,?z(Ω) ∪ π?y,?z(Ω) �� π?x,?z(Ω))
?y ?z Why-prov. How-provenance

μk lgdo:type Cafe {{c1}} (c1�c1)⊕(c1�c1)
μl lgdo:type 53rd St {{c1,c2}} c1�c2
μm geo:branchLoc Cafe {{c1,c2}} c1�c2
μn geo:branchLoc 53rd St {{c2},{c2,c3}} (c2�c2)⊕(c2�c2)⊕(c2�c3)
μo geo:address 53rd St {{c3},{c2,c3}} (c3�c3)⊕(c3�c3)⊕(c2�c3)

(c)

Fig. 3. Why-provenance and how -provenance of positive SPARQL queries over Ω

to mappings obtained from the evaluation of SPARQL queries as tuples. Recall
that, after the initial variable binding of triple patterns, all SPARQL operators
produce and consume sets of mappings.

Figure 3 illustrates the result of Q(Ω), annotated with provenance expressions
from two relational provenance models. To simplify understanding, we first show
the results of two subqueries of Q(Ω) in Figure 3(a) and (b), before combining
them to produce the final result in Figure 3(c). In this example, we do not
show provenance expressions for some other relational provenance models (e.g.,
lineage [9], Trio-lineage [4], Perm [19]) due to space constraints, but we mention
later how these models compare to the presented ones, in terms of expressiveness.

To highlight the main characteristics and differences of the relational prove-
nance models selected for our study (see the corresponding columns of
Figure 3(a)-(c)), we will focus on the provenance of the last tuple
μo = (geo:address, 53rd St) in the result of Q(Ω) which was produced by three
derivations (involving mappings). One is obtained as a projection of μe =(MoMA,
geo:address, 53rd St) from subquery π?x,?y(Ω) �� π?x,?z(Ω) (Figure 3(a)) and
the other two as projections on the results of subquery π?y,?z(Ω) �� π?x,?z(Ω)
(μh and μj in Figure 3(b)).

The lineage [9] of a tuple in the result of a query is the set of (provenance
tokens of) source tuples that were involved in some derivation of that result

Provenance for Linked Data 375

tuple. The why-provenance [6] encodes all the different derivations of a tuple
in the query result by storing a set of provenance tokens for each derivation,
thus yielding a sets of sets of provenance tokens. In our example, derivations
producing μe and μj only involve c3, so they are both represented by the same
set ({c3}), whereas μh is derived by joining the mappings annotated with c3
and c2, and thus its why-provenance is {c2,c3}. As shown in Figure 3(c) the why-
provenance of (geo:address, 53rd St) in the result of Q(Ω) is the union of these
sets. Intuitively, each inner set represents one or more derivations that involve
the same source data, while multiple tokens in an inner set, such as {c2,c3},
indicate a join between the corresponding tuples. On the other hand, lineage
uses a single set to represent all derivations, i.e., the lineage of (geo:address,
53rd St) in the result of Q(Ω) would be {c2,c3}.

The provenance model of Perm [19] is very similar to why-provenance for pos-
itive queries (its main difference is that it captures a form of relational negation).
Trio-lineage [4] extends the model of why-provenance by also recording informa-
tion about different ways in which the same set of source tuples contributes in
the query result, resulting in a bag of sets of tokens, each of which corresponds
to one derivation. For instance, the Trio-lineage of (geo:address, 53rd St) in
the result of Q(Ω) would be {{c3},{c3},{c2,c3}}.

Finally, how -provenance [22] encodes not only the union and join operators,
but also the number of times a tuple participates in a join. To this end, it employs
the abstract binary operator ⊕ to encode union and projection and * to encode
join. In our example the source triple (MoMA, geo:address, 53rd St), annotated
with c3 participates twice in the derivation of each of μe and μj and, thus, the
how-provenance of each is c3�c3. The derivation μh involves a join between the
source triples (MoMA, geo:address, 53rd St) and (Starbucks, geo:branchLoc,
53rd St), annotated with c3 and c2 respectively, resulting in the provenance
expression c2�c3. Thus, as shown in last column of Figure 3, the how-provenance
of (geo:address,53rd St) is (c3�c3)⊕(c3�c3)⊕(c2�c3). How -provenance is more
informative than all other relational provenance models described above [20].
In fact, as shown in [22], it is universal for all provenance models (such as the
aforementioned ones) that can be expressed as semirings.

5.1 Using Provenance to Assess Data Quality

As we explained above, some provenance models capture more information than
others, at the expense of producing more complex provenance expressions. How-
ever, this additional complexity is necessary for various applications involving
assessment of data quality [21,25,22,20]. In the rest of this paper, we focus on
two such applications, namely Boolean and ranked trust assessment, to illustrate
such differences in expressiveness requirements.

5.1.1 Boolean Trust Assessment

In this case we are interested in determining which tuples in the result of a
query should be trusted or not, based on the trustworthiness of the source tuples.

376 G. Karvounarakis, I. Fundulaki, and V. Christophides

If a tuple has a single derivation, involving joins among various source tuples,
this derivation is considered trusted if all contributing source tuples are trusted.
For tuples with multiple derivations, they are trusted if at least one of their
derivations is trusted. This is equivalent to answering the query over the subset
of the input data that is trusted [21,22]: a tuple will be returned in the result if
and only if there is at least one derivation for it involving only trusted tuples.

Alternatively, if the provenance expressions have been computed and stored
during the original query evaluation, they can be used to assess on demand
the trustworthiness of tuples in the result of this query. The first step in this
process involves assigning truth values to provenance tokens (true for trusted
vs. false for untrusted tuples). For instance, in the example of Figure 3, suppose
that Peter trusts triples that were contributed by John and James (i.e. assigns
true to c1 and c3), but not by Alice (i.e. assigns false to c2). Then, he can
determine whether to trust (geo:address, 53rd St) in the query result e.g., by
taking its why-provenance (or any of the more expressive provenance models),
i.e. {{c3},{c2,c3}} and evaluating it as a Boolean expression. This can be achieved
by interpreting inner sets as conjunctions (i.e., a set is true if all its members
are true) and the outer set as a disjunction (i.e., it evaluates to true if at least
one inner set evaluates to true). Thus Peter can conclude that (geo:address,
53rd St) should be trusted, because there exists a derivation (namely {c3}), for
which all tokens correspond to trusted source tuples (i.e., have the value true).
Note that, for instance, lineage does not contain enough information for this
kind of computation, since we cannot use it to determine if there is a derivation
for (geo:address, 53rd St) that does not involve the source tuple annotated
by c2.

5.1.2 Ranked Trust Assessment

In ranked trust assessment [25], every source tuple is associated with a rank,
i.e., a natural number that denotes how trusted it is. In particular, 0 is the
rank of the most trusted tuples, while ∞ indicates tuples that are completely
untrusted. If a tuple has multiple derivations, as a result of a union or projec-
tion operator in the query, the rank of the output tuple is the minimum rank
among all derivations, i.e. that of the most trusted derivation. In the case of a
join, the rank of the resulting tuple is the sum of the ranks of the input tuples.
For instance, let c1 = 1, c2 = 2, c3 = 3. Then, we can use how -provenance
expressions to compute the rank of e.g., (geo:address, 53rd St), by substitut-
ing the provenance tokens with their values, and using min and + in the place
of the abstract operators ⊕ (union) and * (join), respectively, and evaluat-
ing the resulting expression as follows: min(min(c3 + c3, c3 + c3), c2 + c3) =
min(min(3 + 3, 3 + 3), 2 + 3) = min(6, 5) = 5. If we had employed a less
expressive model for our ranked trust assessment, we would have computed
an incorrect rank for (geo:address, 53rd St). For instance, consider the Trio-
lineage of (geo:address, 53rd St) ({{c3},{c3},{c2,c3}}). If we use + to com-
bine ranks in inner sets, and min for the outer set, the evaluation would yield
min(min(c3, c3), c2 + c3) = min(min(3, 3), 2 + 3) = min(3, 5) = 3. The reason

Provenance for Linked Data 377

Ω1 Ω4

?x ?y
μ1 : Starbucks geo:branchLoc

μ2 : MoMA geo:address

?y ?z
μ17 : Starbucks Cafe

(a) (b)

Ω5 = π?x,?z(Ω1 Ω4)
μ17 trusted μ17 untrusted

?x ?z
μ19 : Starbucks Cafe

μ20 : MoMA −

?x ?z
μ21 : Starbucks −
μ20 : MoMA −

(c) (d)

Fig. 4. Example of Boolean Trust

for the incorrect result is that Trio-lineage does not record the fact that e.g., c3
was involved in some derivations of (geo:address, 53rd St) twice.

We conclude that Trio-lineage, as well as less expressive provenance models
such as lineage, why-provenance and Perm, are not expressive enough to support
ranked trust assessment, as well as that ranked trust assessment requires a more
expressive provenance model than Boolean trust assessment.

6 Towards Models for Capturing SPARQL Provenance

In the previous section, we explained how relational provenance models can be
adapted to capture the provenance of positive SPARQL queries. However, these
models are not sufficient to capture provenance of algebraic expressions involving
the SPARQL operator. This is because involves a form of negation (see the
use of “\” in expression (1) in Section 4), while most of the aforementioned mod-
els capture the provenance of positive queries. We illustrate the challenges posed
by through an example of Boolean trust assessment explained previously9

Recall that, in order to compute the set of trusted mappings in the result
of a SPARQL algebraic expression, we can evaluate it on the subsets of input
mapping sets that include only the trusted mappings. Returning to our original
example of Figure 1, assume that Peter trusts all contributors, and wants to
determine whether to trust the results of the query Ω5 = π?x,?z(Ω1 Ω4). As
we can see in Figure 2(h) this query essentially looks for businesses located on
53rd St, and returns them, along with their type, if specified. In this case, it is
easy to check that all μ1, μ2, μ17 are trusted, and thus the trusted mappings in
the result of the query are as shown in Figure 4(c). Indeed, μ19 belongs to the
result as it can be derived from two compatible and trusted mappings, μ1 and

9 The semantics of trust assessment in our example is taken by tSPARQL
(trdf.sourceforge.net/documents/tsparql.pdf), if we apply the EnsureTrust operator
to filter out untrusted mappings from input mapping sets (by setting the lower (l)
and upper (u) bounds to true).

378 G. Karvounarakis, I. Fundulaki, and V. Christophides

μ17, while μ20 is trusted because μ2 is trusted in Ω1 and is not compatible with
any trusted mapping of Ω4.

On the other hand, if Peter trusts Alice and James, but not John, it is easy
to check that this implies μ1 and μ2 are trusted, while μ17 is not. Thus, the
expected result is what we would get from applying the operator between Ω1

in Figure 4(a) and an empty Ω4. Then, according to the semantics of , the
trusted mappings in the result of this query would be as shown in Figure 4(d).
In particular, μ21 appears in this result as trusted, because μ1 is not compatible
with any trusted mapping in Ω4.

When using abstract provenance models for computations such as the one in
the example above, we need to materialize provenance expressions over prove-
nance tokens during query evaluation, without depending on the particular val-
ues that those tokens may take for specific annotation computations. Thus, to
handle cases such as in the example above, an abstract provenance model would
need to associate appropriate provenance expressions with both μ19 and μ21,
even though they cannot both appear in the result of the same annotation com-
putation (e.g., they can never both be trusted at the same time). Unfortunately,
none of the existing relational provenance models [8,20] meets this requirement.

Among those models, Perm captures some form of negation in relational alge-
bra, but does not record sufficient information for enabling annotation computa-
tions such as the Boolean trust assessment in the example above. More precisely,
Perm records the reason why μ20 exists in the result, i.e. that μ2 is not compat-
ible with μ17. However, it does not encode any provenance expression for μ21.
Thus, when μ17 is untrusted, it has no way to infer that μ21 should appear in
the result as trusted.
M -semirings [18] is a recent extension of how -provenance for capturing the

relational minus operator. To this end, it defines an additional abstract operator,
denoted by +. To compute provenance expressions for our running example, the
m-semiring model would employ equation (1) for Ω5. The provenance expressions
for mappings in Ω5 are computed in the same manner as in the case of how -
provenance. For example, the provenance of μ19 is c1* c3, where c1 (resp. c3) is
the provenance of μ1 (resp. μ17) in Ω1 (resp. Ω4). The + operator is employed to
compute the provenance of mappings in Ω1 \ Ω4. In particular, the provenance
of μ20 is c2 + 0, where c2 is the provenance of μ2 in Ω1, while 0 denotes that
μ2 does not belong to Ω4. According to the formal properties of +, c2 + 0 = c2.
Moreover, the provenance of μ21 is c1 + c3. Consequently, in the case that μ17

is untrusted, m-semirings infer that μ21 should appear in the result as trusted.
However, m-semirings follow the semantics of relational minus, which differs
from the semantics of \ in SPARQL algebra. Suppose, for instance, that Ω4 had
an additional mapping μ22 = {(?y, b), (?z, e)}, that is compatible with μ1. Then
μ21 would appear in the result as trusted (as shown in Table (d) of Figure 4),
only if both μ17 and μ22 were untrusted. However, the m-semiring expression
for μ21 can only encode a single mapping of Ω4 in the “negative” part of its
provenance expression (i.e., on the right of the + operator).

Provenance for Linked Data 379

Recently, Damasio et al. [10] proposed an approach that employs m-semirings
to capture the semantics of SPARQL query answering over annotated RDF. This
approach does not use the + operator to capture the semantics of SPARQL
difference directly, but instead encodes SPARQL difference through a complex
relational expression involving joins, relational set difference and duplicate elim-
ination. Then, they use (m, δ)-semirings which are m-semirings extended with
a duplicate elimination operator δ, as introduced in [18]. However, the resulting
annotations reflect this complex encoding of SPARQL difference and thus do
not provide a very intuitive description of the actual operations in the original
query (e.g., in contrast to how-provenance expressions for relational queries).
Moreover, both (m, δ)-semirings and m-semirings have the same deficiency, in
terms of their suitability as the foundation for a provenance model: their uni-
versal structure does not allow for a simple representation of its elements and is
completely symbolic and not amenable to algebraic manipulation. For instance,
because of this difficulty, Damasio et al. [10] resort to a simpler model in order
to compute trust annotations, by fixing the duplicate elimination function δ.
However, as a result, they disregard all (m, δ)-semirings with a more complex δ
for such computations.

Finally, Amsterdamer et.al. [1] obtained an alternative semantics for relational
difference based on their semantics for queries with aggregation on annotated
relations, through an encoding of difference using aggregation. Interestingly, the
semantics of the difference defined in this manner seems similar to the semantics
of SPARQL difference. However, similarly to the case of Damasio et al. [10],
the resulting annotations reflect the encoding of difference through aggregation,
instead of the actual operators in a SPARQL query. Moreover, Amsterdamer
et.al. [1] do not propose a universal object that could be used as the provenance
model for queries with difference under these semantics.

We conclude that a new provenance model is needed in order to cope with
the operator. In this model, provenance expressions should be recorded even
for some mappings that do not appear in the un-annotated result of a query
involving the operator, such as μ21 in Ω5 in the example of Figure 4(c). Note
that a similar need arises if we want to support such annotation computations
over relational queries involving left (or right) outer joins. However, such a new
provenance model for SPARQL cannot be based on techniques used in relational
provenance models to deal with relational minus, due to the differences (see
also section 4.1) between the SPARQL algebra operator “\” and the relational
minus. In particular, the provenance expression of a mapping should encode
information about all compatible mappings in the right-hand mapping set, while
in the relational case it suffices to encode information about a single tuple in the
right-hand relation. Finally, the provenance expression for the \ operator should
conform to SPARQL semantics for cardinalities of the corresponding mappings,
as explained in Section 4.1.

To address this need, in a recent paper with Geerts [16] we propose a new
algebraic structure for capturing the semantics of SPARQL difference, and de-
fine spm-semirings, an extension of semirings with a new operation that has a

380 G. Karvounarakis, I. Fundulaki, and V. Christophides

universal structure and provides a concise representation of the provenance of
RDF data and SPARQL queries involved.

7 Conclusions

In this paper, we investigated the extent to which relational provenance models
can be leveraged for SPARQL queries over linked open data. More specifically, we
discussed how implicit provenance information of SPARQL query results can be
used to compute annotations reflecting various dimensions of linked data quality,
such as Boolean and ranked trust. We have identified a SPARQL fragment for
which provenance models for positive relational queries can be leveraged, despite
the subtle differences between the semantics of SPARQL and relational algebra
operators. Finally, we have highlighted the limitations of relational provenance
models for capturing the semantics of the SPARQL OPTIONAL operator. This is
mainly due to the semantic discrepancies between the SPARQL algebra operator
“\” and the relational minus operator. For this reason, we have advocated the
need for a new abstract provenance model capturing the full expresiveness of
SPARQL. We are currently working on the formalization of this model.

Acknowledgments. Work partially supported by the NoE APARSEN
(Alliance Permanent Access to the Records of Science in Europe, FP7, Proj.
No 269977).

References

1. Amsterdamer, Y., Deutch, D., Tannen, V.: Provenance for Aggregate Queries. In:
PODS (2011)

2. Arenas, M., Pérez, J.: Querying Semantic Web Data with SPARQL. In: PODS
(2011)

3. Artz, D., Gil, Y.: A Survey of Trust in Computer Science and the Semantic Web.
Web Semantics 5(2) (2007)

4. Benjelloun, O., Sarma, A.D., Halevy, A.Y., Widom, J.: ULDBs: Databases with
Uncertainty and Lineage. In: VLDB (2006)

5. Buneman, P., Cheney, J., Vansummeren, S.: On the Expressiveness of Implicit
Provenance in Query and Update Languages. ACM TODS 33(4) (2008)

6. Buneman, P., Khanna, S., Tan, W.-C.: Why and Where: A Characterization of
Data Provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS,
vol. 1973, pp. 316–330. Springer, Heidelberg (2000)

7. Carroll, J.J., Bizer, C., Hayes, P.J., Stickler, P.: Named Graphs. Web Seman-
tics 3(4) (2005)

8. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in Databases: Why, Where and
How. Foundations and Trends in Databases 1(4) (2009)

9. Cui, Y., Widom, J.: Lineage Tracing for General Data Warehouse Transformations.
In: VLDB (2001)

10. Damásio, C.V., Analyti, A., Antoniou, G.: Provenance for SPARQL queries. In:
Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 625–640.
Springer, Heidelberg (2012)

Provenance for Linked Data 381

11. Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and op-
portunities. In: SIGMOD (2008)

12. Dividino, R., Sizov, S., Staab, S., Schueler, B.: Querying for Provenance, Trust,
Uncertainty and other Meta Knowledge in RDF. Web Semantics 7(3) (2009)

13. Flouris, G., Fundulaki, I., Pediaditis, P., Theoharis, Y., Christophides, V.: Coloring
RDF Triples to Capture Provenance. In: Bernstein, A., Karger, D.R., Heath, T.,
Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009.
LNCS, vol. 5823, pp. 196–212. Springer, Heidelberg (2009)

14. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for Computational Tasks:
A Survey. CiSE 10(3) (2008)

15. Fuhr, N., Rölleke, T.: A Probabilistic Relational Algebra for the Integration of
Information Retrieval and Database Systems. ACM TOIS 14(1) (1997)

16. Geerts, F., Karvounarakis, G., Christophides, V., Fundulaki, I.: Algebraic Struc-
tures for Capturing the Provenance of SPARQL Queries (submitted for publica-
tion)

17. Geerts, F., Kementsietsidis, A., Milano, D.: MONDRIAN: Annotating and Query-
ing Databases through Colors and Blocks. In: ICDE (2006)

18. Geerts, F., Poggi, A.: On Database Query Languages for K-Relations. Applied
Logic 8(2) (2010)

19. Glavic, B., Alonso, G.: Perm: Processing Provenance and Data on the Same Data
Model through Query Rewriting. In: ICDE (2009)

20. Green, T.J.: Containment of Conjunctive Queries on Annotated Relations. Theory
of Computing Systems 49(2) (2011)

21. Green, T.J., Karvounarakis, G., Ives, Z.G., Tannen, V.: Update Exchange with
Mappings and Provenance. In: VLDB (2007)

22. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance Semirings. In: PODS
(2007)

23. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space.
Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers (2011)

24. Imielinski, T., Lipski, W.: Incomplete Information in Relational Databases.
JACM 31(4) (1984)

25. Karvounarakis, G., Ives, Z.G., Tannen, V.: Querying Data Provenance. In:
SIGMOD (2010)

26. Lian, X., Chen, L.: Efficient Query Answering in Probabilistic RDF graphs. In:
SIGMOD, pp. 157–168. ACM (2011)

27. Manola, F., Miller, E., McBride, B.: RDF Primer (February 2004),
http://www.w3.org/TR/rdf-primer

28. Mumick, I.S., Shmueli, O.: Finiteness Properties of Database Queries. In: ADC
(1993)

29. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. ACM
TODS 34(3) (2009)

30. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (January
2008), http://www.w3.org/TR/rdf-sparql-query

31. Udrea, O., Recupero, D.R., Subrahmanian, V.S.: Annotated RDF. ACM Trans.
Comput. Logic 11(2), 10:1–10:41 (2010)

http://www.w3.org/TR/rdf-primer
http://www.w3.org/TR/rdf-sparql-query

First-Order Provenance Games

Sven Köhler1, Bertram Ludäscher1, and Daniel Zinn2

1 Dept. of Computer Science, University of California, Davis
{svkoehler,ludaesch}@ucdavis.edu

2 LogicBlox, Inc.
daniel.zinn@logicblox.com

Abstract. We propose a new model of provenance, based on a game-theoretic
approach to query evaluation. First, we study games G in their own right, and ask
how to explain that a position x in G is won, lost, or drawn. The resulting notion
of game provenance is closely related to winning strategies, and excludes from
provenance all “bad moves”, i.e., those which unnecessarily allow the opponent
to improve the outcome of a play. In this way, the value of a position is deter-
mined by its game provenance. We then define provenance games by viewing
the evaluation of a first-order query as a game between two players who argue
whether a tuple is in the query answer. For RA+ queries, we show that game
provenance is equivalent to the most general semiring of provenance polynomi-
als N[X]. Variants of our game yield other known semirings. However, unlike
semiring provenance, game provenance also provides a “built-in” way to handle
negation and thus to answer why-not questions: In (provenance) games, the rea-
son why x is not won, is the same as why x is lost or drawn (the latter is possible
for games with draws). Since first-order provenance games are draw-free, they
yield a new provenance model that combines how- and why-not provenance.

1 Introduction

A number of provenance models have been developed in recent years that aim at ex-
plaining why and how tuples in a query result Q(D) are related to tuples in the input
databaseD (see [5,16] for recent surveys). Motivated by applications in data warehous-
ing, Cui et al. [6] defined a notion of data lineage to trace backward which tuples in
D contributed to the result. Buneman et al. [4] refined and formalized new forms of
why- and where-provenance, and introduced a notion of (minimal) witness basis to do
so. Later, Green et al. [14] proposed a form of how-provenance through provenance
semirings that emerged as an elegant, unifying framework for provenance. For RA+

(positive relational algebra) queries, provenance semirings form a hierarchy [11], with
provenance polynomials N[X] as the most informative semiring at the top (i.e., pro-
viding the most detailed account how a result was derived), and other semirings with
“coarser” provenance information below, e.g., Boolean provenance polynomials B[X]
[11], Trio provenance [3], why-provenance [4], and lineage [6]. The key idea of the uni-
fying framework is to annotate each tuple in the input databaseD with an element from
a semiring K and then propagate K-annotations through query evaluation. Semiring-
style provenance support has been added to practical systems, e.g., ORCHESTRA [13]
and LOGICBLOX [15]. However, the semiring approach does not extend easily to nega-
tion and other non-monotonic constructs, thus spawning further research [10,12,1,2].

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 382–399, 2013.
© Springer-Verlag Berlin Heidelberg 2013

First-Order Provenance Games 383

In this paper, we take a fresh look at provenance by employing games. Game theory
has a long history and many applications, e.g., in logic, computer science, biology, and
economics. The first formal theorem in the theory of games was published by Ernst
Zermelo exactly 100 years ago [21].1 In 1928, von Neumann’s paper “Zur Theorie
der Gesellschaftsspiele” [17] marked the beginning of game theory as a field. In it
he asks (and answers) the question of how a player should move to achieve a good
outcome. We employ such “good” moves to define a natural notion of provenance for
games G, which we call game provenance Γ (=ΓG), and which is thus closely related
to winning strategies. The crux is that by considering only “good” moves while ignoring
“bad” ones, one can get a game-theoretic explanation for why a position is won, lost, or
drawn, respectively. By viewing query evaluation as a game, we can then apply game
provenance to obtain an elegant new provenance approach we call provenance games.

Game Plan. In Section 2 we introduce basic concepts and terminology for games G
and show how to solve them using a form of backward induction. We then discuss the
regular structure inherent in solved games Gγ and use it to define our notion of game
provenance Γ. The solved positions imply a labeling of moves as “good” or “bad”,
which we use to define the game provenance Γ(x) of position x as the subgraph of G,
reachable from x without “bad” moves. The value of a position is determined by its
game provenance, and it captures why and how a position is won, lost, or drawn.

In Section 3 we propose to apply game provenance to first-order (FO) queries in
Datalog¬ form, by viewing the evaluation of query Q on database D as a game GQ,D .
By construction, our provenance games yield the standard semantics for FO queries.
For positive relational queries RA+, game provenance ΓQ,D is equivalent to the most
general semiring of provenance polynomials N[X]. Variations of the provenance game
yield other semirings, e.g., Trio(X). While provenance games are equivalent to prove-
nance semirings for positive queries, the former also handles negation seamlessly, as
complementary claims and negation are inherent in games. Provenance games can thus
also answer why-not questions easily: The explanation for why x is not won is the same
as why x is lost (or drawn, for games that are not draw-free). Since provenance games
are always draw-free for first-order queries, we obtain a simple and elegant provenance
model for FO that combines how-provenance and why-not provenance. In Section 4 we
conclude and suggest some future work.

2 Games

We consider games as graphsG = (V,M), where two players move alternately between
positions V along the edges (moves) M ⊆ V × V . We assume that G is finite, i.e.,
|V | < ∞,2 but game graphs can have cycles and thus still may result in infinite plays.
Each v0 ∈ V defines a game Gv0 = (V,M, v0) starting at v0. A play π (=πv0) of Gv0

is a (finite or infinite) sequence of edges

v0 → v1 → v2 → · · · (π)

1 Some confusion prevails about Zermelo’s theorem, but it is all sorted out in [18].
2 Many game-theoretic notions and results carry over to the transfinite case; cf. [7].

384 S. Köhler, B. Ludäscher, and D. Zinn

where for all i = 0, 1, 2, . . . the edge vi → vi+1 is a move (vi, vi+1) ∈M . A play π is
complete, either if it is infinite, or if it ends after n = |π| moves in a sink of the game
graph. The player who cannot move loses the play, while the previous player (who made
the last possible move) wins it. If |π| = 2k + 1, that is, π =

v0
I→ v1

II→ v2
I→ · · · II→ v2k

I→ v2k+1 (I moves last)

then vo is won (for I) in π. Conversely, if II moves last, then |π| = 2k for some π =

v0
I→ v1

II→ v2
I→ · · · II→ v2k (II moves last)

so vo is lost (for I) in π, because II wins the play. A play π of infinite length is a draw
(in finite games G, this means that M must have a cycle).

The Value of a Position: Playing Optimally. Assume v0 is won in π, i.e., |π| = 2k+1
moves were played, starting with player I at v0, then II got stuck at a sink, so I won.
But what if II made a “bad move” along the way in π, i.e., missed an opportunity to win
or at least draw? Then although I won this play π, I may not be able to force a win, if
II avoids bad moves and plays optimally. We are not interested in plays π that involve
bad moves. To determine the value of a position (i.e., independent of a particular play
π), we consider plays where the opponents play optimal (or at least “good enough”) so
that the best possible outcome is guaranteed. More formally, we define:

A strategy is a partial mapping S : V → V with S ⊆ M . Position v0 is won for
player I in (at most) n moves, if there is a strategy SI, such that for all strategies SII,
there is a number j = 2k + 1 ≤ n such that vj = SI ◦ (SII ◦ SI)

k(v0) is defined,
but SII(vj) is not: II cannot move. In this case, SI is a winning strategy for I at v0.
Conversely, v0 is won for player II in (at most) n moves, if there is a strategy SII, such
that for all strategies SI, there is a number j = 2k ≤ n such that vj = (SII ◦ SI)

k(v0)
is defined, but SI(vj) is not: I cannot move. Finally, the value of v0 is won (lost) if it is
won for player I (player II). If v0 is neither won nor lost, its value is drawn, so neither
I nor II can force a win from v0, but both can avoid losing via an infinite play.

2.1 Solving Games: Labeling Nodes

Let G = (V,M) be the game in Figure 1(a). How can we solve G, i.e., determine
whether the value of x ∈ V is won, lost, or drawn? We represent the value of x using a
node labeling γ : V → {W, L,D} and write Gγ = (V,M, γ) to denote a solved game.

The following Datalog¬ query, consisting of a single rule, solves games:

win(X) :− move(X,Y),¬win(Y) (QG)

QG says that position x is won in G if there is a move to position y, where y is not won.
For non-stratified Datalog¬ programs like QG (having recursion through negation), the
three-valued well-founded model W [20] provides the desired answer:

Proposition 1 (QG Solves Games). Let P :=(QG∪move) be the Datalog¬ queryQG

plus finitely many “move” facts, representing a game G = (V,M). For all x ∈ V :

WP (win(x)) =

⎧⎨⎩
true
false
undef

⎫⎬⎭ ⇔ γ(x) =

⎧⎨⎩
W
L
D

⎫⎬⎭ .

First-Order Provenance Games 385

a

b c

d e

f g h

m

k

l

n

(a) What are the “good moves”,
e.g., in position e? Is e won (or
lost, or drawn), and if so how?

a

b

 1

c

3

d e

f

1

g

 3

m

h

1

k

l

 oo

n

oo

 oo

 oo

2 2

 2

(b) The solved game reveals the an-
swer: move e→h is winning; the
moves e→d and e→m are not.

Fig. 1. Position values in game G (left) are revealed by the solved game Gγ = (V,M, γ) on
the right: positions are won (green boxes), lost (red octagons), or drawn (yellow circles). This
separates provenance-relevant moves (solid, colored arcs), from irrelevant “bad” ones (dashed,

gray). The length � of a move x
�→ y indicates how quickly one can force a win, or how long one

can delay a loss, using that move.

When implemented via an alternating fixpoint [19], one obtains an increasing sequence
of underestimates U1 ⊆ U2 ⊆ . . . converging to the true atoms Uω from below, and a
decreasing sequence of overestimates O1 ⊇ O2 ⊇ . . . converging to Oω, the union of
true or undefined atoms from above. Any remaining atoms in the “gap” have the third
truth-value (undef). For the game queryQG above,Uω contains the won positions V W;
the “gap” (if any) Oω \ Uω contains the drawn positions V D; and the atoms in the
complement ofOω (i.e., which are neither true nor undefined) are the lost positions V L.

To solveG directly, consider, e.g., the three moves e→d, e→h, and e→m in Fig. 1(a).
The move e→h is clearly winning, as it forces the opponent into a sink. However, the
status of the moves e→d and e→m is unclear unless the game has been solved. Fig. 1(b)
depicts the solved gameGγ . The set of positions is a disjoint union V = V W ∪̇V L ∪̇V D.

To obtain Gγ , proceed as follows: First, find all sinks x, i.e., nodes for which the set
of followers F(x) = {y | (x, y) ∈ M} is empty. These positions are immediately lost
and colored red: V L

0 = {x ∈ V | F(x) = ∅}. In our example, V L
0 = {b, f, h}. We then

find all nodes x for which there is some y with (x, y) ∈ M such that y ∈ V L
0 . These

positions are won and colored green; here: V W
1 = {a, d, e}. We then find the unlabeled

nodes x for which all followers y ∈ F(x) are already won (i.e., colored green). Since
the player moving from that position can only move to a position that is won for the
opponent, those x are also lost and added to V L

2 . In our example V L
2 = {c, g}. We now

iterate the above steps until there is no more change. One can show that V W
1 ⊆ V W

3 ⊆
V W
5 · · · converges to the won positions V W, whereas V L

0 ⊆ V L
2 ⊆ V L

4 · · · converges to
the lost positions V L; the drawn positions are V D := V \ (V W ∪ V L).

386 S. Köhler, B. Ludäscher, and D. Zinn

Algorithm 1. Compute solution Gγ = (V,M, γ)

V W := ∅ ; // Initially we don’t know any won positions

V L := {x ∈ V | F(x) = ∅} ; // . . . but all sinks are lost . . .

len(x) := 0 for all x ∈ V L ; // . . . immediately: their length is 0.
repeat

for x ∈ V \ (V W ∪ V L) do
F L := F(x) ∩ V L; FW := F(x) ∩ V W ;
if F L �= ∅ then

V W := V W ∪ {x} ; // some y ∈ F(x) is lost, so x is won

len(x) := 1 + min{len(y) | y ∈ F L} ; // shortest win

if F(x) = FW then
V L := V L ∪ {x} ; // all y ∈ F(x) are won, so x is lost

len(x) := 1 + max{len(y) | y ∈ FW} ; // longest delay

until V W and V L change no more;
V D := V \ (V W ∪ V L) ; // remaining positions are now draws

len(x) :=∞ for all x ∈ V D ; // . . . and can be delayed forever

γ(x) :=W/L/D for all x ∈ V W/V L/V D, respectively.

Algorithm 1 depicts the details of a simple, round-based approach to solve games. In
it, we also compute the length of a position, which adds further information to a solved
game Gγ , i.e., how quickly one can win (starting from green nodes), or how long one
can delay losing (starting from red nodes). In Fig. 1, the (delay) length of f is 0, since f
is a sink and no move is possible. In contrast, the (win) length of d is 1: the next player
moving wins by moving to f. For g, the (delay) length is 2, since the player can move
to d, but the opponent can then move to f. So g is lost in 2 moves.

Remark. As described, Algorithm 1 proceeds in rounds to determine the value of po-
sitions, i.e., in each round i, all newly won positions, and all newly lost positions are
determined. This could be used, e.g., to simplify the computation of the length of a
position (len(x) can be derived from the first round in which the value of x becomes
known). On the other hand, this is not strictly necessary: one can replace the for-loop
ranging over all unlabeled nodes by a non-deterministic pick of any unlabeled node. As
long as we pick nodes in a fair manner, the non-deterministic version will also converge
to the correct result, while allowing more flexibility during evaluation [22].

2.2 Game Provenance: Labeling Edges

We return to our original question: why is x ∈ V won, lost, or drawn? We would like
to define a suitable notion of game provenance Γ(x) that is similar in spirit to the how-
provenance devised for positive queries [14], but that works for games and explains the
value (won, lost, or drawn) of x. Some desiderata of game provenance are immediate:
First, only nodes reachable from x can influence the outcome at x, i.e., only nodes
and edges in the transitive closure F+(x). Thus, one expects Γ(x) to depend only on

First-Order Provenance Games 387

y won (W) y drawn (D) y lost (L)

x won (W) bad bad g: winning

x drawn (D) bad y: drawing n/a

x lost (L) r: delaying n/a n/a
W

 bad Dbad

L winning
bad

 drawing

n/a

 delaying

n/a

 n/a

Fig. 2. Depending on node labels, moves x → y are either winning (or green) (W
g
� L), delaying

(or red) (L
r
� W), or drawing (or yellow) (D

y
� D). All other moves are either bad (allowing

the opponent to improve the outcome), or non-existent (n/a): e.g., if x is lost, then there are only
delaying moves (i.e., ending in won positions y for the opponent).

F+(x). In addition, one expects the value γ(x) of position x to be independent of “bad
moves”, i.e., which give the opponent a better outcome than necessary. We use a partial
edge-labeling function λ to distinguish different types of moves.

Definition 1 (Edge Labels). LetGγ = (V,M, γ) be a solved game. The edge-labeling
λ : V ×V → {g, r, y} defines a color for a subset of edges fromM as shown in Fig. 2.�

In Figure 2 we use γ(x) and γ(y), i.e., node labels W, D, and L of moves (x, y) ∈ M
to derive an appropriate edge label. This allows us to distinguish provenance-relevant
(“good”) moves (winning, drawing, or delaying), from irrelevant (bad) moves. The lat-
ter are excluded from game provenance:

Definition 2 (Game Provenance). Let Gγ = (V,M, γ) be a solved game. The game
provenance Γ(=ΓG) is the λ-colored subgraph of Gγ . For x ∈ V , we define Γ(x) as
the subgraph of Γ, reachable via λ edges. �

Consider the solved game on the right in Fig. 1. Since bad (dashed) edges are excluded,
the game provenance consists of two disconnected subgraphs: (i) The bipartite “red-
green” subgraph, which is draw-free, i.e., every position is either won or lost, and (ii)
the “yellow” subgraph, representing the drawn positions.

The figure also reveals that solved games Gγ and thus game provenance Γ have a
nice, regular structure. The following is immediate from the underlying game-theoretic
semantics of G.

Theorem 1 (Provenance Structure). Let Gγ = (G,M, γ) be a solved game, Γ its
edge-labeled provenance graph. The game provenance Γ has a regular structure:

Γ(x) =

⎧⎨⎩
Mg.(r.g)∗(x) ; if x is won
M(r.g)∗(x) ; if x is lost
My+(x) ; if x is drawn

Here, for a regular expression R, and a node x ∈ V , the expression MR(x) denotes a
subset of labeled edges of M , i.e., for which there is a path π in Γ whose labels match
the expression R. As we shall see below, for positive queries, the bipartite structure of
won and lost nodes nicely corresponds to the structure of provenance polynomials [16].

388 S. Köhler, B. Ludäscher, and D. Zinn

A

Rule (R)¬A

¬Goal (N)Goal (G)

∃

I� II

Move Claim made by making the move

A
∃
� R “A is true: it’s the head of this instance of R.”

R � G “Positive goal gk(=A′) in your rule body fails!”
G � ¬A “No! Its negation ¬A′ fails and A′ is true.”
¬A � A “No: atom A′ fails! I dare you to prove it.”

R � N “Negative goal ¬A′ in the rule body fails.”
N � A “No: ¬A′ succeeds, but A′ fails.”

Fig. 3. Move types of the query evaluation game (left) and implicit claims made (right). Moving
along an edge, a player aims to verify a claim, thereby refuting the opponent. Initially, player I is
a verifier, trying to prove A, while II tries to spoil this attempt and refute it. Roles are swapped
(I� II) when moving through a negated goal (R�N�A).

3 Provenance Games

The game semantics (avoiding bad moves) yields a natural model of provenance. We
now apply this notion to queries expressed using non-recursive Datalog¬ rules. Any
first-order queryϕ(x̄) on input databaseD can be expressed as a non-recursive Datalog¬

program Qϕ with a distinguished relation ans ∈ idb(Qϕ)
3 such that evaluating Qϕ

with input D under the stratified semantics4 agrees with the result of ϕ(x̄). In the fol-
lowing we use Q(D) to denote the result of evaluating Q on input D.

3.1 Query Evaluation Games

Query evaluation of Q(D) can be seen as a game between players I and II who argue
whether an atom A ∈ Q(D) is true. The argumentation structure is stylized in Fig. 3.
There are three classes of positions in the game as shown on the left of Figure 3:

– Relation nodes—depicted as circles,
– Rule nodes—depicted as rectangles, and
– Goal nodes—depicted as rectangles with rounded corners.

Both relation nodes and goal nodes can be positive or negative.
Usually, an evaluation game starts with I claiming that a ground atom A(x) is true.

That is she starts the game in a relation node forA. To substantiate her claim she moves
to a rule that has A as a head atom and specifies constants for the remaining existen-
tially quantified variables in the body of the rule. Now, II tries to reject the validity
of the rule by selecting a goal atom (e.g., B) in its body that he thinks is not satisfied
(e.g., II moves to the goal node for B). I then moves to a negated relation node for this
goal (eg, a node ¬B), claiming the goal is true because its negation is false. From here,

3 The arity of ans matches that of ϕ(x̄).
4 which coincides with the well-founded semantics on non-recursive Datalog¬

First-Order Provenance Games 389

II moves to the relation node B, questioning I’s claim that B is true. The game then
continues in the same way. Note that the graph on the left of in Fig. 3 is a schema-level
description. When one cycle (relation�rule�goal�¬relation�relation) is complete,
the actual fact that is argued about has changed (e.g., from A to B). If II selects a
negated goal (e.g., ¬C) in the body of a rule then player I moves directly from the
negated goal node to the relation node forC. This essentially switches the roles of I and
II since now player II has to argue for a relation node C.

We now demonstrate the general argumentation scheme for a concrete Datalog¬ pro-
gram Qneg. The program Qneg consists of a single rule r1:

r1 : A(X) :− B(X,Y)︸ ︷︷ ︸
g1

, ¬ C(Y)︸ ︷︷ ︸
g2

(Qneg)

The game diagram forQneg is shown in Fig. 4a. Player I starts in a relation nodeA(x) to
prove that A(x) ∈ Q(D). In her first move, she picks the rule r1 together with bindings
for all existentially quantified variables in r1; essentially picking a ground instance
r1(x, y) such that the variable X is bound to the desired x. She claims the rule body is
satisfied. If this is not the case, II can falsify the claim by selecting a goal from the body,
i.e., either g11(x, y), thus making a counter-claim that B(x, y) is false, or g21(y), claiming
instead that C(y) is true. Positive case, e.g., II moved to g11(x, y). Player I will move
from g11(x, y) to ¬B(x, y), from which II will move to B(x, y). In this node, there is
an edge for player I if and only if B(x, y) ∈ D, that is if there is a trivial, bodyless rule
rB(x, y) representing this fact. Thus, I wins the game if B(x, y) ∈ D and II wins if
B(x, y) �∈ D. Negative case, e.g., II just moved to g21(y). Player I moves to C(y). Here,
II loses and I wins if C(y) �∈ D; II wins the argument if C(y) ∈ D by moving to the
trivial rule node, forcing I to lose.

Construction of Evaluation Game Graph. We create a game in which the constants
are also encoded within the game positions. In Fig. 4b, we provide Datalog rules that de-
fine the move relation M of the evaluation gameGQneg,D forQneg with an input database
D. Here, d is a relation that contains the active domain of Qneg and D.

For each ground atom, we create a postive and a negative relation node. We use
Skolem functions to create “node identifiers”. E.g., for a ground atom S(a1, . . . , an) we
use fS(a1, . . . , an) for its positive relation nodes and f¬S(a1, . . . , an) for its negative
relation node. The first three rules in Fig. 4b create an edge from the negative to the
positive node.5

Furthermore, we create a rule node for each rule ri in the ground program with a
unique identifier fri(X1, . . . , Xn) including the rule number and the assignments of
variables found in the rule’s body to constants. For simplicity, we alphabetically order
variables and provide the constants in this order. There is an edge from the ground head
atom to the ground rule node (cf. Fig. 4b first line of middle block). For example, the
skolem function fr1(a, b) encodes the whole rule body r1 : [B(a, b),¬C(b)].

Then, we add moves from rule node ri to its goal nodes gji . Goal nodes are identified
by the rule number i they occur in, their positions j within the body, and the bound

5 The use of Skolems is for convenience only. We could instead use constants and increase the
arity of relations accordingly, or even avoid constants [8,9].

390 S. Köhler, B. Ludäscher, and D. Zinn

A(X)

C(X)B(X, Y)

r1(X,Y)

g11(X,Y) g21(Y)

rB(X,Y) rC(X)

¬A(X)

¬B(X,Y) ¬C(X)

B(X, Y) C(X)

X:=Y

∃Y

(a) Game diagram for Qneg

Atoms A,B, and C
M(f¬A(X), fA(X)) :− d(X).
M(f¬B(X,Y), fB(X,Y)) :− d(X), d(Y).
M(f¬C(X), fC(X)) :− d(X).

IDB A via rule r1
M(fA(X), fr1 (X,Y)) :− d(X), d(Y).
M(fr1 (X,Y), fg11 (X,Y)) :− d(X), d(Y).

M(fr1 (X,Y), fg21 (Y)) :− d(X), d(Y).

M(fg11 (X,Y), f¬B(X,Y)) :− d(X), d(Y).

M(fg21 (X), fC(X)) :− d(X).

EDB B and C
M(fB(X,Y), frB (X,Y)) :− B(X, Y).
M(fC(X), frC (X)) :− C(X).

(b) Move relation for Qneg

¬C(a)

¬C(b)

¬B(a, a)

¬B(a, b)

rB(b, a)

r1(b, a)¬A(b)

¬A(a)
g11(a, a)

B(a, b)

B(a, a)

C(a)

g21(a)

g21(b)

C(b)

¬B(b, a)

¬B(b, b)

rC(a)

A(b)

A(a)

r1(a, b)

r1(a, a)

g11(a, b) rB(a, b)

r1(b, b)
g11(b, b)

g11(b, a)

B(b, b)

B(b, a)

∃a

∃b

∃b

∃a

(c) Instantiated game GQneg,D for D = {B(a, b), B(b, a), C(a)}

¬C(a)

¬C(b)

¬B(a, a)

¬B(a, b)

rB(b, a)

r1(b, a)¬A(b)

¬A(a)
g11(a, a)

B(a, b)

B(a, a)

C(a)

g21(a)

g21(b)

C(b)

¬B(b, a)

¬B(b, b)

rC(a)

A(b)

A(a)

r1(a, b)

r1(a, a)

g11(a, b) rB(a, b)

r1(b, b)
g11(b, b)

g11(b, a)

B(b, b)

B(b, a)

∃a

∃b

∃b

∃a

(d) Solved game Gγ
Qneg,D

for D = {B(a, b), B(b, a), C(a)}. Lost
positions are (dark) red; won positions are (light) green. Provenance
edges are solid; bad moves are depicted via dashed lines.

Fig. 4. Game diagram, and provenance game for Qneg := A(X) :− B(X,Y),¬C(Y)

First-Order Provenance Games 391

constants. (cf. lines 2 and 3 of middle block). From positive (negative) goal nodes, we
move to negative (positive) relation nodes keeping the bound constants fixed (cf. lines
4 and 5 of middle block). Finally, for edb relations, we add an edge from the positive
relation node R(c̄) to a rule node frR(c̄) iff R(c̄) ∈ D. This ensures that a player
reaching the relation node R(c̄) wins iff R(c̄) ∈ D. In Fig. 4c the game graph for Qneg

with input databaseD = {B(a, b), B(b, a), C(a)} is shown. The solved game is shown
in Fig. 4d. Here, we see that I has a winning strategy for e.g., A(a), B(b, a), and C(a).

Acyclicity of FO Games. For FO queries, represented by non-recursive Datalog¬ pro-
grams, no relation node is reachable from itself and the resulting game graph is acyclic.

Theorem 2 (FO Provenance Game). Consider a first-order query ϕ in the form of a
non-recursive Datalog¬ programQϕ with output relation ans and input database facts
D. Let Gγ

Qϕ,D = (V,M, γ) be the solved game. Then:

1. Gγ
Qϕ,D is draw-free.

2. Qϕ(ans(x̄)) =

{
true
false

}
⇔ γ(fans(x̄)) =

{
W
L

}
Sketch. It is easy to see that one can associate with every non-recursive Datalog¬ pro-
gram Q and input D an evaluation game graph GQ,D together with a solved game
Gγ

Q,D . Since the game graph is acyclic, the solved game will not contain any drawn
positions. This can easily be verified by an induction of how Algorithm 1 behaves
on graphs without cycles. Further, by construction, Gγ

Q,D models query evaluation of
Q(D). �

3.2 Relationship with Provenance Polynomials – How-Provenance for RA+

Game graphs are constructed to preserve provenance information available in program
and database. It turns out that for positive Datalog programs Q they generate semiring
provenance polynomials as defined in [14,16] for atoms A(x̄) ∈ Q(D).

Semiring Provenance Polynomials. Semiring provenance [14,16] attaches provenance
information to EDB and IDB facts. The provenance information are elements of a com-
mutative semiring K . A commutative semiring is an algebraic structure with two dis-
tinct associative and commutative operations “+” and “×”. During query evaluation,
result facts are annotated with elements from K that are created by combining the pro-
venance information from input facts. For example, in the join R(a, b) :− S(a, b), T(a)
with S(a, b) being annotated with p1 ∈ K and T(a) being annotated with p2 ∈ K , the
result fact R(a, b) will be annotated with p1 × p2. Intuitively, “×” is used to combine
provenance information of joint use of input facts, whereas “+” is used for alternative
use of input facts.

Depending on the conrete semiring used, different (provenance) information is prop-
agated during query evaluation. The most informative6 semiring is the positive algebra

6 In the sense that for any other semiring K′, there exists a semiring homomorphism H :
N[X] → K′. This has important implications in practice [14,16].

392 S. Köhler, B. Ludäscher, and D. Zinn

provenance semiringN[X] [14,16] whose elements are polynomials with variables from
a set X and coefficients from N. The operators “×” and “+” in N[X] are the usual ad-
dition and multiplication of polynomials. Usually, facts from the input database D are
annotate by variables from a set X . Formally, we use PN[X] as a function that maps a
ground atom to its provenance annotation in N[X].

Obtaining Semiring Polynomials from Game Provenance. Consider only positive
programs, and fix an atom A(x̄) with A(x̄) ∈ Q(D). The provenance graph
ΓQ,D(fA(x̄)) = (V,M, γ) for A(x̄) can easily be transformed into an operator tree
for a provenance polynomial. The operator tree is represented as a DAG GΩ(A(x̄)) in
which common sub-expressions are re-used. GΩ(A(x̄)) = (V ′,M ′, δ) has nodes V ′,
edges M ′, and node labels δ. For a fixed A(x̄), the structures of Γ and GΩ coincide,
that is V = V ′ and M = M ′. The labeling function δ maps inner nodes to either “+”
or “×”, denoting n-ary versions of the semiring operators. Leaf nodes in game prove-
nance graphs correspond to atoms over the EDB schema. We here only assign elements
from K to leaf nodes of the form frR(x̄). Formally, the labeling function δ is defined as
follows:

δ(v) =

⎧⎪⎨⎪⎩
PN[X](A(x̄)) if F(v) = ∅ and v = frA(x̄)

“×” if F(v) �= ∅ and γ(v) = L

“+” if F(v) �= ∅ and γ(v) = W

(1)

We use Ω to denote the transformation of obtainingGΩ(A(x̄)) from ΓQ,D(fA(x̄)). The
provenance semiring polynomial of fact A(x̄) is now explicit in GΩ(A(x̄)). An inner
node “+” (or “×”) with n children represents an n-ary version of + (or ×) from the
semiring. Since the semiring operators are associative and commutative, their n-ary
versions are well-defined.

Proposition 2. For positive Q, and A(x̄) ∈ Q(D), all leaves in ΓQ,D(A(x̄)) are of
type frB(X,Y); thus the labeling described above is complete.

Sketch. For positive programs, positive relation nodes are reachable from other positive
relation nodes over a path of length four as shown on the left side of Fig. 3. For an atom
A(x̄) ∈ Q(D), all reachable rule nodes are lost and all reachable goal nodes are won.�

The following theorem relates semiring provenance polynomials to the provenance
expressions we obtain in GΩ:

Theorem 3. Let ΓQ,D be the game provenance of an RA+ query Q (in the form of a
positive, non-recursive Datalog program) over database D. Then ΓQ,D represents the
provenance polynomials N[X] as follows: for all A(x̄) ∈ Q(D),

Ω ◦ ΓQ,D(fA(x̄)) ≡ PN[X]
Q,D (A(x̄)).

Sketch. Our game graph construction is an extension of the graph presented in Section
4.2 of [16]. Rule nodes correspond to the join nodes presented in [16]. Named goal
nodes can be seen as labels on the edges between (goal) tuple nodes and join nodes and
allow us to identify at which position a tuple was used in the body. For a detailed proof,
please refer to Appendix A. �

First-Order Provenance Games 393

a cb
r

q

p

s

(a) Input database D

hop ΓQ3Hop,D δ

a a frhop (a, a) p

a b frhop (a, b) q

b a frhop (b, a) r

b c frhop (b, c) s

(b) Labels δ for leaf
nodes of ΓQ3Hop,D.

3hop ΓQ3Hop,D PN[X]
Q3Hop,D

a a f3Hop(a, a) p3 + 2pqr

a b f3Hop(a, b) p2q + q2r

a c f3Hop(a, c) pqs

b a f3Hop(b, a) p2r + qr2

b b f3Hop(b, b) pqr

b c f3Hop(b, c) qrs

(c) Provenance for inner relation
nodes of ΓQ3Hop,D.

r1(a, a, b, a)

g21(a, a)

¬hop(b, a)

g11(a, a)

hop(b, a)

g21(a, b) g31(b, a)

rhop(b, a)

r1(a, a, a, a)

r1(a, a, a, b)

3Hop(a, a)

g31(a, a)

rhop(a, a)

hop(a, b)

¬hop(a, a)

g11(a, b)

rhop(a, b)

g21(b, a)

¬hop(a, b)

hop(a, a)

∃ a,a ∃ b,a

∃ a,b

(d) Γ(f3hop(a, a))

×

+

×

+

+

+ +

r

×

×

+

+

p

+

×

+

q

+

×

+

(e) DAG GΩ = Ω ◦ Γ(f3hop(a, a)).
Interpreting GΩ yields p3 + 2pqr.

Fig. 5. Input graph for program Q3Hop in (a) using edge labeling according to (b). Game prove-
nance ΓQ3Hop,D for the query 3Hop(a, a) on input database of (a) is shown in (d). When labeling
leaf nodes according to (b), lost inner nodes by “×”, and won inner nodes by “+” then the oper-
ator DAG GΩ shown in (e) is created. This DAG represents the semiring-provenance polynomial
for the query 3Hop(a, a) shown in (c) and [16].

394 S. Köhler, B. Ludäscher, and D. Zinn

g21(c, a)

¬3Hop(c, a)

g21(c, c)g11(c, c)

r1(c, a, c, b)

¬hop(c, b)

hop(c, a)

g21(b, b)

¬hop(a, c)

hop(c, c)

g11(c, a)

r1(c, a, b, c)r1(c, a, a, b)

3Hop(c, a)

hop(b, b)

g21(c, b)g21(a, c)

r1(c, a, a, c)

¬hop(c, c)

hop(c, b)

¬hop(c, a)

g11(c, b)

r1(c, a, b, b)

¬hop(b, b)

g31(c, a)

r1(c, a, a, a) r1(c, a, b, a)

hop(a, c)

r1(c, a, c, a) r1(c, a, c, c)

∃ a,b ∃ a,c ∃ c,a ∃ c,c∃ b,c ∃ b,b∃ b,a∃ a,a ∃ c,b

Fig. 6. Why-not provenance for 3Hop(c, a) using provenance games

Example 3hop from [16]. Consider the 3Hop query Q3Hop used in Figure 7 of [16]:

r1 : 3Hop(X,Y) :− hop(X,Z1), hop(Z1, Z2), hop(Z2, Y).

The query uses an input database consisting of a single binary EDB relation hop repre-
senting a directed graph. It asks for pairs of nodes that are reachable via exactly three
edges(=hops). An input database D and PN[X]

Q3Hop,D
annotations of Q3Hop are shown in

Fig. 5b. Figure 5d shows the game provenance Γ(f3Hop(a, a)) of fact 3Hop(a, a). Posi-
tive won relation nodes indicate the existence of the corresponding fact in Q3Hop(D).
To obtain the provenance polynomial of fact f3Hop(a, a), we apply Ω to Γ(f3Hop(a, a))
as shown in Fig. 5e: we replace inner won nodes by “×”, inner lost nodes by “+”, and
leaf nodes by their respective annotations from K as given in Fig. 5b and [16]. The so
relabeled graph encodes the provenance equation

Ω ◦ ΓQ3Hop,D(f3Hop(a, a)) = (p× p× p) + (p× q × r) + (p× q × r) = p3 + 2pqr

which is equivalent to the annotation of provenance semiring polynomials as shown in
Fig. 5c and [16].

3.3 Why-Not Game Provenance for RA+

Game provenance also yields meaningful explanations for why-not questions. Con-
sider for example the query Q3Hop and its input database D. The atom 3Hop(c, a) is
not in Q3Hop(D) and we want to get an explanation why. Figure 6 shows the game
provenance ΓQ3Hop,D(f¬3Hop(c, a)) of the missing fact 3Hop(c, a). The lost relation
node 3Hop(c, a) indicates that player I will lose the argument that tries to show that
3Hop(c, a) ∈ Q3Hop(D). The game provenance explains why: Any ground instantia-
tion of rule r1 will be winning node for player II. Consider, e.g., moving to r1(c, a, a, a)
which represents the rule instantiation for X/c, Y/a, Z1/a, Z2/a. Player II wins the
game here by questioning that the first goal g11(c, a) is satisfied. And indeed, player
I will move from g11(c, a) to ¬hop(c, a); II to hop(c, a). Now, I loses the game since
hop(c, a) �∈ D and thus there is no move out of hop(c, a). We also see that another rule
instantiation X/c, Y/a, Z1/a, Z2/b fails for the same reason: the missing hop(c, a).
The instantiationX/c, Y/a, Z1/b, Z2/a fails because hop(c, b) is not in the input. Other

First-Order Provenance Games 395

g21 :¬C(b) C(b)

¬B(a,b)

A(a)

B(a,b)

r1:[B(a,b),¬C(b)]
g11 :B(a,b) rB :(a,b)

∃b

(a) Game provenance graph Γ(fA(a)) for A(a) ∈ Qneg(D).

C(a)g21 :¬C(a)

g11 :B(b,b)
¬A(b)

¬B(b,b)

rC :(a)

r1:[B(b,b),¬C(b)]

r1:[B(b,a),¬C(a)]
A(b)

B(b,b)
∃b

∃a

(b) Game provenance graph Γ(f¬A(b)) for A(b) �∈ Qneg(D)

Fig. 7. Provenance graphs for Qneg with database D = {B(a, b), B(b, a), C(a)}. Both why and
why-not graphs might contain leaf nodes representing existent and missing input facts.

instantiations, such as X/c, Y/a, Z1/c, Z2/b, fail because two facts are missing from
the input, here hop(c, b) and hop(c, c).

It is no coincidence that all leaf nodes represent missing EDB facts for why-not
provenance in positive non-recursive Datalog programs:

Proposition 3. Let Q be a non-recursive Datalog program, D a database, Γ(fA(x̄))
the game provenance for facts A(x̄) �∈ Q(D). All leaves of Γ(fA(x̄)) have type fR(ȳ)
and represent ground EDB atoms R(ȳ) that are missing from the input. �

The above proposition illustrates that for positive queries, the ultimate reason for failure
to derive outputs are missing inputs, represented by the leaves in provenance games.

As defined, game provenance is sensitive to the active domain of query and input
database, which can lead to interesting effects. Consider the following query variant
Q′

neg := Qneg ∪ {C(y) :− E(y, z)} with input D = {B(a, a)}. Here, game provenance
shows that A(a) depends on the presence of B(a, a) as well as on the absence of E(a, a).
The game provenance graph does not mention that the absence, e.g., of E(a, b) is im-
portant as well—simply because b is not in the active domain.

3.4 Game Provenance for First-Order Queries

In this section, we demonstrate examples for provenance games in the presence of
negation within the query. When constructing game graphs for Datalog¬ queries with
negated goals, we obtain graphs in which there exists a path of length three between
positive relation nodes. This switches roles between player I and II. In other words, to
explain why a negated subgoal is satisfied, an argument like in the why-not case is used.
In general, this leads to provenance graphs that contain leaf nodes of both kinds: fC(x̄)
representing missing facts R(x̄) �∈ D and frR(x̄) representing input facts R(x̄) ∈ D.

In the following, we provide examples based on theQneg query (cf. Fig. 4) with input
database D = {B(a, b), B(b, a), C(a)}.

Why Provenance. Figure 7a shows the provenance graph for the output fact A(a). One
can see that A(a) could be derived via rule r1 with the bindings X/a, Y/b. The posi-
tive goal succeeds due to the existence of the EDB fact B(a, b). The negative goal g21
succeeds due to the missing fact C(b) from the input D.

396 S. Köhler, B. Ludäscher, and D. Zinn

r1(a, a, b, a)

g1(b, a)g1(a, b)

rhop(b, a)

¬hop(b, a)

r1(a, a, a, a) r1(a, a, a, b)

3Hop(a, a)

rhop(a, a)

hop(a, b)

¬hop(a, a)

g1(a, a)

rhop(a, b)

hop(b, a)

¬hop(a, b)

hop(a, a)

∃ b,a∃ a,a ∃ a,b

(a) ΓTrio(X)
Q3Hop,D

for 3Hop(a, a)

×

+ +

r

×

× ×

+

p

+

×

+

q

+

×

+

(b) Ω ◦ ΓTrio(X)
Q3Hop,D

for 3Hop(a, a)

Fig. 8. Creating Trio(X) style provenance game variants for Q3Hop by dropping positional iden-
tifiers in the Skolem function for goal nodes. The operator tree on the right reads p+ 2pqr.

Why-Not Provenance. Figure 7b shows the provenance graph for A(b) which is not
part ofQneg(D). We can see that a player starting in ¬A(b) will win the argument since
A(b) cannot be shown. Both attempts to derive A(b) fail. With X/b, Y/a the second
goal ¬C(a) is not satisfied since C(a) ∈ D. With X/b, Y/b the first goal B(b, b) fails
since B(b, b) �∈ D.

3.5 Evaluation Game Graph Variants

In the graph construction for provenance games, the definition of the Skolem functions
is critical to capture provenance equivalent to N[X] povenance polynomials. Recall that
the Skolem function for rule node identifiers, e.g., fr1(X,Y), depend on the rule (here
r1) as well as the constants assigned to body variables. Skolem functions of goal node
identifiers, e.g., fg21(X,Y), depend on the rule they belong to (here 1), the exact position
in the rule body at which that goal oocurs (here 2), and values of the bound variables.

By changing the definition of one or more Skolem functions, more compact but also
less informative provenance can be encoded. We here only describe a simple variant that
will create Trio(X) [3] style provenance instead of N[X] provenance polynomials for
RA+ queries. When changing the Skolem function of goal node identifiers by removing
the positional argument for the goal, goals that appear at different positions in the body
of a rule collapse into a single node. This construction yields a modified operator graph.
In particular, using the same fact multiple times jointly in a rule will be recorded only
as a single use—as it is the case in Trio(X) provenance polynomials.

The game graph Γ
Trio(X)
Q3Hop,D

(
f3Hop(a, a)

)
and the corresponding operator graph are

shown in Fig. 8. Reading out the polynomial results in the Trio-provenance-polynomial
p+ 2pqr for the input fact annotations given in Fig. 5b.

First-Order Provenance Games 397

4 Conclusions

In this paper we have defined the notion of provenance games to capture provenance
of non-recursive Datalog¬. We have also shown how programs can be translated into a
game form represented by a game graph. The game graph can be solved using the well-
founded model of the well known win-move program. We have defined how the solved
game for non-recursive Datalog¬ can provide valuable provenance information for the
original program. In particular it can answer why and why-not provenance questions.
We gave examples how to retrieve provenance information from a game graph.

Investigating approaches to mitigate the problem of domain dependency for why-not
provenance is an interesting avenue for future work. Another possible extensions is the
application of provenance games to full Datalog¬ programs, which requires the analysis
of drawn positions.

Acknowledgements. Work supported by NSF awards IIS–1118088, DBI–1147273,
and a gift from LogicBlox, Inc.

References

1. Amsterdamer, Y., Deutch, D., Tannen, V.: Provenance for aggregate queries. In: PODS,
pp. 153–164. ACM (2011)

2. Amsterdamer, Y., Deutch, D., Tannen, V.: On the limitations of provenance for queries with
difference. In: Workshop on Theory and Practice of Provenance (TaPP), Heraklion, Crete
(2011)

3. Benjelloun, O., Sarma, A., Halevy, A., Widom, J.: Uldbs: Databases with uncertainty and
lineage. In: VLDB, pp. 953–964 (2006)

4. Buneman, P., Khanna, S., Tan, W.-C.: Why and where: A characterization of data prove-
nance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 316–330.
Springer, Heidelberg (2000)

5. Cheney, J., Chiticariu, L., Tan, W.: Provenance in databases: Why, how, and where. Founda-
tions and Trends in Databases 1(4), 379–474 (2009)

6. Cui, Y., Widom, J., Wiener, J.: Tracing the lineage of view data in a warehousing environ-
ment. ACM Transactions on Database Systems (TODS) 25(2), 179–227 (2000)

7. Flum, J.: Games, kernels, and antitone operations. Order 17(1), 61–73 (2000)
8. Flum, J., Kubierschky, M., Ludäscher, B.: Total and partial well-founded datalog coincide.

In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 113–124. Springer,
Heidelberg (1997)

9. Flum, J., Kubierschky, M., Ludäscher, B.: Games and total datalog¬ queries. Theoretical
Computer Science 239(2), 257–276 (2000)

10. Geerts, F., Poggi, A.: On database query languages for k-relations. Journal of Applied
Logic 8(2), 173–185 (2010)

11. Green, T.: Containment of conjunctive queries on annotated relations. Theory of Computing
Systems 49(2), 429–459 (2011)

12. Green, T., Ives, Z., Tannen, V.: Reconcilable differences. Theory of Computing Sys-
tems 49(2), 460–488 (2011)

13. Green, T., Karvounarakis, G., Ives, Z., Tannen, V.: Update exchange with mappings and
provenance. In: VLDB, pp. 675–686 (2007)

398 S. Köhler, B. Ludäscher, and D. Zinn

14. Green, T., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS, pp. 31–40 (2007)
15. Huang, S., Green, T., Loo, B.: Datalog and emerging applications: an interactive tutorial. In:

SIGMOD, pp. 1213–1216 (2011)
16. Karvounarakis, G., Green, T.J.: Semiring-annotated data: queries and provenance. SIGMOD

Record 41(3), 5–14 (2012)
17. von Neumann, J.: Zur Theorie der Gesellschaftsspiele. Mathematische Annalen 100,

295–320 (1928)
18. Schwalbe, U., Walker, P.: Zermelo and the early history of game theory. Games and Eco-

nomic Behavior 34(1), 123–137 (2001)
19. Van Gelder, A.: The alternating fixpoint of logic programs with negation. Journal of Com-

puter and System Sciences 47(1), 185–221 (1993)
20. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs.

Journal of the ACM (JACM) 38(3), 619–649 (1991)
21. Zermelo, E.: Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels. In:

Fifth Intl. Congress of Mathematicians, vol. 2, pp. 501–504. Cambridge University Press
(1913)

22. Zinn, D., Green, T.J., Ludäscher, B.: Win-move is coordination-free (sometimes). In: Intl.
Conf. on Database Theory (ICDT), pp. 99–113 (2012)

A Proof of Theorem 3

PROOF. The evaluation of the transformed game graph Ω ◦ ΓQ,D(fR(x̄)) is struc-
turally equivalent to the evaluation of provenance semiring polynomials of the anno-
tated Q(D):

EDB Facts: Using provenance semirings, a fact R(x̄) has the annotation PN[X]
Q,D (R(x̄)).

The evaluation of provenance polynomials using provenance games starts at the positive
relation node fR(x̄). Since R(x̄) ∈ Q(D) and by definition of the game graph this
relation node has one reachable node F(fR(x̄)) = {frR(x̄)}: Ω ◦ ΓQ,D(fR(x̄)) = Ω ◦
ΓQ,D(frR(x̄)). The node frR(x̄) is a leaf node, so the evaluation Ω returns its label

L(frR(x̄)) = PN[X]
Q,D (R(x̄)) and we have:

Ω ◦ ΓQ,D(fR(x̄)) = L(frR(x̄)) = PN[X](R(x̄)).

Union: Let Q(D) := {r1 : U(x̄) ← R1(x̄). r2 : U(x̄) ← R2(x̄).} When evaluating
Q(D), the provenance semiring polynomial for fact U(x̄) ∈ Q(D) is: PN[X](U(x̄)) =
PN[X](R1(x̄))+PN[X](R2(x̄)). The evaluation of provenance polynomials for U(x̄) ∈
Q(D) using provenance games starts at the positive relation node fU(x̄). By definition
of the game graph for Q(D), F(fU(x̄)) = {fr1(x̄), fr2(x̄)} and since γ(fU(x̄)) = W we
combine both terms with L(fU(x̄)) =“+”:

Ω ◦ ΓQ,D(fU(x̄)) = Ω ◦ ΓQ,D(fr1(x̄)) + Ω ◦ ΓQ,D(fr2(x̄))

Each rule node in ΓQ,D has exactly one outgoing edge to a goal node. Since the pro-
gram is positive, each goal node has exactly one following negated relation node. Those
negated relation nodes in turn have exactly one corresponding positive relation node. As

First-Order Provenance Games 399

shown above for EDB facts, for positive programs and a head node U(x̄) ∈ Q(D), pos-
itive relation nodes lead to the corresponding provenance annotations:

Ω ◦ ΓQ,D(fU(x̄)) = Ω ◦ ΓQ,D(fg11(x̄)) + Ω ◦ ΓQ,D(fg12(x̄))

= Ω ◦ ΓQ,D(f¬R1(x̄)) + Ω ◦ ΓQ,D(f¬R2(x̄))

= Ω ◦ ΓQ,D(fR1(x̄)) + Ω ◦ ΓQ,D(fR2(x̄))

= PN[X]
Q,D (R1(x̄)) + PN[X]

Q,D (R2(x̄))

Join: Let Q(D) := {r1 : J(x̄)← R1(x̄), R2(x̄).} When evaluatingQ(D) for a J(x̄) ∈
Q(D) using provenance semiring annotations we get:PN[X]

Q,D (J(x̄)) = PN[X]
Q,D (R1(x̄))×

PN[X]
Q,D (R2(x̄)). The evaluation of provenance polynomials for J(x̄) ∈ Q(D) using

provenance games starts at the positive relation node fJ(x̄). By definition of the game
graph for Q(D), fJ(x̄) connects to exactly one rule node: F(fJ(x̄)) = {fr1(x̄)}. This
rule node in turn leads to two goal nodes F(fr1(x̄)) = {fg11(x̄), fg21(x̄)}, which we
combine with L(fr1(x̄)) =“×”, since γ(fr1(x̄)) = L:

Ω ◦ ΓQ,D(fJ(x̄)) = Ω ◦ ΓQ,D(fr1(x̄))

= Ω ◦ ΓQ,D(fg11(x̄)) × Ω ◦ ΓQ,D(fg21(x̄))

Since the program is positive, each goal node has exactly one following negated relation
node. Those negated relation nodes in turn have exactly one corresponding positive re-
lation node. As shown above for EDB facts and for positive programs with a head node
J(x̄) ∈ Q(D), positive relation nodes lead to the corresponding provenance semiring
annotations:

Ω ◦ ΓQ,D(fJ(x̄)) = Ω ◦ ΓQ,D(f¬R1(x̄)) × Ω ◦ ΓQ,D(f¬R2(x̄))

= Ω ◦ ΓQ,D(fR1(x̄))× Ω ◦ ΓQ,D(fR2(x̄))

= PN[X]
Q,D (R1(x̄))× PN[X]

Q,D (R2(x̄))

Querying an Integrated Complex-Object

Dataflow Database

Natalia Kwasnikowska and Jan Van den Bussche

Hasselt University and Transnational University of Limburg, Belgium

Abstract. We consider an integrated complex-object dataflow database
in which multiple dataflow specifications can be stored, together with
multiple executions of these dataflows, including the complex-object data
that are involved, and annotations. We focus on dataflow applications
frequently encountered in the scientific community, involving the ma-
nipulation of data with a complex-object structure combined with ser-
vice calls, which can be either internal or external. Internal services are
dataflows acting as a subprogram of an other dataflow, whereas external
services are modeled as functions with a possibly non-deterministic be-
havior. Dataflow specifications are expressed in a high-level programming
language based on the nested relational calculus, the operators of which
provide the right “glue” needed to combine different service calls into a
complex-object dataflow. All entities involved, whether complex-objects,
dataflow executions or dataflow specifications, are first-class citizens of
the integrated database: they are all data. We discuss how such dataflow
repositories can be queried in a variety of ways, including provenance
queries. We show that a modern SQL platform with support for (ex-
ternal) routines and SQL/XML suffices to support all types of dataflow
repository queries.

Dedicated to Peter Buneman.

1 Introduction

A workflow is a high-level specification of a complex and possibly long-during
task, consisting of different subtasks that must be performed in a certain order.
This order does not need to be linear: some tasks can be performed concur-
rently, or alternatively. Workflow management has its origins in business process
modeling [1], but in recent years workflows have gained importance in e-science,
in parallel with the rise of Grid Computing [2]. Scientific workflows are distin-
guished from business workflows by their placing more importance on the data
flow between the subtasks, than on the synchronization of subtasks [3]. (In e-
science, the data flow frequently involves collections of complex data objects.)
In accordance to this focus, in this paper, we use the terms “scientific workflow”
and “dataflow” interchangeably.

With the rise of scientific workflows, the need for better database support
became apparent. A nice overview of relevant topics in database support for

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 400–417, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Querying an Integrated Complex-Object Dataflow Database 401

scientific workflow management has been given in a special issue of SIGMOD
Record [4]. The needs in this area go well beyond what so-called workflow man-
agement systems (WFMS) provide, even if coupled to a DBMS such as Oracle
Workflow or IBM WebSphere. Such WFMSs provide support for constructing
workflow specifications and guiding and monitoring workflow executions.

In an e-science environment, however, one is confronted with multiple interre-
lated research projects, where in each project a multitude of different dataflows
are in use, each of which has been executed many times, on different input data,
using different versions of external services, by different users, and so on. Stan-
dard WFMSs, although they are implemented on top of a database, lack the
support for ad-hoc querying of all this information in an integrated manner.
Such database support is important to manage computational experiments, to
allow reproducibility, and more generally, to “enforce the scientific method” [5].

In response to this problem, in an earlier paper [6], we gave the formal speci-
fication of an integrated dataflow repository. In the current paper, we show how
an implementation of this system on top of a modern but standard SQL plat-
form, enables the querying of dataflows and dataflow executions in an integrated
manner. We intensively use such features as external routines, user-defined table
functions, SQL/XML and XQuery capabilities.

Of course we are not the first to address the challenge of querying dataflow exe-
cutions; in the scientific workflow community such queries are known as “prove-
nance queries”. The participants of the Provenance Challenges1 have already
intensively investigated this direction.

Our present approach focuses on the following aspects:

1. We explicitly represent the complex-data manipulations that are performed
in a dataflow. We do this using the nested relational calculus (NRC [9]): an
elementary functional programming language composed of all the natural
manipulation operators on collection- and record-oriented data.

2. We investigate the feasibility of a 100% database solution. Using the full
power of the modern SQL:2003 standard, we will see that all types of prove-
nance queries can be solved directly in SQL. Many present solutions of the
Provenance Challenge mentioned above involve coding of diverse programs
outside of the database. In contrast, our approach focuses on a fixed set of
user-defined functions that can then be used in SQL select statements.

3. We address querying not only of dataflow executions but also of the specifica-
tions of the dataflows. In the same vein, we address querying of executions of
dataflows, the specification of which is not determined in advance. Previous
approaches to dataflow provenance typically focus on querying executions of
a fixed dataflow specification, given outside of the query.

4. Thanks to our explicit complex-object data model, we can support a new,
finer-grained notion of provenance tracking, where we can derive connections
directly among subvalues occurring in the result and the intermediate results
of a dataflow execution.

1 http://twiki.ipaw.info/bin/view/Challenge/WebHome

http://twiki.ipaw.info/bin/view/Challenge/WebHome

402 N. Kwasnikowska and J. Van den Bussche

This paper is organized as follows. In Section 2 we describe related work. In
Section 3 we briefly discuss the types of queries which illustrate the need for an
integrated dataflow database. In Section 4 we use simple examples to discuss the
database representation of complex data, NRC dataflows, and the integration of
external services. In Section 4.4 we briefly describe the execution of dataflows,
taking into account such issues as binding of input data, binding of external
function calls, and binding of subdataflows. We conclude the section with the
representation of past executions in the dataflow database. In Section 4.5 we
briefly describe how the database can integrate annotations.

Finally, in Section 5, we show how the integrated complex-object dataflow
database can be queried in a variety of ways.

2 Related Work

Support for the complex-object structure of data flowing in a scientific workflow
is present in various systems, e.g., Taverna [10, 11], Kepler/CoMaD [12, 13],
and Chimera [14, 15]. The operation of applying a function on all elements of a
collection is typically provided. However, that operation is just one of the many
possible kinds of “glue” needed to connect different subtasks in a complex data
flow together. Indeed, the NRC which we use provides exactly the natural set of
operations to deal with complex-object data. It has evolved from a long tradition
of complex-object data modeling in the database research literature.

Also a database-oriented approach has been advocated by many others [16–
20]. However, the querying of an unbounded number of dataflow executions, as
given by the database instance and not fixed in advance, as well as the querying
of dataflow specifications inside the database, has not been addressed before.
Our approach is based on our earlier experience with database meta-querying
[21, 22]. We should also mention the topic of process mining [23, 24], although
the scope of process mining is quite different from that of repository querying.

We represent a dataflow execution in the database as a “log”, i.e., a set of
triples of the form (input, function, output). This representation is natural and
common [25, 26, 19, 27, 28], and is often equivalently viewed as a causality
graph. Specific to our approach is that we can define a finer-grained tracking of
provenance not just from output to input, but also from a subvalue occurring
in the output to a subvalue occurring in the input. Note that in our previous
paper [29] we have given a conversion from our execution model to the proposed
standard Open Provenance Model [30], which uses an explicit causality graph.

We should also mention some more distantly related work. Beeri, Milo et
al. have an interesting project on querying the potential executions of a given
workflow specification [31]. That approach is mainly verification-oriented rather
than repository-oriented, although they did also consider monitoring [32]. The
NRC was used in the Kleisli system [33, 34] not as a dataflow specification
language, but as a bioinformatics data integration query language, where the
entire structure of the biological data is modeled as a complex object. We use
complex objects in a different way, to model the data flow in a scientific workflow.

Querying an Integrated Complex-Object Dataflow Database 403

The NRC is also used as a framework to formalize provenance and dependency
analysis for queries over annotated databases [35, 36].

We conclude by pointing out that the need for a workflow repository is also
acknowledged in other fields, as shown by Blockeel and Vanschoren’s Experiment
Databases for Machine Learning [37, 38].

3 Motivation

The participants of the Provenance Challenges2 have already informally for-
mulated various queries, involving both a dataflow specification and its past
executions.

For example, for a specified part of a workflow output, say out , they have
formulated queries that ask (i) which workflow inputs have contributed to the
computation of out (Q1,Q5 from PC3); (ii) which part of the execution con-
tributed to the computation of out , possibly further restricted by annotations,
or only up to a specified task (Q1-Q3 from PC1, Q3 from PC3); (iii) to verify if
certain tasks were involved in the computation of out (Q2 of PC3); (iv) to look
for tasks that can be swapped during execution without affecting out (optional
Q5 from PC3).

Queries that involve many executions of the same workflow ask (i) to find
all invocations of a specified task, using a specified input, and having specified
annotations (Q4); (ii) to retrieve (intermediate) results produced by a specified
task and/or having specified annotations (Q8-Q9 from PC1), or even preceded by
another specified task (Q6 from PC1); (iii) to find all workflow outputs produced
from a specified input (Q5 from PC1); (iv) to find differences between specified
past executions (Q7 from PC1). We concur that a dataflow repository should
allow formulating such queries, and we illustrate in Section 5 how it can be done
in our model.

In general, there are various types of queries that a dataflow repository should
support, including:

– Queries involving subvalues of a (final) result. Indeed, in some dataflows,
both intermediate values and the final result value may be huge data sets,
and the user might be only interested in some part.

– Querying vast amounts of past executions, in order to identify dataflows and
their executions involving a particular external service. Indeed, if that service
produced erroneous results, or there is a better implementation available,
such queries are necessary if we want to rerun the affected dataflows with
another external service.

– Queries that allow modifying of dataflow specifications and immediate exe-
cution of the modified dataflows.

We show in Section 5 how such queries can be constructed for our integrated
dataflow repository, after a description of a possible implementation in the fol-
lowing section.

2 http://twiki.ipaw.info/bin/view/Challenge/WebHome, we refer to the first chal-
lenge as PC1, and to the third as PC3.

http://twiki.ipaw.info/bin/view/Challenge/WebHome

404 N. Kwasnikowska and J. Van den Bussche

4 Complex-Object Dataflow Database

In an earlier paper [6], we gave the formal specification of a dataflow repository.
In this section we show how we can represent all aspects of that formal model
on top of a modern SQL platform.

4.1 Complex Data

Data objects flowing in a scientific workflow can either be atomic for the work-
flow, or can have a structure that is important for the workflow. The two basic
data structures in databases are the set, e.g., {sequence1, . . . , sequence76}, and
the tuple, e.g., 〈organism : mouse, . . . ,filename : GPZ158〉. These structures can
be arbitrarily nested: we use the complex-object data model [39]. For more de-
tails on the theory, including the type system, we refer to our previous paper
[6], as here we are focusing more on the implementation and use of the system.

It is important to note that an “atomic” object can be quite complex, e.g., it
can be a file, it can be an XML document. However, for a dataflow that has only
actions that operate on the file as a whole, it is not relevant to model the file
as a set of records. On the other hand, if the structure of the file as a collection
is important, because we want to apply some operation to each of its elements,
then we model the file as a complex object.

We represent atomic objects as strings. For small types of atomic objects,
such as numbers, strings or dates, the string can hold the entire value of the
object. For large atomic objects such as files, we could still represent them as a
string by means of a path name of the file.

In many cases, however, it is more desirable to store the large atomic object in
the database as a BLOB (which can contain a text file or an XML document as
well as a binary file). In that case, the string representing the object is an identi-
fier that can be used as a foreign key to the object in table Pool(ID, object).

As to storing complex objects, we discuss two basic ways: decomposition and
XML representation.

Decomposition of complex objects. A complex object, together with its nested
subobjects, can be naturally viewed as a tree. We generate a string ID for each
tuple and set node; the atomic objects, which occur as leaves in the tree, al-
ready have their string representation. We then store the tree in two tables:
Sets(ID, eID) and Tuples(ID, att, fID). Here, eID stands for element ID,
att stands for attribute, and fID for field ID. Figure 1 shows an illustration for
the following complex object:

{〈exp: P2T42, targets : {human,mouse}, result : report123〉,
〈exp: P42T3, targets : {human, chimp}, result : report456〉}

XML representation of complex objects. We can also take advantage of the XML
data type supported by modern database systems, and store the complex-object

Querying an Integrated Complex-Object Dataflow Database 405

1

2

P42T3

exp

3

targets

chimp human

report456

result

4

P2T42

exp

5

targets

mouse human

report123

result

Sets

ID eID

1 2

1 4

3 chimp

3 human

5 human

5 mouse

Tuples

ID att fID

2 exp P42T3

2 result report456

2 targets 3

4 result report123

4 exp P2T42

4 targets 5

Fig. 1. Tree representation and decomposition of a complex object

tree directly as an XML value. This is illustrated in Figure 2. There is an addi-
tional choice when the complex object contains XML documents as large atomic
objects at the leaves: we can just have the IDs of these objects at the leaves
of the XML tree, or we can include their full XML content. For example, in
Figure 2, the results are represented by IDs report123 and report456 referring
to the Pool table, but alternatively we could have replaced these IDs inside the
XML tree by the corresponding full XML reports.

The best choice among decomposition, intermediate XML, and full XML for
complex objects depends on the application. We can provide library routines
to move between the three representations; these routines can then be called in
SQL statements.

4.2 NRC Dataflows

In its most simple form, a dataflow is a pipeline of function applications, as
illustrated in Figure 4, or expressed in the dataflow language we use in Figure 5.

The function names analyze, compare and annotate represent the basic ac-
tions or tasks of which the dataflow is composed. In e-science and e-commerce
settings, these tasks are often called services, so we refer to the function names
in a dataflow as abstract service names. They are abstract in the sense that
they serve only as placeholders for actions: only when the dataflow is actually
executed, the abstract service names are bound to concrete actions.

Since the data objects flowing in the pipeline can have complex structure, a
language with just variable definitions (the let-construct) and function appli-
cation, as used in the above example, is not sufficient. For example, if x is a
set, we want to apply analyze to every element of x and collect the results. We
can accommodate this by adding a mapping construct {analyze(u) | u ∈ x}
to the language, in the form of for u ∈ x return analyze(u). In order to be
able to organize the data flow, we also want the basic operations on tuples and
sets: tuple formation, tuple projection, singleton set formation, set union, and
big union, also known as “flatten”.3 Finally, we need an if-then-else construct.
This rounds up the operations of a natural language for complex objects known
as the nested relational calculus or NRC.

So, as already seen in Figure 5, a dataflow consists of a name, a specification
of its input parameters, and a specification of its behavior in the form of an

3 The flattening
⋃

s of a set of sets s = {s1, . . . , sn} equals s1 ∪ · · · ∪ sn.

406 N. Kwasnikowska and J. Van den Bussche

<set>

<tuple>

<att> exp </att>

<atom> P2T42 </atom>

<att> targets </att>

<set>

<atom> human </atom>

<atom> mouse </atom>

</set>

<att> result </att>

<atom> report123 </atom>

</tuple>

<tuple>

<att> exp </att>

<atom> P42T3 </atom>

<att> targets </att>

<set>

<atom> human </atom>

<atom> chimp </atom>

</set>

<att> result </att>

<atom> report456 </atom>

</tuple>

</set>

Fig. 2. XML representation of a
complex object

<expr ID="0">
<let ID="1">

<var ID="2"> z </var>
<for ID="3">
<var ID="4"> u </var>
<var ID="5"> x </var>
<tuple ID="6">

<att> a </att>
<project ID="7">

<att> a </att>
<var ID="8"> u </var>

</project>
<att> b </att>
<call ID="9">

<name> extract </name>
<project ID="10">

<att> c </att>
<var ID="11"> u </var>

</project>
</call>

</tuple>
</for>
<call ID="12">
<name> validate </name>
<call ID="13">

<name> search1 </name>
<var ID="14"> z </var>
<var ID="15"> y </var>

</call>
<call ID="16">

<name> search2 </name>
<var ID="17"> z </var>
<var ID="18"> y </var>

</call>
</call>

</let>
</expr>

Fig. 3. XML representation of the
NRC expression of Figure 6

NRC expression. Another example is shown in Figure 6. Actually, our system is
typed [6], so input and return types, as well as service signatures should also be
specified. For simplicity of presentation, however, we omit the typing system.

Storing dataflow specifications in the repository. Dataflow specifications are
stored in a table Dataflows with attributes ID and expr in which the name
and the NRC expression are stored. (There are also attributes to store type in-
formation.) Here, attribute expr is of type XML: we store the expressions by
their syntax tree in XML format, as illustrated in Figure 3.

Note that the element nodes in the XML syntax tree have unique ID at-
tributes. This allows us to create an index on XML column expr based on the
XPath pattern //*[@ID]. This is useful to support efficient querying of stored
expressions using SQL/XML. Indeed, as we will see later, some other tables in
the repository database contain references to these IDs, so many queries use
conditions involving the above XPath pattern. We show examples in Section 5.

Querying an Integrated Complex-Object Dataflow Database 407

analyze

analyze resultannotate

compare

data1

data2

Fig. 4. A dataflow

dataflow AFlow(x, y) returns

let z := analyze(x)

in annotate(compare(z, analyze(y)), z)

Fig. 5. Specification of AFlow

dataflow BFlow(x, y) returns

let z := for u in x return

<a: u.a, b: extract(u.c)>

in validate(search1(z,y),

search2(z,y))

Fig. 6. Specification of BFlow

<btree>
<entry>
<aname>extract</aname><ename>EXTR</ename>

</entry>
<entry>
<aname>validate</aname><ename>VAL</ename>

</entry>
<entry>
<aname>search1</aname>_{CFlow}
<btree>

<entry>
<aname>dbsearch</aname><ename>SQST</ename>

</entry>
</btree>

</entry>
<entry>
<aname>search2</aname>_{CFlow}
<btree>

<entry>
<aname>dbsearch</aname><ename>MSCT</ename>

</entry>
</btree>

</entry>
</btree>

Fig. 7. Binding tree

4.3 External Services and Subdataflows

The functions we want to call in a dataflow execution are called external ser-
vices, because they represent a computation that is external to the dataflow
specification, i.e., not further modeled within the dataflow specification. In e-
science, services can be local programs, remote programs, Grid service calls or
Web service calls, and so on.

In order to integrate external services in the dataflow database, we assume
Java wrappers for them, which are registered as external routines (user-defined
Java functions). These functions take XML representations of complex objects
as input and output. In this way, external services can be called directly in
SQL statements, but also, dataflow executions can be initiated from inside the
database server.

So, before we start the execution of a dataflow, we bind some of the abstract
service names occurring in the body to names of external routines. Other ab-
stract service names, however, may be bound to names of other dataflows in the
repository. Indeed, in order to support modular programming of workflows, we
want to be able to let one dataflow call another one as a subdataflow.

The specification of binding of abstract service names to external routines
or subdataflows, together with the further binding of abstract service names

408 N. Kwasnikowska and J. Van den Bussche

occurring in those subdataflows, is called a binding tree and can be naturally
represented in XML. Recall, for example, dataflow BFlow from Figure 6. To
execute BFlow we might want to bind extract and validate to external routine
names EXTR and VAL, and both search1 and search2 to another dataflow CFlow.
Assume that CFlow calls just one abstract service name dbsearch. In the CFlow
executions within BFlow that are called as search1, we want to bind dbsearch

to external routine SQST, but in the subdataflow executions called as search2,
we want to bind dbsearch to MSCT. The binding tree that specifies all this is
shown in XML in Figure 7.

4.4 Executions

To execute a dataflow known to the repository, the system offers, as a library
routine, the stored procedure Execute(flowID , vassign, btree), where flowID des-
ignates a dataflow from the Dataflows table, btree is a binding tree for the
dataflow, and vassign is an assignment of input values to the input parameters
of the dataflow.

This value assignment is given in XML in the following format:

<vassign>

<entry> <name> x </name> <val> v </val> </entry>

. . .
</vassign>

Here, x stands for an input parameter and v for the input value for x. When
using the decomposed representation of complex objects, we can give v as an
identifier to be found in the Sets and Tuples tables. When using XML represen-
tation, v is itself a further XML subtree. So, formally, we have different variants
of Execute, but we omit this here from our notation.

The behavior of Execute is such that a log of the execution is stored in the
repository. We call such a log a “run”. Runs are stored in tables Runs(ID,

flowID, vassign, btree) and Triples(ID, caller, cassign, subexpr,

vassign, value). Here, the ID of the run is newly generated. With this ID,
a number of tuples, called “tagged triples”, are inserted in the Triples table:
one holding the final result value, and one for each service call that has been
made. This is necessary because external services need to be considered as non-
deterministic functions. For example, in Bioinformatics, public search services
(for genes, proteins, etc) are heavily used and called through Web interfaces, but
the underlying contents change daily. So, in order to allow for querying of past
executions of dataflows in the repository, it is crucial that the results returned
by the service calls are stored, because we cannot simply rerun the dataflow later
on the same inputs and still be certain to get the same results.

The columns of the Triples table have the following meaning. Let us first
consider the service calls made in the main dataflow execution, so not in sub-
dataflows. Column subexpr holds the ID of the place of the call in the syntax
tree of the dataflow expression. Column vassign holds the values of the dataflow
parameters at the time of the call. Column value holds the return value of the

Querying an Integrated Complex-Object Dataflow Database 409

call. For the tuple holding the final result value, subexpr is simply the identi-
fier of the root element of the syntax tree, and vassign is the original input
assignment.

dataflow mapF(input) returns

for x in input return f(x)

Fig. 8. A simple flow

dataflow myFlow(input) returns

<c: f(g(input.a)), d: f(g(input.b))>

Fig. 9. Another simple flow

Let us illustrate the Triples table on the simple dataflow of Figure 8. Assume
the node ID of the call f(x) in the syntax tree is 4, and that of the entire
expression equals 1. Assume the input value equals the set S = {a, b, c}; then a
possible run could generate the following triples: (we write the value assignments
in an abbreviated form, and abbreviate input by i)

(1, [i = S], {55, 66});
(4, [i = S, x = a], 55); (4, [i = S, x = b], 55); (4, [i = S, x = c], 66).

So we see that f(a) and f(b) both returned 55, and f(c) returned 66.
So far we have ignored the columns caller and cassign. In the triples cor-

responding to the execution of the main dataflow, these columns are NULL. In
triples corresponding to subdataflow executions, these columns hold the ID of
the call subexpression and the values of the dataflow parameters at the moment
of the call.

Implementation. Execute can be implemented quite straightforwardly by com-
piling NRC into SQL/XML. Indeed, under the decomposed representation of
complex objects, NRC operations can be quite simply programmed in SQL. We
have already seen that external services can be called in SQL as external rou-
tines. Under the XML representation of complex objects, either decomposition
can be applied first (this is the approach we take in our prototype), or a direct
compilation of the NRC operations into XQuery may be performed.

4.5 Annotations

The basic set of tables Dataflows, Runs, and Triples that constitute the
dataflow repository can, of course, be supplemented with extra tables in which
extra information, known as annotations or meta-data, can be stored. These ta-
bles are application-dependent, and can refer to the IDs of the elements stored
in the basic tables. Examples of meta-data can be authorship, dates and times,
version information, categories of dataflows according to projects, and so on.

410 N. Kwasnikowska and J. Van den Bussche

Annotation hooks. There is one kind of annotation that must be performed by
the execution system. This is when we want to record the start or end date&time
of runs, or properties of external service calls, such as date&time again, but
also possible error codes and so on. In order to provide applications with a
flexible annotation recording of runs, the procedure Execute can provide a hook
that is called before and after each service call. The application developer can
instantiate this hook with the code necessary to record the meta-data required
by the application.

Note that for dataflows with known specification, no date&time information
is necessary to determine the order of execution of (external) services. If the
execution of a service depends on the result of another service, the order of
execution of services can be determined from the subexpression identifiers stored
in the Triples table and the dataflow specification in the Dataflows table.

5 Querying the Repository

In this section we show that our approach facilitates querying in various ways:

(i) Queries involving subvalues
Apart from the obvious provenance queries, i.e., asking for the part of
the run that has contributed to a certain subvalue, we can use information
stored in the Triples table, e.g., to query the runs of relevant subdataflows
if the subvalue is an element of a collection. Table Triples can also be
used for querying multiple executions of different dataflows, even without
knowing their specifications, to determine, e.g., executions that involved
calls to a certain internal service. We note that with the addition of dataflow
specifications stored as XML, more sophisticated queries can be formulated,
to determine, e.g., executions involving certain subexpressions as well as the
order in which the subexpressions were executed. For provenance queries
involving dataflows which specifications are unknown, we provide function
Prov .

(ii) Queries involving (external) services.
Table Triples in combination with the binding trees stored as XML in
table Runs can be used for querying multiple executions of dataflows, to
determine, e.g., executions that involved calls to a certain external service,
or which external services have produced a certain subvalue.

(iii) Queries executing modified dataflow specifications.
We provide function Eval for the on-the-fly execution of dataflows with
modified specification, with modifications in the subexpressions, as well as
in binding to external services.

Queries involving subvalues. Some of the sample queries of the Provenance Chal-
lenge [7] are of the following kind. We are given a dataflow, for example, myFlow
shown in Figure 9. Suppose we have run this flow, with run-ID myRun, and we
observe the output value <c: 55, d: 66>. Consider now the query “What is
the process that produced the value 55 in the output?” From the dataflow spec-
ification we see that 55 is the output of f applied to the output of g applied to
input.a. We can thus retrieve the two relevant triples as follows:

Querying an Integrated Complex-Object Dataflow Database 411

select ’input.a’, R.value

from Triples R, Dataflows D

where R.ID=’myRun’ and D.ID=’myFlow’

and xmlexists(’$e//*[@ID=$s][name()="project"][att="a"]’

passing D.expr as "e", R.subexpr as "s")

union

select ’g’, R.value

from Triples R, Dataflows D

where R.ID=’myRun’ and D.ID=’myFlow’

and xmlexists(’$e//*[@ID=$s][name()="call"][name="g"][project/att="a"]’

passing D.expr as "e", R.subexpr as "s")

Note the use of the SQL/XML predicate XMLEXISTS [40, 41] to retrieve the
IDs of the nodes in the syntax tree of the dataflow’s NRC expression.

Things get a bit more subtle when working with collections. Recall dataflow
mapF from Figure 8.

Suppose the run of mapF with ID myRun2 yields a final result value {55,66},
and we again want to know the process that produced the subvalue 55. From
the dataflow specification we see that 55 is the result of f applied to at least one
element of the input collection. We thus want to retrieve all elements x in input
for which f(x) resulted in 55:

select xmlquery(’$a/var[name="x"]/val’

passing R.vassign as "a")

from Triples R, Dataflows D

where R.ID=’myRun2’ and D.ID=’mapF’

and xmlexists(’$e//*[@ID=$s][name()=call]’

passing D.expr as "e", R.subexpr as "s")

and xmlexists(’$v[.="55"]’ passing R.value as "v")

Note the use of the SQL/XML function XMLQUERY to extract the value of
variable x from the value assignment of the triple.

So far we have been querying one execution of a given dataflow. However,
we can as well pose queries across all dataflows, and all their executions, in the
database instance. For example, queries like “List all bioinformatics dataflows
in which a function named f is called with parameter p equal to 5, and the
value ‘GPZ158’ appears in the result of the call.” can be expressed using sim-
ilar techniques as above (assuming an annotation table that lists the IDs of
bioinformatics dataflows).

The two earlier example queries over the executions myRun and myRun2 are
simple but typical examples of provenance queries, where we ask for the process
that lead to a given value occurring as a subvalue of the output. When the
dataflow specification is known in advance (in the examples, myFlow and mapF),
we have seen that provenance can be directly expressed in SQL. This is no
longer straightforward, however, when the dataflow specification is unknown.
Our solution is to provide a generic provenance computation as a library routine,
which can be implemented in a programming language like Java, or even as an
SQL/PSM routine. Concretely, we provide a user-defined table function Prov
with the following signature:

412 N. Kwasnikowska and J. Van den Bussche

function Prov(runID integer, subval integer)

returns table (caller_expr XML, caller_vassign XML,

subexpr XML, vassign XML, subval2 integer)

Here, subval is the ID of an occurrence of a subvalue in the output of run
runID . The returned set of tagged triples is much like the set of tagged triples
representing a run, but there are three important differences:

1. In the set of triples representing a run, there is one triple for each service
call. We have seen that this is sufficient to reconstruct all the intermediate
results of NRC operators in between the calls, but that is true only if the
dataflow specification is given. Since this is not the case here, the function
Prov returns triples for NRC operators as well as for service calls.

2. Moreover, Prov returns triples only for those operators and service calls that
played a role in the generation of subval .

3. Indeed, normal run-triples contain the result values of the intermediate steps
of the run. However, here we are asking for the process that lead to a subvalue
of the final output. Accordingly, the function Prov returns all subvalues
(column subval2) of intermediate results of the dataflow execution that
lead to subval .

For example, the earlier query about myRun2 can now be expressed using Prov
without any reference to mapF, so that it can be applied to, say, all dataflow
executions done on a given date:

select P.subval2

from Runs R, RunDates D,

lateral (values xmlcast(xmlquery(’$r//*[.="55"]/@ID’

passing R.result as "r")

as integer)) as I(thesubvalue),

table(Prov(R.ID, I.thesubvalue)) as P

where D.runID=R.ID and D.when=’2009-02-24’

For a formal specification of Prov we refer to our previous paper [6].

Queries involving (external) services. Consider an external service that is reg-
istered in the database as the external function BLAST2008. The database may
contain many dataflow executions that have called this service. To retrieve them,
it suffices to look in the binding tree of each execution, which is stored together
with the run-ID in the Runs table. The following query also retrieves the abstract
service name that is bound to BLAST2008.

create view B2008calls as

select U.ID, Tree.aname

from Runs U, xmltable(’$tr/tree/entry’

passing U.btree as "tr"

columns aname varchar(30),

ename varchar(30)) as Tree

where Tree.ename=’BLAST2008’

Querying an Integrated Complex-Object Dataflow Database 413

Now suppose we want to understand the effect of replacing the external func-
tion BLAST2008 by another one, say, BLAST2009. We are interested, across all
executions in the database, which calls to BLAST2008 would give a different re-
sult when replaced by a call to BLAST2009. (We assume that the data used by
all those dataflows remained unchanged.) We can find this out by the following
query:

select O.ID, O.subexpr, O.argval, O.value, N.newvalue

from

(select U.ID, D.subexpr, R1.value, R2.value as argval

from Runs U, B2008calls B, Dataflows D, Triples R1, Triples R2

where U.ID=B.ID and U.flowID=D.ID

and U.ID=R1.runID and U.ID=R2.runID and R1.vassign=R2.vassign

and xmlexists(

’$e//*[@ID=$s1][name()="call"][name=$b]/child::*[2][@ID=$s2]’

passing D.expr as "e", R1.subexpr as "s1",

B.aname as "b", R2.subexpr as "s2")

) as O,

lateral (values BLAST2009(O.argval)) as N(newvalue)

where is_different(O.value, N.newvalue)

Observe how the query directly calls BLAST2009 on the inputs of the recorded
calls to BLAST2008. We also use a Boolean user-defined function is_different

to compare the two resulting XML values, as a literal non-equality is not what
we want.

Queries executing modified dataflow specifications. What if we want to find those
dataflow executions whose final result would change if we replaced BLAST2008

by BLAST2009? Note that a difference in an individual call might not result in a
difference in the final result. To answer this query, we can no longer directly call
BLAST2009 as before, because we have to continue the process with the rest of the
dataflow, which is unknown at query time. (Of course, if we are only interested
in the executions of a dataflow whose specification is known in advance, we can
simply rerun it, either through the repository or directly in a query, and compare
the differences.)

The solution lies in the provision of dynamic dataflow execution through a li-
brary function. More specifically, we provide a user-defined table-valued function
Eval with the following signature:

function Eval(expr XML, vassign XML, btree XML)

returns table (caller XML, cassign XML, subexpr integer,

vassign XML, value XML)

This function returns the set of tagged triples representing the run of NRC
expression expr on value assignment vassign and binding tree btree. So, Eval
is like a lightweight version of procedure Execute, where the run is not stored in
the repository but is merely made available for ad-hoc querying.

The astute reader will note that there is an issue with the subexpr column
in the table returned by Eval . In a normal execution stored in the integrated

414 N. Kwasnikowska and J. Van den Bussche

repository, this column refers to the unique ID attribute of the nodes in the
syntax tree of the dataflow expression. However, here, the input to an Eval call
is an arbitrary expression expr, dynamically produced in XML format during
the query, where we do not want to require that every node in expr has a unique
ID attribute. This issue is solved by letting the subexpr column now refer to
the numbers of the nodes, in document order. To retrieve nodes, instead of
$e//[@ID=$s], we can use $e/descendant-or-self::*[$s].

We are now able to express our query asking for those dataflow executions
whose final result would change if we replaced BLAST2008 by BLAST2009.

select O.ID, O.result, E.value

from (select U.result, D.expr, U.vassign, U.btree

from Runs U, Dataflows D

where U.flowID=D.ID

and xmlexists(’$b//ename[.="BLAST2008"]

passing U.btree as "b")) as O,

lateral (values

xmlquery(’copy $newb := $b

modify for $n in $newb//entry

where $n/ename="BLAST2008"

return

replace value of node $n/ename

with "BLAST2009"

return $newb’

passing O.btree as "b") as N.newbtree,

table (Eval(O.expr, O.vassign, N.newbtree) as E

where E.subexpr=1 and is_different(O.result, E.value)

The condition E.subexpr=1 on the last line selects the top-level node so as to
retrieve the final result value of each rerun. Note also the use of XQuery Update
facilities. These are already supported in some SQL/XML implementations, for
example, DB2 v9.5.

In the above example, we only rewrite the binding trees, not the actual NRC
expressions themselves. It should be clear by now that such rewritings are equally
possible. For example, we might want to see the effect of shutting out cer-
tain parts of certain dataflows. We can express such queries using the same
techniques.

6 Concluding Remarks

We have shown how an integrated complex-object dataflow database, imple-
mented on top of a modern SQL platform, enables answering diverse provenance
queries. (We are currently developing a prototype.)

Of course, querying such a complex database requires expression in advanced
SQL and XQuery, a skill we can expect from programmers working in an e-
science team. Nevertheless, it would be nice if a domain-specific query lan-
guage could be designed, for example, in the field of bioinformatics dataflows.
Such a language should be more intuitive, possibly graphical, and usable by the

Querying an Integrated Complex-Object Dataflow Database 415

scientists themselves, who are not trained as programmers. This is an interest-
ing direction for further research. The challenge will be to find the right balance
between expressive power and ease of use.

References

1. van der Aalst, W., van Hee, K.: Workflow Management. MIT Press (2004)
2. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infras-

tructure, 2nd edn. Elsevier (2004)
3. Shankar, S., et al.: Integrating databases and workflow systems. SIGMOD

Record 34(3), 5–11 (2005)
4. Ludaescher, B., Goble, C. (eds.): Special Section on Scientific Workflows. SIGMOD

Record, vol. 34(3). ACM (2005)
5. Brown Jr., A.L.: Enforcing the scientific method. In: Freire, J., Koop, D., Moreau,

L. (eds.) IPAW 2008. LNCS, vol. 5272, p. 2. Springer, Heidelberg (2008)
6. Hidders, J., Kwasnikowska, N., Sroka, J., Tyszkiewicz, J., Van den Bussche, J.: A

formal model of dataflow repositories. In: Cohen-Boulakia, S., Tannen, V. (eds.)
DILS 2007. LNCS (LNBI), vol. 4544, pp. 105–121. Springer, Heidelberg (2007)

7. Provenance challenge Wiki, http://twiki.ipaw.info/bin/view/Challenge/
8. Moreau, L., Ludäscher, B., et al.: Special issue: The first provenance challenge.

Concurrency and Computation: Practice and Experience 20(5), 409–597 (2008)
9. Buneman, P., Naqvi, S., Tannen, V., Wong, L.: Principles of programming with

complex objects and collection types. Theoretical Computer Science 149(1), 3–48
(1995)

10. Turi, D., Missier, P., Goble, C., et al.: Taverna workflows: Syntax and semantics.
In: 3rd e-Science, pp. 441–448. IEEE Computer Society (2007)

11. Missier, P., Belhajjame, K., Zhao, J., Roos, M., Goble, C.A.: Data lineage model
for Taverna workflows with lightweight annotation requirements. In: Freire, J.,
Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, pp. 17–30. Springer,
Heidelberg (2008)

12. McPhillips, T., Bowers, S., Ludäscher, B.: Collection-oriented scientific workflows
for integrating and analyzing biological data. In: Leser, U., Naumann, F., Eckman,
B. (eds.) DILS 2006. LNCS (LNBI), vol. 4075, pp. 248–263. Springer, Heidelberg
(2006)

13. Bowers, S., McPhillips, T., Ludäscher, B.: Provenance in collection-oriented sci-
entific workflows. Concurrency and Computation: Practice and Experience 20(5),
519–529 (2008)

14. Foster, I., Vöckler, J., Wilde, M., Zhao, Y.: Chimera: A virtual data system
for representing, querying, and automating data derivation. In: 14th SSDBM,
pp. 27–46. IEEE Computer Society (2002)

15. Clifford, B., Foster, I., et al.: Tracking provenance in a virtual data grid. Concur-
rency and Computation: Practice and Experience 20(5), 519–529 (2008)

16. Chen, I., Markowitz, V.: An overview of the object protocol model (OPM) and the
OPM data management tools. Information Systems 20(5), 393–418 (1995)

17. Ailamaki, A., Ioannidis, Y., Livy, M.: Scientific workflow management by database
management. In: 10th SSDBM, pp. 190–199. IEEE Computer Society (1998)

18. Biton, O., Cohen Boulakia, S., Davidson, S.: Querying and managing provenance
through user views in scientific workflows. In: 24th ICDE, pp. 1072–1081. IEEE
Computer Society (2008)

http://twiki.ipaw.info/bin/view/Challenge/

416 N. Kwasnikowska and J. Van den Bussche

19. Cohen Boulakia, S., Biton, O., Cohen, S., Davidson, S.: Addressing the prove-
nance challenge using ZOOM. Concurrency and Computation: Practice and Expe-
rience 20(5), 497–506 (2008)

20. Chebotko, A., Fei, X., Lin, C., Lu, S., Fotouhi, F.: Storing and querying scientific
workflow provenance metadata using an RDBMS. In: 3rd e-Science, pp. 611–618.
IEEE Computer Society (2007)

21. Van den Bussche, J., Vansummeren, S., Vossen, G.: Towards practical meta-
querying. Information Systems 30(4), 317–332 (2005)

22. Van den Bussche, J., Vansummeren, S., Vossen, G.: Meta-SQL: Towards practical
meta-querying. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides,
V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 823–825.
Springer, Heidelberg (2004)

23. van der Aalst, W., Reijers, H., Weijters, A., et al.: Business process mining: An
industrial application. Information Systems 32(5), 713–732 (2007)

24. Santos, E., Lins, L., Ahrens, J.P., Freire, J., Silva, C.T.: A first study on clustering
collections of workflow graphs. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW
2008. LNCS, vol. 5272, pp. 160–173. Springer, Heidelberg (2008)

25. Ludäscher, B., Podhorszki, N., et al.: From computation models to models of prove-
nance: the RWS approach. Concurrency and Computation: Practice and Experi-
ence 20(5), 507–518 (2008)

26. Zao, J., et al.: Mining Taverna’s semantic web of provenance. Concurrency and
Computation: Practice and Experience 20(5), 463–472 (2008)

27. Barga, R., Digiampietri, L.: Automatic capture and efficient storage of e-science
experiment provenance. Concurrency and Computation: Practice and Experi-
ence 20(5), 419–429 (2008)

28. Miles, S., et al.: Extracting causal graphs from an open provenance model. Con-
currency and Computation: Practice and Experience 20(5), 577–586 (2008)

29. Kwasnikowska, N., Van den Bussche, J.: Mapping the NRC dataflow model to the
open provenance model. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008.
LNCS, vol. 5272, pp. 3–16. Springer, Heidelberg (2008)

30. Moreau, L., et al.: The open provenance model. Technical Report 14979, University
of Southampton, School of Electronics and Computer Science (2007)

31. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes with
BP-QL. Information Systems 33(6), 477–507 (2008)

32. Beeri, C., Eyal, A., Milo, T., Pilberg, A.: Monitoring business processes with
queries. In: 33rd VLDB, pp. 603–614. ACM (2007)

33. Chen, J., Chung, S.Y., Wong, L.: The Kleisli query system as a backbone for
bioinformatics data integration and analysis. In: Lacroix, Z., Critchlow, T. (eds.)
Bioinformatics: Managing Scientific Data, pp. 147–187. Morgan Kaufmann (2003)

34. Davidson, S., Wong, L.: The Kleisli approach to data transformation and integra-
tion. In: Gray, P., Kerschberg, L., King, P., Poulovassilis, A. (eds.) The Functional
Approach to Data Management, pp. 135–165. Springer (2004)

35. Buneman, P., Cheney, J., Vansummeren, S.: On the expressiveness of implicit
provenance in query and update languages. In: Schwentick, T., Suciu, D. (eds.)
ICDT 2007. LNCS, vol. 4353, pp. 209–223. Springer, Heidelberg (2006)

36. Cheney, J., Ahmed, A., Acar, U.: Provenance as dependency analysis. In: Arenas,
M. (ed.) DBPL 2007. LNCS, vol. 4797, pp. 138–152. Springer, Heidelberg (2007)

37. Blockeel, H.: Experiment databases: A novel methodology for experimental re-
search. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933,
pp. 72–85. Springer, Heidelberg (2006)

Querying an Integrated Complex-Object Dataflow Database 417

38. Blockeel, H., Vanschoren, J.: Experiment databases: Towards an improved exper-
imental methodology in machine learning. In: Kok, J.N., Koronacki, J., Lopez de
Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS
(LNAI), vol. 4702, pp. 6–17. Springer, Heidelberg (2007)

39. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

40. Eisenberg, A., Melton, J.: Advancements in SQL/XML. SIGMOD Record 33(3),
79–86 (2004)

41. Özcan, F., Chamberlin, D., Kulkarni, K., Michels, J.E.: Integration of SQL and
XQuery in IBM DB2. IBM Systems Journal 45(2), 245–270 (2006)

Types, Functional Programming

and Atomic Transactions in Hardware Design

Rishiyur S. Nikhil

Bluespec, Inc.
nikhil@bluespec.com

Abstract. Most hardware design languages have not benefited from
modern ideas in programming languages. We describe aspects of BSV,
a recent language for designing hardware systems that makes extensive
use of Haskell types (Hindley-Milner types and type classes), functional
programming (higher-order functions, monads) and atomic transactions
in the form of concurrent rewrite rules.

Keywords: Haskell, Term Rewriting Systems, TRSs, Rewrite Rules,
BSV, Bluespec SystemVerilog, Hardware Design Languages, Functional
Programming.

1 Introduction

The hardware design languages most commonly used today, Verilog [8] and
VHDL [6], are almost 30 years old but are being used for designs that, due
to Moore’s Law, are orders of magnitude larger and more complex. These lan-
guages are very low-level by the standards of modern software programming
languages. Verilog (by far the more widely used) does not really have any data
type other than bits and no serious abstraction mechanisms beyond a basic mod-
ule structure. SystemVerilog [7] is a recent upgrade of Verilog, but other than
slightly richer types, it does not offer much new expressive power for the designer
(it does offer more expressive facilities for the verification engineer).

The situation has worsened in the last five years because the need for ex-
pressive hardware design languages has expanded beyond the traditional ASIC
(Application Specific Integrated Circuits) designer. System architects need to
experiment with complete system models (CPUs, caches, interconnects, mem-
ories, I/O devices) that run real software loads. Verification engineers need to
test complex subsystems or complete systems. Software and firmware developers
need to run on full system models well before ASIC silicon is available. Increas-
ingly, these activities require emulation platforms based on FPGAs (Field Pro-
grammable Gate Arrays), because traditional software simulators are now many
orders of magnitude too slow. FPGAs have the same fine-grained parallelism as
ASICs, albeit somewhat slower clock speeds. But to run on FPGAs, system mod-
els and verification environments now need to be written in a hardware design
language.

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 418–431, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Types, Functional Programming and Atomic Transactions 419

The high performance computing community (HPC) has also recently become
interested in hardware design languages. Although they have long used vector
supercomputers and clusters/farms with attached GPGPUs, HPC application
developers are now looking at servers with attached FPGAs for compute ker-
nels that have fine-grain, heterogeneous parallelism, which is not well served by
existing HPC platforms.

BSV [13,14] is a recent hardware design language significantly raising the
level of abstraction, compared to Verilog and VHDL, by incorporating ideas
from Haskell [15] and Term Rewriting Systems [9]. It takes its type system from
Haskell: the Hindley-Milner type system, and Haskell typeclasses. It is a Haskell-
like language for circuit description, having the full power of functional program-
ming including monadic evaluation. It takes its hardware execution semantics
from Term Rewriting Systems—the execution behavior of the elaborated circuits
is expressed as atomic, serializable rewrite rules.

In this paper, we describe how these ideas, familiar to those who know Haskell
and Term Rewriting Systems, are applied profitably in the context of hardware
design. This is more than a research exercise—BSV and its tools have been avail-
able commercially since 2005, and components designed with BSV are present
in mobile and multimedia devices currently in the marketplace.

2 Using Haskell’s Type System in BSV

BSV’s types are essentially the same as Haskell’s, except in a syntax that is
based on SystemVerilog idioms: enums, structs, and tagged unions, which in
Haskell are unified into the single notion of algebraic data types. Within bsc,
the BSV compiler, they are in fact treated exactly like Haskell’s algebraic data
types. BSV’s types can be polymorphic, just like Haskell’s, and type-checking is
essentially standard Hindley-Milner type-checking [12], except that the range of
type inference is deliberately limited by requiring explicit type declarations in
many places, in order to produce better error messages.

2.1 Strongly Typed Clocks and Static Checking of Clock Domains

In large hardware systems, different blocks and subsystems must often be driven
with different clocks, based on considerations of performance, power consump-
tion, conformance with protocol standards, and so on. Clocks are often gated,
i.e., capable of being temporarily switched off, in order to reduce power con-
sumption. Further, in high performance circuits, clocks must be treated very
carefully in order to balance wire lengths to minimize skew (variance in the time
at which a particular clock edge arrives at different places on the silicon die). In
many organizations, clock circuits are designed only by experienced specialists.

Hardware is usually organized into clock domains, which is a partitioning
of the system into disjoint regions, each of which has its own clock. “Clock
domain discipline” is a design rule that requires that any signals that cross from
one domain to another must go through a so-called “synchronizer” to avoid

420 R.S. Nikhil

metastability (a pathological situation where a register’s output voltage is not
within the legal ranges that we designate as “0” or “1”, and is stuck in the middle,
for an unpredictable duration). Syncronization between two clock domains is
typically not needed if both clocks are derived from a common original clock by
gating or frequency division.

Despite all this, in Verilog there is in fact no distinction between clocks and
ordinary signals. Clock domain discipline is merely a coding style (which can
vary from one organization to the next), and a variety of brittle “linting” tools
are available to check for conformance to these styles, but it is still easy to make
mistakes.

BSV uses an abstract type Clock, and standard strong type-checking en-
sures that they can never be confused with any other signals. BSV has a precise
and simple yet general notion of clock domains that is orthogonal to module
structure—essentially, each rule (described later), along with its fragments (in-
terface methods) that reach into other modules can be in its own clock domain.
Static checking keeps track of clocks even across separately-compiled modules, so
that the compiler knows which clocks are from the same “clock family”, i.e., de-
rived from the a common original clock. This, in turn, is used to verify that com-
munication between clock domains with unrelated clocks always goes through
a synchronizer. Thus many common clocking errors in Verilog are reported as
compile-time errors in BSV.

2.2 Numeric Kinds and Typeclasses for Hardware Sizes and Size
Constraints

Hardware resources (buses, registers, FIFOs, memories) typically have fixed
sizes, and we would of course like to define modules that are polymorpic in
the size of their resources. Further, different resources often have sizes that have
a definite relationship. For example, a module that implements a FIFO of depth
n is likely to contain a buffer of depth n, and registers containing “head” and
“tail” buffer offsets which are likely to be log(n) bits wide. We would like to
express such relationships and have them checked by the compiler.

BSV uses “numeric types” to represent sizes. In effect, the BSV type system
has two Kinds: value types and numeric types. Relationships between numeric
types are expressed either in functional form, using numeric type constructors
such as TAdd#(n1,n2) and TLog#(n) or, equivalently, in relational form using
numeric type classes such as Add#(n1,n2,n3) and Log#(n1,n2). These rela-
tional assertions are essentially Haskell typeclasses on types of numeric kind,
and are solved by bsc during type-checking. Haskell’s typeclass constraints ap-
pear in BSV syntax as “provisos”. For example, here is a skeleton of a FIFO
module constructor called mkMyFIFO.

module mkMyFIFO (MyFIFO #(n,t))

provisos (Log #(n, ln),

... other provisos ...);

Types, Functional Programming and Atomic Transactions 421

// Instantiate sub-modules (local state)
Vector #(n, Reg #(t)) buffer <- replicateM (mkRegU);

Reg #(Bits #(TLog #(n))) head <- mkReg (0);

Reg #(Bits #(ln)) tail <- mkReg (0);

...

endmodule

Here, MyFIFO#(n,t) is the interface type, polymorphic in n, the depth of the
FIFO and t, the type of the data stored in the FIFO. The variable buffer is
a vector of n registers, each containing a datum of type t. The head register
and tail registers both hold bit vectors of width log(n). The former is declared
with TLog#(n), using the functional style. The latter is declared with ln, which is
bound in the provisos clause by the relational typeclass Log#(n,ln). The right-
hand sides of the declarations are monadic instantiations of the state elements
(we discuss this in more detail in a later section).

2.3 Typeclasses for Abstracting Bit Representation

Hardware designers are meticulous about bit representations (how an algebraic
type or array is represented in bits), unlike software programmers who usually
leave this decision to the compiler. In hardware, a representation that wastes
storage bits or needs more logic in computational circuits has a direct economic
impact because silicon area almost directly impacts chip cost. Redundant bits
also consume power unnecessarily. Verilog’s only data type is bits, so repre-
sentation decisions are not even reflected in the language. SystemVerilog has
language-specified representations for data types so that if you wish to change
the representation you have to change the type declaration.

BSV uses Haskell’s typeclasses to achieve representation independence. We
define a Bits#(t,n) typeclass:

typeclass Bits #(t, n);

function Bit #(n) pack (t x);

function t unpack (Bit #(n) bs);

endtypeclass

The typeclass asserts that type t is represented in n bits, specifically the type
Bit#(n). The next two lines declare witness functions pack and unpack that
convert back and forth between the type t and the type Bit#(n).

As in Haskell, for each user-defined type, the user can create an “instance”
of this typeclass, and define the specific pack and unpack functions for that type.
Thus, the designer has precise control over bit representations.

Any primitive that needs the bit representation, such as a register module,
a FIFO module, or a memory module, uses these overloaded pack and unpack

422 R.S. Nikhil

to perform the conversion. Thus, the rest of the user code is written purely
with the standard algebraic type notations (constructors, field selectors, pattern-
matching, vector indexing, and so on), completely independent of the repre-
sentation. The representation can be changed by simply changing the instance
declaration; the rest of the code that uses the type is unaffected.

As in Haskell, for certain typeclasses in BSV the user can avoid the labor of
writing explicit typeclass instances by attaching a “deriving” clause to a type
declaration:

typedef ... some type declaration ... deriving (Bits);

BSV defines a fairly obvious “canonical” typeclass instance scheme for user-
defined enums, structs, tagged unions and vectors. These are dense representa-
tions, using the minimum number of bits (within the canonical framework) and
hence are satisfactory in almost all cases. In rare cases, a non-canonical represen-
tation exploiting some additional property of a type can use fewer bits (such as
the knowledge that certain byte addresses are in fact word-aligned and therefore
can omit or reuse the lower order bits). In these cases, the designer can create
an explicit Bits#(_,_) instance declaration.

2.4 Other Uses of Typeclasses

Typeclasses are used extensively in BSV, both in the standard libraries and in
user-written code. Some uses will be familiar to any Haskell programmer: the
Eq typeclass for equality, the Ord typeclass for orderings, the Arith typeclass
for arithmetic operations and functions, the FShow typeclass for pretty-printing,
and so on. We list some other examples here to provide a flavor of their utility
in expressing typically hardware concepts.

ToPut and ToGet

Two standard module interfaces in BSV are Put and Get. The former contains
one method, put, and the latter one method get, using which one can send a
value into a module or receive one from it, respectively (they essentially map to
input and output buses, along with some handshaking signals).

Many other interfaces can be viewed as Put and Get interfaces. For example,
enqueing a value into a FIFO is like a put; dequeing a value is like a get. Driving
a read request on an ARM AXI bus is like a put, receiving a read response is like
a get. BSV thus defines typeclasses ToPut and ToGet which contain functions
toPut and toGet, respectively. Creating typeclass instances for FIFOs, AXI
buses and other types allow them all to be used uniformly with the Put and Get

communication interface, even though the particular signals and protocols they
use vary widely.

Connectable

In hardware designs there are many pairs of compatible interfaces that can be

Types, Functional Programming and Atomic Transactions 423

connected together. These connections may involve not merely wires, but also
combinational logic and state elements. In BSV, the idea of being able to connect
two compatible interface types is expressed in the Connectable typeclass:

typeclass Connectable #(t1, t2);

module mkConnection #(t1 ifc1, t2 ifc2) (Empty);

endtypeclass

Each instance of this typeclass provides a definition for a mkConnectionmod-
ule that takes two interfaces as arguments and instantiates whatever logic and
state and protocols are necessary to connect those two interfaces. Thus, whether
we are connecting a Get interface to a Put interface, or one FIFO to another, or
an ARM AXI Master component to a Master socket on an ARM AXI bus, we
uniformly use mkConnection to create the connection.

These facilities also enable flexible composition of interfaces. For example,
even if two interfaces ifcA and ifcX are not directly connectable, it may be
possible to connect them by converting them to Get and Put interfaces:

mkConnection (toGet (ifcA), toPut (ifcX));

3 Functional Programming for Circuit Description

The full power of functional programming can be utilized in the static elaboration
phase of a hardware design language. In software languages there are usually two
distinct parts or phases in the semantics. The static semantics is defined on the
source text: syntactic correctness, type-checking, scoping rules, and so on. The
dynamic semantics describes the run time or execution behavior.

In hardware design languages there is another distinct phase called static
elaboration. For example, in Verilog, this phase creates the hardware module
hierarchy: the top-level module instantiates its sub-modules which recursively
instantiate their sub-modules, and so on. A single module definition in the source
text may be instantiated multiple times. Static elaboration results in a tree
of module instances, connected by the language’s communication channels (in
Verilog, these are just wires). The language’s dynamic execution semantics are
defined on this module hierarchy and not on the source text.

Static elaboration can be viewed as a one-time execution of the original source
text to describe an actual hardware circuit. In existing hardware design lan-
guages, static elaboration is mostly about straightforward module instantiation.
However, there is no reason to limit the power of static elaboration in this way. In
BSV, static elaboration is essentially Haskell execution: it is a full, pure, higher-
order, lazy functional language, including monadic evaluation of modules. In the
following sections we show examples of how this enables powerful abstraction in
circuit description.

424 R.S. Nikhil

3.1 A Simple Example: A Routing Function Argument for a
Polymorphic Switch

Here is the skeleton of the declaration of a module implementing a packet switch:

1 module mkSwitch

2 #(function Bit #(TLog #(n)) destination (t pkt))

3 (Switch_IFC #(m, n, t));

4 ...

5 body of module
6 ...

7 endmodule

Line 3 is the interface type of the switch, parametrized bym, the number of input
ports, n the number of output ports, and t, the type of packets that flow through
the switch. Line 2 is the module argument, and is a function from packets to
output port numbers (note that the output port number must be log(n) bits
wide, in order to name one of the n output ports). This function is used in the
module body to route each incoming packet to its proper destination.

An example like this may at first seem surprising, raising questions like “what
does it mean to pass a function argument in hardware”. But this is not what
is happening—we are merely passing a function argument during static elab-
oration. As long as the final result of static elaboration is something that can
feasibly be implemented in hardware, the language of static elaboration need not
be restricted in any way. In BSV, static elaboration essentially has the power of
Haskell.

3.2 Higher-Order Functions to Capture Pipeline Structures

Higher-order functions are excellent for capturing common design patterns (maps
and folds being two of the most famous). In hardware designs, pipelining is an
area rich in design patterns, and we can use the full power of higher-order poly-
morphic functions to abstract common activities in building complex pipeline
structures. We start by defining a standard interface for the output of a pipeline
component:

interface PipeOut #(type t);

method t first (); // view the next element from the pipe
method Action deq (); // pop the next element from the pipe
method Bool notEmpty (); // test if the pipe has an element

endinterface

The compositional building blocks have the type Pipe#(ta,tb), representing a
pipeline with an input stream of elements of type ta and an output stream of
elements of type tb:

Types, Functional Programming and Atomic Transactions 425

typedef

(function Module #(PipeOut #(tb)) mkFoo (PipeOut #(ta) ifc))

Pipe#(type ta, type tb);

or, to express it in more conventional notation, Pipe(ta,tb) is a synonym for:

PipeOut #(ta) → Module #(PipeOut #(tb))

In other words, a Pipe#(ta,tb) value is a function from the pipe output of
the preceding (upstream) pipe to a new module whose interface is the new pipe
output. For example, a constructor to serially compose two existing pipelines is
declared like this:

module mkCompose_buffered #(Bool param_with_buffer,

Pipe #(a, b) pab,

Pipe #(b, c) pbc,

PipeOut #(a) pa)

(PipeOut #(c));

Input data of type a are taken from pa, the output interface of the upstream
pipe, and are fed into the first pipe pab. Its outputs, of type b, are fed into
the second pipe pbc. Its outputs, of type c, are the outputs of the composite
pipe. The additional boolean argument param_with_buffer optionally inserts
a pipeline register between pab and pbc. BSV functions can be curried, so when
partially applied to 3 arguments, mkCompose_buffered(bool,pab,pbc), we get
a value of type Pipe#(a,c), i.e., a standard building block.

Here is a constructor to create an “if-then-else” pipeline structure:

module mkIfThenElse #(Pipe #(a,b) pipeT,

Pipe #(a,b) pipeF,

PipeOut #(Tuple2 #(a, Bool)) poa)

(PipeOut #(b));

The upstream pipe poa delivers a stream of pairs of values of type a and Bool.
Depending on the boolean, the corresponding value is either sent into pipeT

or into pipeF. The outputs of these pipes, of type b, are delivered as the final
output of the composite structure. When partially applied to two arguments,
mkIfThenElse(pt,pf), we once again get a standard building block with type
Pipe#(Tuple2#(a,Bool),b).

These are examples of functions from a BSV library called PAClib (Pipeline
Architecture Constructor library) that contains many other functions for creat-
ing pipeline structures representing while loops, for loops, forks and joins, maps,

426 R.S. Nikhil

folds, and more. They implement all the control circuits and pipeline buffering
needed to build complex, flow-controlled pipelines, independent of the specific
computational logic of particular applications.1

3.3 Monadic Static Elaboration

Static elaboration in BSV is a functional program evaluation in a “module
monad”. Conceptually, execution begins at a top-level module and sequentially
processes the statements in the module, collecting semantic entities in the mod-
ule such as sub-module instantiations, rules and interfaces. At each sub-module
instantiation, we recursively process that sub-module.

For most users of BSV, this monadic evaluation is invisible, happening inside
the bsc compiler. However, since the module monad is polymorphic, users can
extend this monadic evaluation to solve certain common problems encountered
in hardware design.

Control and Status Regsiters

In a hardware system, which is organized as a module hierarchy, various mod-
ules in the hierarchy may contain so-called Control and Status Registers (CSRs)
for configuring the modules and reading back status while the hardware is run-
ning. All these registers, across the entire module hierarchy, are usually accessible
over a separate CSR bus in a memory-mapped manner. Thus, in addition to its
normal operational interface, every module has an extra set of highly stylized
inputs and outputs for accessing its own CSRs and the CSRs in sub-modules. It
is usually quite laborious to create the CSR bus interfaces to these registers and
to create the “plumbing” of the CSR bus down the module hierarchy to all the
places where it is needed. This extra code also compromises the simplicity and
clarity of normal module code (consider a module that does not itself has any
CSRs, but must pass the CSR bus through to sub-modules that do have CSRs).
Maintenance of such code, when written in Verilog, is a nightmare, various ad
hoc tools have been developed for “stitching” in CSR resources as a separate
step.

Monadic evaluation provides a simple and elegant solution to this problem.
CSRs become just another type of entity collected in the monad, and we can
completely automate the creation of their bus interfaces and the plumbing of the
CSR bus. Since all this information is carried in the “hidden” state of the monad,
the source code is no longer cluttered with all this boilerplate CSR plumbing.

Probes and I/O

In a hardware design, we may wish to examine certain internal signals or
perform some I/O of certain values, from arbitrary points in the module hier-
archy. When running in simulation, these are typically just side-effects handled

1 The general idea of using higher-order functions to describe circuit structures has
also been explored earlier in Lava [2].

Types, Functional Programming and Atomic Transactions 427

magically by the simulator. But when running on real hardware (such as on
an FPGA), this requires actual hardware circuits to carry the data along the
module hierarchy to and from the interface of the top-level (outermost) module.
Monadic evaluation provides a way to automatically perform this plumbing of
probe and I/O signals without cluttering the source code.

4 Rewrite Rules and Atomicity

Everything we have described so far is about circuit structure: types, and func-
tional programming to describe circuits. The final output of static elaboration is
a module hierarchy. What do these modules do (how do they execute?) and how
do they communicate with each other? In other words, what is their dynamic
semantics?

All behavior in BSV is expressed using rules. Here is the rest of the mkSwitch
module whose skeleton we presented earlier:

1 module mkSwitch

2 #(function Bit #(TLog #(n)) destination (t pkt))

3 (Switch_IFC #(m, n, t));

4

5 // ----------------

6 // STATE: input and output queues

7 Vector #(m, FIFO #(t_pkt)) vf_ins <- replicateM (mkFIFO);

8 Vector #(n, FIFO #(t_pkt)) vf_outs <- replicateM (mkFIFO);

9

10 // ----------------

11 // BEHAVIOR (atomic transactional rules)

12 for (Integer i = 0; i < valueOf (m); i = i + 1)

13 for (Integer j = 0; j < valueOf (n); j = j + 1)

14 rule transfer_packet (destination(vf_ins [i].first)

15 == fromInteger (j));

16 let pkt = vf_ins [i].first;

17 vf_ins [i].deq;

18 vf_outs [j].enq (pkt);

19 endrule

20

21 // ----------------

22 // INTERFACE (atomic transactional methods)

23 interface inputs = map (toPut, vf_ins);

24 interface outputs = map (toGet, vf_outs);

25 endmodule

Lines 12 and 13 are statically elaborated for-loops that create m× n rules. The
(i, j)th rule examines the packet at the head of the ith input FIFO, and tests if

428 R.S. Nikhil

its destination is j. If so, it performs the action of dequeueing the packet and
enqueueing it into the jth output FIFO.

Every rule has a CAN_FIRE condition and an action. In each rule above, its
CAN_FIRE has several components. The boolean expression on lines 14-15 is an
obvious component, but other components are booleans implicitly accompany-
ing the methods first, deq and enq. These method conditions are specified
inside the FIFO module by the implementer of that module. For example, the
conditions of first and deq are true only when the FIFO is not empty, and the
condition of the enq method is true only when the FIFO is not full.

Thus, an atomic unit of behavior is constructed from fragments that may
span many module boundaries (a rule in one module invokes a method of another
module, which may, in turn, invoke further methods of other modules and so on).
A method is, in effect, a rule fragment. The CAN_FIRE condition of a rule involves
the conditions of the rule itself and the conditions of all methods invoked, directly
or transitively. Similarly, the overall action of a rule includes the actions of all
methods invoked, directly or transitively. It is this cross-module composition of
atomic units that gives rules tremendous expressive power.

To first approximation, BSV rule semantics are the same as for classical
rewrite rules, which are explained very simply:

while (True)
Choose any rule whose CAN_FIRE is true
Perform the rule’s action

Thus, a BSV program’s state evolves by repeated rule execution. Note that the
semantics is non-deterministic in picking any enabled rule (since the conditions of
many rules may be true), and describes a sequential trajectory through a space of
possible states. Modulo syntactic differences and minor details, this is a classical
Term Rewriting System (TRS) [9], and all the theoretical machinery of TRSs can
be brought to bear on reasoning about the correctness of BSV programs. These
semantics are also found in languages like Guarded Commands [4], UNITY [3],
TLA+ [10], and Event B [11] for formal specification of concurrent state-based
systems.

When the bsc compiler translates BSV into hardware, it creates circuits that,
in effect, execute multiple rules “concurrently” in each clock cycle. In particular,
it tries to execute as many rules as possible in each clock, in order to maximize
performance. However, the hardware execution will always be consistent with
the TRS semantics, i.e., there is always a logical sequential order to concurrent
rule execution (which we call a rule schedule). Another way of saying this is that
despite concurrent execution of rules within a clock, rules can be regarded as
distributed (across modules), user-defined atomic transactions, so that one can
continue to reason about invariants on a rule-by-rule basis, without worrying
about interleavings of actions from different rules.

Types, Functional Programming and Atomic Transactions 429

4.1 Structured Processes (FSMs) from Rules and Higher-Order
Static Elaboration

A rule in BSV is a unit of behavior. There is no a priori sequencing of rules;
they execute when their conditions are true, as described in the previous sec-
tion. However, one often sets up rule conditions and actions in such a way that
their collective behavior forms a structured process. Consider the following code
fragment:

typedef enum S0, S1, S2, ... State deriving (Bits, Eq);

module mkFoo (...);

Reg #(State) state <- mkReg (S0);

rule r0 (state == S0);

... do state S0 actions ...
state <= S1; // next state

endrule

rule r1 (state == S1);

... do state S1 actions ...
state <= (cond ? S1 : S2); // loop back to S1, or to S2

endrule

rule r2 (state == S2);

... do state S2 actions ...

... transition to next state
endrule

endmodule

The state register is initialized to S0, so initially rule r0 can fire. It sets state
to S1, enabling rule r1. This rule sets state either to S1 or to S2; in the former
case, rule r1 is enabled again, and in the latter case rule r2 is enabled. This is
essentially a structured sequential process (known as FSMs in hardware design),
one that would be expressed in a more traditional imperative language like this:

... do state S0 actions ...
repeat

... ... do state S1 actions ...
until (! cond)
... ... do state S2 actions ...

During BSV static elaboration, rules and actions are first-class objects, with
type Rules and Action, respectively. One can write functions to create rules

430 R.S. Nikhil

and actions, collect them in data structures, and so on. Thus, it is possible write
higher-order functions that are essentially constructors for various process struc-
tures: sequential and parallel composition, conditionals, while/for/until loops,
and so on. In fact, such FSM structures are so common in hardware design that
BSV contains an embedded FSM language, but users can, in addition, extend
this with their own FSM constructors.

5 Conclusion

Perhaps because of the cultural separation of Electrical Engineering and Com-
puter Science commonly seen in universities, many hardware designers have not
been exposed to types and abstraction in modern programming languages, nor
to functional programming, and have not seen the relevance of those topics to
what they do. This is reflected in significant weaknesses in hardware design lan-
guages. Conversely, software engineers take their computing platforms as given
and have not so far considered hardware design as relevant to what they do, and
perhaps even view hardware design as a fundamentally “low-level” activity. This
may change as FPGA acceleration becomes more common.

Such a separation is of course absurd. Ultimately, it’s all just computation,
and the choice of software or hardware execution is an implementation choice
based on pragmatic considerations of speed of developement, speed of execution,
power consumption, cost, convenience, and so on. The principles of types and
abstraction are orthogonal to this choice, and are equally important whether
designing software or hardware.

In this paper we have described BSV, a language that tries to bridge this
gap by using ideas from Haskell (types and functional programming) and Term
Rewriting Systems (atomic concurrent rewrite rules) to create a semantically
clean and expressive language for hardware design that can appeal both to hard-
ware and software designers.

Acknowledgements. In 1977, Peter Buneman introduced me, a fresh grad-
uate student at the University of Pennsylvania, to the joys of Landin, ISWIM
and Burge in one of his courses. Working with him, I was privileged to use
my first higher-order functional programming language, POP-10, which Peter
had brought from Edinburgh and had installed on the Wharton School DEC-10.
This led to studying Backus’ FP and FFP, Hope, SASL and KRC, Combina-
tor Reduction and Graph Reduction, and to my thesis work on the Functional
Query Language (FQL). I also had the pleasure of interacting with many ex-
citing people who came to UPenn through Peter’s influence, such as Malcolm
Atkinson (PS-Algol), Dave MacQueen (ML) and Luca Cardelli (my UPenn PhD
thesis was implemented using Luca’s ML). You can see the connection from those
wonderful influences at UPenn to the ideas discussed in this paper. I am still
enthralled by the beauty of typeful and functional programming, to which I was
first introduced by Peter.

Types, Functional Programming and Atomic Transactions 431

The TRS aspects of BSV has its origins in research by Hoe and Arvind at
MIT in the late 1990s [5]. The Haskell aspects of BSV were originally conceived
by Lennart Augustsson [1].

References

1. Augustsson, L., Schwartz, J., Nikhil, R.S.: Bluespec Language Definition, The ear-
liest version of BSV (2001)

2. Bjesse, P., Claessen, K., Sheeran, M., Singh, S.: Lava: Hardware Design in Haskell.
In: Proc. ACM Intl. Conf. on Functional Programming, ICFP (1998)

3. Chandy, K., Misra, J.: Parallel Program Design: A Foundation. Addison Wesley
(1988)

4. Dijkstra, E.W.: Guarded Commands, Nondeterminacy and Formal Derivation of
Programs. Communications of the ACM 18(8), 453–457 (1975)

5. Hoe, J.C., Arvind: Synthesis of Operation-Centric Hardware Descriptions. In:
IEEE/ACM Intl. Conf. on Computer Aided Design (ICCAD), pp. 511–518 (2000)

6. IEEE: IEEE Standard VHDL Language Reference Manual, IEEE Std 1076-1993
(2002)

7. IEEE: IEEE Standard for System Verilog—Unified Hardware Design, Specification
and Verification Language, IEEE Std 1800-2005 (2005)

8. IEEE: IEEE Standard Verilog Hardware Description Language, iEEE Std 1364-
2005 (2005)

9. Klop, J.: Term Rewriting Systems. In: Abramsky, S., Gabbay, D.M., Maibaum,
T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 2, pp. 1–116. Oxford
University Press (1992)

10. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Professional (Pearson Education) (2002)

11. Metayer, C., Abrial, J.R., Voisin, L.: The Event-B Language (May 31, 2005),
http://rodin.cs.ncl.ac.uk/deliverables.htm

12. Milner, R.: A Theory of Type Polymorphism in Programming. J. of Computer and
System Sciences 17, 348–375 (1978)

13. Nikhil, R.S.: Abstraction in Hardware System Design. Communications of the
ACM 54(10), 36–44 (2011)

14. Nikhil, R.S., Czeck, K.R.: BSV by Example. CreateSpace (December 2010) (book
form: Amazon.com; PDF: bluespec.com)

15. Peyton Jones, S., (ed.): Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press (2003), haskell.org

http://rodin.cs.ncl.ac.uk/deliverables.htm
Amazon.com
bluespec.com
haskell.org

Record Polymorphism:

Its Development and Applications�

Atsushi Ohori

Research Institute of Electrical Communication
Tohoku University

ohori@riec.tohoku.ac.jp

Abstract. Record polymorphism plays an essential role in developing
a static type system for labeled record structures such as relational
databases. Moreover, compilation method for record polymorphism serves
as the basis for efficiently compiling various advanced features in stati-
cally typed polymorphic programming languages. This article overviews
the power and applicability of record polymorphism that have been im-
plemented in SML�, an extension of Standard ML been developed at
RIEC, Tohoku University.

1 Introduction

Labeled records are ubiquitous data structures in programming languages and
systems. They are basic data type constructors in programming languages.
Classes and objects in object-oriented programming and tuples and tables in
relational databases are also regarded as labeled record structures. They differ
in details of their properties and associated operations, but all of them share the
same underlying principles, namely record polymorphism. Record polymorphism
concerns both static typing and compilation.

Static typing attempts to identify the set of well-behaved programs as the set
of well-typed ones. It is relatively easy to exclude all the erroneous programs.
The challenging part is to accept many useful programs including all the ba-
sic operations. For a language with functions and products, this is realized by
polymorphic type discipline, which has been successfully used in the ML fam-
ily of programming languages. In the polymorphic type system of the pure ML
language, such as the one defined in [2], the polymorphic property of each of
the primitive operations is represented by its most general polymorphic type.
This property is the key to the flexibility and type-safety of ML programming.
Labeled records should be given the same status. For a language with labeled
records, a polymorphic type system must therefore be one that accepts all the
basic record operations. The precise definition of the basic record operations
may depend on the systems and languages, but there is the fundamental one,
namely the operation to access a labeled field, which is the basis for any system

� This work was partially supported by Grant-in-aid for scientific research (C), grant
no:22500023, and Grant-in-aid for scientific research (B), grant no:25280019.

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 432–444, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Record Polymorphism: Its Development and Applications 433

manipulating labeled records. The polymorphic typing discipline [15,3] of the
lambda calculus cannot represent the polymorphic nature of this operation. As
a consequence, the conventional polymorphic type systems including that of ML
cannot accept polymorphic record operations. Record polymorphism solves this
problem.

Program execution is, in principle, independent of a static type system. How-
ever, a properly defined type system should reflect the essence of the computa-
tion. Through this property, a type system can lead to efficient compilation. This
is indeed the case for record polymorphism, which yields type-directed compila-
tion that compiles record operations to efficient codes. Moreover, the mechanism
developed for polymorphic record compilation can be used to compile a number
of advanced program constructs.

These two features of record polymorphism are the key aspects in the design
and implementation of SML� [16], a new programming language in the ML family
developed at RIEC, Tohoku University. The purpose of this paper is to present
the essence of record polymorphism: its static polymorphic type system and
its expressiveness, type-directed record compilation method and its applications
through examples in the development of the SML� compiler. This would shed
some light on the design and implementation of languages and systems involving
record structures.

The rest of this paper is organized as follows. Section 2 overviews the devel-
opment of the polymorphic type discipline for labeled records. Section 3 demon-
strates the expressiveness of record polymorphism through examples and shows
its application to SQL integration in SML�. Section 4 outlines the central idea
of polymorphic record compilation. Section 5 discusses applications of record
compilation used in the SML� compiler. Section 6 concludes the paper.

2 Type System with Record Polymorphism

Investigation of type systems for record polymorphism started as an attempt to
construct a complete type inference system for a language with labeled records.
Except for an incomplete system [17], the first sound and complete type inference
system for records was presented by Ohori and Buneman [10], as a type inference
system for a functional language extended with a (nested) relational algebra.
The basic idea underlying this type system is to include a constraint of the form
(l : τ) ∈ α on type variable α, indicating that any instance of α must be a record
type containing a field l : τ .

Soon after this proposal, Rémy [14] presented another polymorphic typing
discipline for records. His system uses a constraint of the form α{l} indicating
that α ranges only over those record fields that do not contain the l field. Com-
pared to the Ohori-Buneman system, a type system with this negative constraint
is strictly stronger, and a variety of record operations are cleanly represented.
However, perhaps due to this generality, Remy’s type system does not yields
efficient compilation method. One advantage of the Ohori-Buneman approach is
that its constraint l : τ ∈ α directly reflects the runtime computation performed

434 A. Ohori

by the record operation #l to access the l field of a record. This property yields
a type-directed compilation of record polymorphism.

The Ohori-Buneman type system has been refined in [8,9] to a second-order
kinded polymorphic type system, which leads to the development of SML�, an
extension of Standard ML supporting record polymorphism and other features.
This language contains two basic record operations shown in the following inter-
active session in SML�, where the user input is prompted by # and the system
response is displayed with its type.

$ smlsharp

SML# version 1.2.0 (2013-06-26 15:21:29 JST) for x86-linux

fun getX P = #X P;

val getX = _ : [’a#{X:’b},’b. ’a -> ’b]

fun incX (P as {X,...})= P # {X = X + 1};

val incX = _ : [’a#{X:int}. ’a -> ’a]

Here, #X e extracts the X field from a record e, while e1 # {X = e2} creates a
new record by modifying the X field of a record e1 with e2. {X,...} is a flexible
record pattern that matches any record having a label X. The notation ’a#{X:τ}
is a type variable ’a with the constraint that its instance must be a record type
containing the field X:τ . The type [’a#{X:’b},’b. ’a -> ’b] is a polymorpic
type where the type variables ’a and ’b are universally bound; it corresponds
to the logical notation ∀(b, a :: {X : b}).a→ b.

3 Representing Various Record Structures

Polymorphic record operations allow us to represent various record structures
directly within the type system of Standard ML. This section demonstrates the
expressiveness of record polymorphism through examples in SML�.

3.1 Modular Programming through Record Polymorphism

With record polymorphism, one can write extensible generic codes by focusing
only on the relevant properties of problems. This provides a powerful tool for
modular construction of a large software.

To demonstrate this feature, let us consider a problem to simulate object
movement in a Cartesian coordinate system. An object can be represented as
a record containing X and Y fields of the current position, and Vx and Vy fields
of the current velocity vector. We assume that the object is freely falling in a
parabolic path, and develop a function update that computes the object states
after one time unit. The X and Y positions can be computed independently as
follows.

fun moveX (p as {X,Vx,...}) = p # {X = X + Vx};

val moveX = fn

: [’a#{Vx:’b,X:’b},’b::{int,word,word8,intInf,real,real32}.

Record Polymorphism: Its Development and Applications 435

’a -> ’a]

fun moveY (p as {Y,Vy,...}) = p # {Y = Y + Vy};

val moveY = fn

: [’a#{Vy:’b,Y:’b},’b::{int,word,word8,intInf,real,real32}.

’a -> ’a]

Here, ’b::{int,word,word8,intInf,real,real32} is type variable ’b whose
possible instances are constrained to the specified set. This constraint comes from
the overloaded primitive operation +. This feature is explain in Subsection 5.2.
Acceleration functions can also be coded independently.

fun accelerateX (p as {Vx,...}) = p # {Vx = Vx + 0.0};

val accelerateX = _ : [’a#{Vx:real}. ’a -> ’a]

fun accelerateY (p as {Vy,...}) = p # {Vy = Vy - 9.8};

val accelerateY = _ : [’a#{Vy:real}. ’a -> ’a]

The function update is then defined by simply composing all of them as shown
below.

fun update p = (accelerateX o accelerateY o moveX o moveY) p;

val update = _ : [’a#{Vx:real,Vy:real,X:real,Y:real}. ’a -> ’a]

Here, o is the function composition operator in Standard ML. The resulting code
is highly modular and type safe, and can be further combined with other behav-
iors of the objects quite easily. Our experience of developing a 2-D game program
in SML� shows that this approach yields modular and declarative description of
complex system behaviors.

3.2 Representing Relational Databases

Record polymorphism [10] was originally invented for representing relational
databases in a polymorphic language. Based on this result and the observa-
tion that SQL statements are expressions that are polymorphic in their record
structures, Machiavelli was designed [11,1]. In this language, one can write the
following function on complex objects (nested relations).

fun Wealthy(S) = select x.Name

where x <- S

with x.Salary > 100000;

: [’a#{Name:’b,Salary:int}, ’b. ’a -> ’b set]

where the type is presented in the notation used in the present paper.
As a database language, Machiavelli was only a conceptual one in the sense

that it did not have practical implementation for database access, but it did
demonstrate that if the type system of ML is extended with record polymorphism
then it can cleanly represent SQL. This idea has been fully realized [12] in SML�,
which seamlessly integrate SQL expressions as first-class citizens in an extension
of Standard ML. In SML�, Wealthy above can be coded as the following function.

436 A. Ohori

val Wealthy = _sql db => select #person.name as name

from #db.people as person

where SQL.>= (#person.salary,1000)

The select clause is SML� notation of an SQL expression that is evaluated by
a remote database server. For this function, SML� infers the following typing.

val Wealthy = _

: [’a#{people:’b},b#{name:’d,salary:int},’c,

’d::{int,word,char,string,real,’e option},

’e::{int,word,char,bool,string,real}.

(’a, ’c) SQL.db -> {name:’d} SQL.query]

The type information is rather involved but it indeed represents the polymorphic
properties of the SQL expression:

– It is a function that takes a database connection db.

– The connected database may be of any type ’a as long as it contains a
people table. This is represented by the type (’a, ’c) SQL.db with the
constraint ’a#{people:’b}. The extra type parameter ’c is here for enforc-
ing the uniqueness of the database connection throughout the entire query
expression. This is a subtle typing issue of integrating SQL in a higher-order
language. The interested reader is referred to [12].

– The people table may be of any type ’b as long as it contains a name column
of any atomic type and a salary column of type int. This is represented by
the constraint ’b#{name:’d,salary:int}.

– The name column can be any atomic type including those of NULL. This prop-
erty is represented by the constraint ’d::{int,word,char,string,real,’e
option} and ’e::{int,word,char,bool,string,real}. The null value of
type b is represented by NONE of the type b option.

The inferred type is indeed a principal type of this SQL expression. By this
mechanism, SML� achieves seamless integration with SQL. SQL expressions can
be freely combined with any other feature of the language.

3.3 Representing Objects

Although object-oriented programming involves a number of features beyond
labeled record structures (see [4] for a survey on various typing issues in object-
oriented programming), its polymorphic properties are based on the polymorphic
operations on record structures. So one can enjoy some benefits of object-oriented
programming in a functional language that supports record polymorphism.

An object can be represented in a variety of ways. In a simple view, an object
is a reference to a record of attributes and a method is a function that takes
such a state, accesses the necessary attributes and performs some computation.
Under this simple view, methods for point objects may contain the following.

Record Polymorphism: Its Development and Applications 437

fun getX self = #X (!self)

fun setX self x = self := (!self # {X = x})

fun getY self = #Y (!self)

fun setY self x = self := (!self # {Y = x})

Here, ! is the pointer dereference operator and := is the pointer assignment
operator in Standard ML. A class and an object can then be represented as
follows.

val pointClass = {getX=getX, setX=setX, getY=getY, setY=setY}

val myPoint =

let val state = ref {X = 0.0, Y = 0.0}

in fn selector => selector pointClass state

end

val myColorPoint =

let val state = ref {X = 0.0, Y = 0.0, Color = "red"}

in fn selector => selector pointClass state

end

The defined object can be manipulated as follows.

myPoint # setX 1.0;

val it = () : unit

myPoint # getX;

val it = 1.0 : real

myColorPoint # getX;

val it = 0.0 : real

myPoint # getColor

(interactive):28.1-28.18 Error:

(type inference 007) operator and operand don’t agree

(further error information omitted.)

As shown in the last example, the system detects the type error statically.

3.4 Representing Polymorphic Variants

A commonly used feature of object-oriented programming is heterogeneous col-
lections. One way to represent heterogeneous collections is using polymorphic
variants. The polymorphic type system of [9] contains polymorphic variants,
but this feature is not implemented in SML� considering the fact that Stan-
dard ML already contains variants tied with recursive type definition. However,
as mentioned in [9], a variant type 〈l1 : τ1, . . . , ln : τn〉 can be encoded as
∀t.{l1 : τ1 → t, . . . , ln : τn → t} → t. So programming with polymorphic variants
can be done in a language with record polymorphism. Here we demonstrate this
technique in SML�.

As a simple example, consider a system where we have two representations for
point objects, one in Cartesian coordinates and the other in polar coordinates.
In this system, each representation is processed differently, so each point data

438 A. Ohori

has to be attached with a tag (label) indicating its representation. By regarding
the label as a service selector from a given set of services, this system can be
represented by polymorphic records. For example, the following codes show two
representations of the same point.

val myCPoint = fn M => #CPoint M {X=1.0, Y = 1.0};

val myCPoint = _

: [’a#{CPoint: {X:real,Y:real} -> ’b}, ’b. ’a -> ’b]

val myPPoint = fn M => #PPoint M {r=1.41421356, theta = 45.0 };

val myPPoint = _

: [’a#{PPoint:{r:real,theta:real} -> ’b}, ’b. ’a -> ’b]

The idea is that a variant data with a tag T is considered as an object that
receives a method suite, selects an appropriate method using T as the selector,
and applies the selected method to itself. A method that works for all possible
variants can be defined by writing the set of functions for all the variants, and
creating a record consisting of these methods labeled with the corresponding
variant tags. For example, a method to compute the distance from the origin
can be coded as the following record.

val distance =

{

CPoint = fn {X,Y,...} => Real.Math.sqrt (X * X + Y * Y),

PPoint = fn {r,...} => r

};

This method suite is invoked on an object by applying the object function to
the method suite as in the following.

myCPoint distance ;

val it = 1.414213562373 : real

myPPoint distance ;

val it = 1.41421356 : real

Record polymorphism allows us to create heterogeneous lists as in the following.

val pointList = [myCPoint, myPPoint];

val pointList = _

: [’a#{CPoint: {X:real,Y:real} -> ’b,

PPoint: {r:real,theta:real} -> ’b},

’b.

(’a -> ’b) list]

fun pointIter pointList method =

map (fn x => x method) pointList;

val pointIter = _ : [’a, ’b. (’a -> ’b) list -> ’a -> ’b list]

pointIter pointList distance;

val it = [1.414213562373, 1.41421356] : real list

In this way, various heterogeneous collections can be processed in a type safe
way.

Record Polymorphism: Its Development and Applications 439

4 Type-Directed Compilation of Record Polymorphism

The other aspect of record polymorphism is type-directed compilation of poly-
morphic record operation. Without this, practical usefulness of record polymor-
phism is rather limited.

To see the problem, consider the expression fn x => #Y x. In a simple type
system, the type of x is fixed to a concrete record type such as {X:int, Y:int}.
The compiler then compiles a record of type {X:int, Y:int} to a vector of two
consecutive int values, and compiles #Y x to an instruction to load the second
element of the vector representation. This is a routine practice in a monomorphic
language with records. However, in a language where field selection operation is
polymorphic, compiling expression such as fn x => #Y x to efficient codes is a
subtle problem. In a dynamically typed language, some form of dynamic look-up
for the specified label is necessary. There have been some efforts to optimize the
necessary dynamic look-up using a form of hashing [18], but certain amount of
overhead in both space and time is inevitable even when the record structure is
statically known.

The goal of type-directed record compilation is to compile polymorphic record
operations into efficient codes. This is based on the following observation. The
polymorphic typing of #Y

val f = fn x => #Y x : [’a#{Y:’b},’b. ’a -> ’b]

statically predicts its dynamic behavior that the Y field is selected from a record
x of type ’a. Furthermore, when this function is applied to some record such as
{X=1, Y=2}, the type variable ’a is instantiated to its type {X:int, Y:int}. At
this time, the type system knows from the type instantiation for ’a#{Y:’b} that
the position of Y in {X:int, Y:int} is 2. The function can then be compiled to
the following code.

val f = fn I => fn x => x[I]

: [’a#{Y:’b},’b. index(’a,Y) -> ’a -> ’b]

x[I] loads the I-th element from a vector representation of a record x. index(’a,
Y) is a type that denotes the singleton set of the index value corresponding to Y

in a record ’a. When this function is applied to {X=1, Y=2}, this type is instanti-
ated to index({X:int, Y:int}, Y) which is equal to 2. From this information,
the compiler generates the following code for application.

f 2 {X = 1, Y = 2}

By this way, polymorphic field operation can be implemented with small over-
head of passing one extra integer value. Moreover, when the type of a record is
statically known, this method does not introduce any overhead in both space
and time. Based on these observations, a compilation method for polymorphic
record operations has been developed in [8,9]. The SML� compiler is developed
based on this method.

440 A. Ohori

5 Applications of Type-Directed Compilation

As we have reviewed above, type-directed polymorphic record compilation is
based on the combination of the following three ideas.

1. Introduce a special singleton type (e.g. a type of the form index(’a,Y) in
the above example) that denotes the singleton set of a runtime value needed
for compilation.

2. When a kinded type variable (e.g. ’a#{Y:int}) is abstracted, insert a lambda
abstraction over the corresponding singleton type (e.g. index(’a,Y)).

3. When the abstracted kinded type variable is instantiated to a ground type
(e.g. index({X:int, Y:int},Y)), generate the value denoted by the single-
ton type (e.g. 2) and insert a lambda application to pass this value.

The mechanism turns out to be a general compilation method having a num-
ber of applications in compiling various advance program constructs. Similar
mechanisms have later been variously called in the literature as evidences [6]
and dictionary conversion [13]. Although the literature did not seem to properly
compare these mechanisms, the essence of these mechanisms appears to be the
same as the one in [8], which first presented the ideas and developed them as a
type-directed compilation method.

In the design and implementation of SML�, this mechanism plays a central
role in achieving its advanced features. In the rest of this section, we outline the
applicability of using SML� implementation as examples.

5.1 Natural Data Representation

One major problem of functional languages is the lack of direct interoperabil-
ity with the C language. The difficulty comes from the need of garbage col-
lected memory management. Accurate garbage collection needs to identify all
the pointer locations. For this purpose, conventional implementation of func-
tional languages either represents all memory objects as pointers or introduces a
tag bit within non-pointer objects such as integers. Due to these special runtime
representations, conventional functional languages do not even have interoper-
ability with C on atomic data such as integers and floating point numbers.

SML� solves this problem and achieves direct interface to C. Functions and
libraries written in C can be directly called from SML� codes without writing
data conversion function. Following codes is a fragment of an OpenGL demo
program distributed with SML�.

val glNormal3dv =

dlsym (libgl, "glNormal3dv")

: _import (real * real * real) -> unit

...

map (fn (x,...) => (glNormal3dv x; ...)

[((1.0,0.0,0.0),...),...]

Record Polymorphism: Its Development and Applications 441

This code dynamically links glNormal3dv function in the OpenGL library and
calls it with a record created in SML�. The key to the development is natural data
representation [7] through type-directed compilation. In SML�, a heap object has
the following memory representation.

-th bit

0 1
non-

pointer pointer

-th word
object pointer

header
(including
size)

words

layout bitmap

bits

The actual object part (N-word part above) is the same as in C. For example, a
heap-allocated object of type real * real * real is represented as 3 consec-
utive 64 bit floating point data, together with its layout bitmap indicating that
all the words are non-pointers. The layout bitmap of an abject is used by the
garbage collector to locate the set of pointer fields in the object.

In a monomorphic language, it is a simple matter to construct such an object
representation. However, in a polymorphic language, constructing this natural
representation is a hard problem. To see the problem, consider the following very
simple code fragment, shown with its type, that creates a heap-allocated data.

fun f x = (x,x,x) : [’a. ’a -> ’a * ’a * ’a]

To compile this function, the compiler needs to generate codes that construct a
heap-allocated object (x,x,x). To allocate a heap block, the compiler needs to
know the size and alignment constraint of x. To generate a layout bitmap for
the garbage collector, the compiler needs to know whether x is a pointer or not.
These properties are not available at the time when this function is compiled.
Due to this problem, most conventional functional language compilers give up
natural data representation.

This problem is essentially the same as that of polymorphic record field access
we have analyzed. The occurrence of ’a in a tuple type indicates that its size
and the pointer property are required. We can then directly adopt the record
compilation method and introduce the following types:

– size(τ) to denote the singleton set of the size of τ , and
– tag(τ) to denote one bit data indicating whether τ is a pointer or not.

The compiler can then compile the above function to the following codes.

fun f (size, tag) x =

let

val bitmap = codes to compute a bitmap using size and tag

in

(x,x,x; bitmap)

end

: [’a. size(’a) * tag(’a) -> ’a -> ’a * ’a * ’a]

Since size(’a) and tag(’a) are constant for any concrete types of ’a, the
compiler can generate the following codes for application f 1.0

442 A. Ohori

f (2,0) 1.0

where the extra parameter (2,0) is computed and inserted by the compiler using
the instantiated type size(real) and tag(real).

5.2 First-Class Overloaded Primitives

In Standard ML, commonly used built-in primitives are overloaded but they
are statically resolved at the top-level. For example, if we write the following in
Standard ML as a top-level program

fun plus x = x + x

then Int.+ is selected for + and plus is bound to a function of type int ->

int. This strategy works reasonably well, but this becomes a big obstacle in
integrating SQL, where most of the primitives are overloaded. If we determine
the types of all the primitives in a SQL query at the time of its definition, then
we cannot make full use of ML polymorphism in dealing with databases.

One solution to this problem would be to introduce type classes of Haskell [5],
which would complicate both the design and implementation of the language.
With the record compilation mechanism, a limited form of overloading can be
introduced without much additional machinery. SML� adopts this simpler solu-
tion. For example, SML� infers the following polymorphic type for plus.

fun plus x = x + x;

: [’a::{int,IntInf.int,real,Real32.real,word,Word8.word}.
’a -> ’a]

where the constraint ’a::{...} on type variable ’a indicates the set of allowable
instance types. This function is compiled to the following function.

fun plus impl x = impl (x,x);

: [’a::{int,IntInf.int,real,Real32.real,word,Word8.word}.
plusImpl(’a) -> ’a -> ’a]

where plusImpl(b) is a singleton type of the addition function on the base type
b. When this function is applied, the compiler generates the appropriate plus
function and passes it to the function plus as follows.

plus Real.+ 1.0

The rest of the development is essentially the same as that of record compilation.

6 Conclusions

We have reviewed the polymorphic typing and compilation method for polymor-
phic record operations developed in [10,8,9,1] and implemented in SML� lan-
guage [16]. Its polymorphic type system allows modular software development,

Record Polymorphism: Its Development and Applications 443

and is the basis for seamlessly integrating SQL. The type-directed polymorphic
record compilation plays a central role in achieving natural data representation
and first-class overloaded primitive operations. We hope that their expositions
shed some light on the possibility of applying record polymorphism and its com-
pilation method to various advanced features in programming languages and
systems.

Acknowledgments. Katuhiro Ueno, a co-developper of the SML� compiler, has
made numerous contributions to the development of type-directed compilation
with record polymorphism and other features embodied in SML�.

Detailed comments by the anonymous reviewer have been very helpful in
improving the presentation of the paper.

References

1. Buneman, P., Ohori, A.: Polymorphism and type inference in database program-
ming. ACM Transactions on Database Systems 21(1), 30–74 (1996)

2. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Proceed-
ings of ACM Symposium on Principles of Programming Languages, pp. 207–212
(1982)

3. Girard, J.-Y.: Une extension de l’interpretation de gödel à l’analyse, et son appli-
cation à l’élimination des coupures dans l’analyse et théorie des types. In: Second
Scandinavian Logic Symposium. North-Holland (1971)

4. Gunter, C.A., Mitchell, J.C. (eds.): Theoretical Aspects of Object-Oriented Pro-
gramming. MIT Press (1994)

5. Hudak, P., Peyton Jones, S., Wadler, P., Boutel, B., Fairbairn, J., Fasel, J., Guz-
man, M., Hammond, K., Hughes, J., Johnsson, T., Kieburtz, D., Nikhil, R., Partain,
W., Perterson, J.: Report on programming language Haskell a non-strict, purely
functional language version 1.2. SIGPLAN Notices, Haskell Special Issue 27(5)
(1992)

6. Jones, M.: A theory of qualified types. In: Proc. European Symposium on Pro-
gramming (1992)

7. Nguyen, H.-D., Ohori, A.: Compiling ML polymorphism with explicit layout
bitmap. In: Proceedings of ACM Conference on Principles and Practice of Declar-
ative Programming, pp. 237–248 (2006)

8. Ohori, A.: A compilation method for ML-style polymorphic record calculi. In:
Proceedings of ACM Symposium on Principles of Programming Languages,
pp. 154–165 (1992)

9. Ohori, A.: A polymorphic record calculus and its compilation. ACM Transactions
on Programming Languages and Systems 17(6), 844–895 (1995), A preliminary
summary appeared at ACM Symposium on Principles of Programming Languages,
1992 under the title “A compilation method for ML-style polymorphic record cal-
culi”

10. Ohori, A., Buneman, P.: Type inference in a database programming language. In:
Proc. ACM Conference on LISP and Functional Programming, Snowbird, Utah,
pp. 174–183 (July 1988)

11. Ohori, A., Buneman, P., Breazu-Tannen, V.: Database programming in Machiavelli
– a polymorphic language with static type inference. In: Proc. the ACM SIGMOD
Conference, Portland, Oregon, pp. 46–57 (May-June 1989)

444 A. Ohori

12. Ohori, A., Ueno, K.: Making Standard ML a practical database programming lan-
guage. In: Proceedings of the ACM International Conference on Functional Pro-
gramming, pp. 307–319 (2011)

13. Peterson, J., Jones, M.: Implementing type classes. In: Proc. ACM Conference on
Programming Language Design and Implementation, pp. 227–236 (1993)

14. Remy, D.: Typechecking records and variants in a natural extension of ML.
In: Proceedings of ACM Symposium on Principles of Programming Languages,
pp. 242–249 (1989)

15. Reynolds, J.C.: Towards a theory of type structure. In: Paris Colloq. on Program-
ming, pp. 408–425. Springer (1974)

16. SML� home page, http://www.pllab.riec.tohoku.ac.jp/smlsharp/
17. Wand, M.: Corrigendum: Complete type inference for simple object. In: Pro-

ceedings of the Third Symposium on Logic in Computer Science, p. 132 (1988),
doi:10.1109/LICS.1988.5111

18. Wong, L.: An introduction to Remy’s fast polymorphic record projection. ACM
SIGMOD Record 24(3), 34–39 (1995)

http://www.pllab.riec.tohoku.ac.jp/smlsharp/

A Calculus of Chemical Systems

Gordon D. Plotkin

LFCS, School of Informatics, University of Edinburgh

Abstract. We present the Calculus of Chemical Systems for the mod-
ular presentation of systems of chemical equations; it is intended to be a
core calculus for rule-based modelling in systems biology. The calculus is
loosely modelled after Milner’s Calculus of Communicating Systems, but
with communication replaced by chemical reactions. We give a variety of
compositional semantics for qualitative and quantitative versions of our
calculus, employing a commutative monoid semantical framework. These
semantics include (qualitative and quantitative) Petri nets, transition re-
lations, ordinary differential equations (ODEs), and stochastic matrices.
Standard semantics of Petri nets, whether of transition relations, ODEs,
or stochastic matrices, fit within the framework as commutative monoid
homomorphisms. We give complete equational axiomatisations and nor-
mal forms for all the semantics, and full abstraction results for the ODE
and stochastic semantics. Definability can be characterised in some cases,
as was already known for ODEs; other cases, including the stochastic one,
remain open.

1 Introduction

In recent years various calculi have been proposed for modelling biological sys-
tems, typically intracellular pathways. These calculi generally fall into one of
two camps: ones based on process calculi, such as Milner’s pi-calculus [25], and
rule-based ones. Examples of the former include [32,33,31]; examples of the lat-
ter include BIOCHAM, κ, BioNetGen, and Dynamical Grammars [3,7,16,27].
One positive feature of the rule-based approach is that rules correspond natu-
rally to biological events, with a main example being chemical reactions. How-
ever rule-based models usually consist of sets of rules, and these are completely
unstructured. In sharp contrast, process calculi have natural means for spec-
ifying modularity such as a parallel combinator, to combine subsystems, and
the ability to name and parameterise subsystems. They can thereby avoid much
redundancy.

Here we aim at combining the naturalness of rules with the modularity of
process calculi. We keep both sides of the endeavour simple. Our rules are simple
reactions between species; our modularity provides parallelism and the ability
to define modules (without parameters). We call the resulting formalism the
Calculus of Chemical Systems and consciously model it on Milner’s CCS [24],
his Calculus of Communicating Systems. There are two versions of our calculus,
a qualitative one and, more importantly, a quantitative one where the rules are

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 445–465, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

446 G.D. Plotkin

equipped with rates. In both cases modules are non-recursive; this is more suited
to biological systems than the recursive modules of Milner’s CCS.

There are strong arguments in favour of the existence of modules at the cellu-
lar level [14,1], although it is worth remarking that the extent to which biological
systems are modular is controversial because of the high degree of interaction be-
tween supposed subsystems. Nonetheless, biologists do not describe entire cells
but rather particular pathways and they further note recurring patterns; see,
for example, [11] on the MAPK cascade. There is also speculation that modules
have evolutionary significance and provide robustness to environmental pertur-
bations [14,1]. In terms of Petri nets, where there has also been much research on
modularity, e.g., [20,12,29,2], we combine nets sharing commonly named places
(species) but not transitions (reactions). Whereas we provide means for describ-
ing modules one can also try to find modules within systems with given unstruc-
tured descriptions, often graphical; see [19] for a survey of work along these
lines.

Following the CCS paradigm, we look at a number of equivalences, here nat-
urally given via various compositional denotational semantics. In giving these
semantics we take up a suggestion of Pedersen [30] to incorporate the vari-
ous semantics within a general framework, here using commutative monoids.
(This is strongly connected to the use of rings of operators by Mjolsness and
Yosiphon [27].)

For the quantitative case, we consider two equivalencies, one based on ordinary
differential equations (ODEs), and the other on stochastic matrices. For the
qualitative case we consider a transition relation semantics and a Petri net one.
As is well known, reactions can also be naturally represented by Petri nets,
particularly P/T nets, and, indeed there is little difference between P/T nets
and sets of reactions. See [5,15,26] for surveys of the now extensive applications
of Petri nets to pathway simulation; see [36,17] for an early chemical reaction
formalism using a bipartite graph structure equivalent to P/T nets; and see [9]
for a survey of the application of graphical ideas to chemical reaction systems,
including two bipartite graph formalisms [18,6].

We provide a complete axiomatisation of each semantics that we consider.
We also consider definability, the main result here is a characterisation of the
collection of definable sets of ODEs due to Hárs and Tóth [13,8]. Continuing
to consider the analogy with Milner’s CCS, one could also seek analogues of
Hennesy-Milner logic, but we do not do so here.

Since our calculus and P/T nets are both ways of specifying sets of reactions,
there is a tight relationship between them: the kind of P/T nets we consider form
a complete model of the basic axiom system of the calculus, and all such nets are
definable, up to isomorphism. This gives the calculus a reading as a modular way
to describe Petri nets; conversely, the possibility arises of inputting programs via
a graphical input system.

As is already well-known, one can give P/T nets themselves qualitative or
quantitative semantics (for the quantitative semantics, see [15,37]: one has, of
course, to equip the transitions with rates). We show that each such direct

A Calculus of Chemical Systems 447

semantics agrees with the corresponding calculus semantics, by which we mean
that the latter factors homomorphically through the former via the P/T net
semantics of the calculus. As the various semantics of the P/T nets are standard,
this acts as a verification of the corresponding semantics of the calculus. Another
consequence is that properties of the semantics of P/T nets correspond with
properties of the semantics of processes of the calculus; therefore any means of
establishing that one holds provides a means of establishing that the other does.

The calculus of chemical systems is intended as a simulation language. So, in
the cases of the quantitative semantics, one could argue that one is interested in
the simulations that processes induce rather than the ODEs, or stochastic ma-
trices, themselves. These simulations are the solutions to the ODEs, or (samples
of) the Markov processes induced by the stochastic matrices, and are function-
ally dependent on given initial states. Unfortunately, such simulations do not
have a prima facie compositional (here, commutative monoid) structure. Follow-
ing a standard move in the programming language literature, see, e.g., [38,10],
one could say that the correct equivalence should be an analogue of behavioural
(a.k.a. observational, or, more neutrally, contextual) equivalence, that is, having
the same behaviour, here simulations, in all contexts. Pleasingly, it turns out
that we have full abstraction results in both cases, that is, the denotational and
contextual equivalences agree.

Our calculus is intended as a simplest possible rule-based calculus. It should
be possible to usefully add modularity to any rule-based calculus. Indeed the
grammatical approach in [27] provides what amounts to a parameterised module
mechanism. One can enrich our calculus with facilities for modifications and
simple complexes along the general lines of BIOCHAM, and with a construction
for (static) compartments: all of these are omnipresent in cellular networks.
One then has a calculus briefly described in [30], and called there the Calculus
of Biochemical Systems. That paper provided further linguistic facilities, for
example parameterised modules, several kinds of declarations, and functional
reaction rates; the aim was to provide a full-scale modular modelling language.
In principle, such further developments can be carried out for any rule-based
system.

After some technical preliminaries in Section 2, the calculus of chemical sys-
tems is presented in Section 3; we consider its syntax, an equational logic, and the
general commutative monoid semantics. The following sections consider specific
semantics. Section 4 gives “static” semantics for the qualitative and quantitative
versions of the calculus in terms of, respectively, P/T nets and P/T nets equipped
with reaction rates. The following three sections give “dynamic” semantics. Sec-
tion 5 gives a transition relation semantics of the qualitative calculus. Sections 6
and 7 give ordinary differential equation (ODE) and stochastic semantics of the
quantitative calculus.

Complete axiomatisations, and corresponding normal forms for the calculus,
are given for all of these semantics (Theorems 1, 2, 4, and 6, and following
discussions). In the two Petri net cases the equational logic is complete with-
out adding further axioms. Characterisations of definability are given for the

448 G.D. Plotkin

(immediately obvious) Petri net case and for the ODE case (Theorem 3); the
other cases present interesting open problems. Finally, the full abstraction result
for the ODE case is given by Theorem 5, and that for the stochastic case by
Theorem 7.

2 Technical Preliminaries

For any set A we write Mf (A) for the collection of finite multisets on A. For
any such multiset X , the multiplicity of a ∈ A is written X(a) and we write ||X ||
for its size, i.e.,

∑
a∈AX(a). The empty multiset is written as ∅; we may confuse

an a ∈ A with the multiset with unique element a occurring with multiplicity
1; and for any multisets X and Y we write mX and X + Y for the multisets
such that (mX)(a) = mX(a) and (X + Y)(a) = X(a) + Y (a), respectively. So,
in particular, for natural numbers m1, . . . ,mr, and a1, . . . , ar ∈ A we have the
multiset m1a1 + . . .+mrar. Finally, for any function f : A→ B, and a ∈ A and
b ∈ B, f [a
→ b] denotes the function everywhere equal to f except, possibly, at
a where it has the value b.

3 The Calculus

We assume given a nonempty finite set Spec of species, ranged over by S, I, O.
The set of species names is a parameter to our formalism and may be varied
according to the area of application.

The set of rules, ranged over by R, is given by:

R ::= X → Y

where X and Y are finite multisets of species.
We can use rules to describe chemical reactions, as in:

m1I1 + . . .+mrIr −→ n1O1 + . . .+ npOp

where the Ii are the reactants and the Oj are the products and the stoichiometry
is given by the mi and the nj . Rules can also be used to describe complex
formation, as in:

E + S −→ E-S

where E-S is an assumed name for an E, S-complex, and to describe transport,
as in:

S → nucleus[S]

where nucleus[S] is an assumed name for S inside the cell nucleus.
The set of (qualitative) processes, ranged over by P and Q, is then given by

the following abstract syntax:

P ::= R | P |Q | NIL | A = P ;Q | A

A Calculus of Chemical Systems 449

where A ranges over a countably infinite set ProcId of process identifiers. The
first case is that of a rule, and the second case P |Q is that of two systems P and
Q acting in parallel: as a species name may occur in both they may interact.
The third case is the empty system and the fourth case is a local definition: of A
as P in Q. The last case is whatever system the identifier A denotes: as such it
will normally be a fragment of a larger process in which it receives a definition.

Local definition is a binding construct with A having scope Q in A = P ;Q.
We have the usual notions of the free process identifiers FP(P) occurring in a
process P , of α-equivalence of processes, P ≡α Q, and of the capture-avoiding
substitution P [Q/A] of a process Q for a process identifier A in a process P . We
adopt a standard convention and regard α-equivalent processes as identical.

For the set of quantitative processes, rules instead have the form

X
r−→ Y

where r is a positive real (i.e., r > 0), which gives the rate at which the rule
occurs.

There are natural abbreviations. For reversible reactions, we could write

X
r←→
s
Y

as an abbreviation for
X

r−→ Y | Y s−→ X

in the quantitative language (and here, and below, we assume the evident cor-
responding abbreviations for the qualitative language).

For an enzymatic reaction in which an enzyme E converts a substrate S to a
product P we could write

E : S
r,s,t−−−→ P

as an abbreviation for

S + E
r←→
s
E-S | E-S

t−→ E + P

Finally for a reversible enzymatic reaction with different enzymes E and E′ in
the forwards and backwards directions we could write

E : S
r,s,t←−−−→

r′,s′,t′
P : E′

for

E : S
r,s,t−−−→ P | E′ : P

r′,s′,t′−−−−→ S

There is an interesting empirical adequacy question here concerning the design
of abbreviations: one needs to be able to use all the abbreviations commonly
found in the literature. More ambitiously one may try to generate useful such
abbreviations systematically. For example one may add those suggested in [39]
in order to obtain natural, succinct descriptions of a variety of enzyme kinetics.

450 G.D. Plotkin

There is an evident, very simple, equational theory for processes (more pre-
cisely, one for each of the qualitative or quantitative cases). It has the standard
rules of reflexivity, transitivity and symmetry and substitutivity for the parallel
construct, together with the following congruence rule for local definitions:

P = P ′ Q = Q′

(A = P ;Q) = (A = P ′;Q′)

The axioms are that the parallel construct and NIL form a commutative monoid:

(P1 | P2) | P3 = P1 | (P2 | P3) P1 | P2 = P2 | P1 P | NIL = P

together with:
(A = P ;Q) = Q[P/A]

Every process can be put in the following canonical form:

A1 | . . . | Am | R1 | . . . | Rn

associating parentheses to the left. We remark that the rule of substitutivity for
local definitions is redundant as processes can be put in canonical form without
using it.

It follows from Theorem 1, below (and from its analogue for the quantitative
case) that two such canonical forms are provably equal if, and only if, the same
process names and reactions occur in each, possibly in different orders; in other
words if the two multisets of process names and reactions obtained from each
canonical form are equal. With that we know that processes have normal forms,
i.e., canonical forms unique up to reordering. The same situation obtains with
respect to all the semantics considered below: there are evident canonical forms,
and the relevant completeness theorems ensure that they are, in fact, normal
forms, i.e., they are unique up to reordering.

We will give a variety of (denotational) semantics for both the qualitative and
quantitative calculi. It proves convenient to organise all these under one scheme.
Suppose that we have a structure

(M, |M ,NILM)

where |M is a binary operation on M and NILM is an element of M , and for
every rule R we are given an element ofM , its semantics, writtenM [[R]], slightly
abusing notation. A process environment is a map

ρ : ProcId→M

For every process P we give its semantics M [[P]](ρ) relative to a process envi-
ronment ρ, by:

M [[R]](ρ) = M [[R]]
M [[P | Q]](ρ) = M [[P]](ρ) |M M [[Q]](ρ)
M [[NIL]](ρ) = NILM

M [[A = P ;Q]](ρ) = M [[Q]](ρ[A
→M [[P]](ρ)])
M [[A]](ρ) = ρ(A)

A Calculus of Chemical Systems 451

Note thatM [[P]](ρ) depends only on the values that ρ assigns to the free process
variables of M ; we may therefore write M [[P]] instead of M [[P]](ρ) when M is
closed; elements of M of the form M [[P]] are said to be definable. As is usual,
denotational semantics commutes with substitution, by which is meant that:

M [[P [Q/A]]](ρ) =M [[P]](ρ[A
→M [[Q]](ρ)])

always holds.
IfM is a commutative monoid then we obtain a model of the above equational

theory, meaning that if P = Q is provable then M [[P]](ρ) = M [[Q]](ρ), for all
ρ. Conversely, we say that such a model is complete if whenever M [[P]](ρ) =
M [[Q]](ρ) for all ρ then P = Q is provable.

One may instead have a structure (M, |M ,NILM), which is not a commutative
monoid, but can be equipped with a congruence ∼ such that M/ ∼ is a commu-
tative monoid: this occurs, for example, in the case of Petri nets. One then has a
model in the weaker sense, that if P = Q is provable then M [[P]](ρ) ∼M [[Q]](ρ)
for all ρ, and one defines completeness accordingly.

4 Petri Net Semantics

We begin our treatment of specific semantics with the main qualitative case, that
of Petri nets. Following the above framework we first need to give a suitable set
Net of Petri nets. We take these to be structures

(T, pre, post)

where T , the set of transitions, is a finite subset of {0, 1}∗ and pre, post : T →
Mf (Spec). We may write pre(t), post(t) as, respectively, ·t, t·. We do not specify
a set of places as we use the same set of places, Spec, for all our nets. Note
too that places are identified with (basic) species, as is normally done when
using Petri nets to describe biochemical processes, and which corresponds to the
convention in pathway graphical formalisms of having each species occur just
once in the graph. Further, transitions are kept anonymous: this could, of course
be changed, but they are normally kept so, and we know no reason to depart
from that practice. Our nets are P/T nets with the small differences that we
have a fixed set of places and that we do not have an initial marking.

The semantics of rules is given by:

Net[[X −→ Y]] = ({ε}, {ε
→ X}, {ε
→ Y })

Next, the function |Net: Net
2 → Net is defined by:

(T, pre, post) |Net (T
′, pre′, post′) = (0T ∪ 1T ′, pre′′, post′′)

where

pre′′(u) =def

{
pre(w) (if u = 0w)
pre′(w) (if u = 1w)

452 G.D. Plotkin

and

post′′(u) =def

{
post(w) (if u = 0w)
post′(w) (if u = 1w)

And we define:
NILNet = (∅, ∅, ∅)

meaning the constantly ∅ function in the second and third components.
With these definitions (Net, |Net,NILNet) is not a commutative monoid, be-

cause of slight differences of transitions. However we can define a congruence,
putting

(T, pre, post) ∼ (T ′, pre′, post′)

if, and only if, the two nets are isomorphic, meaning that there is a bijection
θ : T ∼= T ′ such that, for all t ∈ T we have pre(t) = pre′(θ(t)) and post(t) =
post′(θ(t)), and, dividing out by this congruence, we do obtain a commutative
monoid, as required.

In a way, the calculus of chemical systems is little more than a way of writing
down Petri nets, and this results in some natural formal relations between the
two. Concerning definability, as is evident, every net in Net is definable by a
program, up to isomorphism. This means that for every such net N there is a
closed process P such that [[P]] ∼ N . This is the formal correlate of the pragmatic
possibility of inputting processes by drawing nets, just as the semantics is the
formal correlate of the pragmatic possibility of defining nets by processes.

We also have that the Petri net semantics is complete, and that the canonical
forms are unique up to reordering (we then say that they are normal forms):

Theorem 1. The following are equivalent for any two processes P and Q:

1. P and Q can be proven equal.
2. Any two canonical forms of P and Q are the same up to reordering.
3. Net[[P]](ρ) ∼ Net[[Q]](ρ) for all ρ.

Proof. Clearly (2)⇒ (1)⇒ (3). So assume (3) and consider two processes P and
Q with canonical forms A1 | . . . | Am | R1 | . . . | Rn and A′

1 | . . . | A′
m′ | R′

1 | . . . |
R′

n′ . Recalling that Spec is nonempty, choose S ∈ Spec, and let B1, . . . , Bn be a
list of the process variables occurring freely in either one of P or Q, and let s be
the maximum of the number of occurrences of S in an Rj or a R

′
j′ . Now choose ρ

so that ρ(Bk) is a net with one transition ε such that ·ε(S) = s+k and ε·(S) = 0.
Then, as Net[[P]](ρ) ∼ Net[[Q]](ρ), one has that the two chosen canonical forms
of P and Q are identical up to reordering (we omit further details). %�

There is a variant of the Petri net semantics worth remarking. One only allows
nets not containing any transition w with ·w = w· and takes the semantics of
X → X to be NILNet. Everything then goes through as before except that in
the proof system one adds the axiom

X → X = NIL

A Calculus of Chemical Systems 453

and in canonical forms one forbids rules of the form X → X .
In the quantitative case rules have associated positive reals and we instead

take our set of quantitative Petri nets, CNet to be structures

(T, pre, post, rate)

where T , pre and post are as before and rate : T → R+, where R+ is the set of
positive reals. (Formally, these nets are stochastic nets but for the same small
differences as before: there is a fixed set of places and there is no initial marking.
However, our nets have no fixed intended interpretation, and, indeed, will receive
both an ODE and a stochastic semantics.)

One then makes the evident changes to the semantics for the qualitative case:
we do not spell them out here. The evident analogue of Theorem 1 holds, with
the analogous proof. One also has the evident analogue of the above variant of
the Petri net semantics, now with X

r−→ X = NIL as the additional axiom.

5 Qualitative Semantics: Transition Relations

Our other semantics of the qualitative calculus is of transition relations on mark-
ings, here finite multisets of species. The idea is that the marking gives the popu-
lation of each species and the transitions correspond to the occurrence of a finite
multiset of reactions, or other rules. So we set TRel to be the set of relations →
on Mf (Spec) satisfying the following closure conditions:

X → X
X → Y X ′ → Y ′

X +X ′ → Y + Y ′

The first corresponds to the fact that the multiset of rules firing may be empty;
the second corresponds to the fact that the firings of two multisets can be com-
bined into their joint firing. Given any relation → on Mf (Spec) there is a least
such relation →∗ containing it and closed under the rules; we have:

→∗= {(Z +
∑
i=1,n

miXi, Z +
∑
i=1,n

miYi) | Xi → Yi,mi ∈ N (i = 1, n)}

We say that → generates →∗.
The semantics of rules is given by:

TRel[[X → Y]] = {(Z + kX,Z + kY) | Z ∈Mf (Spec), k ∈ N} (= {(X,Y)}∗)

and we define a commutative monoid structure on TRel by:

→ |TRel →′= {(kX + k′X ′, kY + k′Y ′) | k, k′ ∈ N, X → Y,X ′ →′ Y ′} (= (→ ∪ →′)∗)

and:
NILTRel = {(X,X) | X ∈ Mf(Spec)} (= ∅∗)

Note that |TRel is absorptive, i.e., that, for any transition relation →, we have:

→ |TRel → = →

454 G.D. Plotkin

We do not know any characterisation of the relations defined by closed processes,
other than the obvious one that they are generated by a finite relation. An
obvious necessary condition is that, for any X , the set {Y | X → Y } is finite.
However there are closed non-finitely generated relations obeying this condition,
e.g., {(mS, nS) | m ≥ 1,m ≤ n ≤ m2} where the maximum gap size, m2 −m,
grows too quickly. This example also satisfies two other obvious conditions: that
both the set {Y | X → Y } and its size are recursive in X .

As well as the axioms above, another three hold in TRel:

P | P = P

X → X = NIL

X → Y | X ′ → Y ′ = X → Y | X ′ → Y ′ | X +X ′ → Y + Y ′

The first corresponds to the absorptiveness of |TRel and the others to the above
closure conditions. Every process can be put in a canonical form. This is, as
before, a composition of process names and rules but where, in addition, no pro-
cess name or rule occurs twice, and where no rule is in the closure of the others
(considered as forming a relation).

As we now see, with these additional axioms we obtain completeness for the
transition relation semantics:

Theorem 2. The following are equivalent for any two processes P and Q (as-
suming there is an element of Spec not occurring in P or Q):

1. P and Q can be proven equal using the above axioms for the qualitative
semantics.

2. Any two canonical forms of P and Q are the same up to reordering.
3. TRel[[P]](ρ) = TRel[[Q]](ρ) for all ρ.

Proof. As in the case of Theorem 1 we need only assume (3) and prove (2). So let
A1 | . . . | Am | R1 | . . . | Rn and A′

1 | . . . | A′
m′ | R′

1 | . . . | R′
n′ be canonical forms

of P and Q. For any Ai, first choose S not occurring in P or Q and then choose
ρ such that ρ(Ai) = {(S, 0)}∗ and, otherwise, is NILTRel. Then TRel[[P]](ρ) is
the least transition relation containing (S, ∅) and the Ri (considered as ordered
pairs of multisets). So, by assumption, (S, ∅) also occurs in TRel[[Q]](ρ) and so,
as S occurs in no R′

j′ , Ai must be one of the A′
i′ . With this, and the symmetric

argument, we see that the Ai and the A′
i′ are the same.

Next, taking ρ constantly NILTRel, we see that the Rj and the R′
j′ generate

the same transition relations using the above closure conditions as rules. Observe
that if (X,Y) is generated from a set of pairs of multisets, then either X = Y = ∅
or (X,Y) is in the set or else it is generated from (X ′, Y ′) in the set with
||X ′||+ ||Y ′|| < ||X ||+ ||Y ||. So as R1 (say) is not ∅ → ∅ either it is some R′

j′ or else
it is generated from R′

j′ , which are smaller in this sense. But those R′
j′ are, in

turn, generated from smaller Ri, and so, in this last alternative, R1 is generated
from strictly smaller Ri, which contradicts canonicity. Arguing symmetrically
we see that the Rj and the R′

j′ coincide. %�

A Calculus of Chemical Systems 455

This theorem yields completeness for the set of transition relations formed
from Spec expanded with an additional species name. As the additional species
name is only used in the case that P and Q are open, the theorem holds generally
for closed processes. The possibility of expanding Spec also ensures that that the
equivalence of (1) and (2) holds without any assumption. It is worth noting that
it follows from the proof that one can restrict the environments in (3) to be
definable, by which we mean that all their values are definable.

One can, of course, directly define a transition relation in TRel on every net
in Net. Specifically to every net N = (T, pre, post) one assigns the following
transition relation:

R(N) =def {(Y +
∑
t∈T

X(t)·t, Y +
∑
t∈T

X(t)t·) | X ∈Mf (T)} (= {(·t, t·)}∗)

The function R : Net→ TRel preserves all the semantical structure:

Proposition 1. For any rule R we have:

TRel[[R]] = R(Net[[R]])

and, further, R is a monoid homomorphism.

Consequentially, the Petri net and transition relation semantics are consistent
with the usual multi-transition semantics of Petri nets in that, for any qualitative
process P and any Net process environment ρ, we have:

TRel[[P]](R◦ρ) = R(Net[[P]](ρ))

We can think of R as giving the semantics of Petri nets. As syntactic objects,
Petri nets are generated from transitions by finite composition, and R preserves
that structure. The qualitative calculus provides a syntax for nets with its rules
and finite composition structure and the completeness of the axiom system iden-
tifies nets as equivalence classes of terms, and so as a kind of non-free syntax.

There are other possible transition relations one can associate to Petri nets,
such as transitions occurring by virtue of a single transition firing, or by virtue
of a set of transitions firing, or by virtue of a maximal set (or multiset) of
transitions firing. Of these, the first two are modular, meaning that they can be
equipped with a suitable monoidal structure, but the last two are not. We chose
the multiset semantics as it seemed the most natural given that one is in any
case working with markings as multisets. Another variant would have been to
decorate the transition relation with the set or multiset of transitions involved,
but we decided against that as we are keeping transitions anonymous.

Petri nets being at once graphs and supporting the fundamentals of chemistry
themselves provide a fundamental graphical notation. Biologists make much use
of informal graphical means of describing pathways; further, there has been
work by Kohn, Kitano and others, see, e.g., [22,21,23], to produce more for-
mal graphical notations adequate for flexible natural pathway description. By
taking abbreviatory conventions seriously, meaning having them as additional

456 G.D. Plotkin

language constructs, one can give a different graphical semantics than Petri nets,
for example Petri nets extended with reversible transitions. In that way one’s
formalism would begin to make contact with the more informal graphical ap-
proaches, but still retain direct contact with the more basic Petri nets, and their
various semantics.

6 Quantitative Semantics: Differential Equations

Our first semantics of the quantitative calculus is given in terms of systems of
ordinary differential equations. We associate to a process a system of ODEs of
the form:

d[S1]
dt = p1

...
d[Sm]
dt = pm

where, as usual, we write [S] for the concentration of a species S, and S1, . . . , Sm

is an enumeration of the species in Spec, and p1, . . . , pm are real polynomials over
the [Si]. We need to make a commutative monoid Diff out of such sets of ODEs
and to that end we identify them with maps from Spec to the commutative
monoid of real polynomials over the [Si]. They then have the standard pointwise
monoid structure:

(p |Diff q)(S) = p(S) + q(S)

and:
NILDiff(S) = 0

It only remains to give the semantics of rules:

Diff[[X
r−→ Y]](S) = r(Y (S)−X(S))

∏
S∈Spec

[S]X(S)

Not all sets of ODEs of the above form can arise as the semantics of (closed)
processes or, equivalently, using Proposition 2 below, of quantitative Petri nets.
However there is a simple condition, characterising those that are so definable.
Expand each pi as a linear sum of distinct monomials:

∑
j aijqij (ai �= 0). We

then have the following theorem, due to Hárs and Tóth; we include a proof for
the sake of completeness.

Theorem 3. A set of ODEs of the above form is definable if, and only if, when-
ever any aij is negative then the power of [Si] in qij is non-zero.

Proof. It is easy to see that this condition holds for all definable sets of equations.
For the converse, it is enough to show that, for any i, j, we can define a rule Rij

such that Diff[[Rij]](S) = 0, if S �= Si, and Diff[[Rij]](S) = aijqij . With that, the
parallel composition of the Rij defines the given set of differential equations.

A Calculus of Chemical Systems 457

So, let qij have the form
∏

k=1,n[Sk]
mk . There are two cases. Suppose first

that aij is negative. Then mi �= 0 and we take the rule Rij to be

m1S1 + · · ·+mnSn
aij/mi−−−−→ m1S1 + · · ·+mi−1Si−1 +mi+1Si+1 + · · ·+mnSn

The other case is where aij is positive, when we take the rule Rij to be

m1S1 + · · ·+mnSn
aij−−→ Si + (m1S1 + · · ·+mnSn)

%�

There can be non-trivial examples of different quantitive (closed) processes
(or, equivalently systems of reactions, or, as we see below, non-isomorphic quan-
titative Petri nets) having the same ODE semantics. The example

2A
2r−→ B +A = 2A

r−→ 2B

was (essentially) given in [4], and another example was given in [13]; see [34,35]
for work on finding optimal reaction systems having given ODEs. We now ax-
iomatise this equivalence. The following axioms hold:

X
r−→ X = NIL

X
r+s−−→ Z = X

r−→ Z | X s−→ Z

X + Y
r−→ X + Z = X + Y

r−→ X | X + Y
r−→ X + Y + Z

X + Y + Z
r−→ X = X + Y + Z

r−→ X + Y | X + Y + Z
r−→ X + Z

X
r−→ X + Y + Z = X

r−→ X + Y | X r−→ X + Z

X + Y
r−→ X | X + Y

s−→ (X + Y) + Y = NIL (if r = s)

X + Y
r−→ X | X + Y

s−→ (X + Y) + Y = X + Y
r−s−−→ X (if r > s)

X + Y
r−→ X | X + Y

s−→ (X + Y) + Y = X + Y
s−r−−→ (X + Y) + Y (if r < s)

The first two of these axioms are easy to understand. For the others, let us
say that a rule of the form X + Y

r−→ X is of consumption type and that a rule
of the form X

r−→ X + Y is of production type. Then the third axiom divides
an arbitrary rule into one of each type; the fourth axiom divides a consumption
rule into two other consumption rules that are simpler in the sense that less is
consumed in each; the fifth axiom divides a rule of production type into two
simpler such rules; and the last three concern the balance between production
and consumption when a consumption rule is put in parallel with a production
one.

The six consumption and production axioms may be easier to understand if
we write Y

r−→
X

Z for X + Y
r−→ X + Z. Consumption and production axioms

then take the respective forms Y
r−→
X

∅ and ∅ r−→
X

Y , and the six axioms become:

458 G.D. Plotkin

Y
r−→
X

Z = Y
r−→
X

∅ | ∅ r−−−→
X+Y

Z

Y + Z
r−→
X

∅ = Z
r−−−→

X+Y
∅ | Y r−−−→

X+Z
∅

∅ r−→
X

Y + Z = ∅ r−→
X

Y | ∅ r−→
X

Z

Y
r−→
X

∅ | ∅ s−−−→
X+Y

Y = NIL (if r = s)

Y
r−→
X

∅ | ∅ s−−−→
X+Y

Y = Y
r−s−−→
X

∅ (if r > s)

Y
r−→
X

∅ | ∅ s−−−→
X+Y

Y = ∅ s−r−−−→
X+Y

Y (if r < s)

Note that in all the equations the left-hand-side of the rules do not change: in
terms of the ODEs we are only reorganising the contributions to the coefficients
of the monomials.

There is a canonical form. Say that a consumption, respectively production,
rule is unary if it is of the form S

r−→
X

∅, respectively ∅ r−→
X

S. Then a process is

in canonical form if it is a composition of process names and such unary rules,
with no species having both a consumption and a production rule. Every process
can be put in canonical form: one eliminates trivial rules using the first axiom,
reduces rules to compositions of unary ones using the next three axioms, and
combines unary rules with identical left- and right-hand sides using the next, and
finally uses the last two rules to ensure that no species has both a consumption
and a production rule.

With the addition of the above axioms, the logic of the quantitative calculus
is complete for the ODE semantics:

Theorem 4. The following are equivalent for any two processes P and Q:

1. P and Q can be proven equal using the above axioms for the ODE semantics.
2. Any two canonical forms of P and Q are the same up to reordering.
3. Diff[[P]](ρ) = Diff[[Q]](ρ) for all ρ.

Proof. As always, we need only assume (3) and prove (2). So choose canonical
forms A1 | . . . | Am | R1 | . . . | Rn and A′

1 | . . . | A′
m′ | R′

1 | . . . | R′
n′ of P and Q.

A consumption rule X + S
r−→ X has semantics with value 0 everywhere except

at S where it has value
−r[S]

∏
i

[Si]
X(Si)

A production rule X
r−→ X +S has semantics with value 0 everywhere except at

S where it has value
r
∏
i

[Si]
X(Si)

A Calculus of Chemical Systems 459

So, considering Diff[[P]](ρ) and Diff[[Q]](ρ), with ρ having value 0 everywhere, we
see that the Ri and the R′

i′ must coincide.
To show that A1, say, occurs with the same multiplicity in the two canonical

forms one employs the environment ρ, which has value 0 everywhere except

at A1 where it has value Diff[[nS
1−→ ∅]] where S is a chosen element of Spec

and n > 0 is chosen greater than the multiplicity of S in the left-hand side of
any Ri. %�

As before, it follows from the proof that one can restrict the environments in
condition (3) to be definable.

One can directly assign ODE semantics to Petri nets in CNet, as was already
done more generally in [15]. We set:

D(T, pre, post, rate)(S) =
∑
t∈T

rate(t)(t·(S)− ·t(S))
∏

S′∈Spec

[S′]
·t(S′)

thereby defining the semantics D : CNet→ Diff. As before this Petri net seman-
tics preserves all the semantical structure:

Proposition 2. For any rule R we have:

Diff[[R]] = D(CNet[[R]])

Further, D : (CNet, |CNet,NILCNet) → (Diff , |Diff ,NILDiff) is a monoid
homomorphism.

So the Petri net and ODE semantics are consistent in that, for any quantitative
process P and any CNet process environment ρ, we have:

Diff[[P]](D◦ρ) = D(CNet[[P]](ρ))

We now turn to our full abstraction results for the ODE semantics. We begin
with a notion of “same simulation behaviour.” For any p,q ∈ Diff, define p ∼ q

to hold if, and only if, for all non-negative initial values (i.e., those in x ∈ R
|Spec|
≥0)

there is a non-empty time interval [0, t) on which the ODEs given by p and q
have the same solutions with initial value x. Thus p ∼ q if the ODEs given by p
and q have the same solutions locally, for any given initial value. This relation is
evidently an equivalence; it seems a reasonable definition as, in general, ODEs
need not have global solutions.

One concern about the definition of same simulation behaviour is that solu-
tions of the ODEs given by p may have negative components, even although the
initial value is non-negative. However this does not happen for definable p, as,
in that case, solutions remain non-negative, as shown in [36,17]; one can prove
this using an immediate consequence of the above definability condition, that if
[Si] = 0, then pi ≥ 0.

Next we define the set of process contexts C,D by the following abstract
syntax:

C ::= R | C|D | NIL | A = C;D | A | [·]

460 G.D. Plotkin

which is the same as that for processes except that the possibility of a “hole” [·]
has been added. Given any context C and process P one obtains a process C[P]
by replacing all the holes in C by P . We then define our notion of contextual
equivalence by:

P ≈ Q iff ∀C. (C[P] and C[Q] closed ⇒ Diff[[C[P]]] ∼ Diff[[C[Q]]])

We now show that our semantics is indeed fully abstract, in that contextual
equivalence coincides with having the same ODE semantics. First we need a
lemma.

Lemma 1. For any p,q ∈ Diff, p ∼ q holds if, and only if, p = q.

Proof. Assume p ∼ q. Fix an initial value x. By a standard existence theorem for
ordinary differential equations (either that of Cauchy-Peano or that of Picard-
Lindelöf), the ODEs given by p have a solution on some non-empty [0, t) with
the given initial value, and so, by the assumption, the ODEs given by q have

the same solution. Such solutions determine the values of the d[Si]
dt at the given

initial value, and so the polynomials p([Si]) and q([Si]) have the same values at

the given initial value. As the initial value was chosen arbitrarily from R
|Spec|
≥0 ,

it follows that the two polynomials are identical. %�

Theorem 5. For any processes P and Q we have:

P ≈ Q iff ∀ρ.Diff[[P]](ρ) = Diff[[Q]](ρ)

Proof. For the implication from right to left, assume that ∀ρ.Diff[[P]](ρ) =
Diff[[Q]](ρ). It is then easy to show for any context C that ∀ρ.Diff[[C[P]]](ρ) =
Diff[[C[Q]]](ρ); the proof is by induction on the structure of C.

Conversely, suppose that P ≈ Q. Let ρ be a definable environment, and
suppose that ρ(A) = Diff[[PA]]; and let A1, . . . , An be a list without repetition of
all the free process variables of P or Q. Define C be the context

A1 = PA1 ;
...

An = PAn ;
[·]

Note that both C[P] and C[Q] are closed; this lets us apply the assumption:

Diff[[P]](ρ) = Diff[[P]](ρ[A1 �→ Diff[[PA1]]] . . . [An �→ Diff[[PAn]]])
= Diff[[P [PAn/An] . . . [PA1/A1]]](ρ)

(substitution and denotation commute)
= Diff[[C[P]]](ρ) (using the proof rules)
= Diff[[C[Q]]](ρ) (by assumption and Lemma 1)
= Diff[[Q]](ρ)

The conclusion then follows by Theorem 4, and the remark after it on definable
environments.

%�

A Calculus of Chemical Systems 461

7 Quantitative Semantics: Stochastic Matrices

Our other semantics of the quantitative calculus is given in terms of the set
SMatrix of stochastic transition matrices. These are maps Q : Mf (Spec)

2 → R

such that
Q(X,Y) ≥ 0 (if Y �= X)

and
Q(X,X) = −

∑
Y �=X

Q(X,Y)

They have the following pointwise commutative monoid structure:

(Q |SMatrix Q
′)(X,Y) = Q(X,Y) +Q′(X,Y)

NILSMatrix(X,Y) = 0

For the semantics of rules, first define (X,Y) - (X ′, Y ′) to hold for multisets
X,Y,X ′, Y ′ iff, for some (necessarily unique) Z we have X ′ = Z +X and Y ′ =
Z + Y . Then, in case Y �= X and X ′ ≥ X , we put:

SMatrix[[X
r−→ Y]](X ′, Y ′) =

⎧⎨⎩
r
(
X′
X

)
(if (X,Y) - (X ′, Y ′))

−r
(
X′
X

)
(if Y ′ = X ′)

0 (otherwise)

where (
X′

X

)
=def

∏
S∈Spec

(X′(S)
X(S)

)
In all other cases we put:

SMatrix[[X
r−→ Y]](X ′, Y ′) = 0

We do not know any characterisation of the stochastic transition matrices
definable by nets. One necessary condition is that there is a k such that for all
X we have |{Y | Q(X,Y) > 0}| ≤ k. However a first problem seems to be,
allowing nets with countably many transitions, to characterise the stochastic
transition relations defined by such nets.

The following axioms hold:

X
r−→ X = NIL

X
r+s−−→ Z = X

r−→ Z | X s−→ Z

There is an evident canonical form: a composition of process names and rules in
which no rule of the form X

r−→ X occurs and at most one rule with any given
left- and right-hand side occurs. With the addition of the above two axioms, the
logic of the quantitative calculus is complete for the stochastic semantics:

Theorem 6. The following are equivalent for any two processes P and Q:

462 G.D. Plotkin

1. P and Q can be proven equal using the above axioms for the stochastic se-
mantics.

2. Any two canonical forms of P and Q are the same up to reordering.
3. SMatrix[[P]](ρ) = SMatrix[[Q]](ρ) for all ρ.

Proof. As always, we need only assume (3) and prove (2). So choose canonical
forms A1 | . . . | Am | R1 | . . . | Rn and A′

1 | . . . | A′
m′ | R′

1 | . . . | R′
n′ of P and Q.

Setting ρ to be constantly NILSMatrix for any X,Y ∈ Mf (Spec) with X �= Y ,
we have:

SMatrix[[P]](ρ)(X,Y) =
∑

(Xj ,Yj)�(X,Y)

rj
(
X
Xj

)
where Rj = Xj

rj−→ Yj ; a similar formula holds for Q, with R′
k = X ′

k

r′k−→ Y ′
k.

We prove that X
r−→ Y occurs in one canonical form iff it is in the other by

induction on ||X ||. So consider an Rj = Xj
rj−→ Yj , to show it is some R′

k. From
the above formula for SMatrix[[P]] we have:

SMatrix[[P]](ρ)(Xj , Yj) =
∑

(Xj′ ,Yj′)�(X,Y)

||Xj′||<||Xj||

rj′
(

X
Xj′

)
+ rj
(
Xj

Xj

)

using the fact that if (X ′, Y ′) - (X,Y) and ||X ′|| = ||X || then X ′ = X and
Y ′ = Y . Similarly, we have:

SMatrix[[Q]](ρ)(Xj , Yj) =
∑

(X′
k, Y

′
k) � (Xj , Yj)

||X′
k|| < ||Xj||

r′k
(

X
Xj′

)
+ δ

where δ = 0 unless there is a (necessarily unique) R′
k = X ′

k

r′k−→ Y ′
k with X ′

k = Xj

and Y ′
k = Yj , when δ = r′k

(X′
k

X′
k

)
(= r′k

(
Xj

Xj

)
).

We know that SMatrix[[P]](ρ)(Xj , Yj) = SMatrix[[Q]](ρ)(Xj , Yj), so, applying

the induction hypothesis, we see that rj
(
Xj

Xj

)
= δ. So, as rj �= 0, we have rj

(
Xj

Xj

)
=

δ = r′k
(
Xj

Xj

)
, and so r′k = rj . Therefore Rj occurs in the canonical form of Q, as

required. The converse assertion, that rules appearing in the canonical form of
Q also appear in the canonical form of P is proved similarly.

To see that the same process identifiers occur in both canonical forms,
and with the same multiplicities, suppose that A has multiplicity m in P
and multiplicity m′ in Q. Define ρ to have value NILSMatrix everywhere ex-

cept at A where it has value SMatrix[[nS
1−→ ∅]], for chosen S ∈ Spec, and

n > 0 greater than the multiplicity of S in the left-hand side of any Rj

or Rj′ . Noting that (X ′, Y ′) - (X, ∅) iff X ′ = X and Y ′ = ∅ we that
SMatrix[[R1 | . . . | Rn]](ρ)(nS, ∅) = 0 and so SMatrix[[P]](ρ)(nS, ∅) = mn!. Ar-
guing similarly, we see that SMatrix[[Q]](ρ)(nS, ∅) = m′n! where m′ is the mul-
tiplicity of A1 in the canonical form of Q. It follows from the assumption that
m′ = m.

%�

A Calculus of Chemical Systems 463

As before, it follows from the proof that one can restrict the environments in
condition (3) to be definable.

There is a standard Petri net stochastic semantics S : CNet → SMatrix, see,
e.g., [37,15]. It is given for Y �= X by:

S(T, pre, post, rate)(X,Y) =
∑
t∈T

{rate(t)
(
X
·t

)
| (·t, t·) - (X,Y)}

and thereby determined on the diagonal.

Proposition 3. For any rule R we have:

SMatrix[[R]] = S(CNet[[R]])

and S is a monoid homomorphism.

It follows that the Petri net and stochastic semantics are consistent in that, for
any quantitative process P and any CNet process environment ρ, we have:

SMatrix[[P]](S◦ρ) = S(CNet[[P]](ρ))

As in the case of the ODE semantics, we can consider notions of contextual
equivalence for stochastic simulation. The analogue of a solution of the ODEs
with a given initial value is the Markov process induced by a stochastic matrix
Q ∈ SMatrix, with a given initial point-mass probability distribution δX . (For
an explanation of how Markov processes arise from stochastic matrices see, for
example, Chapter 2 of [28].)

For any Q,Q′ ∈ SMatrix, define Q ∼ Q′ to hold if, and only if, for any given
initial point-mass probability distribution δX , Q and Q′ induce the same Markov
process. Contextual equivalence is then defined by:

P ≈ Q iff ∀C. (C[P] and C[Q] closed ⇒ SMatrix[[C[P]]] ∼ SMatrix[[C[Q]]])

Lemma 2. For any Q,Q′ ∈ SMatrix, Q ∼ Q′ holds if, and only if, Q = Q′.

Proof. The result is an immediate consequence of the fact that the X-th row of
any Q ∈ SMatrix is determined by the induced Markov process starting at δX .
To see this, first note that the first holding time of this process is exponentially
distributed with parameter QX =def −Q(X,X). If QX is 0 then so is the entire
X-th row of Q. Otherwise, as the jump chain of the Markov process is the X-th
row of the jump matrix Π of Q, and as ΠX,Y = Q(X,Y)/QX off the diagonal
when QX �= 0, the X-th row of Q is again determined. %�

Using this lemma, we have that the stochastic matrix semantics is indeed fully
abstract; the proof is entirely analogous to that of Theorem 5.

Theorem 7. For any processes P and Q we have:

P ≈ Q iff ∀ρ. SMatrix[[P]](ρ) = SMatrix[[Q]](ρ)

464 G.D. Plotkin

Acknowledgements. We would like to thank Michael Pedersen and János
Tóth for helpful discussions.

References

1. Barabási, A.-L., Oltvai, Z.N.: Network biology: understanding the cell’s functional
organization. Nature Reviews Genetics 5(2), 101–113 (2004)

2. Bruni, R., Melgratti, H.C., Montanari, U.: A connector algebra for P/T nets inter-
actions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp.
312–326. Springer, Heidelberg (2011)

3. Calzone, L., Fages, F., Soliman, S.: BIOCHAM: an environment for modeling bi-
ological systems and formalizing experimental knowledge. Bioinformatics 22(14),
1805–1807 (2006)

4. Cardelli, L.: On process rate semantics. Theor. Comput. Sci. 391(3), 190–215 (2008)

5. Chaouiya, C.: Petri net modelling of biological networks. Briefings in Bioinformat-
ics 8(4), 210–219 (2007)

6. Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction net-
works: II. The species-reaction graph. SIAM J. Appl. Math. 66(4), 1321–1338
(2006)

7. Danos, V., Laneve, C.: Formal molecular biology. Theor. Comput. Sci. 325(1),
69–110 (2004)

8. Érdi, P., Tóth, J.: Mathematical Models of Chemical Reactions: Theory and Appli-
cations of Deterministic and Stochastic Models. Princeton University Press (1989)

9. Domijan, M., Kirkilionis, M.: Graph theory and qualitative analysis of reaction
networks. Networks and Heterogeneous Media 3(2), 295–322 (2008)

10. Fiore, M.P., Jung, A., Moggi, E., O’Hearn, P., Riecke, J., Rosolini, G., Stark, I.:
Domains and denotational semantics: history, accomplishments and open problems.
Bulletin of the European Association for Theoretical Computer Science 59, 227–256
(1996)

11. Garrington, T.P., Johnson, G.L.: Organization and regulation of mitogen-activated
protein kinase signaling pathways. Current Opinion in Cell Biology 11, 211–218
(1999)

12. Groote, J.F., Voorhoeve, M.: Operational semantics for Petri net components.
Theor. Comput. Sci. 379(1-2), 1–19 (2007)

13. Hárs, V., Tóth, J.: On the inverse problem of reaction kinetics. In: Farkas, M.,
Hatvani, L. (eds.) Qualitative Theory of Differential Equations. Coll. Math. Soc.
J. Bolyai, vol. 30, pp. 363–379. North-Holland (1981)

14. Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to mod-
ular cell biology. Nature 402, C47–C52 (1999)

15. Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology.
In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016,
pp. 215–264. Springer, Heidelberg (2008)

16. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.:
Rules for modeling signal-transduction systems. Sci. STKE 2006(344), re6 (2006)

17. Hudjaev, S.I., Vol’pert, A.I.: Analysis in classes of discontinuous functions and
equations of mathematical physics. Mechanics: Analysis 8 (1985)

18. Ivanova, A.N.: Conditions for uniqueness of stationary state of kinetic systems
related to structural scheme of reactions. Kinet. Katal. 20(4), 1019–1023 (1979)

A Calculus of Chemical Systems 465

19. Kaltenbach, H.-M., Stelling, J.: Modular analysis of biological networks. In: Ad-
vances in Systems Biology. Advances in Experimental Medicine and Biology,
vol. 736, Part 1, pp. 3–17. Springer (2012)

20. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use. Monographs in Theoretical Computer Science, vol. 1. Springer (1992)

21. Kitano, H.: A graphical notation for biochemical networks. BIOSILICO 1(5),
169–176 (2003)

22. Kohn, K.W.: Molecular interaction map of the mammalian cell cycle control and
DNA repair systems. Molecular Biology of the Cell 10, 2703–2734 (1999)

23. Kohn, K.W., Aladjem, M.I., Weinstein, J.N., Pommier, Y.: Molecular interaction
maps of bioregulatory networks: A general rubric for systems biology. Mol. Biol.
Cell 17, 1–13 (2006)

24. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
25. Milner, R.: Communicating and Mobile Systems - The Pi-Calculus. CUP (1999)
26. Matsuno, H., Li, C., Miyano, S.: Petri net based descriptions for systematic un-

derstanding of biological pathways. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. 89-A(11), 3166–3174 (2006)

27. Mjolsness, E., Yosiphon, G.: Stochastic process semantics for dynamical grammars.
Ann. Math. Artif. Intell. 47(3-4), 329–395 (2006)

28. Norris, J.R.: Markov Chains. Cambridge Series in Statistical and Probabilistic
Mathematics, vol. 2. CUP (1998)

29. Pedersen, M.: Compositional definitions of minimal flows in Petri nets. In: Heiner,
M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 288–307.
Springer, Heidelberg (2008)

30. Pedersen, M., Plotkin, G.D.: A language for biochemical systems: design and formal
specification. T. Comp. Sys. Biology 12, 77–145 (2010)

31. Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer,
Heidelberg (2005)

32. Priami, C., Regev, A., Shapiro, E.Y., Silverman, W.: Application of a stochastic
name-passing calculus to representation and simulation of molecular processes. Inf.
Process. Lett. 80(1), 25–31 (2001)

33. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.Y.: BioAmbients:
An abstraction for biological compartments. Theor. Comput. Sci. 325(1), 141–167
(2004)

34. Szederényi, G.: Computing sparse and dense realizations of reaction kinetic sys-
tems. Journal of Mathematical Chemistry 47, 551–568 (2009)

35. Szederkényi, G., Hangos, K.M., Péni, T.: Maximal and minimal realizations of re-
action kinetic systems: Computation and properties. MATCH Communications
in Mathematical and in Computer Chemistry 65(2) (2011), also available as
arXiv:1005.2913v1 [q-bio.MN]

36. Vol’pert, A.I.: Differential equations on graphs. Mathematics of the USSR-
Sbornik 17(4), 571–582 (1972)

37. Wilkinson, D.J.: Stochastic Modelling for System Biology. CRC Press, New York
(2006)

38. Winskel, G.: The Formal Semantics of Programming Languages. MIT Press (1993)
39. Yang, C.-R., Shapiro, B.E., Mjolsness, E., Hatfield, G.W.: An enzyme mecha-

nism language for the mathematical modeling of metabolic pathways. Bioinfor-
matics 21(6), 774–780 (2005)

Schemaless Semistructured Data Revisited

—Reinventing Peter Buneman’s Deterministic
Semistructured Data Model—

Keishi Tajima

Kyoto University, Yoshida-Honmachi, Sakyo, Kyoto 603-8501 Japan
tajima@i.kyoto-u.ac.jp

Abstract. This paper reviews the design of data models for semistruc-
tured data, particularly focusing on their schemaless nature. Uniform
treatment of schema information and data, in other words, uniform treat-
ment of metadata and data, is important in the design of such data mod-
els. This paper discusses what data and metadata are, and argues that
attribute names, which are usually regarded as metadata, and key values,
which are usually regarded as data, play similar roles when we organize
large data sets. The paper revises one of the standard semistructured
data models in accordance with that argument, and eventually reinvents
the deterministic semistructured data model proposed by Peter Bune-
man and his colleagues. The contribution of this paper is an additional
rationale of the design of that data model, a rationale based on the sim-
ilarity between attribute names and key values.

Keywords: semistructured, schemaless, self-describing, metadata, at-
tribute name, key value, edge label, graph, table, multidimensional table.

1 Introduction

In the 1990s, data with nested irregular structure but without predefined schema
became prevalent, and the management of such semistructured data became an
important research topic in the database community [1,4]. Data models and
query languages for semistructured data were first discussed [14,8,15,6], and
they were soon followed by research on all other aspects of semistructured data
management. After that, the focus of the research shifted to the management of
XML data, which to some extent represents the convergence of semistructured
data management and document management [2]. The XML data format, how-
ever, was not originally designed for semistructured data, and is not necessarily
appropriate for such data. The design of data models for semistructured data,
therefore, remains a technically interesting problem.

This paper reviews the data models for semistructured data that were pro-
posed and studied in the 1990s. It particularly focuses on the schemaless nature
of semistructured data. The term “schemaless” is related to a couple of aspects
of semistructured data, but what is of interest here is the uniform treatment of
schema information and data; in other words, the uniform treatment of metadata

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 466–482, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Schemaless Semistructured Data Revisited 467

and data. This paper therefore first discusses what data and metadata are, and
argues that attribute names, which are usually regarded as metadata, and key
values, which are usually regarded as data, play similar roles when we organize
large data sets. Revising one of the standard semistructured data models pro-
posed in the 1990s in accordance with the argument, we see that the result is
the deterministic semistructured data model proposed by Peter Buneman and
his colleagues in [9]. In other words, this paper reinvents that data model.

Much of the discussion in this paper has already been shown in the literature,
such as [1,4,2] and, of course, [9]. This paper also includes many things that
were not explicitly written in [9] but must have already been discussed by Peter
Buneman and his colleagues. It may also even include something the author first
heard from Peter Buneman or his colleagues but then forgot. The contribution of
this paper is that it clarifies the similarity between attribute names and key val-
ues, thereby providing an additional rationale for the design of the deterministic
semistructured data model in [9].

The remainder of this paper is organized as follows. The next section reviews
key issues in the design of data models for schemaless semistructured data, and
briefly explains one of the semistructured data models proposed in the 1990s.
Section 3 discusses what data and metadata are, and shows that attribute names
and key values play similar roles in indexing data items in large data sets.
Section 4 extends the model previously explained in Section 2 in accordance
with the discussion in Section 3, and “reinvents” the deterministic semistruc-
tured data model. Section 5 briefly discusses the relation between that data
model and table-based data models, and Section 6 concludes the paper.

2 Semistructured Data Models

Two major data models for semistructured data were proposed in the 1990s,
one by the Stanford University Database Group (which is now the Stanford
University InfoLab) [3] and the other by Peter Buneman and his colleagues at
the University of Pennsylvania [6].

One of the most important properties of these semistructured data models is
that they are schemaless. That is, in these data models, data are not accompanied
by a separate predefined schema that describes the structure of the data. In
ordinary data models for database systems, e.g., in the relational data model, a
schema mainly plays the following roles:

1. The most important role of a schema is to index and annotate each data item
in the database. For example, attribute definitions in a relational schema
are used by the system for parsing the tuples, and attribute names let users
know the meaning of the attributes. Such data that describes the structure
or meaning of another data is sometimes called metadata.

2. A schema also represents structural constraints on data. For example, at-
tribute specifications in a relational schema work also as constraints on the
structure and contents of tuples.

468 K. Tajima

3. A schema as a whole also works as a data catalogue (i.e., a concise summary
of the stored data) for users to browse or query the database.

In semistructured data models, however, the existence of a schema is not
assumed [1,4,2] because

– data may have irregular structure, making it hard to define a compact
schema,

– data may have a schema that changes frequently, and
– the information on the structure of data may not be available in advance

when we start to store partial data.

When we do not assume a schema, we need some substitutes to play the roles
explained above. For the roles of constraints and data catalogs (i.e., Items 2
and 3 above), graph schemas [5] and DataGuide [11] have been proposed. Graph
schemas represent constraints on the structure of graph data in a looser way than
ordinary rigid schemas (e.g., relational schemas in the relational data model).
DataGuide is a summary of a database that is created a posteriori from the
stored data. It can be used as a data catalog for users, and can also be used as
data constraints in query optimization.

For indexing and annotation (i.e., Item 1 above), most existing semistructured
data models take the same approach: they embed such metadata within the data
itself. That is why semistructured data are sometimes called self-describing. This
paper takes the same approach. When this approach is taken, how to embed
metadata in data becomes the key issue in the design of data models.

The two data models proposed by the Stanford group and the UPenn group
also embed metadata in data. Both data models are essentially labeled graphs.
Graphs are used to represent nested irregular data structure, and both basic
data values and metadata are represented by labels on nodes or edges. As a
result of this, the distinction of data and metadata becomes unclear. In a semi-
structured data model, such a uniform representation of data and metadata has
the following advantages [1,4,2]:

– Because the structure of semistructured data can be irregular and/or dy-
namic, we often want to query schema information as well as data. If both
data and metadata are represented in a uniform way, we can use the same
querying functions for both of them.

– In some applications, updates to schema information are also as frequent
as updates to data. In such applications, if both data and metadata are
represented in a uniform way, we can use the same updating functions for
both of them.

In the data model proposed in [6], data and metadata are represented in an
extremely uniform way: metadata are represented by edge labels, and atomic
data are also represented by labels of terminating edges (i.e., edges to nodes
without further outgoing edges).

Figure 1 shows an example graph in this data model, which represents a part
of a movie database [6]. The root node at the top of the figure is the entry point of

Schemaless Semistructured Data Revisited 469

movie actor

actor movie
appear appear appear

title name title name

“Hannibal”
“Anthony
Hopkins”

“The Remains
of the Day”

“Emma
Thompson”

cast
cast

leadingActor leadingActress

Fig. 1. An example data in the data model proposed in [6]

the database, and it has references to all entries of movies and actors/actresses.
Movie entries have two attributes title and cast, and actor/actress entries have
two attributes name and appear. Those attributes are represented by the edges
outgoing from the node representing each entry. Because this is semistructured
data, the structure inside attributes with the same attribute name can be hetero-
geneous. For example, the cast attribute of the movie “Hannibal” directly refers
to an actor/actress entry, while the cast attribute of the movie “The Remains
of the Day” leads to branching edges labeled leadingActress and leadingActor.

While attribute names, such as cast and title, are represented by edge labels,
atomic values, such as the movie titles “The Remain of the Day” and “Hannibal,”
are also represented by edge labels. Because both attribute names and atomic
values are represented by edge labels in this data model, there is no distinction
between them in their query language.

Formally, the type τ of data in this data model is defined as follows [4]:

τ = set(l × τ)
where l = int | string | . . . | symbol .

That is, a node in this data is a set of pairs of a label and another node. Each
pair represents the label and the destination of each edge outgoing from the
node. Labels can be either atomic values or symbols. Symbols are usually used
as attribute names or other metadata. In this way, atomic data and metadata
are modeled in a uniform way in this data model.

This model has already achieved the uniform treatment of data and metadata
to some extent, but if we further pursue the interchangeability and intermingling
of data and metadata, two questions arise:

– Although data and metadata are modeled in a uniform way in the data
model, their usage in the example data is completely distinct. Symbols are
used as metadata on internal edges, and the other atomic values are used
as data on terminating edges. Are there any cases where symbols and other

470 K. Tajima

atomic values should be used in a more intermingled way? One example
explained in [4] is the encoding of arrays in this data model, where they use
integers as labels on internal edges. Is there any more?

– In this data model, any atomic values can be used in place of metadata
(i.e., as edge labels). Do we need to extend this “any atomic values” to “any
data”?

To answer these questions, the next section examines what data and metadata
are.

3 Data vs. Metadata

To examine what data and metadata are, this paper reviews the most classic and
the most popular way to organize large amount of data: tables. In this paper,
the term “tables” does not mean tables in relational databases, but it means
tables used in print media or Web pages.

3.1 Simple Tables vs. Multidimensional Tables

We use a variety of types of tables, but the two most popular ones for organizing
large data are simple tables representing some entities and multidimensional
tables. Table 1 shows an example of a simple table representing some entities.
It shows nutrition facts for menu items at some hamburger shop. On the other
hand, Table 2 shows an example of a multidimensional table, which represents
a mileage chart of a trail near Philadelphia.

Both Table 1 and Table 2 organize cells into two-dimensional structure in
order to concisely represent two contexts of each cell by its horizontal and vertical
positions, but their structure is slightly different. In the multidimensional table
in Table 2, rows and columns are symmetric, but in the simple table in Table 1,
rows and columns have asymmetric structure. In Table 1, cells in the same
column store the same type of values. For example, the cells in the column Item
store strings, those in the column Cal store integer values whose unit is “Cal.”,
and the last three columns store boolean values. On the other hand, cells in the
same row store values related to the same menu item, but not necessarily of the
same type.

In computer science, particularly in the relational data model, simple tables
are usually interpreted as a special kind of n-ary relations that have column
names (also called attribute names). If we interpret a table in that way, a table
is a set of rows corresponding to entities, a row is a tuple consisting of n compo-
nents representing n attributes of the entity, and the components are indexed by
column names describing the meaning of the attributes. In that interpretation,
column names are metadata, and values in other cells are data. In Table 1, the
last three columns have hierarchical column names, but they can be expanded
to simple column names, such as “Allergen.Milk”.

On the other hand, in OLAP (OnLine Analytical Processing), multidimen-
sional tables are interpreted as multidimensional arrays (or matrices when they

Schemaless Semistructured Data Revisited 471

Table 1. An example of a simple table

Nutrition Facts

Allergen
Item Cal Sugar Fat · · ·

Milk Wheat Egg

Hamburger 250 5.5 9 · · · -
√ √

Cheeseburger 300 6.5 12 · · · √ √ √

Potato(S) 230 0.0 11 · · ·
Potato(M) 380 0.0 19 · · · -

√
-

...
...

...
...

...
...

...
...

Gigaburger 540 8.8 29 · · · -
√ √

Table 2. An example of a multidimensional table

Schuylkill River Trail Mileage Chart

Philadelphia Manayunk Conshohocken · · · Tamaqua

Philadelphia — 7 13 · · · 114.5

Manayunk 7 — 6 · · · 107.5

Conshohocken 13 6 — · · · 101.5
...

...
...

...
...

...

Tamaqua 114.5 107.5 101.5 · · · —

are two-dimensional). Arrays are usually indexed by integer values, but multi-
dimensional tables in OLAP (also called DataCube [12]) are a special kind of
arrays that are indexed by arbitrary values. For example, in Table 2, both rows
and columns are indexed by place names. In this interpretation, the place names
in the first row and the first column are regarded as column names and row
names, which are metadata, while values in the other cells are data.

These examples show that simple tables and multidimensional tables have
different structure for metadata. The distinction between them is, however, not
always clear. In Table 2, rows and columns are completely symmetric, and it is
quite unreasonable to interpret it as a simple table, but this is rather an extreme
case. Table 3, which shows car sales data in each month and in each state in
U.S., is a typical multidimensional table in OLAP (except that tables in OLAP
usually have more dimensions), but this table can also be regarded as a simple
table only if we add an attribute name “Month” to the first column, or if we
add an attribute name “State” to the first row and transpose the table.

Similarly, Table 1 is usually interpreted as a simple table, but it can also be
interpreted as a multidimensional table. In the previous interpretation, this table
only has column names and does not have row names. The first column of this
table, however, obviously plays a different role from those played by the other
columns. The values in the first column are unique to each row, and they specify
the meaning of each row, while no other column can play such a role. Therefore,

472 K. Tajima

Table 3. An example of a multidimensional table in OLAP

Car Sales by Month and State

NY NJ PA · · · CA

Jan 2012 233 149 183 · · · 258

Feb 2012 358 187 170 · · · 286

Mar 2012 285 174 191 · · · 225
...

...
...

...
...

...

Dec 2012 169 89 115 · · · 188

only if we regard the names of menu items in the first column, e.g., “Hamburger”,
as the row names, we can interpret this table as a multidimensional table.

In the relational data model, columns like the first column of this table are
called “keys”. Therefore, more generally speaking, we can interpret a simple
table also as a multidimensional table only if we interpret its key values as its
row names. Sometimes, we need more than one column to define keys. In such
a case, we can produce composite row names from values of those columns, just
as we did for hierarchical column names in Table 1.

Notice that we cannot clearly distinguish simple tables and multidimensional
tables simply by whether all cells store the same type of values of which we
can compute aggregation. Aggregation is required only for OLAP, and is not
necessarily required for multidimensional tables in general. For example, it is
unlikely that we want to compute any aggregation for Table 2, but this table is
usually regarded as a multidimensional table. If aggregation is not required, the
definition of “the same type of values” becomes ambiguous, because any value
can be regarded as an instance of the type Object or the type Value.

As shown above, many tables can be interpreted either as a simple table or as
a multidimensional table, and whether a given cell is data or metadata depends
on how we interpret the table. If we interpret Table 1 as a simple table, the
values in the first row are metadata, and the others are data. If we interpret
it as a multidimensional table, the values in the first row and the first column
are metadata, and the others are data. Similarly, if we interpret Table 3 as
a multidimensional table, the values in the first row and the first column are
metadata, while if we interpret it as a simple table, only the values in the first
row or only the values in the first column are metadata.

In addition, when we have some data set, there are more than one way to
organize it into a table. For example, the data in Table 3 can also be organized
into a table shown in Table 4, as we actually do in ROLAP (Relational OLAP). In
this representation, if we interpret this table as a simple table, “Date”, “State”,
and “Sales” in the first row are metadata, and the other values are data.

The discussion above shows that we cannot uniquely determine which part of
a given data set should be regarded as metadata. It depends on how we organize
data. The examples above, however, demonstrate that two types of data are most
likely to play a role of metadata: attribute names and key values. In addition,

Schemaless Semistructured Data Revisited 473

Table 4. Relational encoding of a multidimensional table in ROLAP

Car Sales by Month and State

Date State Sales

Jan 2010 NY 233

Jan 2010 NJ 149

Jan 2010 PA 183
...

...
...

Jan 2010 CA 258

Feb 2010 NY 358

Feb 2010 NJ 187

Feb 2010 PA 170
...

...
...

there are advantages of organizing data as multidimensional tables, in other
words, advantages of interpreting key values as metadata, as explained in the
next subsection.

3.2 Advantages of Multidimensional Tables

We first compare the expressive power of simple tables and multidimensional
tables. Both can represent information on some entities as shown in Table 1,
which can be interpreted either as a simple table or as a multidimensional table.

Multidimensional data can also be represented either by a multidimensional
table or by relational encoding as shown in Table 3 and Table 4. One differ-
ence between these two representations of multidimensional data is their space
efficiency. For dense data, relational encoding is space-inefficient because the
number of the repetition of the same values grows exponentially when the data
has many dimensions. On the other hand, for sparse data, relational encoding
can be more space-efficient if we omit rows corresponding to cases where we do
not have data.

Exactly the same discussion also holds for information on many-to-many rela-
tionships. It can be represented either by multidimensional tables or by relational
encoding, and their space efficiency depends on the data.

As shown above, the two types of tables have similar expressive power. Next,
we compare their intuitiveness and easiness to understand. One advantage of re-
lations is that they can always represent data in a flat two-dimensional structure.
On the other hand, one advantage of multidimensional tables is that they are
more intuitive when the data really have multidimensional nature. For example,
Table 3 is easier to read for human readers than Table 4 is. More importantly,
the interpretation of tables as multidimensional arrays is more intuitive than
the interpretation as a relation even when tables represent information on some

474 K. Tajima

entities. For example, suppose we read out Table 1. If we interpret this table as
a relation, we must read it out as:

“there is a row where the item is Hamburger, the calorie is 250,
the sugar is 5.5, . . . , and the egg is true,
...

and,
there is a row where the item is Gigaburger, the calorie is 540,

the sugar is 8.8, . . . , and the egg is true.

On the other hand, if we interpret this table as a matrix with column names
and row names, we must read this table out as:

“the calorie of Hamburger is 250, the sugar of Hamburger is 5.5,
. . . , and the egg of Hamburger is true,
...

and,
the calorie of Gigaburger is 540, the sugar of Gigaburger is 8.8,

. . . , and the egg of Gigaburger is true.

For ordinary users who are not familiar with (and not biased toward) the rela-
tional data model, the latter description must be more natural.

Another advantage of multidimensional tables is their symmetricity. When we
interpret Table 1 as a matrix indexed by column names (attribute names) and
row names (key values), rows and columns have symmetric structure, and we do
not need to distinguish attribute names and key values in the query languages.
It means multidimensional tables treat data and metadata more interchangeably
than relations. Such symmetricity of rows and columns is also useful when we
interactively manipulate tables through some graphical user interface [16].

We should review why the relational data model adopted relations to repre-
sent data. In database systems, the set of attributes to be stored is usually static,
while the set of entities in a database is usually changed frequently. Therefore,
when we consider data models for ordinary database systems, it is reasonable to
interpret tables as relations with static set of columns and dynamic set of rows.
When we consider semistructured data, however, we do not assume that the set
of attributes for entities is static, as explained before. Another asymmetricity of
columns and rows in the relational data model is that cells in the same column
store the same type of values, while cells in the same row may not. In semi-
structured data, however, we do not assume such regularity, either. Yet another,
actually the most important, reason of the proposal of the relational data model
is data independence [10]. This issue will be discussed later in the next section.

The discussion above is summarized as follows: where semistructured data is
concerned, interpreting key values as metadata achieves more uniform treatment
of data and metadata, and also achieves more intuitive representation of data.
This conclusion leads to the design of the data model in the next section.

Schemaless Semistructured Data Revisited 475

row . . . row

Item
Cal . . .

Egg

“Hamburger” 250 true

Item
Cal . . .

Egg

“Megaburger” 540 true

Fig. 2. Ordinary graph representation of a simple table

“Hamuburger” . . . “Megaburger”

Cal

. . .
Egg

250 true

Cal

. . .
Egg

540 true

Fig. 3. Graph representation of a simple table using key values as labels

4 Deterministic Semistructured Data Model

This section gets back to the following two questions explained before:

– In edge-labeled graph models for semistructured data, are there cases where
it is useful to use symbols and other atomic values in more intermingled
way?

– Do we need to extend the edge-labeled graph models so that we allow any
values including non-atomic values to be used as edge labels?

4.1 Symbols vs. Atomic Values

The answer to the first question is obvious from the discussion in the previous
section. We should use key values as edge labels as well as attribute names.
For example, the data in Table 1 is usually represented in a edge-labeled graph
model as shown in Fig. 2. If we use key values as edge labels, however, this data
can also be represented as shown in Fig. 3. Because we can use attribute names
and key values interchangeably, this data can also be represented as shown in
Fig. 4. As demonstrated in these examples, both key values and attribute names
are useful to index data items in a data set, and therefore, we should use both
of them for indexing, i.e., as edge labels, in semistructured data.

These examples raise another question: if we use key values and attribute
names as edge labels, do we need to allow multiple edges with the same label
outgoing from the same node? In semistructured data models, it is preferable

476 K. Tajima

Cal . . . Egg

“Hamuburger”

. . .
“Megaburger”

250 540

“Hamuburger”

. . .
“Megaburger”

true true

Fig. 4. Another graph representation of a simple table using key values as labels

name email email

“Tom” “t@a.org” “t@b.net”

(a)

name email

“Tom” “t@a.org” “t@b.net”

(b)

Fig. 5. Merging multiple edges representing a set value

not to distinguish set values and non-set values [1]. In that perspective, if we
have a data shown in Fig. 5 (a), it is better represented by the graph shown
in Fig. 5 (b). The advantage of the latter representation is that the value of
some attribute can be extracted simply by extracting the subtree beneath the
edge representing the attribute, no matter whether it is set-valued (e.g., email
attribute in this example) or single-valued (e.g., name attribute in this example).
In the existing data models that use the representation in Fig. 5 (a), similar
uniformity is achieved by their carefully designed query languages [3,6].

Such merging of multiple edges, however, is not always possible. For example,
suppose we have data shown in Fig. 6 (a). If we merge the car edges in this data
and transform it into the graph shown in Fig. 6 (b), the correspondence between
IDs and colors of the cars will be lost. However, if we use key values as labels,
we can represent this data by the graph shown in Fig. 6 (c).

As demonstrated in these examples, if we use key values as edge labels, we
do not need to allow multiple edges with the same label outgoing from the same
node, as long as we have keys everywhere [9].

4.2 Atomic Values vs. Composite Values

Next, the second question is discussed: do we need to use not only atomic values
but also composite values as edge labels? One possible answer is: “Yes, because
we often have composite keys”. However, do we really need to use composite key
values as edge labels?

Schemaless Semistructured Data Revisited 477

name car car

“Tom” ID color ID color

“938” “red” “475” “blue”

(a)

name car

“Tom”

ID color ID color

“938” “red” “475” “blue”

(b)

name car

“Tom”
“938” “475”

color color

“red” “blue”

(c)

Fig. 6. Inappropriate (b) and appropriate (c) merging of edges with the same label (a)

For example, Table 5 shows information on a many-to-many relationship be-
tween students and courses, and it has a composite key consisting of StudentID
and CourseID. Information in this table can be represented by a graph with
hierarchical indexing structure, as shown in Fig. 7. Of course, we may also use
the opposite order of StudentID and CourseID.

Such an interpretation of composite keys as hierarchical indices, however, is
not always appropriate. For example, suppose there is a table that has a compos-
ite key consisting of GivenName and Surname. In this case, it does not make
much sense to organize rows of this table hierarchically by first grouping them
based on their GivenName and then grouping them based on their Surname
(or in the opposite order), as shown in Fig. 8, because rows sharing the same
GivenName (or the same Surname) are not necessarily related to each other,
and a group of such rows has no useful meaning.

In addition, even in the former example of StudentID andCourseID, choos-
ing and enforcing one specific order among these attributes causes the problem
of data independence. That is, it enforces a specific access path on accessing
programs, and if the order among the attributes is changed for some reason, we
need to rewrite the programs.

The main motivation of the adoption of flat relations in the proposal of the
relational data model was to achieve data independence [10]. Since one purpose
of semistructured data model is to deal with data with irregular nested structure,

478 K. Tajima

Table 5. Relation representing many-to-many relationship

Course Enrollment of Students

Student ID Course ID Grades

20091853 I295 80

20091853 E108 65

20091875 I117 75

20091875 E108 50

20101725 I295 70
...

...
...

20091853 . . . 20101725

I295 E108

80 65

I295

70

Fig. 7. Hierarchical representation of composite keys

it is difficult to fully eliminate hierarchical structure from the data model, but
when hierarchical structure has no useful meaning, we should avoid it as much
as possible.

There is yet another reason why we should use composite key values as edge
labels: key values can be set values. When key values for some entities are set val-
ues, and each key value may have different number of elements, if we decompose
these key values into hierarchical indexing structure with only atomic values on
edges, each entity would have a different depth in the hierarchy, which intro-
duces unnecessary irregularity. In addition, we need to define some canonical
order among elements of a key value.

Table 6 is an example of a table whose key values are set values with different
number of elements [13]. This table lists polygons, e.g., those in a CAD system,
and here we assume that a polygon can be uniquely identified by specifying its
set of vertices. If two polygons have the same set of vertices, they are regarded
as the same polygon.

Because of these three reasons, the answer to the second question is: “Yes,
we should allow composite values as edge labels”. Then, what kind of composite
values should we allow? In the semistructured data model explained in Section 2,
edge-labeled graph structure is the only data structure, and both records and
sets are represented by this data structure. In addition, a key of some data may
even include edge labels representing attribute names or class names, as shown
in [7]. Therefore, we should allow any edge-labeled graph to be embedded as an
edge label in another graph. For example, the data in Fig. 8 can be represented

Schemaless Semistructured Data Revisited 479

“Tom” . . . “John”

“Jones”

“Dow”

“Smith” “Brown”

“Dow”

“Smith”

Fig. 8. Meaningless hierarchical representation of composite keys

Table 6. A table whose key values are set values

Polygons in CAD

vertices color owner
x y

3 5
5 4 red ken
4 2

0 4
1 6
3 5 blue joe
2 1
...

...
...

...

as shown in Fig. 9. In the graph shown in Fig. 9, edges from the root node have
labels representing composite values consisting of a given name and a surname.

4.3 Definition of the New Model

In this section, the model in Section 2 has been extended in the following two
ways:

– Any edge-labeled graph can be used as an edge label in another graph.
– No node can have multiple outgoing edges with the same edge label.

Accordingly, the type τ of data in the data model is redefined as follows:

τ = set(τ × τ) | l
where l = int | string | . . . | symbol .

That is, we now allow any value of type τ to be a label, and because we do
not distinguish values and labels, any value of the type l is now regarded as a
value of the type τ . Notice that l (i.e., atomic values) can also be used as the
destination of an edge in this new definition.

If we emphasize the second extension, i.e., the uniqueness of labels of outgoing
edges from a node, we can also define τ in the following way:

τ = τ ⇀fin τ | l
where l = int | string | . . . | symbol

480 K. Tajima

. . .
GivenName SurName

“Tom” “Jones”

GivenName SurName

“John” “Smith”

Fig. 9. Representation using composite keys as edge labels

where τ ⇀fin τ denotes a finite partial function from τ to τ .
Now, this is exactly the core part of the deterministic semistructured data

model proposed by Peter Buneman and his colleagues in [9]. In this way, based
on the discussion on the meanings of the term “schemaless” in the context of
semistructured data model, and the discussion on what data and metadata are,
this section revised the data model explained in Section 2, and reinvented the
deterministic semistructured data model proposed in [9].

5 Graphs vs. Tables

The previous section reinvented the deterministic semistructured data model
by starting from the graph-based data model explained in Section 2. Section 3,
however, discussed data and metadata in the context of table representations
of data. Then a question that may arise is: why do we use graphs rather than
tables? To answer this question, this section briefly examines whether nested
multidimensional tables are appropriate for representing semistructured data.

One advantage of the table-based representation of information over the graph-
based representation is that it can naturally represent data indexed by combi-
nations of two or more values. On the other hand, its disadvantage against the
graph-based representation is that it is space-inefficient when the data is sparse.
Because semistructured data has irregular structure, and its table representation
can be sparse, we consider its relational encoding, which is more space-efficient
for sparse data. In relational encoding of nested multidimensional tables, there
is at most one row for each combination of indexing values. Therefore, the type
τ ′ of such a data can be defined as a finite partial function below:

τ ′ = (τ ′ × · · · × τ ′) ⇀fin τ
′ | l

where l = int | string | . . . | symbol .

In the definition above, the components of the tuple of indexing values are τ ′

because we should allow composite values and set values as indexing values, as
shown in the previous examples. The codomain of the function is also τ ′ because
the contents of a cell may be a nested table.

(τ ′ × · · · × τ ′) in this definition is a product of nested relations, but we can
encode them in τ ′. Therefore the type τ ′ above is a subset of the type τ defined
in the previous section. That is, the deterministic semistructured data model
can be used for concisely representing sparse nested multidimensional tables.

Schemaless Semistructured Data Revisited 481

Then the next question is why we do not flatten nested tables into flat tables,
as we do in the relational data model. The answer is simple. We can normalize
nested tables into flat tables only if we can have key values that are not set-
valued [10]. In semistructured data models, however, we want to allow keys that
take set values, as explained before.

In general, an important difference between graph-based data models and
table-based data models is how to represent references to other data. Most graph-
based models use some kind of IDs, and most table-based models use foreign keys.
In the model proposed in [9], two edges outgoing from the same node never have
the same label, and therefore, any node can be identified by the sequence of
edge labels on the path from the root to the node. Such a sequence of edge
labels is used to represent a reference to a node in their model. That is, their
model is value-based model just like the relational data model. Advantages and
disadvantages of ID-based data models and value-based data models have been
discussed extensively, and it is beyond the scope of this paper.

6 Conclusion

This paper reviewed what is schemaless semistructured data, and showed that
one of the most important issues in the design of a data model for schemaless
semistructured data, is the uniform treatment of data and metadata. Then this
paper discussed what data and metadata are in the context of various table
representations of data, and concluded that data which corresponds to attribute
names or key values are most useful as metadata. In accordance with that discus-
sion, this paper extended the standard edge-labeled graph model, which resulted
in a reinvention of the deterministic semistructured data model proposed by Pe-
ter Buneman and his colleagues in [9]. Finally, this paper also showed that we
can also reinvent the model by starting from nested multidimensional tables.

Acknowledgement. I would like to express the most sincere appreciation to
Peter Buneman, who kindly allowed me to visit the database research group of
the University of Pennsylvania from August 2000 to August 2001. This visit gave
me a valuable opportunity to work with him and learn much from discussions
with him. He also helped me and my wife enjoy life in Philadelphia during our
stay there. Those thirteen months are a memorable period in both my research
career and my personal life. He has also had a great influence on me through his
research and his publications. I always enjoy reading his fascinating papers.

I also would like to thank Wenfei Fan, Leonid Libkin, Wang-Chiew Tan, Val
Tannen, and Limsoon Wong, editors of the Festschrift in Honor of Peter Bune-
man, for providing me with the opportunity to contribute to it.

References

1. Abiteboul, S.: Querying semi-structured data. In: Afrati, F.N., Kolaitis, P.G. (eds.)
ICDT 1997. LNCS, vol. 1186, pp. 1–18. Springer, Heidelberg (1996)

482 K. Tajima

2. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semi-
structured Data and XML. Morgan Kaufmann (1999)

3. Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wiener, J.L.: The Lorel query
language for semistructured data. International Journal of Digital Libraries 1(1),
68–88 (1997)

4. Buneman, P.: Semistructured data. In: Proc. of ACM PODS, pp. 117–121 (May
1997)

5. Buneman, P., Davidson, S., Fernández, M., Suciu, D.: Adding structure to unstruc-
tured data. In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186,
pp. 336–350. Springer, Heidelberg (1996)

6. Buneman, P., Davidson, S., Hillebrand, G., Suciu, D.: A query language and
optimization techniques for unstructured data. In: Proc. of ACM SIGMOD,
pp. 505–516 (June 1996)

7. Buneman, P., Davidson, S.B., Fan, W., Hara, C.S., Tan, W.C.: Keys for XML. In:
Proc. of International WWW Conference, pp. 201–210 (January 2001)

8. Buneman, P., Davidson, S.B., Suciu, D.: Programming constructs for unstructured
data. In: Proc. of International Workshop on DBPL, pp. 1–12 (September 1995)

9. Buneman, P., Deutsch, A., Tan, W.C.: A deterministic model for semistructured
data. In: Proc. of the Workshop on Query Processing for Semistructured Data
and Non-Standard Data Formats (in conjunction with ICDT), pp. 14–19 (January
1999)

10. Codd, E.F.: A relational model of data for large shared data banks. CACM 13(6),
377–387 (1970)

11. Goldman, R., Widom, J.: DataGuides: Enabling query formulation and optimiza-
tion in semistructured databases. In: Proc. of VLDB, pp. 436–445 (August 1997)

12. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.,
Pellow, F., Pirahesh, H.: Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub totals. Data Mining and Knowledge Discovery 1(1),
29–53 (1997)

13. Makinouchi, A.: A consideration on normal form of not-necessarily-normalized re-
lation in the relational data model. In: Proc. of VLDB, pp. 447–453 (1977)

14. Papakonstantinou, Y., Garcia-Molina, H., Widom, J.: Object exchange across het-
erogeneous information sources. In: Proc. of IEEE ICDE, pp. 251–260 (March
1995)

15. Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J.D., Widom, J.: Querying semi-
structured heterogeneous information. In: Proc. of International Conference on
Deductive and Object-Oriented Database Systems (DOOD), pp. 319–344 (Decem-
ber 1995)

16. Tajima, K., Ohnishi, K.: Browsing large HTML tables on small screens. In: Proc. of
ACM Symposyum on User Interface Software and Technology (UIST), pp. 259–268
(October 2008)

Provenance Propagation in Complex Queries

Val Tannen

University of Pennsylvania,
Philadelphia, USA

Petro Bunemanno carissimo

Admiratione gratia votisque

Aeternae amicitiae pignus

Dictum

Keywords. databases, query languages, provenance, complex values.

1 Introduction

Peter Buneman has exerted a major influence on my career. Among many other
things, we worked together in early 1990s on the design of query languages for
post-relational data models: nested relations, complex values, etc. Later on, his
pioneering work on data provenance was the major influence on my own work on
provenance. It therefore feels very appropriate to me to write for this Festschrift
a piece in which languages for complex values and structures for provenance
tracking come together.

In section 2 I tell the story of the intelectual filiation that led from Peter’s
work on why-provenace [4] to my own work on the semiring framework for an-
notations and provenance [13,10,1]. This is followed in section 3 by a synopsis of
the algebraic foundations of the semiring framework. The synthesis mentioned
above appears in section 4 where I review the constructs of the Nested Relational
Calculus [5] with aggregations [16] while giving them a new semantics based on
semiring-annotated sets and on semimodules. The last section comments briefly
on the connections between all this and some concepts from category theory.

2 From Why-Provenance to the Semiring Framework

In 2001 Peter Buneman together with his Penn colleague Sanjeev Khanna and
their student Wang-Chiew Tan published the seminal article: “Why and Where:
A Characterization of Data Provenance” [4]. By then Peter had been interested
in data provenance for several years. I recall listening to his views on the subject
on many occasions. I recall him teaching me to think of provenance as an anno-
tation on data and to focus on how such annotations are transformed when data
is churned through query operations. His ideas, and the results of the Buneman,
Khanna, and Tan paper, came back to me several years later when data prove-
nance became a central concern of my collaboration [12,13] with Penn colleague

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 483–493, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

484 V. Tannen

Zack Ives and our students TJ Green and Grigoris Karvounarakis on the semir-
ing framework for provenance. This section tries to explain the intuition behind
this progression with the benefit of hindsight, of course.

While the input and the output of a query may be quite dissimilar in organi-
zation, every piece of information in the output is determined by the information
in the input, since query languages are typically deterministic. In most cases a
specific piece of the output is not determined by the whole input. One of the
goals of provenance analysis is to figure out which pieces of the input contribute
to the presence of a given piece in the output is. In the spirit of the title of [4]
we will call this kind of analysis “which-provenance” 1 Let’s look at the small
example depicted in figure 1. Here the “pieces” of input or output are relational
tuples. The input consists of two relations R(a,b) and S(b,c,d) and we show
each tuple annotated with its unique tuple id (tid), r1, . . . , s3. The output of the
relational algebra query π

a
(R �� π

bc
S) has a single tuple and we show as the

first annotation its which-provenance, i.e., the set of input tids that contribute
to the computation of this output tuple (only r3 does not).

R

a b tid

a b r1

a c r2

a d r3

S

b c d tid

b d e s1

b d f s2

c g h s3

π
a
(R �
 π

bc
S)

a which-provenance why-provenance

a {r1, s1, s2, r2, s3} {{r1, s1}, {r1, s2}, {r2, s3}}

Fig. 1. Which? Or why?

The output of a query contains many “atomic” pieces of data, for instance
strings or numbers, and if the query does not compute these atomic output
pieces itself, then each must have been copied from some atomic piece of the
input. Figuring out which input piece it was copied from is “where-provenance”,
another goal of provenance analysis, pioneered in [4] and continued in, e.g., [19,3].
Although this is not a topic for this paper, let us observe that for the example
in figure 1 the where-provenance of the a in the query output does not contain
any reference to the a in r3 and it contains references to either the a in r1 or 2

the a in r2.
It is however the “why-provenance” discussed in [4] that provided a funda-

mental new insight, making it significantly more valuable than which-provenance

1 In fact, this kind of data provenance analysis for relational database operations in
has been studied under the name lineage in [22,7,8] (even earlier work is referenced
in [6]) but that term was later used for different kinds of provenance [2,18] possibly
leading to confusion.

2 Without a more detailed description of the implementation of the relational projec-
tion operator this is pretty much all we can say. A tree representation of relational
data can, for example, provide such detail, see [10].

Provenance Propagation in Complex Queries 485

(lineage). Which-provenance, of course, answers the question “which pieces of the
input are used by the query in computing a specific piece of the output?” This is
too coarse-grain, because a query can compute (derive) a piece of output in more
than one way. Why-provenance collects the annotations of the input pieces used
in each of these ways and calls the result a witness for the output piece. The
set of all the witnesses is then the why-provenance. The which-provenance can
be recovered from the why-provenance by taking the union of all the witnesses.
Looking again at figure 1 the why-provenance of the (just one) output tuple is
its second annotation. It collects three witnesses: {r1, s1},{r1, s2}, and {r2, s3}.
Each of the witnesses is a separate reason why the output tuple is derived. In-
deed take one of them, say {r1, s2} and delete from R and S all tuples except
r1 and s2. Recomputing the query we get the same output tuple again.

We claimed that which-provenance is too coarse-grain. In what applications
is the finer-grain of why-provenance important? I will mention three such appli-
cations: trust, access control, and uncertainty.

In trust applications we have (a priori) different degrees of confidence in the
various parts of a query input. This is very common in information integration,
for instance. Now, given a query, we should ask what degree of confidence can
be assigned to a piece of its output? Let’s use again the example in figure 1
and a simple low/high confidence model. Assume that we have low confidence
in r1 and s2 but high confidence in all the other tuples. Can we have high confi-
dence in the output tuple? Which-provenance does not help since there are some
contributing tuples of low confidence. Using which-provenance we would likely
take a conservative view and assume that the output tuple has low confidence.
However, why-provenance would save the reputation of the output tuple since it
contains a witness, {r2, s3}, that has only tuples of high confidence!

In access control applications we need similar reasoning but we rely on clear-
ance levels instead of degrees of confidence: if an output piece has both a wit-
ness of high clearance and a witness of low clearance then it can be given to a
user of low clearance. Finally, in uncertainty applications that use probabilistic
(or fuzzier) reasoning having multiple witnesses corresponds to unions of events
while the pieces of input in the same witness correpond to intersections of events,
a fundamental distinction that is not supported by which-provenance 3

The interpretation we give to witnesses in the three applications above suggest
that something very general is at work here. We can identify two fundamental
ways in which a computation makes use of pieces of data: joint use as in using the
input pieces in the same witness jointly, and alternative use as in using either
of the data in two different witnesses. This insight has led us to an algebraic
framework with two operations on annotations corresponding to the two kinds
of uses we just listed. Further refinement led to a semiring-based framework
that has unified and clarified much of the prior work on provenance propagation
through database operations [13].

3 Further evidence should have been obvious in Imielinski and Lipski’s seminal work
on querying incomplete databases [14].

486 V. Tannen

Joint and alternative use of data can be very easily explained for the standard
query operations on relational data. Again we refer to the example in figure 1.
The tuple 〈b : b,c : c〉 ∈ π

bc
S is obtained, alternatively, from s1 or s2. In the

semiring framework we have a binary operation, +, that captures this and the
provenance annotation of the tuple is s1 + s2. Alternative use also characterizes
the relational union operation and + on annotations is used there as well. The
tuple 〈a :a,b :b,c :c〉 ∈ R �� π

bc
S is obtained by joining r1 and 〈b :b,c :c〉 ∈ π

bc
S.

In the semiring framework we have a different binary operation, · , that captures
this and the resulting provenance annotation is r1 · (s1 + s2). Applying the same
principles, the provenance of the output tuple 〈a :a〉 is (r1 · (s1 + s2)) + (r2 · s3).
Using semiring algebraic laws [13] this can be rewritten as r1 ·s1+r1 ·s2+r2 ·s3.
This gives exactly the why-provenance in figure 1 provided that (1) we interpret
r1 as {{r1}}, and similarly for the other tids, (2) we interpret + as union of sets
(whose elements are sets of tids), and (3) we interpret · as
 where

X
 Y = {X ∪ Y | X ∈ X , Y ∈ Y}

It also gives exactly the which-provenance, using a different interpretation in
which r1
→ {r1} and + and · are both interpreted the same, as union of sets of
tids. The fact that alternative and joint use are not distinguished is at the root
of the lack of wider usability for which-provenance.

The expressions we saw above are in fact more general than why-provenance
since they can also count the number of times a tid is used in a witness as well as
the number of different ways a tuple is derivable from the same witness. Using
the algebraic laws of commutative semirings these expression can be rewritten
as as multivariate polynomials whose indeterminates are the tids and whose co-
efficients are positive integers. These additional provenance tracking refinements
become important when we use bag semantics or even when we just use ag-
gregates, like summation, for which number of occurrences of the same value
matters.

3 Semirings and K-Sets

A commutative monoid is an algebraic structures (M,+
M
, 0

M
) where +

M
is an

associative and commutative binary operation and 0M is an identity for +M.
A commutative semiring is an algebraic structure (K,+

K
, ·

K
, 0

K
, 1

K
) where

(K,+
K
, 0

K
) and (K, ·

K
, 1

K
) are commutative monoids, ·

K
is distributive over +

K
,

and a ·K 0K = 0K ·K a = 0K.
Basic examples of commutative semirings are (N,+, ·, 0, 1) and

(B,∨,∧, false, true) where B = {false, true}. General examples of commuta-
tive semirings are commutative rings (of course) but also distributive lattices
(with top and bottom), hence boolean algebras. One distributive lattice of
interest [10,1] is the access control/”security” semiring (S,min,max, 0

S
, 1

S
) in

which S is the ordered set 1
S
< C < S < T < 0

S
where the intended meaning of

the elements when used as annotations is: 1
S
: public (“always available”), C :

confidential, S : secret, T : top secret, and 0
S
means “never available”. Of course

Provenance Propagation in Complex Queries 487

this is just an example of an access control classification; any finite distributive
lattice (not necessarily totally ordered) could serve a similar purpose. Another
commutative semiring of interest is (a version of) the so-called tropical semiring:
(R∞

≥0,min,+,∞, 0) where we define x+∞ = ∞. Its elements can be interpreted
as costs : for joint use we add up costs and for alternatives we assume that we
pay the lower cost. This interpretation works particularly well if it is used for a
trust model more refined than the low/high we discussed in section 1: the cost
is read as an amount that we risk by trusting the data.

A fundamental example of distributive lattice is (PosBool(X),∨,∧, false, true).
Its elements are equivalence classes of positive (no negation) boolean expres-
sions constructed from variables in X together with false and true. Equivalence
is defined in the usual way (same satisfying assignments) and it turns out to
be exactly the same as equality modulo the laws of distributive lattices 4. In
fact, this semiring corresponds to the refinement of why-provenance to minimal
witnesses only [4]. Its elements also give “enough provenance” for positive rela-
tional algebra queries (or non-recursive Datalog queries, or unions of conjunctive
queries) over incomplete or probabilistic databases [14,18]. The role of the vari-
ables in X is to annotate input data and so we call them provenance tokens.
They can be as fine-grain as tids or as coarse-grain as the same token for all the
tuples from one data source. Given such a set X of provenance tokens we also
consider the commutative semiring (N[X],+, ·, 0, 1) of multivariate polynomials
with indeterminates from X and coefficients from N. This semiring captures a
very general kind of provenance, more general than which-, why- and PosBool-
provenance and also capable of “counting” how many different ways there are to
derive an output piece as well as how many times the same input piece is used
(the latter is essential in cost/trust applications) 5.

Let D be a set. For any commutative semiring K, the set KD of functions
D → K, with operations defined pointwise is a commutative monoid (in fact it is
also a commutative semiring but the multiplicative structure is of less interest).
For every A ∈ KD we define its support to be the following subset of D:

supp(A) = {x ∈ D | A(x) �= 0
K
}

We now define a K-set with elements from D to be a function D → K that
has finite support. The K-sets form a submonoid of KD and we introduce the
following notation for its operations:

A !
K
B = λd. A(d) +

K
B(d) ∅

K
= λd. 0

K

Now notice that B-sets are ordinary sets with ordinary union while N-sets are
bags with bag union. For a finite arity r we can define [13] a K-relation to be a
Dr-set where D is a database domain.

4 PosBool(X) is the distributive lattice freely generated by X.
5 N[X] is the commutative semiring freely generated by X so it captures “enough”
provenance to cover any other provenance approach that forms a commutative semir-
ing, or any application that uses annotations from a commutative semiring [13,11].

488 V. Tannen

In addition to forming a commutative monoid, the K-sets also can be “mul-
tiplied” by elements of K, an operation similar to multiplication by scalars in a
vector space. For any k ∈ K and any K-set A we define:

k ∗
K
A = λd. k ·

K
A(d)

When there is no confusion we will omit the operation symbol and write kA
instead of k ∗

K
A. This operation satisfies algebraic laws such as k(A !

K
B) =

kA!
K
kB, (k1+K

k2)A = k1A!K
k2A, and (k1 ·Kk2)A = k1(k2A) (for a complete list

see below). It puts therefore a semimodule structure on K-sets. We will need
semimodules for aggregation modeling so we give here the general definition.

Given a commutative semiring K, a structure (W,+
W
, 0

W
, ∗

W
) is a K-

semimodule if (W,+
W
, 0

W
) is a commutative monoid and ∗

W
is a binary op-

eration K ×W →W such that (for all k, k1, k2 ∈ K and w,w1, w2 ∈ W):

k ∗
W
(w1 +W

w2) = k ∗
W
w1 +W

k ∗
W
w2 k ∗

W
0
W

= 0
W

(k1 +K
k2) ∗W w = k1 ∗W w +

W
k2 ∗W w 0

K
∗
W
w = 0

W

(k1 ·K k2) ∗W w = k1 ∗W (k2 ∗W w) 1
K
∗
W
w = w

In the semimodule of K-sets the singletons form a basis. Indeed, for each d ∈ D
define

sng d = λd′. if d′ = d then 1
K
else 0

K

Then, any K-set A such that supp(A) = {d1, . . . , dn} can be written as a linear
combination of singletons 6:

A = A(d1) sng d1 !K · · · !KA(dn) sng dn

In the next section we will see that the semimodule algebraic structure is
precisely what allows us to define a semantics for the K-nested relational calculus
as in [10], encompassing the standard particular cases for sets and bags [5]. We
will also see that for any K-semimodule W we can define a semantics for the
(K,W)-nested relational calculus with aggregation which captures additionally
aggregations of K-sets of values from W , is part of the general approach in [16]
and extends to complex values the work of [1].

4 A Calculus of K-Sets and Aggregation

Fix a commutative semiring K and let’s define a calculus of K-sets. As with
formalisms such a the lambda calculus, we need to describe types, terms and
their semantics. In addition we also describe here an equational theory for the
calculi.

6 In fact, the K-sets form the K-semimodule freely generated by D.

Provenance Propagation in Complex Queries 489

We assume a base type ι whose meaning is [[ι]] = D (a domain of values of
interest in some context). We also have a type constructor for K-sets: for a type
τ whose meaning is some set [[τ]] = D, form the type Set

K
τ whose meaning is

the set of K-sets of elements from D.
The terms of the calculus are built from constants c of base type and variables

of all types. In the previous section we have identified an algebraic structure on
K-sets and now we introduce syntax for terms in the calculus corresponding to
this structure: if R,S are terms of type Set

K
τ and e is a term of type τ then

R!
K
S, ∅

K
and sng e are terms of type Set

K
τ . As you see, we use in the syntax the

same symbols as in the semantics relying on the reader to disambiguate. Finally,
we introduce the fundamental term construction of the calculus: if R is a term
of type Set

K
σ and S is a term of type Set

K
τ that may contain a variable x of

type σ then ⊎
K
(x ∈ R)S

is term of type SetK τ . The variable x is bound and its scope is S but not R.
The semantics of

⊎
K
(x ∈ R)S is indeed an indexed “big union” of K-sets.

Suppose that the meaning of R is a K-set A whose support is {a1, . . . , an} ⊆ [[σ]].
Suppose also that the meaning of λx.S is the function F that associates to every
a ∈ [[σ]] a K-set F (a) of elements from [[τ]]. Then the meaning of

⊎
K
(x ∈ R)S

is defined to be the linear combination

A(a1)F (a1) !K
· · · !

K
A(an)F (an)

This semantics validates the following axioms for the equational theory of this
calculus of K-sets:

⊎
K
(x ∈

⊎
K
(y ∈ R)S)T =

⊎
K
(y ∈ R)

⊎
K
(x ∈ S)T⊎

K
(x ∈ sng e)S = S[e/x]

⊎
K
(x ∈ R) sng x = R⊎

K
(x ∈ ∅K)S = ∅K

⊎
K
(x ∈ R) ∅K = ∅K⊎

K
(x ∈ R !

K
S)T =

⊎
K
(x ∈ R)T !

K

⊎
K
(x ∈ S)T⊎

K
(x ∈ R) (S !

K
T) =

⊎
K
(x ∈ R)S !

K

⊎
K
(x ∈ R)T

Next we extend this calculus of K-sets to express aggregations. In addition
to the commutative semiring K let us also fix a K-semimodule W . We have one
more base type α with [[α]] = W . To the terms of the calculus we add constants
from W including 0

W
and give them type α. Moreover if g, h are terms of type α

then g+
W
h is also a term of type α. (Again we use the same notation for syntactic

and semantic features.) The fundamental aggregation term construction is the
following: if R is a term of type Set

K
σ and g is a term of type α that may contain

a variable x of type σ then ∑
K
(x ∈ R) g

is a term of type α. The variable x is bound and its scope is g but not R.

490 V. Tannen

The semantics of
∑

K
(x ∈ R)S is an indexed “big sum” of elements in W .

Suppose that the meaning of R is a K-set A whose support is {a1, . . . , an} ⊆ [[σ]]
and let ki = A(ai) ∈ K for i = 1, . . . , n. Suppose also that the meaning of λx.g
is the function f that associates to every a ∈ [[σ]] an element f(a) of W . Then
the meaning of

∑
K
(x ∈ R) g is defined to be the linear combination

k1 ∗W f(a1) +W · · ·+W kn ∗W f(an)

One can see that this construct does for an arbitraryK-semimoduleW what the⊎
does for the K-semimodule of K-sets. Not surprisingly we get the analogous

set of equational axioms:

∑
K
(x ∈

⊎
K
(y ∈ R)S) g =

∑
K
(y ∈ R)

∑
K
(x ∈ S) g∑

K
(x ∈ sng e) g = g[e/x]∑

K
(x ∈ ∅K) g = 0W

∑
K
(x ∈ R) 0W = 0W∑

K
(x ∈ R !

K
S) g =

∑
K
(x ∈ R) g +

W

∑
K
(x ∈ S) g∑

K
(x ∈ R) (g +

W
h) =

∑
K
(x ∈ R) g +

W

⊎
K
(x ∈ R)h

The operations for which we introduced syntax so far do not include the
“scalar multiplication” of the semimodule structures. Having such operations
can be useful when we wish the queries of the calculus to perform (additional)
annotations themselves. The idea was introduced in [10] and was exploited, for
example, in provisioning [9].

For each k ∈ K we add two unary constructs to the calculus. One of the
constructs takes an expression R of type SetK τ and produces another expression
k R of the same type. If the meaning of R is the K-set A then the meaning of
k R is the K-set k ∗

K
A. The other construct takes an expression g of type α and

produces another expression k g also of type α. If the meaning of g is w ∈ W
then the meaning of k g is k ∗

W
w. In addition to equalities directly derived from

the semimodule axioms, these additional constructs satisfy the following:

⊎
K
(x ∈ kR)S = k

⊎
K
(x ∈ R)S =

⊎
K
(x ∈ R) k S∑

K
(x ∈ k R) g = k

∑
K
(x ∈ R) g =

∑
K
(x ∈ R) k g

Together with the previous axioms about !
K
and +

W
these are linearity prop-

erties. In fact, since the singletons form a basis for K-sets it follows that the
semantics of

∑
K
(x ∈ R) g (and of

⊎
K
(x ∈ R)S) is completely determined by

linearity and by
∑

K
(x ∈ sng e) g = g[e/x]. We can show this within the equa-

tional theory of the calculus:

Provenance Propagation in Complex Queries 491

∑
K
(x ∈ k1 sng e1 !K

· · · !
K
kn sng en) g =∑

K
(x ∈ k1 sng e1) g +W

· · ·+
W

∑
K
(x ∈ kn sng en) g =

k1
∑

K
(x ∈ sng e1) g +W

· · ·+
W
kn
∑

K
(x ∈ sng en) g =

k1 g[e1/x] +W
· · ·+

W
kn g[en/x]

Taking g to be just x and switching from syntax to semantics gives us the
justification for the aggregations of annotated values in [1].

This calculation allows us also to see that the commutativity of !
K
and +

W

validate the following commutativity axioms for
⊎

K
and
∑

K
K:

⊎
K
(x ∈ R)

⊎
K
(y ∈ S)T =

⊎
K
(y ∈ S)

⊎
K
(x ∈ R)T∑

K
(x ∈ R)

∑
K
(y ∈ S) g =

∑
K
(y ∈ S)

∑
K
(x ∈ R) g

Of course, the calculi described above cannot be legitimately called “query
languages”. However, as was shown in [5,16], only straightforward constructs for
pairs (even better: for labeled records), conditionals and an equality test need
to be added to get there. The equational theory we gave in this section justifies
many of the query optimizations performed in database systems.

5 Connections with Concepts in Category Theory

In the 1970s and 80s, category theory, this desperately abstract branch of mathe-
matics, has surprised programming language theorists by helping them organize
their semantical landscape. When a couple of these PL theorists immigrated
to databases, some category theory was smuggled in too, hidden among their
supplies. So now that we have it we might as well make some use of it. Actu-
ally, we did. Pretty much all the constructs and equational laws in section 4 are
taken directly from category theory, following [5,16]. For the reader interested
in pursuing further connections I will summarize here how this worked out.

Fix a commutative semiring K and consider the category 7 K-SMod of
K-semimodules. As usual for algebraic structures, the forgetful functor U :
K-SMod → SET has a left adjoint F : SET → K-SMod. Of interest to us, how-
ever, is that F (D) can, in fact, be given as the semimodule of K-sets described
in section 3.

Again as usual, the composition T = U ◦ F is a monad, in fact a strong
monad with respect to the cartesian product of sets. Specializing to T the cal-
culus associated with an arbitrary strong monad in [5] (following the work of
Moggi, Wadler, and Trinder [17,21,20]) gives the calculus of K-sets described in
section 4.

7 See [15] for category, functor, left adjoint, monad, monad algebra, and monadic.

492 V. Tannen

Moreover, since semimodules are (many-sorted) algebraic structures, Beck’s
theorem applies and the forgetful functor U is monadic (tripleable), i.e., the
Eilenberg-Moore T -algebras are in canonical one-to-one correspondence with the
K-semimodules. This allows us to specialize to T the calculus of algebraically
“enriched” monad-based collections and their monad-algebra-based aggregates
introduced in [16]. The result is the (K,W)-calculus described in section 4.

Other topics treated in [16] yield interesting concepts and results when special-
ized to K-semimodule monads. For example, the axiomatization of “collection
conversions” (monad morphisms, here deriving from semiring homomorphisms)
provides the core steps in proving a “commutation with homomorphisms” re-
sult for the query languages in section 4. This kind of result plays an essential
role in making the provenance framework usable for, e.g., cost, trust, and access
control/security applications [13,10,1].

Acknowledgements. I am also very grateful to all the people, aside from
Peter, with whom I worked on the topics presented in this paper, and especially
to Ramesh Subrahmanyam, Limsoon Wong, Kazem Lellahi, TJ Green, Grigoris
Karvounarakis, Yael Amsterdamer, and Daniel Deutch.

References

1. Amsterdamer, Y., Deutch, D., Tannen, V.: Provenance for aggregate queries. In:
PODS, pp. 153–164 (2011)

2. Benjelloun, O., Sarma, A.D., Halevy, A.Y., Widom, J.: ULDBs: Databases with
uncertainty and lineage. In: VLDB, pp. 953–964 (2006)

3. Buneman, P., Cheney, J., Vansummeren, S.: On the expressiveness of implicit
provenance in query and update languages. ACM Trans. Database Syst. 33(4)
(2008)

4. Buneman, P., Khanna, S., Tan, W.-C.: Why and where: A characterization of data
provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973,
pp. 316–330. Springer, Heidelberg (2000)

5. Buneman, P., Naqvi, S.A., Tannen, V., Wong, L.: Principles of programming with
complex objects and collection types. Theor. Comput. Sci. 149(1), 3–48 (1995)

6. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: Why, how, and
where. Foundations and Trends in Databases 1(4) (2009)

7. Cui, Y., Widom, J.: Practical lineage tracing in data warehouses. In: ICDE,
pp. 367–378 (2000)

8. Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a warehousing
environment. ACM Trans. Database Syst. 25(2), 179–227 (2000)

9. Deutch, D., Ives, Z.G., Milo, T., Tannen, V.: Caravan: Provisioning for what-if
analysis. In: CIDR (2013)

10. Foster, J.N., Green, T.J., Tannen, V.: Annotated XML: queries and provenance.
In: PODS, pp. 271–280 (2008)

11. Green, T.J.: Containment of conjunctive queries on annotated relations. Theory
Comput. Syst. 49(2), 429–459 (2011)

12. Green, T.J., Karvounarakis, G., Ives, Z.G., Tannen, V.: Update exchange with
mappings and provenance. In: VLDB, pp. 675–686 (2007)

Provenance Propagation in Complex Queries 493

13. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS,
pp. 31–40 (2007)

14. Imielinski, T., Lipski Jr., W.: Incomplete information in relational databases. J.
ACM 31(4), 761–791 (1984)

15. Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathe-
matics. Springer (1998)

16. Lellahi, S.K., Tannen, V.: A calculus for collections and aggregates. In: Moggi, E.,
Rosolini, G. (eds.) CTCS 1997. LNCS, vol. 1290, pp. 261–280. Springer, Heidelberg
(1997)

17. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
18. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Synthesis Lec-

tures on Data Management. Morgan & Claypool Publishers (2011)
19. Tan, W.-C.: Containment of relational queries with annotation propagation. In:

Lausen, G., Suciu, D. (eds.) DBPL 2003. LNCS, vol. 2921, pp. 37–53. Springer,
Heidelberg (2004)

20. Trinder, P.W.: Comprehensions, a query notation for dbpls. In: DBPL, pp. 55–68
(1991)

21. Wadler, P.: Comprehending monads. Mathematical Structures in Computer Sci-
ence 2(4), 461–493 (1992)

22. Woodruff, A., Stonebraker, M.: Supporting fine-grained data lineage in a database
visualization environment. In: ICDE, pp. 91–102 (1997)

Well-Defined NRC Queries Can Be Typed

(Extended Abstract)

Jan Van den Bussche1 and Stijn Vansummeren2

1 Hasselt University and Transnational University of Limburg, Belgium
2 Université Libre de Bruxelles, Belgium

Abstract. We study the expressive power of the static type system of
the Nested Relational Calculus NRC and show that on so-called homo-
geneous input and output types, the NRC type system is expressively
complete: every untyped but homogeneously well-defined NRC expres-
sion can be equivalently expressed by a well-typed expression. The NRC
static type system hence does not limit the expressive power of the query
writer.

Dedicated to Peter Buneman.

1 Introduction

Peter Buneman has been a longtime advocate of database query languages in the
style of functional programming [3,4,9]. He has also repeatedly pointed out the
relevance of union or variant types in the context of database applications [2,5,8].
Hence it seems fitting to contribute a paper on the expressive power of a typed
first-order functional database query language, where we make a heavy use of
union and variant types in our technical development.

Conventional wisdom states that programming errors should be caught as
soon as possible, preferably at program development time. To this end, most
programming languages come equipped with a static type system that accepts
only “well-defined” programs that do not “crash” or “go wrong”. Unfortunately,
however, although decidable static type systems can prove the absence of crashes,
they cannot prove their presence. For example, a program like

if <complex test> then <crash>

will be rejected as ill-typed even if <complex test> never terminates and the
<crash> expression is never executed, as termination of programs is undecidable
and hence cannot be statically checked.

For this reason, practical type systems only need to be sound (i.e., accept only
well-defined programs), but not complete (i.e., accept exactly all well-defined
programs). Note, however, that devising a type system that only needs to be
sound is trivial. It suffices to let every expression be ill-typed, as soundness
vacuously holds in the absence of well-typed programs. Of course, such a type

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 494–506, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Well-Defined NRC Queries Can Be Typed 495

system is useless as it precludes the definition of all programs that can be ex-
pressed in a well-defined (but untyped) manner. Although real type systems are
far from trivial, the question of their expressive power with regard to the class of
well-defined programs remains interesting: are there well-defined programs that
cannot be expressed by a well-typed program? If so, then the type system limits
the expressiveness of the programmer, and more expressive type systems should
be considered instead. If not, then we say that the type system is expressively
complete.

In this paper, we study the expressive power of the static type system of the
Nested Relational Calculus NRC [4]. The NRC is a database query language
that provides a generalization and elegant abstraction of the familiar select-
from-where SQL, OQL, and C� queries. In earlier work [12], we have studied
the decision problem of well-definedness for NRC, obtaining that the problem is
undecidable for NRC in general, but decidable for certain restricted fragments.
These results motivate the need for an (incomplete) static type system for NRC,
such as the one proposed by Buneman et al. [4] during NRC’s inception. Here
we show that, on so-called homogeneous input and output types, the NRC type
system is expressively complete. This hence confirms in the positive a conjecture
made by the authors in [11].

Most type systems for imperative Turing complete programming languages
are easily shown expressively complete: it suffices to show that one can sim-
ulate all Turing machine operations (including encoding and decoding of the
programming language objects on Turing machine tapes) in a well-typed man-
ner. Proving expressive completeness for the NRC type system, in contrast, is
more difficult exactly because NRC is not Turing complete.

Interestingly enough, there are type systems for functional turing complete
programming languages that are not expressively complete. For example, the
untyped lambda calculus can define all computable functions, while in the simply
typed lambda calculus only a restricted class of functions, the so-called extended
polynomials, are definable [1,10]. Moreover, as shown by Kahrs, the type system
of the Programmable language for Computable Functions PCF is expressively
complete [7], while the type system of ML 1990 is not [6].

This paper is further organized as follows. In Section 2 we formally introduce
the NRC and its static type system. We obtain our main result in Section 3.
In this extended abstract, we will omit the detailed proof but we indicate the
main steps toward the proof. It is anticipated that the full paper will appear in
a scientific journal.

2 Preliminaries

From the outset we assume a non-empty set of atomic data constants (which in
practice will include integers, strings, and so on). The NRC operates on complex
objects o, which are nested combinations of atomic data constants c; records;
and sets:

o ::= c | () | (o, o′) | {o, . . . , o′}.

496 J. Van den Bussche and S. Vansummeren

Here, () is the empty record, and (o, o′) is the pair of objects formed by o and o′.
Note that larger-arity records like, e.g., (o1, o2, o3) can be simulated by nesting
pairs as, e.g., (o1, (o2, o3)).

The NRC expressions e themselves are given by the syntax

e ::= x | c | () | (e, e′) | π1(e) | π2(e)
| {} | {e} | e1 ∪ e2 | {e2 | x ∈ e1} |

⋃
e

| if e1 = e2 then e3 else e4.

(Parentheses may be used to avoid ambiguity.) Here, x ranges over variables that
can be bound to input objects; c is data constant formation; () is empty record
formation; (e, e′) is pair formation; π1(e) and π2(e) is left and right projection
on pairs, repsectively; {} and {e} are empty and singleton set construction,
respectively; e1∪ e2 is set union; and {e2 | x ∈ e1} is set comprehension. The set
comprehension evaluates e2 for every x in the set returned by e1. For example,
{π1(x) | x ∈ R} returns the projection on the first component of the set of pairs
R. The expression

⋃
e flattens the set of sets e. Finally, if e1 = e2 then e3 else

is a conditional expression that evaluates e3 if e1 and e2 evaluate to the same
object, and evaluates e4 otherwise.

It should be emphasized that the x ∈ e1 part in the {e2 | x ∈ e1} construct
is not a membership test. It is an abstraction which introduces and binds the
variable x, whose scope is the expression e2. In light of this view, the free variables
FV (e) of an expression e are hence inductively defined as follows: FV (x) = {x},
FV (o) = {}, FV ({e2 | x ∈ e1} = FV (e1) ∪ (FV (e2) − {x}), and FV (e) is
the union of the free variables of e’s immediate subexpressions otherwise. We
write e(x, . . . , y) to indicate that e is an expression with FV (e) ⊆ {x, . . . , y}.
An expression without free variables is closed.

Some expressions, like π1({4}) and 5∪{6}, clearly apply primitive operators to
inappropriate objects and will therefore crash during evaluation. This intuition
is formalized as follows. First, define an environment to be a mapping α that
maps each variable x to an object α(x). We use the notation x/o, α to stand
for the environment that equals α on all variables except x, which it maps to o.
Let e[α] denote the expression obtained from e by replacing all free occurrences
of x by α(x), for every x ∈ FV (e). Clearly, e[α] is fully determined by the free
variables of e: if α and α′ agree on FV (e) then e[α] = e[α′]. We may therefore
write e[x/o, . . . , y/o′] as a shorthand of the more verbose e[x/o, . . . , y/o′, α] when
FV (e) = {x, . . . , y}. Evaluation of e(x, . . . , y) on o, . . . , o′ can then be seen as
running the operational semantics of Figure 1 on e[x/o, . . . , y/o′]. There, we use
the notation e → o to indicate that closed expression e evaluates to object o.
Evaluation crashes when there is no o such that e→ o.

Example 1. Evaluation of the expression
⋃
{{(π1(y), z) | z ∈ x2} | y ∈ x1} with

x1 bound to o1 = {(1, 2)} and x2 bound to o2 = {3} is successful:⋃
{{(π1(y), z) | z ∈ {3}} | y ∈ {(1, 2)}} → {(1, 3)}.

Well-Defined NRC Queries Can Be Typed 497

c → c () → ()

e1 → o e2 → o2

(e1, e2) → (o1, o
′
2)

e → (o1, o2)

π1(e) → o1

e → (o1, o2)

π2(e) → o2

{} → {}
e → o

{e} → {o}
e1 → {o1, . . . , om} e2 → {o′1, . . . , o′n}

e1 ∪ e2 → {o1, . . . , om, o′1, . . . , o
′
n}

e1 → {o′1, . . . , o′m} e[x/o′i] → oi for 1 ≤ i ≤ m

{e | x1 ∈ e1} → {o1, . . . , om}
e → {o1, . . . , om} where each oi is a set⋃

e → o1 ∪ · · · ∪ om

e1 → o1 e2 → o2 o1 = o2 e3 → o

if e1 = e2 then e3 else e4 → o

e1 → o1 e2 → o2 o1 �= o2 e4 → o

if e1 = e2 then e3 else e4 → o

Fig. 1. The operational semantics of NRC

Evaluation of this expression with x1 bound to o′1 = (1, 2) instead of o1 crashes,
however, as no inference rule applies to {{(π1(y), z) | z ∈ {3}} | y ∈ (1, 2)}.

Note that crashes only occur when (1) we apply projection to non-pairs, and
(2) when we apply set union, comprehension, or flattening to non-sets.

We are interested in the crashing behavior of expressions when the inputs are
taken from certain prescribed classes of objects. To this end, let the NRC types
be given by the syntax

s, t ::= atom | unit | s× t | {s} | s ∨ t.

The semantics of a type is just a set of objects: atom is the set of all atomic data
constants; unit is the type of the empty record (); s × t is the set of all pairs
(o, o′) with o of type s and o′ of type t; {s} is the set of all finite sets of objects of
type s; and s∨ t it is the set of all objects of type s or of type t. We write o : s to
indicate that o is an object of type s. Note that every object belongs to a type (in
fact infinitely many). For example, {5, (1, 2)} has type {atom∨(atom× atom)}
but also {atom∨(atom× atom) ∨ s} for every s.

Types of the form s ∨ t are called union types. A type in which no union
type occurs is called a homogeneous type. So, {atom} is a homogeneous type, but
{atom∨(atom× atom)} is not. An object is homogeneous if it has a homogeneous
type. It is heterogenous otherwise. So, {5, 1, 2} is a homogeneous set object (of
homogeneous type {atom}), but {5, (1, 2)} is heterogenous.

Definition 1. A type assignment is a mapping T that assigns a type T(x) to
each variable x. An environment α is compatible with a type assignment T,
written α : T if α(x) : T(x), for every x. An NRC expression e is said to be
well-defined under T if for every α : T there exists o with e[α] → o. We write
T |= e : t to indicate that e is well-defined under T and, moreover, every output
o of e under all α : T is of type t.

498 J. Van den Bussche and S. Vansummeren

T � x : T(x) T � c : atom T � () : unit

T � e1 : s1 T � e2 : s2

T � (e1, e2) : s1 × s2

T � e : s1 × s2 i = 1, 2

T � πi(e) : si

T � {} : {s}
T � e : s

T � {e} : {s}
T � e1 : {s} T � e2 : {s}

T � e1 ∪ e2 : {s}

T � e1 : {s} x : s,T � e2 : t

T � {e2 | x ∈ e1} : {t}

T � e : {{s}}
T �

⋃
e : {s}

T � e1 : s T � e2 : s T � e3 : t T � e4 : t

T � if e1 = e2 then e3 else e4 : t

Fig. 2. Static type system of NRC

Traditionally, the NRC is defined to operate only on homogeneous objects,
and its type system (which we will define shortly) hence considers only homo-
geneous types. For the discussion that follows, however, it will be convenient to
be able to assign a type also to heterogenous objects. Whence our inclusion of
the union types.

The static type system for NRC is given in Fig. 2. There, the notation x : s,T
stands for the type assignment that equals T on all variables except x, which it
maps to s. As usual, the notation T . e : s indicating that e has type s under T
should be read as “assuming that the free variables x of e are bound to objects of
type T(x), e outputs objects of type s”. Observe that this relation only depends
on the free variables of an expression: if T and T′ agree on FV (e) and T . e : s,
then also T′ . e : s. We may therefore write x : r, . . . , y : s . e : t as a shorthand
of the more verbose x : r, . . . , y : s, T . e : t when FV (e) = {x, . . . , y}.

The obvious property one expects from a type system is soundness :

Theorem 1. The static type system of Fig. 2 is sound. That is, if T . e : t then
T |= e : t.

Well-typedness hence implies well-definedness. The converse implication does not
hold however, as the static type system rejects certain well-defined expressions.
For example, {π1({}) | x ∈ {}} is well-defined, but is not well-typed (i.e., there
is no s such that . e : s). In the following Section we will show, however, that e
can equivalently be expressed by a well-typed NRC expression.

A Note on the NRC Static Type System. As mentioned earlier, traditionally
the type system of NRC does not include union types. Formally, this means
that, traditionally, in Fig. 2 the meta-variables s and t are restricted to range
over homogeneous types, and T is restricted to homogeneous type assignments
(i.e., a mapping from variables to homogeneous types). We do not require this

Well-Defined NRC Queries Can Be Typed 499

restriction, and are hence able to derive, for example x : {r1 ∨ r2}, y : {r1 ∨ r2} .
x ∪ y : {r1 ∨ r2}.

Still, our setting treats union types in a conservative way, in the following
sense.

Proposition 1. Let T be a homogeneous type assignment (i.e., a mapping from
variables to homogeneous types) and let e be an NRC expression. If T . e : t
then t is also a homogeneous type.

This implies that on homogeneous type assignments, the type system of Fig. 2
hence coincides with the traditional one.

3 Completeness

Our goal in this section is to obtain the following result. Let e ≡T f denote that
e and f are equivalent on inputs of type T. That is, for every α : T, either e[α]
and f [α] both crash or they evaluate to the same object o.

Theorem 2. Homogeneous well-defined NRC expressions can be expressed in
a well-typed way, in the following sense. For every NRC expression e, every
homogeneous type assignment T and every homogeneous type t such that T |=
e : t there exists an NRC expression h such that (1) T . h : t and (2) e ≡T h.

The proof is effective and allows us to transform e into h, given T and t.
Intuitively, there are two problems to overcome. The first problem is that well-
defined expressions may contain ill-defined subexpressions. For example, e =
{π1({}) | x ∈ {}} is well-defined, but its subexpression e′ = π1({}) is not. Of
course, e′ is “dead code” (it is never executed) and we can therefore alternatively
express e by {⊥t | x ∈ {}} where ⊥t is an arbitrary constant object of type t,
the desired output type. Our transformation of e into f will therefore need
to detect dead subexpressions, and replace them by harmless constants. The
second problem is that even when evaluated on homogeneous inputs, well-defined
expressions may manipulate heterogeneous objects while well-typed expressions
cannot. For example, e = {π1(z) | z ∈ (x ∪ y)}, is well-defined under x : {s ×
s}, y : {s × t)} with s and t are two different types. It is not well-typed under
this type assignment, however, as the type rule for x∪y requires x and y to have
the same set type. Nevertheless, the same query is expressed by e′ = {π1(z) |
z ∈ x} ∪ {π1(x) | z ∈ y}, which is well-typed. In general, we will deal with this
problem by simulating heterogeneous objects by homogeneous ones.

The proof of Theorem 2 is divided into three steps as follows, where step 1 and
2 deal with the first problem, and step 2 and 3 deal with the second problem.

1. First, we show that homogeneous well-defined NRC expressions can be de-
fined in a well-typed way inNRC(cast), an extension ofNRC with a typecast
operator.

500 J. Van den Bussche and S. Vansummeren

2. Next, we show that well-typed NRC(cast) can be simulated in well-typed
NRC+, a variant of the NRC in which we disallow union types but add
sum types (also known as variant types) instead. In particular, since NRC+

does not have a typecasting operator, we show that casts can be simulated
on sum types.

3. We are thus left with well-typed NRC+ expressions with homogeneous input
and output types, which are already known to be expressible in a well-typed
manner in NRC itself [13].

We now develop each of these steps in turn.

3.1 Adding Casts

Let NRC(cast) be the extension of NRC with expressions of the form 〈s〉 e, for
every type s:

e ::= · · · | 〈s〉 e.
Semantically, 〈s〉 e returns the same object as e if that object is of type s, oth-
erwise it returns an arbitrary (but fixed) object ⊥s of type s.

e→ o o : s

〈s〉 e→ o

e→ o ¬(o : s)
〈s〉 e→ ⊥s

Note that the output of 〈s〉 e is always of type s. We therefore add the following
type rule to the typesystem of NRC:

T . e : t
T . 〈s〉 e : s

It is easy to see that with this addition the typesystem of NRC(cast) is sound.
The following proposition shows that the typecast operator allows us to ex-

tend any expression into a well-typed (and therefore, well-defined) expression.
Intuitively, this is because we can always typecast subexpressions that do not
meet the type rule constraints of Fig. 2 into a type that does meet these con-
straints. Consider, for example, that we are type-checking π1(e) and suppose that
we have already derived T . e : t with t = {unit} ∨ (s1 × s2). Then clearly, π1(e)
cannot be well-typed under T since the type rule for π1 requires e to have a pair
type. Suppose, however, that we know that π1(e) is well-defined under T. Then
clearly, although the type system derives {unit} ∨ (s1 × s2) as the output type
of e, we know that e can never output an object of type {unit}, otherwise π1(e)
would crash. Hence, π1(e) can equivalently be expressed on T by π1(〈s1× s2〉 e),
which is well-typed under T.

Similarly, suppose that we have derived T . e : t with t = (s1×s2)∨ (s′1×s′2).
Again, π1(e) is not well-typed under T since the type rule for π1 requires e
to have a pair type t1 × t2 instead of a union type. In this case, however, it
suffices to recognize that all objects of type (s1 × s2) ∨ (s′1 × s′2) also have type
t′ := (s1 ∨ s′1) × (s2 ∨ s′2). Hence, π1(e) can equivalently be expressed on T by
π1(〈t′〉 e), which is well-typed under T.

These two simple ideas form the basis of the following proposition.

Well-Defined NRC Queries Can Be Typed 501

Proposition 2. For every NRC expression e and every type assignment T there
exists an expression fe,T ∈ NRC(cast) and type te,T such that

(a) T . fe,T : te,T; and
(b) for every α : T, if e[α]→ o then fe,T[α] → o.

Corollary 1. For every NRC expression e, every type assignment T, and every
type t with T |= e : t there exists a well-typed NRC(cast) expression T . f : t
such that then e ≡T f .

3.2 Simulating Union Types and Casts

In this subsection we explain how the union types and casts of NRC(cast) can
be simulated in NRC+, a variant of NRC in which we disallow union types but
add sum types (also known as variant types) instead. Note that NRC+ does not
have a typecasting operator.
NRC+ extends NRC on three levels: on the level of objects themselves, on

the level of types, and on the level of expressions. On the level of objects, NRC+

adjoins the atomic, records, and set objects of NRC with tagged objects of the
form left o and right o:

o ::= c | () | (o, o′) | {o, . . . , o′} | left o | right o.

One can see tagged objects as objects paired with either the label left or the
label right.

On the level of types, NRC+ adjoins the atomic, record, and set types of
NRC with sum types, as given by the syntax:

σ, τ ::= atom | unit | σ × τ | {σ} | σ+τ.

Note that every homogeneous type s as defined in Section 2 is syntactically also
an NRC+ type. Like NRC types, the semantics of a NRC+ type is just a set
of objects: atom is the set of all atomic data constants; unit is the type of the
empty record (); σ × τ is the set of all pairs (o, o′) with o of type σ and o′ of
type τ ; {σ} is the set of all finite sets of objects of type σ; and σ+τ is the set of
all objects left o and right o with o of type σ and τ , respectively.

On the level of expressions NRC+ extends NRC with two tagged object
assembly operations, and one dissembly operation:

e ::= ... | leftσ,τ e | rightσ,τ e | when e1 is leftx do e2 or right y do e3

where σ and τ range over NRC+ types. Intuitively, applying assembly opera-
tion leftσ,τ to object o adds the left label to o, returning left o. rightσ,τ works
similarly. The dissembly operation when e1 is leftx do e2 or right y do e3 first in-
spects the result of e1. If this is a tagged object left o then it evaluates e2 with x
bound to o. If this is a tagged object right o then it evaluates e3 with y bound to
o. The free variables of leftσ,τ e and rightσ,τ e are hence simply the free vari-
ables of e. In contrast, the free variables of when e1 is leftx do e2 or right y do e3
is FV (e1) ∪ (FV (e2)− {x}) ∪ (FV (e3)− {y}).

502 J. Van den Bussche and S. Vansummeren

NRC+
operational semantics.

e → o

left
σ,τ e → left o

e → o

right
σ,τ e → right o

e1 → left o1 e2[x/o1] → o

when e1 is left x do e2 or right y do e3 → o

e1 → right o1 e3[y/o1] → o

when e1 is left x do e2 or right y do e3 → o

NRC+
static type system.

T �+ x : T(x) T �+ c : atom T �+ () : unit

T �+ e1 : σ1 T �+ e2 : σ2

T �+ (e1, e2) : σ1 × σ2

T �+ e : σ1 × σ2 i = 1, 2

T �+ πi(e) : σi

T �+ {} : {σ}
T �+ e : s

T �+ {e} : {σ}
T �+ e1 : {σ} T �+ e2 : {s}

T �+ e1 ∪ e2 : {σ}

T �+ e1 : {σ} x : σ,T �+ e2 : τ

T �+ {e2 | x ∈ e1} : {τ}

T �+ e : {{σ}}
T �+

⋃
e : {σ}

T �+ e1 : σ T �+ e2 : σ T �+ e3 : τ T �+ e4 : τ

T �+ if e1 = e2 then e3 else e4 : τ

T �+ e : σ

T �+
left

σ,τ e : σ+τ

T �+ e : τ

T �+
right

σ,τ e : σ+τ

T �+ e1 : σ1+σ2 x : σ1,T �+ e1 : τ y : σ2,T �+ e2 : τ

T �+ when e1 is left x do e2 or right y do e3 : τ

Fig. 3. The operational semantics and type system of NRC+

In the type system, leftσ,τ e will have type σ+τ , provided that e has type σ.
Similarly, rightσ,τ e has type σ+τ provided that e has type τ . Finally, when e1
is leftx do e2 or right y do e3 has type τ provided that e1 has type σ1+σ2, and e2
and e3 both have type τ under the assumption that x : σ1 and y : σ2, respectively.

The formal evaluation rules, as well as the rules of the NRC+ static type
system are given in Fig. 3. There, we use the notation T .+ e : τ that NRC+

expression e has NRC+ type τ under NRC+ type assignment T. It is straight-
forward to show that this type system is sound.

Example 2. The expression

e = when z is leftx do π1(x) or right y do
⋃

y

Well-Defined NRC Queries Can Be Typed 503

is well-typed under the type assignment z : ({atom} × atom)+{{atom}}. Intu-
itively, this type assignment indicates that z can take values that are either of
type {atom} × atom or of type {{atom}}. The expression evaluates π1 on its
input object z if that object is of pair type {atom} × atom. (To be precise, it
evaluates π1 on o when z is of the form left o). It evaluates

⋃
on its input object

if it is of type {{atom}} (i.e., z is of the form right o).

As this example illustrates, one can see sum types as a (better-behaved) vari-
ant of union types. The crucial difference between union types and sum types lies
in the fact that, by means of the left and right labels, objects of a sum type carry
runtime type information, whereas objects of a union type (not having labels)
do not. Indeed, an expression similar to e in the example above can intuitively
not be defined in a well-defined manner in NRC(cast) under the type assign-
ment z : ({atom} × atom) ∨ {{atom}} since we have no means in NRC(cast) to
inspect whether z is of type {atom}×atom or {{atom}}. We will exploit the fact
that NRC+ has this form of runtime type information to show that well-typed
NRC(cast) can be simulated in well-typed NRC+. The simulation is based on
the following encoding.

The Encoding. We will use NRC+’s sum types to simulate NRC’s union types
by means of the following one-to-one correspondence between the syntax of sum
types and union types. Let s+ be the NRC+ type obtained by recursively re-
placing every union type t1 ∨ t2 in NRC type s by t1

++t2
+.

atom+ = atom unit+ = unit (s× t)
+
= s+ × t+

{s}+ = {s+} (s ∨ t)+ = s++t+

Similarly, let σ be the NRC type obtained by recursively replacing every sum
type τ1+τ2 occurring in NRC+ type σ by the union type τ1 ∨ τ2.

atom+ = atom unit+ = unit (s× t)
+
= s+ × t+

{s}+ = {s+} (s ∨ t)+ = s++t+

Clearly, s+ = s and σ+ = σ. Moreover, if s is a homogeneous type, then s+ =
s = s. We extend these operations pointwise to type assignments and write, for
example, T+ for NRC+ type assignment that maps x
→ T(x)

+
, for every x.

The type assignment T is defined similarly.
Finally, let the erasure o of NRC+ object o be the object obtained by recur-

sively replacing all subobjects of the form left o′ and right o′ in o by o′.

c := c () = () (o1, o2) = (o1, o2)

{o, . . . , o′} := {o, . . . , o′} left o := o right o := o

Note that if o is a homogeneous object, then o = o. We extend erasure pointwise
to NRC+ environments, and write α for the environment with domain dom(α)
that maps x
→ α(x), for every x ∈ dom(α).

504 J. Van den Bussche and S. Vansummeren

Definition 2. Let s be an NRC type. We say that u : s+ is an encoding of o : s
with respect to s if u = o.

It is easy to see that for every NRC type s and every o : s there is at least one
encoding. Hence, for every α : T there always an environment α′ : T+ encoding
α (i.e., α′ = α).

Lemma 1. Type casts can be simulated in NRC+. That is, for all NRC types
s and t there exists an NRC+ expression casts,t(x) such that:

(a) x : s+ .+ casts,t(x) : t+; and
(b) casts,t[x/o] → o′ implies 〈t〉 o→ o′, for every o : s+.

Let us illustrate the proof idea by means of the following example.

Example 3. Let atomn with n ≥ 1 stand for the type of n-ary tuples of atomic
data constants: atom1 = atom; atom2 = atom× atom; atom3 = atom× atom2;
and so on. Let s = atom2 ∨ atom3 and t = atom3 ∨ atom4. Suppose that ⊥t =
(c, (c, (c, c))). Then casts,t(x) is given by

when x is left y do rightatom
3,atom4

(c, (c, (c, c))) or right z do leftatom
3,atom4

(z).

Lemma 2. For all NRC types s and t there exists an expression eqs,t(x, y) in
NRC+ that checks equality modulo encodings:

(a) x : s+, y : t+ .+ eqs,t(x, y) : {unit}; and
(b) eqs,t[x/ox, y/oy]→ {()} iff ox = oy, for every ox : s

+, oy : t
+.

Let us illustrate the proof idea by means of the following example.

Example 4. Using the notation of Example 3, let s = atom2 ∨ atom3 and t =
atom3 ∨ atom4. Then eqs,t(x, y) is given by

when x is left u do {}
or right u do
when y is left v do (if u = v then {()} else {})
or right v do {}

Proposition 3. For every NRC(cast) expression e, type assignment T and type
t with T . e : t there exists NRC+ expression e+ such that:

(a) T+ .+ e+ : t+; and

(b) e+[α]→ o iff e[α]→ o, for every α : T+.

Corollary 2. For every NRC(cast) expression e, every homogeneous type as-
signment T, and every homogeneous type t with T . e : t there exists a well-typed
NRC+ expression T .+ e+ : t such that e+ ≡T e.

Well-Defined NRC Queries Can Be Typed 505

3.3 Removing Sum Types

To finalize the proof, we recall the following result by Wong [13, Corollary 2.3.5].

Proposition 4 (Wong [13]). For every NRC+ expression e, every homoge-
neous type assignment T and every homogeneous type t with T .+ e : t there
exists a well typed NRC expression T . f : t such that e ≡T f .

We hence obtain the following proof of Theorem 2.

Proof (of Theorem 2). Let e be anNRC expression; let T be a homogeneous type
assignment; and let t be a homogeneous type such that T |= e : t. By Corollary 1
there exists NRC(cast) expression f ≡T e with T . f : t. By Corollary 2 there
exists NRC+ expression g ≡T f with T . g : t. Then, by Proposition 4 there
exists NRC expression h ≡T f such that T . f : t, as desired. %�

4 Discussion

One may wonder whether Theorem 2 can be strengthened to the case where e
is well-typed under a heterogeneous type assignment T with output in a hetero-
geneous type t. It turns out that the static type system of Fig. 2 is too weak
for this purpose since it never introduces or manipulates union types; it merely
propagates them from the input type assignment to output type. Indeed, the
following proposition is straightforward to obtain by induction on e.

Proposition 5. Let T . e : t. Then every union type t1∨ t2 that occurs in t also
occurs in T(x) for some x ∈ FV (e).

Hence, we cannot find a well-typed equivalent of the well-defined x : {s}, y : {t} |=
x ∪ y : {s ∨ t} when s and t are distinct types.

Alternatively, can Theorem 2 be strengthened to the case where e is well-
typed under a heterogeneous type assignment T with output in a homogeneous
type t? Proposition 5 does not exclude this possibility. We conjecture, however,
that it is also not possible to strengthen Theorem 2 in this sense.

Conjecture 1. There exists a heterogeneous type assignment T, NRC expression
e and homogeneous type t with T |= e : t that cannot be equivalently expressed
by a well-typed NRC expression.

References

[1] Barendregt, H.: The Lambda Calculus: its Syntax and Semantics. North-Holland
(1984)

[2] Buneman, P., Davidson, S., Watters, A.: A semantics for complex objects and
approximate answers. J. Comput. Syst. Sci. 43(1), 170–218 (1991)

[3] Buneman, P., Frankel, R., Nikhil, R.: An implementation technique for database
query languages. ACM Trans. Database Syst. 7(2), 164–186 (1982)

506 J. Van den Bussche and S. Vansummeren

[4] Buneman, P., Naqvi, S.A., Tannen, V., Wong, L.: Principles of programming with
complex objects and collection types. Theor. Comput. Sci. 149(1), 3–48 (1995)

[5] Buneman, P., Pierce, B.: Union types for semistructured data. In: Connor, R.,
Mendelzon, A. (eds.) DBPL 1999. LNCS, vol. 1949, pp. 184–207. Springer,
Heidelberg (2000)

[6] Kahrs, S.: Limits of ML-definability. In: Kuchen, H., Swierstra, S.D. (eds.) PLILP
1996. LNCS, vol. 1140, pp. 17–31. Springer, Heidelberg (1996)

[7] Kahrs, S.: Well-going programs can be typed. In: Hofmann, M.O. (ed.) TLCA
2003. LNCS, vol. 2701, pp. 167–179. Springer, Heidelberg (2003)

[8] Ohori, A., Buneman, P.: Polymorphism and type inference in database program-
ming. ACM Trans. Database Syst. 21(1), 30–76 (1996)

[9] Ohori, A., Buneman, P., Breazu-Tannen, V.: Database programming in
Machiavelli—a polymorphic language with static type inference. In: Clifford, J.,
Lindsay, B., Maier, D. (eds.) Proceedings of the 1989 ACM SIGMOD Interna-
tional Conference on the Management of Data. SIGMOD Record, vol. 18(2),
pp. 46–57. ACM Press (1989)

[10] Schwichtenberg, H.: Definierbare funktionen in λ-kalkül mit typen. Archiv für
Mathematische Logik und Grundlagenforschung 174, 113–114 (1976)

[11] Van den Bussche, J., Van Gucht, D., Vansummeren, S.: A crash course on database
queries. In: Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS), pp. 143–154. ACM (2007)

[12] Van den Bussche, J., Van Gucht, D., Vansummeren, S.: Well-definedness and
semantic type-checking for the nested relational calculus. Theor. Comput.
Sci. 371(3), 183–199 (2007)

[13] Wong, L.: Querying Nested Collections. PhD thesis, University of Pennsylvania
(1994)

Nine Years with Peter Buneman

Stratis D. Viglas

School of Informatics
University of Edinburgh
sviglas@inf.ed.ac.uk

The first time I met Peter was a typical rainy Edinburgh morning. I was already
aware of his tremendous reputation, achievements, and contributions to database
systems, but I had not officially met him until that day. It was Thursday, the
first day of May, back in 2003; the time was about 8:30am. It is not so much that
I have a good memory, as much as it that it was a special day for me. At the
time, I was a graduating PhD student at the University of Wisconsin-Madison
and I was in Edinburgh for my interview.

During my interview season back in 2003 I was ambivalent on whether I
should stay in the US after graduation, or move back to Europe. Edinburgh was
certainly not the database powerhouse that it is today. Peter had only recently
joined Edinburgh after his long stint at UPenn. I originally sent him an email
asking whether there would be any open positions in Edinburgh to which he
replied saying there would be, but I needed to be a bit patient as he worked
through the bureaucracy to make the official announcement. We exchanged a
few emails until the interview and, when the day came and I was in Edinburgh,
he made sure to communicate his vision about building something great. The
interview went well, even though I never felt being interviewed at all; it felt more
like a visit to a former colleague. By the end of the day, I was certain that if
Edinburgh would make me an offer I would prefer it over any other offer I had at
the time. Peter’s presence in Edinburgh was largely the reason for my decision.
His email offering me a Lecturer’s position at Edinburgh came a few weeks later,
and I immediately accepted the offer.

I cannot count the number of times that Peter has impressed me over the last
nine years that we have co-existed in Edinburgh. I will likely digress in this essay
as I will not focus as much on his research output. I am sure other colleagues
who have had a more extensive collaboration with him can write entire books
on his research and scientific merits. Personally, I have always thought of Peter
equally as a colleague and as a mentor and I will aim to do both sides justice.
So what I will do is provide a few anecdotes indicative of our time together in
Edinburgh and of the rare opportunity I was given to collaborate and interact
with him on a daily basis. At the same time, I will try to showcase why these
moments left a great impression on me.

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 507–515, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

508 S.D. Viglas

1 The Collaborator

I joined Edinburgh in September 2003 and, around that time, semi-structured
data and XML were still hot research topics. To say that Peter has had a long-
lasting impact on the field would be an understatement. I was involved in XML
data management as part of my PhD and internship work and it seemed natural
that we would at least discuss certain ideas on fast XML query processing after
I arrived in Edinburgh.

Peter was the Principal Investigator of an EPSRC grant on what he had
termed XML Vectorisation: essentially an application of vertical partitioning to
the XML data model by supplementing his prior work on structural compression
with an efficient storage scheme for data values. This was generalising some of
his prior work on XML skeletons with Martin Grohe and Christoph Koch [2] and
also the XML compression work of Hartmut Liefke and Dan Suciu [3]. What he
was hoping to do at that point was to combine efficient schema and raw-data
management techniques through a fast query processor. We started working on
the topic on and off for a few months, but at a very superficial level: Peter was
heavily involved in getting the Digital Curation Centre1 off the ground, while I
was still becoming accustomed to a new life in Edinburgh. So our collaboration
mainly consisted of bouncing ideas off one another every now and then, and
helping Peter’s PhD students at the time with certain implementation issues.

After the Christmas break, and in January 2004, Wenfei Fan also officially
joined Edinburgh. At that point, and after a few discussions and some steps
forward in the implementation, we decided to aim to submit a paper to VLDB
2004; that initial work became our ICDE 2005 paper [1]. The division of work
was that Wenfei would work on raising the theoretical technical content of the
paper, I would work on designing the query processing algorithms and help the
students with translating this design into a system, while Peter would oversee the
entire process and provide the missing glue to turn all this work into a coherent
paper.

The first anecdote is an example of Peter’s acute skills in comprehending other
people’s ideas and turning them into coherent, sensible and easily understandable
statements. One of the main issues with our work was that we had to combine
frameworks and pieces of code from various ideas and glue them together through
an execution engine. Two such frameworks were Christoph’s skeleton processing
code, and a path-based vertical partitioning implementation the PhD students
were working on. The problem was that skeleton processing disregarded the data
values; while the data values stored in vectors disregarded the notion of a skeleton
as a traversal mechanism. This was not too much of a conceptual problem, but
mainly an implementation problem: some type of mapping was necessary to keep
the two in sync. At some point in the process, I was looking over one student’s
idea for tackling the problem. As it typically the case with overworked graduate
students, what I had to look at were two hand-written pages with an example
and a few bullet points. I had managed to decipher enough to get going but was

1 http://www.dcc.ac.uk

Nine Years with Peter Buneman 509

stuck on some part of the example where what looked like a linear arrangement
of nodes all of a sudden exploded into a multi-node graph. I was pacing around
the hallway when I came across Peter. It was late in the evening and he asked
me what I was working on. After I told him, his eyes lit up just as a child’s eyes
light up when given a new toy. We immediately went back into his office and he
started recreating the example on his whiteboard until at some point he sat in
his chair and started simply looking at the whiteboard looking as puzzled as I
had looked a few minutes before. We decided it was too late in the evening to
solve this, so we should head back home and he offered to give me a ride. I went
back to my office to pack, and after returning to his office a couple of minutes
later he was still sitting in his chair looking at the whiteboard but now with a
smile on his face: “It’s a line, but not the skeleton,” he told me. “It’s not the
actual XML graph, but it’s the operations on the graph. He’s just saying that
if you have an entire skeleton that has been reduced to a single line and you
need to decompress it to process, then different operations need different types
of decompression.” The example immediately made sense. Depending on the
operation and the type of compression, you needed to select how to decompress
the skeleton. This was then generalised to the graph reduction technique we
used in the actual paper. It was already too close to the deadline at that point
and even though we managed to submit the paper after and an all-night editing
session with Wenfei, it did not make it through. It received good reviews though,
and with a few more experimental tests and mainly cosmetic changes we sent it
to ICDE 2005 where it got accepted.

The final editing of the ICDE 2005 submission took place over a weekend in
Peter’s house in Arnisdale, in the Scottish Highlands. Peter had invited Wenfei
and myself over for a long weekend. I still remember the time when while both
Wenfei and I were getting a bit stressed about the upcoming deadline and were
more-or-less frantically editing the paper Peter was urging us to finish up not so
we could submit it, but so we could help him mow the lawn and get his boat in
the water and go for a sail around the loch.

What impressed me most throughput this whole process were two things.
The first was Peter’s need to be challenged. He really likes to solve practical
problems that real systems face as opposed to inventing problems for the sake
of having something to work on, even though the practical applications may be
limited. Overall, he views such problems as puzzles. He simply thinks it is a
fascinating new puzzle that someone has put in front of him and he wants to
solve it in the most elegant way possible. This has been indeed true throughout
our overlap here in Edinburgh. I am one of these dry people that does not like
this “invention of problems for having something to work on” referred to above
(what qualifies as such a problem is a different discussion). However, the first
person to ask the question of the practical aspects of a piece of work is not me,
but it usually is Peter. Research should be used to identify our limitations and
solve practical problems. This has been constant throughout his career: his prior
work on data models and his latest work on provenance, for instance, are prime
examples of practically-driven work that touches both theory and practice.

510 S.D. Viglas

The second attitude to note is how laid-back he is towards research and our
work in general. He does not work for the paper or towards a specific deadline.
He views research as part of his work and will not push for it at any cost. I think
this is intertwined with his viewing of a problem as a puzzle. The only person
you challenge in such a situation is yourself and as such you are the one to set the
pace. And there is equal enjoyment in sailing in Arnisdale and getting an ICDE
submission out of the way: the difference is that most people enjoy finishing the
latter so they might be able to enjoy the former. Peter simply wants to enjoy
both equally and he views them as steps towards the same goal: solve another
puzzle.

2 The Mentor

The transition from graduate student to faculty member is abrupt and its diffi-
culty is underestimated. I cannot believe anyone can be well-prepared for it. As
a graduate student, you are somewhat shielded from all that comes with a job
in academia. You work on your problem and on that problem alone. Funding is
likely taken care of one way or another and you are likely one of the chosen few
that work on something they feel passionate about. This all changes when you
become a faculty member. You need to arrange for your own and your research
group’s funding; to publish at a greater rate as when a graduate student and
in more diverse topics; to undertake administrative posts and carry out various
such tasks in your department (posts and tasks you could not imagine existed let
alone associate them with a faculty position); and, amidst all this, be prepared
to teach to audiences ranging from first year undergraduate students to mature
graduate students. And the above are all in the first few months of starting.

The best analogy I can think of is that as a graduate student you get an
entry-level job at a theatre that routinely hosts your favourite acts. Even better,
you are chosen to work back-stage for the next big show. Then, the day of
the performance, as you are taking care of the last few finishing touches a few
minutes before the start of the main act, you graduate. And all of a sudden, you
are centre-stage, the curtain is lifted immediately, big lights blind you and every
single member of the audience in a packed theatre throws you a juggling club and
demands you start juggling with no prior training. Yes, this is an exaggeration,
but not too far from the truth of the first few days when you are exposed to the
entire machinery of academia.

Barring the above, perhaps one of the most accurate descriptions of academia
I have come across is that it is perfect since you get to choose which twelve (or
more) hours of the day you get to work; but you do have to work as much. This
was certainly true in my case at least, and also for some of my contemporaries.

Peter has come to my rescue more than a few times when such frustrations
were getting the better of me. A couple of more incidents I recall had to do
with such rescues. The first one was after the results of my first EPSRC funding
proposal. The process in the UK is that you first receive the reviews of the
proposal to which you can reply if necessary (which means if you think it has a

Nine Years with Peter Buneman 511

chance of going through) before the proposal is put forward in front of a panel
in order to be ranked among all similar proposals. The highest ranked proposals
will be funded. The proposal was on a new dataflow for query processing and
the reviewers all thought it was an ambitious piece of work that should be
funded, though they had a few reservations regarding whether query processing
was indeed all that important, and not a “solved problem.” To say that I was
irritated by the latter statement would be an understatement. I asked Peter
about how I should prepare the response and, likely using a few expletives in the
process. He argued that my response should be factual: “just count the papers
on query processing in the last five SIGMOD and VLDB conferences.” This is
what we did. We sat down and went through the proceedings and counted the
number of query processing papers; in the end it was some percentage in the
region of 70% —not small by any means. We sent this as our response, but the
proposal did not get funded in the end. Upon receiving the news I was dejected
and could not really figure out what to do next. At that time I feared that I
had made the wrong choice by joining Edinburgh: clearly, the School was a lot
more theoretical than I would like it to be, which meant that the pool of PhD
applicants I could select from was very limited; while the funding agencies were
not too keen to fund systems research. I discussed all these with Peter and he,
again, made a simple suggestion that would prove to be a good step towards
ironing all these issues out. “Do it anyway,” he said. “If they are not willing
to fund what they should be funding, maybe they will be willing to fund what
they should have funded.” And it was really that simple. I started working on
implementing certain ideas myself, even though that meant even longer working
hours and having to juggle even more things. In the process, that taught me
to be efficient in allocating time to the various issues that I had to deal with
over the day. I knew that I could not spend as much time as I would like to on
some particular topic. Instead, I had to be diligent and finish things as quickly
as possible and with minimal backtracking. In the process, I managed to see
Edinburgh as a challenge and not as a potentially bad choice. I managed to
find funding from elsewhere, publish some work on my own, attract good PhD
students, and build by own research group in Edinburgh. All these would make
life a lot better over the next few years. Peter’s lesson was a valuable one: some
times, if you know an idea is good, you should not wait for approval in the shape
of funding. You can follow it yourself through limited means. If it is good it will
certainly find its way. The four PhD students I have graduated so far, along with
all our published work from that day forward were directly related to Peter’s
“do it anyway” advice.

A little further down the line, I was again getting frustrated by not having
found something “big” to work on, so I had this discussion with Peter on what
we thought would be good problems to work on. At some point, the discus-
sion revolved around our previous work on XML and how it all started from
dropping the schema assumption of the relational model and coming up with
semi-structured data in the process. I think I said something along the lines of
trying something similar again and Peter’s response was that “the last thing the

512 S.D. Viglas

world needs is another data model.” This was definitely a surprising statement
coming from the one who established both the functional data model and semi-
structured data as the research areas that they are today. But, at the same time,
it was refreshing and enabling. It is true that we get sometimes too involved in
our own work and expertise: when you have a hammer, everything looks like a
giant nail. So we try to apply this expertise to everything that we see around
us—much like we would use our giant hammer to hammer in every single pro-
truding nail, regardless of its small size. In these cases, we need to take a step
back and look at other problems that are masquerading as uninteresting ones.
In my case, these problems had to do with hardware-conscious query processing,
and led to our work on data management over flash memory and code genera-
tion for SQL. Having a background in distributed processing and data streams,
I was too eager to showhorn other areas into my own, missing interesting ideas
in the process. But this is not what research is about. It should be the other
way: my expertise should be an enabler to see other areas in new light, and not
simply view them through a well-known lens. I believe this is what Peter has
done throughout his career and what he meant during that conversation. You
need to reinvent your work, not reapply it. He invented a new data model only
when one was necessary — not simply when he needed something new to work
on. And looking at existing and practical problems from other areas enabled him
to identify the need and produce sea-changing research in the process.

3 The Spirit

Peter has certainly taught me that not only you should pick your battles, but also
that you should not leave a battle if you find yourself in it through no fault of your
own. In academia, this happens more often than usual. My view as to why is that
academia is generally full of smart people who feel passionate about their work.
It is as if there is a hidden imperative that springs into action with an academic
job: focussing on an area and becoming an authority. Otherwise you will not get
tenured or promoted, or receive funding, or be able to build your own group, or
be invited to collaborations—I could go on, but these are relatively well-known
facts. This entire mentality, coupled with a passion for research means that we
can become too self-involved and, even worse, self-important. I have seen this
happen countless times, and I am certainly as guilty of this as the next person.
This means that, at times, we think we know more than we do and get arrogant
in the process, or try to discount every new idea as a “yet-another” one that we
have seen so many times before.

I have had the opportunity to witness Peter defuse such situations with per-
fectly combined amounts of grace and force, depending on the situation. He
would brush off negative comments with a joke or a carefully selected pointed
remark that nobody could return from. But he would also go head on to battle
if necessary. He would do that in the most elegant way possible. Not by shouting
over the other person or by pointing them to prior work or by simply disagreeing
and thinking he knows best. But by constructing counter-examples and proving

Nine Years with Peter Buneman 513

to them they were wrong. Or by better understanding their point of view and
reaching a common understanding. It has been the case countless times that he
would disagree with something during one of our seminars and would say “well,
let’s not move on, can’t we just solve this now?” We would stick there for as
long as necessary and only move on when the problem was solved. And in the
end we would all know something more.

A different aspect that I have found deeply inspirational is his way of engaging
with everything. He views whatever he is doing, however big or small, as a
blessing disguised as a chore and strives to turn it into a way to enjoy himself.
I recall that we were discussing our MSc programme here in Edinburgh and
decided that with the up and coming fire-power that we would have, it was
about time that we got a database-specific strand, a specialism in Edinburgh
terminology, in the MSc programme in place. This was no simple task, as we
had to propose and argue for, roughly, two courses per faculty member. With
only three known established courses at the time and projecting to four faculty
members (Wenfei and Leonid had not officially joined us at the time), we had to
invent five new courses. This had to be dealt with by the next day to meet certain
University deadlines, so we had no choice as to the time. Peter suggested that we
do this in his flat, since we would not want to be stuck in the office late at night.
This being Edinburgh where the weather does tend to be a bit unwelcoming, the
suggestion seemed a sensible idea. So, armed with two laptops and two bottles
of wine, we started working on the case for support. We ploughed through the
creation and description of four new courses and an entire study programme for
twenty or so students (that was our estimation for the maximum capacity of the
programme at the time) in a few hours. Most of our exchanges were along the
lines of “Well, why not? Let’s try this.” We finished late at night and brought
this to the relevant committee over the next few days and even though there was
some resistance (which Peter defused by being adamant that our programme as
it stands is necessary if we want to attract good students—conceding only to one
criticism: “I profusely apologise for misplacing a comma.”) it was accepted and
put in effect for the next academic year. This was back in late 2004. Since then,
the database specialism is one of the flagship specialisms of our MSc programme
and accounts for almost fifty students per year—more than twice the number of
students we were hoping for, and about 20% of our MSc student intake. I have
been involved in designing and delivering various courses and programmes since,
but no preparation was as efficient or as enjoyable as that first one.

Similarly, what would also always pleasantly surprise me was the kind of
“geek” he is. He would never mind getting his hands dirty with intricate technical
details. We would have these long discussions and arguments about which Linux
distribution we should use and what sort of packaging mechanism each uses; or
whether

Equally, whenever he wanted to get something done quickly he would simply
sit down with his laptop and fire up Emacs to write a Python script that would
get the job done. I remember how he went through this exercise so he could
sanitise text dumps of various protein databases he was experimenting with, or

514 S.D. Viglas

the CIA World Factbook—his favourite example for his work on provenance and
the database wiki. Or how when we needed to have some internal voting at the
School he whipped up the Python-script equivalent of Scotland’s single trans-
ferable vote system. Seeing as a lot of colleagues mainly dealing with research
management, idea debugging and paper editing, and not so much actively in-
volved in development and all the nitty-gritty aspects of research, it was most
refreshing to see someone like Peter as eager to try things himself instead of only
providing direction.

His deep need for understanding things is evident in anything he gets his
hands on. I believe that Peter is one of the most genuinely curious spirits I
know. He is simply eager to learn and try new things. And in doing that, one
cannot become self-involved. People like Peter want to know how things work
and try new ideas for the sake of the journey not the destination. Whether it is
picking up woodwork in his workshop in the Highlands; or sailing his boat; or
building a wireless network from scratch so he can read his email at Arnisdale;
or inventing and establishing entire new research areas.

It might have been a side-effect of collaborating with Peter later in his career
and after he was well established. This meant that he never exhibited this self-
involved attitude that I referred to earlier. But I somehow doubt that he ever had
this attitude to begin with. The reason is that someone who has been around for
as long as he has, is acquainted with pretty much everyone in our area. Granted,
my sample may be small, but I have never come across anyone who does not
think highly of Peter not only as an academic, but also as a person. And who
did not have an interesting story to share, or did not ask me to give him his
best when I next saw him in Edinburgh. Of all the things I have heard about
him or have witnessed over the years, there are two things that are prevalent.
His curiosity and his drive to see things through. These two qualities epitomise
him as a researcher and, primarily, as a person.

4 In Closing

Reading over the last few pages I cannot help but fear that the tone is wrong. I
think I focussed more on my interpretation of Peter, as opposed to a subjective
assessment and celebration of his contributions, which may be more of what
one would expect in such an essay. As scientists, we have been trained to look
for these subjective truths and base any assessment we make on facts. But, in
Peter’s case, I think that his work speaks for itself. Furthermore, it has been
documented in every aspect possible: his publications, his students, the research
groups he has built and the values he has instituted in them are his greatest
legacy and they will have a lasting impact. It would be trite and commonplace
to talk about it in any detail.

The other aspect I do not like about this essay and the Festschirft in general
is that even though it is supposed to be a celebration it can easily be misinter-
preted as if there is a sadness lurking, in the sense that we talk about Peter’s
contributions as if he will not be contributing anything more. This is simply

Nine Years with Peter Buneman 515

not true. Peter’s legacy is vast and will be the source of inspiration for many
generations of database researchers to come. Moreover, it is not only his legacy
that is an inspiration. It is the man himself who is around doing what he does
best: solving puzzles in the most elegant ways possible and enjoying every single
step of the process, eager to learn and eager to teach.

Isaac Newton, in a letter to none other than Richard Hooke, famously reiter-
ated Bernard of Chartes’ syllogism [4]: “If I have seen a little further, it is by
standing on the shoulders of Giants.” Time has already proved that Peter is such
a Giant on whose shoulders we stand. Personally, I have been lucky enough to
witness his greatness and interact with him. I can only hope that a small portion
of his quality has rubbed off on me though this interaction. It would make me
immensely proud.

References

[1] Buneman, P., Choi, B., Fan, W., Hutchison, R., Mann, R., Viglas, S.D.: Vectorizing
and querying large xml repositories. In: ICDE Conference (2005)

[2] Buneman, P., Grohe, M., Koch, C.: Path queries on compressed xml. In: VLDB
Conference (2003)

[3] Liefke, H., Suciu, D.: Xmill: An efficient compressor for xml data. In: SIGMOD
Conference (2000)

[4] John of Salisbury: The Metalogicon of John of Salisbury: A Twelfth-century Defense
of the Verbal and Logical Arts of the Trivium. University of California Press (1955);
Translated by Daniel McGarry

Modal Logic for Preference Based on Reasons

Daniel Osherson1 and Scott Weinstein2

1 Princeton University, Princeton NJ 08544, USA
osherson@princeton.edu

2 University of Pennsylvania, Philadelphia PA 19104, USA
weinstein@cis.upenn.edu

Abstract. We discuss the logic of preferences, introducing modal con-
nectives that reflect reasons to prefer that one formula rather than an-
other be true. An axiomatic analysis of two such logics is presented.

1 Introduction

The second author is grateful for the opportunity to contribute to this volume
in honor of Peter Buneman, whose colleagueship he enjoyed for many years at
Penn. Peter’s passionate and powerful intellect, his generosity, and his kindness
have enriched the lives of all who worked with him. We dedicate this chapter
to him. Our hope is that he, or one among his legion of distinguished students,
find something here which they can elaborate in ways beyond our capacity to
imagine.

The present paper focusses on the modal logic of preference, following up ear-
lier work (Osherson and Weinstein, 2012) on the interaction between preference
and reasons. An example may help to communicate the kind of situation under
investigation. You are deciding whether to adopt a certain dog, Fido; alterna-
tively, you might choose the cat Thomasina. To make up your mind, you first
imagine how life would be with Fido, taking into account the companionship and
safety he would provide but also the expense and bother. Then you do the same
for Thomasina. You observe that, compared to Thomasina, life with Fido would
have greater value along the first two dimensions (companionship and safety)
but entail less with respect to the second pair (expense and bother). Somehow,
you aggregate these four considerations, and plump for Fido.

Our formal reconstruction of this episode is as follows. The world you live in
is one of many possibilities including some in which “I adopt Fido” is true and
others in which “I adopt Thomasina” is true. In choosing between the two plans,
you imagine a world rather similar to yours except that the Fido sentence is true,
and another world for the Thomasina sentence. These two worlds are compared
for the amount of companionship they provide as well as for safety, expense and
bother. A scheme for combining these comparisons is applied, which yields your
decision.

The Fido world was delivered by a selection function applied to your current
world under the thought of adopting Fido, and similarly for the Thomasina
world. In other words, selection makes a choice among possible worlds that

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 516–541, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Modal Logic for Preference Based on Reasons 517

satisfy whatever proposition is being entertained. In the most basic logic, no
conditions regulate how the function operates. But stronger theories impose
requirements that fill out the idea that selection seeks a world “close” to its
starting point among the worlds that satisfy the target proposition. The most
elementary constraint is reflexivity, which requires that if the starting world
satisfies a proposition A, then that world be selected when seeking an A-world.
A more consequential constraint is that selection be interpreted metrically, in
the sense that the chosen world be uniquely nearest to the starting point among
A-worlds, for some underlying metric that situates all the worlds in play. Several
constraints are investigated in Osherson and Weinstein (2012).

The basic logic will be presented shortly, followed by an alternative version
that dispenses with selection. It will be seen that the two systems validate the
same formulas, a fact not available in Osherson and Weinstein (2012). We then
proceed to extend the basic logic in another direction, by introducing quantifiers.
Before getting started, let us acknowledge some of the prior literature on the logic
of preference.

Contemporary work includes several systems that elucidate the interaction be-
tween choice and epistemic possibility (see Lang et al., 2003; van Benthem et al.,
2009 for an overview). Liu (2008, Ch. 3) is particularly pertinent since it intro-
duces “priorities,” which function somewhat like reasons in our theory. Liu’s
approach is nonetheless different from the one described below inasmuch as se-
lection is absent. A different perspective on the integration of preferences is
embodied in the graph-theoretic approach offered in Andréka et al. (2002); dif-
ferent graphs represent different orderings of the alternatives in play, and can be
conceived as separate reasons for choice among them. Within another tradition,
multi-attribute utility theory (Keeney and Raiffa, 1993) analyses the aggrega-
tion of reasons by combining utilities based on separate dimensions. The theory
reveals the conditions under which aggregation can proceed additively but stops
short of exploring the logical structure of reasons and preference, as we shall
do here. Finally (in this abbreviated review), Dietrich and List (2009) provide
a representation theorem relating choice to the respective bundles of reasons
that apply to the available choices; the simple axioms invoked for their theorem
clarify several issues relating to combining reasons.

We shall not attempt to further summarize the extensive literature on the
logic of preference. An excellent review up to 1989 is offered by Hansson (1989).
Surveys of later work are available in Liu (2008) and Dietrich and List (2009). It
is, however, worth emphasizing that the formalisms presented below share many
features with earlier work. For example, Hansson (1989) introduces a selection
function for choosing worlds relevant to an affirmation of preference; a somewhat
different kind of selection function (based on the analysis of counterfactuals in
Stalnaker, 1968) is central to our own theory. Similarly, the idea of attaching val-
ues to possible worlds in order to analyze preference among statements appears
in several works (e.g., Rescher, 1967), and is pivotal here as well. Our approach
thus builds on many earlier discussions; but (so far as we can see) it puts familiar
pieces together in a novel way.

518 D. Osherson and S. Weinstein

2 The Basic Theory

Turning to our own proposal, we first introduce the family of languages that are
used to express preferences, then provide their semantics.

2.1 Syntax

Signatures. A given language is determined by its signature, which consists
of

(a) a non-empty set P of propositional variables, and
(b) a nonempty collection S of nonempty subsets of N (the set {0, 1, . . .} of

natural numbers). The elements of S serve as indexes for utility functions.

The numbers appearing in X ∈ S represent specific reasons for preference such
as the desire for companionship in our introductory example. A set X of reasons
influences preference through aggregation of its members. If

⋃
S ∈ S then pref-

erence according to
⋃
S amounts to preference tout court ; for, such preference

takes into account all reasons in play.

Formulas. The language determined by signature (P, S) is denoted L(P, S),
and is built from the following symbols.

(a) the set P of propositional variables
(b) the unary connective ¬
(c) the binary connective ∧
(d) for every set X ∈ S, the binary connective /X

(e) the two parentheses

Formulas are defined inductively via:

p ∈ P | ¬ϕ | (ϕ ∧ ψ) | (ϕ /X ψ) for X ∈ S.

We rely on obvious abbreviations for the boolean connectives including the
constants 0, ⊥. We also write: (ϕ 1X ψ) for (ϕ /X ψ) ∧ ¬(ψ /X ϕ),
(ϕ ≈X ψ) for (ϕ /X ψ) ∧ (ψ /X ϕ), (ϕ -X ψ) for (ψ /X ϕ), and (ϕ ≺X

ψ) for (ψ 1X ϕ).
To illustrate a formula with modal embedding, suppose that utility indexes

refer to commercial agents like businesses. Then in a domain that represents
economic conditions (availability of raw materials, tax laws, etc.), ϕ 1i ψ might
mean that ϕ is more conducive to the profitability of business i than is ψ. Due to
competition (e.g., for scarce resources or market share), i might be better off if
j does not benefit from the same economic situations as i, yielding, for example:

(ϕ 1i ψ) → ((ϕ 1j ψ) ≺i (ψ 1j ϕ)).

A similar interpretation concerns the fitness of species i, j in a given ecological
environment.

Modal Logic for Preference Based on Reasons 519

2.2 Semantics

According to the semantics provided below, ϕ 11 ψ can be understood as follows.
As a function of the world you actually inhabit, a world w satisfying ϕ, and a
world v satisfying ψ are selected. The formula is true just in case u1(w) > u1(v),
where u1 is a utility function from worlds to numbers, with index 1. Let ϕ, ψ
express the adoption of Fido and Thomasina, respectively. If the indexes 1 . . . 4
measure companionship, safety, expense, and bother then X = {1 . . .4} is the
aggregate index for all four together. So, if w is the world in which Fido is
adopted, and v is the world for Thomasina then Fido is your choice if uX(w) >
uX(v), in which case ϕ 1X ψ is true at the world you inhabit.

Models. A model for signature (P, S) is based on a nonempty set of points
called “worlds.” Subsets of worlds are termed propositions. As discussed above,
given a nonempty proposition A and world w, we pick an alternative to w among
the worlds in A. (If w ∈ A then the “alternative” might be w itself.) Such choices
are formalized as follows.

(1) Definition: A selection function s over a set W of worlds is a mapping
from W × {A ⊆ W | A �= ∅} to W such that for all w ∈ W and
∅ �= A ⊆ W, s(w,A) ∈ A.

Intuitively, s chooses a member of A that is similar to w.
Next, recall that each world can be evaluated according to different utility

scales, indexed by members of S.

(2) Definition: A utility function u over W and S is a mapping fromW×S

to 2 (the reals).

For w ∈W and {i}, X ∈ S, we write u(w, {i}) as ui(w), and u(w,X) as uX(w).
In a given signature (P, S), P is a nonempty set of propositional variables.

The last component of a model is the assignment of a proposition to each variable
in P.

(3) Definition: A truth-assignment (over W and P) is a mapping from P

to the power set of W.

For a truth-assignment t, the idea is that p ∈ P is true in w ∈ W just in case
w ∈ t(p).

(4) Definition: A (basic) model for a signature (P, S) is a quadruple
(W, s, u, t) where

(a) W is a nonempty set of worlds;

(b) s is a selection function over W;

(c) u is a utility function over W and S;
(d) t is a truth-assignment over W and P.

520 D. Osherson and S. Weinstein

Propositions. We may now specify the proposition (set of worlds) expressed
by a given formula ϕ in a model M. This proposition is denoted ϕ[M], and
defined as follows.

(5) Definition: Let signature (P, S), ϕ ∈ L(P, S), and model
M = (W, s, u, t) for (P, S) be given.
(a) If ϕ ∈ P then ϕ[M] = t(ϕ).
(b) If ϕ is the negation ¬θ then ϕ[M] = W \ θ[M].
(c) If ϕ is the conjunction (θ ∧ ψ) then ϕ[M] = θ[M] ∩ ψ[M].
(d) If ϕ has the form (θ /X ψ) for X ∈ S, then ϕ[M] = ∅ if either

θ[M] = ∅ or ψ[M] = ∅. Otherwise:
ϕ[M] = {w ∈W | uX(s(w, θ[M])) ≥ uX(s(w,ψ[M]))}.

Note that (θ /X ψ)[M] is defined to be empty if there is no world that satisfies
θ or none that satisfies ψ. Thus, we read (θ /X ψ) with existential import (“the
θ-world is weakly X-better than the ψ-world,” where the definite description is
Russellian). In the nontrivial case, let A �= ∅ be the proposition expressed by
θ in M, and B �= ∅ the one expressed by ψ. Then world w satisfies (θ /X ψ)
in M iff the world selected from A has X-utility no less than that of the world
selected from B.

In the sequel, we rely on standard model theoretic locutions, notably: model
M satisfies ϕ just in case ϕ[M] �= ∅, ϕ is valid in M just in case ϕ[M] = W,
and ϕ is valid just in case ϕ is valid in every model. The basic theory is the set
of ϕ that are valid in every basic model.

Global Modality. Finally, observe that the “global modality”
(Blackburn et al., 2001, §2.1) can be expressed in the following manner. Choose
any X ∈ S, and for ϕ ∈ L(P, S) let:

(6) �ϕ def
= ¬(¬ϕ /X ¬ϕ) and ♦ϕ def

= (ϕ /X ϕ).

Then applying (5)d yields:

(7) Proposition: For all ϕ ∈ L(P, S) and models M = (W, s, u, t):
(a) �ϕ[M] �= ∅ iff �ϕ[M] = W iff ϕ[M] = W.
(b) ♦ϕ[M] �= ∅ iff ♦ϕ[M] = W iff ϕ[M] �= ∅.

Proposition (7) implies that the axioms of S5 are valid for � and ♦. Other
validities are shown in (8), below.

3 Axioms for the Basic Theory

The axioms for the basic theory, which we call O, include all L(P, S)-instances of
any standard schematic axiomatization of S5 [using the modality defined in (6)],
together with all L(P, S)-instances of the following additional axiom schemata.
X ∈ S, and ϕ, ψ, θ ∈ L(P, S):

Modal Logic for Preference Based on Reasons 521

(8) (a) ((ϕ /X ψ) ∧ (ψ /X θ)) → (ϕ /X θ)
(b) (♦ϕ ∧ ♦ψ) ↔ ((ϕ /X ψ) ∨ (ψ /X ϕ))
(c) �(ϕ↔ ψ) → (((ϕ /X θ)↔ (ψ /X θ)) ∧ ((θ /X ϕ) ↔ (θ /X ψ)))

The theorems of O consist of the closure of these axioms under the rules of modus
ponens and necessitation. The adequacy of O follows from Theorem (10) below.

4 Generalized Models

In the basic theory, ϕ /X ψ asserts that uX attributes at least as much value to
the proposition expressed by ϕ as to the proposition expressed by ψ. The latter
two propositions are represented by elements of each, selected on the basis of the
world at which the formula is evaluated. In the present section, we generalize this
idea by comparing the value of propositions directly, without recourse to selected
worlds as representatives. To begin, let (P, S) be our background signature, and
recall that a total preorder is transitive and connected over its domain.

(9) Definition: Let a set W of worlds be given.
(a) By a value-ordering for W and S is meant a function v from W× S

to the set of total preorders over the class of nonempty subsets of
W.

(b) Let a truth-assignment t and a value-ordering v for W and S be
given. Then (W, t, v) is a generalized model.

Thus, a value-ordering arranges propositions by utility, relative to index X ∈ S

and vantage point w ∈ W. The semantics of generalized models is given by
Definition (5) with the following substitution for clause (5)d. Let ϕ ∈ L(P, S)
and generalized model M = (W, t, v) for (P, S) be given.

(5)d′ If ϕ has the form (θ /X ψ) for X ∈ S, then ϕ[M] = ∅ if either
θ[M] = ∅ or ψ[M] = ∅. Otherwise:

ϕ[M] = {w ∈W | θ[M] comes no earlier than ψ[M] in v(w,X)}.

We call ϕ ∈ L(P, S) a generalized validity just in case ϕ is valid in all gener-
alized models (that is, just in case for all generalized models M = (W, t, v),
ϕ[M] = W).

Here is the sense in which Definition (9) generalizes the basic theory pre-
sented in Section 2. Let (basic) model M = (W, s, u, t) be given. Then a value-
ordering v is induced by the following condition. For w ∈ W, X ∈ S, and
nonempty A,B ⊆ W, A is (weakly) ordered after B iff uX(wA) ≥ uX(wB)
where wA = s(w,A) and wB = s(w,B). (The truth-assignment t plays no role.)
In Osherson and Weinstein (2012) we exhibit classes of generalized models whose
value orderings cannot be induced in this way. The excess of generalized models,
however, does not affect the class of generalized validities. For, the latter class
is axiomatized by the same system presented in Section 3 for the basic theory.

(10) Theorem: For all ϕ ∈ L(P, S) the following are equivalent.

522 D. Osherson and S. Weinstein

(a) ϕ is a theorem of O.
(b) ϕ is a generalized validity.
(c) ϕ is a basic validity.

The proof is provided in Appendix 1. The small model property for basic and
generalized satisfiability is a corollary to the proof, from which decidability fol-
lows immediately.

The axioms O are striking for their simplicity, expressing little more than the
preordering of /X , an obvious substitution property, and the apparatus of S5
(along with familiar rules of inference). Apparently, both basic and generalized
models represent a wide range of reason-based preferences. As noted in Section
4, there are natural classes of generalized models that are not induced by any
basic model. So the fact that the two kinds of models define the same set of
validities is perhaps the most noteworthy aspect of Theorem (10).

The generality of the basic theory provides reason to study subclasses of
models, such as the metrical models (mentioned in the Introduction). Each such
subclass can be evaluated as a theory of rational preference, as well as inviting
additions to O.

5 Quantified Preference Logic

The basic system described above can be seen as a propositional calculus ex-
tended with modal binary connectives. Our present purpose is to show how the
propositional part can be replaced with predicate calculus. We start with syntax.

5.1 Syntax for Quantified Preference Logic

Signatures. A quantified language is built from its “signature.”

(11) Definition: By a signature (for quantified preference logic is meant a
pair (L, S) where
(a) L is a collection of predicates and function symbols of various arities.
(b) S is a nonempty collection of nonempty subsets of natural numbers

(0, 1 . . .).

As before, members of S stand for sets of reasons thought of as dimensions for
evaluating possible worlds.

Formulas. We may now specify the language L(L, S) parameterized by the
signature (L, S). Formulas are built from the following symbols.

(a) the members of L along with the identity sign =
(b) for each X ∈ S, the binary connective /X
(c) the binary connective ∧ and the unary connective ¬
(d) the quantifier ∃
(e) the two parentheses, (,)
(f) a denumerable collection v0, v1 . . . of individual variables (denoted below by

x, y, z).

Modal Logic for Preference Based on Reasons 523

The set of terms is constructed from functions and variables as usual. The set
L(L, S) of formulas is likewise built in the usual way except that we add the
clause:

Given ϕ, ψ ∈ L(L, S) and X ∈ S, ϕ /X ψ also belongs to L(L, S).

In addition to our earlier abbreviations, we write ∀xϕ for ¬∃x¬ϕ. Also, the
global modalities �ϕ and ♦ϕ are defined as before [via ¬(¬ϕ /X ¬ϕ) and
ϕ /X ϕ, respectively].

Examples of Formulas. The following formulas serve as illustration.

(12) (a) ∃x(Px 1X ∀yPy)
(b) ∃xPx 1X ∀yPy

In the domain of people, (12)a affirms that there is someone for whom satisfying
P is preferable to everyone satisfying it. This might well be true. For example,
from my perspective, it’s better that I discover a metric ton of gold than that
everyone does (where the reasons encoded in X are basely materialistic). In
contrast, (12)b entails that someone getting the gold is better than everyone
getting it, which might be false if it doesn’t strike me as plausible that I’m the
lucky person. We return to (12) later on.

The next example is more complicated inasmuch as it exhibits modal embed-
ding. Let the domain of discourse consist of citizens in a modern state. Suppose
that the predicate P picks out the charismatic, socialist politicians (if any) in
a given possible world. Suppose Q picks out the fabulously wealthy citizens in
a given world. We’ll also rely on two utility scales. Let uc measure the level
of consumer confidence in a given world (greater consumer confidence yielding
greater uc utility); let uj measure the level of social and economic justice in a
given world (more justice means greater uj utility). Now consider:

∀x((∃yQy 1c Px) 1j Px)

According to the semantics provided below, this formula is true in a given world
w0 just in case the following circumstances obtain. For all citizens (say, Tom),
there is greater social justice in the nearest world w1 to w0 in which

(13) the existence of charismatic socialist leaders provokes more consumer
confidence than does Tom’s being fabulously wealthy

compared to the nearest world w2 to w0 in which Tom is fabulously wealthy.
That is, uj(w1) > uj(w2). Of course, we must also interpret (13) according
to our semantics. It means that the nearest world w3 to w1 with charismatic
socialist leaders has greater consumer confidence than the nearest world w4 to
w1 in which Tom is fabulously wealthy. That is, uc(w3) > uc(w4). Of course, the
nearest world that satisfies a certain formula might be your own.

524 D. Osherson and S. Weinstein

5.2 Semantics in Quantified Preference Logic

Models in Quantified Preference Logic. Recall that a signature (L, S)
consists of vocabulary (L) and sets of utility indices (S).

(14) Definition: Let a signature (L, S) be given. By a model for the sig-
nature is meant a quintuple M = 〈D,W, t, u, s〉 where:
(a) D is a nonempty set, the domain of M.
(b) W is a nonempty set of points, the worlds of M.
(c) t maps W× L to the appropriate set-theoretic objects over D. (For

example, if Q ∈ L is a binary relation symbol then t(w,Q) is a subset
of D ×D.) Identity is assigned to =.

(d) u is a function from S×W to the real numbers. For X, {i} ∈ S we
write uX(w) in place of u(X,w) and ui(w) in place of u({i}, w).

(e) s is a function from W× {A ⊆ W | ∅ �= A} such that for all w ∈ W

and ∅ �= A ⊆W , s(w,A) ∈ A.

Thus, W corresponds to a set of potential situations; via t, each gives extensions
in D to the vocabulary in L. The function uX measures the utility of worlds
according to the considerations encoded in X ∈ S. Finally, given a world w0 and
a set A of worlds, s selects a “cognitively salient” member of A, where salience
may depend on the vantage point w0.

Propositions in Quantified Preference Logic. Subsets of worlds are called
propositions. In the context of a given model, our semantic definition assigns a
proposition (subset of W) to each closed formula. To explain, fix a signature
(L, S), and let a model M = 〈D,W, t, u, s〉 be given. By an assignment (for M)
is meant a map of the individual variables of L(L, S) into D. Given a variable
x and assignment d, an x variant of d is any assignment that differs from d at
most in the member of D assigned to x. Assignments are extended to terms of
L(L, S) in the usual way.

(15) Definition: Let a model M = 〈D,W, t, u, s〉 and assignment d be
given. For ϕ ∈ L(L, S), the proposition ϕ[M, d] is defined as follows.
(a) If ϕ is Pt1 . . . tn for P ∈ L and terms t1 . . . tn then:

ϕ[M, d] = {w ∈W | 〈d(t1) . . . d(tn)〉 ∈ t(w,P)}.
(b) If ϕ is the negation ¬θ then ϕ[M, d] = W \ θ[M, d].
(c) If ϕ is the conjunction (θ ∧ ψ) then ϕ[M, d] = θ[M, d] ∩ ψ[M, d].
(d) If ϕ is the existential ∃xψ then ϕ[M, d] is the set of w ∈ W such

that w ∈ ψ[M, d′] for some x variant d′ of d.
(e) If ϕ has the form (θ /X ψ) for X ∈ S, then ϕ[M, d] = ∅ if either

θ[M, d] = ∅ or ψ[M, d] = ∅. Otherwise:
ϕ[M, d] = {w ∈W | uX(s(w, θ[M, d])) ≥ uX(s(w,ψ[M, d]))}.

Thus, relative to M and d, the formula (θ /X ψ) expresses the null proposition
if evaluating it requires that s choose a world from ∅. (Preference makes a covert
existential claim in the present theory, namely, that there is something to choose

Modal Logic for Preference Based on Reasons 525

between.) Otherwise w ∈ W belongs to the proposition expressed by (θ /X ψ)
just in case the world chosen by s to represent θ[M, d] has greater X-utility
than the world chosen by s to represent ψ[M, d] — where s’s choices depend on
the current situation w. Informally, we think of s as choosing the most similar
world to w among those available in the proposition at issue.

We extract the assignment-invariant core of a formula’s proposition in the
standard way.

(16) Definition: Let ϕ ∈ L(L, S) and model M = 〈D,W, t, u, s〉 be given.
We write ϕ[M] for the intersection of ϕ[M, d] over all assignments d.

It follows that for closed ϕ ∈ L(L, S) (no free variables), ϕ[M] = ϕ[M, d] for
any assignment d. As usual, we call closed ϕ ∈ L(L, S) satisfiable just in case
ϕ[M] �= ∅ for some model M; and ϕ is valid iff ¬ϕ is not satisfiable.

Analysis of the Formulas in Example (12). The formula (12)a is true at
w0 in model 〈D,W, t, u, s〉 just in case there is a ∈ D such that

the nearest world w1 (according to s) in which a ∈ t(w1, P)

has higher uX value than

the nearest world w2 (according to s) in which t(w2, P) = D.

On the other hand, (12)b is true at w0 in 〈D,W, t, u, s〉 just in case

the nearest world w1 (according to s) in which t(w1, P) �= ∅

has higher uX value than

the nearest world w2 (according to s) in which t(w2, P) = D.

6 Basic Properties of Quantified Preference Logic

6.1 Expressive Power of Modal Formulas

It is worth verifying that our modal vocabulary allows additional propositions
to be expressed.

(17) Definition:

(a) The modal depth of formulas is defined inductively. First-order (non-
modal) formulas have modal depth zero. If ϕ, ψ ∈ L have respective
modal depths m,n then ϕ /X ψ has modal depth 1 + max{m,n}.

(b) We say that a modelM has a modal hierarchy just in case there are
closed formulas ϕ0, ϕ1 . . . such that for all n ≥ 0:

i. ϕn has modal depth n;
ii. for all closed ψ ∈ L of modal depth n or less, ϕn+1[M] �= ψ[M].

526 D. Osherson and S. Weinstein

(18) Definition: Let N = 〈D,W, t〉 be the first three components of a
model, missing just the utility and selection functions, u, s. Notice that
〈D,W, t〉 assigns a proposition ψ[N] ⊆ W to each non-modal ψ ∈ L.
We call N a normal core just in case D is countable, W is countably
infinite, and there is non-modal, closed ψ ∈ L with ∅ �= ψ[N] �= W.

Now fix a countable signature (L, S). The following proposition reveals the
near ubiquity of modal hierarchies.

(19) Proposition: Let N = 〈D,W, t〉 be a normal core. Then there is a
utility function u : S ×W → 2 and a selection function s : W × {A ⊆
W | A �= ∅} → W such that the model M = 〈D,W, t, u, s〉 has a modal
hierarchy.

Proof: Choose utility index X ∈ S, let N = 〈D,W, t〉 be a normal core, and fix
closed, non-modal ψ ∈ L with ∅ �= ψ[N] �= W. By replacing ψ with its negation
if necessary, we can ensure that ψ[N] has at least two elements. Let ϕ0 be ψ
and let ϕn+1 be (0 ≺X ϕn). Observe that for all n ∈ N, ϕn has modal depth
n. We will define s and u in such a way that ϕ0, ϕ1 . . . is a modal hierarchy for
M = 〈D,W, t, u, s〉.

Let {w0, w1, . . . } enumerate W. Since ψ[N] = ϕ0[N] has at least two ele-
ments, we may assume without loss of generality that {w0, w1} ⊆ ϕ0[N]. Let u
be any utility function that meets the conditions:

(20) uX(w0) = 0 and for all i > 0, uX(wi) = 1.

It remains to specify the selection function s, and to show that it generates a
modal hierarchy. This is achieved by inductively defining a sequence of “partial
selection” functions sn, n ∈ N. At stage n, the partial selector sn defines a
partial model Mn = 〈D,W, t, u, sn〉 which yields a proposition χ[Mn, d] for
each assignment d, and each χ ∈ L of modal depth n or below. It will be easy to
see that for each such χ and d, χ[Mn, d] = χ[M, d] where M = 〈D,W, t, u, s〉
with

⋃
n sn ⊂ s. Let Pn denote the family of nonempty propositions expressed

by formulas of modal depth n or below with arbitrary assignments of members
of D to their free variables. It is easy to verify that Pn is countable. At stage
n = 0, we let s0 = ∅.

For stage n+ 1, we will define sn+1 so that:

(a) sn+1 is defined for every pair (w,X) where w ∈ W and X ∈ Pn; hence, for
every assignment d and χ ∈ L of modal depth n or below, χ[Mn, d] is well
defined.

(b) ϕn+1[Mn+1] �∈ Pn hence ϕn+1[M] �∈ Pn;

Moreover, at every stage n, it will be the case that {w0, w1} ⊆ ϕn[Mn]. In
particular, {w0, w1} ⊆ ϕ0[M0] = ψ[N] follows from our choice of ψ.

Now we complete stage n + 1. For all w ∈ W, set sn+1(w,W) = w0 (hence
we always draw w0 from the proposition expressed by 0). For all w ∈ W and
all C ∈ Pn − {ϕn[Mn],W}, choose sn+1(w,C) to be an arbitrary member

Modal Logic for Preference Based on Reasons 527

of C. For the remainder of sn+1, choose A ⊆ W − {w0, w1} such that A �∈
{B − {w0, w1} | B ∈ Pn}. Such an A exists because Pn is countable. For all
w ∈W, we define:

sn+1(w,ϕn[Mn]) =

{
w1 if w ∈ A ∪ {w0, w1}
w0 otherwise.

It follows immediately from (20) that ϕn+1[Mn+1] = A ∪ {w0, w1} �∈ Pn. �

A natural question about Proposition (19) is whether modal hierarchies still
appear when models satisfy various frame properties. To illustrate, model M =
〈D,W, t, u, s〉 is called “reflexive” just in case for all w ∈ W and A ⊆ W, if
w ∈ A then s(w,A) = w. Reflexivity embodies the idea that the actual world
is closer to home than any other world. Several frame properties are examined
in Osherson and Weinstein (2012), and also below. In the case of reflexivity, the
foregoing proof can be adjusted to show that any normal core can be extended to
a reflexive model with modal hierarchy. We leave unexplored the larger project of
characterizing the frame properties that allow modal hierarchies, or identifying
natural properties that do not.

6.2 Undecidability of Satisfaction

Suppose that the signature (L, S) contains two unary predicates P,Q ∈ L. Then
it follows from the argument in Kripke (1962) that:

(21) Proposition: The satisfiable subset of L(L, S) is not decidable.

Kripke’s argument hinges on a mapping from first-order sentences with just the
binary relation symbol R to modal sentences that replace Rxy with ♦(Px∧Qy).
On the other hand, the validities are axiomatizable:

(22) Proposition: If the signature is effectively enumerable then so is the
set of valid formulas in quantified preference logic.

This fact follows from Proposition (27), below.

6.3 Size of Models

Suppose that the signature contains a binary predicate G. Then the upward
Löwenheim-Skolem property fails to apply to quantified preference logic. Indeed:

(23) Proposition: There is ϕ ∈ L(L, S) such that:
(a) Some model 〈D,W, t, u, s〉 with D countable satisfies ϕ.
(b) No model 〈D,W, t, u, s〉 with D uncountable satisfies ϕ.

Proof: Basically, ϕ says that ≺ is a lexicographical order on D × D; such
an order cannot be embedded in 〈2, <〉 if D is uncountable. For typographical
simplicity, we choose X ∈ S, and write ≺ in place of ≺X .

Specifically, we take ϕ to be the conjunction of the following formulas.

528 D. Osherson and S. Weinstein

(24) (a) ∀x∀y(x �= y → ((Gxx ≺ Gyy) ∨ (Gyy ≺ Gxx))
(b) ∀x1y1x2y2((Gx1y1 ≺ Gx2y2) ↔ ((Gx1x1 ≺ Gx2x2) ∨ ((x1 = x2) ∧

(Gy1y1 ≺ Gy2y2))))

Let a model M = 〈D,W, t, u, s〉 and w0 ∈ W be given with w0 ∈ ϕ[M]. We
define:

X = {u(s(w0, Gxx[M, d(a/x)])) | a ∈ D}.

Then (24)a implies that X (a set of reals) has the same cardinality as D. Define:

Y = {u(s(w0, Gxy[M, d(a/x, b/y)])) | a, b ∈ D}.

Then (24)b implies that 〈Y,<〉 is isomorphic to the lexicographic ordering of
X ×X .

We leave to the reader the verification that ϕ is satisfiable in a model with
countable domain. On the other hand, suppose that the domain is uncountable,
whence X is uncountable. Then the existence of an isomorphism between 〈Y,<〉
and the lexicographic ordering of X × X contradicts the separability of the
real line. �

6.4 Preorder Models

We can recover the upward Löwenheim-Skolem property by introducing a more
general way to compare the value of worlds. Recall that a (total) preorder is
transitive, connected, and reflexive over its domain. Given a signature (L, S), we
achieve more generality by replacing u in a model 〈D,W, t, u, s〉 with a map �

from S to the set of preorders over W. [We write �X for �(X), X ∈ S.] In such
a model 〈D,W, t,�, s〉, we evaluate (θ /X ψ) according to the following rule, in
place of (15)e.

(15)e′ If ϕ has the form (θ /X ψ) for X ∈ S, then ϕ[M, d] = ∅ if either
θ[M, d] = ∅ or ψ[M, d] = ∅. Otherwise:

ϕ[M, d] = {w ∈W | s(w, θ[M, d]) �X s(w,ψ[M, d])}.

In what follows, we’ll call the semantics based on (15)e′ preorder logic. The
original semantics, based on (15)e, will be called utility logic. It is easy to see
that utility logic is a special case of preorder logic (since assigning utilities to
worlds preorders them). Also, it is straightforward to show that the formula ϕ in
the proof of Proposition (23) is satisfied in a preorder model with uncountable
domain D. Indeed, the following Löwenheim-Skolem Theorem holds for preorder
models.

(25) Proposition: Let 〈D,W, t,�, s〉 be a preorder model for a countable
signature.
(a) If W is infinite, then for every infinite cardinal κ there is a preorder

model M′ = 〈D′,W′, t′,�′, s′〉 such that card(W′) = κ and for every
sentence ϕ,

M |= ϕ if and only if M′ |= ϕ.

Modal Logic for Preference Based on Reasons 529

(b) If D is infinite, then for every infinite cardinal κ there is a preorder
model M′ = 〈D′,W′, t′,�′, s′〉 such that card(D′) = κ and for every
sentence ϕ,

M |= ϕ if and only if M′ |= ϕ.

Despite the greater generality of preorder logic, and the contrast between
Propositions (25) and (23), the distinction between utility and preorder models
is not discernible by formulas. Indeed:

(26) Proposition: A formula θ is valid in the class of utility models if and
only if it is valid in the class of preorder models.

Finally, the next proposition shows that the set of formulas which are valid
in preorder models (and hence utility models, by the preceding proposition) is
axiomatizable. We assume that the signature is effectively enumerable.

(27) Proposition: The set of formulas which are valid in preorder models
is effectively enumerable.

Proofs of Propositions (25), (26), and (27) are given in the Appendix 2. We
have not investigated the quantified version of “generalized logic,” introduced in
Section 4 above.

7 Subclasses of Utility Models

For the remainder of the discussion, only utility models (introduced in Section
5.2) are at issue. (We leave preorder models to one side.)

7.1 Metricity

Many interesting properties of a model 〈D,W, t, u, s〉 can formulated just in
terms of W and s (the model’s “frame”). For example, Osherson and Weinstein
(2012) consider the following way to express the idea that s chooses “the nearest
world.”

(28) Definition: A model 〈D,W, t, u, s〉 is metric just in case there is a
metric d : W×W→ 2 such that for all w ∈ W and ∅ �= A ⊆W, s(w,A)
is the unique d-closest member of A to w.

Note that a model is metric only if d-closest worlds exist (there are no chains of
worlds ever d-closer to a given world). It is easy to see that in a metric model the
set of worlds is countable. There are several properties of models that are implied
by metricity, including the following two, articulated by Stalnaker (1968).

(29) Definition: Let model M = 〈D,W, t, u, s〉 be given.
(a) M is reflexive just in case for all A ⊆W and w ∈ A, s(w,A) = w.
(b) M is regular just in case for all A ⊆ B ⊆ W and w ∈ W, s(w,B) ∈ A

implies s(w,A) = s(w,B).

530 D. Osherson and S. Weinstein

These properties are explored in Osherson and Weinstein (2012). Here we
focus on:

(30) Definition: A model 〈D,W, t, u, s〉 is transitive just in case for all
A,B,C ⊆ W with A,B �= ∅, and w0 ∈ W, if s(w0, A ∪ B) ∈ A and
s(w0, B ∪ C) ∈ B then s(w0, A ∪ C) = s(w0, A ∪B).

Exploiting our quantificational apparatus, we can write a formula that is true in
all transitive models but not valid. We assume that the signature includes the
predicate P . For notational ease, we suppress the X on ≈X .

(31) Proposition: Let ϕ be the conjunction of the following formulas.

(a) ∀xy(x �= y → (Px �≈ Py))

(b) ∀xyz ((x �= y∧y �= z∧x �= z)→ ((((Px∨Py) ≈ Px)∧ ((Py∨Pz) ≈
Py))→ (Px ∨ Pz) ≈ Px))

Then ϕ is invalid but valid in the class of transitive models.

The proposition can be viewed as expressing the transitivity of revealed prefer-
ence, e.g., (Px ∨ Py) ≈ Px says that Px is chosen from the mutually exclusive
options Px, Py.

Proof: Let model M = 〈D,W, t, u, s〉, w0 ∈ W and assignment d be given.
Let Px[M, d] = A, Py[M, d] = B and Pz[M, d] = C. If any of d(x), d(y), d(z)
are identical or either A or B are empty then we are done. Otherwise, in the
presence of (31)a, (Px∨Py) ≈ Px and (Py ∨Pz) ≈ Py imply respectively that
s(w0, A ∪B) ∈ A and s(w0, B ∪ C) ∈ B. So transitivity implies s(w0, A ∪ C) =
s(w0, A∪B) which entails w0 ∈ (Px∨Pz) ≈ (Px∨Py)[M, d]. So the proposition
follows by the transitivity of ≈ from w0 ∈ (Px ∨ Py) ≈ Px[M, d]. �

7.2 Beyond the Frame

Rational agents might not be able to discriminate between isomorphic worlds.
To formulate this idea, fix a signature (L, S), and let model M = 〈D,W, t, u, s〉
be given. We say that v, w ∈ W are isomorphic (v � w) just in case there is a
permutation h of D such that for all Q ∈ L, h (applied component-wise) maps
t(v,Q) onto t(w,Q).

(32) Definition: Model 〈D,W, t, u, s〉 is utility-invariant just in case for
all isomorphic v, w ∈ W, uX(v) = uX(w) for all X ∈ S.

This is not a frame property because all components of the model are involved
in its formulation. Validity in the utility-invariant models doesn’t imply validity
in the strict sense. Indeed, we have:

(33) Proposition: Let signature (L, S) be given with L finite, and distinct
X,Y ∈ S. Then there is invalid ϕ ∈ L(L, S) that is valid in the class of
utility-invariant models.

Modal Logic for Preference Based on Reasons 531

Proof: There is χ ∈ L(L, S) such that for all models M = 〈D,W, t, u, s〉,
χ[M] = W iff | D | = 2. Hence, by the finitude of L and the presence of
identity, there is closed, satisfiable ψ ∈ L(L, S) such that for all models M, if
w1, w2 ∈ ψ[M] then w1 � w2. Let the promised ϕ be:

(ψ ∧ (ψ 1X 0) ∧ (ψ 1Y 0)) → ((ψ ∧ (ψ 1X 0)) ≈X (ψ ∧ (ψ 1Y 0))).

We indicate why ϕ is invalid. The antecedent of ϕ is easily seen to be satisfiable,
and a ψ-world satisfying ψ∧ (ψ 1X 0) need not be the same world that satisfies
ψ ∧ (ψ 1Y 0)); and uX may be chosen to be injective.

On the other hand, suppose that modelM = 〈D,W, t, u, s〉 is utility-invariant
and let w0 ∈W. Suppose that the antecedent of ϕ is satisfiable in M (otherwise,
we are done). Then (ψ ∧ (ψ 1X 0)[M] �= ∅ and (ψ ∧ (ψ 1Y 0))[M] �= ∅. So,
let w1 = s(w0, (ψ ∧ (ψ 1X 0))[M]) and w2 = s(w0, ψ ∧ (ψ 1Y 0)))[M]).
Then each of w1, w2 satisfies ψ so w1 � w2. Hence uX(w1) = uX(w2) by utility-
invariance. �

8 Anonymity

Our next topic concerns the manner in which utilities are associated with formu-
las. First, a condition is exhibited that makes the utility of a conjunction depend
on just the utilities of each conjunct separately. According to this condition the
vocabulary appearing in a conjunct is not permitted to influence the utility of
the conjunction; rather, the conjunct contributes its utility “anonymously.” A
second condition is then introduced that entails a similar kind of anonymity for
the contribution of utility indexes 1 and 2 to the aggregated utility {1, 2}. The
material in this section is inspired by the discussion in Krantz et al. (1971, §7.2).

8.1 Decomposing the Utility of Conjunctions

Let a signature (L, S) be given with predicate P ∈ L. Conjunctive anonymity
with respect to P is expressed by the following formula. (To lighten notation,
we suppress X ∈ S in subscripts.)

(34) ϕ
def
= ∀xy((Px ≈ Py)→ ∀z((Px ∧ Pz) ≈ (Py ∧ Pz)))

The next proposition gives the sense in which ϕ causes the utility of Px∧Py to
be a function (F) of the utilities of Px and Py.

(35) Proposition: Let model M = 〈D,W, t, u, s〉 be given with w0 ∈
ϕ[M]. Then there is a function F : 22 → 2 such that for all assignments
d with Px ∧ Py[M, d] �= ∅,

u(s(w0, Px ∧ Py[M, d])) = F (u(s(w0, Px[M, d])),

u(s(w0, Py[M, d]))).

532 D. Osherson and S. Weinstein

Proof: For numbers of the form u(s(w0, Px[M, d])) and u(s(w0, Py[M, d]))
define:

(36) F (u(s(w0, Px[M, d])), u(s(w0, P y[M, d])))
def
= u(s(w0, Px ∧ Py[M, d])).

For all other numbers r1, r2, F (r1, r2) is defined arbitrarily. We must show
that F is a function. For this purpose, let variable q be given, and suppose that

(37) u(s(w0, Px[M, d])) = u(s(w0, P q[M, d])).

To finish the proof it suffices to show that

(38) u(s(w0, Px ∧ Py[M, d])) = u(s(w0, P q ∧ Py[M, d])),

the second argument of F being treated in the same way. It follows immediately
from (37) that w0 ∈ (Px ≈ Pq)[M, d], hence by (34)

w0 ∈ ((Px ∧ Py) ≈ (Pq ∧ Py))[M, d],

which implies (38). �

Observe that ϕ and Proposition (35) can be formulated with disjunction in
place of conjunction — or with many other formulas. The proof proceeds in the
same way.

8.2 Decomposing a Complex Utility Index

Suppose for this section that the signature (L, S) contains unary P ∈ L along
with {1}, {2}, {1, 2} ∈ S. Define:

(39) ϕ
def
= ∀xy(((Px ≈1 Py) ∧ (Px ≈2 Py))→ (Px ≈1,2 Py)).

Then ϕ implies that the contributions of 1 and 2 to the complex utility index
{1, 2} can be separated then brought back together via a binary mapping on 2.
Specifically:

(40) Proposition: Let model M = 〈D,W, t, u, s〉 be given with
w0 ∈ ϕ[M]. Then there is a function F : 22 → 2 such that for all
assignments d:

u1,2(s(w0, Px[M, d]))=F (u1(s(w0, Px[M, d])), u2(s(w0, Px[M, d]))).

Proof: Call a pair (p, q) ∈ 22 critical just in case there is an assignment d
such that

(41) (a) p = u1(s(w0, Px[M, d]))
(b) q = u2(s(w0, Px[M, d])).

Let F : 22 → 2 be such that for any critical pair (p, q) as in(41), F (p, q) =
u1,2(s(w0, Px[M, d])). The behavior of F on noncritical pairs is arbitrary. Sup-
pose that for some assignment d′:

Modal Logic for Preference Based on Reasons 533

(42) (a) p = u1(s(w0, Px[M, d′]))

(b) q = u2(s(w0, Px[M, d′])).

To verify that F is a function, thereby completing the proof, we must show that

(43) u1,2(s(w0, Px[M, d])) = u1,2(s(w0, Px[M, d′])).

Let y be a variable distinct from x, and let d′′ = d(d′(x)/y). From (41) and
(42) we infer: w0 ∈ Px ≈1 Py[M, d′′] and w0 ∈ Px ≈2 Py[M, d′′]. From
(39) we then obtain w0 ∈ Px ≈1,2 Py[M, d′′] from which (43) is an immediate
consequence. �

9 Arrow’s Theorem in the Context of Quantified
Preference Logic

Finally, we illustrate how results in the theory of Social Welfare can be cast as
constraints on the relation between the separate utility indexes {1} . . .{k} and
their aggregate {1 . . . k}. For this purpose, we focus on Kenneth Arrow’s classic
theorem beginning with a review of its usual formulation (following Reny, 2001).

9.1 Review

Let A be a set of cardinality at least three. Let slo denote the set of strict linear
orders (or rankings) on A, and let wlo be their weak counterparts. Fix a positive
integer k. Members of slo are thought of as potential citizens in a community of
size k. Each citizen expresses (rank order) preferences about the set A of agenda
items (or “alternatives”). Any function from slok → wlo is called a social welfare
function. For C ∈ slok, the members of C are denoted by Ci. (C is a community
of k citizens.)

Let f be a social welfare function, and consider four potential properties of f .

(44) Definition:

(a) (Universality): f is total.

(b) (Pareto efficiency): Let a, b ∈ A and C ∈ slok be given. Suppose that
for all i ≤ k, a is ranked above b in Ci. Then a is ranked above b
in f(C).

(c) (Independence of irrelevant alternatives): Let a, b ∈ A and C,C′ ∈
slok be given. Suppose that for all i ≤ k, a is ranked below b in Ci

if and only if a is ranked below b in C′
i. Then a is ranked below b in

f(C) if and only if a is ranked below b in f(C′)
(d) (Dictatorship): There is i ≤ k such that for all C ∈ slok, f(C) = Ci.

(45) Theorem: Every social welfare function that satisfies Universality,
Pareto efficiency, and Independence of irrelevant alternatives is
dictatorial.

534 D. Osherson and S. Weinstein

9.2 Reconstruction within Preference Logic

Let our signature include a monadic predicate P and utility indices {1} . . .{k},
{1 . . . k}. As usual, we abbreviate the index {i} to just i. The language L(L, S)
is assumed to include distinct variables x, y, z possibly with subscripts, super-
scripts and primes. The formulas defined below are meant to recapitulate the
four properties in Definition (44). We consider m ≥ 3 agenda items.

Universality. Fix m variables x1 . . . xm where m ≥ 3. For variables x1 . . . xm,
let χ(x1 . . . xm) be the formula that says that each of x1 . . . xm is equal to exactly
one of x1 . . . xm.

(46) Definition: (Universality): Let ψ be the conjunction of

χ(x1 . . . xm) ∧ (Px1 11 Px2) ∧ (Px2 11 Px3) ∧ · · · ∧ (Pxm−1 11 Pxm)
...

χ(x1 . . . xm) ∧ (Px1 1k Px2) ∧ (Px2 1k Px3) ∧ · · · ∧ (Pxm−1 1k Pxm)

Let ϕuniv be the universal closure of ♦ψ.

That is, each conjunct of ψ imposes a complete 1i-ordering on the Pxj where
1 ≤ i ≤ k and 1 ≤ j ≤ m. So ϕuniv is true in a model 〈D,W, t, u, s〉 just in case
every community is realized in some w ∈ W .

Pareto Efficiency

(47) Definition: Let ϕpareto be the universal closure of �((Px 11 Py ∧
· · · ∧ Px 1k Py)→ Px 1{1...k} Py).

Independence of Irrelevant Alternatives. Fix two variables x, y. For vari-
ables x′, y′, let ψ(x′, y′) be the formula that says that each of x′, y′ is equal to
exactly one of x, y.

(48) Definition: Let ϕiia be the universal closure of the formula

(ψ(x1, y1) ∧ · · · ∧ ψ(xk, yk)) →
(♦((Px1 11 Py1) ∧ · · · ∧ (Pxk 1k Pyk) ∧ (Px 1{1...k} Py))→

�(((Px1 11 Py1) ∧ · · · ∧ (Pxk 1k Pyk))→ Px 1{1...k} Py)).

Then ϕiia is expresses that 1{1...k} has the property of independence of irrelevant
alterantives (with respect to formulas of the form Pv).

Dictatorship

(49) Definition: Let ϕdict be the disjunction of the following formulas.

Modal Logic for Preference Based on Reasons 535

∀x1 . . . xm�(((Px1 11 Px2) ∧ (Px2 11 Px3) . . . (Pxm−1 11 Pxm)) ↔
((Px1 1{1...k} Px2) ∧ (Px2 1{1...k} Px3) . . . (Pxm−1 1{1...k} Pxm)))

...
∀x1 . . . xm�(((Px1 1k Px2) ∧ (Px2 1k Px3) . . . (Pxm−1 1k Pxm)) ↔
((Px1 1{1...k} Px2) ∧ (Px2 1{1...k} Px3) . . . (Pxm−1 1{1...k} Pxm)))

Then ϕdict asserts that one of the individual indexes reveals the collective pref-
erence. Notice that dictatorship extends beyond the particular m-tuple that we
might wish to fix at the start of the discussion. The (unique) dictator described
in (49) determines all preferences.

9.3 Arrow’s Theorem Revisited

The next theorem follows easily from the definitions above along with any proof
of Arrow’s Theorem.

(50) Theorem: In quantified preference logic:

{ϕuniv, ϕpareto, ϕiia} |= ϕdict.

Appendix 1: Proof of Theorem (10)

It is easy to see that (10)a implies (10)b and that (10)b implies (10)c. We proceed
to establish that (10)c implies (10)a. For this purpose, we first establish that
(10)b implies (10)a. For the latter, we prove the dual, namely,

(51) For all ϕ ∈ L(L, S), if ϕ is consistent, then ϕ is satisfiable in a gener-
alized model.

The proof of (51) will be based on a canonical model construction. In order to
explain the construction we require the notion of modal depth.

(52) Definition: We define μ(ϕ), the modal depth of ϕ, by recursion on
ϕ ∈ L(L, S) as follows.

μ(ϕ) =

⎧⎪⎪⎨⎪⎪⎩
0 if ϕ ∈ P

μ(ψ) if ϕ = ¬ψ
max{μ(ψ), μ(θ)} if ϕ = (ψ ∧ θ)
max{μ(ψ), μ(θ)} + 1 if ϕ = (ψ -X θ)

Since the satisfiability of single formulas is at issue, we may assume that our
signature (P, S) is finite. For any such signature, it is easy to verify that if (P, S)
is finite, then for any n ∈ N, there are only finitely many ϕ ∈ L(L, S) with
μ(ϕ) ≤ n up to equivalence in sentential logic. In light of this, we may enforce
the convention that any set of formulas of bounded modal depth that we mention
is finite. To reduce notational clutter, we fix throughout a finite signature (P, S)
and omit further reference to it. Moreover, we suppose that S is a singleton and
suppress the subscripts on occurrences of -. Likewise, they are suppressed on

536 D. Osherson and S. Weinstein

utility functions u. It will be seen that these simplifications affect nothing of
substance in our construction.

If Σ is a set of formulas, we let ν(Σ) = {�ϕ | �ϕ ∈ Σ}. If Σ and Σ′ are sets
of formulas, we say Σ is compatible with Σ′ just in case ν(Σ) = ν(Σ′).

A set of formulas Σ is consistent just in case ⊥ is not O-derivable from Σ;
a set of formulas Σ is maximally consistent just in case it is consistent and no
proper extension of it is consistent. We say a set of formulas Γ is n-maximally
consistent if and only if there is a maximally consistent set Σ such that Γ =
{ϕ ∈ Σ | μ(ϕ) ≤ n}. We abbreviate “n-maximally consistent set of formulas” to
“n-mcs.” Note that by our aforementioned convention, every n-mcs is finite. We
repeatedly use the following fundamental property of maximally consistent sets
of formulas.

(53) For every maximally consistent set of formulas Γ and formula ϕ, if ϕ
is O-derivable from Γ , then ϕ ∈ Γ . Moreover, for every n ∈ N, n-mcs
Σ, and ϕ of modal depth ≤ n, if ϕ is O-derivable from Σ, then ϕ ∈ Σ.

For each n,m ≥ 0 and n-mcs Σ, we define the canonical generalized model,
Mn,m(Σ) = (Wm,n, vn,m, tn,m) of depth n and width m generated by Σ. Given
n-mcs Σ, let Ξn(Σ) be the family of n-mcs’s which are compatible with Σ. The
collection of worldsWn,m ofMn,m(Σ) is Ξn(Σ)×{0, . . . ,m}. In order to specify
the remaining components of Mn,m(Σ), we fix an n-mcs Σ0. We also fix m ∈ N

to be “large enough” (a lower bound for m appears at the end of the proof).
For brevity, we write Mn for our canonical generalized model Mn,m(Σ0) and
we write Wn, vn, and tn for Wn,m, vn,m, and tn,m, respectively. Moreover, if
w ∈ Wn, we call w an n-mcs (ignoring its second coordinate) and likewise we
write ϕ ∈ w just in case ϕ is a member of the first coordinate of w. For each
p ∈ P, tn(p) = {w ∈ Wn | p ∈ w}. Toward defining the value ordering vn, we
begin by defining a sequence of partial value orderings vnj and partial models
Mn

j simultaneously by induction on j, for 0 ≤ j ≤ n. Let vn0 = ∅ (the empty
partial function) and Mn

0 = (Wn, vn0 , t
n). Note that for every ϕ of modal depth

0, ϕ[Mn
0] is well-defined since the evaluation of such formulas does not make

use of the value ordering. Moreover, for all w ∈Wn and for all ϕ of modal depth
0, w ∈ ϕ[Mn

0] if and only if ϕ ∈ w. This follows immediately from (53), the
definition of tn, and the fact that each w ∈ Wn is an n-mcs, since every formula
of modal depth 0 is a boolean combination of sentence letters.

Suppose that our construction has proceeded to some stage j, with 0 ≤ j < n
resulting in a partial modelMn

j = (Wn, vnj , t
n). Moreover, suppose, as induction

hypothesis, that for every formula of modal depth ≤ j,

(54) w ∈ ϕ[Mn
j] if and only if ϕ ∈ w.

Let Ωn
j = {ϕ[Mn

j] | μ(ϕ) ≤ j} − {∅}.
We proceed to specify vnj+1. For each w ∈ Wn, vnj+1(w) is the relation on Ωn

j

defined as follows.

(55) For all ϕ and ψ with μ(ϕ), μ(ψ) ≤ j and ϕ[Mn
j], ψ[Mn

j] non-empty,

〈ϕ[Mn
j], ψ[Mn

j]〉 ∈ vnj+1(w) if and only if (ϕ - ψ) ∈ w.

Modal Logic for Preference Based on Reasons 537

To complete the construction, we must verify that

(56) for all w ∈Wn and all formulas ϕ of modal depth ≤ j + 1,
(a) vnj+1(w) is a pre-order of Ωn

j , and
(b) w ∈ ϕ[Mn

j+1] if and only if ϕ ∈ w.

In order to establish (56)a, we argue as follows. Fix w ∈ Wn. We first show that
vnj+1(w) is well-defined, that is, if ϕ, ψ, and θ are formulas of modal depth ≤ j

and ϕ[Mn
j] = ψ[Mn

j], then

(57) 〈ϕ[Mn
j], θ[Mn

j]〉 ∈ vnj+1(w) if and only if 〈ψ[Mn
j], θ[Mn

j]〉 ∈ vnj+1(w),

and similarly with ϕ and θ and ψ and θ reversed. So suppose that

(58) ϕ and ψ are formulas of modal depth ≤ j and ϕ[Mn
j] = ψ[Mn

j].

It follows at once from (58), (54), and (53), recalling the fact that every w′ ∈ Wn

is an n-mcs, that

(59) for all w′ ∈ Wn, (ϕ↔ ψ) ∈ w′.

Let χ be the conjunction of the formulas in ν(w). It follows from (59) and the
definition of Wn that

(60) χ→ (ϕ↔ ψ) is a theorem of O,

for otherwise, there would be an n-mcs w′ ∈ Wn with ¬(ϕ ↔ ψ) ∈ w′ contra-
dicting (59). Since the theorems of O are closed under necessitation, (60) implies
that

(61) �(χ→ (ϕ↔ ψ)) is a theorem of O.

Moreover, since each w′ ∈ Wn is an n-mcs, �θ → ��θ is a theorem of S5, and
each of the conjuncts of χ is a “boxed” formula, it follows from (53) that

(62) for all w′ ∈Wn, and all maximally consistent sets of formulas Γ ⊃ w′,
�χ ∈ Γ .

It follows from (61), (62), and (53), and the S5 modal principle

(�χ ∧�(χ→ (ϕ↔ ψ))) → �(ϕ↔ ψ),

that

(63) �(ϕ↔ ψ) ∈ w.

But then, by (53), (63), Axiom (8)c and the fact that w is an n-mcs,

(64) (ϕ - θ) ∈ w if and only if (ψ - θ) ∈ w.

Therefore vnj+1 is well-defined, since (57) follows directly from (64) and (55).
In order to see that vnj+1(w) is a pre-order of Ωn

j , it suffices to show that

(65) (a) ∅ is not in the field of vnj+1(w),

538 D. Osherson and S. Weinstein

(b) vnj+1(w) is transitive on Ωn
j , and

(c) vnj+1(w) is connected on Ωn
j .

Toward establishing condition (65)a, we show that if A is in the field of vnj+1(w),
then A �= ∅. So suppose that

(66) 〈ϕ[Mn
j], ψ[Mn

j]〉 ∈ vnj+1(w),

with μ(ϕ), μ(ψ) ≤ j. We show that ϕ[Mn
j] �= ∅. (The argument for ψ[Mn

j] �= ∅
is virtually identical.) To show this, it suffices, by (54), to show that for some
w′ ∈ Wn, ϕ ∈ w′. Suppose, for reductio, that for all w′ ∈ Wn, ϕ �∈ w′. Since all
w′ ∈Wn are n-mcs’s, it follows at once that for all w′ ∈ Wn, ¬ϕ ∈ w′. As before,
let χ be the conjunction of the formulas in ν(w). Arguing as we did for (63), we
may conclude that (χ → ¬ϕ) is a theorem of O, and thence that �¬ϕ ∈ w′ for
all w′ ∈ Wn. It follows immediately by (53) that

(67) ¬♦ϕ ∈ w′, for all w′ ∈ Wn.

On the other hand, it is a direct consequence of (55) and (66) that

(68) ϕ - ψ ∈ w.

It follows from (53), (68), and the right-to-left direction of Axiom (8)b that

(69) ♦ϕ ∈ w.

But (69) contradicts (67), thereby establishing that ϕ[Mn
j+1] �= ∅.

In order to establish (65)b, suppose that ϕ, ψ, and θ are formulas of modal
depth ≤ j, w ∈ Wn and that

(70) 〈ϕ[Mn
j], ψ[Mn

j]〉 ∈ vnj+1(w) and 〈ψ[Mn
j], θ[Mn

j]〉 ∈ vnj+1(w).

It follows immediately from (70) and (55) that

(71) ϕ - ψ ∈ w and ψ - θ ∈ w.

Therefore, by Axiom (8)a and (53),

(72) ϕ - θ ∈ w.

Hence, by (72) and (55)

(73) 〈ϕ[Mn
j], θ[Mn

j]〉 ∈ vnj+1(w).

We leave the argument for (65)c to the reader – it is virtually the same as
the argument for (65)b, using the left-to-right direction of Axiom (8)b in place
of Axiom (8)a.

We now verify (56)b. Note that by (56)a, for every ϕ with μ(ϕ) ≤ j + 1,
ϕ[Mn

j+1] is a well-defined. It is clear from (55) and the choice of vn0 as the
empty partial function that for all 0 ≤ i ≤ j and all w ∈ Wn, vni (w) ⊆ vni+1(w).
It follows at once that

(74) for all ϕ of modal depth ≤ j, ϕ[Mn
j] = ϕ[Mn

j+1].

Modal Logic for Preference Based on Reasons 539

Hence, by (54) and (74), it follows at once that in order to prove (56)b, we
need only show that for every w ∈ Wn and every formula ϕ, if μ(ϕ) = j + 1,
then

(75) w ∈ ϕ[Mn
j+1] if and only if ϕ ∈ w.

Every formula of modal depth j + 1 is a boolean combination of formulas of
the form ψ - θ, with μ(ψ), μ(θ) ≤ j. Thus, by (53) and the fact that all w ∈ Wn

are n-mcs’s, in order to establish (75), it suffices to show that for all ψ and θ
with μ(ψ), μ(θ) ≤ j,

(76) w ∈ (ψ - θ)[Mn
j+1] if and only if (ψ - θ) ∈ w.

But (76) is an immediate consequence of (55). This concludes the construction
of the partial generalized model Mn

n. By (56)b, it has the “canonical model
property”

(77) for all ϕ of modal depth ≤ n, w ∈ ϕ[Mn
n] if and only if ϕ ∈ w.

Let vn be a value ordering such that for every w ∈Wn, vn(w) extends vnn(w)
and let Mn = (Wn, vn, tn). It follows immediately from (77) that Mn satisfies
Σ0. Since every formula ϕ is contained in an n-mcs for some n, this concludes
the proof of (51).

We proceed to establish that (10)c implies (10)a. In order to do so, we will
make use of the neglected parameter m in our definition of the model Mn(=
Mn,m). In particular, recall that the collection of worlds Wn,m of Mn,m is
Ξn(Σ0)×{0, . . . ,m}. By our proof above that (10)b implies (10)a, it will suffice
to show that for a sufficiently large choice of m, there is a basic partial model
M = 〈Wn, s, u, tn〉 such that vnn is the value ordering of Ωn

n−1 induced by M,
for this will establish that every consistent ϕ is satisfied by some basic model.
It is easy to see that no matter how m is chosen,

(78) for every proposition A ∈ Ωn
n−1, card(A) ≥ m.

Let Π be the set of pre-orderings of Ωn
n−1, and choose m ≥ card(Π) ·card(Ωn

n−1).
It then follows from (78) that there is a function f : Π×Ωn

n−1
→Wn such that

(79) (a) for all π ∈ Π and A ∈ Ωn
n−1, f(π,A) ∈ A, and

(b) for all distinct π, π′ ∈ Π and all distinct A,B ∈ Ωn
n−1, f(π,A) �=

f(π′, B).

It follows at once from (79) that we may define u in such a way that

(80) for all π ∈ Π and all A,B ∈ Ωn
n−1,

u(f(π,A)) ≤ u(f(π,B)) if and only if 〈A,B〉 ∈ π.

Finally, define the selector s as follows.

(81) For all w ∈Wn and A ∈ Ωn
n−1, s(w,A) = f(vnn(w), A).

It follows at once from (80) and (81) that if we let M be the partial basic model
〈Wn, s, u, tn〉, then vnn is the value ordering of Ωn

n−1 induced by M. �

540 D. Osherson and S. Weinstein

Appendix 2: Proofs of Propositions (25), (26), and (27)

All three proofs elaborate a construction that appears in the demonstration of
Theorem (55) in Osherson and Weinstein (2012). Specifically, the earlier con-
struction can be adapted to show that there is an effective translation from
sentences ϕ ∈ L(L, S) to formulas ϕ†(x) of first-order logic, and a map from
preorder models M = 〈D,W, t,�, s〉 to relational structures FM such that

(82) w ∈ ϕ[M] iff FM |= ϕ†[w].

Moreover, assuming that (L, S) is recursive, there is a recursively axiomatizable
first-order theory T in the signature of FM such that

(83) for every preorder model M, FM |= T

and

(84) for every first-order structure A, if A |= T , then for some preorder
model M, A = FM.

Proposition (27) now follows from the completeness theorem for first-order
logic, since (82), (83), and (84) imply that ϕ ∈ L(L, S) is valid in preorder logic
if and only if ∀xϕ†(x) is a consequence of T . In like fashion, Proposition (25)
follows from the Löwenheim-Skolem Theorem for first-order logic. Proposition
(26) now follows immediately, since every countable preorder model is induced
by a corresponding utility model, a consequence of the fact that the rational
numbers are universal among countable linear orders. �

References

Andréka, H., Ryan, M., Schobbens, P.-Y.: Operators and laws for combining preferen-
tial relations. Journal of Logic and Computation 12, 12–53 (2002)

Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press
(2001)

Dietrich, F., List, C.: A reason-based theory of rational choice. Technical Report, Lon-
don School of Economics (2009)

Hansson, S.O.: A new semantical approach to the logic of preference. Erkenntnis 31(1),
1–42 (1989)

Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value
Trade-Offs. Cambridge University Press, Cambridge (1993)

Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A.: Foundations of Measurement, vol. I.
Academic Press, New York (1971)

Kripke, S.: The undecidability of monadic modal quantification theory. Zeitschr. f.
math. Logik und Grundlagen d. Math. 8, 113–116 (1962)

Lang, J., van der Torre, L., Weydert, E.: Hidden uncertainty in the logical represen-
tation of desires. In: Proceedings of Eighteenth International Joint Conference on
Artificial Intelligence, IJCAI 2003 (2003)

Liu, F.: Changing for the Better: Preference Dynamics and Agent Diversity. PhD thesis,
ILLC, University of Amsterdam (2008)

Modal Logic for Preference Based on Reasons 541

Osherson, D., Weinstein, S.: Preference based on reasons. The Review of Symbolic
Logic 5(1), 122–147 (2012)

Reny, P.J.: Arrow’s Theorem and the Gibbard-Satterthwaite Theorem: A Unified Ap-
proach. Economics Letters 70, 99–105 (2001)

Rescher, N.: Semantic foundations for a the logic of preference. In: The Logic of Decision
and Action, University of Pittsburgh Press (1967)

Stalnaker, R.: A theory of conditionals. In: Rescher, N. (ed.) Studies in Logical Theory.
Blackwell, Oxford (1968)

van Benthem, J., Girard, P.K., Roy, O.: Everything else being equal: A modal logic for
Ceteris Paribus preferences. Journal of Philosophical Logic 38, 83–125 (2009)

The Dichotomous Intensional Expressive Power

of the Nested Relational Calculus with Powerset�

Limsoon Wong

National University of Singapore
wongls@comp.nus.edu.sg

Abstract. Most existing studies on the expressive power of query lan-
guages have focused on what queries can be expressed and what queries
cannot be expressed in a query language. They do not tell us much about
whether a query can be implemented efficiently in a query language. Yet,
paradoxically, efficiency is a key concern in computer science. In this
paper, the efficiency of queries in NRC(powerset), a nested relational
calculus with a powerset operation, is discussed. A dichotomy in the ef-
ficiency of these queries on a large general class of structures—which
include long chains, deep trees, etc.—is proved. In particular, it is shown
that these queries are either already expressible in the usual nested re-
lational calculus or require at least exponential space. This Dichotomy
Theorem, when coupled with the bounded degree and locality proper-
ties of the usual nested relational calculus becomes a powerful general
tool in studying the intensional expressive power of query languages.
The bounded degree and locality properties make it easy to prove that a
query is inexpressible in the usual nested relational calculus. Then, if the
query is expressible in NRC(powerset), subject to the conditions of the
Dichotomy Theorem, the query must take at least exponential space.

1 Introduction

Existing research on the power of query languages has focused almost exclusively
on the expressive power of query languages. So we have many results of the
following kinds:

– Is a specific function expressible in a given query language? For example,
Libkin & Wong showed that all usual nested relational calculi and algebras
cannot express the transitive closure function in general [12].

– What complexity class do functions expressible in a given query language
belong to? For example, Buneman et al. showed that functions expressible
in all the usual nested relational calculi and algebras have polynomial com-
plexity [4].

– What general properties do functions expressible in a given query language
have? For example, Dong et al. [7] showed that all functions on unordered

� Supported in part by a Singapore Ministry of Education grant MOE-T1-
251RES1206.

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 542–556, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The Dichotomous Intensional Expressive Power 543

graphs expressible in a nested relational calculus with aggregate functions
have the bounded degree property and, thus, cannot transform a simple
graph (which has an arbitrarily large but fixed degree) into a complex graph
(which has an arbitrary number of distinct degrees).

These results are purely extensional. They basically state that a large class of
queries is expressible or representable in a query language. However, they say
nothing about the efficiency of such a representation, even though the efficiency
aspect is of primary concern for computer science.

A function f that is expressible in a query language can be implemented in
many different ways, each corresponding to a different algorithm. These different
algorithms—which implement that same function f , as far as input/output is
concerned—may have rather different complexity. Moreover, some algorithms
for f may not even be expressible in the given query language, though some
other algorithm for f is expressible in the given query language. Seldom do
we see results that study the power of query languages from this “intensional”
perspective.

This lack of results may be due to the tradition of logical vs physical separation
in the database community. This separation is beneficial as it allows a database
system to use radically different execution plans for the same query depending
on a variety of optimization factors, such as what relevant indices are available.
Nevertheless, the syntax of a query suggests an natural implementation, even
if an unoptimized one. So, as argued by Suciu, Paredeans, and Wong [14,15],
there is a natural operational semantics for a query language and intensional
expressive power can be studied with respect to it.

Some of the exceptional papers that are in the spirit of intensional expressive
power include:

– The work of Colson [5] which showed that the function which computes the
minimum of two integers in unary representation cannot be programmed
using primitive recursion in O(min(m,n)) complexity.

– The work of Abiteboul and Vianu [2] which proved that the parity query
cannot be expressed in PTIME by a generic machine.

– The work of Suciu and Wong [15] which proved that any uniform translation
of sequential iteration queries (sri queries) into data-parallel iteration queries
(sru queries) over a nested relational algebra must map some PTIME queries
into exponential space ones.

– The work of Suciu and Paredaens [14] which proved that any implementa-
tion of the transitive closure query in Abiteboul and Beeri’s complex object
algebra must use an exponential amount of space.

However, these intensional results tend to be very query specific. Furthermore,
the proofs tend to be complex and are not easily portable to other queries. So
they do not shed sufficient light on the structure of the query languages concerned
or the structure of inefficient queries in these query languages that render the
cause of the inefficiency clear.

In contrast, the intensional expressive power of NRC(powerset), a nested re-
lational calculus endowed with a powerset operation, is studied here in a more

544 L. Wong

general non-query-specific setting—I think this is probably the first time that
intensional expression power is studied in such a general setting. This calcu-
lus, to be presented in Section 2, is equivalent to the complex object algebra
of Abiteboul and Beeri [1] which, as mentioned earlier, was shown by Suciu
and Paredaens [14] to use exponential space to implement the transitive closure
query.

Here, all flat relational queries on a general class of structures that exhibit a
“severely dichotomous” property are considered. Intuitively, a severely dichoto-
mous structure has two groups of “motifs” that characterize all the elements
in the structure. One group of motifs have small radius and are populated by
a small predictable number of elements in the structure, while the other group
of motifs are populated by an arbitrarily large number of elements in the struc-
ture. Graphs with a few long chains or a few deep trees are severely dichotomous
structures. Specifically, the points near the ends of the few long chains satisfy
the first group of motifs, while the rest of the chains—being long and thus ar-
bitrarily many—satisfy the second group of motifs. Similarly, the points near
the roots of the few deep trees satisfy the first group of motifs, while the rest
of the trees—being deep and thus arbitrarily many—satisfy the second group of
motifs.

Intuitively, it is the presence of the second group of motifs that make the
class of severely dichotomous structures those that really require an arbitrarily
deep level of recursion or the full power of the powerset operation (if recursion
is unavailable) to manipulate. Indeed, this paper proves—in Section 4—that
all flat relational queries in NRC(powerset) on severely dichotomous structures
either (i) are already expressible without the powerset operation and, hence, has
a PTIME implementation in NRC(powerset); or (ii) are inexpressible without
using the powerset operation on a non-trivial amount of data and, hence, can
only be implemented in NRC(powerset) using an exponential amount of space.

The proof of this Dichotomy Theorem reveals the exact cause of the blow-
up and, briefly, it proceeds as follows. NRC(powerset) is known to have the
conservative extension property [17,10], which is described later in Section 3.1.
Moreover, the normal form induced by this property does not increase the com-
plexity of the query. Inspecting this normal form, the subexpression containing
the first instance of the powerset operation—say powerset e—to be executed is
analyzed. By the conservative extension property, e is known to be equivalent
to a first-order formula ϕ(x,y), where x are free variables corresponding to in-
put that is bound before e is excuted, and y are free variables corresponding to
output produced after e finishes execution. There are only three situations that
need to be considered:

1. yj in y is connected to some xi in x; that is, the point that yj is instantiated
with is close to some point that is used to instantiate an input xi. If the query
is restricted to input structures with a known maximum fan-out, then the
number of possible values that yj can take with respect to each instantiation
of xi can be calculated in advance.

The Dichotomous Intensional Expressive Power 545

2. yj has to be instantiated to a point characterized by the first type of motifs
in a seriously dichotomous structure, and it is not close to any xi. The first
type of motifs are populated by a small predictable number of elements. So
the number of possible values that yj can take can be calculated in advance.

3. yj has to be instantiated to a point that is not close to any point xi and
is characterized by the second kind of motifs in a seriously dichotomous
structure. As mentioned, this kind of motifs are populated by an arbitraily
large number of elements in the structure. By the locality property of first-
order formula [8,7,12,9], which is described later in Section 3.2, yj must take
on an arbitrarily large number of values. Unfortunately, this number cannot
be calculated in advance independent of the size of the input relations.

If each yj in y takes only a predictable number of possible values that can be
calculated in advance and independent of the size of the input relations, then
the number of tuples—say, H∗—in the result of evaluating e can be estimated in
advance and independent of the input relations. Then this powerset e can be re-
placed by powersetH∗ e, where powersetH∗ is an operation that computes subsets
of size up to H∗. Clearly, powersetH∗ can be implemented in NRC(powerset)
without using the powerset operation. If all the powerset operations can be
eliminated in this manner, we get a PTIME implementation of the query in
NRC(powerset). On the other hand, if the third situation is encountered, then
that powerset e cannot be eliminated. It is easy to see that, in a seriously dichoto-
mous input structure A = 〈A,O〉, the expression e in powerset e is guaranteed
to produce Ω(|A|) number of elements. Consequently, powerset e is forced to
produce Ω(2|A|) number of elements, causing the exponential blow up.

2 Nested Relational Calculus with Powerset

Let me first recall the nested relational calculus NRC from Buneman et al. [4].
The types and expressions in NRC are given in Figure 1. The type superscripts
in the figure are usually omitted because they can be inferred.

The semantics of a type is just a set of complex objects. There are some
unspecified base types b and the usual Boolean base type bool . An object of
type s1 × · · · × sn is a tuple whose ith component is an object of type si, for
1 ≤ i ≤ n. An object of type {s} is a finite set whose elements are objects of
type s; an object of type {s} is called a “relation”. Moreover, if s = b × · · · × b,
then an object of type {s} (or s) is called a “flat relation”. On the other hand,
if s contains some set brackets, then an object of type {s} is called a “nested
relation”. More generally, a type s containing n levels of nested set brackets is
said to be of height n; e.g., b× b has height 0, {b× b} has height 1, and {b×{b}}
has height 2.

The semantics of the expression constructs are described below. The expres-
sion c denotes some constants of base type b. The expressions true, false , and
if e1 then e2 else e3 have their usual semantics. The expression (e1, . . . , en) de-
notes the tuple whose ith component is the object denoted by ei, for 1 ≤ i ≤ n.
The expression πi e denotes the ith component of the tuple denoted by e.

546 L. Wong

Types in NRC

s ::= b | bool | s1 × · · · × sn | {s}

Expressions in NRC

c : b xs : s

e1 : s1 . . . en : sn
(e1, . . . , en) : s1 × · · · × sn

e : s1 × · · · × sn
πi e : si

1 ≤ i ≤ n

{}s : {s}
e : s

{e} : {s}
e1 : {s} e2 : {s}

e1 ∪ e2 : {s}
e1 : {s} e2 : {t}⋃
{e1 | xt ∈ e2} : {s}

true : bool false : bool

e1 : bool e2 : s e3 : s

if e1 then e2 else e3 : s

e1 : b e2 : b

e1 = e2 : bool

e : {b × · · · × b}
isempty e : bool

Powerset Operator in NRC(powerset)

e : {b× · · · × b}
powerset e : {{b × · · · × b}}

Fig. 1. NRC and its extension NRC(powerset)

The expression {} denotes the empty set. The expression {e} denotes the sin-
gleton set containing the object denoted by e. The expression e1 ∪ e2 denotes
the union of the sets e1 and e2. The expression

⋃
{e1 | x ∈ e2} denotes the set

obtained by first applying the function f(x) = e1 to each object in the set e2
and then taking their union; that is,

⋃
{e1 | x ∈ e2} = f(C1)∪ . . .∪f(Cn), where

f(x) = e1 and {C1, . . . , Cn} is the set denoted by e2.
Note that the x ∈ e2 part in the

⋃
{e1 | x ∈ e2} construct is not a mem-

bership test. It is an abstraction that introduces the variable x whose scope is
the expression e1. This construct is the sole means in NRC for iterating over a
set. For example, the cartesian product of two sets X and Y can be defined as
cartprod(X,Y) =df

⋃
{
⋃
{{(x, y)} | x ∈ X} | y ∈ Y }. As a second example, the

flattening of a nested set X can be defined as flatten(X) =df

⋃
{x | x ∈ X}. As

a last example, the projection of the first column of a relation X can be defined
as Π1(X) =df

⋃
{{π1 x} | x ∈ X}.

The notation e[R] stands for the an expression e with free variables R; how-
ever, when it is not important to explicitly list the free variables, it is written
simply as e. For a list of objects O that conform to the types of R, the no-
tation e[O/R] stands for the expression obtained by substituting O for R in
the standard way. The expression e[R] can be thought of as a “query” where

The Dichotomous Intensional Expressive Power 547

R are its input; equivalently, it can be thought of as a function f(R) = e[R].
The expression e[R] is said to be a “flat relational query” if each R in R is a
flat relation and e[R] : {b × · · · × b}. Recall that a flat relation can have type
{b × · · · × b} or type b × · · · × b. So, the notation e[R,x] is used here when it
is important to explicitly separate the two kinds of variables in a flat relational
query. The result below on the expressive power of NRC is well known.

Proposition 1 (Wong [17]).

1. NRC is in PTIME.
2. NRC is equivalent to the classical nested relational algebra.
3. NRC, when restricted to flat relational queries, is equivalent to the classical

relational algebra.

As NRC is not more powerful than the classical relational algebra, recursive
queries such as the transitive closure query are inexpressible in NRC. In fact, as
shown by Libkin and Wong [12], these queries remain inexpressible even when
NRC is augmented with arithmetics and aggregate functions. One proposal to
enable a nested relational calculus or algebra to express complex queries, without
resorting to explicit recursion, is to endow the calculus or algebra with a powerset
operation. Indeed, this option was proposed by Abiteboul and Beeri [1] and by
Suciu and Paredaens [14].

Following in their foot steps, a more powerful nested relational calculus
NRC(powerset) is defined here by augmenting NRC with a powerset operation
on flat relations, as shown in Figure 1. Here, powerset e produces a set containing
all the subsets of the set denoted by e, provided e is a flat relation. By factoring
through the equivalence [4] between NRC and a corresponding nested relational
algebra, the result below on the expressive power of NRC(powerset) is readily
obtained.

Proposition 2 (Buneman et al. [4]). NRC(powerset) is equivalent to the
complex object algebras of Abiteboul and Beeri and of Suciu and Paredaens.

Following Suciu and Paredaens [14], a call-by-value operational semantics is
defined for NRC(powerset), as shown in Figure 2. In this operational semantics,
e ⇓ C means the closed expression e is evaluated to the object C. The notation
C1 ∪ · · · ∪ Cn denotes the set of objects obtained by the union of the sets C1,
. . . , Cn. This evaluation is sound in the sense that, when e : s and e ⇓ C, then
C is an object of type s and e = C. Thus, each e : s evaluates to a unique C.
The notation e ⇓ is used here to refer to the unique evaluation tree of e.

The complexity sizeof (e ⇓) of an evaluation is normally defined in terms of the
size of the evaluation tree. However, for the purpose of this paper, and analogous
to Suciu and Paredaens [14], it is sufficient to define it in terms of the size of
the largest object in the evaluation tree. That is, sizeof (e ⇓) = max{sizeof (C) |
the object C occurs in the evaluation tree e ⇓}. The size of an object is defined
in some standard way, e.g., the number of atomic objects (i.e., objects of base
type b) in it.

548 L. Wong

c ⇓ c

e1 ⇓ C1 . . . en ⇓ Cn

(e1, . . . , en) ⇓ (C1, . . . , Cn)

e ⇓ (C1, . . . , Cn)

πi e ⇓ Ci
1 ≤ i ≤ n

{} ⇓ {}
e ⇓ C

{e} ⇓ {C}
e1 ⇓ C1 e2 ⇓ C2

e1 ∪ e2 ⇓ C1 ∪ C2

e2 ⇓ {C1, . . . , Cn} e1[C1/x] ⇓ C′
1 · · · e1[Cn/x] ⇓ C′

n⋃
{e1 | x ∈ e2} ⇓ C′

1 ∪ · · · ∪ C′
n

true ⇓ true false ⇓ false

e1 ⇓ true e2 ⇓ C

if e1 then e2 else e3 ⇓ C

e1 ⇓ false e3 ⇓ C

if e1 then e2 else e3 ⇓ C

e1 ⇓ C1 e2 ⇓ C2

e1 = e2 ⇓ true
C1 = C2

e1 ⇓ C1 e2 ⇓ C2

e1 = e2 ⇓ false
C1 �= C2

e ⇓ C

isempty e ⇓ true
C = {} e ⇓ C

isempty e ⇓ false
C �= {}

e ⇓ {C1, . . . , Cn}
powerset e ⇓ {C′

1, . . . , C
′
2n}

where C′
1, . . . , C

′
2n are the subsets of {C1, . . . , Cn}

Fig. 2. A call-by-value operational semantics of NRC(powerset)

Suciu and Paredaens [14] showed a deep result that can be restated in
NRC(powerset) as follows:

Proposition 3. [Suciu and Paredaens [14]] Let e[R] be a query that implements
the transitive closure of an input flat relation R : {b× b} in NRC(powerset). Let
O be a sufficiently long chain of type {b × b}. Then sizeof (e[O/R] ⇓) is Ω(2|O|).
That is, every implementation of transitive closure inNRC(powerset) requires ex-
ponential space.

In this paper, an alternative proof of this result is presented. Moreover, it is
generalized here to a dichotomy result on practically all flat relational queries
expressible inNRC(powerset). In particular, practically all flat relational queries
expressible in NRC(powerset) are shown here to be dichotomous in the sense
that either they are already expressible in NRC or they require at least expo-
nential space. Hence, the extra expressive power that the powerset operation
buys for NRC(powerset) comes strictly with an exponential cost.

The Dichotomous Intensional Expressive Power 549

3 Conservative Extension and Locality Properties

Two sets of techniques are needed to prove the Dichotomy Theorem. The first
is the conservative extension property of NRC and the system of rewrite rules
used for proving this property. The second is the locality property of first-order
queries.

3.1 Conservative Extension

The conservative extension property and the associated system of rewrite rules
were initially described by Wong [17] and, later, generalized by Libkin and
Wong [10,12]. This system of rewrite rules is given in Figure 3.

⋃
{e | x ∈ {}} �→ {}⋃

{e1 | x ∈ {e2}} �→ e1[e2/x]⋃
{e | x ∈ (e1 ∪ e2)} �→

⋃
{e | x ∈ e1} ∪

⋃
{e | x ∈ e2}⋃

{e1 | x ∈
⋃
{e2 | y ∈ e3}} �→

⋃
{
⋃
{e1 | x ∈ e2} | y ∈ e3}⋃

{e | x ∈ (if e1 then e2 else e3)} �→ if e1 then
⋃
{e | x ∈ e2} else

⋃
{e | x ∈ e3}

πi(e1, . . . , e2) �→ ei
πi (if e1 then e2 else e3) �→ if e1 then πi e2 else πi e3

if true then e2 else e3 �→ e2
if false then e2 else e3 �→ e3

Fig. 3. A system of rewrite rules for NRC(powerset)

The following properties of this system of rewrite rules are well known.

Proposition 4 (Conservative Extension [17,10]).

1. This system of rewrite rules is sound.
2. This system of rewrite rules is strongly normalizing.
3. Let e be an expression in NRC(powerset) that is in normal form with respect

to this system of rewrite rules. That is, no rule can be applied to further
rewrite e. Let e′[R] : s be a subexpression in e. Suppose R have types whose
height is at most h, and the type s has height h′. Then all the types appearing
in the type derivation of e′[R] : s have height at most max(h, h′), if the
powerset operation does not appear in e′[R]; or, they have height at most
max(h, h′, 2), if the powerset operation appears in e′[R].

It is straightforward to show that this system of rewrite rules does not increase
the complexity of evaluation.

Proposition 5. Let e[R]
→ e′[R]. Let O be a list of objects conforming to the
types of R. Then sizeof (e[O/R] ⇓) ≥ sizeof (e′[O/R] ⇓).

550 L. Wong

3.2 Locality

The second main machinery needed to prove the dichotomy result is the lo-
cality property. Let me first introduce the notions of “τ structure”, “Gaifman
graph”, “r-sphere”, and “r-neighbourhood”, before explaining what the locality
property is.

A signature τ is a list of symbols R, where R is to be regarded as input for
a query. The signature τm is obtained by extending the signature τ with m new
constant symbols. For the purpose of this paper, each Ri in R has type of the
form {b× · · · × b}. A τ structure A = 〈A,O〉 has a universe A (which is a finite
nonempty set of objects of type b) and a list of objects O (where each object
Oi in O is the interpretation of the corresponding Ri and, thus, having the type
of Ri). Also, all elements of O are in the universe A. The class of τ structures
is denoted by STRUCT[τ]. The symbol � is used to denote isomorphism of τ
structures.

Given a τ structure A = 〈A,O〉, its Gaifman graph G(A) is defined as a graph
such that its vertices are the universe of A and its edges are precisely those
pairs (a, b) where there is a tuple ti ∈ Oi, for some Oi in O, such that both
a and b are in ti. The distance dA(a, b) is defined as the length of the shortest
path from a to b in G(A). Given a tuple a = (a1, . . . , am) of objects in A, and
some r ≥ 0, the r-sphere of a is defined as SA

r (a) =
⋃

1≤i≤m SA
r (ai), where

SA
r (ai) = {b ∈ A | dA(ai, b) ≤ r}. Also, the r-neighbourhood of a is defined

as the τm structure NA
r (a) = 〈SA

r (a),O|SA
r (a), a1, . . . , am〉. That is, NA

r (a) is

obtained by restrictingA to the universe SA
r (a) and adding some extra constants

that are the elements of a.
Gaifman [8] showed that first-order queries exhibit a kind of locality property

in the sense that the result of these queries can be determined by considering
“small neighbourhoods” of its input. It follows easily from the work of Gaifman
and Part 3 of Proposition 1 that flat relational queries in NRC has this kind of
locality property.

Proposition 6 (Locality [8,7,9]). Every flat relational query e[R] in NRC
has the locality property. That is, there is a finite natural number r such that,
for every A = 〈A,O〉 ∈ STRUCT[R], for every two m-ary vectors a and b of
elements of A, it is the case that NA

r (a) � NA
r (b) implies a ∈ e[O/R] if and

only if b ∈ e[O/R].

In short, for every flat relational query expressible in NRC there is some
number r such that, for every pair (a, b), so long as a and b have neighbourhoods
that are isomorphic up to radius r, they must either be both in the result of the
query or both not in the result of the query. The smallest such number r is called
the “locality index” of the query.

An equivalence relation a ≈A
r b is induced by NA

r (a) � NA
r (b). The resulting

isomorphism types are called r-neighbourhood types here. If a restriction is im-
posed so that G(A) has degree at most k, then the number of r-neighbourhood
types realised for each r > 0 is finite. Thus, under this restriction, for any flat

The Dichotomous Intensional Expressive Power 551

relational query e[R] in NRC, its result is completely characterized by a fi-
nite number of r-neighbourhood types. Each r-neighbourhood type induced by
NA

r (a) can be thought of as a “diagram” showing how objects in this neighbour-
hood type are “connected” to each other and to the fixed reference objects (i.e.,
a). Each neighbourhood type is definable by a first-order formula ξ(u) such that
a ≈A

r b if and only if A |= ξ(a).
The following proposition on objects that are connected in a neighbourhood

type is easily proved.

Proposition 7. Given a neighbourhood type ξ(u1, . . . , um) induced by some r-
neighbourhood. Suppose ui and uj are connected to each other in ξ(u1, . . . , um).
Then for any τm structure A = 〈A,O, o1, . . . , om〉 realizing ξ(u1, . . . , um), it is
the case that dA(oi, oj) ≤ mr + 1.

4 Complexity of Queries on Dichotomous Structures

Given a signature τ . A “motif” of radius r is a first-order formula ρ(u) with
a single free variable u such that ρ(u) has locality index r on all τ structures.
A τ structure A is said to be “bounded” by a motif ρ(u) at a threshold g if
|{a ∈ A | A |= ψ(a)}| ≤ rg, where r is the radius of ρ(u). That is, there are
at most rg elements in the universe of A that make ρ(u) true. A class C of τ
structures is said to be “bounded” by a motif ρ(u) at a threshold g if that motif
ρ(u) bounds all structures in C at the threshold g. On the other hand, C is said
to be “unbounded” by ρ(u) if for every g > 0, there is some A ∈ C that is not
bounded by ρ(u) at threshold g.

Definition 1. A class C of τ structures is said to be “dichotomous” at threshold
g if and only if (i) C is unbounded by some motifs, and (ii) C is bounded by
all other motifs at threshold g. A dichotomous class is said to be “deep” if, at
every r, it is unbounded by some motifs of radius r. A dichotomous class C is
said to have “severity” l if for every motif ρ(u) that unbounds C, there is a
series of structures A1, A2, ..., in C having universe of increasing size, and the
ratio |{a ∈ Ai | Ai |= ρ(a)}|/|Ai| tends to 1 as i tends to infinity. A “severely
dichotomous” class is one that has severity 1.

I am now ready to sketch a proof of the Dichotomy Theorem for such general
classes of structures. Given a flat relational structure A = 〈A,O〉, the size of the
structure is defined as the size of its universe: |A| = |A|.

Theorem 1 (Dichotomy). Let e[R] : {b × · · · × b} be a flat relational query
in NRC(powerset), such that the input R comes from a class C of seriously
dichotomous structures whose Gaifman graph has degree at most k. Then either
e[R] is expressible in NRC; or, there is a structure A = 〈A,O〉 ∈ C such that
sizeof (e[O/R] ⇓) is Ω(2|A|).

Proof. Let C be severely dichotomous at threshold g, and the Gaifman graphs
of structures in it have degree at most k. Let A = 〈A,O〉 ∈ C be the input to
the query e[R].

552 L. Wong

By Proposition 5, the system of rewrite rules in Figure 3 does not increase
complexity. By Proposition 4, it preserves semantics and is strongly normalizing.
Thus it can be assumed without loss of generality that e[R] is an expression in
normal form with respect to this system of rewrite rules.

If the powerset operation does not appear in e[R], then the theorem triv-
ially holds. So, let it contain some occurrences of the powerset operation. Let
powerset e′[R,x] be the occurrence of the powerset operation that corresponds
to the earliest instance of the powerset operation to be evaluated when e[R] is
evaluated according to the operational semantics given in Figure 2.

Since the
⋃
{e1 | x ∈ e2} construct is the only way to introduce a new variable

in NRC(powerset), each new free variable xi in x must have been introduced in
an enclosing expression of the form

⋃
{· · · powerset e′[R,x] · · · | xi ∈ E}. As the

entire expression e[R] is in normal form, and e′[R,x] is the earliest instance of
the powerset operation to be evaluated, E must be one of the Ri in R, which is
a flat relation. Consequently, xi has height 0 and a type of the form b× · · · × b.
Furthermore, as e′[R,x] is an input to a powerset operation, its type must have
the form {b× · · · × b}. Thus e′[R,x] is a flat relational query in NRC.

In fact, by the conservative extension property (Proposition 4), all the types
that appear in the typing derivation of e′[R,x] have height at most 1 (i.e., must
be flat). By Proposition 1, e′[R,x] is equivalent to a first-order formula ϕ(x,y)
such that, for every τm structure A = 〈A,O,o〉 and objects o′ of the appropriate
types, it is the case that o′ ∈ e′[O/R,o/x] if and only if A |= ϕ(o,o′).

I am now almost ready to use the locality property, except for the variables
x. To deal with this inconvenience, we inspect the original expression e[R], in
an outside-in manner until we reach the expression e′[R,x], to extract all the
conditions that must hold on x before e′[R,x] gets evaluated. We define the

extraction function
−−→
e[R] by induction on the structure of e using rules like those

given below, where the symbol * represents a subexpression that contains the
occurrence of the expression e′[R,x] and we write ϕE for the first-order formula
that the expression E in NRC translates to. The existence of ϕE is guaranteed
by Proposition 1.

–
−−−−−−−−−−−−−−−−−−−−−−→⋃
{if E then * else F |x ∈ R} = (x,x′ : R,R′ : ϕE ∧ ψ), where −→* = (x′ :

R′ : ψ).

–
−−−−−−−−−−−−−−−−−−−−−−→⋃
{if E then F else * |x ∈ R} = (x,x′ : R,R′ : ¬ϕE ∧ ψ), where −→* = (x′ :

R′ : ψ).

–
−−−−−−−−−−−−−−−−−−−−−−→⋃
{if * then E else F |x ∈ R} = (x,x′ : R,R′ : ψ), where −→* = (x′ : R′ : ψ).

–
−−−−→*∪ E = −→* ,

–
−−−−→
E ∪ * = −→* ,

– the remaining rules are omitted.

So, the original expression e[R] is inspected, using the extraction function
above, to obtain all the conditions that must hold on x before e′[R,x] gets
evaluated. This gives us a first-order formula ψ(x). Let φ(x,y) =df R(x) ∧
ψ(x) ∧ ϕ(x,y).

The Dichotomous Intensional Expressive Power 553

It follows by Proposition 6 that φ(x,y) enjoys the locality property. Let r
be its locality index. Since I am only considering structures A = 〈A,O〉 whose
Gaifman graph has degree at most k, there is a finite number of neighbourhood
types ξh(x,y) such that ¬(ξh(x,y) ⇒ ¬φ(x,y)) holds. I refer to these as the
“qualifying neighbourhood types”.

For each qualifying neighbourhood type ξh(x,y) and each yi in y, we try
to determine a number Hh,i that is an upperbound on the number of distinct
objects in the universe of the input structure A that yi can be instantiated to.
Then the number of tuples that can result from evaluating e′[R,x] is bounded
by H∗ =

∑
h

∏
iHh,i. Then the number of tuples that can result from evaluating

powerset e′[R,x] is bounded by 2H∗. If H∗ (i.e., each Hh,i) can be determined
independently of the input structure, then we can replace powerset e′[R,x] by
powersetH∗e

′[R,x], where powersetH∗ is an expression in NRC to produce all
subsets of a set up to H∗ elements.

There are only three scenarios that need to be considered in determining
Hh,i. The first scenario is when yi is connected to some xj in the neighbourhood
formula ξh(x,y). By Proposition 7, the distance between xj and yi is at most
mr + 1, where m is the length of the tuples of variables denoted by x,y. Since
the Gaifman graph of the input sturcture A has degree at most k, given any
instantiation for xj , there are at most kmr+1 possible instantiations for yi. So,
in this scenario, Hh,i can be simply set as kmr+1.

However, when yi is not connected to any xj in ξh(x,y), we cannot constrain
the number of instantiations for yi this way. Let ξ′h(yi) =df ∃x,y′ : ξh(x, y),
where y′ are all the variables in y, except yi. Since yi is not connected to any xj
in ξh(x,y), the instantiations for yi that make ξh(x,y) true must be the same
ones that make ξ′h(yi) true. By the locality property, let the locality index of
ξ′h(yi) be r

′. Again, due to the constraint that the Gaifman graph of the input
structure has degree at most k, the number of qualifying r′-neighbourhood types
ρh,d(yi) such that ¬(ρh,d(yi)⇒ ¬ξ′h(yi)) is finite. Let H ′

h,i,d be an upperbound—
to be determined shortly—on the size of the neighbourhood ξ′h(yi). Obviously,
Hh,i is bounded by the total size

∑
dH

′
h,i,d of these qualifying neighbourhoods.

It remains to determine H ′
h,i,d. Since C is severely dichotomous at threshold

g, each ρh,d(yi) is a motif that either bounds C at threshold g or unbounds C.
This leads to the second and third scenarios of the proof.

The second scenario is when ρh,d(yi) is a motif that bounds C at threshold g.
By definition of bounding motifs, there are at most r′g number of instantiations
that makes ρh,d(yi) true, where r

′ is the radius of ρh,d(yi), which obviously has
the same radius as ξ′h(yi). So, in this scenario, Hh,i,d can be set to r′g.

The third and last scenario is when ρh,d(yi) is a motif that unbounds C.
Since C is severely dichotomous, by definition, it has a series of structures A1 =
〈A1,O1〉, A2 = 〈A2,O2〉, ..., with universe of increasing size such that the ratio
|{a ∈ Ai | Ai |= ρh,d(yi)}|/|Ai| tends to 1, as ρh,d(yi) is a motif that unbounds
it. Since ρh,d(yi) is a neighbourhood type, by the locality property, all of the
objects a in {a ∈ Ai | Ai |= ρh,d(yi)} must be used to instantiate yi. Thus,
the number of instantiations for yi is essentially |Ai|. In this case, we cannot

554 L. Wong

set Hh,i,d to a finite value independently of the input structure. Therefore, the
powerset operation in powerset e′[R,x] cannot be eliminated in this scenario.
On the other hand, the number of instantions for y is Ω(|Ai|) since one of its
component, yi, has |Ai| instantiations. Thus e′[R,x] has Ω(|Ai|) elements, and
powerset e′[R,x] has Ω(2|Ai|) elements. Then sizeof (e[Oi/R] ⇓) is Ω(2|Ai|) as
required, proving the theorem. %�

The following corollary is immediate.

Corollary 1. For any flat relational query on severely dichotomous structures
whose Gaifman graphs have degree at most k, if it is inexpressible in NRC but is
expressible in NRC(powerset), then all of its implementations in NRC(powerset)
need an exponential amount of space.

5 Discussion

It follows from the Dichotomy Theorem that, for any query in NRC(powerset)
on seriously dichotomous structures, either it is already expressible in NRC
(and hence in PTIME) or all of its implementations in NRC(powerset) need
exponential space. Since the class of structures containing a single long chain
is seriously dichotomous, and the transitive closure of single long chain is in-
expressible in NRC [7], it follows immediately as a corollary of the Dichotomy
Theorem above that all implementations of transitive closure in NRC(powerset)
must use at least exponent space, as proven earlier by Suciu and Paredaens [14]
in a brute-force manner.

Our the Dichotomy Theorem is more general in three important ways. Firstly,
it is not limited to any single specific query like the transitive closure. Secondly, it
is not limited to a simple input structure like a single chain. Thirdly, the proof is
made more general by factoring through the conservative extension and locality
properties of a query language. These advantages open the route to proving the
dichotomous behaviour of a wider range of queries in a wider range of query
languages.

Some further insights can be gained from the proof. It is the third scenario in
the proof that cause the blow-up in complexity. Analyzing the unbounding mo-
tifs further, we can divide them into two classes: those in the deep dichotomous
classes and those in the non-deep dichotomous classes given in Definition 1. The
deep dichotomous classes contain structures like a small set of long chains. The
non-deep classes contain structures like a set of arbitrarily many short chains. I
believe the queries on the former truly need recursion, but queries on the latter
probably do not. However, in the latter, the removal of the powerset operation
as presented in the Dichotomy Theorem is not clever enough to remove all pow-
erset operations if a programmer happens to unnecessarily use some powerset
operations to implement these queries—after all, the Dichotomy Theorem is not
a clever query optimizer.

The Dichotomous Intensional Expressive Power 555

6 Remarks

It was with Peter Buneman and Val Tannen that I first defined NRC in 1992 [3],
two decades ago! It was also Peter and Val who first posed me the conservative
extension property of NRC as an open question, which I solved in 1993 [16] by
the analysing the normal forms of the system of rewrite rules presented earlier
in this paper.

I first saw in 1994 Dan Suciu and Jan Paredaens’ proof [13] that all imple-
mentations of the transitive closure query in NRC(powerset) are necessarily
inefficient. This was my first encounter with the intensional aspect of expressive
power. It intrigued me greatly and I soon co-authored, in 1995, a paper [15]
with Dan comparing the efficiency of the algorithms that can be implemented
by different forms of structural recursion.

I first learned in 1994 [11] the locality property of first-order query languages
from Leonid Libkin. It took me three further years to fully appreciate this pow-
erful property and to exploit it to prove, in 1997 [6], with Leonid and Guozhu
Dong, the bounded degree property of query languages with aggregate function.

Leonid, Dan, and I were students in the same group led by Peter, Val, and
Susan Davidson. While they have continued working in the database theory area,
I have more or less left the field to explore challenges in computational biology
since the late 1990s. After this ten-year break, I am delighted to briefly re-visit
the field and contribute to this Festschrift to Peter. I am pleasantly surprised that
I am able to chain together the series of our major past results (NRC, normal
forms of my favourite rewrite system, the conservative extension property, and
the locality property) that Peter had a big role in nurturing, to solve a problem
that Peter also had a big role in keeping my continued fascination with it. I hope
you have enjoyed reading the paper as much as I have enjoyed working on it.

References

1. Abiteboul, S., Beeri, C.: The power of languages for the manipulation of complex
values. The VLDB Journal 4(4), 727–794 (1995)

2. Abiteboul, S., Vianu, V.: Generic computation and its complexity. In: Proceedings
of 23rd ACM Symposium on the Theory of Computing, pp. 209–219 (1991)

3. Breazu-Tannen, V., Buneman, P., Wong, L.: Naturally embedded query languages.
In: Proceedings of 4th International Conference on Database Theory, Berlin,
Germany, October 1992, pp. 140–154 (1992)

4. Buneman, P., Naqvi, S., Tannen, V., Wong, L.: Principles of programming with
complex objects and collection types. Theoretical Computer Science 149(1), 3–48
(1995)

5. Colson, L.: About primitive recursive algorithms. Theoretical Computer Science 83,
57–69 (1991)

6. Dong, G., Libkin, L., Wong, L.: Local properties of query languages. In: Proceed-
ings of 6th International Conference on Database Theory, pp. 140–154 (1997)

7. Dong, G., Libkin, L., Wong, L.: Local properties of query languages. Theoretical
Computer Science 239, 277–308 (2000)

556 L. Wong

8. Gaifman, H.: On local and non-local properties. In: Proceedings of the Herbrand
Symposium, Logic Colloquium ’81, pp. 105–135 (1982)

9. Hella, L., Libkin, L., Nurmonen, J., Wong, L.: Logics with aggregate operators.
Journal of the ACM 48(4), 880–907 (2001)

10. Libkin, L., Wong, L.: Conservativity of nested relational calculi with internal
generic functions. Information Processing Letters 49(6), 273–280 (1994)

11. Libkin, L., Wong, L.: New techniques for studying set languages, bag languages,
and aggregate functions. In: Proceedings of 13th ACM Symposium on Principles
of Database Systems, pp. 155–166 (1994)

12. Libkin, L., Wong, L.: Query languages for bags and aggregate functions. Journal
of Computer and System Sciences 55(2), 241–272 (1997)

13. Suciu, D., Paredaens, J.: Any algorithm in the complex object algebra needs ex-
ponential space to compute transitive closure. In: Proceedings of 13th ACM Sym-
posium on Principles of Database Systems, pp. 201–209 (1994)

14. Suciu, D., Paredaens, J.: The complexity of the evaluation of complex algebra
expressions. Journal of Computer and Systems Sciences 55(2), 322–343 (1997)

15. Suciu, D., Wong, L.: On two forms of structural recursion. In: Proceedings of 5th
International Conference on Database Theory, pp. 111–124 (1995)

16. Wong, L.: Normal forms and conservative properties for query languages over col-
lection types. In: Proceedings of 12th ACM Symposium on Principles of Database
Systems, pp. 26–36 (1993)

17. Wong, L.: Normal forms and conservative extension properties for query languages
over collection types. Journal of Computer and System Sciences 52(3), 495–505
(1996)

Provenance in a Modifiable Data Set

Jing Zhang and H.V. Jagadish

University of Michigan
{jingzh,jag}@umich.edu

Abstract. Provenance of data is now widely recognized as being of great im-
portance, thanks in large part to pioneering work [4, 6] by Peter Buneman and
his collaborators in a stream that continues to produce influential papers today
[1–3, 7]. When we consume data from a database, we often care about where
these data come from, how they were derived, and so forth. We may desire an-
swers to such questions to establish trust in the data, to investigate suspicious
values, to debug code in the system, or for a host of other reasons. Considerable
recent work has addressed many issues related to provenance. However, the stan-
dard assumption is that data sources, from which result data have been derived,
are static. In reality, we know that most data are modified over time, including
data sources used for deriving results of interest. When we consider provenance
in the context of such modifications, many new problems arise. This chapter ad-
dresses two key problems in this context:

1. Result data may no longer be valid after a source update. How can we effi-
ciently determine whether a given result tuple is valid? When a result tuple
is invalidated, can we explain what caused this invalidation?

2. We may have lost access to (some) source data. In such a situation, can
we determine what is the missing source data on which some result tuple
depends?

1 Validating an Answer

In a modern scientific project, there frequently is a huge body of raw data collected
from experiments. Usually, this body of data is stored in a database, and processed by
SQL queries to make it ready for further analysis. These derived data are vital for the
final scientific conclusions the scientists draw from the experiments. When the raw data
change, e.g., due to a re-collection or a curation of the raw data, in the form of database
inserts, deletes and updates, it is important to know whether previously derived data and
results are still valid or derivable.

Previously derived data can be validated by incrementally maintaining [11] the de-
rived data set with regard to the updated database. However, scientists are often inter-
ested in only some particular portion of the derived data set, possibly even a single
tuple. For example, this may be a specific result quoted in some publication or used in
follow-on work. In such cases, one desires a more efficient way to validate the part in
question without refreshing the whole derived data set, especially when the derived data
set is large.

We propose an approach to validating the selected answer tuples derived from a
nested query in case of modifications to the source database, and provide an explanation

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 557–567, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

558 J. Zhang and H.V. Jagadish

of the invalidation of any of these tuples that is invalidated. For the former part, we
base our approach on the incremental evaluation of materialized views enhanced with
pruning predicates derived from the selected tuples and tailored for both positive and
negative tuples1 in delta tables; for the latter part, we treat the invalidated tuples as
negative tuples in the delta result table and retrieve their provenance as a set of both
positive and negative tuples within original and/or delta source tables.

Consider the following illustrative scenario, which we have designed using cus-
tomers and orders, as is so common in the database literature. We use this as our running
example, to make it accessible to the reader without requiring domain knowledge in any
scientific discipline.

Example 1. Assume we have two simple tables Orders and Customers as shown in
Figure 1. Every order in Orders consists of a unique order ID, a customer ID and the
cost of the order. Every customer in Customers consists of a unique customer ID and
a nation ID. There are four simple ASPJ queries QcMax, QoCnt , Qdist and QcMaxNation as
shown in Figure 2. QcMax computes the the maximum cost of a single order for each
customer; QoCnt computes the order count for each customer; QoCnt ◦ Qdist computes
the distribution of customers for each count of orders; QcMax ◦ QcMaxNation computes
the maximum cost of a single order for each nation. The derived tables are CostMax,
OrderCount, CustomerDistribution and CostMaxNation are also shown in Figure 1.

�������

��	
� ��	�� �����

��� ��� ����

��� ��� ����

��� ��� ����

��� ��� ����

��� ��� ���

�����
�����

��	� �
���

��� ��

��� ��

��� ��

�
��
���

�������	�����������

�
��� �
���

�� ��

�� ��

	�

������

����
 �

��	� ��
 �

��� ����

��� ����

��� ����

���
 ���

���������

��	� ��	��

���
��

��� ���

��� ���

����
 �
����

��	� ��
 �

�� ����

��� ����

����

�

�
����

���
 �
����

a: oID is a unique ID for each order.
b: cID is a unique ID for each customer.
c: nID is a unique ID for each nation.

Fig. 1. Source Table And Derived Tables

Suppose we have updates to Orders table as ΔOrders, shown in Figure 3. The CNT
attribute in ΔOrders is the number of derivations of each tuple. Tuples with positive
CNT are to-be-inserted tuples and tuples with negative CNT are to-be-removed tu-
ples. ΔOrders leads to the update ΔCostMax to the result table CostMax. For example,

1 Tuples in delta tables can have positive counts or negative counts [11]. We call tuples with
positive counts positive tuples, and tuples with negative counts negative tuples.

Provenance in a Modifiable Data Set 559

QoCnt:
SELECT cID, count(oID) as oCnt
FROM Orders WHERE cost >= 100
GROUP BY cID
roCnt:
OrderCount(cID, count(〈oID〉) AS oCnt) � Orders(oID, cID, cost)
? − OrderCount(cID, oCnt)
Qdist:
SELECT oCnt, count(cID) as cCnt
FROM OrderCount GROUP BY oCnt
rdist:
CustomerDistribution(oCnt, count(〈cID〉) AS cCnt) � OrderCount(cID, oCnt)
? −CustomerDistribution(oCnt, cCnt)
QcMax:
SELECT cID, max(cost) as cMax
FROM Orders
GROUP BY cID
rcMax:
CostMax(cID,max(〈cost〉) AS cMax) � Orders(oID, cID, cost)
? −CostMax(cID, cMax)
QcMaxNation:
SELECT nID, max(cMax) as cMaxNation
FROM CostMax, Customers
WHERE CostMax.cID = Customers.cID
GROUP BY nID
rcMaxNation :
CostMaxNation(nID,max(〈cMax〉) AS cMaxNation) �
CostMax(cID, cMax),Customers(cID, nID)
? −CostMaxNation(nID, cMaxNation)

Fig. 2. Example Queries

(o6, c3, 150) ∈ ΔOrders is inserted into the source table Orders, and then (c3, 100) ∈
CostMax is replaced with (c3, 150). We say that (o6, c3, 150) contradicts the previ-
ous answer (c3, 100), and (o6, c3, 150) serves as an explanation of the invalidation of
(c3, 100) from CostMax.

Note that upon the insertion of (o6, c3, 150), the derivation that produced (c3, 100) is
still in Orders. However, (c3, 100) is no longer an answer in CostMax. Thus, the exis-
tence of contributory derivations is not sufficient to form an answer. Moreover, it is ob-
vious that there is more than one way to contradict an answer. For example, (o7, c3, 200)
can contradict (c3, 100) as well. On the other hand, the removal of contributory source
tuples, e.g., (o4, c3, 100) can invalidate (c3, 100) too.

In general, an answer’s validity can be changed by the insertion of contradictory
source tuples or by the removal of contributory source tuples. The contributory prove-
nance and the contradictory provenance have an interesting duality and correspondence.
When an answer is invalidated, a negative version of it shows up in the delta answer set,
e.g., (c1, 500,−1) in ΔCostMax indicates the invalidation of (c1, 500) in the original
answer set CostMax. Therefore, the contributory provenance of the negative version of
an answer in the delta answer set is in fact the contradictory provenance of the answer.

560 J. Zhang and H.V. Jagadish

Orders
oIDa cIDb cost CNT

o1 c1 500 1
o2 c2 100 1
o3 c2 150 1
o4 c3 100 1

ΔOrders
oIDa cIDb cost CNT

o6 c3 150 1
o1 c1 500 -1

ΔOrderCount
cID oCnt CNT
c1 1 -1
c3 1 -1
c3 2 1

ΔCustomerDistribution
oCnt cCnt CNT

2 1 -1
1 2 -1
2 2 1

ΔCostMax
cID cMax CNT
c1 500 -1
c3 100 -1
c3 150 1

Fig. 3. (Delta) Tables Extended With CNT

The contributory provenance of the negative version consists of tuples from delta source
tables and/or original source tables, and consists of both positive tuples and negative tu-
ples. The queries that produce the negative version are delta query rules [11], which
are derived from the original query. Then, the contributory provenance of the negative
version of an answer can be retrieved by tracing queries based on the delta query rules
that produced the negative version.

In general, we can validate selected answers in the following two steps.

Step 1. compute the delta result table by incrementally evaluating the (nested) query
with pruning predicates;

Step 2. check the delta result table against the original result table to see if the given
answers are invalidated, and explain the invalidation with the positive and/or neg-
ative tuples in the delta source tables (and possibly tuples in the original source
tuples)

In Step 1, the key point is the construction of pruning predicates. The goal is to prune
irrelevant source tuples in the (delta) source tables. The source tuples that can not pos-
sibly affect the selected answer(s) are considered irrelevant. Note that the view update
results computed from the incremental evaluation with and without pruning predicates
are possibly different, since the former does not care for updating answers other than
the selected ones.

Since the pruning predicates are constructed for the delta rules and the delta rules
evaluate over delta tables, the pruning predicates have to deal with both the positive
tuples (i.e., to-be-inserted tuples) and the negative tuples (i.e., to-be-deleted tuples) in
the delta tables. The positive tuples and negative tuples in the delta source tables af-
fect the given answer in different ways. For example, if the given answer is the current
maximum, then the positive tuples with a greater value have the potential to invali-
date the current maximum while the negative tuples with the same value as the current
maximum have the potential to invalidate the current maximum. Therefore, a pruning
predicate is a disjunction of two predicates, one for the positive tuples and one for the
negative tuples.

If the answer is derived through a single query rule, the pruning predicates are con-
structed directly based on the given answer. If the answer is derived through a strati-
fied Datalog program consisting of multiple rules, and the single rule with the highest

Provenance in a Modifiable Data Set 561

stratum produces the final answer. Then the pruning predicates for the rule with highest
stratum is constructed directly based on the given answer; and the pruning predicates
for any other rule are inferred from the pruning predicates for rules with higher strata.

In Step 2, if we find a negative version of the selected answer in the delta result table,
we know that the given answer is invalidated. Since this negative version is produced
by the delta rules from the delta source tables and possibly original source tables, we
can find the contributory provenance of this negative version in the delta source ta-
bles (and original source tables) using classical tracing queries derived from the delta
rules. This contributory provenance of the negative version, also being the contradictory
provenance of the given answer, explains the invalidation of the given answer.

A related problem has also been studied in [10]. The update techniques given there
for the count of the derivations of each view tuple can easily be generalized to update the
complete provenance of the view tuple instead. However, the update technique in [10]
only applies to SPJU queries without aggregations. Furthermore, this technique also
updates the entire derived dataset instead of just the subset of interest to the user.

1.1 Explanation of the Absence of Expected Answer

We considered above the question of identifying updates to source data that caused a
result tuple to be invalidated. We have previously studied a closely related question of
explaining why some expected result tuple is missing from the answer set [8]. In this
previous work, we are not specifically looking at source updates.

When some answer tuples that are expected to be in the result set are missing, we
seek to identify particular source tuples or particular manipulations in the derivation
responsible for their absence. Such input data are defined to be unpicked and such ma-
nipulations are defined to be picky manipulations for these unpicked data. We proposed
both top-down and bottom-up approaches to search over the derivation process to find
the picky manipulations.

In other related work, [13] showed that proper changes can be made to some attribute
values in the source data that have previously failed to produce the expected result
tuples, such that these modified source data can now go through the query evaluation
and produce the expected result tuples. [14] introduced the concept of functional causes,
which explains the presence and absence of answers. Similar to [13], [12] also provides
instance-based explanations for missing answers, but is more general since its technique
can apply to a set of SPJUA queries instead of SPJ queries.

2 Lost Source Provenance

Modifications to a source data set may delete (or update/overwrite) some or all of the
source data from which a result of interest was derived. Even in the absence of modi-
fications, it is possible that a data source becomes unavailable, for instance because it
is remote and goes off-line or because it is owned by an entity that decides to take it
private.

In consequence, the provenance of an answer can be (partially) removed from the
source data set. In order to retrieve this (partially) lost provenance when requested,

562 J. Zhang and H.V. Jagadish

we have two possible strategies with different trade offs between the provenance we
can provide and the storage/time overhead we are willing to pay.

One way to avoid this problem is to store a version of the source at the time the
result was derived. We can thereby guarantee no provenance will be lost, but there
is storage cost for keeping a duplicate of the source, and this cost could be substantial.
Moreover, if we operate in an environment in which result tuples are lazily updated from
the source, we may have to keep multiple versions of the source to meet the provenance
needs of all result tuples.

In this section, we develop a second strategy. We show how we can add three (small)
extra data structures to the database, and use these to recover the lost provenance.

First, we define the provenance of a given derived tuple as follows. It is a modified
version of the definition introduced in [9].

Definition 1. Given a database D of tables T1, ..., Tn, a query Q and a derived tuple t,
there exists a set of tables T ′1, ..., T

′
n such that

– T ′i ⊆ Ti, where i = 1, ..., n
– {t} = Q(T ′1, ..., T

′
n)

– ∀T ′k : ∀t′ ∈ T ′k : Q(T ′1, ..., T
′
k−1, {t′}, T ′k+1, ..., T

′
n) � ∅

Notice that if a single table has more than one instance in the query, each instance is
considered a separate table.

Second, we describe the three extra data structures we need to retrieve the possibly
overwritten provenance. With these three data structures, we can have standard tracing
queries modified to make use of them and retrieve the lost provenance. We refer to these
queries as extended tracing queries.

1. We need a log, denoted as provenance log, recording the operations that have taken
place over a time period till the current time point, beginning from some defined
origin. Every entry records one operation and each entry has a unique log ID, which
can be used to identify the operation in this entry.

2. We associate with each tuple in the current database an extra attribute, denoted as
since, storing a log ID, which indicates the operation that introduced this tuple into
the database.

3. We also associate with each table in the current database a so-called shadow table
that keeps the tuples that were once in the database table but have been removed
at some time point. In particular, the shadow table has the same schema as the
database table except for two extra attributes storing log IDs, denoted as begin and
end, with begin indicating the operation that introduced the tuple into the database
and end indicating the operation that removed the tuple from the database.

The provenance log, denoted as Plog, consists of a sequence of log entries. Each
entry corresponds to an operation executed in the database system. Each entry has the
structure (ID, timestamp, user, sqlS tatement). ID is an unique ID assigned to every
entry in the log, and an operation that is committed later has a greater ID for its cor-
responding log entry. That is to say, the ID indicates the order of the commission of
all the operations. sqlS tatement stores the SQL statement of the committed operation.

Provenance in a Modifiable Data Set 563

timestamp is the time when the operation is committed. user specifies the user who
commits the operation.

The shadow tables are for the historical tuples. For each regular table in the database,
we define a corresponding shadow table. For example, if a regular table is of schema
T : 〈a1, a2〉, then the shadow table of T is Tsh : 〈a1, a2, begin, end〉. The attributes
begin and end are foreign keys referring to the attribute ID in the provenance log. The
attribute begin stores an ID whose corresponding entry in the provenance log records the
operation that generates this tuple. The attribute end stores an ID whose corresponding
entry in the provenance log records the operation that removes this tuple.

The attributes begin and end are to specify the time period when the historical tuple
was current. We choose to use the IDs of log entries instead of the actual times to avoid
ambiguity: two committed operations can have the same time of commit but can not
have a same log entry ID.

Current tuples are stored in regular tables. An extra annotation attribute called since
is added to each regular table, which is a foreign key referring to the attribute ID in
the provenance log. The attribute since stores an ID whose correspondent entry in the
provenance log stores the operation that generates this tuple.

This extra annotation attribute is not visible to the users of the database, and thus
it can not be manipulated by the users. Provenance capture and retrieval are the only
procedures that can set its value or query it.

All the auxiliary data structures are populated whenever a database operation takes
place.

1. When a database operation takes place, a new entry is created in the provenance
log and a unique ID is assigned to this new entry.

2. When a tuple is inserted into a table due to this database operation, the value of its
since attribute is set with the ID of the newly created entry in the provenance log.

3. When a tuple is removed from a table due to this database operation, either by
a delete or by an update, the removed tuple is inserted into the corresponding
shadow table. For this new tuple in the shadow table, the value of the begin at-
tribute is set with the value of the since attribute in the removed tuple; the value of
the end attribute is set with the value of the ID of the newly created entry in the
provenance log.

This populating of auxiliary data structures is in fact our provenance capture proce-
dure. All the provenance information we need is recorded in these auxiliary structures.

Given a derived tuple t, if its provenance is not current in the database, we can retrieve
its provenance with our extended tracing queries. Compared to the standard tracing
query, the extended tracing query need an extra piece of information, i.e., the ID of the
provenance log entry that records the original query. The IDs of provenance log entries
can be used as timestamps to indicate time points or periods of time, e.g., storing these
IDs in the attributes begin, end and since. These IDs are even better than real timestamps
since they incur no ambiguity.

Similarly, the ID of the provenance log entry that records the original query repre-
sents the derivation time, i.e., the time when the original query was executed. Therefore,
with this ID, our extended tracing query is able to decide which historical data to re-
trieve provenance from, i.e., the data values that were current in the database at the

564 J. Zhang and H.V. Jagadish

derivation time. In particular, if a source tuple’s life span (identified by begin and end)
covers the derivation time, this source tuple is eligible to be in the provenance. The
extended tracing query only uses those eligible source tuples and retrieves the (lost)
provenance from them.

In general, the construction of an extended tracing query needs three pieces of
information:

1. the derived tuple
2. the original query
3. the ID of the provenance log entry recording the original query

Given a tuple t, suppose it is derived from the original query Q shown in Equation 1,
and further suppose Q is logged in a provenance log entry with ID being id, then the
extended tracing query to retrieve provenance in the table Tk is as shown in Equation 2.

{
t : 〈A1, ..., An,G AS agg(An+1)〉 |
∃s1, ..., sm(
T1(s1) ∧ ... ∧ Tm(sm) ∧ f (s1, ..., sm, t)

) } (1)

{
sk : 〈B1, ..., Bl〉 |
∃t, s1, ..., sk−1, sk+1, ..., sm(
T H

1 (s1) ∧ ... ∧ T H
m (sm) ∧ f (s1, ..., sm, t)

∧t.A1 = a1 ∧ ... ∧ t.An = an
) }

(2)

where T H
k , assuming the shadow table of Tk is Tk sh, is

{
sk : 〈B1, ..., Bl〉 |(
Tk(sk) ∧ sk.since < id

)∨
∃s′k
(
Tk sh(s′k) ∧ s′k.begin < id ∧ s′k.end >= id

∧s′k.B1 = sk.B1 ∧ ... ∧ s′k.Bl = sk.Bl
) }

(3)

Notice that, although the original query is a conjunctive query, with aggregation in
this case, the extended tracing query is not a conjunctive query, because of the union
connective used in Equation 3.

These three data structures incur some space overhead. We discuss next how to min-
imize this overhead.

First of all, the provenance log does not need to take extra space in practice, since
all database management systems keep some kind of log and the provenance log can be
implemented as a view over the system maintained logs. This is almost always possible
since the really vital attributes in the provenance log are the log ID and the operation,
which are very basic information a typical system log will keep.

As for the space overhead due to the attribute since, the number of cells of this
attribute is equal to the number of tuples in the database. Since the database tuples
usually have multiple attributes and some of them are of more space-costly data types
than integer type, the total cost of this extra attribute in integer type is only a fraction of
the total size of the database.

Provenance in a Modifiable Data Set 565

The shadow tables are the costliest of the three auxiliary data structures in terms
of space. The size of shadow tables grows with the number of tuples that have been
updated or removed. In a database with a moderate amount of change to data, the space
cost due to shadow tables may be acceptable. Intuitively, this cost is unavoidable: if
there is change to data and we need past values, we have to store them somewhere.
The cost of shadow tables is much less than the cost of storing a version of the source
database for each derived value.

In general, the archiving of historical data can be done at different granularities.
For example, if one attribute in one tuple in a table in a database is updated, to store
the historical data, before the update, we can back up (i) the whole database, (ii) the
updated table, (iii) the updated tuple, or (iv) just the updated attribute in the tuple.

The size of the storage of historical data obviously depends on the granularity used in
archiving [5, 15]. In the above example, each way of archiving can enable the recovering
of the database before update, however, the last one incurs the minimum amount of
storage.

In our approach, we archive the historical data at the granularity level of tuples, i.e.,
we archive a tuple in a proper shadow table when one or multiple attributes in this
tuple are updated. Assume the average size of a tuple is sizet, and the number of tuples
affected by an operation is n. Thus, after this operation, the size of the shadow tables is
increased by (sizet + C) × n, where C is a constant being the size of the two attributes
begin and end.

Notice that decreasing the space cost also means increasing the time cost of recon-
structing previous versions using historical data. For example, if the whole database is
archived, the reconstruction of any table in the database at a previous time involves no
complex queries but almost merely selecting. Comparatively, since we only archive the
updated tuple when one or more attributes in it are changed, the reconstruction of the
involved table needs to run a query as shown in Equation 3.

The book-keeping of these three data structures also incurs some time overhead dur-
ing the execution of an operation.

There are two types of time cost: the time cost of provenance capture and the time
cost of provenance retrieval. The time cost of provenance capture is relatively smaller
and more straightforward than that of provenance retrieval.

Provenance capture for every database operation is a two-step procedure: computing
one new provenance log entry and/or new shadow table tuples; and inserting them into
the provenance log and/or shadow tables.

The computation time is negligible, since the computation of both the log entry and
the shadow table tuples is fairly simple. The insertion time of the log entry is constant,
since there is always one log entry with a fixed size. The insertion time of shadow
table tuples depends on the number of shadow table tuples generated by this operation.
Assume n tuples are updated during an operation, and
insert timet is the average time of inserting one shadow table tuple. Then the time of
inserting into shadow tables for this operation will be insert timet × n.

The time cost of our provenance retrieval primarily consists of constructing an ex-
tended tracing query and executing it. The construction of an extended tracing query

566 J. Zhang and H.V. Jagadish

takes roughly a constant amount of time. On the other hand, the time to execute it
varies with the reconstructed historical versions.

The historical version of a table consists of tuples from the current table and from the
shadow table. The execution time of the extended tracing query is affected by both the
number of tuples in the historical version and the location of these tuples. The former
is easier to understand, since retrieving from a table/view with more tuples takes more
time than retrieving from a table/view with less tuples. However, the second relationship
is not so obvious. If most of the tuples in the output of concatenation are from the same
table, (the sort at the heart of) the union may be faster than in the case where tuples
come evenly from the two tables.

3 Conclusions

We live in a dynamic world and the digital artifacts we rely on must change to keep
pace with the world we live in. Provenance is more difficult to specify and to work with
when we cannot rely on immutable objects and data sources. However, it is possible to
do and, in any case, we have no choice in the matter given that we live in a dynamic
world. This chapter considered some of the challenges that arise due to change, and
suggested solutions to these challenges.

References

1. Buneman, P., Chapman, A., Cheney, J.: Provenance management in curated databases. In:
Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data,
pp. 539–550 (2006)

2. Buneman, P., Cheney, J., Lindley, S., Müller, H.: Dbwiki: A structured wiki for curated data
and collaborative data management. In: Proceedings of the 2011 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 1335–1338 (2011)

3. Buneman, P., Cheney, J., Tan, W.-C., Vansummeren, S.: Curated databases. In: Proceedings
of the 27th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, pp. 1–12 (2008)

4. Buneman, P., Khanna, S., Tan, W.C.: Data provenance: Some basic issues. In: Foundations
of Software Technology and Theoretical Computer Science, pp. 87–93 (2000)

5. Buneman, P., Khanna, S., Tajima, K., Tan, W.C.: Archiving scientific data. ACM Trans.
Database Syst. 29, 2–42 (2004)

6. Buneman, P., Khanna, S., Tan, W.-C.: Why and where: A characterization of data prove-
nance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 316–330.
Springer, Heidelberg (2000)

7. Buneman, P., Tan, W.-C.: Provenance in databases. In: Proceedings of the 2007 ACM SIG-
MOD International Conference on Management of Data, pp. 1171–1173 (2007)

8. Chapman, A., Jagadish, H.V.: Why not? In: Proceedings of the 35th SIGMOD International
Conference on Management of Data, pp. 523–534 (2009)

9. Cui, Y., Widom, J.: Practical lineage tracing in data warehouses. In: Proceedings of the 15th
International Conference on Data Engineering, pp. 367–378 (1999)

10. Green, T.J., Karvounarakis, G., Ives, Z.G., Tannen, V.: Update exchange with mappings and
provenance. In: Proceedings of the 33rd International Conference on Very Large Data Bases,
pp. 675–686 (2007)

Provenance in a Modifiable Data Set 567

11. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally. In: Pro-
ceedings of the 1993 ACM SIGMOD International Conference on Management of Data,
pp. 157–166 (1993)

12. Herschel, M., Hernández, M.A.: Explaining missing answers to spjua queries. Proc. VLDB
Endow. 3, 185–196 (2010)

13. Huang, J., Chen, T., Doan, A., Naughton, J.F.: On the provenance of non-answers to queries
over extracted data. Proc. VLDB Endow. 1(1), 736–747 (2008)

14. Meliou, A., Gatterbauer, W., Moore, K.F., Suciu, D.: Why so? or why no? functional causal-
ity for explaining query answers. In: CoRR (2009)

15. Müller, H., Buneman, P., Koltsidas, I.: Xarch: Archiving scientific and reference data. In:
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data,
pp. 1295–1298 (2008)

Author Index

Abiteboul, Serge 1
Abramsky, Samson 13
Acar, Umut A. 193
Aı̈t-Kaci, Hassan 112
Alexe, Bogdan 36, 56
Alonso, Gustavo 291
Archer, David W. 89

Balazinska, Magdalena 167
Burdick, Douglas 36

Cal̀ı, Andrea 174
Cheney, James 193
Christophides, Vassilis 366
Ciferri, Ricardo Rodrigues 339

Davidson, Susan B. 217
de Aguiar Ciferri, Cristina Dutra 339
Delcambre, Lois M.L. 89
Deutsch, Alin 227

Fan, Wenfei 237
Fourman, Michael Paul 250
Fundulaki, Irini 366

Geerts, Floris 237, 259
Gheerbrant, Amélie 273
Glavic, Boris 291
Gottlob, Georg 174
Grohe, Martin 321

Hara, Carmem Satie 339
Hernández, Mauricio A. 36
Howe, Bill 167
Hull, Richard 227

Jagadish, H.V. 557

Karvounarakis, Grigoris 366
Kementsietsidis, Anastasios 259
Khanna, Sanjeev 217
Köhler, Sven 382
Koutrika, Georgia 36
Koutris, Paraschos 167

Krishnamurthy, Rajasekar 36
Kwasnikowska, Natalia 400

Libkin, Leonid 273
Ludäscher, Bertram 382

Ma, Shuai 237
Maier, David 89
Miller, Renée J. 291
Milo, Tova 217
Müller, Heiko 259

Nikhil, Rishiyur S. 418

Ohori, Atsushi 432
Osherson, Daniel 516

Perera, Roly 193
Pieris, Andreas 174
Plotkin, Gordon D. 445
Popa, Lucian 36

Reutter, Juan 273

Stanoi, Ioana R. 36
Suciu, Dan 167

Tajima, Keishi 466
Tan, Wang-Chiew 56
Tang, Nan 237
Tannen, Val 483

Upadhyaya, Prasang 167

Van den Bussche, Jan 400, 494
Vansummeren, Stijn 494
Vianu, Victor 1
Viglas, Stratis D. 507

Weinstein, Scott 516
Wisnesky, Ryan 36
Wong, Limsoon 542

Yu, Wenyuan 237

Zhang, Jing 557
Zinn, Daniel 382

	Foreword
	Table of Contents
	Models for Data-Centric Workflows
	1 Introduction
	2 The Business Artifact Model
	3 Active XML Workflows
	4 Comparing Business Artifacts and Active XML Workflows
	5 Verification
	6 Conclusion
	References

	Relational Databases and Bell’s Theorem
	1 Introduction
	2 Relational Databases
	2.1 Review of Basic Notions
	2.2 The Functorial View
	2.3 The Sheaf-Theoretic View

	3 Algebraic Databases
	4 From Databases to Observational Scenarios
	5 Empirical Models and Hidden Variables
	5.1 Bell’s Theorem
	5.2 Hardy’s Construction

	6 No-Go Theorems, Global Sections and Universal Relations
	6.1 Strong Contextuality
	6.2 The Kochen-Specker Theorem

	7 Further Directions
	References

	High-Level Rules for Integration
and Analysis of Data: New Challenges
	1 Introduction and Motivation
	1.1 Overview of the Paper

	2 Data Exploration and Extraction
	2.1 Extraction Rules: Examples
	2.2 Challenges in Data Extraction

	3 Entity Resolution
	3.1 Declarative Constraints for Entity Resolution
	3.2 From Declarative Constraints to Execution: Challenges

	4 Mapping and Fusion
	4.1 An Example of Transformation
	4.2 Mapping and Fusion: Making It Easier

	5 Further Related Work
	6 Concluding Remarks
	References

	A New Framework for Designing Schema Mappings
	1 Introduction
	2 Our Divide-Design-Merge Framework
	2.1 An Example

	3 Background and RelatedWork
	3.1 Prior Schema Mapping Design Systems

	4 Interactive Mapping Design and Refinement via Data Examples
	4.1 Eirene
	4.2 Muse

	5 Modular Design of Schema Mappings
	5.1 Overview
	5.2 Motivating Example
	5.3 Correlating Mappings: Key Ideas
	5.4 Correlating Flows of Schema Mappings with MapMerge and Composition

	6 Conclusion
	References

	User Trust and Judgments
in a Curated Database with Explicit Provenance
	1 Introduction: Our Data-Curation Setting
	2 The Multi-granularity, Multi-Provenance Model (MMP)
	3 Overview of the Formal Definition of MMP

	3.1 Provenance Induced by MMP Operations
	3.2 Provenance Polynomials in MMP

	4 Exploiting Judgments in MMP
	4.1 Compound Operations (Transactions) in MMP
	4.2 Provenance Polynomial Evaluation in MMP
	4.3 Example: Entity Resolution in MMP

	5 Related Work
	6 Conclusions
	References

	An Abstract, Reusable, and Extensible
Programming Language Design Architecture
	1 Introduction
	1.1 Motivation—Programming Language Design?
	1.2 Our Approach—Abstract Programming Language Design
	1.3 Organization of Paper

	2 Syntax Processing
	2.1 Jacc—Just Another Compiler Compiler
	2.2 LR-Parsing with Dynamic Operators

	3 The Kernel Language
	3.1 Processing a Kernel Expression

	4 Types
	4.1 Type Language
	4.2 Type Processing

	5 Computing with Collections
	6 Conclusion
	6.1 Recapitulation
	6.2 What’s next?

	References

	A Discussion on Pricing Relational Data
	1 Introduction
	2 Of Versions and Views
	3 Arbitrage in Data Pricing
	4 OpenProblems
	References

	Tractable Reasoning in Description Logics
with Functionality Constraints
	1 Introduction
	2 Theoretical Background
	3 Non-Conflicting Condition
	4 QueryAnswering
	5 Knowledge Base Satisfiability
	6 Conclusions
	References

	Toward a Theory of Self-explaining Computation
	1 Introduction
	2 Background
	2.1 A Note on the Overhead and Scale of Provenance Tracking

	3 Finding Sources of Copied Data
	4 Dependence and Change Propagation
	5 Discussion
	5.1 Sum Types
	5.2 Higher-Order Functions and Other Control Abstractions
	5.3 Collection Types
	5.4 Nondeterminism
	5.5 Arrays, References, Dynamic Allocation, and Concurrency

	6 Related Work
	7 Conclusions
	References

	To Show or Not to Show
in Workflow Provenance
	1 Introduction
	2 Module Privacy
	2.1 Provenance as a Relation
	2.2 Privacy Approach
	2.3 All-Private Workflows
	2.4 Public/Private Networks

	3 Structural Privacy
	3.1 Hiding Connections and Subworkflows
	3.2 Hiding Execution Paths

	4 Conclusions
	References

	Provenance-Directed Chase&Backchase
	1 Chase&Backchase
	2 Provenance-Directed
	2.1 Provenance-Aware Chase
	2.2 Provenance-Directed Backchase
	2.3 Putting It All Together

	3 Conclusion
	References

	Data Quality Problems beyond Consistency
and Deduplication
	1 Introduction
	2 Certain Fixes Instead of Heuristics Repairs
	3 Interaction between Repairing and Record Matching
	4 Relative Information Completeness
	5 Data Currency
	6 Open Research Issues
	References

	Hitting Buneman Circles

	1 Introduction
	2 Discussion
	3 Properties and Anomalies
	4 Selecting Hubs
	5 An Algorithm
	6 Results
	7 Related Work
	References

	Looking at the World Thru Colored Glasses
	1 Introduction
	2 The MONDRIAN Annotation System
	3 TheXArch Archiving System
	4 Mondrianizing XARCH
	References

	Static Analysis and Query Answering
for Incomplete Data Trees with Constraints
	1 Introduction
	2 Preliminaries
	3 XML with Incomplete Information
	4 Consistency
	4.1 Consistency with Respect to Automata and Constraints
	4.2 General Upper Bound
	4.3 A Tractable Case

	5 QueryAnswering
	5.1 General Upper Bound
	5.2 Rigid Trees

	References

	Using SQL for Efficient Generation
and Querying of Provenance Information
	1 Introduction
	1.1 Requirements for Provenance Systems
	1.2 State of the Art

	2 The Perm Approach
	2.1 Provenance Representation
	2.2 On-demand Provenance Generation Using Query Rewrites
	2.3 SQL Language Extension

	3 Perm Influence Contribution Semantics (PI-CS)
	3.1 Background and Notation
	3.2 Declarative Definition
	3.3 A Compositional Semantics
	3.4 Algebraic Rewrites
	3.5 SQL Rewrites
	3.6 Relationship with Provenance Polynomials
	3.7 Optimizations
	3.8 Query Rewrite Example

	4 Copy Contribution Semantics (C-CS)
	4.1 Algebraic Rewrites
	4.2 Optimizations
	4.3 SQL Rewrites

	5 Transformation Provenance
	5.1 Algebraic Rewrites
	5.2 SQL Rewrites and Optimizations

	6 Conclusions
	References

	Bounds and Algorithms for Joins via Fractional
Edge Covers
	1 Introduction
	1.1 Examples
	1.2 Algorithms
	1.3 Further Results
	1.4 The Rest of This Paper
	1.5 Notation

	2 Bounds for Join Queries
	2.1 Entropy and Shearer’s Lemma
	2.2 Proof of the Upper Bound
	2.3 LP Duality and Proof of the Lower Bound
	2.4 Bounds Depending on the Query Only

	3 Conjunctive Queries
	3.1 Projections of Join Queries
	3.2 Arbitrary Conjunctive Queries

	4 QueryPlans
	References

	Incremental Data Fusion
Based on Provenance Information
	1 Introduction
	1.1 A Motivating Example
	1.2 Organization

	2 Preliminary Definitions
	2.1 XML Keys
	2.2 Strategies for Data Fusion
	2.3 Basic Operations

	3 System Architecture
	4 DataModel
	4.1 Merged Document
	4.2 Rule Base
	4.3 Operations Repository
	4.4 Mapping Fusion Rules to Operations

	5 System Modules
	5.1 Fusion Module
	5.2 Validation Module
	5.3 Update Module

	6 Related Work
	7 Conclusion
	References

	Provenance for Linked Data

	1 Introduction
	2 Motivating Example
	3 Requirements for Abstract Provenance Models
	4 Capturing the Provenance of SPARQL Queries
	4.1 SPARQL in a Nutshell

	5 Provenance Models for Positive SPARQL
	5.1 Using Provenance to Assess Data Quality

	6 Towards Models for Capturing SPARQL Provenance
	7 Conclusions
	References

	First-Order Provenance Games

	1 Introduction
	2 Games
	2.1 Solving Games: Labeling Nodes
	2.2 Game Provenance: Labeling Edges

	3 Provenance Games
	3.1 Query Evaluation Games
	3.2 Relationship with Provenance Polynomials – How-Provenance forRA+
	3.3 Why-Not Game Provenance for RA+�
	3.4 Game Provenance for First-Order Queries
	3.5 Evaluation Game Graph Variants

	4 Conclusions
	References

	Querying an Integrated Complex-Object
Dataflow Database
	1 Introduction
	2 Related Work
	3 Motivation
	4 Complex-Object Dataflow Database
	4.1 Complex Data
	4.2 NRC Dataflows
	4.3 External Services and Subdataflows
	4.4 Executions
	4.5 Annotations

	5 Querying the Repository
	6 Concluding Remarks
	References

	Types, Functional Programming
and Atomic Transactions in Hardware Design
	1 Introduction
	2 Using Haskell’s Type System in BSV
	2.1 Strongly Typed Clocks and Static Checking of Clock Domains
	2.2 Numeric Kinds and Typeclasses for Hardware Sizes and Size Constraints

	2.3 Typeclasses for Abstracting Bit Representation
	2.4 Other Uses of Typeclasses

	3 Functional Programming for Circuit Description
	3.1 A Simple Example: A Routing Function Argument for a Polymorphic Switch

	3.2 Higher-Order Functions to Capture Pipeline Structures
	3.3 Monadic Static Elaboration

	4 Rewrite Rules and Atomicity
	4.1 Structured Processes (FSMs) from Rules and Higher-Order Static Elaboration

	5 Conclusion
	References

	Record Polymorphism:
Its Development and Applications
	1 Introduction
	2 Type System with Record Polymorphism
	3 Representing Various Record Structures
	3.1 Modular Programming through Record Polymorphism
	3.2 Representing Relational Databases
	3.3 Representing Objects
	3.4 Representing Polymorphic Variants

	4 Type-Directed Compilation of Record Polymorphism
	5 Applications of Type-Directed Compilation
	5.1 Natural Data Representation
	5.2 First-Class Overloaded Primitives

	6 Conclusions
	References

	A Calculus of Chemical Systems
	1 Introduction
	2 Technical Preliminaries
	3 The Calculus
	4 Petri Net Semantics
	5 Qualitative Semantics: Transition Relations
	6 Quantitative Semantics: Differential Equations
	7 Quantitative Semantics: Stochastic Matrices
	References

	Schemaless Semistructured Data Revisited
	1 Introduction
	2 Semistructured Data Models
	3 Data vs. Metadata
	3.1 Simple Tables vs. Multidimensional Tables
	3.2 Advantages of Multidimensional Tables

	4 Deterministic Semistructured Data Model
	4.1 Symbols vs. Atomic Values
	4.2 Atomic Values vs. Composite Values
	4.3 Definition of the New Model

	5 Graphs vs. Tables
	6 Conclusion
	References

	Provenance Propagation in Complex Queries
	1 Introduction
	2 From Why-Provenance to the Semiring Framework
	3 Semirings and K-Sets
	4 A Calculus of K-Sets and Aggregation
	5 Connections with Concepts in Category Theory
	References

	Well-Defined NRC Queries Can Be Typed
	1 Introduction
	2 Preliminaries
	3 Completeness
	3.1 Adding Casts
	3.2 Simulating Union Types and Casts
	3.3 Removing Sum Types

	4 Discussion
	References

	Nine Years with Peter Buneman
	1 The Collaborator
	2 TheMentor
	3 The Spirit
	4 InClosing
	References

	Modal Logic for Preference Based on Reasons
	1 Introduction
	2 The Basic Theory
	2.1 Syntax
	2.2 Semantics

	3 Axioms for the Basic Theory
	4 Generalized Models
	5 Quantified Preference Logic
	5.1 Syntax for Quantified Preference Logic
	5.2 Semantics in Quantified Preference Logic

	6 Basic Properties of Quantified Preference Logic
	6.1 Expressive Power of Modal Formulas
	6.2 Undecidability of Satisfaction
	6.3 Size of Models
	6.4 Preorder Models

	7 Subclasses of Utility Models
	7.1 Metricity
	7.2 Beyond the Frame

	8 Anonymity
	8.1 Decomposing the Utility of Conjunctions
	8.2 Decomposing a Complex Utility Index

	9 Arrow’s Theorem in the Context of Quantified Preference Logic
	9.1 Review
	9.2 Reconstruction within Preference Logic
	9.3 Arrow’s Theorem Revisited

	References

	The Dichotomous Intensional Expressive Power
of the Nested Relational Calculus with Powerset
	1 Introduction
	2 Nested Relational Calculus with Powerset
	3 Conservative Extension and Locality Properties
	3.1 Conservative Extension
	3.2 Locality

	4 Complexity of Queries on Dichotomous Structures
	5 Discussion
	6 Remarks
	References

	Provenance in a Modifiable Data Set
	1 Validating an Answer
	1.1 Explanation of the Absence of Expected Answer

	2 Lost Source Provenance
	3 Conclusions
	References

	Author Index

